

Handbook of Peer-to-Peer Networking

Xuemin Shen · Heather Yu · John Buford ·
Mursalin Akon
Editors

Handbook of
Peer-to-Peer
Networking

123

Editors
Xuemin Shen
Department of Electrical & Computer

Engineering
University of Waterloo
200 University Avenue W.
Waterloo, ON N2L 3G1
Canada
xshen@bbcr.uwaterloo.ca

Heather Yu
Huawei Technologies USA
400 Someset Corp Blvd.
Bridgewater, NJ 08807
USA
heathery@ieee.org

John Buford
Avaya Labs Research
233 Mount Airy Road
Basking Ridge, NJ 07920
USA
buford@samrg.org

Mursalin Akon
Department of Electrical & Computer

Engineering
University of Waterloo
200 University Avenue W.
Waterloo, ON N2L 3G1
Canada
mursalin@ieee.org

ISBN 978-0-387-09750-3 e-ISBN 978-0-387-09751-0
DOI 10.1007/978-0-387-09751-0
Springer New York Dordrecht Heidelberg London

Library of Congress Control Number: 2009937578

c© Springer Science+Business Media, LLC 2010
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York,
NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

For our parents.
-Xuemin Shen, Heather Yu,

John F. Buford and Mursalin Akon

Preface

Peer-to-peer networking is a disruptive technology for large scale distributed appli-
cations that has recently gained wide interest due to the successes of peer-to-peer
(P2P) content sharing, media streaming, and telephony applications. There are a
large range of other applications under development or being proposed. The un-
derlying architectures share features such as decentralizaton, sharing of end system
resources, autonomy, virtualization, and self-organization. These features constitute
the P2P paradigm. This handbook broadly addresses a large cross-section of cur-
rent research and state-of-the-art reports on the nature of this paradigm from a large
number of experts in the field.

Several trends in information and network technology such as increased perfor-
mance and deployment of broadband networking, wireless networking, and mobile
devices are synergistic with and reinforcing the capabilities of the P2P paradigm.
There is general expectation in the technical community that P2P networking will
continue to be an important tool for networked applications and impact the evolu-
tion of the Internet. A large amount of research activity has resulted in a relatively
short time, and a growing community of researchers has developed.

The Handbook of Peer-to-Peer Networking is dedicated to discussions on P2P
networks and their applications. This is a comprehensive book on P2P computing.
It addresses all issues currently developed as well as under development including
P2P architectures, search and queries, incentive mechanisms, multimedia streaming,
service oriented architectures, collaboration to share non-storage resources, mobile
P2P, theory and analysis, and P2P databases. In addition, it covers rather practical
perspectives such as traffic characteristics and trends of P2P applications, the E-
business model in P2P applications, and software characteristics. Finally, the book
contains chapters on emerging P2P concepts and applications.

The goal of this handbook is to provide an exhaustive view of the state-of-the-art
of the P2P networking field. In organizing the book, the following objectives were
followed:

• Provide an overview of the fundamentals of P2P networks
• Describe the current practice in P2P applications and industries

vii

viii Preface

• Comprehensively cover the areas of interest
• Give the most recent perspective from the P2P research community

This book is written for researchers, professionals, and computer science and en-
gineering students at the advanced undergraduate level and higher who are familiar
with networking and network protocol concepts and basic ideas about algorithms.
For the more advanced parts of the book, the reader should have general familiarity
with Internet protocols such as TCP and IP routing. For some sections of the book
such as discussions of mobility or multicasting, familiarity with mobility in IP and
IP multicasting will be helpful but is not required.

The Handbook of Peer-to-Peer Networking is intended to provide readers with
a comprehensive reference for the most current developments in the field. It offers
broad coverage P2P networking with fifty chapters written by international experts.
In addition, we hope the book becomes an important reference to those who are
active in the field. The fifty chapters of the Handbook of Peer-to-Peer Networking
are organized into the following sections:

• An Introduction to Peer-to-Peer Networking – This section contains back-
ground chapters accessible to the general reader, and covers the basic models,
applications, and usage.

• Unstructured P2P Overlay Architectures – The majority of deployed P2P
applications use unstructured overlays. These chapters cover the organizational
principles and discuss a variety of examples, including overlays using social and
semantic relationships.

• Structured P2P Overlay Architectures – Structured overlays have been a
widely studied alternative approach, with over fifty different designs having been
proposed. These chapters describe some of the leading models and their algo-
rithms, as well as dynamics, bootstrapping, formalization, and stabilization.

• Search and Query Processing – Search is perhaps the most fundamental ser-
vice in an overlay. A wide range of techniques are discussed, from basic keyword
search to semantic search, and database query processing and indexing mecha-
nisms applied to the P2P architecture.

• Incentive Mechanisms – In practice, peers are not altruistic, so techniques to
ensure fair and mutual resource sharing have been proposed. An important cat-
egory is incentive mechanisms which allows peers to participate proportional to
their resource contribution to other peers.

• Trust, Anonymity, and Privacy – In most P2P overlays, peers are in au-
tonomous security domains, and have no a priori basis for safe cooperation. Peer
reputation management is an important category of enabling trust, and is dis-
cussed here in three chapters. In addition, work on anonymity in P2P networks
and private P2P networks are presented in two chapters.

• Broadcast and Multicast Services – Multicast services are some of the earliest
use of overlays and are often described as application layer or end system mul-
ticast to distinguish them from network layer multicast. This section has a rich
coverage of work in both multicast and broadcast mechanisms, include gossip-
based approaches and hybrid designs.

Preface ix

• Multimedia Content Delivery – The inherent scalability of the P2P paradigm
makes it an attractive choice for large scale media streaming. The first chapter
in this section examines key business models for P2P content delivery. The re-
maining chapters address recent work in IPTV and Video-on-Demand in P2P
networks.

• Mobile P2P – When peers roam or are operating in ad hoc networks, the effi-
ciency and stability of the overlay is effected. The growing importance of mobile
and ad hoc networking for many applications has attracted research on the use of
P2P overlays in MANETs, which is discussed in three chapters in this section.

• Fault Tolerance in P2P Networks – Uneven workloads and instability due to
churn are some of the practical issues in operating large-scale P2P systems. Var-
ious load balancing techniques have been studied for adapting to uneven work-
loads, and are surveyed in one chapter in this section. Stabilization of the overlay
and automatically correcting network partitions are topics of two other chapters.

• Measurement and P2P Traffic Characteristics – Another topic of great prac-
tical interest is the network traffic of P2P applications, which has become the
dominant flow on the Internet. This issue affects both network operators, as dis-
cussed in one chapter, and the design of the overlay, as described in three other
chapters.

• Advanced P2P Computing and Networking – Four special topics represent
areas of P2P research that will gain more attention in future years are discussed
in this section: formal models of P2P software, the use of web services in the
P2P architecture; support for publish-subscribe and event-driven processing; and
enabling collaborative applications in a P2P overlay.

Acknowledgements

We would like to thank those individuals who reviewed the original proposal and
made important comments about structure, topics, and emphasis. Special thanks to
Mohammad Islam who always lent an extra hand.

Thanks are due to the staff at Springer Science+Business Media: Melissa Fearon
the senior editor for this book; others on the production side ...

Finally, we thank our families for their support and understanding while we
worked on this book.

Waterloo, Canada Xuemin (Sherman) Shen
Princeton, USA Heather Yu
Princeton, USA John F. Buford
Waterloo, Canada Mursalin Akon

March 2009

xi

Contents

Part I Introduction to Peer-to-Peer Networking

Peer-to-Peer Networking and Applications: Synopsis and Research
Directions . 3
John F. Buford and Heather Yu
1 Introduction . 3

1.1 Significance and Emergence . 3
1.2 Key Applications . 5
1.3 Definition and Properties of P2P Systems . 6
1.4 Business Models . 7
1.5 Technology Drivers . 8
1.6 Structure of the Chapter . 10

2 Overlay Basics . 10
2.1 Classification and Taxonomy . 10
2.2 Unstructured Overlays . 11
2.3 Structured Overlays . 13
2.4 Hierarchical and Federated Overlays . 16
2.5 Service Overlays . 17
2.6 Semantic Overlays . 18
2.7 Sensor Overlays . 19
2.8 Research Directions . 19

3 Overlay Dynamics, Heterogeneity and Mobility . 19
3.1 Churn and Overlay Maintenance . 19
3.2 Mobility in P2P Overlays . 20
3.3 Overlays for MANETs and Ad Hoc Networks 21
3.4 Heterogeneity and Variable Hop Overlays . 21
3.5 Research Directions . 23

4 P2P Content Access and Delivery . 23
4.1 Content Search . 24
4.2 P2P Streaming and Multicasting . 27
4.3 Caching and Replication . 29

xiii

xiv Contents

4.4 Summary of Design Issues . 31
4.5 Research Issues . 31

5 Security . 32
5.1 The P2P Security Concern . 32
5.2 Basic Classifications of P2P Network Security Threats 33
5.3 Counter Measures . 34
5.4 Fairness, Trust and Privacy Issues . 36
5.5 More on P2P Security . 36

6 Summary . 37
References . 37

The Social Impact of P2P Systems . 47
Andrea Glorioso, Ugo Pagallo, and Giancarlo Ruffo
1 Introduction . 47
2 Legal Issues . 48
3 Sociological Aspects . 52
4 Economic Trends . 54
5 Political Aspects . 58
6 Turning Forthcoming P2P Systems into Reality . 61

6.1 Overlay Level . 62
6.2 Accounting Level . 63
6.3 Market Level . 64

7 Conclusions . 66
References . 67

From Client-Server to P2P Networking . 71
Lu Liu and Nick Antonopoulos
1 Introduction . 71
2 Network Architecture Evolution . 72

2.1 Client-Server Architecture . 72
2.2 Grid Architecture . 72
2.3 Peer-to-Peer Architecture . 73

3 Evolution of Peer-to-Peer Networks . 74
3.1 Centralised Peer-to-Peer Networks . 75
3.2 Decentralised Peer-to-Peer Networks . 76
3.3 Hybrid Peer-to-Peer Networks . 77

4 Peer-to-Peer Search Systems . 79
4.1 Structured P2P Systems . 79
4.2 Unstructured P2P Systems . 82

5 Future Trends . 86
5.1 Self-organising Systems . 86
5.2 Hybrid Systems . 87

6 Conclusions . 87
References . 87

Contents xv

Examining the Use of Peer-to-Peer Networks from an Activity
Perspective . 91
Jorn De Boever and Dirk De Grooff
1 Introduction . 91
2 Theoretical Framework: Activity Theory . 92

2.1 Activity Theory and Human-Computer Interaction 92
2.2 Importance of Context . 93
2.3 Activity System . 94

3 Methods . 96
4 Understanding the Use of P2P Networks . 98

4.1 Process of Using Bittorrent Clients . 98
4.2 Process of Using Gnutella Clients . 105

5 Discussion and Conclusion . 111
References . 113

Part II Unstructured P2P Overlay Architectures

Unstructured Peer-to-Peer Network Architectures 117
Xing Jin and S.-H. Gary Chan
1 Introduction . 117
2 Design Considerations . 119
3 Unstructured P2P Networks for File Sharing . 119

3.1 A Centralized Approach: Napster . 119
3.2 A Distributed Approach: Gnutella . 120
3.3 A Hybrid Approach: FastTrack/Kazaa . 122
3.4 Other Approach: BitTorrent . 123
3.5 Comparison and Discussion . 124

4 Advanced Issues in File Sharing . 125
4.1 Content Replication . 125
4.2 Security and Reputation System . 127
4.3 Reputation Storage and Retrieval . 129

5 Other Applications of Unstructured P2P Networks 132
5.1 Media Streaming: CoolStreaming . 132
5.2 VoIP: Skype . 135

6 Mobile Unstructured P2P Networks . 137
6.1 Characteristics of Mobile Wireless Networks 137
6.2 Approaches for Mobile Unstructured P2P Networks 138

7 Conclusion . 140
References . 140

Exchanging Peers to Establish P2P Networks . 143
Mursalin Akon, Mohammad Towhidul Islam, Xuemin (Sherman) Shen,
and Ajit Singh
1 Introduction . 143
2 The PROOFS Network . 144

2.1 Evolution . 144

xvi Contents

2.2 Components . 145
2.3 Protocols . 145
2.4 Properties of the PROOFS Networks . 147
2.5 Results . 147

3 The CYCLON Network . 148
3.1 An Enhanced Exchange Operation . 148
3.2 Results . 149

4 The IPPS Network . 151
4.1 The Problem and the Goal . 152
4.2 System Model . 153
4.3 Topology Maintenance . 154
4.4 Results . 158

5 The Gradient Topology Network . 161
5.1 The Preliminaries . 161
5.2 Exchange Operation . 162
5.3 Search . 163
5.4 Results . 163

6 Concluding Remarks . 163
References . 164

Peer-to-Peer Topology Formation Using Random Walk 167
Kin-Wah Kwong and Danny H.K. Tsang
1 Introduction . 167
2 Literature Review . 169
3 Our Proposed Protocol . 170

3.1 P2P Network Model . 170
3.2 Joining Process . 171
3.3 Rebuilding Process . 173

4 Protocol Analysis . 173
4.1 Stabilizing Network Model . 174
4.2 Analysis of Mean Degree of P2P Network . 175
4.3 Analysis of Node Degree Evolution . 177
4.4 Simple Analysis of Peer’s Workload . 179
4.5 Analysis of P2P Network Diameter . 180

5 Simulation . 181
5.1 Node Capacity Distributions . 182
5.2 P2P Network Diameter . 182
5.3 Node Degree Equilibrium . 183

6 Conclusion . 184
References . 186

Semantic Social Overlay Networks . 189
Alexander Löser, Steffen Staab, and Christoph Tempich
1 Semantics and Communities in Peer-to-Peer Networks 190

1.1 Query Routing Strategies in Social Networks 190
1.2 Knowledge Sharing Strategies in Virtual Organizations 191

Contents xvii

2 System Architecture . 192
2.1 Building Blocks . 192
2.2 Query and Result Messages . 193
2.3 Similarity Function . 194

3 Overlay Construction, Index Creation and Maintenance 195
3.1 Content Provider and Recommender Shortcuts 195
3.2 Bootstrapping Shortcuts . 197
3.3 Default Network Shortcuts . 198

4 Routing in Semantic Social Overlay Networks . 198
4.1 Overview . 199
4.2 Selecting Best Matching Shortcuts . 199

5 Experimental Setup . 200
5.1 Content Distribution . 202
5.2 Query Distribution . 204
5.3 Peer-to-Peer Network Setup . 204
5.4 Simulator Setup and Simulation Statistics . 206
5.5 Evaluation Measures . 206

6 Evaluation and Optimization . 207
6.1 Performance Against State-of-the-Art Approaches 208
6.2 Layer and Semantic Similarity Function Contribution 209
6.3 Tradeoff Between Clustering and Recall . 210
6.4 Setting Optimal Index Size . 212
6.5 Setting Optimal Index Weight . 213
6.6 Performance for Conjunctive Queries . 214

7 Related Work . 215
8 Summary . 217
References . 218

Part III Structured P2P Overlay Architectures

Overview of Structured Peer-to-Peer Overlay Algorithms 223
Krishna Dhara, Yang Guo, Mario Kolberg, and Xiaotao Wu
1 Overview . 223
2 Basic Features of Structured P2P Overlays/Networks 224

2.1 Geometries . 225
2.2 Routing Algorithm . 226
2.3 Join/Leave Mechanisms . 227
2.4 Routing Table Maintenance . 229
2.5 Bootstrapping . 230

3 Logarithmic Degree Overlays . 230
3.1 Chord . 230
3.2 Pastry . 232
3.3 Kademlia . 234
3.4 Tapestry . 235
3.5 P-Grid . 236

xviii Contents

4 Constant Degree Overlays . 238
4.1 CAN . 238
4.2 Ulysses . 240
4.3 Cycloid . 241

5 O(1)-Hop Overlays . 243
5.1 Kelips . 243
5.2 OneHop . 244
5.3 EpiChord . 246
5.4 D1HT . 248

6 Comparison and Analysis . 249
7 Conclusions . 253

7.1 Open Research Issues . 253
7.2 Summary . 254

References . 254

Distributed Hash Tables: Design and Applications 257
C.-F. Michael Chan and S.-H. Gary Chan
1 Introduction . 257
2 Performance Characteristics and Design Considerations 258

2.1 Common Performance Characteristics . 259
2.2 Design Considerations . 259

3 DHT Schemes . 260
3.1 Chord . 260
3.2 Pastry . 262
3.3 Kademlia . 264
3.4 Other DHTs . 265

4 Design Fundamentals . 266
4.1 Static Resilience . 266
4.2 Path Latency . 266
4.3 Local Convergence . 267
4.4 Network Diameter and Node State Tradeoffs 267

5 Applications . 268
5.1 Cooperative File Storage (CFS) . 268
5.2 Scribe . 270
5.3 VMesh . 271
5.4 Internet Indirection Infrastructure (i3) . 272

6 DHTs in Wireless Networks . 274
6.1 Characteristics of Wireless Networks . 274
6.2 Challenges of Using DHTs in Wireless Networks 275
6.3 Search Approaches for Wireless Networks . 277

7 Conclusions . 278
References . 279

Contents xix

The Gamut of Bootstrapping Mechanisms
for Structured Overlay Networks . 281
Anwitaman Datta
1 Introduction . 281
2 A Taxonomy of Structured Overlay Topologies . 283

2.1 Ring . 283
2.2 Tree . 286

3 Quasi-Sequential Construction of Overlays . 288
3.1 Load-Balancing Considerations . 289

4 Parallelized Construction of Overlays . 290
4.1 Sorting Peer-IDs as a Mechanism to Build a Ring 292
4.2 Recursive Proportional Partitioning . 295

5 The Need and Challenges of Merging Two Similar Structured
Overlays . 298
5.1 Merger of Two Ring Based Networks . 301
5.2 Merger of Two Structurally Replicated P-Grid Networks 304

6 Summary and Conclusion . 306
References . 307

Network-Aware DHT-Based P2P Systems . 309
Marguerite Fayçal and Ahmed Serhrouchni
1 Motivations . 309
2 DHT-Based Architectures . 310
3 Requirements . 312
4 State of the Art . 313
5 Semantics for Resource Sharing . 317

5.1 A Context-Aware P2P System . 317
5.2 A Network Provider Oriented P2P System . 319

6 Prospects . 322
7 Conclusion . 323
References . 324

On Adding Structure to Unstructured Overlay Networks 327
João Leitão, Nuno A. Carvalho, José Pereira, Rui Oliveira,
and Luı́s Rodrigues
1 Introduction . 328
2 Adding Structure to Unstructured Overlay Networks 329

2.1 Existing Protocols . 330
2.2 Key Properties to Preserve . 336
2.3 Performance Metrics . 337
2.4 Methodologies . 338

3 Overlay Optimization . 339
3.1 Overview . 339
3.2 Architecture . 340
3.3 Algorithm . 342
3.4 Performance . 344

xx Contents

4 Gossip Optimization . 348
4.1 Overview . 348
4.2 Architecture . 350
4.3 Strategies and Oracles . 355
4.4 Performance . 357

5 Discussion and Future Directions . 361
References . 363

Mathematical Modeling of Routing in DHTs . 367
Peter Kersch and Robert Szabo
1 Introduction . 367

1.1 DHTs Revisited . 368
2 Modeling DHT Routing . 371

2.1 Renewal Processes Revisited . 373
2.2 Assumptions and Notations . 374

3 Transformed View of Long-Range Connections . 378
3.1 Long-Range Connection Density . 379
3.2 Regular Power-Law Routing Overlays . 381
3.3 Probabilistic Power-Law Routing Overlays 383
3.4 Distortions in the Transformed View . 385

4 Stochastic Analysis of Routing . 385
4.1 Analysis of Routing in the Transformed view 387
4.2 Upper Bound on the Expected Number of Routing Hops 395

5 Summary . 399
References . 400

Part IV Search and Query Processing

Keyword Search in Unstructured Peer-to-Peer Networks 405
Dingyi Han and Yong Yu
1 Introduction . 406

1.1 Background . 406
1.2 Keyword Search Problem . 407
1.3 Evaluation Metrics . 408

2 Blind Routing . 409
2.1 Pure Flooding and Its Variations . 409
2.2 Random Walk and Its Variations . 413
2.3 Comparison and Summary . 415

3 Routing Indices . 415
3.1 Content Oriented Routing . 416
3.2 Query Oriented Routing . 420
3.3 Comparison and Summary . 423

4 Multi-Keyword Search . 424
5 Conclusion . 425
References . 425

Contents xxi

Distributed Search and Pattern Matching . 427
Reaz Ahmed and Raouf Boutaba
1 Introduction . 427
2 Large Scale Distributed Systems . 428

2.1 Content Sharing . 429
2.2 Service Discovery . 431
2.3 Distributed XML Databases . 433

3 Distributed Search Requirements . 435
4 Components of a Distributed Search System . 437

4.1 Query Semantics . 437
4.2 Translation . 439
4.3 Routing . 440

5 Search Techniques in Content Sharing P2P Systems 441
5.1 Structured Techniques . 441
5.2 Un-structured and Semi-structured Techniques 444
5.3 Summary . 445

6 Search Techniques in P2P Service Discovery . 445
6.1 Summary . 446

7 Search Techniques in Distributed XML Databases 448
7.1 Summary . 449

8 The DPM Abstraction . 450
8.1 Distributed Pattern Matching (DPM) . 450
8.2 Mapping to DPM Framework . 451
8.3 Known Solutions to the DPM Problem . 453

9 Conclusion . 457
References . 458

Distributed Semantic Overlay Networks . 463
Christos Doulkeridis, Akrivi Vlachou, Kjetil Nørvåg,
and Michalis Vazirgiannis
1 Introduction . 464
2 Semantic Overlay Networks . 465

2.1 Aims of SON Generation . 466
2.2 Requirements for SON Generation . 467

3 Distributed Creation of Semantic Overlay Networks 469
3.1 The DESENT Approach to Decentralized and Distributed SON

Creation . 469
4 Searching in Semantic Overlay Networks . 474

4.1 Traditional SON-Based Search . 474
4.2 Super-Peer Organization . 475

5 Applications of Semantic Overlay Networks . 476
5.1 P2P Web Search – Document Retrieval . 476
5.2 P2P Image Retrieval . 479

xxii Contents

6 Related Work . 483
6.1 Unstructured P2P . 484
6.2 Structured P2P . 487
6.3 Evaluation . 489

7 Summary and Future Trends . 490
References . 491

Self-adaptation and Self-organization for Search in Social-Like
Peer-to-Peer Networks . 495
Lu Liu, Jie Xu, Duncan Russell, and Zongyang Luo
1 Introduction . 495
2 Background . 497
3 AESLP: Adaptive and Efficient Social-Like Peer-to-Peer 498

3.1 Knowledge Index Creation and Update . 498
3.2 Routing Algorithm for Simple Queries . 501
3.3 Routing Algorithm for Multi-Topic Queries 508
3.4 Adaptive Query . 513

4 Simulations Methodology . 515
4.1 Content Generation and Distribution . 516
4.2 Topology Initialisation and Evolution . 516
4.3 Network Churns . 517
4.4 Search Network . 517

5 Simulation Results . 518
5.1 Initial Simulations . 518
5.2 Performance Comparison to Relevant Methods 520
5.3 Performance Comparison to Derived Methods 521
5.4 Topology Evolution . 522
5.5 Effects of Parameters . 522
5.6 Query Packs . 527

6 Conclusions and Future Work . 528
References . 529

Data Sharing in P2P Systems . 531
Rabab Hayek, Guillaume Raschia, Patrick Valduriez,
and Noureddine Mouaddib
1 Introduction . 532
2 P2P Networks . 534

2.1 Unstructured . 534
2.2 Structured . 536
2.3 Unstructured vs. Structured: Competition or

Complementarity? . 537
3 Data Indexing in P2P Systems . 538

3.1 Index Types . 539
3.2 Semantic-Free Index: DHT . 543
3.3 Semantic Index . 546

Contents xxiii

4 Schema Management in P2P Systems . 551
4.1 Pairwise Schema Mappings . 552
4.2 Mapping Based on Machine Learning Techniques 553
4.3 Common Agreement Mapping . 554
4.4 Schema Mapping Using IR Techniques . 555

5 Querying in P2P Systems . 555
5.1 Partial Lookup . 556
5.2 Partial Answering . 561
5.3 What About Approximate Answering? . 563

References . 566

Managing Linguistic Data Summaries in Advanced P2P Applications . . 571
Rabab Hayek, Guillaume Raschia, Patrick Valduriez,
and Noureddine Mouaddib
1 Introduction . 572
2 Summarization Process . 573

2.1 Data Summarization . 573
2.2 Input Data . 575
2.3 Process Architecture . 576
2.4 Distributed Summary Representation . 579

3 Summary Model for Hierarchical P2P Networks . 580
3.1 Problem Statement . 580
3.2 Model Architecture . 582
3.3 Summary Management . 582

4 Query Processing . 586
4.1 Query Reformulation . 587
4.2 Query Evaluation . 588

5 Performance Evaluation . 590
5.1 Cost Model . 591
5.2 Simulation . 594

6 Related Work . 598
7 Conclusion . 598
References . 599

Case Study: Scoop for Partial Read from P2P Database 601
Farnoush Banaei-Kashani and Cyrus Shahabi
1 Introduction . 602

1.1 Motivation and Problem Definition . 602
1.2 Related Work . 604
1.3 Scoop . 605
1.4 Roadmap . 608

2 Partial Read Operation . 608
2.1 Definitions . 609

3 Scoop: Partial Read by Epidemic Dissemination . 611
3.1 SIR Epidemic Dissemination . 611
3.2 Percolation Model . 612
3.3 Tuning Scoop . 615

xxiv Contents

4 A Real-World Example of Scoop . 617
4.1 Network Topology . 617
4.2 Analysis . 618
4.3 Algorithm . 618

5 Variants of Scoop . 619
6 Experiments . 620

6.1 Methodology . 620
6.2 Results . 621

7 Conclusion and Future Work . 624
References . 626

Part V Incentive Mechanisms

Incentive Mechanisms for Cooperation in Peer-to-Peer Networks 631
Daniel A. G. Manzato and Nelson L. S. da Fonseca
1 Introduction . 632
2 Characteristics and a Classification of Uncooperative Behaviors 633
3 Comprehensive Study of Incentive Patterns . 636

3.1 Trust Based Incentive Patterns . 637
3.2 Trade Based Incentive Patterns . 641

4 Selection of Incentive Schemes . 649
4.1 Incentive Mechanism for the CoopNet Network 649
4.2 Altruism in Peer-to-Peer Media Streaming . 652
4.3 Multicast with Incentive in Peer-to-Peer Media Streaming 653
4.4 Client Selection with Differentiated Service 654
4.5 Incentives in BitTorrent . 656
4.6 Trading in Trust, Tokens and Stamps . 656
4.7 Mobility in Ad hoc Wireless Networks with Incentives 657

5 Final Remarks . 658
References . 659

Bandwidth Trading as Incentive . 661
Kolja Eger and Ulrich Killat
1 Introduction . 661
2 Trading Schemes for P2P Content Distribution . 663

2.1 P2P Network Model . 663
2.2 Resource Pricing . 665
2.3 Reciprocal Rate Control . 667
2.4 BitTorrent . 668

3 Nash Equilibrium . 668
4 Performance Evaluation . 669

4.1 Static networks . 670
4.2 Dynamic Networks . 672

5 Bandwidth Trading and Piece Selection . 674
5.1 Piece-Dependent Resource Pricing . 681

6 TCPeer: A TCP Variant for P2P CDNs . 682

Contents xxv

7 Conclusion . 683
References . 684

Part VI Trust, Anonymity, and Privacy

Reputation-Based Trust Management in Peer-to-Peer Systems:
Taxonomy and Anatomy . 689
Loubna Mekouar, Youssef Iraqi, and Raouf Boutaba
1 Introduction and Motivation . 689
2 Traditional Systems Versus Reputation-Based Systems. 691
3 Trust and Reputation . 692

3.1 Trust Definition . 692
3.2 Reputation Definition . 693
3.3 Trust Properties . 693
3.4 System Model . 694

4 The Anatomy of Reputation Systems . 699
4.1 The Local Trust . 700
4.2 The Reputation Query . 704
4.3 Reputation Computation . 707
4.4 The Use of Reputation . 712
4.5 Credibility Assessment . 714
4.6 Incentives, Rewards and Punishment . 714

5 Design Requirements . 716
6 Centralized Reputation Systems . 716

6.1 e-Commerce Applications . 716
6.2 P2P Systems . 719

7 Decentralized Reputation Systems . 721
7.1 The Distributed Trust Model: DistributedTrust 721
7.2 The Binary Distributed Trust Model: BinaryTrust 722
7.3 Reputation Management by Choosing Reputable Servents:

P2PBasic and P2PEnhanced . 723
7.4 Reputation Management by the XRep Protocol: XRep 723
7.5 Reputation Management Using EigenTrust 724
7.6 Limited Reputation Sharing in P2P Systems: LimitedReputation . 725
7.7 Reputation Management Using Trust and Credibility Records:

CredibilityRecords . 726
7.8 Reputation Management Using CCCI Methodology: MDNT 726
7.9 Cooperative Peer Groups in Nice . 726

8 Partially Decentralized Reputation Systems . 727
8.1 BitTorrent . 728
8.2 The Inauthentic Detector Algorithm (IDA) and the Malicious

Detector Algorithm (MDA) . 728
9 Conclusion . 729
References . 730

xxvi Contents

P2P Reputation Management Through Social Networking 733
Zoran Despotovic
1 Introduction . 733
2 P2P Reputation Systems . 735

2.1 P2P Systems Perspective . 738
2.2 Classification of Existing Solutions . 739

3 Probabilistic Signaling Reputation Mechanisms . 741
3.1 Discussion . 744

4 Ad hoc Signaling Reputation Mechanisms . 745
4.1 A Synchronous Algorithm . 746
4.2 Discussion . 748
4.3 Bio-inspired P2P Reputation Systems . 750

5 Sanctioning Reputation Mechanisms . 751
5.1 Modeling Reputation . 752

6 Identities: An Important Practical Problem . 756
7 Discussion and Conclusions . 757
References . 758

State of the Art in Trust and Reputation Models in P2P networks 761
Félix Gómez Mármol and Gregorio Martı́nez Pérez
1 Introduction . 761
2 Trust and Reputation Models . 762
3 Discussion . 775

3.1 Trust and Reputation Management – What for? 775
3.2 Trust and Reputation Models Steps . 776
3.3 Common Challenges and Solutions in Trust and Reputation

Management Over P2P Networks . 777
3.4 Strengths and Weaknesses of the Described Models 781
3.5 Real Scenarios . 782

4 Conclusions and Future Work . 783
References . 783

Anonymity in P2P Systems . 785
Pilar Manzanares-Lopez, Juan Pedro Muñoz-Gea,
Josemaria Malgosa-Sanahuja, and Juan Carlos Sanchez-Aarnoutse
1 Introduction . 786
2 Source-Rewriting Systems . 787

2.1 Mixes . 787
2.2 Onion Routing . 789
2.3 Crowds . 792
2.4 Freenet . 794

3 Broadcast Systems . 795
3.1 P5 . 795
3.2 Hordes . 798

4 DC-Net Systems . 799
4.1 Herbivore . 799

Contents xxvii

5 Analysis of Anonymity . 800
5.1 Mix . 801
5.2 Onion Routing . 802
5.3 Crowds . 803
5.4 Crowds with Limited Path Lengths . 804

6 Experimental Analysis of Anonymity . 807
7 Summary . 809
8 Future Research Directions . 810
References . 811

Private Peer-to-Peer Networks . 813
Michael Rogers and Saleem Bhatti
1 Introduction . 813
2 Background . 814

2.1 Definitions . 814
2.2 Technical Challenges . 815

3 Survey of Deployed Systems . 816
3.1 Group-Based Networks . 816
3.2 Friend-to-Friend Networks . 817
3.3 Other Networks . 818

4 Architecture . 819
5 Related Research . 822
6 Conclusions . 823
References . 824

Part VII Broadcast and Multicast Services

Gossip-Based Broadcast . 831
João Leitão, José Pereira, and Luı́s Rodrigues
1 Introduction . 831
2 Gossip-Based Broadcast . 833

2.1 Parameters . 833
2.2 Strategies . 834
2.3 Peer Sampling Service . 835
2.4 Partial View . 836
2.5 Strategies to Maintain Partial Views . 837
2.6 Partial View Properties . 837
2.7 Performance Metrics . 839
2.8 An Overview of Existing Protocols . 840

3 The HyParView Protocol . 845
4 Achieving Resilient Broadcast . 847
5 Building Low Cost Spanning Trees . 848
6 Experimental Evaluation . 850

6.1 Experimental Setting . 851
6.2 HyParView and Eager Push Strategy . 852
6.3 Plumtree . 855

xxviii Contents

7 Discussion and Future Directions . 858
References . 859

Employing Multicast in P2P Overlay Networks . 861
Mario Kolberg
1 Introduction . 861

1.1 IP Layer Multicast . 861
1.2 Application Layer Multicast (ALM) . 862

2 Using IP Multicasting for Parallel P2P Overlay operations 862
2.1 Host Group Multicasting . 864
2.2 Multi-Destination Multicasting . 864
2.3 Chuang-Sirbu Scaling Law . 866
2.4 Strengths and Weaknesses . 867

3 Application Layer Multicast . 868
3.1 Mesh First Approaches (NARADA) . 869
3.2 Tree First Approaches . 869
3.3 Implicit Approaches . 870
3.4 Strengths and Weaknesses . 871

4 Conclusions . 872
References . 873

Multicast Services over Structured P2P Networks 875
Pilar Manzanares-Lopez, Josemaria Malgosa-Sanahuja,
Juan Pedro Muñoz-Gea, and Juan Carlos Sanchez-Aarnoutse
1 From IP Multicast to ALM . 876
2 Flooding-Based Structured ALM . 877

2.1 CAN-Multicast . 877
2.2 DKS/Chord Multicast . 878

3 Tree-Based Structured ALM . 881
3.1 Scribe . 881
3.2 Bayeux . 883

4 OverSim: A Useful P2P Simulation Tool . 884
4.1 OMNeT++ . 886
4.2 OverSim . 886
4.3 Chord-Multicast Implementation . 887
4.4 Scribe Implementation . 889

5 Performance Evaluation . 890
6 Summary . 894
7 Future Research Directions . 894
References . 895

Multicast Routing in Structured Overlays
and Hybrid Networks . 897
Matthias Wählisch and Thomas C. Schmidt
1 Introduction . 898
2 Overview of Structured Approaches to Group Communication 898

Contents xxix

2.1 Flooding of (Sub-)Overlays . 899
2.2 Source-Specific Distribution Trees . 901
2.3 Shared Distribution Trees . 902
2.4 Bi-directional Shared Distribution Trees . 903

3 Properties of Distribution Trees . 904
3.1 CAN Flooding: k-ary Trees with Node Chains 904
3.2 Prefix-directed Forwarding: k-ary Trees with Node Redundancy . 908
3.3 Reverse Path Forwarding: Topology-Induced Trees 910

4 Hybrid Multicast . 912
4.1 Inter-Domain Multicast Tunneling and Overlays 913
4.2 Hybrid Shared Tree Architecture . 914

5 A Common API for Group Communication . 919
5.1 General Design Principles for Structured Overlay Networks – The

Dabek Model . 919
5.2 Towards a Structured P2P Group Communication API 922
5.3 Architectural Components . 925

6 Discussions and Conclusions . 928
6.1 Future Research Directions . 930

References . 930

Multicast and Bulk Lookup in Structured Overlay Networks 933
Ali Ghodsi
1 Introduction . 933

1.1 Motivation . 934
2 Preliminaries . 934

2.1 Desirable Properties . 937
3 Broadcast . 938

3.1 Simple Broadcast . 939
3.2 Simple Broadcast with Feedback . 941

4 Bulk Operations . 942
4.1 Bulk Operations . 944
4.2 Bulk Operations with Feedbacks . 946
4.3 Bulk Owner Operations . 946

5 Fault-Tolerance . 948
5.1 Pseudo Reliable Broadcast . 950

6 Application: Efficient Overlay Multicast . 952
6.1 Basic Design . 952
6.2 Group Management . 952
6.3 IP Multicast Integration . 954

7 Related Work . 955
References . 956

Part VIII Multimedia Content Delivery

xxx Contents

Peer-to-Peer Content Distribution and Over-The-Top TV: An Analysis
of Value Networks . 961
Jorn De Boever and Dirk De Grooff
1 Over-The-Top TV and P2P Systems . 962

1.1 Evolutions of TV . 962
1.2 Over-The-Top TV . 963

2 Theoretical Framework . 965
2.1 P2P Systems and Business Modeling . 965
2.2 Business Modeling Theory . 966
2.3 Value Networks . 967

3 Case Studies . 969
3.1 Case 1: Kontiki . 969
3.2 Case 2: Zattoo . 971
3.3 Case 3: Bittorrent Clients . 974

4 The Role of ISPs . 976
5 Discussion and Conclusion . 978
References . 981

Live Video and IP-TV . 985
Maria Luisa Merani and Daniela Saladino
1 Live Streaming and IP-TV . 985
2 A Taxonomy of P2P Video Broadcasting Systems 987
3 Popular P2P Streaming Systems . 990
4 The Diffusion Process and a Reference System . 991

4.1 Mesh-Based Systems . 991
4.2 Scheduling . 993
4.3 Software Architecture and Overlay Membership 993
4.4 New CoolStreaming . 995

5 Measurements and Quality Monitoring . 997
5.1 Network Edge Measurements . 998
5.2 System Measurements . 1002

6 Modeling Insights . 1009
6.1 First Modeling Efforts . 1009
6.2 More Recent Contributions . 1011
6.3 A Numerical Comparison Between Mesh and Multiple-Trees 1015

7 Open Issues and Promising Solutions . 1018
7.1 QoS and QoE . 1018
7.2 Network Awareness . 1019
7.3 Network Coding for P2P Streaming . 1020

8 Summary . 1023
References . 1023

Contents xxxi

Providing VoD Streaming Using P2P Networks . 1025
Juan Pedro Muñoz-Gea, Josemaria Malgosa-Sanahuja,
Pilar Manzanares-Lopez, and Juan Carlos Sanchez-Aarnoutse
1 Introduction . 1026
2 P2P VoD Services Overview . 1028
3 Overlay Network Structure for P2P VoD . 1028

3.1 Tree-Based Network Structure . 1029
3.2 Mesh-Based Network Structure . 1030
3.3 Hybrid Network Structure . 1030

4 Forwarding Approaches . 1031
4.1 Buffer-Forwarding . 1031
4.2 Storage-Forwarding . 1032
4.3 Hybrid-Forwarding . 1032
4.4 Pre-Fetching . 1033

5 Suppliers Search . 1034
5.1 Searching in Buffer-Forwarding . 1034
5.2 Searching in Storage-Forwarding . 1036

6 Data Scheduling . 1037
6.1 Scheduling in Buffer-Forwarding . 1038
6.2 Scheduling in Storage-Forwarding . 1038

7 Technical Challenges . 1040
8 Summary . 1040
9 Future Research Directions . 1041
References . 1041

Part IX Mobile P2P

Peer-to-Peer Overlay in Mobile Ad-hoc Networks 1045
Marcel C. Castro, Andreas J. Kassler, Carla-Fabiana Chiasserini,
Claudio Casetti, and Ibrahim Korpeoglu
1 Introduction . 1046
2 Overview on Peer-to-Peer and Ad-Hoc Networks 1048

2.1 Peer-to-Peer Overlay Networks . 1048
2.2 Characteristics of Wireless Multi-hop and Mobility 1049
2.3 Traffic Routing in Multi-hop Networks . 1051

3 Challenges of Deploying P2P Services in Mobile Ad-hoc Networks 1053
4 Overview of P2P Solutions for Mobile Ad-hoc Networks 1058

4.1 Integration Principles Between P2P and MANET
Routing Layer . 1058

4.2 Unstructured P2P Networks for MANETs . 1059
4.3 Structured P2P Networks for MANETs . 1062
4.4 Summary and Comparison of the Solutions 1069

5 P2P Application Scenarios for Mobile Ad-hoc Networks 1073
5.1 Decentralized Name Service . 1073
5.2 Overlay-Based Multicast . 1074
5.3 Multimedia Services . 1075

xxxii Contents

6 Summary . 1076
References . 1077

Opportunistic Information Retrieval in Sparsely Connected Ad Hoc
Networks . 1081
Mooi-Choo Chuah and Jian-bin Han
1 Introduction . 1081
2 Related Work . 1083
3 System Model . 1084
4 Data/Index/Query Dissemination Schemes . 1085

4.1 Data Caching . 1085
4.2 Index Advertising . 1086
4.3 Query Dissemination . 1087
4.4 DTN Message Routing Scheme . 1087
4.5 Three Information Retrieval Schemes . 1088

5 Performance Evaluation . 1089
5.1 Simulation Setup . 1089
5.2 Simulation Results . 1091

6 Discussion . 1102
7 Concluding Remarks . 1103
References . 1104

The MOBI-DIK Approach to Searching in Mobile Ad Hoc Network
Databases . 1105
Yan Luo, Ouri Wolfson, and Bo Xu
1 Introduction: MANET Databases . 1105
2 Historical Background . 1106
3 Scientific Fundamentals . 1107
4 The MOBI-DIK Approach . 1110
5 Key Applications . 1113
6 Future Research Directions . 1114
References . 1115

Part X Fault Tolerance in P2P Networks

Managing Network Partitions in Structured P2P Networks 1127
Tallat M. Shafaat, Ali Ghodsi, and Seif Haridi
1 Introduction . 1128
2 Preliminaries . 1129
3 Detecting Network Partitions and Mergers . 1131
4 Merging the Overlays . 1132

4.1 Simple Ring Unification . 1132
4.2 Gossip-Based Ring Unification . 1133

5 Performance Evaluation . 1135
6 Related Work . 1138

6.1 Merging P-Grid Overlays . 1138
6.2 Merging Pastry Overlays . 1142

Contents xxxiii

6.3 Overlay Construction from Random Graph 1142
6.4 Data Consistency . 1143

7 Summary . 1144
7.1 Open Questions . 1145

References . 1145

Load Balancing in Structured P2P Networks . 1149
Yingwu Zhu
1 Introduction . 1149

1.1 Motivation . 1149
1.2 Load Definition . 1150
1.3 Goals . 1151

2 Load Information Aggregation and Dissemination 1151
2.1 Tree Structure-Based Approach . 1151
2.2 Gossip-Based Approach . 1152
2.3 Summary . 1153

3 Load Balancing . 1153
3.1 Virtual Server-Based Approach . 1153
3.2 Power of Two Choices . 1154
3.3 Address-Space and Item Balancing . 1154
3.4 Discussion . 1155

4 1155
4.1 Overview . 1155
4.2 LBI Aggregation and Dissemination . 1156
4.3 Proximity-Aware VSA . 1158
4.4 VST . 1160
4.5 Discussion . 1161

5 Future Research . 1162
6 Summary . 1163
References . 1163

Acyclic Preference-Based Systems . 1165
Fabien Mathieu
1 Introduction . 1165

1.1 Stable Marriage: A Brief Overview . 1167
1.2 Going P2P . 1167
1.3 Outline . 1168

2 Acyclic Preference-Based Systems . 1168
2.1 Notation and Definition . 1168
2.2 Acyclicity: Main Convergence Theorem. 1171
2.3 Acyclic Classes . 1174

3 Self-Stabilization Speed . 1176
3.1 Upper Bounds . 1176
3.2 Expected Convergence Time . 1178
3.3 Simulations . 1180

Case Study: Efficient, Proximity-Aware Load Balancing [14] .

xxxiv Contents

4 Stable Configuration Description . 1185
4.1 Specific Notation . 1186
4.2 Acyclic Formulas . 1186
4.3 Node-Based Preferences . 1187
4.4 Acyclic and Distance-Based Preferences . 1191
4.5 b-Matching Generalization . 1196
4.6 Some Basic Applications . 1198

5 Conclusion . 1201
References . 1201

Part XI Measurement and P2P Traffic Characteristics

The Behavior of Free Riders in BitTorrent Networks 1207
Manaf Zghaibeh, Kostas G. Anagnostakis, and Fotios C. Harmantzis
1 Introduction . 1208
2 BitTorrent Background . 1209
3 Previous Work . 1210
4 Methodology . 1212

4.1 First Measurement Study . 1212
4.2 Second Measurement Study . 1213

5 Results and Discussion . 1215
5.1 First Measurement Study . 1215
5.2 Second Measurement Study . 1218

6 Conclusions . 1227
7 Future Work . 1229
References . 1229

The Nature of Peer-to-Peer Traffic . 1231
João V. P. Gomes, Pedro R. M. Inácio, Mário M. Freire, Manuela Pereira,
and Paulo P. Monteiro
1 Introduction . 1232
2 The Importance of Traffic Characterisation . 1234

2.1 The Effect of Peer-to-Peer Traffic in Computer Networks 1234
2.2 Making Peer-to-Peer a Practicable Solution: Traffic Classification 1238

3 Peer-to-Peer Traffic Characterisation . 1240
3.1 Generic Properties of Traffic from Peer-to-Peer Protocols 1241
3.2 Analysing Peer-to-Peer Traffic Behaviour . 1242
3.3 Entropy as a Measure of Heterogeneity . 1244
3.4 Capturing the Nature of Peer-to-Peer Traffic 1244

4 Inside a Network: Using Behavioural Characteristics to Identify
Peer-to-Peer Traffic . 1247

5 Summary . 1249
References . 1250

Contents xxxv

Characterization of P2P Systems . 1253
Daniel Stutzbach and Reza Rejaie
1 Introduction . 1253
2 Measurement Techniques . 1254

2.1 Passive Monitoring . 1255
2.2 Participate . 1256
2.3 Crawl . 1256
2.4 Sample . 1256
2.5 Centralize . 1257
2.6 Summary . 1257

3 What to Measure . 1258
3.1 Static Peer Properties . 1258
3.2 Dynamic Peer Properties . 1259
3.3 Static Connectivity Properties . 1261
3.4 Dynamic Connectivity Properties . 1262
3.5 Summary . 1262

4 Cruiser: A Fast P2P Crawler . 1263
4.1 The Design of Cruiser . 1264
4.2 Quantifying Snapshot Accuracy . 1265

5 Sampling . 1267
5.1 Sampling with Dynamics . 1267
5.2 Sampling from Static Graphs . 1268
5.3 Empirical Results . 1272

6 Summary and Future Work . 1274
References . 1274

Improving Peer-to-Peer Transport Paths for Content Distribution 1277
Gerhard Hasslinger
1 Introduction . 1277
2 P2P Networking on Broadband Internet Platforms 1279

2.1 Users . 1279
2.2 P2P Service and Protocol Designers . 1280
2.3 Content and Service Providers . 1280
2.4 Network and Broadband Access Providers . 1281
2.5 Current Shifts in Internet Usage and Traffic Profiles 1281

3 Distribution and Access to Content on the Internet 1282
3.1 CDN Versus P2P Content Distribution . 1283
3.2 Zipf Laws and 80:20 Rules . 1284

4 Optimized Data Exchange in P2P Networks . 1284
4.1 Current IETF Discussion on Application Layer Traffic

Engineering . 1285
4.2 Experience from the P4P Project Including Traffic Engineering . . 1286
4.3 Influence of Biased Source Selection on the Overlay Topology . . . 1287
4.4 Caches . 1288
4.5 Traffic Control for Bottlenecks . 1289

xxxvi Contents

5 Conclusions . 1290
References . 1290

Part XII Advanced P2P Computing and Networking

A Formal Architectural Model for Peer-to-Peer Systems 1295
Lu Yan
1 Introduction . 1295
2 Action Systems . 1296

2.1 Actions . 1296
2.2 Classes and Objects . 1297
2.3 OO-action System . 1298

3 Initial Specification of the Gnutella System . 1299
4 Action System Specification of the Gnutella System 1300
5 Refining Gnutella Servent . 1302

5.1 Refining ConnectService . 1303
5.2 Refining LookupService . 1305
5.3 Refining DownloadService . 1310

6 Concluding Remarks . 1312
7 Future Directions . 1312
References . 1313

P2P Approach for Web Services Publishing and Discovery 1315
Mohmammad Towhidul Islam, Mursalin Akon, and Xuemin (Sherman) Shen
1 Introduction . 1315
2 Web Services . 1317

2.1 Architecture of the Web Services . 1317
2.2 UDDI Structure . 1318

3 Peer-to-Peer Computing . 1319
4 Web Services and P2P . 1319
5 A Framework for Web Services Using P2P . 1321

5.1 Registering a Peer . 1321
5.2 Publishing Information . 1322
5.3 Finding the Service . 1322

6 Keyword Based Service Discovery . 1323
6.1 System Architecture . 1323
6.2 Query Engine . 1324
6.3 Load Balancing . 1325

7 Semantic Web Service . 1325
7.1 Domain Ontology . 1326
7.2 Semantic Web Service Discovery . 1326
7.3 METEOR-S WSDI: A Semantic Web Services Tool 1327

8 Spider: A Unified Web Service Discovery Tool . 1329
8.1 Keyword Based Search . 1329
8.2 Ontology Based Search . 1330
8.3 Behavior Based Search . 1330

Contents xxxvii

9 Discussion on Open Issues . 1331
10 Conclusion . 1331
References . 1331

Content-Based Publish/Subscribe Systems . 1333
Haiying Shen
1 Introduction . 1333
2 Subscription Models . 1336

2.1 Topic-Based Systems . 1336
2.2 Content-Based Systems . 1337
2.3 Type-Based Systems . 1337

3 Filter-Based and Multicast-Based Pub/Sub Systems 1338
4 Centralized and Distributed Pub/Sub Systems . 1340

4.1 Centralized Pub/Sub Systems . 1341
4.2 Distributed Broker-Based Pub/Sub Systems 1343
4.3 Distributed DHT-Based Pub/Sub Systems . 1348

5 Summary and Challenges . 1360
References . 1361

Supporting Collaboration and Creativity Through Mobile P2P
Computing . 1367
Adam Wierzbicki, Anwitaman Datta, Łukasz Żaczek, and Krzysztof Rzadca
1 Introduction . 1367
2 Applications for Collaboration and Creativity Support 1369
3 Collaboration Middleware Functionality . 1371

3.1 General-Purpose Mobile P2P Middleware . 1371
3.2 Overview of Middleware Functions . 1372
3.3 Required P2P Overlay Functions . 1375
3.4 Research Issues Related to Middleware Function Design 1376

4 SIP and P2PSIP . 1377
4.1 The Session Initiation Protocol . 1377
4.2 P2PSIP . 1381
4.3 A Case Study: SharedMind . 1385
4.4 Research Issues Related to SIP and P2PSIP 1387

5 Vertically Integrated Overlay . 1387
5.1 In the Realm of Ringless Routing . 1388
5.2 Virtual Ring Routing . 1389
5.3 Identity Crisis in a Large-Scale Decentralized World 1392
5.4 DHT Based on a SocialCircle . 1393
5.5 The Outlook for Future Works . 1397
5.6 Good and Better Peers . 1397

6 Conclusions . 1398
References . 1399

Index . 1401

List of Contributors

Adam Wierzbicki
Polish Japanese Institute of Information Technology, Warsaw, Poland,
e-mail: adamw@pjwstk.edu.pl

Ahmed Serhrouchni
Institut Telecom, TELECOM-ParisTech, 46 rue Barrault, 75013 Paris, France,
e-mail: Ahmed.Serhrouchni@telecom-paristech.fr

Ajit Singh
Department of ECE, University of Waterloo, ON, Canada, N2L 3G1,
e-mail: asingh@uwaterloo.ca

Akrivi Vlachou
Department of Informatics, Athens University of Economics and Business (AUEB),
10434 Athens, Greece, e-mail: avlachou@aueb.gr

Alexander Löser
Technische Universität Berlin, Einsteinufer 17, 10587 Berlin, Germany,
e-mail: alexander.loeser@tu-berlin.de

Ali Ghodsi
Swedish Institute of Computer Science (SICS), Box 1263, 164 29 Kista, Sweden,
e-mail: ali@sics.se

Andrea Glorioso
European Commission DG Information Society and Media, Avenue de Beaulieu 33
B-1049, Bruxelles, e-mail: Andrea.Glorioso@ec.europa.eu

Andreas J. Kassler
Department of Computer Science, Karlstads University, Universitetsgatan 2,
SE-651 88, Karlstad, Sweden, e-mail: Andreas.Kassler@kau.se

xxxix

xl List of Contributors

Anwitaman Datta
Nanyang Technological University, Nanyang Avenue, Singapore,
e-mail: anwitaman@ntu.edu.sg

Bo Xu
Department of Computer Science, University of Illinois at Chicago, USA

C.-F. Michael Chan
Stanford University, Stanford, CA, USA, e-mail: mcfchan@stanford.edu

Carla-Fabiana Chiasserini
Dipartimento di Elettronica, Politecnico di Torino, Corso Duca degli Abruzzi 24,
10129 Torino, Italy, e-mail: chiasserini@polito.it

Christoph Tempich
DETECON international GmbH, Oberkasselerstrasse 2, 53227 Bonn, Germany,
e-mail: christoph@tempich.com

Christos Doulkeridis
Department of Informatics, Athens University of Economics and Business (AUEB),
10434 Athens, Greece, e-mail: cdoulk@aueb.gr

Claudio Casetti
Dipartimento di Elettronica, Politecnico di Torino, Corso Duca degli Abruzzi 24,
10129 Torino, Italy, e-mail: casetti@polito.it

Cyrus Shahabi
University of Southern California, Department of Computer Science, Los Angeles,
CA 90089-0781, USA, e-mail: shahabi@usc.edu

Daniel A. G. Manzato
University of Campinas, Institute of Computing, Av. Albert Einstein, 1251, P.O.
Box 6176, 13084-971, Campinas, SP, Brazil,
e-mail: dmanzato@ic.unicamp.br

Daniel Stutzbach
Stutzbach Enterprises, Dallas, Texas, USA,
e-mail: daniel@stutzbachenterprises.com

Daniela Saladino
Department of Information Engineering, University of Modena and Reggio Emilia,
Italy, e-mail: daniela.saladino@unimore.it

Danny H. K. Tsang
Department of Electronic and Computer Engineering, Hong Kong University of
Science and Technology, Hong Kong, e-mail: eetsang@ece.ust.hk

Dingyi Han
Apex Data & Knowledge Management Lab, Department of Computer Science &
Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai,
200240, China, e-mail: handy@apex.sjtu.edu.cn

List of Contributors xli

Dirk De Grooff
Centre for UX Research / IBBT, K.U.Leuven, Parkstraat 45 Bus 3605 - 3000
Leuven - Belgium, e-mail: dirk.degrooff@soc.kuleuven.be

Duncan Russell
School of Computing, University of Leeds, Leeds, LS2 9JT, UK,
e-mail: duncanr@comp.leeds.ac.uk

Fabien mathieu
Orange Labs, 38–40 rue du général Leclerc, 92794 Issy-les-Moulineaux, France,
e-mail: fabien.mathieu@orange-ftgroup.com

Farnoush Banaei-Kashani
University of Southern California, Department of Computer Science, Los Angeles,
CA 90089-0781, USA, e-mail: banaeika@usc.edu

Félix Gómez Mármol
Departamento de Ingenierı́a de la Información y las Comunicaciones, University
of Murcia, Facultad de Informática, Campus de Espinardo, 30.071 Murcia, Spain,
e-mail: felixgm@um.es

Fotios C. Harmantzis
Stevens Institute of Technology, Hoboken, NJ 07030, USA,
e-mail: Fotios.Harmantzis@stevens.edu

Gerhard Hasslinger
T-Systems, Deutsche-Telekom-Allee 7, D-64295 Darmstadt, Germany,
e-mail: gerhard.hasslinger@telekom.de

Giancarlo Ruffo
Department of Computer Science, University of Torino, Corso Svizzera, 185,
Torino, Italy, e-mail: giancarlo.ruffo@unito.it

Gregorio Martı́nez Pérez
Departamento de Ingenierı́a de la Información y las Comunicaciones, University
of Murcia, Facultad de Informática, Campus de Espinardo, 30.071 Murcia, Spain,
e-mail: gregorio@um.es

Guillaume Raschia
LINA, 2 rue de la Houssiniere 44322 Nantes, France,
e-mail: guillaume.raschia@univ-nantes.fr

Haiying Shen
University of Arkansas, Fayetteville Avenue, AR, USA,
e-mail: hshen@uark.edu

Heather Yu
Huawei Technologies, Bridgewater, NJ, USA, e-mail: heathery@ieee.org

Ibrahim Korpeoglu
Department of Computer Engineering, Bilkent University, 06800 Ankara, Turkey,
e-mail: korpe@cs.bilkent.edu.tr

xlii List of Contributors

Jian-bin Han
Lehigh University, Department of Computer Science and Engineering, 19 Memorial
Drive West, Lehigh University, Bethlehem, PA 18015,
e-mail: jih206@lehigh.edu

Jie Xu
School of Computing, University of Leeds, Leeds, LS2 9JT, UK,
e-mail: jxu@comp.leeds.ac.uk

João Leitão
INESC-ID / IST, Lisbon, Portugal, e-mail: jleitao@gsd.inesc-id.pt

João V. P. Gomes
Nokia Siemens Networks Portugal, S. A., Rua Irmãos Siemens, 1, Alfragide,
2720-093 Amadora, Portugal, e-mail: jgomes@penhas.di.ubi.pt

John F. Buford
Avaya Labs Research, Lincroft, NJ, USA, e-mail: buford@samrg.org

Jorn De Boever
Centre for UX Research / IBBT, K.U.Leuven, Parkstraat 45 Bus 3605 - 3000
Leuven, Belgium, e-mail: jorn.deboever@soc.kuleuven.be

José Pereira
University of Minho, Braga, Portugal, e-mail: jop@di.uminho.pt

Josemaria Malgosa-Sanahuja
Department of Information Technologies and Communications, Polytechnic
University of Cartagena, Campus Muralla del Mar, 30202 Cartagena, Spain,
e-mail: josem.malgosa@upct.es

Juan Carlos Sanchez-Aarnoutse
Department of Information Technologies and Communications, Polytechnic
University of Cartagena, Campus Muralla del Mar, 30202 Cartagena, Spain,
e-mail: juanc.sanchez@upct.es

Juan Pedro Muñoz-Gea
Department of Information Technologies and Communications, Polytechnic
University of Cartagena, Campus Muralla del Mar, 30202 Cartagena, Spain,
e-mail: juanp.gea@upct.es

Kin-WahKwong
Department of Electrical and Systems Engineering, University of Pennsylvania,
Philadelphia, PA, USA, e-mail: kkw@seas.upenn.edu

Kjetil Nørvåg
Department of Computer and Information Science, Norwegian University of
Science and Technology (NTNU), 7491 Trondheim, Norway,
e-mail: Kjetil.Norvag@idi.ntnu.no

List of Contributors xliii

Kolja Eger
Siemens AG, Corporate Technology Information and Communications, Otto-Hahn-
Ring 6, 81739 Munich, Germany, e-mail: kolja.eger@siemens.com

Kostas G. Anagnostakis
Institute for Infocomm Research, Heng Mui Keng Terrace, 119613, Singapore,
e-mail: kostas@i2r.a-star.edu.sg

Krishna Dhara
Avaya Labs Research, Lincroft, NJ, USA

Krzysztof Rzadca
Nanyang Technological University, Nanyang Avenue, Singapore,
e-mail: krz@pjwstk.edu.pl

Loubna Mekouar
Loubna Mekouar, University of Waterloo, Waterloo, Canada,
e-mail: lmekouar@bbcr.uwaterloo.ca

Lu Liu
School of Computing, University of Leeds, Leeds, LS2 9JT, UK,
e-mail: luliu@comp.leeds.ac.uk

Lu Yan
School of Computer Science, University of Hertfordshire, Hatfield, Hertfordshire
AL10 9AB, UK, e-mail: lu.yan@ieee.org

Luı́s Rodrigues
INESC-ID / IST, Lisbon, Portugal, e-mail: ler@ist.utl.pt

Łukasz Żaczek
Polish Japanese Institute of Information Technology, Warsaw, Poland,
e-mail: lzaczek@pjwstk.edu.pl

Manaf Zghaibeh
Stevens Institute of Technology, Hoboken, NJ 07030, USA,
e-mail: Manaf.Zghaibeh@stevens.edu

Manuela Pereira
Institute of Telecommunications - Networks and Multimedia Group, Department of
Computer Science, University of Beira Interior, Rua Marquês de Ávila e Bolama,
6201-001 Covilhã, Portugal, e-mail: mpereira@di.ubi.pt

Marcel C. Castro Department of Computer Science, Karlstads University,
Universitetsgatan 2, SE-651 88, Karlstad, Sweden,
e-mail: Marcel.Cavalcanti@kau.se · Marguerite Fayçal
Institut Telecom, TELECOM-ParisTech, 46 rue Barrault, 75013 Paris, France,
e-mail: Marguerite.Faycal@telecom-paristech.fr

xliv List of Contributors

Maria Luisa Merani
Department of Information Engineering, University of Modena and Reggio Emilia,
Modena and Reggio Emilia, Italy,
e-mail: marialuisa.merani@unimore.it

Mario Kolberg
University of Stirling, Stirling, UK, e-mail: mko@cs.stir.ac.uk

Mário M. Freire
Institute of Telecommunications - Networks and Multimedia Group, Department of
Computer Science, University of Beira Interior, Rua Marquês de Ávila e Bolama,
6201-001 Covilhã, Portugal, e-mail: mario@di.ubi.pt

Matthias Wählisch
HAW Hamburg, Dept. Informatik, Berliner Tor 7, 20099 Hamburg, Germany
Freie Universität Berlin, Institut für Informatik, Takustr. 9, 14195 Berlin, Germany,
e-mail: waehlisch@ieee.org

Michael Rogers
University College London, London WC1E 6BT, UK,
e-mail: m.rogers@cs.ucl.ac.uk

Michalis Vazirgiannis
Department of Informatics, Athens University of Economics and Business (AUEB),
10434 Athens, Greece, e-mail: mvazirg@aueb.gr

Mooi-Choo Chuah
Lehigh University, Department of Computer Science and Engineering, 19 Memorial
Drive West, Lehigh University, Bethlehem, PA 18015, USA,
e-mail: chuah@cse.lehigh.edu

Mursalin Akon
Department of ECE, University of Waterloo, ON, Canada, N2L 3G1,
e-mail: mmakon@uwaterloo.ca

Nelson L. S. da Fonseca
University of Campinas, Institute of Computing, Av. Albert Einstein, 1251, P.O.
Box 6176, 13084-971, Campinas, SP, Brazil,
e-mail: nfonseca@ic.unicamp.br

Nick Antonopoulos
Department of Computing, University of Surrey, Guildford, Surrey, GU2 7XH,
UK, e-mail: n.antonopoulos@surrey.ac.uk

Noureddine Mouaddib
LINA, 2 rue de la Houssiniere, 44322 Nantes, France, e-mail: Noureddine.
Mouaddib@univ-nantes.fr

Nuno A. Carvalho
University of Minho, Braga, Portugal,
e-mail: nuno.carvalho@di.uminho.pt

List of Contributors xlv

Ouri Wolfson
Department of Computer Science, University of Illinois at Chicago, Chicago, IL,
USA

Patrick Valduriez
INRIA, 2 rue de la Houssiniere 44322, Nantes, France,
e-mail: Patrick.Valduriez@inria.fr

Paulo P. Monteiro
Nokia Siemens Networks Portugal, S. A., Rua Irmãos Siemens, 1, Alfragide,
2720-093 Amadora, Portugal, e-mail: paulo.1.monteiro@nsn.com

Pedro R. M. Inácio
Nokia Siemens Networks Portugal, S. A., Rua Irmãos Siemens, 1, Alfragide,
2720-093 Amadora, Portugal,
e-mail: pedro.inacio@penhas.di.ubi.pt

Peter Kersch
High Speed Networks Laboratory, Department of Telecommunications and Media
Informatics, Budapest University of Technology and Economics, Budapest,
Hungary, e-mail: kersch@tmit.bme.hu

Pilar Manzanares-Lopez
Department of Information Technologies and Communications, Polytechnic
University of Cartagena, Campus Muralla del Mar, 30202 Cartagena, Spain,
e-mail: pilar.manzanares@upct.es

Rabab Hayek
LINA, 2 rue de la Houssiniere 44322, Nantes, France,
e-mail: rabab.hayek@univ-nantes.fr

Raouf Boutaba
University of Waterloo, Ontario, Canada,
e-mail: rboutaba@bbcr.uwaterloo.ca

Reaz Ahmed
Bangladesh University of Engineering and Technlogy, Dhaka, Bangladesh,
e-mail: reaz@cse.buet.ac.bd

Reza Rejaie
University of Oregon, Eugene, Oregon, e-mail: reza@cs.uoregon.edu

Robert Szabo
High Speed Networks Laboratory, Department of Telecommunications and Media
Informatics, Budapest University of Technology and Economics, Hungary,
e-mail: szabo@tmit.bme.hu

Rui Oliveira
University of Minho, Braga, Portugal, e-mail: rco@di.uminho.pt

xlvi List of Contributors

S.-H. Gary Chan
Hong Kong University of Science and Technology, Clear Water Bay, Kowloon,
Hong Kong, e-mail: gchan@cse.ust.hk

Saleem Bhatti
University of St Andrews, Fife KY16 9SS, UK,
e-mail: saleem@cs.st-andrews.ac.uk

Seif Haridi
Royal Institute of Technology (KTH), Electrum 229, 164 40 Kista, Sweden,
e-mail: haridi@kth.se

Steffen Staab
University of Koblenz-Landau, Universitätsstrasse 1, 56070 Koblenz, Germany,
e-mail: staab@uni-koblenz.de

Tallat M. Shafaat
Royal Institute of Technology (KTH), Electrum 229, 164 40 Kista, Sweden,
e-mail: tallat@kth.se

Thomas C. Schmidt
HAW Hamburg, Dept. Informatik, Berliner Tor 7, 20099 Hamburg, Germany,
e-mail: t.schmidt@ieee.org

Towhidul Islam
Department of ECE, University of Waterloo, ON, Canada, N2L 3G1,
e-mail: mtislam@uwaterloo.ca

Ulrich Killat
Hamburg University of Technology (TUHH), Institute of Communication
Networks, 21071 Hamburg, Germany, e-mail: killat@tuhh.de

Ugo Pagallo
Department of Law, University of Torino, Via Sant´ Ottavio, Torino, Italy,
e-mail: ugo.pagallo@unito.it

Xiaotao Wu
Avaya Labs Research, Lincroft, NJ, USA

Xuemin (Sherman) Shen
Department of ECE, University of Waterloo, ON, Canada, N2L 3G1,
e-mail: xshen@bbcr.uwaterloo.ca

Yan Luo
Department of Computer Science, University of Illinois at Chicago, Chicago, IL,
USA

Yang Guo
Corporate Research, Thomson, Princeton, NJ, USA

Yingwu Zhu
Seattle University, Seattle, WA 98122, USA, e-mail: zhuy@seattleu.edu

List of Contributors xlvii

Yong Yu
Apex Data & Knowledge Management Lab, Department of Computer Science &
Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai,
200240, China, e-mail: yyu@apex.sjtu.edu.cn

Youssef Iraqi
Dhofar University, Salalah, Oman, e-mail: y_iraqi@du.edu.om

Zongyang Luo
School of Computing, University of Leeds, Leeds, LS2 9JT, UK,
e-mail: scszluo@leeds.ac.uk

Zoran Despotovic
DOCOMO Communications Laboratories Europe GmbH, Munich, Germany,
e-mail: despotovic@docomolab-euro.com

Part I
Introduction to Peer-to-Peer Networking

Peer-to-Peer Networking and Applications:
Synopsis and Research Directions

John F. Buford and Heather Yu

Abstract Peer-to-peer computing and networking are important developments for
large-scale distributed systems design and the evolution of Internet architecture.
Widely used applications have demonstrated their feasibility and economic poten-
tial for services involving millions of users. A great deal of research has followed to
formalize and improve on the empirical results. This introductory chapter surveys
the key results of the field, introduces terminology, and identifies open issues which
are likely to be important research directions.

1 Introduction

1.1 Significance and Emergence

Several important desktop computing applications have emerged in recent years that
use an Internet-scale decentralized architecture to simultaneously connect millions
of users to share content, form social groups and communicate with their con-
tacts. These applications are classified as peer-to-peer because of the elimination
of servers to mediate between end systems on which the applications run, and their
network behavior is described as an overlay network because the peer protocols
form a virtualized network over the physical network.

While peer-to-peer (P2P) applications have had a rapid ascent and wide impact,
in the future P2P overlays are likely to enable important new applications following
from these technology trends:

John F. Buford
Avaya Labs Research, Basking Ridge, NJ 07920, USA, e-mail: buford@samrg.org

Heather Yu
Huawei Technologies, Bridgewater, NJ, USA, e-mail: heathery@ieee.org

X. Shen et al. (eds.), Handbook of Peer-to-Peer Networking, 3
DOI 10.1007/978-0-387-09751-0 1, © Springer Science+Business Media, LLC 2010

4 John F. Buford and Heather Yu

– Continued improvements in the fidelity of the consumer entertainment experi-
ence and network and computing capacity of the associated entertainment de-
vices

– The development of dense and ubiquitous sensing grids with real-time data col-
lection of all types of phenomena

– The wide deployment of broadband wireless networks (WiMax, 802.11n, UWB,
LTE)

– The proliferation of mobile smart phones and other broadband-enabled mobile
devices

– The use of personal networks, body-area networks, and vehicle networks, to con-
nect both real-time sensors and embedded computing devices.

The wide adoption of these technologies will enable high-fidelity and pervasive
information collection, content publishing and distribution, and sharing of envi-
ronmental and personal real-time sensed data and information on a global scale.
The benefits of this include increased awareness of one’s personal environment,
more precise context-awareness in interactions with others, and enhanced situation-
awareness for applications ranging from immersive entertainment and recreation,
environment management, homeland security, and disaster recovery. Peer-to-peer
overlays are an important component of this future vision, due to their high scal-
ability, flexibility for different types of applications, and low barrier of entry. The
evolution of contemporary P2P overlays to enable this future vision is an important
research direction.

The use of application layer protocols to form overlays to deliver Internet ser-
vices has a long history (Table 1). However until relatively recently, these types
of overlays used specifically designed protocols, and were used to interconnect in-
frastructure servers rather than end systems. In addition, the address space of the
overlay was typically not virtualized, and dealing with churn was not a primary de-
sign point. Nevertheless, such service overlays continue to be an important part of
the Internet architecture [1–3], and there is growing interest in using the end-to-end
and resource virtualization capabilities of overlays in the evolution of the Internet
architecture. Example research efforts in this direction include SpoVNet [4] and
SATO [5].

Table 1 Specialized overlay networks for internet services

Type Example First use or definition

Email SMTP 1970s
Internet news NNTP 1986
Multicast MBone 1992
Web caching Internet cache protocol 1995
Content delivery network Akamai 1999
Anonymous communication FreeNet 1999
Application layer multicast Narada 2000
Routing RON 2001

Peer-to-Peer Networking and Applications: Synopsis and Research Directions 5

The well-known popularization of P2P file sharing systems beginning with the
hybrid Napster and followed by other content dowloading P2P systems such as
Gnutella, FastTrack, KaZaa, and BitTorrent invigorated the interest of the research
community to develop solutions to the perceived deficiences of these systems. The
subsequent availability of P2PTV and VoP2P applications discussed in the next sec-
tion were further catalysts for research in real-time media streaming over P2P over-
lay networks.

Notable underpinnings of the research in improving P2P overlays was the early
work on distributed hash tables by Devine [6] as well as Litwin et al. [7, 8]. Plax-
ton, Rajaraman, and Richa (PRR) [9] presented the first algorithms for distributed
object location and routing, using a suffix forwarding scheme. PRR was the basis
for subsequent influential designs such as Tapestry and Pastry. Karger, et al. [10]
formalized consistent hashing which is the basis for many DHT designs.

1.2 Key Applications

The first widely used file sharing system, Napster, featured a hybrid architecture
in which the directory was stored on a server, but peers directly transferred files
between them. Napster became the first legal test case for file sharing of licensed
content, and was subsequently forced to change to protect such content. A num-
ber of peer-to-peer file sharing systems were developed (Table 2) to avoid the legal
challenges faced by Napster. The majority of these second-generation file sharing
systems were based on unstructured overlays. While these systems had no mecha-
nisms for protecting the rights of content owners, in some cases the P2P application
developers obtained revenue by either selling their applications or by embedding

Table 2 Example file sharing applications

Client
application(s)

Protocol Description

KaZaA
grokster
imesh

FastTrack Proprietary unstructured overlay with encrypted proto-
col, high capacity peers become superpeers; features con-
nection shuffling

Limewire Gnutella Superpeer unstructured overlay with flooding query
propagation

eDonkey Overnet Structured overlay based on Kademlia

eMule Kad Structured overlay based on Kademlia

BitTorrent BitTorrent An unstructured overlay used for distributing large files
in pieces using mutual distribution of the pieces between
a set of peers called a swarm. Uses a server to store the
torrent and another server called a tracker to identify the
swarm members

6 John F. Buford and Heather Yu

spyware in the clients. Recent research studies of P2P file sharing systems include
[11–16].

Several new ventures such as QTrax, SpiralFrog, and TurnItUp have proposed
incorporating DRM in to the file sharing applications or ad-based revenue models
in which advertisements are delivered during media playback.

The founders of KaZaA subsequently launched the first widely used voice-over
P2P (VoP2P) application, Skype. Currently Skype connects around 15 M concurrent
users and provides a variety of services including P2P voice and video calls, voice
calls to PSTN endpoints, presence, and instant messaging. Like KaZaA, the Skype
protocol is encrypted and the definition of the protocol has not been released. Some
studies have shown that Skype uses a superpeer model, and the superpeers support
NAT traversal for connecting peers behind NATs. In addition, superpeers also act as
media relays. Recent research studies of Skype include [17–21, 101].

In contrast to file sharing systems which exhibit the free rider behavior, in P2P
telephony users are motivated to stay connected both to be able to receive calls and
view the current status of their buddies. Long application lifetimes mean a low churn
rate, which makes the operation of the overlay more stable. Experimental studies of
Skype have shown a significantly higher node lifetime compared to P2P file sharing
sytems.

The distribution of streaming video referred to as P2PTV has also become an
important application of P2P. Various models are used, including torrent-style dis-
tribution, application layer multicasting, and hybrid CDNs (content delivery net-
works). Example PPTV applications include Babelgum, Joost, PPLive, PPStream,
SopCast, TVants, TVUPlayer, Veoh TV, and Zattoo. P2PTV is expected to play an
important role in future IPTV deployments. A summary of P2PTV related research
is discussed later in this chapter.

1.3 Definition and Properties of P2P Systems

Peer-to-peer systems have been defined in many papers. Here are two definitions
that cover the concepts of resource sharing, self-organization, decentralization, and
interconnection:

“A distributed network architecture may be called a peer-to-peer network, if the participants
share a part of their own hardware resources (processing power, storage capacity, network
link capacity, printers). These shared resources are necessary to provide the Service and
content offered by the network (e.g. file sharing or shared workspaces for collaboration).
They are accessible by other peers.”[22]

“Peer-to-peer systems are distributed systems consisting of interconnected nodes able to
self-organize into network topologies with the purpose of sharing resources such as content,
CPU cycles, storage and bandwidth, capable of adapting to failures and accommodating
transient populations of nodes while maintaining acceptable connectivity and performance,
without requiring the intermediation or support of a global centralized server or authority.”
[23]

Peer-to-Peer Networking and Applications: Synopsis and Research Directions 7

We have also defined an overlay network [26]:

“An application layer virtual or logical network in which end points are addressable and
that provides connectivity, routing, and messaging between end points. Overlay networks
are frequently used as a substrate for deploying new network services, or for providing a
routing topology not available from the underlying physical network. Many peer-to-peer
systems are overlay networks that run on top of the Internet.”

The following properties are characteristics found in most P2P systems.

Resource sharing each peer contributes system resources to the operation of the
P2P system. Ideally this resource sharing is proportional to the peer’s use of the
P2P system, but many systems suffer from the free rider problem.

Networked all nodes are interconnected with other nodes in the P2P system, and
the full set of nodes are members of a connected graph. When the graph is no
longer connected, the overlay is said to be partitioned.

Decentralization the behavior of the P2P system is determined by the collective
actions of peer nodes, and there is no central control point. Some systems how-
ever secure the P2P system using a central login server. The ability to manage
the overlay [24] and monetize its operation may require centralized elements.

Symmetry nodes assume equal roles in the operation of the P2P system. In many
designs this property is relaxed by the use of special peer roles such as super
peers or relay peers.

Autonomy participation of the peer in the P2P system is determined locally, and
there is no single administrative context for the P2P system.

Self-organization the organization of the P2P system increases over time using
local knowledge and local operations at each peer, and no peer dominates the
system. Biskupski, Dowling, and Sacha [25] argue that existing P2P systems do
not exhibit most of the properties of self-organization.

Scalable This is a pre-requisite of operating P2P systems with millions of si-
multaneous nodes, and means that the resources used at each peer exhibit
a growth rate as a function of overlay size that is less than linear. It also
means that the response time doesn’t grow more than linearly as a function of
overlay size.

Stability Within a maximum churn rate, the P2P system should be stable, i.e., it
should maintain its connected graph and be able to route deterministically within
a practical hop-count bounds.

1.4 Business Models

P2P file sharing applications have been monetized by their operators by sales of the
P2P client software or by embedding spyware into the application. Content licens-
ing has not been as successful to date. The leading VoP2P application, Skype, pro-
vides basic P2P telephony for free, and receives revenue for add-on services such

8 John F. Buford and Heather Yu

as voice mail or peer-to-PSTN calls. The primary model for P2PTV operators is
similar to existing cable and broadcast TV – embedded advertising with measurable
viewership.

The advertising mechanisms used in web search (impressions, cost-per-click, and
placements) are more difficult to implement in P2P applications since verification
can not rely on a centralized collection point. Figure 1a shows a simplified model
for impression and click counting in web search. The search results are produced by
the search engine, and in parallel the search keywords and other criteria are used to
select ads which will be composed with the search results, resulting in an impression
for each displayed ad. Each time an impression occurs, a counter is updated in the
advertisement analytics database. If the user clicks on the ad, the embedded url leads
to the advertiser’s web page. A click counter must be updated in the advertisement
analytics databse. Two ways to obtain this are to indirectly forward the ad url via a
specific search engine web server (e.g., www.searchengine.com?advertiser.com), or
to embed a script in the advertiser’s web page which invokes the search engine’s url
when loaded. The advertiser can also use third party services to track web site hits
with analytics reports produced by the search vendor.

In the P2P case, assume ads are selected for display on the P2P application
user interface by association with searches initiated through the application user
interface. (Of course, the P2P application developer could sell banner ad space on
the P2P applications that would point to advertiser’s web sites, but these would
not be specifically targeted according to the user’s activities or application use).
Figure 1b shows the basic flow. A search request is propagated through the P2P
network, returning one or more search results from various peers. Ads which
match the search criteria are returned with the search results. There are sev-
eral ways this could be done, using the P2P network or using a separate in-
dex, and monetization could be obtained by both the overlay operator and the
operators of the peers that return the search results. For this discussion, serv-
ing advertisements through peers raises the question of how to validate impres-
sion counts maintained at the peers, as well as click-through counts at the peer
application.

1.5 Technology Drivers

The P2P value proposition [26] “. . . for the user is to exchange excess computa-
tional, storage, and network resources for something else of value to the user, such
as access to other resources, services, content, or participation in a social network.”
The rapid gains in computer capacity and wide adoption of broadband access have
thus fueled the growth of P2P applications. As these trends are expected to continue,
we raise the following questions:

– Given the limited ability of search engines to index all of the web, can P2P search
compete with or augment web search, and at what scale and cost?

Peer-to-Peer Networking and Applications: Synopsis and Research Directions 9

(a) Click-through and impression tracking in web search

(b) Click-through and impression tracking in P2P networks

Fig. 1 Click through and impression tracking

– Currently the largest online peer populations are in the range of 10–20 M. Can
P2P networks support continued growth to say 10x or 100x peer population in-
crease? What are the limits?

– Given the emergence of broadband wireless and the likely domination of peer
population by mobile wireless devices versus fixed desktop devices, how will the
stability and operation of P2P networks be effected?

– Will HDTV and high-definition video lead to new P2P applications?
– Will deployment of large-scale sensor grids create new applications for P2P net-

works, and what are appropriate architectures for interconnecting such networks
in a global overlay?

10 John F. Buford and Heather Yu

1.6 Structure of the Chapter

The remainder of the chapter is organized as follows. First we survey overlay de-
sign, and provide a taxonomy for understanding the many different overlays that
have been proposed. This survey includes unstructured, structured, hierarchical, ser-
vice, semantic, and sensor overlays. The next section summarizes results on overlay
dynamics, including mobility and overlays for MANETs, and variable hop overlays.
Search, overlay multicast, content delivery, and security are summarized in subse-
quent sections.

2 Overlay Basics

2.1 Classification and Taxonomy

The many different designs for P2P networks have led to various proposals for clas-
sification. For example, file sharing systems have been divided in to generations.
First generation are hybrid designs that combine servers with P2P routing, and sec-
ond generation are decentralized architectures. Anonymized P2P systems such as
Freenet and I2P are sometimes referred to as third generation. Categorization by
generations has several shortcomings. It leaves out many other important dimen-
sions and doesn’t explain what subsequent generations are likely to provide. Further,
systems of all three generations were in use at the same time.

Another common distinction is to divide P2P overlays into unstructured and
structured types. Unstructured overlays are usually further distinguished by how
search requests are propagated, distribution of node degree in the peer population,
and by differences in link formation with neighbor peers. Structured overlays are
differentiated according to a variety of dimensions such as:

– maximum number of hops for routing a request (e.g., multi-hop, one-hop, vari-
able hop)

– routing algorithm (e.g., prefix, XOR, geometric distance, address space differ-
ence, semantic distance)

– node degree with size of overlay (e.g., constant degree, logarithmic degree)
– overlay geometry
– lookup type (iterative vs recursive, and serial vs parallel)

Beyond the unstructured and structured categories, we find other categories, such
as hierarchical overlays, federated overlays, overlays for deploying network services
called service overlays, overlays for sensor grids called sensor overlays, overlays
which route queries by semantic relationships called semantic overlays, and over-
lays providing support for mobile nodes in IP and ad hoc networks. We describe

Peer-to-Peer Networking and Applications: Synopsis and Research Directions 11

these categories in more detail in the following sections. Figure 2 shows a classifi-
cation tree for many of these categories of P2P overlays. Classifications for mobile-
enabled overlays, services overlays, and sensor overlays will be discussed in later
sections.

Fig. 2 Classification of P2P overlays

2.2 Unstructured Overlays

An unstructured overlay is “an overlay in which a node relies only on its adjacent
nodes for delivery of messages to other nodes in the overlay. Example message prop-
agation strategies are flooding and random walk” [26]. The graph structure formed
by unstructured overlays can be compared to that of random graphs, scale-free or
power law random graphs, graphs exhibiting small world phenomena, and other so-
cial networks. An important research focus for unstructured overlays has been the
design of efficient search, including query propagation, object placement, and query
processing. More details about search are discussed in a later section.

Another important research focus has been the optimal graph structure for un-
structured overlays, and decentralized algorithms to form and maintain these graphs
structures under changing peer and object populations. Influential unstructured over-
lay designs are listed in Table 3.

12 John F. Buford and Heather Yu

Table 3 Example unstructured overlays

Type Design Features References

Hill climbing
backtracking

Freenet Routing using hill climbing with back-
ing, and providing security, anonymity,
and deniability

[27, 28]

Hill climbing
backtracking

Fast freenet Extension to Freenet in which objects
stored at each peer are summarized and
summaries are shared with neighbors

[29]

Hill climbing
backtracking

Small world freenet Freenet augmented with links emulat-
ing small world model

[30]

Flooding Gnutella Superpeers use flooding of requests on
behalf of regular peers

[31, 32]

Random
Walk

Gia Uses techniques such as dynamic
topology adaptation, active flow con-
trol, one-hop index replication, and bi-
ased random walk to improve perfor-
mance

[33]

Flooding FastTrack Proprietary protocol with superpeer ar-
chitecture that uses connection shuf-
fling

[34]

Random
Walk

LMS Local minima search proactively repli-
cates objects using consistent hashing
of object identifiers to place objects at
close node identifiers

[35]

Hybrid SWOP Structured overlay with additional clus-
ter and long links to emulate small-
world properties

[36]

Semantic
routing

INGA Semantic overlay in which each peer
organizes a semantic index for its con-
tent, and queries are routed according
to the associated topic, and evaluated
using a semantic matching function

[37]

Preference
directed
queries

Tribler Social-based overlay in which peers ex-
change preference lists to exploit so-
cial affinity between peers with similar
preferences

[38]

Relevance
directed
queries

PROSA P2P resource organization by social ac-
quaintances manages peer links accord-
ing to semantic strength of the relation-
ship of the respective peer interests

[39]

Hybrid Yappers Combines local nodes in to small
DHTs, and routes between DHTs using
unstructured links

[40]

Peer-to-Peer Networking and Applications: Synopsis and Research Directions 13

2.3 Structured Overlays

A structured overlay is: “an overlay in which nodes cooperatively maintain rout-
ing information about how to reach all nodes in the overlay” [26]. Compared to
unstructured overlays, structured overlays provide a limit on the number of mes-
sages needed to find any object in the overlay. This is particularly important when
searching for infrequently occurring or low popularity objects. In order to provide
deterministic routing, peers are placed into a virtualized address space, the over-
lay is organized into a specific geometry, and a converging distance function over
the combined object and node identifier space is defined for the routing forwarding
algorithm.

Each peer has a local routing table which is used by the forwarding algorithm.
The peer’s routing table is initialized when the peer joins the overlay, using a
specified bootstrap procedure. Peers periodically exchange routing table changes
as part of overlay maintenance. Overlay maintenance is discussed in a later sec-
tion.

The majority of structured overlays use key-based routing in which “a set
of keys is associated with addresses in the address space such that the near-
est peer to an address stores the values for the associated keys, and the rout-
ing algorithm treats keys as addresses” [26]. A distributed hash table (DHT) is
a structured overlay that uses key-based routing for put and get index opera-
tions and in which each peer is assigned to maintain a portion of the DHT in-
dex.

Because the address space is virtualized and peer addresses are typically ran-
domly assigned, peers which are neighbors in the overlay can be distant in the un-
derlying network. While this improves the fault tolerance of the overlay, it causes
significant performance loss. Consequently, topology-aware overlays use measure-
ments of proximity of peers in the underlying network to create neighbor peers in
the overlay.

There has been some interest in the efficient support of broadcast in structured
overlays. Broadcast can be used for group communication, blind search, and overlay
configuration. Example approaches are defined in [41–44].

Table 4 summarizes many of the designs for structured overlays.

14 John F. Buford and Heather Yu

Table 4 Structured overlays by category

Type Design Features References

Prefix routing PRR First DOLR algorithm, used suffix based routing [45]

SPRR Added join/leave and maintenance to PRR [46]

Tapestry Based on PRR with an added join/leave and mainte-
nance mechanism

[47]

Pastry Prefix routing with last hop using neighbor table [48]

P-Grid Prefix routing [49]

Bamboo Variation of Pastry used in OpenDHT [50]

Z-Ring Hierarchical address space with large base to reduce
latency

[51]

Logarithmic
degree

Chord Logarithmic spaced links to neighbors around
predecessor-successor ring, consistent hashing, uni-
directional requests

[52]

DKS(n,k,f) Distributed k-ary search with routing region at each
hop divided into k regions. k = 2 similar to Chord

[53]

Tango Variation of DKS which reduces links to increasing
scalability

[54]

Chord # Modification of Chord which replaces consistent hash-
ing with key-order preserving indexing

[55]

Symphony Bi-directional routing with added long-links to shorten
lookup hop count

[56]

Kademlia XOR distance function, parallel requests [57]

Fixed degree CAN D-torus with cartesian coordinate system [58]

Viceroy Butterfly [59]

Ulysses Butterfly [60]

Cycloid Cube connected cycle, prefix-style routing [61]

Cactus 2 trees combined with cube connected cycle [62]

Koorde de Bruijn, based on Chord [63]

Broose de Bruijn [64]

D2B de Bruijn [65]

DH de Bruijn [66]

Hi-Peer Multi-ring de Bruijn [67]

Hypercup Hypercube [68]

FissionE Kautz graph [69]

Moore Kautz graph [70]

SKY Kautz graph [71]

DLG A universal framework for building DHTs based on ar-
bitrary constant-degree graphs, using distributed line
graphs

[72]

(continued on following page)

Peer-to-Peer Networking and Applications: Synopsis and Research Directions 15

Table 4 (continued) Structured overlays by category

Type Design Features References

O(1)-hop EpiChord Iterative parallel lookup with opportunistic main-
tenance

[73]

OneHop Peers organized into slices and units, requests
routed through slice and unit leaders, with active
maintenance

[74]

Kelips Epidemic multicast protocol for overlay mainte-
nance

[75]

Tulip 2-hop overlay similar to Kelips which adds local-
ity awareness

[76]

Gemini 2-hop with high probability, combines suffix and
prefix routing

[77]

D1HT Uses active maintenance algorithm EDRA where
all join/leave events are forwarded to all other
peers in logarithmic time

[78]

Variable Hop Accordion Recursive parallel lookup with bandwidth adap-
tive maintenance

[79]

Chameleon Hybrid of EpiChord and D1HT [80]

Tork Hybrid of EpiChord and D1HT [81]

Hierarchical Multiple rings Multiple overlays connect to a super-ring over-
lay, and use hierarchical routing to route requests
between overlays

[82]

TOPLUS Peers organized into groups, each with own over-
lay; higher-level overlay is defined among the
groups; intra-group routing used to route between
overlays

[83]

HIERAS Overlay divided into several rings, with peers in
low level rings selected according to locality

[84]

Cyclone Leaf overlays are connected in one horizontal
overlay

[85]

Z-Ring Prefix routing with base = 4096, overlay orga-
nized in to groups for reduced maintenance

[86]

Canon At each successive level an overlay is formed
which contains all peers in the subsumed over-
lays in the lower levels

[87]

Coral Peers are members of successive clusters of over-
lays, and lookups use distributed sloppy hash ta-
bles (DSHTs)

[88]

16 John F. Buford and Heather Yu

2.4 Hierarchical and Federated Overlays

A hierarchical overlay is an overlay architecture that uses multiple overlays ar-
ranged in a nested fashion, and the nested overlays are interconnected in a tree. A
message to a peer in a different overlay is forwarded to the nearest common parent
overlay in the hierarchy. When large scale distributed systems exhibit locality in
their operation, hierarchical structure can increase overall performance. Hierarchi-
cal overlays exhibit hierarchical organization in addressing and routing. Different
overlay regions in the hierarchy may use different routing algorithms. Important
requirements for efficient operation of hierarchical overlays include avoiding bot-
tlenecks and keeping the hierarchical structure balanced. Examples of hierarchical
overlays include [82–88].

A federated overlay [89] is an overlay that is formed from a collection of inde-
pendent overlays, each implemented by a separate administrative domain, and which
may use different routing algorithms and addressing mechanisms in each domain.
Each overlay is autonomous, and messaging operations between overlays require
peering arrangements. Each domain manages the authentication, authorization and
other management tasks for its overlay. Federation offers one mechanism by which
overlay operators can offer specialized services to their customers while still pro-
viding the benefits of scale. An important requirement for federation is the trust
relationship between each domain. Similar to the peering relationships between ser-
vice providers for the Internet backbone, security breaches in one network have the
potential to cascade to other overlays through the peering points. Thus the least se-
cure overlay in the federation becomes a vulnerability for the remaining overlays.

Fig. 3 Example of a federated overlay [89]

Individual overlays operate as usual according to the specific overlay algorithm.
Pairs of overlays connect through gateway peers (Fig. 3). Gateway peers can dis-
cover other gateway peers for other overlays by different means such as a lookup
in an interconnecting overlay or by DNS. A peer sending a message to a remote
overlay first discovers a gateway peer and sends the message to it for forwarding.
A multipart address scheme is used to distinguish objects and peers in separate

Peer-to-Peer Networking and Applications: Synopsis and Research Directions 17

overlays. Figure 4 shows an example message forwarding in a federated overlay
using different types of overlays. Let’s compare the routing in a federated overlay,
each of size n peers, with that where all peers belong to a single overlay of size
N = ∑n.

Case 1: A look-up within the same overlay will perform better than in the global
overlay due to the smaller number of hops.

Case 2: A look-up crossing multiple federated overlays will perform worse as the
number of overlays increases due to the overhead of address resolution and rout-
ing at each peering point. Increasing the number of direct peering relationships
improves performance at the cost of additional complexity in forming and man-
aging each peering point.

Fig. 4 Example multi-overlay messaging in a federated overlay

2.5 Service Overlays

As the Internet has grown, the need for new network services has also increased.
However there is usually a long delay in developing and deploying any new service
or extension to an existing service if it requires changes to network layer protocols,
routers or other network infrastructure. This is due to the need to insure interoper-
ability and avoid the introduction of new security vulnerabilities. To accelerate the
deployment of new services and avoid changing the network infrastructure, many
network services have been implemented as application layer protocols using end
systems attached to the network. This includes multicasting, VoIP, and content de-
livery networks (CDNs). When an overlay is used as the basis for such application
layer services, it is referred to as a service overlay.

In addition, service orientation is a new paradigm for architecting web applica-
tions and distributed enterprise systems. One of the shortcomings of P2P applica-
tions to date is that each application has had a dedicated overlay designed specifi-
cally for it. The idea of applying service orientation to P2P overlays is also referred
as a service overlay. From this perspective, P2P applications are modularized as ser-
vices which operate at a layer above the overlay, each service interface is defined
using a service description, and the overlay provides a generic service discovery and
advertisement mechanism. As the number of P2P applications increases, this has the
advantage of enabling the reuse of the same P2P infrastructure for a collection of

18 John F. Buford and Heather Yu

Fig. 5 Types of service overlays [26]

applications. In an open P2P platform, it could also lead to the delivery of many new
3rd party applications.

Figure 5 shows examples of these two categories of service overlays. Further
information on service overlays for routing, called resilient overlays, can be found
in [90–94], and research on using overlays for DNS is discussed in [95–98].

2.6 Semantic Overlays

A semantic overlay is an overlay network in which routing topology is organized
according to the semantic associations and relationship of information being stored
in the overlay. Similar to the semantic web, content can be stored and accessed using
a semantic model that is more convenient for the user. Several semantic overlays
have been proposed such as Inga [37]. Challenges facing semantic overlays include:

– Agreeing on common ontologies within a community of peers
– Updating the ontology across the distributed set of peers when new concepts and

relationships become important.
– Efficient semantic matching for object placement and search
– Implementing semantic behavior directly in the overlay routing mechanism ver-

sus layering it on top of an existing DHT or unstructured overlay query mecha-
nism

Peer-to-Peer Networking and Applications: Synopsis and Research Directions 19

2.7 Sensor Overlays

A sensor overlay is an overlay network that connects elements of a sensor infras-
tructure or grid. The purpose of a sensor overlay is to hide physical layer network
constraints from applications, and to make data collection and infrastructure control
logically separate from the physical layer routing. In addition, in a large sensor grid,
there may be multiple planes, each with different physical routing layers and data
collection. The sensor overlay can potentially unify these and make integration with
conventional overlays simpler. An example sensor overlay is PIAX [99].

2.8 Research Directions

Many variations of overlays have been studied to date. Efforts continue to reduce
latency, better adapt the overlay routing to the semantics of the applications, improve
load balancing and response to flash crowds and similar dynamics, adapt to changing
network conditions, and increase the ability of the overlay to self-organize.

3 Overlay Dynamics, Heterogeneity and Mobility

3.1 Churn and Overlay Maintenance

Peers may join or leave the overlay at any time. Overlays use join and leave pro-
tocols so that neighbors can update their routing state, and so that newly joined
peers can quickly make connections with active neighbors. A candidate peer needs
to discover an existing peer by which to join the overlay. The process of discovering
and contacting an existing peer is called peer bootstrap, and involves mechanisms
outside of the overlay such as contacting a well-known bootstrap server or making
local broadcast announcements. When a peer joins the overlay, it typically receives
its initial routing and object state from one or more peers designated by the boot-
strap peer. After that, the peer modifies its state based on the operation of the overlay
protocols. When a peer leaves the overlay it may signal its neighbors using a leave
protocol. The neighbors then make changes to their routing state, and object state
may be migrated or replicated as well. If a peer is disconnected without notifica-
tion, neighbors use a heartbeat mechanism to detect the departure and trigger the
corresponding routing and object state updates.

Churn is the arrival and departure of peers to and from the overlay, which changes
the peer population of the overlay. Overlay maintenance is the operation of the over-
lay to repair and stabilize the overlay routing state in response to churn. The over-
head for overlay maintenance increases as the churn rate increases. It also increases
proportional to the routing state maintained by each peer, which is in turn propor-
tional to the size of the overlay and the degree of each peer. There are techniques to

20 John F. Buford and Heather Yu

reduce churn itself, such as incentives for peers to stay connected to the overlay. In
addition, newly joined nodes can be quarantined, treated as client-only nodes, either
due to limited capacity or until the peer reaches a lifetime threshold. This relies on
the peer lifetime distribution being heavy tailed, which has been found to occur in
practice.

Empirical data on churn in operational P2P applications has been gathered by
deploying overlay crawlers. Crawlers connect to many other peers in the overlay
in order to gather a snapshot of overlay membership. By continuing the process,
information about membership changes and peer connectivity can be gathered. For
P2P file sharing systems, measurements show a median peer lifetime of less than 1
hour and as little as 3 minutes, while as many as 2% of the peers will have a lifetime
as long as one day [100]. On the other hand, peer lifetime measurements for Skype
superpeers show a much longer median lifetime of about 5.5 hours [100].

Overlay maintenance can be classified as active or opportunistic. In active main-
tenance, routing table maintenance operations are triggered on peer join and leave
events. An example active maintenance algorithm is EDRA (Event Detection and
Recording Algorithm) used in D1HT [78]. As the churn rate changes, the rout-
ing state updates change proportionally. In opportunistic maintenance, routing table
maintenance is performed as part of peer request routing or if the routing state falls
below a minimum threshold. If peer request rates are high, for example for object
lookups or inserts, then the routing state will be updated more frequently. An exam-
ple opportunistic maintenance algorithm is that used in EpiChord [73].

While most analysis of overlays assume steady state is reached in which overlay
maintenance matches the churn rate and the routing state enables the desired over-
lay geometry, there is growing thought that such an overlay state is not reached in
practice, particularly for large overlays, due to the continuous changes to peer mem-
bership and time needed to propagate membership changes throughout the overlay.
More likely, peers are not only out of sync with respect to the actual membership of
the overlay but also have inconsistent routing state with other peers. To more accu-
rately reflect the dynamics of the overlay, stochastic models of overlay membership
have been developed for specific overlays, for example, [102, 103].

3.2 Mobility in P2P Overlays

While mobile nodes represent a small percentage of overlay peers today, in the fu-
ture as the capability and network bandwidth increases and the population of such
devices grows, this situation may be reversed. Thus the impact of mobility on the
performance of the overlay is an important question [119].

Mobile devices have four properties that affect their interaction with the overlay
in ways different from conventional desktop computers: roaming, energy limita-
tions, node heterogeneity, and multi-homed interfaces. Network roaming causes IP
address changes, and in conventional overlays, re-binding the overlay address to the
IP address is effectively a leave-join sequence, leading to mobility-induced churn.

Peer-to-Peer Networking and Applications: Synopsis and Research Directions 21

Approaches to mitigating mobility-induced churn include use of Mobile IP at the
native layer, treating mobile nodes as stealth nodes [104], and designating a non-
mobile node as virtual home agents for a mobile node [105]. Energy limitations
of nodes increase the likelihood of a node going into a stand-by state. In today’s
overlays, this is likely to cause a node disconnect from the overlay.

Node heterogeneity means that nodes will not have equal capacity to store ob-
jects, participate in overlay maintenance, relay traffic from other nodes, and so forth.
Variable hop overlays are one way to address these variations, and are discussed later
in this section.

Multi-homed nodes are nodes that can connect to two or more different network
interfaces at the same time. This could be used to provide redundant paths for peers
to send and receive messages, which might reduce the impact of mobility induced
churn.

3.3 Overlays for MANETs and Ad Hoc Networks

A mobile ad hoc network (MANET) is a set of mobile nodes which act as both
routers and hosts in an ad hoc wireless network. The nodes route messages to other
nodes without using a network infrastructure. Because of their limited power and
capacity, MANET nodes transmit in range-limited broadcast messages which reach
only nearby nodes. The MANET topology may change rapidly and in unpredictable
ways.

As discussed in the introduction section of this chapter, integration of sensor
grids, personal area networks, vehicular networks, and other ad hoc networks with
Internet-based overlays is an important requirement for future global overlay based
applications. Due to similarities between MANETs and the P2P model at both the
application and network layer, there has been significant interest in adapting P2P
overlays to work efficiency with MANET routing protocols. For example, many re-
search systems have integrated flooding style unstructured overlays with MANETs.
A summary of research activities is given in Table 5.

3.4 Heterogeneity and Variable Hop Overlays

A variable-hop structured overlay is a structured overlay that adapts the hop-count
performance of the overlay according to the peer’s network bandwidth budget so that
at higher bandwidth budget the average hop count decreases and at lower bandwidth
budget the average hop count increases. The performance of structured overlays de-
pends on the accuracy and completeness of peers’ routing tables, but more accurate
and larger routing tables require more maintenance traffic. In addition, maintenance
traffic grows with the churn rate and with the size of the overlay. Due to differences

22 John F. Buford and Heather Yu

in nodes’ network and computational capacity, different approaches have been pro-
posed to avoid having all nodes operate at the least common denominator level. The
superpeer architecture which elevates the more capable and more reliable nodes to
full status is a common approach. Variable hop overlays as demonstrated in [115]
are another important direction.

Variable hop overlays take advantage of the ability of the overlay protocol to
adapt its bandwidth utilization through changing configuration parameters. Each
peer adjusts its routing table size and accuracy according to the available band-
width at that peer. During periods where the nodes have low bandwidth capabilities,
overlay routing performance may reach that of multi-hop overlays while for higher
bandwidth, routing performance reaches one-hop.

In addition to Accordion [115], other proposals for variable hop overlays include
Tork [116] and Chameleon [117, 118].

Table 5 Features of P2P overlays for MANETs [26]

System MANET
routing
algorithm

P2P
overlay

Lookups Evaluation
size
(nodes)

Node speed
(m/s)
and range

MHT [106] GPSR None Key maps to
node’s path

1000 to
100,000

10–15 m/s
2000×2000 m2

Ekta [107] DSR Pastry Prefix key-based 50 1–19 m/s
1500×300 m2

MPP [108] Extended
DSR

Gnutella Flooding 50 . . . 200 0–5 m/s
≤ 2000×2000 m2

XL-Gnutella
[109]

OLSR Gnutella Flooding
with superpeers

50 ≤ 15 m/s
not stated

MADPastry
[110]

AODV Pastry Prefix key-based
with clustering
around land-
marks

100 and 250 1.4 m/s
1000×1000 m2

FastTrack
over
AODV [111]

AODV FastTrack Flooding with
superpeers

50 0–20 m/s
1500×320 m2

ORION [112] Neutral,
AODV and
SMB

Unstructured Flooding 40 0–2 m/s
1000×1000 m2

ISPRP [113] DSR Chord Key-based 1000 NA

Dynamic P2P
source
routing
[114]

DSR Pastry DP2PSR 800 9–19 m/s
NA

Peer-to-Peer Networking and Applications: Synopsis and Research Directions 23

3.5 Research Directions

Understanding the dynamics of large overlays in the face of changing peer popula-
tions, peer heterogeneity, peer mobility involves many challenging problems. While
designing for heterogeneous peer populations involves relatively static peer distinc-
tions, the ability to efficiently adapt peers to changing capacity and network condi-
tions will involve considerations at a much smaller time scale. In addition, it remains
an open question as to the practicality of large overlays if the majority of the devices
are mobile. Finally, different models of node heterogeneity in terms of distribution
and density in the overlay may become important in the design of overlay adaptation
mechanisms.

4 P2P Content Access and Delivery

In recent years, the number of digital content, such as music and video, available
on the Internet, the number of users accessing digital content through the Internet,
and the number of digital video being streamed over the Internet each day are all
growing exponentially. This obviously is placing an intense demand on the network
bandwidth at the Internet backbone as well as on the servers that are offering the
digital video and audio services. To improve content accessing scalability, Content
Delivery Network (CDN) was invented and widely deployed in the last ten years.
The evolution of CDN where a single sited content server is replaced by a set of dis-
tributed content servers placed strategically to provide not only better distribution of
files but also better streaming of real-time media has many advantages. First of all,
network congestion can be significantly reduced since servers are geographically
distributed to better serve clients in given regions with low latency. Second, with
servers placed at the edge of the network and closer to users, better quality of expe-
riences can be expected for real time media streaming. The advantages of pushing
content closer to end users suggest a natural extension of conventional CDN, P2P
content delivery where contents are moved all the way to end users. It can poten-
tially offer more advantages over traditional CDN, although it must be balanced
with security, resource contention, and DRM issues.

Multicast is an effective content delivery method with reduced network band-
width requirement. Due to cost issues, IP multicast has not been widely deployed.
The explosion of streaming media applications thus offers another fertile ground for
P2P based content delivery to blossom.

Taking advantage of the high scalability and the low cost in implementation prop-
erties of P2P networks, today P2P content access and delivery has become one of the
most popular P2P applications. This includes P2P music sharing, P2P video sharing,
P2PTV, P2P radio, P2P video streaming, etc. Just like in centralized content deliv-
ery systems, content can be delivered via downloading or steaming to the end users
in P2P networks. At delivery, a media stream is segmented into data blocks that

24 John F. Buford and Heather Yu

are delivered via flooding, random walk, or via a topology defined specific route in
the P2P overlay network. Depending on the network topology, content blocks may
be forwarded along a distribution tree rooted at the source peer or flown through a
mesh network. And differentiated by the initiator of the content delivery, the content
blocks may be pulled or pushed from the source peer to the destination peer.

Although many P2P content delivery applications are seen today, many funda-
mental technical issues are still not fully resolved, for instance in content search,
content streaming, and content caching and replication.

4.1 Content Search

Searching is a key step in data access. It is certainly the case in P2P content access
as well. P2P networks take advantage of the distributed resources at peer nodes.
Contents are scattered and duplicated in the P2P network in a distributed fashion.
Hence, content retrieval in a P2P network needs to contemplate the specific network
model as well as the characteristics of the content being accessed. Ideally, a P2P
content search algorithm should comprise support of complex queries, low cost in
implementation, and fast and high accuracy query return capabilities. Today, most
structured P2P networks support static key and ID based object lookups while un-
structured P2P networks can handle certain complex type of queries, such as range
queries. Although semantic query and content based query can enrich user expe-
riences in content search, they are hardly supported by any P2P content delivery
systems today. This is because those types of queries are still posing significant
technical challenges.

Content search schemes and capabilities are largely dependent on the content
indexing and management schemes as well as the P2P network topology. Table 6
summarizes P2P indexing schemes. In a centralized indexing system where the in-
dex is kept at a centralized location in the P2P system, content searching is generally
done by forwarding the query message to the centralized indexing server to facilitate
object lookup. The server returns the lookup result which contains the location of
the desired content object. Content is transmitted then in a P2P fashion. Localized,
distributed, and hybrid indexing schemes can effectively reduce the risk of network
disruption owing to their distributed nature. Care must be taken when designing
the query scheme to reduce the cost associated with query message forwarding and
flooding.

Many people associate DHT with P2P search. This is because DHT based ob-
ject lookup is a widely adopted search scheme in structured P2P networks. Most
DHT based schemes rely on numerical keys to index and query objects in the P2P
network. Object searching is accomplished using key distance and routing towards
the peer that has the closest key to the querying object key. It offers efficient key
or ID based exact match lookups with guaranteed query returns. However, manag-
ing a consistent DHT requires considerable effort due to the dynamics of the net-
work topology. Another drawback of DHT-based system is its inability to support

Peer-to-Peer Networking and Applications: Synopsis and Research Directions 25

complex queries. In most applications, obviously, keyword, range, and semantic
queries are more useful than key or ID-based exact match search.

Table 6 P2P indexing schemes

Indexing
schemes

Index
location

Query
propagation

Content object delivery Key limita-
tions

Centralized
indexing

Central
server

Query is sent to the
central server directly and
resolved at central server

Querying peer obtains the
content object location,
i.e. the address of the
source peer who has the
content object; it then
sends a request for
delivery to the source
peer directly; content
object can now be
delivered from the source
peer to the destination
peer directly

Vulnerability
to attacks on
the server
and the pos-
sibility of
bottleneck
effect at the
server

Localized
indexing

Local peers Query is propagated from
peer to peer until the
desired content object
index is found

Content object may be
delivered directly from
the source peer to the
query peer upon
localization of the object

High cost
associated
with query
flooding and
low object
retrieval
efficiency

Distributed
indexing

Distributed
among
peers

Query is forwarded to
neighborhood peers based
on peer routing table until
the target object index is
found

Querying peer obtains the
location of the content
object, sends a request to
the source peer, and then
receives the content
object from the source
peer

Possible
delay at peer
joining due
to index
set up

Hybrid
indexing

Super nodes;

super nodes
and local
peer nodes

Query is first searched
locally at the local peer
and the super node that is
connected to the local
peer directly. If content
object is not found in
local indices, query is
propagated to other super
nodes according to the
routing table until it is
found or a predefined
Time-To-Live (TTL)
threshold is reached

Querying peer obtains the
location of the content
object, sends a request to
the source peer, and then
receives the content
object from the source
peer

Powerful
super nodes
to sustain
frequent
query
flooding are
needed

26 John F. Buford and Heather Yu

Keyword search may be realized in P2P networks using the popular vector space
model and/or inverted indexing based approaches. High cost associated with query
flooding is one of the key drawbacks of those approaches if a non-centralized in-
dexing scheme is employed. When the indices are distributed over peers, a simple
query may cause a large amount of data being transmitted over the network. To re-
duce cost, one might take advantage of conventional information retrieval schemes.
For instance, content summary based inverted indexing was proposed in [120]. Since
a query can be processed by transmitting a much smaller candidate list, bandwidth
demand for query flooding can be significantly reduced. The trade off is the addi-
tional storage space requirement and most importantly the reduction in recall rate in
DHT based structured overlay. Today, how to implement efficient keyword search
remains a challenge problem in P2P.

Compared to structured overlay, unstructured overlay has more freedom in im-
plementing complex queries. Flooding, iterative depending, and random walk are
commonly adopted searching approaches in unstructured P2P. Table 7 list the prop-
erties of these types of searching schemes in unstructured P2P networks.

Table 7 A comparison of searching schemes in unstructured P2P

Search
scheme

Characteristics Cost

Flooding Query requests are flooded through the P2P
network with the querying peer being the
center of the flood

High. Massive amount of query mes-
sages are being transmitted for a sin-
gle query

Iterative
deepening

A growing ring is used to iteratively deepen
the query flooding range until the target ob-
ject is found [121]

High but lower than flooding based
approach. Massive amount of query
messages are being transmitted for a
single query

Random
walk

The querying node forwards (walk) the query
message (walker) to one randomly selected
neighbor which randomly selects its neighbor
to forward the query message until the target
object is located

Low to medium. In a K-random walk
scheme, the cost is proportional to
K while the delay is inverse propor-
tional to K

Guided
search

“Guidance” on where the query message
should be forwarded is employed to improve
query efficiency. Keyword vector, query simi-
larity function, peer ranking and profile [122]
may be used to guide the query forwarding

Low. Though recall rate can be sig-
nificantly reduced if the “guidance”
function is flawed

A query that retrieves all objects between an upper and a lower bound, i.e., an
exclusive range, is called a range query. Likewise, a query that retrieves all objects
within a multi-dimensional range is called a multi-dimensional range query. Meth-
ods to resolve range queries in classical database problems can be easily imported

Peer-to-Peer Networking and Applications: Synopsis and Research Directions 27

into unstructured P2P networks. However, it is relatively harder to achieve in struc-
tured P2P due to the “clear-cut” nature of a DHT. If range attuned numerical keys
can be generated, range query could be supported in DHT based system. Locality
Sensitive Hashing (LSH) [123] is one such approach to hash similar data partitions
to nearby identifiers and similar ranges to the same peer with high probability. No-
ticeably, LSH has poor scalability. SkipIndex [124], another partition based scheme
that offers a solution to range query also demonstrated impressive results in small
scale P2P networks. How to design a scalable range query scheme and how to de-
sign a scheme that can offer scalable and efficient multi-dimensional range query
support for DHT based P2P remain challenges.

In a traditional information system, the most challenging types of searches are
semantic search and content based search. This is certainly true in P2P networks as
well. How to support efficient semantic search and content based search for multi-
media content access will need considerable effort and continuous investigation.

4.2 P2P Streaming and Multicasting

Content delivery, based on the way the content is transported and consumed, can be
categorized into downloading and streaming modes. Streaming refers to the delivery
method where content is being consumed while it is being transported. Compared
to download based delivery, streaming poses significant challenge due to the time
bounded requirement.

One-to-one, one-to-many, and many-to-many are possible configurations in dif-
ferent P2P streaming applications. For instance, a live remote personal video shar-
ing could be one-to-one or one-to-many, an Internet video application often takes
advantage of a one-to-many configuration, and a video conferencing application is
likely to involve many-to-many communications. Consequently, unicast, broadcast,
or multicast protocols may be employed in different streaming applications.

In a P2P network, content can be streamed via a tree based or a mesh based
overlay. In tree based approach, content, rooted at the source node, is pushed along
the tree to the destination peers. Mesh-based overlays implement mesh distribution
graphs for content streaming. In the mesh distribution graph, each new node first
obtains a content block availability map where a set of randomly selected peers who
have the desired content blocks are listed, it then contacts a subset of those ‘good’
peers to request for streaming, and obtains the content blocks from those peers based
on a predefined protocol. PPLive and Coolstreaming, for example, both take advan-
tage of mesh based streaming. While the mesh based pull model offers better load
balancing capability, it often introduces additional delays due to the exchange of
buffer maps.

Tree based schemes on the other hand entail considerable control overhead at
peer churns. If any interior member leaves the group (the tree,) the tree is broken
and the children of the failure or departure node need to be reconnected to the tree.
These entail additional group management cost. Tree based system is also inherently

28 John F. Buford and Heather Yu

unbalanced. It does not utilize the bandwidth of the leaf nodes, causing a burden of
duplicating and forwarding multicast traffic carried by a small subset of peers that
are interior nodes of the multicast tree. This violates the fairness in resource and
load sharing requirement in a P2P system. To improve fairness in resource sharing,
multiple trees may be built to deliver different sub-streams. Splitstream [125], for
instance, is one such scheme. Often this type of algorithms can work beautifully for
a small scale P2P video streaming application. However, in a large scale P2P system,
considerable complexity in building multiple balanced trees and tree reconnection
at peer churns may significantly affect the system performance.

When there are multiple clients (receivers) simultaneously requesting/receiving
the same media stream in a streaming application, multicast can be implemented.
Multicast is a special type of streaming where protocols are defined to delivery a
packet to a group of destinations at the same time using efficient strategies. Mul-
ticast can be deployed at different network layers. IP multicast which implements
multicast at the IP routing level is generally high in implementation cost. P2P over-
lay multicast was invented to reduce deployment cost and improve scalability. A
P2P overlay multicast system should implement [26]:

– Session identification
– Session initiation/creation
– Session subscription/join
– Session leave/graceful departure
– Session message dissemination/data forwarding
– Session fault tolerance/tree reformation at peer failure
– Session termination
– Session admission control
– Content access control and security

A comparison between P2P overlay multicast and IP multicast is given in Table 8.
Obviously P2P networks offer considerable advantages, such as high scalability and
low cost in implementation, for content streaming applications. The most consider-
able drawbacks in many commercially available P2P streaming and multicast video
application systems such as PPLive include long startup delay and playback jit-
tering. Quality of Experience (QoE), which indicates user experience and satisfac-
tion, is a popular way today to measure the success of a content delivery service.
Start-up delay and playback jittering are two important factors affecting user ex-
periences. To reduce join and reconnection latencies in overlay multicast services,
proximity based routing which improves arbitrarily long distances in routing hops
is introduced [126]. Another approach [26] utilizes proactive step-parent selection
to reduce the reconnection time in tree based multicast systems. That is, each peer
locates its potential step-parent in advance. At tree reformation, a node that is a can-
didate parent immediately takes over the role of parenting. This cuts down real-time
messaging needed for tree reconstruction, thus reducing the probability of playback
jittering at the affected end hosts.

Peer-to-Peer Networking and Applications: Synopsis and Research Directions 29

It was also shown that implicit protocols [127] where the control and data paths
are defined simultaneously can support both latency-sensitive and high-bandwidth
applications as well as very large group sizes.

Today, video streaming, one of the most popular means for content distribution,
still suffer from several drawbacks when built on top of a fully distributed P2P over-
lay. These include high stress on the ISP links, dependency on high bandwidth peers,
uneven quality distribution, lack of content security mechanisms and authentication
capability, and long startup delay and channel switching delay. As a result, hybrid
approaches are gaining considerable attention in the industry lately. Will hybrid so-
lutions be able to offer reduced ISP stress and improved security as well as perfor-
mance for large scale P2P streaming applications? Will hybrid systems ultimately
solve the billing and accounting problem? These along with many other questions
need to be resolved before P2P streaming takes on a full spin in commercial content
delivery applications.

Table 8 Characteristics comparison: P2P overlay multicast and IP multicast

Metric P2P overlay multicast IP multicast

Efficiency Relatively low High

Stress on ISP Relatively high Low

Server bandwidth requirement Significantly lower High

Control overhead Considerably higher Low

Robustness Generally lower High
Lag between customers Can be high Low

Deployment cost Usually very low High

4.3 Caching and Replication

In P2P networks, data objects may be duplicated and saved temporarily or perma-
nently on multiple peers. Caching and replication play key roles in reducing net-
work bandwidth usage and origin server load and bandwidth requirement, reducing
client side latency, and improving load balance, data availability, system reliability,
and data access latency in a P2P network. Nevertheless, data consistency and syn-
chronization issues need to be handled properly to reduce miss rate without high
cost. The number of requests issued to peers for a particular content blocks and
the frequency of cache replacement for instance, can affect the number of messages
and network traffic pattern. Intuitively, flooding could guarantee object synchroniza-
tion with the cost on additional communication messages and bandwidth require-
ment. Synchronization on demand could effectively reduce the communication cost,

30 John F. Buford and Heather Yu

however, it may only offer a weak guarantee. Can a joint flooding and on demand
approach offer reasonable guarantee with acceptable overhead? This still awaits in-
vestigation.

Tables 9 and 10 compare several different replication schemes and caching
schemes respectively.

Caching and replication in structured P2P could be tricky. Some of the struc-
tured P2P systems associate an object to the object identifier which is also the
key to discover the location of the object. Effectivecaching and replication of

Table 9 P2P replication schemes

Replication scheme Characteristics

Full replication Data are replicated on all peers in a P2P network. All data are
available to read locally. The cost to maintain the replicas is high

Partial replication A portion of the content is replicated at some peers. Relatively
lower maintenance cost with longer seek time

Synchronous replication All replicas are simultaneously changed. Higher hit rate with
high cost in replication synchronization is expected

Asynchronous replication Delay in change at a remote replica is allowed. Cost in replica-
tion synchronization is reduced with reduced hit rate

Static replication Replicas are fixed at all times

Dynamic replication Location and number of replicas change by time, system condi-
tion, transactional status, etc.

Active replication Locations of replica are predefined. Query request is sent to all
replica servers

Passive replication Peer nodes request and copy content from one and another. Pas-
sive replication processes query request sequentially and syn-
chronizes the replicated copies of objects periodically

Random replication Replicas are placed randomly at peers

Query path based replication Content (data) object is replicated on all peer nodes on the path
from the query destination back to the query source

Adaptive query
path based replication

Object shall not be uniformly replicated on all peer nodes on
the path. Instead, the object popularity, peer resources, etc. shall
be taken into consideration to decide where the object will be
replicated

Neighborhood replication Data objects are replicated at some or all neighbor peers of a
peer that holds the objects

Object location replication The location of data objects are replicated in the neighbors of
the peer that holds the data object whereas the data objects are
not replicated

Peer-to-Peer Networking and Applications: Synopsis and Research Directions 31

Table 10 P2P caching schemes

Caching scheme Characteristics

Just-in-Time (JiT) caching Immediately after a request is received from the client, the cache
pulls the content from the server with the content sent to the
cache and the requesting client simultaneously

Pre-Caching (PreC) Contents are often cached before a request is received at the
proxy

objects requires additional mechanisms. In Tapestry [47], replica roots identified
with random keys which are generated using a replication function are used for ob-
ject replication.

4.4 Summary of Design Issues

Cost, implementation complexity, efficiency, robustness, scalability, and quality of
services and experiences are some of the key design criteria for P2P content delivery
services. For instance, in a video conferencing service, the system has to meet the
delay bound constraint to offer acceptable customer experience. Video applications
are often resource demanding. Thus, system control overhead may have direct im-
pact on a video application system’s performance. Furthermore, system capability
to cope with churn and network dynamics is imperative in any P2P content delivery
systems. An efficient system that can take advantage of the P2P network resources
in a fair and balanced way can have a strong impact on system scalability and
performance.

4.5 Research Issues

Noticeably, many popular P2P related brand names are associated with content de-
livery. For instance, Kazaa offers music sharing, PPLive provides P2P based TV
service, and Pando presents video downloading, streaming, and sharing capabilities
to its customers. Although tens of similar P2P based content delivery services are
available today, major content providers, network service providers, or telco com-
panies have not been deploying P2P based content delivery systems. Why? From
technology point of view, there are many technical issues still need to be resolved
before P2P network takes on a full spin in content delivery. Security, efficiency in
searching and delivery, fairness in resource sharing, and billing and accounting, for
instance, are some popular issues.

32 John F. Buford and Heather Yu

5 Security

5.1 The P2P Security Concern

Security is not just an issue in P2P content delivery, but also an important issue in al-
most all types of P2P applications. In fact, information security has been a daunting
subject area in today’s networked world. Information security aims at safeguarding
information and information systems through a range of policies, strategies, secu-
rity products, technologies and procedures. It includes the protection of information
and system’s availability, confidentiality, privacy, and integrity. Today, relying on
personal computer and the Internet for information storage, retrieval and asset man-
agement is becoming an everyday practice for many individuals; whereas for many
organizations, the network is a primary and mission critical components whose day-
to-day operation must be fully warranted. Hence network vulnerabilities have sig-
nificant impact on enterprise as well as personal information security today. With
the growing frequency and types of threats, from viruses to Trojan horses, from ad-
ware to spyware, from denial of service to distributed denial of service, from fraud
to identity theft, . . . people are more and more aware of the security threats and
more and more concerned with various security threats that are presented to them
via different networks and applications.

Fig. 6 Sample categories of attacks

With no central authority governing the authenticity and integrity of the sharing
content and peers and with limited mechanisms for protecting the rights of content
owners or the security of the client systems, P2P overlay network and applications
add another dimension of security concern. Obviously, sharing files or computing
resources on one’s device with unknown peers over the Internet goes against many
of the basic principles of securing your information. It could open up new doors for
cyber criminals to steal confidential information, to damage personal or enterprise
properties, and to poison the network for criminal intents.

Peer-to-Peer Networking and Applications: Synopsis and Research Directions 33

5.2 Basic Classifications of P2P Network Security Threats

Through the years, many terms describing the security threats of networks or infor-
mation systems were used. Some may be widely adopted and some may be confus-
ing. Figure 6 and Table 11 list several popular categories and sample types of threats
[26, 128–130].

Attacks on P2P network and systems may target at the overlay or the applica-
tion layers [26]. Content theft, confidential information theft, service attacks, and
computing and network resource theft and attacks are just some of the many types
of threats P2P networks and application users are facing. Table 12 shows several
unique P2P overlay security attacks defined in [131]. Those attacks could potentially

Table 11 Sample types of attacks

Category Description Sample attacks

Accidental Security leakage caused by accidents Accidental bandwidth
clogging

Deliberate Attacks are deliberate for criminal intent Theft

Availability Attacks that compromise the availability of
the system or information, i.e. attacks that
cause system or data unavailability to
authorized or normal usage

Denial of service, bandwidth
clogging, worm (e.g., using
up the computer’s resources
and possibly shutting the
system down)

Confidentiality Attacks that compromise the confidentiality of
the system or information, i.e. unauthorized
disclosure of information

Theft, Trojan (e.g., one that
logs keystrokes to steal
information, RAT(Remote
Access Trojan)) Spyware

Integrity Attacks that compromise the integrity of the
system or information, i.e. attacks that modify
data without authorization

Virus

Authenticity Attacks that compromise the authenticity of
the system or information, i.e. attacks that
target at or affect the genuineness of the
information or the system

ID attacks, password attacks

Interruption Unauthorized disruption Distributed denial of service,
bandwidth
clogging

Interception Unauthorized access Theft, password attack, IP
spoofing, nodeId attacks,
Sybil attack

Modification Unauthorized tampering Reverse engineering

Fabrication Unauthorized creation Content/email spoofing

34 John F. Buford and Heather Yu

Table 12 Sample types of P2P overlay attacks [26, 131]

Category Description

NodeId attack Nodes obtain specific nodeId(s) (node identification) for malicious intent

Sybil attack A small number of entities counterfeiting multiple peer identities so as to
compromise a disproportionate share of the system

Message forwarding
attack

Attacks that alter the route or the content of the message being forwarded
for malicious intent

Routing table attack Attacks that manipulate routing table entries for malicious intent

DDoS attack Nodes work together to prevent a system from performing its task

jeopardize the availability, confidentiality, integrity, and/or authenticity of content,
data, a system, a network, or a peer.

A P2P network is a particularly attractive platform for attackers to steal confi-
dential information and to spread viruses. It often opens up a back door for hackers
to easily gain access to devices and information that normally can not be accessed.
For instance, a hacker can use a software tool, such as Wrapster, to disguise a confi-
dential document. The confidential document, now appear to be a legitimate media
content, such as an MP3 file, bypasses the enterprise security mechanisms and poli-
cies and is shared and transmitted through a P2P file sharing system. The receiver
outside of the enterprise network can now unwrap the file and convert it into its
original format. A piece of code, the virus, could also appear to be a popular file-
sharing program and subsequently when downloaded, the virus gains access to the
peers’ data, information, and software on the device. Modifying data and files and
destroying the file system are just two of the many damages a virus could cause.
P2P networks also provided a fertile ground for attacks to cash in on a collection of
peer resources to achieve malicious means. Distributed Denial of Service (DDoS)
attack and Sybil attack are two most representative ones in this category. Denial of
Service (DoS) attacks could cause service breakdown through disruption of phys-
ical network components; consumption of resources such as storage, computation,
or bandwidth resources; obstruction of communications; and interference with con-
figuration and state information. For example, a DoS attacker may use malware to
max out a user’s CPU time or crash a system by triggering errors in instructions.

5.3 Counter Measures

Leaking confidential information through P2P networks and applications is a pri-
mary concern at many organizations. In addition, bandwidth clogging, viruses,
copyright infringement, etc. are also serious threats at the enterprise network level.
Detecting and stopping P2P applications at the enterprise network level is a
straightforward practice and is implemented by many organizations today. Notice

Peer-to-Peer Networking and Applications: Synopsis and Research Directions 35

though if a laptop is used in a P2P application while disconnected from the enter-
prise network, it may still introduce security breaches when it is reconnected into
the enterprise network. For instance, P2P software vendors or application service
providers may offer free P2P file sharing or other services. In order to generate rev-
enue, they may bundle advertiser applications or activity trackers to its P2P applica-
tion and services. The advertisement or activity tracking application software maybe
piggybacked in its application program, much like an adware or spyware could be.
Obviously, other types of adware and spyware may also be piggybacked. They are
often downloaded without users’ knowledge and may run in the background even
when the peer machine is disconnected from the P2P network. This opens up a win-
dow for hackers and introduces various potential risks. For instance, the adware or
spyware may bypass the enterprise network firewall when the machine enters the
enterprise network. It may contain viruses or worms that will spread around the
enterprise network once the machine is reconnected. It may contain other security
flaws and it certainly will use additional resources including computational, stor-
age, and even bandwidth resources. To better address security concerns from P2P,
one must be able to stop P2P activities on their networked systems and every com-
ponent of the systems completely. To do this, strong policies should be implemented
to allow automated protection on each and every component of the network. It in-
cludes protecting all components from becoming nodes in P2P networks while they
are on and off the enterprise network.

While banning P2P maybe an easy solution to protect ones network from attacks
caused by P2P networks and applications, it’s certainly not a viable solution for
all networks. To fight against P2P attacks while maintaining the privilege to em-
ploy some P2P applications, specific counter measures may be designed and imple-
mented. A semi-decentralized P2P system, for instance, may help to reduce many
types of P2P security risks. In a semi-decentralized P2P system, a centralized trust
entity maybe utilized for security administration. Noticeably, the centralized au-
thority can also become the victim of P2P attacks, such as a DDoS attack, if proper
counter measure is not taken. Similarly, hybrid P2P can effectively reduce some
P2P security risks while the super peers in the hybrid P2P network may become the
victim of DDoS attacks if proper counter measure is not employed.

Obviously, fully distributed security mechanisms are needed in fully decentral-
ized P2P systems. Castro [132] introduced secure routing table maintenance, secure
nodeId assignment, and secure message forward as several primitives for secure
message routing in structured overlay. By imposing strong constraints on routing
table, binding nodeIds to node IP address, message authentication, and some other
mechanisms, improved security at message routing in structured overlay is expected.

Studies on P2P DDoS attacks show that pattern detection and advanced filter-
ing mechanism may be helpful in detecting DDoS attacks, the explosion of new
types of DDoS attacks making it one of the toughest to defend [133, 134]. In [133],
Mirkovic suggests to deploy comprehensive protocol, system security mechanisms
and abundant resources to improve the system resilience to DDoS attacks.

36 John F. Buford and Heather Yu

5.4 Fairness, Trust and Privacy Issues

Adar [135] reported a 70% free rider testing result in Gnutella. Gnutella is certainly
not alone in experiencing P2P free riding where peers are consuming resources with-
out fair contribution of their resources. To improve fairness in P2P resource sharing,
auditing, incentive, and micro-payment based mechanisms are proposed.

A P2P system relies heavily on a set of distributed peers working properly and
fairly together. Today, a large scale P2P system can be thousands to millions in size
with peers interacting with unknown peers. How can peers establish and maintain
trust between one and another in a P2P system especially a large P2P system? How
to perform peer authentication? A centralized trust management entity could solve
the problem and yet it tends to be a single point of attack. A hybrid system although
does not suggest a single point of attack, could still become impaired when attacks
are targeted on several super peers at the same time. Distributed trust management,
on the other hand, could impose high cost and overhead for pair-wise peer authenti-
cation.

Privacy in P2P networks is another constantly raised issue today. Most P2P net-
works do not implement appropriate privacy governance mechanisms. While anony-
mous communication offer means to protect privacy, it is offset by the risks in trust
and reduction in communication efficiency.

5.5 More on P2P Security

Due to the autonomous and distributed nature and the wide availability of repli-
cated objects, making a P2P network secure is a big challenge. Exposure to theft,
distributed viruses, worms, Trojan horses, spyware, or DDoS attacks are just some
of the many types of P2P attacks we are facing today. With decentralized security
mechanisms not fully in place and traditional server-based security schemes not of-
fering suitable means for fully decentralized P2P network protection, P2P security
remains a daunting subject in the P2P research field.

As introduced earlier in this chapter, many P2P systems are designed for a spe-
cific application. A systematic counter measure with clearly defined security goals
and security schemes that are application and system driven and carefully designed
protocols and systems based on appropriate security policies, coupled with security
educated P2P system and application users, perhaps can be expected to improve
P2P system security and defend against various attacks. To further understand the
security risks and counter measures in P2P networks, additional discussions and
references can be found in Chapter 14 of [26].

Peer-to-Peer Networking and Applications: Synopsis and Research Directions 37

6 Summary

There has been a great deal of research to devise and improve on a large range
of overlay-related design dimensions. Also the number of applications of overlays
is increasing due to growing capacity of wireless networks and end devices, and
the popularity of P2P applications among end users. We have attempted here to
summarize and highlight the key results to date. Nevertheless there are certain major
questions about the P2P paradigm and its use that remain including:

– What is the significance of the P2P paradigm as a general distributed systems
architecture, and how will it evolve in practice with respect to the client-server
paradigm?

– What are the barriers to adoption of the many research results by deployed sys-
tems, and how can these be avoided?

– Is the first mover advantage in P2P applications surmountable, and can balka-
nization of the P2P landscape be avoided?

– What is the likely long-term impact on internet architecture and service providers?

Further sources of surveys on the field of P2P networks include [136–139] as
well as the books [1, 140].

References

Introduction

1. D. Clark, B. Lehr, S. Bauer, P. Faratin, R. Sami, and J. Wroclawski. Overlay networks and
the future of the Internet, Communications & Strategies 63, 3Q2006.

2. D. Clark, B. Lehr, S. Bauer, P. Faratin, R. Sami, and J. Wroclawski. The growth of Internet
overlay networks: implications for architecture, industry structure and policy, 33rd Telecom-
munications Policy Research Conference, Sept. 2005, available at
http://web.si.umich.edu/tprc/papers/2005/466/TPRC Overlays 9 8 05.pdf.

3. L. Peterson, T. Anderson, S. Shenker, and J. Turner. Overcoming the Internet impasse
through virtualization, IEEE Computer, Apr. 2005, 62-69.

4. The SpoVNet Consortium, SpoVNet: An architecture for supporting future Internet applica-
tions, www.spovnet.de.

5. Ambient Networks Deliverable, System design of SATO & ASI,
www.ambientnetworks.org/Files/deliverables/D12-F.1 PU.pdf, Sept. 2007.

6. R. Devine. Design and implementation of DDH: a distributed dynamic hashing algorithm,
Proceedings of the 4th international Conference on Foundations of Data Organization and
Algorithms, Oct. 13-15, 1993, D. B. Lomet (ed.), Lecture Notes in Computer Science, Vol.
730, Springer-Verlag, 101–114.

7. W. Litwin, M.-A. Neimat, and D. A. Schneider. LH: linear hashing for distributed files, ACM
SIGMOD Record, 22(2), June 1, 1993, 327–336.

8. W. Litwin, M.-A. Neimat, and D. A. Schneider. LH: a scalable, distributed data structure,
ACM Transactions on Database Systems (TODS), 21(4), Dec. 1996, 480–525.

9. C. G. Plaxton, R. Rajaraman, and A. W. Richa. Accessing nearby copies of replicated objects
in a distributed environment, Proceedings of the 9th annual ACM symposium on parallel
algorithms and architectures, Newport, RI, June 23-25, 1997, 311–320.

38 John F. Buford and Heather Yu

10. D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and D. Lewin. Consistent
hashing and random trees: distributed caching protocols for relieving hot spots on the World
Wide Web, Proceedings of the 29th Annual ACM Symposium on theory of Computing, El
Paso, Texas, May 4-6, 1997, STOC ’97, ACM Press, 654–663.

11. M. Ripeanu, I. Foster, and A. Iamnitchi. Mapping the Gnutella Network: Properties of Large-
Scale Peer-to-Peer Systems and Implications for System Design, IEEE Internet Computing,
6(1), February 2002.

12. S. Saroiu, P. K. Gummadi, and S. D. Gribble. A Measurement Study of Peer-to-Peer
File Sharing Systems. In Proceedings of Multimedia Computing and Networking 2002
(MMCN’02) (San Jose, CA, Jan. 2002).

13. S. Sen and J. Wang. Analyzing Peer-to-Peer Traffic Across Large Networks. In Proceedings
of the ACM SIGCOMM Internet Measurement Workshop 2002 (Marseille, France, Nov.
2002).

14. Y. Chawathe, S. Ratnasamy, L. Breslau, S. Shenker, and N. Lanham. GIA: Making Gnutella-
like P2P Systems. Scalable. ACM SIGCOMM 2003.

15. Y. Qiao and F. Bustamante. Structured and unstructured overlays under the microscope: a
measurement-based view of two P2P systems that people use. In Proceedings of the Annual
Technical Conference on Usenix’06 Annual Technical Conference (Boston, MA, May 30 –
June 03, 2006). USENIX Association, Berkeley, CA, 31–31.

16. J. Liang, R. Kumar, K. Ross. The FastTrack Overlay: A Measurement Study. Computer Net-
works, 50, 2006, 842–858.

17. S. Baset and H. Schulzrinne. An Analysis of the Skype Peer-to-Peer Internet Telephony Pro-
tocol Columbia University, Department of Computer Science, Technical Report cucs-039-04.
2004.

18. S. Guha, N. Daswani, and R. Jain. An experimental study of the Skype peer-to-peer VoIP
system. In IPTPS, 2006.

19. T. Hofeld. Measurement and Analysis of Skype VoIP Traffic in 3G UMTS Systems. 4th
International Workshop on Internet Performance, Simulation, Monitoring and Measurement,
IPS-MoMe 2006, Salzburg, Austria, February 2006.

20. K. Suh, D. R. Figueiredo, J. Kurose, and D. Towsley. Characterizing and detecting skype-
relayed traffic, in Proceedings of IEEE Infocom (Infocom 2006), Barcelona, Spain, April,
2006.

21. H. Xie and Y. Yang. A Measurement-based Study of the Skype Peer-to-Peer VoIP
Performance The Sixth International Workshop on Peer-to-Peer Systems. IPTPS 2007
(Feb 2007).

22. R. Schollmeier. A Definition of Peer-to-Peer Networking for the Classification of Peer-to-
Peer Architectures and Applications. Peer-to-Peer Computing 2001.

23. S. Androutsellis-Theotokis and D. Spinellis. A Survey of Content Distribution Technologies.
ACM Computing Surveys, 36(4), December 2004.

24. J. Buford. Management of peer-to-peer overlays, International Journal of Internet Protocol
Technology, Special Issue on Management of IP Networks and Services, 3(1), 2008, 2–12.

25. B. Biskupski, J. Dowling, and J. Sacha. Properties and mechanisms of self-organizing
MANET and P2P systems, ACM Transactions on Autonomous and Adaptive Systems 2(1),
March 2007, 34 pp.

26. J. Buford, H. Yu, and E. K. Lua. P2P Networking and Applications. Morgan Kaufmann 2008.

Unstructured Overlays

27. I. Clarke. A Distributed Decentralized Information Storage and Retrieval System. Un-
published Report. Division of Informatics, University of Edinburgh. 1999. Online:
http://www.freenetproject.org.

Peer-to-Peer Networking and Applications: Synopsis and Research Directions 39

28. I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong. Freenet: A distributed anonymous in-
formation storage and retrieval system, in Proc. ICSI Workshop Design Issues in Anonymity
and Unobservability, Berkeley, CA, June 2000. (also: Hannes Federrath (Ed.): Designing Pri-
vacy Enhancing Technologies. International Workshop on Design Issues in Anonymity and
Unobservability. Lecture Notes in Computer Science VOL. 2009, Springer-Verlag, Berlin/
Heidelberg 2001.

29. H.-E. Skogh, J. Haeggstrom, A. Ghodsi, and R. Ayani. Fast Freenet: Improving Freenet Per-
formance by Preferential Partition Routing and File Mesh Propagation. In Proceedings of
the 6th International Workshop on Global and Peer-To-Peer Computing on Large Scale Dis-
tributed Systems (CCGRID’06), p. 9. IEEE Computer Society, 2006.

30. H. Zhang, A. Goel, and R. Govindan. Using the small-world model to improve Freenet per-
formance. Comput. Networks 46(4), Nov. 2004, 555–574.

31. Gnutella Protocol Specification version 0.6.
Online at http://gnutella-specs.rakjar.de/index.php/ Main Page, accessed Nov 2007.

32. M. Ripeanu, I. Foster, and A. Iamnitchi. Mapping the Gnutella Network: Properties of Large-
Scale Peer-to-Peer Systems and Implications for System Design, IEEE Internet Computing,
6(1), February 2002.

33. Y. Chawathe, S. Ratnasamy, L. Breslau, S. Shenker, and N. Lanham. GIA: Making Gnutella-
like P2P Systems. Scalable. ACM SIGCOMM 2003.

34. J. Liang, R. Kumar, and K. Ross. The FastTrack Overlay: A Measurement Study. Computer
Networks, 50, 2006, 842–858.

35. R. Morselli, B. Bhattacharjee, A. Srinivasan, and M. Marsh. Efficient lookup on unstructured
topologies. Proceedings of the Twenty-Fourth Annual ACM Symposium on Principles of
Distributed Computing (Las Vegas, NV, USA, July 17 – 20, 2005). PODC ’05. ACM Press,
New York, NY, 77–86.

36. K. Hui, J. Lui, and D. Yau. Small-world overlay P2P networks: construction, management
and handling of dynamic flash crowds. Comput. Networks, 50(15), Oct. 2006, 2727–2746.

37. A. Löser, S. Staab, and C. Tempich. Semantic Social Overlay Networks. IEEE J. Sel. Areas.
Communications, 25(1), 2007, 5–14.

38. J. Pouwelse, P. Garbacki, J. Wang, A. Bakker, J. Yang, A. Iosup, D. Epema, M. Reinders,
M. van Steen, and H. Sips. Tribler: A Social-based Peer-to-Peer system. Proc. of the 5th
International Workshop on Peer-to-Peer Systems (IPTPS’06).

39. G. Mangioni, V. Carchiolo, M. Malgeri, and V. Nicosia, Evaluating the Dynamic Behaviour
of PROSA P2P Network, International Symposium on Parallel and Distributed Processing
and Applications 2006, ISPA06, 2006.

40. P. Ganesan, Q. Sun, and H. Garcia-Molina. Yappers: A peer-to-peer lookup service over
arbitray topology. Infocom’03, Apr. 2003.

Broadcast in Structured Overlays

41. M. Lue, C. King, and H. Fang. Scoped broadcast in structured P2P networks. Proc. of the 1st
International Conference on Scalable information Systems (Hong Kong, May 30 – June 01,
2006). InfoScale ’06, vol. 152. ACM Press, New York, NY, 51.

42. V. Vischnevsky, A. Safonov, M. Yakimov, E. Shim, and A. Gelman. Scalable Blind Search
and Broadcasting in Peer-to-Peer Networks, Sixth IEEE Intl. Conference on Peer-to-Peer
Computing, Sept. 2006.

43. J. Li, K. Sollins, and D. Lim. Implementing aggregation and broadcast over Distributed Hash
Tables. SIGCOMM Computer Communication Review, 35(1), Jan. 2005, 81–92.

44. H.-C. Hsiao and C.-T. King. Scoped broadcast in dynamic peer-to-peer networks. 29th An-
nual International Computer Software and Applications Conference, 2005. COMPSAC 2005.
26–28 July 2005, pp. 533–538 Vol. 2.

40 John F. Buford and Heather Yu

Structured Overlays

45. C. Greg Plaxton, R. Rajaraman, and A. Richa. Accessing nearby copies of replicated objects
in a distributed environment, Proceedings of the ninth annual ACM symposium on Parallel
algorithms and architectures, p. 311–320, June 23–25, 1997, Newport, Rhode Island, United
States.

46. X. Li, J. Misra, and C. G. Plaxton. Active and Concurrent Topology Maintenance. In Proceed-
ings of the 18th International Conference on Distributed Computing (DISC 04), p. 320–334,
London, UK, 2004. Springer-Verlag.

47. B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and J. Kubiatowicz. Tapestry:
A resilient global-scale overlay for service deployment, IEEE Journal on Selected Areas in
Communications, 22(1), pp. 41–53, Jan. 2004.

48. A. Rowstron, P. Druschel. Pastry: Scalable, Decentralized Object Location, and Routing for
Large-Scale Peer-to-Peer Systems, Proceedings of the IFIP/ACM International Conference
on Distributed Systems Platforms Heidelberg, p.329–350, November 12–16, 2001

49. K. Aberer, A. Datta, M. Hauswirth. Efficient, self-contained handling of identity in Peer-to-
Peer systems, IEEE Transactions on Knowledge and Data Engineering 16(7), July 2004.

50. S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz, S. Ratnasamy, S. Shenker, I. Stoica, and H.
Yu. OpenDHT: A Public DHT Service and Its Uses. Proceedings of ACM SIGCOMM 2005,
August 2005.

51. Q. Lian, Z. Zhang, S. Wu, and B. Zhao. Z-Ring: Fast Prefix Routing via a Low Mainte-
nance Membership Protocol. In Proceedings of the 13TH IEEE international Conference on
Network Protocols (Icnp’05) – Volume 00 (November 06–09, 2005). ICNP. IEEE Computer
Society, Washington, DC, 132–146.

52. I. Stoica, R. Morris, D. Liben-Nowell, D. Karger, M. F. Kaashoek, F. Dabek, and H. Balakr-
ishnan. Chord: a scalable peer-to-peer lookup protocol for internet applications. IEEE/ACM
Transactions on Networking 11(1) Feb. 2003, 17–32.

53. L. Alima et al., Dks(n,k,f): A Family of Low Communication, Scalable and Fault-Tolerant
Infrastructures for P2P Applications, Proc. 3rd IEEE/ACM Int’l. Symp. Cluster Comp. and
the Grid, Monterey, California, USA, 2003, pp. 344–50.

54. B. Carton, V. Mesaros, and P. Van Roy. Improving the scalability of logarithmic-degree DHT-
based peer-to-peer networks,Proc. of Euro-Par, Aug.-Sept. 2004.

55. T. Schutt, F. Schintke, and A. Reinefeld. Structured Overlay without Consistent Hashing:
Empirical Results. In Proceedings of the Sixth IEEE international Symposium on Cluster
Computing and the Grid (Ccgrid’06) – Volume 00 (May 16 – 19, 2006). CCGRID. IEEE
Computer Society, Washington, DC, 8.

56. G. Manku, M. Bawa, and P. Raghavan. Symphony: distributed hashing in a small world. In
Proceedings of the 4th Conference on USENIX Symposium on internet Technologies and
Systems – Volume 4 (Seattle, WA, March 26 – 28, 2003). USENIX Association, Berkeley,
CA, 10–10.

57. P. Maymounkov and D. Mazieres. Kademlia: A peer-to-peer information system based on
the xor metric. In Proc of IPTPS02, Cambridge, USA, March 2002. 7.5 Constant Degree
Overlays.

58. S. Ratnasamy, P. Francis, M. Handley, R. Karp, S. Schenker. A scalable content-addressable
network, Proceedings of the 2001 conference on Applications, technologies, architec-
tures, and protocols for computer communications, p.161–172, August 2001, San Diego,
California.

59. D. Malkhi, M. Naor, and D. Ratajczak. Viceroy: a scalable and dynamic emulation of the
butterfly. In Proceedings of the Twenty-First Annual Symposium on Principles of Distributed
Computing (Monterey, California, July 21 – 24, 2002). PODC ’02. ACM Press, New York,
NY, 183–192.

60. A. Kumar, S. Merugu, J. Xu, and X. Yu. Ulysses: A Robust, Low-Diameter, Low-Latency
Peer-to-peer Network, in Proc. of IEEE ICNP 2003.

Peer-to-Peer Networking and Applications: Synopsis and Research Directions 41

61. H. Shen, C.-Z. Xu, and G. Chen. Cycloid: A scalable constant-degree lookup-efficient P2P
overlay network, Journal of Performance Evaluation’s Special Issue on Peer-to-Peer Net-
works (6/29), 2005.

62. C. Shui, H. Wang, P. Zhou, and Y. Jia. Cactus: A New Constant-Degree and Fault Tolerate
P2P Overlay. PRIMA 2006: 386–397.

63. F. Kaashoek and D. R. Karger. Koorde: A Simple Degree-optimal Hash Table, IPTPS,
February 2003.

64. A.-T. Gai and L. Viennot. Broose: a practical distributed hashtable based on the de-bruijn
topology, in Fourth International Conference on Peer-to-Peer Computing, 2004, Aug. 2004,
pp. 167–174.

65. P. Fraigniaud and P. Gauron. D2B: a de Bruijn based content-addressable network. Theor.
Comput. Sci. 355, 1 (Apr. 2006), 65–79.

66. M. Naor and U. Wieder. Novel architectures for P2P applications: The continuous-discrete
approach. ACM Trans. Algorithms 3, 3 (Aug. 2007), 34.

67. G. Wepiw and P. Simeonov. HiPeer: A Highly Reliable P2P System. IEICE – Transactions
on Information and Systems, E89-D(2), Feb. 2006, 570–580.

68. H. Rostami, J. Habibi, and A. Rahnama. Semantic HyperCup. In Proceedings of the 39th
Annual Hawaii international Conference on System Sciences – Volume 09 (January 04 – 07,
2006). HICSS. IEEE Computer Society, Washington, DC, 223.

69. D. Li, X. Lu, and J. Wu. FISSIONE: a scalable constant degree and low congestion DHT
scheme based on Kautz graphs. Proc. IEEE 24th Annual Joint Conference of the IEEE Com-
puter and Communications Societies (INFOCOM 2005), 3, 13–17 March 2005, 1677–1688.

70. D. Guo, J. Wu, H. Chen, and X. Luo. Moore: An Extendable Peer-to-Peer Network Based on
Incomplete Kautz Digraph with Constant Degree. INFOCOM 2007.

71. Y. Zhang, X. Lu, and D. Li. SKY: efficient peer-to-peer networks based on distributed
Kautz graphs. Journal Science in China Series F: Science in China Press, co-published with
Springer-Verlag GmbH. Dec. 2008.

72. Y. Zhang, L. Liu, D. Li, and X. Lu. Distributed Line Graphs: A Universal Frame-
work for Building DHTs Based on Arbitrary Constant-Degree Graphs. Proceedings of the
2008 the 28th international Conference on Distributed Computing Systems – Volume 00
(June 17 – 20, 2008). ICDCS. IEEE Computer Society, Washington, DC, 152–159.

O(1)-Hop Overlays

73. B. Leong, B. Liskov, and E. D. Demaine. EpiChord: Parallelizing the Chord Lookup Algo-
rithm with Reactive Routing State Management. Computer Communications, Elsevier Sci-
ence, 29, 2006, 1243–1259.

74. A. Gupta, B. Liskov, and R. Rodrigues. One Hop Lookups for peer-to-peer overlays Proceed-
ings of the 9th Workshop on Hot Topics in Operating Systems (HotOS-IX), Lihue, Hawaii,
May 2003.

75. I. Gupta, K. Birman, P. Linga, A. Demers, and R. van Renesse. Kelips: building an efficient
and stable P2P DHT through increased memory and background overhead. Proceedings of
the 2nd International Workshop on Peer-to-Peer Systems (IPTPS ’03). 2003.

76. I. Abraham, A. Badola, D. Bickson, D. Malkhi, S. Maloo, and S. Ron. Practical Locality-
Awareness for Large Scale Information Sharing. The 4th Annual International Workshop on
Peer-To-Peer Systems (IPTPS ’05). 2005.

77. M. Li, J. Hu, D. Wang, and W. Zheng. Gemini: Probabilistic Routing Algorithm in Structured
P2P Overlay. The 3rd International Conference on Grid and Cooperative Computing (GCC
2004), Wuhan, China, Oct 2004.

78. L. Monnerat and C. Amorim. D1HT: A Distributed One Hop Hash Table. In Proc of the 20th
IEEE Intl Parallel & Distributed Processing Symposium (IPDPS), April 2006. 7.7 Variable
Hop Overlays.

42 John F. Buford and Heather Yu

79. J. Li, J. Stribling, R. Morris, and M. F. Kaashoek. Bandwidth-efficient Management of DHT
Routing Tables, NSDI 2005.

80. A. Brown, M. Kolberg, and J. Buford. Chameleon: An adaptable 2-tier variable hop overlay.
IEEE CCNC 2009, Jan. 2009.

81. A. Brown, J. Buford, and M. Kolberg. Tork: A Variable-Hop Overlay for Heterogeneous
Networks. Fourth Workshop on Mobile Peer-to-Peer 2007. March 2007.

Hierarchical and Federated Overlays

82. M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron. One ring to rule them all: ser-
vice discovery and binding in structured peer-to-peer overlay networks, Proc. of the 10th
workshop on ACM SIGOPS European workshop: beyond the PC, July 01-01, 2002, Saint-
Emilion, France.

83. L. Garces-Erce, K.W. Ross, E. Biersack, P. Felber, and G. Urvoy-Keller. TOPLUS: Topology
Centric Lookup Service, Fifth International Workshop on Networked Group Communica-
tions (NGC’03), Munich, September 2003.

84. Z. Xu, R. Min, and Y. Hu. HIERAS: a DHT based hierarchical P2P routing algorithm, Inter-
national Conference on Parallel Processing (ICPP’03), Kaohsiung, Taiwan, 2003.

85. M. Artigas , P. Lopez , J. Ahullo, and A. Skarmeta. Cyclone: A Novel Design Schema for
Hierarchical DHTs, Proc. of the Fifth IEEE International Conference on Peer-to-Peer Com-
puting, p.49–56, August 31-September 02, 2005.

86. Q. Lian, Z. Zhang, S. Wu, and B. Zhao. Z-Ring: Fast Prefix Routing via a Low Maintenance
Membership Protocol. In Proceedings of the 13th IEEE international Conference on Network
Protocols (Icnp’05) – Volume 00 (November 06 - 09, 2005). ICNP. IEEE Computer Society,
Washington, DC, 132–146.

87. P. Ganesan, K. Gummadi, and H. Garcia-Molina. Canon in G Major: Designing DHTs with
Hierarchical Structure, IEEE International Conference on Distributed Computing Systems
(ICDCS 2004), Tokyo, Japan, pp. 263–272, 2004.

88. M. Freedman and D. Mazières. Sloppy Hashing and Self-Organizing Clusters. Proc. 2nd Intl.
Workshop on Peer-to-Peer Systems (IPTPS ’03) Berkeley, CA, February 2003.

89. D. Braun, J. Buford, et al. UP2P: A Peer-to-Peer, Overlay Architecture for Ubiquitous Com-
munications and Networking. IEEE Communications Magazine. 12/2008.

Service Overlays

90. D. G. Andersen, H. Balakrishnan, M. F. Kaashoek, and R. Morris. Resilient overlay networks.
Proc. 18th ACM Symposium on Operating Systems Principles (SOSP) (Banff, Canada, Oct.
2001), pp. 131–145.

91. D. Andersen, A. Snoeren, and H. Balakrishnan. Best-path vs. multi-path overlay routing.
Proceedings of the 3rd ACM SIGCOMM conference on Internet measurement (IMC’03),
2003.

92. S. Qazi and T. Moors. Scalable Resilient Overlay Networks Using Destination-Guided De-
touring. Proc. IEEE International Conference on Communications (ICC), Jun. 2007.

93. Y. Zhu, C. Dovrolis, and M. Ammar. Proactive and reactive bandwidth driven overlay rout-
ing: A simulation study. Computer Networks, 50(6), April 2006, 742–762.

94. S.-J. Lee, S. Banerjee, P. Sharma, P. Yalagandula, and S. Basu. Bandwidth-Aware Routing in
Overlay Networks IEEE INFOCOM 2008. The 27th Conference on Computer Communica-
tions 13–18 April 2008, p. 1732–1740.

95. R. Cox, A. Muthitacharoen, and R. Morris. Serving DNS Using a Peer-to-Peer Lookup Ser-
vice. In Revised Papers From the First international Workshop on Peer-To-Peer Systems

Peer-to-Peer Networking and Applications: Synopsis and Research Directions 43

(March 07 – 08, 2002). P. Druschel, M. F. Kaashoek, and A. I. Rowstron, Eds. Lecture Notes
In Computer Science, vol. 2429. Springer-Verlag, London, 155–165.

96. J. Jung, E. Sit, H. Balakrishnan, and R. Morris. DNS performance and the effectiveness of
caching. Proceedings of the ACM SIGCOMM Internet Measurement Workshop ’01, San
Francisco, California, November 2001.

97. V. Pappas, D. Massey, A. Terzis, L. Zhang. A Comparative Study of Current DNS with DHT-
Based Alternatives. IEEE INFOCOM 2006, April 2006.

98. V. Ramasubramanian and E. Sirer. The design and implementation of a next generation name
service for the internet. In Proceedings of the 2004 Conference on Applications, Technolo-
gies, Architectures, and Protocols For Computer Communications (Portland, Oregon, USA,
August 30 – September 03, 2004). SIGCOMM ’04. ACM, New York, NY, 331–342.

Sensor Overlays

99. PIAX. piax.org

Churn and Overlay Maintenance

100. D. Stutzbach and R. Rejaie. Understanding churn in peer-to-peer networks. In Proceedings
of the 6th ACM SIGCOMM Conference on Internet Measurement Conference 2006 (IMC
2006), October 25–27, 2006.

101. S. Guha, N. Daswani, and R. Jain. An experimental study of the Skype peer-to-peer VoIP
system, 5th Annual International Workshop on Peer-to-Peer Systems (IPTPS’06), 2006.

102. P. Kersch, R. Szabo, L. Cheng, K. Jean, and A. Galis. Stochastic maintenance of overlays
in structured P2P systems. Elsevier Journal of Computer Communications, Special Issue:
Disruptive networking with peer-to-peer systems, 31(3), 25 Feb. 2008, 603–619.

103. D. Wu, Y. Tian, K.-W. Ng and A. Datta. Stochastic analysis of the interplay between object
maintenance and churn. Elsevier Journal of Computer Communications, 31(3), Feb. 2008.

Mobile P2P

104. A. MacQuire, A. Brampton, I. Rai and L. Mathy. Performance Analysis of Stealth DHT
with Mobile Nodes. In Proceedings of the 4th IEEE International Conference on Pervasive
Computing and Communications Workshops (PERCOMW 2006), March 2006.

105. H.-C. Hsiao and C.-T. King. Bristle: A Mobile Structured Peer-to-Peer Architecture. Interna-
tional Parallel and Distributed Processing Symposium (IPDPS’03), 2003. 7.13 Overlays for
MANETs.

106. O. Landsiedel, S. Götz, and K. Wehrle. Towards Scalable Mobility in Distributed Hash
Tables. Sixth International IEEE Conference on Peer-to-Peer-Computing, Cambridge, UK,
August / September 2006.

107. H. Pucha, S. Das, and Y. C. Hu. Ekta: An Efficient DHT Substrate for Distributed Applica-
tions in Mobile Ad Hoc Networks. Proc. 6th IEEE Workshop on Mobile Computing Systems
and Applications (WMCSA), 2004, pp. 163–173.

108. I. Gruber, R. Schollmeier, and W. Kellerer. Performance evaluation of the mobile peer-to-
peer service. Proceedings IEEE CCGrid 2004, 2004, pp. 363–371.

109. M. Conti, E. Gregori, and G. Turi. A crosslayer optimization of gnutella for mobile ad hoc
networks. Proc. of the 6th ACM international symposium on Mobile ad hoc networking and
computing (MobiHoc05), pp. 343–354, Urbana-Champaign, IL, USA, 2005. ACM Press.

44 John F. Buford and Heather Yu

110. T. Zahn and J. Schiller. Designing Structured Peer-to-Peer Overlays as a Platform for Dis-
tributed Network Applications in Mobile Ad Hoc Networks. Compute Communications,
31(2), 5 February 2008, 643–654.

111. B. Tang, Z. Zhou, A. Kashyap, and T. Chiueh. An Integrated Approach for P2P File Shar-
ing on Multi-hopWireless Networks. In Proc. of the IEEE Int. Conf. on Wireless and Mo-
bile Computing, Networking and Communication (WIMOB’05), Montreal (Canada), Au-
gust 2005.

112. A. Klemm, C. Lindemann, and O. Waldhorst. A special-purpose peer-to-peer file sharing
system for mobile ad hoc networks. Proceeding Workshop on Mobile Ad Hoc Networking
and Computing (MADNET 2003), 2003, 41–49

113. C. Cramer and T. Fuhrmann. ISPRP: A Message-Efficient Protocol for Initializing Structured
P2P Networks. Proc. 24th IEEE International Performance, Computing, and Communica-
tions Conference (IPCCC 2005), 2005, pp. 365–370.

114. H. Pucha, S. M. Das, and Y. C. Hu. Imposed Route Reuse in Ad Hoc Network Routing
Protocols Using Structured Peer-to-Peer Overlay Routing. IEEE Transactions on Parallel
Distributed Systems, 17(12), Dec. 2006, 1452–1467. 7.14 Variable Hop Overlays

115. J. Li, J. Stribling, R. Morris, and M. F. Kaashoek. Bandwidth-efficient management of DHT
routing tables. In the Proceedings of the 2nd USENIX Symposium on Networked Systems
Design and Implementation (NSDI ’05), Boston, MA, 2005.

116. A. Brown, J. Buford, and M. Kolberg. Tork: A Variable-Hop Overlay for Heterogeneous
Networks. Fourth Workshop on Mobile Peer-to-Peer 2007. March 2007.

117. A. Brown, M. Kolberg, and J. Buford. An Adaptable Service Overlay for Wide-Area Network
Service Discovery. IEEE Globecom 2007 Workshop – Enabling the Future Service-Oriented
Internet. Nov. 2007.

118. A. Brown, M. Kolberg, and J. Buford. Chameleon: An adaptable 2-tier variable hop overlay.
IEEE CCNC 2009, Jan. 2009.

119. J. Buford. Mobile P2P after Five Years – Where are we and where are we headed? (Con-
tributed Talk) Fifth IEEE Workshop on Mobile Peer-to-Peer. March 2008.

Content Access and Delivery

120. K. Yang and J. Ho, Proof: A DHT-Based Peer-to-Peer Search Engine, In Proceedings the
IEEE International Conference on Web Intelligence, 2006, Hong Kong: IEEE Computer So-
ciety, p. 702–708.

121. B. Yang and H. Garcia-Molina. Efficient search in peer-to-peer networks, in Proceedings the
22nd International Conference on Distributed Computing, 2002.

122. V. Kalogeraki, D. Gunopulos, and D. Zeinalipour-yazti. A local search mechanism for peer-
to-peer networks, in Proceedings of the Eleventh ACM Conference on Information and
Knowledge Management, 2002.

123. G. Gupta, D. Agrawal, and A. E. Abbadi. “Approximate range selection queries in peer-to-
peer systems,” in Proceedings of the First Biennial Conference on Innovative Data Systems
Research, Asilomar CA, USA, 2003.

124. C. Zhang, A. Krishnamurthy, and R. Y. Wang. “SkipIndex: Towards a Scalable Peer-to-Peer
Index Service for High Dimensional Data.” Available at http://www.cs.princeton.edu/
chizhang/skipindex.pdf

125. M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron, and A. Singh. “Split-
stream: Highbandwidth multicast in cooperative environments,” in Proceedings, the 20th
ACM Symp. on Operating Sys. Principles (SOSP 2003), Oct. 2003.

126. H. Yu and J. Buford. Peer-to-peer overlay multicast, Book Chapter, in Encyclopedia of
Wireless and Mobile Communications, Auerbach Publications, Florida, USA, to appear
November, 2007.

Peer-to-Peer Networking and Applications: Synopsis and Research Directions 45

127. S. Banerjee, B. Bhattacharjee, and C. Kommareddy. Scalable application layer multicast, in
Proceedings, ACM SIGCOMM2002, September 2002.

Security

128. Web Application Security Consortium, Web Application Security Consortium: Threat Clas-
sification, Version 1.00, 2004. Available at http://www.webappsec.org/projects/threat/

129. S. Hansman and R. Hunt. A taxonomy of network and computer attacks, Computers &
Security, 24(1), 2005, 31–43.

130. A. Simmonds, P. Sandilands, and L. van Ekert. An ontology for network security attacks,
International Journal of Information Security and Privacy, 1(4), 2007, 1–23.

131. D. Wallach. A survey of peer-to-peer security issues, in Proceedings, International Sympo-
sium on Software Security - Theories and Systems, Tokyo, Japan, November 2002, p.42–57.

132. M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. S. Wallach. Secure routing for
structured peer-to-peer overlay networks, in Proceedings of 5th Symp. on Operating Sys.
Design and Impl., Boston, MA, December 2002, 299–314.

133. J. Mirkovic and P. Reiher. A taxonomy of DDoS attack and DDoS defense mechanisms,
Computer Communications Review, 34(2), April 2004.

134. N. Naoumov and K. Ross. Exploiting P2P systems for DDoS attacks, in Proceedings of the
1st international conference on Scalable information systems, Hong Kong, 2006.

135. E. Adar and B. Huberman, Free riding on Gnutella, FirstMonday, 2000.

Surveys

136. S. Androutsellis-Theotokis and D. Spinellis. A Survey of Content Distribution Technologies.
ACM Computing Surveys, 36(4), December 2004.

137. E. K. Lua, J. Crowcroft, M. Pias, R. Sharma, S. Lim. A Survey and Comparison of Peer-
to-Peer Overlay Network Schemes. IEEE Communications Surveys and Tutorials, Second
Quarter, 7(2), 2005.

138. J. Risson and T. Moors. Survey of research towards robust peer-to-peer networks: search
methods. Computer Networks, 50(17), Dec. 2006, 3485–3521.

139. S. El-Ansary, S. Haridi. An Overview of Structured P2P Overlay Networks. Handbook on
Theoretical and Algorithmic Aspects of Sensor, Ad Hoc Wireless, and Peer-to-Peer Networks
(ed. J. Wu). Auerbach Publications, 2006, 665–683.

140. R. Steinmetz and K. Wehrle (Eds.). Peer-to-Peer Systems and Applications. Lecture Notes in
Computer Science 3485 Springer 2005.

The Social Impact of P2P Systems

Andrea Glorioso, Ugo Pagallo, and Giancarlo Ruffo

Abstract The chapter deals with the social impact of P2P systems in light of a
bidirectional connection by which technological developments influence, in a com-
plex and often unpredictable way, the social environment whereas the dynamic evo-
lution of the latter does affect technological progress. From this perspective, the aim
is to deepen legal issues, sociological trends, economical aspects, and political di-
mensions of P2P technology, along with some of its next possible outputs, in order
to assess one of the most compelling alternatives to the traditional frame of highly
centralized human interaction.

1 Introduction

Although known to computer scientists and networking professionals for decades,
peer-to-peer (P2P) systems only became widely popular in the late 1990s with the
Napster case and, then, with the U.S. Court’s decision in MGM v. Grokster in 2005.
These developments, of course, affected legal scholars, who have paid increasing
attention to P2P systems in recent years. However, their impact goes beyond the law
and also raises issues of relevance for economics, sociology, and political science.
This is particularly true if we understand P2P systems not only as simple “sharing

Andrea Glorioso
Any opinion expressed by A. Glorioso in this article is the sole responsibility of the author and
does not necessarily represent the views of any organisation he has worked or is working with.
e-mail: andrea@digitalpolicy.it

Ugo Pagallo
Department of Law, University of Torino, Via Sant’Ottavio, 54, Torino, Italy,
e-mail: ugo.pagallo@unito.it

Giancarlo Ruffo
Department of Computer Science, University of Torino, Corso Svizzera, 185, Torino, Italy,
e-mail: giancarlo.ruffo@unito.it

X. Shen et al. (eds.), Handbook of Peer-to-Peer Networking, 47
DOI 10.1007/978-0-387-09751-0 2, © Springer Science+Business Media, LLC 2010

48 Andrea Glorioso, Ugo Pagallo, and Giancarlo Ruffo

networks”, but also, at a more abstract level, as massively distributed platforms for
information storage and retrieval.

Therefore, the aim of the chapter is to highlight, in a necessarily non-exhaustive
manner, the main research developments in the above-mentioned fields. We suggest
that there is a clear bidirectional connection between the technological features of
P2P systems and their various social effects. Technological developments influence,
in a complex and often unpredictable way, the social environment (i.e., economics,
sociology, politics, and law) whereas a dynamic situation in a given social envi-
ronment also shapes the way in which technological evolution proceeds, favoring
certain architectural choices over others. In short, each affects or gives feedback to
the other in a continuous cycle. For example, a strongly decentralized and encrypted
P2P architecture providing plausible anonymity for its participants will have differ-
ent social ramifications and effects than those flowing from a weakly decentralized
system in which the origin and destination of information can be traced with rela-
tive ease. At the same time, the technological developments that make one system
rather than another possible will also be affected by the social environment, that is
legal frameworks, economic decisions (including public funding), political orienta-
tions, and the sociological and cultural perceptions found in the society where the
technological research is taking place and its results are diffused.

These inter-related developments are examined in five sections, each of which
focuses on a specific field, namely legal issues (Section 2), sociological trends
(Section 3), economic analyses (Section 4), political dimensions (Section 5), and,
last but not least, some new horizons and perspectives that our society will be forced
to cope with in the future (Section 6).

Of course, this overview does not purport to exhaustively discuss all the possible
influences of P2P systems over the fields of human action, nor all the ways in which
the complex composition of such different elements as law, economics, politics,
sociology, and culture, tends to encourage, steer or limit the rate of development
of certain P2P architectures over others (or, if one is pessimistic, the development
of P2P architectures altogether, as opposed to centralized, one-way communication
systems [67]).

Rather, our attempt should be taken for what it is: a humble, but hopefully stimu-
lating, contribution to a better understanding of P2P systems as technological prod-
ucts that cannot actually exist in a vacuum, but in a complex environment with its
own set of rules, constraints and possibilities.

2 Legal Issues

Among the most traumatic impacts of P2P systems on the legal field since the late
1990s, copyright issues have undoubtedly taken the forefront for a while. Technol-
ogy has in fact changed societal behaviors of copying, distributing and, in gen-
eral, handling information and information-based goods and services, according
to a transformation that has deeply influenced legislative initiatives and scholarly

The Social Impact of P2P Systems 49

discussions on the topic. Digital copyright is mostly a matter of access and con-
trol over information in electronic environments, so that legislators and courts have
been obliged to rethink the traditional relationship between creators, producers, and
consumers of informational goods. For instance, the U.S. Congress approved both
the Digital Millennium Copyright Act (DMCA) [39] and the so called Sonny Bono
Act in 1998 [37]; three years later, the European Parliament and the Council enacted
the directive on “copyright and related rights in the information society” [36]. Then,
in the U.S., the Congress passed the Consumer Broadband and Digital Television
Promotion Act (2002), the Family Entertainment Copyright Act (2005), and the Net
Neutrality Bill (2006), while, in Europe, the IPRED saga has been ruling: the first
directive on the enforcement of intellectual propriety rights is from 2004 (n. 48),
and later the European Parliament supported a new version (IPRED-2) on April 25,
2007.

Courts have been very active, too: the first important decision on copyright and
P2P systems was in July 2000, when the U.S. District Judge Marilyn Patel granted
the Recording Industry Association of America (RIAA)’s request to stop making
copyrighted recordings available for download thanks to the Napster services. Even
if the San Mateo company did not store any information such as the recordings on
its own computers, it was considered against the law to provide the information of
the songs available on the computers of the community logged on [39]. It is not
enough, in other words, to affirm that the DMCA grants immunity to ISP providers
for what their customers do, because this kind of protection does not include “con-
tributory infringers” (as the District Court of Appeals determined in its own decision
on Napster, in February 2001).

Four years later, it was the turn of the U.S. Supreme Court in MGM v. Grokster
to consider P2P systems, such as Streamcast or Grokster, as a form of technol-
ogy promoting the “ease of infringing on copyrights,” so that its producers “can
be sued for inducing copyright infringement committed by their users.” Notwith-
standing this unanimous holding by the Court, the legal consequences on further
developments of P2P technology remained unclear. The Supreme Court justices
were indeed divided in their arguments, between the need to protect every tech-
nology “capable of substantial non infringing uses” as they declared in Sony v. Uni-
versal City Studios from 1984, and the necessity to provide remedies against new
ways of copyright infringement. So far, in the U.S., the problem is to determine
whether software is creating “shared files folders” to make “available for distribu-
tion” that very information protected by copyright that would be shared via those
folders [40].

In Elektra v. Barker, (see [33]), for example, Judge Kenneth Karas from the
Manhattan federal court rejected the RIAA’s “making available” theory in January
2008, even if he admitted the sufficiency of the allegations of “downloading” and
“distributing”, giving accordingly RIAA an opportunity to reformulate pleadings.
Whereas Karas’ idea is to represent the issue with the legal hypothesis of “offering
to distribute for purposes of redistribution,” it seems more fruitful to remark that the
suit, in Elektra v. Baker, was based upon a report of an Internet investigator who
claimed to have detected the “illegal files folder” we presented above.

50 Andrea Glorioso, Ugo Pagallo, and Giancarlo Ruffo

In fact, the process of investigating alleged copyright infringements by P2P net-
works raises another central legal issue besides copyright, that is privacy. In the
quest for new tools to help their fight against illegal file sharing, both the movie and
music industry have posed serious dilemmas to Internet users, as it occurred some
years ago with a highly controversial decision involving an American ISP, Verizon,
and, again, the RIAA. The reason is that “the privacy of Internet users participat-
ing in P2P file-sharing practices is threatened under certain interpretations of the
DMCA [as] a new form of panoptic surveillance that can be carried out by organi-
zations such as the RIAA.” [26]

Again, this privacy deadlock took place in summer 2007, when the Motion
Picture Association of America (MPAA) asked and, according to federal judge
Florence-Marie Cooper, it should have obtained the IP addresses of those connect-
ing to TorrentSpy files via their service in the U.S. Forced to enable server logging
against its own privacy policy, it is noteworthy, however, the different conclusion
of the case: TorrentSpy, which servers are physically located in the Netherlands,
announced its decision to stop doing business in the U.S. on August 27, 2007.

Despite the general tendency to reach harmonization in copyright law, there is in-
deed a clear difference of approach to P2P-related privacy issues between the U.S.
and the European Union [49]. If a property standpoint prevails in the former legal
system, privacy is widely considered as a fundamental right in the latter, as pro-
claimed by both the European Convention from 1950 and the EU Charter of Nice
in 2000, let aside the specific constitutional traditions of each Member State. Con-
ceived as a matter of protection, access and control over personal data, the traditional
concept of privacy as the “right to be let alone” has evolved due to the same techno-
logical revolution that has conducted from traditional copyright to digital copyright.
Thus, digital privacy has become one of the most relevant legal issues debated in
recent cases, insofar as, at least in Europe, access and control over information al-
legedly reserved to copyright holders must respect P2P users’ personal data.

For example, this is what took place in Italy in 2007 with the so-called “Pepper-
mint” case. Although the legal reasoning of the court is rather complex [11–13] it is
possible to summarize some key elements of its decisions in order to show the cen-
tral role played by data protection laws. The facts are technically (but not legally)
simple. A German record company (Peppermint Jam Records GmbH) suspected a
large number of Italian users were downloading, without proper authorization, mu-
sic from its catalogue via P2P networks. Hence, the copyright holder commissioned
a Swiss company (Logistep AG) to monitor the activities of all the computers con-
nected to those P2P networks. Logistep used a “crawler” which was able to connect
to any P2P network as a normal client; but rather than simply exchanging digital files
with other clients, Logistep’s program recorded in its database additional data – in-
cluding the IP addresses as well as date and time of the connection – of all the users
who were sharing a file. Consequently, we have a twofold problem.

First, it is not entirely clear whether Logistep has been monitoring only users who
were uploading (or rather, making available) Peppermint’s songs on the Internet, or
whether it was checking those who were downloading as well.

The Social Impact of P2P Systems 51

Secondly, it is likely that the database created by Logistep was, and still is, hosted
in Switzerland, which raises a set of major legal issues insofar as the data “travelled”
outside Italy and, so, outside the European Union.

In any case, the story went on partially as in the aforementioned TorrentSpy case.
The plaintiff had indeed required before a section of the Tribunal in Rome to get
from the Internet Service Providers responsible for collecting the IP addresses, the
identity of the subscriber(s) using a specific IP address at a particular time and date.
The tribunal of Rome accepted the request twice, therefore forcing the relevant ISPs
to disclose such identities. So that, in spring 2007, a Bozen law firm representing
Peppermint could send to every of the 3000 identified subscribers a “personalized”
letter in which it was required a sum of EUR 330 for settling the case as a “partial
compensation for damages, legal and technical expenses.”

Nevertheless, a subsequent decision by another section of the same Court changed
the whole picture on June 16, 2007. In a nutshell, the court affirmed that claims of
the plaintiff, i.e., of the copyright owner of the songs being exchanged on P2P net-
works, should be duly balanced against the rights of P2P users, namely by protect-
ing personal data as a fundamental right. Again, legal technicalities of the court’s
reasoning remain complex as they involve an analysis of the legislation on data pro-
tection, copyright and telecommunications, both at the Italian and European Union
levels, along with various considerations on procedural safeguards which were not
respected by allowing a private company to perform what amounts to be a full-blown
police investigation. Still, the core element of this new decision seems evident: while
personal data protection has been recognized by the Italian Constitutional Court’s
jurisprudence as a fundamental right, it is not admissible to conceive copyright pro-
tection as a justification for extremely invasive monitoring techniques.

In order to confirm how data protection laws are extremely relevant when defin-
ing cases on P2P file sharing systems, let us finally recall a recent decision made
by the European Court of Justice in the “Promusicae” case (C-275/06) on January
29, 2008. In fact, the court was asked by a Spanish tribunal to clarify whether na-
tional law was compatible with the law of the European Union, because it did not
seem to oblige ISPs to disclose identities of their subscribers for alleged violations
of copyright law (as Promusicae, an association of Spanish music producers, was
claiming). Indeed, the Spanish court was not asking the European Court of Justice
to take a decision on the specific facts of the case, for it would simply have gone
beyond the ECJ jurisdiction. Rather, it demanded the correct interpretation of EU
law on this matter, pursuant to article 234 of the EC Treaty.

Put it shortly, the decision has been a double one: on one hand, it states that it
is not required for any legal system of EU Member States, such as Spain, to make
such disclosure compulsory. But, on the other hand, such a compulsory disclosure
would not be incompatible with the law of the European Union. As the European
Court of Justice affirmed, “when transposing those directives, the Member States
[must] take care to rely on an interpretation of them which allows a fair balance to
be struck between the various fundamental rights protected by the Community legal
order. Further, when implementing the measures transposing those directives, the

52 Andrea Glorioso, Ugo Pagallo, and Giancarlo Ruffo

authorities and courts of the Member States must not only interpret their national
law in a manner consistent with those directives but also make sure that they do not
rely on an interpretation of them which would be in conflict with those fundamental
rights or with the other general principles of Community law, such as the principle
of proportionality.”

So, the conclusion is that a delicate balance must be found here, insofar as
P2P systems do not only involve private claims about possible copyright infringe-
ments, but also privacy concerns about data protection in digital environments. If we
stressed how legal scholars still discuss, in the U.S., on the possibility to ascertain
whether P2Ps are a technology capable of substantial non infringing uses, it is thus
clear that, at least in Europe, such a copyright protection must go along with the fair
respect of P2P user’s personal data. A different constitutional approach to the in-
formational nature of human beings and their relationships in digital environments
leads in fact to a divergent way of understanding the most relevant legal issues cre-
ated by this technology. As a first striking example of that bidirectional connection
remarked since the introduction, the social impact of P2P systems involves different
legal outputs that shape the very evolution of this technology.

3 Sociological Aspects

The legal misadventures of Napster and its ruin in 2002 are a good standpoint to
introduce the sociological aspects of the analysis on P2P systems. Indeed, Napster
was a centralized P2P network with a number of servers keeping information on
the peers – namely, the files that each peer made available for distribution over the
Napster network which answered to clients’ searches for a particular file.

As we saw in the previous section, it was in fact this architecture to be considered
illegal by the Courts: The operators of the central server(s) used to index each peer’s
files so that they could have intervened to stop copyright infringements. Of course,
it can be questioned that the simple exchange of a file would automatically imply
copyright infringements, therefore ignoring all of the defenses afforded by “fair
use” and other similar doctrines. However, the point is to remark how the following
generation of P2P systems has moved toward a more massively distributed way of
sharing and exchanging information on the Internet.

Instead of a hierarchical network in which one central hub still represents its
vertex, the horizontal nature of post-Napster P2P systems makes it difficult to im-
pose centralized controls over the dissemination of information, reflecting, in some
ways, the original design for the Internet. Besides, this horizontal architecture cre-
ates wider opportunities, both in scope and quantity, for the production of infor-
mation on the Web. Yochai Benkler calls this process “commons-based peer pro-
duction” to define collaborative projects such as free software [8–10], while Michel
Bauwens proposes to interpret it as “the relational dynamic of distributed networks”
where hubs may exist but are not obligatory as it happens with the Internet [7].
From a sociological viewpoint, however, it is important to stress, first of all, that

The Social Impact of P2P Systems 53

several scientific papers have demonstrated the existence of so-called “small world”
networks at various levels of any P2P system.

This new research relies on and deepens previous sociological work by such
luminaries as Stanley Milgram [44] and Mark Granovetter [24, 25] on small world-
social networks, or Friedrich Hayek’s research [29] on spontaneous evolution of
social systems. In fact, as in Milgram’s “small world problem,” the degrees of sep-
aration between nodes are significantly reduced in P2P systems, so the diameter of
the network is quite shorter than that of a typical regular system. The reason was
anticipated by Granovetter’s seminal work on “the strength of weak ties,” insofar as
a small number of random links reduces exponentially the diameter of the network.
If you consider for example a regular network with twenty nodes, each of which
has four links, nodes would require an average of five steps in order to reach each
other. But, it is sufficient to randomly rewire three nodes to decrease the degree
of separation from five to three. This means that in a system of six billion people
as contemporary world can be represented, it is enough to have only two random
links out of ten thousand regular connections to determine the degree of separation
in the network as small as eight. When random links increase from two to three,
the degree of separation reduces from eight to five, i.e., something very close to
Milgram’s first approximation more than forty years ago!

This paradoxical property of small world-systems with clustering coefficients
higher than those of random networks, and diameters shorter than those of regular
ones, characterizes the spontaneous evolution of many complex networks. Let aside
biological corroborations, as in the case of the C-Elegans’ neural network studied
by Duncan Watts and Steven Strogatz in 1998 [62], this occurs with the Internet as
shown by Albert Làzslo Barabási in 2002 [6], or with both the jurisprudence and
the majority opinions of the U.S. Supreme Court analyzed by Seth Chandler [14],
James Fowler, and Sangick Jeon in 2005 [21], or, last but not least, with contempo-
rary research that has found significant evidence of spontaneous clustering of users
according to content that is distributed in P2P systems such as Gnutella or KaZaA
[46, 47].

Furthermore, this latter research on P2P systems proposes several methods that
can be used to detect the small world-phenomenon in various networks, including
“data-sharing graphs” as in [31] or “affinity networks” as in [54]. The reason why
lots of real complex social networks are spontaneously developing this way, can
thus be understood according to Hayek’s ideas on cosmos [29] with the dynamics
and evolution of spontaneous orders, for high clustering coefficients and short diam-
eters are the key parameters to understand how the distribution of the information is
optimized in complex social systems (see [45]).

Yet, we are still missing a fundamental point. In Barabási’s terms [6], real net-
works like the Web present a power law distribution that goes along with its char-
acteristic “long tail” of information. It is in fact a tiny fraction of nodes extremely
connected in the network, namely its hubs, that produces a peculiar scale-free effect
dubbed as the “rich gets richer”-phenomenon, or, in Barabási’s jargon, the “anti-
democratic” nature of the hubs. This way of distributing information in a network
has partly been confirmed by the aforementioned work on the U.S. Supreme Court

54 Andrea Glorioso, Ugo Pagallo, and Giancarlo Ruffo

jurisprudence, and on P2P systems as well. As the topological research of all the
papers published in the history of U.S. legal journals confirms, most of the articles
are scarcely consulted even by their authors, and only a very small percentage of
essays is massively quoted by scholars! So, as it occurs with the phenomenon of
globalization, the legitimacy of the hubs depends on the clustering coefficients of
the network. What P2P systems obtain, most of the times, spontaneously on the In-
ternet, is precisely what contemporary globalization lacks: shortening the diameter
of the network via its hubs does not mean you have got higher clustering coefficients
in the system [48].

However, some other scholars claim that proper P2P systems do not need any
“subcenter,” hub, or Super-peer, as it occurs with decentralized P2P networks, index
authorum, or the jurisprudence of the U.S. Supreme Court. The idea is that only the
relational dynamic that arises in distributed networks can properly be called “peer-
to-peer” (see [7] 2.1.A). This is not, of course, a simple matter of definition or of
fantasy, in a world with no “authoritative” nodes anymore. Rather, it is entwined
with the evolution of collective intelligence [41, 63], cognitive capitalism [16, 60],
and even netarchy [7].

So, after “spontaneous evolution” of P2P systems with their legal problems, be-
tween cosmos and taxis in Hayek’s phrasing, it is time to shed further light on such
a topic of classical philosophy via the economic analysis of P2P systems. The idea
is in fact to deepen both the impact of this technology in contemporary society and
the dynamic situation through which social environment shapes the way technology
evolves, insofar as it was just economics, after all, the first field in which Hayek de-
veloped his analysis on cosmos and taxis, namely on the very connection between
spontaneous orders and human planning.

4 Economic Trends

Let us start our economic section on P2P systems as we did with its legal issues,
that is by focusing, first of all, on copyright topics: in fact, the impact of recent
technology on society and economy can be introduced with current debate on DRM
(Digital Rights Management [42]) vs. DRM-free systems. In particular, some time
ago, Steve Jobs [32], in his public speech “Thoughts on Music,” criticized DRM
systems that Apple has been imposing in order to protect its music against piracy.
This approach brings however to a paradox: while DRM-protected digital music is
prevented from being played by devices of different producers, DRM-free content,
which uses open formats (e.g., MP3 for music and MPEG4 for movies), can con-
versely be downloaded, distributed, copied and played on different devices. This
diversity involves an implicit disincentive to legally buy copy-protected digital con-
tent, because only DRM-free files are mostly interoperable: after all, 97% of the
music filling iPods is unprotected and of unclear origins.

Jobs’ conclusions – echoing theses already expressed elsewhere [20] – are thus
surprising, inasmuch as they suggest both to abolish DRM systems and to sell music

The Social Impact of P2P Systems 55

encoded in open formats. Yet, even if the dream of a “DRM-free” world would
finally occur, there is no obvious reason to believe that copyright infringement, one
of the main reasons that has been alleged for the introduction of DRM systems,
would decrease as such. Rather, it is likely that future legal market-models will have
to consider serious, scalable, efficient, secure, and reliable alternatives to DRM-
based centralized on-line stores.

The P2P paradigm seems to provide a technologically mature framework for this
domain, possibly making digital content-sharing applications a valid solution even
for small vendors and emerging artists. In fact, small-medium actors in the market-
place could hardly afford production and maintenance costs that can be very high
when distribution is provided by means of a resilient Content Delivery Network
(CDN) architecture (as used, for example, by iTunes, Yahoo!, or Microsoft Media
Shop).

Furthermore, the combination of DRM technologies with centralized systems
might arise several problems. It suffices to stress the complicated procedures that
users of Yahoo! Music Store will have to go through just to get either a reimburse-
ment or a DRM-free copy of the songs they have purchased, due to the announced
(at the time of this writing) closing down of the service and specifically of the related
DRM servers [65]. While it is hard to say whether this represents either the failure of
DRM technology as implemented in the market or simply of Yahoo! Music Industry,
it urges to rethink both the media market and the role of P2P systems.

Despite their huge potentials, we already explained why P2P systems have be-
come infamous as file sharing applications that make particularly easy for users to
access copy-protected files for free. Indeed, it is very difficult to trace peers’ activ-
ity, and identification of abuses cannot be easily performed, given the absence of a
central authority. Moreover, a business model is hard to find. It is questionable who
should be involved as a provider in the transaction: should it be only the owner of a
given object or also other actors? In the same way, P2P distribution frameworks lead
to technical advantages, but their economical benefits are far from clear. Consider
the case of the purchaser who becomes distributor of that good later on: why should
he/she provide properly the content if the owner wants to be reimbursed?

Another general perspective opens up by considering that P2P networks offer the
ideal scenario to exploiting the Long Tail business [3, 4]. The reason is that they
promote a perfect infrastructure to sell a large number of unique items in relatively
small quantities. Up till now, it is well known that centralized architectures are ef-
ficient and dependable, when servers are replicated and content is fairly cached.
Therefore, even if CDNs are still expensive and hard to maintain, they are preferred
by (dominant) content providers for enabling a resilient market that can be eas-
ily controlled and managed. On the contrary, P2P systems are scalable in principle
and they can largely help providers reduce administrative costs, the problem being
to determine whether this technology is mature enough for a dependable, fair and
profitable market place infrastructure.

Besides, the economic and technological convenience of P2P systems seems
to depend on selfish or altruistic users’ behaviors (as illustrated by the notorious
free-riding phenomenon [1]). Of course, the introduction of some mechanisms that

56 Andrea Glorioso, Ugo Pagallo, and Giancarlo Ruffo

provide incentives (e.g., the BitTorrent’s tic-tac-toe strategy [15]) can stimulate co-
operative behavior between users in order to fight the negative outcomes of free-
riding, like degradation of the system performance, unpredictable availability of
resources, or, under the most unfavorable circumstances, the complete collapse of
the system. But, again, it is far from clear how a P2P based-economic model could
be certain to prevent all of these flaws.

In any case, when discussing on the economic role of P2P systems in the real
world, we need to keep in mind that the entire product’s value-chain has really been
upset. This is the main reason why “P2P economics” is a very active field nowadays,
with many attempts to define the human interaction which occurs in the digital en-
vironment, according to the theory of informational goods, the Internet distribution
chain with its variable and marginal costs of production and distribution, along with
network externalities [55], cognitive capitalism, and the very value of the “network
information economy” [10]. Some scholars [7] have even claimed that their work
on P2P systems shows that a new paradigm is emerging, thanks to the superiority of
the “free software/open sources” model as key of a new P2P economics.

Within this context, let us grasp here some peculiarities of the P2P business
model by focusing on roles and interactions identified in [30], and referring to the
Oslo’s tutorial on “Peer-to-Peer Market Places” [53]. Although different applica-
tion/service styles can be taken into account for a generic discussion, for the sake of
simplicity (and also for the relevance of the topic) we will focus mainly on digital
content-sharing and distribution.

First of all, we need to compare the digital domain with the traditional value-
chain of a media object (e.g., a movie, or a music album) that is characterized by
five distinct services or phases: authoring, production, distribution, delivery, and
consumption. Authoring is related to the creation of the artifact, and may include
a pre-production phase, for example with the preparation of a demo tape to be pre-
sented to a content producer. Production starts with a contract between the content
author and a business organization, like a record company, adding a relevant value to
the object. In this phase, the artifact is usually refined by a team of professionals, and
finally copied on a given physical support, like an audio CD. The record company
starts the distribution of produced objects, according to a given marketing strategy.
Physical objects are shipped all around the country (and, sometimes, the world),
increasing the cost of the artifact by means of transportation service-suppliers that
would be using airplanes, trains, and so on. All the objects are delivered to the dis-
tributed network of malls and shopping centers that provide the final link to the
customers, fixing the ultimate price for each single object. Finally, the client con-
sumes the product, ideally closing the chain by paying a fee that covers all of the
costs augmented after every step of the cycle.

Digital technology literally disrupts this value-chain. In fact, distribution and de-
livery collapse in one single service that is provided by a fully integrated information
system implemented by means of complex server architecture, such as a CDN. This
is the case of popular on-line stores, like iTune or Amazon that connect customers
and content owners more rapidly through the Internet. In order to understand roles
and interactions between market’s actors, we report in Fig. 1 the model presented
in [30].

The Social Impact of P2P Systems 57

Fig. 1 Roles and interactions

The main problem with P2P markets is that peers in the network can inter-
change all these roles. Quite trivially, a receiver can become a provider of a pre-
viously retrieved digital content in further interactions, due to the servent (both
client and server) nature of a node. Nevertheless, in principle every user can ac-
cess the P2P system to insert a digital object, and as a consequence the owner
of the object can have the role of a provider, with or without third parties me-
diating between the authors and the market. Finally, a mediating service, such as
a search engine, can be executed on a central server (e.g., Napster’s search di-
rectory), or a decentralized one by using flooding strategies or other scalable and
more sophisticated models (e.g., Gnutella [23], Kademlia [43], and so on). Hence,
P2P disrupts the remaining traditional aspects that still survive in centralized dig-
ital market: distribution and delivery are provided by whomever manages the on
line store, by subscribing a contract with the technology provider (e.g., Akamai
for CDN infrastructures). If P2P is used instead, both services rely on contribution
of the users, who may advocate their rights as authors, consumers, providers, and
distributors.

From both an economic and a technological point of view, mediators are still
necessary. Of course, production is a complicated process, and an artwork may
sometimes be professionally arranged or refined. But if a revenue model is to be
planned, other trusted third parties should be considered in the overall process, such
as a bank, a credit card company, a payment broker when financial transactions may
occur, or, finally, a certification authority when authenticated communications are
needed.

In particular, users need a platform that has to be implemented and updated.
Above all, they need a community where it is possible to exchange information,
receive feedbacks, suggestions, comments, and so on. Such a community can also
provide other mediating services, like a search engine or a financial broker (e.g.,
PayPal). Whereas we noted in Section 3 how often P2P systems spontaneously
evolve in small world ways, it must be added that such a community may also plan a

58 Andrea Glorioso, Ugo Pagallo, and Giancarlo Ruffo

peculiar revenue model that can include membership or submission fees for sharing
content, as well as mechanisms for enabling receivers to pay providers and/or medi-
ators. However, all of these solutions may legally be problematic, because the legal
owner is not (always) identical with the provider, let aside the hypotheses on who
is responsible for the community to pay license fees, or to undersign an agreement
with owners.

In conclusion, new mediators can release an open platform, represent the com-
munity, purchase licenses, digitalize content and insert items in the network (or
enabling the users to insert items by their own). But the following points must be
kept in mind, if the Grokster ’s lesson has been learned:

First, the revenue for owners must be clear.
Second, the profit should be shared with providers and/or mediators, if the commu-
nity owner wants to save both in terms of distribution and of delivery costs.
Finally, a dependable and scalable technical solution shall be adopted.

5 Political Aspects

The political dimensions of P2P systems play an obvious role in the further de-
velopment of this technology, both at economical and legal levels. However, it is
crucial, above all, to clarify what is meant by “political” in this context as well as
the interpretation that should be given to the very term of “P2P systems.”

Regarding the first point, we interpret the concept of “politics” rather broadly, in
order to cope with all the ways in which people make decisions to get certain goals.
This is certainly a wider definition than the one referred to the activities of civil
governments, and in a certain sense it tends to include what is currently understood
under the conceptual framework of “governance” [5].

Concerning the second point, we should distinguish between “P2P systems” as
“technological systems” (according to the meaning which is usually given in en-
gineering circles) and “P2P systems” as a metaphor for supposedly new emerging
forms of human organization and participation [7, 10]. Although this latter interpre-
tation is intellectually fascinating, it deserves a more thorough discussion than the
one that can be offered here. Therefore, the focus will be on P2P as “technological
systems” in order to highlight their relevance for political activities (in the broader
sense specified above).

Indeed, the political role of “P2P systems” becomes a significant one as soon as
we couple the technical definition of P2P networks as massively distributed plat-
forms for information storage and retrieval, with a rather uncontroversial statement
in politics. Namely, control of information and, hence, the possibility to obtain such
information and to act upon it, are crucial issues for people making decisions to
achieve definite ends.

This very possibility of sharing growing amounts of information via P2P net-
works empowers individuals with the information they need in order to “do
politics”; such empowerment has a profoundly different nature as it regards
mono-directional media such as TV, radio or traditional printed press, which are

The Social Impact of P2P Systems 59

representatives of the “industrial information economy” [10]. In these one-to-many
systems, in fact, it is much easier for a limited number of people to act as informa-
tional gatekeepers, effectively deciding what information should be distributed.

It is not possible to analyze in detail how control over information influences the
sphere of political action. It is nonetheless rather intuitive that a large set of political
decisions and of decisions with political implications is taken on the basis of cer-
tain information being available – or, much more importantly, being unavailable – to
stakeholders concerned with the results of those decisions. Let aside particular well-
defined circumstances, usually when a major threat to the wellbeing of the members
of a political community is looming (as in time of war), modern democracies rest
on the assumption that the availability of information to all citizens is a basic pre-
condition for meaningful participation to decision-making processes and, therefore,
to political life in the widest implication of the word.

So, P2P systems should be understood according to their capability to facilitate
flow of information, particularly when such information is withheld by entities –
including, but not necessarily limited to, the State or related entities – which intend
to profit (economically or otherwise) from such control.

Obviously, it is not particularly useful to treat “P2P systems” as a single mono-
lith when assessing their relevance – positive or negative – for political action. As
we stressed in previous sections, it makes a real difference whether P2P systems
are strongly centralized (e.g., Napster) or decentralized (e.g., Gnutella, Pastry [51],
Kademlia [43]). In the same way, it is important to distinguish P2P systems which
allow anonymous communications (e.g., Freenet [38] or Publius [61]); plausible
deniability (e.g., Publius [61]); confidential communications, and so on.

For example, the presence of single points of failure in a centralized P2P system
explains why it is likely that these networks suffer from disruption to their relevant
information-sharing functions more easily than decentralized systems. This might
happen when such a network is used by its participants to share information that
is regarded by others as politically sensitive and/or damaging. The capability to
clearly identify and target a limited number of nodes, either via legal means (e.g.,
court injunctions) or through other, less legal, ways (e.g., denial of service attacks),
is obviously a strong advantage for the entity that considers such an information
as damaging. Vice versa, a decentralized P2P system helps counter this threat, but
it might render more difficult to clearly identify an authoritative source in sharing
information, which is an important element in political activities. Besides, it may
raise difficulties in coordinating such political relationships, notwithstanding the
fact that information technologies themselves might provide tools, such as filtering,
tagging and recommendation systems, for more effective coordination [10, 56].

Similar considerations can be applied to P2P systems that allow anonymous com-
munication, that is making extremely difficult for an entity to stop spreading of sen-
sitive information via identification and action upon the participants of the network.
Anonymous P2P systems make the sharing of information, and possible political
action based upon such a sharing, available (or less risky) even in those political
regimes that have developed extensive monitoring infrastructures [17]. Neverthe-
less, full anonymity might also encourage irresponsible acts (in the strict sense of
the word, i.e., acts whose responsible cannot be identified) or be used for criminal

60 Andrea Glorioso, Ugo Pagallo, and Giancarlo Ruffo

purposes. This hypothesis raises a lot of difficult questions, most of them related to
the possible use of technologies allowing anonymous communications to criminal
organizations. The usage of pseudonymous systems, such as OpenID (see on-line
documentation at http://openid.net) might be a feasible partial solution to this com-
plex challenge.

In the context of their usefulness for political action, the same debate would apply
when examining P2P systems that provide both plausible deniability and high de-
gree of confidentiality, usually by encrypting communication between peers. These
characteristics are, strictly speaking, very different from the capability of a system to
provide anonymity. In particular, the possibility to offer plausible deniability is very
important in those political environments where the mere usage of tools allowing
confidential communication might create serious issues to their participants. By the
way, this is becoming familiar even in democratic regimes under the fallacious as-
sumption that those who have “nothing to hide” will not want confidentiality in their
communications [58] . In any case, it is hard to draw a precise line between the ne-
cessity of providing a venue for political information-sharing activities in countries
where the surveillance of citizens is routine, and the possibility that such systems
protect or even encourage criminal activities [18].

Another point that must be clearly stressed is that sharing information in a
more efficient and/or effective way does not necessarily mean any action based
upon that information would be taken. P2P systems can, as mentioned above,
help lowering the transaction costs of group coordination, by easing the shar-
ing of the specific information which is necessary, whether directly or indirectly,
for such coordination [10, 56]. However, there are many other factors that play
a role in facilitating or inhibiting political activities: let us mention here three of
them.

First, the very distributed nature of P2P systems can represent a formidable ob-
stacle to the information sharing which turns into real action. Indeed, geographical
distances between persons who might share a common goal, are not, up to today, re-
flected in the topology of P2P systems (although, there are proposals of P2P systems
that organize their topology on the basis of geographical proximity [34, 66]).

Secondly, the sheer amount of information to be transferred in P2P systems can
turn into an obstacle to practical action, insofar as human peers may suffer from
information overloading [57].

Finally, there is another possible problem that, to be fair, is not necessarily pecu-
liar to P2P systems, but generally to decision-making processes in large or weakly
connected social groups (which characterize some, but not all of, P2P systems.) In
a nutshell, the suspicion is that participants will tend to coalesce around positions
which are not necessarily the best ones, but rather the most widely accepted and/or
least controversial ones [35].

The actual relevance of these issues is still widely debated, one central point of
discussion being that P2P networks should not be compared to an utopian picture
of both information sharing and political action, but rather to the current framework
of highly centralized mass-media environment [10, 56]. In this way it is clear what
remains to be assessed in terms of the political practices allowed by existing and
emerging P2P systems along with their social impact.

The Social Impact of P2P Systems 61

Indeed, it is not necessary to insist, once again, on the political significance of any
particular architecture, i.e., the bidirectional connection by which policy-making
processes constrain or stimulate certain kinds of P2P architectures over others (as
we saw in Sections 3 and 4), while digital architecture influences different kind of
political actions (as we mention in this section).

Rather, it is crucial to analyse whether and how far information sharing, which is
allowed by forthcoming P2P systems, actually turns into real action. Therefore, in
order to enrich that bidirectional connection with which we are dealing throughout
this chapter, a fruitful perspective is given by some technical details on the threefold
levels of P2P services that are the subject of the next section.

6 Turning Forthcoming P2P Systems into Reality

The aim of this section is to let the P2P paradigm suit (some of) the legal, social, eco-
nomic, and political issues underlined in previous parts of the chapter. We partially
refer to the P2P Service Model defined in the Service Oriented Peer-to-Peer Service
(SOPPS) [22], which comes from the Market Management of Peer-to-Peer Services
(MMAPPS) European research project. In such scenario, the Service Model outlines
the different types of services a peer can offer to other peers as well as the interfaces
through which they can be accessed.

In particular, we present the service model introduced in [52] which shows a
structure that can logically be divided in three different levels, that we present in a
bottom-up order: (1) the Overlay Level, (2) the Accounting Level, and (3) the Mar-
ket Level. These modules give different services to other modules, and even if we
can think of them, at this present degree of abstraction, as a pile of protocols, ap-
plications can use functions and operations offered at different levels. Each module
is defined in terms of the functions they export to the other parts of the framework
(see Fig. 2):

Fig. 2 Logical layers of a P2P
service model

62 Andrea Glorioso, Ugo Pagallo, and Giancarlo Ruffo

6.1 Overlay Level

The overlay network can be unstructured (e.g., Gnutella, Kazaa, and so on) or struc-
tured (e.g., Pastry [51], Chord [59] and Kademlia [43]). Scalable overlays are con-
sidered more scalable than the others. Very roughly, structured overlays are defined
in terms of a topology (i.e., a forest, a ring, and so on), a routing mechanism, and
an identifier space, which is used to uniquely locate nodes and resources in the net-
work. The key idea of a Distributed Hash Table (DHT) system is that each node N is
responsible for a set of resources whose identifiers are “closer” to N’s identifier than
to the others; in fact, a distance metric is defined for each different system. Usually,
a distributed storage service is defined over this basic layer. It is possible to insert
a new resource in the network that will be assigned to the node of responsibility.
Hence, given a generic node N and a resource R, respectively identified by idN and
idR, the overlay layer should be able to export the following functions:

route(m, idN): it routes message m to node N;
search(idR): it looks for R, and returns a pointer to the node (or the set of nodes)

that is responsible (or that caches) the searched resource.
insert(R) and delete(R): these functions are used to store and to remove a given re-

source to a node. Some systems implement basic authentication mechanisms: for
example, only a node with given credentials can access or modify a resource from
the network (e.g., the Likir system defined on a Kademlia-like structure [2]).

The reader should observe that searches could be managed in a centralized (and
largely efficient) manner. Napster is an example; however, as reminded in Sections 2
and 4, it might be considered illegal to centralize the provisioning of a directory ser-
vice, even when the objects are stored on the computers of the community logged
on. No one can implement a technology that prevents every kind of misuses. But,
of course, a service provider (or a community owner) should avoid legal prosecu-
tion, through denying the accountability for other users’ actions. On the contrary,
decentralized searches in unstructured systems are not efficient (e.g., the flooding
search strategy in Gnutella) or transfer the potential legal liability of this type on
few super-peers (e.g., Kazaa-like policies). Additionally, a centralized system has a
single point of failure presenting technical as well as political drawbacks, as we have
shown in Section 5. This brings us to the first learned lesson that must be considered
during the implementation of the given P2P service model:

Lesson Learned No. 1 Structured overlays are to be preferred to unstructured P2P
systems in order to let the community owners and/or the developers decline their
responsibilities on users’ actions. Moreover, such a system is free of single points of
failure.

Another important issue is given by anonymity and confidentiality, that should
be granted as (optional) services to P2P users, as discussed in Section 5. It is critical
that the solution is given at a lower level of the technological platform, because
when using an overlay network, it is possible in principle to trace back to the content

The Social Impact of P2P Systems 63

source (i.e., the user or the node that inserted a given object) and/or to the content
provider (i.e., the user or the node that is storing/caching a given object). Secondly,
the node identifier should not be coupled with the real identity of the user, in order
to grant a given level of anonymity with the adoption of user generated pseudonyms.
Other forms of identity management must be preferred instead (e.g., OpenId.)

Lesson Learned No. 2 The Overlay level should integrate an authentication proto-
col and an identity verification policy that could accept pseudonyms instead of real
generalities of users.

The reader should observe that if peers communicate each other using authen-
ticated channels, then they can easily cipher content before transmitting as well as
storing and sharing it (for example using a Diffie-Hellman key exchange protocol).
As a consequence, objects stored in the overlay system can be protected against
not authorized access, without any responsibility of the content provider (when the
latter is different from the source and/or the owner of the object).

6.2 Accounting Level

In order to satisfy economic constraints discussed in Section 4, security concerns
at this level should be considered very seriously.We have to manage both macro-
payment and micro-payment transactions; frauds are common; services and re-
sources consumption must be accounted as well. The most part of actual markets
adopts a central authority that manages economic transactions (e.g., PayPal) when
services are provided or items are sold. At the resource level, many credit-based
incentive mechanisms have been proposed over the last years. However, the ac-
counting level must provide functions for crediting or debiting users (considering a
currency with or without legal value). For the sake of simplicity, we define only the
following function:

pay(idX , idY ,v): it invokes all the measures in order to securely provide a payment
of value v from user X to user Y .

The pay method can be implemented by way of a central authority (very com-
mon, and maybe preferable, for managing macro-payments) or of a distributed sys-
tem. In the latter class of proposals, many strategies can be further classified as
Local Accounting, Token-Based Accounting, and Remote Accounting. For a more
thorough discussion on different accounting strategies, see [30]

Let us stress that this accounting level is not necessarily related to the revenue
policy that the community owner has decided to adopt, and that should be consid-
ered at the Market Level of the given model. In fact, several economic studies have
sharpened how the flat-fee economic model can generate greater profits per good
on respect to the pay-per-use model depicted in monetary systems (see for exam-
ple [19]). Nevertheless, it has been clearly discussed how free-riding can be easily

64 Andrea Glorioso, Ugo Pagallo, and Giancarlo Ruffo

reduced if incentives for contributing are managed. Hence, crediting and debiting
users introduce the need of a dependable business support, which must be scalable
in terms of the many transactions that may occur in a P2P system.

Lesson Learned No. 3 Crediting and debiting users can reduce the free-riding
phenomenon, but they introduce the needing of an economic support. The execution
of (many) pay(idX , idY ,v) calls must be dependable, not repudiable, and scalable in
terms of the number of transactions in a large community of users.

Let us observe that commonly used Local Accounting strategies are trivially ab-
stracted by the pay method: Indeed, both an eMule-like crediting system and a Tic-
TacToe strategy (used in BitTorrent) can be seen in terms of a peer paying a fee
to another peer, even if it results in a differentiated service (e.g., high priority in
waiting queue of debtors) instead of real money transfers. Otherwise, other more
reliable micro-payment systems must be used if the virtual coins correspond to real
currency (see, for example, the Rivest’s lottery scheme [50] and PPay proposed by
Yang and Garcia-Molina [64]).

6.3 Market Level

This level includes most of the services as perceived by the final user. We list here a
set of properties and functions that a framework could implement, in order to solve
many of the issues we stressed in the previous sections of this chapter.

Pricing: We may define a pricing function that maps a service onto a tariff function
or a scalar value that basically represents the price of the service consumption.
It can be fixed or competitive; in the second case, each provider of the same ser-
vice can offer it at different prices. For example, in a storage application, some
peers can offer slices of its own disk space at a lower price than a competi-
tor. PeerMint [27] gives an interesting approach to pricing mechanism in a P2P
market.

Auctioning: When the good under sale is in limited number, the merchant can take
different bids into consideration. In virtual markets that deal only with electronic
sources (different replica can easily be produced), auctioning is less important.
See PeerMart [28] as the state-of-the-art approach for enabling auctioning in a
P2P system.

Intellectual Property Management: Even if there is no definitive solution to the
DRM vs. DRM-free debate, we cannot underestimate the importance of intellec-
tual property management, as discussed in Section 2. Although a flat-fee strategy
is adopted, the community manager can be asked to account the content owner
accordingly to the popularity of his/her own artifact.

Fairness: When the owner is credited under a given revenue model, then also the
provider, who contributes to the system with her own bandwidth, cpu cycles,
and disk space, should be (at least partially) credited as well. We think that this

The Social Impact of P2P Systems 65

property has been deeply underestimated and a proper implementation of fair
mechanisms can strongly incentive users to behave legally and bring success to
a market place. The reader interested in such a topic, can refer to FairPeers [52].

Content Distribution: No electronic item must be delivered by traditional shipping
methods (e.g., air mail). On the contrary, electronic content can alternatively be
distributed depending on the kind of service. In fact, delay-tolerant (DT) connec-
tions (e.g., TCP based) can be used for file sharing applications, but time-sensitive
(TS) mechanisms are needed when audio/video (e.g., a soccer match) is streamed
to a set of paying users. If the task of content distribution is fairly shared by the
participants, systems performance can optimize bandwidth available at the host
side.

Trust and Reputation: When a transaction is completed (or even maliciously
aborted), involved participants can be asked to submit a (positive or negative)
feedback. Reputation management can be critical if pseudonyms are used in-
stead of real identities: community owners may benefit from the users’ ac-
tive participation to isolate fraudulent users and to reduce misuses of the given
platform.

Community Services: This higher level of abstraction can include some other ser-
vices and functions (as a recommendation engine, social networking facilities,
and so on), which can harness small world properties that characterize P2P com-
munity (see Section 3). A deeper discussion on such issues is out of the scope
of this chapter. However, the reader can refer to DeHinter, a recommendation
system for Gnutella network [54], that provides an example of a practical ex-
ploitation of spontaneous topological properties.

Therefore, a developer of a future P2P system must take care of each item in the
given list, as it is stressed in the following learned lessons.

Lesson Learned No. 4 In a P2P system every peer can be a merchant. The incre-
mental exploitation of the P2P paradigm must include no trivial negotiation mech-
anisms, such as pricing and auctioning that are very strategic practices in the long
tail business scenario (e.g., eBay.)

Lesson Learned No. 5 The U.S. Supreme Court decision in MGM v. Grokster case
shows that in some parts of the world, developers can legally be prosecuted for in-
ducing copyright infringement committed by their users. Intellectual property man-
agement must seriously be considered, and developers must provide a method for
enabling legal sharing of copy-protected or otherwise governed information.

Lesson Learned No. 6 There are technological and political drawbacks in single
points of failure. The needing of a distributed control over content and user’s be-
havior makes mandatory the adoption of reputation and trust schemas.

Lesson Learned No. 7 The exploitation of the long tail scenario shows that the
more the users are stimulated to contribute to the system, the more resources are
available in the community. Fairness strategies can potentially expand the market
as well as content distribution can benefit of user’s enthusiastic participation.

66 Andrea Glorioso, Ugo Pagallo, and Giancarlo Ruffo

Lesson Learned No. 8 Several scientific analyses have demonstrated the existence
of small world networks at various levels of any P2P system (as well as other in-
teresting patterns, such as power law distributions of nodes’ degree). Spontaneous
structures in network and community topologies can be exploited to enhance the
performance of the given system (e.g. reducing the number of hops during searches)
and to introduce new challenging social networking services (e.g., recommendation
systems, lookup of neighbors of neighbors, and so on).

7 Conclusions

Our analysis on the social impact of P2P systems has dealt with a work that ob-
viously is still in progress. In Section 2, we mentioned the difficulties to precisely
define the legal boundaries of a technology capable of substantial non infringing
uses, along with the necessity to find out a fair (but difficult) balance between copy-
right and privacy issues. In Section 3, we referred to the spontaneous orders of P2P
systems and their complex interaction, say, with the reality of taxis and legislation.
In Section 4, we stressed how the potentialities of this technology do not have yet
dissolved many doubts about its use as a dependable, fair and profitable market-
place infrastructure. In Section 5, it was the turn for political uncertainties which
depend on geographical distances, overloading issues, or conformist risks, let aside
the very possibility that such systems protect or even encourage criminal activities.
Whereas, in Section 6, we depicted a plausible scenario for further developments of
P2P systems, we were conscious that a key problem consists in turning forthcoming
systems into reality (as the title of that section clearly warns).

Of course, all those open questions do not mean to forget merits and advantages
of such a technology which has led many scholars to present it as a sort of new
paradigm in social interaction. Rather, these issues prevent us from conceiving P2P
systems as a form of panacea or utopia, insomuch as they invite to highlight the
bidirectional connection stressed since the introduction and that has represented our
personal thread of Ariadne throughout this chapter.

Indeed, we observed that legal networks, economical trends, and political de-
bates are influencing P2P evolution, whereas, at the same time, those very systems
have been transforming some key terms of our legal, economic, and political dis-
course. Hence, the picture we gave about a work that is still in progress should
be also interpreted the other way around. In Section 2, we explained why initial
apprehensions for copyright issues have left room to growing data protection con-
cerns and, likely, new legal cases will arise in defense of freedom of research. In
Section 3, we presented empirical work which proves P2P systems are part of a far
more complex framework, i.e., Hayek’s cosmos, irreducible as such to simple hu-
man programming as in the case of spontaneous affinity networks. In Section 4, it
was the turn of classical political economics and how many of its central concepts
have been upset, as it occurs with the value-chain of goods with their variable and
marginal costs of production and distribution, networks externalities, or the very

The Social Impact of P2P Systems 67

idea of informational goods. Then, in Section 5, we insisted on the new horizons
opened up by P2P networks in politics, once properly understood in terms of infor-
mation and, more precisely, in terms of control, access, and distribution for people
making decisions to achieve definite ends. So, when we illustrated further develop-
ments of the technology as with the P2P service model in Section 6, the aim was not
only to properly take into account the complex social environment with its own set
of rules, constraints and possibilities, within which any technology has to be con-
ceived. Rather, the aim was also to emphasize the way in which social interaction
has already changed because of the introduction and functioning of P2P systems.

Finally, our analysis is obviously open to scientific debate and attempts of fal-
sification; yet, our effort has been to ground it upon a historical balance of that
continuous cycle in which each of its terms, namely technology and the social envi-
ronment, affects or gives feedback to the other. While such a perspective means to
take into proper consideration the social constraints within which any further devel-
opment of P2P systems should be assessed, it also allows to ponder the consistency
of some legal crusades, political queries, or economical misconceptions, still popu-
lar in current debate. After all, this is another good reason why it is so important to
stress “the social impact of P2P systems”.

References

1. Adar, E., Huberman, B.: Free riding on gnutella. Technical report, Xerox PARC, 2000.
2. Aiello, L.M., Milanesio, M., Ruffo, G., Schifanella, R.: Tempering Kademlia with a

Robust Identity Based System, in Proc. of the 8th Int. Conf. on Peer-to-Peer Computing 2008
(P2P’08). IEEE Press.

3. Anderson, C.: The Long Tail, Wired, Oct. 2004.
4. Anderson, C.: The Long Tail: Why the Future of Business Is Selling Less of More, Hyperion,

New York, 2006.
5. Apreda, R.: The semantics of governance (the common thread running through corporate,

public, and global governance), University of CEMA Working Paper Series, number 245,
2003.

6. Barabási, A.-L.: Linked: The New Science of Networks, Perseus, New York, 2002.
7. Bauwens, M.: P2P and Human Evolution: Placing Peer to Peer Theory in an Integral Frame-

work. http://integralvisioning.org/article.php?story=p2ptheory1. (Accessed July 30, 2008).
8. Benkler, Y.: Coase’s Penguin, or Linux and the Nature of the Firm, in Yale Law Journal 112(3)

2004.
9. Benkler, Y.: Sharing Nicely: On Shareable Goods and the Emergence of Sharing as a Modality

of Economic Production, in Yale Law Journal, 114(273) 2004.
10. Benkler, Y.: The Wealth of Networks, Yale University Press, New Haven, USA, 2006.
11. Blengino, C., Senor, M.: Caso Peppermint: file sharing e utilizzo di dati personali illecitamente

trattati, in Altalex, 24 May 2007.
12. Blengino, C., Senor, M.: Caso Peppermint: la riservatezza delle comunicazioni prevale sul

diritto d’autore, in Altalex, in Altalex, 12 September 2007.
13. Blengino, C., Senor, M.: Il caso “Peppermint”: il prevedibile contrasto tra protezione

del diritto d’autore e tutela della privacy nelle reti peer-to-peer, in XXIII(4–5) Il Diritto
dell’Informazione e dell’Informatica, pages 835–850, Milano, Italy. Giuffré Editore, 2007.

68 Andrea Glorioso, Ugo Pagallo, and Giancarlo Ruffo

14. Chandler, S.: The Network Structure of Supreme Court Jurisprudence. The University of
Houston Working Paper Series, online at http://ssrn.com, 2005.

15. Cohen, B.: Incentives to build robustness in BitTorrent, in Proceedings of the 1st Workshop
on Economics of Peer-to-Peer Systems, June 2003.

16. Cox, G., and Krysa, J.: Engineering Culture: On ’the Author as (digital) Producer’, Autono-
media, 2005, p.74.

17. Deibert R. J., Palfrey J.G., Rohozinski R., Zittrain J.: Access Denied: The Practice and Policy
of Global Internet Filtering, Cambridge (MA), USA, MIT Press, 2008.

18. Etzioni, A.: How Patriotic is the Patriot Act? Freedom versus Security in the Age of Terrorism,
Routledge, New York-London, 2004.

19. Fishburn, P. C., and Odlyzko, A. M.: Competitive pricing of information goods: Subscription
pricing versus pay-per-use. In Economic Theory, 13(2):447–470, 1999.

20. Fisher, W.: Promises to Keep: Technology, Law, and the Future of Entertainment, Stanford
University Press, California, 2004.

21. Fowler, T., and Jeon, S.: The Authority of Supreme Court Precedent: A Network Analysis,
online at http://jhfowler.ucdavis.edu, 2005.

22. Gerke, J., Hausheer, D., Mischke, J., Stiller, B.: An Architecture for a Service Oriented Peer-
to-Peer System (SOPPS). Praxis der Informationsverarbeitung und Kommunikation (PIK)
26(2): 2003

23. Gnutella Protocol Development Group. The Gnutella Protocol Specification 0.4/0.6.
http://rfc-gnutella.sourceforge.net.

24. Granovetter, M. S. : The Strenght of Weak Ties, in American Journal of Sociology, 78:
1360–1380, 1973.

25. Granovetter, M. S.: The Strength of Weak Ties: A Network Theory Revisited, in Sociological
Theory, 1983, I, pp. 201–233.

26. Grodzinsky, F.S., Tavani, H.T.: P2P networks and the Verizon v. RIAA case : Implications for
personal privacy and intellectual property, in Ethics and information technology, 7(4): 2005.

27. Hausheer, D., and Stiller, B.: Peermint: Decentralized and Secure Accounting for Peer-to-Peer
Applications. In IFIP Networking Conference, pages 40–52, University of Waterloo, Waterloo,
Ontario, Canada, 2005.

28. Hausheer, D.: PeerMart: Secure Decentralized Pricing and Accounting for Peer-to-Peer Sys-
tems. PhD thesis, Shaker Verlag, Aachen, Germany, ETH Zurich, TIK-Schriftenreihe No. 70,
Diss. ETH Zurich No. 16200, 2006.

29. Hayek: Law, Legislation and Liberty: A New Statement of the Liberal Principles of Justice
and Political Economy, Routledge & Kegan Paul, 1982.

30. Hummel, T., Muhle, S., Schoder, D.: Business Applications and Revenue Models, in:
Steinmetz, R.; Wehrle, K. (eds.): Peer-to-Peer Systems and Applications (LNCS 3485), pages
473–489. Springer, 2005.

31. Iamnitchi, A., Ripeanu, M., and Foster, I.): Small-world file-sharing communities. In The 23rd
Conference of the IEEE Communications Society (InfoCom 2004), Hong Kong.

32. Jobs, S.: Thoughts on music. http://www.apple.com/hotnews/thoughtsonmusic/, February 6th,
2007. (Accessed July 30, 2008).

33. Kasunic, R.: Making Circumstantial Proof of Distribution Available, available at
http://law.fordham.edu/publications/articles/200flspub12665.pdf

34. Kaune, S., Lauinger, T., and Kovacevic, A.,: Embracing the Peer Next Door: Proximity in
Kademlia, in Proc. of the 8th Int. Conf. on Peer-to-Peer Computing 2008 (P2P’08). IEEE
Press.

35. Keen, A.: The Cult of the Amateur: How blogs, MySpace, YouTube, and the rest of today’s
user-generated media are destroying our economy, our culture, and our values. Doubleday
Business, 2008.

36. Kelling, D. T.: Intellectual Property Rights in EU Law: Free Movement and Competition Law.
Oxford University Press, Oxford, 2003.

37. Landes, W. M., Posner, R.A.: The Political Economy Of Intellectual Property Law. American
Enterprise Institute, 2004.

The Social Impact of P2P Systems 69

38. Langley, A.: Freenet, in Oram. A. (ed.), Peer-to-peer Harnessing the power of disruptive tech-
nologies, pages 123–132, Sebastopol (CA), USA. O’Reilly & Associates, Inc., 2001.

39. Lessig, L. The Future of Ideas: the fate of the commons in a connected world Vintage, 2002.
40. Lessig, L. Code, and other laws of cyberspace, version 2.0 Basic Books, 2006.
41. Levy, P.: Collective Intelligence: Mankind’s Emerging World in Cyberspace, translated by

Robert Bononno, Plenum Trade, 1997.
42. Lyon, G.E.: The Internet Marketplace and Digital Rights Management, NIST Software Diag-

nostic and Conformance Testing Division 897, presented at the Conference on Infrastructure
for e-Business, e-Education and e-Science on the Internet, L’Aquila, Italy, 6–12 August 2001.

43. Maymounkov, P., Mazières, D.: Kademlia: A peer-to-peer information system based on the xor
metric. In IPTPS f01: Revised Papers from the First International Workshop on Peer-to-Peer
Systems, pages 53V65, London, UK, Springer-Verlag, 2002.

44. Milgram, S.: The Small World Problem in Psychology Today, 60–67, May 1967.
45. Pagallo, U.: Teoria giuridica della complessità. Dalla “polis primitiva” di Socrate ai “mondi

piccoli” dell’informatica – Un approccio evolutivo. Giappichelli, Torino, 2006.
46. Pagallo, U. and Ruffo G.: On the Growth of Collaborative and Competitive Networks: Oppor-

tunities and New Challenges, in Proc. of Ethicomp Working Conference 2007. In: S. Rogerson
e H. Yang (eds). Yunnan University, 92–97, 2007.

47. Pagallo, U., and Ruffo G.: P2P Systems in Legal Networks: Another “Small World” Case,
in: Eleventh International Conference on Artificial Intelligence and Law, Acm, Stanford, CA,
287–288, 2007.

48. Pagallo, U.: “Small World” Paradigm in Social Sciences: Problems and Perspectives, in Glo-
calisation: Bridging the Global Nature of Information and Communication Technology and
the Local Nature of Human Beings, in: T. Ward Bynum, S. Rogerson, and K. Murata (eds.),
e-SCM Research Center and University of Meiji, Tokyo, 456–465, 2007.

49. Pagallo, U.: La tutela della privacy negli Stati Uniti d’America e in Europa: modelli giuridici
a confronto, Giuffrè, Milano, 2008.

50. Rivest, R. L.: Electronic lottery tickets as micropayments. In FC ’97: Proceedings of the First
International Conference on Financial Cryptography, pages 307–314, London, UK. Springer-
Verlag, 1997.

51. Rowstron, A., and Druschel, P.: Pastry: Scalable, distributed object location and routing for
large-scale peer-to-peer systems. In IFIP/ACM International Conference on Distributed Sys-
tems Platforms (Middleware), 329–350, 2001.

52. Ruffo, G., and Schifanella, R.: FairPeers: Efficient Profit Sharing in Fair Peer-to-Peer Market
Places. Journal of Network and System Managegement 15(3): 355–382. Springer, 2007.

53. Ruffo, G.: Peer-to-Peer Market Places: Technical Issues and Revenue Models, in Inter-Domain
Management, Proc. of the First Intern. Conf. on Autonomous Infrastructure, Management and
Security, (AIMS 2007), Oslo, Norway, June 21–22, 2007, (LNCS 4543), Springer.

54. Ruffo, G., and Schifanella, R.: A Peer-to-Peer Recommender System Based on Spontaneous
Affinities. ACM Trans. Internet Technol. (TOIT) 9 (1), Feb., 1–34. ACM Press, 2008.

55. Shapiro, C., and Varian, H.: Information Rules: A Strategic Guide to the Network Economy,
Harvard Business School Press, Watertown (MA), USA, 1998.

56. Shirky, C.: Here Comes Everybody: The Power of Organizing Without Organizations. Penguin
Press HC, 2008.

57. Shwartz, B.: The Paradox of Choice: Why More Is Less. Harper Perennial, 2005.
58. Solove, D.J. (2007): ’I’ve Got Nothing to Hide’ and Other Misunderstandings of Privacy, San

Diego Law Review 44, 745–772, 2007.
59. Stoica, I., Morris, R., Karger, D., Kaashoek, D., and Balakrishnan, H.: Chord: A Scalable

Peer-to-Peer Lookup Service for Internet Applications. In ACM SIGCOMM 2001, San Diego,
CA, 2001.

60. Topol, R., and Walliser, B. (eds): Cognitive Economics: New Trends, Emerald Group Publish-
ing, 2007.

70 Andrea Glorioso, Ugo Pagallo, and Giancarlo Ruffo

61. Waldman, M., Cranor, L.R., Rubin, A.: Publius, in Oram. A. (ed.), Peer-to-peer Harnessing
the power of disruptive technologies, pages 145–158, Sebastopol (CA), USA. O’Reilly &
Associates, Inc., 2001.

62. Watts, D. J., and Strogatz, S. H.: Collective Dynamics of “Small-World” Networks, in Nature,
393:440–442, 1998.

63. Wolpert, D. H.: Collective Intelligence, in Computational Intelligence: The Experts Speak,
edited by David B. Fogel, and Charles J. Robinson, IEEE Neural Networks Society, Wiley-
IEEE, 2002, pp. 245–260.

64. Yang, B., and Garcia-Molina, H. G.: Ppay: micropayments for peer-to-peer systems. In Proc.
of the 10th ACM CCS. ACM Press, 2003.

65. Yoskowtiz, A.: Customers to be reimbursed over Yahoo DRM server shutdown, After-
dawn.com, http://www.afterdawn.com/news/archive/14916.cfm, 26 July 2008.

66. Zhao, B., Huang, L., Stribling, J., Rhea, S. C., Joseph, A.D., Kubiatowicz, J.D.: Tapestry: A
Resilient Global-Scale Overlay for Service Deployment, in IEEE Journal on Selected Areas
in Communications, (22), 41–53, 2004.

67. Zittrain, J.: The Future of the Internet And How to Stop It, Yale University Press, New Haven,
USA, 2008.

From Client-Server to P2P Networking

Lu Liu and Nick Antonopoulos

Abstract Peer-to-peer (P2P) networks attract attentions worldwide with their great
success in file sharing networks (such as Napster, Gnutella, Freenet, BitTorrent,
Kazaa, and JXTA). An explosive increase in the popularity of P2P networks has
been witnessed by millions of Internet users. In this chapter, an investigation of
network architecture evolution, from client-server to P2P networking, will be given,
underlining the benefits and the potential problems of existing approaches, which
provides essential theoretical base to drive future generation of distributed systems.

1 Introduction

As a new design pattern, peer-to-peer (P2P) has been widely used in the design of
large-scale distributed applications. An explosive increase in the popularity of P2P
file sharing applications has been witnessed by millions of Internet users.

As an emerging technology, P2P networks attract attention worldwide, ranging
from casual Internet users to venture capitalists. At the same time, the innovations
of P2P networks also offer many interesting avenues of research for scientific com-
munities. In the last few years, great research achievements have been made on P2P
resource sharing and data transfer. Network architectures are starting to evolve from
centralised client-server architectures to distributed P2P architectures or hybrid ar-
chitectures between client-server and P2P.

Lu Liu
School of Computing, University of Leeds, Leeds, West Yorkshire, LS2 9JT, United Kingdom,
e-mail: luliu@comp.leeds.ac.uk

Nick Antonopoulos
Department of Computing, University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom,
e-mail: n.antonopoulos@surrey.ac.uk

X. Shen et al. (eds.), Handbook of Peer-to-Peer Networking, 71
DOI 10.1007/978-0-387-09751-0 3, © Springer Science+Business Media, LLC 2010

72 Lu Liu and Nick Antonopoulos

In this chapter, the network architecture evolution is discussed from client-server
to P2P. A summary of recent solutions for resource discovery in P2P networks is
also given underlining the benefits and the potential problems of these solutions.

2 Network Architecture Evolution

2.1 Client-Server Architecture

Many today’s Internet applications, such as WWW, FTP, email, are distributed by
using the client-server architecture (Fig. 1). In the client-server architecture, many
clients request and receive services from the server(s). All the contents and services
are stored and provided by a server(s). Content and services can be discovered and
utilised efficiently by querying the centralised server(s), if the server(s) is available
and capable of serving all clients at the same time.

Fig. 1 Client-server architecture

However, such centralisation of the client-server architecture raises a series of
issues which are caused by the limitation of resources at the server side, such as
network bandwidth, CPU capability, Input/Output (I/O) speed and storage space. A
server could be overloaded if too many requests are received. In order to cope with
these limitations, the centralised server(s) needs to bear the high costs of providing
sufficient resources. For instance, Google clusters more than 200,000 machines to
give successful Web indexing services [1].

Moreover, the centralisation of the client-server architecture also leads to the
problem of single-point-of-failure. If the centralised server(s) is removed or is not
available for use, no alternative in the architecture can take its place and all services
on the server(s) will be lost.

2.2 Grid Architecture

“Grid Computing” is rapidly emerging from the scientific and academic area to the
industrial and commercial world. Current Grid computing systems are prominent
implementations of client-server architecture for distributed computing.

From Client-Server to P2P Networking 73

The vision of the Grid Computing is to provide high performance computing
and data infrastructure supporting flexible, secure and coordinated resource sharing
among dynamic collections of individuals and institutions known as “virtual orga-
nizations” (VO) [2, 3]. The main focus of Grid architecture is on interoperability
among resource providers and users in order to establish the sharing relationship,
which needs common protocols at each layer of architecture. It is intended to of-
fer seamless and uniform access to substantial resources without having to consider
their geographical locations. Resources in the Grid can be high performance super-
computers, massive storage space, sensors, satellites, software applications, and data
belonging to different institutions and connected through the Internet. The Grid pro-
vides the infrastructure that enables dispersed institutions (commercial companies,
universities, government institutions, and laboratories) to form virtual organisations
(VOs) that share resources and collaborate for the sake of solving common problems
[2, 3].

2.3 Peer-to-Peer Architecture

P2P networks are decentralised distributed systems and enable computers to share
and integrate their computing resources, data and services. Although concepts of
P2P and Grids have a significant amount of overlap, they were originally proposed
to address different domains. Whereas P2P is generally applied to a wide range of
technologies that can greatly increase the utilization of collective natural resources
at the edge of the Internet, such as information, bandwidth and computing resources,
Grids are intended to promote interoperability and extensibility among various ap-
plications, platforms and frameworks [4].

In contrast to the existing Grid paradigms, P2P architecture does not rely on a
centralised server to provide services (Fig. 2), which offers an appealing alterna-
tive to the existing Grid models especially for large-scale distributed applications.
In the P2P model, each peer node (also known as servent) acts as both client and
server, requesting resources from as well as routing queries and serving resources
for other peer nodes. A P2P network is a logical overlay network over a physical
infrastructure as illustrated in Fig. 2, which provides a virtual environment for P2P

Fig. 2 Peer-to-peer architecture

74 Lu Liu and Nick Antonopoulos

developers to easily design and implement their own communication environment
and protocols on the top of existing networks.

In recent years P2P networks have grown seemingly exponentially in popular-
ity and utilisation. P2P file sharing has become one of the most popular Inter-
net activities. Today’s popular P2P file-sharing applications, such as Kazaa and
Gnutella, have more than one million users each at any point of time [5]. Ac-
cording to research results from Cachelogic [6], about 50–65% of “downstream
traffic” (i.e. from ISPs to endpoint devices) and 75–90% of “upstream traffic”
(i.e. from endpoint devices to ISPs) on the Internet are the results of P2P file-sharing
applications.

The popularity of P2P is motivated by the benefits it offers to end users. Com-
pared to the client-server architecture, the advantages of P2P are listed below:

• P2P frees users from the traditional dependence on central servers, which en-
ables end users to easily share resources (e.g. music, movies, games and other
software). End users can share or retrieve resources directly from their connected
machines without any further need to upload them to a centralised server.

• P2P applications are more resilient than those built on the client-server architec-
ture by removing the single-point-of-failure.

• P2P distributes the responsibility of providing services from centralised servers
to each individual peer node in the network.

• P2P exploits available bandwidth, processor, storage and other resources across
the entire network. P2P interactions are only between individual peers which
eliminate the bottleneck of centralised servers.

• Most P2P applications use virtual channels for communication which break the
obstacles of corporate private networks, such as firewalls and Network Address
Translation (NAT).

• P2P has better availability as each peer node can obtain content from multiple
peer nodes. If one peer node is overloaded or experiences a hardware failure,
other peer nodes in the network can still handle requests.

3 Evolution of Peer-to-Peer Networks

There are many interesting types of P2P applications, including file sharing, instant
messaging, VoIP, Streaming media, High Performance Computing, search engine.
Among them, file sharing, one of the most popular on-line activities [7], is the initial
motivation behind many of successful P2P networks. P2P file sharing has become
one of the most popular Internet activities. Today’s popular P2P file-sharing appli-
cations, such as Kazaa and Gnutella, have more than one million users each at any
point of time [5]. In this section, the history of the P2P file sharing networks is
discussed along with the most popular file sharing applications.

Existing P2P file sharing networks can be divided into three categories [8] ac-
cording to the degree of network centralisation: centralised P2P networks, decen-
tralised P2P networks and hybrid P2P networks.

From Client-Server to P2P Networking 75

3.1 Centralised Peer-to-Peer Networks

Although P2P is often seen as an opposite model to the centralised client-server
paradigm, the first generation P2P systems (e.g. Napster) started with the concept of
centralisation. However, in contrast to traditional client-server systems, the server(s)
in centralised P2P networks only keeps the meta-information about shared content
(e.g. addresses or ID of peer nodes where the shared content is available) rather than
storing content on its own.

• Napster
Napster was the first widely-used P2P music sharing service. Before Napster

came along, Internet users only passively operated their connected computers, such
as browsing news or checking email. With the increased popularity of Napster, or-
dinary Internet users started opening their PCs to actively contribute resources and
played more important roles for the Internet.

Compared to follow-up P2P applications, Napster utilises a simple but highly
efficient mechanism to share and search files in the network. To participate in the
Napster network, new users need to register to the Napster server and publish a list
of files they are willing to share. To search for a shared file in the network, users
can request the Napster server and retrieve a list of providers hosting the files which
match the query. File transfer takes place without the Napster server participating.
The requested file is transferred directly between the requester and the provider as
shown in Fig. 3.

Fig. 3 Example of Napster network

• BitTorrent
BitTorrent is designed to distribute large amounts of data without incurring the

corresponding consumption in server and bandwidth resources. The original Bit-
Torrent (before version 4.2.0) can be looked at as a Napster-like centralised P2P
system. In order to share a file or a group of files, users need to create a small

76 Lu Liu and Nick Antonopoulos

.torrent file that contains the address of the tracker machine that launches the file
distribution. The .torrent file is published on well-known web-sites, so that other
users can find and download the .torrent file of interest using web search engines.
The .torrent file is opened by the BitTorrent client software. The client software
connects to the tracker machine and receives a list of peer nodes that are partici-
pating in transferring the file. In order to distribute a file efficiently, a file is broken
into smaller fragments (typically 256 KB each) for transmission. The client, at-
tempting to download the file, simultaneously connects to these peer nodes that are
participating in file transfer, and downloads different pieces of the file from different
peer nodes. In the meantime, the client can also upload downloaded pieces to other
participants.

3.2 Decentralised Peer-to-Peer Networks

To address the problems of centralised P2P networks (such as scalability, single-
point-of-failure and legal issues), decentralised peer-to-peer networks become widely
used, which do not rely on any central server.

• Gnutella
The Gnutella network is a decentralised file-sharing P2P network, which is built

on an open protocol developed to enable peer node discovery, distributed search,
and file transfer.

Each Gnutella user needs a Gnutella client software to join the Gnutella network.
The Gnutella client software on initial use can bootstrap and find a number of possi-
ble working peer nodes in the network and try to connect to them. If some attempts
succeed, these working peer nodes will then become the new node’s neighbours and
give the new node their own lists of working nodes. The new node continues to
connect to these working peer nodes, until it reaches a certain quota (usually user-
specified). The new node keeps the peer nodes it has not yet tried as backup. When a
peer node leaves the P2P network and then wants to re-connect to the network again,
the peer node will try to connect to the nodes whose addresses it has stored. Once
the peer node re-connects into the network, it will periodically ping the network
connections and update its list of node addresses.

In contrast to Napster, the Gnutella network is a decentralised P2P file-sharing
network not only for file storage, but also for content lookup and query rout-
ing. Gnutella nodes take over routing functionalities initially performed by the
Napster server. Figure gives an example of query propagation over the Gnutella
network. In the Gnutella network, each peer node uses a Breadth-First Search
(BFS) mechanism to search the network by broadcasting the query with a Time-
to-Live (TTL) to all connected peer nodes. TTL represents the number of times
a message can be forwarded before it is discarded. Each peer node receiving the
query will process it, check the local file storage, and respond to the query if at
least one matched file is found. Each peer node then decreases TTL by one and

From Client-Server to P2P Networking 77

Fig. 4 Query propagation over the Gnutella network

forwards the query to all of its neighbours. This process continues until TTL de-
creases to zero.

The Gnutella network does not rely on a central server to index files, which
avoids the single-point-of-failure issue and the performance bottleneck at the server
side. Instead, many peer nodes are visited by flooding queries to see whether they
have a requested file. The obvious drawback of Gnutella is that it generates poten-
tially huge network traffic by flooding queries.

• Freenet
Freenet is a decentralised P2P data storage system designed to provide electronic

document exchange through strong anonymity. In contrast to Gnutella, Freenet acts
as a P2P storage system by enabling users to share unused local storage space for
popular file replication and caching. The stored information is encrypted and repli-
cated across the participating computers.

In Freenet, a file is shared with an ID generated from the hash value of the name
and description of the file. Each peer node forms a dynamic routing table to avoid
network flooding. A routing table includes a set of other peers associated with the
keys they are expected to hold. To search a required file, the query is forwarded to
the peer node holding the nearest key to the key requested. If the query is successful,
the reply is passed back along the route the query comes in through. Each peer node
that forwards the request will cache the reply and update the routing table by a new
entry associating the data source with the requested key.

3.3 Hybrid Peer-to-Peer Networks

To avoid the observed problems of the centralised and decentralised P2P networks
discussed above, hybrid P2P networks are emerging recently to provide trade-off
solutions with a hierarchical architecture.

78 Lu Liu and Nick Antonopoulos

• Kazaa
Kazaa reorganises peer nodes into a two-level hierarchy with supernodes and

leaves. Supernodes are capable and reliable peer nodes that take more responsibil-
ity for providing services in the network. A supernode is a temporary index server
for other peer nodes. The peer nodes with high computing power and fast network
connection automatically become supernodes.

Similarly to the bootstrapping method used in the Gnutella network, a newly
joined node will attempt to contact an active supernode from a list of supernodes
offered by Kazaa client software. The newly joined node will send a list of files
it shares to the connected supernodes and further retrieve more active supernodes
from the connected supernodes for future connection attempts.

In Kazaa, each leave node begins a lookup by sending a lookup request to its
connected supernode as shown in Fig. 5. The supernode not only checks the local
index for the file requested, but also communicates with other supernodes for a list
of addresses of peer nodes sharing the files. When a supernode discovers the re-
quested file from its local index, it will respond to the original supernode. The file is
transferred directly between the query originator and the target peer node that shares
the file as shown in Fig. 5.

Fig. 5 Example of Kazaa network

• Gnutella2
Similarly to Kazaa, the peer nodes in the Gnutella2 network are classified into

two categories: hubs and leaves. A leaf keeps only one or two connections to hubs. A
hub acts as a proxy to the Gnutella2 network for the leaves connected to it. Queries
are propagated among the hubs and only forwarded to a leaf if a hub believes it can
answer the query.

From Client-Server to P2P Networking 79

• JXTA
JXTA is an open source P2P platform developed by Sun Micro-systems. The

JXTA Application Programming Interface (API) hides many programming details,
which makes a JXTA application writing much easier than developing a P2P appli-
cation from scratch.

Similarly to Kazaa and Gnutella2, JXTA maintains a hierarchical network struc-
ture with rendezvous peers and edge peers. Different from Kazaa, the rendezvous
peers in the JXTA network call the Shared Resource Distributed Index (SRDI) ser-
vice to distribute indices to other rendezvous peers in the network. When a peer node
searches for a file, it will send the query to the connected rendezvous peer and also
multicast the query to other peers on the same subnet. If the rendezvous peer finds
the information about the requested resources on its local cache, it will notify the
peers that publish the resources and these peers will respond directly to the query
originator. If the rendezvous peer cannot find the requested information locally, a
default algorithm is used to go through a set of rendezvous peers for a rendezvous
peer that caches the requested information [9].

As discussed above, hybrid P2P networks combine the techniques of both the
centralised Napster and the decentralised Gnutella. However, since only a limited
number of peer nodes are responsible for the query processing and routing, existing
hybrid P2P networks still have the capability bottlenecks of the supernodes, which
are also vulnerable to planned attacks [10].

4 Peer-to-Peer Search Systems

Since resource and service discovery in Grids involves a lot of elements in common
with resource discovery in P2P networks, P2P search approaches are applicable
for service discovery in large-scale Grid systems, which could help to ensure Grid
scalability [11]. In this section, existing P2P search systems are investigated by clas-
sifying them into two broad categories: structured and unstructured P2P systems.

4.1 Structured P2P Systems

Structured P2P systems have a dedicated network structure on the overlay network
which establishes a link between stored content and the IP address of a node. Dis-
tributed Hash Tables (DHTs) are widely used for resource discovery in the struc-
tured P2P systems like Chord [12], ROME [13], Pastry [14], CAN [15], and Kadem-
lia [16].

In DHT-based P2P systems, each file is associated with a key generated by hash-
ing the file name or content. Each peer node in these systems is responsible for

80 Lu Liu and Nick Antonopoulos

storing a certain range of keys. The network structure is sorted by routing tables (or
finger tables) stored on individual peer nodes. Each peer node only needs a small
amount of “routing” information about other nodes (e.g. nodes’ addresses and the
range of keys the node is responsible for). With routing tables and uniform hash
functions, peer nodes can conveniently put and get files to and from other peer nodes
according to the keys of files.

• Chord
Chord [12] is a well-known DHT-based distributed protocol aimed to efficiently

locate the peer node that stores a particular data item. Peer nodes are arranged in a
ring that keeps the keys ranging from zero to 2m− 1. A consistent hashing is used
to assign items to nodes, which provides load balancing and only requires a small
number of keys to move when nodes join or leave the network [12]. The consistent
hash function assigns each node and each key an ID using SHA-1.

In Chord, each peer node maintains a finger table pointing to O(logN) other
nodes on the ring. Given a ring with 2m peer nodes, a finger table has a maximum of
m entries. The Chord routing algorithm utilizes the information stored in the finger
table of each node to direct query propagation. For example, a node sends a query
for a given key k to the closest predecessor of k on the Chord ring according to its
finger table, and then asks the predecessor for the node it knows whose ID is the
closest to k. By repeating this process, the algorithm can find the peer nodes with
IDs closer and closer to k. A lookup only requires O(logN) messages in a N-node
Chord network and 1

2 log2 N hops on average [12].
Unlike some other P2P models (e.g. Gnutella and JXTA) that provide a set of pro-

tocols to support P2P applications, Chord provides support for just one operation:
given a key, it maps the key onto a node. In Chord, peer nodes are automatically
allowed to participate in the network using the standard Chord protocol, no mat-
ter whether the nodes are useful and capable or not. Chord needs monitoring and
selection functions in order to support and optimise its deployment over the real
networks.

• ROME
ROME (Reactive Overlay Monitoring and Expansion) [13, 17] is an additional

layer built upon the standard Chord protocol allowing control over the size of
the network overlay via the selection and placement of peer nodes on the Chord
ring.

Figure [18] shows the ROME architecture running on the top of Chord. ROME
includes a set of processes (ellipses) and data structures (rectangles) [18]. Processes
are comprised of a traffic analyser to monitor network traffic without changing the
underlying Chord protocol, and operations to add, replace and remove nodes from
the ring. Data structures of ROME store monitoring data, a copy of Chord data and
ROME specific data (e.g. bootstrap server’s address). ROME can provide an optimal
size of Chord ring by monitoring the workload on each node to solve the problems
of under-load or over-load nodes by adding, replacing and removing nodes. ROME
provides more efficient and fault-tolerant resource discovery with message cost sav-
ing than the standard Chord [18].

From Client-Server to P2P Networking 81

Fig. 6 ROME architecture

• Accordion
Accordion [19] is a DHT protocol extended from Chord, which bounds its com-

munication overhead according to a user specified bandwidth budget. Accordion
borrows Chord’s protocols for maintaining a linked list in which the ID space is
organized as a ring as in Chord. Different from Chord using a fixed routing table,
Accordion can automatically adapt itself to achieve the best lookup latency across
a wide range of network sizes and churn rates. Accordion maintains a large rout-
ing table when the system is small and relatively stable. When the system grows
too large or suffers from high churns, Accordion shrinks its routing table on each
peer node for lower communication overhead. By remaining flexible in the choice
of routing table size, Accordion can operate efficiently in a wide range of operating
environments.

• Pastry
Pastry [14] is a prefix-based routing system using a proximity metric. Similarly

to Chord, Pastry organizes peer nodes in a 128-bit circular node ID space. At each
step, a query message is forwarded to a numerically closer node to a given key. In a
network consisting of N nodes, the message can be routed to the numerically closest
node within log2b N hops, where b is a configurable parameter.

In contrast to Chord which uses one-dimensional tables, a node’s routing table is
organized into two dimensions with log2b N rows and 2b− 1 entries per row. Each
entry in row n of the routing table points to a node whose node ID shares the present
node’s ID in the first n digits, but whose (n+1)th digit is different from the (n+1)th
digit in the present node’s ID. The routing procedure involves two main steps. Given
a message, the node first checks whether the key is within the range of its leaf set.
If so, the message is sent directly to the destination node. Otherwise, the message
is forwarded to the node that shares a common prefix with the key by at least one
more digit.

82 Lu Liu and Nick Antonopoulos

• CAN
Content-Addressable Network (CAN) [15] generalizes the DHT methods used

in Chord and Pastry. A CAN identifier space can be looked at as a d-dimensional
version of Chord (which is one-dimensional) and Pastry (which is two-dimensional)
identifier space. For a d-dimensional space partitioned into n equal zones, each node

maintains 2d neighbours and the average routing path length is 1
4 (n

1
d). Higher di-

mensions in the identifier space reduce the number of routing hops and only slightly
increase the size of routing table saved in each node. Meanwhile, fault tolerance of
routing is improved by higher dimensionality of CAN, since each node has a larger
set of neighbours to select as alternatives to a failed node.

• Kademlia
Kademlia [16] not only uses the basic DHT methods (e.g. unique ID, routing

table with < key,value > pairs), but also provides a number of desirable features
superseding other previous DHTs (e.g. Chord, CAN and Pastry).

Kademlia is based on the calculation of the “distance” between two nodes on
the overlay with an XOR metric. Each Kademlia node stores contact information
about other peer nodes in the local routing tables. When a Kademlia node receives
a message from another node, it will update the appropriate entry for the sender’s
node ID. Thus, the peer nodes which issue or reply to a large number of queries will
become widely known, which enables more capable nodes to take on more workload
in the network.

To lookup a specific key, the query originator searches the local routing tables for
α nodes with the closest distance to the query originator and then contacts them in
parallel. Each recipient node replies with the information about the peer node which
is closer to the key. The query originator resends the lookup to nodes it has learned
about from previous RPCs.

4.2 Unstructured P2P Systems

In contrast to structured P2P systems, unstructured P2P systems do not maintain
network structure, where address and content stored on a given peer node are un-
related. Although existing search methods in unstructured P2P systems are hetero-
geneous, most of them are dedicated to solving observed issues of flooding mecha-
nisms which can be classified into two broad categories: blind search and informed
search, according to whether the algorithm needs additional indices about the loca-
tions of resources.

4.2.1 Blind Search

In a network with a blind search method, peer nodes do not maintain additional
information about resource locations. The advantages of blind search methods are

From Client-Server to P2P Networking 83

that they do not need any communication overhead to maintain the additional indices
about resource locations and are extremely resilient in the highly dynamic networks.
Flooding is the fundamental approach of blind search where queries are forwarded
to all connected peer node to see whether they have a requested file. In order to solve
the massive traffic problem caused by flooding, several improved search methods
have been presented recently [20–22].

Random walker [20, 21] is a well-known blind search method, which enables
peer nodes to forward a query to a randomly chosen neighbour rather than broadcast
the query to all of their neighbours. Each neighbour repeats this process until the
required file is discovered. The random walkers can find targets more efficiently
while significantly reducing the traffic compared to Gnutella’s flooding method [20].
In order to increase the probability of resource discovery, pro-active replications are
used to increase the density of copies of each object. The study in [20] shows that
the square-root replication distribution is optimal in terms of minimizing overall
search traffic, which replicates files in proportion to the square-root of their query
probability.

Yang and Garcia-Molina [22] presented an iterative deepening technique for re-
source discovery in unstructured P2P networks. Iterative deepening enables query
originators to use successive BFS (Breadth-First Search) queries with increasing
depths, until the request is satisfied or the maximum depth is reached.

4.2.2 Informed Search

In contrast to blind search, informed search methods enable peer nodes to maintain
additional information about other peer nodes in the network, e.g. network topology
and resource locations. Existing informed search solutions can be classified in two
groups: mechanisms with specialised index nodes and mechanisms with indices at
each node.

The search mechanisms with specialised index nodes have been used in current
P2P applications. For example, Napster employs a centralized server to maintain
such additional information. Kazaa and JXTA utilize a set of semi-centralized su-
pernodes to maintain the extra information about their leaves and other supernodes.

However, systems with specialised index nodes are vulnerable to attack by cen-
tralizing indices in a small subset of peer nodes. New methods have emerged in
recent years by distributing indices to each individual peer node in the network.
Such methods can be further classified into the following three approaches accord-
ing to their design principles.

• Topology optimisation
In many P2P applications, topology significantly affects the performance of re-

source discovery. The first approach intends to reduce search cost by adapting and
optimising the overlay topology of network. Each peer node is expected to keep
topology information about its neighbours or neighbours’ neighbours.

A topology optimisation method used in Gia [23] puts most of the peer nodes in
the network within a short reach of high capacity nodes, which leads to the situation

84 Lu Liu and Nick Antonopoulos

that the high capacity nodes are also the nodes with a high node degree of connec-
tivity (a large number of links). This protocol ensures that the well-connected nodes
which receive a large proportion of queries actually have the capability to handle
these queries.

Gia enables each peer node to connect high capacity nodes as neighbours. Al-
ternatively, the studies in [24, 25] present topology optimisation methods by pref-
erentially selecting low-cost and low-latency connections. These methods address
the topology mismatch problem between P2P logical overlay networks and physi-
cal under-lying networks (which incurs a large volume of redundant traffic on P2P
networks) by deleting inefficient overlay links and adding efficient ones.

• Statistical information about neighbours
The second approach enables peer nodes to route queries to the neighbours that

are likely to have the requested files in accordance with the maintained statistical
information about neighbours.

Tsoumakos et al. [26] introduced an adaptive and bandwidth-efficient algorithm
for searching in unstructured P2P networks, called Adaptive Probabilistic Search
(APS). Different from the above topology optimisation methods, the search algo-
rithm of APS is not allowed to alter the overlay topology. In APS, each peer node
keeps an index describing which objects were requested by each neighbour with a
success ratio of previous searches. The probability of choosing a neighbour to find
a particular file is dependent on the success ratio. In APS, searching is based on
the simultaneous deployment of k walkers and probabilistic forwarding. The query
originator sends queries to k of its N neighbours. If each of these nodes can find a
matched object in its local repository, the walker terminates, otherwise it gets for-
warded to one of neighbours. The procedure continues until all k walkers have com-
pleted. The update takes a reverse path back to the query originator to adjust prob-
ability accordingly either with success or failure. According to the results shown
in [26], APS can discover many more objects with much higher success rates than
random walkers [20, 21] algorithm.

Adamic et al. [21] showed that many peer nodes can be reached by forwarding
queries to peer nodes with the highest degree (number of links) in the neighbourhood
and thus it can get many results back. Yang and Garcia-Molina [22] tested this model
by forwarding queries to the peer node which had the largest number of neighbours.
Yang and Garcia-Molina also designed and simulated several other heuristics to
help in selecting the best peer nodes to send a query, for example, the peer node that
returned the highest number of results from previous searches or the peer node that
had the shortest latency.

The study in [27] evaluated a similar heuristic that the peer nodes with more
files are more likely to be able to answer the query, called Most File Shared on
Neighbourhood (MFSN) which forwards the query to the neighbouring node shar-
ing the largest number of files. In accordance with these previous studies above,
these heuristic-based methods can generally achieve better performance than ran-
dom walkers.

In contrast to the above studies using only one heuristic parameter, DSearch
method in [28] puts two heuristics in consideration. In order to achieve a high

From Client-Server to P2P Networking 85

success rate and efficiency, queries are forwarded to the “good” nodes that are more
likely to have the requested files or can find the requested files with a high probabil-
ity in future hops. Two heuristics are considered to determine the “goodness” of a
neighbour: the number of shared files on the neighbour and the expected number of
accessible files in future hops via the neighbour. DSearch utilizes high-degree nodes
to find a wider range of accessible nodes, while using the neighbouring nodes that
shares a large number of files to discover the requested files. From the simulation
results, DSearch achieves a better performance when compared to the methods with
only one heuristic.

The principle behind these heuristic-based methods is to forward queries to more
capable peer nodes, for example, the peer nodes with the highest success rate of
searches, the peer nodes with the highest degree, or the peer nodes with most shared
files. However, such capable nodes may be over-loaded and become the victims of
their own success. Traffic unbalance is a significant limitation to these methods.

• Cached semantic information
In contrast to the second approach of maintaining simple statistical information,

the third approach enables each peer node to keep a routing index which contains
detailed semantic information about content of shared files. This information can
be collected by exchanging indices regularly with other peer nodes or caching the
historic record regarding the results of previous queries.

Routing Indices
Routing Indices (RI) [29] enable peer nodes to create query routing tables by

hashing file keywords and regularly exchanging those with their neighbours. Peer
nodes normally maintain additional indices of files offered by their overlay neigh-
bours and neighbours’ neighbours. In the RI system, shared documents are classified
into different categories of topics. Each peer node maintains the RI indicating how
many documents of which categories could be found through that neighbour. When
a new connection is established in the RI system, two peer nodes will aggregate
and exchange their own RI to each other. In order to keep data in RI up-to-date,
peer nodes will notify neighbours about the changes in the local RI caused by addi-
tion/removal of shared documents or joining/leaving of other neighbours.

When a peer node receives a query, the peer node needs to compute the goodness
of each neighbour for a query. The number of documents that may be found in a path
is used as a measure of goodness. If more documents are found through a particular
neighbour, this neighbour will be selected to forward a query.

Sripanidkulchai’s model
The idea of constructing “friend lists” has also been used in the Sripanidkulchai’s

model [30], which presents a content location solution in which peer nodes loosely
organize themselves into an interest-based structure. When a node joins the system,
it first searches the network by flooding to locate content. The lookup returns a set
of nodes that store the content. These nodes are potential candidates to be added to a
“shortcut list ”. One node is selected at random from the set and added. Subsequent

86 Lu Liu and Nick Antonopoulos

queries will go through the nodes in the shortcut list. If a peer node cannot find
content from the list, it will generate a lookup with Gnutella protocol. From their
results, a significant amount of flooding can be avoided which makes Gnutella a
more competitive solution.

NeuroGrid
NeuroGrid [31] is an adaptive decentralized search system. NeuroGrid utilizes

the historic record of previous searches to help peer nodes make routing decisions.
In NeuroGrid, peer nodes support distributed searches through semantic routing by
maintaining routing tables at each node [31]. In the local routing tables, each peer
node is associated with keywords regarding the content it stores. When a peer node
forwards a query, it will search for the peer nodes that are associated with the query
keywords. In each hop, NeuroGrid intends to find M matched peer nodes and then
forwards the query to these peer nodes. If there are not M matches found, the al-
gorithm will randomly select peer nodes in the routing table until M peer nodes are
selected.

In NeuroGrid, users’ responses to search results are stored and used to update
the meta-data describing the content of remote peer nodes. NeuroGrid can learn the
results from previous searches to make future searches more focused and seman-
tically routes queries according to the cached knowledge. However, NeuroGrid is
only effective for previously queried keywords and not suitable for networks where
peer nodes come and go rapidly [32].

5 Future Trends

Some potential future trends are outlined in this section.

5.1 Self-organising Systems

P2P is beneficial when removing a centralised server. On the other hand, new mech-
anisms are required to compensate for the server, especially for resource discovery
and network maintenance. However, owing to the lack of a centralised server, any
attempts of additional control could be difficult to achieve in the distributed P2P
architecture. In contrast, self-organisation could be a good way to solve the control
issues in the decentralised P2P architecture. Self-organisation is a process where
the organisation of a system spontaneously increases without being managed by an
outside source.

Human society is a self-organising system. Social networks are formed naturally
by daily social interactions. A social community is a group of people with com-
mon interests, goals or responsibilities which is formed spontaneously. By using
social networks, people can find some acquaintances that potentially have knowl-
edge about the resources they are looking for.

From Client-Server to P2P Networking 87

Similarly to social networks, where people are connected by their social rela-
tionships, two autonomous peer nodes can be connected if users in those nodes are
interested in each other’s data. If peer nodes can self-organise themselves like so-
cial networks, a large communication cost for peer group construction, maintenance
and discovery can be saved, which will significantly improve overall performance
of P2P networks.

5.2 Hybrid Systems

Since large-scale resource sharing is one goal of Grids, P2P networks and Grid
systems are starting to converge to a common structure, leading to application of
P2P techniques to Grid systems [33]. Some research has been done to try connect-
ing Grid Services and P2P networks (e.g., [4, 31, 32]). Unfortunately, there is still
not a good solution to seamlessly pull the two domains together. There are many
boundaries to connect Grids and P2P networks because of different architectures,
standards and protocols between them. Current Grid service standards need to be
extended, especially for service descriptions and annotations, by including addi-
tional attributes for peer’s specifications.

6 Conclusions

In this chapter, the evolution of the network architecture has been investigated from
client-server to P2P networking. P2P is beneficial when removing a centralised
server. On the other hand, new mechanisms are required to compensate for the
server. The main advantage of P2P architecture lies in its good scalability, agility,
resilience and availability. On the contrary, its major challenges lie in its efficiency,
dependability and security.

To address these challenges, hybrid systems combining the techniques of both
Grid and P2P computing could be potential solutions for the design of next genera-
tion distributed systems. By introducing P2P techniques into Grid computing, Grid
systems could be more scalable and resilient, removing the sing-point-of-failure.
With the cooperation of Grid computing environments, the usage of P2P networks
could be also broadened from simple file provision to more advanced services, such
as sharing redundant computing power for complicated scientific calculation and
sharing extra bandwidth for real-time video transmission.

References

1. Vance, A.: Google goes gaga for Opteron. Available from:
http://www.theregister.co.uk/2006/03/04/goog_opteron_sun/

2. Foster, I., Kesselman, C. (eds.): The Grid: Blueprint for a New Computing Infrastructure.
Morgan Kaufmann (1999)

88 Lu Liu and Nick Antonopoulos

3. Foster, I., Kesselman, C., Tuecke, S.: The Anatomy of the Grid: Enabling Scalable Virtual
Organizations. International Journal of Supercomputer Applications 15 (2001) 200–222

4. Qu, C., Nejdl, W.: Interacting the Edutella/JXTA Peer-to-Peer Network with Web Services.
Second International Conference on Peer-to-Peer Computing (2002)

5. Zhao, S., Stutzbach, D., Rejaie, R.: Characterizing Files in the Modern Gnutella Network:
a Measurement Study. SPIE/ACM. Multimedia Computing and Networking, San Jose, CA
(2006)

6. Cachelogic.: Trends and Statistics in Peer-to-Peer. (2005) Available from: http://
creativecommons.nl/nieuws/wp-content/uploads/2006/04/
CacheLogic_AmsterdamWorkshop_Presentation_v1.0.ppt.

7. Oberholzer, F., Strumpf, K.: The Effect of File Sharing on Record Sales: An Empirical Anal-
ysis. Journal of Political Economy 115 (2006) 1–42

8. Risson, J., Moors, T.: Survey of Research towards Robust Peer-to-Peer Networks: Search
Methods. Computer Networks 50 (2006) 3485–3521

9. Traversat, B., Abdelaziz, M., Pouyoul, E.: Project JXTA: A Loosely-Consistent DHT Ren-
dezvous Walker. Sun Microsystems, Inc (2003)

10. Lo, V., Zhou, D., Liu, Y., GauthierDickey, C., Li, J.: Scalable Supernode Selection in Peer-
to-Peer Overlay Networks. Second International Workshop on Hot Topics in Peer-to-Peer
Systems, La Jolla, California (2005)

11. Mastroianni, C., Talia, D., Verta, O.: A P2P Approach for Membership Management and
Resource Discovery in Grids. 2005 International Symposium on Information Technology:
Coding and Computing, Las Vegas, NV (2005)

12. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A Scalable Peer-
to-Peer Lookup Service for Internet Applications. ACM SIGCOMM, San Diego, CA (2001)

13. Salter, J., Antonopoulos, N.: ROME: Optimising DHT-based Peer-to-Peer Networks. 5th In-
ternational Network Conference, Samos, Greece (2005)

14. Rowstron, A., Druschel, P.: Pastry: Scalable, Distributed Object Location and Routing for
Large-scale Peer-to-Peer Systems. IFIP/ACM International Conference on Distributed Sys-
tems Platforms, Heidelberg, Germany (2001)

15. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A Scalable Content-
Addressable Network. ACM SIGCOMM, San Diego, CA (2001)

16. Maymounkov, P., Mazi‘eres, D.: Kademlia: A Peer to Peer Information System Based on the
XOR Metric. Internation Workshop on Peer-to-Peer Systems, Cambridge, MA (2002)

17. Antonopoulos, N., Exarchakos, G.: G-ROME: A Semantic Driven Model for Capacity Shar-
ing Among P2P Networks. Journal of Internet Research 17 (2007) 7–20

18. Salter, J.: An Efficient Reactive Model for Resource Discovery in DHT-Based Peer-to-peer
Networks. Department of Computing, Vol. PhD. University of Surrey, Guildford, Surrey
(2006)

19. Li, J., Stribling, J., Morris, R., Kaashoek, M.F.: Bandwidth-Efficient Management of DHT
Routing Tables. 2nd Symposium on Networked Systems Design and Implementation, Boston,
MA (2005)

20. Lv, Q., Cao, P., Cohen, E., Li, K., Shenker, S.: Search and Replication in Unstructured Peer-
to-Peer Networks. ACM SIGMETRICS, Marina Del Rey, CA (2002)

21. Adamic, L.A., Lukose, R.M., Puniyani, A.R., Huberman, B.A.: Search in Power Law Net-
works. Physical Review 64 (2001) 046135-046131–046135-046138

22. Yang, B., Garcia-Molina, H.: Efficient Search in Peer-to-Peer Networks. International Con-
ference on Distributed Computing Systems, Vienna, Austria (2002)

23. Chawathe, Y., Ratnasamy, S., Breslau, L., Lanham, N., Shenker, S.: Making Gnutella-Like
P2P System Scalable. ACM SIGCOMM, Karlsruhe, Germany (2003)

24. Xiao, L., Liu, Y., Ni, L.M.: Improving Unstructured Peer-to-Peer Systems by Adaptive Con-
nection Establishment. IEEE Transactions on Computers 54 (2005) 176–184

25. Liu, Y., Xiao, L., Liu, X., Ni, L.M., Zhang, X.: Location Awareness in Unstructured Peer-to-
Peer Systems. IEEE Transactions on Parallel and Distributed Systems 16 (2005) 163–174

From Client-Server to P2P Networking 89

26. Tsoumakos, D., Roussopoulos, N.: Adaptive Probabilistic Search for Peer-to-Peer Networks.
Third International Conference on Peer-to-Peer Computing, Linkoping, Sweden (2003)

27. Li, X., Wu, J.: A Hybrid Searching Scheme in Unstructured P2P Networks. International
Conference on Parallel Processing, Oslo, Norway (2005)

28. Liu, L., Antonopoulos, N., Mackin, S.: Directed Information Search and Retrieval over
Unstructured Peer-to-Peer Networks. the International Computer Engineering Conference,
Cairo, Egypt (2006)

29. Crespo, A., Garcia-Molina, H.: Routing Indices for Peer-to-Peer Systems. International Con-
ference on Distributed Computing Systems, Vienna, Austria (2002)

30. Sripanidkulchai, K., Maggs, B., Zhang, H.: Efficient Content Location Using Interest-Based
Locality in Peer-to-Peer Systems. IEEE Infocom, San Francisco (2003)

31. Joseph, S.: NeuroGrid: Semantically Routing Queries in Peer-to-Peer Networks. International
Workshop on Peer-to-Peer Computing, Pisa, Italy (2002)

32. Joseph, S.: P2P MetaData Search Layers. International Workshop on Agents and Peer-to-Peer
Computing, Melbourne, Australia (2003)

33. Marzolla, M., Mordacchini, M., Orlando, S.: Peer-to-peer Systems for Discovering Resources
in a Dynamic Gridstar, Open. Parallel Computing 33 (2007) 339–358

34. Wang, M., Fox, G., Pallickara, S.: A Demonstration of Collaborative Web Services and Peer-
to-Peer Grids. International Conference on Information Technology: Coding and Computing
(2004)

35. Prasad, V., Lee, Y.: A Scalable Infrastructure for Peer-to-Peer Networks Using Web Service
Registries and Intelligent Peer Locators. 3rd IEEE/ACM International Symposium on Cluster
Computing and the Grid (2003)

Examining the Use of Peer-to-Peer Networks
from an Activity Perspective

Jorn De Boever and Dirk De Grooff

Abstract Since the introduction of Napster in 1999, millions of Internet users have
exchanged massive amounts of files via P2P (Peer-to-Peer) file-sharing networks.
Notwithstanding the widespread penetration of these systems among Internet con-
sumers, little is known about the usage process. Therefore, the aim of this chapter is
to examine the usage of “illegal” P2P networks by means of an exploratory, quali-
tative study. The main findings revealed significant differences between the uses of
various systems. Bittorrent clients were mainly used to download large files such
as video, movies, and complete albums, while Gnutella clients were particularly
utilized for small files such as single songs. The results indicate that the type of con-
tent, the characteristics of the client, the omnipresence of fake files and malware,
the users’ motivations, the users’ lifestyles and the presence of bandwidth caps had
an impact on how the participants utilized P2P systems.

Key words: Behavior, Activity theory, Motivations, Trust, Quality, Context

1 Introduction

It is widely recognized that end users play an important role in the success or failure
of P2P networks as users have to share their resources and files with other peers.
Therefore, it is remarkable that user studies – such as [17, 27] – are still underrep-
resented in the P2P technology research domain.

Jorn De Boever
Centre for UX Research / IBBT, K.U.Leuven, Parkstraat 45 Bus 3605 - 3000 Leuven - Belgium,
e-mail: jorn.deboever@soc.kuleuven.be

Dirk De Grooff
Centre for UX Research / IBBT, K.U.Leuven, Parkstraat 45 Bus 3605 - 3000 Leuven - Belgium,
e-mail: dirk.degrooff@soc.kuleuven.be

X. Shen et al. (eds.), Handbook of Peer-to-Peer Networking, 91
DOI 10.1007/978-0-387-09751-0 4, © Springer Science+Business Media, LLC 2010

92 Jorn De Boever and Dirk De Grooff

Up to now, most research in this area has focused on what types of files users
download from P2P systems, leaving questions open so as to what motivates users
to employ these systems or the contexts in which such actions take place. Motivated
by this gap in the literature, we will endeavor to examine the usage process of P2P
networks, which can be summarized in the following key questions: what do in-
dividuals use P2P systems for, what motivates their usage, how do they use these
different systems in order to gratify their needs, and what is the relationship between
the motifs/objects, behavior and context. This study investigates these issues, with
specific attention to comparing the use of bittorrent and Gnutella clients. These two
systems were compared as we found that both types of P2P clients were used in dif-
ferent ways and for different purposes. It should be noted that bittorrent is written
in lower-case letters as we refer to all bittorrent clients – e.g. Azureus, BitComet –
which is not limited to the BitTorrent client.

This chapter has been organized in the following way. The first section depicts the
theoretical framework that was used throughout the analysis. In the second section,
we elaborate on the methods that were adopted to carry out this research. Subse-
quent sections describe and compare the usage process of two cases, i.e. the use of
bittorrent and Gnutella clients.

2 Theoretical Framework: Activity Theory

This section describes activity theory as the theoretical framework for this study.
First, we will outline the introduction of activity theory in Human-Computer Inter-
action (HCI) research. Next, we will discuss the importance of context in activity
theory. Finally, we will explain several concepts of the activity system.

2.1 Activity Theory and Human-Computer Interaction

Activity theory has its foundations in Russian cultural-historical psychology, since
it was developed by Vygotsky and Leontiev [4, 23, 24, 28]. Bødker [5, 6] introduced
activity theory as a theoretical framework in HCI research which inspired many aca-
demics, e.g. [25, 31, 36]. Since then, Information Systems researchers have adopted
this theory as well, e.g. [14].

During the 80s/90s, activity theory had been introduced in HCI research in re-
sponse to some flaws of cognitive psychology which considered users to be passive
information processing subjects whose actions seemed to be isolated from contex-
tual influences. In contrast with this former cognitive psychology perspective, activ-
ity theory stresses the importance of considering technologies as mediating artifacts
that should be examined within the meaningful context of use. However, this does
not imply that activity theory rejects cognitive psychology, but that it should be
regarded as an expansion of existing knowledge.

Bittorrent versus Gnutella Clients: The Use of Peer-to-Peer Networks 93

Gay and Hembrooke [19] consider the following aspects to be central to activ-
ity theory: “The emphasis on meaning through action, the connection between the
individual and the social, and the role of mediating tools provide the kernel around
which activity theory has developed” (p. 2). Activity, which puts a meaning on our
actions, has been defined as follows: “Activity (. . .) is understood as a purposeful
interaction of the subject with the world. (. . .) The very concept of activity includes
its orientation toward an object, an object that both motivates and directs the ac-
tivity” [23]. These quotes stress that the meaning of users’ actions result from a
meaningful interaction between the motifs/goals/intentions of users, the context and
behavior.

Mediation is considered to be one of the most important concepts within activity
theory, as users’ purposeful interaction with the world is mediated by artifacts. The
concept of mediation is not limited to physical artifacts, as for instance a language
is considered to be an artifact as well [2, 21]. Users are looked upon as active,
intentional subjects that act within specific contexts and utilize artifacts that mediate
their actions with the environment [23]. For instance, P2P file-sharing networks
should be considered as mediating artifacts with which users try to achieve certain
goals and gratify specific needs. Although we focus on the use of P2P systems, these
P2P networks are not the only mediating artifacts in the activity, as e.g.: bandwidth
is needed to be able to exchange files; users must have e.g. media players or an iPod
to consume the content; etc. [10].

It should be noted that activity theory is not an explanatory theory, but it pro-
vides conceptual tools that allow researchers to study the complex context in which
artifacts are used so as to be able to reflect, compare and discuss results [31].

Besides the strengths of activity theory, it has some flaws as well. One of the
major drawbacks of this theory is that it has not been made fully operational in HCI
research [21]. Although several authors have attempted to generate methods based
on activity theory, there is still much work to be done. For a comparative analysis of
these methods we refer to [33].

Finally, we have to mention that, whereas most papers about activity theory in
HCI are related to designing new systems and interfaces, we will focus on evaluation
of the use of P2P systems as we want to examine existing practices of the use of P2P
systems.

2.2 Importance of Context

Because of the unpredictable, circumstantial “situatedness” of every action, a state-
ment only regarding the motivations or intentionality of users is insufficient, as it
reveals little information about how purposeful action eventually occurs: “every
course of action depends in essential ways upon its material and social circum-
stances. (. . .) The significance of actions, and their intelligibility, resides (. . .) in
a contingently constructed relationship between observable behavior, embedding
circumstances and intent” [35]. For this reason, although the actions are guided

94 Jorn De Boever and Dirk De Grooff

by initial motivations, users’ behavior should be considered in their specific con-
texts. Therefore, Kaptelinin and Nardi [23] argue that HCI research should take
“the meaningful context of a subject’s interaction with the world” (p. 34) as the cen-
tral point of interest and that the activity system should be studied in real situations
instead of in artificial environments with artificial tasks. In other words, the use of
artifacts – in this case, P2P systems – should be studied in their real-life context.

This reasoning implies that the question – how people use P2P file-sharing sys-
tems – will depend in important ways on contextual factors such as the presence
of fake or corrupted files, the fact that file-sharing is often illegal, the availability
of bandwidth, the lifestyle of users, etc. As we will illustrate in the following para-
graphs, reviewing the literature is important to gain a first insight in different context
aspects that might be of significance.

A recent study points out that media usage patterns are to a large extent being
influenced by users’ lifestyle [10]. Younger people, aged 18 to 34, often have the
following characteristics:

• They have irregular schedules.
• They possess different kinds of media: TV, DVD-players, computers, MP3 play-

er/iPod, mobile phones, video game consoles, etc.
• They expect unrestricted accessibility and portability of content.

In addition, Condry [12] studied the culture of file-sharing in the US and Japan,
and found that people retrieve files from P2P networks because: it is free of charge,
they are dissatisfied with the medium CD (consumers have to pay the entire album
whereas they mostly like only a few songs), it is a kind of protest against the pow-
erful media industry, it allows them to control the files themselves.

LaRose et al. [26] reminds us that many students love to listen to music, have a
lot of leisure time, but they often dispose of a limited budget. These authors exam-
ined several aspects that might determine the levels of file-sharing among college
students. They found for instance that that the expectation of obtaining new and
rare content motivated the usage of P2P systems in important ways. The chances of
downloading content of poor quality and the moral unacceptability of illegal down-
loading discouraged the use of P2P networks. The fear of downloading corrupted
content is a reasonable fear as different studies demonstrated the presence of mal-
ware [20, 34] and fake content [11].

Several studies have been conducted to analyze users’ motivations to utilize P2P
networks [9, 15]. These studies have found that people use P2P file-sharing systems
for instance because they want to: have control over the content, have instant grat-
ification, find rare or unreleased content, sample content before buying it, promote
the content they like and save money.

2.3 Activity System

Applications, such as P2P systems, are cultural artifacts that mediate certain ac-
tions in order to obtain a certain object. The link between the subject and the object

Bittorrent versus Gnutella Clients: The Use of Peer-to-Peer Networks 95

is bridged by one or several mediating components. The importance of mediating
artifacts is especially crucial for HCI studies as computers, applications and their in-
terfaces are tools that mediate the relation of people with the environment [19, 25].

The subject, who might consist of an individual or a group, utilizes mediating
artifacts to reach a certain object. The transformation of an object into certain out-
comes motivates the activities [25]. The following example illustrates this model: a
user (subject) will adopt a P2P client (mediating artifact) that allows him to down-
load music (object) which he wants to consume to make working on his computer
a more pleasant experience (desired outcome). This model represents an activity
system at an individual level.

The model, mentioned in the previous paragraph, was extended by
Engeström [16] who had primarily work environments in mind when developing
his model. In the previous model, which represents the activity system at an indi-
vidual level, the relation between the subject and object was mediated by artifacts,
whereas in the activity system of Engeström, the subject-object relationship was
enlarged with a third component, i.e. community. This led to two additional re-
lationships: (1) the relationship between the subject and the community which is
mediated by rules and (2) the relationship between the community and the object
which is mediated by the division of labor. We argue that Engeström’s model has
been build from the perspective of a work setting where people have to obtain a
collective objective, which is the reason why we do not adopt this model as the use
of P2P systems primarily turned out to be an individual practice where peers cannot
interact in a direct way.

In Leontiev’s activity theory approach, the structure of an activity consists of
three layers, which includes activities, actions and operations [4, 23, 24]. This hier-
archy is displayed in Table 1. Each activity has a certain, often unconscious, object,
which users try to attain. Kaptelinin [22] suggests that an object might be consid-
ered as a collection or a set of motives. In addition, activities do not take place in
isolation, but they are part of a web of activities that strive for the same or connected
objects which put a meaning on users’ behavior [7].

Table 1 Hierarchy of an activity system

Hierarchy Orientation Characteristics

Activity – Why? Object/set of motives Individual/collective
Actions – What? Goals Individual, conscious
Operations – How? Conditions Individual, unconscious

Next, an activity is performed by a number of actions which are guided by spe-
cific conscious goals. The execution of all the actions might result in the completion
of the activity or the attainment of the motive. Finally, the actions in their turn are
carried out by several unconscious, routine operations which are oriented toward
the conditions of a specific context.

96 Jorn De Boever and Dirk De Grooff

This hierarchy should not be considered as a static entity in that for instance
actions can evolve into operations and vice versa. The concepts activity, actions and
operations can be made operational by asking respectively the following questions:
“why something takes place? what takes place? and how is it carried out” [7].

In practice, the distinction between actions and operations is difficult to retrieve
from analysis, which results from the fact that during observations it is practically
impossible to discover what is (not) automated as we ask the respondents to explain
what they are doing. For this reason, we will make no distinction between actions
and operations. By letting users think out loud, we turn their operations into actions
as these users have to reflect on their behavior. This movement from operations
to actions by reflection is called conceptualization [4–6]. The other way around,
actions can turn into operations by a process of automation.

3 Methods

Activity theory does not suggest specific methods for examination as this should
depend on the research object/questions [31]. In our research of the use of P2P
systems, we have therefore combined three methods that served best to gather the
right data in order to answer our research questions. In chronological order, these
methods included: (1) incident diaries or logbooks, (2) observations and (3) semi-
structured in-depth interviews.

We sampled 25 participants (aged 15–35 years) that utilized existing P2P file-
sharing software such as BitComet, Azureus, Limewire, KaZaA, etc. We have cho-
sen this age category for several reasons. First, several studies demonstrated that the
penetration of P2P network usage is the largest in this age group [1, 18]. Second, as
we are conducting qualitative research, we assumed that elder age categories would
use P2P systems differently, with other motivations and needs in comparison with
younger users. Because qualitative inquiries only allow gathering information from
small samples, diverging the sample further would probably harm the validity of
this research.

Before the commencement of the actual research, users that were willing to par-
ticipate had to fill in an online registration form in which general context information
was gathered, e.g.: which P2P system was used, frequency of use, personal infor-
mation, etc. This information allowed us to recruit a representative sample of users
for our research. After the recruitment phase, the selected users were asked to regis-
ter their behavior on P2P networks by means of an online incident diary or logbook.
The participants had to complete the online incident logbook each time they used the
P2P system, without changing their natural behavior. In this sense, the participants
were observers themselves as they had to register their own behavior. The diary
method has proven to be especially useful in situations where users do not utilize an
application frequently [13, 37]. For instance, most people utilize P2P systems only a
couple of times a week or month, which makes it difficult for researchers to observe
users’ behavior. Another reason to use incident diaries is the problem that users have

Bittorrent versus Gnutella Clients: The Use of Peer-to-Peer Networks 97

difficulties in recalling their actions which might cause inaccurate and unreliable re-
sults [29]. In other words, diaries as an observational technique decrease the danger
of biased anticipatory self-reporting from the respondents. Furthermore, incident
logbooks allow us to gather information without interrupting the natural behavior
of the participants. The information from this diary method allowed us to create a
profile of each person’s use of his/her P2P system [30]. The information gathered
via the incident logbook related for instance to: (1) how users came across certain
content, (2) which files they downloaded/uploaded/injected, (3) which problems and
experiences they had while using P2P networks and (4) what users were intending
to do with the files after they had downloaded them.

Next, after having completed their incident logbooks several times, the partici-
pants were contacted for an observation/in-depth interview. The respondents were
asked to contact us the next time they wanted to download a session in order to allow
us to observe them while they were using their P2P software in their natural environ-
ment. We decided to observe the participants as observations have already proven to
be “(. . .) excellent for collecting rich, detailed data and for obtaining a holistic view
of the process or domain” [13]. During the observations, the participants were asked
to tell us what they were doing and why they were using the application in such a
way. By letting participants think aloud, we were able to turn unconscious opera-
tions into conscious actions, i.e. conceptualization, which allowed us to gain a more
elaborate understanding of the users’ behavior. These observations were videotaped,
by focusing a video camera on the participant’s screen, so as to be able to analyze the
observations afterwards. These observations allowed us to gain insight in the pro-
cess of using P2P file-sharing systems: the sequence of actions, the artifacts used to
support the actions, the different focuses, etc.

Further, information, collected via incident logbooks and observations, were un-
raveled in semi-structured in-depth interviews. Additionally, during the interview,
data was gathered as well which cannot be collected during observations or inci-
dent diaries, e.g. data regarding motivations. The value of interview data has been
questioned in the HCI domain in terms of its reliability as it is often claimed that
users cannot accurately tell what they have been doing. Although we agree with
this view, we argue that interview data are quite reliable when it comes to gathering
data about motives and goals. This view is supported by Nardi [32] who posed that
although the use of interviews is problematic on the level of operations, it still has
a reliable function on the level of actions and objects. For the previously mentioned
reasons, we argue that the diary-observation-interview approach provided the most
appropriate combination of methods to explore P2P network usage in its context.

Finally, the data analysis was performed using NVivo [3]. First, the information
was coded in a detailed way so as to be able to distinguish different categories or
themes. Next, a tree of codes was generated where some of the codes were merged
and others split into new codes. Finally, we explored which of the variables were
associated with each other. The results of this analysis are treated in the following
sections. Based on this analysis, we were able to explore the process of using two
different types of file-sharing systems, namely bittorrent and Gnutella clients.

98 Jorn De Boever and Dirk De Grooff

4 Understanding the Use of P2P Networks

The aim of this chapter is to examine the following research questions: what do in-
dividuals use P2P networks for (object), what motivates the participants’ usage of
these systems (motivations), how do they use these file-sharing networks in their
environment (behavior), and what is the relationship between motives/objects, be-
havior and context. In this section we will present the results of two cases, i.e. the
use of bittorrent and the use of Gnutella clients. The findings will be illustrated by
some quotes from the participants. In these quotes, we use for instance “R 22” to
refer to the participant with that number. Each participant is named with a number
to guarantee anonymity. In addition, “I” refers to the interviewer.

4.1 Process of Using Bittorrent Clients

Before continuing, some bittorrent terminology will be explained first to help read-
ers, unfamiliar with bittorrent related terms, better understand this section.

Users that want to download content via bittorrent first have to download a torrent
file from a website (i.e. a torrent site). A torrent file is a meta-data file that contains
information concerning the location of the tracker of specific content. A tracker
keeps track of which peers have or download which parts of the desired file. By
loading a torrent file in their bittorrent client, a tracker is contacted which gives the
bittorrent client all the information needed to start downloading the desired file.

The bittorrent case is organized as follows. The first section will present the dif-
ferent levels of motivations, and the subsequent section will deal with the usage
process of bittorrent clients.

4.1.1 Different Levels of Motivations

In our analysis, we found different levels of motivations related to different aspects
of the use of P2P file-sharing systems: the object, the desired outcome and the mo-
tivations for using certain artifacts, i.e. artifact motivations.

Users’ Objects and Desired Outcomes

The object and the outcome are related as the transformation of the object in desired
outcomes motivates and directs activity [25]. As described in the theoretical part of
this chapter, the object of users can be captured by exploring what users actually
want to download. Table 2 presents the types of content that our bittorrent partic-
ipants attempted to download. The numbers in Table 2 have been gathered from
17 bittorrent users their incident logbooks. We distinguished the following types of
content: audio, books, video/movie/TV series, photos, maps, games and software.

Bittorrent versus Gnutella Clients: The Use of Peer-to-Peer Networks 99

The largest share of content, downloaded via the bittorrent network, consisted of
video content (57%), followed by music content (35%). In other words, the object
is to download primarily video and audio files which users want to possess. The
object is rather similar in all the activity systems of the participants, as they all want
to download certain files. It should be noted that the share of video files would have
been even larger if we would consider the file sizes instead of the amount.

Table 2 Types of content – bittorrent

Type N % N failed % Failed

Audio 57 35 15 26
Books 3 2 1 33
Video 91 57 34 37
Photos 0 0 - -
Maps 4 2 0 0
Games 3 2 2 67
Software 3 2 0 0

Total 161 100 52 32

Interestingly, there are a lot of files that have failed to download. Of all the files in
the incident logbook, 32% of the files were not found or downloaded. Users failed
to find or download 26% of audio files and 37% of video content. It should be
noted that, in the case of video content, the share of 37% has to be nuanced, as
many participants indicated that some files did not succeed downloading during that
particular session, but it did download in the course of several subsequent sessions.
It is hard to predict, but 37% is definitely an overestimation of the amount of video
files that did not download. In the case of the audio files, we have to notice that
many of the audio files were entire albums, which were wrapped up in archive files
such as RAR files. In sum, the bittorrent network is mainly used to download large
files such as movies, TV series and entire music albums.

If a person attains an object, this person will hope that the object will result in
the desired outcome. The desired outcomes of the participants turned out to be very
diverging because it concerns different types of files and different personal prefer-
ences. For instance: the desired outcome of playing games is fun and amusement;
the outcome of downloading games for someone else is to maintain good social rela-
tionships; the outcome of watching movies and series is entertainment and pastime;
the outcome of downloading GPS maps is to enjoy mountain bike trips; the outcome
of downloading software is to be able to study; university students download movies
to drive away boredom during evenings; etc.

In other words, every subject downloads files with a fairly similar object – i.e.
possessing files – whereas the outcomes of downloading these files are varying from
case to case, depending on the particular circumstances. Most users have multiple
outcomes in mind as they try to gratify different needs, e.g. on one moment they

100 Jorn De Boever and Dirk De Grooff

want entertainment by watching a movie, whereas on another moment, they will
download software to practice for college. In other words, one artifact, in this case
P2P networks, can be used in different activities to reach different outcomes. This
stresses the role of P2P systems as mediating artifacts that are utilized to aid reach-
ing desired outcomes, which implies that the use of P2P systems is not a motive in
itself.

Artifact Motivations

In addition, a topic, which could not be discerned in activity theory, came to the fore
in our data collection, namely “artifact motivations”. This relates to the character-
istics of the artifact, the service and the content which explain why end users have
chosen a certain artifact, in this case P2P systems. We found that artifact motivations
guide and direct behavior in important ways as will be illustrated in the following
examination.

Some of the users download via bittorrent clients as they want to have the files
physically on their own computer as this allows them to have control over how they
consume content:

R 11: But, if you want to watch a movie. . . I think it’s easier to have movies on your com-
puter. You can invite your friends. You can arrange a time when you want to watch it. You
can stop it, you can watch it again.

Peers want to gain full control over the content they want to consume, which
relates to the time and space of consumption. In other words, some of the users
want to decide themselves when and where they are going to watch certain con-
tent. This attitude primarily emanates from dissatisfaction with how the traditional
television industry has organized itself: linear television, commercials, different re-
lease moments in different countries, etc. Some of the series are not available in
some countries whereas they are available via P2P systems. One of the participants
expressed this view as follows:

R 22: Actually, it’s a lot more practical compared to TV. On TV, you have commercials and
it’s on fixed points in time. Whereas, with P2P, you can watch it anywhere, you can take it
anywhere, you can save it on your hard drive. You don’t have to wait long; you can do it
whenever you want to. (. . .). For instance, other movies, such as Japanese movies, that are
hard to get, that is something that I actually download quite a lot. That isn’t broadcasted on
TV here, and if it’s on TV, then it mostly has voice-overs and that kind of stuff. (. . .). I like
that it’s really fast. For example, for a Japanese video, if they broadcast it on Wednesday,
it’s online on Thursday. “Lost” for example is already available one hour later on bittorrent.
So, it’s really fast. Sometimes, there are movies available that haven’t been in the movie
theatre yet.

In a nutshell, users want to gain control of the content. First, users do not want
to be limited by what their TV channels offer them, as they downloaded series that
were not available on local TV channels. Second, end users want to consume the
content as soon as it has been released somewhere in the world. Most popular series
and movies are first released in the USA, and then in other parts of the world. This

Bittorrent versus Gnutella Clients: The Use of Peer-to-Peer Networks 101

entices many curious users to download these series via P2P networks as there are
always peers that make this content available on torrent sites. Third, it is important to
end users to have the content stored on their computer as this allows them to watch
the content whenever and where they want to. In this sense, they escape the strict
TV schedules and they are able to watch at their own pace, which is more tuned to
their own time schedule. Fourth, a lot of peers hate commercials that interrupt their
viewing experience, which motivates them to download it illegally via P2P systems.
Some of the participants were real fans as: they wanted to watch their favorite TV
programs as soon as possible, they watched it repeatedly; they often bought the
content afterwards; and they wanted their friends to see these series as well. All
these “fan” aspects stimulated these users to download content via P2P networks.

It should be mentioned that the choice of artifacts might be influenced by the lack
of other artifacts as well, namely the lack of a TV or a TV-subscription. As many
participants only had a computer and an Internet subscription, they turned to P2P
systems to download and consume content.

Another (obvious) reason for downloading via P2P systems, which is very preva-
lent, is the fact that it is free of charge. Users save money as they do not have to pay
a DVD (rental) shop, or a cinema. However, as already mentioned, some of the par-
ticipants buy some of the content afterwards, which can be described as sampling:
they consume the content first, and if it meets their needs in terms of quality, they
purchase it. Finally, two other reasons for utilizing P2P systems relate to the fact
that it is time-saving and there is a lot of content available that is difficult to retrieve
elsewhere on the Internet. In addition, using P2P networks to download movies is
time-saving as people do not need to leave their house e.g. to rent a DVD. Finally,
the availability of the desired content, without P2P systems, is rather limited on the
Internet and on TV.

4.1.2 Bittorrent Peers’ Behavior

In this section, we will describe the usage process of bittorrent clients starting from
how users search for content till how they will consume the content.

Search Process

The search process of bittorrent users proved to be very complex as users want to
check whether (1) certain content will fit their taste, (2) they can trust the content,
(3) the content has adequate QoC (Quality of Content), and (4) the content can be
downloaded in a fast way. These aspects can be considered as goals that guide users’
actions. QoC refers to the quality of sound and images of certain content.

First, the content users search for originates from different sources of inspira-
tion. Most users do not search precipitately for content as, in most cases, users
know what they are willing to download in advance. They encounter content for
instance because of recommendations of friends or acquaintances. Other sources of

102 Jorn De Boever and Dirk De Grooff

inspiration are e.g. movie reviews in newspapers, commercials on TV, websites that
recommend artists that might suit the users’ music taste, posters in movie theatres,
DVD covers in stores, information on the Internet in general (blogs, forums, spe-
cialized websites, chat boxes, etc.). For instance, Internet Movie Database proved
to be a popular source to search for new content. However, sometimes, users do not
utilize these artifacts, and they try to remember content – e.g. a song – when they
hear it on the radio and they download it later on. Fans of series sometimes even re-
member on which days a new episode is going to be released, and on that day, they
search for the new released episode. Finally, several users browse through titles and
download content arbitrarily if it seems interesting to them. In these actions, users
are primarily concerned with whether the content they search for will fit their taste.
To achieve this goal (i.e. fit between the content and personal preferences) they use
one or several of the above mentioned artifacts.

Further, trust emerged to be a major issue on bittorrent as every participant of this
research had already encountered fake or malicious content. As we will demonstrate,
some users spend a lot of time checking whether certain content is reliable or not.
This fear has been expressed by one of the participants in the following way:

R 1: There’s a high level of uncertainty with P2P. And that’s no good. There are so many
spoofs, there are so many people with bad intentions that are seeding that kind of stuff. For
me, that’s to much insecurity.

Some users first surf to release websites – such as NFOrce and VCDquality – that
publish which files have been released by which groups. As these are solely release
websites, torrent files cannot be downloaded from these kinds of websites. People
use these release websites for several reasons. First, they want to make sure that it
is possible that an episode or a movie has been released. In this way, they know that
when they encounter a certain file in search results whether this file might be real
or not. In addition, users can verify the QoC on sites such as VCDquality, as it pro-
vides ratings of video/audio/movie, type of release, comments and jpeg-previews.
Type of release has been valued to be important as this reveals much information
about the QoC. For instance, in comparison with DVDRips, “CAM” versions are
less appreciated as these are rips that have been generated by filming a movie with
a video camera in movie theatres. Further, the trustworthiness of releases can be
verified by controlling which groups have released it and the comments that other
users have provided. Groups are persons that release content on for instance torrent
sites. The above mentioned practices, mediated by release sites, can be regarded as
actions to guarantee QoC and reliability. The information, users find on these re-
lease sites, is then utilized to generate search strings on torrent sites. Next, torrent
sites, such as Mininova and The Pirate Bay, are websites where users can search and
download torrent files. Or translated in bittorrent language, these websites contain
trackers that allow users to download torrent files. Torrent files keep track of which
peers make pieces of a specific file available so other users are able to download the
requested file. To increase the range of their search, users often visit meta-search en-
gines, such as Torrentz and TorrentPond, which search for torrent files on different
torrent sites simultaneously to increase the chances for satisfactory search results.
On torrent sites and meta-torrent-search engines, users have the following goals:

Bittorrent versus Gnutella Clients: The Use of Peer-to-Peer Networks 103

(1) to find the right torrent files in the search results, (2) to guarantee QoC, (3) to
ensure the trustworthiness of content and (4) to increase the download speed.

It is interesting to note that some users have acquired specific search strategies
in order to limit the amount of useless search results and to ensure that they have
the right, most qualitative and most reliable file. To refine the search results, con-
sumers of series often add the number of the season and the number of the episode,
e.g. “s02e9”, in the search string to assure that they have the right file. Further-
more, while searching, users often include the release type, e.g. “DVDRip”, and the
name of a trusted group, e.g. “aXXo”, in their search strings. With regard to the re-
lease type, the QoC of DVDRips is perceived to be superior in comparison with e.g.
“CAM” versions. Concerning the release groups, aXXo is a renowned and trusted
group that regularly releases DVDRips. Peers enter these kinds of terms, such as
“aXXo” and “DVDRip”, with the aim of guaranteeing the trustworthiness and QoC.

R 11: aXXo, I don’t know what it is, but I’ve heard from a friend that, when you open that,
that it always has good quality and that it’s the right movie. Because it might happen that
it’s another title. (. . .).

I: Are there other things that you pay attention to, to see whether it is reliable or not?

R 11: Yeah, mostly aXXo. I never had trouble with that. So I trust that.

Next, users press the search button and a search result of torrent files appears.
In the search results, users pay attention to several things. Some users take a look
at the file name to make sure that it is the right version as the file name often con-
tains information such as: the group, type of release, title, language of subtitles,
etc. Moreover, several users pay attention to the comments, which accompany most
of the search results, with the aim of verifying the trustworthiness of the file and
sometimes the QoC. The following quote illustrates this point:

R 13: Yeah, certainly in the case of movies. I almost always take a look at the comments.
Not only to see whether there is a virus on it, or that it’s real or fake, but also because it says
whether the quality is good and whether it’s a real DVDRip. Because, it often turns out that
it was videotaped in a cinema with bad sound and bad images. And I don’t want that, so I
check it a lot.

In addition, some users take a look to the more detailed descriptions of the torrent
so as to make sure that it is the right file in the right format and that it does not
contain files that are redundant.

Further, the file size is also important in terms of trustworthiness, QoC and speed.
We have to remark that the size is an issue as well as the participants in our re-
search had a monthly restricted amount of bandwidth. Because of these bandwidth
limitations, most users do not download High Definition (HD) versions of content.
Smaller versions of content download faster as well in comparison with the HD
versions.

R 22: (. . .) And you can always choose between HDTV. . . It’s actually always. . . Well, it’s
always HDTV, but you can choose between an HD or a Standard Definition (SD) version.
An HD, that’s about 1 GB or so, so that weighs. In most cases, I take SD versions because
it’s better to run your computer and it’s also better for your (bandwidth) limits.

104 Jorn De Boever and Dirk De Grooff

However, when a file is too small, several users said that it is a sign to them
that the content is either fake or that it has poor quality. Other reasons for paying
attention to the content size are: limited storage capacity and being able to burn it
on a CD.

R 24: I try to have content that’s about 700 MB, then its quality is good enough. That’s one
CD. If it’s, as here for instance (shows on computer), 1,37 GB, then it’s actually way too
much. You don’t need that. It takes longer to download and it consumes more storage space.

Another aspect that turned out to be important is the number of seeders and
leechers. A seeder refers to a user who offers an entire file, and a leecher is a user
who offers one or several parts of a file. The primary goal of checking the number
of seeders and leechers is the download speed. The more people sharing the content,
the faster the file will be downloaded. Moreover, the number of seeders/leechers is
important as some users reason that if there are a lot of people who possess the
content, then there is a good chance that it is not a fake file. The other way around,
if a file has only a limited amount of seeders, the file is considered to be suspicious.

R 14: It mainly depends on the number of seeds. If there are 24.000 people who have that
file, then it’s like: “24.000 people, they won’t all do it to fool me”.

In summary, on the release sites and torrent sites, all the above mentioned tools –
e.g. comments, search engines, file name, ratings, groups, number of seeds, file size,
etc. – can be considered as artifacts that aid users in their actions to achieve goals
such as: finding the right torrent files, ensuring QoC and reliability, and guaranteeing
fast downloads. Some of the users utilize most of the mentioned artifacts, whereas
others only use a few of them.

Download and Post-Download Actions

After finishing this rather lengthy part of the usage process, users decide which of
the files meet their goals, in terms of e.g. QoC and reliability, and they download
the torrent file. In most cases the torrent file opens automatically in the bittorrent
client and starts downloading the requested file. What users do while the file is
downloading is very diverging. Some users let their P2P client download the content,
while doing other things in the meanwhile. Other users check once in a while how
the download is progressing and whether the download is completed or not. The
latter check the progress of the download by looking at for instance the speed, ETA
(Estimated Time of Arrival), number of seeders/peers, the amount of connections,
the amount of downloaded files, etc.

In some cases, users download archive files, such as RAR files, which contain
several separate files. When users do not need all these files, they select the files they
need so as to make sure that only these files are downloaded. This happens quite a
lot in cases where for instance users download torrent files of entire music albums
whereas they only need a few songs of it. In the case of TV series, where whole
seasons are compressed in one RAR file, several users often indicate priorities so as
to the first episodes are downloaded first (highest priority), and the last episodes are

Bittorrent versus Gnutella Clients: The Use of Peer-to-Peer Networks 105

downloaded later on (less priority). Obviously, it is of little use to download the last
episode of a season first, while you did not watch the previous episodes yet.

Further, several users pay attention to the amount of uploads as they only have a
limited amount of bandwidth capacity. Most of these users limit uploading as much
as possible to save bandwidth. Some of the participants utilize schedule tools of
their P2P software as some Internet providers charge bandwidth consumption with
50% discount during nights:

R 30: I mostly use it at night, because the Internet provider charges the hours only half
during nights.

I: You mostly use it just before going to sleep?

R 30: Yeah, or you have a plug-in to schedule it. . . . Here you can program when you want
to download. So red means ’not downloading’, and here 2h at night till 7h in the morning.
And then it downloads automatically.

Finally, users consume the content, with the aim of gratifying their desires. Users
do not utilize P2P networks because they like P2P networks, but they use it be-
cause this technology allows them to retrieve the content (object) with which they
hope to achieve their desired outcome. In other words, P2P technology is neither
the object, nor the outcome for the end users, but solely a mediating artifact that
gets them closer to their objects. After having downloaded their content, users do
very various things with their content as they: use it as samples for future pur-
chases; store and listen to the music on their iPod; burn music on a CD to lis-
ten to it in the car; store music on computer so they can listen to it when they
are using the computer; watch series/movies on the television or computer; watch
series/movies together with friends; etc. It is remarkable as well that many users
share this content with their friends afterwards. Either they watch the content to-
gether, or they exchange content for instance by swapping memory sticks or external
hard drives.

4.2 Process of Using Gnutella Clients

Most of the participants in this section utilized Gnutella clients such as Limewire.
There were a few exceptions of users that utilized Soulseek or Kazaa Lite. We as-
sembled the Gnutella, Kazaa Lite and Soulseek users as these systems were utilized
for the same purposes. Therefore, to avoid laborious phrasings, we will talk about
Gnutella clients.

4.2.1 Different Levels of Motivations

In this section, we will dilate upon the different levels of motivations, i.e. the objects,
the desired outcomes and the artifact motivations.

106 Jorn De Boever and Dirk De Grooff

Users’ Objects and Desired Outcomes

By achieving certain objects, users might obtain desired outcomes. In other words,
people use Gnutella clients as these systems permit them to retrieve the con-
tent (object) with which they can gratify their needs (desired outcomes). Whereas
the users’ objects in the bittorrent case were very divergent, the object of using
Gnutella clients is primarily to download audio content. As indicated in Table 3,
90% of the content consists of audio files, whereas video files only have a share
of 8%. Whereas many users on bittorrent clients mainly download entire albums,
users on Gnutella networks download many single songs which require less band-
width capacity in comparison with the larger files that users retrieve on bittorrent
networks.

Table 3 Types of content – Gnutella

Type N % N failed % Failed

Audio 231 90 17 7
Books 0 0 - -
Video 21 8 15 71
Photos 0 0 - -
Maps 0 0 - -
Games 0 0 - -
Software 6 2 6 33

Total 257 100 38 15

10 out of 25 participants utilized Gnutella clients as their primary source to down-
load content. In addition, 4 bittorrent users made use of Gnutella clients as well to
download primarily music. Two of the participants did not have to complete the in-
cident logbook as they only utilized their P2P client a couple of times a year. For
this reason, the numbers in Table 3 originate from 12 users. These numbers indicate
that the availability of music files is excellent on these networks as only 7% of the
files were not found or were fake files. On the other hand, Gnutella networks seem
to be inappropriate for video content as 71% of the files were not found, did not
complete their download or were corrupted.

The desired outcomes that can be achieved after attaining the object vary as peo-
ple have different preferences. According to the participants, the outcome of listen-
ing to music might be: avoiding emptiness when you are alone; enjoying background
music when friends come over; to make work/studying a more pleasant experience;
for entertainment; to disrupt the silence; to kill time; to be able to be a DJ; etc. One
of the participants sometimes even downloaded video files to possess illustrations
when he had to teach courses.

Bittorrent versus Gnutella Clients: The Use of Peer-to-Peer Networks 107

Artifact Motivations

In comparison with the bittorrent case, the artifact motivations for using Gnutella
networks are partly similar as we will demonstrate in the following paragraphs. A
first artifact motivation consists of the fact that Gnutella networks allow users to
store songs directly on their computer without having to rip a CD. It seems to be
important for users to have control of the files so they are able to create a collection,
to listen to the music the way they want to, to be able to listen offline, to exchange
files with their friends. In comparison with listening to the radio, users of P2P sys-
tems can download content that fits their taste so they do not have to listen to music
they dislike. In other words, users attach great importance to having music stored
on their computer.

Another important reason for many participants to utilize Gnutella systems is the
fact that it is free of charge. Many participants were students that dispose of limited
means, as the following quote exemplifies:

R 25: Also because it’s for free. . . because I don’t know how I should pay for CDs. Or
iTunes, 99ct for one song. If I should download it with that, what I download today with
P2P networks, then I should find a job just to listen to music. And I don’t think that’s worth
it. . . And I also think that there’s nothing wrong with it. (. . .). On average, I download about
100 songs in one month. I really can’t spend 100EUR a month on music.

In addition, some participants disliked the idea of buying CDs as they reasoned
that when you buy a CD, you are mostly only interested in a few songs of that
particular album, whereas you have to pay for the songs that you are not interested
in as well. On the other hand, some participants purchased some of the content after
having downloaded them, which implies that they utilize P2P systems to sample
music.

Moreover, the speed with which users are able to retrieve music via P2P systems
appears to be important as well:

R 19: You hear a song, you enter the title or a part of the title and a couple of minutes later,
you have the song. (. . .). The possibility to hear a song on the radio and to have it a couple
of minutes later with a minimum effort. . . that’s the most important reason.

Additionally, speed refers also to the fact that users do not need to go to the music
shop and search for a CD on the shelves. The content available on P2P networks
does not need to be ripped as is the case with CDs. Furthermore, alternatives such as
music streaming sites consume too much bandwidth as users have to use bandwidth
each time they want to consume their music, whereas with P2P systems, they only
have to download their desired songs once. It should be noted that bandwidth issues
turned out to be especially relevant in the case of users that download video content
with P2P systems because this type of content consumes more bandwidth.

4.2.2 Gnutella Peers’ Behavior

In comparison with the bittorrent case, the usage process of Gnutella clients is far
less complex as we will illustrate in this section.

108 Jorn De Boever and Dirk De Grooff

Search Process

The content, that participants download, originates from different encounters, which
inspired users to search for this content. Sometimes, users get recommendations
from friends to listen to certain music. Other users browse through playlists and
charts – e.g. websites of radio stations, billboard.com – to check whether there
might be something interesting to download. Users have not always heard a song
before downloading it. In such cases, a song was often recommended by friends,
or a song seemed to be interesting because it fits their music style and it did well
in charts. However most users do know the content which they want to download,
they often forget the title or the name of the band, which forces them to surf sev-
eral websites – e.g. Google, Wikipedia, etc. – to find this information so they can
search it in Limewire. Sometimes, when users are not sure about the title or band,
they search on Youtube and watch it to verify the information so they do not down-
load the wrong files. Several users utilize their mobile phones in order not to forget
the name of a song so as to be able to formulate accurate search strings in their
P2P client. Other sources of inspiration are listening to the radio, watching music
TV channels, browsing through Youtube videos, hearing music in movies, and so
on. Several users do not aim to download specific songs, but they regularly check
whether they can find new songs of their favorite artists on Gnutella networks. In
such cases they only enter the name of the band, and they take a look whether there
is new content from this specific band available on Gnutella networks. While brows-
ing through search results, it often happens that users download other songs from an
artist than originally intended.

After knowing what kind of content users want (object), they open their P2P
client and start searching for the desired files. Most users first choose which type of
content they want to download in order to filter the search results from inadequate
content types. Another reason for choosing the content type is to limit the amount
of advertisements. Next, they have to enter a search string – artist or title – which
must allow them to achieve the most accurate search results. Sometimes, peers enter
only the artist name because they want to check whether their favorite bands have
released new songs.

Further, most of the participants focused on the search results in order to dis-
tinguish the most reliable files with good QoC from the fake or corrupted files. It
is interesting to note that several users have developed certain search strategies in
order to increase reliability, quality and speed of the search results. Several users
indicated that search results that are exactly the same as the search string are less re-
liable compared to files that have additional characters in their title such as a number
or a hyphen. In other words, some users perceive it to be a good sign if a file name
does not exactly match the search string. Therefore, although some users know the
exact entire name of the file they intend to download, they sometimes enter incom-
plete information in the search field. As the search results are shown, these users
will only trust the file names that contain the missing information:

Bittorrent versus Gnutella Clients: The Use of Peer-to-Peer Networks 109

R 19: This, for example, I would trust (points to a file in Limewire), because I only entered
the title of the song. . . and here, the name of the performer appears which makes me feel
that it’s the right one. (. . .). For me, that’s a reason to trust it.

In sum, irregularities in file names are perceived to be good signs in some cases,
whereas in other cases this leads to distrust. Distrust might occur for instance when
a file name has words that are not related to what one is willing to download.

Another strategy to decrease the chances for downloading fake files is to check
whether it is the only file of a certain size. Several users do not trust files if they have
exactly the same size as other files in search results. Research [20] has demonstrated
that this strategy appears to be very efficient to filter out malware.

Some of the participants combined several of the above mentioned search strate-
gies as illustrated by the following user:

R 19: I’m looking for a file that’s the only one of that size, or that’s the only one with that
kind of notation. Some of them use interspaces, others use an underscore, others use dots,
others use normal hyphens between words, or with a number in the end or in the beginning.
Then you know that there’s a good chance that it has good quality, and second, that it’s
going to work as well.

Many users pay attention to the file size to make judgments about the QoC. The
reasoning goes that if a file is too small, it would probably have poor quality:

R 25: In Limewire, I always take a look at the size and how much there are with the same
size. And I always pay attention that it’s not a file of for example 59 kB for an MP3 file. In
such a case, you know that it can’t be right.

Only a few users paid attention to the bitrate of a file to figure out the quality.
Another important way of controlling quality and reliability is by previewing the file
in Limewire itself via its media player while the file is still downloading. In this way,
users can listen for themselves whether the sound meets the users’ requirements and
whether it is the right file:

R 12: And I do a preview so I can see whether it’s what I’m looking for. If it turns out to be
a version with a lot of impurities, then I delete that and try to look for another version.

A number of participants selected several files of the same song to download and
to “postview” these. The primary reason to download several versions of the same
file is to compare the QoC of these different files and delete the least satisfactory
ones:

R 7: I often download 3 or 4 versions of a song and then I listen to it. . . mostly in iTunes. I
mostly don’t work with this (points to the media player in Limewire). And then I choose one
of them and I delete the rest. Sometimes I download quite a lot of the same version. . . about
5 versions. But I delete some of them. There are sometimes poor files in it and I delete those.

Another aspect that appeared to be important to users is the download speed.
Many users focused on the amount of uploaders in order to be sure that the file can
be downloaded in a fast way. Indeed, it is often the case that the more peers make
certain content available the faster it might download. Some users even perceived
this to be a criterion for the reliability and QoC as they reasoned that if a lot of
people have it, it is probably reliable and has good quality:

110 Jorn De Boever and Dirk De Grooff

R 12: I also take a look at the number of hits in advance. If there are 20, then you know that
it’s going to be fast in comparison with when there are only two hits. In that case I take the
one with 20 users. In such case, you have more chance to have the right file, because if there
are 20 participants on one file, it must be a better file. (. . .). If it’s a bad file, then everyone
deletes that. So, in this sense, it’s a good file because those people keep using it. And that’s
why. . . quality is already guaranteed in a certain way because you know that a lot of people
are using it, so it probably won’t be bad.

Speed is also being derived from the “Speed” column which indicates what type
of connection the uploader has. This column displays whether a user has for instance
a T1, T3, modem or cable/DSL connection. For instance, a T3 connection is faster
in comparison with a modem or cable/DSL connection.

It should be mentioned that most participants did not utilize all of these attributes
to verify the reliability or QoC. For instance, one participant even clicked around in
a random way, not fearing to download corrupted content.

In sum, in contrast with the usage of bittorrent clients – where the QoC and
reliability were verified before downloading files – users of Gnutella clients mainly
checked the QoC and reliability afterwards by listening to the files in their media
players.

Download and Post-Download Actions

In most cases, downloading files goes rather fast, leaving little time for users to do
other things while their P2P application is downloading songs. For this reason, most
users keep an eye on the progress of the download, whereas others start searching
new files in the meanwhile or they organize the already downloaded files in their
music collection.

After downloading the files, many users transfer these files – often automati-
cally – in iTunes, where they organize their collection. Some users burn the songs
on a CD to listen to it in their car; others listen to it on their MP3 player/iPod or on
their computer. Some of the users, who utilize P2P networks to sample content, or
who fear copyright infringement buy some of the songs afterwards:

R 19: Now and then, I get this moral urge to compensate, and then I buy a whole bunch of
albums to ease my conscience. . . to legalize my music.

Interestingly, most of the Gnutella users share their downloaded music with their
friends via MSN, e-mail, by exchanging memory sticks or by burning it on a CD.
The primary reasons for exchanging these files are to do friends a favor, or because
they want to recommend certain music that they like. It is a bit paradoxical that most
users do not upload or share their downloaded content on P2P networks, whereas
they do share this content with their friends.

Bittorrent versus Gnutella Clients: The Use of Peer-to-Peer Networks 111

5 Discussion and Conclusion

The purpose of the current study was to explore the usage of P2P file-sharing sys-
tems by means of qualitative, explorative, contextual research. To understand the
usage of these systems, thorough attention was paid to the relationship between
the objects/goals/motivations, behavior and the relevant context. We found that dif-
ferent types of systems are utilized in different ways. Therefore, a distinction was
made between the use of bittorrent (e.g. Azureus, KTorrent, BitComet, BitTorrent)
and Gnutella clients (e.g. Limewire, Soulseek). The findings of the present study
enhance our understanding of usage behavior on P2P networks.

The results of this study show that bittorrent clients are mainly used to download
large files such as video, games, software and entire albums. People probably turn
to bittorrent systems to download large files as this protocol has proven to be very
efficient to exchange large content because of the swarming technology with which
different parts of the same file can be retrieved from different peers. In the theoretical
framework, we argued that the object and desired results direct the actions of users.
For instance, college students that have their own apartment might download movies
(object) via P2P networks to kill the time during the evenings (desired outcome).
In addition, we found that the artifact motivations played an important role in the
reasons for participants to use bittorrent clients. The artifact motivations comprise
the characteristics of an artifact, service or content which explain to a large extent
why users adopt a certain artifact. The current study found the following artifact
motivations of bittorrent users: dissatisfaction with traditional TV, free of charge,
vast availability of content and control over files. These artifact motivations should
be considered as particular context aspects that often stem from users’ lifestyle, e.g.
college students with irregular schedules, that have their own apartment and that do
not have cable subscriptions. Other context factors that appeared to influence users’
actions related to the presence of malware, fake files and files with insufficient QoC.
The existence of such files caused many users to verify in advance whether a file
meets the expectations in terms of reliability and QoC by means of tools such as
ratings, comments and jpeg-previews. These preventive inspections are presumably
reinforced by the bandwidth caps in Belgium which makes that users want to avoid
that the bandwidth they paid for, would be wasted on worthless or even dangerous
files.

On the other hand, the study found that peers utilized Gnutella clients primar-
ily to download small, unique audio files. Users downloaded music (object) with
the aim of for instance making work more pleasant or passing time while commut-
ing (desired outcome). In addition, analysis revealed that the artifact motivations of
Gnutella systems correspond to a large extent with the artifact motivations if bittor-
rent clients. The Gnutella artifact motivations comprise among others: control over
files, free of charge, dissatisfaction with the medium CD, extensive availability of
files, possibility to sample and explore music. Furthermore, the omnipresence of
fake files and malware influences users’ behavior as these users want to make sure
that they are downloading the right files with satisfactory QoC. Users of Gnutella
clients have their own ways of assessing the QoC and reliability of files, e.g. by

112 Jorn De Boever and Dirk De Grooff

means of the file size, the number of uploaders, previews. Nevertheless, it should be
mentioned that the availability of tools to verify QoC and trustworthiness in Gnutella
clients are far more limited in comparison with the bittorrent clients.

Then why do music lovers adopt systems with which they only have limited
possibilities to check the QoC and reliability and why do they not turn to bittorrent
clients? This may be explained by a number of factors that are related to the technol-
ogy and the file type. First, the availability of single songs is rather low on bittorrent
probably because it would require a time-consuming procedure to make a torrent
file for each separate song. Second, it would demand too much time and effort to
verify the QoC and reliability of many small files in a thorough way as bittorrent
users do with e.g. video files. Indeed, Gnutella users download more and smaller
files during a download session in comparison with bittorrent users who retrieve
less but larger files. In other words, Gnutella users download more files in number,
whereas bittorrent users download more files in terms of volume. In our opinion,
these findings might partially explain the differences in the use between both types
of systems. Furthermore, we assume that the bandwidth caps play an important role
as well. For example, if one downloads a single song, and the QoC turns out to be
rather poor, then this person has only wasted approximately 3 MB. On the other
hand, if one retrieves a fake movie or a movie with insufficient QoC, then this per-
son has dissipated a lot of time and has lost easily 700 MB, which is a high price to
pay when you only have a monthly bandwidth capacity of for instance 25 GB that
you might have to share with other people.

The findings have important implications on several levels. To the research com-
munity, this study has demonstrated that user behavior should be studied as a com-
plex interaction between motifs/goals/objects and the specific meaningful context.
In this respect, activity theory provided an adequate framework to grasp the interre-
lations between the different variables. In addition, the results might be interesting
to policymakers and the media industry as these interested parties can learn how
and why people are using P2P file-sharing systems. For instance, the insertion of
corrupted files in P2P networks by the media industry has only minor effects on
experienced users as they adapted their search strategies in efficient ways which de-
creases the chances that users download fake files and malware. Another interesting
result for the media industry is the fact that these users want to have control over
their consumption themselves. P2P file-sharing users do not want to be restricted by
what the media imposes on them, but the content needs to be flexible so as to it fits
the lifestyle of the individual.

Finally, a number of important limitations need to be considered. First, the rela-
tively small sample size of the study, in which we examined the use of P2P networks
by youngsters, is a threat to the study’s validity. Accordingly, caution must be ap-
plied, as the findings might not be transferable to the entire P2P file-sharing commu-
nity. Second, the end users’ behavior is influenced in important ways by bandwidth
caps, whereas other users in many countries have “all-you-can-eat” subscriptions.
Therefore, a promising line of study would be to enlarge the sample with elder users
and with users that are not restricted by bandwidth caps.

Bittorrent versus Gnutella Clients: The Use of Peer-to-Peer Networks 113

In conclusion, our theoretical framework, combined with the results of this study
indicate that P2P networks should be studied in its context of use as the usage of P2P
systems is not an object nor an outcome for users. Users only utilize P2P networks
as one of their mediating artifacts that bring them another step closer to their object
and desired outcomes.

Acknowledgements FLEET (an interdisciplinary research project in FLEmish E-publishing
Trends) is an IWT SBO project, with research partners IBBT SMIT, Cemeso, LSTS, MOFI, ICRI,
CUO IBBT, MICT, ECDC and TNO.

References

1. Andersen B, Frenz M (2007) The Impact of Music Downloads and P2P File-Sharing on the
Purchase of Music: A Study for Industry Canada. Available via Industry Canada. Cited 23
Oct 2008

2. Bannon LJ, Bødker S (1991) Beyond the Interface: Encountering Artifacts in Use. In: Car-
roll J (ed) Designing Interaction: Psychology at the Human-Computer Interface, Cambridge
University Press, New York

3. Bazeley P (2007) Qualitative Data Analysis with NVivo. Sage Publications, London
4. Bertelsen OW, Bødker S (2003) Activity Theory. In: Carroll JM (ed) HCI Models, Theories,

and Frameworks: Toward a Multidisciplinary Science, Morgan Kaufmann Publishers, San
Francisco

5. Bødker S (1989) A Human Activity Approach to User Interfaces. Hum-Comput Interact 4(3):
171–195

6. Bødker S (1991) Through the Interface: A Human Activity Approach to User Interface De-
sign. Lawrence Erlbaum Associates, Hillsdale, New Jersey

7. Bødker S (1993) Historical Analysis and Conflicting Perspectives – Contextualizing HCI.
Paper presented at the East–West HCI conference, Moscow, Russia

8. Bødker S (1996) Applying Activity Theory to Video Analysis: How to Make Sense of Video
Data in Human-Computer Interaction. In: Nardi BA (ed) Context and Consciousness: Activity
Theory and Human-Computer Interaction, The MIT Press, Cambridge

9. British Music Rights (2008) Music Experience and Behaviour in Young People. Available
via BMR. http://www.ukmusic.org/cms/uploads/files/UoH%20Reseach%
202008.pdf. Cited 1 Oct 2008

10. Carey J (2008) Peer-to-Peer Video File Sharing: What Can We Learn From Consumer Behav-
ior. In: Noam EM, Pupillo LM (Eds) Peer-to-Peer Video: The Economics, Policy, and Culture
of Today’s New Mass Medium, Springer Science + Business Media, LLC, New York

11. Christin N, Weigend AS, Chuang J (2005) Content Availability, Pollution and Poisoning in
File Sharing Peer-to-Peer Networks. Paper presented at The Sixth ACM Conference on Elec-
tronic Commerce, Vancouver, Canada

12. Condry I (2004) Cultures of music piracy: An ethnographic comparison of the US and Japan.
Int J Cult Stud 7(3): 343–363

13. Courage C, Baxter K (2005) Understanding Your Users. A Practical Guide to User Require-
ments: Methods, Tools, & Techniques. Elsevier, San Francisco

14. Crawford K, Hasan H (2006) Demonstrations of the Activity Theory Framework for Research
in Information Systems. Australas J Inf Syst 13(2): 49–67

15. Einav G (2008) College Students: The Rationale for Peer-to-Peer Video File Sharing. In:
Noam ME, Pupillo LM (Eds) Peer-to-Peer Video: The Economics, Policy, and Culture of
Today’s New Mass Medium, Springer Science + Business Media, LLC, New York

114 Jorn De Boever and Dirk De Grooff

16. Engeström Y (1987) Learning by Expanding: An Activity-Theoretical Approach to Develop-
mental Research. Orienta-Konsultit Oy, Helsinki

17. Fokker J, De Ridder H, Westendorp P, Pouwelse J (2007) Inducing Cooperationin Peer-to-
Peer Television Systems. Paper presented at EuroITV’07, Amsterdam, The Netherlands

18. Gavosto A, Lamborghini B, Lamborghini S (2008) Peer-to-Peer Network and the Distribution
in the EU. In: Noam ME, Pupillo LM (Eds) Peer-to-Peer Video: The Economics, Policy, and
Culture of Today’s New Mass Medium, Springer Science + Business Media, LLC, New York

19. Gay G, Hembrooke H (2004) Activity-Centered Design. An Ecological Approach to Design-
ing Smart Tools and Usable Systems. The MIT Press, Cambridge

20. Kalafut A, Acharya A, Gupta M (2006) A Study of Malware in Peer-to-Peer Networks. Paper
presented at the Internet Measurement Conference, Rio de Janeiro, Brazil

21. Kaptelinin V (1996) Activity Theory: Implications for Human-Computer Interaction. In:
Nardi BA (ed) Context and Consciousness: Activity Theory and Human-Computer Interac-
tion, The MIT Press, Cambridge

22. Kaptelinin V (2005) The Object of Activity: Making Sense of the Sense-Maker. Mind, Cult,
Activity 12(1): 4–18

23. Kaptelinin V, Nardi B (2006) Acting with Technology: Activity Theory and Interaction De-
sign. The MIT Press, Cambridge

24. Kozulin A (1986) The Concept of Activity in Soviet Psychology: Vygotsky, His Disciples
and Critics. Am Psychologist 41(3): 264–274

25. Kuuti K (1996) Activity Theory as a Potential Framework for Human-Computer Interac-
tion Research. In: Nardi BA (ed) Context and Consciousness: Activity Theory and Human-
Computer Interaction, The MIT Press, Cambridge

26. LaRose R, Lai Y-J, Lange R, Love B, Wu Y. (2005) Sharing or Piracy? An Exploration of
Downloading Behavior. J Comput-Mediat Commun 11(1)

27. Lee J (2003) An End-User Perspective on File-Sharing Systems. Commun ACM 46(2): 49–53
28. Leontiev N (1978) Activity, Consciousness, and Personality. Prentice-Hall, Englewood

Cliffs, NJ
29. Lewis K, Massey C (2004) Help or Hindrance? Participant Diaries as a Qualitative Data

Collection Tool. Paper presented at the 17th Annual Conference of the Small Enterprise As-
sociation of Australia and New Zealand, Brisbane, Australia

30. Mann C, Stewart F (2000) Internet Communication and Qualitative Research: A Handbook
for Researching Online. SAGE Publications, London

31. Nardi BA (1996a) Activity Theory and Human-Computer Interaction. In: Nardi BA (ed) Con-
text and Consciousness: Activity Theory and Human-Computer Interaction, The MIT Press,
Cambridge

32. Nardi, B.A. (1996b) Studying Context: A Comparison of Activity Theory, Situated Action
Models, and Distributed Cognition. In: Nardi BA (ed) Context and Consciousness: Activity
Theory and Human-Computer Interaction, The MIT Press, Cambridge

33. Quek A, Shah H (2004) A Comparative Survey of Activity-based Methods for Information
Systems Development. Paper presented at the 6th International Conference on Enterprise
Information Systems, Porto, Portugal

34. Shin S, Jung J Balakrishnan B (2006) Malware Prevalence in the KaZaA File-Sharing Net-
work. Paper presented at the International Measurement Conference, Rio de Janeiro, Brazil

35. Suchman LA (1987) Plans and Situated Actions: The Problem of Human Machine Commu-
nication. Cambridge University Press, Cambridge

36. Uden L, Willis N (2001) Designing User Interfaces using Activity Theory. Paper presented at
the 34th Hawaii International Conference on System Sciences, Maui, Hawaii

37. Zimmerman DH, Wieder DL (1977) The Diary: Diary-Interview Method. J Contemp Ethnogr
5(4): 479–498

Part II
Unstructured P2P Overlay Architectures

Unstructured Peer-to-Peer Network
Architectures

Xing Jin and S.-H. Gary Chan

Abstract With the rapid growth of the Internet, peer-to-peer (P2P) networks have
been widely studied and deployed. According to CacheLogic Research, P2P traf-
fic has dominated the Internet traffic in 2006, by accounting for over 72% Internet
traffic. In this chapter, we focus on unstructured P2P networks, one key type of P2P
networks. We first present several unstructured P2P networks for the file sharing
application, and then investigate some advanced issues in the network design. We
also study two other important applications, i.e., media streaming and voice over In-
ternet Protocol (VoIP). Finally, we discuss unstructured P2P networks over wireless
networks.

1 Introduction

In the recent years, P2P networks have seen enormous successes and rich develop-
ments over the Internet. When Napster first emerged in 1999 as a P2P file sharing
system, the Internet traffic was dominated by web and ftp (accounting for 65 and
10% total traffic, respectively, according to CacheLogic Research). But in 2006,
50–65% of downstream traffic and 75–90% of upstream traffic was already P2P
traffic (according to CacheLogic Research). In total, P2P traffic has accounted for
72% Internet traffic in the year, while that of web and ftp has decreased to 24 and
2%, respectively.

Xing Jin
Department of Computer Science and Engineering, The Hong Kong University of Science and
Technology, Clear Water Bay, Kowloon, Hong Kong, e-mail: csvenus@cse.ust.hk

S.-H. Gary Chan
Department of Computer Science and Engineering, The Hong Kong University of Science and
Technology, Clear Water Bay, Kowloon, Hong Kong, e-mail: gchan@cse.ust.hk

X. Shen et al. (eds.), Handbook of Peer-to-Peer Networking, 117
DOI 10.1007/978-0-387-09751-0 5, © Springer Science+Business Media, LLC 2010

118 Xing Jin and S.-H. Gary Chan

In P2P systems, cooperative peers self-organize themselves into overlay net-
works and store or relay data for each other. The major challenge is how to achieve
efficient resource search in a large scale distributed-storage network. Currently pop-
ular P2P search systems can be classified as unstructured and structured, depend-
ing on the overlay structures. Unstructured systems do not impose any structure
on the overlay networks [1–3]. These systems are usually resilient to peer dynam-
ics, and support complex queries with meta information. But they are not effi-
cient for locating unpopular files. Structured systems impose particular structures
on the overlay networks, which are commonly referred to as distributed hash ta-
bles (DHTs) [38, 42]. In a structured system, any file can be located in a small
number of overlay hops, which significantly reduces the search cost as compared
to unstructured systems. However, DHT only supports single-keyword exact-match
lookups.

In this chapter, we focus on unstructured P2P networks. We first study the file
sharing application, which is the original and one of the most important applica-
tions for P2P networks. Depending on system decentralization level, we classify
unstructured P2P networks into centralized, distributed, hybrid and some other ap-
proaches. We select representative examples from each category and analyze their
search mechanisms. Then we discuss some advanced issues in system design, i.e.,
content replication and system security.

We also study other important applications for unstructured P2P networks, in-
cluding media streaming and VoIP. One of the pioneering P2P streaming softwares,
CoolStreaming, has reported to attract more than 25,000 concurrent peers for one
streaming channel [50]. Another streaming software PPLive reported more than
400,000 concurrent peers for its over 300 channels [25]. As for P2P VoIP, the lead-
ing software Skype has shown to attract over 8 million concurrent users in 2008
(from its client software interface), and has reported to accumulate 276 million user
accounts at the end of 2007. Clearly, these applications have evolved into influential
network applications over the Internet. We hence select CoolStreaming and Skype
as two typical examples. We study the challenges in these applications and their
corresponding approaches.

Finally, we study the implementation issue of unstructured P2P networks over
wireless networks. Wireless networks are going through quick development nowa-
days. As they share many similar features with P2P networks (such as decentraliza-
tion and dynamic topology), there has been an increasing interest in integrating them
together. We compare P2P networks and wireless networks, highlight the challenges
in integrating them, and discuss several state-of-the-art approaches.

The rest of the chapter is organized as follows. In Section 2, we present the gen-
eral design considerations in unstructured P2P networks. In Section 3, we discuss
representative examples of unstructured P2P networks for file sharing. In Section 4,
we explore some advanced issues in P2P file sharing. In Section 5, we discuss the
media streaming and VoIP applications for unstructured P2P networks. In Section 6,
we investigate how to implement unstructured P2P networks over wireless networks.
Finally, we conclude in Section 7.

Unstructured Peer-to-Peer Network Architectures 119

2 Design Considerations

When designing an unstructured P2P network, several issues need to be carefully
considered:

• Search efficiency and replication cost: In unstructured P2P networks, data are
distributedly stored at peers and each peer only holds limited information about
the system. Hence, it is important to design efficient search mechanisms. Usu-
ally, with more data replications in the network, a data file can be located more
quickly. It is hence a tradeoff between storage cost and search time.

• Scalability: A P2P system may consist of hundreds of thousands of peers. This
often requires a fully distributed system, where peers form a self-organized net-
work and each peer communicates with only a few other peers.

• Resilience to peer dynamics: In P2P systems, a peer may arbitrarily join, leave
or fail. A good P2P system should be resilient to such peer dynamics.

• Load balancing: Peers often have heterogeneous resource (e.g., bandwidth, com-
putational capability, storage space). A good system should be able to achieve
balanced loads among peers. This can avoid overloading hot peers, and hence
improve system scalability.

• Security: In the open environment of the Internet, some participating peers may
be selfish and unwilling to upload data to others, or some may launch attacks
to disrupt the service. A practical P2P system should be well protected to tar-
geted attacks or free-riders (i.e., peers only downloading data without uploading).
Other considerations include peers’ privacy and confidentiality.

3 Unstructured P2P Networks for File Sharing

In this chapter, we describe several unstructured P2P networks for the file shar-
ing application. We classified the approaches into four categories: centralized, dis-
tributed, hybrid and others. We select one representative example from each cate-
gory and discuss its system design.

3.1 A Centralized Approach: Napster

In 1999, Napster appeared as the first P2P file sharing system [4]. A Napster system
consists of a central directory server and a set of registered users (or peers). The
server maintains information of all files in the system, including an index with meta-
data (such as file name and size) of all files in the system, a list of all registered peers,
and a list showing the files that each peer holds and shares.

When a new peer joins the system, it contacts the server and reports a list of files
it maintains and shares. When a peer wants to search for a file, it sends a request

120 Xing Jin and S.-H. Gary Chan

to the server. The server will return a list of peers that hold the matching file. The
searching peer then contacts the returned peers to download the file.

Figure 1(a) shows the search process in Napster. When peer A wants to search
for some file, it contacts the central server. The server returns some peers that hold
the file, say, peer B. Peer A then starts to download the file from peer B.

server

A
peer

B
peer

1. Query

2. Response

3. Download
Request

A

peer

Dpeer

1a. Query

4. Response
Forward

5. Download
Request

B

C

1b. Query
2. Query

Forward

peer

3. Res-
ponse

peer

supernode

A
peer

B
peer

1. Query

2. Response

3. Download
Request

supernode

supernode

tracker

A
peer

B
peer

1. Connect

2. Response

3. Data Download and Upload

C D
peer peer

(a) (b)

(c) (d)

Fig. 1 Search process in unstructured P2P networks. (a) Napster. (b) Gnutella. (c) Kazaa. (d)
BitTorrent.

The advantage of Napster is its ease of implementation and simplicity of deploy-
ment. The system administrator only needs to deploy and maintain a central server.
Furthermore, the system is highly adaptive to peer joining and leaving. The major
disadvantage is that such a centralized system is not scalable. The server needs to
have much resource (such as computational capability and bandwidth) to support a
large number of peers. In addition, the server forms a single point of failure. If the
server is down, the whole system is broken. It is hence vulnerable to targeted attacks
against the server (e.g., DDos).

3.2 A Distributed Approach: Gnutella

Gnutella is a fully distributed P2P system for file sharing [1]. It first appeared in
2000 and got quick development in a few years. According to Slyck news report, as
of June 2005, Gnutella’s population was 1.81 million computers. Gnutella’s source

Unstructured Peer-to-Peer Network Architectures 121

code is publicly available in the Internet. This enables the development of different
client softwares by different groups (e.g., LimeWire developed by the LimeWire
group, or Gnucleus developed by the Morpheus group).

In the basic Gnutella protocol, when a new peer joins the system, it first con-
nects to some public peers. For example, a list of public peers are available at
http://gnutellahosts.com. A new peer then sends a PING message to any peer it
is connected to. The message announces the existence of the new peer. Upon receiv-
ing a PING message, a Gnutella peer returns a PONG message and propagates the
PING message to its neighbors. A PONG message contains IP address and port of
the responding peer, and information of files being shared by the responding peer.
In a dynamic network with frequent peer joining and leaving, a peer periodically
sends PING messages its neighbors.

Search in Gnutella is based on flooding, which is broadcasting in the overlay. A
search query is propagated to all neighbors from the original requesting peer. The
query is replicated and forwarded by each intermediate peer to all its neighbors.
Each intermediate peer also examines its local contents and responds to the query
source on a match. The query responses are routed back along the opposite path
towards the original requesting peer. To reduce the amount of query messages in the
network, each query message contains a time-to-live (TTL) field. The TTL value
will be decremented by one at each peer. When it reaches zero, the message is
dropped.

Figure 1(b) shows the search process in Gnutella. Suppose peer A wants to search
for some file. It floods its search query to its neighbors, i.e., peers B and D in the
figure. When peer B receives the query, it checks whether itself holds the matching
file. If not, it forwards the query to its neighbors. As in the example, peer B forwards
the query to its neighbor C. Suppose C holds the file that A wants. C returns a
response to the peer that sends it the query, which is B in the figure. B then continues
forwarding the response to the query sender A. Finally, A contacts C to download
the file.

Different from Napster, Gnutella is a dynamic, self-organized network. Each peer
independently connects to and communicates with a few other peers in the system.
The system is hence able to contain an unlimited number of peers, if no constraint on
search efficiency. Meanwhile, the system is highly robust to peer dynamics. If a peer
leaves the system, its neighbors can connect to other peers through the exchange of
PING and PONG messages.

A limitation of Gnutella is its relatively low search efficiency. In flooding
search, the number of query messages exponentially increases with the number
of overlay hops. Then a query may generate many messages, especially for un-
popular files, where a query has to go through many overlay hops and many
peers before reaching a matching peer. Given the huge number of peers in the
system, the traffic load for queries could be significantly high. The use of TTL
can reduce the number of query messages. However, choosing an appropriate TTL
is not easy. If the TTL is too high, peers unnecessarily burden the network. If
the TTL is too low, a peer might not find the file even though a copy exists
somewhere.

122 Xing Jin and S.-H. Gary Chan

In addition, there are many duplicate messages in flooding search, particularly
in heavily connected networks. This is because multiple copies of a query may be
sent to a peer by its multiple neighbors. These duplicate queries consume extra
processing power at peers and network bandwidth. Hence, it is necessary to develop
some duplication detection mechanisms. However, even with duplicate suppression,
the number of duplicate messages in flooding can be excessive, and the problem gets
worse as the TTL increases.

Therefore, many new search methods have been proposed to improve or re-
place flooding search. Expanding ring is a method that addresses the TTL selection
problem in flooding [34]. That is, a peer starts flooding with a small TTL. If the
search does not succeed, the peer increases the TTL and starts another flooding.
The process repeats until the search succeeds. This method is efficient for locating
hot files. Hot files are widely replicated in the network, and a small TTL value is
enough to locate them. But this method leads to higher search time due to repeated
flooding.

Expanding ring does not address the message duplication problem. Another
method uses multiple parallel random walks to address this issue [34]. In standard
random walk, when receiving a search query, a peer randomly chooses one neighbor
and propagates the query to it. To reduce the search time, the method uses multiple
random walks. This method, together with proactive file replication (discussed in
Section 4.1), can significantly improve the search performance in terms of search
time, per-peer query load, and message traffic.

3.3 A Hybrid Approach: FastTrack/Kazaa

Given the limitations of purely centralized networks and purely distributed net-
works, there is a third approach which combines these two types of networks.
FastTrack is a typical example as a partially centralized P2P protocol. In FastTrack,
peers with the fastest Internet connections and the most powerful computers are
automatically designated as supernodes. A supernode maintains information about
some resource as well as connections with other supernodes. When a peer performs
a search, it first searches for the closest supernode, which returns immediate results
if any and refers the search to other supernodes if needed. Two practical softwares
based on FastTrack are Kazaa [2] and Grokster [5]. But the latter closed its service
in 2005 due to the copyright issue.

Figure 1(c) shows the search process in Kazaa. When peer A wants to search for
some file, it sends the search query to the closest supernode. The supernode either
returns some matching peers, or forwards the query to other supernodes. Finally, A
will obtain some matching peers from the supernode (say, peer B in the figure) and
download the file from these peers.

Therefore, an ordinary peer (e.g., peer A in the figure) communicates with a su-
pernode as if communicating with the server in Napster. Then, Gnutella like search
is performed in a highly pruned overlay network of supernodes.

Unstructured Peer-to-Peer Network Architectures 123

As compared with purely distributed networks like Gnutella, Kazaa achieves
much lower search time. Search among supernodes is much faster than search
among all peers, because the number of supernodes is much smaller than the to-
tal number of peers. As supernodes have high bandwidth and large storage space,
they can efficiently process a large amount of queries from ordinary peers. The sys-
tem hence makes good use of peer heterogeneity. In addition, unlike Napster, it does
not form a single point of failure. If some supernodes go down, the peers connecting
to them can connect to other supernodes.

In view of the success of Kazaa, Gnutella also considers adopting a hybrid struc-
ture. Chawathe et al. propose the Gia system to improve Gnutella [12]. It uses a
dynamic topology adaptation protocol to put most peers within a short distance of
a few supernodes. Supernodes will receive a large proportion of the queries. To-
gether with a few other improvements (e.g., active flow control and biased random
walk), Gia increases the system capacity by three to five orders of magnitude. Later,
Gnutella version 0.6 formally incorporates the idea of “ultrapeers”. In detail, peers
entering into the network are kept at the edge of the network as leaves, not respon-
sible for any routing. Peers which are capable of routing messages are promoted
to ultrapeers, which will accept leaf connections and route searches and network
maintenance messages. Normally, a leaf peer is connected to 3 ultrapeers, and each
ultrapeer is connected to more than 32 other ultrapeers. Within this network, the
maximum number of hops a query can travel is reduced to around 4. The search
efficiency and the whole system scalability are then greatly improved.

3.4 Other Approach: BitTorrent

BitTorrent is a P2P system that does not belong to any of the above categories [3]. As
an important P2P file sharing application, it is estimated by CacheLogic to represent
35% of all Internet traffic in 2004.

BitTorrent uses a central location to coordinate data upload and download among
peers. To share a file f , a peer first creates a small torrent file, which contains meta-
data about f , e.g., its length, name and hashing information. Usually, BitTorrent cuts
a file into pieces of fixed size, typically between 64 KB and 4 MB each. Each piece
has a checksum from the SHA1 hashing algorithm, which is also recorded in the
torrent file. Most importantly, the torrent file contains the URL of a tracker, which
keeps track of all the peers who have file f (either partially or completely) and the
lookup peers.

A peer that wants to download the file first obtains the corresponding torrent file,
and then connects to the specified tracker. The tracker responds with a random list
of peers which are downloading the same file. The requesting peer then connects to
these peers for downloading.

Figure 1(d) shows the search process in BitTorrent. When peer A wants to search
for some file, it first needs to obtain the corresponding torrent for the file. From the
torrent, A knows the address of the tracker and connects to the tracker. The tracker

124 Xing Jin and S.-H. Gary Chan

then returns a list of peers who are downloading or sharing the file. A then exchanges
data with these peers.

In BitTorrent systems, torrent files are often published on large websites, which
also serve as trackers. Clearly, the centralization of trackers brings some barriers
in the system. If a tracker is down, peers will not be able to start their sharing (by
uploading their torrents to the tracker), and new incoming peers cannot start their
downloading. In order to remove the need of central trackers, the latest BitTorrent
clients implement a decentralized tracking mechanism (e.g., μTorrent, BitComet,
KTorrent). In the mechanism, every peer acts as a mini-tracker. Peers first join a
DHT network, which is inherently implemented in the BitTorrent client. A torrent
is then stored at a certain peer according to the DHT storage method. All peers in
the DHT network can search for the torrent through DHT search. Therefore, this
mechanism eliminates central trackers from the system.

3.5 Comparison and Discussion

The main characteristic of unstructured P2P networks is that the storage of files
is completely unrelated to overlay topology. As a result, file search mechanism in
such networks essentially amounts to random search. As compared to structured
P2P networks, unstructured P2P networks have the following advantages:

• Resilient to peer dynamics: Because there is no specified requirement on the
overlay structure, unstructured P2P networks are often formed in a random way.
In case of peer joining and leaving, an unstructured P2P network can easily re-
construct the overlay. As a comparison, overlay reconstruction in DHT networks
is much more complex and expensive, especially in a highly dynamic network
with frequent peer joining and leaving.

• Supporting complex search: In unstructured P2P networks, peers eventually
check their local resource to answer a query. Hence, unstructured P2P networks
inherently support complex search based on file meta-data. On the contrary, in
DHT networks, each file has a single keyword. File storage and search are all
based on this keyword. DHT hence only supports single-keyword search.

Unstructured P2P networks have their own limitations. Its major problem is the
low search efficiency, especially for unpopular files. Unpopular files have few copies
in the system. Search for such a file may lead to large-scale flooding. Different from
it, DHT networks guarantee a certain number of overlay hops for any search, which
is very helpful for unpopular file search. In view of the advantages of structured
and unstructured networks, some researchers have taken effort to integrate them
together [11]. Clearly, there are many challenges in the integration due to their fun-
damental difference on network structures.

We now give a quick comparison of the above unstructured P2P networks. The
centralized approach requires a central server for file management and search, and

Unstructured Peer-to-Peer Network Architectures 125

the supernode-based approach relies on elected or pre-deployed supernodes. Dif-
ferent from them, the fully distributed approach relies on peers for file storage and
search, which does not require additional facilities. BitTorrent, a second generation
P2P system, requires central trackers to initiate the file sharing process.

According to the system architecture, the approaches have different search meth-
ods. In the centralized approach, a query is directly sent to the server. In the
supernode-based approach, a query is first sent to a supernode, which forwards
the query to other supernodes if needed. In the fully distributed approach, blind
or informed flooding is used to answer a query, which may consume much network
bandwidth. In BitTorrent, a peer can directly obtain a list of peers sharing the file
from the tracker. It hence eliminates the search process for matching peers as in
other systems. This is a fundamental difference between BitTorrent and other un-
structured P2P systems.

In practice, the supernode-based approach and BitTorrent are the most success-
ful applications. Both the centralized and fully distributed approaches have serious
limitations. The centralized approach has poor scalability. It cannot accommodate a
large number of peers. But the huge number of peers, and hence huge resource in
total, is exactly an attractive aspect of P2P systems. The fully distributed approach
does not need any central component, however, it is not highly scalable due to its
inefficiency and high bandwidth consumption in search.

As a comparison, the supernode-based approach has shown high scalability and
high search efficiency given enough supernodes. It makes practical use of peer het-
erogeneity. BitTorrent requires central trackers. But the responsibility of a tracker
is much lighter than the server in a centralized approach. A tracker only needs to
track the peers sharing and downloading the specific file. And torrent files could be
put at different trackers. Hence, the scalability of BitTorrent is not an issue in prac-
tice. In addition, the newly proposed decentralized tracking mechanism completely
eliminates central trackers from the system.

4 Advanced Issues in File Sharing

In this chapter, we discuss two advanced issues in unstructured P2P file sharing
systems, i.e,, content replication and system security.

4.1 Content Replication

Search in unstructured P2P networks is essentially random search. Content repli-
cation is hence a fundamental issue for search performance. Intuitively, with more
replications in the network, it is easier (or faster) to locate a file. On the other side
of the coin, more replications take up more storage space. We hence need to explore

126 Xing Jin and S.-H. Gary Chan

efficient replication mechanisms to achieve good tradeoff between search efficiency
and storage cost.

In the original Gnutella, peers requesting a file make copies of the file. Other
systems like FastTrack allow for more proactive replications of files, where a file
may be replicated at a peer even though the peer has not requested the file.

Cohen et al. have proposed a network model for proactive replication in unstruc-
tured P2P networks [13]. Suppose there are in total m files and n peers in an unstruc-
tured P2P network. Each file i (1 ≤ i ≤ m) is replicated at ri (1 ≤ ri ≤ n) random
distinct peers. Clearly, if there is not any limitation on storage space, a straight-
forward strategy would be to replicate everything everywhere, and search becomes
trivial. Hence, we assume that the total amount of storage space over all peers is
fixed. If we further assume that each file has a unit size, the total amount of storage
space can be computed as R = ∑m

i=1 ri.
Suppose that file i is requested with the query rate qi. Here qi is normalized so

that ∑m
i=1 qi = 1. We consider search of randomly probing peers until the specific

file is found. Then, the probability that file i is found on the k’th probe is given by

Pri(k) =
ri

n

(
1− ri

n

)k−1
.

Define search size of a query as the number of probes to locate the matching file
for the query. For a certain file i, its average search size Ai is simply n/ri. Hence,
the average search size over all files is

A =
m

∑
i=1

qiAi = n
m

∑
i=1

qi

ri
. (1)

Given the above network model, we can analyze the performance of several dif-
ferent replication mechanisms.

• Uniform replication: This replication mechanism equally replicates all files re-
gardless of their popularities. In other words, ri = R/m, ∀i ∈ [1,m]. Hence, the
average search size Auni f orm is given by

Auni f orm = n
m

∑
i=1

(
qi

m
R

)
=

nm
R

.

Clearly, Auni f orm is independent of the query distribution.
• Proportional replication: This replication mechanism replicates more copies for

more popular files. In other words, ri = Rqi, ∀i ∈ [1,m]. Hence, the average
search size Aproportional is given by

Aproportional = n
m

∑
i=1

qi

Rqi
=

nm
R

.

Therefore, the proportional and uniform replication mechanisms yield the same
average search size, and that average search size is independent of the query

Unstructured Peer-to-Peer Network Architectures 127

distribution. On the other side, the distribution of average search size for a certain
file is different for these two mechanisms. In uniform replication, all files have
the same average search size (which is nm/R). In proportional replication, Ai =
n/(Rqi). Hence, a popular file with a high query rate will have a small average
search size, since it has many replicated copies in the network.

• Square-root replication: Given the formula of A as in Equation (1), Cohen et al.
prove in [13] that A is minimized when

ri =
R
√

qi

∑m
j=1
√

q j
.

The resulting average search size is

Aoptimal =
n
R

(
m

∑
i=1

√
qi

)2

.

This result is later confirmed by Lv et al. through simulations [34].

Given the above replication mechanisms, an immediate question is how to
achieve them via a distributed protocol in a decentralized unstructured P2P network.
This is easy for uniform and proportional replications. For uniform replication, the
system creates a fixed number of copies when the file first enters the system. For
proportional replication, the system creates a fixed number of copies every time the
file is queried. But the case for square-root replication is much more difficult. The
major challenge is that no individual peer sees enough queries to estimate the query
rate for a certain file.

Cohen et al. study several ways to achieve square-root replication [13]. Generally,
when a query succeeds, the requesting peer creates some number of copies (denoted
the number as C) at randomly selected peers. There is also some deletion mechanism
to guarantee that in the steady state the creation rate equals the deletion rate. There
are various ways to determine C. The first one is called path replication, which
sets C to the search size (i.e., the number of peers probed). Another method further
improves path replication by requiring a peer to record the value C with each copy.
This is called replication with sibling-number memory. A third method is called
replication with probe memory. Each peer records the number and the combined
search size of probes it sees for each file. It then determines C by collecting this
information from a certain number of peers. Clearly, this method needs extra inter-
host communication. For more details of these methods and their comparison, please
refer to [13].

4.2 Security and Reputation System

Most P2P systems work on the assumption of truthful cooperation among peers.
However, in the open environment of the Internet, some participating peers may not

128 Xing Jin and S.-H. Gary Chan

cooperate as desired. They may be selfish and unwilling to upload data to others, or
they may have abnormal actions such as frequent rebooting which adversely affect
their neighbors. More seriously, some peers may launch attacks to disrupt the service
or distribute viruses in the overlay network. We call these uncooperative, abnormal
or attacking behavior malicious actions and the associated peers malicious peers.

To detect malicious peers or reward well-behaved ones, a reputation system is
often used. In a typical reputation system, each peer is assigned a reputation value
according to its history performance. Differentiated services are then provided to
peers according to their reputation. We now study two key issues in P2P reputation
systems, namely, reputation computing and storage.

4.2.1 Reputation Computing

There are mainly three reputation computing techniques in current P2P networks.
We elaborate them as follows.

• Social Networks In this approach, all feedbacks available in the network are
aggregated to compute peer reputation. It can be further classified into two
categories: separated reputation model and correlated reputation model. In a
separated reputation model, only the direct transaction partners (e.g., resource
provider/downloader or streaming neighbor) of a peer can express their opinion
on the reputation of the peer [14, 16, 21, 27, 28, 35, 41]. A practical exam-
ple is eBay reputation system (although eBay is not a P2P network) [6]. After
each transaction at eBay, the buyer and the seller rate each other with a positive,
negative and neutral feedback. The reputation is calculated at a central server
by assigning 1 point for each positive feedback, 0 point for each neutral feed-
back and −1 point for each negative feedback. The reputation of a participant is
computed as the sum of its points over a certain period. Considering that peers
may lie in their feedbacks, Mekouar et al. propose to monitor suspicious feed-
backs [35]. The more suspicious feedbacks a peer generates, the smaller weight
in reputation computing its feedback has. Xiong et al. develop a general reputa-
tion model, which considers, for example, feedbacks from other peers, credibility
factor for the feedback sources, and transaction context factor for discriminating
the importance of transactions [46]. In fact, almost all the separated reputation
models can be expressed by this generalized model.
In a correlated reputation model, the reputation of a peer is computed based
on the opinion of its direct transaction partners as well as some third-party
peers [29, 40]. In this model, a peer A who wishes to know the reputation of
another peer B, can ask some peers (e.g., its neighbors) to provide their opin-
ion on B (although some of the peers may not have conducted any transaction
with B). A then combines the opinion from the peers to calculate B’s reputation.
Clearly, this model is more like our real social networks, where third-party peers
besides transaction partners can express their opinion on a peer. But it takes more
cost to collect and aggregate third-party opinion.

Unstructured Peer-to-Peer Network Architectures 129

• Probabilistic Estimation This approach uses sampling of the globally available
feedbacks to compute peer reputation. It often has some assumptions on peer
behavior. For instance, it may assume that a peer is trustworthy with a certain, but
unknown probability. And when sharing its own experience with others, a peer
may lie with some, again unknown, probability [17]. It then uses well known
probabilistic estimation techniques to estimate all unknown parameters.
Many estimation methods may be used. Despotovic et al. use maximum likeli-
hood estimation [17]. However, it assumes that peers do not collude, which may
not be practical in real networks. Mui et al. use Bayesian estimation to assess
the future performance of peers based on their history performance, but it uses
only direct interaction among peers and does not use third-party opinion [36].
Buchegger et al. take into account third-party opinion, but the approach is empir-
ical rather than theoretically solid [10].
By using a small portion of the globally available feedbacks, the probabilistic
model spends a lower cost in feedback collection than the social network ap-
proach. On the other hand, the social network approach can use a complicated
reputation model, and is robust to a wide range of malicious actions. But the
probabilistic model can be applied to only simple reputation models (due to
the difficulties in probabilistic estimation) and is effective to only a few mali-
cious actions. The performance of the two models has been compared in [18].
It has been shown that the probabilistic model performs better for small mali-
cious population, while the social network approach is better when most peers are
malicious.

• Game-Theoretic Model Different from the above two approaches, the game-
theoretic model assumes that peers have rational behavior and uses game theory
to build a reputation system. Rational behavior implies that there is an underly-
ing economic model in which utilities are associated with various choices of the
peers and that peers act so as to maximize their utilities. Li et al. present a game-
theoretic framework for analyzing reputation [30], and Fudenberg et al. offers
certain characterizations of the equilibria payoffs in the presence of reputation
effects [22].

4.3 Reputation Storage and Retrieval

A basic principle in reputation storage is that the reputation of a peer cannot be
locally stored at the peer. Because this has no protection against dishonest peers. A
dishonest peer may misreport its reputation value in order to gain rewards or avoid
punishments. We summarize several techniques for reputation storage and retrieval
in unstructured P2P networks as follows.

• Centralized This method uses a powerful server to keep the reputation of all
peers. For example, eBay uses a central server to collect and keep all users’ rep-
utation [6]. Feedbacks from users are sent to and stored at the server. A query of

130 Xing Jin and S.-H. Gary Chan

a user’s reputation is also sent to and replied by the server. Similar approaches
have been used in [21, 27, 28].
This approach is easy to implement and deploy. Security of a central server is
much easier to achieve than that of distributed components in a distributed ap-
proach. Furthermore, centralization makes reputation management independent
of peer joining and leaving, which greatly simplifies reputation retrieval. How-
ever, as discussed in Section 3.1, a centralized approach is not scalable to large
P2P networks. And the server forms a single point of failure, making the system
vulnerable.

• Supernode-Based Mekouar et al. propose a malicious detector algorithm to de-
tect malicious peers in Kazaa-like systems [35]. They assume that supernodes
are all trustworthy and maintain reputation information for ordinary peers. Each
peer is attached to a unique supernode. All the evaluation results about a peer are
maintained at its attached supernode. Supernodes can then enforce differentiated
services according to peers’ reputation. Note that supernodes in Kazaa are elected
according to peers’ computational power and edge bandwidth. A supernode may
not always be trustworthy. A possible improvement is to deploy some proxies
(e.g., a content distribution network) to replace unauthenticated supernodes.
The security and trustworthiness of pre-deployed proxies are much better than
self-elected supernodes.
The supernode-based approach is an extension of the centralized approach. In the
approach, a set of supernodes instead of a single server serve peers. However, to
serve a large P2P network, a large number of supernodes are needed, which leads
to high implementation and maintenance costs. In addition, the search and load
balancing mechanisms among supernodes need to carefully designed.

• Unstructured Overlay XREP uses a polling algorithm to help peers choose reli-
able resource in Gnutella-like networks [14, 16]. It consists of four operations:
resource searching, vote polling, vote evaluation and resource downloading (as
shown in Figure 2). The first operation is similar to searching in Gnutella. A
peer broadcasts to all its neighbors a Query message. If a peer receiving a Query
message has the matching file, it responds with a QueryHit message (as shown in
Figure 2(a)). In the next operation, upon receiving QueryHit messages, the origi-
nal searching peer selects the best matching resource among all possible choices.
It then polls other peers using an encrypted Poll message to enquire their opin-
ion on the resource or the resource provider. To achieve that, each XREP peer
maintains information for its own experience on resource and other peers. Upon
receiving a Poll message, each peer checks its experience data. If there is any
information about the resource or the provider indicated by the Poll message, the
peer sends its vote to the polling peer with an encrypted PollReply message (as
shown in Figure 2(b)).
In the third operation, the polling peer collects a set of votes and evaluates the
votes. It first decrypts the votes and discards corrupt ones. Then it analyzes vot-
ers’ IPs and detects cliques of dummy or controlled votes. After that, it randomly
selects a set of votes and directly contacts them with a TrustVote message. Each
contacted voter is required to send a VoteReply message for vote confirmation.

Unstructured Peer-to-Peer Network Architectures 131

A

B

C

D

Query

Query

Query

QueryHit

QueryHit

QueryHit

A

B

C

D

Poll

Poll

Poll

PollR
eply

PollReply

PollReply

A

B

C

D

TrustVote

TrustVot e
VoteReply

VoteReply

A

B

C

D

Download

(a) (b)

(c) (d)

Fig. 2 Operations in XREP. (a) Resource searching. (b) Vote polling. (c) Vote evaluation. (d)
Resource downloading.

This forces potential attackers to pay the cost of using real IPs as false witness
(e.g., shilling attack). After this checking process, the polling peer can obtain
the reputation of the resource or the provider, and finally decides to download it
(as shown in Figure 2(d)). If the polling peer decides not to download from the
current provider, it can repeat the voting process on another resource.
More examples of using unstructured overlays include NICE reputation model [40]
and TrustMe [41]. All the approaches based on unstructured overlays have the
security concern. Messages may be intercepted or blocked during transmission,
and voting is vulnerable to collusion among peers. Therefore, no secure reputa-
tion computing or delivery can be guaranteed. Furthermore, searching or voting
on an unstructured overlay is based on flooding, which incurs heavy traffic in the
network. For example, in XREP, Poll messages are broadcast throughout the net-
work each time a peer needs to find out the reputation of a resource or a provider.
This in turn affects the scalability of the system because an increase in the num-
ber of peers can potentially lead to an exponential increase in the number of Poll
messages and responses.

132 Xing Jin and S.-H. Gary Chan

5 Other Applications of Unstructured P2P Networks

Besides file sharing, unstructured P2P networks have been widely used in other
network applications. In this chapter, we discuss two example applications based on
unstructured P2P networks: media streaming and VoIP.

5.1 Media Streaming: CoolStreaming

With the popularity of broadband Internet access and P2P technologies, media
streaming has gone through rapid growth. Typical services include on-demand video
streaming that allows users to choose and watch favorite movies anytime, Internet
Protocol television (IPTV) and live streaming that provide live TV service.

In a P2P streaming system, one or multiple supplying peers who have all or part
of the requested media can forward the data to the requesting peers. In turn, the re-
questing peers can become supplying peers for other requesting peers. Because each
peer contributes its own resource (storage and network bandwidth) to the system, the
whole system’s capacity is vastly amplified compared to the traditional client-server
architecture. The major challenges in P2P streaming include [47]:

• Peer dynamics: In P2P networks, peers do not always stay online in the system.
Supplying peers might unexpectedly crash or leave. In this case, the requesting
peers need to find new supplying peers to replace the failed ones. Therefore, the
system should be highly robust to withstand such peer dynamics.

• Limited and dynamic peer bandwidth: Unlike powerful video servers, peers have
limited bandwidth capacities. Each supplying peer might only be able to support
a few requesting peers (or multiple supplying peers are required to support one
requesting peer). Also, the available bandwidth of supplying peers might fluctu-
ate. Hence, the system should be able to adaptively adjust each supplying peer’s
sending rate to keep the streaming quality at requesting peers unaffected.

CoolStreaming is one of the popular softwares that provide live streaming ser-
vice through P2P networks [32, 51]. As the first P2P-based streaming system that
attracts a remarkable amount of users, CoolStreaming has several notable features:
(1) Intelligent scheduling algorithm that copes well with the bandwidth heterogene-
ity of peers; (2) Swarm-style architecture that builds a gossip overlay to distribute
contents.

In CoolStreaming, a peer needs to search for some other peers called partners,
with which the peer collaborates to download streaming contents. To construct the
overlay network among partners, the system employs the Scalable Gossip Member-
ship protocol (SCAM) [23]. The SCAM protocol is fully distributed and scalable,
and can provide a uniform partial view of the whole system at each peer. Based on it,
CoolStreaming forms an unstructured overlay among partners, which achieves ex-
cellent resilience against random failure and enables decentralized operation. Such
an overlay is similar to the BitTorrent network [37].

Unstructured Peer-to-Peer Network Architectures 133

In detail, a newly joined peer first contacts the boot-strap server, which responds
with a randomized list of the currently active peers. The newly joined peer stores this
list in its cache and randomly selects a few peers from the cache to establish TCP
connections, i.e., partnership. Once the partnership is established between a pair
of peers, they exchange and update their cache contents. The maximum number of
peers in the cache is usually on the order of logN, where N is the total number of
peers in the system.

Content delivery in CoolStreaming is achieved as follows. The video stream is
divided into segments of uniform length, and the availability of the segments in a
peer’s buffer is represented by a buffer map (BM). Note that the aforementioned
cache is used to store system management data and the buffer here is used to store
media content. Each peer periodically exchanges its BM with its partners. Upon
receiving the BM from a peer x, a peer y chooses the data segments it does not
possess and sends a request indicating the demanded data segments to x. Then, x
delivers the requested data segments to y. Clearly, if a peer has multiple partners,
the peer has to select one partner for each of its missing segments. This selection
problem is called packet scheduling. Interested readers may refer to [48, 51] for
more details.

Figure 3 shows an example of the CoolStreaming network. The system consists
of a video source, a boot-strap server and four peers (labeled from A to D). The video
source provides the complete video content for the system. In the figure, it delivers
video content to peers B and D. The boot-strap server helps peers join the system.
The real lines with double-ended arrows show the partnership between peers. For
example, peer C has three partners A,B and D.

video source

boot-strap server

peer A

peer B

peer C

peer D

• • •26252423

• • •272524 • • •27×2524

22 • • •2321 22 • • •2321

22

23

24 , 26

25 ,
27

× × × ×

Fig. 3 An example of the CoolStreaming network

134 Xing Jin and S.-H. Gary Chan

The square table along a peer shows part of the peer’s BM. For example, peer B
possesses segments 24, 25 and 27 in its buffer. But it does not possess segment 26.
Missing of a segment is denoted as “×” in the BM. The subsequent segments after
the 27th are not shown in B’s BM, which is denoted as “. . .”. Note that peers have
different starting segments in their BMs. This is because they have different play
points (due to, for example, different end-to-end delay, or different downloading
bandwidth).

The figure also shows an example of packet scheduling at peer C. Suppose C
has known the BMs of its partners. It then uses the packet scheduling algorithm to
decide to fetch which missing segment from which partner. In the figure, it requests
segment 23 from peer A, segments 25 and 27 from peer B, and segments 24 and
26 from peer D, respectively. This scheduling imposes similar uploading load on its
partners.

In summary, the advantages of CoolStreaming include:

• Fully distributed and scalable: Each peer distributedly joins the system and se-
lects partners. During content delivery, a peer exchanges information with only
a few partners. The whole system is hence highly scalable. This allows Cool-
Streaming to accommodate a large number of peers. As reported in [31, 45], it
recorded over 80,000 concurrent users with an average bit rate of 400 Kbps.

• Highly resilient to peer dynamics: The use of multiple partners and the corre-
sponding multiple path delivery at peers provide high system resilience. If some
partners of a peer unexpectedly leave, the peer can still retrieve data from other
partners.

On the other side of the coin, CoolStreaming has some limitations due to its
design.

• High control overhead: CoolStreaming has high control overhead for the gossip
mesh maintenance and data distribution. A peer has to frequently communicate
with its current and potential partners to keep a highly refreshed overlay. Oth-
erwise, a peer cannot quickly find new partners in case of partner leaving. Fur-
thermore, a peer has to periodically exchange BM with its partners. This further
increases the control overhead.

• High end-to-end delay: Peers in CoolStreaming often encounter high end-to-end
delay. This is sometimes fatal to the quality of service, for example, for people
gambling during a live soccer play. The reason is two-fold. Firstly, the gossip
mesh is randomly formed without considering peer locality. The mesh often con-
tains long connections between faraway peers. Secondly, the procedure of BM
exchange increases the delay. Before a peer can download a segment, it has to
first obtain some valid BMs and then send a transmission request to the selected
partner.

There has been much effort to improve CoolStreaming and study new streaming
systems. For example, Ren et al. explore how to build a low-delay overlay mesh
among peers by considering peer locality [39]. Zhang et al. propose new data deliv-
ery mechanism to reduce delay due to BM exchange [49]. Meanwhile, many other

Unstructured Peer-to-Peer Network Architectures 135

P2P streaming systems are proposed and evaluated, for example, AnySee [33] and
GridMedia [43] for live streaming, P2VoD [20] and oStream [15] for video-on-
demand.

5.2 VoIP: Skype

VoIP service (also referred to as IP telephony, Internet telephony, or voice over
broadband) allows for the transmission of voice through the Internet. Traditional
telephone lines use the Public Switched Telephone Network (PSTN), which works
on circuit switching and connects callers to receivers through electrical circuits.
VoIP is based on packet switching, where data packets are carried across the Inter-
net, from one computer to either another computer or a PSTN telephone. There
have been many VoIP softwares in the market, for example, Skype [7], Google
talk and AOL Instant Messenger. VoIP operates in different forms. Here are a few
examples.

• Computer to computer: This is the most frequently used way of VoIP. Each com-
puter should be equipped with a sound card, a headset consisting of earphones
and microphone, and some VoIP software. Most VoIP softwares provide free
service for one computer to connect to any other computer running the same
software.

• Computer to phone: Some VoIP softwares allow users to call regular telephone
landlines and mobile phones from a computer. This service is usually not free,
but its cost is often lower than traditional telephone charges.

• Phone to phone: There are two ways to make a phone-to-phone connection: (1)
Use a regular phone plugged into an Analog Terminal Adaptor (ATA), which in
turn connects to the Internet. (2) Use a VoIP phone that connects to the Internet.

Figure 4 shows the above three forms of VoIP systems. Current VoIP softwares
also provide many other features such as instant messaging, file transfer and video
conferencing.

We now study Skype as an example VoIP system. Skype launched its service in
2003 and experienced rapid growth after that. In October 2005, it was purchased
by eBay. According to eBay quarterly report, as of December 31, 2007, Skype had
accumulated 276 million user accounts.

Skype uses a proprietary and closed-source protocol. Numerous attempts have
been undertaken to study and reverse engineer the protocol [9, 24, 44]. It is believed
that Skype uses a Kazaa-like P2P network. Both companies were founded by the
same individuals and much of the technology in Skype was originally developed
for Kazaa. This is further confirmed by comparing Skype and Kazaa traffic on the
packet level [9].

The Skype system consists of three main entities: supernodes, ordinary peers
and login servers. Supernodes are elected from ordinary peers which have high
bandwidth, adequate processing power and no firewall. There are also a number of

136 Xing Jin and S.-H. Gary Chan

Internet
VoIP VoIP

Computer Computer

PSTN

Telephone
Company

Telephone

Internet
VoIP VoIP

Computer

Internet
VoIP VoIP

Telephone ATA VoIP Phone

(a)

(b)

(c)

Fig. 4 Different forms of VoIP systems. (a) Computer-to-computer. (b) Computer-to-phone. (c)
Phone-to-phone.

pre-deployed supernodes in the system, which keep staying online.Supernodes
maintain an overlay network among themselves.

When login, a peer first connects to the Skype network. This is achieved by
establishing a TCP connection and exchanging information with a supernode. To
do that, the new peer contacts a default supernode to obtain a list of supernodes.
The peer then caches the supernode list and regularly refreshes it. If the TCP
connection fails, the peer tries to connect to some bootstrap IP addresses hard-
coded in the client software (in version 1.2), or simply generates a login failure
report (in version 0.97) [9]. After connecting to the Skype network, the peer au-
thenticates the username and password with the Skype login server. An obfus-
cated list of servers has been hardcoded in the client software. Then the peer
advertises its presence to other peers, determines the type of network address
translator (NAT) and firewall it is behind and discovers peers that have public IP
addresses.

When a peer A wants to call another peer B, A first queries some supernodes for
B’s address. Through a search among supernodes, A can obtain B’s address. If both
A and B are publicly reachable, A sets up a connection to B and directly exchanges
voice traffic with B. If any participating peer is behind firewall or NAT, it sets up a
connection to a supernode. The transmission of voice traffic is then relayed by the

Unstructured Peer-to-Peer Network Architectures 137

supernode. Sometimes Skype also routes calls through ordinary peers to ease the
crossing of Symmetric NATs and firewalls.

The use of supernodes for communication has many advantages. Firstly, peers
behind NATs or firewalls are not publicly reachable. Through public supernodes,
such peers can be reached and called. Secondly, supernodes can manage multi-user
sessions such as conferencing. They can store messages from different users and
accordingly forward them. On the other hand, this network structure puts heavy
burden on supernodes, leading to unfair work loads among peers.

6 Mobile Unstructured P2P Networks

With the advance of mobile devices and technologies, data distribution among hand-
helds has become a reality. Wireless networks share many similar features with P2P
networks, e.g., distributed network structure and dynamic network topology. In this
chapter, we discuss how to implement unstructured P2P networks over wireless net-
works.

6.1 Characteristics of Mobile Wireless Networks

There are different types of wireless networks. We list a few as examples.

• Mobile ad-hoc networks (MANETs): MANETs do not have any infrastructure
support (such as base stations, access points or remote servers). All network
functions are performed by the nodes forming the network, which often have
high mobility and low processing power. The resulting topology is then dynamic
and unstable. An example of MANET is a vehicular ad-hoc network, where wire-
less devices in vehicles interact with each other while moving at high speed.

• Wireless sensor networks (WSNs): A WSN uses spatially distributed autonomous
sensors to monitor physical or environmental conditions (such as temperature,
pressure and pollutants). The sensors are low-profile devices with very limited
processing power, memory and battery. The primary concern of a sensor net-
work is its lifetime, therefore protocols for sensor nodes often focus on power
conservation.

• Wireless mesh networks (WMNs): A WMN consists of gateways, mesh points
and wireless end-users. Gateways provide access to the Internet. Mesh points
are small devices with limited processing power and memory, which are often
mounted on lamp posts or rooftops. Each mesh point is associated with a cer-
tain gateway, and forwards Internet-bound traffic from associated users to the
gateway. Mesh points hence extend the network coverage of gateways. While
end-users are mobile and may switch their associated mesh points at any time,
gateways and mesh points are generally stationary. A WMN is reliable and offers
redundancy. If some mesh points fail, the rest mesh points can self-form a new
mesh to continue communications.

138 Xing Jin and S.-H. Gary Chan

While these wireless networks have different forms and usage, they have some
common characteristics, which differentiate them from the wired Internet.

• Wireless transmission: Packet transmission on wireless channels is based on
broadcast. And the wireless communication medium is accessible to any entity
with the appropriate equipment and adequate resource. As a comparison, Internet
transmission is mainly based on unicast, and sometimes multicast. In addition,
wireless channels have limited bandwidth and each hop has a certain transmis-
sion range.

• Lack of routing infrastructure: In the wired network, routing is readily available.
But in wireless networks, routing is a non-trivial issue. Two important issues in
wireless routing are high maintenance overhead of routes and inefficient band-
width utility due to long routes.

• Low processing capability, memory capacity and energy power: Wireless devices
are often small handheld devices. They are normally low in processing capability
and limited in memory capacity and energy power.

6.2 Approaches for Mobile Unstructured P2P Networks

We select MANET as an example of wireless networks. A MANET is similar to a
P2P network in the following aspects.

• Both systems are distributed. In MANETs, nodes usually have low local resource
and cannot serve as servers. A scalable P2P network should also be fully dis-
tributed in order to accommodate a large number of peers.

• Their topologies frequently change because of peer on/off or mobility.
• Nodes or peers in the systems have similar functionalities. They cooperate to

route queries and rely messages. In both systems, flooding or broadcasting is
employed to some extent for data exchange or routing among peers/nodes.

There are also some differences between P2P and MANET. For example, P2P
works on the application layer in the protocol stack, while MANET focuses on the
network and lower layers. As mentioned above, peers in MANET are mobile and
constrained by limited energy, bandwidth and computational power, which is not a
big concern in P2P systems over the Internet. And MANET uses physical broadcast
but P2P uses physical unicast.

When deploying P2P networks over MANETs, the major problem is how to
quickly find the requested data in spite of the mobility and the scarcity of power
and bandwidth in the underlying MANET. Ding et al. propose several ways for such
purpose [19]. A straightforward approach is to simply implement the P2P flooding
mechanism over MANET on-demand routing protocols. That is, a query message is
flooded to every virtual neighboring peer in the P2P overlay. As two virtual neigh-
boring peers may be multiple hops away in the MANET, we need to obtain the
underlying route between them. Then the network routing request is also broadcast
at the network layer.

Unstructured Peer-to-Peer Network Architectures 139

We show an example in Figure 5(a). Circles in the figure represent mobile nodes
in a MANET. Two mobile nodes connected by a real line are within the transmis-
sion range of each other in the MANET. Shadowed rectangles (labeled as A, E
and F) represent peers in an unstructured P2P network. Two peers connected by
a dashed line are neighboring peers in the P2P network. From the figure, A and
E are neighboring peers in the P2P network. So are E and F . In this example,
if E wants to search for some file, it floods its query to its neighboring peers in
the P2P network, i.e., A and F . Different from the wired Internet, the route from
E to A (or to F) is not readily available and needs to be discovered through the
MANET routing protocol. A broadcast for routing on the network layer is then
necessary.

B

E

C

G

A

D

F

B

E

C

G

A

D

F

(a) (b)

Fig. 5 Two examples of unstructured P2P network over MANET. Circles represent mobile nodes
in a MANET. Two mobile nodes connected by a real line are within the transmission range of each
other in the MANET. Shadowed rectangles represent peers in an unstructured P2P network. Two
peers connected by a dashed line are neighboring peers in the P2P network

This approach is easy to implement. But it is not scalable due to the double-
layer broadcasts. Two neighboring peers in the P2P network might be physically far
away from each other. Hence, flooding in the P2P network might be expensive and
inefficient. Therefore, this approach is only applicable to small MANETs.

Another approach is to map the MANET network to a P2P overlay network.
Each MANET mobile node can be regarded as a peer in the P2P network. A pair of
neighboring nodes in MANETs (within the transmission range of each other) cor-
respond to a pair of neighboring peers in P2P. As wireless networks always employ
broadcast to transmit data, the MANET routing protocol and the P2P flooding pro-
tocol can be implemented by one-pass broadcast.

For example, in Figure 5(b), if E wants to search for some file, it broadcasts a
query to its neighboring mobile nodes B and G, which are also its neighboring peers

140 Xing Jin and S.-H. Gary Chan

in the P2P network. Upon receiving the query message, B and G check their local
file resource and continue broadcasting the message if needed.

Clearly, this method is more efficient than the first one. It directly finds the short-
est path between the file source and the original requester. But the whole network
is still flooded by query messages, which imposes heavy burden on communica-
tion bandwidth and power supply for mobile nodes. So it still cannot work for large
MANETs.

There are many other approaches for building P2P networks over wireless net-
works. For example, Hora et al. study how to reduce energy consumption and delay
in mobile P2P networks [26]. Akon et al. propose a novel gossip protocol to build
and maintain a P2P network over a mobile wireless network [8]. Interested readers
can refer to these papers for more details.

7 Conclusion

We discuss in this chapter unstructured P2P networks, one type of widely used P2P
networks. In an unstructured P2P network, peers form an overlay (often in a random
way) to exchange or relay data. Different from structured P2P networks, unstruc-
tured P2P networks do not impose any structure on the overlays. As a result, data
storage is unrelated to the overlay, and file search essentially amounts to random
search.

We discuss several applications of unstructured P2P networks, including file
sharing, media streaming and VoIP. For the first one, we classify existing approaches
into four categories and explore representative examples from each category. We
also discuss two advanced issues in file sharing, i.e., content replication and reputa-
tion system. For the other two applications, we study their key challenges. We select
one state-of-the-art approach for each application and analyze its system design.

We also investigate how to implement unstructured P2P networks over wireless
networks. The characteristics of wireless networks (such as limited bandwidth and
transmission range) impose new challenges for building P2P networks. We study
the state-of-the-art approaches and discuss their advantages and limitations.

References

1. Gnutella. URL http://gnutella.wego.com
2. Kazaa. URL http://www.kazaa.com
3. BitTorrent. URL http://www.bittorrent.com
4. Napster. URL http://www.napster.com
5. Grokster. URL http://www.grokster.com
6. eBay. URL http://www.ebay.com
7. Skype. URL http://www.skype.com/

Unstructured Peer-to-Peer Network Architectures 141

8. Akon, M., Shen, X., Naik, S., Singh, A., Zhang, Q.: An inexpensive unstructured platform
for wireless mobile peer-to-peer networks. Peer-to-Peer Networking and Applications 1(1),
75–90 (2008)

9. Baset, S.A., Schulzrinne, H.: An analysis of the Skype peer-to-peer Internet telephony proto-
col. In: Proc. IEEE INFOCOM’06 (2006)

10. Buchegger, S., Boudec, J.Y.L.: A robust reputation system for P2P and mobile ad-hoc net-
works. In: Proc. P2PEcon’04 (2004)

11. Castro, M., Costa, M., Rowstron, A.: Should we build Gnutella on a structured overlay? SIG-
COMM Computer Communication Review 34(1), 131–136 (2004)

12. Chawathe, Y., Ratnasamy, S., Breslau, L., Lanham, N., Shenker, S.: Making Gnutella-like P2P
systems scalable. In: Proc. ACM SIGCOMM’03, pp. 407–418 (2003)

13. Cohen, E., Shenker, S.: Replication strategies in unstructured peer-to-peer networks. In: Proc.
ACM SIGCOMM’02, pp. 177–190 (2002)

14. Cornelli, F., Damiani, E., Vimercati, S., Paraboschi, S., Samarati, P.: Choosing reputable ser-
vents in a P2P network. In: Proc. ACM WWW’02, pp. 376–386 (2002)

15. Cui, Y., Li, B., Nahrstedt, K.: oStream: Asynchronous streaming multicast in application-layer
overlay networks. IEEE Journal on Selected Areas in Communications 22(1), 91–106 (2004)

16. Damiani, E., Vimercati, S., Paraboschi, S., Samarati, P., Violante, F.: A reputation-based ap-
proach for choosing reliable resources in peer-to-peer networks. In: Proc. ACM CCS’02, pp.
207–216 (2002)

17. Despotovic, Z., Aberer, K.: Maximum likelihood estimation of peers performance in P2P net-
works. In: Proc. P2PEcon’04 (2004)

18. Despotovic, Z., Aberer, K.: P2P reputation management: Probabilistic estimation vs. social
networks. Computer Networks 50(4), 485–500 (2006)

19. Ding, G., Bhargava, B.: Peer-to-peer file-sharing over mobile ad hoc networks. In: Proc. IEEE
PercomW’04, pp. 104–108 (2004)

20. Do, T., Hua, K.A., Tantaoui, M.: P2VoD: Providing fault tolerant video-on-demand streaming
in peer-to-peer environment. In: Proc. IEEE ICC’04, pp. 1467–1472 (2004)

21. Dragovic, B., Kotsovinos, E., Hand, S., Pietzuch, P.: XenoTrust: Event-based distributed trust
management. In: Proc. DEXA’03, pp. 410–414 (2003)

22. Fudenberg, D., Levine, D.: Reputation and equilibrium selection in games with a patient
player. Econometrica 57(4), 759–778 (1989)

23. Ganesh, A.J., Kermarrec, A.M., Massoulie, L.: SCAMP: Peer-to-peer lightweight membership
service for large-scale group communication. In: Proc. NGC’01 (2001)

24. Guha, S., Daswani, N., Jain, R.: An experimental study of the Skype peer-to-peer VoIP system.
In: Proc. IPTPS’06 (2006)

25. Hei, X., Liang, C., Liang, J., Liu, Y., Ross, K.W.: A measurement study of a large-scale P2P
IPTV system. IEEE Transactions on Multimedia 9(8), 1672–1687 (2007)

26. da Hora, D.N., Macedo, D.F., Nogueira, J.M.S., Pujolle, G.: Optimizing peer-to-peer content
discovery over wireless mobile ad hoc networks. In: Proc. IFIP/IEEE MWCN’07, pp. 86–90
(2007)

27. Jin, X., Chan, S.H.G., Yiu, W.P.K., Xiong, Y., Zhang, Q.: Detecting malicious hosts in the
presence of lying hosts in peer-to-peer streaming. In: Proc. IEEE ICME’06, pp. 1537–1540
(2006)

28. Jun, S., Ahamad, M., Xu, J.: Robust information dissemination in uncooperative environ-
ments. In: Proc. IEEE ICDCS’05, pp. 293–302 (2005)

29. Kamvar, S.D., Schlosser, M.T., Garcia-Molina, H.: The EigenTrust algorithm for reputation
management in P2P networks. In: Proc. WWW’03, pp. 640–651 (2003)

30. Kreps, D., Wilson, R.: Reputation and imperfect information. Journal of Economic Theory
27(2), 253–279 (1982)

31. Li, B., Xie, S., Keung, G., Liu, J., Stoica, I., Zhang, H., Zhang, X.: An empirical study of the
Coolstreaming+ system. IEEE Journal on Selected Areas in Communications 25(9), 1627–
1639 (2007)

142 Xing Jin and S.-H. Gary Chan

32. Li, B., Xie, S., Qu, Y., Keung, G., Lin, C., Liu, J., Zhang, X.: Inside the new Coolstreaming:
Principles, measurements and performance implications. In: Proc. IEEE INFOCOM’08, pp.
1031–1039 (2008)

33. Liao, X., Jin, H., Liu, Y., Ni, L.M., Deng, D.: Anysee: Peer-to-peer live streaming. In: Proc.
IEEE INFOCOM’06 (2006)

34. Lv, Q., Cao, P., Cohen, E., Li, K., Shenker, S.: Search and replication in unstructured peer-to-
peer networks. In: Proc. ICS ’02, pp. 84–95 (2002)

35. Mekouar, L., Iraqi, Y., Boutaba, R.: Peer-to-peer’s most wanted: Malicious peers. Computer
Networks 50(4), 545–562 (2006)

36. Mui, L., Mohtashemi, M., Halberstadt, A.: A computational model of trust and reputation. In:
Proc. HICSS’02, pp. 2431–2439 (2002)

37. Qiu, D., Srikant, R.: Modeling and performance analysis of BitTorrent-like peer-to-peer net-
works. In: Proc. ACM SIGCOMM’04, pp. 367–378 (2004)

38. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Schenker, S.: A scalable content-
addressable network. In: Proc. ACM SIGCOMM’01, pp. 161–172 (2001)

39. Ren, D.N., Li, Y.T.H., Chan, S.H.G.: On reducing mesh delay for peer-to-peer live streaming.
In: Proc. IEEE INFOCOM’08, pp. 1058–1066 (2008)

40. Sherwood, R., Lee, S., Bhattacharjee, B.: Cooperative peer groups in NICE. Computer Net-
works 50(4), 523–544 (2006)

41. Singh, A., Liu, L.: TrustMe: Anonymous management of trust relationships in decentralized
P2P systems. In: Proc. IEEE P2P’03, pp. 142–149 (2003)

42. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A scalable peer-
to-peer lookup service for Internet applications. In: Proc. ACM SIGCOMM’01, pp. 149–160
(2001)

43. Tang, Y., Luo, J.G., Zhang, Q., Zhang, M., Yang, S.Q.: Deploying P2P networks for large-scale
live video-streaming service. IEEE Communications Magazine 45(6), 100–106 (2007)

44. Xie, H., Yang, Y.R.: A measurement-based study of the Skype peer-to-peer VoIP performance.
In: Proc. IPTPS’07 (2007)

45. Xie, S., Li, B., Keung, G., Zhang, X.: Coolstreaming: Design, theory, and practice. IEEE
Transactions on Multimedia 9(8), 1661–1671 (2007)

46. Xiong, L., Liu, L.: PeerTrust: Supporting reputation-based trust for peer-to-peer electronic
communities. IEEE Transactions on Knowledge and Data Engineering 16(7), 843–857 (2004)

47. Yiu, W.P.K., Jin, X., Chan, S.H.G.: Challenges and approaches in large-scale P2P media
streaming. IEEE Multimedia 14(2), 50–59 (2007)

48. Zhang, M., Xiong, Y., Zhang, Q., Yang, S.: On the optimal scheduling for media streaming in
data-driven overlay networks. In: Proc. IEEE Globecom’06 (2006)

49. Zhang, M., Zhang, Q., Sun, L., Yang, S.: Understanding the power of pull-based streaming
protocol: Can we do better? IEEE Journal on Selected Areas in Communications 25(9), 1678–
1694 (2007)

50. Zhang, X., Liu, J., Li, B.: On large scale peer-to-peer video streaming: Experiments and em-
pirical studies. In: Proc. IEEE MMSP’05 (2005)

51. Zhang, X., Liu, J., Li, B., Yum, T.S.P.: CoolStreaming/DONet: A data-driven overlay network
for peer-to-peer live media streaming. In: Proc. IEEE INFOCOM’05, pp. 2102–2111 (2005)

Exchanging Peers to Establish P2P Networks

Mursalin Akon, Mohammad Towhidul Islam, Xuemin (Sherman) Shen,
and Ajit Singh

Abstract Structure-wise, P2P networks can be divided into two major categories:
(1) structured and (2) unstructured. In this chapter, we survey a group of unstruc-
tured P2P networks. This group of networks employs a gossip or epidemic protocol
to maintain the members of the network and during a gossip, peers exchange a sub-
set of their neighbors with each other. It is reported that this kind of networks are
scalable, robust and resilient to severe network failure, at the same time very inex-
pensive to operate.

1 Introduction

In the Internet world, Peer-to-peer (P2P) computing is an emerging model for ser-
vice distribution. In contrast to the traditional client-server and push models, the P2P
model is characterized by decentralization, self-organization, cooperation among
peers and heterogeneity. In P2P model, participant peers work together to reach
a common goal. According to this model, an overlay networks is created among
peers, and peers bind each other in a logical neighbor relationship. Most often, such
an overlay network remains as a pure virtual entity over the physical network.

M. Akon
Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada, e-mail:
mmakon@uwaterloo.ca

M. Islam
Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada, e-mail:
mtislam@uwaterloo.ca

X. Shen
Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada, e-mail:
xshen@bbcr.uwaterloo.ca

A. Singh
Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada, e-mail:
asingh@uwaterloo.ca

X. Shen et al. (eds.), Handbook of Peer-to-Peer Networking, 143
DOI 10.1007/978-0-387-09751-0 6, © Springer Science+Business Media, LLC 2010

144 Mursalin Akon, Mohammad Towhidul Islam, Xuemin (Sherman) Shen, and Ajit Singh

Based on the nature of the binding or relationship among peers, P2P networks
is often distinguished into two categories: (1) structured and (2) unstructured. The
topology of the members in a structured network is ruled by explicit constraints.
Contents are distributed among the members using either some hints [4] or the
topology of the members [13, 15, 20, 22]. The unstructured networks do not have a
predetermined scheme to bind peers in neighbor relationship.

In this chapter, we explore a specific kind of unstructured P2P networks that
create the networks by interchanging a subset of neighbors. The heart of these net-
works is a gossip protocol where a peer talks to a neighboring peer about other
neighbors. The key idea is to introduce randomness in the system and eliminate all
sorts of global administration. This helps in sustaining dynamics of P2P networks,
i.e., constant join and leave of peers, and shows the capacity of self-healing in severe
network disasters.

We divide this chapter into several sections. We present four different P2P net-
works which are created and maintained using the concept of exchanging peers.
These networks are PROOFS, CYCLON, IPPS, and Gradient Topology Network,
and are elaborated in Sections 2, 3, 4 and 5, respectively. In Section 6, we end our
discussion with concluding remarks and future research discussions.

2 The PROOFS Network

Stavrou et al. propose P2P Randomized Overlays to Obviate Flash-crowd Symp-
toms or PROOFS [19] to manage Internet flash crowd. Internet flash crowd takes
place when an object reaches its peak popularity. During the pinnacle popularity
of an object, the number of requests may become so tremendous that a significant
number of the users are left out and thus the objects become unavailable to them.

2.1 Evolution

Previous solutions to the problem of flash crowd are either administration-wise im-
practical or expensive. Such solutions are provisioning accessibility based on peak
demand, creating dynamic hosts with dynamic domain names, etc. The traditional
solution of replicating servers increases availability but involves extensive amount
of communication efforts to exchange information and synchronize data with each
other, and thus is not scalable. In contrast, the PROOFS network provides a scalable
solution that can reliably deliver objects which are extremely popular to be handled
by standard delivery techniques.

There exist other structured P2P content distribution systems – such as CAN [13],
Chord [20], Past [6, 15], Tapestry [22], Pastry [15], SCRIBE [3, 16], etc. These sys-
tems facilitate easy and inexpensive object searches. However, objects or contents
with explosive popularity impose the same difficulties of traditional hosts. More-
over, such networks performs poorly in highly dynamic environments where partic-
ipants or peers join or leave at a very high rate. In contrary, PROOFS networks are
robust and possess self-healing property.

Exchanging Peers to Establish P2P Networks 145

2.2 Components

The design of the PROOFS network consists of two components: (1) client and (2)
bootstrap server. The clients1 are participants of the P2P overlay and they interact
with each other to search and retrieve (popular) objects. A bootstrap server caches
a finite set of recently joined peers or clients and introduce them to a joining peer.
Thus a joining peer becomes familiar with the network.

2.3 Protocols

A PROOFS network is created and maintained with help of two protocols – (1)
ConstructOverlay and (2) LocateObject.

2.3.1 ConstructOverlay

The ConstructOverlay begins when a peer joins the PROOFS network and
obtains initial neighbors from a bootstrap server. During lifetime, a peer maintains
at most C number of neighbors. Here, if peer p includes q as its neighbor, p is
allowed to be the initiator of a communication involving q. Peer q can communicate
with p by only responding to p, unless p is also a neighbor of q. Each peer, in the
network, performs a periodic operation called exchange.2 The exchange operation
at peer p is described in Algorithm 1.

Algorithm 1: The exchange operation of PROOFS

p finds Ep ⊆Np, where each element of Ep is selected randomly1
p selects q ∈ Ep randomly2
p sends a request to q with the set (Ep∪{p})\{q} to be a participant3
if q agrees to the request then4

q finds Eq ⊆Nq, where each element of Eq is selected randomly5
q sends a respond back to p with the set Eq6
p updates Np ← (Np\Ep)∪Eq7
q updates Nq ← (Nq\Eq)∪Ep8

In the algorithm, Np is used to designate the neighbor set of peer p. As evident,
the sets of peers exchanged and the participant is chosen entirely randomly (line 1, 2,

1 The term client does not refer to the clients in traditional client-server model. In P2P networks,
such components are designated as peers. Though the authors used the term client solely, we use
client and peer interchangeably to be in symphony with rest of the chapter.
2 The authors [19] used the term shuffle to designate this operation. We use the term exchange to
identify shuffle in PROOFS and other similar operations in other networks. The exchange operation
of PROOFS is used as the basis of other exchange operations discussed in this chapter.

146 Mursalin Akon, Mohammad Towhidul Islam, Xuemin (Sherman) Shen, and Ajit Singh

and 5). While updating the neighbor lists (lines 7 and 8) caution should be exercised
so that – (1) each neighbor does not exist more than once in a list, (2) a peers is not
included as its own neighbor, (3) the number of neighbors are always bounded by C
and if not, new members are added until the bound C is reached. Figure 1 shows an
example of an exchange operation in PROOFS network. In the figure p initiates the
operation with q.

f

qp

a
c

b

e

d

f

{a,b,p}

{a,d,e}

Before exchange After exchange

exchange
set

qp

a
c

b

e

d

Fig. 1 An example of exchange operation in PROOFS

Note that, a request to participate in an exchange may be denied or even ignored.
When the initiating peer does not receive a response back and times out, it assumes
that the target peer is no longer maintaining membership with the network, i.e., left
the network. A request is declined by an active peer, if and only if another exchange
operation is pending. In case of an unsuccessful exchange operation, the initiator
waits for a random time amount, picked from a uniform distribution and re-initiates
another exchange.

Like other communication networks, in PROOFS, the neighborhood relationship
is represented with a graph with directed edges. Peer q being the neighbor of p is
indicated by the directed edge from p to q. An exchange operation introduces new
edge and may eliminate existing edges, and always reverses the direction of the edge
between participants.

2.3.2 LocateObject

When a peer wants to retrieve an object in a PROOFS network, it initiates a query
using the LocateObject protocol. A query includes four vital piece of informa-
tion – (1) identification of the requested object, (2) time to live (TTL), (3) a fanout
value (f), and (4) the address of the query initiator as the return address. A query is
allowed to traverse at most TTL number of overlay hops.

When a peer receives a LocateObject query, at first it checks the local ob-
ject repository for the requested object. If available locally, the object is sent to the
return address. Otherwise, the query is forwarded to f randomly selected neigh-
bors after the TTL value is decremented by one. Note that, in case the TTL value is
decremented to a negative value, instead of forwarding to the neighbors, the query

Exchanging Peers to Establish P2P Networks 147

is discarded. When the query initiating peer does not get a response back (due to
timeout), it may re-initiate the same query again, possibly with a higher TTL value.

2.4 Properties of the PROOFS Networks

In graph representation, a PROOFS network is depicted with a directed graph. That
is, if q is the neighbor of p, p does not have to be the neighbor of q. The biggest
challenge of having an undirected graph appears when a peer leaves the network.
Each neighbor of the leaving peer has to find a new neighbor who is also willing to
accept an additional neighbor. The ease of not having a bi-directional neighborhood
relationship is counteracted by network partitioning.

Let Gd = (Vd ,Ed) be the proper directed graph representation of a PROOFS net-
work, where each vertex p∈Vd represents a peer and each directed edge from vertex
p to vertex q, i.e., (−→p,q) ∈ Ed indicates that q is a neighbor of p. Let Gu = (Vu,Eu)
be the undirected version of Gd , i.e., Vu and Vd are the same and for each (−→p,q)∈ Ed

there exists (−→p,q) ∈ Eu and (−→q, p) ∈ Eu or simply (p,q) ∈ Eu.
Property 1: Given that, Gu is the undirected representation of a PROOFS network

and is connected. If an exchange operation drives the graph representation to G′
u

from Gu, G′
u is also connected.3 In other words, no exchange operation partitions a

connected PROOFS network.
Property 2: Let Gd and Gu be the directed and undirected graph representation

of a PROOFS network. Let there exists a path from peer p to q in Gu but not in Gd .
There exists a series of exchange operations that introduces a path from p to q in
Gd . To have the series of operations, consider a path, consisting of the sequence of
vertices < p,(p+1),(p+2), . . . ,(q−2),(q−1),q >, from p to q in Gu. Considering
the same sequence of vertices (and related edges) in the Gd graph, there will be
some edges those point towards p and others towards q. Let (−→u,v) be an edge on that
sequence of edges pointing towards p. An exchange initiated by u with participant
v would make the edge pointing towards q. To have a path from p to q, the direction
of all those edges pointing towards p has to be reversed, and any combination of
related exchange operations serves the purpose.

2.5 Results

Some of the important results about PROOFS are presented in this section.

3 For details proof, readers may refer to the original paper.

148 Mursalin Akon, Mohammad Towhidul Islam, Xuemin (Sherman) Shen, and Ajit Singh

2.5.1 Connectivity

The authors investigate the effect of dynamic join and leave on the connectivity of
the network. In simulations, for each peer p in the PROOFS network, the fraction
of other peers in the network reachable from p using the directed path is computed.
It was found that at least 95% of the time the average reachability is one, i.e., each
peer in the network can reach all other peers. The reported lowest reachability, con-
sidering all the peers, is 20%. However, such a poor connectivity occurs in extreme
situations such as when the expected time a peer remains in the network is 50 times
smaller than the expected time a peer exists the network. In practice, this kind of
extreme situation is hardly found.

2.5.2 Noncooperative Peers

The peers in PROOFS are simply applications running on user computers. As a
result, it is extremely difficult, if not impossible, to make all the peers fully co-
operative. Besides cooperative peers, there may exist peers with different levels of
cooperations – (1) a query-only peer simply forward queries irrespective of avail-
ability of the requested object in the local cache, (2) a tunneling peer is same as
a query-only peer but considers fanout to be 1, and (3) a mute peer drops all the
queries from any other peers in the network.

It has been found that if the number of query-only or tunneling peers grows up
to 80%, almost 100% queries turn out to be successful in finding the target objects.
The worst query success rate is observed with mute peers. When the population of
mute peer reaches as high as 80% the query success rate drops but stays above 80%.

3 The CYCLON Network

Spyros et al. propose the CYCLON network [21] as a gossip-based network mem-
bership management protocol in unstructured P2P networks. The goal of the re-
search is to design a management protocol that results in a network having low di-
ameter, low clustering, highly symmetric node degree and at the same time is highly
resilient to massive node failures.

3.1 An Enhanced Exchange Operation

To achieve the goal, the authors propose an enhanced peer exchange4 operation. The
enhanced operation uses the similar working steps of the basic exchange operation

4 Spyros et al. use the term enhanced shuffle to designate their peer exchange mechanism.

Exchanging Peers to Establish P2P Networks 149

discussed in the previous section. The critical difference is that unlike the basic one,
in enhanced exchange, an initiating peer does not choose the participant randomly.

To facilitate the enhancement, the exchange operation is performed periodically
with an interval of Δ t. Each peer not only maintains a list of its neighbors but also
age for each of the logical outgoing links (or edges to neighbors). The age of an edge
gives an approximate estimation of time, in Δ t unit, since the edge is created by the
peer the edge points to. Algorithm 2 shows the steps of the enhanced exchange
operation, initiated by peer p with participant q.

Algorithm 2: The enhanced exchange operation of CYCLON

p increases the age of all outgoing edges pointing to the neighbors1
Let q ∈Np be a peer, such that t(−→p,q) � t(−→p,r), where r ∈Np∧q �= r2

Let Ep ⊆Np, where each element of Ep is selected randomly and |Ep|= l−13
p sends a request to q with the set Ep∪{p} to be a participant4
if q agrees to the request then5

q finds Eq ⊆Nq, where each element of Eq is selected randomly and |Eq|= l6
q sends a respond back to p with the set Eq7
p updates Np ← (Np\Ep)∪Eq8
q updates Nq ← (Nq\Eq)∪Ep9

In the algorithm, p picks up the peer that is pointed by the oldest edge (line 2,
where t(−→p,q) is the age of the edge (−→p,q)). The number of peers exchanged is called
exchange length and determined by the system parameter C � l > 0. When q updates
its neighbor list, a new edge pointing towards p is to be created with an age of 0.
All other edges, including those, which are sent over during the exchange, continue
to maintain their respective previous ages. So, while exchanging peers, not only a
list of peers are sent out but also their respective ages. As the basic steps of both
basic and enhanced exchange operation are the same, the properties described in
Section 2.4 also hold for enhanced exchange operation.

3.2 Results

Spyros et al. reports some very interesting property of the CYCLON network. In
this section, we discuss some of their findings.

3.2.1 Average Path Length

To compute the average path length, the undirected version of the graph represen-
tation of a network is considered. The undirected graph conveys the idea of peers
being informed of the neighbors in the undirected sense, i.e., if q is a neighbor of p,
at some point in the future p will become a neighbor of q. The concept is brought

150 Mursalin Akon, Mohammad Towhidul Islam, Xuemin (Sherman) Shen, and Ajit Singh

forward due to the second property of exchange networks described in Section 2.4.
It is observed that CYCLON network can converge to the average path length of a
random network within a hundred cycles, where a cycle is defined by the maximum
time duration allowing all peers to engage in a single exchange operation or Δ t. It is
also observed that the average path length increases logarithmically with the num-
ber of peers in the network. These observations indicate robustness of CYCLON in
applications where the entire network has to be reached out.

3.2.2 Average Clustering Coefficient

The clustering coefficient is defined as the ratio of the number of existing edges
between neighbors of a peer and the total number of possible edges between them.
An average over this coefficient for all peers gives an idea of how many peers are
neighbors of their own neighbors. The authors demonstrate that average clustering
coefficient of a CYCLON network converges to that’s of a random network5 within
a few hundred cycles.

3.2.3 Degree Distribution

Degree of a peer is a very important performance metric in unstructured networks.
Degree of a peer is defined as the number of edges from the peer in the graph rep-
resentation. The degree related to the number of outgoing edges is defined as out-
degree and the number of in coming edges is in-degree. The out-degree of each peer
in the CYCLON network is fixed and is always C. In-degree is the factor we are
most interested in.

The distribution of in-degree reveals some very significant characteristics of the
network as described below:

• Existence of a peers with significantly low in-degree many result in partitioned
or disconnected network, in case the peers referring to the concerned peer die or
leave the network. Similarly, a peer with a very large in-degree also represents a
weak point, as failure of the peer may result in a disconnected network.

• The distribution of in-degree represents how search or other epidemic protocols
behave. For example, a massively connected peer may receive same query from
many other peers several times which not only waste resources but also give poor
performance for the protocols.

• The distribution of in-degree also bears the indication of how loads are distributed
among peers. For example, a massively connected peer has to provide responses
from many other peers where as a weakly connected peer may simply be idle.

Figure 2 shows an example distribution of in-degree in a basic exchange (such
as PROOFS) and enhanced exchange (such as CYCLON) network. As can be seen

5 Average clustering coefficient of a random network is effectively defined as 2×C
N−1 , where N is the

total number of peers in the network.

Exchanging Peers to Establish P2P Networks 151

C

Basic exchange
Enhanced exchange

N
um

be
r

of
 p

ee
rs

In−degree

Fig. 2 In-degree distribution

in the figure, most of peers have in-degrees which are very close to the out-degree
(i.e., C). This illustrates that the most of the peers have similar load. It also indicates
that the load per peer is fair. The amount of services, a peer is expected to deliver
is equivalent to the amount of service a peer is expected to receive. Figure 2 can
be explained by investigating the introduction, deletion and lifetime of an edge. As
shown in Fig. 1, at the end of the exchange, the edge from p to q is deleted and
a new edge from q to p is created. The enhanced exchange mandates that the new
edge is assigned an age 0 and the deleted edge is the oldest edge towards a neighbor.

At each cycle, a node engages in one exchange operation, and thus creates a new
edge and abolishes an old one. Say, at cycle t, a new edge, with age 0, is created
towards peer p. At cycle (t + 1), another new edge towards p will be created and
the age of the last created edge will be incremented to 1. As a peer maintains C
number of neighbors and at each cycle the ages of the edges towards neighbors are
incremented by 1, a peer can host edges aged from 0 to (C− 1) only. So, a newly
created edge will be deleted within C cycles and a peer can have an edge as old as
C cycles pointing towards itself. In other words, a peer can have C edges pointing
towards itself at a single point of time.

In CYCLON, exchange operations between all the peers are periodic but are not
synchronized. Thus, the number of edges pointing towards each peer may vary a
little around C. Departure of peers and non-responding peers may allow an edge to
stay little longer or delete an edge prematurely. However, the system can recover
within C cycles. Unlike the enhanced version, basic exchange does not impose any
condition on the length of lifetime of an edge. As a result, at one extreme, an edge
may stay in the system for indefinite time and at the other extreme, an edge may be
deleted in the next cycle of its creation. That’s why, the basic exchange operation
results in a in-degree distribution with much higher variance as compared with that’s
of the enhanced version.

4 The IPPS Network

Inexpensive Peer-to-Peer Subsystem (IPPS) is an unstructured platform, proposed
for wireless mobile peer-to-peer networks by Akon et al. [1, 2]. The platform

152 Mursalin Akon, Mohammad Towhidul Islam, Xuemin (Sherman) Shen, and Ajit Singh

addresses the constraints of expensive bandwidth of wireless medium, and lim-
ited memory and computing power of mobile devices. It uses a computationally-,
memory requirement- and communication- wise inexpensive protocol as the main
maintenance operation, and exploits location information of the wireless nodes to
minimize the number of link-level messages for communication between peers.

4.1 The Problem and the Goal

A wireless mobile network is a cooperative network where each node requires to
collaborate with each other to forward packets from a source to a destination. In
such a network, the entire available channel capacity may not be available to an
wireless application, and the actual throughput is also determined by the forward-
ing load generated by other wireless nodes. Besides, mobile devices are battery
operated. Unlike electronics, advances in battery technology still lag behind. Mini-
mizing the number of link-level wireless hops helps in increasing the capacity avail-
able to the applications. Reduced number of link-level hops also means less number
of transmission and less power consumption for a mobile node. Along with being
thrifty about bandwidth consumption, a suitable application for mobile devices is
required be computationally inexpensive to ensure prolonged battery life and mem-
ory requirement-wise economical to confirm accommodation in the small system
memory.

In spite of the limitations of wireless mobile networks, P2P over high capacity
cellular networks and wireless LANs can provide a wide range of services such
as sharing files [9]. In scenarios where accessing a commercial network is expen-
sive, members of a P2P network can share downloaded objects with each other or
even can collaborate to download a large popular object. This not only provides a
cheaper way of sharing resources, but also enables low latency access to remote
objects. Dissemination of rescue or strategic information in a disaster or war zone
can be accomplished using mobile wireless P2P network. Short message broadcast,
multimedia broadcast, text, audio and / or video based conference are some other
examples.

There are some proposals to use existing or modified structured networks in wire-
less and mobile networks. For example, XScribe [11] is modified from SCRIBE [3]
to suite in mobile networks. However, a structured P2P network faces a high net-
work maintenance cost and the ability of this type networks to work in extremely
unreliable environments has not yet been investigated. In contrary, an unstructured
P2P network is a low cost network which can sustain any extreme environment [19].
Although such a benefit is achieved at the expense of higher search cost, the network
assumptions and the overall gain have made this kind of P2P networks so attractive

Exchanging Peers to Establish P2P Networks 153

that several unstructured P2P networks have been deployed and are being used by a
huge user communities.

In a wired network, due to the abundance of resources, performance metrics of
many applications are abstract. However, P2P networks in wireless mobile envi-
ronment should be very economic about the resources of the wireless medium and
devices. The goal of IPPS is to provide an inexpensive and well performing P2P
platform on which different P2P applications can be developed. To achieve the goal,
an unstructured P2P network, exploiting location information, is examined. While
designing the platform, careful choices are made to make the platform flexible, ro-
bust and fault tolerant.

4.2 System Model

IPPS system model consists of a set of collaborative computing nodes, each equipped
with a wireless interface. Those nodes are assumed to have the capability to form a
network on-the-fly using an ad-hoc networking technology, such as GeRaf [23, 24],
an efficient location aware transmission (MAC) and forwarding (routing) scheme, to
manage the network. In this model, for each node, participation in the P2P network
is optional. However, irrespective of its membership in the P2P network, each node
participates in routing messages from one node to another as a low level service. The
network is equipped with low level (lower than application level) point-to-point uni-
cast primitives, and each of the mobile devices has access to some form of location
service [5, 12]. Through this location service, a node in the network can obtain the
physical location of itself or other nodes. The information from the location service
is used by the lower level network management (i.e., GeRaf) as well as by the P2P
modules (i.e., IPPS library). Figure 3 shows an example of the considered network.

A wireless host that is not a member of the P2P netw

A wireless host that is a member of the P2P network

A gateway to the external networks

To external
network (Internet)

Fig. 3 An IPPS network

154 Mursalin Akon, Mohammad Towhidul Islam, Xuemin (Sherman) Shen, and Ajit Singh

4.3 Topology Maintenance

In this section, we discuss some of the important components and properties of an
IPPS network.

4.3.1 The Exchange Operation

IPPS borrows the concept of exchanging neighbors6 from PROOFS [19]. However,
the goals of the operation in these two networks are exclusive. In PROOFS network,
the operation provides randomness, where as, in IPPS, the operation makes attempts
to being neighboring peers closer to each other. The authors make the following
claim about their operation.

Claim: It is expected that exchange operations reduce link level hop count be-
tween neighboring peers.

Similar to CYCLON, each peer in IPPS performs exchanges at a regular inter-
val. During a exchange, l neighbors are interchanged between the initiator and the
participant. Peer p chooses the participating peer q among its own neighbors with
the intention of reducing the total distance between the peers. Distance between
two peers convey the idea of physical distance between them. Considering the sys-
tem model and the underlying network infrastructure, the hop count between two
neighboring peers is proportional to the distance between them.

Link level shortest path

P2P level shortest path
s

t

v

u

Node participated in P2P network

Node did not participate in P2P network

Legend:

Fig. 4 Shortest path in P2P and link level network

Claim: Exchange reduces the bandwidth requirement to forward P2P messages.
A peer usually forwards P2P messages, such as query messages, to its P2P neigh-

bors only. As not all communication nodes participate in the P2P network, a P2P
level hop may consist of several link level hops. Figure 4 shows the idea pictorially.
There exists one non-P2P node between s and u (i.e., two hops), whereas there are
two non-P2P nodes between u and v (i.e., three hops). In a random P2P network, on
an average one P2P hop consists of average link level path length of the network.
In the worst case, where two neighboring peers are located at the extreme ends, a
single P2P hop has a link level hop count which is equivalent to the network diam-
eter. Having a neighbor located at a nearby location results in reduction in number

6 The authors designate their version of neighbor exchange protocol as reformation.

Exchanging Peers to Establish P2P Networks 155

of hops between the peers. This helps in reducing of number of link level messages
which helps in reducing the total bandwidth consumption to forward P2P messages.
Moreover, fewer hops mean reduced message latency. Note that both of these prop-
erties are very much desirable for wireless mobile applications, as reduced number
of link level messages slows down energy consumption and boosts battery life of
mobile devices.

p

q

r

p

q

r

(a) (b)

Fig. 5 An exchange operation in IPPS

To have peers located at a close geographic area, the concept of distance gain
is introduced in IPPS. During an exchange between peers p and q, if the initiating
peer p forwards another P2P neighbor r to q, the distance gain is the reduction of
the distances between the pairs p and r and the second pair q and r. Figure 5 shows
a exchange where a directed edge from any peer x to another peer y means that y is
a neighbor of x. Now, the distance gain is formally given by:

dp
q,r = |dist(p,r)|− |dist(q,r)| (1)

where dist(x,y) is the distance between x and y. When a peer p wants to engage
in an exchange, it finds the peer which results in the maximum distance gain. To
compute such a metric, for each q ∈Np, p performs the following computations.

1. It computes a preliminary reform-set N Rq
p such that |N Rq

p| = l − 1 and
N Rq

p ⊂Np−{q}. The preliminary reform-set must satisfy the following con-
dition:

dp
q,u � dp

q,v (2)

where u ∈ N Rq
p and v ∈ Np −N Rq

p −{q}. In other words, N Rq
p includes

l − 1 number of the most distance gain contributing neighbors of p, during a
potential exchange with q;

2. it then computes the net gain for the preliminary reform-set as:

dp
q = ∑

r∈N Rq
p

dp
q,r (3)

156 Mursalin Akon, Mohammad Towhidul Islam, Xuemin (Sherman) Shen, and Ajit Singh

Finally, p chooses t ∈ Np as the participator of the operation where dp
t =

maxq∈Np{dp
q }. During the operation, p sends over a REFORM REQUEST mes-

sage to t accompanied with the reform-set N Rt
p ∪{p}. When peer t receives the

exchange request from p, it computes the reform-set for p and then sends the set
back to p as a REFORM RESPONSE message. Unlike the reform-set from p, the
set, computed by t, consists of a list of l peers from Nt which maximizes the net
distance gain for p. After a successful exchange operation, both p and t perform a
merge operation as discussed in next. Detailed control flows of an initiator and a
participator are given in Algorithm 3 and 4.

4.3.2 The Merge Operation

Peer p performs a merge operation after it gets back the reform-set from t. In con-
trary, t performs the operation after it decides about the reform-set to send out.
Without lose of generality, let p be a peer performing a merge operation. Nsend and
Nrecv be the reform-sets that are sent and received, respectively. During the merge
operation peer p updates its neighbor set N ′

p as follows:

N ′
p ← (Np\Nsend)∪Nrecv (4)

where N ′
p is the new P2P neighbor set of p. Note that it is certainly possible that

(Np\Nsend)∩Nrecv �= /0. In such cases, |N ′
p |< |Np|. Measures should be taken to

carefully handle such cases. This issue is further elaborated next.

4.3.3 Number of P2P Neighbors

In IPPS platform, an upper and a lower bounds is set on the size of the P2P neighbor
set, a peer can have. Those bounds are defined as Nmax and Nmin, respectively and
must satisfy the following condition.

Nmax � Nmin > l (5)

There are some situations when the neighbor set size grows beyond the Nmax

threshold (for example, when a joining peer gathers peers from several known peers
for its initial neighbor set). In those cases, the peer will keep Nmax number of the
nearest peers and discard the rest. Similarly, there are some scenarios where a neigh-
bor list shrinks below the Nmin threshold (for example, when a neighboring peer fails
to respond to a P2P control message). Therefore, the peer requests for a neighbor list
either from one of the available neighbors or from some widely known repository,
following the same procedure of a joining peer.

Exchanging Peers to Establish P2P Networks 157

The upper bound Nmax puts a limit on the worst case computational and space
complexity for a peer. The lower bound Nmin provides robustness to IPPS. By tun-
ing those parameters, the connectivity of the network can be controlled. The gap
between Nmax and Nmin, i.e., (Nmax −Nmin), allows the platform different levels of
fault tolerance. The larger the gap, the more a peer tolerates reduction of the size of
the neighbor set, i.e., failure of neighbors. PROOFS can be mapped into a special
scenario where Nmax and Nmin are equal. However, this makes PROOFS unfavorable
for wireless mobile networks which suffer from temporal disconnections or for P2P
networks which allow dynamic join and leave of participating peers. The reason
is that to maintain a specific number of neighbors, PROOFS suffers from a huge
number of initialization operation at detecting of each unavailable neighbor.

Algorithm 3: Control flow of an exchange initiating peer p

while true do1
Compute the participating peer2
Let, t be the participating peer3
Let, Nsend be the reform-set4
Send a REFORM REQUEST to t with the reform-set Nsend5
if t responds before timeout then6

Let, Nsend be the received reform-set in REFORM RESPONSE7
Np ← (Np\Nsend)∪Nrecv8
if |Np|< Nmin then9

call AddNeighbor()10
else11

Shrink Np to size min(|Np|,Nmax)12
end13
break14

else15
Np ←Np−{t}16
if |Np|< Nmin then17

call AddNeighbor()18
end19

end20

end21

Algorithm 4: Control flow of an exchange participating peer q

Let, Nrecv be the reform-set received from p1
Compute the reform-set Nsend to send to p2
Send back a REFORM RESPONSE to p with reform-set Nsend3
Nq ← (Nq−Nsend)∪Nrecv4
if |Nq|< Nmin then5

call AddNeighbor()6
end7

158 Mursalin Akon, Mohammad Towhidul Islam, Xuemin (Sherman) Shen, and Ajit Singh

Procedure AddNeighbor
Let r be the executing peer1
repeat2

Send a SHARE REQUEST to a known repository3
Let, Nrecv be the set received in SHARE RESPONSE4
Nr ←Nr ∪Nrecv5

until |Nr|< Nmin6
Shrink Nr to size min(|Nr|,Nmax)7

4.4 Results

An event driven simulation tool is developed to evaluate the performance of IPPS.
In the simulations, a rectangular area of size 175× 175 square units, where 5000
mobile nodes are randomly distributed according to a Poisson process, is considered.
Different status from the network were collected at a fixed interval. The authors
compare IPPS with PROOFS wherever possible.

4.4.1 Computational and Memory Complexity

The computational complexity of exchange in IPPS is the complexity faced by the
initiating peer. This is due to the fact that the initiating peer incurs more compu-
tational complexity than the responding or participating peer. The following is an
analysis of the complexity with simple data structures and straight forward algo-
rithms:

1. The complexity to find the net distance gain for a specific neighbor is Θ(|N |+
(l−1)) =Θ(|N |+ l) =Θ(|N |);

2. For all neighbors, the complexity turns out to be Θ(|N |2);
3. By tracking properly during the previous computations, the neighbor with maxi-

mum net gain can be found in Θ(1) time.

Therefore, the total complexity becomes Θ(|N |2). The worst case scenario
arises when |N |= Nmax and then the computational complexity becomesΘ(N2

max).
A peer faces the worst case memory requirement when the neighbor list grows be-
yond Nmax and this requirement can be formally expressed as Θ(Nmax + l). For a
given network, Nmax and l are constants and small positive integers.

4.4.2 Number of Link Level Hops per P2P hop

Figure 6a, b show the average number of link level hops per one P2P hop using the
PROOFS and IPPS, respectively. The figures also show the theoretical upper bound

Exchanging Peers to Establish P2P Networks 159

on the average number of link level hops, considering that each node has global
view of the entire network and no existing node either leaves the P2P network nor
a new node join in. In case of PROOFS, due to the randomness of the network, the
theoretical upper bound is fairly followed. On the other hand, in case of IPPS, a
node does not have the global view and it may not choose the optimal neighbors
with the lowest distance between them. As can be seen in Fig. 6b, IPPS performs
slightly poorer than the optimal upper bound. As the percentage of mobile nodes
participated in the P2P network increases, the number of link level hops per one
P2P hop decreases. In fact, as the participation level increases, the chance to find
a P2P neighbor at a nearer location also increases. However, if a network uses the
PROOFS system (which is random in nature), this metric remains approximately the
same, irrespective of different levels of participation. In this case, as the neighbors
of a peer are uniformly distributed all over the network, the average link level hop
count is not affected at all by the participation level. Actually, the simulation results
presented in [21] show that only in an ideal situation (which is a perfect random
system with no network dynamics), PROOFS or similar systems can achieve the
best performance where the average length of a single P2P hop is equivalent to the
average path length of the whole network. Comparing Fig. 6a, b, link level hops per
P2P level hop is significantly lower in our proposed platform. This indicates that
IPPS reduces the bandwidth requirement and energy consumption to transmit P2P
messages.

 10

 15

 20

 25

 30

 30 40 50 60 70 80

A
vg

. l
in

k
ho

ps
 /

P
2P

 h
op

Participation level (%)

Theoretical bound
No join and leave

One join / leave per 15 unit time
One join / leave per 10 unit time

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 30 40 50 60 70 80

A
vg

. l
in

k
ho

ps
 /

P
2P

 h
op

Participation level (%)

Theoretical bound
No join and leave

One join / leave per 15 unit time
One join / leave per 10 unit time

(a) Basic exchange (PROOFS) (b) Exchange in IPPS

Fig. 6 Number of link level hops per P2P hop

4.4.3 Dual Cognizance

The exchange operation in IPPS establishes neighborhood relation among geo-
graphically close peers. At each exchange, a peer modifies the neighbor set with
the peers that are closer than those of the previous set and the neighbors of that peer
do the same. So, if p finds q to be at a closer location, it is likely that q also finds

160 Mursalin Akon, Mohammad Towhidul Islam, Xuemin (Sherman) Shen, and Ajit Singh

p the same and includes each other in their neighbor set. The property of a peer
being the neighbor of its own peer is defined as dual cognizance, by the authors.
Figure 7 shows the percentage of peers satisfying the dual cognizance property in
PROOFS and IPPS. Note that, in a perfect random PROOFS network, the best case
dual cognizance can be analytically defined as (Nmax

N−1)2, where N is the total number
of peers. On the other hand, for an optimal IPPS (where each peer has a global view
of the entire network), this metric is 1.

0

 20

 40

 60

 80

 100

 20 25 30 35 40 45 50

D
ua

l c
og

ni
za

nc
e

(%
)

Avg. join/leave interval (in unit time)

PROOFS

IPPS

Fig. 7 Effects of join/leave interval on dual cognizance

4.4.4 Minimum Connectivity

An important property of an exchange network is – given a connected network, no
exchange operation can make the network disconnected (see Section 2). However,
it is possible that the P2P network becomes disconnected as peers join and leave the
P2P network. Mobility may further deteriorate the scenario, when the underlying
network becomes physically disconnected as mobile nodes are unreachable from
one another using radio links. During the simulation, authors compute the connec-
tivity of the P2P network. If p is a neighbor of q, q is considered to know p and
vice versa, and are connected in both way. The simulation results fairly support the
previous claims [19] that for almost all the cases more than 95% of the peers remain
connected, given that they are also connected in their radio network. The worst case
scenario, i.e., the minimum connectivity in the P2P network, was also investigated.
Figure 8 shows the minimum connectivity of the network for different join/leave in-
tervals. The numbers of peers in the largest connected peer graphs are computed and
presented after normalizing in 1. As expected, the minimum connectivity decreases
with decrement of participation level as well as with the frequency of joining/leav-
ing the P2P network. It can be seen that the worst case connectivity is higher than
70% which provides an indication of robustness of IPPS platform.

Exchanging Peers to Establish P2P Networks 161

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 30 40 50 60 70 80

M
in

im
um

 c
on

ne
ct

iv
ity

Participation level (%)

No join and leave
One join / leave per 15 unit time
One join / leave per 10 unit time

Fig. 8 Minimum connectivity among peers for different join / leave intervals

5 The Gradient Topology Network

In gradient topology, the highest priority entities are connected with each other.
These connected entities are called the core. Lower priority entities are arranged
gradually further away from the core. The position of an entity indicates its priority
in the system. In this section, we discuss a gradient topology network, proposed by
Jan et al., to facilitate ease of finding resourceful peers in a P2P network [17].

5.1 The Preliminaries

It is observed that distribution of peers in terms of resources is highly skewed [18]
and peers with poor resource conditions can result in inferior network perfor-
mance [14]. These observations lead to the concept of super peers. Compared to
average peers in the network, a super peer is highly resourceful. To improve per-
formance of the system, in many applications, critical and important services are
assigned to these high capacity super peers.

OceanStore [7] architecture exploits a primary tier of super peers with high ca-
pacity (in terms of high bandwidth and connectivity) to preserve replicas of objects
and employs them to manage updates. In Chord [20], multiple virtual servers are
assigned to high performance hosts, i.e., super peers. Such peers are utilized to en-
hance the routing performance in distributed hash tables (DHT) [10].

The proposal of gradient topology network addresses two issues. Firstly, election
of super peers – due to enormous size of P2P networks and their dynamics, it is
very difficult for a single entity to maintain a global view of the entire network. So,
a distributed solution is desirable. Secondly, finding super peers – it is important that

162 Mursalin Akon, Mohammad Towhidul Islam, Xuemin (Sherman) Shen, and Ajit Singh

super peers of interest are searchable so that other ordinary peers can easily obtain
important services from these super peers. The former problem is out of the scope
of this chapter and we concentrate on the later problem, which is solved using an
exchange network.

5.2 Exchange Operation

In the gradient topology network, each peer maintains two sets of neighbors. At
peer p, the first set, Sp, contains a set of peers with similar capacity (or priority)
and like PROOFS, the second set, Np, maintains a set of random peers. For each
neighbor q in both Sp and Np, peer p also maintains the capacity (U). The ran-
dom neighbor set is used to discover unexplored peers in the network for similar
capacity. This way, the chance of having more than one cluster of similar capac-
ity peers is reduced. The random network also provides robustness and makes the
network resilient to network partitioning. Besides, the random neighbors facilitate
the distributed computation of capacity of peers and election of super peers. In this
network, peer p performs periodic exchange operation, as shown in Algorithm 6.

Algorithm 6: The exchange operation of Gradient Topology Network

Let q be a randomly selected peer from Sp∪Np1
p sends a request to q with the two sets Sp and Np to be a participant2
if q agrees to the request then3

q sends a respond back to p with the two sets Sq and Nq4
call GTNReplacePeer (p, Sq, Nq) from p5
call GTNReplacePeer (q, Sp, Np) from q6

Procedure GTNReplacePeer
input: x, Srecv, Nrecv

Let p ∈Srecv such that |U(p)−U(x)| is the minimum1
Choose r ∈Sx randomly2
Update Sx ← (Sx∪{p})\{r}3

Choose p ∈Nrecv randomly4
Choose r ∈Nx randomly5
Update Nx ← (Nx∪{p})\{r}6

In the GTNReplacePeer procedure, the calling peer replaces one entry in the
similarity-based set with another peer, received during the exchange operation. The
new peer is chosen such that the capacity is similar to the calling peer (lines 1–3).

Exchanging Peers to Establish P2P Networks 163

Later on, one entry in the random neighbor set is replaced with another entry from
received random neighbor set (lines 4–6).

5.3 Search

The organization of peers in a gradient topology enables an efficient heuristic search
technique to find the high capacity or super peers in the network. The search algo-
rithm uses the capacity information embedded in the topology to restrict the proce-
dure within a small number of peers. When a peer initiates a search, a desired ca-
pacity threshold is included within the query message. The threshold is determined
based on the resources requirement of the target operation. A peer p with capacity
lower than the threshold greedily forwards the query to the neighbor q with highest
capacity. Formally, q ∈ Sp ∪Np and U(q) � U(r), where r ∈ Sp ∪Np ∧ r �= q.
The forwarding process continues until a peer with required capacity is found or
time-to-live (TTL) value of the query expires. Note that, due to peer churn, a search
may result in looping in a local minima. To prevent such looping, all visited peers
are added the query message and a message is never forwarded to a peer that the
message has already visited.

5.4 Results

A P2P network, consisting of up to 100000 peers, is simulated to evaluate perfor-
mance of the proposed scheme. The capacity of the peers are assigned such that only
1% of them are considered to be super peers. The network is put under constant
churn. It is observed that the evolved gradient topology have very small diameter
and the average hops to find super peers is bounded by the diameter. In a network as
large as to include 100000 peers, the diameter is typically in the order of 5 or 6. As
a result, it takes significantly fewer steps to find super peers in the gradient topology
as compared to other techniques, such as random walk [8].

6 Concluding Remarks

In this chapter, we have investigated four unstructured P2P networks which are cre-
ated and maintained using the concept of exchanging peers. These networks demon-
strate that simple exchange operation can harness a handful extra ordinary features.
They also signify the variety of usages of the exchange operation. The PROOFS
network is a robust and scalable network to handle Internet flash crowd that tradi-
tional technologies fail to manage. The CYCLON network is introduced to enable
a P2P network to be load balanced. IPPS is an unstructured platform for wireless

164 Mursalin Akon, Mohammad Towhidul Islam, Xuemin (Sherman) Shen, and Ajit Singh

mobile P2P networks. The platform addresses the limitations of wireless medium
and mobile devices, such as, expensive bandwidth of wireless medium, and lim-
ited memory and computing power of mobile devices. IPPS is a computationally-,
memory requirement- and communication- wise inexpensive protocol that is excel-
lently suited for the target environment. Unstructured P2P networks are typically
considered to sacrifice search performance for inexpensive maintenance operations.
In contrast, the gradient topology network utilizes the exchanging peer mechanism
to facilitate a superior search technique.

Little research on efficient searching in unstructured P2P network has been done.
Working principles of networks like CYCLON and IPPS reveal interesting and fun-
damental properties which typical unstructured P2P network do not have. As a re-
sult, search techniques exploiting these features are yet to be explored.

References

1. Akon, M., Shen, X., Naik, S., Singh, A., Zhang, Q.: An inexpensive unstructured platform
for wireless mobile peer-to-peer networks. Peer-to-Peer Networking and Applications 1(1),
75–90 (2008)

2. Akon, M.M., Naik, S., Singh, A., Shen, X.: A cross-layered peer-to-peer architecture for wire-
less mobile networks. In: IEEE International Conference on Multimedia & Expo, pp. 813–816.
Toronto, Canada (2006)

3. Castro, M., Druschel, P., Kermarrec, A.M., Rowstron, A.: SCRIBE: A large-scale and decen-
tralised application-level multicast infrastructure. IEEE Journal on Selected Areas in Com-
munications (JSAC) 20(8), 100–110 (2002)

4. Clarke, I., Miller, S., Hong, T., Sandberg, O., Wiley, B.: Protecting free expression online with
freenet. IEEE Internet Computing 6(1), 40–49 (2002)

5. Cleary, D.C., Parke, D.C.: “Finding Yourself” building location services in a peer-to-peer
wireless world. In: EUROCON 2005, pp. 60–63 (2005)

6. Druschel, P., Rowstron, A.: PAST: A large-scale, persistent peer-to-peer storage utility. In:
HotOS VIII, pp. 75–80. Germany (2001)

7. Kubiatowicz, J., Bindel, D., Chen, Y., Czerwinski, S., Eaton, P., Geels, D., Gummadi, R.,
Rhea, S., Weatherspoon, H., Weimer, W., Wells, C., Zhao, B.: Oceanstore: An architecture for
global-scale persistent storage. ACM SIGPLAN Notices 35(11), 190–201 (2000)

8. Lv, Q., Cao, P., Cohen, E., Li, K., Shenker, S.: Search and replication in unstructured peer-to-
peer networks. In: ICS ’02: Proceedings of the 16th international conference on Supercom-
puting, pp. 84–95. NY, USA (2002)

9. Mavromoustakis, C.X., Karatza, H.D.: Segmented file sharing with recursive epidemic place-
ment policy for reliability in mobile peer-to-peer devices. In: IEEE International Sympo-
sium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems,
pp. 371–378 (2005)

10. Mizrak, A.T., Cheng, Y., Kumar, V., Savage, S.: Structured superpeers: Leveraging hetero-
geneity to provide constant-time lookup. In: IEEE Workshop on Internet Applications,
pp. 104–111 (2003)

11. Passarella, A., Delmastro, F., Conti, M.: XScribe: a stateless, cross-layer approach to P2P
multicast in multi-hop ad hoc networks. In: International Conference on Mobile Computing
and Networking, pp. 6–11. Los Angeles, California (2006)

12. Pias, M., Crowcroft, J., Wilbur, S., Harris, T., Bhatti, S.: Lighthouses for scalable distributed
location. In: Second International Workshop on Peer-to-Peer Systems, pp. 278–291 (2003)

Exchanging Peers to Establish P2P Networks 165

13. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content addressable
network. In: ACM SIGCOMM (2001)

14. Rhea, S., Geels, D., Roscoe, T., Kubiatowicz, J.: Handling churn in a dht. In: USENIX Annual
Technical Conference, pp. 127–140 (2004)

15. Rowstron, A., Druschel, P.: Pastry: Scalable, distributed object location and routing for large-
scale peer-to-peer systems. In: IFIP/ACM International Conference on Distributed Systems
Platforms, pp. 329–350. Germany (2001)

16. Rowstron, A., Kermarrec, A.M., Castro, M., Druschel, P.: SCRIBE: The design of a large-scale
event notification infrastructure. In: Networked Group Communication, pp. 30–43 (2001)

17. Sacha, J., Dowling, J., Cunningham, R., Meier, R.: Using aggregation for adaptive super-
peer discovery on the gradient topology. In: IEEE International Workshop on Self-Managed
Networks, Systems and Services, pp. 73–86 (2006)

18. Sen, S., Wang, J.: Analyzing peer-to-peer traffic across large networks. In: ACM SIGCOMM
Workshop on Internet measurement, pp. 137–150 (2004)

19. Stavrou, A., Rubenstein, D., Sahu, S.: A lightweight, robust P2P system to handle flash
crowds. IEEE Journal on Selected Areas in Communications 22(1), 6–17 (2004)

20. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A scalable peer-
to-peer lookup service for internet applications. In: ACM SIGCOMM 2001, pp. 149–160.
CA, USA (2001)

21. Voulgaris, S., Gavidia, D., Steen, M.: CYCLON: inexpensive membership management for
unstructured p2p overlays. Journal of Network and Systems Management 13(2), 197–217
(2005)

22. Zhao, B.Y., Kubiatowicz, J.D., Joseph, A.D.: Tapestry: An infrastructure for fault-tolerant
wide-area location and routing. Tech. Rep. UCB/CSD-01-1141, U. C. Berkeley (2001)

23. Zorzi, M., Rao, R.R.: Geographic random forwarding (GeRaf) for ad hoc and sensor networks:
Multihop performance. IEEE Transaction on Mobile Computing 2(4), 337–348 (2003)

24. Zorzi, M., Rao, R.R.: Multihop performance of geographic random multihop performance of
geographic random. IEEE Transaction on Mobile Computing 2(4), 349–365 (2003)

Peer-to-Peer Topology Formation Using
Random Walk·

Kin-Wah Kwong and Danny H.K. Tsang

Abstract Peer-to-Peer (P2P) systems such as live video streaming and content shar-
ing are usually composed of a huge number of users with heterogeneous capacities.
As a result, designing a distributed algorithm to form such a giant-scale topology
in a heterogeneous environment is a challenging question because, on the one hand,
the algorithm should exploit the heterogeneity of users’ capacities to achieve load-
balancing and, on the other hand, the overhead of the algorithm should be kept as
low as possible. To meet such requirements, we introduce a very simple protocol for
building heterogeneous unstructured P2P networks. The basic idea behind our pro-
tocol is to exploit a simple, distributed nature of random walk sampling to assist the
peers in selecting their suitable neighbors in terms of capacity and connectivity to
achieve load-balancing. To gain more insights into our proposed protocol, we also
develop a detailed analysis to investigate our protocol under any heterogeneous P2P
environment. The analytical results are validated by the simulations. The ultimate
goal of this chapter is to stimulate further research to explore the fundamental issues
in heterogeneous P2P networks.

1 Introduction

P2P networks have become an essential part of the Internet and many successful P2P
applications have been developed and widely used such as live video streaming (e.g.,

Kin-Wah Kwong
Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA,
USA, e-mail: kkw@seas.upenn.edu

Danny H.K. Tsang
Department of Electronic and Computer Engineering, Hong Kong University of Science and Tech-
nology, Kowloon, Hong Kong, e-mail: eetsang@ece.ust.hk

· This chapter is based on the publications in [22, 23]. This work was supported by the RGC
grant 620306.

X. Shen et al. (eds.), Handbook of Peer-to-Peer Networking, 167
DOI 10.1007/978-0-387-09751-0 7, © Springer Science+Business Media, LLC 2010

168 Kin-Wah Kwong and Danny H.K. Tsang

PPLive[1], CoolStreaming[41]) and content sharing (e.g., BitTorrent[2], Gnutella[3]
and KaZaA[4]). An important skeleton in the P2P applications is the formation of
overlay topology. In general, overlay topologies can be classified into two types,
namely unstructured topology and structured topology (a.k.a. DHT topology). Since
unstructured topologies are simpler to construct as well as more robust to network
dynamics (e.g., ungraceful peer departure) than structured topologies, as a result
many of the P2P applications such as PPLive, BitTorrent, KaZaA and Gnutella use
unstructured topologies to form their overlay networks. However, building a good
unstructured P2P topology is not a trivial task because there are two main issues
which are detailed as follows.

Network heterogeneity. P2P networks are very heterogeneous. For instance,
users’ access bandwidths are actually very diverse, ranged from 56Kbps connections
to several Mbps connections. Moreover, there are many other factors determining a
P2P system’s performance. Users’ local resources such as CPU power and available
cache memory are also an important consideration for a P2P system design. There-
fore, in this work, we define a generic term “node capacity distribution” to represent
the heterogeneity of the users. A natural question to ask is how to build a P2P net-
work based on the “capacity” of each user which is a critical step in load-balancing
and providing a stable service to the users.

Scalability. P2P applications usually involve several ten thousands of users and
are expected to grow for supporting millions of users. In such a large-scale P2P ap-
plication, using central servers to coordinate a topology formation process suffers
from scalability issues (e.g., server overloading, single point of failure). Further-
more, in bandwidth-demanding applications such as P2P live video streaming, the
nodes should connect to a suitable neighbor which has a sufficient bandwidth. In this
scenario, how to find such suitable neighbors in a large P2P network with low over-
head becomes a challenging problem. It is necessary to have a scalable, lightweight,
distributed topology formation algorithm for this purpose.

Therefore, our first objective in this chapter is to introduce a protocol for build-
ing a heterogeneous, unstructured P2P network and overcoming the difficulties as
outlined above. Our protocol exploits the nature of random walk sampling which is
completely decentralized and consumes a low overhead.

P2P networks are extremely complicated because of their unique characteristics
which are totally different from the traditional server-client architecture. For exam-
ple, P2P networks may involve millions of users simultaneously where they can
continuously join and leave the networks without a predictable pattern. Moreover,
the heterogeneity of the P2P network is changing from time to time. Due to the large
complexity, it is difficult to evaluate our protocol solely based on large-scale simu-
lations or Internet experiments which are time consuming and costly. Therefore, our
second objective in this chapter is to introduce a mathematical model to analyze our
proposed topology formation algorithm. The key point in the analysis is to model
the heterogeneity of the users. Hence, based on our analytical model, we can easily
examine a large-scale P2P topology structure built by our protocol under any het-
erogeneous environment. The results also help us to further engineer and optimize
P2P protocols running atop the topology.

Peer-to-Peer Topology Formation Using Random Walk 169

We structure this chapter as follows. Section 2 reviews literature on different
topology formation algorithms and some other applications based on random walk
sampling. Section 3 presents our protocol. We then provide a comprehensive anal-
ysis for the proposed protocol in Section 4. The simulation results are presented
in Section 5. Finally, Section 6 concludes this chapter and discusses some possible
extensions of this work.

2 Literature Review

Napster’s appearance in 1999 created immense interest in the research community.
Napster, based on centralized server architecture, suffers from a poor scaling prob-
lem because the file search process is carried out in a centralized server to which
peers are required to periodically upload their file indexes. This causes a single
point of failure problem and server overload. As a result, a distributed P2P archi-
tecture was advocated to replace a Napster-like centralized system. Distributed P2P
networks can be generally classified into two main categories, namely unstructured
networks and structured networks.

In the first category, unstructured P2P networks have been widely used such as
Gnutella, KaZaA and BitTorrent. The benefits of using unstructured networks are
in providing resiliency against peer’s dynamics (e.g., peers may ungracefully leave
the network anytime) and achieving a relatively low maintenance overhead for the
overlay topology. In Gnutella, the nodes join the P2P network by connecting to m
live nodes (a node is live if it is currently connected to the P2P network). m is typ-
ically 3∼5. This method is very ad hoc without any mathematical support. KaZaA
and Gnutella2 [5] employ a super-peer topology which is a kind of adaptation tech-
nique. In this case, powerful users (such as high bandwidth users) form the backbone
of a P2P network and most of the query traffic is processed by them. Therefore, low
capacity users can be shielded from massive query traffic, making the unstructured
systems more scalable. The important question in constructing two-tier P2P net-
works is how to select “super” nodes. There are many ad hoc approaches such as
selecting “super” nodes based on their lifetime, memory and bandwidth.

Recently, some algorithms have been proposed for building unstructured P2P
networks. In [32], the authors suggest a protocol to build low-diameter P2P net-
works by using a bootstrap server to coordinate the connections between peers. In
[33], an algorithm is proposed to produce a topology with O(logN

/
log logN) di-

ameter where N is the number of peers in the network. Their idea is based on a
random graph theory to construct the topology with a certain number of edges. As
a result, the targeted diameter is achieved. Phenix [39] was recently proposed for
building resilient unstructured P2P networks. First, it utilizes the idea of scale-free
network to shorten the topology diameter. Second, it has a built-in mechanism to
counter intentional attacks. However, all these algorithms assume the P2P network
is homogeneous meaning that each node has the same capacity which is not true

170 Kin-Wah Kwong and Danny H.K. Tsang

in reality. Therefore, it is necessary to develop protocols and analytical models for
heterogeneous P2P networks.

In [9], the authors proposed a scalable Gnutella-like system, called Gia, by em-
ploying different algorithms such as query caching, adaptive overlay formation and
traffic flow control. They carried out different simulations to investigate the system’s
performance. Since they focus on their specially-designed file-sharing system, it is
a prior not clear if their solution can be applied for other P2P applications such as
live video streaming and BitTorrent-like applications.

Our protocol, inspired by the Metropolis-Hastings algorithm [17, 31], is based
on random walk sampling to assist the peers in selecting their suitable neighbors
with high capacity per connectivity. Apart from this work, random walk sampling
has also been used in different P2P applications such as construction of a random
expander graph [24], realizing a distance-based random long-link connection [42]
and searching objects in P2P networks (e.g., [15, 21, 29]). A general mathematical
reference of random walk sampling may be found in [6, 26].

In the second category, structured P2P networks such as CAN [34] and Chord
[37] have also been proposed. These systems emphasize a highly-organized overlay
structure, based on Distributed Hash Tables (DHTs), to improve the search perfor-
mance on a P2P network and achieve a low network diameter. To achieve an efficient
search on a structured overlay network, each peer has to maintain a routing table for
forwarding queries. However, under a highly dynamic P2P environment, the mainte-
nance overhead for keeping the routing tables consistent is large, and unfortunately,
inconsistent routing tables in DHT networks can significantly degrade the search
performance and network diameter. Some hybrid approaches, e.g., [14, 25], suggest
for building P2P networks in order to exploit DHT features (e.g., efficient search)
while keeping the maintenance overhead small under a high network churn.

3 Our Proposed Protocol

In this section, we introduce a topology formation protocol based on random walk
sampling. Then we provide a mathematical model to analyze the structure of the
P2P network built by our protocol.

3.1 P2P Network Model

Heterogeneity among P2P users is the main concern in forming the topology. Many
factors affect user’s heterogeneity. First, each user has certain access link band-
width, ranged from dial-up modem to several Mbps connections. Second, user’s lo-
cal scarce resources such as CPU power and available memory are also a dominant
factor on a P2P system’s performance. Therefore, to characterize the heterogeneity
of the peers, we define the generic term “node capacity”, ηi � 1, which is considered

Peer-to-Peer Topology Formation Using Random Walk 171

as a combination of the access link capacity and available scarce resources of node i.
We assume that ηi is chosen from a probability density function (p.d.f.) ρ (η) which
is called “node capacity distribution” in this chapter. This p.d.f. can be either con-
tinuous or discrete. Therefore the node capacity distribution characterizes the global
heterogeneity of the P2P network. Determining the value of node capacity depends
on applications. For example, in a P2P streaming application, a node capacity can
be mainly regarded as a node’s upload bandwidth because it plays an important role
on the performance of such system. For a network coding system like [16], the peers
are required to encode and decode information received from their neighbors. This
may be a CPU-consuming task. Therefore, in this case a node capacity should be
defined as a combination of CPU power and access link bandwidth.

In this work, we assume that the network bottleneck in a P2P system happens
only at the access links of the peers. In addition, we do not consider any correla-
tion between the P2P logical links (i.e., shared congested links) in the Internet cloud
since the physical routing path, congestion situation and traffic pattern are dynam-
ically changing over time, and all these make the analytical model highly compli-
cated and intractable. Unless a large-scale Internet experiment is being carried out,
the actual environment is very difficult to realistically model and simulate due to the
lack of publicly available information such as the Internet topology, routing informa-
tion, link bandwidth and traffic pattern. This simplified but well-accepted network
model has been previously employed by other researchers (e.g., [10, 16, 19, 30, 40]).

3.2 Joining Process

To describe our protocol, we use ki to represent the degree2 of node i. Generally,
every node prefers to connect to a high capacity node in order to achieve a better
service from its neighbors. However, it is not enough to purely consider the neigh-
bor’s capacity as a connection criterion. At the same time, each node should not
connect to the neighbors with a high degree as well. This is because a high degree
node would receive a large workload. Therefore, our joining process considers two
important metrics, node’s capacity and degree, to make the connection decision.
Also, we would like to introduce some randomness for the joining process so that
each node can connect to other different nodes. Mathematically, we can formulate
our joining process as follows. The probability πi that node i is connected by a new
incoming node is proportional to its capacity and inversely proportional to its current
degree in a nonlinear manner controlled by α > 0 and β > 0, ı.e.,

πi =

ηα
i

kβi

∑
j∈L(t)

ηα
j

kβj

, i ∈ L(t) (1)

2 In this chapter, node degree means the number of P2P connections that a node has.

172 Kin-Wah Kwong and Danny H.K. Tsang

where L(t) denotes the set of all live nodes in the network at time t. By tuning
the values of α and β , they are analogy to transform the underlying node capacity
distribution and control the growth of node degree respectively. As a result, our
topology formation protocol is flexible in terms of load-balancing or achieving other
special requirements (e.g., link-level homogeneity [27, 28]) for a spectrum of P2P
applications running on top of the topology. Roughly speaking, if α is small and
β is large, the node degree would increase slowly. If α is large and β is small, the
node degree would increase fast. We discuss how to tune α and β for “matching”
peer’s workload for different P2P applications in Section 4.4.

It is impractical to use bootstrap servers to maintain global network informa-
tion to achieve Eq. (1). Therefore, we employ the Metropolis-Hastings algorithm,
developed in [17, 31], to achieve Eq. (1) distributively as follows.

We model a P2P network as a connected graph G = (V ,E) with node set
V = {1, . . . ,n} and edge set E ⊆ V ×V , with (i, j) ∈ E ⇔ (j, i) ∈ E . We assign a
transition probability pi j to each edge (i, j) ∈ E as follows

pi j =
1

ki +1
min

{
1,

(
η j

ηi

)α (
ki

k j

)β ki +1
k j +1

}
(2)

and create a self-loop at each node i with pii = 1−∑(i, j)∈E pi j such that the total
transition probability is 1 (ki and k j do not count the self-loop). The edge’s transition
probability is used for random walk which is discussed in the following. By using
this algorithm, each node i has to broadcast its capacity ηi and current degree ki

values to its neighbors such that the neighbors can use this information to assign a
transition probability to their edges.

When a new node joins the network, it contacts m live nodes in the network.
These m live nodes can be retrieved from a bootstrap server or a cached node list
stored in the new node. Then, the new node issues m different walkers to these m
nodes. Each walker is assigned a time-to-live (TTL) value, τ . This TTL value is
equivalent to the number of iterations in the Metropolis-Hastings algorithm. The
walker is forwarded from the current node to a neighboring node based on the edge
transition probability defined by Eq. (2) and the walker’s TTL is decremented by
one after each forwarding. The new node connects to a node at which the walker
stops (i.e., the value of TTL becomes zero). If a walker stops at the node which is
already connected by that new node, then the walker moves additionally δ steps.
In this chapter, we assume δ = 1. This process repeats until the walker can find a
node for the new node to join. However, this situation is very rare to happen if the
network is large. In addition, each walker should send a keep-alive message to the
new node, e.g., in each forwarding or a certain period of time. If the new node does
not receive the keep-alive message for a period of time, it assumes that a walker is
lost and issues another new walker to compensate for the lost one.

We can easily verify that the Markov chain defined by Eq. (2) is (1) reversible,
i.e., πi pi j = π j p ji for all i, j ∈ V , (2) aperiodic and (3) irreducible. Therefore, the
sampled probability by the random walk converges to a steady-state distribution
that is exactly equal to Eq. (1) when τ → ∞. According to our previous experience,

Peer-to-Peer Topology Formation Using Random Walk 173

a small TTL value (τ ∼ 10) can obtain a good random mixing for some networks
with 50000 nodes [20].

3.3 Rebuilding Process

When a node leaves the network, all of its neighbors i lose a link. To prevent network
breakdown and node isolation, those nodes which lose a link rebuild ri new link(s)
to compensate for the lost one. This is called the rebuilding process. Note that, in
general, if ri � 1, it can also be interpreted as the probability of rebuilding a link.
For simplicity, we assume ri � 1 for the rest of the chapter.

When a node i tries to rebuild a link, it issues a walker with a TTL value, τ , to
one of its neighbors randomly.3 Then the walker traverses the network, the same as
the node joining process. Finally, a new link is created by connecting node i and
the node at which the walker stops. In particular, we introduce the following two
rebuilding schemes (note that we use k−i to denote the degree of node i just after
losing a link).

Probabilistic-rebuilding scheme: The nodes rebuild a link based on a probability
r. Mathematically,

ri =
{

1 k−i = 2
r k−i � 3

(3)

for every node i. The threshold on k−i = 2 means that each node has to maintain at
least three links to ensure network connectedness.

Adaptive-rebuilding scheme: The nodes should gradually not rebuild links when
their degrees are getting large in order to prevent overloading. At the same time, each
node should maintain at least m links such that an overlay service performance and
reachability are not degraded. Therefore, this rebuilding process allows the nodes to
make rebuilding decision adaptive by considering their current degrees. Mathemat-
ically,

ri =
m−1

k−i
(4)

for each node i.
In this chapter, we focus on analyzing the probabilistic-rebuilding scheme. The

analysis of the adaptive-rebuilding scheme can also be done similarly.

4 Protocol Analysis

Network model can be classified into two main categories, namely static random
graph and evolving networks. As for static random graph, the number of nodes

3 The node can also send a walker to a random node in its cache node list.

174 Kin-Wah Kwong and Danny H.K. Tsang

and links are kept constant. This model was first suggested by Erdős and Rényi in
1959 [12]. This model has been used in analyzing P2P networks. However, due to
its static behavior which is totally opposite to dynamic P2P networks, we believe
that this model is not suitable for analyzing P2P networks. Another graph model is
so-called evolving networks. The generation method, which is quite different from
static random graph, is that the new nodes and links are added to the network over
time. Thus the number of nodes in the network keeps increasing.

However, neither model can represent the actual properties of P2P networks. Ba-
sically, three phases happen in P2P networks – a growing phase, a stabilizing phase
and a decaying phase. In a growing phase, the number of nodes keeps increasing
(i.e., the node incoming rate is larger than the node leaving rate), which happens
during the transition from non-busy hours to busy hours because many users go
online. However, the size of the network cannot increase indefinitely. When the net-
work reaches a certain size, the node incoming rate would be roughly the same as
the node leaving rate. As a result, the number of nodes remaining in the network
would be roughly constant. This is called a stabilizing phase. After the peak hours,
the network enters a decaying phase in which the size decreases as many users go
offline (i.e., the node incoming rate is smaller than the node leaving rate) and finally
reaches another stabilizing phase. These three network evolution phases have been
observed in PPLive [1] which is the most popular IPTV system today [18]. The
measurement study in [18] shows that the duration of the stabilizing phase is clearly
dominant over the other two phases. Similar results are also observed in the Gnutella
network [38]. Therefore, it is worth studying and analyzing the P2P networks under
the stabilizing phase. We describe our stabilizing network model in the following
section.

4.1 Stabilizing Network Model

The model is inspired by the growing network model (e.g., [7, 11, 36]). However,
there are two key differences. First, our model assumes the network size to be con-
stant. We believe that our model is suitable to analyze the steady-state behavior of
a topology meaning that the P2P network size remains roughly constant over time.
This is a common observation in the P2P networks as discussed above. Second, our
load-balancing protocol for constructing the topology is orthogonal to the preferen-
tial attachment model (e.g., [7]). Our analysis focuses on a large population regime.

Let k (s, t,ηs) be the degree of node s at time t and ηs ∈ [ηmin,ηmax] be its ca-
pacity. Assume the initial network is connected with N nodes. At each time step
t = 1,2,3, . . ., a new node is added into the network by connecting to m different
live nodes based on our protocol where m is a system design parameter. Each node s
is labeled by the time of its arrival s = 1,2,3, . . . � t. For example, node 1 arrives in
the P2P network earlier than node 2 and etc. Without loss of generality, we use step
time throughout the analysis. At the same time, a randomly chosen node is removed
from the network. It means that every node’s lifetime is exponentially distributed as

Peer-to-Peer Topology Formation Using Random Walk 175

shown in Lemma 1. Then each neighbor s of the departing node should rebuild rs

new link(s) to compensate for the lost link. Thus, the node arrival rate is equal to the
node leaving rate, and hence the network size remains N nodes.

We can establish the following differential equation to describe the evolution of a
node degree k (s, t,ηs) by using the ideas of a continuum approach (e.g., see [7, 11]):

∂k (s, t,ηs)
∂ t

= m

ηα
s

kβ (s,t,ηs)

Z
+(rs−1)

k (s, t,ηs)
N

+

ηα
s

kβ (s,t,ηs)

Z ∑i∈A(t) ri (5)

where Z is the normalization factor

Z = ∑
ς∈L(t)

ηα
ς

kβ
(
ς , t,ης

) . (6)

The rationale behind Eq. (5) is explained as follows. At each time step, a new
incoming node connects to node s with probability πs ∝ ηα

s
kβ (s,t,ηs)

(i.e., Eq. (1)), the

rate of change in the degree of node s is taken into account by the first term. Addi-
tionally, since a randomly chosen node departs, node s loses a link with probability
k(s, t,ηs)/N. After losing a link, node s triggers a rebuilding process to rebuild rs

link(s). This effect is modeled by the second term. Moreover, for each departure
event at time t, a set A(t) of nodes lose a link. Since a randomly chosen node is re-
moved from the network, thus |A(t)|= 〈k (t)〉 where 〈k (t)〉 is the average degree of
the P2P network at time t.4 Then the rebuilt links may connect to node s and hence
this event is taken into account by the third term. Remark that Eq. (5) is a generalized
formula for any rebuilding process, not only limited to the probabilistic-rebuilding
scheme.

4.2 Analysis of Mean Degree of P2P Network

In this section, we investigate the relationship between the probabilistic-rebuilding
scheme and the mean degree of the P2P network. Obviously, we cannot arbitrarily
set the value of r because an improper value would generate excess links in the
P2P network. Theorem 1 provides a foundation to choose the value of r for the
probabilistic-rebuilding scheme and develops a relationship among r, m and the
mean degree of the P2P network.

Theorem 1. In a stabilizing network, the following condition

r � 1− m
N−1

(7)

is required for the probabilistic-rebuilding process. The resulting asymptotic mean
degree of the P2P network is

4 We use the symbol 〈·〉 to denote expectation.

176 Kin-Wah Kwong and Danny H.K. Tsang

〈k〉=
m

1− r
(8)

Proof. Let l(t) be the number of links in the network at time t. We treat l(t) as a con-
tinuous variable. We can establish the differential equation of l(t) for the stabilizing
network as follows:

dl (t)
dt

= m−|A(t)|+ ∑
i∈A(t)

ri (9)

where A(t) is the set of nodes which lose a link in a departure event at time t and
|A(t)| denotes the number of nodes in set A(t). On the right side of Eq. (9), the
first term represents the increasing rate of the number of links in the network due
to the new node arrival. The second and third terms denote the change of links in
the network because of the node departure and the rebuilding process respectively.
Since a random node is removed in each departure event, thus |A(t)|= 〈k (t)〉, where

〈k (t)〉= 2l(t)
N is the mean network degree at time t. Also ri = r,∀i∈ A(t). Therefore,

Eq. (9) can be expressed as

dl (t)
dt

= m− 2l (t)
N

(1− r) . (10)

Suppose 0 ≤ r < 1, the steady state of l(t) can be obtained by letting dl(t)
dt = 0 and

hence

l (∞) := lim
t→∞

l (t) =
Nm

2(1− r)
. (11)

Since the size of the P2P network is fixed, the number of overlay links must be less
than or equal to 1

2

(
N2−N

)
which represents a fully connected network. Therefore,

l (∞) =
Nm

2(1− r)
� 1

2

(
N2−N

)
(12)

⇒ r � 1− m
N−1

. (13)

The asymptotic mean degree of the network is

〈k〉=
2l (∞)

N
=

m
1− r

. (14)

��
Note that from Eq. (7) the upper bound value of r is very close to 1 because

m�N. Moreover, the mean degree of the topology can be flexibly tuned by varying
the values of r and m.

Peer-to-Peer Topology Formation Using Random Walk 177

4.3 Analysis of Node Degree Evolution

In order to analyze the topology structure and understand how the node degree
evolves over time under a heterogeneous environment, we have to solve the dif-
ferential equation of the node degree, i.e., Eq. (5). We use a mean-field approach to
seek the scaling form of the solutions to Eq. (5), i.e.,

κ (ζ ,η) := k (s, t,η) (15)

where ζ = (s− t)
/

N. For simplicity, we use η and ηs interchangeably in this sub-
section. Before proceeding, we need the following lemma.

Lemma 1. In a stabilizing network, let θ (s, t) be the probability that node s is still
in the network at time t. Then,

θ (s, t) = e
1
N (s−t) . (16)

Proof. We can establish the recurrent equation for θ (s, t) as follows:

θ (s, t +1) = θ (s, t)
(

1− 1
N

)
(17)

Assume the incremental step from t to t +1 is very small, then θ (s, t) can be repre-
sented by the differential form:

dθ (s, t)
dt

=−θ (s, t)
N

. (18)

By solving this differential equation with the initial condition θ (s,s) = 1 (because
node s connects to the network at t = s), the result follows. ��

Now, the first step in solving Eq. (5) is to determine Z which is in terms of the
random variable η . By applying the mean-field approach, we use the average value
of Z over ρ (η) to substitute Z. Thus,

〈Z〉 = 〈Z0 (t)〉+
〈
∑

s∈L(t)

ηα
s

kβ (s, t,ηs)

〉
(19)

≈
〈∫ t

0
θ (s, t)

ηα
s

kβ (s, t,ηs)
ds

〉
(20)

=
∫ ηmax

ηmin

ηαρ (η)
∫ t

0

θ (s, t)
kβ (s, t,η)

dsdη (21)

where 〈Zo (t)〉 denotes the normalization constant due to the original N nodes at
t = 0. The second term on the right side of Eq. (19) describes the effect due to the
arrival nodes after t = 0. As the stabilizing network evolves and t →∞, 〈Zo (t)〉→ 0
because these original N nodes gradually leave the network, and hence 〈Zo (t)〉 can
be ignored. From Eqs. (19 to 20), we use integration to approximate the summation

178 Kin-Wah Kwong and Danny H.K. Tsang

and set the lower limit of the integration to be 0 instead of 1 for easier calcula-
tion. Moreover, we multiply θ (s, t) inside the integration of Eq. (20) in order to
take the effect of the node departure into account. Then by the change of variable
ζ = (s− t)

/
N, 〈Z〉 can be further expressed as follows

〈Z〉 ≈ N
∫ ηmax

ηmin

ηαρ (η)
∫ 0

−t
N

eζ

κβ (ζ ,η)
dζdη (22)

t→∞= N
∫ ηmax

ηmin

ηαρ (η)
∫ 0

−∞
eζ

κβ (ζ ,η)
dζdη . (23)

For convenience, we define G as

G :=
∫ ηmax

ηmin

ηαρ (η)
∫ 0

−∞
eζ

κβ (ζ ,η)
dζdη (24)

and hence we replace Z by 〈Z〉= NG in Eq. (5). To find the value of G, we have to
obtain k (s, t,η) and then put it back to Eq. (24) which becomes a self-consistency
equation and is solvable by means of numerical methods. k (s, t,η) is ready to solve
in the following.

To find k (s, t,ηs) for the probabilistic-rebuilding scheme, we assume rs = ri = r
and |A(t)| = 〈k〉 = m

1−r in Eq. (5). Note that in the above assumptions, we neglect
the rebuilding threshold in Eq. (3) and set |A(t)| to m

1−r . These assumptions greatly
reduce the complexity of the solution but do not introduce a significant error as
shown in the simulations. Then the rate equation of the node degree can be solved
into the following solution

k (s, t,ηs) =
{

1
G(1− r)

(
mηα

s

1− r
−Δe

(1+β)(1−r)
N (s−t)

)} 1
1+β

(25)

where Δ := mηα
s

1−r −G(1− r)m(1+β) and G is the non-zero positive constant satisfy-
ing the self-consistency equation in Eq. (24).

Equipped with Eq. (25), we can analyze how the node degree evolves over time.
In particular, the node degree converges to a bounded equilibrium which depends
on the node capacity. This result is summarized as follows.

Theorem 2. Suppose node s always stays in the network, then the degree k (s, t,ηs)
of that node converges to the value k· (ηs) as t → ∞. Mathematically,

k· (ηs) = max

⎧
⎨
⎩

[
mηα

s

G(1− r)2

] 1
1+β

,3

⎫
⎬
⎭ . (26)

Proof. The result can be proved by letting (s− t)→−∞ in Eq. (25). The lower limit
is due to the threshold of Eq. (3). ��

Peer-to-Peer Topology Formation Using Random Walk 179

Remark that this theorem can also be easily proved by showing that the rate equation
of the node degree has the attracting equilibrium which is identical to Eq. (26).

From this theorem, we show that the equilibrium value of a node degree changes
accordingly as a node capacity changes. Thus our protocol can adapt to the fluctu-
ation of a node capacity and prevent the nodes from overloading. Furthermore, the
convergence speed of the node degree depends on the network size. The bigger the
network size, the slower the convergence speed. For example, if the network size
is large, the probability of a node being connected is small due to the sampling na-
ture of our algorithm. This property can allow the node degrees growing slowly and
prevent them from overloading. Note that the equilibrium degree of a node may be
smaller than the initial number of connections (i.e., m) if its capacity is too small.
This is because the rate of losing neighbors due to node departure is larger than
“gaining” neighbors since the node capacity is too small. This is another property
of our algorithm to prevent low-capacity nodes from overloading.

By using Eq. (25), we can also analyze the peer’s workload and the P2P network
diameter which are the focus of the next two sections.

4.4 Simple Analysis of Peer’s Workload

The peer’s workload mainly depends on two things, namely what kind of overlay
application is running on top of the topology, and how many connections (i.e., node
degree) does a peer establish. Suppose that a flooding search is deployed. When
a node with degree k receives a flooding query from its neighbor, the node may
require to duplicate the message and then forward it to k−1 neighbors.5 As a result,
if the node receives k different queries from its neighbors, then the total number of
messages forwarded is k(k−1) and hence the workload of the node is O

(
k2
)
. This

is analogy to a random walk search in which the workload of a peer with degree k
is O(k).

In this chapter, we particularly investigate the situation where the peer’s work-
load is in the polynomial form of its node degree. It is also easy to examine other
workload functions based on our model. Suppose peer s with degree k (s, t,ηs) ex-
periences a workload of O

(
(k (s, t,ηs))

γ) for some overlay application where γ > 0.

According to our protocol, each node s has a degree k (s, t,ηs) = O

(
η

α
1+β

s

)
where

we ignore other constant terms for simplicity. Therefore, each node s has a workload

of O
(
(k (s, t,ηs))

γ) = O

(
η

γα
1+β

s

)
.

Then our question is how to set the parameters, α and β , based on γ so that every
peer prevents overloading. Intuitively, if γα

/
(1+β) > 1, it means that thepeer has

5 If the node has seen the query before, it may drop the query to prevent looping in the network.

180 Kin-Wah Kwong and Danny H.K. Tsang

to “work” more than its capacity and hence it is overloading. On the other hand, if
γα

/
(1+β) < 1, it implies that the peer is under-loading because the peer’s work-

load is smaller than its capacity. Therefore, we can set α and β such that

γ =
1+β
α

. (27)

As a result, the workload of each peer s is O(ηs) meaning that the peer only re-
quires to do what it is “willing” to do. If a peer’s workload is in other forms such
as polylogarithmic and linearithmic functions, the peer’s workload analysis can be
done similarly.

As discussed above, flooding search and random walk search can be character-
ized by using γ = 2 and γ = 1 respectively. In general, for a given γ , there exists
more than one pair of α and β satisfying Eq. (27). Note that the values of α and β
control the rate of degree growth (i.e., Eq. (5)) and affect the level of degree equi-
librium (because the value of G also depends on α and β). Thus, how to further
select a pair of α and β from the candidates for constructing the topology depends
on the requirements of the overlay applications (e.g., required degree equilibrium,
the growth rate of node degree and network diameter). We plan to address this issue
in a future work.

Therefore, based on the property of an overlay application running on top of our
topology, we can adaptively tune α and β in order to control the workload of the
peers and prevent them from overloading.

4.5 Analysis of P2P Network Diameter

Average node-to-node distance6 is an important parameter in P2P networks. This
information can be used to predict the network performance for the protocol design.
We can use the following formula, derived in [13], to calculate the diameter D of
the P2P network.

D =
ln
(〈

k2
〉−〈k〉)−2〈lnk〉+ lnN− ε

ln

[〈k2〉
〈k〉 −1

] +
1
2

(28)

where ε � 0.5772 is the Euler’s constant. Based on our analytical result, for a given
node capacity distribution and network size, we can easily estimate a suitable value
of m (i.e., number of initial connections) such that the diameter is bounded by some
specified value or system requirement.

6 In this chapter, we use the terms, “network diameter” and “average node-to-node distance”,
interchangeably.

Peer-to-Peer Topology Formation Using Random Walk 181

Before using Eq. (28) to calculate the network diameter, we need to know 〈k〉,〈
k2
〉

and 〈lnk〉. The mean degree, 〈k〉, is already known.
〈
k2
〉

and 〈lnk〉 can also be
calculated easily. For example, 〈 f (k)〉, where f (·) is some function, can be evalu-
ated by using the following lemma.

Lemma 2. The value of 〈 f (k)〉 under a stabilizing network can be evaluated as
follows.

〈 f (k)〉 :=
1
N

〈
∑

s∈L(t)
f (k (s, t,ηs))

〉
(29)

≈
∫ ηmax

ηmin

ρ (η)
∫ 0

−∞
eζ f (κ (ζ ,η))dζdη (30)

where κ (ζ ,η) is the form of Eq. (15).

Proof. We use the same technique as finding 〈Z〉 presented in Section 4.3 for prov-
ing the above result. We do not show the proof again for brevity. ��
Note that we take the expectation with respect to the random variable η on the
summation sign in Eq. (29). In general, by using this lemma, we can easily calculate
any degree moment for any given node capacity distribution.

5 Simulation

This section presents the simulation results to validate our analysis. We simulate the
P2P networks as follows. Each node i is assigned a non-zero capacity ηi randomly
chosen from a p.d.f. ρ (η). The nodes join the network at a Poisson arrival rate λ
nodes per unit time. The inter-arrival time of the node departure events is exponen-
tially distributed with mean 1

/
μ (μ = 0 means no node departure). When a node

departure event happens, a node is randomly removed from the network to model the
node departure. Initially, the network grows from a small number of nodes Ninit = 5
by using λ = 1 and μ = 0 until the network size reaches the value of N. Then we
set λ = μ = 1 such that the network size maintains roughly at N nodes in the stabi-
lizing phase. During this phase, the simulation runs for 120000 node arrivals, unless
specified otherwise, to ensure the system reaches the steady state.

In all the simulations, when a new node joins the network, it contacts a bootstrap
server to randomly get m different nodes from the network. Then the new node is-
sues one walker to each of these m nodes. The walkers traverse the network, with
TTL τ , based on our proposed algorithm. We let m = 5, τ = 10. We run each simula-
tion 30 times and report the average results. We have also tried the biased bootstrap
server meaning that every new node randomly obtains m nodes from the last 100
incoming nodes only. The simulation results are roughly the same, so we do not
repeat them here.

182 Kin-Wah Kwong and Danny H.K. Tsang

5.1 Node Capacity Distributions

In our simulations, we particularly explore two different node capacity distributions
as follows.

Power-law (PL) capacity: This distribution is defined as follows

ρ (η) = dη−3 (31)

for 1 � η � 1000, where d is the normalization constant. The node capacity is a
continuous random variable in this case.

Discrete Gia capacity: According to [35], the Internet access bandwidth of Nap-
ster’s users is very heterogeneous. Measurement information has been used in [9]
to model the heterogeneous P2P networks. The capacity distribution used in [9] can
be modeled as

ρ (η) = 0.2δ (η−1)+0.45δ (η−10)+0.3δ (η−100)
+0.049δ (η−1000)+0.001δ (η−10000) (32)

where δ (·) is the delta function.
In the following two sections, the power law capacity distribution (i.e., Eq. (31))

and the discrete Gia capacity distribution (i.e., Eq. (32)) are labeled by “PL” and
“Discrete” respectively.

5.2 P2P Network Diameter

In this section, we validate our analysis by calculating the P2P network diameters.
It is well-known that the diameter of random graphs scales as O(logN) [8] where N
is the size of the graph. However, this result does not tell us how peer heterogeneity
affects the network diameter and how to optimize it under a heterogeneous envi-
ronment. Therefore, we are interested in how different node capacities influence the
network diameter precisely. We can employ Eq. (28) to calculate the diameter of the
P2P network.

In Fig. 1, we show that the analytical results for the diameters of the P2P net-
works, which are constructed by using α = 1, β = 1 and r = 0.5 in the probabilistic-
rebuilding scheme, match very well with the simulation results. Our analytical
framework can be used to predict the network diameter under any given node capac-
ity distribution. In our examples, the network diameter under the discrete Gia capac-
ity distribution is much shorter than the one in the PL capacity distribution. The main
reason is that our protocol makes the highest capacity nodes (e.g., η = 10000) to
connect to more neighbors. As a result, these highest capacity nodes “self-organize”
into the “hubs” of the network, and hence the diameter can be greatly reduced
through those “hubs”. However, in the PL capacity, it is extremely rare to pro-
duce high capacity nodes (e.g., η > 500), because most of the nodes have capacity

Peer-to-Peer Topology Formation Using Random Walk 183

η < 10. It is noted that the variance of the measured diameters is very small, so we
do not show the confidence interval for simplicity.

0 0.5 1 1.5 2
x 104

3

3.5

4

4.5

5

5.5

Network size N

D
ia

m
et

er
PL, analysis
Discrete, analysis
PL, simulation
Discrete, simulation

Fig. 1 Comparison of the P2P network diameters between simulations and analytical results. The
probabilistic-rebuilding scheme with r = 0.5 is used. α = 1 and β = 1

5.3 Node Degree Equilibrium

We have analytically shown that each node degree would eventually converge to
a steady-state value, which depends on its capacity. In order to analyze the node
evolution, we particularly monitor the 1000-th incoming node (we call it as node
A) which is assumed to always stay in the network. In this section, the PL node
capacity distribution is used for illustration. The initial capacity ηA of node A is
20. Afterwards, node A changes its capacity to 100, 20 and 50 for each period of
90000 node arrivals. This is used to model the capacity fluctuation of node A. In
Figs. 2 and 3, we show the degree of node A under the probabilistic-rebuilding
scheme with r = 0.5 and the analysis is predicted by Eq. (26) with (α = 1,β = 1)
and (α = 1,β = 2) respectively. In these simulations, we let the value of N to be
15000.7 From the results, we show that our analysis matches very well with the
simulations. In the case of α = 1 and β = 1, the node A’s degree is proportional
to
√ηA which implies that the workload of the node is proportional to ηA under

aflooding search. We also show that the growth of the node A’s degree becomes more

7 In Figs. 2 and 3, there is a hump when the number of node arrivals equals 15000. This is because,
before the network size reaches 15000, the network still behaves as a growing phase and hence the
network behavior is totally different from a stabilizing phase when the network size reaches 15000.

184 Kin-Wah Kwong and Danny H.K. Tsang

“restrictive” as β increases to 2 as in Fig. 3. Therefore, the results match the idea of
our load-balancing protocol. Moreover, the equilibrium degree changes accordingly
as the node capacity varies. When node A’s capacity is higher than other neighboring
nodes, the random walkers have a larger chance to be “attracted” to node A. As a
result, more links would be connected to it. On the contrary, if node A’s capacity is
low, the random walkers have a smaller chance to traverse node A, and hence the
degree of node A is kept small. Therefore, from our analysis and simulations, we
prove that our algorithm can adapt to the fluctuation of node capacity. Moreover,
since a node can control its degree by changing the capacity, so the workload of a
node can be calibrated accordingly.

0 0.5 1 1.5 2 2.5 3 3.5

x 105

0

20

40

60

80

100

120

Number of node arrivals

N
od

e
de

gr
ee

Simulation
Analysis, η=20
Analysis, η=50
Analysis, η=100

Fig. 2 Node A’s degree evolution, N = 15000, r = 0.5, α = 1 and β = 1. 95% confidence intervals
are plotted in the figure as well

6 Conclusion

In this chapter, we first introduce a capacity-aware protocol to build the unstructured
P2P networks. Our protocol exploits the idea of random walk sampling which pro-
vides a simple, low-overhead and distributed way to form the topology with a load-
balancing feature in a heterogeneous environment. Moreover, no specially-designed
bootstrap server is required to support our protocol because every new incoming
node just needs some live nodes as a starting point of the random walk. Therefore,
the workload, complexity and dependence of a bootstrap server can be greatly re-
duced which is a critical step to make the P2P networks scalable and reliable.

Furthermore, we provide a comprehensive analysis to study the performance of
our proposed protocol such as network diameter and degree evolution under any

Peer-to-Peer Topology Formation Using Random Walk 185

heterogeneous environment. The analytical results are validated by the simulations.
Our analytical model is mathematically tractable and easy to be extended to analyze
other P2P topology formation algorithms.

0 0.5 1 1.5 2 2.5 3 3.5

x 105

5

10

15

20

25

30

35

40

45

50

Number of node arrivals

N
od

e
de

gr
ee

Simulation
Analysis, η=20
Analysis, η=50
Analysis, η=100

Fig. 3 Node A’s degree evolution, N = 15000, r = 0.5, α = 1 and β = 2. 95% confidence intervals
are plotted in the figure as well

Starting from this work, there are still many interesting open problems to tackle
in which some of them are listed in the following.

1. Based on our analytical model, it is possible to optimize the topology forma-
tion process with respect to a P2P application running on top of the overlay. For
example, some simple ideas have been discussed in Section 4.4 for the P2P ap-
plications with different workload’s behaviors. It would be a nice extension to
consider a joint optimization of a P2P application (e.g., video streaming) and the
topology formation process.

2. Since random walk sampling can incur delay in the joining and rebuilding pro-
cesses which can be harmful for delay-sensitive applications such as live video
streaming, it is necessary to develop methods to reduce such delay and minimize
the impacts on the P2P applications.

3. It is important to investigate the mixing time of our random walk algorithm on
a heterogeneous P2P environment which can provide insights on how to select a
right time-to-live (TTL) value. Also, it is interesting to characterize the relation-
ship between mixing time, network size and node capacity distribution.

4. Our analytical model assumes a simple peer arrival and departure process. A
possible extension is to develop a more sophisticated model in order to capture
different peer arrival and departure patterns.

186 Kin-Wah Kwong and Danny H.K. Tsang

References

1. PPLive, http://www.pplive.com
2. BitTorrent, http://www.bittorrent.com
3. Gnutella, http://en.wikipedia.org/wiki/Gnutella
4. KaZaA, http://www.kazaa.com
5. Gnutella2, http://en.wikipedia.org/wiki/Gnutella2
6. Aldous, D., Fill, J.: Reversible markov chains and random walks on graphs. http://

stat-www.berkeley.edu/users/aldous/RWG/book.html
7. Barabási, A.L., Albert, R., Jeong, H.: Mean-field theory for scale-free random networks. Phys-

ica A 272(1), 173–187 (1999)
8. Bollobás, B.: Random Graphs, second edn. Cambridge University Press (2001)
9. Chawathe, Y., Ratnasamy, S., Breslau, L., Lanham, N., Shenker, S.: Making gnutella-like P2P

systems scalable. In: Proc. ACM SIGCOMM (2003)
10. Cui, Y., Xue, Y., Nahrstedt, K.: Max-min overlay multicast: Rate allocation and tree construc-

tion. In: Proc. IWQoS (2004)
11. Dorogovtsev, S.N., Mendes, J.F.F.: Scaling properties of scale-free evolving networks: Contin-

uous approach. Physical Review E 63(5), 056,125 (2001). DOI 10.1103/PhysRevE.63.056125
12. Erdős, P., Rényi, A.: On random graphs. Publicationes Mathematicae 6, 290–297 (1959)
13. Fronczak, A., Fronczak, P., Holyst, J.A.: Average path length in random networks (2002).

http://arxiv.org/abs/cond-mat/0212230
14. Ganesan, P., Sun, Q., Garcia-Molina, H.: Yappers: A peer-to-peer lookup service over arbitrary

topology. In: Proc. IEEE INFOCOM (2003)
15. Gkantsidis, C., Mihail, M., Saberi, A.: Hybrid search schemes for unstructured peer-to-peer

networks. In: Proc. IEEE INFOCOM (2005)
16. Gkantsidis, C., Rodriguez, P.R.: Network coding for large scale content distribution. In: Proc.

IEEE INFOCOM (2005)
17. Hastings, W.: Monte carlo sampling methods using markov chains and their applications.

Biometrika 57(1), 97–109 (1970)
18. Hei, X., Liang, C., Liang, J., Liu, Y., Ross, K.: A measurement study of a large-scale P2P

IPTV system. IEEE Tranactions on Multimedia 9, 1672–1687 (2007)
19. Kim, M.S., Lam, S.S., Lee, D.: Optimal distribution tree for internet streaming media. In:

Proc. International Conference on Distributed Computing Systems (2003)
20. Kwong, K.W., Tsang, D.H.K.: On the relationship of node capacity distribution and P2P

topology formation. In: Proc. IEEE Workshop on High Performance Switching and Rout-
ing (HPSR) (2005)

21. Kwong, K.W., Tsang, D.H.K.: A congestion-aware search protocol for heterogeneous peer-to-
peer networks. Springer Journal of Supercomputing 36(3), 265–282 (2006)

22. Kwong, K.W., Tsang, D.H.K.: Application-aware topology formation algorithm for peer-to-
peer networks. In: Proc. IEEE International Conference on Communications (ICC) (2007)

23. Kwong, K.W., Tsang, D.H.K.: Building heterogeneous peer-to-peer networks: Protocol and
analysis. IEEE Transcations on Networking 16, 281–292 (2008)

24. Law, C., Siu, K.Y.: Distributed construction of random expander networks. In: Proc. IEEE
INFOCOM (2003)

25. Loo, B.T., Huebsch, R., Stoica, I., Hellerstein, J.M.: The case for a hybrid p2p search infras-
tructure. In: Proc. International Workshop on Peer-to-Peer Systems (2004)

26. Lovász, L.: Random walks on graphs: A survey. In: Combinatorics, vol. 2, pp. 1–46. Bolyai
Society Mathematical Studies (1993)

27. Luan, H., Kwong, K.W., Huang, Z., Tsang, D.H.K.: P2P live streaming towards best video
quality. In: Proc. Special Session on P2P Media Streaming, IEEE Consumer Communications
and Networking Conference (2008)

28. Luan, H., Tsang, D.H.K., Kwong, K.W.: Media overlay construction via a markov chain monte
carlo method. In: ACM SIGMETRICS Performance Evaluation Review, vol. 34, pp. 9–11
(2006)

Peer-to-Peer Topology Formation Using Random Walk 187

29. Lv, Q., Cao, P., Cohen, E., Li, K., Shenker, S.: Search and replication in unstructured peer-to-
peer networks. In: Proc. ACM International Conference on Supercomputing (2002)

30. Meo, M., Milan, F.: A rational model for service rate allocation in peer-to-peer networks. In:
Proc. IEEE Global Internet Symposium (2005)

31. Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., Teller, E.: Equation of state cal-
culations by fast computing machines. The Journal of Chemical Physics 21(6), 1087–1092
(1953)

32. Pandurangan, G., Raghavan, P., Upfal, E.: Building low-diameter peer-to-peer networks. IEEE
Journal on Selected Areas in Communications 21, 995–1002 (2003)

33. Pyun, Y.J., Reeves, D.S.: Constructing a balanced, (log(n)/loglog(n))-diameter super-peer
topology for scalable P2P systems. In: Proc. IEEE P2P Computing (2004)

34. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Schenker, S.: A scalable content-
addressable network. In: Proc. ACM SIGCOMM (2001)

35. Saroui, S., Gummadi, P.K., Gribble, S.D.: Measurement study of peer-to-peer file sharing
systems. In: Proc. Multimedia Computing and Networking (2002)

36. Sarshar, N., Roychowdhury, V.: Scale-free and stable structures in complex ad hoc networks.
In: Physical Review E, vol. 69 (2004)

37. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A scalable peer-
to-peer lookup service for internet applications. In: Proc. ACM SIGCOMM (2001)

38. Stutzbach, D., Zhao, S., Rejaie, R.: Characterizing files in the modern gnutella network. Mul-
timedia Systems Journal (2007)

39. Wouhaybi, R.H., Campbell, A.T.: Phenix: Supporting resilient low-diameter peer-to-peer
topologies. In: Proc. IEEE INFOCOM (2004)

40. Yang, X., Veciana, G.: Service capacity of peer to peer networks. In: Proc. IEEE INFOCOM
(2004)

41. Zhang, X., Liu, J., Li, B., Yum, T.P.: Coolstreaming/donet: A data-driven overlay network for
peer-to-peer live media streaming. In: Proc. IEEE INFOCOM (2005)

42. Zhong, M., Shen, K., Seiferas, J.: Non-uniform random membership management in peer-to-
peer networks. In: Proc. IEEE INFOCOM (2005)

Semantic Social Overlay Networks

Alexander Löser, Steffen Staab, and Christoph Tempich

Abstract Knowledge sharing in a virtual organization requires a knowledge life
cycle including knowledge provisioning, terminology alignment, determination of
resource location, query routing, and query answering. We focus on determining
a relevant resource in a completely decentralized setting such as necessitated by
peer-to-peer knowledge management in virtual organizations. Requirements for this
task include, e.g., full autonomy of peers as well as full control over own resources
and therefore preclude prominent resource location and query routing schemes such
as distributed hash tables. In order to tackle given requirements in this chap-
ter we introduce use a resource location and query routing approach called INGA
[23, 24, 31]. It exploits metaphors known from online social networks as well as
the semantic similarity between queries and meta data of annotated documents. To
adapt to the dynamics of the networks and to bound the local index we present an
index update policy combining temporal, semantic and community locality. To fur-
ther boost performance and enhance recall in a dynamic setting we introduce in
INGA recommender and bootstrapping overlays. We have built a network simulator
and conducted extensive experiments under realistic conditions. Results show that
INGA outperforms other state-of-the-art approaches significantly while it displays
small world characteristics.The approach has been fully tested in simulation runs
and implemented in the system Bibster (http://bibster.semanticweb.org).

Alexander Löser
Technische Universität Berlin, Einsteinufer 17, 10587 Berlin, Germany,
e-mail: alexander.loeser@tu-berlin.de

Steffen Staab
University of Koblenz-Landau, Universitätsstrasse 1, 56070 Koblenz, Germany,
e-mail: staab@uni-koblenz.de

Christoph Tempich
DETECON international GmbH, Oberkasselerstrasse 2, 53227 Bonn, Germany,
e-mail: christoph@tempich.com

X. Shen et al. (eds.), Handbook of Peer-to-Peer Networking, 189
DOI 10.1007/978-0-387-09751-0 8, © Springer Science+Business Media, LLC 2010

190 Alexander Löser, Steffen Staab, and Christoph Tempich

1 Semantics and Communities in Peer-to-Peer Networks

Finding relevant information from a heterogeneous set of information resources is
a longstanding problem in computing. In everyday life we observe that there are
successful strategies for finding relevant information in a social network of people.
Milgram’s [25] and Kleinbergs [19] experiments illustrated that people with only
local knowledge of the network (i.e., their immediate acquaintances) were quite
successful at constructing acquaintance chains of short length, leading to “small
world” networks. Studies of social networks, such as Linkedin or XING show that
the challenge of finding relevant information may often be reduced to asking the
“right” people. e.g., People who either have the desired piece of information and can
directly provide the relevant content or the ones who can recommend “the right peo-
ple”. Another popular example are bootstrapping mechanisms of early distributed
and unstructured music file sharing networks: To envision how Gnutella originally
worked, imagine a large circle of users (called nodes), who each have Gnutella client
software. On initial startup, the client software must bootstrap and find at least one
other node. Before the concept of Gnutella Web Caches (GWC) where introduced
one popular method was to ask people from a list of own contacts at the internet rely
chat. Preferably those ones where contacted which had music files the would match
future queries.

This section transfers observations from real-world social networks to the design
of a peer-to-peer overlay structure. We start with identifying routing strategies in
social networks and abstracting them to peer-to-peer overlay networks. Later we
introduce strategies for knowledge sharing in virtual organizations for two applica-
tions in detail.

1.1 Query Routing Strategies in Social Networks

Real-world social networks are highly dynamic w.r.t. peer availability and people’s
expertise on topics. People querying the network still find the right information in
that they use their local knowledge enriched by means of semantic similarity mea-
sures in order to determine knowledgeable person. We observe that such mecha-
nisms in social networks work although

• people may not always be available to respond to requests,
• people may shift their interests and attention,
• people may not have exactly the “right” knowledge, but only knowledge which

is semantically close to the request.

By local knowledge we refer to locally available information in a structured and
unstructured form (e.g., meta tags of music files or extracted from documents) and
expertise information about the own knowledge and knowledge from other persons.
Inspired by these observations and focussed by the requirements of semantic search
in the setting of distributed autonomous information sources, we have conceived

Semantic Social Overlay Networks 191

INGA [24] a novel peer-to-peer algorithm where each peer plays the role of a person
in a social network. In INGA knowledge facts are stored and managed locally on
each peer constituting the ‘topical knowledge’ of the peer. A peer responds to a
query by providing an answer matching the query or by forwarding the query to
what he deems to be the most appropriate peers. For the purpose of determining
the most appropriate peers, each peer maintains a personal semantic shortcut index.
The index is created and maintained in our highly dynamic setting in a lazy manner,
i.e., by analyzing the queries that are initiated by users of the peer-to-peer network
and that happen to pass through the peer.

The personal semantic shortcut index maintained at each peer reflects that a peer
may play the following four different roles for the other peers in the network (in
decreasing order of utility):

• The best peers to query are always those that have successfully answered the
same or a semantically similar query in the past. We call such peers content
providers.

• If no content providers are known, peers are queried that have issued semantically
similar queries in the past. The assumption is that this peer has been successful in
getting matching answers and now we can directly learn from him about suitable
content providers. We call such peers recommenders.

• If we do not know either of the above we query peers that have established a
good social network to other persons over a variety of general domains. Such
peers form a bootstrapping network.

• If we fail to discover any of the above we fall back to the default layer of neigh-
boring peers. To avoid overfitting to peers already known we occasionally select
random peers for a query. We call this the default network.

Seen from a local perspective, each peer maintains in its index information about
some peers, about what roles these peers play for which topic and how useful they
were in the past. Seen from a global perspective, each of the four roles results in a
network layer of peers that is independent from the other layers.

1.2 Knowledge Sharing Strategies in Virtual Organizations

We introduce two case studies, the IBIT case study in the area of tourism and the
SWAP Bibliography case study. Both studies have been investigated, implemented
and deployed in a large EU IST project called SWAP Semantic Web And Peer-to-
Peer).

The IBIT case study [30] is about sharing of databases and documents between
several autonomous, but cooperating tourism organizations on the Baleares, a group
of Spanish islands in the Mediterranean. Some of the features of the case study
include that the definition of a unique global schema or ontology is not possible, that
the topics they are interested in keep changing and that the knowledge management

192 Alexander Löser, Steffen Staab, and Christoph Tempich

support to be provided by the peer-to-peer knowledge management system must
deal with this flexibility.

In the SWAP Bibliography case study, we have explored the sharing of Bibtex
information between peers of researchers. Bibtex is locally harvested from files and
stored on each peer in the SWAP local node repository. Each researcher may search
on the own peer as well as in the P2P network in order to retrieve the appropriate
bibliographic data. This scenario is particularly interesting for further investigation,
because (i) Bibtex data have a stable interesting core, but also greatly varying addi-
tional fields as each user may define his own bibtex entries; (ii) Bibtex data can never
be fully captured in a centralized repository, because one repository such as DBLP
can only reflect a small set of topics (e.g., databases and AI, but not organizational
issues of knowledge management).

2 System Architecture

In this section we start with surveying our application platform. Later we describe
peer selection strategies on top of a an unstructured peer-to-peer network imple-
menting social and semantic routing strategies. For evaluation purposes we use the
SWAP infrastructure [15]. We recall that it provides all standard peer-to-peer func-
tionality such as information sharing, searching and publishing of resources.

2.1 Building Blocks

Figure 1 shows the basic building blocks of our architecture. We assume that each
peer provides a unique peer identifer (PID). Similar to file sharing networks each
peer may publish all resources from its local content database, so other peers can
discover them by their requests (this also applies to resources downloaded from
other peers). All information is wrapped as RDF statements and stored in an RDF
repository.1 Additionally to local data (Nick isExecutiveEditorOf JSAC2005) each
resource is assigned a topic (JSAC isTypeOf IEEEJournal) and hierarchical infor-
mation about the topics is stored (IEEEJournal subTopicOf Journal). The topics a
peer stores resources for are subsequently referred to as the peer’s own topics. Our
algorithm supports exact match queries and queries that use a similarity function.
For the last type we investigate in Section 6.2 two types of queries: single predicate
queries queries using a common topic hierarchy or conjunctive queries without a
shared topic hierarchy. For successful queries (own queries or those of other peers),
which returned at least one match, the shortcut management extracts information
about answering and forwarding peers to create, update or remove shortcuts in the
local shortcut index. Contrary to related approaches, such as DHTs, INGA peers

1 http://www.openrdf.org/

Semantic Social Overlay Networks 193

INGA Peer

Local
Content

Database

Local
Shortcut

Index

Shortcut
Management

Content
Management

Network Management

Query / Result Interface

Peer 2 Peer 4

Peer 3

Routing
Logic

Fig. 1 Architecture model

only index “egoistically”, i.e., shortcuts on topics they requested themselves. The
routing logic selects “most suitable” peers to forward a query to, for all own queries
or queries forwarded from remote peers. The selection depends on the knowledge a
peer has already acquired for the specific query and the similarity between the query
and locally stored shortcuts.

2.2 Query and Result Messages

We use a simple query message model which is similar to the structure of a Gnutella
query message. Each query message is a quadruple: QM(q,b,mp,qid) where q is
a SERQL query.2). We support conjunctive SERQL queries, however for routing
purposes only the topic information is used. From a query for all IEEEJournal with
editor-in-chief Nick, only JSAC is utilized for routing. b is the bootstrapping ca-
pability of the querying peer to allow the creation of bootstrapping shortcuts, mp
the message path for each query message containing the unique PIDs of all peers,
which have already received the query, to avoid duplicated query messages, and qid
a unique query ID to ensure that a peer does not respond to a query it has already

2 SERQL is a SQL like query language for RDF.

194 Alexander Löser, Steffen Staab, and Christoph Tempich

answered. Unique query IDs in INGA are computed by using a random number gen-
erator that has sufficiently high probability of generating unique numbers. A result
message is a tuple: RM(r,mp,qid) where r represents the answer to the query. We
just consider results which exactly match the query. Besides the message path mp
is copied to the answer message to allow the creation of recommender and content
provider shortcuts.

2.3 Similarity Function

INGA directs queries via shortcuts that exactly match a query. If such shortcuts
do not exist, INGA selects shortcuts independently from the given query topic, e.g.,
shortcuts to peers that are well connected in the network. A similarity function helps
to identify shortcuts to peers that provide content or have issued questions similar to
the given query. Thus, shortcuts are selected based on the given query. Depending
on query type, we investigated the following types of shortcut similarity functions:

• Single predicate query using a common topic hierarchy. In case the peers
in the network share a common topic hierarchy our routing algorithm does not
only use exact index hits, but it also exploits the semantic similarity between a
query and an shortcut. In this case a query consists of a single predicate, which
represents a topic in a common topic hierarchy, We define the similarity function
sim : qt× sc → [0;1] between the extracted topic qt from a SERQL query q and
the extracted topic st from a shortcut, which are both given by query topics in the
same topic hierarchy, as according to [20] as :

simTopic(qt,st) =

{
e−αl · eβh−e−βh

eβh+e−βh if q �= sc
1 otherwise

(1)

where l is the length of the shortest path between qt and st in the graph spanned
by the sub topic relation and h is the minimal level in the topic hierarchy of either
qt or st. α and β are parameters scaling the contribution of shortest path length
l and depth h, respectively. Based on the benchmark data set given in [20], we
chose α = 0.2 and β = 0.6 as optimal values.

• Conjunctive queries. Each query may include several predicates, e.g., Select
all resources that belong to the topic semantic web and to the topic p2p. In
the Semantic Web context we formalize this query using common topic hier-
archies, Find any resource with the topics /computer/web/semanticweb ∧ /com-
puter/distributed/p2p . A default approach would route a query only to a peer
that matches all predicates of the query using a simple exact match paradigm.
Too specific query predicates under the exact match paradigm often lead to
empty result sets and do not appropriately consider negation. The notion of best
matches and relative importance of predicates can be a good alternative to sat-
isfy a user’s information needs independently of the individual peer instances.
In [31] we investigated metrics to determine the best peers to route a query

Semantic Social Overlay Networks 195

using multi predicate queries in shortcut networks. We observed satisfying re-
sults using the selection function described in [10] which uses an equation sim-
ilar to equation (2) to combine query hits for distributed document retrieval. We
refer to this strategy as Multiply.

Rp(q) =
#t

∏
i=1

qp
i (2)

We calculate the relevance R for a peer p for a query q using equation (2), where
#t represents the number of topics in the query, qp

i represents the query hits per
topic i of each peer matching at least one of the topics of the query. We select the
peers with the highest relevance.

3 Overlay Construction, Index Creation and Maintenance

Each peer is connected to a set of other peers in the network via uni-directional
shortcuts. Following the social metaphors in Section 1, we introduce four different
types of shortcuts a peer can use to route queries and discuss how these shortcuts
are created.

3.1 Content Provider and Recommender Shortcuts

Content Provider Layer. The design of the content provider shortcut overlay departs
from existing work as published in [29, 32] and exploits the simple, yet powerful
principle of interest-based locality. When a peer joins the system, it may not have
any information about the interest of other peers. It first attempts to receive answers
for its queries by exploiting lower layers of the INGA peer network, e.g., by flood-
ing. The lookup returns a set of peers that store documents for the topic of the query.
These peers are potential candidates to be added to the content provider shortcut
list. Each time the querying peer receives an answer from a remote peer, content
provider shortcuts sc to new remote peers are added to the list in the form: sc(topic,
pid, query hits,“c”, update), where topic is the query topics taken from the query
message, pid is the unique identifier of the answering peer, query hits is the num-
ber of returned statements, “c” represents a type of shortcut, viz. content provider
shortcut and update is the time, when the shortcut was created or the last time, when
the shortcut was successfully used. Subsequent queries of the local peer or of a re-
mote peer are matched against the topic column of the content provider shortcut list.
If a peer cannot find suitable shortcuts in the list, it issues a lookup through lower
layers, and repeats the process for adding new shortcuts. For an example consider
Fig. 2. Peer 2 discovers shortcuts for the topic /Education/UML by flooding the de-
fault network with a maximum number of three hops (TTL) and creates two content
provider shortcuts to peer 3 and peer 5.

196 Alexander Löser, Steffen Staab, and Christoph Tempich

2

3

5

?

Route by
Flooding

Content Provider
Shortcut

Fig. 2 Content provider shortcut creation

2

4

8

?

Route by
Flooding

Recommender
Shortcut

Content Provider
Shortcut

Fig. 3 Recommender shortcut creation

Recommender Layer. To foster the learning process of recommender shortcuts,
especially for new peers in the network, we consider the incoming queries that
are routed through one’s peer, i.e., {QM(q,b,mp,qid)}. A recommender short-
cut sc(topic,pid,query hits, maxsim, “r”, update) is created, where topic is the set
of query topics from the query q. The pid for a respective shortcut is extracted
from the query message as the PID of the querying peer, i.e., qid. Since there
is no information about the number of results retrieved for the query, we set the

Semantic Social Overlay Networks 197

number of query hits to 1. Finally “r” indicates the type of the shortcut for passive
recommender shortcut and update is the time, when the shortcut was created or the
last time, when the shortcut was used successfully. For an example consider again
Fig. 3. Peer 2 issues the query /Top/Education/UML. Peer 8 creates a shortcut to
peer 2 since this query was routed through peer 8.

Content Provider and Recommender Index. The volatility of the peers in the net-
work and their interest shifts require to update the local indices. We assume that
each peer may only store a limited amount of shortcuts, hence only knows a lim-
ited set of topic specific neighbors it can route a query to. If the local index size
is reached a peer has to decide, which shortcut should be deleted from the index.
For each shortcut in the index we compute a rank based on the following types of
localities:

• Semantic locality. We measure the maximum semantic similarity maxsim be-
tween the topic of a shortcut and the topics represented by the local content of
a peer according to equation (1). Hence, we retain a shortcut about topic t to a
remote peer, if t is close to our own interests.

• LRU locality. To adapt to changes in the content and interests we use a LRU
replacement policy [3]. Shortcuts that have been used recently receive a higher
rank. Each local shortcut is marked with a time stamp when it was created. The
time stamp will be updated, if the shortcut is used successfully by the local peer.
Thus, there is an “oldest” and a “most recent” shortcut. The value update∈ [0..1]
is normalized with difference between the shortcuts time stamp and the “oldest”
time stamp divided by the difference between the “most recent” and the “oldest”.

• Community locality. We measure how close a shortcut leads us to a document.
Content provider shortcuts, marked with a c, provide a one hop distance, we set
type = 1. Recommender shortcuts, marked with a r require at least two hops to
reach a peer with relevant documents, we set type = 0.5.

Using a weighted moving average we weigh the different locality values and com-
pute the index relevance according to equation (3).

relevance =
a ·maxsim+b · type+ c ·update

a+b+ c
(3)

Shortcuts with the highest relevance are ranked at the top of the index, while peers
with a lower relevance are deleted from the index.

3.2 Bootstrapping Shortcuts

Bootstrapping shortcuts link to peers that have established many shortcuts for differ-
ent query topics to a lot of remote peers. We determine the bootstrapping capability
by analyzing the in-degree and out-degree of a peer. We use the out-degree as a
measure of how successful a peer discovers other peers by querying. To weigh the

198 Alexander Löser, Steffen Staab, and Christoph Tempich

out-degree, we measure the amount of distinct sources a peer receives queries from.
We use the in-degree as a measure, that such a peer may share prestigious shortcuts
with a high availability. By routing a query along bootstrapping shortcuts, we foster
the probability to find a matching shortcut for a query and avoid the drawbacks of
having to select peers randomly, e.g., by flooding.

Each incoming query that is stored in our index includes the bootstrapping in-
formation of the querying peer. While a peer is online it continually updates its
content/recommender index based on incoming queries and stores additional boot-
strapping shortcuts in the form sc(pid, bo), where pid is the PID of the querying
peer and bo it’s bootstrapping capability. Once an initial set of bootstrapping nodes
is found, a peer may route its queries to the nodes with the highest bo value. One
calculates it’s bo value using equation (4)

Bo = (1+ |outdegree|)× (1+ |indegree|) (4)

where out-degree is the number of distinct remote peers one’s knows. To compute
the in-degree we count the number of distinct peers that send a query via one’s peer.
To do this we scrutinize the pen-ultimate peers from the message path of indexed
recommender shortcuts. The number of distinct pen-ultimate peers denotes one’s in
degree. To avoid zero values we limited the minimum for both values to one.

3.3 Default Network Shortcuts

When a new peer enters the network, it has not yet stored any specific shortcuts
in its index. Default network shortcuts connect each peer p to a set of other peers
(p’s neighbors) chosen at random, as in typical Gnutella-like networks (e.g., using
rendezvous techniques).

4 Routing in Semantic Social Overlay Networks

The basic principle laying behind the shortcut mechanism consists of dynamically
adapting the topology of the P2P network so that the peers that share common in-
terests spontaneously form well-connected semantic communities. Reference [12]
shows that each user is only interested in a rather limited number of different topics.
Therefore being part of a community that shares common interests is likely to in-
crease search efficiency and success rate. To optimize the overall message traffic we
propose a dynamic shortcut selection strategy, where each peer selects only a certain
number k of most promising shortcuts for query forwarding. Then we evaluate our
approach against related approaches.

Semantic Social Overlay Networks 199

4.1 Overview

INGA consists of several steps executed locally and across the network when rec-
ommending peers for a query and retrieving or returning results. Consider a query
posed to the P2P network. Necessary steps are:

• Across the network: Recommending. Whenever a peer receives a query message,
it first extracts meta-information about the querying peer and updates its boot-
strapping and recommender index if needed. Then the INGA forwarding strat-
egy is invoked to select a set of k peers that appear most promising to answer
the query successfully. Finally the original query message is forwarded to these
k peers.

• Across the network: Answering Queries. When a peer receives a query, it will try
to answer the query with local content. We only return non-empty, exact results
and route them directly to the querying peer. If the maximum number of hops is
not yet reached, the query is forwarded to a set of peers selected as above.

• Locally: Receiving Results. On the arrival of result items a querying peer analyzes
the message path and the respective number of results to create or update local
content provider and recommender shortcuts.

4.2 Selecting Best Matching Shortcuts

The INGA shortcut selection algorithm determines the candidate peers that are most
promising to forward the given query to. The INGA strategy is based on the avail-
able local knowledge about the query topic as it is stored in the index of the peer:

• INGA only forwards a query via its k best matching shortcuts.
• INGA prefers content and recommender shortcuts over bootstrapping and default

network shortcuts for forwarding queries.
• The INGA strategy constitutes a greedy k best-search heuristics. As such it might

be led astray into a subnetwork of peers that appear to be the optimal choice from
a local point of view, but that do not yield all the appropriate answers. To let the
search escape such local optima, some queries are forwarded to a random set of
peers.
This randomness will later on show two major beneficial effects: First, it allows
the individual peer to have a larger overview of the whole network and, hence,
to establish the appropriate short distance and long distance shortcuts.3 Second,
it facilitates accommodation to volatility (especially in the form of new joining
peers).

Algorithm 8 defines the basic peer selection procedure for choosing k peers: In step
1 it selects at most k peers from content or recommender shortcuts that match the

3 “short” and “long distance” as seen from the default underlying network.

200 Alexander Löser, Steffen Staab, and Christoph Tempich

topic of the query with the highest similarity. To avoid forwarding queries along
shortcuts with only low topic similarity a minimum similarity threshold tgreedy is
required to hold between the topic(s) of the query and the shortcut. If less then
k shortcuts have been found, the algorithm selects the top bootstrapping shortcuts
(step 3). Finally, remaining slots for query forwarding are filled by a random selec-
tion from the default network. The algorithm terminates if the query has reached
its maximum number of hops. Furthermore, the algorithm is constrained such that
a query is not forwarded to a peer if this peer has already occurred in the message
path of the query (step 6). We will now show all subroutines for shortcut selection

Algorithm 8: Dynamic
Require: Query q, MsgPath mp, int k, float tGreedy, float f, Set topicDependentShortcuts, Set

bootstrappingShortcuts, Set defaultNetworkShortcuts
Ensure: T T Lq < maxTTL
1: Set s ← TopGreedy(q,topicDependentShortcuts,k,tGreedy)
2: if (|s|< k) then
3: s ← s ∪ TopBoot(bootstrappingShortcuts, (k−|s|))
4: end if
5: s ← RandomFill(s,defaultNetworkShortcuts,f,k)
6: s ← removeAlreadyVisitedPeers(s,mp)
7: Return s.

in more details. Algorithm TopGreedy allows for selecting the top peers above a
similarity threshold. The algorithm browses trough the index of all topic dependent
shortcuts (step 3) and identifies the most similar shortcuts for a query (step 4) above
tgreedy (step 5). If two shortcuts have the same similarity, it selects the shortcut with
the higher value of query hits (not shown in the algorithm below). The algorithm
selects the top-k peers for a query while avoiding different shortcuts with overlap-
ping peers (step 7–8). The TopBoot Algorithm works similarly to the TopGreedy
Algorithm, but selects the peers with highest known bootstrapping capability (line
4). It also avoids overlapping peers within the set of selected shortcuts (line 6–7).

The task of algorithm RandomFill is twofold: if the other subroutines fail to dis-
cover k peers for a query, it fills up remaining peers until k is reached (step 12–14).
The second task of the algorithm is to contribute some randomly chosen peers to
the selected set of k peers to avoid overfitting of the selection process as known
from simulated annealing techniques. Depending on the probability f (step 5) the
algorithm exchanges already selected peers with randomly chosen ones. Finally the
algorithm fills up the remaining peers with randomly chosen peers (step 10–13).

5 Experimental Setup

To validate INGA and Remind’in, we have explored several possibilities for eval-
uation. Semantic routing has been implemented in the Bibster system, which was

Semantic Social Overlay Networks 201

evaluated in a real world case study [15]. However, during the case study a maxi-
mum of 50 researchers were simultaneously online. This number was too small to
evaluate the scalability of a peer-to-peer routing algorithm. Furthermore, though we
have collected information about the content and the queries the peers have shared
and submitted, this amount of available information was too small to test our algo-
rithm for a larger number of peers. Therefore, we have decided to evaluate INGA
by simulating a peer-to-peer network with more than 1.000 peers based on gen-
erated data sets with different ontologies and different statistical distributions of
content.

Before we discuss evaluation results in Section 6, we here elaborate the experi-
mental setup.

Algorithm 9: TopGreedy
Require: Query q, Set topicDependentShortcuts, int k, float tgreedy
1: Set topShortcuts ←{}
2: Set s tmp ← topicDependentShortcuts
3: Case (s tmp is not empty) ∧ (k > 0)
4: Next ← argmaxp∈s tmp simTopic(q, p)
5: if simTopic(q,Next) > tgreedy then
6: s tmp ← s tmp − {Next}
7: if (Next routes not to a peer in topShortcuts) then
8: topShortcuts ← topShortcuts ∪ {Next}
9: k ← k − 1

10: end if
11: else
12: break
13: end if
14: end Case
15: Return topShortcuts

Algorithm 10: TopBoot
Require: Set bootstrappingShortcuts, int k
1: Set topShortcuts ← {}
2: Set s tmp ← bootstrappingShortcuts
3: Case (s tmp is not empty) ∧ (k > 0)
4: Next ← argmaxp∈s tmp topBoot(p)
5: s tmp ← s tmp − {Next}
6: if (Next routes not to a peer in topShortcuts) then
7: topShortcuts ← topShortcuts ∪ {Next}
8: k ← k − 1
9: end if

10: end Case
11: Return topShortcuts

202 Alexander Löser, Steffen Staab, and Christoph Tempich

Algorithm 11: RandomFill
Require: Set preSelected, Set defaultNetworkShortcuts, float f, int k
1: Set postSelected ← {}
2: Case (preSelected is not empty)
3: Next ← next(preSelected)
4: preSelected ← preSelected − {Next}
5: if (rand(0,1) > f) then
6: postSelected ← postSelected ∪ {Next}
7: end if
8: end Case
9: k ← k−|postSelected|

10: Case k > 0
11: postSelected ← postSelected ∪ next{(defaultNetworkShortcuts)}
12: k ← k−1
13: end Case
14: Return postSelected

5.1 Content Distribution

We used three different ways of assigning data to peers in our simulation runs. The
assignment was done based on synthetic data sets and on real-world data sets. The
data sets exhibited different characteristics with regard to dimensions like size, re-
lational structure (i.e., being able to be used for simulation runs with conjunctive
queries) and “being natural” for the task at hand. All three data sets had a low level
of replication, i.e., few data items were assigned to multiple peers, and all data sets
exhibited a hyperbolic (Zipf-like) distribution of topics.

1. Open directory project. The first data set is based on the open directory
DMOZ.org. DMOZ.org constitutes a large data set of content distributed among
a substantial community of content editors. The data set was so large that for the
purpose of our simulations we have selected a subset consisting of the first three
levels of the DMOZ hierarchy.
Each editor is responsible for one or several content topics and maintains the
corresponding topic pages. At the first three levels we found 1657 topics. There is
a Zipf-like skew in the distribution of editors to topics: 991 editors only maintain
content about one topic, 295 about two, 128 about three, ... one editor about 20,
and one editor maintains content about 22 topics. Vice versa: 755 topics are dealt
with by 1 editor, 333 by 2, 204 by 3, . . . , 44 by 6, . . . , 14 by 10, and 1 topic
has 32 editors. Thus, mapping an individual editor onto an individual peer and
the topic content of the editor onto the local node repository of the corresponding
peer appears to be a rather natural, realistic choice for a basic data set.
This data set does not contain relational structures, but only information about
instantiation of a topic, e.g., “UMLcompedium.pd f ” is an instance of topic
topic “/education/UML/docs” . Hence, it is not possible to test conjunctive
queries on this data set.

Semantic Social Overlay Networks 203

2. Synthetic data. The number of classes, the number of properties and the num-
ber of sub-class relationships together with their respective distributions deter-
mine the schema of the ontology. The number of instances and the number
of relations between instances determine the distribution of the instance data.
The distributions are modeled as a Zipf distribution with parameter settings ac-
cording to observations from real world data sets. The parameter settings for
the schema generation are based on [33] while the parameter settings for in-
stance generation are based on [9]. Data distribution on the peers follow the
model presented in [12]. For the schema we choose to generate an ontology
with 1.000 classes and each class was assigned a popularity based on a Zipf
distribution with skew factor 1. The popularity of a class influences its num-
ber of instances, its replication in the network and its connectivity with other
classes through properties. We selected the number of sub-classes and the num-
ber of properties of a class (Zipf with skew factor 1.1). This resulted in 357
properties.
200,000 instances were generated and assigned to one class based on the popular-
ity of the different classes. TotalNoPropertyInstances = 100 · TotalNo
Properties many properties between instances were generated. Likewise to
classes, a property schema(one could also call it a binary relation), had a popular-
ity based on a Zipf distribution with skew factor 1 that was considered when gen-
erating properties between instances (i.e., when populating the binary relations).
Assignment of data to peers is done based on the conjecture that users are
generally interested in a small subset of the entire content available in a peer-
to-peer network. We have modeled that the interests are more likely in only
a limited number of content classes and thus users would be more interested
in some classes while less in others. The maximum number of classes that
a peer is interested in and its content is computed by ClassesO f Interest =
ln(NoO fClasses) ∗ 2. The actual number of classes is chosen randomly from
a uniform distribution. Observing the studies in [9] all peers do not share the
same amount of data and also do not exhibit the same ‘social behaviour’.
For instance, a large number of users are so-called free riders or freeload-
ers who do not contribute anything to the network but essentially behave like
clients. On the other hand, a small number of users (less than 5%) provide
more than two thirds of the totally available amount of data and thus behave
like servers. Considering the study in [2] the following storage capacity was
assigned to the peers in the network: 70% of the peers do not share any in-
stances (free riders); 20% share 100 instances or less; 7% share 101 up to
1000 instances and finally, only 3% of the peers share between 1001 and 2000
instances.

3. Bibster data set. This data set bases on real captured query data from the peer-
to-peer bibliography network “Bibster” [15]. There, we observed the behavioral
characteristics of different peers. In order to run a simulation at a larger scale
we re-used the observed characteristics, but on data from a large bibliography
database.

204 Alexander Löser, Steffen Staab, and Christoph Tempich

In total 27.037 distinct instances represent the bibliographic entries in the net-
work in this data set. The different topics available from an ACM-index file.4

5.2 Query Distribution

For the different data sets and their assignments to peers, we generated queries in
the simulation runs as follows:

1. Open directory project. Queries were generated in the experiments by instantiat-
ing the blueprint query (∗;rd f : type; topic) with topics arbitrarily chosen from
the set of topics that had at least one document. An example of a SeRQL query
is:
with topics arbitrarily chosen from the set of topics that had at least one docu-
ment. We generated 30000 queries, uniformly distributed over the 1657 different
topics. We choose a uniform query distribution instead of a ZIPF-distribution,
which is typically observed in file sharing networks [28]. This simulates the worst
case scenario, where we do not take advantage of often repeated queries for pop-
ular topics.

2. Synthetic data. The query set for the synthetic ontology is based on a special type
of queries that request instances satisfying a varying number of constraints. The
basic concept for the queries is built on the following schema: (instance;rd f :
type;class) ∧ (instance;owl : hasProperty; instance2) ∧
(instance2;rd f : type;class2) ∧ (instance;owl : hasProperty; instance3) ∧
(instance3;rd f : type;class3). Informally, this concept requests all instances of a
certain class with the constraint that the instances have two particular properties
pointing to other instances.
The built query set only contains queries that can be answered by the network
and is distributed uniform.

3. Bibster data set. The extracted queryset for the Bibster-based ontology contains
several types of queries that request instances satisfying different constraints. It is
worth mentioning that the queryset was adopted the way it was originally created
and therefore, it also consists of non-conjunctive queries.

5.3 Peer-to-Peer Network Setup

Gnutella style network. The simulation is initialized with a network topology which
resembles the small world properties of file sharing networks.5We simulated 1024

4 The ACM-Index file is available online at:
http://www.aifb.uni-karlsruhe.de/WBS/pha/bib/acmtopics.rdf
5 We used the Colt library http://acs.lbl.gov/˜hoschek/colt/

Semantic Social Overlay Networks 205

peers. In the simulation, peers were chosen randomly and they were given a ran-
domly selected query to question the remote peers in the network. The peers decide
on the basis of their local short cut which remote peers to send the query to. Each
peer uses INGA to select up to pmax = 2 peers to send the query to. Each query
was forwarded until the maximal number of hops hmax = 6 was reached – unless
the peer selection algorithm choose not to forward further also at an earlier point in
time.

Volatile network and interest shifts. The simulation incorporates dynamic net-
work model observed for Gnutella networks by [28] and models incorporating IP-
address aliases found by [8]. Hence only a small fraction of peers is available more
than half of the simulation time, while the majority of the peers is only online a
fraction of the simulation time. The real online and off-line times of peers are de-
termined randomly at simulation runtime so that their cumulative online times re-
semble the distribution found in [28]. Figure 4 visualizes the number of peers online
during the simulation run. A peer ensures before it forwards a query that it is con-
nected to at least five online remote peers on the network layer. If a remote peer
is off-line it is exchanged with an online peer. A peer discovers with rendezvous
techniques online peers on the network layer.

Volatile Network - Online Peers

460

470

480

490

500

510

520

0 5000 10000 15000 20000 25000 30000
No. of Queries

N
o

. o
f

 P
ee

rs
 O

n
lin

e

Online Peers

Fig. 4 Volatile network: number of peers online

We also consider changing user interests. Users’ interests may change over time,
e.g., to account for different search goals. To simulate changing interests, after 15
queries, equal to ca. 15.000 queries over all peers, each peer queries a completely
different, previously unused set of topics.

206 Alexander Löser, Steffen Staab, and Christoph Tempich

5.4 Simulator Setup and Simulation Statistics

We used a round based simulation framework. Figure 1 presents the main param-
eters of the simulation framework. In total we simulated 1024 peers. To determine
the standard error of our observations of 95% confidence interval (p<0.05) each
simulation was executed six times. We set the greedy search threshold for algorithm
to 0.15 and the amount of random contribution to 0.20

Parameter Value

Queries 30.000
Queries per peer ca. 30
Query time to life 6
Selected peers per query (k) 2

Greedy search threshold (tGreedy) 15%
Random contribution (f) 20%
Index size (if no other size is mentioned) 40

Open Directory data set
Topics 1646
Before interest shift 823
After interest shift 823
Simulated peers 1024

Bibster data set
Topics 1293
Queries 3319
Simulated Peers 520

Synthetic data set
Topics 1000
Queries before interest shift 1641
Queries after interest shift 1640
Simulated Peers 1024

Table 1 Simulation parameter setting

5.5 Evaluation Measures

We measure the search efficiency using the following metrics:

• Recall describes the proportion between all relevant documents in peer network
and the retrieved ones. Hereby, we defined “relevant” as “matches the query”. We
did not use any gold standard document set where relevance to a query would be
assigned by a user. Therefore, precision would have been meaningless in our
evaluation.

Semantic Social Overlay Networks 207

• Messages represent the required search costs per query that can be used to indi-
rectly justify the system scalability.

• Message Gain is defined as the recall per message, hence we divide the recall of
a query with the proportion of messages to achieve the recall.

• Clustering coefficient represents the compactness of the network. It captures how
many of a node’s neighbors are connected to each other. We define the clustering
coefficient as

C =
1
|V | ∑v∈V

|E(Γv)|
kv · (kv−1)

(5)

where V denotes the set of peers in the network, kv denotes the maximum number
of shortcuts for a peer v, Γv the direct neighbors of a peer and E(Γv) represents a
function that counts the number of links in Γv.

• Average path length A short average path length denotes a highly directed in-
formation flow between two peers in the network. Given two arbitrary selected
peers v1,v2 ∈V and dmin(v1,v2) the minimum path length between v1 and v2, we
define the average path length as

d =
1

|V |
2

∑
v1 �=v2

dmin(v1,v2) (6)

6 Evaluation and Optimization

We conducted a large number of experiments regarding the performance of INGA
in contrast to state-of-the-art approaches, the optimal parameter setting and the ap-
plicability of our algorithm to different scenarios. Before we present the final eval-
uation results, we here summarize the major hypotheses we wanted to investigate:

1. Shortcut networks outperform the Default approach.
2. INGA outperforms state-of the art shortcut networks.
3. Semantic similarity supports the peer selection process. It helps to improve re-

call and to reduce the number of messages. However, shortcut networks perform
reasonably even without the support of a semantic similarity function.

4. Each layer contributes to improve routing efficiency. Depending on the scenario,
dynamic bootstrapping peers help to reduce the number of messages, while rec-
ommender peers increase the recall.

5. Shortcut networks show small world characteristics.
6. Our algorithms performs well with a limited index size.
7. Combining different index policies supports efficient routing much more than

relying on a simple LRU strategy.
8. Shortcut networks are capable to handle conjunctive queries efficiently.
9. Shortcut networks perform well in both, dynamic and static, networks.

208 Alexander Löser, Steffen Staab, and Christoph Tempich

0

20

40

60

80

100

120

0 5000 10000 15000 20000 25000 30000

Queries

M
es

sa
ge

s

INGA-40 IBL LRU-40 Default Remindin

Fig. 5 Messages: Related Approaches

6.1 Performance Against State-of-the-Art Approaches

As a baseline we compare INGA with an index size of 40 entries against the interest
based locality strategy (IBL) of [29] with an LRU strategy and an index size of 40
entries, the default algorithm of Gnutella (Default) and Remind’in [32].

Figure 6 shows the recall in contrast to the maximum possible recall in a dy-
namic network. After only 15 queries per peer, INGA nearly doubles the recall of
the default approach and drastically outperforms IBL. Since INGA and Remind’in
use similar strategies for creating shortcuts both achieve a similar recall. Figure 5
shows the number of messages. Due to bootstrapping peers, which focus queries to
a fraction of peers in the network, INGA outperforms and halves the messages in
contrast to a default approach. In contrast to Remind’in, INGA reduces the number
of messages from about 85 to 58 messages in average. While the maximum pos-
sible recall in our dynamic scenario is ca. 55% after 15 queries of each peer we
achieved a recall of ca. 25%. One reason for this decent recall is due to the very low
replication of topics in our data set. Furthermore to stress our algorithm further, we
introduce a hard topic shift after 15 queries. However another study [21] shows a
higher replication and a smoother interest shift, both factors would raise the recall
further.

Semantic Social Overlay Networks 209

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0 5000 10000 15000 20000 25000 30000

Queries

R
ec

al
l

INGA-40 IBL LRU-40 Default Remindin Maximum Possible

Fig. 6 Recall: related approaches

6.2 Layer and Semantic Similarity Function Contribution

Figure 7 shows the message gain of the different layers. Only using content provider
shortcuts (Content-40) performs poorly, a combination of content and recommender
shortcuts raise the message gain (Content Recommender-40) and finally the intro-
duction of bootstrapping peers (INGA-40) additionally boosts INGA performance.
The introduction of the recommender layer has the strongest influence on the perfor-
mance of INGA. One reason is the caching of frequent queries issued by the peers
in the network. If the network becomes clustered, especially neighboring nodes with
similar interests will benefit of cached queries. Furthermore query routing is based
on a similarity function, so queries are routed along shortcuts representing similar
queries. Especially for nodes that are not clustered so far, this similarity helps to
find adequate clusters and route queries to nodes that have similar interests. Thus,
including a similarity in the peer selection process speeds up the clustering process,
however shortcut networks will exploit small world characteristics even if an exact
match paradigm is used only. In this case shortcut networks profit in particular from
popular queries that are used to establish topic specific shortcut between remote
peers.

210 Alexander Löser, Steffen Staab, and Christoph Tempich

0

0,0005

0,001

0,0015

0,002

0,0025

0,003

0,0035

0,004

0,0045

0,005

0 5000 10000 15000 20000 25000 30000

Queries

M
es

sa
ge

 G
ai

n

Content-40 Content-Recommender-40 INGA-40 Default

Fig. 7 Message gain for each layer

6.3 Tradeoff Between Clustering and Recall

Small-world graphs are defined by comparison with random graphs with the same
number of nodes and edges: first, a small-world displays a small average path length,
similar to a random graph; second, a small-world has a significantly larger clustering
coefficient than a random graph of the same size [16]. To measure the small world
characteristics for different index settings we conducted experiments where we only
consider the similarity locality (a = 10, b = 0, c = 0), only community locality (with
a = 0, b = 10, c = 0), only LRU-locality (a = 0, b = 0, c = 10) and the combination
(a = 3, b = 6, c = 1), that produces in our dynamic setting optimal results in terms of
messages and recall.

We discover that the INGA data-sharing graph displays small-world properties.
Figure 8 shows, that all index settings reduce the average path length in contrast to
the default network. Due to the peer dynamics the default network selects the most
stable peers with a path length of four hops while all index settings reduce the path
length to 2 hops. However, INGA LRU-40 stabilizes less than the other approaches.

The clustering coefficient (cf. Fig. 9) increases for most of our index configu-
rations. Only INGA LRU-40 decreases after a slight increase the clustering coeffi-
cient. Hence a LRU strategy alone is not able to create a highly clustered network.
However, a high clustering coefficient does not correlate with a high recall: Fig-
ure 9 shows that the high clustering coefficient of INGA SIM-40 outperforms while
Fig. 10 shows that the highest recall is achieved through the optimal setting INGA
40. Since clustering in the network focusses queries to a small set of peers stor-
ing similar shortcuts it reduces the number of randomly discovered peers as well.

Semantic Social Overlay Networks 211

0

1

2

3

4

5

6

7

8

0 5000 10000 15000 20000 25000 30000

Queries

A
ve

ra
ge

 P
at

h
Le

ng
th

INGA LRU-40 INGA-40 INGA Community-40
Default INGA SIM-40

Fig. 8 Average path length for different index weights

0

0,05

0,1

0,15

0,2

0,25

0,3

0 5000 10000 15000 20000 25000 30000

Queries

C
lu

st
er

in
g

C
oe

ffi
ci

en
t

INGA Community-40 INGA LRU-40
INGA-40 INGA SIM-40
Default

Fig. 9 Clustering coefficient for different index weights

However, such randomness is crucial in a highly dynamic setting to achieve a high
document recall. For applications that prefer a high document recall, we recommend
the setting of INGA 40.

212 Alexander Löser, Steffen Staab, and Christoph Tempich

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0 5000 10000 15000 20000 25000 30000

 Queries

R
ec

al
l

INGA-40 INGA LRU-40 INGA Community-40 INGA SIM-40

Fig. 10 Recall for different index weights

6.4 Setting Optimal Index Size

In this experiment observe the effect of different index sizes in the message gain
of INGA. We found out that limiting index size performs similar to an unlimited

0

0,001

0,002

0,003

0,004

0,005

0 5000 10000 15000 20000 25000 30000

Queries

M
es

sa
ge

 G
ai

n

INGA-100 INGA-20 INGA-40 INGA-Al

Fig. 11 Message gain for different index size

Semantic Social Overlay Networks 213

index. We conducted experiments with an unlimited index size and a maximum
size of 100, 40, 20 shortcut entries. To message the tradeoff between messages and
recall we use the message gain again. Figure 11 shows that an index size of 100
entries performs as good as an unlimited index while an index of 40 entries still is a
reasonable tradeoff between size and routing efficiency.

6.5 Setting Optimal Index Weight

To determine an optimal weighting of the parameter (a,b,c) of the index policy, we
conducted experiments where we only consider the similarity locality (a = 10,b =
0,c = 0) , where we only consider the community locality (with a = 0,b = 10,c = 0),
where we only consider the LRU-Locality (a = 0,b = 0,c = 10) and an “optimal”
combination (a = 3,b = 6,c = 1). Reference [29] proposes a LRU strategy to update
the index. We found out that there are better strategies. Figure 12 shows a similarity
and LRU strategy, both perform worse and are alone not capable to adopt to the
dynamics of the network and the changing interests of each peer. The community
locality raises the message gain, even after changing the interests of each peer, while
the combined strategy performs best.

0

0,0005

0,001

0,0015

0,002

0,0025

0,003

0,0035

0,004

0,0045

0,005

0 5000 10000 15000 20000 25000 30000
Queries

M
es

sa
ge

 G
ai

n

INGA Community-40 INGA SIM-40 INGA LRU-40 INGA-40

Fig. 12 Message gain for different index weights

214 Alexander Löser, Steffen Staab, and Christoph Tempich

6.6 Performance for Conjunctive Queries

In Fig. 13 we have plotted the results comparing the recall for different selection
strategies. We refer to the ranking based on equation (2) as Multiply. After a warm
up phase of 2.000 queries, or approximately two queries per peer, we constantly
reach around 75% of the available content. Not all peers are always online, thus
we have plotted the maximum available content as Online Available in the graph.
We compare our selection strategy to the Default approach, which represents the
baseline for all algorithms likewise. In this approach we use only the default layer to
select peers as in Gnutella. From the known peers on the default layer, we randomly
select two remote peers to send and forward a query to.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 5000 10000 15000 20000 25000 30000

Queries

R
ec

al
l

Multiply Default Online available

Fig. 13 Recall for conjunctive queries

In Fig. 14 we have plotted the number of messages produced to achieve this re-
call. The number of messages produced by the Default approach slightly increases
over time. Due to the high network churn the peers have to discover new remote
peers since the available ones assigned in the setup phase are off line. Thus, the
necessity to send a query to a remote peer which has not received the query yet
increases over time. In contrast to the observation made for the Default approaches
the number of messages produced based on the shortcut selection decreases signifi-
cantly. The number of messages decreases because of the small world properties of
the network queries are only forwarded to a focused set of peers. I decreases further,
since we do not forward queries to peers that have already received a query (see
Section 4 and algorithm 8).

Semantic Social Overlay Networks 215

0

20

40

60

80

100

120

0 5000 10000 15000 20000 25000 30000
 Queries

M
es

sa
g

es
 p

er
 Q

u
er

y

Multiply Default

Fig. 14 Messages for conjunctive queries

7 Related Work

Their exist a number of different approaches to routing in P2P networks. They can
be categorized according to the two dimensions centralization and structure. The
discussion of related routing algorithms follows this categorization. and was influ-
enced by the surveys [4, 13, 26, 34].

Routing Algorithms for Centralized Peer-to-Peer Networks. First approaches for
efficient indexing in P2P architectures were central indices, that have to transmit
either meta data about the available content to central indexing peers, like, e.g.,
GlOSS [14] or Napster.

Routing Algorithms for Structured Decentralized Peer-to-Peer Networks. One of
today’s main technique for indexing P2P systems are so-called distributed hash ta-
bles (DHTs), (e.g., [1] or see [5] for a survey) that without need of a central index
allows to route queries with certain keys to particular peers containing the desired
data. But to provide this functionality all new content in the network has to be pub-
lished at the node for the respective key, if new data on a peer arrives or a new peer
joins the network. And in case that a peer leaves the network the information about
its content has to be unpublished. Recent research in [22] shows that due to the pub-
lishing/unpublishing overhead, DHTs lack efficiency when highly replicated items
are requested and in practical settings perform even worse than flooding approaches
degrading further if network churn is introduced.

Routing Algorithms for Super-Peer-Based Peer-to-Peer Networks. The system
EDUTELLA uses a super-peer-based routing mechanism based [27]. Peers which

216 Alexander Löser, Steffen Staab, and Christoph Tempich

have topics in common are arranged in a hypercube topology. This topology guaran-
tees that each node is queried exactly once for each query. It is thus a very efficient
approach to flood queries to all online peers. From the requirements perspective
this solution for query routing is not adequate in our use case as the peers have
to publish their expertise to the super-peers. Their are also technical problems in
highly volatile P2P environments, as the hypercube topology must be maintained.
Our algorithm is not based on an explicit topology, thus it does not generate any
overhead to establish it. Our simulations illustrate that we need much less messages
per query than the number of peers available in the network in order to reach the
most knowledgeable ones. INGA cannot ensure a complete answer, though.

A second routing algorithm for the EDUTELLA system uses content provider
shortcuts for document retrieval [6]. Only exact matches between content provider
shortcuts and queries are considered for peer selection. The peers publish their local
indices in a static super-peer network. The shortcut index policy considers temporal
locality, each index entry has a certain time to live after which the shortcut has to be
reestablished for the next query on that topic. In contrast to INGA they only consider
exact matches between shortcuts and queries, hence they do not investigate complex
ranking metrics for semantically similar shortcuts. They do not use the concept of
recommender peers.

Routing Algorithms for Unstructured Decentralized Peer-to-Peer Networks. While
the visualization of keys and objects in the same name space used in structured
overlays provides an elegant clean solution to routing within logarithmical bounds
it comes at the significant cost of destroying the locality of the content: Content at
a user’s desktop is co-located with other relevant items, structured overlays destroy
this locality meaning that enhanced opportunities for browsing and pre-fetching are
lost [17]. Unstructured networks, such as Gnutella, keep this locality, since a query
is forwarded to randomly picked neighbors. To bound the number of hops it can
travel, each query is tagged with a maximum number of hops (TTL). In addition
Gnutella employs a duplicate detection mechanism, so that peers do not forward
queries that they have already previously forwarded. To improve the efficiency of
Gnutella routing indices local index information are first introduced by [11]. This
indexing strategy locally stores information about specific queries and what peers
were successfully queried in the past.

In the work described here, we do not make any assumptions about this infras-
tructure or the overlay topology, and rather assume that the query routing decision
has all the information about other peers that it needs and chooses peers solely by
benefit/cost considerations. We will disregard the cost aspects for this paper and
focus on the much less explored benefit issues. Following the authors of [7] we
distinguish three broad families of strategies:

• Semantic query routing: The peers to which a query is forwarded are chosen
based on the content similarity between the query and the data held by the can-
didate target peers (or the corresponding peer synopses).

• Social query routing: The target peers are chosen based on social relationships
like the explicitly listed friends of the query initiator or peers that belong to the
same explicit groups.

Semantic Social Overlay Networks 217

• Spiritual query routing: The target peers are chosen based on behavioral affinity
such as high overlap in tag usage, bookmarked pages, or commenting and rating
activity.

The authors in [29] first consider the semantics of the query to exploit interest-based
locality in a static network. They use shortcuts that are generated after each success-
ful query and are used to further requests, hence their strategy generates what we
call content provider shortcuts (cf. Section 3). However their search strategy differs
from ours, since they only follow a shortcut if it exactly matches a query, else they
use a flooding approach. To update the index they use a LRU strategy. Similar, [6]
uses a local routing index for content provider shortcuts for the specific scenario of
top k retrieval in P2P networks. Local indices are maintained in a static super-peer
network. Their index policy considers temporal locality, each index entry has a cer-
tain time to live after which the shortcut has to be reestablished for the next query on
that topic. REMINDIN [32] used a routing table storing content provider shortcuts
and a relaxation based routing strategy. The approach was only designed for a static
setting without any index size limitation, an assumptions that is not realistic. The
authors in [18] introduce the notion of peer communities that consist of active peers
involved in sharing, communicating, and promoting common interests. These com-
munities are self-organizing using distributed formation and discovery algorithms.
Finally, the authors of [7] combine semantic social and spritual query routing for
delivering high-quality results. Instead of a top-level ontology, they consider key-
word queries and use IR quality measures like precision and recall. In their work
the present hybrid strategies that combine elements from both semantic and social
or semantic and spiritual search.

8 Summary

The novel design principle of the INGA query routing strategy lies in the dynamic
adaptation of the network topology, driven by the history of successful or semanti-
cally similar queries. This is realized by using bounded local shortcut indexes stor-
ing semantically labeled shortcuts and a dynamic shortcut selection strategy, which
forwards queries to a community of peers that are most promising to best answer
a given query. Shortcuts connect peers that share similar interests and thus sponta-
neously form semantic communities that show typical small world characteristics,
e.g., a high clustering coefficient and a low average path length. The clustering of
peers within semantic communities drastically improves the overall performance of
our algorithm even in a highly volatile setting.

In extensive simulations with different index strategies we have shown a trade-off
between recall and clustering: Especially in volatile networks “over clustering” may
easily lead the query into a subnetwork of peers that constitutes a locally, but not
globally optimal choice of peers, thus reducing the recall for a given query. At the
same time INGA is non-intrusive as it is solely based on the observation of network
behavior keeping the load for administration messages at nil.

218 Alexander Löser, Steffen Staab, and Christoph Tempich

Thus, INGA exhibits a characteristics of properties that sets it apart in intriguing
ways from structured DHT-style networks and it may provide a substantial benefit
to all unstructured peer-to-peer networks.

Acknowledgment

Research reported in this paper has been partially financed by EU in the IST
projects SEKT (IST-2003-506826), SWAP (IST-2001-34103) and ASG (IST FP6-
004617). Alexander Löser was supported by the German Research Foundation,
Berlin-Brandenburg School for Distributed Information Systems (DFG grant GRK
316/3).

References

1. Aberer, K., Cudre-Mauroux, P., Hauswirth, M., van Pelt, T.: GridVine: Building Internet-Scale
Semantic Overlay Networks. In: 3rd. International Semantic Web Conference (ISWC), Hi-
roshima, Japan (2004)

2. Adar, E., Huberman, B.: Free riding on gnutella. First Monday 5(10) (2000)
3. Aho, A.V., Denning, P.J., Ullman, J.D.: Principles of optimal page replacement. J. ACM 18(1),

80–93 (1971). DOI http://doi.acm.org/10.1145/321623.321632
4. Androutsellis-Theotokis, S., Spinellis, D.: A survey of peer-to-peer content distribution tech-

nologies. ACM Comput. Surv. 36(4), 335–371 (2004)
5. Androutsellis-Theotokis, S., Spinellis, D.: A survey of peer-to-peer content distribution tech-

nologies. ACM Comput. Surv. 36(4), 335–371 (2004). DOI http://doi.acm.org/10.1145/
1041680.1041681

6. Balke, W.T., Nejdl, W., Siberski, W., Thaden, U.: Progressive distributed top-k retrieval in
peer-to-peer networks. In: 21st International Conference on Data Engineering (ICDE). Tokyo,
Japan (2005)

7. Bender, M., Crecelius, T., Kacimi, M., Michel, S., Parreira, J.X., Weikum, G.: Peer-to-peer
information search: Semantic, social, or spiritual? IEEE Data Eng. Bull. 30(2), 51–60 (2007)

8. Bhagwan, R., Savage, S., Voelker, G.M.: Understanding availability. In: IPTPS, pp. 256–267
(2003)

9. Cholvi, V., Felber, P., Biersack, E.: Efficient search in unstructured peer-to-peer networks.
European Transactions on Telecommunications: Special Issue on P2P Networking and P2P
Services 15(6), 535–548 (2004)

10. Cooper, B.: Guiding queries to information sources with InfoBeacons. In: ACM/I-
FIP/USENIX 5th International Middleware Conference. Toronto (2004)

11. Crespo, A., Garcia-Molina, H.: Routing indices for peer-to-peer systems. In: International
Conference on Distributed Computing Systems (2002)

12. Crespo, A., Garcia-Molina, H.: Semantic Overlay Networks for P2P Systems. Tech. rep.,
Computer Science Department, Stanford University (2002)

13. (Ed.), A.O.: Peer-to-Peer: Harnessing the Power of Disruptive Technologies. O’Reilly, Se-
bastopol, USA (2001)

14. Gravano, L., Garcı́a-Molina, H.: Generalizing GlOSS to vector-space databases and broker
hierarchies. In: International Conference on Very Large Databases, VLDB, pp. 78–89 (1995)

15. Haase, P., Broekstra, J., M.Ehrig, Menken, M., P.Mika, Plechawski, M., Pyszlak, P., Schni-
zler, B., Siebes, R., Staab, S., Tempich, C.: Bibster – a semantics-based bibliographic peer-

Semantic Social Overlay Networks 219

to-peer system. In: Proceedings of the International Semantic Web Conference, pp. 345–354.
Hiroshima, Japan (2004)

16. Iamnitchi, A., Ripeanu, M., Foster, I.: Small-World File-Sharing Communities. In: 23th. IEEE
InfoCom HongKong (2004)

17. Keleher, P.J., Bhattacharjee, B., Silaghi, B.D.: Are virtualized overlay networks too much of a
good thing? In: IPTPS ’01: Revised Papers from the First International Workshop on Peer-to-
Peer Systems, pp. 225–231. Springer-Verlag (2002)

18. Khambatti, M., Ryu, K.D., Dasgupta, P.: Structuring peer-to-peer networks using interest-
based communities. In: DBISP2P, pp. 48–63 (2003)

19. Kleinberg, J.: Navigation in a small world. Nature 406(6798), 845 (2000)
20. Li, Y., Bandar, Z., McLean, D.: An Approach for messuring semantic similarity between

words using semantic multiple information sources. In: IEEE Transactions on Knowledge
and Data Engineering, vol. 15 (2003)

21. Liang, J., Kumar, R., Xi, Y., Ross, K.: Pollution in p2p file sharing systems. In: IEEE INFO-
COM. Miami, FL (2005)

22. Loo, B., Hellerstein, J., Huebsch, R., Shenker, S., Stoica, I.: Enhancing p2p file-sharing with
an internet-scale query processor. In: In Proc. of Int. Conf. on Very Large Databases (VLDB).
Toronto (2004)

23. Loser, A., Staab, S., Tempich, C.: Semantic social overlay networks. Selected Areas in Com-
munications, IEEE J. 25(1), 5–14 (2007). DOI 10.1109/JSAC.2007.070102

24. Löser, A., Tempich, C., Quilitz, B., Balke, W.T., Staab, S., Nejdl, W.: Searching dynamic
communities with personal indexes. In: International Semantic Web Conference, pp. 491–505
(2005)

25. Milgram, S.: The small world problem. Psychol. Today 67(1) (1967)
26. Milojicic, D.S., Kalogeraki, V., Lukose, R., Nagaraja, K., Pruyne, J., Richard, B., Rollins,

S., Xu, Z.: Peer-to-peer computing. Tech. rep., HP Laboratories Palo Alto, Technical Report
HPL-2002-57 (2002)

27. Nejdl, W., Wolpers, M., Siberski, W., Schmitz, C., Schlosser, M.T., Brunkhorst, I., Löser, A.:
Super-peer-based routing strategies for rdf-based peer-to-peer networks. J. Web Sem. 1(2),
177–186 (2004)

28. Saroiu, S., Gummadi, P.K., Gribble, S.D.: A measurement study of peer-to-peer file sharing
systems. Multimedia Systems 9(2) (2003)

29. Sripanidkulchai, K., Maggs, B., Zhang, H.: Efficient Content Location Using Interest Based
Locality in Peer-to-Peer System. In: Infocom. IEEE (2003)

30. Tempich, C., Ehrig, M., Fluit, C., Haase, P., Marti, E.L., Plechawski, M., Staab, S.: Xarop: A
midterm report in introducing a decentralized semantics-based knowledge sharing application.
In: Practical Aspects of Knowledge Management: 5th International Conference, PAKM 2004,
Vienna, Austria, no. 3336 in Lecture Notes in Computer Science (2004)

31. Tempich, C., Löser, A., Heizmann, J.: Community Based Ranking in Peer-to-Peer Networks.
In: Ontologies, Databases and Applications of Semantics (ODBASE) 2005, LNCS, vol. 3761.
Springer (2005)

32. Tempich, C., Staab, S., Wranik, A.: REMINDIN:Semantic Query Routing in Peer-to-Peer
Networks based on Social Metaphers. In: Proceedings of the 13th WWW Conference New
York. ACM (2004)

33. Tempich, C., Volz, R.: Towards a benchmark for semantic web reasoners – an analysis of the
DAML ontology library. In: Y. Sure (ed.) Evaluation of Ontology-based Tools (EON2003) at
Second International Semantic Web Conference (ISWC 2003) (2003)

34. Tsoumakos, D., Roussopoulos, N.: Adaptive probabilistic search for peer-to-peer networks.
In: Peer-to-Peer Computing, pp. 102–109 (2003)

Part III
Structured P2P Overlay Architectures

Overview of Structured Peer-to-Peer Overlay
Algorithms

Krishna Dhara, Yang Guo, Mario Kolberg, and Xiaotao Wu

Abstract This chapter provides an overview of structured Peer-to-Peer overlay al-
gorithms. The chapter introduces basic concepts including geometries, routing algo-
rithms, routing table maintenance, node join/leave behaviour, and bootstrapping of
structured Peer-to-Peer overlay algorithms. Based on these key concepts, a number
of key overlay algorithms are classified into categories and a brief over-view of these
algorithms is presented. Finally, the chapter presents an “on-a-glance” comparison
of the presented algorithms and provides an outlook on open research issues.

1 Overview

Large scale peer-to-peer systems have been deployed for file, music, and other data
sharing applications over the internet. The core of these systems is a peer-to-peer
network overlay that could connect millions of users or systems and a network that
could dynamically discover data stored at any node. Early versions of such peer-
to-peer systems mainly consisted of unstructured overlays that organize nodes into
random data structures. These unstructured overlays use techniques such as walk-
ing or flooding the nodes in the system for lookup, and are often optimized for some
common lookup queries. But, in general, these unstructured overlays are quite un-

Krishna Dhara
Avaya Labs Research, Basking Ridge, NJ 07920, USA, e-mail: dhara@avaya.com

Yang Guo
Thomson Corporate Research, Princeton, NJ 08542, USA, e-mail: yang.guo@thompson.net

Mario Kolberg
University of Stirling, Stirling, UK, e-mail: mko@cs.stir.ac.uk

Xiaotao Wu
Avaya Labs Research, Basking Ridge, NJ 07920, USA, e-mail: xwu@avaya.com

X. Shen et al. (eds.), Handbook of Peer-to-Peer Networking, 223
DOI 10.1007/978-0-387-09751-0 9, © Springer Science+Business Media, LLC 2010

224 Krishna Dhara et al.

predictable for finding rare items and for some real-time applications such as voice,
video sharing etc.

To overcome these issues, structured overlays are developed to provide deter-
ministic bounds on the data discovery. Structured overlays provide scalable network
overlays based on a distributed data structure that supports deterministic behaviour
for data lookup. Structured P2P overlays impose restrictions on node placement in
the overlay and hence, improve the efficiency of data lookup. In this chapter we take
a closer look at these structured peer-to-peer overlays. Earlier surveys of structured
overlays can be found in [1–4]. Here, we present different geometries and their ef-
fect on the performance of structured P2P systems. We categorize structured P2P
systems in terms of the bound on numbers of hops required for data lookup and
present issues such as node lookup, finger table maintenance, and join/leave prop-
erties of the overlays. First we define various terms used in structured P2P systems
and present the basic notions of a structured peer-to-peer system. We then introduce
various classes of structured overlays and discuss their relative merits in the last
section.

Some terms and notions are often used when describing P2P overlay algorithms.
The most common ones are described briefly below.

Structured P2P overlay: A network overlay that connects nodes using a partic-
ular data structure or protocol to ensure that node lookup or data discovery is
deterministic.

Distributed hash table (DHT): A decentralized or distributed hash table that stores
(key, value) pairs and is used for data lookups using a key.

Key-based routing: The principle by which a message is routed to the owner of a
key k from a node n following the principle that either the node n owns the key
or points to a node that is closer to a node that owns k in terms of some key space
defined by the DHT.

Routing table (Finger table): Data structure, usually a table, at nodes that main-
tain links to other nodes in the structure.

Churn: Rate of node joins and leaves in a peer-to-peer network.

2 Basic Features of Structured P2P Overlays/Networks

One way to understand structured P2P overlays/networks and to compare various
such systems is to study their defining aspects. These aspects include the geome-
tries or data structures used in overlays, the routing algorithms that are enabled by
these data structures, the affects of churn on various geometries, the maintenance
of the data structure, and the bootstrapping mechanism. These aspects collectively
describe the behaviour of structured P2P overlays. In this section, we present what
each of these aspects are and how they impact P2P performance in terms of lookup
speed, space consumption, and bandwidth requirement. Notations introduced herein
are used in later sections to describe various representative structured P2P overlays.

Overview of Structured Peer-to-Peer Overlay Algorithms 225

2.1 Geometries

Structured P2P overlays use a number of different geometries to accommodate par-
ticipating nodes in P2P overlays. The term geometry is referred to as a structure to
organize nodes in a P2P overlay. The primary goal of these geometries is to enable
the deterministic lookup. The cost or performance of lookups in a structured P2P
overlay is directly related to how nodes are arranged and how the geometry is main-
tained when new nodes arrive and when old nodes leave. Further, these geometries
have a direct impact on the space requirements and on the churn performance of the
P2P overlay.

Fig. 1 Examples of structured P2P overlay geometries

Figure 1 shows a few examples of P2P geometries. As depicted in the figure,
nodes can be organized in various ways. There are two ways of looking at these
structures. One is how the nodes are mapped. In other words how a search of this
space proceeds. Another way, though closely related but distinct, is to look at the
connectivity of these nodes. For example in Fig. 1a nodes are organized in a way
such that the lookups proceed clock-wise in powers of 2. Each node knows only
about a certain number of other nodes in the network. In Fig. 1b lookups proceed
in powers of 2 but in a geometric space. Figure 1c shows a node organisation with
a high connectivity among nodes. Here the lookups are relatively simple and often
only take a single overlay hop.

While structured peer-to-peer overlays offer a uniform distribution of nodes that
help in the lookup, the costs associated with the distribution and lookups need to
be balanced with the performance under churn, network latency, and space. The
scale of peer-to-peer overlays requires significant efforts in maintaining membership

226 Krishna Dhara et al.

changes in overlays. This aspect is further enhanced by the churn of nodes. One
way to mitigate this problem is to maintain small tables that do not require high
maintenance. However, small routing tables increase the lookup latency, which is
often O(log N). If the size of routing tables is increased, then structured overlays can
reduce the lookup latency as fewer overlay hops are required to reach the destination
node. The latency cost can vary between O(log N) to O(1). There are some variations
to the O(1) latency overlay algorithms that minimize peer dynamics.

Logarithmic Overlays: Structured overlays use different approaches to route ob-
jects. A class of overlays reduce the lookup space by half in each step resulting
in a logarithmic number of hops (based on the number of nodes in the overlay).
Such overlays are referred to as logarithmic overlays and they guarantee on average
O(logN) hops for lookups. Examples of such logarithmic overlays are Chord, Pas-
try, Tapestry. While Chord uniformly distributes a node across the search space,
overlay algorithms like Pastry and Tapestry exploit inter-node proximity while
choosing the node’s routing table entries. While the average number of hops re-
mains in the same order of complexity with this approach, lower network latency
reduces the routing and maintenance costs.

O(1) Overlays and Constant Overlays: In cases where the peer churn is low, the
size of the overlay is relatively small, or network latencies for high bandwidth
nodes make the routing table maintenance less expensive, constant or O(1) over-
lays become practical. There are studies that shows that for overlays with millions
nodes or more the bandwidth requirements become large and the O(1) overlays
become expensive [5] and multi-hop approaches might be preferable. After initial
studies on O(log N) overlays, currently there is extensive research on minimizing
lookup latency and optimizing the table maintenance costs using constant overlays
[6, 7].

2.2 Routing Algorithm

Structured P2P overlays use routing algorithms to locate node(s) in an overlay and
retrieve data items from them. The routing algorithm defines how a target node is
located in the overlay network. This lookup is closely associated with the geometries
of the P2P overlay and the connectivity or information stored at each node.

DHT-based routing algorithms use the hash of a node ID to form a node ID space,
which typically is uniformly distributed (however some overlays purposefully break
this to achieve a closer relation between the underlying physical network and the
overlay). A commonly used hashing function is SHA-1.

The identifier for data items (file name etc) is created by applying the same hash-
ing function. Hence the node IDs and data IDs fall into the same ID space. Data
items are typically stored on the closest node with node ID greater than or equal

Overview of Structured Peer-to-Peer Overlay Algorithms 227

to the data ID. Using this approach each node can find a particular data item using
its name. If the node with the closest node ID does not store the data item, it is not
available in the network. Using this approach any existing data item can be found
by any node in the overlay.

Based on these characteristics a number of different routing algorithms have been
defined by various overlays. Major approaches are logarithmic routing (e.g. used by
Chord [8]), One-hop routing (EpiChord [9]), XOR routing (e.g. used by Kademlia
[10]), and the Content Addressable Network (CAN) [11].

Logarithmic routing means that it takes O (log N) steps to route a message from
source to destination node. N is the maximum number of nodes in the overlay. Each
node will route a message closer to the destination node by selecting the entry in its
routing table whose node ID is closest but smaller or equal to the destination node
ID. Logarithmic routing guarantees that with high probability that it does not take
more than log N steps to reach a destination node. Overlays described in Section 3
belong to this category.

Clearly, the more accurate and the larger routing tables are, the fewer hops are
required to route a message from source to destination. Constant degree overlays
guarantee that routing from source to destination is achieved in a certain number of
hops, independent of the size of the overlay. Overlays discussed in Section 4 belong
to this category. This approach is pushed to the extreme in one-hop overlay networks
which have almost complete routing tables in each node and hence can transmit
messages in (almost) a single hop from source to destination. Overlay algorithms
described in Section 5 belong to this category.

2.3 Join/Leave Mechanisms

In the previous sections, we discussed the P2P overlay geometies and the routing
mechanisms. P2P systems are highly dynamic in nature. They need robust mech-
anisms for nodes to join or leave the system at any time with minimal impact to
the functioning of the P2P overlay. However, the need for a geometry that leads
to a deterministic routing behaviour and the need for autonomous nodes provide
a dichotomy for P2P systems. Structured P2P systems use specific join and leave
mechanisms for nodes to resolve this dichotomy. These mechanisms provide a bal-
ance between high dynamism of P2P systems and a predictable or deterministic P2P
overlay behavior.

Peers join an overlay network by connecting themselves to any of the existing
peers. But in structured P2P systems, a peer cannot randomly pick exiting peers
to join. Instead, it must connect itself to well-defined peers based on its logical
identifier and on the geometry of the P2P overlay. Because of this controlled manner,
the join and leave mechanisms can greatly affect the performance of structured P2P
systems.

228 Krishna Dhara et al.

Peer Join: Typically, there are three steps for a node to join a structured P2P overlay.

1. The first step is to get a unique identifier for the node. As discussed above, the
hashing scheme is based on unique properties of the node. For example, MAC/IP
addresses could be used to obtain such an identifier.

2. The second step is to position itself into the overlay structure. This positioning is
based on the node’s id and the geometry of the P2P overlay. During this step, the
node needs to know the entry point or the identity of an existing node to insert
itself into the overlay. This process is called bootstrapping, which is discussed
later in this section.

3. Finally, in the third step, the new joining peer and all the affected peers update
their routing tables to stabilize the overall P2P overlay. By stability we mean the
predictable behaviour of the P2P overlay. This step is often referred to as routing
table maintenance.

Routing table maintenance is discussed in the following sections, so we focus on
the second step where a node, after finding an existing peer, inserts itself into an
overlay. The joining node contacts a peer in the overlay to find out its appropriate
position in the overlay. The existing peer uses techniques that are associated with
the overlay geometry to find out the new node’s neighbours. For example, in Chord,
the existing node will issue a lookup to find the successor of the new node based on
the new node’s identifier. The new peer will then connect to its successor and join
the overlay.

Once a new node joins a structured P2P system, the new node and affected peers
need to update their properties, usually routing tables, to keep the invariants of the
overall system. The number of peers being affected varies for different systems. For
example, a new node in Chord affects O(logN) nodes, where N is the number of
peers in the system. A new node in CAN affects O(d) nodes, where d is the dimen-
sion of the system. However, in O(1) systems, all other nodes in the overlay may
need notifications. Clearly, the complexity is dependent on the particular overlay
geometry.

Peer Leave: When a node leaves or becomes unreachable in a structured P2P over-
lay, nodes that point to that node are affected. Their routing table entries will be
stale and have to be updated. A timely update results in preserving the invariant of
the overlay and guarantees the deterministic lookup in the overlay.

A gracefully departing peer may notify its neighbours about its departure and
transfer necessary information to its neighbours for updating their routing tables.
Its neighbours then propagate the changes if needed until the invariants of the sys-
tem are preserved. For example, in Chord, after the update, each node’s successor
should be correctly maintained and for every key k, node successor (k) should be
responsible for k.

In some cases, a node may leave the system unexpectedly, e.g., due to net-
work failure or power outage. Under these circumstances, the node will not no-
tify its neighbours and cannot send necessary information for routing table updates.
Hence the system must have a failure detection and stabilization mechanism. Failure

Overview of Structured Peer-to-Peer Overlay Algorithms 229

detection is usually handled by heartbeat messages or periodic checking. For exam-
ple, CAN nodes send periodic update messages to their neighbours. The prolonged
absence of an update message from a neighbour signals its failure. Chord nodes
periodically do random checking on its finger tables to detect failures. Once the
failure of a node is detected, usually by its neighbours, the neighbours will start the
stabilization process to update routing tables.

2.4 Routing Table Maintenance

As discussed in the previous sections, in structured P2P overlays, each node main-
tains a routing table to find other peers in the network. Routing table sizes depend
heavily on the overlay geometry. In Multi-hop overlays (that is a lookup takes mul-
tiple overlay hops from source to destination) generally use smaller routing tables
than one-hop overlays. In one-hop overlays, ideally every node is aware of every
other node, hence routing tables need to include references to every other node in
the system. This requirement results in large routing tables and poses an additional
problem in maintaining the routing tables. Hence, the improved latency behaviour
of one-hop overlays comes at a cost of increased maintenance traffic.

Routing table entries need updating if new nodes join or existing nodes leave the
network. Usually a join and a graceful leave are propagated through the network by
a defined algorithm. However, ungraceful leave events are harder to detect. Gener-
ally, two main approaches have been defined for keeping routing tables up-to-date:
opportunistic maintenance and active maintenance.

With opportunistic maintenance, an overlay uses lookup messages and responses
to distribute routing table entries. For example, a node will attach entries from its
routing table to a response message. The receiver of this response can then augment
its routing table with these nodes. This is efficient in terms of number of dedicated
maintenance messages required, however, the accuracy of the routing tables is de-
pendent on the number of lookup messages sent. During periods of high churn there
is an increased demand for routing table updates. During such periods, opportunistic
maintenance may not be sufficient on its own and hence nodes may insert additional
lookup messages to receive more routing table updates. As an example, EpiChord
[9] discussed in Section 5.3 employs opportunistic routing table maintenance.

With active maintenance, there is a specific algorithm and dedicated messages
to propagate routing table entries between nodes. Typically these messages are dis-
tributed when a node-join or node-leave event is detected. Usually, neighbouring
nodes pick up these events and then distribute these events to all the other nodes
in the overlay. Alternatively, update requests are sent after a time interval has ex-
pired. Clearly, active maintenance requires a higher bandwidth for distributing node
join/leave events, but achieves better routing table accuracy than with opportunistic
maintenance schemes. D1HT [46] as discussed in Section 5.4 uses active routing
table maintenance.

230 Krishna Dhara et al.

2.5 Bootstrapping

Bootstrapping is a key operation in structured peer-to-peer overlay network. Boot-
strapping operation is executed when a peer joins the P2P system for the first time. It
enables the initial discovery of other nodes/peers participating in the P2P network.
Nascent peers perform such an operation to join the P2P network. Bootstrapping
include the period from peer arrival to the point when the nascent peer becomes a
functioning peer of P2P overlay.

One common approach for bootstrapping is through a bootstrapping server. The
bootstrapping server maintains a list of participating peers. When contacted by a
nascent peer the bootstrapping server returns a partial list of existing peers. The
nascent peer connects to the peers in the returned list to join the P2P network. The
address of the bootstrap server is usually obtained out-of-band.

Another common approach for bootstrapping is to let nascent peers know in ad-
vance an entry point into the network. The entry point can be a list of known peers
of a P2P overlay, or a list of non-public bootstrapping servers.

Once a nascent peer gets in touch with some existing peers in the network, it
starts the joining process. Different P2P networks employ different strategies, and
typically, the joining process is closely related to P2P overlay’s routing strategy. The
bootstrap server can look at the requesting node’s hashed identity and can return the
list of existing peers so that the joining process could be optimized. The key issue
in designing a good bootstrapping strategy is how to support peers to connect into
the network quickly.

3 Logarithmic Degree Overlays

In this section as well as Sections 4 (Constant Degree Overlays) and 5 (O(1)-hop
overlays), we use the key mechanisms described in the previous section to describe
various structured overlays. That is, for each overlay we describe its address space
along with its geometry, its routing table and lookup algorithm, and its join and
leave mechanisms. In terms of bootstrapping, not all overlays specify a particular
approach, however, it appears that all overlays require that a new node knows about
at least one peer in the overlay. Common approaches to find an overlay node are IP
multicast, using a well-known bootstrap node or using the DNS. Here the overlay
service is associated with a DNS domain name. IP addresses of one or more overlay
bootstrap nodes are retrieved using the DNS lookup service.

3.1 Chord

Chord [8], developed by a group of researchers at MIT, is one of the first P2P overlay
system based on distributed hashing table (DHT).

Overview of Structured Peer-to-Peer Overlay Algorithms 231

Address space: Chord uses the so-called consistent hashing to assign each node and
each key an m-bit identifier (Id), where m is a pre-defined system parameter. Ids fall
into the range from 0 to 2m− 1. Nodes are ordered on an identifier circle modulo
2m, as shown in Fig. 2. A key is cached at its successor node, defined to be the
next node in the identifier circle in the clockwise direction. The predecessor node
to a node or key is the next node in the identifier circle in the counter-clockwise
direction.

Routing table and key lookup: The routing table of Chord nodes consists of two
parts. The first part includes a finger table with m entries, and the predecessor of this
node. Assume the node Id is n. The i-th entry in the finger table, where , points to
the node whose Id is the closest to n+2i−1 in the clock wise direction at identifier
circle. Notice that the first entry in the finger table is the successor node of the
current node. Predecessor node plus the finger table guarantees the correctness of
key lookup service, as described below.

The second part of the routing table is a successor list of size r. In addition
to the immediate successor node maintained in the finger table, other closest (r−
1) success nodes are also recorded. The successor list improves the robustness of
Chord protocol, and allow Chord to perform correctly in the face of peer churn, i.e.,
dynamic peer arrivals and departures.

A key lookup request is routed along the identifier. Upon receiving a lookup
request, the node first checks if the lookup key Id falls between this node’s Id and
its successor’s Id. If it does then it, returns the successor node as the destination
node and terminates the lookup service. On the other hand, if the lookup key Id
does not belong to the current node, the node relays the lookup request to the node
in its finger table with Id closest to, but preceding, the lookup key Id. The relaying
process proceeds recursively (or iteratively) until the destination node is found. A
key lookup example is depicted in Fig. 2. In the figure, the left-hand side shows the
finger table of Node 8 (N8). Node 16 (N16) appears in four entries in the finger table,
while Node 32 (N32) and Node 43 (N43) are also in the finger table. The right-hand
side figure depicts the stages for the lookup of key 53 starting from Node 8. It has
been shown that the number of routing steps is at the order of O(logN), where N is
the total number of Chord nodes. Refer to [8] for more detailed treatment on Chord
routing algorithm.

Node join and leave: The newly arrived node in Chord first uses consistent hashing
to generate its Id. It then contacts the bootstrapping node, the node already in the
Chord, to lookup the successor of its Id. This successor node becomes new node’s
successor node. The new node uses the stabilization protocol, which is described
below, to have a fully correct routing table.

Stabilization protocol is designed to maintain routing tables’ correctness in the
face of peer churns. It is executed periodically at the background of individual nodes.
The stabilization protocol includes following two major functions:

Stabilize(): allows nodes to learn about newly joined nodes and to update their
successor(s) and predecessor.

Fix fingers(): ensures finger tables are current and correct.

232 Krishna Dhara et al.

N2

N8

N16

N23

N32

N43

N48

N56

N52

K53

N2

N8

N16

N23

N32

N43

N48

N56

N52

+1
+2
+4

+8

+16
+32

N8+1 N16
N8+2 N16
N8+4 N16
N8+8 N16
N8+16 N16
N8+32 N16

FINGER TABLE

Fig. 2 Example scenario for key lookup in Chord

Node failure/departure creates another challenge to the Chord protocol. The de-
parture of a node leaves its predecessor node’s successor pointer invalid, which
could affect the routing correctness. To address this issue, Chord maintains a suc-
cessor list of size r. The successor list can be stabilized using slightly changed stabi-
lization protocol. It’s proven that with size r = S(logN), where N is the total number
of nodes in Chord, the lookup can still succeed with high probability even if every
node fails with probability of 1/2. A study of Chord’s behavior under churn can be
found in [12].

3.2 Pastry

Pastry [13–17] is developed by researches from Microsoft Labs Research, Rice Uni-
versity, Purdue University, and University of Washington. There are several appli-
cations built on Pastry for different purposes, such as SCRIBE [18–21] for group
communication/event notification, PAST [22, 23] for archival storage, SQUIRREL
[24] for co-operative web caching, SplitStream [25, 26] for high-bandwidth con-
tent distribution, POST [27] for co-operative messaging, and Scrivener [28] for fair
sharing of resources. Two implementations of Pastry are available for download:
FreePastry [29] from Rice University and SimPastry and VisPastry [30] from Mi-
crosoft Research.

Address space: Each Pastry node has a unique, 128-bit nodeId. Node IDs are chosen
randomly and uniformly. One way of generating nodeIds is by hashing nodes’ IP
addresses.

Routing table and key lookup: Pastry uses prefix matching to route messages. Each
Pastry node keeps a routing table with �logb

2 N� rows and 2b−1 columns. The entries

Overview of Structured Peer-to-Peer Overlay Algorithms 233

in row n share the first n digits with the present node. In addition to the routing table,
each node also maintains a leaf set that contains the IP addresses of nodes with l/2
numerically closest larger nodeIds, and 1/2 nodes with numerically closest smaller
nodeIds, relative to the present node’s nodeId.

Given a message with its key, the node first checks its leaf set. If there is a node
whose nodeId is closest to the key, the message is forwarded directly to the node.
If the key is not covered by the leaf set, then the node checks the routing table and
the message is forwarded to a node that shares a common prefix with the key by
at least one more digit. This way, with �log2bN� steps, the message can reach its
destination node.

Figure 3 shows an example lookup scenario. The left-hand side table shows the
routing table and the right-hand diagram shows the route. The node 859fdc looks
up a key d57b2d. From its routing table, it gets d13a14, which shares one digit
common prefix with the key. d13a14 then checks its routing table and get d52acd,
which shares two digit common prefix with the key. This step keeps on until the key
is covered by the node d57b0c.

859fdc

R oute
(d57b2d)

d13a14

d52acd

d57231
d57b0c

d57b3f

d57b2d

2128-10
x

1
x

2
x

3
x

4
x

5
x

6
x

7
x

8
x

9
x

a
x

b
x

c
x

d
x

e
x

f
x

8
0
x

8
1
x

8
2
x

8
3
x

8
4
x

8
5
x

8
6
x

8
7
x

8
8
x

8
9
x

8
a
x

8
b
x

8
c
x

8
d
x

8
e
x

8
f
x

8
5
0
x

8
5
1
x

8
5
2
x

8
5
3
x

8
5
4
x

8
5
5
x

8
5
6
x

8
5
7
x

8
5
8
x

8
5
9
x

8
5
a
x

8
5
b
x

8
5
c
x

8
5
d
x

8
5
e
x

8
5
f
x

8
5
9
0
x

8
5
9
1
x

8
5
9
2
x

8
5
9
3
x

8
5
9
4
x

8
5
9
5
x

8
5
9
6
x

8
5
9
7
x

8
5
9
8
x

8
5
9
9
x

8
5
9
a
x

8
5
9
b
x

8
5
9
c
x

8
5
9
d
x

8
5
9
e
x

8
5
9
f
x

Fig. 3 Example lookup scenario in Pastry

Node join and leave: In order to join a Pastry network, a new node must know an
existing node. The new node can initialize its state by contacting the existing node
by sending a join message with its nodeId as the key. The message is routed to an-
other existing node with nodeId numerically closest to new node’s nodeId. Then all
nodes encountered on the routing path send their state tables to X . The new node X
then initializes its own state tables based on the new information. Finally, the new
node informs any nodes that need to be aware of its arrival. Routing table mainte-
nance is handled by periodically exchanging keep-alive messages among neighbor
nodes. Upon detecting node failure, all members of the failed node’s leaf set are
then notified and they update their leaf sets.

234 Krishna Dhara et al.

3.3 Kademlia

The basic principle of Kademlia [10] is to successively find nodes that are half the
distance to the target node. Kademlia differs from Pasty and other such overlays in
mainly two different aspects. One difference is a new notion of node closeness based
on XOR of the node identities. The other difference is Kademlia nodes contain lists
of entries, referred to as buckets, which are used to send parallel requests.

Address Space: Kademlia system assigns 160-bit node IDs. The lookup algorithm
uses a XOR-based closeness to reduce the lookup space. The intuition behind the
XOR based closeness is that node IDs that are different at higher order bits matter
more than node IDs that are different in lower order bits and hence, the XOR dis-
tance would be higher. Using this XOR metric, Kademlia’s topology orders nodes
as a tree where subtree nodes are closer together than other subtrees.

Routing table and key lookup: Routing tables contain separate lists for each bit in
the node ID. Hence if a network uses 128 bits for node IDs each node will have
128 lists (called buckets in Kademlia). Each list corresponds to a particular distance
to nodes. Distance is measured in matching bits in the node IDs. Nodes in the nth
list have a differing nth bit from the current node’s ID whereas the first n− 1 bits
match those of the current node’s ID. To define distance between nodes, Kademlia
uses XOR metrics. Here the result of the XOR operation applied to two node IDs
(returning 0 for identical bits and 1 for differing bits) is the distance between two
nodes. Like Chord, Kademlia nodes know about more nodes near to them and fewer
nodes further away.

Fig. 4 Kademlia routing table data source

Figure 4 shows a routing table for a node with ID 000..00. Note that there are
k-buckets, each of which covers an address space based on the XOR metric of node
IDs. Each of these buckets is a list that may contain multiple contacts for a given

Overview of Structured Peer-to-Peer Overlay Algorithms 235

subtree. Maintenance of these buckets is straightforward though highly unbalanced
trees are handled separately. Maintenance of the nodes in the lists could be depen-
dent on the applications.

A Kademlia lookup node first finds the k-closest nodes to the given node ID.
Kademlia recursively picks a subset, l, of these k-closest nodes and sends a request
to all the l nodes. In the next recursive step, the Kademlia lookup node again picks
a subset of nodes from the nodes it learned about from the previous request. Intu-
itively, each of these recursive reduces the XOR metric distance by 1/2 and results
in the smaller size k-buckets. The concurrent lookup provides a trade off between
bandwidth and lookup latency.

Node join and leave: Node joins mirror node lookups. That is, a node, u, that wishes
to join adds a previously known contact, w, to its bucket and performs a node lookup.
It fills up its routing table based on the responses and inserts itself into the k-buckets
of the other nodes in the system. There is no specific mechanism for node departures
as other nodes may discover through the PING mechanism.

3.4 Tapestry

Tapestry [31] was developed by a team of researchers from University of California,
Berkeley, and MIT. Tapestry has close links with Pastry in that both offer a prefix-
based routing of messages. Tapestry aims at providing high-performance, scalable
and location-independent routing of messages to near-by endpoints. Tapestry ex-
ploits locality when routing messages, including object replicas. Especially, Tapestry
allows applications to place object replicas according to the application’s need.
Bayeux [32] as a Application Lay Multicast approach has been implemented on
Tapestry. Chimera [33] is a more recent and updated Java-based implementation
which uses Tapestry concepts.

Address Space: Tapestry nodes are assigned node IDs uniformly at random from a
large identifier space. Typically a 160 bit values are used together with a globally
defined radix. Usually the radix is defined as hexadecimal resulting in 40-digit iden-
tifiers. The SHA-1 hashing algorithm may be used to create node IDs. Data items
(or Application specific endpoints) are assigned unique identifiers from the same ID
space.

Routing table and key lookup: Each node maintains a routing table whose entries
consists of node IDs and the corresponding IP addresses. All nodes represented in a
routing table are called ‘neighbours’ of that node. Routing corresponds to forward-
ing messages across neighbour links to nodes which are closer, i.e. matching more
digits of the prefix, to the key of the endpoint. An example routing table is shown in
Fig. 1. This routing table belongs to node 3176 in an overlay which uses 4-digit oc-
tal IDs. Each routing tables has a number of levels corresponding to the number of
digits used in the IDs. For the example shown in Fig. 5 this corresponds to 4 levels.

236 Krishna Dhara et al.

Each level contains links to nodes matching a prefix up to a digit position in the
ID. Each level contains a number of entries equal to the radix used (in Figs. 5, 8 as
octal). Further, the primary ith entry in the jth level corresponds to the closest node
whose ID begins with the corresponding prefix. Using this ‘closest node’ approach
provides the locality properties of Tapestry.

Fig. 5 Routing table example for Node ID 3176

Each hop in the routing of a message takes the message closer to its destination.
Specifically, the node for the nth hop shares a prefix of at least n digits with the
destination ID. This approach guarantees that any node in the system can be reached
in at most log ·N overlay hops, where N is the size of the namespace and · is the radix
used.

Node Join and Leave: Inserting a new node N starts at the node that is responsible
for the ID of N in the overlay. This surrogate node S determines p, the number
of digits its ID shares with N’s ID. S then sends a multicast message to all nodes
which share the same prefix. These nodes will add N to their routing table and in
turn contact N, so N can add these nodes to its own routing table. N then carries
out an iterative nearest neighbour search starting at level p. N may trim the list to
the closest k nodes. N then requests these p nodes to send their backpointers at that
level. This results in a set of all nodes that point to any of the k nodes at the previous
routing level. Next N decrements p and repeats the process for all remaining levels.

If a node N decides to leave the network, it notifies all nodes in N’s backpointers
about it leaving. With each notification N provides a replacement node from its own
routing table. Any object references stored on N are rooted to their new hosts. Nodes
that left the network ungracefully are detected using periodic beacons. Such leaving
events trigger repair of the overlay and initiate redistribution of object references.

3.5 P-Grid

P-Grid [34–36] uses a virtual binary tree to form an overlay. The virtual tree is used
to distribute the data items to be stored in the overlay to one or more peers. P-grid

Overview of Structured Peer-to-Peer Overlay Algorithms 237

achieves O(log n) performance for search operations where n is the number of data
items in the overlay.

Address Space: P-Grid is similar to Kademlia in that it also uses tree-based routing.
However, in P-Grid the node IDs are disentangled from the key IDs. In fact, there is
no requirement to hash node IDs in P-Grid. Due to the nature of the construction of
key IDs, P-Grid supports substring queries. This is probably one of the most distin-
guishing features of P-Grid when compared with other DHT based overlays. Like
some other DHTs Pastry, Tapestry), P-Grid uses a prefixed based search algorithm.

Routing table and key lookup: Each peer in P-Grid contains a routing table which
contains an entry for every bit in the binary tree. The example shown in Fig. 6 uses a
3-bit binary tree. Hence each routing table has 3 entries. Each entry corresponds to
a bit in the path towards that node and stores at least one peer that is responsible for
the other side of the binary tree at that level. As an example Node 6 is linked to 011
in the binary tree. Hence it has entries for the other side of the tree at the topmost
level, in this case 1 (Node 5), the second level, in this case 00 (Node 4), and the
bottom level of the tree, here 010 (Node 2).

The binary search tree can be constructed for any set of strings. To construct a
tree a sample search string database is used. Firstly, the length of the common prefix
of the strings in the database is calculated. This database is lexicographically sorted,
and the string at the middle position in the sorted database is selected. The prefix
of this string (length is the common prefix + 1) is determined and used to split the
database in two equally sized parts. The prefix is then stored at the root of the tree.
This splitting proceeds until the desired depth of the tree is achieved. The binary
key of a string is then calculated by comparing the string to the tree’s root value.
If the string is smaller than this then 0 is appended to the key and the left subtree
is considered next, and if it is greater then 1 is appended to the key and the right
subtree is considered next. This algorithm is carried out for every level in the tree.

In P-Grid a number of nodes might be responsible for the same part of the tree.
For instance in Fig. 6, Nodes 1 and 6 are responsible for data with the prefix 000,
Nodes 9 and 2 are responsible for data with the prefix 010, Nodes 13, 20, and 5 are
responsible for data with the prefix 101 and Nodes 11 and 15 are responsible for
data with the prefix 110. If a peer receives a query it cannot directly satisfy it will
forward the query to a node closer to the destination. For instance, in Fig. 6, if Node
4 receives a query for 101, it will forward the query to Node 3 as the query starts
with 1. Node 3 will forward the query to Node 5 which is responsible for this data
and will return it to the original requesting node.

Node Join and Leave: P-Grid construction is carried out by local interactions be-
tween peers only. It is assumed that by some mechanism peers will meet and in-
teract. Initially, all peers are responsible for the entire search space, i.e. all keys.
As two peers meet, they divide the search space into two halves, with each node
taking responsibility for one half. This approach is carried out whenever two peers
meet which have responsibility for the same address space. If peers meet, which
are responsible for data items whose keys have a common prefix, they can initiate

238 Krishna Dhara et al.

1 8 6294 3 15112013 5 23

0 1

00 01

000 001 010 011

10 11

100 101 110 111

1 -> 13
01 -> 6
001 -> 4

1 -> 3
01 -> 6
000 -> 1

1 -> 3
01 -> 2
000 -> 1

1 -> 3
00 -> 1
011 -> 6

1 -> 3
00 -> 8
011 -> 6

1 -> 5
00 -> 4
010 -> 2

0 -> 4
11 -> 11
101 -> 5

0 -> 1
11 -> 11
100 -> 3

0 -> 1
11 -> 15
100 -> 3

Store data with
key prefix 000

Store data with
key prefix 001

Store data with
key prefix 010

Store data with
key prefix 011

Store data with
key prefix 100

Store data with
key prefix 101

Store data with
key prefix 110

Store data with
key prefix 111

0 -> 6
11 -> 11
100 -> 3

0 -> 2
10 -> 3
111 -> 23

0 -> 6
10 -> 5
111 -> 23

0 -> 9
10 -> 5
110 -> 11

1 8 6294 3 15112013 5 23

1

1 -> 13
01 -> 6
001 -> 4

1 -> 3
01 -> 6
000 -> 1

1 -> 3
01 -> 2
000 -> 1

1 -> 3
00 -> 1
011 -> 6

1 -> 3
00 -> 8
011 -> 6

1 -> 5
00 -> 4
010 -> 2

0 -> 4
11 -> 11
101 -> 5

0 -> 1
11 -> 11
100 -> 3

0 -> 1
11 -> 15
100 -> 3

Store data with
key prefix 000

Store data with
key prefix 001

Store data with
key prefix 010

Store data with
key prefix 011

Store data with
key prefix 100

Store data with
key prefix 101

Store data with
key prefix 110

Store data with
key prefix 111

0 -> 6
11 -> 11
100 -> 3

0 -> 2
10 -> 3
111 -> 23

0 -> 6
10 -> 5
111 -> 23

0 -> 9
10 -> 5
110 -> 11

Fig. 6 Example P-Grid with a 3-bit binary tree

additional meetings by forwarding each other to peers in their respective routing ta-
bles. If the meeting peers have a different path length the peer with the shorter path
can specialise by extending its path in the opposite direction from the other peer at
that level. This algorithm is uniform and self-stabilising.

4 Constant Degree Overlays

4.1 CAN

CAN, or Content Addressable Network [11], is one of the first DHTs (distributed
hashing table) proposed.

Address Space: CAN utilizes a virtual d-dimensional Cartesian coordinate space
to host both keys and nodes. Keys and nodes are mapped to corresponding points/-
coordinates in this d-dimensional space using a uniform hash function. Hence the
address of a node is its location within the logical coordinate system. As with all
DHT based algorithms, the location of a node is calculated using a hash function.
Then, the entire coordinate space is divided into “zones” where each node owns one
zone. Node that owns the zone is responsible for the keys sitting in the same zone.

Routing table and key lookup: A CAN node’s routing table contains coordinates
and IP addresses of each of its neighbours in the coordinate space. Neighboring
nodes are the nodes whose zones adjoin each other. In a d-dimensional space, two
zones adjoin if their coordinate spans overlap along d−1 dimensions.

The key lookup starts with hashing the search key to a coordinate in d-dimensional
space. A CAN message is then formed carrying the destination coordinates. The
lookup message is forwarded toward the destination zone in a greedy fashion:
the node always forward the message to its neighbor node that is closer to the

Overview of Structured Peer-to-Peer Overlay Algorithms 239

destination. A tie is broken arbitrarily. Figure 7 illustrates such an example in a
2-dimension CAN space.

For a d-dimensional CAN space with n nodes, the average routing path length
is (d/4)(n1/d) hops. The routing table size is 2d. Hence the routing table size is
independent of number of available CAN nodes, and the routing path length grows
in the order of O(n1/d).

Fig. 7 A 2-dimension CAN space with 14 zones. Node 3 initiates a lookup for key (X,Y) using
greedy algorithm

The routing table in CAN is maintained through periodic update messages. As
long as the routing table contains the right neighbors, the lookup service will suc-
ceed. In case a node loses multiple entries in the routing table simultaneously, or the
rebuilding process has not fully recovered the routing table, a node may use state-
less, controlled flooding to locate a node closer to the destination. The closer node
then takes over the lookup and uses greedy forwarding thereafter.

Node join and leave: A newly arrived node knows at least one existing node in
CAN. It randomly generates its coordinate, P, in the virtual space. A JOIN request
with destination P is sent through the known CAN node. Once the destination CAN
node receives the JOIN request, it will split its zone into half and assign one half to
the new node.

The new node builds up its routing table through learning previous owner node’s
routing table. The routing table comprises of the subset of retrieved routing table
plus the occupant node as neighbor. The routing tables of neighboring nodes also
need to be updated. The new and previous occupant nodes send out update messages
to neighboring nodes. In fact, the zone information of a node is periodically sent to
a node’s neighbors, which ensures the correctness of routing table.

When a node leaves the system gracefully, its zone and associated (key, value)
database is handed over to one of it neighbors. The new zone owner merges the
handed over zone with its original zone.

240 Krishna Dhara et al.

In case a node fails or departs unexpectedly, the periodical update message will
discover such departure/failure. The takeover mechanism is automatically trigged
at nodes that discover the failure. The takeover timer is started. When the takeover
timer expires, the node sends a TAKEOVER message with its own zone information
to all of the failed node’s neighbors. The receiving node either cancels its own timer
if the zone volume in the message is smaller than its own zone volume, or it replies
with its own TAKEOVER message. The goal is to have the neighbor node that has
the smallest zone to take over the orphan zone.

4.2 Ulysses

Ulysses [37] can achieve tries to achieve log2 log2 n end-to-end routing latency with
a routing table size of about log(n).

Address space: The structure of Ulysses is based on the butterfly topology [38], but
it improved the static butterfly topology by accommodating the dynamics of peer-
to-peer networks. In addition, it solves the problem of high edge stress of static
butterfly topology by adding shortcut links.

Figure 8 shows a Ulysses network with 2 levels and 11 nodes. In a Ulysses net-
work, a node is identified by a tuple (P, l), where l is the level number and P is a
binary string uniquely identifying the node in the level. P can be mapped to a k-
dimensional row identifier (x0,x1, . . . ,xk−1) in a static butterfly is as follows : The
bits at location i, i+k, i+2k, . . . in P represent xi in (x0,x1, . . . ,xk−1). The length of
P in a Ulysses network with n nodes and k levels is expected to be log2(n/k). But
the length of P for individual nodes changes due to dynamic arrival and departure
of nodes.

Routing table and key lookup: In a Ulysses network with k levels, a query for
the key (a, i) originates at a random node. The query keeps getting forwarded to
next level. In each forwarding step, the forwarded node can match one additional
dimension of the key. After the k steps the query reaches a node (Q, l) such that
a lies within the zone Q in all the k dimensions. If the level l is the same as the
level i of the key that is being searched, then Q must contain a, and the routing is
complete. Otherwise the node (Q, l) forwards the query on its shortcut link to node
(Q, i), which must be responsible for the key (a, i).

Node join and departure: A new node must know an existing node to join a Ulysses
network. It then generates a random key and sends a query for this key through the
existing node. This query will eventually reach the node O(Q, l) responsible for the
key. Node O then splits its zone of responsibility in two and assigns one half to the
new node. The identifiers of node O and the new node will then be Q0 and Q1,
respectively. Both nodes remain in level l. The node O informs the new node N

Overview of Structured Peer-to-Peer Overlay Algorithms 241

Fig. 8 A Ulysses butterfly with 2 levels and 11 nodes

about its original neighbors. When a node with identifier (P, l) leaves the network,
it needs to hand over its keys to another node at the same level.

4.3 Cycloid

Cycloid [39] presents an overlay that combines hypercube routing with overlay rout-
ing that reduces the lookup path by key matching as in Pastry. Cycloid uses Cube-
Connected-Cycles graph as its geometry. The geometry and the routing algorithm
ensure that the lookup time is O(d), where ‘d’ is the network dimension.

Fig. 9 Various linkages of a full 3-dimensional cycloid

Address Space: A cycloid can be viewed as a d-dimensional cube where each ver-
tex is replaced by a cycle of d-nodes, with n = d.2d , where n is the number of

242 Krishna Dhara et al.

nodes in the network. The connectivity of each node is constant and the finger table
size (discussed later) is constant. Each node in a cycloid is represented as a tuple
(k,xd−1,xd−2, . . . ,x0) with k as the cyclic index and xd−1,xd−2, . . . ,x0 as the cubical
index. The cyclical index is an index between 0 to d− 1 and the cubical index is
binary number between 0 and 2d−1.

Figure 9 shows various linkages of a 3-dimensional cycloid. The cube shows
how cycles at different levels are connected. Each cycle connects nodes that have
the same cubical index but with different cyclical index. Finally, nodes with different
indices are connected as a large ring that enables nodes on cycle to reach nodes in
another cycle directly or indirectly.

To minimize the finger table size and maintenance, each node in a ring is
connected only to a primary node with highest cyclical index in its preceding
cycle and succeeding cycle. The predecessor and the successor of a node, say
(k,xd−1,xd−2, . . . ,x0), in such a ring are chosen such that the most significant differ-
ent bit (MSDB) with the current node is no larger than k− 1. The predecessor and
successor are chosen such that they are the first such largest and first such smallest
nodes. Note that this arrangement of nodes with different cubic indices as a ring
gives cycloid a lookup ability to select a cubical index that is closest to its destina-
tion from different cycles. Within each cycle, a node is connected to its predecessor
and successor nodes. Hence the finger table of a node has seven entries and has the
following entries.

Node ID (k, xd−1, xd−2, . . . , x0)

1 Cubical Neighbor – (k−1, xd−1, xd−2, . . . , xk , x, x, x, x)

2 Cyclic Neighbor – node at k−1 with max cyclical index less than xd−1, xd−2, . . . , xk, x, x, x, x

3 Cyclic Neighbor – node at k−1 with min cyclical index greater than xd−1, xd−2, . . . , xk, x, x, x, x

4 Inside leaf set predecessor

5 Inside leaf set successor

6 Outside leaf set predecessor – primary node of preceding cycle

7 Outside leaf set successor – primary node of succeeding cycle

Table 1 Routing table of a cycloid node

Cycloid key assignment consists of generating a pair of cyclic and cubic indices.
For a give key, the cyclic index is its hashed value modulated by d and the cubic
index is the hash value divided by d.

Routing table and key lookup: The routing algorithm of a cycloid DHT consists of
three steps. The first step uses the outside ring or the outside leaf sets of the finger
table to find out the closest cubical neighbour or the closest cyclical neighbour.
Then the inside leaf sets are used to find appropriate node. The following steps are

Overview of Structured Peer-to-Peer Overlay Algorithms 243

performed by a source node (k,xd−1,xd−2, . . . ,x0) to route to a destination node
(l,yd−1,yd−2, . . .y0). MSDB represents the most significant different bit between
the source and the destination nodes.

1. Ascending: If k <MSDB then it forwards request to a node in the outside leaf set
until k >=MSDB. This step helps in either finding the closest cubical neighbour
or closest cyclical neighbour.

2. Descending: If k =MSDB, then request is forwarded to the inside cubical neigh-
bour else if k >MSDB then the request is forwarded to the closest cyclical neigh-
bour.

3. Traverse Cycle: If the target ID is within the inner leaf set, then inside leaf set
entries from the finger table are used for lookup.

Node Join and Leave: A joining node X will route the joining message through a
bootstrapping node to a node Y whose ID is numerically closest to X . The finger
table of X forms its leaf sets based on the finger table of Y .

1. If X and Y are in the same inside leaf set then the outer leaf set values of X are
the same as Y . The inside leaf set values of X and Y are modified according to
the position of X with respect to Y and others in the inner leaf set.

2. If X is the first in its cycle, then it has to form the links to the outside leaf sets.
If Y ’s cycle is the succeeding remote cycle of X , then Y ’s left outside leaf node
and primary node are the left and right nodes in X’s outside leaf set. Otherwise
the right outside leaf and the primary node are used. Since X is the only node in
its cycle, its inside leaf sets point to itself.

Once a node joins, it propagates the join information to its entries which up-
date themselves. Inner leaf sets update themselves while the outer leaf sets update
themselves and propagate the join to their inner leaf sets.

When a node is leaving, it notifies inside leaf set nodes. If it is a primary node
then the leaving node has to update its outside leaf sets. Upon receiving such mes-
sage, the outside leaf set nodes update themselves and transfer the leave notification
to its inside leaf set. The cycloid DHT leaves the updating of cubical and cycli-
cal neighbours of leaving nodes and of failed nodes as the responsibility of system
stabilization.

5 O(1)-Hop Overlays

5.1 Kelips

Kelips [40] is based on a DHT overlay that uses increased memory and increased
background overhead for efficient O(1) lookup. Kelips overlay is simple and dif
fers from other structured P2P overlays in mainly two ways. One difference is that
it is loosely structured and the other is that the loose structure does not preserve

244 Krishna Dhara et al.

any invariant. However, Kelips uses increased memory and sophisticated broadcast
mechanism to achieve a reliable O(1) lookup. Hence, though Kelips lookup, join,
and leave mechanisms are quite simple they rely on sophisticated broadcast mecha-
nisms among its members.

Address Space: Kelips consists of k virtual affinity groups that are formed by hash-
ing a node’s identifier. Each node’s finger table consists of a set of other nodes in its
affinity group, a set of nodes in all the foreign groups, and a set of file tuples that
give details of a file and the id of the node storing the file. Hence the total storage
requirements of Kelips could be of the order n/k + cX(k−1)+F/n, where n is the
number of nodes, k is the number of affinity groups, c is the contact size, and F is
the file size.

There is no geometry to the address space and each node knows about a larger
set of nodes. Kelips relies on a gossip-style epidemic [41, 42] protocol to ensure
that with high probability the finger table information is transmitted to all nodes. To
ensure this, nodes in Kelips overlay use a light weight protocol to transmit limited
information, such as keep alive packets and filetuple information, to nodes in their
affinity group and contacts group. These nodes in turn chose other nodes from their
finger tables to propagate such information. There are studies that show that such a
gossip protocol is quite robust against packet losses and node failures [43, 44].

Routing table and key lookup: A querying node maps a file name to appropriate
affinity group and sends a look up request to the topologically closest node in that
affinity group. The receiving node looks up its table and returns to the querying node
the filetuple with the address of the homenode storing the file. The querying node
then requests the homenode directly for the file.

Nodes that wish to insert a file follow the same procedure. They send the request
to the topologically closest node from the hashed affinity group. The receiving node
randomly picks one node from its affinity group and assigns the file to it and desig-
nates it as the homenode. The homenode then inserts the file, creates a new filetuple
and inserts that information into the gossip stream.

Node Join and Leave: A bootstrapping node allows the joining node to create a
soft finger table and allows it to join the gossip stream. Since there is no structure
or invariant that Kelips has to preserve, join is complete with the node participating
in the gossip stream. Node leaving or failures are updated through out the system
through the gossip mechanism. If other nodes notice the lack of updates from the
failed node, they update their entries accordingly.

5.2 OneHop

OneHop [45] was developed by a team at MIT. Some members were also involved
in the development of Chord and EpiChord. So in many aspects OneHop relates to
these two overlay algorithms.

Overview of Structured Peer-to-Peer Overlay Algorithms 245

Address Space: OneHop nodes are assigned a 128-bit random node ID. These IDs
are ordered in a ring modulo 2128. Identifiers are uniformly distributed as can be
achieved by using hash functions such as SHA-1. Like in Chord, every node has
a predecessor and a successor in the identifier ring. Each node periodically sends
keep-alive messages to its predecessor and successor. Data items are assigned an ID
in the same ID space. The node which should store a data is the successor, i.e. the
first node in the ring clock-wise from the key.

Routing table and key lookup: In OneHop, every node maintains a full routing
table, that is a routing tabe contains references to all other nodes in the network.
This is to allow sending a lookup request from the source node to the destination
node in a single hop. The source node will look up the successor node of the data
key is requires, and send a lookup message to this node. Key to this scheme is
that the routing tables are up-to-date. Hence node leave and join events need to be
propagated to all nodes.

Node Join and Leave: Join and leave events need to be send to local nodes, but
also to all the other nodes in the overlay. Local updates include updates to successor
and predecessor nodes. Every node n runs a stabilisation routine periodically, which
involves sending keep-alive messages to its successor s and predecessor p nodes.
Node s checks if n is indeed its predecessor. If not, it informs n that there is another
node between them. Similarly, p checks if n is its successor, and if not it notifies
n. If either s or p do not respond, n will ping them repeatedly and after a timeout
interval conclude that the node is dead.

A joining node contacts any other node in the overlay and gets its routing table,
similarly to the approach in Chord. With this information the new node can establish
its successor and predecessor and inform them of its existence.

Both join and leave events also need to be forwarded to all the other node in
the system within a certain time. This is achieved by imposing a hierarchy on the
system, forming a tree. This hierarchy is introduced by dividing the 128-bit identi-
fier space into k equal contiguous intervals (slices). All slices will have roughly the
same number of nodes as nodes have uniformly distributed random identifiers. Each
slice has a slice leader which is the successor of the mid-point of the slice identifier
space. New nodes learn about their slice leader from one of its neighbours. Slices
are again divided into equal-sized intervals (units). Each unit has also a unit leader
which is the successor of the mid-point of the unit identifier space. As a node detects
a change in the membership of the overlay it informs its slice leader. The slice leader
aggregates notifications from its members for a certain interval before sending them
out to other slice leaders. The slice leaders again aggregate notification messages for
a certain interval before sending them on to the unit leaders within their slice. Unit
leaders piggy back these update information on keep-alive messages to their succes-
sor and predecessor nodes. Other nodes propagate this information also via keep-
alive messages – if they receive the information from their predecessor they forward
it on to their successor and vice versa, but not beyond unit boundaries preventing
duplicate messages. If a slice leader fails, this will be detected by its successor, and
this node will become the new slice leader.

246 Krishna Dhara et al.

5.3 EpiChord

EpiChord [9] is a variation of Chord that intends to speed up the lookup process.
The speedup is achieved using parallel queries and by allowing nodes to cache more
routing entries than O(logN) entries in original Chord protocol. EpiChord is able
to achieve O(1)-hop lookup performance under lookup-intensive workloads, and
at least O(logN)-hop lookup performance under churn-intensive workloads in the
worst case.

Same as in Chord, the nodes and keys are mapped to m-bit identifiers using
consistent hashing. Nodes are ordered on an identifier circle modulo 2m. A key
is cached at its successor node. The successor node to a node or key is the next
node in the identifier circle in the clockwise direction; while the predecessor node
to a node or key is the next node in the identifier circle in the counter-clockwise
direction.

Routing table and key lookup: To guarantee the routing correctness in the face
of peer churn, each EpiChord node maintains a list of k successor nodes and k
predecessor nodes, respectively. Furthermore, EpiChord divides the address space
into two half circles, with each half circle being further divided into a set of ex-
ponentially smaller slices (see Fig. 10). It is required that at least j/1− q en-
tries are maintained in the routing table for individual slices, where j is pre-
determined number of entries per slice, and q is the probability that a entry is
out-of-date. Since EpiChord node maintains k successor nodes and k predeces-
sor nodes and both should fit in two smallest slices, the number of slices can
be estimated. Further, the parameters j and k satisfy the following relationship,
k = 2 j.

The key lookup process utilizes p parallel queries. For a given key k, the node
selects one node immediately succeeding k and p− 1 nodes preceding k from its
routing table. Upon receiving the search query, if the probed node owns the key, it
responds as the destination node and the searching process finishes. If the probed
node is not the destination node, it returns l best next hops from its routing table.
In addition, the probed node returns its immediate successor if it is a predecessor
of key k, or its immediate predecessor if it is a successor of key k. Both p and l
are configuration parameters. When these replies are received by the original node,
further queries are dispatched if returned nodes are closer to the key k than the nodes
that have already responded. Notice that only original node issues queries and the
lookup proceeds in an iterative fashion.

In EpiChord, each entry in the routing table is associated with a lifetime. Rout-
ing entries are flushed whenever lifetime expires. In addition, the routing entry as-
sociated with a node is purged if the node does not respond to some number of
queries.

EpiChord nodes also monitor the number of entries available at each slice.
Should a slice be found not to have sufficient routing entries, a node makes a

Overview of Structured Peer-to-Peer Overlay Algorithms 247

Fig. 10 Division of address space into exponentially smaller slices with respect to node x

lookup to the midpoint of that slice, and increases routing entries from the lookup
responses.

Node join and leave: A new node knows at least one node already in EpiChord.
It sends queries to this node. Since EpiChord nodes constantly update their routing
tables by observing lookup traffic, other nodes learn about this node eventually.
Besides, the new node obtains a full cache transfer from one of its two immediate
neighbors.

EpiChord employs stabilization strategy to resolve the routing table inconsis-
tency problem when multiple nodes join EpiChord at about the same location, or
nodes leave the system unexpectedly. The stabilization strategy comprise of weak
stabilization protocol and strong stabilization protocol.

Weak stabilization protocol: Weak stabilization protocol maintains weak stable
relationship among nodes, i.e., predecessor(successor(n))=n. To achieve this,
nodes periodically probe their immediate neighbors to check if they are alive.
It is individual node’s responsibility to maintain its successor and predecessor.
When a node with closer Id than a node’s successor or predecessor is discovered,
either through observing lookup traffic, or through active probing neighbors, the
node update its successor or predecessor, correspondingly.

Strong stabilization protocol: for a weak stable EpiChord ring, it is still possible
the ring is loopy. Strong stabilization protocol ensures that the loop will be de-
tected and fixed. The basic idea of loop detection is to let a query traverse the
entire ring. If a loop exists, the traversal allows EpiChord nodes to know nodes

248 Krishna Dhara et al.

whose Ids are closer than its successor or predecessor, thus break the loop by
updating successor/predecessor nodes.

5.4 D1HT

D1HT [46] was first introduced in 2005 by researchers from Federal University of
Rio de Janeiro, Brazil. The design goal of the overlay is to maximize performance
with reasonable maintenance traffic overhead even for huge and dynamic peer-to-
peer (P2P) systems. The philosophy of D1HT design is that the tradeoff between
latency and bandwidth usage should favor latency because speed and information
are critical while network bandwidth improves over time.

Address space: A D1HT system is composed of a set D of n peers and maps items
(or keys) to peers based on consistent hashing, where both peers and keys are hashed
to integer identifiers (IDs) in the same ID space [0..N],N >> n. Typically a key
ID is the cryptographic hash SHA-1 of the key value, a peer ID is based on the
SHA-1 hash of it’s IP address (or the SHA-1 hash of the user name), and N =
2160−1. As in Chord, D1HT uses a ring topology where ID 0 succeeds ID N, and the
successor and predecessor of an ID i are respectively the first living peers clockwise
and counterclockwise from i in the ring.

Routing table and key lookup: Each peer in a D1HT system maintains a routing
table with the IP addresses of all peers in the system, and so any lookup is trivially
solved with just one hop, provided that the local routing table is up to date. As
each peer in a D1HT system should know the IP address of every other peer, any
join/leave events should be acknowledged by all peers in the system in a timely
fashion in order to avoid stale entries in routing tables.

Node join and departure: A new node must know an existing D1HT node to join a
D1HT system. The joining peer hashes its IP address (or some other unique value)
to get its ID p and asks the existing node to issue a lookup for its ID. The query will
return p’s successor. The joining peer then contacts its successor to join the network
and get the information about the keys it will be responsible for. The successor will
also send the IP addresses of a number of peers to the new node. The new node will
then ping those peers and choose the nearest ones to get the routing table. D1HT also
uses a Quarantine mechanism to handle highly dynamic nodes, where a joining peer
will not be granted to immediately take part of the D1HT overlay network, though
it will be allowed to perform lookups at any moment. When a node leaves, instead
of sending the leaving event to all the other peers, D1HT uses the EDRA (Event
Detection and Reporting Algorithm) algorithm to propagate the event. The details
of EDRA algorithm can be found at [46]. A study [47] found some shortcomings
with the EDRA algorithm and termed the updated version EDRA*.

Overview of Structured Peer-to-Peer Overlay Algorithms 249

6 Comparison and Analysis

In this section we compare and contrast different structured P2P overlay tech-
nologies from the geometries used, the routing algorithms, routing performance,
join/leave efficiency, routing table maintenance, and bootstrapping strategy. The re-
sults are summarized in the Tables below.

Table 2 Summary of Chord, Pastry and Kademlia overlays

Chord Pastry Kademlia

Geometry Circular Node-ID
space, logarithmic
degree mesh

Plaxton-style mesh
network, prefix
routing

XOR metric for
distance between
points in the key space

Routing
algorithm

Search query
forwarded to “closer”
node

Matching Key and
prefix of Node-ID

(XOR) Matching Key
and Node-ID based
routing done parallely

Routing
performance

O(logN), where N is
the number of peers

O(logBN), where N is
number of peers, and
B = 2b, b is number
of bits of NodeID

O(logBN)+ c, Where
N is number of peers,
B = 2b,b is number of
bits of Node-ID, and c
is a small constant

Join/leave
performance

(logN)2 logB N logB N + c

Routing
table
maintenance

Periodic stabilization
protocol at nodes to
learn about newly
joined nodes, update
successor and
predecessor, and fix
finger tables

Neighboring nodes
periodically exchange
keep-alive messages.
The leaf sets of nodes
with adjacent Node-Id
overlap

Failure of peers will
not cause
network-wide failure.
Replicate data across
multiple peers

Bootstrapping A new node knows an
existing Chord node

A new node knows a
nearby Pastry node

A new node knows an
existing Kademlia
node

250 Krishna Dhara et al.

Table 3 Summary of Tapestry, P-Grid and CAN overlays

Tapestry P-Grid CAN

Geometry Uniformly at random
from a large identifier
space (typically
160bit with a globally
defined radix)

Binary tree d-dimensional
Cartesian coordinate
space

Routing
algorithm

Matching Key and
prefix in Node-ID

Binary tree search and
prefix matching

Forward the search
message to neighbour
node closer to the
destination

Routing
performance

logβ N, where N is the
size of the identifier
space, and β is the
radix used

O(logN), where N is
number of data items
in the overlay)

(d/4)(N1/d), N is
number of nodes, and
d is dimension

Join/Leave
performance

O(logN) 2d

Routing table
maintenance

Through periodic
update messages.
Controlled flooding is
used in case a node
loses multiple entries
simultaneously

Bootstrapping A new node knows a
nearby Tapestry node

Know at least one
node

Know at least one
node. May get this
node through DNS

Overview of Structured Peer-to-Peer Overlay Algorithms 251

Table 4 Summary of Ulysses, Cycloid and Kelips overlays

Ulysses Cycloid Kelips

Geometry Butterfly topology
with shortcut links

Cube-Connected-
Cycles
graph

No geometry to the
address space, each
node knows about
other nodes

Routing
algorithm

For a Ulysses network
with k levels and n
nodes. to search a key
a, in each step, the
query gets locked in
one additional
dimension, after the
first k steps the query
reaches a node (Q, l)
such that a lies within
the zone Q in all the k
dimensions

Uses the outside leaf
sets of the finger table
to find closest cubical
neighbour or the
closest cyclical
neighbour. Inside leaf
sets are used to find
appropriate node.
Routing table includes
nodes in the affinity
group, nodes in all the
foreign groups, and
filetuples

Querying node maps
file name to affinity
group and sends
lookup request to
topologically closest
node in affinity group

Routing
performance

log2 log2n O(d), where d is net-
work dimension, n is
number of nodes, n =
d.2d

O(1)

Join/Leave
performance

Find corresponding
node with a randomly
generated key, then
split the zone.
log2log2n

O(d) No structure or invari-
ant. Join is complete
with node participat-
ing in gossip stream.
Node leaving are up-
dated through the gos-
sip system

Routing
table
maintenance

Leaving nodes notify
nodes inside leaf set.
If primary node then
need also update
outside leaf sets.
Stabilization process
detects failed nodes

Kelips routing tables
are maintained
through a low
bandwidth gossip
style mechanism

Bootstrapping A joining node needs
to know an existing
node in Ulysses
network

No specific
bootstrapping
mechanism discussed

Bootstrapping node
allowing joining node
to join gossip stream

252 Krishna Dhara et al.

Table 5 Summary of OneHop, EpiChord and D1HT overlays

OneHop EpiChord D1HT

Geometry 128-bit random node
ID ordered in a ring
modulo 2128.

Circular node ID
space, logarithmic
degree mesh

Hashing keys and
peers into an ID space
[0,N], N >> n

Routing
algorithm

Every node maintains
a full routing table

Use multiple parallel
queries to locate node
that owns the key

Every node maintains
a full routing table

Routing
performance

O(1) O(1) under lookup
intensive workloads,
and O(logN) in the
worst case

O(1)

Join/Leave
performance

�log2n�, where n is
number of nodes

Routing
table
maintenance

Nodes run
stabilisation routine
sending keep-alive
messages to successor
and predecessor

Routing entries are
flushed whenever
lifetime expires, or
the corresponding
node does not respond
to queries. If slice
entries are
insufficient, lookup to
midpoint of slice, add
routing entries from
the lookup response

Propagate join/leave
messages with TTL
values. Use a
Quarantine
mechanism to handle
highly dynamic nodes

Bootstrapping A new node knows an
existing OneHop node

Knows at least one
existing node

The new node must
know an existing
D1HT peer already in
the system

Overview of Structured Peer-to-Peer Overlay Algorithms 253

7 Conclusions

7.1 Open Research Issues

We see the future research of structured P2P overlays focussing on the following
three aspects, namely algorithms, frameworks, and applications.

1. Algorithms: As discussed in this chapter, many structured P2P algorithms ex-
ist. Each of these structured overlays carries its own advantages and disadvan-
tages. The following are key issues that needs to be properly addressed for
successful structured P2P algorithms:

a. Scalability and performance: In general, the structured P2P overlays can help
overcome the scalability and performance problems faced by unstructured
ones. However, for some real-time applications there are additional perfor-
mance requirements that need to be addressed, such as Voice over IP (VoIP)
and IPTV. Therefore, how to ensure guaranteed performance required by cer-
tain applications while keeping the overall system scalable and balanced is an
important issue for structured P2P algorithms.

b. Security, privacy, trust and reputation: Trust and reputation are important to
support secured and trustworthy P2P overlay communications among peers.
There are many research topics in this area for P2P overlays such as anonymity,
denial-of-service attacks, malicious node behavior, reputation and incentives.

c. Convergence of Peer-to-Peer systems and other established field of distributed
computing such as Grid computing.

2. Frameworks: Algorithms theoretically define P2P overlays. In practice, there
are many practical issues to be dealt with:

a. Protocols and interoperability: Peers need to talk to each other. In some sce-
narios, peers belonging to different P2P overlays may also need to talk to
each other. This requires well-defined protocols/interface, and careful study
of interoperability among P2P nodes.

b. Heterogeneity: In reality, many aspects can affect the performance of P2P
overlays, such as network availability/bandwidth, latency, peers’ computa-
tional power and storage space, etc. Therefore, supporting heterogeneity is
an important issue from a practical point of view.

c. Handle general Internet services: general Internet services, such as spam han-
dling and directory services, are also important to P2P overlays.

3. Applications: Many overlay algorithms and frameworks are developed are with
the intention to build novel and useful applications. P2P applications can be in
many fields. We just name a few below.

a. Content sharing/distribution: this category of P2P applications may be the
most popularly one so far. There is still plenty of ongoing research work in
this area, such as providing better performance, good scalability, fairness, or
strong security.

254 Krishna Dhara et al.

b. Enterprise applications: P2P applications in enterprise environment typically
need to meet more stringent security and performance requirement. It also
faces other issues such deployment easiness and monitoring capability.

c. Communication: For P2P communication applications, the real time con-
straint (both signaling and media transmission) requires special consideration
in P2P algorithm and framework design. In addition, issues such as lawful
interception, enabling communication features, and interop with the existing
communication networks also demand special attention.

d. P2P applications in mobile and ad-hoc wireless networks: application of P2P
overlay approaches would allow mobile peers to have optimized flow control,
load balancing mechanism, and proximity awareness.

e. The semantic grouping of information in peer-to-peer networks: This direc-
tion shares many commonalities with efforts in the semantic Web domain.

7.2 Summary

Existing products and research projects demonstrate that structured P2P network is
an important technology of practical value. It helps overcome the scalability and
performance problems faced by many unstructured P2P technologies. This chapter
provides an overview of several representative structured P2P overlays, and analyzes
and examines key aspects that affect a P2P overlay’s performance.

We believe that structured P2P overlay remains to be a viable solution to many
problems in distributed computing. There are still many open research questions in
this field, such as new algorithms, practical frameworks, and novel applications.

References

1. S. Androutsellis-Theotokis, D. Spinellis. A Survey of Content Distribution Technolgies. ACM
Computing Surveys, Vol. 36, No. 4, December 2004.

2. E. K. Lua, J. Crowcroft, M. Pias, R. Sharma, S. Lim. A Survey and Comparison of Peer-
to-Peer Overlay Network Schemes. IEEE Communications Surveys and Tutorials, Second
Quarter 2005, Volume 7, No. 2.

3. J. Risson, T. Moors. Survey of research towards robust peer-to-peer networks: search methods.
Computer Networks 50, 17 (Dec. 2006), 3485–3521.

4. S. El-Ansary, S. Haridi. An Overview of Structured P2P Overlay Networks. Handbook on
Theoretical and Algorithmic Aspects of Sensor, Ad Hoc Wireless, and Peer-to-Peer Networks
(ed. J. Wu). Auerbach Publications, 2006, pp. 665–683.

5. A. Gupta, B. Liskov, R. Rodrigues. Efficient routing for peer-to-peer overlays. Proceedings of
the 1st Symposium on Networked Systems Design and Implementation (NSDI 2004), 2004,
pp. 113–116.

6. J. Buford, A. Brown, M. Kolberg. Exploiting Parallelism in the Design of Peer-to-Peer Over-
lays. Journal of Computer Communications, Special Issue on Foundations of Peer-to-Peer
Computing. 2008.

Overview of Structured Peer-to-Peer Overlay Algorithms 255

7. M. Kolberg, F. Kolberg, A. Brown, J. Buford. A Markov Model for the EpiChord Peer-to-Peer
Overlay in an XCAST enabled Network. IEEE International Conference on Communications
(ICC) 2007.

8. I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek, F. Dabek, H. Balakr-
ishnan. Chord: a scalable peer-to-peer lookup protocol for internet applications. IEEE/ACM
Trans. Netw. 11, 1 (Feb.2003), 17–32.

9. B. Leong, B. Liskov, E. D. Demaine. EpiChord: Parallelizing the Chord Lookup Algorithm
with Reactive Routing State Management. Computer Communications, Elsevier Science, Vol.
29, pp. 1243–1259.

10. P. Maymounkov, D. Mazieres. Kademlia: A peer-to-peer information system based on the
XOR metric. In Proc of IPTPS02, Cambridge, USA, March 2002.

11. R. Sylvia, F. Paul, H. Mark, K. Richard, S. Scott. A scalable content-addressable network,
Proceedings of the 2001 conference on Applications, technologies, architectures, and proto-
cols for computer communications, p.161–172, August 2001, San Diego, California, United
States.

12. S. Krishnamurthy, S. El-Ansary, E. Aurell, S. Haridi. A statistical theory of Chord under churn.
In: The 4th International Workshop on Peer-to-Peer Systems (IPTPS’05).

13. A. I. T. Rowstron, P. Druschel. Pastry: Scalable, Decentralized Object Location, and Routing
for Large-Scale Peer-to-Peer Systems, Proceedings of the IFIP/ACM International Conference
on Distributed Systems Platforms Heidelberg, p.329–350, November 12–16, 2001.

14. M. Castro, P. Druschel, Y. C. Hu, A. Rowstron. Exploiting network proximity in peer-to-peer
overlay networks. In International Workshop on Future Directions in Distributed Computing
(FuDiCo), June 2002.

15. M. Castro, P. Druschel, Y. C. Hu, A. Rowstron. “Proximity neighbor selection in tree-based
structured peer-to-peer overlays”, Technical report MSR-TR-2003-52, 2003.

16. R. Mahajan, M. Castro, A. Rowstron. “Controlling the Cost of Reliability in Peer-to-peer
Overlays”, IPTPS’03, Berkeley, CA, February 2003.

17. M. Castro, P. Druschel, A-M. Kermarrec, A. Rowstron, “One ring to rule them all: Service
discovery and binding in structured peer-to-peer overlay networks”, SIGOPS European Work-
shop, France, September, 2002.

18. M. Castro, P. Druschel, A-M. Kermarrec, A. Rowstron. “SCRIBE: A large-scale and decen-
tralised application-level multicast infrastructure”, IEEE Journal on Selected Areas in Com-
munication (JSAC), Vol. 20, No, 8, October 2002.

19. M. Castro, M. B. Jones, A-M. Kermarrec, A. Rowstron, M. Theimer, H. Wang, A. Wolman.
“An Evaluation of Scalable Application-level Multicast Built Using Peer-to-peer overlays”,
Infocom 2003, San Francisco, CA, April, 2003.

20. M. Castro, P. Druschel, A-M. Kermarrec, A. Rowstron. “Scalable Application-level Anycast
for Highly Dynamic Groups”, NGC 2003, Munich, Germany, September 2003.

21. A. I. Rowstron, A. Kermarrec, M. Castro, P. Druschel. SCRIBE: The Design of a Large-
Scale Event Notification Infrastructure. In Proceedings of the Third international Cost264
Workshop on Networked Group Communication (November 07 – 09, 2001). J. Crowcroft and
M. Hofmann, Eds. Lecture Notes In Computer Science, vol. 2233. Springer-Verlag, London,
30–43.

22. P. Druschel, A. Rowstron. PAST: A large-scale, persistent peer-to-peer storage utility. In Proc.
HotOS VIII, Schloss Elmau, Germany, May 2001.

23. A. Rowstron, P. Druschel. Storage management and caching in PAST, a large-scale, persistent
peer-to-peer storage utility. In Proc. ACM SOSP’01, Banff, Canada, Oct. 2001.

24. S. Iyer, A. Rowstron, P. Druschel. “SQUIRREL: A decentralized, peer-to-peer web cache”,
12th ACM Symposium on Principles of Distributed Computing (PODC 2002), Monterey, Cal-
ifornia, USA, July 2002.

25. M. Castro, P. Druschel, A-M. Kermarrec, A. Nandi, A. Rowstron and A. Singh. “SplitStream:
High-bandwidth multicast in a cooperative environment”, SOSP’03, Lake Bolton, New York,
October, 2003.

256 Krishna Dhara et al.

26. M. Castro, P. Druschel, A-M. Kermarrec, A. Nandi, A. Rowstron, A. Singh. “SplitStream:
High-bandwidth content distribution in a cooperative environment”, IPTPS’03, Berkeley, CA,
February, 2003.

27. A. Mislove, A. Post, C. Reis, P. Willmann, P. Druschel, D. Wallach, X. Bonnaire, P. Sens,
J. Busca. POST: a secure, resilient, cooperative messaging system, Proc. of the 9th conference
on Hot Topics in Operating Systems, pp. 11–11, Hawaii, May 2003.

28. T.-W. J. Ngan, D. S. Wallach, P. Druschel. “Enforcing Fair Sharing of Peer-to-Peer Re-
sources”, IPTPS’03, Berkeley, CA, February, 2003.

29. Rice University, FreePastry, http://freepastry.rice.edu/
30. Microsoft, SimPastry/VisPastry, http://research.microsoft.com/en-us/um/people/antr/pastry/

download.htm
31. B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, J. Kubiatowicz. Tapestry: A

resilient globalscale overlay for service deployment, IEEE Journal on Selected Areas Com-
munications, vol. 22, no. 1, pp. 41–53, Jan. 2004.

32. S. Q. Zhuang, B. Y. Zhao, A. D. Joseph, R. H. Katz, J. Kubiatowicz. Bayeux: An Architecture
for Scalable and Fault-tolerant Wide-Area Data Dissemination, The 11th International Work-
shop on Network and Operating Systems Support for Digital Audio and Video (NOSSDAV),
Port Jefferson, New York, 2001.

33. Chimera, http://current.cs.ucsb.edu/projects/chimera/
34. K. Aberer, M. Hauswirth, M. Punceva, R. Schmidt. Improving Data Access in P2P Systems,

IEEE Internet Computing, 6(1), January/February 2002.
35. K. Aberer, P. Cudré-Mauroux, A. Datta, Z. Despotovic, M. Hauswirth, M. Punceva,

R. Schmidt. P-Grid: A Self-organizing Structured P2P System, SIGMOD Record, 32(2),
September 2003.

36. K. Aberer, A. Datta, M. Hauswirth. P-Grid:Dynamics of self organization processes in struc-
tured P2P systems, Peer-to-Peer Systems and Applications, Lecture Notes in Computer Sci-
ence, LNCS 3845, Springer Verlag, 2005.

37. A. Kumar, S. Merugu, J. Xu, E. W. Zegura, X. Yu. Ulysses: A Robust, Low-Diameter, Low-
Latency Peer-to-peer Network, In European Transactions on Telecommunications (ETT) Spe-
cial Issue on P2P Networking and P2P Services, 2004. Vol. 15, pages 571–587.

38. H.J. Siegel, Interconnection Networks for SIMD machines, Computer 12(6), 1979.
39. H. Shen, C.-Z. Xu, G. Chen. Cycloid: A scalable constant-degree lookup-efficient P2P overlay

network, Journal of Performance Evaluation’s Special Issue on Peer-to-Peer Networks (6/29),
2005.

40. I. Gupta, K. Birman, P. Linga, A. Demers, R. van Renesse. Kelips: building an efficient and
stable P2P DHT through increased memory and background overhead. Proceedings of the 2nd
International Workshop on Peer-to-Peer Systems (IPTPS ’03). 2003.

41. D. Kempe, J. Kleinberg, A. Demers. “Spatial gossip and resource location protocols”, Proc.
33rd ACM Symp. Theory of Computing (STOC), pp. 163–172, 2001.

42. R. van Renesse, Y. Minsky, M. Hayden. “A gossip-style failure detection service”, Proc. IFIP
Middleware, 1998.

43. K.P. Birman, M. Hayden, O. Ozkasap, Z. Xiao,M. Budiu, Y. Minsky. Bimodal Multicast, ACM
Transactions on Computer Systems, 17:2, pp. 41–88, May 1999.

44. A. Demers, D.H. Greene, J. Hauser, W. Irish, J. Larson. “Epidemic algorithms for replicated
database maintenance”, Proc. 6th ACM Symposium Principles of Distributed Computing
(PODC), pp. 1–12, 1987.

45. A. Gupta, B. Liskov, R. Rodrigues. “Efficient routing for peer-to-peer overlays. Proceedings of
the 1st Symposium on Networked Systems Design and Implementation” (NSDI 2004), 2004,
pp. 113–116.

46. L. R. Monnerat, C. L. Amorim. “D1HT: A Distributed One Hop Hash Table. Proc. of the 20th
IEEE Intl Parallel & Distributed Processing Symp.” (IPDPS), April 2006.

47. J. Buford, A. Brown, M. Kolberg. “Analysis of an Active Maintenance Algorithm for an O(1)-
Hop Overlay”, IEEE Globecom 2007.

Distributed Hash Tables: Design
and Applications

C.-F. Michael Chan and S.-H. Gary Chan

Abstract The tremendous growth of the Internet and large-scale applications such
as file sharing and multimedia streaming require the support of efficient search on
objects. Peer-to-peer approaches have been proposed to provide this search mech-
anism scalably. One such approach is the distributed hash table (DHT), a scalable,
efficient, robust and self-organizing routing overlay suitable for Internet-size de-
ployment. In this chapter, we discuss how scalable routing is achieved under node
dynamics in DHTs. We also present several applications which illustrate the power
of DHTs in enabling large-scale peer-to-peer applications. Since wireless networks
are becoming increasingly popular, we also discuss the issues of deploying DHTs
and various solutions in such networks.

1 Introduction

The Internet has grown to an enormous size, with nearly 600 million hosts as of
early 2008 [1]. Coupled with this intense growth in network size is the proliferation
of large-scale applications such as file sharing and multimedia streaming. These ap-
plications require the support of fast search on objects. Since traditional server-client
model is no longer scalable to large group of hosts, peer-to-peer approaches have
been proposed. One of such approaches is the distributed hash table (DHT), a scal-
able, efficient, robust and self-organizing overlay routing infrastructure for millions
of hosts. DHTs have the potential to enable large-scale peer-to-peer applications,
such as distributed file systems and on-demand video streaming. This chapter intro-
duces DHTs and discusses their design issues and applications.

C.-F. Michael Chan
Stanford University, Stanford, CA, USA, e-mail: mcfchan@stanford.edu

S.-H. Gary Chan
Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong,
e-mail: gchan@cse.ust.hk

X. Shen et al. (eds.), Handbook of Peer-to-Peer Networking, 257
DOI 10.1007/978-0-387-09751-0 10, © Springer Science+Business Media, LLC 2010

258 C.-F. Michael Chan and S.-H. Gary Chan

DHT provides a unified platform for managing application data. Due to the spe-
cific nature of application data, traditionally a protocol designed for one type of
application may not work well for other types of applications. DHTs break this bar-
rier by providing a flat identifier-based routing and location framework, and a very
simple API to applications.

DHT maps application data to keys, which are m-bit identifiers drawn from the
identifier space. Nodes participating in the DHT are distinguished by unique identi-
fiers drawn also from the same identifier space. Each node is responsible for a subset
of the space, i.e. stores a subset of keys. Typically, a value is associated with a key,
and is also stored at the node responsible for the key. Depending on the specific
application, the value could be the address of the node storing the data or the data
itself.

A DHT scheme defines how the overlay is structured, how node state is main-
tained and how routing is carried out. Regardless of the details, DHTs provide a
two-method interface for applications:

• insert(k, v): Insert a data item with key-value pair (k,v) into the DHT.
• lookup(k): Retrieve the value v associated with key k. Return null if k is not

found.

In contrast to IP routing, DHT routing is identifier-based. Each node stores about
O(logn) overlay neighbors and employs a deterministic algorithm to route queries
from requestor to the node storing the target key in O(logn) overlay hops. In Sec-
tion 3, we discuss various DHT schemes. In particular, we shall see how the overlay
is structured for efficient and scalable routing. We also outline techniques used to
improve a DHT’s query response time and robustness.

There are many applications making use of DHT. We present several examples
that demonstrate how DHTs enable large-scale peer-to-peer services.

Another interesting DHT topic is its deployment in wireless networks which are
becoming increasingly popular nowadays. Applications are being developed for mo-
bile ad-hoc networks (MANETs), wireless sensor networks (WSNs) and wireless
mesh networks (WMNs). It is desirable to have a DHT-like framework for wireless
networks to support object location. We describe some major challenges in deploy-
ing DHT in wireless networks, and outline some solutions.

This chapter is organized as follows. We present the performance characteris-
tics and design considerations of DHTs in Section 2. We discuss some examples
of DHTs and how DHT is used in large-scale applications in Sections 3 and 5 re-
spectively. In Section 6, we highlight the challenges of applying DHTs in wireless
networks and present some solutions. We conclude in Section 7.

2 Performance Characteristics and Design Considerations

In this section, we describe some common performance characteristics of DHTs,
and discuss some design issues (Section 2.1), followed by design considerations of
DHT (Section 2.2).

Distributed Hash Tables: Design and Applications 259

2.1 Common Performance Characteristics

A DHT usually has the following desirable properties:

1. Efficiency in routing: A DHT overlay is structured so that queries for keys may
be resolved quickly. Typical DHT schemes have a O(logn) bound on the length
of search path (in overlay hops). To reduce routing delay, in recent years, locality-
aware DHTs have been proposed so that routing hops are of short Internet length
by taking advantage of locality information.

2. Scalability: Node storage and maintenance overhead grows only logarithmically
with the number of nodes in DHT. This leads to its high scalability to large num-
ber of users.

3. Self-organization: A DHT protocol is fully distributed. Node joins, departures
and failures are handled automatically without the need of any central coordina-
tion.

4. Incremental deployability: A DHT overlay works for arbitrary number of nodes
and adapts itself as the number of nodes changes. It is functional even with one
node. This is a highly desirable feature as it enables deployment without inter-
rupting normal operations when new nodes join the overlay.

5. Robustness against node dynamics: Queries are resolved with high probability
even under node dynamics. Further optimizations may further increase system
robustness.

2.2 Design Considerations

In designing a DHT to achieve the above desirable properties, several issues need to
be considered:

1. Node dynamics: Peers may join and leave at any rate. Since it is not possible for
a central server to record the status of each peer, a DHT must be able to dynamic
node departure or failure. In other words, the DHT structure must be maintained
to ensure correct and efficient routing in the presence of node dynamics.

2. Overlay path stretch: Compared with IP routing, overlay routing to a certain
node has in general higher latency, since overlapping traversals of some physical
links is inevitable. The path stretch is defined as the ratio of the overlay route’s
latency to the underlying IP route’s latency. In order to avoid large path stretch,
DHT routes need to be optimized for low response time and such optimization
techniques should be scalable to large groups.

3. Hotspots: Application data is generally skewed in terms of access probability.
For instance, in video streaming, some segment of a video may be more popular
than the other. A DHT scheme needs to consider the high lookups for a particular
key (i.e., popular segment) by load balancing request processing among many
nodes. The load balancing algorithm should be scalable.

260 C.-F. Michael Chan and S.-H. Gary Chan

3 DHT Schemes

We describe several DHT schemes in this section. Note that keys and node IDs are
drawn from the same m-bit identifier space and that keys are typically obtained by
hashing meta-data, while node IDs are hashes of IP addresses or public keys. For
a good hashing functions, nodes and keys are uniformly distributed in the overlay.
Consequently, each node stores a similar share of keys. In our discussion below, we
focus on operations including how keys are inserted, stored and looked up, and how
the overlay is constructed and maintained. We assume m-bit identifiers are used, i.e.
the identifier space is [0,2m− 1]. We denote a node with ID i as Ni and a key with
ID j as Kj.1

3.1 Chord

The Chord DHT places nodes and keys in an identifier ring [23]. It is a simple DHT
with great flexibility, which allows optimizations such as load balancing to be read-
ily added as extensions to the basic scheme. We first describe the basic Chord, and
then briefly discuss some simple but important extensions. The basic components
and operations of Chord are as follows:

• Key placement: A key Kj is stored by the node Ni immediately following j in the
identifier ring. In other words, Ni is chosen such that there is no node Ni′ where
j ≤ i′ < i. We also call Ni the successor of j, denoted by successor(j). Note that
key and node IDs may coincide, in which case the key (Ki) is stored at the node
with the same ID (Ni).

• Successor Links: Each node Ni maintains a link to its successor, the node Nj

immediately following it. Such definition of successors for keys is also applica-
ble to nodes. Denote Nj as successor(i). As long as successor links are correct,
a lookup is guaranteed to reach the key’s successor, albeit via a long path going
around the identifier ring one node at a time. A node achieves this by periodically
running the following stabilize() procedure. It asks its successor Ns for Ns’s pre-
decessor Nj. If Nj �= Ni, Ni sets Nj as its successor. This happens if Nj is a newly
joined node. Suppose i < j < s and Ni and Ns are existing nodes in the DHT.
When Nj first joins the overlay, it looks up j and gets Ns’s address. It then sets Ns

as its successor. Finally, Ns transfers keys in (i, j] to Nj. It is shown in [24] that
all successor links always converge correctly for any sequence of node joins and
stabilizations.

• Fingers: A node Ni also maintains a finger table, which contains m entries, where
m is the identifier length. The j-th finger stores the address of successor(i+2 j−1).
An example of finger tables with 6-bit identifiers is shown in Fig. 1. Nodes pe-
riodically run a f ix f ingers() procedure to refresh the finger table entries. The

1 For simplicity, we also use i in place of Ni and j in place of Kj when there is no ambiguity.

Distributed Hash Tables: Design and Applications 261

16+20

16+21

16+22

16+23

N16

N26

N53

N4

16+24

16+25

N0 N1N63

N33

N47

N49

i f [i]

1 N26

2 N26

3 N26

4 N26

5 N33

6 N49

N16’s finger table

Fig. 1 Example of Chord fingers

N0 N1N63

N16

N53

N4

N33

N47

N49

f [6]

f [5]

succ.

lookup(K3)

K3

Fig. 2 Example of Chord routing with fingers. Each search hop is labeled with the finger table
entry used in forwarding the lookup message. succ means the key lies within the segment between
the current node and its successor

table is iterated in a round-robin fashion, where each call to the procedure re-
freshes the next finger. A refresh is achieved by looking up the finger’s successor.

262 C.-F. Michael Chan and S.-H. Gary Chan

• Key lookup: The simple lookup algorithm forwards the request hop by hop us-
ing successor links until the key’s successor is reached. The search path’s length
is O(n) hops. Fingers drastically shorten the lookup path to O(logn) hops. In
general, to look up key k, node i does the following. First, it checks if k is in
(i,successor(i)]. If so, simply forward the request to the successor. Otherwise,
forward the request to the largest finger i + 2 j−1 immediately preceding k. The
same procedure is carried out at each intermediate node. Figure 2 shows an exam-
ple of Chord routing with fingers. Notice that each hop (via a finger) reduces the
distance to the key’s successor by approximately half, thus giving the O(logn)
path length. A more formal proof is given in [23].

The basic Chord is extended for greater robustness and load balancing. Two main
ideas are key replication and employing virtual nodes. For key replication, instead
of storing key k at only successor(k), it is replicated on the r successors of k. This
way, even if j = successor(k) fails, the successor(j) is still available for answering
lookups for k. Setting r = O(logn) allows for robustness against very high degrees
of node dynamics [23]. A node may also run multiple virtual nodes depending on
its processing power and bandwidth. This way, heterogeneous peers may fully con-
tribute their spare and varied resources to enhance the DHT’s quality.

3.2 Pastry

In Pastry, an identifier is made of D digits. For example, a 128-bit identifier is broken
up into 32 4-bit digits. To simplify the exposition, we assume 2bD-bit identifiers,
where b is the number of bits per digit. The components of Pastry are as follows:

• Key placement: A key k is placed at the node whose ID i is numerically closest
to k.

• Leafset: Each node i keeps a list of L neighbors, where L is an even number. L/2
of those have IDs numerically closest to and smaller than i. The other L/2 have
IDs numerically closest to and larger than i. This is similar to Chord’s successor
links in that a node may employ correct leafset information to resolve lookups in
O(n) hops.

• Routing table: A Pastry routing table consists of D rows, one for each digit. A
row consists of 2b entries. The j-th entry of the i-th row stores the address of a
neighbor whose ID shares the same i significant digits with the current node’s
ID, but with the i + 1-th digit equal j. Note there may be no node matching the
requirements of some entries. In this case, the entry is left empty (Fig. 3).

• Key lookup: To look up a key k, a node i first checks its leafset. If a neighbor
is numerically closest to k, the request is forwarded to that neighbor, and the
lookup is complete. Otherwise, the routing table is checked for a node whose ID
shares one more digit with k than i. If there is no such node (i.e., the route entry
is empty), the message is forwarded to the node j matching as many digits with

Distributed Hash Tables: Design and Applications 263

i +1 digitLevel i

0 1 2 3

0 0xxx 1xxx 2xxx –

1 30xx – 32xx 33xx

2 310x 311x – 313x

3 3120 3121 3122 –

Routing table of node 3123

Fig. 3 Pastry routing table of node 3123. 8-bit identifiers are divided into 4 2-bit digits. All num-
bers are in base 4. “xxx” is an arbitrary string of base-4 numbers

k as i does, but is numerically closer to k. As shown in [22], node j exists with
high probability given that L is reasonably large. A lookup fails, however, if L/2
nodes with consecutive IDs fail at the same time. Note that each hop effectively
brings the lookup one-digit closer to the target key, thus the O(logn) bound on
the search path length.

• Node dynamics: Node joins are handled similarly as in Chord. A new node looks
up its own ID i. Suppose node j is responsible for the key i. Node i asks node j
for its leafset and turns it into its own leafset by adding j and removing the node
farthest away in terms of ID distance. Up to L nodes in j’s leafset will need to
be contacted so that they could update their leafsets to include i. j also updates
its leafset to include i. The two adjacent neighbors in i’s leafset then transfer
keys to i.

Node i’s routing tables are populated by route entries from intermediate
nodes along the search path it initiated when it looked up its own identifier. For
each route entry, there may be multiple candidates. The entry with the lowest
distance is chosen. The distance metric reflects the end-to-end delay between i
and the neighbor. Once the route entries are filled, i asks for those neighbors for
their routing tables, and updates the route entries again by replacing route entries
with lower-distance entries. This way, locality-awareness is built-in during over-
lay construction. Reference [22] gives a formal proof that locality is preserved
by using routing entries from physically close nodes.

A node handles neighbor departures and failures lazily. Replacement of a
failed neighbor occurs when the node forwards a message in vain to the neighbor.
A failed leafset neighbor is replaced as follows. The node contacts the live leafset
neighbor P with the smallest ID or the largest ID depending on which side of the
node the failed neighbor resides in the leafset. P returns its leafset to the node,
which then updates its own leafset by removing the failed neighbor and adding
a new neighbor from P’s leafset. The j-th entry of the i-th row is handled as
follows. The node successively asks neighbors in the other i-th row entries for
their j-th route entry. This way, a number of candidates for this particular entry
is found for replacing the failed neighbor. The one closest in terms of the distance
metric is chosen.

264 C.-F. Michael Chan and S.-H. Gary Chan

3.3 Kademlia

Kademlia is a widely implemented DHT [12, 16, 25]. It stands out among other
DHTs by using an uncommon metric – the XOR metric. The distance between two
nodes is defined as the bit-wise XOR of their identifiers. For instance, the distance
between nodes with IDs 1100 and 0010 is 1110.

The following description of the Kademlia protocol is facilitated by a binary-tree
view of the network. Each node is a leaf and the (labeled) path from the root to
the leaf is the unique prefix of the node’s ID. Figure 4 shows an example of this
binary-tree representation of a Kademlia network.

Fig. 4 Binary tree abstraction of a Kademlia network

• Node state: As in Chord and Pastry, Kademlia nodes keep track of peers in
certain ID ranges. Peers are put into k-buckets, where bucket i is for peers at a
distance between 2i and 2i+1. Each node must know of at least one node in each
bucket, if there is some node in that ID range. For example, node E in Fig. 4
needs information of at least one node from each circled group. The size of a
bucket is limited by the system parameter k. If a bucket is full, a new node will
not be added unless the least-recently-used node in the bucket fails to respond.
This modified LRU replacement scheme has the benefit of defending against
malicious attempts to flush node state with new (and bogus) information.

• Key placement: A key is placed at the k nodes whose IDs are closest to the key.
• Key lookup: A key x is looked up as follows. The querying node n first scans

stored information to locate the k nodes closest to x. It then sends the query to α
(< k) nodes from the set. Upon receiving replies, n chooses again the k closest
nodes to x, and then sends queries to α of them. The formal analysis of this
algorithm is involved, but the idea is like walking down the binary tree from the
root, where at each internal node, n queries some node it knows about in that
subtree, receives information about a node further down the subtree and closer

Distributed Hash Tables: Design and Applications 265

to the destination, and repeats the process by moving down the correct edge. The
algorithm is also similar to that of Pastry’s prefix-based routing, where with each
step, n gets closer to peers storing x by “correcting” significant bits in the nodes
queried. The system parameter α governs the degree of parallelism in lookups.
By employing parallel look ups, Kademlia sacrifices some (constant) increase in
bandwidth for flexibility in selecting low-latency paths.

• Node dynamics: Unlike other DHTs, nodes in Kademlia learn about each other
through queries. When a node joins the network, it looks up its own ID, so that
peers along the query paths know about it. Similarly, there is no explicit mes-
saging when a node leaves. The departure is only discovered when other nodes
attempt to ascertain the node’s presence before evicting it from a bucket. There
is also the need for republishing keys to ensure that they are stored at the k clos-
est nodes. Periodically, a key is republished (by a lookup for the key and data
transfer to new holders). To reduce overhead, a node receiving this republication
will not republish the key in the next period. This way, as long as some node first
republishes the key, other nodes who were also obliged to do so would not need
to waste the bandwidth to perform the same operations.

In practice, further optimizations are employed to speed up the protocol. When a
bucket is full, new information for that bucket is cached. If some node in the bucket
fails afterwards, the cached information can be used to fill in the gap immediately.
Lookups are sped up by expanding the routing table so that multiple bits may be
matched in each step. This is similar to setting b > 1 in Pastry.

3.4 Other DHTs

Several DHTs based on other types of overlay structures. The Content Addressable
Network (CAN) constructs a d-dimensional hypercube [20]. Identifiers are divided
into d digits. Each node owns a subset of the coordinate space and maintains a set
of d− 1 neighbors. A neighbor shares the same range of values with the node in
d − 1 dimensions, but not in the remaining dimension. Lookups are resolved by
forwarding along the correct dimensions such that each hop matches one more digit
in the key. A lookup is thus resolved in O(d) hops. Note that by setting d = logn,
we get the O(logn) bound as in Chord and Pastry.

Tapestry is similar to Pastry in that it constructs a prefix-based routing table [29].
The main difference is that there is no leafset.

Viceroy maintains a butterfly structure [15]. Key management is similar to that
in Chord. Nodes are distributed on an identifier ring. The difference is in the overlay
neighbor selection. A node joins one of logn level rings. Each level ring is connected
by level-ring links between nodes with adjacent identifiers on the same level. A node
at level i maintains some pointers to neighbors at levels i−1 and i+1 in a way that
lookups are resolved in O(logn) hops. Viceroy is most characteristic in its constant
node state.

266 C.-F. Michael Chan and S.-H. Gary Chan

4 Design Fundamentals

In this section, we discuss some fundamental design issues. With so many DHT
protocols, it is natural to ask how they fair against one another in various scenar-
ios. A detailed comparison between the various DHT schemes is presented in [9],
which studies the effect of the overlay’s structure on system performance in terms
of static resilience, path latency and local convergence. We also briefly discuss in-
teresting findings concerning tradeoffs between the network diameter of a DHT and
the amount of routing information a node stores [26].

4.1 Static Resilience

The robustness of a DHT depends on both its recovery mechanisms and structural
properties. The study of static resilience reveals how well a DHT’s structure copes
with node failures without any recovery operations, and sheds light on how such
mechanisms should be provisioned. For instance, if the structure is inherently re-
silient against node failures, then recovery mechanisms need not be frequently car-
ried out.

Intuitively, a DHT is more robust when there are more alternative routes a query
can take to the key holder. If some nodes fail, it is still possible to route around
the failures to the destination. Clearly, the DHT’s routing algorithm dictates how
flexible queries may be forwarded. The more flexible the DHT’s structure, the more
robust the system.

Take Chord and Pastry as examples. In the original Chord proposal, a query is
resolved by halving by the distance to the destination at each step. However, this
is really a restricted version of the more general algorithm in which the distances
covered by each step need not be in decreasing order. In other words, we may take
the steps in any order, as long as there is one step for each distance (2i) to be covered.
The prefix-based phase of Pastry’s routing algorithm is vastly different. At each step,
we must fix the most significant unmatched bit. This means only one route entry can
be used. If the node in that entry has failed, the query has to be redirected to leafset
neighbors. Clearly, if not for the leaf sets, Pastry’s routing algorithm results in little
flexibility in routing, and hence lower static resilience.

4.2 Path Latency

The structure’s flexibility also affects the latency of query paths. Once the routing ta-
ble is fixed, there is limited choice in a query’s next hop. A flexible structure enables
selection of neighbors with better latency, and hence better choices in choosing next
hops. As a result, the overall path latency can be reduced.

Distributed Hash Tables: Design and Applications 267

In Chord, a node n’s i-th finger is originally defined to be the successor of n+2i.
However, this requirement can be relaxed to include nodes between [n+2i,n+2i+1),
making neighbor selection very flexible. In Pastry, a route entry in the i-th row can
be chosen from a maximum of 2b(D−i−1) peers. A Kademlia node also has great
flexibility in filling its k-buckets. For the i-th bucket, there are up to 2i choices.
On the other hand, CAN requires a neighbor to only differ by a single-bit, thereby
restricting the selection to one neighbor.

4.3 Local Convergence

Consider two queries from two nodes that are nearby in the physical network. A
DHT exhibits good local convergence properties if the queries converge at a com-
mon peer that is also close to the two nodes. The most significant advantage of a
high degree of local convergence is that caching can be made more effective. Fre-
quently, an application on top of DHT caches lookup results along the query path
in hopes that future queries would hit the cached entries early in their lookup paths.
The Cooperative File Storage (CFS) to be discussed in Section 5.1 is an example of
such an application.

It is discovered that a structure with flexible neighbor selection exhibits good lo-
cal convergence properties. Chord, Pastry and Kademlia with low-latency neighbor
preference are desirable designs in this regard.

4.4 Network Diameter and Node State Tradeoffs

Another interesting observation is that for most of the DHTs we have discussed, the
size of a node’s routing table is either O(logn) (Chord, Pastry, Kademlia, Tapestry)
or O(d) (e.g. CAN), with network diameters of O(logn) and O(n1/d) respectively.
(The exception is Viceroy, which has constant node state with high probability and
O(logn) diameter). The question asked in [26] is whether these are actually lower
bounds on the network diameter, i.e. Ω(logn) and Ω(n1/d). The answer will give us
an idea of whether the tradeoff has been optimized by existing DHTs, and whether
there is room for improvement.

It is, in fact, possible to go beyond the Ω(logn) lower bound. The idea is to
construct a (directed) logn-ary tree. Each node except the root has a edge pointing
back to the root. This way, all nodes are reachable from one another (thus satisfy-
ing routing correctness) and any path between two nodes is at most h + 1, where
h = loglogn n = logn

log logn is the height of the tree. Obviously the longest path (i.e.,

the network diameter) is O(logn
log logn), which is asymptotically smaller than O(logn).

Also, each node only maintains O(logn) neighbors. Unfortunately, this structure
puts the root under heavy congestion, an unacceptable state of affairs in peer-to-
peer systems.

268 C.-F. Michael Chan and S.-H. Gary Chan

Another discovery is that DHT routing algorithms can be classified into two ma-
jor categories – uniform and others. Uniform routing algorithms treat every query
without discrimination against the source of the query and the location of the pro-
cessing node. For instance, a Chord node would process a query by looking up its
finger table no matter where the query came from or where the node resides in the
identifier ring. In this case, where nodes have O(logn) state, Ω(logn) is indeed the
lower bound on the network diameter. The reason is that the DHTs aim to provide a
uniform load across nodes (i.e., to avoid congestion), therefore they cannot achieve
the lower bound of the logn-ary tree for network diameter, but only the larger lower
bound of Ω(logn).

It turns out that a butterfly network can be (deterministically) designed to achieve
a O(logn

log logn) diameter with O(logn) node state and a non-uniform routing algorithm
such that no extra load is imposed on any node. However, this bound is known so far
to be possible with static nodes, and that some links would still have O(logn) extra
load. It remains unknown whether the bound can be achieved deterministically in
the presence of node dynamics.

5 Applications

In this section, we present several applications of DHTs. We first describe the appli-
cation briefly, and then discuss their properties with reference to those of DHTs.

5.1 Cooperative File Storage (CFS)

CFS is a large-scale distributed storage system supporting multiple file systems [7].
Files are divided into blocks, which are stored in CFS servers. Blocks are distin-
guished by unique IDs obtained by hashing block contents and public keys of block
publishers. Clients read a file by looking up and retrieving blocks that make up the
file. File publishers insert and periodically refresh files so that the blocks do not get
deleted by CFS servers after a fixed expiry time. Each file system is a tree rooted at
a root block, which is signed by the publisher with its private key. The root block’s
ID is the publisher’s public key. Clients then name a file system according to the
system publisher’s public key.

CFS consists of three layers. The (lowest) Chord layer is responsible for look-
ing up blocks given their IDs. A DHash layer is built on top of the Chord layer.
It manages block storage, replication and caching. The file system layer converts
blocks obtained from the DHash layer to files and provides users and applications a
file system interface. We focus on how the Chord and DHash layers collaboratively
gives CFS various desirable performance qualities:

• Highly scalable: CFS inherits scalability from the underlying Chord layer.
Node state and control overhead in searching and routing table maintenance

Distributed Hash Tables: Design and Applications 269

grows logarithmically with the number of CFS servers. Since files are broken
into blocks, a large file will not exhaust a particular server’s storage, as will
be the case in file-based storage systems. Also, since block IDs are hashes of
block contents, and servers are distributed approximately uniformly around the
Chord ring, it is expected that each server stores around the average number of
blocks.

• Robust to massive server failures: With the original Chord protocol, a block
is stored at the successor of its ID. The DHash layer improves robustness by
replicating the block in the k successors of the ID. Since consecutive servers
on the overlay are likely to be distributed in the physical network, their fail-
ure rates are likely to be indepedent. If a server fails with probability p, then a
block is inaccessible (removed from CFS due to failure of servers storing it) with
probability approximately equal to pk, which could be made small with modest
values of k.

• Effective load balancing: A popular file may put excessive load on its server.
CFS proposes two approaches to balance the load for popular files. First, for large
popular files, CFS inherently balances the load by breaking them into blocks.
Furthermore, block replication allows lookups to be directed to a number of
servers instead of the immediate successor of the block ID. Second, for small
popular files (and blocks), caching is employed to reduce the load on the block
successors. In a nutshell, the queried blocks are cached at intermediate nodes
along the overlay search path. Since the Chord lookup algorithm halves the dis-
tance to the target node every hop, cached copies near the target node tend to
overlap, thereby boosting the cache hit rate.

• Fast file access: The Chord searching algorithm is improved to provide server
selection in CFS. At every hop during lookup, a node may choose among the
set of successors and fingers to forward the query to. Two potentially conflict-
ing considerations are latency to the next hop and the ID space covered by this
forwarding. A hybrid metric balances the latency and overlay progress (see Sec-
tion 4.3 of [7] for details.) With server selection enabled, CFS retrieval rates are
comparable to and has lower variance than that of direct TCP-based transfers
such as FTP.

• Secure against data change and flooding attacks: Two major security concerns
of distributed file systems are unauthorized data modification and flooding at-
tacks. CFS servers mandates node ID to be the SHA-1 hash of the node’s IP ad-
dress, which is in turn authenticated via challenges with random nounces sent to
the claimed address. An attacker wishing to modify a specific data block would
have to control a large set of IP addresses to be able to store the target block.
However, entities owning many IP addresses are more easily identified (such as
big organizations) than individual attackers owning a small number of addresses.
This way, the system is quite secure against intentional deletion of data. CFS
also limits the amount of data publishers can put into the system to guard against
flooding attacks. Suppose the quota is f , a (small) fraction of the total storage
space in the CFS system, then an attack would have to employ 1/ f hosts to ex-
haust the system’s storage.

270 C.-F. Michael Chan and S.-H. Gary Chan

5.2 Scribe

Enabling large-scale multicast in the Internet is an important topic of research. Tra-
ditional (IP) multicast has been proposed long ago, but has seen limited deployment
on a large scale due to network management issues and other deployment concerns.
To support large-scale multicast, all networks involved must have multicast support
enabled, which is often not possible. There are also issues of assigning (unique)
multicast addresses to groups and authorization of operations such as group cre-
ation, sending messages to a group and receiving messages. The lack of multicast
support has stirred interest in application-layer multicast (ALM) where end-hosts
provide multicast by relaying messages at the application layer.

Scribe is an ALM scheme based on the Pastry DHT and solves several important
issues with IP multicast [5]. While ALM is in general less efficient in terms of packet
delivery time and link stress, Scribe provides scalable multicast with acceptable
delay penalty and link stress as compared to IP multicast. In Scribe, a group ID
(multicast addresses) is generated by hashing the creator address and group name.
The creator then sends a create message to the node responsible for the group ID via
Pastry routing. This node is the rendezvous point (RP) for node joins and message
sending for the group. A joining node sends a join message with the target group
ID to the RP. Intermediate nodes on the path become forwarders in the resultant
multicast tree. They store a children list so that future multicast messages may be
forwarded to the downstream. Senders forward packets to the root for dissemination
throughout the tree. We focus our discussion on Scribe’s scalability, efficiency in
propagating multicast messages and fault tolerance.

• Scalability in group size: An important hurdle in scaling multicast to large
groups is the node joining process. In particular, it is essential to enable nodes to
join with low control overhead. This is obviously not possible with a centralized
server storing a (sub)set of existing nodes in the group. Scribe enables efficient
node joins by exploiting Pastry’s properties. First, Pastry’s routing mechanism
allows the join overhead to be distributed evenly among nodes. Second, the RP
need not handle all joins, as join messages may hit an existing node (either a for-
warder or receiver) along the path and processed there locally. Third, the uniform
distribution of nodes in Pastry ensures a balanced multicast tree. Furthermore,
since Pastry employs prefix-based routing, the multicast structure is guaranteed
to be loop-free.

• Scalability in number of groups: Two problems that hinder scalability in sup-
porting many multicast groups are the assignment of group addresses and load
balancing control information of groups among participating nodes. The address
assignment problem is solved by employing DHT keys as group IDs, which are
obtained by hashing the group creator and group’s name. With a suitable hash
function, the probability of group ID collision is low. This way, group IDs can be
assigned in a totally distributed manner. Hashing also distributes the group roots
uniformly in the Pastry overlay. Since nodes are also distributed uniformly in the
overlay, the control information for all groups, i.e. parent and children pointers,

Distributed Hash Tables: Design and Applications 271

is likely to be distributed uniformly among the nodes. Indeed, for fairly large
networks (100000 nodes and 1500 groups), Scribe nodes have on average less
than 10 children pointers. Additionally, nodes may offload children connections
by asking some of them to connect to their siblings instead. This so-called bot-
tleneck remover algorithm dynamically adapts node stress to network conditions,
and effectively reduces the maximum number of children connections under the
same network conditions.

• Multicast efficiency: Scribe achieves low delay penalty compared to IP multicast
for two reasons. First, the paths from receivers to the RP are short – with DHT
routing, the path length is logarithmic in number of nodes in the network. Second,
since Pastry enforces locality in choosing overlay neighbors, each overlay hop
in the multicast tree is likely to be short in terms of latency. These two factors
contribute to an overall low delay in disseminating messages in the multicast
trees.

• Fault tolerance: Scribe exploits efficient DHT routing to localize repairs of the
multicast trees in case of node failures. If a node fails, its children can simply
route a join message to the group ID to discover a new parent. Failure of the
RP has a more detrimental effect on the multicast group since it stores, apart
from children points, other control information such as authorization credentials,
identity of the group creator and senders. Scribe replicates the state at the RP to
its k closest nodes in the Pastry overlay. If the RP fails, its children use Pastry
to find the new root, which is the closest overlay node of the failed RP. Since
this new root already possesses the group state, normal operation may resume
quickly.

5.3 VMesh

Multimedia streaming is one of the most popular services in the Internet. A partic-
ular type of multimedia streaming is video-on-demand (VoD), in which users may
request for any video at any time. An important feature of VoD is user interactivity,
i.e. users should be able to start viewing the video at any point, and may jump for-
ward and backwards as they wish. VMesh provides scalable and efficient VoD with
rich user interactivity based on DHT [27].

In VMesh, a video is divided into segments initially stored at the video server.
A peer downloads some segments from the server to its local storage and searches
for segments it does not own via a DHT and a video mesh. The stored segments are
not removed even if the peer is not viewing them. Instead, the peer streams these
segments to other peers.

A DHT is constructed to facilitate segment location. Each peer registers the seg-
ments they store by inserting keys into the DHT. A segment’s key comprises three
parts – the video ID, segment ID and segment owner’s network location, in decreas-
ing order of significance. The network location field encodes the node’s location
in the network via space filling curves, which provide a one-dimensional proximity

272 C.-F. Michael Chan and S.-H. Gary Chan

metric for parent selection during segment location streaming. Since the video and
segment IDs occupy more significant bits, keys for the same segment from different
peers are stored in the same region in the overlay (e.g., in a (small) arc of the Chord
ring). With key replication, a node may answer segment queries with a list of parents
owning the segment. Once the requesting peer receives this list, it could ask nearby
parents to stream the segment.

Peers maintain in addition to the DHT a video mesh. In a nutshell, peers storing
segment i maintains pointers to peers storing the next (i + 1-th), previous (i−1-th)
and the same (i-th) segments. These pointers are obtained by locating the segments
using DHT and storing the addresses returned. Whenever a peer is about to exhaust
its current segment, it asks its parents for the addresses of the peers holding the next
segment and starts buffering it for better video continuity. When a peer wants to
jump to a new (far-away) segment, it queries the DHT for the segment’s owners. If
the segment ID is close to the current segment’s ID, the parent pointers are followed
instead.

VMesh also addresses non-uniform segment popularity. Typically, certain seg-
ments of a movie are more popular and thus accessed more frequently. It is desirable
to have more replica of popular segments for load balancing purposes. VMesh peers
employ a distributed averaging algorithm to estimate the popularity and number of
segment replica in the network, and adjust the segments they store accordingly [17].

The following are desirable properties of VMesh:

• Scalability: VMesh scales well to large number of peers. By having peers store
and stream segments to other peers, the video server’s workload is greatly re-
duced. The peer-to-peer segment location algorithm is locality-aware. This al-
lows peers to find physically nearby parents, thereby reducing streaming over-
head and latency. Popularity-aware adjustment in segment storage balances
streaming load among a suitable number of peers, thereby avoiding hotspots for
popular segments.

• Robustness to parent failure: Since a peer receives a list of parents as an answer
to a DHT query, it may stream the segment in parallel from multiple (nearby)
parents. If a parent fails, the other parents may share the failed parent’s load
while the peer searches for a new parent.

• Efficient bootstrap and jumping: VMesh provides low startup delay for newly
joined peers and low delay in jumping to arbitrary positions in the video. Since
segment location is performed as a DHT search, queries are resolved efficiently.
Also, a new peer is given a list of parents with their location in the network. Such
locality awareness allows the peer to choose nearby parents to reduce streaming
delay. The same principle applies for jumping peers.

5.4 Internet Indirection Infrastructure (i3)

Unicast routing has been the main service provided by the network layer in the
Internet. The need for large-scale multicast, anycast and host mobility services

Distributed Hash Tables: Design and Applications 273

has sparked much interest in the research community. The Internet Indirection In-
frastructure (i3) is an overlay framework supporting very general routing services.
While it does not require any particular structure in its implementation, a DHT is a
natural and desirable candidate.

Routing in i3 is entirely identified-based. Instead of an address, peers send mes-
sages to identifiers. Receivers interested in those messages place triggers in the
overlay. Basic triggers are the ordered pair < id,addr >, where id is the identi-
fier messages are sent to, and addr is the receiver’s IP address. Triggers with the
same id are stored in the same DHT node. Messages from the sender are routed to
the node storing the triggers with the given id, who then forwards it to each regis-
tered address. Such indirection allows for natural multicast, anycast, host mobility
and service composition.

• Multicast: A multicast group is identified by a group id G. Nodes join the group
by inserting triggers < G,addr > into the DHT. Senders simply have to send
messages to the id G. A scalable multicast scheme which extends this basic idea
is presented in [13].

• Anycast: Servers insert triggers of the form < S,addr >. Nodes then locate a
server by sending a request to id S. The service id S is separated into a prefix and
the suffix. The latter is used for load balancing or locality-awareness in selecting
servers. For instance, location information may be enocded into the ID suffix and
the suffix of the requested ID to achieve locality-awareness. On the other hand,
servers could insert multiple triggers with random suffixes proportional to their
capacity to achieve load-balancing.

• Host mobility: When a node moves, it inserts a trigger < IDold , addrnew >,
where IDold is the ID of its previous address and addrnew is its new address.
One may consider them as the home address and foreign address respectively in
IP mobility. Changes in the node’s address is reflected by inserting new triggers
with updated addrnew. The reader is referred to [30] for details.

• Service composition: In certain applications, messages may need to be processed
in between the server and service requestor. i3 achieves this by making triggers
more flexible. In its more powerful form, triggers allows the addr field to be
an ordered list of identifiers (we may consider an address an identifier as well).
This list behaves like a stack, with the top of the stack on the left end of the list.
Suppose a packet from server S to requestor R needs to pass through a process-
ing node P. Figure 5 shows how data is redirected to the processing node before
reaching R. The advantage of this approach is that processing is receiver-driven.
The server need only send one format of the application data, while different re-
ceivers may process the data individually for compatibility. Numerous examples
of this redirection mechanism is given in [14].

From the above, we see the need to organize a large number of triggers and
route messages to triggers efficiently. Thus, DHTs are a good choice for the overlay.
DHTs can also provide robustness through trigger replication and reduce latency
by locality-aware techniques. Given this scalable, efficient and robust overlay, the
above routing services can be provisioned in large scale with desirable performance.

274 C.-F. Michael Chan and S.-H. Gary Chan

<id, <idproc,addrR>>

<idproc,addrP>

S

R

P

1. <id, data>

2. <<idproc, addrR>, data>

3. <addrR, data>

4. Processed data

i3

Fig. 5 Example of service composition in i3. The receiver R inserts the trigger < id,<
idproc,addrR >> and the processing node P inserts the trigger < idproc,addrP >>. The server
S sends the data to id without knowing the data will be processed by P. The message is redirected
to the trigger < idproc,addrP > and then forwarded to P for processing. P obtains R’s address from
the message and finally sends the processed data to R

6 DHTs in Wireless Networks

Recent advances in mobile technology, such as mobile computing power and wire-
less communications capabilities, has sparked great interest in building scalable ap-
plications for large-scale wireless networks. In this section, we highlight the char-
acteristics of wireless networks, how such characteristics hinder the deployment of
DHTs and various approaches to adapt DHTs to such environments.

6.1 Characteristics of Wireless Networks

There are three major types of wireless networks:

• Mobile ad-hoc networks (MANETs) are characterized by high node mobility
and lack of infrastructure support. Nodes of low processing power and move in
random directions at random speeds, thereby making the topology unstable. An

Distributed Hash Tables: Design and Applications 275

example of MANETs is the vehicular ad-hoc network, where wireless devices in
vehicles interact with each other while moving at high speeds.

• In wireless sensor networks (WSNs), thousands of sensor nodes are scattered
onto a large geographical area. The sensors are very low-profile devices with very
limited processing power, memory and battery. The primary concern of a sensor
network is its lifetime, therefore protocols for sensor nodes focus on power con-
servation. The network serves as a repository of sensed data, such as temperature
and humidity. Queries are not directed towards a specific node. Instead, multiple
nodes cooperate to reply with aggregated data that is sensible to the application.

• Wireless mesh networks provide an alternative way for network access in ar-
eas where infrastructure is difficult and/or costly to install. In its most general
form, a wireless mesh network consists of a number of gateways, mesh points
and end-hosts. The gatways provide access to the wired Internet. Mesh points
are typically small devices with limited processing power and memory mounted
on lamp posts or rooftops. They extend the network coverage of the gateway
wirelessly. By associating with a default gateway, they forward Internet-bound
traffic from associated users to the gateway. Routing is also conducted between
different mesh points. While users are mobile and may switch their associated
mesh points at any time, the gateway and mesh points are generally stationary.

While these wireless networks have different uses and greatly diversified node
capabilities, they share some characteristics which are of paramount importance in
considering the design of DHTs in such environments:

• Limited shared bandwidth: The (broadcast) wireless channel is shared by all
nodes and has limited bandwidth. A DHT scheme has to be light-weight in terms
of bandwidth consumption.

• Lack of routing infrastructure: Unlike the wired network, where routing is read-
ily available at low cost, routing in wireless networks is non-trivial. The two
problems associated with routing in this case are high maintenance overhead of
routes and inefficient bandwidth utility due to long routes.

• Low processing power and memory capacity: Wireless devices are usually low
in processing power and limited in memory capacity. A desirable DHT scheme
should be light-weight in terms of node processing and storage.

In the following sections, we discuss two main issues with wired DHTs in wire-
less networks and outline solutions proposed in the literature.

6.2 Challenges of Using DHTs in Wireless Networks

It is argued that DHTs designed for the wired network are not directly applicable to
wireless networks. The two main issues are as follows.

1. Overlay mismatch problem: In the DHT overlay, any pair of nodes is consid-
ered to be “one-hop” apart. While this abstraction is somewhat valid in the wired
network where routing is efficient and low-cost, it is definitely not the case in

276 C.-F. Michael Chan and S.-H. Gary Chan

wireless networks. In particular, a single overlay hop may map to multiple phys-
ical links, resulting in inefficient bandwidth utility [19, 21, 28].
Figure 6 shows an example of the overlay mismatch problem. The overlay path
from node A to node D is 3 hops, as perceived by the application. However,
it actually spans 8 physical links, one of which is traversed twice. Notice that
the shortest path via nodes F and G cannot be obtained by the overlay lookup
algorithm since the algorithm is fixed with routing on identifiers only and with
no consideration of physical proximity of nodes.

A

B

C

D

E

F

G

A

B

C

D

E

F

G

(a) Overlay path node A to node D as seen by
the application.

(b) Actual path traversed in the physical network. This
path is much longer than the perceived length of the overlay
path and may traverse a link multiple times, e.g. the
link between nodes C and E.

Fig. 6 Illustration of the overlay mismatch problem. The overlay path from node A to node D
spans 8 links, whereas the shortest path is only 3 hops. It is impossible to tell by considering the
overlay alone that the shortest path is A→ F → G→ D

Distributed Hash Tables: Design and Applications 277

2. High maintenance overhead: DHT maintenance procedures ensure routing con-
vergence and efficient routing (in terms of number of overlay hops). While the
overhead incurred by such procedures is acceptable in the wired network, the
same procedures are demanding for bandwidth-limited wireless networks. For
example, in Chord, a node periodically run the stabilize(·) and fix fingers(·) meth-
ods to ensure that its successor and finger table entries are up to date. Each of
these operations may require a route discovery. For reactive routing protocols,
this incurs up to O(n) overhead, where n is the number of nodes [10, 18]. Proac-
tive routing requires periodic flooding of topology control, which is particularly
costly in wireless sensor networks where power is of utmost importance [6]. It
is also difficult to achieve convergence in MANETs as the topology changes
quickly. Multiple route discoveries may be needed in the presence of mobility.
Furthermore, overlay mismatch exacerbates this issue, since much bandwidth is
spent obtaining routes that are unnecessarily long. The situation could be even
worse than simple flooding in resolving requests for data items [19, 28].

6.3 Search Approaches for Wireless Networks

The overlay mismatch problem and high maintenance overhead incurred by tradi-
tional DHTs must be resolved in order to make DHTs feasible for wireless networks.
In this section, we discuss optimizations and alternate approaches that aim to resolve
these two issues.

• Adding location awareness: The overlay mismatch problem is caused by blindly
layering the DHT layer directly on top of the routing protocol. An intuitive idea is
to let nodes choose overlay neighbors that are physically close. This is achieved
by cross-layering the two overlay routing and underlay routing. Several methods
have been proposed.
In Ekta, Pastry nodes collect DSR routes by overhearing control packets [19].
A node only maintains routes to physically close overlay neighbors as indicated
by hop counts in DSR routes. The correctness of overlay routing is maintained
because in prefix-based routing that Pastry employs, choosing any one of the
possible nodes for a given bit position would ensure route convergence. The key
idea here then is to choose the node that is closest in the underlay.
MADPastry employs clustering to enforce physical proximity of overlay neigh-
bors [28]. The identifier space is divided into m (equal) partitions, where m is
the number of clusters. Each cluster’s identifier space starts with a different pre-
fix. A landmark heads a cluster and floods beacons throughout the cluster so that
new nodes may join the appropriate cluster. A node identifiers is composed of its
cluster’s prefix and a suffix obtained via hashing its address or public key. The
Pastry routing table is stripped down to contain only m entries, one for each clus-
ter. When resolving a query, the first overlay hop is taken to the cluster housing
the target key. After that, leaf-set routing is used to reach the reference node. As

278 C.-F. Michael Chan and S.-H. Gary Chan

long as clusters are relatively small, the search path is confined within a small
geographical region, thus solving the overlay mismatch problem.
If nodes know about their geographical locations, e.g. by means of GPS, it is
possible to structure their identifiers to match the underlay topology. A common
technique is to apply a specialized hash function to map node positions (in 2D)
to a 1D identifier space. For instance, the hash function employed by Georoy and
MeshChord maps node locations to identifiers on a unit ring in a way that nodes
in the same geographical region will also be in the nearby each other (in the same
segment) in the unit ring [3, 8]. An illustrative example is given in Eq. (3.1) and
Fig. 3 of [8]. The concept of cell-addressing in Cell Hash Routing is of similar
spirit to Georoy and MeshChord [2].
Another technique is to replace traditional DHT overlay routing with geographi-
cal routing. The Geographic Hash Table (GHT) and CHR use Greedy Perimeter
Stateless Routing (GPSR) to route queries to reference nodes [21]. GPSR greed-
ily forwards queries to the target location in the physical network [11]. There is
no need for overlay routing, thereby solving the mismatch problem.

• Reducing maintenance overhead: Various approaches have been proposed to
curb maintenance overhead. One method is to reduce the amount of overlay rout-
ing information. This may involve reducing the number of overlay neighbors
and/or lowering the frequency of refreshing overlay connections. Ekta tries to re-
duce route discoveries by overhearing DSR routes to overlay neighbors. MAD-
Pastry achieves low overhead by storing a degenerate Pastry routing table with
only as many entries as there are clusters. Virtual Ring Routing (VRR) takes this
approach one step further by only storing routes to successors and predecessors
in a Chord-like identifier ring [4].
Another method is to eliminate the need for overlay routing. For example, GHT
and CHR employ geographical routing (GPSR), which requires local exchange
of node locations only. No flooding for route discovery (as in reactive routing) or
of topology information (as in proactive routing) is needed.

7 Conclusions

We introduced in this chapter the distributed hash table (DHT), a scalable, efficient,
self-organizing and robust peer-to-peer routing infrastructure. Data is inserted into
the DHT in the form of key-value pairs, where the key is an identifier uniquely
distinguishing the data. DHT nodes store these key-value pairs and conduct effi-
cient data lookup using a fully distributed algorithm. Scalable routing is realized by
limiting lookups to O(logN) hops, where N is the number of nodes in the DHT.
Important extensions such as locality-aware neighbor selection and key replication
reduces response time, improves robustness against node dynamics and provides
load balancing.

Several applications based on DHTs are presented, such as distributed storage
systems (CFS), application-layer multicast (Scribe), peer-to-peer video-on-demand

Distributed Hash Tables: Design and Applications 279

with rich user interactivity (VMesh) and a framework for general routing services
(i3). These applications exploit the benefits provided by the underlying DHT for
large-scale operation in the Internet.

DHT deployment in wireless networks is also discussed. The characteristics of
wireless networks, such as bandwidth scarcity and limited node processing capac-
ity, make it difficult to apply DHT schemes directly. Two main issues, namely the
overlay mismatch problem and excessive maintenance overhead, hinder DHT de-
ployment in such networks. Various approaches have been highlighted to address
theses issues.

The role of DHTs in future networks is an open issue. While we have focused
on DHT design on wired networks and wireless networks, the future of networking
is most probably a hybrid of both. With millions of mobile devices participating in
networked applications across the Internet, it is interesting to see how DHTs can
be employed to achieve the required scalability and communications latency, while
keeping up with high degrees of node dynamics.

References

1. Internet Domain Survey. www.isc.org/ds
2. Araujo, F., Rodrigues, L., Kaiser, J., Liu, C., Mitidieri, C.: CHR: A distributed hash table

for wireless ad hoc networks. In: Proc. of IEEE Distributed Computing Systems Workshops
(ICDCSW), pp. 407–413 (2005)

3. Burresi, S., Canali, C., Renda, M.E., Santi, P.: MeshChord: A location-aware, cross-layer spe-
cialization of Chord for wireless mesh networks (concise contribution). Pervasive Computing
and Communications, 2008. PerCom 2008. Sixth Annual IEEE International Conference on
pp. 206–212 (2008)

4. Caesar, M., Castro, M., Nightingale, E.B., O’Shea, G., Rowstron, A.: Virtual ring routing:
Network routing inspired by DHTs. SIGCOMM Computer Communication Review 36(4),
351–362 (2006)

5. Castro, M., Druschel, P., Kermarrec, A.M., Rowstron, A.: Scribe: a large-scale and decen-
tralized application-level multicast infrastructure. Selected Areas in Communications, IEEE
Journal 20(8), 1489–1499 (2002)

6. Clausen, T., Jacquet, P.: Optimized link state routing protocol. In: IETF RFC 3626 (2003)
7. Dabek, F., Kaashoek, M.F., Karger, D., Morris, R., Stoica, I.: Wide-area cooperative storage

with CFS. In: SOSP ’01: Proceedings of the eighteenth ACM symposium on Operating sys-
tems principles, pp. 202–215. ACM, New York, NY, USA (2001)

8. Galluccio, L., Morabito, G., Palazzo, S., Pellegrini, M., Renda, M.E., Santi, P.: Georoy: A
location-aware enhancement to Viceroy peer-to-peer algorithm. Computer Network 51(8),
1998–2014 (2007)

9. Gummadi, K., Gummadi, R., Gribble, S., Ratnasamy, S., Shenker, S., Stoica, I.: The impact
of dht routing geometry on resilience and proximity. In: SIGCOMM ’03: Proceedings of
the 2003 conference on Applications, technologies, architectures, and protocols for computer
communications, pp. 381–394. ACM, New York, NY, USA (2003)

10. Johnson, D., Hu, Y., Maltz, D.: The dynamic source routing protocol (dsr) for mobile ad hoc
networks for ipv4. In: IETF RFC 4728 (2007)

11. Karp, B., Kung, H.T.: GPSR: greedy perimeter stateless routing for wireless networks. In:
MobiCom ’00: Proceedings of the 6th annual international conference on Mobile computing
and networking, pp. 243–254. ACM, New York, NY, USA (2000)

280 C.-F. Michael Chan and S.-H. Gary Chan

12. Khashmir: http://khashmir.sourceforge.net
13. Lakshminarayanan, K., Rao, A., Stoica, I., Shenker, S.: Flexible and robust large scale multi-

cast using i3. Tech. Rep. CS-02, University of California, Berkeley (2002)
14. Lakshminarayanan, K., Stoica, I., Wehrle, K.: Support for service composition in i3. In: MUL-

TIMEDIA ’04: Proceedings of the 12th annual ACM international conference on Multimedia,
pp. 108–111. ACM, New York, NY, USA (2004)

15. Malkhi, D., Naor, M., Ratajczak, D.: Viceroy: A scalable and dynamic emulation of the but-
terfly. In: Proceedings of the 21st annual ACM symposium on Principles of distributed com-
puting (2002)

16. Maymounkov, P., Mazires, D.: Kademlia: A peer-to-peer information system based on the
xor metric. In: Proceedings of 1st International Workshop on Peer-to-Peer Systems (IPTPS),
pp. 53–65 (2002)

17. Mehyar, M., Spanos, D., Pongsajapan, J., Low, S.H., Murray, R.M.: Asynchronous distributed
averaging on communication networks. IEEE/ACM Transactions on Networking 15(3),
512–520 (2007)

18. Perkins, C., Royer, E.: Ad-hoc on-demand distance vector routing. Mobile Computing
Systems and Applications, 1999. Proceedings. WMCSA ’99. Second IEEE Workshop on
pp. 90–100 (1999)

19. Pucha, H., Das, S.M., Hu, Y.: Ekta: An efficient DHT substrate for distributed applications
in mobile ad hoc networks. In: Proc. of IEEE Workshop on Mobile Computing Systems and
Applications (WMCSA), pp. 163–173. IEEE (2004)

20. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content-addressable
network. In: SIGCOMM ’01: Proceedings of the 2001 conference on Applications, technolo-
gies, architectures, and protocols for computer communications, pp. 161–172. ACM, New
York, NY, USA (2001)

21. Ratnasamy, S., Karp, B., Shenker, S., Estrin, D., Govindan, R., Yin, L., Yu, F.: Data-centric
storage in sensornets with GHT, a geographic hash table. Mobile Networks and Applications
8(4), 427–442 (2003)

22. Rowstron, A.I.T., Druschel, P.: Pastry: Scalable, decentralized object location, and routing for
large-scale peer-to-peer systems. In: Middleware ’01: Proceedings of the IFIP/ACM Inter-
national Conference on Distributed Systems Platforms Heidelberg, pp. 329–350. Springer-
Verlag (2001)

23. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A scalable peer-
to-peer lookup service for internet applications. In: SIGCOMM ’01: Proceedings of the 2001
conference on Applications, technologies, architectures, and protocols for computer commu-
nications, pp. 149–160. ACM, New York, NY, USA (2001)

24. Stoica, I., Morris, R., Liben-Nowell, D., Karger, D.R., Kaashoek, M.F., Dabek, F., Balakrish-
nan, H.C.: Chord: A scalable peer-to-peer lookup service for internet applications. Tech. Rep.
TR819, Laboratory for Compuer Science, Massachuseets Institute of Technology (2001)

25. Vuze: http://wiki.vuze.com/index.php/distributed hash table
26. Xu, J.: On the fundamental tradeoffs between routing table size and network diameter in peer-

to-peer networks. INFOCOM 2003. Twenty-Second Annual Joint Conference of the IEEE
Computer and Communications Societies. IEEE 3, 2177–2187 (2003)

27. Yiu, W.P., Jin, X., Chan, S.H.: VMesh: Distributed segment storage for peer-to-peer interac-
tive video streaming. Selected Areas in Communications, IEEE Journal 25(9), 1717–1731
(2007)

28. Zahn, T., Schiller, J.: MADPastry: A DHT substrate for practicably sized MANETs. In:
Proc. of IEEE Workshop on Applications and Services in Wireless Networks (ASWN)
(2005)

29. Zhao, B., Huang, L., Stribling, J., Rhea, S., Joseph, A., Kubiatowicz, J.: Tapestry: a resilient
global-scale overlay for service deployment. Selected Areas in Communications, IEEE Jour-
nal 22(1), 41–53 (2004)

30. Zhuang, S., Lai, K., Stoica, I., Katz, R., Shenker, S.: Host mobility using an internet indirection
infrastructure. Wireless Networks 11(6), 741–756 (2005)

The Gamut of Bootstrapping Mechanisms
for Structured Overlay Networks

Anwitaman Datta

Abstract Structured overlays are an important primitive in building various peer-to-
peer (P2P) systems, and is used for various functions including address independent
end-to-end routing, managing multicast groups, indexing of content in a decentral-
ized environment and P2P storage, among others. While they operate in a decentral-
ized manner, and the self-stabilizing mechanisms to maintain the overlays are also
decentralized, bootstrapping structured overlays have traditionally assumed implicit
centralization and/or coordination. In this chapter, we provide a survey of different
flavors of structured overlay construction mechanisms – including quasi-sequential
mechanisms which are predominantly in use, followed by parallelized approaches,
and finally looking into how two isolated overlay can be merged, which is key to
decentralized bootstrapping.

1 Introduction

In recent years the concept of structured overlays1 has attracted a lot of attention be-
cause of its potential to become a generic substrate for internet scale applications –
used for applications as diverse as locating resources in a wide area network in a
decentralized manner, address independent robust and flexible (group) communi-
cation – e.g., application layer multicast and internet indirection infrastructure and
content distribution network to name a few.

The basic function of the structured overlay is to act as a decentralized index. To
that end, for each resource, a globally unique identifier (called the key) is generated
using some function suitable to the applications that are supposed to use the index.

Anwitaman Datta
NTU, Nanyang Avenue, Singapore, e-mail: anwitaman@ntu.edu.sg

1 A special class of structured overlays are the distributed hash tables (DHTs), where the keys are
generated from the resources (name or content) using uniform hashing, e.g., SHA-1 (Secure Hash
Algorithm [17]).

X. Shen et al. (eds.), Handbook of Peer-to-Peer Networking, 281
DOI 10.1007/978-0-387-09751-0 11, © Springer Science+Business Media, LLC 2010

282 Anwitaman Datta

The codomain (loosely speaking, range) of this function is called the key-space.
For example, the key-space may be the unit interval [0,1] or an unit circle [0,1),
so that the keys can be any real number between 0 and 1. The key-value pair is
stored at peers responsible for the particular key. Efficient search of keys based on
decentralized routing helps the applications to access the resource itself in absence
of central coordination or global knowledge.

Definition 1. Structured overlay networks comprise of the following principal in-
gredients:
(i) Partitioning of the key-space (say an interval or circle representing the real num-
ber between the range [0,1]) among peers, so that each peer is responsible for a
specific key space partition. By being responsible, we mean that a peer responsible
for a particular key-space partition should have all the resources (or pointers) which
are mapped into keys which are in the respective key-space partition.2

(ii) A graph embedding/topology among these partitions (or peers) which ensures
full connectivity of the partitions, desirably even under churn (peer membership
dynamics), so that any partition can be reached from any partition to any other –
reliably and preferably, efficiently.
(iii) A routing algorithm which enables the traversal of messages (query forward-
ing), in order to complete specific search requests (for keys).

Definition 2. A structured overlay network thus needs to meet two goals to be func-
tionally correct:
(i) Correctness of routing: Starting from any peer, it should be possible to reach the
correct peer(s) which are responsible for a specific resource (key).
(ii) Correctness and completeness of keys-to-peers binding: Any and all peers re-
sponsible for a particular key-space partition should have all the corresponding
keys/values.

Various applications can use transparently the (dynamic) binding between peers
and their corresponding key-space partitions as provided by the overlay for resource
discovery and communication purposes in a wide area network.

One of the most important and distinguishing aspect of structured overlays is the
peers’ interconnection – the topology/geometry of the network.

How this topology is established in a dynamic setting, and whether it achieves
some other properties (like – proximity and low stretch exploiting information from
the underlying networking layer, load-balancing, security against various attacks,
etcetera.) and how the invariants of the topology maintained over time in presence
of membership dynamics and attacks are some of the most interesting questions that
have been investigated in the P2P research community in these last years.

2 It is also possible that keys are not strictly associated with a specific peer and instead have a looser
coupling. For example, in Freenet [9] and FuzzyNet[15], this association of keys to peers can be
thought to be in a best effort fashion, such that instead of choosing the peer which is globally the
closest to a key, the locally closest peer is delegated the responsibility of the key. Such systems are
also called semi-structured overlays.

Bootstrapping Structured Overlays 283

In this article, we focus on the issue of how these topologies can be established
(bootstrapped) in a dynamic setting while also meeting some other desirable prop-
erties like load-balancing. We will survey different kinds of bootstrapping mecha-
nisms, including traditional quasi-sequential approaches, as well as subsequent par-
allelized approaches, and also looking at how two isolated overlays can be merged
to build a larger network, paving way for decentralized boot strapping.

The existing literature presenting various bootstrapping mechanisms vary in rigor
and details. To keep the presentation uniform as well as accessible to the general
audience, we provide only a high level summary of the concepts.

2 A Taxonomy of Structured Overlay Topologies

The specific details of the topologies is crucial to the exposition of how these topolo-
gies can be achieved. We briefly look into some of the important structured overlay
topologies, particularly the ring and tree topologies. These are not necessarily op-
timal in the sense of achieving the smallest routing table size or smallest diameter,
however have proven to be practical because of their overall characteristics. They
have moderately small average routing table sizes which provide good resilience at
reasonable maintenance cost, small diameter, good degree-distribution (necessary
for congestion-free and load-balanced routing) and flexibility to deal with different
kind of workloads, and last but not the least, they are also relatively simple. The
complexity of the topology plays an important role in a peer-to-peer setting, where
the topology invariants need to be established and maintained without global knowl-
edge and coordination in presence of potentially large scale in terms of both peer
population as well as high membership dynamics.

2.1 Ring

The ring based topology was pioneered in the context of overlays in the Chord [27]
network. Chord uses SHA-1 based consistent hashing to generate an m-bit identifier
for each peer p, which is mapped onto a circular identifier space (key-space).

Irrespective of how the peers’ identifiers are generated in a ring based topology,
what is essential is that the peer identifiers are distinct. Similarly, unique keys are
generated corresponding to each resource. Each key on the key-space is mapped to
the peer with the least identifier greater or equal to the key, and this peer is called the
key’s successor. Thus to say, this peer is responsible for the corresponding resource.

What is relevant for our study is how keys from the key-space are associated
with some peer(s) and how the peers are interconnected (in a ring) and communicate
among themselves.

Definition 3. A ring network is (1) weakly stable if, for all nodes p, we have
predecessor(successor(p)) = p; (2.a) strongly stable if, in addition, there exists

284 Anwitaman Datta

no peer s on the identifier space where p < s < q where successor(p) = q; and (2.b)
loopy if it is weakly but not strongly stable.

Condition (2.a) that there exists no peer s on the identifier space where p < s < q
if p and q know each other as mutual successor and predecessor determines the
correctness of the ring structure. Figure 1a shows one such consistent ring structure
(peer’s position in the ring and its routing table). The order-1 successor known also
just as “successor” of each peer is the peer closest (clock-wise) on the key-space.

0

4

8

12

1

2

3

5

6

79

10

11

13

14

15

1,2,3: 6
4: 12

Routing table entries
k : order k-successor
(deterministic chord) 1,2: 8

3: 12
4: 1

1,2,3: 12
4: 1

1,2,3: 1
4: 6

1

001 010
110 111

000 011 100 101

A B C D E F G H

(a) A consistent ring (Chord) network

(b) A tree based (P-Grid) network. The actual topology has no
hierarchy as shown in Figure 2.

Fig. 1 Some structured overlay topologies

If at any time such a s joins the system, the successor and predecessor informa-
tion needs to be corrected at each of p, q and s. Maintaining the ring is basically to
maintain the correctness of successors for all peers – this in turn provides the func-

Bootstrapping Structured Overlays 285

tional correctness of the overlay routing – i.e., successor peer for any identifier key
can be reached from any other peer in the system (by traversing the ring). For redun-
dancy, fs consecutive successors of each peer are typically maintained, so that the
ring invariant is violated only when all fs consecutive peers of any peer depart the
system even before a ring maintenance mechanism like Chord’s self-stabilization
algorithm can react and repopulate with the correct successor entries.

In addition to the successor/predecessor information, each peer maintains routing
information to some other distant peers in order to reduce the communication cost
and latency.

It is the way these long ranges are chosen which differ in many ring topology
networks and has no critical impact on the functional correctness of the overlay.
Distance in such ring based topologies is generally measured in terms of the absolute
difference of the two concerned points on the key-space, but other metrics can as
well be used. For the real topology, devoid of the artificial distance metrics, the long
ranges are essentially to halve the number of peers (the “true” distance on a ring
traversed sequentially) between the current peer and the destination peer [14].

Explicitly or implicitly, most variants of the ring topology exploit this fact and
reduce the distance geometrically – either deterministically or probabilistically. The
original Chord proposal advocated the deterministic use of the successor of the iden-
tifier (p + 2k−1) modulo 2m as an order-k successor of peer p or a finger table en-
try. Many other variants for choosing the long range links exist – e.g., randomized
choice from the interval [p + 2k−1, p + 2k) or exploiting small-world [20] topology
or emulating skip graphs.

The maintenance of the ring (strong stability) is critical for functional correctness
of the routing process in ring based topologies. The self-stabilization mechanisms
proposed in the original Chord proposal [27] exhaustively deals with the mainte-
nance of the ring, and all other ring based topologies rely on similar mechanisms. It
has been shown that the ring topology has better static resilience than other topolo-
gies because of the greater flexibility to choose both routing table entries to instan-
tiate the overlay, as well as to choose from multiple routes to forward a query at run
time.

2.1.1 Ring Self-Stabilization Highlights

The ring invariant is typically violated when new peers join the network, or existing
ones leave it. If such events occur simultaneously at disjoint parts of the ring, the
ring invariant can easily be reestablished using local interactions among the affected
peers. Note that these events do not lead to a loopy state of the network.

Apart looking into the simple violations of the ring invariant which are relatively
easily solved, the original Chord proposal (technical report version) also provides
mechanisms to arrive at a strongly stable network starting from a loopy network
(whichsoever reason such a loopy state is reached). We summarize the results of
stabilizing a loopy network here.

286 Anwitaman Datta

Any connected ring network with N peers becomes strongly stable within O(N2)
rounds of strong stabilization if no new membership changes occur in the system.
Starting from an arbitrary connected state with successor lists of length O(logN) if
the failures rate is such that at most N/2 nodes fail in Ω(logN) steps then, whp, in
O(N3) rounds, the network is strongly stable.

2.2 Tree

Arguably the earliest approach to locate objects in a distributed environment – the
PRR scheme proposed by Plaxton et al. [25] used a tree structure where searches
were forwarded based on longest prefix matching. Tapestry [28], Pastry [26] (also
uses the ring as a fall-back mechanism) and P-Grid [1] shown in Fig. 1b among oth-
ers uses similar prefix resolution in order to forward search operations, and has the
tree topology. The leaf-nodes of the tree represent the key-space partitions (peers).
The (maximum) distance between these partitions when the query is resolved based
on prefix is then the height of the common subtree. Kademlia [22] resembles the tree
structure and peers have the same routing choices as other tree-based networks. De-
spite having the same topology, Kademlia routing uses the XOR distance between
the peer identifiers (essentially the binary string representing the node’s path in the
tree) instead of resolving common prefix.

Note that this also exemplifies the essential orthogonality of the topology itself
from the routing strategy – the same graph connectivity may be explored based on
different routing schemes, and thus defined as separate ingredients of a structured
overlay network in Definition 1.

2.2.1 The P-Grid Overlay

Some of the concepts in this article will be illustrated using examples of the P-Grid
network, thus we next provide a formal description of P-Grid. Figure 1b shows the
tree abstraction and Fig. 2 shows one possible instance of peers’ connections.

P-Grid divides the key-space in mutually exclusive partitions so that the parti-
tions may be represented as a prefix-free set Π ⊆ {0,1}·. Stored data items are
identified by keys in K ⊆ {0,1}·. We assume that all keys have length that is at
least the maximal length of the elements in Π , i.e.,

min
k∈K

|k| ≥max
π∈Π

|π|= πmax

Each key belongs uniquely to one partition because of the fact that the partitions
are mutually exclusive, that is, different elements in Π are not in a prefix relation-
ship, and thus define a radix-exchange trie.

π,π ′ ∈Π ⇒ π �⊆ π ′ ∧π ′ �⊆ π

Bootstrapping Structured Overlays 287

A

B

C

D

E

F

G

H

Fig. 2 The actual P-Grid connectivity graph does not have any hierarchy. The routes are randomly
chosen from complimentary sub-trees of Fig. 1b. The basic P-Grid graph is directional, however
since each link establishment and maintenance cost is the same, and from the symmetry of the
routing choices, the actual P-Grid uses bidirectional routes

where π ⊆ π ′ denotes the prefix relationship. These partitions also exhaust the key-
space, so to say, the key-space is completely covered by these partitions so that each
key belongs to one and only one (because of exclusivity) partition.

In P-Grid each peer p ∈ P is associated with a leaf of the binary tree, and each
leaf has at-least one peer associated to itself. Each leaf corresponds to a binary string
π ∈ Π , also called the key-space partition. Thus each peer p is associated with a
path π(p). For search, the peer stores for each prefix π(p, l) of π(p) of length l
a set of references ρ(p, l) to peers q with property π(p, l) = π(q, l), where π is
the binary string π with the last bit inverted. This means that at each level of the
tree the peer has references to some other peers that do not pertain to the peer’s
subtree at that level which enables the implementation of prefix routing for efficient
search. The whole routing table at peer p is then represented as ρ(p) Moreover,
the actual instance of the P-Grid is determined by the randomized choices made at
each peer for each level out of a much larger combination of choices. The cost for
storing the references and the associated maintenance cost scale as they are bounded
by the depth of the underlying binary tree. This also bounds the search time and
communication cost.

Each peer stores a set of data items δ (p). For d ∈ δ (p) the binary key κ(d) is
calculated using an order-preserving hash function. κ(d) has π(p) as prefix but it
is not excluded that temporarily also other data items are stored at a peer, that is,

288 Anwitaman Datta

the set δ (p,π(p)) of data items whose key matches π(p) can be a proper subset
of δ (p). Moreover, for fault-tolerance, query load-balancing and hot-spot handling,
multiple peers are associated with the same key-space partition (structural repli-
cation). ℜ(κ) represents the set of peers replicating the object corresponding to
key κ . Peers additionally also maintain references to peers with the same path, i.e.,
their replicas ℜ(π(p)), and use epidemic algorithms to maintain replica consistency.
Routing in P-Grid is greedy, and based on matching the longest prefix, similar to the
PRR scheme [25].

There are many other topologies derived from interconnection networks that have
been adapted for P2P settings, but the rest of the chapter will focus on overlays based
on the prevalent ring and tree topologies.

3 Quasi-Sequential Construction of Overlays

The construction of overlays, from the early days have focussed not only in estab-
lishing a logically correct topology, but also on how to ensure that load distribution
across the peers is uniform.

Fig. 3 A new node joining a Chord network. Nodes x and z which are originally neighbors (pre-
decessor and successor of each other) need to update their local information to register that y is the
new neighbor

The original approach to construct most structured overlays assumed an incre-
mental approach, investigating how new nodes can continuously join an existing
network, or how the network manages continuous but gradual departures of existing
nodes – called churn in the network.

Churn in the network requires reallocation of the part of the key space that a peer
is responsible for, as well as rewiring of the connections, for instance in the ring
based networks, ensuring that the ring integrity is maintained is most important.
Ring integrity is ensured by making sure that nodes maintain the right successor
(and predecessor) lists despite churn. To ensure this, it is important to allow only

Bootstrapping Structured Overlays 289

one node to join between a node and its immediate successor at any given time.
Figure 3 depicts such a scenario. Such a scheme makes an implicit assumption that
nodes join in the same part of the key-space in a sequence. Of-course nodes can join
mutually disjoint parts of the key-space simultaneously. Essentially such a model
can thus support quasi-sequential join of peers in the network.

Fig. 4 A new node y joining a P-Grid network by redividing the responsibility with existing peer z.
They also need to update their routing tables, so that, for example, if z receives a query with prefix
· · ·00 it can forward it to y. Other peers, for example x do not need to update any information, and
can continue to forward all queries with prefix · · ·0 still to z

In the case of an overlay like P-Grid abstracting the tree structure, the sequen-
tial overlay construction will require the newly joining peer to negotiate with an
existing peer to redivide key-space partition responsibility (as shown in Fig. 4) or
alternatively decide to become mutual replicas.3

3.1 Load-Balancing Considerations

In order to achieve load-balancing, randomized strategies are often used in such
a setting. Each new node joining the system picks a random point uniformly on
the key-space, and joins the network by splitting that part of the key-space with
whichever peer has been originally responsible for that part of the key-space. Uni-
formly choosing the part of the key-space to join the network was assumed to evenly
partition the key-space. While not highlighted as such, such a randomized strategy
coincidentally makes sure that different peers joining at the same time join different
parts of the network, doing so in an almost trivial way without any need for global
knowledge or coordination.

Uniform random choice of peer’s position in the key-space however leads to
a relatively high variation in the size of key-space partitions for which individual

3 Replication is necessary for both load-sharing and fault-tolerance, but has not been shown in this
specific example. Structurally replicated P-Grid networks will be shown later in Fig. 12.

290 Anwitaman Datta

peers are responsible for. A lot of work has been done to reduce such variation, and
to make the load distribution among peers more uniform. Included among those ap-
proaches is a simple but very effective randomized strategy “power of two choices”,
where each node would choose two (or several) random points on the key-space,
and then join the network in the points with most load [12]. Such an approach is a
variation of the power of two choices originally proposed by Byers et al. [7] in the
context of peer-to-peer systems, where multiple hash values were used to generate
multiple keys for a resource, and then stored at the least loaded peer.

For various reasons, explained in the next section, it may be desirable or even
necessary to construct an overlay in a parallelized manner, a departure from the
original quasi-sequential approach.

4 Parallelized Construction of Overlays

Fast construction of structured overlays has been motivated by several reasons.
Building such a network rapidly from scratch enables fast recovery from catas-
trophic failures as well as easy deployment of such a network on demand, which
can be used to perform tasks required by more complex distributed systems, as
well as eliminate or at least complement complex and expensive overlay mainte-
nance algorithms, allowing for recreation of the whole network instead. From the
perspective of considering the structured overlay as a distributed index structure,
building an overlay from scratch can be considered to be analogous to (re-)indexing
content.

Further motivation: A data-management perspective

In standard database systems it is common practice to regularly (re-)index attributes
to meet changing requirements and optimize search performance. Structured peer-
to-peer overlay networks are increasingly used as an access structure for highly
distributed data-oriented applications, such as relational query processing, metadata
search or information retrieval [4, 24]. Structured overlays’ use was motivated by
the presence of certain features that are supported by their design such as scala-
bility, decentralized maintenance, and robustness under network churn. Compared
to unstructured overlay networks which are also being proposed for these applica-
tions [16, 21], structured overlay networks additionally exhibit much lower band-
width consumption for search as well as guarantee completeness4 for search results.

The standard maintenance model for peer-to-peer overlay networks assumes a
dynamic group of peers forming a network where peers can join and leave, es-
sentially in a sequential manner, as elaborated in the previous section. In addition
proactive or reactive maintenance schemes are used to repair inconsistencies result-
ing from node and network failures or to re-balance load in order to react to data

4 In terms of information retrieval terminology, recall = 1.

Bootstrapping Structured Overlays 291

updates. These approaches to maintenance, that have been extensively studied in the
literature, correspond essentially to updating database index structures in reaction to
updates.

In data-oriented applications resources may be identified by dynamically chang-
ing predicates. Multiple overlay networks can be needed simultaneously, each of
them supporting a specific addressing need. One can illustrate these requirements
by a typical application case of peer-to-peer information retrieval.

The standard application of structured overlay networks in peer-to-peer informa-
tion retrieval is the implementation of a distributed inverted file structure for efficient
keyword based search. In this scenario, several situations occur, in which the overlay
network has to be constructed from scratch:

• A set of documents that is distributed among (a potentially very large
number) of peers is identified as holding information pertaining to a com-
mon topic. To support efficient retrieval for this specific document collection,
a dedicated overlay network implementing inverted file access may have to be
set up.

• A new indexing method, for example, a new text extraction function for iden-
tifying semantically relevant keywords or phrases, is being used to search a set
of semantically related documents distributed among a large set of peers. Since
the index keys change as a result of changing the indexing method a new overlay
network needs to be constructed to support efficient access.

• Due to updates to a distributed document collection an existing distributed in-
verted file has become obsolete. This may either result from not maintaining the
inverted file during document updates or due to changing characteristics of the
global vocabulary and thus changing the indexing strategy (e.g., term selection
based on inverse document frequency). Thus a complete reconstruction of the
overlay network is required.

• Due to catastrophic network failures the standard maintenance mechanisms no
longer can reconstruct a consistent overlay network. Thus the overlay networks
needs to be constructed from scratch. Of course, this scenario applies generally
in any application, but becomes more probable when multiple overlay networks
are deployed in parallel.

In principle a (re-)construction of an overlay network in any of these scenarios
can be achieved by the standard maintenance model of sequential node joins and
leaves. However, this approach encounters two serious problems:

• The peer community will have to decide on a serialization of the process, e.g.,
electing a peer to initiate the process. Thus the peer community has to solve a
leader election problem, which might turn out to be unsolvable for very large
peer populations without making strong assumptions on coordination or limiting
peer autonomy.

• Since the process is performed essentially in a serialized manner, it incurs a sub-
stantial latency. In particular it does not take any advantage of potential paral-
lelization, which would be a natural approach.

292 Anwitaman Datta

These motivate a fundamentally different approach, that of parallelized overlay
construction. Several such mechanisms including [2, 5, 18] have been proposed in
the literature, which we summarize next.

4.1 Sorting Peer-IDs as a Mechanism to Build a Ring

To achieve a strongly stable ring (Definition 3) it is necessary that all nodes know the
correct immediate neighbors (successor and predecessor). This leads to a sorting of
the peers according to their identifiers or responsibility of the parts of the key-space.
Achieving this without the global knowledge of which all peers are in the network,
and without any central coordination of peers to choose the correct neighbors is
a crucial challenge in constructing an overlay. So the problem of constructing a
ring based structured overlay essentially boils down to the problem of decentralized
sorting of the peers according to their identifiers. Now we discuss one rigorous and
one heuristic mechanism to sort peer-IDs.

4.1.1 Pairing and Merging Virtual Trees

Angluin et al. [5] considers the problem of constructing a structured overlay as that
of creating a linked list of nodes sorted according to their identifiers, which can
then be used as the basis for constructing the essential ring of the system. Long
range links useful for optimization can be wired subsequently to make the network
routing efficient.

They assume that any node in the system can communicate with any other node,
once the nodes become aware of each other, which defines a “knowledge graph”.
Initially, this knowledge graph is assumed to be a weakly connected degree bounded
directed (random) graph. That is to say, each node knows a fixed number of random
nodes.

The first step in this approach is to pair nodes using a randomized mechanism.
Based on the original knowledge graph connectivity, every node probes all potential
successors. The recipient of such a probe either accepts (the first received probe)
or rejects to be paired. Ideally, after a round of such pairing is finished, the paired
nodes can behave as a virtual “supernode” to conduct further pairing. Note that such
a pairing of virtual supernodes which are composite of previously paired nodes,
require a merging mechanism. The virtual supernodes are maintained as Patricia
trees, which facilitates the use of tree merging algorithms, and finally provides a
single supernode comprising of all the nodes sorted also as a list.

Figure 5 shows a step of their mechanism as a toy example. Nodes 1 and 7 pair up,
and act as a virtual node, as do nodes 5 and 9. Subsequently these two virtual nodes
(comprising two nodes each), merge to form a single virtual node. The implicit
tree representation allows both efficient mergers, as well as provides readily a tree
structure, apart from sorting the peer identifiers.

Bootstrapping Structured Overlays 293

Fig. 5 Sorting based on iterations of pairing and merging [5]. Once the peer identifiers are sorted,
a ring structure can readily be obtained. Essentially, what is necessary in a decentralized setting to
achieve such a sorted “linked list” is that all peers know the correct predecessors and successors
(multiple entries are useful for fault tolerance)

The main complexities of this approach in a real life scenario (asynchronous
setting) are in determining and phasing the pairing rounds and the merging process,
and avoiding live-locks. In its original form, the algorithm also could not tolerate
any node departure during the overlay construction.

4.1.2 Gossip Based Mechanism

Jelasity et al. [18, 19, 23] proposed a gossip based approach to bootstrap overlays.
They assume that each node can obtain a random subset of the participating peers.
This assumption is similar to the idea of knowledge graph assumed by Angluin
et al. [5].

Each node maintains a constant sized leaf-set, comprising of the nearest nodes
to itself in both direction – termed as predecessors and successors. Ideally, equal

294 Anwitaman Datta

Fig. 6 Sorting based on iterations of gossips [18, 19, 23].

number of predecessors and successors are maintained, but if a node knows fewer
of one kind, then it fills the space with nodes of the other category. Such informa-
tion originally comes from the random subset of participating peers that each node
gets, and eventually is derived from the information that nodes gossip among each
other.

The essential idea is to gossip the leaf-set information, and refine it based on
the information obtained from other nodes. In the toy example shown in Fig. 6,
node 7 originally knows nodes {4,5,9,10}. Likewise 9 knows {6,8,12,14}. By
gossiping with all the nodes 7 knows, which includes 9, 7 gets to know about
6 and 8, its immediate neighbors in this example. In contrast to the rigorous ap-
proach of Angluin et al., the gossip based approach is more a heuristic, in that
while there is no formal proof of convergence, simulation based studies show it
performs pretty well, and nodes get to establish the ring information with few iter-
ations of the gossip mechanism. This mechanism can also be expected to be robust
against node departures and arrivals during the process, and hence may be more
practical.

Bootstrapping Structured Overlays 295

4.2 Recursive Proportional Partitioning

The approach to sort peer identifiers can be considered to be a bottom-up ap-
proach, where the peer identifiers are already chosen (often randomly) and thus
the way the key-space responsibility should be distributed is pre-determined. A log-
ically top-down approach introduced by Aberer et al. [2] proposes to autonomously
and recursively partition the key-space, but in a granularity adaptive to the load-
distribution on the key-space (which can be arbitrarily skewed for data-oriented
applications).

During the overlay construction process, two types of load balancing problems
are dealt with simultaneously – the balancing of storage load among peers under
skewed key distributions (i.e., number of keys per partition is balanced) and the
balancing of the number of replica peers across key space partitions. The first prob-
lem is important to balance workload among peers and is solved by adapting the
overlay network structure to the key distribution. The second one is important to
guarantee approximately uniform availability of keys in unreliable networks where
peers have potentially low availability. This is similar to a classical “balls into bins”
scenario, where the key-space partitions are the bins and the peers (replicas) the
balls. The extra twist, why existing solutions for balls into bins problems can’t
however be directly used is that the number of bins (key-space partitions) itself is
dynamic.

Similar to Angluin et al. [5] and Jelasity et al. [18, 19, 23], this approach also
assumes a (loosely) connected network, so that any node can communicate with any
other node, and particularly uses random walkers on this network to find random
peers with whom to interact. However in contrast to those approaches, where nodes
already have a particular identifier, which determines the part of the key-space parti-
tion that node is responsible for, and the task is to sort the nodes to establish a sorted
list, necessary to construct a ring, Aberer et al. [2] instead allows the nodes to ne-
gotiate among each other to refine the part of the key-space they will be responsible
for. It leads to construction of an overlay (P-Grid) which can support prefix based
routing.

The bilateral negotiations among the peers is illustrated in Fig. 7. Such interac-
tions can lead to three possible course of actions. Two peers may decide to reparti-
tion the part of the key-space they are responsible for, or decide to become mutual
replicas, or refer each other to other suitable peers to interact with. Notice that the
“repartition or replicate” actions are similar in spirit to the sequential approach de-
scribed earlier, but now these actions are happening in parallel for different peers,
and are iterated several times thanks to the “refer” actions.

The essential idea is that all peers are originally responsible for the whole key-
space. Then, they need to find a partner to decide and split responsibility – say,
for the prefixes 0 and 1 respectively. The peers also need to keep track to such a
peer which is responsible for the other half, so that in future a node responsible for
partition 1 can forward all queries for partition 0 to a relevant peer. Thus all peers
responsible for the partition 0 can repartition it for 00 and 01, and so on.

296 Anwitaman Datta

*

1

000,010,100

*

3

101,001

Random
interaction

1: 3

1

000,010,001

0: 1

3

101,100

Possibility 1:
Exchange content, Split the key space,
and update routing table

1: 3
01: 2

1

0001,0011

1: 5
01:2

6

0000

Random
interaction

1: 5
01: 2

6

0000,0001,
0011

Possibility 2:
Become replicas, and reconsile content
Should also have a partial list of replicas
(not shown here) for reconciling content
later, using, e.g. anti-entropy algorithm.

1: 3
01: 2

1

0000,0001,
0011

Peers from same partition (or one’s path is the prefix of other) meet

1: 3
01: 2

1

0: 2

4Random
interaction

Interact with 3

Possibility 3:
Peers can update their routing table
entries (to add redundancy and
randomization), apart from recommending
the peers to meet some other peers (with
better match of path). This induces the
random interactions.

Peers from different partitions meet

Routing table

pid

Index data (only part of the prefix is shown)

(can have multiple entries for each level)

Divide & Conquer Replicate Refer
Simple autonomous actions give an evolving routing network

Legend

*

1

000,010,100

*

1

000,010,100

*

3

101,001

*

3

101,001

Random
interaction

1: 3

1

000,010,001

1: 3

1

000,010,001

0: 1

3

101,100

0: 1

3

101,100

Possibility 1:
Exchange content, Split the key space,
and update routing table

1: 3
01: 2

1

0001,0011

1: 3
01: 2

1

0001,0011

1: 5
01:2

6

0000

1: 5
01:2

6

0000

Random
interaction

1: 5
01: 2

6

0000,0001,
0011

1: 5
01: 2

6

0000,0001,
0011

Possibility 2:
Become replicas, and reconsile content
Should also have a partial list of replicas
(not shown here) for reconciling content
later, using, e.g. anti-entropy algorithm.

1: 3
01: 2

1

0000,0001,
0011

1: 3
01: 2

1

0000,0001,
0011

Peers from same partition (or one’s path is the prefix of other) meet

1: 3
01: 2

1

1: 3
01: 2

1

0: 2

4

0: 2

4Random
interaction

Interact with 3

Possibility 3:
Peers can update their routing table
entries (to add redundancy and
randomization), apart from recommending
the peers to meet some other peers (with
better match of path). This induces the
random interactions.

Peers from different partitions meet

Routing table

pid

Index data

Routing table

pid

Index data (only part of the prefix is shown)

(can have multiple entries for each level)

Divide & Conquer Replicate Refer
Simple autonomous actions give an evolving routing network

Legend

Fig. 7 Network evolution based on pairwise peer interactions

There are several practical problems in realizing the scheme. This includes the
following.
What fraction of peers should choose a specific partition? Ideally this depends on
the load in the specific half of the key-space.

For example, for the example in Fig. 8, there is three times more load for the the
prefix 0 than the prefix 1, and twice the load for prefix 01 than for 00. So ideally,
the peers should evolve into a network, with the partitioning of the key-space and
its replication, as shown in the figure.

There are however two practical problems in realizing such an ideal partition-
ing. Its unrealistic to assume global knowledge like the load-skew. Even if this in-
formation were available, without global coordination, it is not possible to achieve
partitioning of the network among the peers according to the granularity of the load-
distribution.

Aberer et al. [2] provides some heuristics to address these problems. They pro-
pose random sampling of a subset of other peers to estimate the load-imbalance at
each level of repartitioning, and using this estimate to determine parameters of a ran-
domized algorithm to split the key-space which in expectation follows the desired
(estimated) load-skew. Experiments show, that while far from perfect, the heuristics

Bootstrapping Structured Overlays 297

Fig. 8 P-Grid structure: Key-space is partitioned in a granularity adaptive to load-skew. In this
example peers p1 and p7 are structural replicas for the partition for prefix 00. Peer p1 has reference
to peer p2 for prefix 1, and to peer p3 for prefix 01. Peer p7 stores the same keys as peer p1
(replicas), however they can and do have different routing table entries. In practice, for each level,
each peer will also maintain multiple references primarily in order to have some fault-tolerance.
Thus peer p1 would also refer to some of p3, p5 or p8 for the prefix 01

lead to a reasonably well load-balanced network construction. Other maintenance
mechanisms [3] are deployed to further improve the quality of the load-balancing,
but overall, this approach again achieves the primary objective, that of construct-
ing an overlay from scratch in a parallelized manner, more or less conforming to
load-skews to achieve moderate load-balance.

298 Anwitaman Datta

5 The Need and Challenges of Merging Two Similar Structured
Overlays

All the parallelized construction approaches described above assumed (i) an origi-
nally connected network, and that (ii) there is one specific network to join.

Such assumptions implicitly introduces some degree of centralization. What hap-
pens if multiple isolated networks are originally constructed?

In the somewhat frantic rush to identify new cool topologies, or more practi-
cal problems like dealing with load-balancing and churn, the peer-to-peer research
community has until recently ignored a fundamental and realistic problem for struc-
tured overlays that any distributed system needs to deal with – that of making two
partitions of such a system merge to become one. One can speculate several reasons
for such omissions in early structured overlay network research. (i) Merger of iso-
lated overlays is trivially resolved in unstructured overlays, which is where most of
the empirical information of P2P research so far has been derived from. (ii) Until
recently, there has not been any real structured overlay implementations deployed
and hence the problem not identified. (iii) The recent deployments and experiments
have typically been under a controlled setting, where some central coordination like
the use of a common set of bootstrap nodes has been used with the intention and
sufficient coordination to construct only one overlay, making sure that independent
and distinct overlays are not created. Moreover, none of these experiments with real
implementations looked specifically for, or even accidentally, encounter network
partitioning problems.

Apart network partitioning which can lead to the creation of two disjoint overlay
networks there is a more likely scenario. It may so happen that disjoint overlay net-
works (using the same protocols) are formed over time by disjoint group of users.
One may imagine that an overlay P2P network caters to a specific interest group
from a particular geographic area who participate in an overlay network. At a later
time, upon discovering a hitherto unknown group of like-mind users from a differ-
ent part of the world, who use their own “private” network (using same protocols),
these two groups may want to merge their networks in order to benefit from their
mutual resources (like content or knowledge). In fact, such isolated overlay net-
works may result because of initial isolation of groups because of various reasons
including geographic, social or administrative – a large company or country, which
may originally restrict their users from interacting with outsiders in the overlay, and
changes the policy at a later time – or purely because of partitioning of the physical
infrastructure.

Structured overlays have often been touted as a generic substrate for other ap-
plications and services. Ideally, there will be one or few such universal overlays [8]
which will be used by a plethora of other P2P applications. Realizing such an uni-
versal service too will need the possibility to merge originally isolated networks.
Small overlays can be built independently, which may later be all merged together
incrementally into a single overlay network.

Bootstrapping Structured Overlays 299

One can thus imagine isolated islands of functional overlays catering to their
individual participants. Someday, some member from one of these overlays may
discover a member from another overlay. The natural thing to do then would be to
merge the two originally isolated overlays into a single overlay network. In simple
file-sharing networks, the motivation of doing so will be to make accessible content
from both the networks to all the users. Similar conclusions can be drawn for various
other conceivable applications of overlay networks.

In unstructured overlay networks (like Gnutella), merger of two originally iso-
lated overlays happens trivially. Whichever peers from two originally isolated net-
works come in contact with each other need to establish mutual neighborhood re-
lationship, and then onwards just need to forward/route messages to each other as
they do with all other neighbors (Fig. 9). That’s all! Likewise, hierarchical (super-
peer based) unstructured overlays also merge together trivially. This is because no
peer has any specific responsibility and can potentially be responsible for any and
all resources in the network.

One approach to deal with multiple structured overlay networks is to let them
continue to exist and operate autonomously, while allowing cross-network com-
munication. This is typically achieved in a hierarchical fashion, where the original

Fig. 9 Merger of two unstructured overlay networks (like Gnutella) is trivial. As soon as some
peers from each of the two originally isolated networks establish connections to each other, a
merged network is formed

300 Anwitaman Datta

networks act as “sub-networks” which are glued together to form one integrated
network. Two addressing components are used to uniquely determine a peer’s role
in the integrated network – one to determine which autonomous sub-network it be-
longs to, and the other to identify it within the sub-network. The sub-networks can
be distinguished based on a domain name space [13] or by simply allocating a pre-
determined part of the key space for each potential sub-network [6]. Figure 10 shows
example instances of such hierarchically integrated overlays. Such hierarchy allows
nodes to retain communication traffic within a particular domain, or look for keys
available within specific sub-networks instead of the whole integrated network. On
the downside, each peer needs to keep track of more information, including keeping
track of which sub-network it belongs to, at different levels of the hierarchy. For
example, in a hierarchical Chord using the Canon approach each peer also needs to
maintain a list of successors (and hence a ring) at every level of the hierarchy. Thus
the simplicity of a completely flat address space which was a design goal in many
original distributed hash tables is lost.

X

X.a

X.a.i

The `Canon’approach where sub-networks are
distinguished by domain names. A parent domain
emulates a merged network of the children sub-
networks. Each individual subnetworkcan, in
theory, use its own routing mechanism.

domain name based dynamic
creation of sub-networks

pre-determ
ined partitions

for potential sub-netw
orks

01 10 1100

The `Cyclone’approach where inter sub-network
routing is based on XOR distance between
subnetworkidentifiers, while intra-subnetwork
traffic uses proprietary routing mechanism of the
subnetwork.

X.a.i.1 X.a.i.2

subnetworks

Fig. 10 Hierarchically integrated networks based on Canon [13] and Cyclone [6] approaches

An alternative to the hierarchical approaches discussed above is to device mech-
anisms to merge the originally isolated networks, so that a single resulting net-
work is formed. That way peers do not need to keep track of the hierarchy, and
the original overlay (DHT) design of completely flat identifier space is achieved.
Some of the challenges of merging similar structured overlays, which is essen-
tial for decentralized bootstrapping of overlays [11], has been studied by Datta
et al. [10], which we summarize next along with tentative solutions and short-
comings. The discussion below is also pertinent, at least in part, to hierarchi-
cal approach like Canon [13], where the authors overlook the key management
issues.

Bootstrapping Structured Overlays 301

5.1 Merger of Two Ring Based Networks

Consider two originally isolated Chord networks N1 and N2 with N1 and N2 peers
respectively. An example of two such networks (superimposed) is shown in Fig. 11a.
Next we will explain how such isolated networks can merge into one, since such
an organic network growth is not only essential for decentralized bootstrapping,
but also such a merger is necessary to ensure that the overlays retain functionality.
When peers from the two different overlays meet each other (by whatsoever reason
– accidentally or deliberately), in a decentralized setting there is no way for them to
ascertain that they belong to two completely different systems. This is so because
overlay construction always relies on such peer meetings to start with. As a conse-
quence, if the peer pair that meets have identifiers such that they would replace their
respective successor and predecessor, then they will indeed do that.

0

4

8

12

1

2

3

5

6

79

10

11

13

14

15 1,2: 5
3: 10
4: 14

1,2,3: 10
4: 14

1,2,3: 14
4: 3

1,2: 0
3: 3
4: 10

1,2: 3
3: 5
4: 10 1,2,3: 6

4: 12

1,2: 8
3: 12
4: 1

1,2,3: 12
4: 1

1,2,3: 1
4: 6

k: incorrect routing entry
Incorrect successor is critical!

0

4

8

12

1

2

3

5

6

79

10

11

13

14

15 1,2: 5
3: 10
4: 14

1,2,3: 10
4: 14

1,2,3: 14
4: 3

1,2: 0
3: 3
4: 10

1,2: 3
3: 5
4: 10 1,2,3: 6

4: 12

1,2: 8
3: 12
4: 1

1,2,3: 12
4: 1

1,2,3: 1
4: 6

Fig. 11 When (peers from) two ring-based overlays meet

For our example from Fig. 11a lets say peer 1 from N1 meets peer 0 from N2.
Then peer 1 will treat 0 as its new predecessor, and 0 will treat 1 as its new suc-
cessor, instead of 12 and 3 respectively. However, if they only change their local
information, then the ring network will no more be strongly stable (may in-fact not
even be weakly stable). In-fact such a reconfiguration will need and lead to a cas-
cading effect, so that all members of both the original network try to discover the
appropriate immediate neighbors (successor/predecessor) – requiring coordination
among all the peers.

Estimation of the probability that a peer’s predecessor changes:

From the perspective of any peer in N1, the successor will change, if at least 1 out of
the N2 peers have identifier within the next 1/N1 stretch of the key-space (for which
its present successor is responsible, on an average). Any particular peer from N2 has
an identifier for this stretch with probability 1/N1. The number of peers falling in

302 Anwitaman Datta

this stretch is thus distributed as Binomial(N2,1/N1), which approaches to a Poisson
distribution with expectation N2/N1 as N2 →∞. Hence, a peer from N1 will have its
successor unchanged with probability e−λ1 where λ1 = N2/N1. Thus each of the N1

peers will have their successor node changed with a probability 1−e−λ1 i.i.d. Peers
in N2 will be affected similarly with a parameter λ2 = N1/N2 (symmetry).

Estimate of the number of peer pairs which will have their immediate neighbors
(either successor and/or predecessor) changed:

The number of peers whose successor will change in Ni is then distributed binomi-
ally Binomial(Ni,1− e−λi) for i =1,2. Hence the expected number of nodes which
will need to correct their successor nodes (and predecessor nodes) is N1(1−e−λ1)+
N2(1− e−λ2).

The basic idea of how the ring can be reestablished is that when two peers from
different networks meet so that they replace each other’s successor and predeces-
sor (immediate neighbor), then this information needs to be communicated to the
original immediate neighbors, and the process continues.

There are several combinations of how the neighborhoods of the peers are af-
fected after their interaction, each of which needs to be accounted for the actual
network merger algorithm. Moreover, different combinations of faults (single or
multiple peers crashing or leaving) can happen during the ring merger, and these
too need to be dealt with. The specifics of such algorithms, and evaluation of the
actual ring network merger algorithm is currently underway.

Without proper and exhaustive evaluation of the exact algorithms for merging
two ring networks, it is difficult to see whether a strongly stable ring can be di-
rectly achieved, or whether a sequence of faults during the merger of two rings
can even lead to a loopy network, which would then require even more effort to
converge to a strongly stable state using Chord’s already existing self-stabilizing
mechanisms.

Thus the back of the envelope analysis above just provides the expected lower-
bound of the ring reestablishment process in terms of correction of successor/pre-
decessors. The latency of such a process started because of two peers from the two
networks will be O(N1 + N2) even if there is no membership changes during the
whole merger process – this is the time required to percolate the information that
the ring neighborhood has changed and to discover the correct neighbor when peers
from both the original networks are considered together.

5.1.1 Ring Loses Bearing During the Merge Process

Above we provided a sketch of how to only reestablish the ring topology – which
only guarantees the functional correctness of the routing process – i.e., the query
will be routed to the peer which is supposed to be responsible for the key-space to
which the queried key belongs.

Bootstrapping Structured Overlays 303

Reestablishing the ring will be necessary in order to be able to query and locate
even the objects which were accessible in the original network of any individual net-
work. Hence, such a merger operation of ring topology based overlay will typically
cause a complete interruption of the overlay’s functioning.5

5.1.2 Managing Keys on the Merged Ring

Establishing the ring in itself is however not sufficient in an overlay network based
index. In order to really find all keys (which originally existed in at least one of
the two networks) from any peer in the merged network, it will still be necessary
to transfer the corresponding key/value data to the “possibly” different peer which
has become responsible for the new overlay. To make things worse, in a ring based
network the queries will be routed to the new peer which is responsible for a key, so
that even after the reestablishment of the ring itself, some keys that could be found
in the original networks may also not be immediately accessible, and will need to
wait until the keys are moved to the new corresponding peer.

Lets consider that before the networks started merging, network Ni had key set
Di such that |Di| = Di. Furthermore, if we consider that α fraction of the keys in
the two networks is exclusive, that is |D1∩D2| = α|D1∪D2|, then on an average,
if a Ni node’s successor changes, it will be necessary to transfer on an average α
fraction of the data from network N j’s 1

N1+N2
stretch of the key-space. Thus, on an

average, the minimum6 required transfer of unique data from members of original
networks N j to Ni will be D j→i

tx = N1(1− e−λ1)α D2
N1+N2

.
Apart from assigning the data corresponding to a key on the key-space to the peer

which is the successor for that key, ring based topologies provide fault-tolerance by
replicating the same data at fs consecutive peers on the ring.7 Given the strict choice
of fs as neighborhood changes, the transferred data will in-fact have to be replicated
at the precise fs consecutive peers of the merged network, determining the actual
minimal bandwidth consumption. Similarly, some of the original fs replicas will
need to discard the originally replicated content.

5 Note that such a vulnerability may expose ring topologies to a new kind of “throwing rings into
the ring” distributed denial of service (DDoS) attack, though the implications of such an attack and
the amount of resources an adversary will require to make such a DDoS attack needs to be studied
in greater detail.
6 The actual implementation of such a data transfer will need to identify the distinct data in the two
networks and transfer only the non-intersecting one, in order to achieve this minimal effort. This is
an orthogonal but important practical issue that any implementation will need to look into.
7 The parameter fs is a predetermined global constant determined by the system designer.

304 Anwitaman Datta

5.2 Merger of Two Structurally Replicated P-Grid Networks

In the P-Grid network, replication is achieved in a very different manner than in
a ring based overlay. Multiple peers are responsible for (by replicating) precisely
the same exclusive key-space partition. This is called structural replication, and is
in contrast to the ring based approach, where the replication is done along some-
thing like a sliding window, at the next fs peers on the ring. Effectively structural
replication can be thought of as multiple virtual instances of the same key-space
partitioned network superimposed with each other. For example, in Fig. 12a the net-
work N2 can be thought of composed itself of superimposition of two networks,
the first say comprising of nodes U , W and X , while the other nodes belonging to
the other virtual network. The routing reference maintained by the peers are inter-
twined, and does not need to discern the virtual networks, and is indeed desirable to
achieve greater interconnection of the routing network.

When peers from different overlays meet, similar to the situation in the ring net-
works, it will be desirable to achieve a merger of the two into a single intertwined
network. Figure 12 shows an example of such originally isolated overlays, and the
subsequent single merged overlay.

Notice that the originally isolated overlays N1 and N2 do not have identical
partitioning of the key-spaces, but the eventual merged overlay shown in Fig. 12b
should. Next we sketch how such a merger process will happen.

If peers from the two different networks meet, so that their paths are exactly
the same (for example peers A and U from networks N1 and N2 respectively in
Fig. 12a), then they will execute an anti-entropy algorithm to reconcile their content
and become mutual structural replicas. In fact, such an anti-entropy algorithm will
have to be run among all the other structural replicas of that part of the key-space
too, and eventually of the other parts as well. However, since the original members
of each network still retain the original routing links, routing functionality is not
affected – and whichever keys were originally accessible will continue to be acces-
sible. So to say, peer C will always be able to access all the keys/content available at
A before the merger process. The keys from the same key-space which were present
in the other network would however be available only after the background replica-
tion synchronization has completed. That is to say, a resource available originally
only in N2 at U and Z (but with the same prefix 00 as A) will be visible to C only
when A has synchronized its content with any one of U or Z.

Use of structural replication has an additional downside – by not limiting the
number of replicas nor having a proper structure among the replicas, it is difficult
to have knowledge of the full replica subnetwork at each peer, and hence updates
and replica synchronization is typically probabilistic. In contrast, once the ring is
reestablished, replica positions are deterministic and hence locating replica is trivial
in ring based topologies. Having discovered a replica, the anti-entropy algorithm
itself (is an orthogonal issue) and hence the cost of synchronization of a pair of
peers will be the same.

When two peers from N1 and N2 meet so that one’s path is strictly a prefix of
the other peer’ path, then the peer with shorter path can execute a normal network

Bootstrapping Structured Overlays 305

00*

0*

01*

1*

10*11*

AA FF BB CC DD EE
1* : C, D
01* : B

1* : E
01* : B

1* : C, D
00* : F

0* : A, B
11* : E

0* : A, F
11* : E

0* : B, F
10* : D

HH GG

1* : E, D
00* : A

00*

0*

01*

1*

UU ZZ WW
XX YY

1* : X
01*:W

1* : Y
01* : Q

1* : X
00* : Z

0* : U, W 0*: Z, WQQ

1* : Y
00* : U

0* : H, F
10* : C

1

2

(a) Peers from two P-Grid networks meet

00*

0*

01*

1*

10* 11*

AA FF

1* : C, D
01* : B

1* : E
01* : B

UU ZZ

1* : X
01* :W

1* : Y
01* : Q

BB

1* : C, D
00* : F

HH

1* : E, D
00* : A

WW

1* : X
00* : Z

QQ

1* : Y
00* : U

CC DD

0* : A, B
11* : E

0* : A, F
11* : E

XX

0* : U, W
11* : E

YY

0* : Z, W
10* : C

EE

0* : B, F
10* : D

GG

0* : H, F
10* : C

Peers with same path
become mutual replicas and

use anti-entropy to synchronize content,
and

gossip random routing entries
for

redundancy and randomization

Peers with less specialized paths
become replica of some peer with longer path

(using the joining algorithm)
and synchronize content

and borrow routing table information

(b) Ideal P-Grid network comprising peers from both networks

Fig. 12 When (peers from) two structurally replicated overlays meet

joining algorithm [2] – extending its path to replicate either the peer it met, or a peer
this peer refers it to. For example, Y may extend its path from 1 to 11. In order to
do so, Y will need to synchronize its content with one of the peers which originally
had the path 11, say G. Moreover Y will need to obtain routing reference to a peer
responsible for the path 10 (e.g., peer C) – information it can obtain from G itself.

Since new peers join as structural replica or existing peers, no other existing peer
need necessarily to update their routing table for routing functionality (unlike in a
ring based topology). Thus, peer Q referring to Y for prefix 1 continues to refer to it
as such, and any query 10 from Q is routed first to Y , which then forwards it to – say
C. Peers may however, over time add more routing entries, for instance, Q adding
a reference to D for redundancy in its routing table for the prefix 1. Such changes
however is a normal process in the P-Grid network and can be carried on in the
background, again without interrupting the functioning of the overlay (and in fact
instead making it more resilient to faults and churn).

306 Anwitaman Datta

Consequently, neither joining peers, nor merger of two existing overlay network
disrupt the available functionality of the network members.8

If peers with different paths meet each other, they need to do nothing, though they
can refer each other to peers which are most likely to have the same path (similar
to ring based topologies which can forward the peers closer to their respective key-
spaces).

5.2.1 Managing Keys in the Merged Network

The amount of data that needs to be transferred from each system to the other is
essentially the non-intersecting data. However, there is no need to transfer data from
one peer to another merely because the key-space partition a peer is responsible for
changes – because with structural replication, new peer joins or network mergers do
not in itself automatically change the network’s structure.9

The important thing to reemphasize is that a peer always finds the keys it could
find before the merger process began, irrespective of the state of the merger process.
Hence the replica synchronization can be done as a slow back-ground process –
hence the performance and network usage is also graceful – that is, merger of two
overlays does not suddenly overburden the physical network’s resources nor disrupt
the functioning of the overlay networks. Such a graceful merger of existing net-
works also facilitates highly parallelized overlay construction [2] in contrast to the
traditional sequential overlay construction approaches.

6 Summary and Conclusion

Research and development in structured overlays now spanning almost a decade,
has focused on diverse issues. Adaptation of different topologies in a peer-to-peer
environment characterized by large scale, peer autonomy and membership dynam-
ics, maintenance of these topologies – both in terms of ensuring that the topology
invariants such as the ring invariant are continuously satisfied, as well as that other
performance related concerns like load-balancing are addressed. These activities ac-
count for the first five-six years o structured overlay research, bringing it from the
drawing board of theoretical results and simulation based validations starting around
2000–2001 to the actual prototyping and benchmark experiments in moderate scale
in a controlled environment and with adequate coordination around 2005–2006. The
final essential ingredient for a large scale deployment of structured overlays is to al-
low merger of smaller overlays to form a larger one organically. These smaller over-

8 Note that the above discussion is true only for write once and then onwards read-only data, since
for read/write, it will be necessary to maintain the replicas more pro-actively.
9 Local view of the structure however changes when a peer with shorter path meets a peer with
longer path, and extends its own path according to the network construction algorithm [2], as
explained above.

Bootstrapping Structured Overlays 307

lays can be bootstrapped using any of all the possible manners – quasi-sequential,
parallelized, or by merger of even smaller networks. This chapter provides a high
level summary and survey of the various kinds of bootstrapping mechanisms for
some of the predominant classes of structured overlays.

Acknowledgement

The work presented in this article is partially supported by A*Star SERC Grant No.
0721340055.

Disclaimer: This article summarizes different bootstrapping mechanisms for
structured overlay networks, including approaches designed by third parties as well
as myself along with various collaborators. The different approaches have accord-
ingly been cited so that each mechanism can be attributed to their original designers.

References

1. K. Aberer (Conference on Cooperative Information Systems (CoopIS 2001)) P-Grid: A self-
organizing access structure for P2P information systems.

2. K. Aberer, A. Datta, M. Hauswirth and R. Schmidt (VLDB 2005) Indexing data-oriented
overlay networks.

3. K. Aberer, A. Datta and M. Hauswirth (Self-* Properties in Complex Information Systems,
”Hot Topics” series, LNCS, 2005) Multifaceted Simultaneous Load Balancing in DHT-based
P2P systems: A new game with old balls and bins.

4. S. Abiteboul and I. Manolescu and N. Preda (SWDB 2004) Constructing and Querying Peer-
to-Peer Warehouses of XML Resources.

5. D. Angluin, J. Aspnes, J. Chen, Y. Wu and Y. Yin (SPAA 2005) Fast construction of overlay
networks.

6. M.S. Artigas, P.G. Lopez, J.P. Ahullo and A.F. Gomez-Skarmeta Cyclone: A Novel Design
Schema for Hierarchical DHTs, (P2P 2005).

7. J. Byers, J. Considine and M. Mitzenmacher (IPTPS 2003) Simple Load Balancing for Dis-
tributed Hash Tables.

8. M. Castro and P. Druschel and A-M Kermarrec and A. Rowstron (ACM SIGOPS European
Workshop 2002) One ring to rule them all: service discovery and binding in structured peer-
to-peer overlay networks.

9. I. Clarke, T. W. Hong, S. G. Miller, O. Sandberg, B. Wiley (IEEE Internet Computing, vol.6
no.1, 2002) Protecting Free Expression Online with Freenet.

10. A. Datta and K. Aberer (IWSOS 2006) The challenges of merging two similar structured
overlays: A tale of two networks.

11. A. Datta (SASO 2007) Merging Intra-Planetary Index Structures: Decentralized Bootstrap-
ping of Overlays.

12. A. Datta EPFL Phd. Thesis 3615 (2006) SoS: Self-organizing Substrates.
13. P. Ganesan, K. Gummadi and H. Garcia-Molina (ICDCS 2004) Canon in G Major: Designing

DHTs with Hierarchical Structure.
14. S. Girdzijauskas, A. Datta and K. Aberer (International Workshop on Networking Meets

Databases, NetDB 2005) On Small-World Graphs in Non-uniformly Distributed Key Spaces.

308 Anwitaman Datta

15. S. Girdzijauskas, W. Galuba, V. Darlagiannis, A. Datta and K. Aberer (accepted for pub-
lication in Springer’s Peer-to-Peer Networking and Applications Journal) Fuzzynet: Zero-
maintenance Ringless Overlay.

16. A. Y. Halevy, Z. G. Ives, J. Madhavan, P. Mork, D. Suciu and I. Tatarinov (TKDE vol.16
no.7, 2004) The Piazza Peer Data Management System.

17. IETF-RFC:3174 (http://www.ietf.org/rfc/rfc3174.txt, 2001) Secure Hash Algorithm 1
(SHA1).

18. M. Jelasity and O. Babaoglu (ESOA 2005) T-Man: Gossip-based overlay topology manage-
ment.

19. M. Jelasity, A. Montresor and O. Babaoglu (IEEE International Conference on Distributed
Computing Systems Workshops, 2006) The Bootstrapping Service.

20. J. Kleinberg (STOC 2000) The Small-World Phenomenon: An Algorithmic Perspective.
21. G. Koloniari and E. Pitoura (EDBT 2004) Content-Based Routing of Path Queries in Peer-

to-Peer Systems.
22. P. Maymounkov and D. Mazieres (IPTPS 2002) Kademlia: A peer-to-peer information system

based on the XOR metric.
23. A. Montresor, M. Jelasity and O. Babaoglu (P2P 2005) Chord on Demand.
24. W. Nejdl, M. Wolpers, W. Siberski, C. Schmitz, M. Schlosser, I. Brunkhorst and A. Löser

(Journal of Semantic Web, vol.1 no.2, 2004) Super-peer-based routing strategies for RDF-
based peer-to-peer networks.

25. C. G. Plaxton, R. Rajaraman and A. W. Richa (SPAA 1997) Accessing Nearby Copies of
Replicated Objects in a Distributed Environment.

26. A. Rowstron and P. Druschel (Middleware 2001) Pastry: Scalable, distributed object location
and routing for large-scale peer-to-peer systems.

27. I. Stoica, R. Morris, D. Karger, F. Kaashoek and H. Balakrishnan (SIGCOMM 2001) Chord:
A Scalable Peer-To-Peer Lookup Service for Internet Applications.

28. B.Y. Zhao, J.D. Kubiatowicz and A. D. Joseph (2001 UC Berkeley Technical Re-
port UCB/CSD-01-1141) Tapestry: An infrastructure for fault-tolerant wide-are location
and routing.

Network-Aware DHT-Based P2P Systems

Marguerite Fayçal and Ahmed Serhrouchni

Abstract P2P networks lay over existing IP networks and infrastructure. This chap-
ter investigates the relation between both layers, details the motivations for net-
work awareness in P2P systems, and elucidates the requirements P2P systems have
to meet for efficient network awareness. Since new P2P systems are mostly based
on DHTs, we also present and analyse DHT-based architectures. And after a brief
presentation of different existing network-awareness solutions, the chapter goes on
effective cooperation between P2P traffic and network providers’ business agree-
ments, and introduces emerging DHT-based P2P systems that are network aware
through a semantic defined for resource sharing. These new systems ensure also a
certain context-awareness. So, they are analyzed and compared before an open end
on prospects of network awareness in P2P systems.

1 Motivations

Peer-to-peer (P2P) networks are an evolution of the Internet network, and lay over
it. However, the Internet network is composed of tens of thousands smaller indepen-
dent networks called Autonomous Systems (AS) and belonging to various adminis-
trative entities (e.g., network providers, universities, companies, etc.), each having
its own routing policies. Bilateral connections between ASs are governed by busi-
ness agreements negotiated between the entities they belong to [1]. And routing in-
formation between ASs is exchanged via an exterior gateway protocol such as BGP

Marguerite Fayçal
Institut Telecom, TELECOM-ParisTech, 46 rue Barrault, 75013 Paris, France,
e-mail: Marguerite.Faycal@telecom-paristech.fr

Ahmed Serhrouchni
Institut Telecom, TELECOM-ParisTech, 46 rue Barrault, 75013 Paris, France,
e-mail: Ahmed.Serhrouchni@telecom-paristech.fr

X. Shen et al. (eds.), Handbook of Peer-to-Peer Networking, 309
DOI 10.1007/978-0-387-09751-0 12, © Springer Science+Business Media, LLC 2010

310 Marguerite Fayçal and Ahmed Serhrouchni

[2]. But in P2P networks, routing tasks are distributed across all system peers in an
autonomous and spontaneous way without taking the IP network structure or routing
into account, and consequent traffic often cross network boundaries multiple times
[3], causing redundant traffic and extra delay, and overloading links, increasing the
risk of their congestion.

Last years, many researches went on to investigate and understand the relation
between routing in the overlay and underlay IP network. Reference [4] shows how
current ISP traffic engineering techniques are inadequate to deal with emerging
overlay network services, as overlays do not follow ISP’s policies. It also illustrate
how an uncoordinated effort of the two layers to recover from failures may cause
performance degradation for both overlay and non-overlay traffic. The problem of
rerouting around failed links was also tackled in [5], which finds out that tuning
underlay routing parameters improves overlay performance. Using game theoretic
models, [6] studies the interaction between overlay routing and traffic engineering
within an AS, and shows that the selfish behavior of an overlay can cause huge
cost increases to the whole network. Also [7], which deals with voice over IP as
a successful application of P2P, shows that the quality of the relay paths could be
improved when the underlying network AS topology is considered.

Moreover, focusing on P2P platforms and applications, their overall performance
also depends on the performance of their background P2P routing protocol. So, new
systems are mostly based on distributed hash tables (DHT), which are algorithms
that provide efficient mechanisms for resource location. However, DHTs assume
the system is uniform in available resources and that every node participating in the
DHT is within the same transport domain.

Otherwise, despite various hurdles, as copyright issues, legality matters, and se-
curity concerns, P2P networks and systems still gain in popularity. The research
community continues also to develop interesting applications of P2P technology,
together with new platforms for application development. P2P is then used for in-
creasing scalability and decreasing the cost of management and deployment. The
consequently continually growth of the P2P traffic appears thus somehow daunting
for network providers. An effective cooperation between both parts is then challeng-
ing, so that according to the underlying network, peers can find the best instance of
the resource they target. But underlay awareness at the P2P level becomes therefore
necessary and unavoidable.

2 DHT-Based Architectures

Mathematically, a DHT is a distributed injective hash function that associates keys
with values, both in the same logical key space K. In DHT-based structured P2P sys-
tems, the ownership of this key space is split among the active peers of the network.
A global unique identifier is thus assigned to every node; it is known as the nodeID.
Similarly every object has a global unique objectID. An object can be any kind of
resource.

Network-Aware DHT-Based P2P Systems 311

DHT algorithms map then objectIDs to the node responsible for that object. They
implements lookup and retrieval functionalities providing two main functions: a
put(key, data) function that fills the table with couples of corresponding keys and
values, and a get(key) function that permits to locate an object, taking the object’s
key (which is the objectID) and returning the nodeID of the peer responsible for that
object [8]. The responsible node then either supplies the object directly or indicates
where (or how) it can be acquired.

So, given a hash function h that should balance the distribution of keys through-
out the logical space K, and a resource identifier r that the peer p of address IP @IP
wants to share on the network, we have then:

h(r) = k ∈ K ; where k is the ob jectID
and

h(@IP) = i ∈ K; where i is the nodeID

Then, the resource r, or a link towards this resource, is stored on the peer p of
address @IP, so that dist (k, i) is minimal; dist (k, i) being the distance between
k and i, according to the distance definition in the logical space K. In other words,
each peer owns all the resources (or links towards the resources) whose key is, in the
logical key space, closest to the identifier of that peer. Thus, in the DHT, k is mapped
to i, and the peer p can retrieve r. Likewise, each peer identified by j can retrieve,
thanks to his DHT, any resource whose identifier m is closest to j. If j doesn’t have
m in its DHT, it has at least an n closest to m. Consequently, each key lookup is
resolved by iteration, in multiple steps, resulting in a multihop path to be taken in
the overlay [9]. DHTs can thus effectively route messages to the unique owner of
any given key, and they are typically designed to scale to large numbers of nodes.
Typically, the worst case cost to locate an object, in terms of number of messages
exchanged, is logarithmic with the number of peers.

The key feature of DHTs used to build P2P architectures is that they use con-
sistent hashing [10], which means that changes to the location where data items
are stored are minimal when new locations are added or old locations are removed.
In fact, as peers enter and leave the network, messages are exchanged between the
peers in the DHT to preserve the structure of the DHT and exchange stored entries.
DHTs provide thus data with high degree of availability across a set of peers with
dynamic membership. Various DHT implementations may visualize the hash space
as a line, a ring, a tree-like structure, a grid, etc. Reference [11] discusses basic ge-
ometry underlying DHT routing algorithms and how it impacts their performance
in two important areas: static resilience and proximity routing.

All DHT-based P2P architectures share the following four main properties [12]:

1. Low degree: each peer keeps only a small number of active connections to other
peers.

2. Low diameter: the maximal number of necessary hops to reach any peer of the
network is minimized.

3. Greedy routing: peers independently calculate a short path to the destination.
4. Robustness: even if links or peers fail, a path to the destination can be found.

312 Marguerite Fayçal and Ahmed Serhrouchni

In DHT-based P2P systems, nodes organize themselves in accordance with the
DHT’s implementation to form a communication graph with an optimal diameter /
degree trade-off. Each peer maintains addresses of other peers participating in the
same DHT in a routing table, sorted according to specific criteria. And in order to
reduce path latency of distributed queries, DHT algorithms include round trip time
estimations among such criteria [13].

Nevertheless, DHTs suffer some limitations. First of all, the partitioning of the
key space in a DHT is directly related to the number of nodes residing in the system
at any given time. As such, whenever a new node joins the system or an existing
node leaves it or fails, the partitioning changes, and data must be moved so that
the system still works properly and live nodes still be able to determine through the
DHT substrate the current live node responsible for the key they look for. Second,
DHTs are not designed to answer interval queries, since they link only one object to
each key. Lastly, the problem we address in this chapter is the fact that DHTs leave
aside the structural aspect of the underlay IP network, assuming that every node
participating in the DHT is within the same transport domain. In fact, a single hop
in the DHT is likely to involve multiple routing hops in the Internet, and successive
hops may lead a message travel back and forth several times. Thus, the physical path
so travelled is often less than optimal. DHTs assume also that the system is uniform
in resources, since they leave also aside the available resources at each node, such
as network bandwidth, free processor, or storage capacity available at each active
peer.

More details on DHTs’ evaluation can be found in the following. Reference [14]
addresses problems in DHT P2P applications. Reference [15] discusses churn. And
[16, 17] present performance studies of various DHT algorithms with and without
churn.

DHT-based P2P routing protocols are commonly called DHTs. They were first
introduced to the research community through four different architectures: Chord
[18], Pastry [19], CAN [20], Tapestry [21]. Since that time, a plethora of other DHTs
emerged. Some of the most well-known ones are Kademlia [22], Viceroy [23], Bam-
boo [15], D2B [24]. And the list still grows longer, although very few are publicly
released with robust implementations. However, Kademlia is already integrated in
two of the most popular P2P filesharing applications: BitTorrent [25], Emule [26].

3 Requirements

As a direct consequence of the total distribution of the Internet, and as DHT-based
networks lay over the Internet, it is quite likely that topology information would
be distributed at an ISP, a network provider, or an AS or domain level. Thus, be-
side scalability and robustness, network-aware P2P systems aim to satisfy both P2P
users and ISPs. The former are interested in an enhanced time of data retrieval,
with better performance; the latter are interested in avoiding congestion on critical

Network-Aware DHT-Based P2P Systems 313

links, and look forward to both the optimization of network resources usage, such
as bandwidth, and the reduction of operation costs.

Effectively using the underlay network information implies two essential parts:

• firstly, discovery techniques, generating and providing underlay network prox-
imity information,

• secondly, techniques exploiting such information in both query routing and data
retrieval processes.

Three techniques of generating proximity information may be identified [27]:

• Expanding ring search is a flooding technique for measuring the round-trip time
(RTT) between a node and all the others within a defined radius (in terms of
network hops).

• Heuristic based approaches consist in measuring the RTT between a node and
its close neighbours only.

• Landmark clustering measures RTTs to selected landmark nodes, and sorts the
landmarks in terms of increasing RTTs. Intuitively, nodes having similar dis-
tances to these landmarks are close to each other in terms of network latency.
This scheme is used in [28].

Vivaldi [29] assigns synthetic coordinates to Internet hosts, so that the Euclidean
distance between two hosts’ coordinates predicts the network latency between them,
with no need of landmark nodes.

Most works on estimating topology information focus on predicting network dis-
tance in terms of latency. But for many P2P applications, e.g., video-based ones,
throughput is often a more important quality metric. The iPlane service [30] aims
then to generate and maintain an “atlas” of the Internet using active measurements
that contains information about latency, bandwidth, capacity and loss rates between
arbitrary Internet hosts.

However, available bandwidth and lossrate estimation from end hosts may be
somewhat obscured by lastmile bottlenecks. The notion of network tomography
summarizes techniques of active network probing and passive traffic monitoring
to infer information about the network topology and link-level characteristics [31].

Lastly, the topology awareness of overlay networks can be modelled, involv-
ing a mathematical metric for the degree of topology matching between an overlay
network and its underlying physical network [32]. The model is based on an op-
timization problem, a NP hard problem but solvable in polynomial time for some
particular inputs [32].

4 State of the Art

First DHT-based P2P protocols were developed agnostic of the underlay topol-
ogy. However, Pastry [19] uses certain heuristics to exploit physical network prox-
imity in its overlay routing tables. But decisions are only made when there is

314 Marguerite Fayçal and Ahmed Serhrouchni

a choice between nodes, and locality is not exploited for the underlying routing
strategy.

Existing techniques that permit to exploit the network proximity information
are subdivided into three categories [33]: proximity routing, geographic layout or
topology-based nodeID assignment, and proximity neighbour selection [34].

1. With Proximity routing, the overlay network is built independently of the physi-
cal topology. During the routing process, if a peer has the opportunity to choose
among k possible next hops, it chooses to route the message towards the closest
node in the underlay network, among this set of k nodes. An alternative is to
choose to route towards the node that represents the best compromise between
proximity and progress in the overlay key space. The overall performance of this
technique depends thus on k that is proportional to the size of the routing table.
Moreover, small hops may be thwarted by an increase of the number of hops.

2. Topology-based nodeID assignment aims to map the overlay key space onto the
underlay topology, and biases the nodeID assignment. Consequently, delays de-
crease certainly, but uniform distribution of nodeIDs in the overlay key space is
violated, which leads to loadbalancing problems. Neighbouring nodes are also
likely to suffer correlated failures, and thus both robustness and security of the
system are likely to be weakened. However, this technique has been successfully
used to create a topologically sensitive CAN [28] but it cannot be applied in a
one-dimensional id space (e.g., Chord [18], Pastry [19]).

3. Proximity neighbor selection: Like the previous one, this technique builds a
topology-aware overlay. But instead of biasing the nodeID assignment, it chooses
the routing table entries to refer to the closest nodes at the underlay level among
all the ones that satisfy the algorithm. This technique is likely to have success
only when applied to an overlay protocol that allows certain freedom in con-
structing routing tables without affecting the diameter. Thus, it can be used with
Pastry [19] when constructing the neighbourhood set, but not with CAN [20] or
Chord [18], where each routing table entry refers to a very specific point in the
overlay key space. Consequently, proximity neighbour selection introduces only
low overhead when implemented, and facilitates the cache management since
overlay neighbours are likely to be also neighbours at the underlay layer. It can
also be viewed as a good compromise decreasing the network’s diameter and
preserving the load balance, but neighbours’ discovery is still tightly related to
the protocol.

These three techniques of using generated network proximity information have
their limits and are enormously linked in the overlay protocol. Thus, new structural
solutions emerged afterwards, and the list still continues to lengthen.

Hereafter, we give a brief presentation of different well-known DHT-based
topology-aware P2P systems, namely: Brocade [35], the expressway [36], Hieras
[37], Toplus [38] and Plethora [39].

Network-Aware DHT-Based P2P Systems 315

Brocade [35] adds a secondary overlay on top of a primary DHT-based P2P net-
work that exploits knowledge of the underlying network characteristics. The sec-
ondary layer consists of nodes having high network capacities (bandwidth, pro-
cessing power), and situated near the network access points such as gateways and
routers. These nodes are called supernodes and act as landmarks for each network
domain. Each supernode manages a set of local nodes to reduce the traffic in the net-
work, but has to keep information about all overlay nodes inside its domain. They
may thus become bottleneck points. To route a message each node first connects to
the nearby supernode, then uses the second layer as a shortcut to the destination,
reducing both network bandwidth usage and overall physical hops. But this layer
still uses a logical routing, which involves for each logical hop several ones at the
underlying IP level. Thus, to a certain extent, Brocade pushes the problem back to a
secondary network of smaller size.

The expressway [36] is an auxiliary network constructed on top of any primary
DHT-based P2P overlay, in order to take advantage of the inherent heterogeneity of
the underlay network (node connectivity, physical proximity, forwarding capacity,
node availability). Two generic approaches exist for such a construction. The first
approach uses the AS-level topology derived from BGP [2] reports. The second
approach uses a landmark numbering technique that enables proximity neighbour
selection and can deal with changing network conditions. The constructed auxiliary
network is called an expressway as it is intended to speed up routing. It is formed
by nodes with high network capacity, situated near gateways or routers, and called
expressway nodes. The first approach requires that every node knows all the nodes
in its AS. And to route a message, a node contacts first its local expressway node:
the one in its AS or its landmark cluster. In the second one, routing is similar to
Distance Vector Routing.

Hieras [37] is a multilayer hierarchical system intending to relieve the problem
of distributed overlay routing tasks without awareness of underlay network link la-
tency. At the highest level, peers are grouped in one big ring, and at the lower ones,
topologically adjacent peers are grouped into several disjointed rings. But each peer
belongs to all the levels simultaneously and manages thus more than one successor
list. Each ring is a subset of the overall P2P network and is created in such a strat-
egy that the average link latency between two peers in lower level rings is much
smaller than higher level rings. To estimate such proximity for each ring, Hieras
employs distributed binning [28], requiring thus the existence of well-defined land-
marks nodes. In Hieras, routing tasks are first executed in the smallest ring first.
If it fails, it moves up to higher level rings, until eventually reaching the highest
level. But a majority of routing hops previously executed in the global P2P ring is
so replaced by hops in lower level rings, reducing thus routing latencies.

Toplus [38] is a hierarchical lookup service for structured P2P networks. It orga-
nizes peers in groups according to their network IP prefixes, and groups into a new
higher order group, and so on following the Internet hierarchical topology it gets
from BGP tables [2]. Thus, an AS is subdivided into an IP hierarchy. The routing
mechanism of Toplus is based on a generalization of longest prefix matching of IP
addresses, using the XOR metric, like Kademlia [22]. Both structure and look up

316 Marguerite Fayçal and Ahmed Serhrouchni

performance of Toplus follow those of the Internet network. However, Toplus suf-
fers a number of drawbacks. Obviously, it is sensitive to correlated node failures that
may bring down an entire set of related IP addresses. And another matter is the un-
balanced load among the nodes, since the population of the id space is not uniform,
because the number of active nodes in an inner group is not necessarily proportional
to the IP addresses it covers.

Plethora [39] is a two-layer wide area read-write repository, where peers are ex-
pected to have a partially persistent network state and good Internet connectivity
in terms of bandwidth. On the top of the global overlay that contains all the peers,
the Plethora routing core organizes peers into several local overlays according to
ASs and associated proximity. Local overlays serve as locality-aware caches for the
global overlay to improve access time to data items. Queries are thus routed first in
the local overlay. The size of the local overlay impacts the system’s performance
and is thus defined by two system parameters: a maximum and a minimum numbers
of peers. The size of each local overlay is controlled by the one of its peers with the
smallest identifier. Two distributed algorithms are also active in the system. One for
merging local overlays when necessary and another one for splitting them with a
high probability guarantee that nodes in the same AS stay in the same local overlay
after a split operation.

Many other systems still emerge to enhance P2P system’s performance by ex-
ploiting underlay topology information. And recently, new architectures emerged
for topology estimation through layer cooperation, allowing cooperation between
P2P traffic and network providers’ policies.

A simple scheme [40] can let P2P overlay interacts with underlying ISP infras-
tructure. It relies on a server, called the oracle, hosted by the ISP and that helps
P2P users choose optimal neighbours. More precisely, a P2P user sends the list of
potential neighbouring peers to the oracle, which ranks this list based on a number
of factors that each ISP can decide individually, like their proximity to the user or
higher bandwidth links, or according to its routing policies or its agreements signed
with other ISPs. The oracle acts then like an abstract routing underlay to the over-
lay network but as it is a service offered by the ISP. It has thus direct access to the
relevant information (e.g., the one concerning the topology) and does not have to
infer or measure it. Although the oracle can be deployed with DHTs, reference [40]
focuses mostly on unstructured P2P systems.

Provider Portal for P2P (P4P) [41] is a light-weight architecture enabling explicit
communication between P2P (independently of DHTs) and network providers, in
order to reduce backbone traffic and lower operation costs. The proposal leverages
the fact that the ISP is best-positioned to determine locality and to direct clients
not only to nearby peers but also to peers that are accessible over well-provisioned
and lightly loaded links. P4P framework consists of a data-plane component and a
control-plane component with an iTracker providing three kinds of information re-
garding the network provider: network status/topology, provider guidelines/policies,
and network capabilities. However, with the iTracker, the P4P framework seems to
be a kind of centralized architecture applying CDN (Content Delivery Network)
architecture to a filesharing P2P network.

Network-Aware DHT-Based P2P Systems 317

5 Semantics for Resource Sharing

Semantics in P2P systems is an active area research, but it focuses on the problem of
mapping or retrieving semantically close data shared by different peers. This para-
graph does not deal with the resources’ semantic, but tries to define semantics for
the identifiers in a DHT, based on the underlay topology in order to lead to a win–
win situation where both P2P users and network providers meet their requirements.
Hereafter we present two such systems, namely CAP (a Context-Aware P2P system)
[42] and NETPOPPS (a NETwork Provider Oriented P2P System) [43]. Both pro-
posals are multi-layer systems exploiting the injective cryptographic hash function
of the DHT, which is also used to build the different identifiers of the P2P system.
Following proposals are thus independent of the P2P algorithm implemented at the
primary global overlay.

5.1 A Context-Aware P2P System

CAP [42] aims to build context-aware nodeIDs and objectIDs. Therefore it pro-
poses to compute the different identifiers of the system at the secondary levels
using HMAC (Hash based Message Authentication Codes) [44], a keyedhash-
ing function, originally aimed for message authentication, thanks to a secret key
it uses.

HMAC is a message authentication code that uses a cryptographic key in con-
junction with a hash function in order to guarantee integrity between a sender and a
receiver. It is computed as follows.

HMAC(h,k,m) = h(k⊕opad||h(k⊕ ipad||m))

Here are details of the equation.

• h is a commonly used cryptographic hash function; in CAP it is the one used by
the DHT of the global P2P overlay.

• k is initially defined as a secret key, but in CAP it is a configurable system param-
eter, called HKey, and which value is known to all the peers of one DHT. Thus,
a HKey labels each DHT, which is then known as VDHT (for Virtual DHT). A
detailed definition is given in the next paragraph.

• m represents the text to be hashed; it is thus either the object name or the address
IP of the peer.

• ipad and opad are the bytes 0x36 and 0x5C respectively, each repeated 64 times.
• ⊕ denotes the bitwise XOR operation.
• || denotes the concatenation of two bit strings.

Coming back to the HKey, it could be a simple or compound one. A simple HKey
is based on one parameter or a single criterion: it could be a defined characteristic
(network metric or policy). A compound HKey is based on the combination of any
two or more characteristics (parameters or criteria) and is computed as the output of

318 Marguerite Fayçal and Ahmed Serhrouchni

the cryptographic hash function used by HMAC and applied to the concatenation of
those characteristics; e.g., if we are interested in searching a resource according to
three metrics m1, m2 and m3, then HKey = h(m1||m2||m3).

A compound HKey could be derived in two or more, simple or compound HKeys:
these derived HKeys are then typically based on one or more different characteristics
from those the initial compound HKey is based on. But derived HKeys could also
be defined with simple HKeys; e.g., if a certain simple HKey could take four values
for the same peer (e.g., if the peer resides in four zones), derived HKeys could be
defined as a combination of two or more of those values.

The type of the HKey is defined in a global system profile. (The way the system
profile is loaded in the system does not affect node operations or routing mechanism;
e.g., it could be loaded on a kind of bootstrap node managed by the system operator
or service provider.) So, in case of a derived HKey, the profile defines which combi-
nation of two or more values or characteristics to take into account, and eventually
in which order. In fact, the profile defines a set of priority criteria and identifies the
parameters to consider in the routing protocol, defining thus the HKey structure.
These criteria and parameters are quantified as the peer arrives in the system, ac-
cording to an external procedure that doesn’t affect the routing mechanism and that
could be based on some database reports of the system (e.g., the BGP reports [2] for
the identifier of the AS the peer resides in).

Examples of what a simple HKey could be are: the AS identifier, the administra-
tive domain name or the group name or identifier of a specific group communication
or a specific secure group, a QoS parameter (e.g., minimum available bandwidth,
minimum battery power for mobile systems, minimum storage capacity, etc.), a lo-
cation parameter (e.g., network or real distance, GPS location, country, etc.), a type
of shared files (e.g., a specific movie or audio file type), a language or a topic of
shared files (based on metadata), a secret key, a keyword, etc. A compound HKey
could be based on two or more such simple HKeys. Derived HKeys could then be
defined depending on the routing policy of the system, defined by the above men-
tioned profile.

Consequently, a heterogeneous P2P network can be layered in a set of different
uniform overlays, each one called a zone and characterized by a specific HKey. In
order to have homogeneous identifiers in the whole system, each zone is identified
by h(HKey). The HKey will then also label both an overlay and the DHT in its
corresponding key space, above named VDHT.

Each node can participate in one, two or more of these overlays, depending on
its properties (available resources, locality, group membership, etc.) and according
to the semantics of the HKey that is taken into account, but resides in at least one
overlay, the global one, which could for example be at the lowest overlay level. The
other overlays are called local ones, and at one level there could be many zones. In
case the system profile does not define derived HKeys, there will be only a single
secondary overlay at the top of the global one; else, there will be L more local
overlays, where L will be equal to the maximum number of the different possible
defined derived HKeys per peer.

Network-Aware DHT-Based P2P Systems 319

The routing mechanism is the same at each level according to the P2P routing
protocol defined at the global overlay; the only difference is the HKey characterising
the level and thus the usage of the consequent different nodeIDs, objectIDs, and
DHTs.

When a peer needs a data item, it first searches the local overlay it resides in. If
the query fails, the peer will then searches the global overlay where the identifiers
remain unchanged. When derived HKeys are defined, before searching the global
overlay, a peer searches each zone it resides in. To improve the data retrieval per-
formance in the system, a data item is automatically cached in the requester’s local
overlay if it is retrieved from the global overlay (and of course, its objectID will
be then computed using HMAC and based on the HKey corresponding to that local
overlay).

The joining and failure/departure operations are the same at each level according
to the routing protocol implemented in the system; but after a node joins the system
(at the global overlay) and before it joins any local overlay at any secondary level,
some operations must be taken in order to join the secondary overlay if it exists or
to build it if possible.

Otherwise, each existing zone is associated with a data table, called zone table,
having the same identifier, and stored on a rendezvous point of the global overlay.
The zone table contains up to four nodeIDs in the global overlay of nodes already
participating in its corresponding local overlay. Thus, a new node in the global over-
lay has first to look up h(HKey) to be able to join a zone with its corresponding
nodeId.

If a new node is the first one asking to join its local overlay, then it creates a zone
table with the identifier of that local overlay and its own global nodeID, it stores the
created data table at the rendezvous node, and it starts the local overlay.

CAP guarantees that a data item will be retrieved from the zone where it has
been found. In fact, at each secondary layer, when an overlay is populated, all nodes
and objects have their identifiers based on the HKey characterising the overlay; so
if a query initiated by a node residing in the overlay does not fail, that means that
the response is present in this overlay. And even if the response is a pointer to the
requested object, the object is necessary in the overlay, since every data presented
or represented in a secondary overlay has its identifier necessarily computed based
on the HKey characterising that overlay.

Consequently, CAP ensures through a specific semantics that the result of a
context-oriented query is context-oriented.

5.2 A Network Provider Oriented P2P System

To enable tight cooperation between P2P traffic and network providers’ routing poli-
cies and business agreements, NETPOPPS [43] layers P2P overlays in a set of dif-
ferent uniform overlays, and applies the principle of key derivation to nodeIDs. But

320 Marguerite Fayçal and Ahmed Serhrouchni

an object keeps a unique identifier at all levels, namely its primary objectID, the
identifier it has at the global P2P layer. In fact, objects are managed by nodes.

The principle of key derivation is an efficient key management technique that was
proposed in [45] to satisfy the needs of private hierarchical group communication re-
quiring specific confidentiality upward and downward the hierarchy. It is illustrated
by Fig. 1, where h is a distributed injective hash function. Considering any node
of Level 1 identified by Id1 = k, it will have at Level 2 an identifier Id2 = h(Id1).
This computational relation applies for the identifiers of a same node between any
two successive layers, i.e., Idi = h(Idi−1) = hi−1(Id1) at any level i. So, any node
of level i can compute its identifier Id j at a level j, where j is greater than i, by
deriving Idi(j− i) times; in other words: Id j = h j−i(Idi).

Fig. 1 Principle of key derivation for key management

Regarding the system architecture, as illustrated by Fig. 2, secondary overlays are
characterized by the width of their constituent entities in term of number of basic
entities (BE) merged together. A BE is any kind of routing domain managed by a
Network Provider (NP). NETPOPPS proposes that a P2P path connection emerging
from any peer of an entity remains entirely inside the same entity. It also proposes
that according to NP’s business agreements two BEs merge in an intermediate entity
(IE) to allow a P2P path connection emerging from one of them to end in the other
one. Two IEs can also merge in a new IE, and so on. Besides, secondary overlays
lay on the top of the primary P2P overlay in descending order of the width of their
entities, in terms of number of merged BEs. This makes the system looks like a
collection of several hierarchical subsystems composed of a BE on the top of as
many IEs and managed by NPs; each NP managing as many subsystems as BEs
it provides. The identifier of an entity is called a vector and labels both the virtual
overlay in the corresponding entity and the DHT in its corresponding key space. The
vector of an IE is in fact built in a vector format, by listing in an ascending order the
identifiers of all its constituent BEs.

The routing mechanism in each overlay is the same as in the global P2P network;
only the nodeIDs and DHTs in use are different. When a peer needs a data item,
it first searches the local overlay (of the BE) it resides in. If the query fails, the
peer will then similarly searches for the data item in the overlay corresponding to

Network-Aware DHT-Based P2P Systems 321

Fig. 2 Overview of NETPOPPS

the first IE; and so on, the peer continues searching for the desired data item in
each intermediate overlay going down the hierarchical subsystem, until success. But
during a single routing process, only the originator of a query can switch from an
overlay to another. The node requester also automatically caches in its local overlay
a data item it retrieves from the global or an intermediate overlay.

The joining and failure/departure operations of nodes are the same at each level
according to the routing protocol implemented in the system. However, after joining
the global overlay and before it joins any other secondary overlay, a new node has
to identify the secondary overlays it has to join. NETPOPPS proposes thus that each
NP manages a single control node (CN) per BE. The CN does not participate in the
routing procedure. It holds a profile that memorizes the vectors of the different IEs
of the hierarchy going down from its BE. The NP can also decide on other features
to deploy on the CN and other data to save in the profile.

Like any new joining node, the CN joins first the global overlay. Then, as illus-
trated by Fig. 3, the CN computes its different identifiers according to the principle
of key derivation, except an additional derivation: the first derivation of its primary
nodeID gives its nodeID in the BE’s overlay. Consecutively, the CN initiates the dif-

Fig. 3 Computation of the different identifiers of a new joining node

322 Marguerite Fayçal and Ahmed Serhrouchni

Table 1 Structure of the reference table

vector of the BE primary ID of CN vector of the 1st IE ... vector of the Nth IE

ferent overlays. Afterwards, it shares at the global overlay a Reference Table (RT),
represented by Table 1, and identified by h(vector of BE).

So, to correctly join the different secondary levels, a new node searches first for
the RT in the global overlay. It computes then its different identifiers as illustrated
by Fig. 3, and at each derivation, it matches its new identifier with the vector of the
next entity, according to what it has just learned from the RT.

NPs may also operate a control access or enable any other own mechanism (e.g.,
a bill service) to the nodes joining the different overlays they manage. In this case,
after retrieving the RT, new nodes have to send at the global level a join intention
request to the CN to know the CN’s different nodeIDs from the CN itself.

Now, to share a resource identified by an ob jectID, the new node inserts this
ob jectID in each overlay it participates in (including the global P2P layer). The
system ensures thus that the result of a query found in an entity can be retrieved
through a path connection that does not pass by a node of another larger entity.

Consequently, NETPOPPS uses a key management technique to optimize data
retrieval according to NP’s criteria through a specific semantics.

6 Prospects

CAP [42] and NETPOPPS [43] are two different DHT-based topology aware P2P
systems guaranteeing that a data item will be retrieved from the zone or entity where
it has been found and the entire P2P path connexion will remain in that zone or
entity. Both promise also alleviated message latency and enhanced lookup time.
However, the former is more userfriendly and the latter is more network provider
compliant.

In fact, CAP is a configurable and extensible context-aware system, where zones
are independent from each others, and any node can create and initiate a zone ac-
cording to any desired performance metric. Guarantee for context-awareness is then
given by the semantic of the ob jectID through the HKey. The system can also be
adapted for semantic queries or serve as a core routing for any overlay application
aiming improved security issues or quality of service. CAP is thus service oriented,
and possible applications to implement over it are as numerous as values a HKey can
have. However each node or object manages multiple different independent identi-
fiers.

As for NETPOPPS, the key management is greatly simplified, as each object has
only one identifier in the whole system and the identifiers of each peer are in a sim-
ple relational computation between each other. However, the system is managed by
the network provider in a fixed well structured architecture where it is impossible for

Network-Aware DHT-Based P2P Systems 323

users to create deliberately their own entity or group of communication, especially if
they are clients of different network providers. But the control node opens wide the
door to any commercial service, access control, statistics, etc. Nevertheless, NET-
POPPS assume that each node knows its BE through an external procedure (it could
be based on some database reports like BGP tables [2]).

Consequently, and as shown by in the oracle service [40] and P4P [41], network
operators can play an important role in addressing P2P topology-awareness, traf-
fic and costs optimization, and application performance. But operators generally
consider topology of the networks they control to be confidential information [13].
Thus, in order to succeed and achieve wide adoption, any solution should provide
a method to help P2P applications in peer selection without explicitly disclosing
topology of the underlying network [13]. In this perspective, CAP [42], as a generic
flexible userfriendly system, is promising.

However, like in any applicative research field, wide adoption will probably never
happen without an agreement on a common solution based on open standards [13].

Logical routing, like the one in use in DHT-based P2P networks, will continue
to evolve in the coming years, and several various new applications based on it
will emerge. New claims will thus be required for corresponding architectures, e.g.,
security, clustering, quality of service, etc.

DHT-based structures with simple hash function are likely to be unable to afford
such requirements, and existing emerging solutions (e.g., P4P [41]) are designed for
dedicated infrastructures.

Our contributions aim resource lookup and retrieval within specific domains in
the spirit of DHTs and with specific semantics. Large-scale evaluation of these so-
lutions is currently in progress with the OverSim framework [46].

Future interesting research directions will then be explored to distinguish nodeIDs
and objectIDs, i.e., to create one single overlay for the nodes and several overlays
for the resources, each having its own semantics.

7 Conclusion

This chapter, dedicated to network-aware DHT-based P2P systems, began with elu-
cidation of the network-aware problem. It detailed DHTs, their strengths and weak-
ness and cleared up the incentives to focus on this specific class of P2P algorithms.
The general requirements for network-awareness followed with a quick overview on
available systems that explicitly provide underlay information or awareness evalua-
tion.

Then a few well-known DHT-based topology-aware systems were briefly pre-
sented, followed by two other systems for topology estimation through layer co-
operation. And as the latter allow cooperation between P2P traffic and network
providers’ policies, the chapter went less briefly on two more emerging architec-
tures to translate such cooperation in semantics within the different identifiers of a
DHT system. These two proposals were then compared, concluding with what could

324 Marguerite Fayçal and Ahmed Serhrouchni

be the trend of network-aware P2P systems, followed by a brief discussion on future
research directions.

References

1. Meulle M.(2007): Interference of AS business relationships and routing policies in the Inter-
net. PhD Thesis. Université Blaise Pascal Clermont-Ferrand, France

2. Rekhter Y., Li T.(1995): A Border Gateway Protocol 4 (BGP-4). IETF, RFC 1771
3. Karagiannis T., Rodriguez P., Papagiannaki K.(2005): Should ISPs fear Peer-Assisted Content

Distribution? In: ACM SIGCOMM Proceedings of IMC. USENIX Association
4. Keralapura R., Taft N., Chuah C.N., Iannaccone G. (2004): Can ISPs Take the Heat from

Overlay Networks? In: Proceedings of HotNets-III. ACM Press, New York
5. Seetharaman S., Ammar M. (2006): On the interaction between dynamic routing in the over-

lay and native layers. In: Proceedings of INFOCOM. IEEE Communications Society
6. Liu Y., Zhang H., Gong W., Towsley D. (2005): On the interaction between overlay routing

and traffic engineering. In: Proceedings of INFOCOM. IEEE Communications Society
7. Ren S., Guo L., Zhang X. (2006): ASAP: An AS-aware peer-relay protocol for high quality

VoIP. In: Proceedings of ICDCS. IEEE Computer Society
8. Rhea S. (2005): OpenDHT: A Public DHT Service. Ph.D. Thesis., University of California,

Berkeley
9. Viennot L. (2005) : Pair-A-Pair: routage dans les réseaux de pair à pair. In: Panorama des

Recherches Incitatives en STIC (PaRISTIC)
10. Karger D., Lehman E., Leighton F., Levine M., Lewin D., Panigrahy R. (1997): Consistent

hashing and random trees: Distributed caching protocols for relieving hot spots on the World
Wide Web. In: Proceedings of STOC. ACM Press, New York

11. Gummadi P.K., Gummadi R., Gribble S., Ratnasamy S., Shenker S., Stoica I. (2003): The Im-
pact of DHT Routing Geometry on Resilience and Proximity. In: Proceedings of SIGCOMM.
ACM Press, New York

12. Risson J., Moors T. (2006): Survey of Research towards Robust Peer-to-Peer Networks:
Search Methods. Computer Networks 50(17):3485–3521

13. Marocco E., Gurbani V. (2008): Application-Layer Traffic Optimization (ALTO) Problem
Statement. draft-marocco-alto-problem-statement-01 (work in progress)

14. Sit E., Morris R.T. (2002): Security Considerations for Peer-to-Peer Distributed Hash Tables.
In: Peer-to-Peer Systems (IPTPS), number 2429 in LNCS. Springer, Berlin/Heidelberg

15. Rhea S., Geels D., Roscoe T., Kubiatowicz J. (2004): Handling Churn in a DHT. USENIX
Annual Technical Conference

16. Jain S., Mahajan R., Wetherall D. (2003): A Study of the Performance Potential of DHT-based
Overlays. In: Proceedings of USITS. USENIX Association

17. Li J., Stribling J., Gil T.M., Morris R., Kaashoek F.M. (2004): Comparing the performance
of distributed hash tables under churn. In: Peer-to-Peer Systems-III (IPTPS), number 3279 in
LNCS. Springer, Berlin, Heidelberg

18. Stoica I., Morris R., Liben-Nowell D., Karger D.R., Kaashoek M.F., Dabek F., Balakrishnan
H. (2001): Chord: A Scalable Peer-to-peer Lookup Protocol for Internet Applications. In:
Proceedings of SIGCOMM. ACM Press, New York

19. Rowstron A., Druschel P. (2001): Pastry: Scalable, decentralized object location and routing
for large-scale peer-to-peer systems. In: IFIP/ACM Middleware 2001, number 2218 in LNCS.
Springer, Berlin/Heidelberg

20. Ratnasamy S.: (2002) A Scalable Content-Addressable Network. Ph.D. Thesis, University of
California at Berkeley

21. Zhao B.Y., Huang L., Stribling J., Rhea S.C., Joseph A.D., Kubiatowicz J.D. (2004): Tapestry:
A Resilient Global-Scale Overlay for Service Deployment. IEEE J-SAC 22(1):41–53

Network-Aware DHT-Based P2P Systems 325

22. Maymounkov P., Mazières D. (2002): Kademlia: A peer-to-peer information system based
on the XOR metric. In: Peer-to-Peer Systems (IPTPS), number 2429 in LNCS. Springer,
Berlin/Heidelberg

23. Malkhi D., Naor M., Ratajczak D. (2002): Viceroy: A Scalable and Dynamic Emulation of
the Butterfly. In: Proceedings of PODC. ACM Press, New York

24. Fraigniaud P., Gauron P. (2006): D2B: a de Bruijn Based Content-Addressable Network. The-
oretical Computer Science 355(1):65–79

25. Loewenstern A. (2008): DHT Protocol. BitTorrent.org
http://www.bittorrent.org/beps/bep0005.html.
Accessed20August2008

26. John (2004): eMule v.40f is available. eMule-Project.net
http://www.emule-project.net.Accessed20August2008

27. Xu Z., Tang C., Zhang Z.(2002): Building Topology-Aware Overlays using Global Soft-State.
HPL-2002-281. Hewlett-Packard Laboratories, Palo Alto

28. Ratnasamy S., Handley M., Karp R., Shenker S. (2002): Topologically aware overlay
construction and server selection. In: Proceedings of INFOCOM. IEEE Communications
Society

29. Cox R., Dabek F., Kaashoek F., Li J., Morris R. (2003): Practical, distributed network coor-
dinates. In: Proceedings of HotNets-II. ACM Press, New York

30. Madhyastha H.V., Isdal T., Piatek M., Dixon C., Anderson T., Krishnamurthy A., Venkatara-
mani A. (2006): iPlane: an information plane for distributed services. In: Proceedings of
OSDI. USENIX Association

31. Castro R., Coates M.J., Liang G., Nowak R., Yu B. (2004): Network Tomography: Recent
Developments. Statistical Science 19(3):499–517

32. Rostami H., Habibi J. (2007): Topology awareness of overlay P2P networks. Concurrency
and Computation: Practice & Experience 19(7):999–1021

33. Castro M., Druschel P., Hu Y.C., Rowstron A. (2002): Topology-Aware Routing in Structured
Peer-to-Peer Overlay Networks. MSR-TR-2002-82. Microsoft Research, Redmond

34. Ratnasamy S., Shenker S., Stoica I. (2002): Routing Algorithms for DHTs: Some Open
Questions. In: Peer-to-Peer Systems (IPTPS), number 2429 in LNCS. Springer, Berlin/
Heidelberg

35. Joseph A.D., Zhao B.Y., Duan Y., Huang L., Kubiatowicz J.D. (2002): Brocade: Landmark
Routing on Overlay Networks. In: Peer-to-Peer Systems (IPTPS), number 2429 in LNCS.
Springer, Berlin/Heidelberg

36. Xu Z., Mahalingam M., Karlsson M. (2003): Turning Heterogeneity into an Advantage in
Overlay Routing. In: Proceedings of INFOCOM. IEEE Communications Society

37. Xu Z., Min R., Hu Y. (2003): Hieras: A DHT Based Hierarchical P2P Routing Algorithm. In:
Proceedings of ICPP. IEEE Computer Society

38. Garcés-Erice L., Ross K.W., Biersack E., Felber P.A., Urvoy-Keller G. (2003): TOPLUS:
Topology Centric Lookup Service. In: Group Communications and Charges (NGC), number
2816 in LNCS. Springer, Berlin/Heidelberg

39. Ferreira R.A., Grama A., Jagannathan S. (2004): Plethora: An Efficient Wide-Area Storage
System. In: Bougé L., Prasanna VK (eds) High Performance Computing (HiPC), number
3296 in LNCS. Springer, Berlin/Heidelberg

40. Aggrawal V., Feldmann A., Scheideler C. (2007): Can ISPs and P2P Users Cooperate for
Improved Performance. In: ACM SIGCOMM Computer Communications Review 37(3):
31–40

41. Xie H., Krishnamurthy A., Silberschatz A., Yang Y.R. (2007): P4P: Explicit Communications
for Cooperative Control Between P2P and Network Providers. P4PWG Whitepaper

42. Fayçal M., Serhrouchni A. (2007): CAP: A Context-Aware Peer-to-Peer System. In: Meers-
man R., Tari Z., Herrero P (eds) On the Move to Meaningful Internet Systems 2007: OTM
2007 Workshops, number 4806 in LNCS. Springer, Berlin/Heidelberg

43. Fayçal M., Serhrouchni A. (2008): NETPOPPS: A Network Provider Oriented Peer-to-Peer
System. In: IFIP Proceedings of NTMS. IEEE Communications Society

326 Marguerite Fayçal and Ahmed Serhrouchni

44. Krawczyk H., Bellare M., Canetti R. (1997): HMAC: Keyed-Hashing for Message Authenti-
cation. IETF, RFC 2104

45. Hassan H.R., Bouabdallah A., Bettahar H., Challal Y. (2005): An Efficient Key Management
Algorithm for Hierarchical Group Communication. In: IEEE, CreateNet Proceedings of Se-
cureComm. IEEE Computer Society

46. Baumgart I., Heep B., Krause S. (2007): OverSim: A Flexible Overlay Network Simulation
Framework. In: Proceedings of Global Internet Symposium (GI) in conjunction with Infocom
2007. IEEE Communications Society

On Adding Structure to Unstructured Overlay
Networks

João Leitão, Nuno A. Carvalho, José Pereira, Rui Oliveira, and Luı́s Rodrigues

Abstract Unstructured peer-to-peer overlay networks are very resilient to churn and
topology changes, while requiring little maintenance cost. Therefore, they are an in-
frastructure to build highly scalable large-scale services in dynamic networks. Typ-
ically, the overlay topology is defined by a peer sampling service that aims at main-
taining, in each process, a random partial view of peers in the system. The resulting
random unstructured topology is suboptimal when a specific performance metric
is considered. On the other hand, structured approaches (for instance, a spanning
tree) may optimize a given target performance metric but are highly fragile. In fact,
the cost for maintaining structures with strong constraints may easily become pro-
hibitive in highly dynamic networks. This chapter discusses different techniques that
aim at combining the advantages of unstructured and structured networks. Namely
we focus on two distinct approaches, one based on optimizing the overlay and an-
other based on optimizing the gossip mechanism itself.

João Leitão
INESC-ID / IST, Lisboa, Portugal, e-mail: jleitao@gsd.inesc-id.pt

Nuno A. Carvalho
University of Minho, Braga, Portugal, e-mail: nuno.carvalho@di.uminho.pt

José Pereira
University of Minho, Braga, Portugal, e-mail: jop@di.uminho.pt

Rui Oliveira
University of Minho, Braga, Portugal, e-mail: rco@di.uminho.pt

Luı́s Rodrigues
INESC-ID / IST, Lisboa, Portugal, e-mail: ler@ist.utl.pt

X. Shen et al. (eds.), Handbook of Peer-to-Peer Networking, 327
DOI 10.1007/978-0-387-09751-0 13, © Springer Science+Business Media, LLC 2010

328 João Leitão, Nuno A. Carvalho, José Pereira, Rui Oliveira, and Luı́s Rodrigues

1 Introduction

Gossip, or epidemic, protocols have emerged as a highly scalable and resilient peer-
to-peer approach to implement several application level services such as reliable
multicast [1, 8, 12, 21, 25, 28, 34], data aggregation [17], publish-subscribe [7],
among others [22, 27, 36]. This chapter addresses peer-to-peer communication sup-
port for reliable and scalable information dissemination. A gossip-based broadcast
protocol usually operates as follows: to broadcast a message, a node selects t nodes
at random from the system (t is a configuration parameter called fanout) and sends
the message to them. Upon the reception of a message for the first time, each node
simply repeats this procedure.

The gossip approach to data dissemination has several advantages: (i) it is simple
to implement, (ii) it shares the load evenly across all nodes in the system, making
gossip protocols highly scalable, in fact the load imposed by the process in each
node of the systems only has to grow logarithmically with the size of the system in
order to ensure atomic broadcast with a high probability [1, 6], and finally, (iii) its
inherent redundancy makes gossip protocols highly resilient to node and link fail-
ures (for instance, [25] proposes a gossip-based broadcast protocol that can maintain
high resilience even in scenarios where 80% of the nodes in the system fail simul-
taneously).

Gossip-based protocols were originally designed to operate with full membership
information [1, 5], by maintaining locally at each node a list with the identifiers of
every other node in the system (typically, an identifier is a tuple (ip, port) that allows
a node to be reached). However, such approach is not scalable, not only due to the
large size of the membership but also (and mainly) due to the cost of maintaining
such information up-to-date in dynamic systems. For scalability, nodes may rely on
a peer sampling service [11, 16, 25, 41], provided by a membership protocol that
operates with the goal of maintaining locally, at each node, a small random subset
(called a partial view) of the full membership list. In this case, nodes use their local
partial views to select peers for exchanging messages.

Partial views establish neighboring associations among nodes that define an over-
lay network which can be used for gossiping data. Ideally, the selection of peers
from local partial views should be equivalent to a random selection of peers across
the full membership. Therefore, the resulting overlay has a random (unstructured)
topology.

Although this randomness has some desirable features, it also raises two distinct
problems that may impair the efficiency of applications and protocols that operate
on top of these unstructured overlay networks. First, it prevents the underlying net-
work topology to be taken into consideration by the peer sampling service. This
problem is known as topology mismatch [29]: it usually leads to scenarios where
many overlay links are suboptimal with regard to a given network efficiency crite-
ria such as bandwidth or latency. Second, because the overlay structure is random,
it fails to exploit the natural heterogeneity [33] of large-scale peer-to-peer systems,
and does not take advantage of nodes and links that have a higher capacity.

On Adding Structure to Unstructured Overlay Networks 329

Node heterogeneity is easier to take into account in structured multicast proto-
cols, by explicitly building dissemination structures according to a predefined ef-
ficiency criteria [10, 35, 37, 43], and then use these structures (such as spanning
trees [3, 24]) to disseminate multiple messages. In a structured approach, nodes with
higher resource availability can offer a bigger contribution to the global dissemina-
tion effort by having larger degrees or by being placed closer to the root of the tree
(the reader should notice that nodes located at the leaves of the tree are not required
to contribute to the message dissemination effort).

The trade-off between gossip-based and structured approaches is clear: By avoid-
ing the need to build and maintain a spanning tree, epidemic multicast provides ex-
treme simplicity. Moreover the balanced load across all nodes in the system, is a key
factor to achieve resilience and scalability. On the other hand, structured multicast
provides better resource usage (and thus higher performance when the network is
stable) by optimizing the cost of the spanning tree according to efficiency criteria
such as network bandwidth and latency. However, structured approaches have to
deal with the complexity of rebuilding the structure when faults or network recon-
figuration occurs.

In this chapter, we address techniques that aim at combining the best of both
approaches, namely, the simplicity, scalability and resilience of unstructured over-
lay networks with the performance of structured approaches. In order to achieve
this, some degree of structure is added to low-cost unstructured overlay networks
to improve their performance without impairing the relevant properties of unstruc-
tured approaches. We start by presenting a survey of several existing works that
aim at improving the topology of unstructured overlay networks. This is followed
by a description of key properties of unstructured overlay networks that should
be preserved when introducing structure. Then we introduce two approaches that
can be used to introduce structure in unstructured overlay networks. The first ap-
proach bias the topology of an unstructured overlay according to some perfor-
mance metric without compromising the resilience of the overlay. The second is
based on an emergent behavior, approximating the operation of a structured over-
lay on top of an unstructured overlay. We present a performance evaluation of both
approaches.

2 Adding Structure to Unstructured Overlay Networks

In this section we survey several existing protocols that can be used to add struc-
ture to, or improve the locality properties of, unstructured overlay networks. Then
we list some key properties of unstructured overlay networks We also enumerate
some relevant metrics that can be used to evaluate the benefits of adding structure
to unstructured overlays. Finally we identify two distinct methodologies that allow
to add some degree of structure to such overlays.

330 João Leitão, Nuno A. Carvalho, José Pereira, Rui Oliveira, and Luı́s Rodrigues

2.1 Existing Protocols

2.1.1 Narada

Narada [3] is a protocol designed to support application-level multicast. Narada aims
at minimizing the overhead introduced by implementing multicast at the application
layer (as opposed to IP multicast). Namely, Narada aims at minimizing both the
stress induced on physical links (due to duplicate packets that transverse the same
links) and the end-to-end latency of the multicast process. To address these issues,
Narada is based on an unstructured overlay network, whose topology is adapted for
improved performance. The goal of the protocol is to build an overlay that is: self-
organizing, efficient, self-improving, and adaptive to network dynamics. We now
briefly describe how the topology of the unstructured overlay is adapted.

Since Narada is targeted at small and medium sized systems, it is assumed that
each node has access to a full membership list containing node identifiers for all par-
ticipants in their algorithm. Using this information, Narada builds a limited degree
unstructured overlay network, named a richly connected mesh. The overlay network
topology is biased to obtain a majority of low cost links. On top of the resulting
unstructured overlay network, a distance vector routing algorithm is executed to
build, and maintain, a spanning tree routed at each sender for each multicast group.
Each node will therefore maintain a local routing table which is used to disseminate
multicast messages.

When a new element joins the system, it contacts a peer already present in the
network to obtain the current full membership list. The node then randomly selects
a few group members to whom it sends a join message, requesting to be added as
their neighbor in the overlay. Nodes rely in the resulting unstructured overlay net-
work to exchange periodic messages which are used to update global membership
information, and to detect failed nodes and partitions.

After the execution of the steps described above, nodes form a fully connected
unstructured overlay network. However, links in the network have a high prob-
ability to be suboptimal for a given set of target efficiency criteria. To improve
the overlay, nodes capture information about their execution environment. For in-
stance, in video conferencing applications, the overlay is biased to improve both
point-to-point latency and bandwidth. Passive monitoring techniques are used to
obtain available bandwidth values for peers in the system. Active monitoring tech-
niques based in the exchange of ping messages are used to extrapolate values for la-
tency. This information is then used in heuristics which bias the overlay topology as
follows:

Add links Periodically, each node n selects another random non-neighbor node
p and performs measurements to assess the efficiency of the communication with
p. Also, p sends back to n a copy of its local multicast routing table. Node n uses
both the received information and the expected efficiency of the link between n and
p to locally compute a utility function that evaluates the gain of adding such link to

On Adding Structure to Unstructured Overlay Networks 331

the overlay. If the expected gain is above a given threshold value, n will add the link
between himself and p to the overlay.

Remove links Periodically, each node selects, and removes, the (local) link with
the lowest utility value. The computation of these utility values is done in such a way
that the resulting value is an overestimate of the real utility of the link. Moreover, the
link is only removed if its utility falls bellow a given threshold value. This is done
to ensure some stability in the overlay. Notice that because the network is dynamic,
the utility of a link may also be dynamic. It would not be efficient to allow situations
where one is constantly removing and adding the same link to the overlay.

Using this methodology, the unstructured overlay topology can be biased, in-
creasing the efficiency of applications that operate above it.

2.1.2 Localiser

The Localiser algorithm [30] aims at solving the network mismatch problem while
ensuring that the overlay network remains connected despite failure of large per-
centage of nodes. It also ensures a fair degree distribution among every peer in the
system. The localiser algorithm is fully decentralized and only relies in local knowl-
edge. In [30] the authors show the impact of the algorithm on the operation of the
unstructured overlay network maintained by the Scamp protocol [11].

The goal of Localiser is to bias the topology of the overlay network such that
the majority of neighbors kept by each node are “close” peers (given a “network
distance” criterion). The protocol also aims at biasing the original overlay such that
every node has the same amount of neighbors, which also contributes to increase
the failure resilience of the overlay.

Localiser was designed based on a metropolis model [32]. This is an iterative
model in which an utility function f is minimized. In order to do this, on each itera-
tion, the utility of the current overlay configuration c is compared with the utility of
a possible alternative configuration c′. The algorithm is probabilistic given that the
acceptance of an adaptation of the overlay configuration from c to c′ is determined
by a decreasing probability function in f (c′)− f (c). The reader should notice that
this approach allows to perform adaptations to the overlay topology which increase
the value of the function f . This however is required by the algorithm to avoid local
minima configurations.

The specific algorithm is based on a periodic operation executed by every node
in the system. In each iteration, each node n executes the following steps:

1. Node n selects at random 2 overlay neighbors p1 and p2 and computes for each
one a local cost function.

2. Node n obtains the node degree of p1 and p2. Furthermore it also obtains from
p1 the cost of the link between p1 and p2.

3. Node n locally computes the global benefit of exchanging its link with p1 for a
link between p1 and p2.

332 João Leitão, Nuno A. Carvalho, José Pereira, Rui Oliveira, and Luı́s Rodrigues

4. Finally, node n uses a probabilistic function, which takes into account the benefit,
the expected cost of the adaptation, and node degree, to make the decision of
applying, or not, the link exchange. If the exchange is accepted, n coordinates
with p1 and p2 the steps required to perform the adaptation.

The algorithm can be parameterized to give more weight, in the probability func-
tion, to the balance of node degrees or to the proximity of neighbors (notice that this
proximity notion is encoded in the link cost function). The probability function can
also be tuned to promote maintenance of low cost configurations or to increase the
probability of a faster convergence.

This scheme allows an unstructured overlay to self adapt to reach a configuration
where most neighbors are “local” (i.e., with a small link cost) while at the same
time, improving the degree distribution. This leads to more efficient overlay config-
urations with increased resilience to faults.

2.1.3 Araneola

Araneola [31] is a protocol for reliable and efficient multicast based on unstructured
overlay networks. The protocol is able to build, and maintain, a bounded degree
overlay. Moreover, Araneola, includes a mechanism for exploiting network proxim-
ity in the overlay.

This mechanism operates independently of the main task of the Araneola pro-
tocol. It operates by adding new links to the overlay to promote communication
between close peers. The proposed extension to the original protocol is based on
two distinct components, namely: a task to locate nearby peers, and another task
which establish connections with discovered nearby peers. These tasks operate as
follows:

Locating nearby nodes The task operates by capturing network performance
values from peers selected from a local partial view. The performance values are
used to sort nodes into a candidate list which is then used by the second task. Several
techniques can be employed to capture performance values (different metrics require
different techniques). For instance, the authors of [31] rely on a network-level hop-
count between peers which is extracted using the UNIX tracepath utility (aiming at
lowering point-to-point latency in the network).

Connecting to nearby nodes This task tries to maintain a number of nearby
neighbors equal to a target value NB (NB is a protocol parameter). Periodically, if
the number of nearby neighbors of a node falls bellow the target value, the node
issues a CONNECT NEARBY request to the first peer in its candidate list (the
list generated by the previously described component). A node which receives a
CONNECT NEARBY message will accept the connection, and add the issuing
node to its nearby neighbors set, if it has a number of nearby neighbors below NB.
If the node accepts the request it replies with a CONNECT OK NEARBY. Upon
the reception of a CONNECT OK NEARBY the receiving node adds the sender
to its nearby neighbors set, unless the number of its nearby neighbors has reached

On Adding Structure to Unstructured Overlay Networks 333

the target value of NB. In the later case, the node will send a LEAVE NEARBY
message, which will result in the removal of the newly established connection.

This extension to the original Araneola protocol is able to correlate the topology
of the overlay and the topology of the underlying network. As a result, better links
are used in the overlay and the latency of the dissemination process is decreased.

2.1.4 GoCast

GoCast [39] is a protocol for reliable group communication that operates by building
a multicast tree on top of an unstructured overlay. This overlay network is biased to
promote low latency links and a constant degree for all nodes in the system. GoCast
operates by maintaining both near and random neighbors. The protocol also relies
in a peer sampling service which is used as a bootstrap overlay, and also as a source
for random peers for the protocol operation. The protocol tries to select a sample
of Crand and Cnear nodes such that the sum of these numbers converges to a given
value D (all these values are protocol parameters). TCP connections are maintained
for every neighbor of each node, and all communication made between such peers
is done by relying in these connections. UDP is used for communication for all
remaining nodes (for instance, to obtain latency measurements).

Periodically every node in the system performs two operations; the first to main-
tain random neighbors and the second to maintain a nearby neighbors. We now
describe these operations.

Maintaining random neighbors To this purpose, each node p compares its cur-
rent number of random neighbors with the target value: Crand . If these values are
equal, no operation is required. If the number of random neighbors is below the
target value, then the node adds a random node (obtained from the peer sampling
service) to its neighbors set, and establishes a TCP connection to it. Finally, if the
number of random neighbors is above Crand , the node p might take one of the fol-
lowing corrective measures:

• If the current number of ps random neighbors is equal or above Crand + 2, p se-
lects two random neighbors, q and r, and asks them to replace their links with
p for a link between q and r. This allows to reduce by 2 the number of ran-
dom neighbors of node p, while preserving the number of random links for all
remaining nodes in the system.

• If one of ps random neighbors, q, has a number of random neighbors above Crand ,
p simply asks q to remove the link between them. This allows for two nodes, in a
single step, to approximate their number of random neighbors to the target value
of Crand .

Maintaining nearby neighbors GoCast mechanism to maintain nearby neigh-
bors is composed of three sub protocols. The first serves to replace nearby neigh-
bors for other nearby neighbors with a lower latency. The second is used to add
nearby neighbors to the partial view of the node, when the number of nearby

334 João Leitão, Nuno A. Carvalho, José Pereira, Rui Oliveira, and Luı́s Rodrigues

neighbors is bellow the target value of Cnear. Finally, there is a protocol to remove
nearby neighbors when their number is equal or above Cnear +2.

• Periodically, a node p, measures its latency to a random peer, say r. If the esti-
mated latency to r is lower than an existing nearby neighbor n, p might exchange
its link with n for a link with r if and only if the following four conditions are
true: (i) the number of nearby neighbors of n must at least Cnear − 1; (ii) the
number of nearby neighbors of r must be below Cnear + 5; (iii) if the number of
nearby neighbors of r is above Cnear, then r must have a nearby neighbor with a
higher latency than the estimated latency value between p and r and finally, iv)
to ensure that there is a relevant gain in the link exchange, the latency between p
and r must be at least, half of the latency between p and n.

• In order to add new nearby neighbors, p selects a random peer r and simply adds
it as his neighbor if, and only if, the conditions ii and iii depicted above, are true.

• If node p has a number of nearby neighbors equal or above Cnear + 2 it drops
the connection to a nearby neighbor which does not have a number of nearby
neighbors below the threshold of Cnear−1.

GoCast can successfully bias an unstructured overlay network to improve its per-
formance, reducing the overall latency, and also converge to a configuration where
all nodes have a degree value between D−2 and D+2.

2.1.5 T-Man

T-Man [15] is a generic topology management scheme for unstructured overlay net-
works. The goal of the protocol is to reach a given target topology from a pure
random overlay. Examples of target topologies are torus, ring, or some user defined
topology. The topology is defined by fixed size partial views that are maintained at
each node (the size c of these partial views is a protocol parameter).

The protocol relies on a ranking function that, at any give node, is able to sort a
set of peers accordingly to some preference. The ranking function must be able to
encode, somehow, the desired topology, in the sense that it must be able to provide
clues, for every node, concerning the most relevant peers that they should keep as
neighbors, in order to generate the desired topology. The operation of the protocol is
based on a periodic exchange of information performed by every node, which works
as follows:

1. A given node n starts by using the ranking function to select the neighbor p that
is closer to itself;

2. then n sends to p a set of peers containing n’s identifier, n’s partial view, and a
random sample of other peers in the system1;

3. when p receives this information from n it replies with a similar set of peers: p’s
identifier, p’s partial view, and a random sample of other nodes in the system;

1 This random sample can usually be extracted from an out-of-band peer sampling service such as
Cyclon [41] or HyParView [25].

On Adding Structure to Unstructured Overlay Networks 335

4. after this exchanged is performed, both nodes use a merge function which also
relies in the ranking function to return the c best peers from the union of each
node partial view and the received set of peers;

5. each node partial view is then updated to contain the c nodes returned by the
local execution of the merge function.

This protocol allows the overlay network to converge for the desired topology.
Because nodes exchange information with their closest peers, the probability of re-
ceiving information concerning other peers which are good candidates to improve
the overlay topology is increased, as there is a high probability that nearby nodes
will be trying to converge their partial views to contain similar peers.

2.1.6 Plumtree

The Plumtree protocol [24] is a dissemination scheme which relies on a reactive
unstructured overlay network to embed a highly resilient low cost spanning tree. The
protocol uses this spanning tree to bias the communication pattern of a gossip-based
broadcast protocol, in order to lower the inherent overhead of the gossip protocol,
without impairing its reliability. To do this, eager push is used in overlay links which
belong to the spanning tree while, for both fault-tolerance and support the healing
mechanism of the spanning tree, lazy push is used on the remaining overlay links.

The protocol has two main components. The first builds the spanning tree struc-
ture by removing redundant links when they exist. The second component is able
to heal the spanning tree structure whenever a node fails or leaves the system, and
also recover from message loses due to membership dynamics. We now describe the
behavior of each component:

Building the spanning tree Initially, Plumtree assumes that every link in the
overlay belongs to the spanning tree. The same is true whenever a new link is added
to the overlay due to natural dynamics in the peer-to-peer system. When a link is
used to transmit a redundant gossip message, the protocol removes that link from
the spanning tree. Therefore, when the first broadcast message is disseminated, it
is eagerly flooded through the overlay. However, when the dissemination process is
concluded, the spanning tree has been completely established, and following broad-
cast messages are only eagerly transmitted in the links which belong to the tree.

Healing the spanning tree In the presence of node failures the spanning tree
may become disconnected. This results in poor reliability, as disconnected nodes
will miss broadcast messages. To address this, nodes also send lazy push messages
through the remaining links of the overlay (e.g., links which are not part of the
spanning tree). Messages transmitted by lazy push only carry an unique identifier
for broadcast messages and omit the original payload, therefore these messages are
in fact announcement messages that a new broadcast message (or messages, as more
than one message identifier can be carried in a single IP packet) is available.

When a node receives an announcement for a given broadcast message that it
has not received yet, it starts a timer. When the timer expires, if the payload is
not yet locally available, the node request the payload to the neighbor who sent

336 João Leitão, Nuno A. Carvalho, José Pereira, Rui Oliveira, and Luı́s Rodrigues

the announcement. This message implicitly adds the link to that neighbor to the
spanning tree, effectively healing the tree.

After a failure, several nodes may concurrently add links to the spanning tree;
this may result in the creation of redundant links. However, the mechanism for
building the tree will detect such redundancy during the dissemination of the next
broadcast message and, as result, will prune existing redundant links
(if any).

This protocol is completely decentralized, and by using two distinct transmission
modes (eager and lazy push) it can lower the overhead of disseminating broadcast
messages to a value comparable to some multicast structured solutions. The use of
lazy push ensures, at a low cost, that the natural resilience of gossip protocols is
maintained. Also, as a result of the strategy used to select links, links that form
spanning tree are those with lower latency.

2.2 Key Properties to Preserve

In the previous paragraphs, we have surveyed a number of protocols to optimize
the overlay network to achieve better performance. There are however a number of
key topology properties2 that should be preserved during the optimization, as listed
below:

Connectivity: The overlay is connected if there is at least one path that allows
every node to reach every other node in the overlay. The overlay should remain
connected despite failures that might occur. If this requirement is not meet, isolated
nodes will not receive broadcast messages.

Degree Distribution: The degree of a node is the number of edges of a node,
or in other words, the number of neighbors that a given node has.3 The degree of a
node is both a measure of its reachability on the overlay and also a measure of its
contribution to maintain the overlay connected. If the probability of failure is uni-
formly distributed in the node space, for improved fault-tolerance, all nodes should
have the same degree value. Nodes that have a small degree will more easily become
disconnected from the overlay as the number of faults increases. On the other hand,
the failure of nodes with high degree may have an undesired impact in the overall
connectivity of the overlay.

2 Some of these properties are intrinsically related with graph properties, as it is, an overlay network
can be seen as a graph, where nodes are represented by vertex, and links, or neighboring relations,
are represented by edges. Depending on the nature of these relations, graphs can be directed or
undirected.
3 To be precise, usually partial views establish asymmetric neighboring relations, therefore the
degree is viewed as two distinct components: in-degree and out-degree. However, in this chapter
we will mostly focus on systems which use a gossip-based membership protocol which offers to
nodes access to symmetric partial views therefore, we do not consider these components as being
distinct.

On Adding Structure to Unstructured Overlay Networks 337

Average Path Length: A path between two nodes in the overlay is a set of
edges that connect one node to the other. We define the average path length as
the average of all shortest paths between all pair of nodes in the overlay. The
average path length is closely related to the overlay diameter. To promote the
overlay efficiency when broadcasting messages, the average path length between
nodes should be as small as possible. Large values of average path length have
two negative implications: (i) The number of hops required for messages to reach
all nodes increases, with a negative impact in the broadcast latency and, (ii) the
broadcast process becomes more prone to failures, as the time window for fail-
ures increases (e.g., the number of steps required to fully disseminate a message
increases).

Clustering Coefficient: The clustering coefficient of a node is the number of
edges between that node’s neighbors divided by the maximum possible number of
edges across those neighbors. The clustering coefficient captures a density of neigh-
bor relations across the neighbors of a given node, having it’s value between 0 and 1.
The clustering coefficient of a graph is the average of clustering coefficients across
all nodes. The clustering coefficient of an unstructured overlay should be as small
as possible, and failure to meet this requirement has the following negative implica-
tions: (i) the number of redundant messages received by nodes when disseminating
data increases, especially in the first steps of the dissemination process; (ii) the di-
ameter of the overlay increases, which in turn will make the average path length
increase, and finally (iii) it decreases the fault resilience of the overlay, as areas
of the overlay which exhibit a high value of clustering can more easily became
disconnected.

The interested reader can find a more detailed discussion of these and other prop-
erties of random overlays in [23, 25].

2.3 Performance Metrics

Several metrics can be used to measure the performance of a gossip-based broad-
cast protocol operating on top of a random overlay network. In this chapter we focus
mainly on offering high dependability for applications requiring reliable broadcast.
Therefore, the metrics that we present here are mostly related with the operation of
broadcast protocols, as we specifically aim at biasing the overlay topology to min-
imize the message dissemination overhead, while preserving the typical reliability
of gossip-based broadcast protocols.

Average Link Cost: We assume that each link of the overlay may be tagged
with a cost. Costs may be associated to a concrete (underlay) network metric
such as link latency. However, the link cost may also be associated to higher
level utility metrics; for instance, in a file sharing peer-to-peer system it could
be a measure of the semantic similarity between the data stored at the edges of
a link.

338 João Leitão, Nuno A. Carvalho, José Pereira, Rui Oliveira, and Luı́s Rodrigues

Reliability: Gossip reliability is defined as the percentage of correct nodes that
deliver a given broadcast message. A reliability of 100% means that the protocol
was able to deliver a given message to all active nodes or, in other words, that the
message resulted in an atomic broadcast as defined in [21].

Latency: We define latency of a gossip-based broadcast protocol as the time
between the instant when a message is transmitted by its original sender, to the
moment when the last peer, which receives the broadcast message, delivers it to the
application layer. The reader should notice that one can have good latency values
by failing to deliver the message to a large number of nodes. Therefore the goal of
a gossip-based broadcast protocol should be to achieve a low latency value while
ensuring a high reliability. Moreover, latency values are only comparable between
broadcast protocols that exhibit a similar reliability value, for systems composed of
the same number of nodes.

Last Delivery Hop: The Last Delivery Hop measures the number of hops re-
quired to deliver a broadcast message to all recipients. When a message is gossiped
for the first time, its hop count is set to 1 and, each time it is relayed in the overlay,
the hop count is increased in one unit. The last delivery hop is the hop count of the
last delivery for a given broadcast message or, in other words, is the maximum num-
ber of hops that a message must be forwarded in the overlay before it is delivered
to all participants. This metric is closely related with the diameter of the overlay
and with the the latency of a gossip protocol. In other words, it can be seen as an
efficiency metric.

2.4 Methodologies

We can distinguish two main methodologies that allow to introduce some degree of
structure in unstructured overlay networks. These methodologies operate at distinct
levels:

Overlay Optimization: This methodology consists in manipulating the neigh-
boring relations among peers, effectively changing the unstructured overlay network
topology and changing the communication patterns among peers (e.g., by changing
the communication peers for each node). This methodology aims at improving the
overall overlay network, which is the support for several gossip protocols, by replac-
ing existing links between peers for alternative links which present a better perfor-
mance given an efficiency criteria (e.g., such as latency). In Section 3 we describe
with some detail a protocol based on this approach.

Gossip Optimization: This methodology consists in selecting different com-
munication modes for transmitting messages between different peers. The pos-
sible modes to transmit messages are: eager push, lazy push and pull [24]. This
methodology supports the emergence of structure, from the unstructured overlay, by
establishing patterns in the communication modes used among peers. Protocols

On Adding Structure to Unstructured Overlay Networks 339

based on this approach are able to: (i) make a better usage of network resources;
(ii) reduce the communication overhead of gossip protocols and also, (iii) ad-
dress heterogeneity of nodes. In Section 4 we describe a protocol which employs
this technique. Another protocol which also uses this methodology can be found
in [24].

The first technique is used in a larger number of proposed solutions. Protocols
such as Narada, Localiser, Araneola, GoCast and T-Man use variants of overlay
optimization to bias, or adapt, the topology of random overlay networks. The sec-
ond technique has only recently been proposed (the protocol presented in Sec-
tion 4 and Plumtree are two of the few protocols employing this technique).

3 Overlay Optimization

3.1 Overview

In this section, we describe a protocol to Bias the Overlay Topology according to
some target efficiency criteria X, or simply X-BOT. A target efficiency criteria can
be, for instance, to better match the topology of the underlying network. However,
in X-BOT, biasing the overlay is done without compromising key properties of ran-
dom overlay networks (such as the node degree, small diameter, and low clustering
coefficient), which are essential to ensure the efficiency and reliability of some peer-
to-peer applications such as, gossip-based broadcast protocols.

X-BOT relies on the combined use of two distinct partial views, inspired by Hy-
ParView [25], a gossip-based membership protocol that illustrated how to achieve a
high resilience to faults (as high as 80% of simultaneous nodes failures) in a gossip-
based broadcast protocol using a low fanout value. The architecture of this protocol
is based in the combination of a small sized active view and a larger passive view.
X-BOT relies on a similar architecture in order to optimize the overlay network used
for message dissemination.

The goal of the protocol is to reduce, as much as possible, the average link cost of
the overlay network defined by the active views. For that purpose, X-BOT actively
bias the neighbors in the active view using random peers extracted from the larger
passive view. This is feasible because only the active view is used for communica-
tion among peers. Moreover, the passive view is maintained by a cyclic strategy [25]
which ensures that the contents of this view are periodically updated and therefore,
gives access to an increasing number of potential neighbors over time to each node.
X-BOT is flexible allowing to bias a topology for different criteria such as, link la-
tency or content similarity as a result of being independent of the cost function. The
protocol only requires costs to be comparable and totally ordered.

340 João Leitão, Nuno A. Carvalho, José Pereira, Rui Oliveira, and Luı́s Rodrigues

3.2 Architecture

X-BOT maintains two distinct, and disjoint, partial views: a small sized symmetric
active view and a larger cyclic passive view. As in HyParView, the active view is
used mainly for communication among peers and TCP connections are maintained
to neighbors in this view.

X-BOT assumes that all nodes have access to a local Oracle. Oracles are com-
ponents that export a getLinkCost(Peer p) interface, which returns the link
cost between the invoking node and the given target node p in the system (since
there is a single link to each neighbor, in this chapter we use interchangeably link
cost or node cost when referring to the output of the Oracle). The implementation
of such Oracles are not discussed in the chapter. However, for completeness, we
provide a brief description of three simple Oracles.

3.2.1 Oracles

Latency Oracle This Oracle operates by measuring round trip times (RTT) to
peers. This can be performed by exchanging probe messages with Oracles located
at other nodes.4 The Oracle must be aware of the peers which are known at the local
host, and it slowly measures the RTT for each know node (this value can be directly
used as the cost value).

Internet Service Provider Oracle In a setting where exchanging messages
across different ISPs has an increased monetary cost, it might be useful to keep
as many neighbors as possible that share the same ISP. Such Oracle can be built
by maintaining information concerning the local ISP and a table of costs for each
known ISP. When the Oracle becomes aware of a new peer, it simply exchanges
local ISP information with the remote Oracle and asserts the cost for the link using
the local cost table.

IP-based Oracle X-BOT can also leverage on previous work addressing the use
of inexpensive Oracles that do not require the exchange of control information [19,
20]. Such Oracles are able to calculate neighbor proximity values, which can be used
as cost, using IP aggregation information (for instance, using a match of common
IP prefixes to calculate a measure of proximity between two peers).

Oracles are not required to be perfect for the operation of the protocol, in the
sense that provided costs are not required to be 100% accurate. The interested reader
can refer to [26] for experimental results that show the effect of unreliable Oracles
in the protocol.

4 Probe messages can also be piggybacked on application traffic, for instance, when measuring the
cost for peers in the active view.

On Adding Structure to Unstructured Overlay Networks 341

3.2.2 Rationale

The rationale of X-BOT is as follows. As in HyParView X-BOT maintains a small
active view and a larger passive view. However, unlike HyParView, that strives to
ensure the stability of the overlay, X-BOT relaxes stability to be able to continu-
ously improve the overlay. This allows the topology of the unstructured overlay to
self adapt to better match the requirements of the application executed on top of it.
Periodically, each node starts an optimization round in which it attempts to switch
one member of its active view for one (better) neighbor of its passive view. In the
optimization protocol, a node uses its local Oracle to obtain an estimate of the link
cost to some random selected peers of its passive view. The number of nodes π for
which the cost is measured in each optimization round is a protocol parameter called
Passive Scan Length. This parameter limits the maximum number of optimization
exchanges started by each node each time it runs the optimization procedure. Simi-
larly to the original HyParView protocol, the passive view is not biased.

X-BOT strives to preserve the connectivity of the overlay. This has two implica-
tions: (i) nodes only make an effort to optimize their active views when they have a
full active view (i.e., no bias is applied to active views until connectivity of the nodes
is ensured). Furthermore, each node attempts to maintain some unbiased neighbors,
as we explain in the next section; (ii) we try to preserve the degree of nodes that
participate in a optimization procedure, given that the node degree has a significant
impact on the connectivity of the overlay. To ensure this, each optimization round
involves typically 4 nodes in the system as we describe later in the text.

3.2.3 Unbiased Neighbors

By blindingly imposing a bias in the topology of the overlay, one may easily break
some of the desirable key properties of a random overlay, such as the low cluster-
ing coefficient, low average path length, or connectivity [39]. The negative effect of
such bias can be even more notorious in the architecture of X-BOT, that relies on
small partial views. To avoid this flaw, X-BOT does not bias all members of the ac-
tive view. Instead, each node maintains both “high-cost” (unbiased) and “low-cost”
(biased) neighbors. The number of unbiased neighbors each node keeps is a protocol
parameter called Unbiased Neighbors and simply denoted μ .

Unfortunately, it is not trivial to decide which peers have a “high-cost”, given that
nodes are not expected to have global knowledge of the system, not only regarding
membership information but also regarding global metrics, such as the average link
cost in the overlay. To circumvent this limitation, X-BOT maintains the active views
of each node sorted by link cost, where the first element of each active view is the
neighbor with the largest link cost. Therefore, a node never applies any bias to the
first μ members of its active view. Also, whenever a change occurs in the elements
of a node’s active view, the active view is reordered using the same criterion. The
same happens if the cost of a node changes due to modifications in the execution
environment.

342 João Leitão, Nuno A. Carvalho, José Pereira, Rui Oliveira, and Luı́s Rodrigues

3.3 Algorithm

In this section we briefly describe the operation of the overlay optimization algo-
rithm (a more detailed description can be found in [26]). The algorithm executed
at each optimization round is depicted in Algorithm 12 and illustrated in Fig. 1.
The algorithm listing has been simplified for clarity, for instance, we omitted some
insertions of nodes into passive views and the mechanisms required to ensure the
symmetry of active views.

Fig. 1 Steps of the optimization protocol

Usually an optimization round involves 4 nodes of the system, and each round
is composed of 4 steps, one for each node that participates in the optimization.
The goal of these steps is to exchange two of the existing links in the overlay for
other two links such that the cost of the two added links is lower than the cost
of the original links. To ensure that the overall cost of the overlay is reduced in
an optimization round, and because it is assumed that link costs are symmetric, the
optimization scheme only requires that two of the four participating nodes in a round
consult their local Oracles.

A complete optimization round requires the serial exchange of seven messages.
However, in most cases, each node involved in the optimization only has to send
and receive at most two messages. Given that the optimization of the overlay can be
executed as a background activity, the cost of the adaptive mechanism can be easily
tuned to become negligible when compared with the (application) data traffic.

Oracles are not required to be perfect, in the sense that they might provide in-
formation that is not fully accurate. Namely, two nodes may obtain different costs
for the same link when they consult their local Oracle. For instance, [20] states
that longest IP prefix and latency has an approximate correlation of −0.85. In cases
where Oracles are not perfect, nodes have to make decisions with inaccurate infor-
mation. Therefore, the isBetter evaluation function (depicted in Algorithm 12) in-
cludes some hysteresis, namely, a given link new is only considered to have a lower
cost than another link old, if the difference between the cost (obtained through the
Oracle) offers a gain above a given Threshold, which is a protocol parameter intro-
duced to address the inaccuracy of Oracles. The threshold value can be calculated
experimentally for each Oracle. This value should be related with medium precision
and error drift of Oracles, which can be measured in a semi-controlled environment
such as Planet-lab [4].

On Adding Structure to Unstructured Overlay Networks 343

Algorithm 12: Optimization Procedure
Data:

activeView //fixed size sorted list
passiveView //fixes size list

1: every Δ T do
2: if isFull(activeView) then
3: candidates←− randomSample(passiveView, π)
4: for i := μ ; i < sizeOf(activeView) ; i :=i + 1
5: o ←− activeView[i]
6: while candidates �= {} do
7: c ←− removeFirst(candidates)
8: if isBetter(o,c) then
9: Send(OPTIMIZATION(o, myself),c)
10: break

11: upon Receive(OPTIMIZATION, o, i) do
12: if ¬ isFull(activeView) then
13: activeView ←− activeView ∪ {i}
14: Send(OPTIMIZATIONREPLY(true, o, ⊥, myself),i)
15: else
16: d ←− activeView[μ]
17: Send(REPLACE(o, i, myself),d)

18: upon Receive(OPTIMIZATIONREPLY,answer,o,d,c) do
19: if answer then
20: if o ∈ activeView do
21: if d �=⊥ then
22: Send(DISCONNECTWAIT(myself),o)
23: else
24: Send(DISCONNECT(myself),o)
25: activeView ←− activeView \{o}
26: passiveView ←− passiveView \{c}
27: activeView ←− activeView ∪{c}

28: upon Receive(REPLACE, o, i, c) do
29: if ¬ isBetter(c,o) then
30: Send(REPLACEREPLY(false, i, o, myself),c)
31: else
32: Send(SWITCH(i, c, myself),o)

33: upon Receive(REPLACEREPLY,answer,i,o,d) do
34: if answer then
35: activeView ←− activeView \{d}
36: activeView ←− activeView ∪{i}
37: Send(OPTIMIZATIONREPLY(answer,o,d,myself),i)

38: upon Receive(SWITCH,i,c,d) do
39: if i ∈ activeView or received(DISCONNECTWAIT from i) then
40: Send(DISCONNECTWAIT(myself),i)
41: activeView ←− activeView \{i}
42: activeView ←− activeView ∪{d}
43: Send(SWITCHREPLY(answer,i,c,myself),d)

34: upon Receive(SWITCHREPLY,answer,i,c,o) do
35: if answer then
46: activeView ←− activeView \{c}
47: activeView ←− activeView ∪{o}
48: Send(REPLACEREPLY(answer,i,o,myself),c)

49: isBetter(old,new)
50: cOld := Oracle.getLinkCost(old)
51: cNew := Oracle.getLinkCost(new)
52: return cOld > cNew ∧ (cOld − cNew)

cOld ≥ THRESHOLD

344 João Leitão, Nuno A. Carvalho, José Pereira, Rui Oliveira, and Luı́s Rodrigues

3.4 Performance

In the following sections we show performance results of the X-BOT protocol. To
better understand the impact of this approach, which affects the properties of the
unstructured overlay network, we used simulation, which allows us to extract per-
formance metrics in a system composed of a large (10.000) number of nodes.

3.4.1 Experimental Setting

The figures presented are the result of extensive experimental evaluation of this ap-
proach in the PeerSim simulator [18] using its cycle based engine. Each cycle is a
virtual time slice where each node can execute periodic operations. Additionally,
a single broadcast message is also disseminated in each cycle to enable the obser-
vation of the reliability of a gossip-based broadcast protocol operating on top of
biased unstructured overlays. All experiments were conducted in a system com-
posed of 10.000 nodes. Simulation were run on top of a network model composed
of 13.037 routers generated by Inet-3.0 [42] with its default parameters. In order to
calculate the cost between neighbors, we calculated the shortest paths in the under-
lying network among the 10.000 overlay nodes. The cost between two nodes is the
sum of the pseudo geographical distance, generated by Inet-3.0, of links between
the routers that form shortest paths. All results report an average extracted from 5
independent runs. Each one of these runs used one of 5 distinct random network
topologies generated using the methodology described above.

Simulations use the configuration parameters for HyParView reported in [25].
The most relevant configuration parameters are the active view size, which was set
to 5 and the passive view size, which was set to 30. Different Unbiased Neighbors
values (μ) ranging from 0 to 5 (all) were tested; the last configuration corresponds
to the operation of the original HyParView protocol (given that no bias is applied to
any member). Moreover, in all simulations we used the following parameters:

The period between optimizations was set to 2 simulation cycles. In each sim-
ulation cycle each node initiates an exchange with a random peer in the overlay,
which results in the update of both nodes passive views. Moreover, in average, a
node will also participate in an exchange initiated by other peer. Therefore, setting
the period between optimization to two cycles ensures that, between executions of
optimization steps the passive view of nodes is updated, increasing the possibility
of selecting new nodes that can be used to improve the active view of the node.

Passive Scan Length (π) was set to 2, so each time a node executes the step 1 of
the optimization algorithm, it measures, at most, 2 nodes from its passive view. This
also limits the number of nodes which are replaced in the active view of any given
node in a single round as 2. Setting π to a small value allows to achieve two goals:
(i) It promotes some stability in the overlay, as we avoid to exchange the majority
of nodes in the active view of a single node in the context of a single optimization
execution.; (ii) It lowers the cost of the overall optimization process.

On Adding Structure to Unstructured Overlay Networks 345

3.4.2 Stable Environment

First, X-BOT performance results are shown for a stable environment, where no
failures were induced. Simulations were run for 250 cycles. Nodes were added to the
overlay using the Join mechanism provided by the HyParView protocol as described
in [23] and had access to local perfect Oracles (e.g., their precision was of 100%).

Fig. 2 Average Link Cost

Overlay Properties. Figure 2 shows the average link cost of the overlay as the
system evolves. As expected, while the original HyParView protocol (μ = 5) shows
a constant link cost in steady state, X-BOT, is able to lower its average link cost from
approximately 5% while maintaining 4 unbiased neighbors to 25% when keeping
1 unbiased neighbor or even 32% when no unbiased member is maintained in the
active view. Notice also that, although the optimization process works continuously,
50 simulation cycles is enough to obtain a visible improvement in the average link
cost.

Figure 3 depicts results for clustering coefficient. As expected, if the bias is ap-
plied to all members of the active view the clustering coefficient of the overlay
increases. On the other hand, maintaining a single unbiased neighbor is enough to
partially mitigate this effect. However, as it can be observed after 250 simulation
cycles, the clustering coefficient of the network with a single unbiased member is
still above that of the original HyParView protocol. Interestingly, when 2 to 4 un-
biased neighbors are maintained in the active view, the clustering coefficient drops
to values below those obtained with 5 random neighbors. This phenomenon can be
explained as follows: By maintaining active views sorted by cost, the selected unbi-
ased neighbors are those with a larger cost known by each node during the lifetime
of the system. In other words, X-BOT with no extra cost, promotes the maintenance
of “long distance” links in each active view. The same effect is also visible in Fig. 4
where we show the average path length values.

346 João Leitão, Nuno A. Carvalho, José Pereira, Rui Oliveira, and Luı́s Rodrigues

Fig. 3 Clustering coefficient

Fig. 4 Average path length

Broadcast Reliability. Experiments were also conducted to assert the impact in the
reliability of a gossip-based broadcast protocol operating on top of a biased overlays
resulting from the operation of X-BOT. Experiments were conducted as follows: in
each simulation cycle, we select a random node in the system to broadcast a mes-
sage. After the dissemination process is complete, we evaluate the reliability of the
broadcast by observing the percentage of active nodes that receive that message.
The reliability obtained for all configurations of the protocol was of 100% in steady
state. This shows that the overlay maintained by the protocol did not became dis-
connect due to the operation of X-BOT.

Effect of Node Clustering. In order to illustrate some of the benefits of X-BOT, the
algorithm was compared with T-Man in a scenario where nodes are highly clustered
in the cost function space. Notice that in these scenarios the optimization of the
overlay can lead to the creation of disconnected clusters.

On Adding Structure to Unstructured Overlay Networks 347

(a) Initial State (b) Out protocol Result (c) T-Man Result

Fig. 5 Our protocol vs T-MAN highly clustered system

The experiment was conducted using a version of T-Man [14] for the PeerSim
simulator, which can use the same Oracles as X-BOT. The selection of this version
of T-Man was motivated by an additional parameter k present in the protocol which
is similar to the μ parameter of X-BOT. The parameter limits the biasing the proto-
col performs over nodes partial views to c−k neighbors. The remaining k neighbors
of each node are selected at random.

The experiment was designed as follows: It starts by positioning 1024 nodes in
two spatial clusters. Then HyParView is used to build an overlay connecting these
nodes. The resulting overlay is depicted in Fig. 5a where each node is represented
by a cross, and each overlay link is represent by a line. As the reader can observe,
the overlay is highly connected.

Then X-BOT, with μ set to 1, and T-Man, with k set also to 1, are executed
for 250 simulation cycles to optimize the distance between neighbors, resulting
in the topologies depicted, respectively, in Fig. 5b, c. As expected, X-BOT re-
places a large number of links between the two clusters by better links inside
each cluster. However both clusters are still highly connected. The same is not
true for T-Man, which breaks the connectivity between the two clusters. This hap-
pens because the random selection of nodes in T-Man is implicitly biased to nodes
that are, at most, at two hops of distance whereas X-BOT extracts distant neigh-
bors from an unbiased low cost passive view. Moreover, as described earlier, X-
BOT (unlike T-Man) promoted the maintenance of long cost links in the over-
lay which, is such scenarios, is essential to ensure the global connectivity of the
overlay.

3.4.3 Massive Failures

In this section we provide results concerning the reliability of the gossip-based
broadcast protocol on top of the optimized overlay network. Specifically, after the
induction of massive node failures in the system that range from 10% to 95% of
all nodes. These faults were induced in the system after 250 cycles of simulation to
ensure that the overlay had time to converge to a biased version. After the induction

348 João Leitão, Nuno A. Carvalho, José Pereira, Rui Oliveira, and Luı́s Rodrigues

of failures, simulations were conducted for an extra 250 cycles and in each cy-
cle a random correct node was selected to initiate the dissemination of a broadcast
message. After the completion of the dissemination process, the reliability of the
broadcast protocol was measured. Figure 6 shows the average reliability obtained
while broadcasting 250 messages after massive failures. The reader should notice
that all protocol instances present similar values for reliability. This happens due to
the passive view maintained by HyParView. Notice that, although we use passive
views across nodes to bias the topology of the overlay, the properties of the passive
view are not affected, thus the healing properties of passive views are not affected
by the operation of X-BOT.

Fig. 6 Average reliability of 250 messages after failures

One could expect that maintaining a single unbiased neighbor would decrease the
resilience of the overlay to node failures. In fact, one could imagine that if the un-
biased member fails, it would be difficult for this member to be replaced by another
unbiased member. However, X-BOT only attempts to apply some bias when the ac-
tive view is complete. Therefore, when a node crashes and needs to be replaced, the
replacement is picked at random from the passive view. This policy, combined with
the use of a sorted active view explains the effect that we depicted in Section 3.4.2
in which unbiased neighbors become implicitly biased for high costs.

4 Gossip Optimization

4.1 Overview

In this section we describe a protocol which employs the gossip optimization
methodology. This allows the structure to emerge from the natural operation of a
gossip-based broadcast protocol. The approach leverages the fact that two distinct

On Adding Structure to Unstructured Overlay Networks 349

communications modes between peers may be used, namely: eager push and lazy
push. A main goal of the protocol is to approximate the efficiency of a gossip-based
broadcast protocol to that of a structured broadcast protocol, more specifically, to
the efficiency of a dissemination strategy which employs a spanning tree that cov-
ers all peers in the system. Moreover the protocol aims at building a solution that
exhibits the following characteristics:

• Does not impair the natural resilience of gossip protocols.
• Avoids the necessary overhead to explicitly build and maintain the spanning tree

structure. Namely, it avoids the maintenance of additional state for supporting
the dissemination structure.

• Uses a decentralized approach, with low requirements in node coordination.
• Optimizes the dissemination process to take node heterogeneity into account in

such a way that nodes with higher capacity can contribute more to the dissemi-
nation of messages.

In the following sections we describe, in some detail, the operation of the proto-
col and how it allows to achieve the characteristics listed above.

4.1.1 Background

Gossip-based multicast protocols are often based on an eager push gossip ap-
proach [8, 22, 34]: A gossip round is initiated by a node that has received a mes-
sage, relaying it to a number of targets. However, it is well known that this strategy
consumes a lot of bandwidth, as the fanout required for atomic delivery leads to
multiple copies of each message being delivered to each destination.

A different trade-off can be achieved by using a lazy push strategy, which de-
fers the transmission of the payload. In detail, during a gossip round a node will
send only an advertisement of the new message. Transmission of the payload is
initiated only if the message is unknown to the recipient. This allows the message
payload to be transmitted only once to each destination, at the expense of an ad-
ditional round-trip. Lazy transmission has also an impact on the reliability, as the
additional round-trip and resulting increased latency widens the window of vulner-
ability to network faults. The impact is however small for realistic omission rates
and can be compensated by a slight increase in the fanout [33]. Even with a larger
fanout, one can significantly improve the use of the network resources namely, in
terms of consumed bandwidth.

In fact, one can mix both approaches in a single gossiping round [33], thus pro-
viding different latency/bandwidth trade offs depending on how many messages are
eagerly transmitted.

4.1.2 Approach

The architecture stems from the observation that, in an eager push gossip proto-
col, paths leading to deliveries of each message implicitly builds a distinct random

350 João Leitão, Nuno A. Carvalho, José Pereira, Rui Oliveira, and Luı́s Rodrigues

spanning tree for each broadcasted message. This tree is composed of links which
belong to the overlay network, and therefore, one can say that it is embedded in the
underlying random overlay. If one knew beforehand which links are used to trans-
mit messages that lead to deliveries, one could use eager push gossip for those links
and lazy push gossip for all others. This would achieve exactly once transmission
for each destination. Unfortunately, this is not possible, as one cannot predict which
paths in the overlay will lead to message deliveries.

There is however an alternative strategy which is feasible: If one of the embed-
ded trees is selected beforehand for eager push gossip, one increases the proba-
bility that the links which compose that tree lead to an increased amount of mes-
sage deliveries. This happens because lazy push has additional latency, and paths
that use it will be outrun by paths that solely rely in eager push. If one assigns
nodes and links with higher capacity to support such spanning tree, the performance
of the protocol should approach that of a structured approach, where the tree is
build beforehand, in such a way that it improves one, or more, efficiency criteria.
Note that keeping redundant lazy transmissions is essential to retain the gossip re-
silience properties. On the other hand, this strategy requires the explicit coordination
among peers to maintain a tree structure which imposes additional overhead and
complexity.

Instead of selecting a single embedded tree, gossip optimization aims at increas-
ing the probability of implicitly creating spanning trees in a gossip protocol to in-
clude nodes and links with higher capacity. The resulting structures are therefore
probabilistic in nature: Nodes and links are selected with different probabilities
for payload transmission (or in other words, for eager push transmissions). Conse-
quently, structure emerges naturally from the strategy used for scheduling message
payloads in a combined eager/lazy push gossip protocol. One of the main challenges
is to achieve an emergent structure without global coordination, while at the same
time obtaining a meaningful performance improvement.

4.2 Architecture

The architecture that supports the operation of the approach described above, is de-
picted in Fig. 7. Notice that it relies in an additional layer which is located below
a pure eager push gossip protocol. This layer, called the Payload Scheduler, se-
lects when to transmit the message payload (by using a combination of eager push
and lazy push) in a transparent manner for the gossip protocol above. The Payload
Scheduler layer can be decomposed into three separate components, also depicted
in Fig. 7:

Lazy Point-to-Point The lazy point-to-point module is in charge of intercept-
ing the interaction between the gossip layer above and the transport protocol be-
low. It queries the Transmission Strategy module to decide whether to send the

On Adding Structure to Unstructured Overlay Networks 351

Fig. 7 Protocol architecture overview

payload immediately (in the case, the exchange is performed in a pure eager push
mode) or to delay the payload transmission until a request is received. As we will
later describe, this module is also in charge of generating and replying to payload
requests.

Transmission Strategy The Transmission Strategy module is the core compo-
nent of the Payload Scheduler. It defines the criteria that is used to defer payload
transmission at the sender and, at the receiver, when to request a specific payload
transmission (e.g., when to trigger lazy push requests by the receiver). Note that dif-
ferent strategies may be implemented, according to the efficiency criteria is targeted
for optimization. Notice that the goal of each strategy is to generate a combined
protocol (push gossip plus scheduler) that approximates the behavior of a structured
multicast approach.

Oracle The last component of the Payload Scheduler is the Oracle. This com-
ponent goal, similar to the Oracles described previously in this chapter, is to offer
additional information to nodes. This information can be either configured in a static
way or extracted, in run-time, concerning the performance data about the operation
of the system, for instance, by computing round-trip delays between peers. This data
is then used to feed the Transmission Strategy module.

In the remainder of this section, we describe each component of the architecture
in detail as well as the existing interfaces among them.

352 João Leitão, Nuno A. Carvalho, José Pereira, Rui Oliveira, and Luı́s Rodrigues

Algorithm 13: Simple push gossip-based broadcast protocol
Data:

K //known messages

1: initially
2: K ←− /0

3: proc MULTICAST(d) do
4: FORWARD(MKID(), d, 0)

5: proc FORWARD(i,d,r) do
6: DELIVER(d)
7: K ←− K∪{i}
8: if r < t do
9: P ←− GETPEERS(f)
10: for each p ∈ P do
11: trigger L-Send(i,d,r +1,p)

12: upon L-RECEIVE(i, d, r, s) do
13: if i /∈ K then
14: FORWARD(i, d, r)

4.2.1 Gossip Protocol Layer

As noted before, a fundamental aspect of this approach is that the Payload Scheduler
can operate in a manner that is transparent for the operation of a simple push gossip-
based broadcast protocol. Therefore, it can be applied to different gossip protocols,
such as [8, 22, 34].

Nevertheless, for self containment, we depict in Algorithm 13 a typical push
gossip protocol. This implementation assumes the availability of a peer sampling
service [16] providing an uniform sample of f other nodes with the GETPEERS(f)
primitive. It assumes also an unreliable point-to-point communication service, such
that a message m can be sent to a node p using the L-SEND(m, p) primitive. A
message m is received from a peer p by handling the L-RECEIVE(m, p) up-call.
The gossip protocol maintains a set K of known messages (line 2), initially empty.
This set is used to detect and eliminate duplicates. In more detail, the algorithm
works as follows.

• The application calls procedure MULTICAST(d) to multicast a message with pay-
load d (line 3). This simply generates an unique identifier and forwards it (line 4).
The identifier chosen must be unique with high probability, as conflicts will cause
deliveries to be omitted. A simple way to implement this is to generate a random
bit-string with sufficient length.

• Received messages are processed in a similar manner (line 12), with the differ-
ence that it is necessary to check for, and discard, duplicates using the set of
known identifiers K (line 13) before proceeding.

• The forwarding procedure FORWARD(i,d,r) (line 5) uses the message identifier
i, the payload d and the number of times, or rounds, the message has already been
relayed r, which is initially 1. It starts by delivering the payload locally using the

On Adding Structure to Unstructured Overlay Networks 353

DELIVER(d) up-call. Then the message identifier is added to the set of previously
known messages K (line 7). This avoids multiple deliveries, as described before.
Actual forwarding occurs only if the message has been forwarded less than t
times (line 8) [22] and consists in querying the peer sampling service to obtain a
set of f target nodes and then sending the message, as in lines 9 and 11. Constants
t and f are the usual gossip configuration parameters [6].

For simplicity, we do not show how identifiers are removed from set K, prevent-
ing it from growing indefinitely. This problem has been studied before, and efficient
solutions exist ensuring with high probability that no active messages are prema-
turely garbage collected [8, 22].

4.2.2 Payload Scheduler Layer

The Lazy Point-to-Point module is the entry point to the Payload Scheduler. It con-
trols the transmission of message payload using a simple negative acknowledgment
mechanism. The policy used for each individual message is obtained from the Trans-
mission Strategy module using a pair of primitives:

• EAGER?(i,d,r, p) is used to determine if payload d for message with identifica-
tion i on round r should be immediately sent to peer p. Note that if the method
always returns true the protocol operates as a pure eager push protocol. Other-
wise, if the method always returns false, the protocol operates as a pure lazy push
protocol.

• (i,s) = SCHEDULENEXT() blocks until it is the time for some message i to be
requested from a source s. From the correctness point of view, any scheduling
policy is safe, and will maintain all gossip protocols properties, as long as it
eventually schedules all lazy requests that have been queued.

The Lazy Point-to-Point module also informs the Transmission Strategy of
known sources, for each message and also, when payload has been received using
the following primitives:

• QUEUE(i,s) queues a message identifier i to be requested from source node s.
The Transmission Strategy module must keep an internal queue of known sources
for each message identifier, and eventually schedule them, unless payload is re-
ceived first.

• CLEAR(i) clears all requests on message i. Note also that a queue eventually
clears itself as requests on all known sources for a given message identifier i are
scheduled.

The Lazy Point-to-Point module is depicted in Algorithm 14. It is based on two
separate tasks. Task 1 is responsible for processing transmission requests from the
gossip layer and message deliveries from the transport layer. Task 2 runs in back-
ground, and performs requests for messages that are known to exist (due to the
reception of IHAVE messages), but whose payload has not yet been received. Fur-
thermore, the module maintains the following data structures: a set R of messages

354 João Leitão, Nuno A. Carvalho, José Pereira, Rui Oliveira, and Luı́s Rodrigues

Algorithm 14: Point-to-point communication
Data:

C[] //cached data
R //known messages

1: initially
2: ∀i : C[i]←−⊥
3: R←− /0

4: Task 1:
5: proc L-SEND(i,d,r,p) do
6: if EAGER?(i,d,r,p) then
7: Send(MSG(i,d,r,p))
8: else
9: C[i]←− (d,r)
10: Send(IHAVE(i),p)

11: upon Receive(IHAVE(i),p) do
12: if i /∈ R then
13: QUEUE(i,s)

14: upon Receive(MSG(i,d,r),s) do
15: if i /∈ R then
15: R←− R∪{i}
16: CLEAR(i)
17: trigger L-RECEIVE(i,d,r,s)

18: upon Receive (IWANT(i),s) do
19: (d,r) ←−C[i]
20: Send(MSG(i,d,r),p)

21: Task 2:
22: forever do
23: (i,s) ←− SCHEDULENEXT()
24: Send(IWANT(i),s)

whose payload has been received and; a map C, holding the payload and round
number for the message (if known).

This module operates as follows: When a message is sent (line 5), the Trans-
mission Strategy module is queried to test if the message should be immediately
sent (line 7). If not, an advertisement without the payload is sent instead (line 10).
Upon receiving a message advertisement for an unknown message, the Transmis-
sion Strategy module is notified (line 13). Upon receiving full message payload, the
strategy module is informed (line 16) and the message is also handed over to the
gossip layer (line 17). Finally, when a node receives a request (line 18) it looks it
up in the cache and transmits the payload (line 20). Note that a retransmission re-
quest can only be received as a consequence of a previous advertisement and thus
the message is guaranteed to be known and stored locally.

Task 2 executes the following loop. The Transmission Strategy module is invoked
to select a message to be requested and a node to request the message from (pair
(i,s) in line 24). This invocation blocks until a request is scheduled to be sent by the
Transmission Strategy module. A request is then sent (line 25).

For simplicity, we again do not show how cached identifiers and payloads are
removed from C and R, preventing them from growing indefinitely. This is however

On Adding Structure to Unstructured Overlay Networks 355

similar to the management of set K, discussed in the previous section, and thus the
same techniques may be applied.

Finally, the goal of the Oracle module is to measure relevant performance metrics
of the participant peers and to make this information available to the Transmission
Strategy in an abstract manner. The exported interface of this module is simply
composed by the METRIC(p) method, that returns the current metric value for a
given peer p. This metric is used by the Transmission Strategy to select whether to
immediately schedule an eager transmission or when to request lazy push transmis-
sions from each source. Note that, the Oracle module may be required to exchange
messages with its peers (for instance, to measure round trip delays). However, this
communication does not affect the dissemination process and moreover, for opti-
mization, can be piggy-backed in regular gossip messages.

In the following section we discuss different implementations of the Transmis-
sion Strategy and of Oracle modules, which aim at achieving different emergent
dissemination structures.

4.3 Strategies and Oracles

The definition of a Transmission Strategy has two main objectives: (i) Avoid as
much as possible redundant transmissions of the same payload to any given target
node; (ii) Decrease the global latency for message dissemination and delivery. These
goals are however conflicting. The first goal can be achieved by using a lazy push
strategy in all peer exchanges. Since nodes only gossip IHAVE messages, the re-
cipient can request the payload only once. Unfortunately, each lazy push exchange
adds one additional round trip to the final delivery latency. On the other hand, a pure
eager push strategy minimizes latency at the cost of generating a significant amount
of redundancy.

The key to obtaining a better latency/bandwidth trade off in applying a clever and
decentralized strategy to select which nodes (and therefore, links) should be pre-
ferred. To help the reader in assessing the goal of strategies, we start by describing a
couple of strategies that do not take advantage of knowledge about the environment,
which can also be used as a baseline for evaluating the benefits of more complex
strategies.

4.3.1 Strategies

Flat The flat strategy is defined as EAGER?(i,d,r, p) returning true with some
probability π or false with probability 1−π . When π equal to 1, this strategy im-
plements a fully eager push gossip. On the other hand, with π equal to 0, it provides
a fully pure lazy push gossip. with π values between 0 and 1, it provides different
latency/bandwidth trade offs, as a different share of gossip messages are handled in
a lazy fashion.

356 João Leitão, Nuno A. Carvalho, José Pereira, Rui Oliveira, and Luı́s Rodrigues

When a lazy strategy is used (and IHAVE messages are sent), we need also
to consider how retransmissions are scheduled by receivers within the SCHEDU-
LENEXT() procedure. In the Flat strategy, the first retransmission request is sched-
uled immediately when queued, which means that an IWANT message is issued
immediately upon receiving an IHAVE advertisement. Further requests are done pe-
riodically every T , while additional sources are known. Notice that, this is required
to mask the failure of the node which sent the first received IHAVE advertisement.

The value of T is an estimate of maximum end-to-end latency. This avoids issu-
ing explicit transmission requests until all eager transmissions have been performed,
thus optimizing bandwidth. Note that, unless there is a network omission or an ex-
treme transmission delay, there is usually no need to issue a second request. Thus
the value of T has no practical impact in the final average latency, and can be set
using only an approximation to the real end-to-end latency.

Although the T value is based only on the (current) end-to-end latency, the reader
should notice that, as stated before, this transmission strategy logic has a pure proba-
bilistic nature, as it does not rely in any knowledge about the execution environment
(e.g., the transmission strategy does not rely in information provided by any Oracle).

Time-To-Live (TTL) This strategy uses eager push until some gossip round u
and is thus defined as EAGER?(i,d,r, p) returning true if, and only if, r < u. When
u > t, this strategy defaults to a simple lazy push gossip. With u = 0, it provides
pure lazy push gossip. With a u value between 0 and t, it provides different laten-
cy/bandwidth trade offs, as it results, similar to the previous strategy, in a different
share of gossip messages being handled in a lazy fashion. SCHEDULEDNEXT() is
defined exactly as in the Flat strategy.

Notice that this strategy is intuitively useful: During the first rounds, the likeli-
hood of a node being targeted by more than one copy of the payload is small and
thus there is no point in using lazy push. Moreover, if the supporting unstructured
overlay network presents a low clustering coefficient, the usefulness of this strategy
is increased, as it will lower the number of redundant peers selected for gossip in
the initial dissemination rounds.

Radius This strategy is defined as EAGER?(i,d,r, p) returning true if, and only
if, METRIC(p) < ρ , for a given peer p, has a lower value than a given constant ra-
dius ρ . As described before, METRIC(p) is provided by an Oracle. module for node
p. SCHEDULEDNEXT() delays the first retransmission by some time T0, which is an
estimate of the latency to nodes within radius ρ for the given metric. Further retrans-
missions are scheduled periodically with period T , as in the Flat strategy. However,
if multiple sources are known, the nearest neighbor (according to the Oracle) is
selected for requesting the payload.

This follows the intuition of gossiping first with close nodes to minimize hop
latency. The expected emergent structure should approximate a mesh structure, with
most of payload being carried by links between close neighboring nodes.

Ranked This strategy aims at achieving a hubs-and-spokes structure by select-
ing a set of best nodes to serve as hubs, bearing most of the load. Therefore, at some
node q, EAGER?(i,d,r, p) returns true if, and only if, either q or p are considered
to be best nodes, meaning that eager push is used whenever a best node is involved.

On Adding Structure to Unstructured Overlay Networks 357

In such a way, more powerful nodes will have an increased probability to receive
payload messages through eager push, as they only rely in this transmission mode
to forward the message to all their selected peers. SCHEDULEDNEXT() is defined
exactly as in the Flat strategy.

Although some nodes can be explicitly configured as best nodes, for instance,
by an Internet Service Provider (ISP) that wants to improve performance to local
users, a ranking can also be computed using local Oracles and a gossip based sorting
protocol [13]. As shown later, this is greatly eased by the fact that the protocol still
works even if ranking is approximate.

4.3.2 Oracles

In this section we provide a short description of two simple Oracles, which are
used in the evaluation scheme (we will present experimental work further ahead in
Section 4.4). Notice that, the implementation of these Oracles is orthogonal to the
design of the architecture.

Other, and more complex, strategies may require different types of Oracles.
Moreover, an Oracle may compute more complex metrics, for instance, that com-
bine in some clever way more than one performance metric. These performance
metrics can be both network efficiency metrics, such as latency, but also application
efficiency metrics, such as content similarity in file sharing applications.

Latency Oracle Measures the latency to all neighbor nodes. Real-time moni-
toring of latency has been addressed a number of times, in fact, every TCP/IP con-
nection implicitly estimates round-trip time to perform congestion control [9]. This
estimate can be retrieved by applications and used for other purposes.

Distance Oracle Measures geographical distance to all neighbor nodes. This is
useful mostly for demonstration purposes, as it allows to plot network usage graphs
such that, the resulting emergent structure, is understandable by the reader. Other-
wise, it is not useful in optimizing network parameters.

4.4 Performance

In this section we show performance values for the gossip optimization protocol.
Unlike the simulation setting used in Section 3.4, here we use an experimental set-
ting based on emulation.

4.4.1 Network Emulation

Experimental evaluation of the protocol for building emergent structures by optimiz-
ing gossip, was conducted using the ModelNet large-scale emulation infrastructure
[40] with a realistic network model generated by Inet-3.0 [42]. In detail, ModelNet

358 João Leitão, Nuno A. Carvalho, José Pereira, Rui Oliveira, and Luı́s Rodrigues

allows a large number of virtual nodes running unmodified programs to be con-
figured in a smaller number of physical nodes in a LAN. Traffic is routed through
a set of emulator nodes thus applying delay, bandwidth, and loss as specified in
the network model. Inet-3.0 generates realistic Autonomous System level network
topologies using a transit-stub model.

ModelNet was deployed in a cluster of 5 workstations connected by switched 100
Mbps Ethernet. Each workstation has a 2.4 GHz Intel Celeron CPU, 512 MB RAM,
and a RealTek Ethernet controller. When hosting virtual nodes, they run Linux ker-
nel 2.6.14 and IBM Java2 1.5 runtime. When running as an emulator, FreeBSD 4.11
is used.

The network model is generated using Inet-3.0 default of 3037 network nodes.
Link latency is assigned by ModelNet according to pseudo-geographical distance.
Client nodes are assigned to distinct stub nodes, also with the default 1 ms client-
stub latency. A typical network graph has the following properties: average hop
distance between client nodes is 5.54, with 74.28% of nodes within 5 and 6
hops; average end-to-end latency of 49.83 ms, with 50% of nodes within 39 ms
and 60 ms.

4.4.2 Implementation and Configuration

The protocol was implemented by modifying an open source and lightweight im-
plementation of the NeEM protocol [34] that uses the java.nio API for scalabil-
ity and performance [38]. Briefly, NeEM uses TCP/IP connections between nodes
to avoid network congestion. When a connection blocks, messages are buffered
in user space, which then uses a custom purging strategy to improve reliability.
The result is a virtual connection-less layer that provides improved guarantees for
gossiping.

This implementation was selected as NeEM 0.5 already supports eager and lazy
push, although the later is selected only based on a message size and in a round
value threshold. The change required was to remove the hard-coded push strategy
and insert the scheduler layer. Message identifiers are probabilistically unique 128
bit strings.

The protocol was configured with a gossip fanout of 11 and an overlay degree
of 15. With 200 nodes, these correspond to a probability 0.995 of atomic delivery
with 1% messages dropped, and a probability of 0.999 of keeping the overlay con-
nected when 15% of nodes fail [6]. A retransmission period of 400 ms was used,
which is the minimal value that results in approximately 1 payload received by each
destination when using a fully lazy push strategy.

4.4.3 Traffic and Measurements

During each experiment, 400 messages are multicast, each carrying 256 bytes of
application level payload. To each of them, a NeEM header of 24 bytes is added,

On Adding Structure to Unstructured Overlay Networks 359

besides TCP/IP overhead. Messages are multicast by virtual nodes in a round-
robin fashion, with an uniform random interval with 500 ms average. All mes-
sages multicast and delivered are logged for later processing. Namely, end-to-end
latency can be measured when source and destination share the same physical node,
and thus a common clock.5 Payload transmissions on each link are also recorded
separately.

Results presented in the following section used 25 virtual nodes on each work-
station, thus obtaining 100 virtual nodes. The reason for this limitation is that an
epidemic multicast protocol produces a bursty load, in particular when using ea-
ger push gossip: Network and CPU load occurs only instants after each message is
multicast. Using a larger number of virtual nodes was observed to induce additional
latency which would falsify results. The configurations that result in lower band-
width consumption, which are the key results and goals of this approach, were also
simulated with 200 virtual nodes.

4.4.4 Statistics

Consider the following statistics of each experiment with 100 virtual nodes using an
eager push strategy: 40000 messages delivered, 440000 individual packets transmit-
ted. This amounts to 2200 Kpkts/s and thus approximately 6 MBps. As the overlay
evolves, TCP/IP connections are created and tear down. During each run, approxi-
mately 550 simultaneous and 15000 different connections are used. The experiments
presented in the next section, when automated, take almost 7 hours to run. The to-
tal amount of resulting logs is 1Gb, that has then to be processed and rendered
in plots.

Special care was taken to consider variance of each measure taken. When in
the following section we affirm that a performance difference is relevant, this was
confirmed by checking that confidence intervals with 95% certainty do not intersect.
In fact, the large number of samples used are sufficient to make such intervals very
narrow.

4.4.5 Experimental Results

To strengthen the intuition behind the approach, we depict the impact of the de-
scribed strategies with the Oracle that considers pseudo-geographical position of
nodes, as generated by Inet-3.0. Although this cannot be used to assess the perfor-
mance of the protocol, as geometrical distance does not directly map to end-to-end
distance, it allows the resulting emergent structure to be plotted and understood.

5 We do not present such results in this chapter however, the interested reader can refer to [2] for
more information.

360 João Leitão, Nuno A. Carvalho, José Pereira, Rui Oliveira, and Luı́s Rodrigues

Figures 8–10 shows the result of running 100 node configurations with different
strategies and then selecting the top 5% connections with highest throughput. The
size of each red circle is proportional to the amount of payload transmitted by the
node. Note that each connection is used for a brief period of
time, as the membership management algorithm periodically shuffles peers with
neighbors. This means that connections shown may have not existed
simultaneously.

Fig. 8 Flat (7% of traffic)

As a baseline, Fig. 8 shows an eager push configuration, where no structure
is apparent. A confirmation of this is given by the fact that the top 5% connec-
tions account for only 7% of all traffic, i.e., payload transmissions are evenly
spread across all connections. In sharp contrast, Fig. 9 shows an obvious emer-
gent mesh structure as a result of the Radius strategy, in which the 5% connec-
tions account for 37% of all payload transmissions. Finally, Fig. 10 shows a sub-set
of nodes emerging as super-nodes, accounting for a large share of links and also
transmitting a higher number of payloads. Again, the emergent structure is con-
firmed by the fact that 5% of the connections account for 30% of total payloads
transmitted.

On Adding Structure to Unstructured Overlay Networks 361

Fig. 9 Radius (37% of traffic)

5 Discussion and Future Directions

In this chapter we discussed how to add some structure to unstructured overlay net-
works. We have identified two distinct techniques that can be used for this end,
namely: a technique based on optimizing the overlay and; a technique based on op-
timizing gossip itself. These techniques can be applied together as each of them
operates at distinct levels in the typical architecture of gossip protocols. We have
described in some detail one protocol for each of these techniques. The first proto-
col illustrates how to control the communication patterns to adapt the unstructured
topology of the overlay, into a more structured and efficient infrastructure for peer-
to-peer applications and protocols. The second protocol illustrates how the control
of communication modes among peers can be used to create emergent communica-
tion structures in unstructured overlay networks. Moreover, we showed that by ex-
ploiting these emergent patterns, one can lower the typical communication overhead
of gossip protocols, by applying according to different strategies, a combination of
eager push and lazy push when gossiping with neighbors.

As future directions for research, we identify the following open issues that are
raised when adding structure to unstructured overlay networks:

Unstructured overlay networks are a promising approach to develop high scale
and highly resilient monitoring systems. Notice that one can map on top of the over-
lay links, monitoring relations. Therefore, one ensures that all components in the
system (which are mapped on nodes) are constantly monitored by a given num-
ber of other components, and that every component shares the monitoring load.

362 João Leitão, Nuno A. Carvalho, José Pereira, Rui Oliveira, and Luı́s Rodrigues

Fig. 10 Ranked (30% of traffic)

Moreover, adapting the overlay structure can be useful to promote efficient methods
to disseminate monitoring information.

Location algorithms for unstructured overlay networks present a high overhead,
specially compared with location algorithms for structured approaches such as
DHTs. Usually, these algorithms degenerate in some kind of limited flooding in the
overlay which presents a high communication overhead. On the other hand, unlike
structured approaches, unstructured overlay networks can support more complex
search semantics (as they do not operate based on hash keys) and can better tolerate
churn scenarios. One can try to bias the topology of unstructured overlay networks
to support more efficient, reliable and rich semantics resource location algorithms
and protocols.

Finally, given that the methodologies illustrated in this chapter operate at distinct
architectural levels, a promising direction in the peer-to-peer research field is to find
efficient ways of combine both methodologies.

Acknowledgments

This work was partially supported by project “P-SON: Probabilistically Structured Overlay Net-
works” (POS C/EIA/60941/2004).

On Adding Structure to Unstructured Overlay Networks 363

References

1. Birman, K., Hayden, M., Ozkasap, O., Xiao, Z., Budiu, M., Minsky, Y.: Bimodal multicast.
ACM Trans. Comput. Syst. 17(2), 41–88 (1999)

2. Carvalho, N., Pereira, J., Oliveira, R., Rodrigues, L.: Emergent structure in unstructured epi-
demic multicast. In: Proceedings of the 37th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, p. (to appear). Edinburgh, UK (2007)

3. hua Chu, Y., Rao, S.G., Zhang, H.: A case for end system multicast (keynote address). In:
SIGMETRICS ’00: Proceedings of the 2000 ACM SIGMETRICS international conference
on Measurement and modeling of computer systems, pp. 1–12. ACM, New York, NY, USA
(2000). DOI http://doi.acm.org/10.1145/339331.339337

4. Chun, B., Culler, D., Roscoe, T., Bavier, A., Peterson, L., Wawrzoniak, M., Bowman, M.:
Planetlab: an overlay testbed for broad-coverage services. SIGCOMM Comput. Commun.
Rev. 33(3), 3–12 (2003). DOI http://doi.acm.org/10.1145/956993.956995

5. Demers, A., Greene, D., Hauser, C., Irish, W., Larson, J., Shenker, S., Sturgis, H., Swinehart,
D., Terry, D.: Epidemic algorithms for replicated database maintenance. In: PODC ’87: Pro-
ceedings of the sixth annual ACM Symposium on Principles of distributed computing, pp.
1–12. ACM, New York, NY, USA (1987). DOI http://doi.acm.org/10.1145/41840.41841

6. Eugster, P., Guerraoui, R., Kermarrec, A.M., Massoulié, L.: From Epidemics to Distributed
Computing. IEEE Comput. 37(5), 60–67 (2004). DOI NA

7. Eugster, P.T., Guerraoui, R.: Probabilistic multicast. In: DSN ’02: Proceedings of the 2002 In-
ternational Conference on Dependable Systems and Networks, pp. 313–324. IEEE Computer
Society, Washington, DC, USA (2002)

8. Eugster, P.T., Guerraoui, R., Handurukande, S.B., Kouznetsov, P., Kermarrec, A.M.:
Lightweight probabilistic broadcast. ACM Trans. Comput. Syst. 21(4), 341–374 (2003). DOI
http://doi.acm.org/10.1145/945506.945507

9. Floyd, S., Fall, K.: Promoting the use of end-to-end congestion control in the Internet.
IEEE/ACM Trans. Netw. 7(4), 458-472 (1999)

10. Floyd, S., Jacobson, V., Liu, C.G., McCanne, S., Zhang, L.: A reliable multicast framework for
light-weight sessions and application level framing. IEEE/ACM Trans. Netw. 5(6), 784–803
(1997). DOI http://dx.doi.org/10.1109/90.650139

11. Ganesh, A., Kermarrec, A.M., Massoulié, L.: SCAMP: Peer-to-peer lightweight member-
ship service for large-scale group communication. In: Networked Group Communication,
pp. 44–55 (2001). URL citeseer.ist.psu.edu/ganesh01scamp.html

12. Hayden, M., Birman, K.: Probabilistic broadcast. Tech. rep., Cornell University, Ithaca, NY,
USA (1996)

13. Jelasity, M.: A case study on gossip beyond gossip: Sorting. Ws. on Gossip Based Computer
Networking, Lorent Center, Leiden (2006)

14. Jelasity, M., Babaoglu, O.: T-man: Fast gossip-based construction of large-scale overlay
topologies. Tech. rep., University of Bologna (2004)

15. Jelasity, M., Babaoglu, O.: T-man: Gossip-based overlay topology management. In: The
Fourth International Workshop on Engineering Self-Organizing Applications (ESOA’06).
Hakodate, Japan (2006). URL http://dx.doi.org/10.1007/11734697_1

16. Jelasity, M., Guerraoui, R., Kermarrec, A.M., van Steen, M.: The peer sampling service: ex-
perimental evaluation of unstructured gossip-based implementations. In: Middleware ’04:
Proceedings of the 5th ACM/IFIP/USENIX international conference on Middleware, pp. 79–
98. Springer-Verlag New York, Inc., New York, NY, USA (2004)

17. Jelasity, M., Montresor, A.: Epidemic-style proactive aggregation in large overlay net-
works. In: Proceedings of The 24th International Conference on Distributed Computing
Systems (ICDCS 2004), pp. 102–109. IEEE Computer Society, Tokyo, Japan (2004). URL
citeseer.ist.psu.edu/jelasity04epidemicstyle.html

18. Jelasity, M., Montresor, A., Jesi, G.P., Voulgaris, S.: The Peersim simulator.
http://peersim.sf.net

364 João Leitão, Nuno A. Carvalho, José Pereira, Rui Oliveira, and Luı́s Rodrigues

19. Karwaczynski, P.: Fabric: Synergistic proximity neighbour selection method. In: P2P ’07:
Proceedings of the Seventh IEEE International Conference on Peer-to-Peer Computing (P2P
2007), pp. 229–230. IEEE Computer Society, Washington, DC, USA (2007)

20. Karwaczyński, P., Konieczny, D., Moçnik, J., Novak, M.: Dual proximity neighbour selection
method for peer-to-peer-based discovery service. In: SAC ’07: Proceedings of the 2007 ACM
symposium on Applied computing, pp. 590–591. ACM, New York, NY, USA (2007). DOI
http://doi.acm.org/10.1145/1244002.1244137

21. Kermarrec, A.M., Massoulié, L., Ganesh, A.: Probabilistic reliable dissemination in large-
scale systems. IEEE Trans. Parallel Distrib. Syst. 14(3), 248–258 (2003). DOI http://dx.doi.
org/10.1109/TPDS.2003.1189583

22. Koldehofe, B.: Buffer management in probabilistic peer-to-peer communication protocols. In:
Proceedings of the 22th IEEE Symposium on Reliable Distributed Systems (SRDS’03), pp.
76–87. Florence, Italy (2003)

23. Leito, J.: Gossip-based broadcast protocols. Master’s thesis, University of Lisbon (2007)
24. Leito, J., Pereira, J., Rodrigues, L.: Epidemic broadcast trees. In: Proceedings of the 26th

IEEE International Symposium on Reliable Distributed Systems (SRDS’2007), pp. 301–310.
Beijing, China (2007)

25. Leito, J., Pereira, J., Rodrigues, L.: HyParView: A membership protocol for reliable gossip-
based broadcast. In: DSN ’07: Proc. of the 37th Annual IEEE/IFIP Intl. Conf. on Dependable
Systems and Networks, pp. 419–429. IEEE Computer Society, Edinburgh, UK (2007). DOI
http://dx.doi.org/10.1109/DSN.2007.56

26. Leito, J., Pereira, J., Rodrigues, L.: Topology aware gossip overlays. Tech. Rep. 36, INESC-ID
(2008)

27. Li, H., Clement, A., Wong, E., Napper, J., Roy, I., Alvisi, L., Dahlin, M.: BAR gossip. In:
Proceedings of the 2006 USENIX Operating Systems Design and Implementation (OSDI)
(2006)

28. Lin, M.J., Marzullo, K.: Directional gossip: Gossip in a wide area network. In: European De-
pendable Computing Conference, pp. 364–379 (1999). URL citeseer.ist.psu.edu/
237760.html

29. Liu, Y., Xiao, L., Ni, L., Liu, Y.: Building efficient overlays. J. Grid Comput. 2(2), 183–192
(2004)

30. Massoulié, L., Kermarrec, A.M., Ganesh, A.J.: Network awareness and failure resilience in
self-organising overlays networks. In: Synmposium on Reliable Distributed Systems (SRDS).
Florence, Italy (2003). URL http://www.irisa.fr/paris/Biblio/Papers/
Kermarrec/MasKerGan03SRDS.pdf

31. Melamed, R., Keidar, I.: Araneola: A scalable reliable multicast system for dynamic environ-
ments. In: NCA ’04: Proceedings of the Network Computing and Applications, Third IEEE
International Symposium, pp. 5–14. IEEE Computer Society, Washington, DC, USA (2004)

32. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equations of
state calculations by fast computing machine. J. Chem. Phys. 21, 1087–1091 (1953)

33. Pereira, J., Oliveira, R., Rodrigues, L.: Efficient epidemic multicast in heterogeneous net-
works. In: Proceedings of the International Workshop on Reliability in Decentralized Dis-
tributed Systems, part of the OTM Federated Conferences and Workshops. Montpellier, France
(2006)

34. Pereira, J., Rodrigues, L., Monteiro, M.J., Oliveira, R., Kermarrec, A.M.: NeEM: Network-
friendly epidemic multicast. In: Proceedings of the 22th IEEE Symposium on Reliable Dis-
tributed Systems (SRDS’03), pp. 15–24. Florence, Italy (2003)

35. Ratnasamy, S., Handley, M., Karp, R., Shenker, S.: Application-level multicast using content-
addressable networks. In: NGC ’01: Proceedings of the Third International COST264 Work-
shop on Networked Group Communication, pp. 14–29. Springer-Verlag, London, UK (2001)

36. van Renesse, R., Minsky, Y., Hayden, M.: A gossip-style failure detection service. Tech. rep.,
Cornell University, Ithaca, NY, USA (1998)

37. Rowstron, A.I.T., Kermarrec, A.M., Castro, M., Druschel, P.: Scribe: The design of a large-
scale event notification infrastructure. In: NGC ’01: Proceedings of the Third International

On Adding Structure to Unstructured Overlay Networks 365

COST264 Workshop on Networked Group Communication, pp. 30–43. Springer-Verlag,
London, UK (2001)

38. Santos, P., Pereira, J.: NeEM version 0.5. http://neem.sf.net (2006)
39. Tang, C., Ward, C.: GoCast: Gossip-enhanced overlay multicast for fast and dependable group

communication. In: DSN ’05: Proc. of the 2005 Intl. Conf. on Dependable Systems and
Networks (DSN’05), pp. 140–149. IEEE Computer Society, Washington, DC, USA (2005).
DOI http://dx.doi.org/10.1109/DSN.2005.52

40. Vahdat, A., Yocum, K., Walsh, K., Mahadevan, P., Kostic, D., Chase, J., Becker, D.: Scalability
and accuracy in a large-scale network emulator. SIGOPS Oper. Syst. Rev. 36(SI), 271–284
(2002). DOI http://doi.acm.org/10.1145/844128.844154

41. Voulgaris, S., Gavidia, D., Steen, M.: Cyclon: Inexpensive membership management for un-
structured p2p overlays. J. Network Syst. Manag. 13(2), 197–217 (2005). DOI 10.1007/
s10922-005-4441-x. URL http://dx.doi.org/10.1007/s10922-005-4441-x

42. Winick, J., Jamin, S.: Inet-3.0: Internet topology generator. Tech. Rep. UM-CSE-TR-456-02,
EECS, University of Michigan (2002). URL citeseer.nj.nec.com/526211.html

43. Zhuang, S., Zhao, B., Joseph, A., Katz, R., Kubiatowicz, J.: Bayeux: An architecture for scal-
able and fault-tolerant wide-area data dissemination. In: Proceedings of NOSSDAV (2001).
URL citeseer.ist.psu.edu/zhuang01bayeux.html

Mathematical Modeling of Routing in DHTs

Peter Kersch and Robert Szabo

Abstract Although most Distributed Hash Table (DHT) overlays are structurally
similar to the “small-world” navigation model of Kleinberg – architectural and al-
gorithmic details of different DHT variants differ significantly. Lookup performance
of DHTs depends on a sets of different and often incompatible parameters, which
makes analytical comparison rather difficult. The objective of this chapter is to re-
view existing analytical models for DHT routing performance and to introduce a
novel framework for the per-hop routing progress analysis of long-range DHT con-
nections based on a logarithmic transformation. With the logarithmic transformation
of the DHT metric space we analyze the distribution of the per-hop routing progress
in general and also for the special cases of the deterministic and probabilistic power-
law routing overlays. Based on the proposed analytical framework routing perfor-
mance of DHTs can be described by a triple: the long-range connection density, its
coefficient of variation and the number of short-range connections. Finally, we de-
rive upper bound on the expected number of routing hops as a function of network
size and the parameter triple.

1 Introduction

A plethora of Distributed Hash Table (DHT) concepts have been proposed and an-
alyzed in the past 6–7 years to provide scalable and robust distributed storage and

Peter Kersch
High Speed Networks Laboratory, Department of Telecommunications and Media Informatics,
Budapest University of Technology and Economics, Budapest, Hungary,
e-mail: kersch@tmit.bme.hu

Robert Szabo
High Speed Networks Laboratory, Department of Telecommunications and Media Informatics,
Budapest University of Technology and Economics, Budapest, Hungary,
e-mail: szabo@tmit.bme.hu

X. Shen et al. (eds.), Handbook of Peer-to-Peer Networking, 367
DOI 10.1007/978-0-387-09751-0 14, © Springer Science+Business Media, LLC 2010

368 Peter Kersch and Robert Szabo

lookup systems [6, 12, 14, 16, 17, 19–22], etc. Although architectural and algo-
rithmic details of these DHT proposals can differ significantly, the foundations of
lookup mechanisms are very similar for most of them. There are several empirical
studies (based on simulations) comparing static and dynamic performance of differ-
ent DHT routing mechanisms using various parameter settings [5, 13]. There exist
also detailed analytical models for some DHTs, however these models are usually
restricted to one specific DHT implementation. Finally, some aspects of DHT rout-
ing are covered by generic models, e.g., static resilience of DHT routing against
failure [10] or the impact of lookup strategy, lookup parallelism and replication on
DHT routing performance under churn [23]. However, to the best of our knowledge,
there exist no generic analytical models capturing the relationship between overlay
structure and routing performance of DHTs in static networks. In this chapter, we
try to fill this gap proposing a generic stochastic model of DHT overlays and overlay
routing covering a large family of DHTs.

The proposed analytical model builds on the fact that most DHT overlays are
structurally similar to the “small-world” model of Kleinberg [8] and the sequence
of long-range connections of a DHT node becomes linear after logarithmic transfor-
mation of distances in the DHT metric space. More specifically, we have identified
a large subclass of DHT overlays (regular power-law routing overlays) where this
transformed sequence can be described for each node as independently selected ran-
dom samples from an infinite renewal process. Using this renewal process model,
we analyze the distribution of the per-hop routing progress in general and also for
the special cases of the deterministic and probabilistic power-law routing overlays.
Furthermore, we introduce the λ long-range connection density and the cv long-
range connection density coefficient of variation parameters to characterize long-
range connection distribution of an overlay. Finally, using renewal theory, we derive
upper bounds on the expected number of routing hops as a function of network size
and the above overlay parameters.

The rest of this chapter is structured as follows. First, we give a brief overview of
DHTs in general. Then, in Section 2, we discuss challenges of modeling DHT rout-
ing, revisit applied mathematical tools from renewal theory and introduce modeling
assumptions and notations used in the upcoming sections. In Section 3, we present
the concept of logarithmically transformed view for long-range connections. Finally,
in Section 4, we describe the proposed stochastic model based on this transformed
view and tools from renewal theory.

1.1 DHTs Revisited

From the point of view of an application, Distributed Hash Tables provide similar
functionality than ordinary “in memory” hash tables. An application can insert and
remove key-value mappings, and given a key, it can retrieve the associated value (in
the context of a peer-to-peer system, a key is an identifier used to refer to a shared
resource while the associated value is the resource itself or the locator of the re-

Mathematical Modeling of Routing in DHTs 369

source). All of these operations are performed quickly and efficiently and scale well
for large amounts of data in both “in memory” and distributed hash tables. However,
as opposed to ordinary hash tables, storage of key-value pairs is distributed over all
nodes of the DHT and all hash table methods can be issued from any of these nodes
(see Fig. 1). Consequently, internal operation of a DHT differs significantly from the
operation of ordinary “in memory” hash tables. To present the architecture and op-
eration of distributed hash tables, we used the terminology and formalism proposed
in [1].

One of the key conceptual components of a DHT is the common metric space
into which nodes and resources are mapped to. All distributed hash tables use a
virtual identifier space I which possesses a closeness metric d : I ×I →R so that
(I ,d) is a metric space or a quasi-metric space1 Both the group of peers forming
the DHT and the set of all shared resources are mapped to this ID space I (see
Fig. 1). Mapping of peers can be described by a function FP : P → I where P
is the set of peers forming the DHT. FP is usually implemented by either drawing
a random identifier according to uniform distribution over I or by applying a hash
function to the public key of the peer. Resources are mapped to I using a function
FK : K →I where K is the set of keys used to refer to shared resources. FK is most
often implemented by applying a hash function to the keys.

resources

peers

virtual identifier space

key value

FK

FP

buckets

elbaT hsaH detubirtsiDelbaT hsaH”yromem nI“

FH

M

Fig. 1 Comparison of “in memory” hash tables and DHTs

Peers responsible for a given resource are determined based on the above map-
pings to the common metric space (I ,d). A key-value pair describing a resource
is usually stored by the peer (or the set of peers) whose image in (I ,d) is the clos-
est to the image of the given resource in (I ,d). Formally, this can be described
using a function M : I → 2P and a constraint ∀i ∈I : ∀p ∈M (i),∀q /∈M (i) :

1 A quasi-metric space does not satisfy the symmetry requirement of metric spaces.

370 Peter Kersch and Robert Szabo

d(FP(p), i) ≤ d(FP(q), i) on this function. As a result, locating a key-value pair
(which describes a shared resource in a DHT) corresponds to finding one of the
closest peers to the image of the resource in (I ,d).

The function M is usually complete, which means that each identifier of I is
under the responsibility of at least one peer. To provide fault tolerance M typically
contains more than one element and the cardinality of M is typically constant,
which means that each key-value pair is replicated to the same number of peers
(Fig. 1 shows the simplest case when each key-value pair is stored by only one
peer).

Comparing distributed hash tables to ordinary hash tables, peers correspond to
buckets and the function M corresponds to the hash function FH in ordinary hash
tables. Changing the number of buckets in an ordinary hash table implies changing
the hash function FH and this usually requires relocation of most key-value pairs.
For “in memory” hash tables, bucket size is usually constant (or changes only rarely
when reaching a capacity threshold), hence this is not a problem. In contrast, a peer-
to-peer network is inherently dynamic and the set of peers in a DHT might change
continuously, implying changes in the mapping of key-value pairs to nodes (M).
Continuous relocation of key-value pairs in a DHT would generate a huge com-
munication overhead, hence changes in these mappings should be minimized when
peers join and leave the network. DHTs address this problem by selecting responsi-
ble peers based on proximity in the metric space (I ,d) as mentioned above. Con-
sequently, changes in key-value pair → responsible peers mappings are restricted
to the neighborhood of the joining or leaving peer in (I ,d). (This concept is also
called consistent hashing [7] and had been proposed for distributed web caching
before the era of distributed hash tables.)

Another benefit of selecting responsible peers by proximity in (I ,d) is that all
DHT operations can be easily implemented on top of a routing algorithm which
locates the closest peers to a given point in I . To realize this routing process, DHTs
create and maintain an overlay network. An overlay network can be modeled by a
directed graph G = (P,E) where P denotes the set of vertices (peers) while E
denotes the set of edges (overlay connections2). Routing in the overlay is typically
based on a simple greedy algorithm: a request for a given point in I is forwarded
via the connection pointing to the peer which is the closest to this given point in
(I ,d).

Overlay topology depends heavily on distances between the images of peers in
the metric space (I ,d). In most DHT overlays, connections can be categorized into
short-range (local) and long-range connections. Each node has short-range connec-
tions to some specific subset of the closest peers in (I ,d). Additionally, they have
long-range connections to some distant nodes so that the distribution of these con-
nections is structurally similar to the family of small-worlds graphs introduced by
Kleinberg in [8]. In this small-worlds graph family, the probability of having a long-

2 A connection from node v1 to a peer node v2 means that node v1 knows the address of node v2
(this is usually in the form of a pair of ID + IP address / port number). Different algorithms use
different names for connections, e.g., Chord [22] calls them successors, predecessors and finger
pointers, while in Pastry [21], they are called leaf set and routing table entries, etc.

Mathematical Modeling of Routing in DHTs 371

range connection between to nodes is inversely proportional to the Dth power of
their distance (where D is the dimension of the metric space), and Kleinberg has
shown that this is necessary to provide efficient distributed search based solely on
local information.

The role of short-range and long-range connections in the overlay is complemen-
tary. Short-range connections guarantee success of greedy forwarding: since each
node is connected to its closest neighbors in (I ,d), it is always possible to forward
requests at least a small step closer to the target. In contrast, long-range connec-
tions are not critical for successful routing but they expedite the lookup process and
usually provide O(logn) bounds on the average number of lookup hops. This is
achieved by ensuring that the distance from the target decreases by a constant factor
in expected value after each routing step.

2 Modeling DHT Routing

Defining models and metrics to describe performance of different DHT routing ar-
chitectures is not a trivial task. An application using the DHT lookup service is
mostly interested in lookup latencies and in the ratio of successful lookups. A user
running DHT implementations might also be concerned by resource usage (CPU,
memory, storage, bandwidth, etc...) while a network operator is only interested in
the overall traffic (lookup + control) generated in the network. Since most of these
describe conflicting objectives, comparison only makes sense if conflicting perfor-
mance metrics are analyzed together describing fundamental trade-offs.

Some of the commonly used performance metrics (e.g., overlay network diam-
eter, node state) are not directly relevant for neither applications nor users nor net-
work operators. In [25], the author investigates the trade off between node state and
overlay network diameter. Loguinov et al. also use network diameter as the primary
metric for routing in [15].

Node state affects primarily memory usage at nodes. However, the amount of
memory required to keep track of connections is typically far from being a bottle-
neck in current systems. Node state can also influence the maintenance bandwidth
(e.g., in DHTs using per connection periodic keep-alive messages to detect con-
nection failures). However, it cannot be used as a general metric to characterize
maintenance traffic.

Overlay network diameter can be used to derive only lower bounds on the worst-
case number of routing hops for a lookup in a given overlay structure. Short paths
between nodes do not guarantee that a distributed routing algorithm is also able
to find them [8]. Hence, the distribution or the average number of routing hops is
a more informative performance metric which also allows to derive [23] lookup
latency – a key performance metric from a user perspective.

Analytical comparison of a performance metric (e.g., the number of routing hops)
of different DHTs is usually described by asymptotic notation, commonly used to
characterize algorithm complexity. E.g., CAN [19] with a D dimensional identifier

372 Peter Kersch and Robert Szabo

space provides lookups in O(D
2 n

1
D) hops in a network of n nodes. Although this is

a useful and simple way to determine scalability of a particular algorithm, it has its
limitations. Due to potentially different unknown constants hidden within the nota-
tion, it is not possible to compare two different algorithms with the same asymptotic
behavior (e.g., O(logn) hop count is typical for many DHTs). Furthermore, it is also
possible that an algorithm with better asymptotic behavior performs worse for prac-
tical network sizes.

Asymptotic notation may even be misleading when not used carefully. The pa-
per presenting Koorde [6] (a DHT based on de Bruijn graphs) is a good example
of such a misuse. Using a base-k de Bruijn graph, Koorde completes routing in
O(logk n) hops. Based on this, the authors claim that choosing k = logn, routing
cost is O(logn/ logk) = O(logn/ log logn). However, the base of the underlying de
Bruijn graph cannot be changed on the fly as the network grows since this would re-
quire rebuilding the whole DHT from the scratch. Therefore the parameter k should
not be treated as a function of network size. (Similarly, the dimension D of a CAN
[19] network is not expressed as a function of network size because this is also a
parameter that cannot be changed without rebuilding the whole system.) As a con-
sequence, the number of routing hops for Koorde using base-k de Bruijn graphs is
in fact O(logn/ logk).

For a few DHT architectures, there are some exact analytical results: e.g., the
average number of routing hops for Chord [22] is 1

2 log2n. [23] is one of the few pa-
pers which provide a generic analytical framework for the performance comparison
of different DHTs. Given the average number of routing hops in static networks,
the authors analyze the influence of three key factors on routing performance under
churn: lookup strategy, lookup parallelism and replication. Our results on the ex-
pected number of routing hops in static networks can be potentially used as an input
for this analytical framework to derive these additional performance metrics.

Finally – although not directly related to distributed hash tables – the “small-
world” navigation model of Kleinberg [8] is a fundamental contribution to theory
of routing in distributed systems. A network is said to be “small-world” when there
exists a short path between any two nodes, although most nodes are not directly
connected. This low network diameter is a necessary but not sufficient property for
efficient distributed routing. In [8], Kleinberg investigates requirements on overlay
topology for efficient distributed routing based solely on local information in small-
world networks. Similarly to DHT overlays, he defines a graph (embedded into a
metric space) with short-range connections to the closest nodes and long-range con-
nection(s) to some distant nodes. As in DHTs, Kleinberg’s routing is greedy: re-
quests are forwarded via the peer node being the closest to the target node in the
metric space. As the main finding of the paper, Kleinberg shows that distributed
routing will achieve the best asymptotical performance when the probability of hav-
ing a long-range connection to another node is inversely proportional to the Dth

power of distance of the two nodes (where D is the dimension of the metric space
embedding the small-world graph).

Most DHT routing architectures – although not inspired by Kleinberg’s work –
can be related to the one dimensional Kleinberg small-world model.

Mathematical Modeling of Routing in DHTs 373

2.1 Renewal Processes Revisited

Renewal processes are a special class of stochastic processes used to model indepen-
dent identically distributed occurrences. Let X1, X2, X3, ... be independent identically
distributed (i.i.d) and positive random variables defined by the distribution function
P(X < x) = F(x). Furthermore, let Tn be defined as Tn =∑n

i=1 Xi. Then the counting
process Y (t) = max{n : Tn ≤ t} is a renewal process (t ≥ 0).

Renewal processes are usually defined in the time domain. In the time domain,
Y (t) denotes the number of events until time t, Tn corresponds to the occurrence
time of the nth event and the random variables Xi correspond to inter-arrival times
between subsequent events. The name renewal process is motivated by the fact that
every time there is an occurrence, the process “starts all over again”; it renews itself
(since the variables Xi are i.i.d).

In contrast to the general usage, renewal processes in my dissertation are not de-
fined in the time domain but in the distance domain of a one dimensional metric
space. Furthermore occurrences are not events but the images of long-range con-
nections in this metric space and the random variables Xi correspond to distances
between the images of subsequent long-range connections.

In the followings, I briefly list the results of renewal theory that I use in the
upcoming sections (for further reading, see [4, 9, 11]). Note that the vocabulary of
renewal theory traditionally assumes a time domain for renewal processes. However,
all results are equally valid for the distance domain too.

Renewal function The expected value of the number of arrivals in function of the
elapsed time is called renewal function: m(t) = E [Y (t)].

Residual life Picking a random point in time (t), the random variable correspond-
ing to the time from this point until the next event (at time TY (t)+1) in a renewal
process is called residual life:

V (t) = TY (t)+1− t (1)

Residual life is also called residual lifetime, residual time or forward recurrence
time.

Expected value of asymptotic residual life The expected value of asymptotic resid-
ual life in a renewal process can be expressed as

lim
t→∞

E[v] =
μ2

2μ
. (2)

where μ = E[x] is the expected value of inter-arrival times and μ2 = E[x2] is the
second moment of inter-arrival times.

Distribution of asymptotic residual life Considering a renewal process with an
inter-arrival time distribution F(x), the probability density function of asymp-
totic residual life can be expressed as

lim
t→∞

g(v) =
1−F(v)

μ
, (3)

374 Peter Kersch and Robert Szabo

where μ = E[x] is the expected value of inter-arrival times.
Length of a randomly selected renewal period Picking a random point in time (t)

in a renewal process, the pdf of the length of the renewal period marked by this
point (TY (t)+1 - TY (t)) is asymptotically:

lim
t→∞

h(x′) =
f (x′)x′

μ
, (4)

where f (x) is the pdf of inter-arrival times and μ = E[x] is the expected value of
inter-arrival times in the renewal process. It is important to note that the distribu-
tion of x′ and x are not the same since a random point in time will select longer
periods at higher probability than shorter periods.

Note that considering a random sample from a renewal process, the above for-
mulas are also valid in general, not only for the asymptotic case.

Lorden bound The renewal function of a renewal process is upper bounded by

m(t)≤ t
μ

+
μ2

μ2 +1, (5)

where μ is the expected value of inter-arrival times and μ2 is the second moment
of inter-arrival times in the renewal process (see [4], page 110.)

Poisson processes are a special class of renewal processes. Inter-arrival times in
a Poisson process are exponentially distributed. A Poisson process can be charac-
terized by the λ parameter of this exponential distribution which is also called the
intensity of the process.

A Poisson process of intensity λ can also be defined as a pure birth process:
the probability that an arrival occurs during an infinitesimally small interval dt is
λdt (independent of arrivals outside this interval) and the probability that more than
one arrival occurs is o(dt). This definition is equivalent with the renewal process
definition.

Random sampling Random and independent sampling of events with probability
p from a Poisson process of rate λ results into a Poisson process of rate pλ .

Superposition Superposition of two Poisson process of rate λ1 and λ2 respectively
results into a Poisson process of rate λ1 +λ2.

2.2 Assumptions and Notations

To describe the routing overlay of distributed hash tables, we reuse the terminology
and reference model defined in [1]. Let’s consider a one dimensional Euclidean
metric space within the interval [0,1) that wraps around (this can be represented

Mathematical Modeling of Routing in DHTs 375

as a ring, see Fig. 2). Distance between two nodes in this metric space is defined as
their distance along the ring in clockwise direction,3 formally: d(x,y) = y−x+ Ix>y.

Fig. 2 Model of unidi-
rectional DHT overlays
(example)

S2

S3

S1

L3

L2

L1

L0

dS

0

1

A

Each node has two different types of connections to other nodes: short-range
connections (called “local” connection in [1]) to a fixed number (NS) of closest
nodes (in clockwise direction) and long-range connections to some distant nodes.
These nodes are called short-range and long-range peers of the node, respectively.
Fig. 2 shows short-range connections (S1, S2, S3) and long-range connections (L0,
L1, L2, L3) of node (A). The distance of the node and its farthest short-range peer is
denoted by dS.

Routing is assumed to be greedy: a node forwards a lookup request to its peer be-
ing the closest to the target node in the metric space of the DHT (without overshoot-
ing it). This greedy routing process can be described by the following pseudo-code
algorithm:

3 This definition implies that the metric space is in fact only a quasi-metric space, since it does not
satisfy the symmetry requirements. Extending the model to bidirectional routing where distance is
defined as the shortest path along the ring (in any of the two directions), a real metric space can be
obtained.

376 Peter Kersch and Robert Szabo

while node �= target do1

proxy ← GetClosestPeer(node,target);2

if Distance(proxy,target) < Distance(node,target) then3

node ← proxy;4

else5

error6

end7

end8

Algorithm 15: Greedy overlay routing

Routing overlay of many DHT implementations (Chord [22], Pastry [21], Sym-
phony [16], Accordion [12] etc.) can be described (or approximated) using the above
system model (e.g., routing in Pastry is more complex but is based on the same
greedy algorithm). However, there are a few exceptions, for example DHTs using
multidimensional metric spaces (e.g., CAN [19]) or non-Euclidean metric spaces
(e.g., Kademlia [17]).

2.2.1 Degree of Randomness

Since randomness and flexibility in the choice of long-range connections plays an
important role in both analysis and maintenance of overlays, let us first define two
extreme DHT overlay categories:

Definition 1 (Probabilistic power-law routing overlay (PPLRO)). A routing over-
lay is called probabilistic power-law routing overlay when the choice of long-range
connections is not deterministic and they only have to satisfy the following require-
ments: the probability of having a long-range connection to another overlay node is
inversely proportional to the Dth power of the distance between the two nodes in
the D dimensional metric space (I ,d) where the DHT maps node identifiers [8].
Join algorithm of probabilistic power-law routing overlays create initial long-range
connections of joining nodes according to this distance distribution and the choice
of long-range connections is mutually independent of each other.

Definition 2 (Deterministic power-law routing overlay (DPLRO)). A routing
overlay over a one-dimensional metric space4 is called deterministic power-law
routing overlay if long-range connections are determined by the power series of
the distances di = q

ci where c and q are constant so that c > 1 and 0 < q ≤ 1. For
unidirectional overlays, the ith long-range connection is chosen as the first node,
whose distance exceeds di while for bidirectional overlays, the ith connection is the
node closest to the point at distance di.

4 Extending this definition to multidimensional metric spaces on the analogy of probabilistic
power-law routing overlays is not trivial.

Mathematical Modeling of Routing in DHTs 377

Symphony [16], Accordion [12] and the routing scheme proposed in [2] are using
probabilistic routing overlays while a deterministic power-law routing overlay can
be thought of as a generalization of the Chord [22] overlay (for Chord, c = 2).

It is important to note that the term “power-law” is also used to denote the over-
lay of unstructured P2P systems structurally similar to scale-free random graphs
[3]. In that context, it refers to distribution of node degree. However, in Defini-
tions 1 and 2, the term “power-law” refers to distance distribution of long-range
connections.

2.2.2 Bidirectional Overlay Model

The unidirectional overlay and routing model presented above can be easily ex-
tended to bidirectional overlays with bidirectional routing. In a bidirectional over-
lay, both short-range and long-range connections are bidirectional. Another impor-
tant difference is the distance metric of the space (I ,d). Using the ring represen-
tation, distance of two nodes is defined as their shortest distance along the ring,
formally: db(x,y) = +min [d(x,y),d(y,x)]. Hence in contrast to unidirectional over-
lays, this is a real metric space also satisfying the symmetry requirements. As a re-
sult, from the point of view of distances, each node can split the DHT metric space
(I ,d) into two symmetrical partitions. Connections of a node are created indepen-
dently in both of these partitions. Figure 3 shows short-range and long-range con-
nections of node A in both partitions of the metric space for an example bidirectional
overlay.

Fig. 3 Model of bidirectional
DHT overlays (example)

A
S1

S1
í

S3
’

S2

S3

L2

L1

L0

L3
’

L2
’ L1

’

L0
’

dS

dS
‘

1

1

Setting the circumference of the ring to 2 units for bidirectional overlays, it is
easy to derive the bidirectional equivalent of any unidirectional overlay (where the
circumference of the ring is set to 1 unit). Connections of the bidirectional overlay
obey the distance distribution of the corresponding unidirectional overlay separately
in both partitions of the metric space (I ,d). Hence, the definition of probabilis-
tic and deterministic power-law routing overlay can be extended for bidirectional

378 Peter Kersch and Robert Szabo

connections by applying either Defintions 1 or 2 separately for both partitions of
the metric space.

As a consequence of the definition of distance metric for bidirectional overlays,
greedy routing also becomes bidirectional; requests can be forwarded in both direc-
tions depending on the position of the peer node being closest to the target.

2.2.3 Node ID Distribution

The distribution of node identifiers in the metric space (I ,d) also affects mathe-
matical analysis of routing in the overlay. The ID space of node identifiers is discrete
and finite for most real systems, hence nodes can only be mapped to a finite subset
of points in the Euclidean metric space (I ,d). However, the granularity of this fi-
nite ID space is so fine (the size of the ID space varies between 2128 − 2256), that
node ID mapping can be considered continuous in (I ,d).

Furthermore, we assumed that given a network of n nodes, node identifiers are
drawn independently at random according to a uniform distribution over the range
[0,1) in (I ,d) (this is a reasonable assumption in most cases). This implies that
distances between adjacent IDs on the ring will be exponentially distributed. In a
few cases (explicitly noted), we assumed that peer identifiers partition the metric
space (I ,d) deterministically in equal partitions. This is not a realistic scenario, but
simplifies considerably mathematical analysis. In these later cases, we have always
compared analytical results using deterministic identifier assignment to simulation
results using random uniform distribution of peer identifiers.

Finally, for long-range connection selection in probabilistic power-law routing
overlays, we assume that it is possible to find a peer node at any given distance
(drawn according to a given distribution) in the metric space. This is not realistic in
a real system composed of a finite number of nodes. In practice, the closest existing
node to the given point is used instead. However, the resulting error between these
theoretical and real distances is inversely proportional to the size of the network,
hence this is negligible for large networks (which are in the main scope of this
analysis).

3 Transformed View of Long-Range Connections

Transformation is a widely used mathematical concept in many disciplines to re-
veal, analyze and exploit hidden system characteristics. One of the best known
examples of the application of a transformation method is JPEG encoding where
discrete cosine transform maps a 8x8 pixel area into spatial frequency components
[18]. In this example, transformation is used to exploit “hidden characteristic” of
human vision being much more sensitive to small variations in color and in bright-
ness for lower spatial frequencies than for higher frequencies. Hence higher spatial
frequency components can be encoded at smaller resolutions. In our analysis, we ap-

Mathematical Modeling of Routing in DHTs 379

ply a logarithmic transformation to distances between node identifiers in the metric
space of a DHT to reveal “hidden characteristics” of DHT routing.

Definition 3 (Logarithmically transformed view). Let (I ,d) be the metric space
of a DHT (see Section 1.1) where the distance between the image x0 = FP(p0) of a
node p0 and the image xi = FP(pi) of another node pi is defined as d(x0,xi). Then,
using the transformation function ft(u) = − lnu, the distance of p0 and pi in the
logarithmically transformed view of p0 is defined as:

d′(x0,xi) = ft [d(x0,xi)] =− ln [d(x0,xi)] . (6)

It is important to note that d′(x0,x1) is not a distance metric since it does not
obey the three metric space properties. However, d′(x0,x1) is not used as a distance
metric; transformation of distances is only a mathematical tool within the concept
of logarithmically transformed view.

The transformed view of a base node p0 can be used to characterize distances
between p0 and a set of other nodes in a DHT. This transformed view can be
represented along a half-line as follows: the base node p0 itself is at the end of
the half-line while other DHT nodes pi (e.g., peers of the base node, or the target
node of a lookup process) are represented along this half-line at distance d′(x0,xi)
from p0.

3.1 Long-Range Connection Density

Figure 4 represents long-range connections of a Chord [22], Pastry [21] and Kademlia
[17] node as well as long-range connections of a node in a probabilistic power-law
routing overlay (e.g., Symphony [16] or Accordion [12]). For Pastry, the parame-
ter b is the bit length of numbers in the routing table, for Kademlia, the parameter
k is the maximum size of buckets and for Chord, the parameter c is the parameter
used in the definition of deterministic power-law routing overlays (see Definition 2).
For each of these DHTs, the upper line shows long-range peers of the node in the
real metric space5 (to ease graphical representation, the ring geometry of the metric
space has been straightened) while the lower line shows these peers in the logarith-
mically transformed view of the node. In the real metric space, the represented node
is in point 0. In the transformed view, this point corresponds to +∞. Finally, long-
range connections in the transformed view span within the range [0,− lndS), where
dS is the distance from the farthest short-range peer of the node (represented by grey
circle in Fig. 4).

Consider now the segment (dS,1) covered by long-range connections in the real
metric space which corresponds to the segment (0,− lndS) in the transformed view

5 Since Kademlia uses a XOR metric, long-range peers of the Kademlia node are represented based
on their XOR distance from the node. Note that this is different from ID-based placement along
the ring.

380 Peter Kersch and Robert Szabo

10

0

2ln

k≤λ

ln 2ln 2ln 2

2

1

8

1

4

1

10

0

2ln

12

b

b −≤λ

b ln 2b ln 2

b2

1
2

2

1
b

10

0

16

1

2

1

8

1

4

1

cln
1=λ

ln 2 ln 2 ln 2 ln 2

Kademlia (k = 3)

Pastry (b = 2)

Chord(c = 2)

probabilistic

10

0x3 x2 x1 x0

y3 y2 y1 y0

L3 L2 L1 L0

Fig. 4 Comparison of the routing table of some well known DHTs

of the node. Although long-range connection distribution differs for each of the
above DHT implementations, Fig. 4 shows that it is possible to partition this segment
in the transformed view into equally sized partitions of length Δx so that the number
of long-range connections NL(Δx) be the same inside each of these partitions (either
deterministically or in expected value). Based on this observation, one can define a
λΔx long-range connection density parameter as

λΔx =
E [NL(Δx)]

Δx
. (7)

In general, the choice of Δx is not arbitrary. In order to obtain constant long-range
connection density in the entire long-range connection domain of the transformed
view, Δx might need to be set to a DHT specific value (see again Fig. 4). However,
for a large subclass of DHTs (including regular power-law routing overlays defined
in the next subsection), long-range connection density can be defined independent
of the size Δx of partitions as:

λ = lim
Δx→0

E [NL(Δx)]
Δx

. (8)

Mathematical Modeling of Routing in DHTs 381

The main advantage of the proposed λ (or λΔx) parameter is that it provides a
simple and generic way to characterize long-range connection distribution. Further-
more, in O(logn) node state DHTs, λ characterizes the overlay independent of net-
work size. For DHTs with constant node degree (e.g., Symphony [16]), λ depends
on the size of the network (λ ∼

1
lnn).

Many DHT implementations have one or more tunable system parameter which
affects long-range connection distribution, e.g., the bucket size k for Kademlia or
the bit length b of numbers in the routing table for Pastry. The λ long-range con-
nection density parameter allows easy comparison of overlay structure for these
DHT implementations despite their mutually incompatible sets of system parame-
ters. Figure 4 shows the λ parameter for each DHT as a function of their tunable
system parameters. Note that in many cases (e.g., Chord, Pastry or Kademlia), the
theoretical long-range connection values are only upper bounds of the actual long-
range connection density since some routing table entries may be empty (especially
for shorter distances).

3.2 Regular Power-Law Routing Overlays

Definition 4 (Regular power-law routing overlays (RPLRO)). A power-law rout-
ing overlay is called regular if the sequence of long-range connections of a node in
its transformed view correspond to a randomly chosen sample of length− lndS from
an infinite renewal process and these random samples are chosen independently for
each node.

Hence, from the definition of renewal processes, distances between subsequent
long-range connections of a node in its transformed view are i.i.d in a RPLRO.
Furthermore, the distribution function F(x) of these i.i.d random variables identi-
fies unambiguously a regular power-law routing overlay. Random sampling from
an infinite process (instead of defining long-range connections as a renewal process
starting from point 0 in the transformed view) ensures uniformity of long-range con-
nection density in the whole long-range connection range (also including the first
part of this range).

Theorem 1. Long-range connection density of a regular power-law routing overlay
is uniformly λ = 1

μ , where μ is the mean distance between subsequent long-range
connections of a node in its transformed view.

Proof. Let f (x) be the pdf and F(x) be the cdf of renewal intervals (correspond-
ing to the distances between subsequent long-range connections of a node in its
transformed view). As a result of the random sampling property of RPLROs, the
starting point of each partition of length Δx → 0 can be considered as a randomly
chosen point in the corresponding infinite renewal process. Hence this interval of
length Δx → 0 contains at least one renewal point (long-range connection) either
when the corresponding renewal interval (selected by this randomly chosen point)

382 Peter Kersch and Robert Szabo

is smaller than Δx or when this interval is larger than Δx but the distance between
the randomly selected point and the next renewal is less than Δx. Since the pdf of
the length of the renewal period selected by a random point is f (x)x

μ , the probability
that such an interval contains at least one renewal (long-range connection) can be
written as:

p1 =
∫ Δx

0

f (x)x
μ

dx+
∫ ∞

Δx

f (x)x
μ

Δx
x

dx. (9)

The probability that this interval contains k or more arrivals (where k > 1) can be
upper bounded as follows:

pk ≤ p1Fk−1(Δx). (10)

The expected number of renewals (long-range connections) within a randomly se-
lected period of length Δx can be written as:

E[NL(Δx)] =
∞

∑
i=1

pi. (11)

Hence, combining (10) and (11):

p1 ≤ E[NL(Δx)] ≤ p1

[
1+

∞

∑
i=1

Fi(Δx)

]
. (12)

Dividing by Δx and applying Equation(7):

p1

Δx
≤ λΔx ≤ p1

Δx

[
1+

∞

∑
i=1

Fi(Δx)

]
. (13)

Applying Δx → 0 to Equation (9) and the (reasonable) assumptions6 that
limΔx→0 F(Δx) = 0 and limΔx→0 f (Δx) < ∞:

lim
Δx→0

p1

Δx
=

f (0)Δx
2μ

+
1−F(Δx)

μ
= 0+

1
μ

. (14)

Finally, substituting Equation(14) into the Inequality (13):

1
μ
≤ λ ≤ 1

μ
→ λ =

1
μ

. (15)

Probabilistic power-law routing overlays are regular (see Section 3.3). Pastry and
Kademlia are not regular but are close to being regular with only small distortions.
Finally, Chord and deterministic power-law routing overlays in general are not reg-
ular, but, they can be made regular: Considering the transformed view of a node in a

6 These assumptions can be made because 0 distance between subsequent long-range connections
does not make sense in an overlay.

Mathematical Modeling of Routing in DHTs 383

DPLRO, its first long-range peer is always located at lnc. Substituting the constant
q in Defition 2 by a random variable so that this first long-range peer be evenly
distributed in the range [0, lnc], the overlay becomes regular.

To characterize regular power-law routing overlays, we also introduce a cv long-
range connection coefficient of variance parameter describing the relative variance
of distances between long-range connections in the transformed view. cv = σ

μ , where
σ is the standard deviation while μ is the mean of distances between consecutive
long-range connections in the transformed view of a node. In Section 4.1, we show
that using the λ and cv parameters it is possible to derive a lower bound on routing
performance.

3.3 Probabilistic Power-Law Routing Overlays

It is interesting to compare the degree of randomness in the choice of long-range
connection for different DHT implementations in Fig. 4. In Chord, each connection
is deterministic. Pastry is somewhat more flexible, each routing table entry may
contain any node of the network from a given ID range, increasing the degree of
randomness. Kademlia goes one small step further in flexibility and randomness
and allows the choice of any nodes (up to a maximum number of k) from a given
range.

However, the choice of long-range connections can be made “even more random”
within the family of routing overlays for which long-range connection density can
be defined. For the “most random” routing overlays out of this family, long-range
connections of a node in its transformed view correspond to a random and indepen-
dent placement of points in the range (0,− lndS) according to a uniform distribu-
tion, which is equivalent to a truncated (spatial) Poisson process. In the following,
we show that this family of “most random” routing overlays is equivalent to the
family of probabilistic power-law routing overlays over a one dimensional metric
space (see Definition 1).

Theorem 2. Consider a truncated Poisson process of rate λ in the range (0,− lndS).
Furthermore consider a routing overlay where the sequence of long-range connec-
tions in the transformed view of each node is defined as a random realization of
this Poisson process. Then this routing overlay is a probabilistic power-law routing
overlay of long-range connection density λ .

Proof. Consider a small range [x,x +Δx] in the transformed view. Inverse trans-
forming this range back to the real metric space using y = f−1

t (x) = e−x results into
the range [e−x−Δx,e−x] = [y−Δy,y] in the real metric space.

Using the birth process definition of Poisson processes, the probability of having
an arrival (long-range connection) in the range [x,x +Δx] of the transformed view
is λΔx when Δx → 0. Since the inverse transformation function f−1

t (x) is strictly
monotone decreasing, the probability of having a long-range connection in the cor-
responding range [y−Δy,y] of the real metric space is the same.

384 Peter Kersch and Robert Szabo

Using the derivative of the transformation function ft(y) =− lny, it is possible to
express the relationship between the length of these ranges when they are infinitesi-
mally small:

lim
Δy→0

Δx =− f ′t (y)Δy =
Δy
y

. (16)

Hence the probability of having a long-range connection in an infinitesimally
small range of length Δy→ 0 at a distance y from this node is λ Δy

y . This is equiva-
lent to the long-range connection distribution requirement of Definition 1 for one
dimensional metric spaces. Being generated from a Poisson process, long-range
connections also satisfy the independence requirement of Definition 1, hence the
generated overlay is a probabilistic power-law routing overlay.

Finally, the expected number of arrivals in a Poisson process of rate λ for an in-
terval of length Δx is λΔx, hence substituting into Equation(7) any positive value of
Δx interval length, the obtained long-range connection density value for this overlay
equals to the λ rate of the generating Poisson process.

Theorem 3. Consider a probabilistic power-law routing overlay in a one dimen-
sional metric space with a long-range connection density λ . Then the sequence of
long-range connections of any node in its transformed view correspond to a random
realization of a truncated Poisson of rate λ in the range (0,− lndS).

Proof. According to Definition 1, the probability of having a long-range connection
in an small range [y−Δy,y] of a one dimensional metric space is cΔy

y when Δy→ 0
(c is a positive constant).

Transforming this range into the transformed view using x = ft(y) =− lny results
into the range [− lny,− ln(y−Δy)] = [x,x +Δx]. Since the transformation ft(y) is
strictly monotone decreasing, the probability of having a long-range connection in
the corresponding range [x,x+Δx] of the transformed view is the same.

Using the derivative of the inverse transformation function f−1
t (x) = e−x, it is

possible to express the relationship between the length of these ranges when they
are infinitesimally small:

lim
Δx→0

Δy =− f−1
t

′
(x)Δx = e−xΔx = yΔx. (17)

Hence the probability of having a long-range connection in an infinitesimally
small range of length Δx→ 0 in the transformed view is cΔy

y = cΔx, independent of
the value of x within the range (0,− lndS). Since long-range connections of a prob-
abilistic power law routing overlay are also independent of each other according to
Definition 1, the sequence of long-range connections of any node in its transformed
view correspond to a random realization of a truncated Poisson of rate c in the range
(0,− lndS).

Finally, using the definition of long-range connection density and the assumption
that the long-range connection density of the given overlay is λ , it is deducible that
c = λ .

Mathematical Modeling of Routing in DHTs 385

Since a Poisson process is a special renewal process, from Theorem 2, it fol-
lows that probabilistic power-law routing overlays belong to the subclass of regular
power-law routing overlays.

3.4 Distortions in the Transformed View

In Section 3.3, we assumed that a node can find (and create a connection to) a peer
node at any given point of the metric space (I ,d). In reality, given a network of
n nodes, a connection can be created only to n− 1 points in (I ,d) corresponding
to the images of all the other nodes in (I ,d). Hence in real systems, a connec-
tion is established to the peer node whose images is the closest to the “theoretical”
point in (I ,d) drawn according to the required distribution. This introduces small
distortions to theoretical distance distribution.

Similar distortions exist for deterministic power-law routing overlays. E.g., in
Chord, long-range connections (fingers) point to the first node whose distance is not
smaller than 1

2 , 1
4 , 1

8 , This results into a sequence of distances 1
2 + ε1,

1
4 + ε2,

1
8 +

ε3, In a network of n nodes uniformly distributed in the range [0,1) of the metric
space (I ,d), ε will be a random variable with exponential distribution of para-
meter n.

While the distribution of this small offset is the same for all distances in the real
metric space, it depends strongly on the distance in the transformed view of a node.
For large real distances, this offset is negligible, however, it increases exponentially
and can be considerable for small real distances in the transformed view.

4 Stochastic Analysis of Routing

The role of short-range and long-range connections in the routing process is com-
plementary. While short-range contacts ensure the success of greedy forwarding,
long-range contacts expedite routing and provide O(logn) bounds on the number
of routing hops. For deterministic routing geometries, the routing process can be
clearly separated into a first phase using only long-range contacts and a second
phase using only short-range contacts. For non-deterministic routing geometries,
the first routing hops usually take place via long-range connections while the last
hops usually take place via short-range connections and the probability of routing
via a short-range peer increases monotonously approaching to the target. Neverthe-
less, for non-deterministic routing geometries, it is not possible to separate routing
process into distinct long-range and short-range routing phases.

Analytical study of this dual routing process is rather complicated. Analysis be-
comes much easier if forwarding is restricted to either only short-range or only
long-range connections.

386 Peter Kersch and Robert Szabo

Restricting forwarding to short-range connections, progress toward the target be-
comes linear. Assuming that node identifiers are drawn independently and at ran-
dom according to a uniform distribution from the interval [0,1) of the metric space
(I ,d) (see Section 2.2), each routing hop has the same length in expected value in-
dependent of the current distance from the target.7 The length of consecutive routing
hops can be described by a series of independent Erlang distributed random variable
with rate n (number of nodes in the network) and shape parameter NS (number of
short-range connections per node). Obviously, routing via only short-range contacts
degrades routing performance from O(logn) to O(n).

In Section 4.1, we show that using logarithmic transformation, analysis is also
possible when restricting forwarding to long-range connections; progress toward
the target will be linear in the transformed view of the target. However, simply for-
bidding forwarding via short-range contacts may cause routing failures. Therefore,
to analyze long-range only forwarding, we use an imaginary routing overlay where
the sequence of long-range connections in the transformed view of a node is infinite
instead of being truncated after reaching the short-range connection domain. For
regular power-law routing overlays, this means that long-range connections corre-
spond to infinite random samples from a renewal process instead of random samples
of length − lndS.

In the real routing overlay, forwarding takes place via a short-range peer only
when the target is closer than the closest long-range peer of the forwarding node.
When the real routing overlay is forwarding via a short-range peer, the modified
long-range only model is forwarding through an imaginary long-range peer at a
smaller distance

Figure 5 demonstrates the difference between real forwarding (via a short-range
connection) and long-range only forwarding via an imaginary long-range connec-
tion. The upper line in the figure represent the real metric space while the lower line
shows the transformed view of the forwarding node. For a real overlay, forwarding
occurs via a short-range peer. However, when restricting forwarding to long-range
connections in order to simplify analysis, forwarding takes place via the imaginary
long-range peer being the closest to the target node.

0

10

short-range peer
imaginary long-range pee
real long-range peer
target node

Fig. 5 Forwarding through imaginary long-range connections

Forwarding via an imaginary long-range connection always results in less progress
than the real forwarding would result in via a short-range connection. Therefore

7 If NS > 1, the expected value of the last hop reaching the target is smaller.

Mathematical Modeling of Routing in DHTs 387

results on routing progress obtained from analysis restricted to long-range forward-
ing can be used as a lower bound on real routing progress.

Modeling long-range only forwarding, a routing process is terminated when the
distance of the current forwarding node from the target decreases below dS (the
distance between the target node and the node whose farthest short-range peer is
the target node8). Let Ml be the number of routing hops for long-range only routing
until the termination and let M be the number of routing hops for the real routing
process. Since routing progress of long-range only forwarding is always equal to or
less than routing progress of real forwarding, the real routing process will always
reach a peer with direct short-range connection to the target node in Ml or less
hops. Hence Ml + 1 can be used as an upper bound on the real number of routing
hops:

M ≤Ml +1. (18)

The rest of this section is structured as follows: Section 4.1 analyzes progress
of the routing process in the transformed view of the target using this long-range
only forwarding model. Then Section 4.2 uses the obtained long-range only results
to derive upper bounds on the number of routing hops for the real routing process
(using both short-range and long-range connections).

4.1 Analysis of Routing in the Transformed view

Analysis of routing in the transformed view can be best introduced through an ex-
ample. Figure 6a shows one hop of an example routing process: a request reaches
forwarding node Fk in step k and node Fk forwards this request to its long-range peer
Fk+1 being the closest to the target node T without overshooting it. Figure 6b shows
distances in the real metric space (upper line) and the transformed view (lower line)
of node Fk while Fig. 6c shows the same distances as seen in the real and trans-
formed view of the target. Note that the default direction of the ring is reversed in
Fig. 6c in order to represent remaining distances from the perspective of the target
node.

dk and dk+1 is the distance from the target in step k and k +1 respectively, while
d′k and d′k+1 are the same distances in the transformed view of the target. To analyze
per hop routing progress in the transformed view of the target node, let’s express the
progress uk = d′k+1− d′k toward the target after step k as a function of the distance
vk from the next-hop node in the transformed view of forwarding node Fk. Applying
transformation to distances in Fig. 6c:

8 Assuming uniform distribution of node identifers in the DHT metric space, dS will be a random
variable with Erlang distribution of rate n and shape parameter NS (where n is the number of nodes
in the DHT and NS is the number of short-range connections per node.)

388 Peter Kersch and Robert Szabo

Fk

Fk+1
10

0

target

dk
d‘k

dk+1

forwarding node Fk

0

dk+1

target (reverse view)

a) c)

b)

hopk+1

hopk

Fk+1

vk

d‘k+1

d‘k

dk

uk

T

Fk

FkT Fk+1

10

T

Fig. 6 Routing from hop k to hop k +1

uk =− lndk+1−d′k. (19)

Inverse transforming distances in Fig. 6/b:

dk+1 = e−d′k − e−d′k−vk = e−d′k(1− e−vk). (20)

Finally, substituting Equation(20) into (19):

uk =− ln
[
e−d′k

(
1− e−vk

)]−d′k =− ln
(
1− e−vk

)
. (21)

Hence the progress uk after routing hop k in the transformed view of the target can be
expressed as a function of the distance vk from the next-hop node in the transformed
view of forwarding node Fk:

u = h(v) =− ln
(
1− e−v) . (22)

Note: as Section 2.2 mentions, routing in DHTs with non-Euclidean metric
spaces cannot be analyzed using this model. The reason is that Equation(20) uses
the assumption that d(x,z) = d(x,y)+ d(y,z) which holds only for the one dimen-
sional Euclidean metric space. For any other metric spaces: d(x,z)≤ d(x,y)+d(y,z)
(triangle inequality).

In the followings, we analyze routing in regular power-law routing overlays in
general. Using the above transformation results, we derive a lower bound on routing
performance as a function of λ and cv. Then we analyze two special cases of regular
power-law routing overlays in more details: the probabilistic and “regularized” de-
terministic overlays. We derive exact analytical results on their routing performance
and compare these results to the generic lower bound.

Mathematical Modeling of Routing in DHTs 389

4.1.1 Regular Power-Law Routing Overlays

Theorem 4. Considering the routing process via long-range connections in a reg-
ular power law routing overlay, the length of the per-hop progress uk in the trans-
formed view of the target is i.i.d for subsequent hops. Furthermore, the expected
value of this per-hop routing progress is lower bounded by

E[uk]≥− ln

[
1− e−

1+c2
v

2λ

]
. (23)

where λ is the long-range connection density and cv is the long-range connections
density coefficient of variation in the overlay.

Proof. In regular power-law routing overlays, the sequence of long-range connec-
tions of different nodes in their transformed view correspond to independently se-
lected random samples from an infinite renewal process. Therefore, the target node
can be considered as a uniformly distributed random point in the transformed view
of a forwarding node (see Fig. 6b). As a consequence, the random variable vk cor-
responds to the distance of a random point from the next renewal (long-range con-
nection) in the renewal process of long-range connection (residual life). Hence, the
series of the random variables vk will be i.i.d, and applying Equation (22), the series
of the random variables uk will be also i.i.d.

Let μ = E[x] be the expected value and μ2 = E[x2] be the second moment of
the length of renewal periods (corresponding to distances between subsequent long-
range connection in the transformed view of a node). Then, from renewal theory, the
mean residual life in this renewal process (corresponding to E[v]) can be expressed
as:

E[v] =
E[x2]
2E[x]

=
Var(x)+E2[x]

2E[x]
=

E[x]
2

(1+ c2
v). (24)

Using Theorem 1, E[x] = 1
λ for any RPLRO, hence:

E[v] =
1+ c2

v

2λ
. (25)

Using Equation 22, the distribution of the per-hop routing progress in the trans-
formed view of the target (u) can be expressed as a convex function h(v) of the
random variable v. Therefore the Jensen inequality can be applied as follows:

E[u] = E[h(v)]≥ h(E[v]) =− ln

[
1− e−

1+c2
v

2λ

]
. (26)

4.1.2 Probabilistic Power-Law Routing Overlays

According to Theorem 3 on PPLROs, the sequence of long-range connections in
the transformed view of a node can be described as a realization of a stationary

390 Peter Kersch and Robert Szabo

Poisson process of rate λ , where λ is the long-range connection density of this
overlay. Hence, in the transformed view of the forwarding node Fk, the target of
the lookup process corresponds to an arbitrary point while the image of the next-
hop node Fk+1 corresponds to the next arrival in this Poisson process. The random
variable vk describes the distance between these two points in the transformed view
of Fk (see Fig. 6b).

As a consequence of the memoryless property of Poisson processes, picking an
arbitrary point in the process, the distance to the next arrival will always be expo-
nentially distributed with parameter λ . Hence the distribution of vk is the same for
each step of the routing process (via long-range connections) and the pdf of v vk is:

gprob(v) = λe−λv. (27)

Another consequence of the memoryless property of Poisson processes is that the
random variables vk and vk+1 are independent, hence the series vk are i.i.d random
variables. Since uk (the progress toward the target in the kth routing hop) can be
derived from vk using Equation (22), uk is also a series of i.i.d random variables
(since PPLROs are regular, this could be derived also applying Theorem 4). The pdf
of u can be obtain by transforming the pdf of v using the function h(v):

fprob(u) = gprob
(
h−1(u)

)∣∣∣∣
dh−1(u)

du

∣∣∣∣ = λ (1− e−u)(λ−1)e−u. (28)

Hence:

Fprob(u) =
∫ u

0
fprob(t)dt = (1− e−u)λ . (29)

Finally, the expected value of the length of one routing hop in the transformed
view of the target9:

Eprob[u] =
∫ ∞

0
fprob(u)u du = Hλ , (30)

where Hx is the harmonic number [24] (generalized for real numbers) of x. For
practical λ values, the following approximation can be used10:

Hλ ≈ ln [(e−1)λ +1] . (31)

The above results can be transformed back from the transformed view of the
target node to the real metric space of the DHT as follows.

Theorem 5. Consider the routing process in a probabilistic power-law routing
overlay of long-range connectiondensity λ . Then the series of random variables

9 Calculated using the Mathematica software from Wolfram Research Inc.
(http://www.wolfram.com)
10 This approximation provides less than ±1% relative error if λ > 0.5 and less than +5% relative
error if 0 < λ < 0.5. Note that λ is typically larger than 1

ln2 ≈ 1.41 for most DHTs (see Section 3.1)

Mathematical Modeling of Routing in DHTs 391

wk = dk+1
dk

describing the ratio of distances from the target after and before a rout-
ing hop via a long-range connection are i.i.d and the pdf and expected value of wk

are:
f w
prob(w) = λ (1−w)(λ−1) if 0 < w < 1 and0otherwise (32)

and

E[w] =
1

1+λ
. (33)

Proof. Since uk = d′k+1− d′k in the transformed view of the target and since trans-
formed distances can be obtained as d′k = − lndk and d′k+1 = − lndk+1 from dis-
tances in the real metric space, uk can be expressed as:

uk =− lndk+1− (− lndk) =− ln
dk+1

dk
. (34)

Hence defining, the random variable wk = dk+1
dk

as the ratio of distances after and
before a routing hop via a long-range connection, this random variable wk can be
expressed as a function wk =Φ(uk) = e−uk of the random variable uk. According to
Theorem 4, uk is a series of i.i.d random variables, therefore wk will be also a series
of i.i.d random variables (to simplify notation, uk and wk are denoted simply by u
and v hereafter). Φ(u) = e−u is a strictly monotone decreasing function. Hence the
cdf of w can be expressed from the cdf of u as:

Fw
prob(w) = 1−Fprob

(
Φ−1(w)

)
= 1−

[
1− e−(− lnw)

]λ
= 1− (1−w)λ . (35)

The pdf of w can be obtained as the derivative of Fw
prob(w):

f w
prob(w) =

dFw
prob

dw
= λ (1−w)(λ−1). (36)

As a result of greedy routing, dk+1 < dk holds for each routing step, hence 0 < wk <
1 and the expected value of the random variable w is:

E[w] =
∫ 1

0
f w
prob(w)wdw =

[
(1−w)λ (1+λw)

1+λ

]1

0

=
1

1+λ
. (37)

Hence the distance to the target decreases in expected value by a factor of
1 + λ after each routing hop via a long-range connection. Since these distance
decrease ratios in subsequent routing hops are independent, the expected value
of distance decrease after i routing hops via long-range connections can be exp-
ressed as:

E

[
dk+i

dk

]
=

(
1

1+λ

)i

. (38)

392 Peter Kersch and Robert Szabo

4.1.3 Deterministic Power-Law Routing Overlays

Definition 2 introduces deterministic power-law overlays which can be considered
as a generalization of the Chord overlay. These overlays are not regular because the
sequence of long-range connections in the transformed view of nodes correspond
to the same renewal process for each node and lacks the random sampling prop-
erty of regular power law routing overlays. However, DPLROs can be made regular
substituting the constant q in Definition 2 with a random variable so that the first
long-range peer is evenly distributed over the range [0, lnc] in the transformed view
of the node. In this subsection, we analyze these “regularized” deterministic power-
law routing overlays.

To ease comparison with PPLROs and regular power-law routing overlays in gen-
eral, the generic λ long-range connection density is used during the analysis instead
of the parameter c in the definition of deterministic power law routing overlays. The
relationship between these two parameters can easily be determined from Fig. 4:

λ =
1

lnc
⇔ c = e

1
λ . (39)

As for any regular power-law routing overlay, target nodes in the transformed
view of forwarding nodes can be considered as uniformly distributed random points.
Hence the pdf of the random variable vk for DPLRO:

gdet(v) =

⎧
⎨
⎩
λ if 0 < v <

1
λ

0 otherwise
(40)

Transforming this distribution using Equation(22), the pdf of the random variable
uk:

fdet(u) = gdet
(
h−1(u)

)∣∣∣∣
dh−1(u)

du

∣∣∣∣ =

⎧
⎨
⎩
λ

e−u

1− e−u if u >− ln
[
1− e

1
λ

]

0 otherwise
(41)

Hence the expected value of the per-hop routing progress in the transformed view
of the target node can be obtained as11:

Edet [u] =
∫ ∞

− ln

[
1−e

− 1
λ
]λ

e−u

1− e−u udu. (42)

4.1.4 Comparison of Per-Hop Routing Progress in the Transformed View

In the previous subsections, we analyzed routing via long-range connections in reg-
ular power-law routing overlays. In Theorem 4, we show that the length of the

11 The analytical form of this integral is too complicated, Fig. 7 represents the results numerically

Mathematical Modeling of Routing in DHTs 393

per-hop progress in the transformed view of the target (distance between the images
of subsequent forwarding nodes in this transformed view) is i.i.d. In other words,
lookup approaches toward the target in its transformed view at constant “speed” in
expected value for any regular power-law routing overlay.

Furthermore, knowing the λ long-range connection density and the cv long-range
connection density coefficient of variation parameters of the overlay, it is possible
to derive a lower bound on the expected value of the length of this per-hop progress
in the transformed view of the target (see Equation (23)).

We have also derived analytically the expected value of this per hops progress
for two special cases, namely the probabilistic and the “regularized” deterministic
power-law routing overlays. Figure 7 compares these expected values as well as their
generic lower bounds (derived using Inequality 23) as a function of the long-range
connection density. The result shows that deterministic overlays provide better per-
hop progress than probabilistic overlays for all values of λ . This is a consequence
of different coefficients of variation (cv) for distances between subsequent long-
range connections. According to Equation (23), the lower bound on E[u] decreases
monotonically with increasing cv values. For DPLROs, where the distance between
subsequent long-range connections is constant in the transformed view of a node:

cdet
v = 0, (43)

while for PPLROs, where these distances are exponentially distributed:

cprob
v =

σ
μ

=
1
λ
1
λ

= 1. (44)

Although Equation (23) can be used to express lower bounds on the expected
value for any regular power-law routing overlay, the distribution of per-hop rout-
ing progress can differ significantly for different overlays. Figure 8 compares the
pdf f (u) for different long-range connection density values both for probabilistic
and deterministic power-law routing overlays. As it can be expected, the deter-
ministic routing overlay guarantees a minimum progress for each routing hop. In
probabilistic routing overlays, there is no such lower bound on the length of one
single hop.

Equation (29) reveals another interesting property of the distribution of u for
probabilistic power-law routing overlays: Fprob(u) can be obtained by raising the
cdf of an exponential distribution to the power λ . As a result, λ = 1 is a very spe-
cial long-range connections density value where the length of one routing hop in
the transformed view of the target node is exponentially distributed with parame-
ter 1. This means that the sequence of routing hops in the transformed view of the
target node corresponds to the same stochastic process as the sequence of long-
range connections in the transformed view of any nodes; both can be described by
a Poisson process of rate 1. For any other λ values, the length of routing hops is
not exponentially distributed. Figure (8) shows well the difference in the shape of

394 Peter Kersch and Robert Szabo

0

1

2

3

0 1 2 3 4 5

E
[u

]

det

lower bound (det)

prob

lower bound (prob)

Fig. 7 Expected value of u and its estimated lower bound as a function of λ

0

1

2

3

4

0 1 2 3
u

f p
ro

b(
u)

 = 0.5
 = 1
 = 2

0

1

2

3

4

0 1 2 3
u

f d
e

t(
u) = 0.5
 = 1
 = 2

probabilistic deterministic

Fig. 8 Pdf of u for different λ values

the probability density function for long-range connection density values λ = 1,
λ < 1 and λ > 1.

The sequence of long-range connections in the transformed view of a node can
also be approximated by a renewal process for many “non-regular” DHTs (see
Section 3.1). However, irregularities in the distribution of distances between
successive long-range connections induces distortions to the “constant speed” pro-
gress in the transformed view of the target and make mathematical analysis
difficult.

For example, in Pastry, long-range connection density have a slight periodic vari-
ation. The length of this period is b ln2 in the transformed view (where b is the bit
length of numbers in the routing table). This slight periodic fluctuation is visible on
the graph showing the expected number of routing hops as a function of network
size (see Fig. 4 in paper [21]).

Mathematical Modeling of Routing in DHTs 395

4.2 Upper Bound on the Expected Number of Routing Hops

In the previous subsections, we have analyzed routing via long-range connections
in the transformed view of target nodes. We have shown that the per-hop routing
progress uk is i.i.d for regular power-law routing overlays, hence the images of for-
warding nodes in the transformed view of the target can be described as a renewal
process. Furthermore, we proposed a lower bound on the expected value of this
per-hop progress as a function of the λ and cv overlay parameters (see Theorem 4).

Although these results cannot be used directly to characterize overlay perfor-
mance, the proposed renewal process model allows analytical derivation of an im-
portant overlay performance metric: an upper bound on the expected number of
routing hops as a function of network size and the overlay parameters (λ , cv and
NS). The computation of this overlay performance metric is based on the upper
bound of Lorden for renewal processes (see [4], page 110):

UL(t)≤ t
μ

+
μ2

μ2 −1, (45)

where UL(t) is the renewal function (the expected value of renewals until time t), μ
is the mean of renewal periods and μ2 is the second moment of renewal periods. Ap-
plying this bound to the renewal process corresponding to the sequence of forward-
ing nodes in the transformed view of the target node, the variables in Inequality(45)
correspond to the followings:

• UL(t) corresponds to the expected value of the number of routing hops for long-
range only routing;

• t corresponds to the length of the long-range routing path in the transformed view
of the target node (from the image of the initiator node to the image of the first
node having a direct short-range connection to the target node);

• μ corresponds to E[u], for which, Theorem 4 gives a lower bound as a function
of the overlay parameters λ and cv;

• μ2 corresponds to E[u2] =
∫ ∞

0 u2 f (u)du.

Lemma 1. Considering the routing process via long-range connections in a regular
power law routing overlay, the second moment of the length of the per-hop progress
u in the transformed view of the target node is upper bounded by

E[u2]≤ 2.41λ , (46)

where λ is the long-range connection density of the overlay

Proof. The random variable u can be obtained from the random variable v using
Equation (22) while the variable v itself corresponds to the residual life in the re-
newal process corresponding to the sequence of long-range connections in the trans-
formed view of a node (see proof of Theorem 4). From renewal theory, the pdf of
the residual life v can be expressed as follows:

396 Peter Kersch and Robert Szabo

g(v) =
1−F(v)

E(x)
= λ (1−F(v)), (47)

where F(x) is the cdf of renewal intervals (corresponding to the distances between
subsequent long-range connections of a node in its transformed view), E[x] is the
expected length of these intervals and we have used 1

E[x] = λ from Theorem 1.

Since a cdf is always a non-decreasing function and 0 ≤ F(x)≤ 1, the pdf g(v)
is a non-increasing function upper bounded by g(v)≤ g(0) = λ .

This upper bound can be used to derive an upper bound on f (u). Using Equa-
tion(22) to transform v to u:

f (u) = g(− ln(1− e−u))
e−u

1− e−u ≤ λ
e−u

1− e−u . (48)

Hence

E[u2] =
∫ ∞

0
u2 f (u)du ≤

∫ ∞

0
λ

e−u

1− e−u u2du ≤ 2.41λ . (49)

Lemma 2. Assuming uniform distribution of node identifiers in the metric space of
the DHT and uniform selection of target nodes for the routing process, the expected
length of the routing path in the transformed view of the target is:

E[t] = lnn+ γ−1−HNS−1 + ε, (50)

where NS is the number of short-range connections per node, n is the number of
nodes in the overlay, Hk is the kth harmonic number, γ is the Euler-Mascheroni
constant 12 and ε is a small positive error term

ε ∈ o

(
nNS

en

)
(51)

negligible except for very small network sizes.

Proof. When using the long-range only forwarding model, a routing process (as
seen in the transformed view of the target) starts from the image of the initiator
node and ends at the image of the first node having a direct short-range connection
to this target node. The expected length E[t] of this routing path can be obtained as
the difference between the expected location of these start and end points.

Assuming that nodes of the overlay are uniformly distributed in the range [0,1)
of the DHT metric space and target nodes are selected also uniformly by initiator
nodes, the distance between initiator and target nodes will be uniformly distributed
over the interval (0,1). Applying logarithmic transformation to this distribution ac-
cording to Equation (6) results into exponentially distributed distances in the trans-
formed view of the target with the pdf : f ′(x) = e−x. Hence the expected value of the
distance between the target and initiator nodes in the transformed view of the target

12 The Euler-Mascheroni constant is defined as γ = limk→∞(Hk− lnk) ≈ 0.5772.

Mathematical Modeling of Routing in DHTs 397

will be
E[Lstart] =

∫ ∞

0
e−xxdx = 1. (52)

Assuming again that nodes of the overlay are uniformly distributed in the metric
space of the DHT, the distance between a node and its farthest short-range peer will
be Erlang distributed with rate n and shape parameter NS, where n is the number
of nodes in the overlay and NS is the number of short-range connections per node.
Hence the pdf of this distance distribution will be:

fErl(y) =
nNS yNS−1e−ny

(NS−1)!
. (53)

Transforming the pdf of this Erlang distribution according to Equation (6), the pdf
in the transformed view will be:

f ′Erl(x) = fErl
(

f−1
t (x)

) d f−1
Erl

dx
=

e−[ne−x+x(NS−1)]nNS

(NS−1)!
. (54)

Hence the expected value of the distance between a node and its farthest short-range
peer in its transformed view13:

E[Lend] =
∫ ∞

0
f ′Erl(x)xdx = lnn+ γ−HNS−1 + ε, (55)

where Hk is the kth harmonic number, γ is the Euler-Mascheroni constant and ε is a
small positive error term upper bounded by

ε < e−n
[

1+
(n+NS)NS−2

(NS−1)!

]
. (56)

Hence ε can be expressed using the following asymptotic bound:

ε ∈ o

(
nNS

en

)
. (57)

Typically, NS is a small number, hence – except for very small network sizes – ε is
negligibly small.

Theorem 6. The expected number of routing hops U in a regular power-law routing
overlay is upper bounded by:

U(n,λ ,cv,NS) ≤ lnn−HNS−1−0.42

− ln

[
1− e−

1+c2
v

2λ

] +
2.41λ

ln2
[

1− e−
1+c2

v
2λ

] + ε, (58)

13 Calculated using the Mathematica software from Wolfram Research Inc.
(http://www.wolfram.com)

398 Peter Kersch and Robert Szabo

where n is the number of nodes in the overlay, λ is the long-range connection den-
sity, cv is the long-range connection density coefficient of variation, NS is the number
of short-range connections per node and ε is a small positive error term

ε ∈ o

(
nNS

en

)
(59)

negligible except for very small network sizes.

Proof. Substituting the results of Lemma 1, Lemma 2 and Theorem 4 into the Lor-
den bound (Inequality 45), an upper bound can be obtained on the expected number
of routing hops for long-range only forwarding:

UL(t) ≤ lnn−HNS−1−0.42+ ε

− ln

[
1− e−

1+c2
v

2λ

] +
2.41λ

ln2
[

1− e−
1+c2

v
2λ

] −1. (60)

Then, the upper bound on the number of routing hops for real routing (via both
short-range and long-range connections) can be obtained using U(t) < UL(t) + 1
from Inequality (18).

When the first and second moments of the per-hop progress u in the transformed
view of the target are known, the upper bound of Theorem 6 can be further tightened:

Theorem 7. The expected number of routing hops U in a probabilistic power-law
routing overlay is upper bounded by:

U(n,λ ,NS) ≤ lnn−HNS−1−0.42
Hλ

+
1.645−ψ ′(1+λ)

H2
λ

+1+ ε, (61)

where n is the number of nodes in the overlay, λ is the long-range connection den-
sity, and NS is the number of short-range connections per node, ψ ′(x) is the first
derivative of the digamma function and ε is a small positive error term

ε ∈ o

(
nNS

en

)
(62)

negligible except for very small network sizes.

Proof. Using Equation (30), the first moment of u is μ = Hλ , where Hx is the har-
monic number generalized for real numbers. The second moment of u can be derived
from the pdf of u given by Equation (28):

μ2 =
∫ ∞

0
fprob(u)u2du =

π2

6
+H2

λ −ψ ′(1+λ). (63)

Substituting μ , μ2 and the result of Lemma 2 into the Lorden bound (Inequality 45)
an upper bound can be obtained on the expected number of routing hops for long-
range only forwarding:

Mathematical Modeling of Routing in DHTs 399

UL(t) ≤ lnn−HNS−1−0.42+ ε
Hλ

+
π2

6 +H2
λ −ψ ′(1+λ)

H2
λ

−1. (64)

Performing simplifications, the upper bound on the number of routing hops for real
routing (using both short-range and long-range connection) can be obtained using
U(t) < UL(t)+1 from Inequality (18).

5 Summary

Although most DHT overlays are structurally similar to the “small-world” naviga-
tion model of Kleinberg [8] – architectural and algorithmic details of different DHT
variants differ significantly. Furthermore, lookup performance depends on a sets
of different and often incompatible parameters which makes analytical comparison
rather difficult. The objective of this chapter was to propose a general analytical
model that can be used to investigate and compare static routing performance of
most DHT implementations as a function of their overlay structure.

To capture the above mentioned common foundations of overlay structure, we
have introduced the concept of logarithmically transformed view, where distances
between a reference node and other nodes are represented after a logarithmic trans-
formation. We have shown that long-range peers of a node form a linear sequence
in this transformed view for most DHTs. Furthermore, we have identified an impor-
tant subclass of DHT overlays – regular power-law routing overlays – where this
sequence can be described as a random sample from an infinite renewal process.
Based on this stochastic model, we have introduced the λ long-range connection
density and cv long-range connection density coefficient of variation parameters.
For O(logn) node state, these parameters characterize long-range connection distri-
bution independent of network size.

Using the renewal process model of long-connections, we have analyzed stochas-
tically the progress of lookup process via long-range connections. We have shown
that the sequence of intermediate forwarding nodes in the transformed view of
the target node can be also described as a renewal process. Additionally, we have
derived (i) the distribution of this per-hop routing progress for the spacial cases
of probabilistic and “regularized” deterministic power-law routing overlays (ii)
a generic upper bound on the per-hop routing progress in the transformed view
of the target as a function of the λ and cv long-range connection distribution
parameters.

Finally, using the renewal process model of the routing process, we have derived
closed form upper bounds on the expected number of routing hops as a function of
network size and the overlay parameters λ , cv and NS.

The above model and results can be applied directly to any DHT using prob-
abilistic power-law routing overlays (e.g., Symphony [16], Accordion [12], etc.).
Additionally, overlay structure and static routing performance of any DHT using a
one-dimensional metric space and being structurally similar to the “small-world”

400 Peter Kersch and Robert Szabo

navigation model of Kleinberg can be approximated applying this model (e.g.,
Chord [22] and its variants, Pastry [21], Bamboo [20], Kademlia [17], etc.)

References

1. Aberer, K., Alima, L.O., Ghodsi, A., Girdzijauskas, S., Haridi, S., Hauswirth, M.: The essence
of P2P: A reference architecture for overlay networks. In: Proceedings of the 5th IEEE Inter-
national Conference on Peer-to-Peer Computing, pp. 11–20. Konstanz, Germany (2005)

2. Aspnes, J., Diamadi, Z., Shah., G.: Fault tolerant routing in peer-to-peer systems. In: Proceed-
ings of the 21st Annual Symposium on Principles of Distributed Computing (PODC ’02), pp.
223–232. Monterey, CA, USA (2002)

3. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439),
509–512 (1999)

4. Beichelt, F., Fatti, L.P.: Stochastic Processes and Their Applications. CRC Press (2001)
5. Gummadi, K., Gribble, S., Ratnasamy, S., Shenker, S., Stoica, I.: The impact of DHT rout-

ing geometry on resilience and proximity. In: Proceedings of ACM Sigcomm, pp. 381–394.
Karlsruhe, Germany (2003)

6. Kaashoek, F., Karger, D.: Koorde: A simple degree-optimal distributed hash table. In: Pro-
ceedings of the 2nd International Workshop on Peer-to-Peer Systems, LNCS 2735, pp. 98–
107. Berkeley CA, USA (2003)

7. Karger, D., Lehman, E., Leighton, T., Panigrahy, R., Levine, M., Lewin, D.: Consistent hash-
ing and random trees: distributed caching protocols for relieving hot spots on the World Wide
Web. In: Proceedings of the 29th annual ACM symposium on theory of computing (STOC
’97), pp. 654–663. El Paso, TX, USA (1997)

8. Kleinberg, J.M.: The small-world phenomenon: an algorithmic perspective. In: Proceedings
of the 32nd Annual ACM Symposium on Theory of Computing, pp. 163–170. Portland, OR,
USA (2000)

9. Kleinrock, L.: Queueing Systems, vol. 1. Wiley (1975)
10. Kong, J.S., Bridgewater, J.S.A., Roychowdhury, V.P.: A general framework for scalability and

performance analysis of DHT routing systems. In: Proceedings of the International Confer-
ence on Dependable Systems and Networks (DSN’06), pp. 343–354. Philadelphia, PA, USA
(2006)

11. Lawler, G.F.: Introduction to Stochastic Processes. CRC Press (2006)
12. Li, J., Stribling, J., Morris, R., Kaashoek, M.F.: Bandwidth-efficient management of DHT

routing tables. In: Proceedings of the 2nd Conference on Symposium on Networked Systems
Design & Implementation, pp. 99–114. Boston, MA, USA (2005)

13. Li, J., Stribling, J., Morris, R., Kaashoek, M.F., Gil, T.M.: A performance vs. cost framework
for evaluating DHT design tradeoffs under churn. In: Proceedings of INFOCOM ’05, pp.
225–236. IEEE, Cambridge, MA, USA (2005)

14. Locher, T., Schmid, S., Watternhofer, R.: eQuus: A provably robust and locality-aware peer-
to-peer system. In: Proceedings of the 6th IEEE International Conference on Peer-to-Peer
Computing, pp. 3–11. Cambridge, UK (2006)

15. Loguinov, D., Kumar, A., Rai, V., Ganesh, S.: Graph-theoretic analysis of structured peer-to-
peer systems: Routing distances and fault resilience. In: Proceedings of ACM SIGCOMM’03,
pp. 395–406. Karlsruhe, Germany (2003)

16. Manku, G.S., Bawa, M., Raghavan, P.: Symphony: Distributed hashing in a small world. In:
Proceedings of the 4th USENIX Symposium on Internet Technologies and Systems, pp. 127–
140. Seattle, WA, USA (2003)

17. Maymounkov, P., Mazieres, D.: Kademlia: A peer-to-peer information system based on the
xor metric. In: Proceedings of the 1st International Workshop on Peer-to-Peer Systems, LNCS
2429, pp. 53–65. Cambridge, MA, USA (2002)

Mathematical Modeling of Routing in DHTs 401

18. Rao, K.R., Yip, P.: Discrete cosine transform: algorithms, advantages, applications. Academic
Press, San Diego, CA, USA (1990)

19. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content-addressable
network. In: Proceedings of ACM SIGCOMM, pp. 161–172. San Diego, CA, USA (2001)

20. Rhea, S., Geels, D., Roscoe, T., Kubiatowicz, J.: Handling churn in a DHT. Tech. Rep.
UCB/CSD-3-1299, UC Berkeley, Computer Science Division, UC Berkeley, USA (2003)

21. Rowstron, A., Druschel, P.: Pastry: Scalable, distributed object location and routing for large-
scale peer-to-peer systems. In: Proceedings of the 18th IFIP/ACM International Conference
on Distributed Systems Platforms, LNCS 2218, pp. 329–350. Springer, Heidelberg, Germany
(2001)

22. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: Scalable peer-
to-peer lookup service for internet applications. In: Proceedings of ACM SIGCOMM, pp.
149–160. San Diego, CA, USA (2001)

23. Wu, D., Tian, Y., Ng, K.W.: Analytical study on improving DHT lookup performance under
churn. In: Proceedings of the 6th IEEE International Conference on Peer-to-Peer Computing,
pp. 249–258. IEEE, Cambridge, UK (2006)

24. Harmonic number definition. http://mathworld.wolfram.com/
HarmonicNumber.html

25. Xu, J., Kumar, A., Yu, X.: On the fundamental tradeoffs between routing table size and net-
work diameter in peer-to-peer networks. IEEE Journal on Selected Areas in Communications
22(1), 151–163 (2004)

Part IV
Search and Query Processing

Keyword Search in Unstructured Peer-to-Peer
Networks

Dingyi Han and Yong Yu

Abstract Keyword search is a preliminary application for peer-to-peer (P2P) net-
works. It is important for users to find relevant resources in the highly dynamic
system. Many factors affect the results of keyword search, including the underly-
ing structure of peer-to-peer network, the dynamics of peers, the distribution of re-
sources, etc.

This chapter introduces the methods used for keyword search in unstructured
peer-to-peer networks, and further discusses their extensions for multi-keyword
search. These methods can be categorized into two types. One is blind routing.
Methods of this type do not consider the distribution of resources. Hence, they get
the name of “blind routing”. These methods are typically robust. However, their
network traffics are high. The other is routing indices. Methods of this type exploit
the distribution of resources or query keywords. Therefore, they have low network
traffic, especially for popular resources or queries.

For each method, an algorithm flow is presented, followed by an analysis of the
pros and cons. A comparison is also made to demonstrate the differences between
these methods.

At the end of this chapter, a discussion on extending the search methods to the
multi-keyword search problem is held. The methods introduced in this chapter work
differently in the multi-keyword search scenario. Some may need no adaption while
some shall be modified for multi-keyword indices. The efficiencies of these methods
in this problem are also considered and compared.

Dingyi Han
Apex Data & Knowledge Management Lab, Department of Computer Science & Engineering,
Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China,
e-mail: handy@apex.sjtu.edu.cn

Yong Yu
Apex Data & Knowledge Management Lab, Department of Computer Science & Engineering,
Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China,
e-mail: yyu@apex.sjtu.edu.cn

X. Shen et al. (eds.), Handbook of Peer-to-Peer Networking, 405
DOI 10.1007/978-0-387-09751-0 15, © Springer Science+Business Media, LLC 2010

406 Dingyi Han and Yong Yu

1 Introduction

1.1 Background

In unstructured peer-to-peer (P2P) networks, search is a complicated task. Due to
the unstructured nature, building global index is almost impossible. Therefore, those
search methods relying on a well-designed index is not applicable in unstructured
peer-to-peer networks.

However, it is possible to perform search tasks using other methods. In fact, The
widely adoption of the idea of peer-to-peer applications begins from the simple yet
powerful searching and downloading application named Napster1 [4]. The applica-
tion was developed by Shawn Fanning in 1999 and was kept operating around the
millennium year. It allowed users to easily share files, especially MP3 format music
files. It greatly impacted how people use the Internet and showed the great poten-
tial of decentralized peer-to-peer applications. The application built a central index
for search music files and their locations in the system, a user submitting a query
can know where the results were stored, and then a downloading process could be
initialized.

Although the application only transfers files in a peer-to-peer way while still
perform searches in a central way, it does inspire many peer-to-peer search methods.
Gnutella2 [15] is among the pioneers. In its early versions, the protocol introduces
flooding, which is regarded as the first search mechanisms in unstructured peer-
to-peer networks. The protocol forwards a query from a peer to its neighbors for
potential results. When a query is sent throughout the whole network, it is expectable
that the results can be obtained if exist. From the macro perspective, the query can
be regarded as the source of a flood, it is then spread to the whole network. That
is why the name “Flooding” is labeled on this method. A property of this method
and its variations is that they do not consider the distribution of resources, so-called
“Blind Routing”. Therefore their network traffic utility is not optimum. However,
they are simple for implementation and they are also robust.

Another type of search methods is called “Routing Indices”. Contrary to blind
routing, methods of this type somehow collects information about resources distri-
bution. Some of them build indexes of the resources stored on the local peer or the
neighbor peers. Others build indexes of the queries sent by the local peer or the
neighbor peers. Therefore, when a query is initialed or received by some peer, it is
easy for the peer to decide which neighbor can possibly return good results, as well
as locate the relevant resources on the peer itself.

In most search system in unstructured peer-to-peer networks, a single keyword
search is a simple task. To make the search more beneficial, multi-keyword query
must be supported. There are also several ideas to support such queries. A simple
method is to regard multi-keyword query as another type of single keyword query.

1 http://napster.com/.
2 http://rfc-gnutella.sourceforge.net/.

Keyword Search in Unstructured Peer-to-Peer Networks 407

This method greatly enlarges the dictionary size while it only need a small modifica-
tion. Another way is to split the multi-keywords into several single keyword queries,
and combine the results of them. Although it may take more time for search, it usu-
ally gets better results.

The keyword search approaches in other types of peer-to-peer networks (e.g.,
structured or semi-structured P2P networks [1]) can be quite different from those in
unstructured P2P networks. The approaches introduced in this chapter may probably
work in other types of P2P network because they rely little on network structures.
However, they are not so efficient as those designed for structured P2P networks
because of the different network nature.

1.2 Keyword Search Problem

Keyword search process in P2P systems is just like a torch relay process. A peer
would issue a query when its user want to conduct a search task. Typically, a query
is composed by a single keyword or several keywords. The peer is called query
issuer. Each peer can forward the query message to its neighbor peers once they
receive the query. If a peer has found any resources (texts, videos, etc.) relevant to
the query, it then composes a query result message and tries to send the result back
to the original query issuer. We say the peer has a query hit.

For each message, there are at least five fields, message type, query id, message
content, message trail and TTL. Message type indicates whether it is a query or a
response. Query id is the unique id generated when the query is initialized, typically,
it is randomly generated as an 128 bit hash key. The id is the identifier for all the
peers in the network to identify the query and react accordingly. The peers in the
network use this field to identify whether the query has been received and whether
the query has been forwarded to its neighbors before. Message content contains the
keyword query or the results of the query. Message trail records the peer ids that
have forwarded the query so that the response can be send back along the reverse
order of the peers that forwarded the query. TTL (Time To Live) value implies the
lifetime of the query message, it would be decreased by 1 in one hop. If the value is
reduces to 0, the message should not be forwarded any more to avoid over spread-
ing the query. Typically, the initial TTL value is less than 10, because there exists
small world phenomenon [13] in P2P networks and the diameter of the network is
typically less than 10.

Although different keyword search methods may have different behaviors, the
search process in P2P networks can still be decomposed into the following five
steps.

1. Query Issuing. When a peer issues a query, it randomly generates a unique query
id. It also sets its peer id in the head of message trail, so that other peers can know
where the query comes from and where the results should be sent. Also, a TTL
value is also set to restrict the lifetime of the query.

408 Dingyi Han and Yong Yu

2. Query Forwarding. When a peer receives a query, it first decrease the TTL value
by 1 and check local resources for relevant results. If the decreased TTL value is
larger than zero, the query is then sent to the neighbor peers for further processing
after its peer id being appended to the message trail field. The peer also needs to
record the message id in its local memory for a short period in case processing
the same query again after receiving the same query from other peers. Query
forwarding is also called query routing.

3. Local Lookup. Once a peer received a query message, it should lookup local
resources for relevant resources. If it successfully finds some, a query hit occurs.
Then, a query result message should be sent to the query forwarder.

4. Result Transferring. If any relevant resources are found, the peer generates the
result records and then send it back to the query issuer. Since all the peers for-
warding the query has appended their peer ids in the trail field, it is possible to
transfer the result in the reverse order of the trail.

5. Result Merging. When the query issuer receives the results from its neighbors, it
should merge all the results into a ranked list. The step includes group items with
the same id, calculating the relevances of items and sorting the list by descending
order.

The difference between search methods is the forwarding policy, i.e., how to
select among neighboring peers to forward a query message.

What actually happens in the local lookup step is determined by the keyword
search application. If the search application is designed to search filenames, local
lookup is to check all the names of shared files. If it is designed to search text files,
local lookup may check local indexes to find text files containing the query terms.
Local lookup is important for a good search results. However, how to obtain a good
local search result is an information retrieval [2] issue. It is beyond the scope of this
chapter.

1.3 Evaluation Metrics

To evaluate how well the search methods work in unstructured P2P systems, sev-
eral evaluation metrics are proposed. They reflect different aspects of the search
methods.

Coverage. As a query message is forwarded across the whole network, it is im-
portant to check how many peers are able to receive the message and to further
check their local resources for potential hit. It can be defined as the number of peers
receiving the query message divided by the number of peers in the whole network.
Typically, a wide coverage means the search gains a better chance to get more re-
sults.

Message Count. For a search task, the number of messages is an important metric
of network overhead. For two methods with the same coverage, a small message
count indicates which is network efficient of the method.

Keyword Search in Unstructured Peer-to-Peer Networks 409

Message Duplication Rate. In unstructured P2P networks, it is still unavoidable
for a peer to receive multiple copies of a single query. These copies are duplicated
messages. A good method should keep a low message duplication rate.

These metrics focus on evaluating the network performances of keyword search
methods in unstructured P2P networks. There are also other metrics focus on eval-
uating search results, such as precision, recall, F1 score, etc. They are traditional
information retrieval metrics. Therefore, they are not the focus of this chapter.

2 Blind Routing

Blind routing methods include flooding, its variations and random walk based
methods.

2.1 Pure Flooding and Its Variations

2.1.1 Pure Flooding

The basic idea of flooding is to spread a query across the whole network (or the
majority of the network) by forwarding queries to all the neighboring peers. The
simplest form of flooding is called pure flooding.

Figure 1 shows an example of the flooding process. The network is composed by
7 peers (Peer 0,1,2,3,4,5,6). Peer 0 sends a query to its neighbors in Step 1. Peer 5
has the relevant resource. In Step 2, both Peer 2 and Peer 3 receive the query and
forward the query to its neighbors except Peer 0, where the query is coming from.
In Step 3, both Peer 2 and Peer 3 receive the query again, therefore they soon send
an error message as the response so that the query is not processed again by one
same peer. Peer 1, 4 and 6 act as the same to Peer 2 and 3 in the last step, receive
and forward the query. Peer 5 has no neighbors except Peer 2, the one who send
the query. Therefore, it will not forward the query. However, it has found there are
relevant resources on the peer itself. So it sends a successful query hit message, and
transfer the result message to Peer 2, the last peer in the trail of the query. Similarly,
three things happened in step 4. The first one is that Peer 2 transfers the query result
of Peer 5 to the query issuer, Peer 0. The remainders are that Peer 1 and Peer 6 send
the error message like what Peer 2 and Peer 3 have done in the last step. For peers
having only one neighbors, such as peer 5, once they receive the query message, they
will only response if they have relevant resources. They do not forward queries.

Flooding is a simple blind routing method. It uses query forwarding to make all
the peers accessible to a query and the query result can be transferred to the query
issuer according to the message trail. However, it is a good method in a highly
dynamic environment such as unstructured peer-to-peer network. The query for-
warding method ensures the query would be go on forwarding and reach a wide

410 Dingyi Han and Yong Yu

Peer 0
Query Issuer

Peer 6

Peer 3

Peer 1

Peer 5

Peer 4

Peer 2
?

?

Target
Resource

(a)Step1

?

?

Peer 0
Query Issuer

Peer 6

Peer 3

Peer 1

Peer 5

Peer 4

Peer 2

Target
Resource

?

?

?

?

(b)Step2

Peer 0
Query Issuer

Peer 6

Peer 3

Peer 1

Peer 5

Peer 4

Peer 2

Target
Resource

?

V

x

x

?

?

??

(c)Step3

Peer 0
Query Issuer

Peer 6

Peer 3

Peer 1

Peer 5

Peer 4

Peer 2

Target
Resource

V

xx xx

(d)Step4

Fig. 1 An example of flooding process

coverage even if one or several peers go offline. However, if a peer in the message
trail happens to be offline when a query result is being transferred, the result will be
unreachable to the query issuer. Going offline means a path from the query issuer
and the peer storing relevant resources (query answerer) are broken. If the peer is
able to receive the query from other paths, it is still possible for the query issuer to
get the results.

The method spends a lot of bandwidth to ensure the robustness. As indicated
in Fig. 1, a lot of peers in the whole network would receive multiple copies of a
same query message from different neighbors. They have to send error messages to
inform the query forwarders. It is very important to choose a proper TTL value. A
small TTL value leads to a small coverage. Therefore, the query issuer may not be
able to reach the peers having relevant resources. On the other hand, although a large
TTL value can ensure a good coverage, it may result in a great number of message
duplication, i.e., a great portion of peers in the whole network receive a same query
for multiple times. Such a situation may cause network overload, or even crash. As
measured in late 2000 and early 2001, in a real Gnutella3 network containing nearly
50K peers, 95% of peers could be reached within 7 hops (TTL=7) by pure flooding
while the diameter of the network is 12 [16].

Pure flooding works in a way that the number of peers involved in a search task
increases exponentiallyas TTL value decreases. A major problem is that it is almost

3 Gnutella is a system using pure flooding as its search method in its early implementations (version
0.4 and before).

Keyword Search in Unstructured Peer-to-Peer Networks 411

Fig. 2 Pure flooding and expanding ring

impossible to set the TTL value to attain both high coverage and low message dupli-
cation. Some researchers try to solve the problem by modify the forwarding policy.
Expanding ring [11] and Light flooding [8] are among them.

2.1.2 Expanding Ring

In a lot of cases, it is not necessary to cover the majority of the network to retrieve
relevant resources, especially for those popular resources. Therefore, expanding
ring [11] utilizes this character to dynamically set the TTL value in pure flood-
ing. More specifically, it first sets a small TTL value (e.g., 1) to cover a small
neighborhood, if there are enough relevant resources sent back, the search pro-
cess is over. However, if the results are not enough, it increases the TTL value and
start a new search process. Since there are much more peers involved, hopefully
more results can be retrieved. As illustrated in Fig. 2, the dashed curves indicate
the edges of the waves in the flooding process. In pure flooding, peer 0 first ini-
tialize a wave whose edge is 0, then it is spread to 1, and 2 later. In expanding
ring, peer 0 first initialize a wave spread till 1. when it finds out no relevant re-
sources can be retrieved when TTL is 1, it starts another wave spread till 2, and
so on.

It is clear that expanding ring try not to involve too many peers if an acceptable
result can be retrieved. In most cases, the relevant resources are popular, i.e., they are
near the query issuer. Therefore, a query message with a low TTL value is enough
to acquire some query hits. However, for those infrequent resources, although ex-
panding ring involves no more peers than pure flooding, it does involve the peers
more times than pure flooding.

412 Dingyi Han and Yong Yu

Peer 0
Query Issuer

Peer 6

Peer 3

Peer 1

Peer 5

Peer 4

Peer 2

Target
Resource

2

3 0

41

6 5

d = 2

d = 4

d = 4

d = 2 d = 3

d = 1

d = 1

(a) FloodNet

Peer 0
Query Issuer

Peer 6

Peer 3

Peer 1

Peer 5

Peer 4

Peer 2

Target
Resource

(b) An example of light flood search process.

Fig. 3 FloodTree and light flood

2.1.3 Light Flood

Light flood [8] is based on the idea of FloodNet, which is a tree-like overlay built on
peer-to-peer networks. The overlay can be constructed with local information only.
This is an advantage since global information is hard to obtained accurately in P2P
networks. The construction process contains two steps.

1. Each peer notifies its neighbors of its connectivity degree.
2. A peer selects the neighbor with the maximum degree as its father, if the peer is

not its child.

Figure 3a shows an example of FloodNet. Peer 1 and Peer 4 choose Peer 3 as
their father while Peer 5 and Peer 6 choose Peer 2 as their father. Peer 0 randomly
chooses Peer 2 as its father since Peer 2 and Peer 3 have the same degree. Peer 2
is not able to choose a father as all its neighbors have chosen Peer 2 as their father.
Therefore, Peer 2 becomes the root of the tree.

Constructing such an overlay is beneficial. It ensures that there are no loops in
the overlay. Therefore the flooding process can be one way and no peers receive a
same query more than once. However, it will greatly increase the diameter of the
whole network because many existing neighborhood between peers are ignored. In
this case, to cover a majority of the whole network needs a high TTL value. If a
query with TTL=7 can cover 85% peers on the original P2P overlay, it may have to
be with TTL>25 to attain the same coverage on the FloodNet overlay. Larger TTL
value means longer response time, which are drawbacks in a dynamic environment
like P2P. Therefore, FloodNet is not good enough to replace pure flooding.

Light flood uses both pure flooding and FloodNet. It first sends a query with
small TTL value by pure flooding to ensure a small coverage with quite low message
duplication rate. Then, it starts a second step to do FloodNet query forwarding to
avoid message duplication while retain a wide coverage.

Although light flood is a flooding based method, it proposes an innovative idea
of selectively choosing neighbors to forward queries instead of forwarding to all
the neighbors. The idea can help to reduce the message duplication while keeping a
similar coverage, compared with pure flooding.

Keyword Search in Unstructured Peer-to-Peer Networks 413

Fig. 4 An example of uniformly random walk

2.2 Random Walk and Its Variations

Another way to selectively choose forwarding neighbors is random walk [7]. In
random walk, a query issuer sends out several walker. Each walker choose the next
peer by a random strategy with or without certain bias. In this case, the whole system
can keep a wide search query coverage while reducing a great number of duplicated
messages.

An important aspect of random walk is its randomness. Because its policy of
choosing neighboring peers is randomness, sometimes with bias, the search result
can be different from time to time even if the whole network remains unchanged.
Three typical policies can be chosen. They are uniformly random walk and max-
degree biased walk.

2.2.1 Uniformly Random Walk

In uniformly random walk, the simplest method, a walker randomly chooses a
neighbor from peer (p1)’s neighbors (p) . i.e.,

P(p1 → p) ∝
1
n

where n is the number of p1’s neighbors.
Figure 4 is an example of uniformly random walk. Suppose the query issuer starts

two walkers. In the first step, P(p0 → p2) = P(p0 → p3) = 1/2. It is highly possible
that they choose peer 2 and peer 3 respectively. In the second step, P(p2 → p3) =
P(p2 → p5) = P(p2 → p6) = 1/3, P(p3 → p1) = P(p3 → p2) = P(p3 → p4) = 1/3.
Suppose peer 2 choose peer 5 and peer 3 choose peer 1. Since peer 5 has only one
connection, the walker therefore has no way to go on. It stops and successfully
reaches a relevant resource. Peer 5 can now start a feedback message to peer 0

414 Dingyi Han and Yong Yu

Fig. 5 An example of max-degree biased walk

through peer 2. The other walker can still go on as the third step. P(p1 → p4) = 1
and Peer 1 has no choice but to forward the query to Peer 4. In the fourth step,
P(p4 → p3) = P(p4 → p6) = 1/2. Suppose peer 4 forwards the query to peer 6.

As illustrated in the process, it does send less messages for a query compared
with flooding-based method. However, it takes longer steps for a query message
from peer 0 to reach peer 6 in uniformly random walk than it does in flooding. That
is to say, it may take longer time to get a response if the resource are located at
peer 6 instead of peer 5. Longer steps also means lower coverage when a query
message is sent by uniformly random walk then it is sent by pure flooding without
modifying the TTL value. Also, there is a chance that peer 0 will get no response
if peer 2 choose peer 6 instead of peer 5, to forward the query message. It is called
missing hits. However, these drawbacks are minor issues compared with the issue
of decreasing duplicated query messages. For most queries, their query results are
widely distributed across the whole network. Therefore, even if it may have a lower
coverage and sometime miss some potential hits, it can still provide an acceptable
query results.

2.2.2 Max-Degree Biased Walk

In max-degree biased walk, every walker chooses a neighbor node with high prob-
ability if the neighbor has a high degree. i.e.,

P(p1 → p) ∝
dp

∑
pi∈N(p)

dpi

where N(p) is the set of p’s neighbor peers and dp is the degree of peer p. The
information of a neighbor’s degree is periodically exchanging throughout the whole
network. Consequently, the query path would be different as the network is evolving.

Keyword Search in Unstructured Peer-to-Peer Networks 415

Figure 5 is an example of max-degree biased walk. Suppose there are still two
walkers. The forwarding probabilities are listed as the follows. P(p0 → p2) =
P(p0 → p3) = 1/2. Therefore, it is highly possible they choose peer 2 and peer
3 respectively. P(p2 → p3) = 4/7,P(p2 → p5) = 1/7, P(p2 → p6) = 2/7. It is
highly possible the walker chooses peer 3. Since peer 3 has already received
the same query, the walker stops. P(p3 → p2) = 4/9, P(p3 → p4) = 3/9 = 1/3,
P(p3 → p1) = 2/9. Suppose this time the walker chooses peer 4 instead of peer 2,
the most probable one. Then, P(p4 → p1) = P(p4 → p6) = 2/4 = 1/2. If it chooses
peer 1, the walker is going to stop after the forth step. Since peer 5 does not receive
any query message, it is also impossible for peer 0 to get any query hits in this case.
There is, however, a small possibility that peer 5 can get the query message if peer
2 chooses peer 5 instead of peer 4.

In the example, lower coverage and missing hits also exists as they are both
caused by the idea of selectively choosing neighbors to forward queries. Similar to
uniformly random walk, they are minor issues.

2.3 Comparison and Summary

Flooding based methods and random walk based methods are two major types of
blind routing search methods. Peers in flooding based networks forwards a received
query to all its neighbors while peers in random walk based networks only choose
one of its neighbors to go on processing the query.

Therefore, flooding based methods cost much more network resources than ran-
dom walk based methods. Message count and message duplication rate in random
walk based methods are much smaller than they are in flooding based methods. On
the other hand, the coverage of random walk based methods is not as good as flood-
ing based methods. For infrequent resources, there is a higher chance that it will not
be retrieved in random walk based methods than that in flooding based methods.

For popular resources, expanding ring and max-degree biased walk are usually
the best methods among its belonging types. They use the minimum message counts
to retrieve relevant resources and they have few duplicated messages. For uncom-
mon resources, light flood and uniformly random walk are typically the best ones.
They can cover a wide range by just causing a relatively small number of messages.

3 Routing Indices

In max-feedback biased walk, it uses search history information to help guiding the
peers when they are choosing neighbors to forward query messages. It indicates that
utilizing extra information other than the network topologies can also help to im-
prove search performance. However, the method still has no idea about which path
is possibly the best for a certain query. Therefore, it still belongs the the category of

416 Dingyi Han and Yong Yu

Table 1 A general comparison of flooding based methods and random walk based methods. (1-
pure flooding, 2-expanding ring, 3-light flood, 4-uniformly random walk, 5-max degree biased
walk.) For low popularity queries, 4 and 5 maybe unable to retrieve any results.

Query popularity Metrics Comparison result

Coverage 5≤ 4≤ 2≤ 3≤ 1
High Message count 5≤ 4≤ 2≤ 3≤ 1

Message duplication rate 5≈ 4≤ 2≈ 3≤ 1

Coverage 5≤ 4≈ 3≈ 2≤ 1
Low Message count 4≤ 5≤ 3≤ 1≤ 2

Message duplication rate 4≤ 5≤ 3≤ 1≤ 2

flooding based methods. Actually, building some indices to guide forwarding query
messages is rather helpful. Such methods are called routing indices based methods.
There are many types of information that can help improving search performance.
The content stored on the peers and the queries sent by the peers are among the
representative ones. Accordingly, two types of indices can be built for routing the
queries. They are content oriented routing and query oriented routing.

3.1 Content Oriented Routing

3.1.1 Naive Routing Indices for Non-cyclic Topologies

A simplest method of routing indices [6] assumes the network topology is a non-
cyclic graph structure. It can be built like FloodNet[8] or other cycle-avoidance
topologies. An extension of routing indices for cyclic graph is described later. The
method also adopts a global dictionary for both resources and queries. The dictio-
nary maybe a taxonomy if the search application is targeted at finding a class of
resources. It can also be a keyword list if the application is targeted at finding re-
sources containing certain keywords.

Naive routing indices use tables for query routings. Each peer maintains a two-
dimensional routing table. One dimension is the neighbor peers while the other is
the dictionary items. Figure 6 presents an example. It exhibits a non-cyclic topology
and a table stored on peer 0. There are two records in the table. One for each neigh-
bor peer. In each record, it counts the total number of accessible resources and the
number of accessible resources containing a certain keyword (or belongs to a certain
class) through the peer. In this case, peer 0 can learn from the routing indices that it
can access 50 more resources through peer 3 than it can do through peer 2. Also, it
is better to ask peer 2 when the query is “A” or “C”.

To build and maintain such indices, peers in the system should periodically ex-
changing their routing indices. In the building stage (Fig. 7), two peers should

Keyword Search in Unstructured Peer-to-Peer Networks 417

Fig. 6 An example of routing indices

Fig. 7 An example of building routing indices

exchange their routing indices (part of the tables with solid borders) when they
become neighbors (establish the dash line connection in the graph).

After the records are created, they should be updated to ensure any changes in
the resources allocation and the network topologies are included. The update process
is similar to the building process. When a peer notices its indices changed, it just
notifies the relevant neighbors for the change. For example, in Fig. 7, if peer 6 add
a new resource belongs to B, it should notify peer 2. Then, peer 2 should notify
peer 5 and peer 1 for the change. And so on, until all the peers in the system are
notified.

Searching by naive routing indices is easy. When a peer initializes or tries to
forward a query, it can lookup the indices table to find the peers who contains most
promising results. For example, when peer 0 in Fig. 7 wants a resource belongs to
C, it can choose the forwarding destination peer from the routing indices. Since peer
2 can reach more “C” resources than peer 3, it will forward the query to peer 2 if it
can only forward the query to half of its neighbors.

Maintaining and updating naive routing indices require additional network costs.
However, such costs can greatly reduce the network costs needed for query pro-
cessing. This is ageneral feature of routing indices based methods. Therefore, if the

418 Dingyi Han and Yong Yu

Fig. 8 An example of cyclic topology

system are targeted at great number of searches, it is better to use routing indices
rather than flooding. However, if the system has rare queries, it is not economy to
use routing indices, flooding may be a better choice.

Naive routing indices is simple and immature. It does not take several important
factors into consideration. For example, what if there is a circle in the topology?
What if the resource is quite far from the query issuer? The variances make some
modifications to make it better.

3.1.2 Naive Routing Indices for Cyclic Topologies

In cyclic topologies, building and maintaining naive routing indices cannot use the
simple method because it will make the routing indices deceitful. Figure 8 illustrates
a cyclic topology. The connection between peer 2 and peer 3 is newly established.
Peer 0, 2 and 3 forms a circle. Suppose peer 5 adds a “C” file and peer 2 notices.
Then peer 2 shall notify both peer 0 and peer 3 that it can access one more “C”
file. Peer 0 and peer 3 shall also notify peer 2/3 and peer 0/1/2/4 respectively, and
so on. Therefore, the updating process becomes endless and the routing indices get
inaccurate. Therefore, there shall be some modifications.

Two modifications can be adopted. One is the cycle avoidance solution, the other
is the cycle detection and recovery solution [6]. In the cycle avoidance solution,
the major task is to build a non-cyclic overlay (such as FloodNet) over the ex-
isting network. In the cycle detection and recovery solution, the major task is to
detect the circles and then to eliminate (or neutralize) the effect of the cycles by,
for example, mark one connection to avoid the indices update process through the
connection.

Keyword Search in Unstructured Peer-to-Peer Networks 419

Fig. 9 An exponentially aggregated routing indices

3.1.3 Hop-Based Routing Indices

Regardless of non-cyclic topologies or cyclic topologies, previous routing indices
do not take the path length into considerations. If there are many resources on one
path, and the resources are far away from the query initializer or forwarder, it would
be still a good choice for searching these resources. However, actually, it is much
better to get the results quickly rather than to get more results slowly in many cases.
Methods considering this problem are called hop based routing indices.

One hop replication is a simple example. It is adopted by Gia client[5]. Peers in
this system maintain the indices of not only local resources, but also it neighbor’s
resources. Therefore, queries in this systems are forwarded one hop less than the
previous systems.

A more sophisticated method is exponentially aggregated routing indices. The
count of each keyword from one path is composed by the count on the peer and
the discounted aggregate value of its neighbors. Figure 9 presents an exponentially
aggregated routing indices. Suppose the resource distribution is listed in the lower
table. When peer 0 asks peer 2 for the routing indices, it uses the following equation
to calculate and report.

I(p,k) = R(p,k)+
n

∑
i=1

I(Ni(p),k)
α

where I(p,k) is the reporting index of resources containing k from peer p. R(p,k)
is the count of resources containing k on peer p. Ni(p) is the i-th neighbor of peer
p. n is the count of neighbors. α is the discounting rate. It is 2 in the example. The
record with black background is the record by original routing indices while the
dash border record is generated by exponentially aggregated routing indices.

Hop-based routing indices not only help to retrieve relevant results more quickly,
it can also help on solving the problem caused by cyclic topologies in the original
routing indices. Since there is a discounting rate, it will not endlessly accumulate
the count of the resources on one peer.

420 Dingyi Han and Yong Yu

3.1.4 Scalable Query Routing

Routing indices are helpful to guide the query issuers and the query forwarders.
However, if the system indexes a great number of keywords, the routing indices on
each peer may take a large space for storage. On the other hand, most text documents
do not contain all the keywords listed in the routing table. Therefore, there are only
a small portion of keywords existed on every peer. If the routing indices are stored
as a table, there could be a great portion of the indices being 0.

Scalable query routing is [10] designed to use the storage efficiently. The main
technology used, exponential decay bloom filter, is an extension of bloom filter [3].
Bloom filter uses k hash functions, h1(x),h2(x), · · · ,hk(x), to convert the keyword x
into a k bit value, each bit is either 0 or 1. exponential decay bloom filter still use k
hash functions. However, it only converts x into θ(x)= |{i|hi(x) = 1, i = 1,2, · · · ,k}|,
i.e., the number of 1’s in the filter[10]. Consequently, the query is also hashed when
a peer choosing its neighbors to forward.

Since bloom filter is based on hash functions, it has the same conflict problem.
i.e., Two keywords may have the same hash values when the range of hash function
is small. Therefore, the value of k should be properly chosen to make the conflict
rate low, one in a thousand or even lower. However, such a problem does not affect
scalable query routing a lot. Since it can greatly reduce the routing indices, it is the
most mature method in content oriented routing.

3.2 Query Oriented Routing

Different to content oriented routing, query oriented routing does not index the re-
source distribution. Methods in this category index the queries. According to some
statistics [9, 12], the popularity of queries in deployed P2P systems fits a Zipf-like
distribution. i.e., a small set of query strings represent the majority of the queries.
There is a chance that building indices for only those popular queries, instead of
all the shared contents, will achieve good routing performance with little network
overhead and small local index sizes.

3.2.1 Max-Feedback Biased Walk

In max-feedback biased walk. every walker chooses a neighbor node with high prob-
ability if the neighbor has already returned a feedback with many result records
before. i.e.

P(p1 → p) ∝
fp

∑
pi∈N(p)

fpi

where fp is the number of previous returned result records of peer p.

Keyword Search in Unstructured Peer-to-Peer Networks 421

Fig. 10 An example of max-feedback biased walk

Figure 10 is an example of max-feedback biased walk. Also suppose there are
two walkers in the system and the destination of the first steps are peer 2 and peer
3 respectively. Each peer in the system records how many query hit records have
been returned by it neighbors (shown in the box in the figure). The forwarding
probabilities are listed as the follows. P(p2 → p3) = 3/15, P(p2 → p5) = 8/15,
P(p2 → p6) = 2/15, P(p3 → p1) = P(p3 → p4) = 3/13, P(p3 → p2) = 7/13.
The figure is also a most probable process. It is clear that peer 5 get the query
message in rather a short time. The history feedback does help to route queries
efficiently.

In max-feedback biased walk, the hit record history is collected through the past
queries. Therefore, when the system is initialized, it is equivalent to uniformly ran-
dom walk. Similar to max-degree biased walk, the query path would be different
as more queries being processed by the system, because the accuracy of hit record
history reflecting the ability of returning hit records is growing.

3.2.2 Adaptive Probabilistic Search

Adaptive probabilistic search [19] is similar to max-feedback biased walk. The dif-
ference is that max-feedback biased walk only accumulates positive feedback while
adaptive probabilistic search also accumulates negative feedback.

Figure 11a is the initial routing indices of a P2P system. The arrows indicate
the routing pathes of a query. After the query is processed, the system updates the
indices as shown in Fig. 11b. The index of peer 5 on peer 2 increases by 1, while
the index of peer 3 on peer 0 (along with the index of peer 4 on peer 3, the index of
peer 6 on peer 4, the index of peer 2 on peer 6) decreases by 1.

422 Dingyi Han and Yong Yu

Peer 0
Query Issuer

Peer 6

Peer 3

Peer 1

Peer 5

Peer 4

Peer 2

Target
Resource

1

2

1

P2: 5
P3: 5

P3: 5
P4: 5

P1: 5
P3: 5
P6: 5

P0: 5 P1: 5
P2: 5 P4: 5

P0: 5 P3: 5 P5: 5 P6: 5

P2: 5
P4: 5

P2: 5

2

3

4

(a) The initial routing indices.

Peer 0
Query Issuer

Peer 6

Peer 3

Peer 1

Peer 5

Peer 4

Peer 2

Target
Resource

P2: 6
P3: 4

P3: 5
P4: 5

P1: 5
P3: 5
P6: 4

P0: 5 P1: 5
P2: 5 P4: 4

P0: 5 P3: 5 P5: 6 P6: 5

P2: 4
P4: 5

P2: 5

(b) Routing indices after processed a query.

Fig. 11 An example of adaptive probabilistic search

3.2.3 Learning Based Query Routing

Learning based query routing [17, 18] is an advanced query oriented routing
method.

First, it adopts a strategy somewhere between random walk and flood, which
forward the query message to only one neighbor and all the neighbors respectively.
The number of copies forwarded by a peer is

#query =
α

hop+1

where α is a parameter and hop is the distance between current peer and the query
issuer. Suppose α = 4, the query issuer shall send 4 query message copies to its
neighbors, and 8 query message copies would be sent by the neighbors. After 4
rounds, there will be totally more than 30 query message copies, and the count
stops growing. Such a technique can prevent mass message duplication in the later
stage of flooding while keeping enough query paths to ensure reaching the resource
holder.

Second, it adopts an advanced indices maintenance technique. The idea comes
from reinforcement learning [14]. A successful query hit results in a feed back.

f (pi,q j) = numpi + γ×
M

∑
m=0

f (pm,q j)

where numpi is the importance of the query hit on peer pi, and f (pm,q j) is the feed-
back received by pi from its neighbor pm. γ is a factor that punishes a hit path by
its length. This is a similar technique adopted in hop-based routing indices. Com-
pared with max-feedback bias walk and adaptive probabilistic search, the effect on
the weights of feedback is also more complicated.

weightn(pi,q j) = βn×weightn−1(pi,q j)+(1−βn)× f (pi,q j)

Keyword Search in Unstructured Peer-to-Peer Networks 423

where weightn(pi,q j) is the n-th weight of choosing peer pi as the forwarding desti-
nation for query q j. It is calculated when the query has been processed for n times.

βn = visitn−1(pi,q j)
visitn(pi,q j)

. visit0(pi,q j) = 0. visitn(pi,q j) records the times that q j has been

routed to pi. It is updated according to the following equation.

visitn(pi,q j) = visitn(pi,q j)+
1

hopn +1

Such an technique encourages a larger feedback value if the resource is on the neigh-
bor peer itself rather than far away. It also encourages a shorter query path.

3.3 Comparison and Summary

Routing indices, regardless of content oriented or query oriented, forwards queries
selectively according to the indices. They choose a peer because they know it is a
better path that have more relevant resources or have been retrieved good resources
before. Therefore, they are not “blind”. To build such indices, they have to collect
information about resource distribution or query pathes. So these methods are al-
most equivalent to flooding or random walking at the initial state. The advantage of
routing indices will only be visible when the indices are ready.

Content oriented routing indices can be built when the system is online. It is pos-
sible that the indices are ready when the first query is issued. Query oriented routing
indices can only be built when queries are issued. Therefore, the first hundreds of
query issuers are contributing to the system while gaining no or little advantage
through the indices.

Most routing indices can work on both flooding based methods and random walk
based methods because they can only tell which neighbor can retrieve more relevant
resources. Considering the low network cost, it is random walk based methods that
are commonly adopted.

A good routing indices should considering the following factors besides the ac-
curacy of the indices.

1. Does a circle in the topology generate a useless index?
2. Is a resource far away from the issuer or forwarder different from a resource near

it?
3. Do the indices occupy a large local storage?
4. Are the indices fresh? Is the updating cost acceptable?

Reconsidering the six methods, naive routing indices solves the first problem.
Hop-based routing indices solves the second problem. Scalable query routing solves
the third problem. Query oriented indices are not affected by the circle topology.
They can limit the size of their indices by using first-in-first-out policy to solve the
third problem. The last problem can also be solved as new queries being proceed.
Max-feedback biased walk adaptive and probabilistic search do not consider the

424 Dingyi Han and Yong Yu

second problem while learning based query routing does. Regarding the accuracy,
each of the six methods somehow consider to provide accurate indices. According to
simulation results [17], learning based query routing outperforms the others. There
is also a detailed comparison in [20].

4 Multi-Keyword Search

Multi-keyword search is an important problem to make keyword search systems
more user-friendly. There are several ways to tackle the problem.

The first way is to perform search tasks for each keyword. After receiving all
the results, the query issuer can merge the results locally. This technique increases
the network cost. To support a 10-keyword query, it has to send 10 single keyword
queries to retrieve all the relevant resources for each keyword. The query issuer also
has to handle 10 times of search results in one query. This technique shall be adopted
if only the search method can not use the other two techniques.

The second way is to regard multiple keywords as a single query. It is a good way
in flooding based methods. Compared to the first technique, it can distribute the re-
sult merging overhead to all the peers in the network. The query issuer can focus
on merging the results from different peers, instead of merging the results for dif-
ferent keywords from different peers. However, for routing indices based methods,
the storage spaces will grow. Since a typical search query may contain two or three
keywords, the query space can be hundreds or thousands larger than the query space
of single keyword. Therefore the storage spaces may also be hundreds or thousands
times as larger as the spaces need for single keyword.

The third way is to consider the problem in the query routing process. This tech-
nique is designed to solve the storage space problem in the second way for routing
indices methods. Since the routing indices based methods can predict the possibility
of retrieving relevant resources for a single keyword, it is also possible to predict the
possibility for multiple keywords. For example, suppose the keywords in the query
(k1,k2, · · · ,kn) are independent, as most information retrieval methods do, the prob-
ability of peer p choosing its neighbor p j as the forwarding destination is calculated
as the following equation.

p(k1,k2, · · · ,kn, p j) =

n
∏
i=1

p(ki, p j)

M
∑

m=1

n
∏
i=1

p(ki, pm)

where p(ki, p j) = weight(ki,p j)
N
∑

i=1
weight(ki,p j)

, N is the size of indexed keywords, and M is the

number of peer p’s neighbor peers. By using similar estimation methods, this tech-
nique does not increase the size of routing indices, which is also an advantage of
routing indices based methods.

Keyword Search in Unstructured Peer-to-Peer Networks 425

The three techniques can help to solve multi-keyword search tasks. They intro-
duce some modifications based on the single-keyword search methods. Accordingly
they inherit the pros and cons of the single-keyword search methods.

5 Conclusion

In this chapter, two types of keyword search techniques have been introduced. They
are blind routing and routing indices. In blind routing based methods, both pure
flooding and random walk can work robustly, because they do not make any assump-
tions on the resource location distribution and/or user query distribution. However,
they typically consume more network resources. In routing indices based methods,
content oriented routing and query oriented routing are two major ways. Compared
with blind routing based methods, they consume less network resources. Several
minor issue, including the variations of the proposed methods and their comparison,
as well as the multi-keyword search issue are also covered.

References

1. Androutsellis-Theotokis, S., Spinellis, D.: A survey of peer-to-peer content distribution tech-
nologies. ACM Computing Survey 36(4), 335–371 (2004). DOI http://doi.acm.org/10.1145/
1041680.1041681

2. Baeza-Yates, R.A., Ribeiro-Neto, B.: Modern Information Retrieval. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA (1999)

3. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Communications of
ACM 13(7), 422–426 (1970)

4. Carlsson, B., Gustavsson, R.: The rise and fall of napster - an evolutionary approach. In:
AMT ’01: Proceedings of the 6th International Computer Science Conference on Active Me-
dia Technology, pp. 347–354. Springer-Verlag, London, UK (2001)

5. Chawathe, Y., Ratnasamy, S., Breslau, L., Lanham, N., Shenker, S.: Making gnutella-like p2p
systems scalable. In: SIGCOMM ’03: Proceedings of the 2003 conference on Applications,
technologies, architectures, and protocols for computer communications, pp. 407–418. ACM,
New York, NY, USA (2003). DOI http://doi.acm.org/10.1145/863955.864000

6. Crespo, A., Garcia-Molina, H.: Routing indices for peer-to-peer systems. In: ICDCS
’02: Proceedings of the 22 nd International Conference on Distributed Computing Systems
(ICDCS’02), p. 23. IEEE Computer Society, Washington, DC, USA (2002)

7. Gkantsidis, C., Mihail, M., Saberi, A.: Random walks in peer-to-peer networks. In: INFO-
COM 2004. Twenty-third AnnualJoint Conference of the IEEE Computer and Communica-
tions Societies, pp. 120–130 (2004)

8. Jiang, S., Guo, L., Zhang, X.: Lightflood: an efficient flooding scheme for file search in un-
structured peer-to-peer systems. In: Proceedings. 2003 International Conference on Parallel
Processing, pp. 627–635 (2003)

9. Klemm, A., Lindemann, C., , Waldhorst, O.: Relating Query Popularity and File Replication
in the Gnutella Peer-to-Peer Network. In: Proceedings 12th GI/ITG Conference on Measur-
ing, Modelling and Evaluation of Computer and Communication Systems (MMB). Dresden,
Germany (2004)

426 Dingyi Han and Yong Yu

10. Kumar, A., Xu, J., Zegura, E.: Efficient and scalable query routing for unstructured peer-to-
peer networks. INFOCOM 2005. 24th Annual Joint Conference of the IEEE Computer and
Communications Societies. Proceedings IEEE 2, 1162–1173 (2005)

11. Lv, Q., Cao, P., Cohen, E., Li, K., Shenker, S.: Search and replication in unstructured peer-to-
peer networks. In: ICS ’02: Proceedings of the 16th international conference on Supercom-
puting, pp. 84–95 (2002)

12. Meng, S., Shi, C., Han, D., Zhu, X., Yu, Y.: A statistical study of today’s gnutella. Lecture
Notes in Computer Science 3841/2006, 189–200 (2006)

13. Milgram, S.: The small world problem. Psychology Today 2,60–67 (1967)
14. Mitchell, T.M.: Machine Learning. McGraw-Hill Higher Education (1997)
15. Ripeanu, M.: Peer-to-peer architecture case study: Gnutella network. p. 99. IEEE Computer

Society, Los Alamitos, CA, USA (2001)
16. Ripeanu, M., Foster, I., Iamnitchi, A.: Mapping the gnutella network: Properties of large-scale

peer-to-peer systems and implications for system design. IEEE Internet Computing Journal 6,
50–57 (2002)

17. Shi, C., Han, D., Liu, Y., Meng, S., Yu, Y.: A dynamic routing protocol for keyword search
in unstructured peer-to-peer networks. Journal of Computer Communications 31(2), 318–331
(2008). DOI http://dx.doi.org/10.1016/j.comcom.2007.08.009

18. Shi, C., Meng, S., Liu, Y., Han, D., Yu, Y.: Reinforcement learning for query-oriented routing
indices in unstructured peer-to-peer networks. p2p 0, 267–274 (2006)

19. Tsoumakos, D., Roussopoulos, N.: Adaptive probabilistic search for peer-to-peer networks.
In: P2P ’03: Proceedings of the 3rd International Conference on Peer-to-Peer Computing, p.
102. IEEE Computer Society, Washington, DC, USA (2003)

20. Tsoumakos, D., Roussopoulos, N.: Analysis and comparison of p2p search methods. In: In-
foScale ’06: Proceedings of the 1st international conference on Scalable information systems,
p. 25. ACM, New York, NY, USA (2006). DOI http://doi.acm.org/10.1145/1146847.1146872

Distributed Search and Pattern Matching

Reaz Ahmed and Raouf Boutaba

Abstract Peer-to-peer (P2P) technology has triggered a wide range of distributed
applications including file-sharing, distributed XML databases, distributed comput-
ing, server-less web publishing and networked resource/service sharing. Despite of
the diversity in application, these systems share common requirements for searching
due to transitory nodes population and content volatility. In such dynamic environ-
ment, users do not have the exact information about available resources. Queries are
based on partial information. This mandates the search mechanism to be flexible. On
the other hand, the search mechanism is required to be bandwidth efficient to support
large networks. Variety of search techniques have been proposed to provide satisfac-
tory solution to the conflicting requirements of search efficiency and flexibility. This
chapter highlights the search requirements in large scale distributed systems and
the ability of the existing distributed search techniques in satisfying these require-
ments. Representative search techniques from three application domains, namely,
P2P content sharing, service discovery and distributed XML databases, are consid-
ered. An abstract problem formulation called Distributed Pattern Matching (DPM)
is presented as well. The DPM framework can be used as a common ground for
addressing the search problem in these three application domains.

1 Introduction

Peer-to-peer (P2P) technology has triggered a wide range of distributed systems
beyond simple file-sharing. Distributed XML databases, distributed computing,
server-less web publishing and networked resource/service sharing are only a few to

Reaz Ahmed
Bangladesh University of Engineering and Technlogy, Dhaka, Bangladesh,
e-mail: reaz@cse.buet.ac.bd

Raouf Boutaba
University of Waterloo, Ontario, Canada, e-mail: rboutaba@bbcr.uwaterloo.ca

X. Shen et al. (eds.), Handbook of Peer-to-Peer Networking, 427
DOI 10.1007/978-0-387-09751-0 16, © Springer Science+Business Media, LLC 2010

428 Reaz Ahmed and Raouf Boutaba

name. Despite of the diversity in applications, these systems share a common prob-
lem regarding search and discovery of information. This commonality stems from
the transitory nodes population and volatile information content in the participating
nodes. In such dynamic environment, users are not expected to have the exact infor-
mation about the available objects in the system. Rather queries are based on partial
information, which requires the search mechanism to be flexible. On the other hand,
to scale with network size the search mechanism is required to be bandwidth effi-
cient. High levels of content and node dynamism in modern large scale distributed
systems, including P2P content sharing, service discovery and P2P databases, im-
pose additional requirements on the search mechanism. Flexibility in query expres-
siveness and fault-resilience of the search mechanism become more important in
such environments.

Since the advent of P2P technology experts from industry and academia have
proposed a number of search techniques to provide satisfactory solution to the
conflicting requirements of search efficiency and flexibility in distributed environ-
ment. This chapter will present the challenges in distributed search and the existing
search techniques in three well-known P2P application domains: content sharing,
service discovery, and distributed XML databases. A generic formulation, namely
Distributed Pattern Matching (DPM) problem, will also be presented. The DPM
construct can be used as a generic framework for addressing the search require-
ments in different P2P applications. Two known solutions to the DPM problem will
be highlighted as well.

This chapter is organized as follows. Common properties of large scale dis-
tributed systems from three application domains, namely, content sharing, service
discovery and distributed XML databases, are presented in Section 2. Desirable
characteristics of a distributed search mechanism are presented in Section 3, while
the components of a distributed search system are identified in Section 4. Repre-
sentative search techniques form the above mentioned three application domains
are investigated in Sections 5–7, respectively. The DPM abstraction is presented in
Section 8. Finally, concluding remarks are placed in Section 9.

2 Large Scale Distributed Systems

Networks of tens or hundreds of thousands of loosely coupled devices have be-
come common in today’s world. The interconnection networks can exist in physical
or logical dimensions as well as wired and wireless domains. The Internet is the
largest distributed system that connects devices through TCP/IP protocol stack. On
top of this network there exists many logical overlay topologies, where networked
nodes federate to achieve a common goal. Examples of such federations include,
the Domain Name resolution System (DNS), the World Wide Web (WWW), con-
tent sharing P2P systems, world wide service discovery systems and emerging dis-
tributed XML database systems. Among these systems, the WWW and the DNS
are mature enough and are characterized by relatively static population of hosts.

Distributed Search and Pattern Matching 429

Content dynamism is also much lower in these two systems, compared to P2P sys-
tems. Centralized and clustered search techniques (e.g., web crawlers and proxy
caches) work well for a network of relatively stable hosts (or web sites) or do-
main name resolvers. Decentralized (control) and distributed (workload) search
techniques are required for a network composed of transient populations of nodes
having intermittent connectivity and dynamically assigned IP addresses.

Content sharing, service discovery and distributed XML databases are three rep-
resentative P2P application domains that can be taken as the representatives of mod-
ern large scale distributed systems. The identifying properties that separate these ap-
plication domains from contemporary large scale networks, like WWW and DNS,
can be summarized as follows:

Population dynamism: Transient population of nodes mandates the routing mech-
anism to be adaptive to failures. Redundant routing paths and replication can
improve availability and resilience in such environments.

Content dynamism: Frequent arrival of new content, relocation (e.g., transfer) of the
existing contents and shorter uptime of peers (compared to internet hosts) are the
main causes of content dynamism in these systems. Users in these systems often
do not have the exact information (e.g., exact filename, or Service Description)
about the content they are willing to discover. Rather most of the queries are
partial or inexact, which requires the search mechanism to be flexible.

Heterogeneity: In these systems participating population of nodes display wide vari-
ation in capacity, e.g., computing power, network bandwidth and storage. This
mandates the index information and routing traffic to be distributed based on
nodes’ capacities.

2.1 Content Sharing

Content (e.g., file) sharing is the most popular P2P application. A classification of
the topologies adopted in various P2P content sharing systems can be found in [20].
In [7], a survey and taxonomy of content sharing P2P systems are presented. All
content sharing P2P systems offer mechanisms for content lookup and for content
transfer. Although content transfer takes place between two peers, the search mech-
anism usually involves intermediate entities. To facilitate effective search, an object
is associated with an index file that contains the name, location, and sometimes a
description (or keywords) of the content. Search for a content typically involves
matching a query expression against the index files. P2P systems differ in how this
index file is distributed over the peers (architecture) and what index scheme is used
(i.e., index structure). From an architectural point of view (see Fig. 1), content shar-
ing P2P systems can be centralized, decentralized, or partially-decentralized [7].
Centralized P2P systems are characterized by the existence of a central index server,
whose sole task is to maintain the index files and facilitate content search. Napster
belongs to this category. Centralized P2P systems are highly effective for partial
keyword search, but the index system itself becomes a bottleneck and a single point

430 Reaz Ahmed and Raouf Boutaba

Peer

Peer Peer

PeerPeer

Central
Server

query

reply

file download

Peer

Peer

Peer

PeerPeer

query

reply

file download

Peer

Peer

queryquery

Peer

Peer PeerPeerPeer

query

reply

file download

SuperPeer

Peer

SuperPeer

SuperPeer

reply

Centralized
(e.g., Napster)

Decentralized
(e.g., Gnutella)

Partially-centralized
(e.g., KaZaA)

Fig. 1 Content sharing P2P architectures

of failure. Decentralized architectures remedy this problem by having all peers in-
dex their own local content, or additionally cache the index of their direct neighbors.
Content search in this case consists in flooding the P2P network with query mes-
sages (e.g.,through TTL-limited broadcast in Gnutella). A decentralized P2P system
such as Gnutella is highly robust, but the query routing overhead is overwhelming in
large-scale networks. Recognizing the benefit of index servers, many popular P2P
systems today use partially-decentralized architectures, where a number of peers
(called superpeers) assume the role of index servers. In systems such as KaZaA and
Morpheus, each superpeer has a set of associated peers. Each superpeer is in charge
of maintaining the index file for its peers. Content search is then conducted at the
superpeer level, where superpeers may forward query messages to each other using
flooding. The selection of superpeers is difficult in such a scheme, as it assumes that
some peers in the network have high capacity and are relatively static (i.e., available
most of the time). A newer version of Gnutella [71] also uses this approach.

The indexing scheme used by content sharing P2P systems can be categorized as
unstructured, semi-structured, or structured [7]. Unstructured P2P systems use flat
index files, where a index file has no relation to other index files. Napster, Gnutella
and KaZaA/Morpheus belong to this category. Semi-structured P2P systems, such
as Freenet [21] and JXTA [15], use a local routing table at each peer. A search is
based on filenames that are hashed to binary keys. The query is routed at each peer
to the closest matching key found on the local routing table. To prevent infinite
querying, a time-to-live (TTL) value is used. Such mechanism is effective when the
content is well replicated over many peers. However, it is virtually impossible to

Distributed Search and Pattern Matching 431

enforce data consistency for file updates. Structured P2P systems are specialized in
exact matching queries using fully distributed routing structure. Examples of this
approach include P2P systems that use distributed indexing and querying schemes,
such as Chord [64], CAN (Content Addressable Network) [54] and Tapestry [72].

Advertisements in these systems mostly contain the filename and author-name.
For example a movie file can be advertised as “The Lord of the Rings – The Two
Towers – 2002 (Extended Edition) DVDrip.avi”. For a user it is very unlikely to
know the exact name of the advertised file. Rather the user specifies some keywords
that may be present in the advertised file name. For example a typical query for the
above movie would be “Lord of the Ring Two Tower”. Note the keywords “Ring”
and “Tower”; they do not contain the “s” as contained in the advertised keywords.
This mandates the support for partial keyword matching in P2P content sharing
systems.

2.2 Service Discovery

Service

Client

Directory Directory

Directory

Lookup

Query
List of matching

Services & handles

Reply

Bootstrapping

Find directory

Service
Description

Registration

Service

Client

1
2

3

5

4

Partial Service
Description

Fig. 2 Service discovery: Generic architecture and steps

Service discovery is an integral part of any service infrastructure. A large-scale
service infrastructure requires a service discovery system that is open, scalable, ro-
bust and efficient. Most of the service discovery systems rely on a three-party archi-
tecture, composed of clients, services and directory entities. Directory entities gather
advertisements from service providers and resolve queries from clients. The generic
service discovery mechanism can be viewed as a five-step process (see Fig. 2) [5];
(1) bootstrapping, where clients and service providers attempt to initiate the discov-
ery process via establishing the first point of contact within the system, (2) service
advertisement, where a service provider publishes information (a Service Descrip-

432 Reaz Ahmed and Raouf Boutaba

tion containing a list of property-value pairs) to a directory entity about the provided
service (3) querying, where a client looks for a desired service by submitting a query
(usually a partial Service Description) to a directory entity, (4) lookup, where the di-
rectory entity searches the network of directory entities for all Service Descriptions
matching the query and (5) service handle retrieval, the final step in the discov-
ery mechanism, where a client receives the means to access the requested service.
Some of these steps may be omitted in various discovery approaches. Some of the
discovery approaches are based on two-party (client-server) architecture without
any directory infrastructure.

Directory Architectures

Centralized
(UDDI)

Decentralized

Hybrid
(Twine)

Y

X

Replicated
(INS)

Directory Agent
(SLP, Jini,

SSDS)

Local Cache
(Upnp, SLP w/o DA)

Distributed

Registry (entire)

local Registry (partial):

remote Registry (partial) Directory Agent

Service provider

Legend

Z

Y

X

Z

Fig. 3 Taxonomy of the directory architectures

Directory architectures adopted by different service discovery approaches can
broadly be classified as centralized and decentralized (see Fig. 3) [5]. In a central-
ized architecture, a dedicated directory entity or registry maintains the whole direc-
tory information (as in centralized UDDI [69]), and takes care of registering services
and answering to queries. In decentralized architectures, the directory information
is stored at different network locations. Decentralized systems can be categorized
as replicated, distributed or hybrid. In the replicated case, the entire directory in-
formation is stored at different directory entities (as in INS [2]). In the distributed
case, the directory information is partitioned, and the partitions are either stored in
dedicated directory entities (DA) (as in SSDS [24], SLP [30] and Jini [65]) as per
a three-party model or cached locally by the service providers in the system (e.g.,
UPnP [47] and SLP in DA-less mode), according to a two-party model. Finally, in
the hybrid case, the system stores multiple copies of the entire directory information
without assigning the entire registry to a single directory entity (as in Twine [11]).

In large-scale networks, a centralized directory becomes a performance bottle-
neck and a single point of failure. Consistency of the replicas is a major issue in

Distributed Search and Pattern Matching 433

the replicated architecture (like INS), since maintaining consistent replicas is usu-
ally bandwidth-consuming. On the other hand, when the directory information is
distributed, e.g., partitioned among dedicated directory entities, the failure of one of
them leads to the unavailability of part of the directory information. The fully dis-
tributed two-party architecture attempts to remedy all these issues, however these
systems generally do not scale well, since they use multicast-like communications
which are expensive in terms of bandwidth. Hybrid architectures seem to offer the
best compromise between bandwidth consumption, scalability, and fault-tolerance.

Advertisement
Service-type=service:print

Scope-list=staff, grad

Location=DC3335

color=true

language=PS

Paper-size= legal, A4, B5

URL=diamond.uwatreloo.ca/PCL8

Query
Service-type=service:print

Scope-list=grad

Paper-size=A4

Fig. 4 Example advertisement and query in service discover systems

An example of a generic advertisement and a query in service discovery systems
is presented in Fig. 4. In these systems a service is advertised using a list of de-
scriptive property-value pairs, called a Service Description. A Service Description
typically contains service type (e.g., Service-type=service:print), service invocation
information (e.g., URL=diamond.uwatreloo.ca/PCL8) and service capabilities (e.g.,
Paper-size= legal, A4, B5). In most cases a Service Description is instantiated from
a Service Schema, which contains meta-information regarding the Service Descrip-
tions for a given class of service (e.g., print service or service:print). A Service
Schema governs the allowable properties and their types (e.g., string, integer, float,
etc.) within the Service Descriptions of a given class of services. In most service
discovery systems it is assumed that the available Service Schemas are globally
known.

Queries in these systems (see Fig. 4) usually contain the requested service type
and a list of required capabilities of the service (e.g., Paper-size=A4). The list of
capabilities provided in a query is a subset of the capabilities list provided in the
advertisements it should match against. The result of a query consists of a list of
Service Descriptions matching the query.

2.3 Distributed XML Databases

Distributed XML databases on P2P systems, or P2P Databases Systems (PDBS) in
short, have been investigated, more recently, following the success of P2P content
sharing. A P2P database system can be thought of as a data sharing network built on
top of a P2P overlay. Search in PDBS demands more flexibility than that required
by the P2P content sharing systems. This requirement stems from the existence of

434 Reaz Ahmed and Raouf Boutaba

semantic (schema) information associated with the shared data. Most of the research
works focus on building an additional layer on top of the existing P2P search tech-
niques.

Though PDBSs evolved as a natural extension of Distributed Database Systems
(DDBS), they have a number of properties that distinguish them from the DDBS
and traditional Database Management Systems (DBMS). Unlike DDBS, PDBS has
no central naming authority, which results into heterogenous schemas in the sys-
tem. Due to the absence of any central coordination and the large-scale evolving
topology, a peer knows about only a portion of the available schemas and data. This
mandates a mechanism (e.g., ontology) for unifying semantically close schemas. In
a DDBS, arrival or departure of nodes is performed in a controlled manner, which is
not true for PDBSs. Finally, in contrast to DDBS, a peer in a PDBS has full control
over its local data.

In PDBS, semantic mapping of schema is a challenging problem. It requires inter-
operation between heterogenous data models. XML [63] is used as the defacto stan-
dard for this purpose. A survey on the use of XML in PDBS can be found in [39].
In PDBS, XML is used in two ways. Firstly, XML is used for representing data and
data models (i.e., schema information). Secondly, XML is used to represent seman-
tic relationships among heterogeneous data models at three different levels: schema
level, element level and data level. These levels of granularity also influence the
indexing mechanism adopted in these systems.

Local Data Model

Semantic Mapping

ElementSchema Data

Indexing

P2P routing

1

2

3

4

Fig. 5 Functional layers in a PDBS system

Figure 5 presents the possible functional layers in a PDBS. Each peer in the
system has its own local data model independent of the other peers’ data models.
The process of translating a local query to other peers’ data models is performed
by the semantic mapping layer at different granularities. The third layer is optional,
and can maintain indices at different granularities. Finally, the fourth layer is usually
one or a combination of the routing mechanisms present in traditional file sharing
P2P systems.

Many research works on PDBS assume the existence of an underlying P2P sub-
strate for efficient and flexible query routing, and concentrate on higher level issues
including semantic mapping between heterogenous schemas and distributed query
processing and optimization.

Distributed Search and Pattern Matching 435

(a) An XML advertisement

bookstore

magazinebook

price name

author

last-
name

first-
name

award

price

(b) Tree representation

Fig. 6 Advertisement in PDBS

Fig. 7 XPath query examples

Advertisement and query in PDBS are more complicated than that in P2P content
sharing and service discovery systems. Figure 6 depicts an example of an XML
advertisement which contains information about two books and one magazine. A
tree representation of the corresponding XML Schema [26] has been presented in
Fig. 6b. Analogous to Service Schema, an XML Schema contains meta-information
regarding a class of XML documents. However, the syntax used for describing XML
documents and XML Schema are standardized and widely used, compared to the
variations in Service Description and Service Schema definition syntaxes used by
different service discovery systems.

The most popular query syntax used in PDBS is XPath. Figure 7 presents two
examples of XPath queries based on the advertisement presented in Fig. 6. The first
query finds all authors having at least one award. The second example finds all
books for which last-name of the author is Bob.

3 Distributed Search Requirements

Search is an essential functionality offered by any distributed system. A search
mechanism in a distributed system can be either centralized or distributed. For
Centralized Search there exists a central core of one or more machines respon-
sible for indexing the contents distributed across the network and for responding

436 Reaz Ahmed and Raouf Boutaba

to user queries. For networks with lesser degree of dynamism, centralized search
mechanisms prove to be adequate. Google, Yahoo, Alta vista, etc. are the living
examples of centralized search mechanisms, where a set of crawlers running on a
cluster of computers index the Webpages around the globe. Compared to the life-
time of the contents shared in P2P networks, Webpages are long lived. Centralized
search techniques do not prove to be efficient in large scale distributed systems due
to content and population dynamism (as explained in Section 2). Distributed Search
mechanisms assume that both indexing mechanism (analogous to crawlers) and in-
dexed information are distributed across the network. Consequently the design re-
quirements for Distributed Search techniques are different from that for Centralized
Search techniques. In the following is a list of the most important design require-
ments for a Distributed Search mechanism.

• Decentralization: For a Distributed Search mechanism to be successful, decen-
tralization of control and data are necessary. Decentralization of control refers to
the distribution of the index construction process among the participating nodes.
There should not be any central entity governing the index construction process
in different nodes. Unlike web search engines, the index itself should be dis-
tributed across the participating nodes for achieving uniform load distribution
and fault-resilience.

• Efficiency: The search mechanism should be able to store and retrieve index infor-
mation without consuming significant resource: mainly storage and bandwidth.
In a large scale distributed system advertisements are frequent due to the arrival
of new documents and relocation of existing documents. The large user base
generates queries at a high rate. This mandates both advertisement and search
process to be bandwidth efficient.

• Scalability: Efficiency of the search mechanism should not degrade with increase
in network size. In addition the number of links per node should not increase a lot
with growth in network size. Join and topology maintenance overhead depends
largely on the number of links that a node has to maintain, especially in dynamic
environments.

• Flexibility: Due to content dynamism, users do not usually have the exact infor-
mation about the advertised objects. The query semantics offered by the search
mechanism should be flexible to support inexact or subset queries. The scalability
and efficiency requirements should not be sacrificed for achieving the flexibility
requirement.

• Search completeness: Search completeness is measured as the percentage of
advertised objects (matching the query) that were discovered by the search.
Required level of search completeness varies from application to application.
A search mechanism should have guarantee on the discovery of rare objects. In
the case of popular or highly replicated objects, only a predefined number of
matches would suffice for most cases. For specific queries, the number of match-
ing objects would be low and all of them should be discovered by the search.
Broad queries, on the other hand, would match a large number of advertised ob-
jects. In this case search result may be restricted within a predefined limit to avoid
high bandwidth consumption.

Distributed Search and Pattern Matching 437

• Fault-resilience: In large scale distributed systems, participating nodes connect
autonomously without administrative intervention. Nodes depart from the net-
work without a priori notification. The search mechanism is expected to adver-
tise and discover objects in a continuously evolving overlay topology, resulting
from the frequent arrival and failure of nodes. In many cases index replication
and pair-wise, alternate routing paths are used to improve availability.

• Load distribution: Heterogeneity in nodes’ capabilities, including processing
power, storage, bandwidth and uptime, is prominent in large scale distributed sys-
tems. To avoid hot spots and to ensure efficiency, the advertisement and search
mechanisms should distribute routing, storage and processing loads according to
the capabilities of the participating nodes. In other words, uniform distribution of
load may result into poor system performance in a large scale distributed system.

In addition to the above mentioned design requirements, a number of other re-
quirements of secondary importance may arise in different scenarios. For example,

• autonomy of index placement and routing path selection may be required for
security and performance reasons;

• anonymity of the advertising, indexing and searching entities may be required in
censorship resistance systems;

• ranking of search results may be required for full-text search or information re-
trieval systems; etc.

4 Components of a Distributed Search System

In a large scale distributed system, a distributed search mechanism can be composed
of three components as depicted in Fig. 8 and presented in following list.

1. Query semantics refer to the expressiveness of a query and the allowed level of
semantic heterogeneity in queried and advertised information.

2. Translation is a function governing the transformation of semantic information
present in a query to a form, suitable for query routing.

3. Routing refers to the mechanism of forwarding a query to the nodes suitable for
answering the query.

Each of these components are explained in greater detail in the following subsec-
tions.

4.1 Query Semantics

Any visible (e.g., shared or advertised) object in a distributed system is associated
with a set of properties describing the behavioral and functional aspects of that ob-
ject. Meta information on a set of related properties associated with a class of objects

438 Reaz Ahmed and Raouf Boutaba

Query
Language

Query
Semantics

ExpressivenessSchema

Translation Routing

Static

Quasi-static

Dynamic

Exact keyword

Partial keyword

Property-value list

Complex queries

Flat

Hash

Hash-summary

Content-routing

Address-routing

Signature-routing

Fig. 8 Components of a distributed search system

is defined as the schema for that class of objects. In a distributed search system,
structure and scope (temporal and spatial) of the available schemas influence the
query language capability and underlying routing mechanism. The rest of this sec-
tion highlights two aspects of query semantics: schema and query expressiveness.

4.1.1 Schema

Based on the temporal and spatial scope of the schema, large scale distributed sys-
tems can be classified as follows:

• Static schema: Most of the file sharing P2P systems have been designed to share
one or more specific types of files, e.g., song, movie, software etc. For each type
of file a specific set of properties is defined that remain unchanged throughout
the life of the system. Essentially these systems have one or more static schemas
that are globally known.

• Quasi-static schema: Most of the service discovery systems fall into this cate-
gory. Unlike file sharing P2P systems, service discovery systems allow dynamic
creation of schema for describing services. Each service instance is advertised
as a Service Description governed by a predefined Service Schema (or template).
All schemas in a given service discovery system have to contain a minimal set
of predefined properties to comply with the specific system under consideration.
Though schema can be created dynamically, the rate of such events is very low
and the number of available schemas in a given system is much lower than that
in PDBS. Furthermore, it is assumed that all the existing schemas in the system
are globally known.

• Dynamic schema: Most of the PDBSs fall into this category. In these systems
heterogeneous schemas exist. Temporal scope of a schema is often bounded by
the lifespan of the peer advertising data with that schema. Spatial scope is lo-
cal to the originating peer and its neighbors; no global knowledge is assumed.
In such systems, Automating the process of semantic mapping between similar

Distributed Search and Pattern Matching 439

schemas is a challenging problem, which may require additional support from
the underlying routing mechanism.

4.1.2 Expressiveness

Query expressiveness refers to the capability of the query language in expressing
information retrieval requirements. Exiting research works focus on a wide variety
of query expressiveness ranging from simple keyword-based queries to complex
queries, such as LDAP filter [34] and XPath [38]. Below is a non-exhaustive list of
the different levels of query expressiveness commonly found in distributed search
techniques.

• Exact keyword match is the minimum level of query expressiveness supported by
any search mechanism, and is present in most of the file sharing P2P systems,
especially the ones based on DHT techniques. For this level of expressiveness, a
globally known fixed schema (with a limited number of properties) is assumed.

• Partial keyword match is supported by most of the unstructured techniques as
well as some extensions to the DHT techniques. Two major variants in this cat-
egory can be found. Most extensions to DHT techniques support partial prefix
matching and unstructured techniques support true partial matching.

• Property-value list is used by many service discovery techniques. Service De-
scriptions are specified as a property-value list, and queries are specified as a
subset of the advertised property-value list. Most service discovery techniques
assume a flat list of property-value pairs and do not support wildcard-based par-
tial matching in property names or values.

• Complex queries involve logical and relational operators (i.e., range queries),
and hierarchical relations between properties. Complex queries are supported by
a few service discovery approaches and most of the distributed XML database
systems. As a means of expressing a distributed query forml query languages,
such as LDAP filters, XQuery [18], XPath [38] and SPARQL [51] are used.

4.2 Translation

In most distributed systems the query expression specified by a user is not used as
is by the underlying routing mechanism. Instead, the query expression goes through
some kind of transformation before it is fed to the routing process. The translation
function works as a bridge between user specified queries and the routing mecha-
nism. The domain of the translation function is governed by the query semantics as
discussed in the previous section. The range of the translation function, on the other
hand, depends on the routing mechanism used by the underlying overlay. Based on
the particular combination of query semantics and routing mechanism, this function
can exhibit a wide variation. Translation functions can be broadly classified into the
following three categories:

440 Reaz Ahmed and Raouf Boutaba

• Flat: This type of translation functions do a very little (e.g., filtering) or no
change to the query expression and associated semantic information. Such func-
tions are usually used by unstructuredand semi-structured routing mechanisms,
and most of the industrial approaches to service discovery.

• Hash : Hashing is mostly used by structured and semi-structured search mecha-
nisms. A wide variety of hashing techniques have been proposed for distributed
search systems. However, the major problem with this type of translation func-
tions is that they loose semantic information during the hash transformation pro-
cess. As a result only exact or prefix matching is supported by the search mech-
anisms that adopt hashing as translation function.

• Hash-summary: This type of translation enables efficient query routing while
preserving query semantics. Variants of Bloom filters are the most popular means
of representing hash summaries. Hash summaries are mostly used by unstruc-
tured and semi-structured search mechanisms.

4.3 Routing

In overlay networks, routing refers to the process of forwarding a message from a
source node to a destination node. The source and the destination nodes are usu-
ally at a number of hops away from each other on the overlay. Routing algorithms
in overlay networks can be broadly classified into two categories: uninformed and
informed. Uninformed routing algorithms do not use the knowledge of query seman-
tics or target node’s address in making routing decisions at each hop. Flooding [1],
Random walk [45] and Iterative deepening [71] are the representative algorithms in
this category. These algorithms are not efficient in terms of the generated volume of
search traffic, but the robustness is good in highly dynamic environment. Based on
the nature of information used for next hop selection, Informed routing algorithms
can be classified into the following three categories:

• Content routing (CR): Content routing algorithms utilize the semantic informa-
tion, embedded in user query, for making routing decisions at each hop. Hence,
the associated translation function should be from the flat category. Examples of
such routing strategy include, selective flooding [22] and hint based routing [68].
Content-routing allows partial match and complex queries, but the offered query
routing efficiency is low. Moreover, there exists no guarantee on search com-
pleteness or the discovery of rare objects.

• Address routing (AR): Address routing is adopted in DHT-based structured
P2P overlays, such as Chord [64], CAN [54], Pastry [57] and Kademlia [46].
Different hash techniques are used to transform a query into a virtual address
on the overlay, and this address is used to route the query to a responsible node.
Routing algorithms in this category are efficient in terms of query routing traffic,
but they are not appropriate for semantic laden search (e.g., partial matching and
complex queries).

Distributed Search and Pattern Matching 441

• Signature routing (SR): A number of distributed search techniques, including
[3, 24, 42] construct a signature (usually a Bloom filter) of the target object and
routes queries based on this signature. These techniques strive to combine the
merits of both content-routing and address-routing strategies. Signatures retain
(part of or the whole) query semantics and allow aggregation for efficient in-
dexing. However, search completeness and robustness are not as good as that in
address-routing and content routing, respectively.

5 Search Techniques in Content Sharing P2P Systems

5.1 Structured Techniques

Majority of the structured search techniques rely on Distributed Hash Tables (DHT).
In general DHT-based techniques, like Chord [64], CAN [54], Tapestry [72], are
not adequate for supporting flexibility requirement for content sharing P2P sys-
tems, which warrant minimum flexibility of partial keyword matching. This inad-
equacy stems from mainly for two reasons. Firstly, DHT-techniques use numeric
distance based clustering of hashed keywords which is not suitable for partial key-
word matching. Secondly, DHT-techniques cannot handle common keywords prob-
lem well. Popular keywords can incur heavy load on the peers responsible for these
keywords; as a result, the distribution of load will become unbalanced among the
participating peers.

Inability to support partial keyword matching is considered a handicap for DHT-
techniques. In the last few years a number of research efforts have focused on ex-
tending DHT-techniques for supporting keyword search. Most of these approaches
adopted either of the following two strategies:

• Build an additional layer on top of an existing DHT routing mechanism. The aim
is to reduce the number of DHT lookups per search by mapping related keywords
to nearby peers on the overlay. This strategy is proposed in a number of research
works including [37, 44, 61, 67] .

• Combine structured and unstructured approaches in some hierarchical manner to
gain the benefits of both paradigms. Few research works, including [28, 36, 66],
focus on this strategy.

A generic inverted index [31] on top of a DHT-based routing can be used for
achieving an expressiveness level of partial-keyword matching. In this approach, a
keyword is translated into a routing key in two steps. First, the keyword is frag-
mented into η-grams. Then each η-gram is hashed and stored at the responsible
peer on the DHT overlay. The hashed η-grams form an inverted index, where an
advertised η-gram can be discovered by specifying its hash value. This approach
will solve partial keyword matching problem in O(ω logN) time, where ω is the
number of η-grams in a query and N is the number of peers in the system, assuming
that the underlying DHT network has logarithmic routing efficiency.

442 Reaz Ahmed and Raouf Boutaba

Keyword fusion [44] is another inverted indexing mechanism on top of Chord
routing. Supported level of query expressiveness is keyword search only. A docu-
ment advertised with keywords {k1,k2, . . . ,kt} is routed to peers responsible for keys
h(k1),h(k2), . . . ,h(kt), where h(·) is the DHT hash function. To reduce the num-
ber of DHT-lookups per search, a system-wide dictionary of common keywords is
maintained. A query is routed using the most specific keyword and then filtered us-
ing the more common keywords specified in the query. Thus the translation function
filters out common keywords and then applies hashing. This strategy suffers from
two problems. Firstly, the advertisement overhead is significant and proportional to
the number of keywords. Secondly, maintaining the global dictionary for common
keywords is not suitable for large, dynamic networks.

Joung et al. [37] proposed a distributed indexing scheme, build on a logical,
d-dimensional hypercube vector space over Chord routing. In this scheme each ad-
vertisement is translated into a d-bit vector according to its keyword set (similar to
Bloom filter construction). They treat d-bit vectors as points in d-dimensional hy-
percube. No restriction on the mapping of a d-dimensional point to a 1-dimensional
key space (required for Chord) has been specified. An advertisement is registered
to the peer responsible for the d-bit advertisement vector. A query vector (say Q) is
computed in the same manner as the advertisement vector. A query is routed to all
the peers in the Chord ring that are responsible for a key (say Pi) that is a superset
of the query vector Q. Number of DHT lookups per search and query is significant
for this approach.

The work by Joung et al. [37] and the inverted indexing method used in Key-
word Fusion [44] represent the two extremes of advertisement and query traffic
trade off. In [37], an advertisement is registered at one peer (responsible for the ad-
vertised key) and a query is routed to all possible peers that may contain a matching
advertisement. On the other hand, in Keyword Fusion[44] an advertisement is regis-
tered at all the peers responsible for the advertised keywords and the query is routed
to the peer responsible for the most uncommon keyword specified in the query.

pSearch [67] utilizes Information Retrieval (IR) techniques to construct the trans-
lation function on top of CAN routing for facilitating content-based full-text search.
Keywords associated with an advertised document (or query) are represented as unit
vectors. IR techniques like vector space model (VSM) and latent semantic indexing
(LSI) are used to compute a unit vector from the keyword list specified in an adver-
tisement (or a query). Similarity between a query and an advertisement (or between
two advertisements) is measured using the dot product of the vector representation
of the corresponding advertisement and query. Semantically close advertisements
and queries are expected to be translated to geometrically close point vectors in the
Cartesian space. Now the semantic point vectors from LSI or VSM are treated as
geometric points in the Cartesian space of CAN. CAN partitions a d-dimensional,
conceptual, Cartesian space into zones and assigns each zone to a peer. However this
mapping technique (from LSI/VSM to d-dimensional CAN space) uses the same di-
mensionality for LSI space and CAN. Thus it needs to have a priori knowledge of
the possible keywords (or terms) in the whole system. In reality there can be thou-
sands of possible keywords, and CAN performance degrades at higher dimensions.

Distributed Search and Pattern Matching 443

Squid [61] has been designed to support partial prefix matching and range queries
on top of DHT-based structured P2P networks. It uses Hilbert Space-filling Curve
(HSFC) [58] for translating keywords to keys on top of Chord routing mechanism.
HSFC is a special type of locality preserving hash function that can map points
from a d-dimensional grid (or space) to a 1-dimensional curve in such a way that
the nearby points in d-dimensional space are usually mapped to adjacent values on
the 1-dimensional curve. Squid converts keywords to base-26 (for alphabetic char-
acters) numbers. A d-dimensional point is constructed from d keywords specified
in the query or advertisement. Then a d-dimensional HSFC is used to translate a
d-dimensional region (i.e., set of points) specified by the query into a set of curve
segments in 1-dimension. Finally, each segment is searched using a Chord-lookup
followed by a local flooding. Squid supports partial prefix matching (e.g., queries
like compu* or net*) and multi-keyword queries; however, Squid does not have
provision for supporting true inexact matching of queries like *net*. Another major
problem is that the number of (partial) keywords specified in a query or advertise-
ment is bounded by the dimensionality d of the HSFC in use.

MKey [36] is a hybrid approach to keyword search. Architecturally there exists a
DHT (here Chord) backbone. A backbone node in the Chord ring works as a head
for a cluster of nodes, organized in an unstructured fashion. Search within a cluster is
based on flooding. On the other hand, Bloom filter is used as index in the backbone.
But DHT techniques do not allow Hamming distance based indexing as required
for matching Bloom filters. For allowing pattern matching on Chord, the following
strategy is used. Nodes on the Chord ring are allowed to have an ID with at most two
1-bits. An advertisement pattern, say 01010111, is advertised to peers 01010000,
00000110 and 00000001; i.e., DHT-keys are obtained from an advertisement pattern
by taking pairs of 1-bits in sequential order from left to right. To construct DHT-
keys from a query pattern, say 01010011, only the leftmost three 1-bits are used. In
this example the 1-bits at 2nd,4th and 7th positions. The DHT-keys are obtained by
taking the 1-bit in center position (here 4th) and another bit within the left position
(here 2nd) and the right position (here 7th). Hence for the query pattern 01010011,
generated DHT-keys are 01010000, 00110000, 00011000, 00010100 and 00010010.
Evidently the number of DHT-lookups per search or advertisement depends linearly
on the number of keywords and the size of the used Bloom-filter. This can be more
inefficient than a generic inverted indexing mechanism for inappropriate parameter
settings. Besides, the nodes on Chord ring may become performance bottlenecks for
the system.

There exists only a few non-DHT structured approaches to the search problem
in P2P networks. SkipNet [32] and SkipGraph [9] are prominent among them. Both
of these approaches use Skip List [52] for routing. A skip List is a probabilistic
data structure consisting of a collection of ordered linked lists arranged into levels.
The lowest level (i.e., level 0) is an ordinary, ordered linked list. The linked list in
level i skips over some elements from the linked list at level (i− 1). An element
in level i linked list can appear in level (i + 1) linked list with some predefined,
fixed probability, say p. Storage overhead can be traded for search efficiency by
varying p. Search for an element say Q starts at the topmost level. Level i list is

444 Reaz Ahmed and Raouf Boutaba

sequentially searched until Q falls within the range specified by current element and
next element in the list. Then the search recurs to level i− 1 list from the current
element until level 0 is reached. In both SkipGraph and SkipNet, nodes responsible
for the upper level elements of the Skip List become potential hot spots and single
points of failure. To avoid this phenomena, additional lists are maintained at each
level.

5.2 Un-structured and Semi-structured Techniques

Unstructured systems identify objects by keywords. Advertisements and queries are
expressed in terms of the keywords associated with the shared objects. Structured
systems, on the other hand, identify objects by keys, generated by applying one-
way hash function on keywords associated with an object. Key-based query routing
is much efficient than keyword-based unstructured query routing. The downside of
key-based query routing is the lack of support for partial-matching semantics as dis-
cussed in the previous section. Unstructured systems, utilizing blind search meth-
ods such as Flooding and Random-walk, can easily be modified to support partial-
matching queries. But, due to the lack of proper routing information, the generated
query routing traffic would be very high. Besides, there would be no guarantee on
search completeness.

Many research activities are aimed at improving the routing performance of un-
structured P2P systems. Different routing hints are used in different approaches. In
GIA [19], routing is biased by peer capacity; queries are routed to peers of higher
capacity with higher probability. In APS [68, 71], peers learn from the results of
previous routing decisions and bias future query routing based on this knowledge.
In Associative Search [22], peers are organized based on common interest, and re-
stricted flooding is performed in different interest groups. Many research works
(GIA [19], NSS [42, 71], etc.) propose storing index information from peers within
a radius of 2 or 3 hops on the overlay network. All of these techniques reduce the
volume of search traffic to some extent, but none provides guarantee on search com-
pleteness.

Bloom filters are used by a few unstructured P2P systems as translation function
for improving query routing performance. In NSS [42] each peer stores Bloom fil-
ters from peers one or two hops away. Experimental results presented in this work
show that logical OR-based aggregation of Bloom filters is not suitable for indexing
information from peers more than one hop away. In PLR [55] each peer stores a list
of Bloom filters, named Attenuated Bloom filter, per neighbor. The ith Bloom filter
in the list of Bloom filters for neighbor M summarizes the resources that are i− 1
hops away from neighbor M. A query is forwarded to the neighbor with a matching
Bloom filter at the smallest hop-distance. This approach aims at finding the closest
replica of a document with a high probability.

Distributed Search and Pattern Matching 445

5.3 Summary

Table 1 summarizes the query semantics, translation functions and routing mecha-
nisms as observed in different search techniques in P2P content sharing domain as
discussed in this section.

Table 1 Components of selected search techniques in P2P content sharing

P2P content sharing

References Name Query Translation Type Routing Mecha-
nism

[44] Keyword
fusion

Multi-keyword Inverted index AR Chord

[37] Joung et al. Multi-keyword Query superset AR Chord

[67] pSearch Full text, multi-
keyword

VSM/LSI AR CAN

[61] Squid Prefix match Hilbert SFC AR Chord

[36] MKey Subset match Query superset AR Chord +Flooding

[32] SkipNet Prefix match Flat AR Skip List

[19] GIA Partial keyword Flat CR Capacity bias

[68] APS Partial keyword Flat CR Result bias

[42] NSS Multi-keyword Bloom filter (BF) SR Controlled flood

[55] PLR Multi-keyword Attenuated BF SR Hint bias

6 Search Techniques in P2P Service Discovery

Many service discovery systems rely on a three-party architecture, composed of
clients, services and directory entities. Directory entities gather advertisements from
service providers and resolve queries from clients. Major protocols for service dis-
covery from industry, like SLP [30], Jini [65], UPnP [47], Salutation [59], etc.,
assume a few directory agents, and do not provide any efficient mechanism for
locating Service Descriptions. Solutions from academia, like Secure Service Dis-
covery Service (SSDS) [24] and Twine [11], target Internet-scale service discovery
and face the challenge of achieving efficiency and scalability in locating Service
Descriptions based on partial information.

Secure Service Discovery Service (SSDS) [24] arranges directory entities in a
tree-like structure and uses hierarchy routing. It uses Bloom filters for translating

446 Reaz Ahmed and Raouf Boutaba

service descriptions into routing signatures. Bit-wise OR-base aggregation scheme
is adopted for reducing the volume of index information at higher level directory
entities in directory tree. In SSDS an advertisement can be discovered by speci-
fying a subset of the advertised property-value list in the query expression. SSDS
suffers from load-balancing problem and is vulnerable to the failure of higher level
directory entities along the directory tree.

Twine [11] uses a hierarchical naming scheme and relies on Chord as the un-
derlying routing mechanism. A resource is described using a name-tree, composed
of the properties and values associated with the resource. Hierarchical relations be-
tween properties are reflected in the tree, e.g., while describing the location of a
resource, “room no.” appears as a child of the “building” in which it resides. The
translation function in Twine generates a set of strands (substrings) from the adver-
tisement or query (which are expressed in XML format), computes keys for each
of these strands, and finally uses these keys for the search or advertisement pro-
cess. The stranding algorithm in Twine is designed to support partial prefix match-
ing within a name-tree. The number of DHT-lookups increases with the number of
property-value pairs in the advertisement (or query) and consequently the amount
of generated traffic becomes high. Load-balancing is another major problem in this
system. Peers responsible for small or popular strands become overloaded, and the
overall performance degrades.

Web Services (WS) [14] provide a standard way of interoperating between differ-
ent software applications, running on a variety of platforms and/or frameworks. Uni-
versal Description, Discovery and Integration (UDDI) [69] is the defacto standard
for WS discovery. Many research activities are devoted to enhancing and overriding
the legacy UDDI specification thriving for efficiency, scalability and flexibility in
the discovery mechanism. A detailed survey of such activities can be found in [29].
Table 2 summarizes some of the proposed architectures for WS discovery. Based on
the use of WS ontologies, these approaches can be broadly classified as semantic-
laden and semantic-free. Semantic-laden approaches rely on WS ontology map-
ping techniques like OWL (Web ontology language) [8] or DAML (DARPA Agent
Markup Language) [16] for incorporating intelligence to the discovery process, i.e.,
for intelligently mapping conceptually related terms in queries and advertisements.
Semantic-free approaches, on the other hand, do not utilize WS ontology mapping
techniques. These approaches are closely related to the traditional service discov-
ery systems. A number of research work in this category rely on locality preserving
hash techniques for translating queries to semantically close advertisements.

6.1 Summary

Table 3 summarizes the query semantics, translation functions and routing mech-
anisms as observed in different search techniques in service discovery domain as
discussed in this section.

Distributed Search and Pattern Matching 447

Table 2 Summary of Web service discovery architectures

C
en

tr
al

iz
ed Registry Authoritative, centrally controlled store of service descrip-

tions, e.g., UDDI registry [69]
Index Non-authoritative, centralized repository of references to ser-

vice providers; see [14] for details. Web crawlers are used for
populating an index database

D
ec

en
tr

al
iz

ed

Federation Publicly available UDDI nodes collaborate to form a federa-
tion and act together as a large scale virtual UDDI registry [56]

P2P-based
Semantic-
laden

In [60] peers are arranged into a hypercube topol-
ogy [25] and ontology [70] is used to facilitate
efficient and semantically-enabled discovery. An
agent-based approach is proposed in [48]. It uses
DAML [16] representation for ontology and re-
lies on unstructured search techniques.

Semantic-
free

Both [43, 62] use Chord overlay for indexing and
locating service information. Reference [43] ex-
tracts property-value pairs from service descrip-
tions and uses MD5 hashing. Reference [62] uses
Hilbert Space Filling Curves for mapping simi-
lar Service Descriptions to nearby nodes in the
Chord ring. These two approaches are similar to
Twine [11] and Squid [61], respectively. In [35],
another Chord based solution has been proposed.
Here, the ID-space is partitioned in numerically
ordered subspaces, and each peer in the Chord-
ring maintains links to one peer in each subspace
in addition to the regular Chord links.

Table 3 Components of selected search techniques in service discovery

Service discovery

References Name Query Translation Type Routing

[30] SLP LDAP filter Flat CR Flooding

[24] SSDS Subset/PV-list Bloom filter SR Global hierarchy

[11] Twine Subtree match Stranding + hash CR Chord

[43] PWSD XML path prefix Stranding + hash CR Chord

[62] Schmidt et al. Prefix match Hilbert SFC CR Chord

[60] Schlosser et al. Semantic match Ontology con-
cept → d-coord.

CR+ AR 2-tier hypercube

448 Reaz Ahmed and Raouf Boutaba

7 Search Techniques in Distributed XML Databases

Several research works on distributed XML databases have adopted DHT tech-
niques, such as Chord [64], CAN [54] and Hypercube [60], for routing. A num-
ber of these proposals, including [13, 17, 27], rely on Chord as the underlying P2P
substrate. Hypercube topology has been used in [49].

XP2P [13], uses XML data model for schema representation, and provides sup-
port for resolving XPath [38] queries. Any XML document can be represented as a
tree, and an XPath query is used to specify a subtree using a prefix-path originat-
ing from the root of the document. For supporting partial prefix-path matching, all
possible paths, originating from the root, have to be registered with the Chord ring.
To reduce the number of paths to be hashed in the Chord ring during the advertise-
ment and query process, XP2P adopts a fingerprint construction technique presented
in [53]. In this technique, the fingerprint of a binary string A(t) = (a1,a2, . . . ,am) =
a1× tm−1 + a2× tm−2 + · · ·+ am is computed as f (A) = A(t)%P(t), where P(t) is
an irreducible polynomial. A useful property of the fingerprint function, utilized by
XP2P, is that f (A�B) = f (f (A)�B), where � is the concatenation operator.

Galanis et al. [27] presented a framework for supporting XPath queries on top
of Chord routing. XPath queries of the form /a1[b1]/a2[b2]/. . ./an op value and
queries containing relative path operator (i.e., //) are supported. Here, ai is an ele-
ment in an XML document, bi is an XPath expression relative to element ai, op is an
XPath operator like = or <, and value is an atomic element in the XML document.
The core idea is to build a distributed catalog, where a peer in the Chord ring stores
all the prefix-paths for a given element in any XML document stored in the network.
In other words, if E is an element in some XML files, then the peer responsible for
the key hash(E) stores all the absolute paths (i.e., /a1/a2/. . ./E) leading to E in
any document stored in the network and the contact information of the peers stor-
ing those documents. An XPath query of the form /a1/a2/. . ./ak//E is routed to
the peer (say N) responsible for the key hash(E) and the list of all peers containing
XML documents matching the query are extracted. Finally the query is forwarded
and executed in the corresponding peers.

RDFPeers [17] uses Resource Description Framework (RDF) [41] for docu-
ment representation and Chord for routing. An RDF document is contains many
< Resource, Property, Value > triples presented in XML format. A triple, say
< R,P,V >, is stored in three peers (in the Chord ring) responsible for the keys
hash(R), hash(P) and hash(V), respectively. For string literals SHA1 hash function
is used. For numeric values (in the value component of a RDF-triple) locality pre-
serving hash function is used. A query can be constructed by specifying any of the
three components in a triple. In RDFPeers each document has to be indexed at three
peers, which results into increased increased advertisement and update traffic.

PeerDB [50] uses an agent-based framework on top of unstructured P2P over-
lay to achieve distributed data sharing. To accommodate heterogeneity in schema
definitions from autonomous peers in the system, PeerDB associates keywords as
synonyms with each schema and elements under that schema. These keywords are
used as a means of semantic mapping and for finding semantically similar schemas

Distributed Search and Pattern Matching 449

using P2P keyword search techniques. Mobile agents are sent to appropriate peers
and a query is executed locally at the target peer, which helps in reducing the volume
of network traffic.

A hybrid technique, named Humboldt discoverer, has been presented in [33].
RDF [41] has been used for describing an advertised resource. SPARQL (Simple
Protocol and RDF Query language) [51] has been used for constructing query ex-
pressions. SPARQL is a query language for RDF documents that allows formation
of complex queries involving relational and logical operators. Routing is done us-
ing a three tier architecture, where peers are classified as bottom, middle or top tier
peers. Bottom tier peers provide information sources. These peers are clustered into
many groups based on the similarity of used ontologies. A middle tier peer is re-
sponsible for an ontology and manages a single cluster of bottom tier peers. Middle
tier peers advertise their existence to top tier peers, which are organized in a Chord
ring and are addressed by the hash of the URIs of the ontologies. In effect, middle
tier peers covering the same ontology are grouped under the same top level peer.
To resolve a query, all the required ontologies are first determined. For a given on-
tology, the set of responsible middle tier peers can be reached through the top tier
Chord network. Finally, the query is forwarded to each of the middle-tier peers that
are responsible for the ontology.

7.1 Summary

Table 4 summarizes the query semantics, translation functions and routing mecha-
nisms as observed in different search techniques in distributed XML database do-
main as discussed in this section.

Table 4 Components of selected search techniques in PDBS

P2P databases

Ref Name Query Translation Type Routing

[13] XP2P XPath(absolute) Fingerprint AR Chord

[27] Galanis et al. XPath(relative) XML element hash AR Chord

[17] RDFPeers Partial RDF triple RDF element hash AR Chord

[50] PeerDB SQL Synonym/flat CR Flooding

[33] Humboldt Dis-
coverer

SPARQL/RDF URI-hash+Flat AR+CR Chord+ Controlled
flooding

450 Reaz Ahmed and Raouf Boutaba

8 The DPM Abstraction

It is evident from the foregoing survey that flexibility in query expressiveness is
essential for a search mechanism in all three domains, considered so far. This section
presents an abstraction for the search problems in different application domains into
a generic framework or problem formulation, called Distributed Pattern Matching
(DPM).

Among the requirements of a search mechanism discussed in Section 3, flex-
ibility deals with query language semantic and the rest relate to system perfor-
mance and thus are implementation specific. The DPM construct encapsulates the
flexibility requirement, and any solution to the DPM problem should focus on the
performance specific requirements.

8.1 Distributed Pattern Matching (DPM)

The DPM problem can be considered as a distributed version of the traditional
pattern matching problem or more specifically the subset matching problem. The
generic pattern matching problem and its variants have been extensively studied
in Computer Science literature. Given a text (or raw data) P and a pattern Q, the
generic problem of pattern matching is to locate (all) the occurrences of Q in P.
The definition of text, pattern and occurrence depends on the application domain.
The text and pattern are two dimensional arrays in Image Processing applications,
strings in Text Editing systems, trees in tree pattern matching [40], and arrays of
sets in subset matching [23]. Variations in the definition of occurrence include exact
matching, parameterized matching [10], approximate matching and matching with
“don’t cares” [6].

The variant of the pattern matching problem considered in this work is closely
related to the subset matching problem. In subset matching, pattern Q =
{Q1,Q2 . . .Qm} and text P = {P1,P2 . . .Pn} are collections of sets of characters
drawn from some alphabet ∑. A pattern Q occurs at text position i if the set Q j

is a subset of the set Pi+ j−1, for all 1≤ j ≤ m.
The Distributed Pattern Matching (DPM) problem is defined as a variant of the

subset matching problem with the following restrictions:

• The pattern Q has a single element in its array, i.e., m = 1 and Q = Q.
• The n elements of P are distributed across a large number of networked nodes.

In many cases, bit-vectors of length |∑ | are used to present texts (i.e., Pi) and
pattern (i.e., Q), where a 1 (or 0) at the ith bit of a bit vector resembles the presence
(or absence) of the ith symbol in ∑. In the DPM formulation it is assumed that each
element of P (i.e., Pi) summarizes the identifying properties (e.g., keywords, service
description) of a shared object (e.g., a file or a service). One possible form of such

Distributed Search and Pattern Matching 451

a pattern is a Bloom filter [12] obtained by hashing the properties associated with a
shared object.

P2P network

P3:1011 0010 1010

P4:0101 0100 0101
P1:1001 0111 1100

P2:1101 1010 0110

P5:1110 1000 1010

P6:0100 1011 0101

P7:1000 1100 0010

Q:0100 1010 0100

Query

P2:1101 1010 0110

P6:0100 1011 0101

Result

content messageLink

Fig. 9 The distributed pattern matching (DPM) problem. (|∑ |= 12)

Figure 9 presents a pictorial view of the DPM problem. In this figure, Pi rep-
resents an advertised pattern and Q stands for a search pattern. The properties of
shared objects are encoded in the advertisement pattern, P1 −P7 in Fig. 9. On the
other hand, a query (Q in Fig. 9) is constructed by encoding the desired properties
in a bit vector. The encoding technique must ensure that if the desired properties
specified in a query is a subset of the properties of an shared object then the 1-bits
of the corresponding query pattern must be a subset of the 1-bits in the advertised
pattern. In other words, the result of a search should contain all the advertised pat-
terns (P2 and P6 for the example in Fig. 9) that are supersets of the search pattern (Q
in Fig. 9).

8.2 Mapping to DPM Framework

This section describes possible ways of encoding advertisements and queries for the
three application domains.

452 Reaz Ahmed and Raouf Boutaba

8.2.1 P2P Content Sharing

An advertisement in a P2P content sharing system consists of a number of keywords
describing the content being shared. For a file-sharing P2P system, it is unusual for a
user to know the exact name of an advertised file. Instead, queries are based on a sub-
set of the (partial) keywords that may be present in the advertisement. Bloom filters
can be used for encoding advertised and queried keywords in the following manner.
An advertisement Bloom filter can be constructed using the trigrams extracted from
the keywords associated with an advertised document. Similarly, a query Bloom fil-
ter can be computed from the keywords presented in the query string. Thus there
will be one Bloom filter per advertisement or query. Subset relationship between
advertised and queried trigrams will hold for advertisement and query Bloom fil-
ters. For example, in Fig. 10 trigrams for the first query constitute a subset of the
advertised trigrams; as a result query pattern Q1 is a subset of the advertisement pat-
tern P. On the other hand, trigrams from the second query do not correspond to any
subset of the advertised trigrams, and with high probability Q2 will not be a subset
of P.

Lord of the Ring Two Tower

Keywords: The Lord of the Rings - The Two Towers - 2002 (Extended Edition)

Lord of War

Trigrams: the, lor, ord, of, rin, ing, ngs, two, tow, owe, wer, ers, 2002, 02, …

lor, ord, of, the, rin, ing, two, tow … lor, ord, of, war

Subset
(match)

0 0 1 0 1 0 1 0 0 0 1 1

Not subset
(mismatch)

1 0 0 0 1 0 1 0 1 0 0 0

1 0 1 1 1 0 1 1 1 0 1 1Advertisement Bloom Filter:

Query

Trigrams:

Query
Bloom Filter:

Q1 Q2

P

Fig. 10 Partial keyword matching using DPM

8.2.2 Service Discovery

For most service discovery systems a service description is advertised as a set of
property-value pairs and a query for a service consists of a subset of the advertised
property-value pairs. All of the decentralized techniques for (Web) Service discov-
ery are aimed at achieving flexibility (i.e., partial matching capability) without sacri-
ficing efficiency in the search mechanism. The basic problem of service description
matching and semantic matching in a distributed environment can be mapped to the
DPM problem in different ways. A few possibilities are listed below.

Distributed Search and Pattern Matching 453

• The simplest way of mapping a service description to a Bloom filter is to treat
each property-value pair as set elements, see Fig. 11. Query pattern can be con-
structed in a similar fashion.

• While generating an advertisement pattern from a Service Description, multi-
ple synonyms of the properties and values can be hashed and inserted into the
Bloom-filter. This will require larger Bloom-filters, yet will enable one to dis-
cover a service by specifying any of the synonyms of a property (or value) spec-
ified in the advertisement.

• It is also possible to use ontologies during Bloom filter construction, rather than
using simple synonym list. Use of Ontology can be more efficient than synonym
list if there exists a global Ontology in the system.

8.2.3 Distributed XML Databases

Distributed search in distributed XML databases faces two new challenges, in addi-
tion to the ones present in P2P content sharing and service discovery: continuously
changing schemas in the system and the requirement for semantic mapping. It is
possible to cope with these challenges using the DPM construct.

For P2P database systems, as shown in Fig. 11, XML documents are used as
advertisements and XPath [38] is the most commonly used query language. Fig-
ure 11 presents an XPath query of the form /a1[b1]/a2[b2] . . ./an[bn]. Here, ai is an
element in an XML document, bi is an XPath expression relative to element ai. In
this case, path prefixes from an XML document or the XPath expression (e.g., /a1,
/a1/b1, /a1/a2 . . .) can be used as the set elements for Bloom filter construction.

In order to accommodate continuously changing schemas, advertised patterns
should be constructed from both the descriptive properties and values of a shared ob-
ject. Thus, schema information gets incorporated within each advertisement. The re-
quirement for semantic mapping can be satisfied in few ways, including the ones dis-
cussed in the previous section. It is also possible to reserve a pre-specified number of
bits in the advertisement/query pattern, and use these bits as a separate Bloom-filter
for storing the ontologies used by the advertisement/query. Query routing mech-
anism can use this additional information for making semantic laden decisions at
each hop.

8.3 Known Solutions to the DPM Problem

An efficient solution to the DPM problem is expected to satisfactory solve the search
problem in the three important application domains discussed so far. In this sec-
tion two solutions to the DPM problem, namely DPMS [3] and Plexus [4], are
presented.

454 Reaz Ahmed and Raouf Boutaba

Keywords

Tri-grams

Service description

Property-value pairs

Hierarchical data

Paths prefixes

Advertisement Bloom Filter

P2P overlay
supporting signature-

routing.

Query Bloom Filter List of peers

ResultsQuery

Advertisement

Tri-grams

Partial
keywords

Property-value list
a1=v1, a2=v2, …

Query in conjunctive
normal form

a1=v1 ∩ a2=v2 ∩ …

Path prefixes
/a1, /a1/b1, /a1/a2,…

XPath query
/a1[b1] /a2[b2]…/an[bn]

Content
Sharing

Service Discovery P2P Databases

Content
Sharing Service Discovery P2P Databases

The DPM
construct

Fig. 11 Mapping different problems to DPM framework

8.3.1 DPMS: Distributed Pattern Matching System

In DPMS a peer can act as a leaf peer or indexing peer. Leaf peers reside at the
bottom level of the indexing hierarchy and act as the document source for the sys-
tem. An indexing peer, on the other hand, stores indices from other peers (leaf peers
or indexing peers). A peer can join different levels of the indexing hierarchy and
can simultaneously act in both the roles. Indexing peers get arranged into a lattice-
like hierarchy for indexing and disseminating advertised patterns from the leaf peers
using repeated aggregation and replication.

The structure of the indexing hierarchy and the amount of replication are con-
trolled by two system-wide parameters, namely replication factor R and branching
factor B. Patterns advertised by a leaf peer are propagated to Rl indexing peers at
level l. On the other hand, an indexing peer at level l contains patterns from Bl leaf
peers. Due to repeated (lossy) aggregation, information content of the aggregates
reduces while climbing up the indexing hierarchy.

Indexing peers at level l arrange into Rl groups, numbered from 0 to (Rl − 1)
(see Fig. 12). In the ideal case, all the indexing peers in a single group (at any
level) collectively cover all the leaf peers in the system. A peer at level l and group

Distributed Search and Pattern Matching 455

g (0≤ g < Rl) is responsible for transmitting its aggregated information to R parents
at level (l +1). Each parent belongs to a different group in range [g×R,(g+1)×R),
respectively.

A B C … …

Level 0 - Leaves

…
…

…
…

…
…

E LGF J… …

Level 1 - Index

S T… … … …

Level 2 - Index

Branching factor, B = 3 Replication factor, R = 2

0 1

3210

0

H

For peer E
Child-list : {A,B,C}

Replica-lis {L}
Parent-lis {S,T}

Neighbor-list :
t :

t : {H,J}

Fig. 12 Index distribution architecture. All the peers interacting with peer E are labelled. Group
number is printed at the bottom right corner of each box

Peers at level l and group g organize into subgroups (referred to as siblings) of
size B to forward their aggregated information to the same set of parents. Thus each
group in range [g×R,(g + 1)×R) at level (l + 1) will contain a peer replicating
the same index information. This provides redundant paths for query routing and
increases tolerance to peer failure.

A don’t care based aggregation is used in DPMS. While aggregating to patterns
(or aggregate) a don’t care (“X”) is inserted in the bit-positions at which the con-
stituent patterns disagree. The resulting aggregates retain parts from the constituent
patterns or aggregates. A 1-bit (or 0-bit) in such an aggregate indicate that all of the
patterns contributing to this aggregate had 1 (or 0) at the corresponding position.
However incorporating this extra information (i.e., X’s) incur some space overhead,
which can be minimized by compressing the aggregates using huffman coding or
run length encoding during transmission through the network.

A query is executed in three phases: ascending phase, blind search phase and
descending phase. In ascending phase the query message climbs the indexing hi-
erarchy until a match is found or it reaches the highest level. If no match is found
int he ascending phase the query enters blind search phase, where the query mes-
sage is flooded in one of the groups at the topmost level. If any match exists then
it will be discovered in this phase. Finally, in descending phase the query message
is forwarded to the target leaf peer(s) using the aggregation trail along the indexing
hierarchy.

456 Reaz Ahmed and Raouf Boutaba

8.3.2 Plexus

Plexus has a partially decentralized architecture involving superpeers. It adopts a
structured routing mechanism derived from the theory of Linear Covering Codes.1

Indexing and routing in Plexus is based on the Hamming distance between the adver-
tised and queried patterns, in contrast to the numeric distance based routing adopted
in traditional DHT-approaches. This property makes subset matching capability in-
trinsic to the underlying routing mechanism. Plexus achieves better resilience to
peer failure by utilizing replication and redundant routing paths. Routing efficiency
in Plexus scales logarithmically with the number of superpeers.

In Plexus, advertisements and queries are routed to two different sets of peers
in such a way that the queried set of peers and the advertised set of peers have at
least one peer in common, whenever a query pattern constitute a subset of the 1-bits,
as present in an advertised pattern. As explained in Fig. 13, a linear covering code
partitions the entire pattern space F

n
2 into Hamming spheres. The codeword at the

center of each Hamming sphere is selected as unique representative for that cluster.
Now the basic concept is to map a query pattern Q to a set of codewords (Q(Q)⊂C)
and to map an advertised pattern P to another set of codewords (A (P) ⊂ C), such
that Q(Q) and A (P) has at least one codeword in common whenever the 1-bits of
Q constitute a subset of the 1-bits in P. Mathematically,

Q⊆ P =⇒ Q(Q)∩A (P) �= /0 (1)

Advertisement, P Query, Q
advSet(P) ⊂ C qSet(Q) ⊂ C

C= { ci } = set of all codewords

Fig. 13 Hamming distance based indexing in plexus

Any codeword in a linear covering code can be generated by using bit-wise
XOR operation of any combination of specially chosen k codewords, labelled

1 A linear covering code (n,k,d) f , over a linear space F

n
2, is a subspace C ⊂ F

n
2. Each element in

C is called a codeword. Here, |C |= 2k and d is the minimum Hamming distance between any two
codewords. The covering radius f is the smallest integer such that every vector P ∈ F

n
2 is covered

by at least one B f (ci). Here, B f (ci) = {P ∈ F

n
2|d(P,ci) ≤ f} is the Hamming sphere of radius f

centered at codeword ci.

Distributed Search and Pattern Matching 457

G = [g1,g2, . . .gk]. In other words, any codeword Y can be generated from any other
codeword X as follows: Y = (X⊕gi1 ⊕gi2 ⊕ . . .⊕git), where gi1 ,gi2 , . . .git ∈G and
⊕ is bitwise XOR operation. For a simple implementation each superpeer in the
network is assigned a codeword. A superpeer with codeword X links to k other su-
perpeers with codeword Xi = X ⊕gi, (1≤ i≤ k). The routing process in Plexus can
be best explained by the example in Fig. 14, which shows the possible routes from
the superpeer with codeword X to the superpeer with codeword Y = g2⊕ g3⊕ g3.
Superpeer X will forward the message to any of X2(= X ⊕ g2), X3(= X ⊕ g3) or
X5(= X⊕g5), who are one hop nearer to Y than X . If the message is forwarded to say
X2 then X2 can route the message to Y via X23(= X⊕g2⊕g3) or X25(= X⊕g2⊕g5).
Number of hops required for routing in this mechanism is logarithmic on the number
of superpeers in the network.

X Y

X2g2

X3

X5

g3

g5

X23

g3

g5

X25

g3

g5

X35 g2

g3

g5

g2

g2

X1=X⊕g1

X2=X⊕g2
…

Xk=X⊕gk

X21=X2⊕g1
…
X23=X2⊕g3
…
X2k=X2⊕gk

X231=X23⊕g1
…
X235=X23⊕g5
…
X23k=X23⊕gk

532 gggXY ⊕⊕⊕=

Fig. 14 Possible paths of routing from peer X to peer Y

8.3.3 Summary

Table 5 summarizes the query semantics, translation functions and routing mecha-
nisms as observed in DPMS and Plexus.

9 Conclusion

Large scale distributed systems including P2P content sharing, service discovery
and distributed XML data require flexible, efficient and robust search mechanism
due to the volatility in node population and dynamism in advertised objects. Based

458 Reaz Ahmed and Raouf Boutaba

Table 5 Components of selected search techniques in service discovery

Distributed pattern matching

References Name Query Translation Routing

[3] DPMS Subset
matching

Feature extraction+Bloom
filter

Hierarchical +selective flood-
ing

[4] Plexus Subset
matching

Feature extraction+Bloom
filter

Structured – Linear code
based

on routing mechanism contemporary search techniques can be broadly classified as
content routing, address routing and signature routing. Content routing techniques
preserves query semantics and thus provide better search flexibility; but routing traf-
fic is high for these techniques. Address routing techniques, on the other hand are
efficient in routing traffic but offered flexibility in query expressiveness is inade-
quate. Signature routing can be a good candidate for balancing the trade off between
efficiency and flexibility requirements.

The Distributed Pattern Matching (DPM) framework provides an abstract formu-
lation for pattern matching in large scale distributed systems. Keyword search for
content-sharing P2P systems, partial Service Descriptions matching for service dis-
covery systems and semantic laden data retrieval for for distributed XML databases
can be mapped to the DPM abstraction. DPMS and Plexus are two solutions for the
DPM problem. DPMS is a hierarchical signature routing technique, while Plexus
is a hamming distance based address routing technique. Routing efficiency in both
DPMS and Plexus scales logarithmic on network size. These two solutions as well
as future solution to the DPM problem can be tuned to resolve the search problem
in the three application domains discussed in this chapter.

References

1. The Gnutella website, http://www.gnutella.com
2. Adjie-Winoto, W., Schwartz, E., Balakrishnan, H., Lilley, J.: The Design and Implementation

of an Intentional Naming System. In: Symposium on Operating Systems Principles, pp. 186–
201 (1999)

3. Ahmed, R., Boutaba, R.: Distributed pattern matching: A key to flexible and efficient P2P
search. IEEE Journal on Selected Areas in Communications (JSAC) 25(1), 73–83 (2007)

4. Ahmed, R., Boutaba, R.: Plexus: A scalable Peer-to-Peer protocol enabling efficient subset
search (2009). IEEE/ACM Transaction on Networking (TON)

5. Ahmed, R., Limam, N., Xiao, J., Iraqi, Y., Boutaba, R.: Resource and service discovery in
large-scale multi-domain networks. IEEE Communications Surveys & Tutorials 9(4) (2007)

6. Amir, A., Porat, E., Lewenstein, M.: Approximate subset matching with don’t cares. In: Proc.
of Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 305–306 (2001)

7. Androutsellis-Theotokis, S., Spinellis, D.: A survey of Peer-to-Peer content distribution tech-
nologies. ACM Computing Surveys 45(2), 195–205 (2004)

Distributed Search and Pattern Matching 459

8. Antoniou, G., van Harmelen, F.: Web Ontology Language: OWL. Handbook on Ontologies in
Information Systems pp. 76–92 (2003)

9. Aspnes, J., Shah, G.: Skip graphs. In: Proc. of Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pp. 384–393 (2003)

10. Baker, B.S.: A theory of parameterized pattern matching: algorithms and applications. In:
Proc. of ACM Symposium on Theory of Computing (STOC), pp. 71–80 (1993)

11. Balazinska, M., Balakrishnan, H., Karger, D.: INS/Twine: A scalable Peer-to-Peer architec-
ture for intentional resource discovery. In: Proc. of International Conference on Pervasive
Computing, pp. 195–210. Springer-Verlag (2002)

12. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Communications of
ACM 13(7), 422–426 (1970)

13. Bonifati, A., Matrangolo, U., Cuzzocrea, A., Jain, M.: XPath lookup queries in P2P networks.
In: Proc. of the ACM international workshop on Web information and data management
(WIDM), pp. 48–55. ACM Press, New York, NY, USA (2004)

14. Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion, M., Ferris, C., Orchard, D.:Web
Service Architecture (2004). URL http://www.w3.org/TR/2004/
NOTE-ws-arch-
20040211/

15. Brookshier, D., Govoni, D., Krishnan, N.: JXTA: Java P2P Programming. SAMS (2002)
16. Burstein, M.H., Hobbs, J.R., Lassila, O., Martin, D., McDermott, D.V., McIlraith, S.A.,

Narayanan, S., Paolucci, M., Payne, T.R., Sycara, K.P.: DAML-S: Web Service description
for the semantic web. In: Proc. of International Semantic Web Conference on The Semantic
Web (ISWC), pp. 348–363. Springer-Verlag, London, UK (2002)

17. Cai, M., Frank, M.: RDFPeers: a scalable distributed RDF repository based on a structured
Peer-to-Peer network. In: International World Wide Web Conference (WWW) (2004)

18. Chamberlin, D., Siméon, J., Boag, S., Florescu, D., Fernández, M.F., Robie, J.: XQuery 1.0:
An XML query language. W3C recommendation, W3C (2007). http://www.w3.org/
TR/2007/REC-xquery-20070123/

19. Chawathe, Y., Ratnasamy, S., Breslau, L., Lanham, N., Shenker, S.: Making Gnutella-like P2P
systems scalable. In: Proc. of ACM SIGCOMM, pp. 407–418 (2003)

20. Choon-Hoong, D., Nutanong, S., Buyya, R.: Peer-to-Peer Computing: Evolution of a Disrup-
tive Technology, chap. 2–Peer-to-Peer Networks for Content Sharing, pp. 28–65. Idea Group
Inc. (2005)

21. Clarke, I., Sandberg, O., Wiley, B., Hong, T.W.: Freenet: A distributed anonymous information
storage and retrieval system. Lecture Notes in Computer Science (LNCS) 2009, 46–66 (2001)

22. Cohen, E., Fiat, A., Kaplan, H.: Associative search in Peer-to-Peer networks: Harnessing latent
semantics. In: Proc. of IEEE INFOCOM (2003)

23. Cole, R., Harihan, R.: Tree pattern matching and subset matching in randomized o(n log3 m)
time. In: Proc. of ACM Symposium on Theory of Computing (STOC), pp. 66–75 (1997)

24. Czerwinski, S.E., Zhao, B.Y., Hodes, T.D., Joseph, A.D., Katz, R.H.: An Architecture for a
Secure Service Discovery Service. In: Proc. of International Conference on Mobile Computing
and Networking (MOBICOM), pp. 24–35 (1999)

25. Decker, S., Schlosser, M., Sintek, M., Nejdl, W.: Hypercup – hypercubes, ontologies and effi-
cient search on P2P networks. In: International Workshop on Agents and Peer-to-Peer Com-
puting (2002)

26. Fuchs, M., Wadler, P., Robie, J., Brown, A.: XML schema: Formal description. W3C working
draft, W3C (2001). Http://www.w3.org/TR/2001/WD-xmlschema-formal-20010925/

27. Galanis, L., Wang, Y., Jeffery, S., DeWitt., D.: Locating data sources in large distributed sys-
tems. In: Proc. of the VLDB Conference, (2003)

28. Ganesan, P., Sun, Q., Garcia-Molina, H.: Adlib: A self-tuning index for dynamic Peer-to-Peer
systems. In: Proc. of the International Conference on Data Engineering (ICDE), pp. 256–257.
IEEE Computer Society, Los Alamitos, CA, USA (2005)

460 Reaz Ahmed and Raouf Boutaba

29. Garofalakis, J., Panagis, Y., Sakkopoulos, E., Tsakalidis, A.: Web service discovery mecha-
nisms: Looking for a needle in a haystack? In: International Workshop on Web Engineering
(2004)

30. Guttman, E., Perkins, C., Veizades, J., Day, M.: Service Location Protocol (SLP), version 2.
Tech. rep., IETF, RFC2608, http://www.ietf.org/rfc/rfc2608.txt (1999)

31. Harren, M., Hellerstein, J.M., Huebsch, R., Loo, B.T., Shenker, S., Stoica, I.: Complex queries
in DHT-based Peer-to-Peer networks. In: Proc. of International Workshop on Peer-to-Peer
Systems (IPTPS), pp. 242–259 (2002)

32. Harvey, N., Jones, M.B., Saroiu, S., Theimer, M., Wolman, A.: SkipNet: A scalable overlay
network with practical locality properties. In: Proc. of the USENIX Symposium on Internet
Technologies and Systems (USITS) (2003)

33. Herschel, S., Heese, R.: Humboldt Discoverer: A semantic P2P index for PDMS. In: Proc. of
the International Workshop Data Integration and the Semantic Web (DISWeb’05) (2005)

34. Howes, T.: The String Representation of LDAP Search Filters. USA (1997). RFC Editor
35. Hu, H., Seneviratne, A.: Autonomic Peer-to-Peer service directory. IEICE/IEEE Joint Special

Section on Autonomous Decentralized Systems E88-D(12), 2630–2639 (2005)
36. Jin, X., Yiu, W.P.K., Chan, S.H.: Supporting multiple-keyword search in a hybrid structured

Peer-to-Peer network. In: Proc. of IEEE International Conference on Communications (ICC),
pp. 42–47. Istanbul (2006)

37. Joung, Y., Yang, L., Fang, C.: Keyword search in DHT-based Peer-to-Peer networks. IEEE
Journal on Selected Areas in Communications (JSAC) 25(1), 46–61 (2007)

38. Kay, M., Fernández, M.F., Boag, S., Chamberlin, D., Berglund, A., Siméon, J., Ro-
bie, J.: XML path language (XPath) 2.0. W3C recommendation, W3C (2007).
Http://www.w3.org/TR/2007/REC-xpath20-20070123/

39. Koloniari, G., Pitoura, E.: Peer-to-Peer management of XML data: issues and research chal-
lenges. ACM SIGMOD Record 34(2), 6–17 (2005)

40. Kosaraju, S.R.: Efficient tree pattern matching. In: Proc. of the 30th IEEE Symposium on the
Foundations of Computer Science (FOCS), pp. 178–183 (1989)

41. Lassila, O., Swick, R.R.: Resource description framework (RDF) model and syntax specifica-
tion. supersed work, W3C (1999). Http://www.w3.org/TR/1999/REC-rdf-syntax-19990222

42. Li, M., Lee, W., Sivasubramaniam, A.: Neighborhood signatures for searching P2P net-
works. In: Proc. of Seventh International Database Engineering and Applications Symposium
(IDEAS), pp. 149–159 (2003)

43. Li, Y., Zou, F., Wu, Z., Ma, F.: PWSD: A scalable web service discovery architecture based on
Peer-to-Peer overlay network. In: Proc. APWeb, Lecture Notes Ccomputer Science (LNCS),
vol. 3007 (2004)

44. Liu, L., Ryu, K.D., Lee, K.: Supporting efficient keyword-based file search in Peer-to-Peer file
sharing systems. In: Proc. of GLOBECOM (2004)

45. Lv, Q., Cao, P., Cohen, E., Li, K., Shenker, S.: Search and replication in unstructured Peer-to-
Peer networks. In: Proc. of the International Conference on Supercomputing (ICS), pp. 84–95
(2002)

46. Maymounkov, P., Mazireres, D.: Kademlia: A Peer-to-Peer information system based on the
XOR metric. In: Proc. of International Workshop on Peer-to-Peer Systems (IPTPS), pp. 53–
65. Springer-Verlag (2002)

47. Miller, B.A., Nixon, T., Tai, C., Wood, M.D.: Home networking with Universal Plug and Play.
IEEE Communications Magazine pp. 104–109 (2001)

48. Montebello, M., Abela, C.: DAML enabled web service and agents in semantic web. In:
Workshop on Web, Web Services and Database Systems, Lecture Notes Ccomputer Science
(LNCS) (2003)

49. Nejdl, W., Wolpers, M., Siberski, W., Schmitz, C., Schlosser, M., Brunkhorst, I., Loser, A.:
Super-peer-based routing strategies for RDF-based Peer-to-Peer networks. Journal of Web
Semantics 1(2), 177–186 (2004)

Distributed Search and Pattern Matching 461

50. Ng, W.S., Ooi, B.C., Tan, K.L., Zhou, A.: PeerDB: A P2P-based System for Distributed Data
Sharing. In: Proc. of the International Conference on Data Engineering (ICDE), pp. 633–644
(2003)

51. Prud’Hommeaux, E., Seaborne, A.: SPARQL query language for RDF. Working Draft WD-
rdf-sparql-query-20061004, World Wide Web Consortium (W3C) (2006)

52. Pugh, W.: Skip lists: a probabilistic alternative to balanced trees. Communications of the ACM
33(6), 668–676 (1990)

53. Rabin, M.: Fingerprinting by random polynomials. Technical report, CRCT TR-15-81, Har-
vard University (1981)

54. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Schenker, S.: A scalable content-
addressable network. In: Proc. of ACM SIGCOMM, pp. 161–172 (2001)

55. Rhea, S., Kubiatowicz, J.: Probabilistic location and routing. In: Proc. of IEEE INFOCOM
(2002)

56. Rompothong, P., Senivongse, T.: A query federation of UDDI registries. In: Proc. of Inter-
national Symposium on Information and Communication Technologies (ISICT), pp. 578–583
(2003)

57. Rowstron, A., Druschel, P.: Pastry: Scalable, distributed object location and routing for large-
scale Peer-to-Peer systems. In: Proc. of IFIP/ACM International Conference on Distributed
Systems Platforms (Middleware). Heidelberg, Germany (2001)

58. Sagan, H.: Space-filling curves. Springer-Verlag (1994)
59. Salutation Consortium: Salutation architecture specification version 2.0c.

http://www.salutation.org (1999)
60. Schlosser, M., Sintek, M., Decker, S., Nejdl, W.: A scalable and ontology-based P2P infras-

tructure for semantic web services. In: Proc. of International Conference on Peer-to-Peer
Computing (P2P) (2002)

61. Schmidt, C., Parashar, M.: Enabling flexible queries with guarantees in P2P systems. IEEE
Internet Computing 8(3), 19–26 (2004)

62. Schmidt, C., Parashar, M.: Peer-to-Peer approach to web service discovery. In: WWW: Inter-
net and web information systems, vol. 7, pp. 211–229 (2004)

63. Sperberg-McQueen, C.M., Bray, T., Maler, E., Paoli, J., Yergeau, F.: Extensible
markup language (XML) 1.0 (fourth edition). W3C recommendation, W3C (2006).
Http://www.w3.org/TR/2006/REC-xml-20060816

64. Stoica, I., Morris, R., Liben-Nowell, D., Karger, D.R., Kaashoek, M.F., Dabek, F., Balakrish-
nan, H.: Chord: a scalable Peer-to-Peer lookup protocol for Internet applications. IEEE/ACM
Transaction on Networking (TON) 11(1), 17–32 (2003)

65. Sun Microsystems: Jini Technology Core Platform Specification (2000). URL http://
www.sun.com/jini/specs/

66. Tang, C., Dwarkadas, S.: Hybrid global-local indexing for efficient Peer-to-Peer information
retrieval. In: Proc. of the Symposium on Networked Systems Design and Implementation
(NSDI) (2004)

67. Tang, C., Xu, Z., Mahalingam, M.: pSearch: information retrieval in structured overlays. ACM
SIGCOMM Computer Communication Review 33(1), 89–94 (2003)

68. Tsoumakos, D., Roussopoulos, N.: Adaptive probabilistic search for Peer-to-Peer networks.
In: Proc. of International Conference on Peer-to-Peer Computing (P2P) (2003)

69. UDDI Consortium: UDDI Technical White Paper (2002). URL http://www.uddi.org/
pubs/Iru_UDDI_Technical_White_Paper.pdf

70. Uschold, M., Gruninger, M.: Ontologies: Principles, methods and applications. Knowledge
Sharing and Review 11(2) (1996)

71. Yang, B., Garcia-Molina, H.: Improving search in Peer-to-Peer networks. In: Proc. of Inter-
national Conference on Distributed Computing Systems (ICDCS) (2002)

72. Zhao, B., Huang, L., Stribling, J., Rhea, S., Joseph, A., Kubiatowicz, J.: Tapestry: A resilient
global-scale overlay for service deployment. IEEE Journal on Selected Areas in Communica-
tions (JSAC) 22(1), 41–53 (2004)

Distributed Semantic Overlay Networks

Christos Doulkeridis, Akrivi Vlachou, Kjetil Nørvåg, and Michalis Vazirgiannis

Abstract Semantic Overlay Networks (SONs) have been recently proposed as a
way to organize content in peer-to-peer (P2P) networks. The main objective is to
discover peers with similar content and then form thematically focused peer groups.
Efficient content retrieval can be performed by having queries selectively forwarded
only to relevant groups of peers to the query. As a result, less peers need to be
contacted, in order to answer a query. In this context, the challenge is to gener-
ate SONs in a decentralized and distributed manner, as the centralized assembly
of global information is not feasible. Different approaches for exploiting the gen-
erated SONs for content retrieval have been proposed in the literature, which are
examined in this chapter, with a particular focus on SON interconnections for effi-
cient search. Several applications, such as P2P document and image retrieval, can
be deployed over generated SONs, motivating the need for distributed and truly
scalable SON creation. Therefore, recently several research papers focus on SONs
as stated in our comprehensive overview of related work in the field of seman-
tic overlay networks. A classification of existing algorithms according to a set of
qualitative criteria is also provided. In spite of the rich existing work in the field

Christos Doulkeridis
Department of Informatics, Athens University of Economics and Business (AUEB), 10434 Athens,
Greece, e-mail: cdoulk@aueb.gr

Akrivi Vlachou
Department of Informatics, Athens University of Economics and Business (AUEB), 10434 Athens,
Greece, e-mail: avlachou@aueb.gr

Kjetil Nørvåg
Department of Computer and Information Science, Norwegian University of Science and Technol-
ogy (NTNU), 7491 Trondheim, Norway, e-mail: Kjetil.Norvag@idi.ntnu.no

Michalis Vazirgiannis
Department of Informatics, Athens University of Economics and Business (AUEB), 10434 Athens,
Greece, e-mail: mvazirg@aueb.gr

X. Shen et al. (eds.), Handbook of Peer-to-Peer Networking, 463
DOI 10.1007/978-0-387-09751-0 17, © Springer Science+Business Media, LLC 2010

464 Christos Doulkeridis et al.

of SONs, several challenges have not been efficiently addressed yet, therefore, fu-
ture promising research directions are pointed out and discussed at the end of this
chapter.

1 Introduction

As data generation becomes increasingly distributed, either due to user-generated
content (multimedia-images/documents) or because of application-specific needs
(sensor networks, data streams, etc.), traditional centralized architectures fail to ad-
dress the new challenges of contemporary data management. The massive amounts
of distributed data, such as digital libraries and web accessible text databases, mo-
tivate researchers to work towards decentralized infrastructures for efficient data
management and retrieval in highly distributed environments.

A promising solution for the design and deployment of distributed, global-scale
applications is the exploitation of the peer-to-peer (P2P) paradigm. P2P has emerged
as a prominent architecture for searching distributed data repositories, which reside
on autonomous and independent sources. The overall challenge is for a large set
of cooperative computers to support advanced search mechanisms over vast data
collections, thus supporting a wide spectrum of applications.

Contrary to centralized systems and traditional client-server architectures, nodes
that participate in a large P2P network store and share data in an autonomous man-
ner. Such nodes can for example be information providers, which do not wish to
expose their full data to a client. Therefore, it is challenging to provide efficient
and scalable search, in a context of highly distributed content, without necessarily
moving the actual contents away from the information providers. Then the problem
of lack of global knowledge – in the sense that each peer is aware of only a small
portion of the network topology and content – needs to be dealt with.

P2P systems can be distinguished into two main categories: unstructured and
structured. In unstructured P2P, each peer maintains a limited number of connec-
tions (also called links) to other neighboring peers in the network. Searching in an
unstructured P2P environment usually leads to either flooding queries in the net-
work using a time-to-live (TTL) or query forwarding based on constructed rout-
ing indices that give a direction for the search. Examples of such unstructured P2P
networks include Gnutella [17] and Freenet [6]. In structured P2P systems, a hash
function is used in order to couple keys with objects. Then a distributed hash table
(DHT) is used to route key-based queries efficiently to peers that hold the relevant
objects. In this way, object access is guaranteed within a bounded number of hops.
Examples of popular structured P2P systems are Chord [45], CAN [38], Pastry [40],
Tapestry [54].

In general, searching in this context incurs high costs, in terms of consumed
network bandwidth and latency. One of the important problems in P2P search is the
high number of contacted peers that do not contribute to the final result set. Note that

Distributed Semantic Overlay Networks 465

this is also the case for structured P2P networks, which are only efficient for exact
search on the indexed key value. Semantic Overlay Networks (SONs) [9] have been
proposed as an approach for organizing peers in thematic groups, so that queries can
be selectively forwarded to only those peers having content within specific topics.
In the case of unstructured P2P systems, SONs enable more efficient query routing
to specific peer groups in a deliberate way, instead of blind forwarding. Although
this problem is milder in structured P2P systems, as the search cost is logarithmic
to the total number of peers, SONs are useful in this context as well, because they
can increase the performance of the search [44].

The main topic of this chapter is an overview of existing algorithms and tech-
niques for distributed semantic overlay network generation, in an unsupervised and
decentralized manner. We first introduce the notion of semantic overlay networks
and we describe the requirements for SON generation in Section 2. In order to il-
lustrate the SON generation process, an approach for unsupervised, distributed and
decentralized SON construction, named DESENT [12], is described as representa-
tive example in Section 3, which employs distributed clustering of peer contents, re-
specting the requirements imposed by the distributed nature of the environment [50].
Thereafter, in Section 4, we describe strategies for searching using SONs. We also
show how the generated SONs can be exploited in a super-peer architecture, by hav-
ing each super-peer responsible for a specific SON. Different application scenarios,
including P2P web search and P2P image retrieval, are described in Section 5. Then,
we provide a survey of existing SON algorithms and techniques in Section 6 and we
present a taxonomy of these approaches using meaningful categorization criteria.
Finally, in Section 7, we summarize the most important issues related to distributed
SON generation and we outline the future research challenges.

2 Semantic Overlay Networks

In this section we describe the notion of semantic overlay networks in detail
and we present a list of requirements for SON generation in a distributed P2P
setting.

Semantic overlay networks have been originally proposed as an approach for
organizing peers in thematic groups with similar contents, so that queries can be
selectively forwarded to only those peers having content within specific topics. It
should be mentioned that SONs do not necessarily imply use of semantics in the
traditional sense (like ontologies), however this is the term first proposed in the
literature [9] and it is used as such by all researchers.

An example of semantic overlay networks is illustrated in Fig. 1. In the figure,
peers are organized into three different SONs, according to their contents. These
are: Sports & Activities, Music & Entertainment and Art & Culture. An important
feature is that a peer may belong to more than one SON, as the peer can store data
belonging to different thematic groups. For example, one peer has content relevant
to both Sports & Activities and Music & Entertainment.

466 Christos Doulkeridis et al.

Fig. 1 The notion of semantic overlays in a P2P network

In the following, we present a set of desired goals for semantic overlay networks,
in order to provide an assessment of SON quality. Then we proceed to identify and
analyze a set of requirements for semantic overlay network generation.

2.1 Aims of SON Generation

The desired features of generated SONs are examined, in order to be able to evaluate
and assess their quality. There exist two main measures that assist the assessment:
intra-SON similarity and inter-SON similarity.

2.1.1 Intra-SON Similarity

An individual SON’s quality is assessed independently of other SONs by the intra-
SON similarity. This measure calculates the similarity of every pair of peers that
belong to the SON. High values of intra-SON similarity show that peers contain
relevant contents, hence the quality of the SON is high. Low values indicate that
peers in the SON have dissimilar contents, therefore the quality of the SONs is not
sufficiently high.

2.1.2 Inter-SON Similarity

When examining a set of generated SONs, inter-SON similarity is a suitable quality
measure. Essentially, the similarity of every pair of SONs is calculated to determine
how similar they are to each other. High values of inter-SON similarity mean that
SONs describe common contents, so it is not easy to distinguish them. Low values

Distributed Semantic Overlay Networks 467

show indicate that SONs are quite well-separated in terms of their contents, so any
given query can be answered by only few SONs.

2.2 Requirements for SON Generation

Although several P2P research papers (see Section 6) adopt the use of semantic
overlay networks, they also adopt a set of assumptions that more or less relax the
basic constraints imposed by the P2P paradigm. In this section, we go a few steps
back, as we identify with the benefit of hindsight from existing approaches the ba-
sic requirements for SON generation in a dynamic P2P environment: unsupervised
algorithms, scalability, self-organization, autonomy and decentralization. We do not
consider this list to be complete, we rather see it as a basic set of requirements
that should be enforced, as they increase the value and benefit of any novel SON
generation algorithm.

2.2.1 Unsupervised Algorithms

P2P networks in their initial, visionary form are systems characterized by lack of
global knowledge. Instead, only local knowledge of content and topology can be
safely assumed. However, several approaches make assumptions about the existence
of background knowledge, in order to facilitate SON generation. A challenge is to
organize the P2P network, assuming minimal pre-existing knowledge.

In principle, clustering algorithms are particularly suitable for SON generation,
because they constitute an unsupervised approach. Apart from the input parame-
ters that some clustering algorithms need to execute, distributed clustering of peers’
contents assumes no further pre-existing knowledge. Nevertheless, several existing
SON generation approaches rely on classification to group similar peers. The differ-
ence is that some background knowledge is assumed, usually in the form of a pre-
defined taxonomy or as an already existing labeling scheme. While this assumption
sounds reasonable for certain applications, it cannot by any means be generalized
and presented as suitable for any P2P system. All in all, a need for unsupervised
algorithms and approaches is identified.

2.2.2 Scalability

A unique feature of P2P computing is the unlimited scalability that can be achieved
by exploiting the aggregate capabilities of all participating peers. Semantic overlays
are proposed as a mechanism that improves the efficiency of search, so any such
approach should be scalable. Potential bottlenecks in terms of communication costs
(consumed bandwidth, latency, etc.) should be thoroughly studied. In the absence

468 Christos Doulkeridis et al.

of sufficiently large testbeds, researchers use simulations to test the scalability of
proposed systems.

Unstructured P2P networks, such as Gnutella, have problems related to scalabil-
ity [39]. In particular, the time required to locate content in a large network can be
extremely long, with high associated costs. Structured P2P systems solve this issue,
by being able to find the answer to a query with logarithmic cost, however their
feasibility is still questionable, especially because of the high maintenance cost of
keeping the indexes updated. The dynamism of a P2P system, where peers may
arbitrarily fail or join the network, poses another threat against ensuring scalable
solutions.

Load-balancing is equally important, especially in the cases where the individual
peer load may have an aggregate effect, i.e., increase with the size of the network.
Any P2P system based on SONs should be able to scale well with the number of
peers. Current P2P research focusing on SON generation should put scalability as
number one requirement, as this need will become more evident in the future, where
the urge for such viable, completely distributed systems is expected to increase.

2.2.3 Self-organization

Informally, the spontaneous activity towards organization of a system is described
by the concept of self-organization. The basic mechanism for self-organization is
dynamic topology adaptation, as a means to reorganize each peer’s neighbors. In
this way overlay networks are created on top of the initial P2P network topology. We
stress here the essence of self-organization: there is no need for enforcing external
observation and maintenance mechanisms. Additionally, it is not necessary for a
system administrator to continuously set the values of system parameters or tune
the system. Self-organization is one of the most challenging requirements in P2P
systems and, at the same time, one of the most difficult to achieve.

2.2.4 Autonomy

Peer autonomy is an important concept in P2P networks, which is indirectly related
to other issues like fault-tolerance. Peer autonomy means that each peer can be as
independent as possible of the limitations imposed by the P2P protocol, concern-
ing both its behavior and as well as its content. In particular, independence with
respect to content means that each peer does not have to replicate its local data or
provide explicit indices to its local data to other peers. Moreover, a peer should
not be imposed to host indices to data that belongs to other peers. In this sense,
unstructured P2P systems respect peer autonomy, in contrast with structured P2P
systems. As a consequence, unstructured P2P systems are more resilient to fail-
ures, because in general, a peer failure makes only its local content unavailable,
while in a DHT-based network, recovery mechanisms must be enforced for con-
sistency. It is important that SON construction algorithms should also respect peer

Distributed Semantic Overlay Networks 469

autonomy. However, peer autonomy comes with a cost: it is usually difficult to pro-
vide efficient search.

2.2.5 Decentralization

While distribution is inherently related to the P2P concept, the same does not always
hold for decentralization. The most evident example of centralized P2P system was
Napster, one of the first P2P systems to enable file sharing between participating
computers. However, while the actual file exchange was performed in a P2P manner,
the index was held in a centralized location. This is not an acceptable approach for
dynamic P2P systems, since it presents a single point of failure.

Learning from the shortcomings of such approaches, decentralization should also
hold for SON generation, especially in large-scale networks. If operations are cen-
tralized, this endangers the completeness of SON generation, with obvious conse-
quences to the correctness of the final overlays. Also, while for small networks a
centralized solution may seem appropriate, due to the assembly of global knowl-
edge, where better decisions can be made, however it usually presents problems
when applied to large-scale networks. The main reason is communication bottle-
necks that often result in non-applicable or infeasible approaches, or in other words
algorithms that do not scale.

3 Distributed Creation of Semantic Overlay Networks

In this section we describe how the semantic overlays are created in a decentralized
and distributed way using the DESENT approach as described in [12]. The approach
is based on creating local topological groups of peers (called zones), forming clus-
ters based on data stored on these peers, and then merging zones and clusters re-
cursively until global zones and clusters are obtained. In this approach, clusters and
semantic overlays are equivalent, and for the rest of this section we use these terms
interchangeably.

3.1 The DESENT Approach to Decentralized and Distributed SON
Creation

Having as a starting point the initial unstructured P2P network, some initiator peers
are selected in a pseudo-random way (initiator selection phase). Initiators create
local topological zones over their neighboring peers (zone creation phase). Then
each initiator collects the cluster descriptions of all peers in its zone, and executes a
clustering algorithm in order to create new clusters that span the entire zone (zone
clustering phase). Since the clusters of two (or more) peers may be merged into

470 Christos Doulkeridis et al.

A

B

C

(a) First step of zone creation.

A

B

C

A

A

A

A

A

B

B

C

(b) Second step of zone creation.

A

B

C

A

A

A

A

A

B

B

C
A

B

B

B

AAA

(c) Third step of zone creation.

Fig. 2 Step-wise zone creation given the three initiators A, B, and C

a new cluster, this implies that these peers become members of a SON, and the
SON’s contents are now represented by a new cluster description. In the subsequent
steps, the initiators form the current (unstructured) P2P network, thus playing the
role of peers in the initial setup. Therefore, the process described above runs on the
initiators, thus new initiators are selected, that create zones and cluster zone contents
in a completely similar way as shown above. Hence, zones and clusters are merged
recursively until global clusters are obtained.

In order to be able to create zones of approximately equal size throughout the
network (SZ peers in each zone, where a typical zone size is in the order of SZ = 50
peers), a subset of the peers are designated the role of zone initiators that can per-
form the zone creation process and subsequently initiate and control the cluster-
ing process within each zone. The process of choosing initiators is completely dis-
tributed, and essentially based on each peer assigning itself the role or not, using
a function that is based on a combination of identifier and time. The result is that
approximately one out of each SZ peer assign themselves the role, and these peers
are uniformly distributed in the network. One important feature of the initiator se-
lection algorithm is that we obtain different initiators each time the algorithm is run.
This tackles the problem of being stuck with faulty initiators as well as reducing the
problem of permanent cheaters.

After a peer Pi has discovered that it is an initiator, it uses a probe-based tech-
nique to create its zone. An example of zone creation is illustrated in Fig. 2, and as
is illustrated an initiator gradually extends its zone until it finds a peer already be-
longing to another zone. This zone creation algorithm has a low cost wrt. to number

Distributed Semantic Overlay Networks 471

Algorithm 16: Zone-wise clustering
1. The initiator of each zone i sends probe messages to all peers Pj in Zi.
2. When a peer Pj receives a probe message it sends its set of feature vectors {F} to the

initiator of the zone.
3. The initiator performs clustering on the received feature vectors. The result is a set of

clusters represented by a new set of feature vectors {F}.
4. The initiator selects a representative peer R for each cluster.
5. The result kept at the initiator is a set of cluster descriptions (CDs), one for each cluster Ci.
6. Each of the representative peers are informed by the initiator about the assignment and

receive a copy of the CDs of all clusters in the zone.
7. The representatives then inform peers on their cluster membership by sending them

(Ci,Fi,R).

of messages (in the infrequent case of excessive zone sizes, the initiator can decide
to partition its zone, thus sharing its load with other peers). When this algorithm
terminates, each initiator has assembled a set of peers Zi and their capabilities (in
terms of resources they possess), each peer knows the initiator responsible for its
zone, and each initiator knows the identities of its neighboring initiators. An inter-
esting characteristic of this algorithm is that it ensures that all peers in the network
are contacted, as long as they are connected to the network. This is essential, other-
wise there may exist peers whose content is never retrieved.

Independently of the actual construction of SONs, local clustering is performed
on each peer resulting in a set of clusters. Each cluster is represented by a feature
vector Fi which is a vector of tuples, each tuple containing a feature (word) fi and
a weight wi. In order to reduce both computational and communication cost, only
the top-k features are kept in Fi. After the zones and their initiators have been de-
termined, global clustering starts by collecting feature vectors from the peers (one
feature vector for each cluster on a peer) and creating clusters based on these feature
vectors using Algorithm 16. In order to limit the computations that have to be per-
formed in later stages at other peers, when clusters from more than one peer have
to be considered, the clustering should result in at most N0

C such basic clusters (N0
C

is controlled by the clustering algorithm). The result of this process is illustrated
in Fig. 3 (note that a peer can belong to more than one cluster). Each cluster Ci is
described by a cluster description (CD), which consists of the cluster identifier Ci, a
feature vector Fi, the set of peers {P} belonging to the cluster, and the representative
R of the cluster (the purposes of a representative peer is in some sense similar to a
super-peer, and is among other things used to represent a cluster at search time), i.e.,
CDi = (Ci,Fi,{P},R). For example, the CD of cluster C2 in Fig. 3 (assuming A7 is
the cluster representative) would be CD2 = (C2,F2,{A5,A7,A8,A9},A7).

At this point, each initiator has identified the clusters in its zone. These clusters
can be employed to reduce the cost and increase the quality of answers to queries in-
volving the peers in one zone. However, in many cases peers in other zones are able
to provide more relevant responses to queries. Thus, we need to create an overlay

472 Christos Doulkeridis et al.

A0

A2

A1

A6

A7

A5

A4

A3

A9A8

C0

C2

C1

C3

Fig. 3 Intra-zone clustering in zone A resulting in four clusters C0,C1,C2, and C3

that can help in routing queries to clusters in remote zones. In order to achieve this,
we recursively apply merging of zones to larger and larger super-zones, and at the
same time merge clusters that are sufficiently similar into super-clusters: first a set of
neighboring zones are combined to a super-zone, then neighboring super-zones are
combined to a larger super-zone, etc. The result is illustrated in Fig. 4 as a hierarchy
of zones and initiators. Note that level-i initiators are a subset of the level-(i− 1)
initiators.

This creation of the inter-zone cluster overlay is performed as outlined in Algo-
rithm 17, which is based on the overlay topology from the previous level of zone
creation: since each initiator maintains knowledge about its neighboring zones (and
their initiators), the zones essentially form a zone-to-zone network resembling the
P2P network that was the starting point. In general, a level-i zone consists of a num-
ber of neighboring level-(i−1) zones, on average |SZ| in each (where SZ denotes a
set of zones, and |SZ| the number of zones in the set). This implies that 1

|SZ| of the
level-(i−1) initiators should be level-i initiators. This is achieved by using the same
technique for initiator selection as described for the first level of zones, except that
in this case only peers already chosen to be initiators at level-(i−1) in the previous
phase are eligible for this role.

Algorithm 17 runs iteratively (creating a new level at each iteration) until only
one initiator is left, i.e., when an initiator has no neighbors. The only purpose of
the final initiator that is produced by performing the algorithm is to decide the level
of the final hierarchy, so it does not perform any clustering operations. The aim
is to have in the end at the top level a number of initiators that is large enough to
provide load-balancing and resilience to failures, but at the same time low enough to
keep the cost of exchanging clustering information between them during the overlay
creation to a manageable level. Thus, after Algorithm 17 has terminated, the top-
level peer probes level-wise down the tree in order to find the number of peers at
each level until it reaches level j with appropriate number minF of peers. The level- j

Distributed Semantic Overlay Networks 473

A B

A0 An
... B0 Bn

......Peers:

Level 1 initiators:

Level 2 initiators:

Level 3 initiators:

Level 4 initiators:

Zone
Level 2 zone

Level 3 zone

Fig. 4 Hierarchy of zones and initiators

Algorithm 17: Global clustering

1. The level-i initiators create super-zones based on previous-level zones, and in this way also
the level-i initiators become aware of their neighboring super-zones.

2. In a similar way to how feature vectors were collected during the basic clustering, the
approximately NC|SZ| CDs created at the previous level are collected by the level-i initiator
(where NC denotes the number of clusters per initiator at the previous level).

3. Clustering is performed again and a set of super-clusters is generated.
4. Each of the newly formed super-clusters is represented by top-k features produced by

merging the top-k feature vectors of the individual clusters.
5. A peer inside the super-cluster (not necessarily one of the representatives of the cluster) is

chosen as representative for the super-cluster, resulting in a new set of CDs,
CDi = (Ci,Fi,{P},R), where the set of peers {P} contains the representatives of the clusters
forming the base of the new super-cluster.

6. The CDs are communicated to the appropriate representatives.
7. The representatives of the merged clusters (the peers in {P} in the new CDs) are informed

about the merging by the super-cluster representative.

initiators are then informed about the decision and they are given the identifiers of
the other initiators at that level, in order to send their CDs to them. Finally, all level-
j initiators have knowledge about the clusters in zones covered by the other level- j
initiators.

To summarize, the result of the zone- and cluster-creation process is two hier-
archies: (1) a hierarchy of peers and (2) a hierarchy of clusters. Starting with indi-
vidual peers at the bottom level, forming zones around the initiating peer which
acts as a zone controller, neighboring zones recursively form super-zones (see
Fig. 4). On the top level are peers that effectively form a forest of trees, and
where each peer has replicated the cluster information of the other initiators at that
level.

Each peer is member of one or more clusters at the bottom level, and each cluster
has one of its peers as representative. One or more clusters constitute a super-cluster,
which again recursively form new super-clusters. At the top level a number of global
clusters exist.

474 Christos Doulkeridis et al.

4 Searching in Semantic Overlay Networks

After semantic overlay networks have been successfully generated, the remaining
issue is how to exploit them at query time, in order to improve the performance of
searching. There exist two challenges in this context: (1) intra-SON search and (2)
inter-SON search.

The former is about the way search is performed at peers that belong to a specific
SON. For example, when a peer that belongs to a SON about rock music issues a
query about “Rolling Stones”, the query can be answered from this SON. However,
the challenge is to find the appropriate peers to contact inside the SON. The lat-
ter refers to searches that cannot be served by the SON(s) that the querying peer
belongs to. For instance, in the previous example, the peer issues a query about
“Shakespeare”, which clearly has to be forwarded to the SON responsible for liter-
ature. In this case, the problem is how to route the query to a particular SON, when
a potential big list of SONs is available.

In the following, the most popular approach for SON-based search is presented.
It consists of exploiting the links between peers with similar content for intra-SON
search, and using links between peers with different content for inter-SON query
routing. Unfortunately, this approach has several shortcomings, which motivate the
need for a more efficient organization of SONs for searching. In this spirit, we
demonstrate a super-peer architecture with a super-peer being responsible for a
SON. The advantages of this approach are more efficient search relying in super-
peer query routing mechanism.

4.1 Traditional SON-Based Search

Most approaches that rely on semantic overlay networks generate two types of links
between peers, in order to enable subsequent search. The first type of links is short
links, which are used to connect peers with similar content and they are used inside a
SON. The second type of links is long links and they enable search between different
SONs. Representative approaches belonging to this category include [18, 23, 35].

Searching is then performed by routing queries over the appropriate links. For
search within SONs short links are used, whereas search in different SONs is per-
formed using long links. Usually, searching over short or long links takes the form
of flooding, using a TTL value to limit the search cost.

Although the performance of search is increased compared to the basic search
mechanism, one problem of this approach is the lack of a selective routing mecha-
nism over the new links. In the case of large P2P networks, this can lead to increased
searching costs.

Another problem arises when advanced query processing needs to be supported,
instead of file sharing. Usually, in P2P file sharing, replicas of files exist in many
peers in the network, and a request for a file can be satisfied by any one of these
peers. In contrast, when the query is more complex, as for example finding the sum

Distributed Semantic Overlay Networks 475

H

G

D
J

IE

F
B

C
A

A

D G

J

E

Super-peer Level

Peer Level

A’s SON

D’s SON G’s SON
J’s SON

Fig. 5 SONs organized in a super-peer architecture

or average of data stored in peers, the query results will be exact only when all peers
holding relevant data are contacted. As a consequence, there is a need for a more
efficient mechanism that enables advanced query processing, by facilitating access
to all peers that maintain data that contribute to the final result set.

4.2 Super-Peer Organization

As an improvement to the aforementioned problem, peers belonging to a SON are
assigned to a super-peer. Thus, SONs are organized in a super-peer architecture,
with each super-peer responsible for a SON. For an illustrative example see Fig. 5.
While the basic ideas are shortly presented here, the interested reader can find more
details in [13].

Intra-SON search is performed by a peer contacting the super-peer responsible
for the SON, and then the super-peer forwards the query to peers in the SON. This
is performed in an efficient way, as it requires the minimum number of messages for
query forwarding.

Inter-SON search is based on query routing at super-peer level. In the case that
super-peers are organized in a particular super-peer topology, such as a hypercube
(cf. [41]), super-peer routing is efficiently performed using the topology links. In the
absence of a specific topology, there exists a naive search technique of flooding the
super-peer network. However, even though the number of super-peers is typically at
least an order of magnitude smaller than the number of participating peers, such a
technique is not scalable. Therefore, a more efficient mechanism is to create routing
indices [8] at super-peer level, in order to guide the search to appropriate super-
peers.

As super-peer infrastructures [53] harness the merits of both centralized and dis-
tributed architectures, we make a design choice of a super-peer architecture for
the P2P network interconnection. Moreover, the choice of the super-peer archi-
tecture is motivated and driven by our main requirement for scalability. Currently
deployed super-peer networks, e.g., eMule (www.emule-project.net) and

476 Christos Doulkeridis et al.

KaZaA (www.kazaa.com), support large number of users, demonstrating the ap-
propriateness of super-peer architectures when scalability is required. In addition,
peer autonomy is respected as the actual content remains on the owner peer, and
only metadata is indexed and handled by the super-peer network.

5 Applications of Semantic Overlay Networks

In this section we present two application scenarios that exploit SON usage. First,
we show how P2P document retrieval can be enhanced by adopting a SON-based
approach (Section 5.1). Thereafter, we present the design of a distributed search
engine for multimedia content that also capitalizes on SONs (Section 5.2).

5.1 P2P Web Search – Document Retrieval

The advent of the World Wide Web in combination with efficient search en-
gines like Google and Yahoo! has made an enormous amount of information eas-
ily available for everybody. However, lately, several researchers have investigated
the feasibility of providing web search facilities over a network of cooperative
peers [4, 11, 22, 32, 46], contrary to the traditional model of centralized web in-
dexing and searching. Some of the advantages of a completely distributed search
engine are:

• Coverage and scalability: Current search engines only cover a small fraction of
the documents on the Web, whereas a search engine consisting of thousands or
millions of computers can scale better to achieve complete coverage.

• Freshness: Many web pages are rarely accessed by search engines, resulting in
outdated search index contents,

• Avoiding information monopoly phenomena: A centralized search engine can
control the flow of information, what is indexed, how it is presented to the user
and – most importantly – the ranking. Censoring is also an issue as the search
engine can filter out material that is considered controversial.

• Precision: one of the major concerns of current search engines is the precision of
retrieval. A P2P search engine must adopt mechanisms that improve the precision
of searching.

• Low cost: the cost of providing web search facilities employing the P2P paradigm
is extremely low, as expensive data-centers and server farms are replaced by the
commodity PCs of end-users.

A completely distributed search engine in its basic form consists of several indi-
vidual peers that cooperate in order to provide the service collectively. Towards this
goal, each peer uses part of its resources in order to build the necessary infrastructure
for supporting web search. Therefore each peer:

Distributed Semantic Overlay Networks 477

• Collects the available web content, similar to a typical web search engine crawler.
• Indexes the assembled data, similar to inverted indexes.
• Publishes its index to the rest of the network, in order to make its data

retrievable.
• Issues keyword-based queries for web document retrieval.

In the following, an application called SOWES1 [11, 13] is presented, that sup-
ports efficient full-text search over an unstructured P2P network, by organizing peers
into semantic overlay networks.

SOWES assumes a Gnutella-like unstructured P2P network of NP peers and each
peer stores a (potentially large) set of web documents. The documents stored at a
peer may either belong to the peer (in case it is a web site) or may have been crawled
from other sites on the web.

We now first describe how peers are organized into SONs, and then we present
the searching mechanism for performing keyword-based queries.

5.1.1 SON Creation

Creation of semantic overlays in SOWES is a multi-phase distributed process, which
capitalizes on DESENT (see Section 3). First zones of peers are created, then within
each zone, SONs are created based on the data of peers. In the subsequent steps
zones and clusters are merged recursively until global clusters are obtained. The
main difference from DESENT is that the peer hierarchy is only used for SON
creation and not for searching. When global SONs have been created, special pur-
pose links are established between peers in SONs, in order to enable searching.
Thus, the hierarchy of zones is only used during the SON creation process and
finally the search is performed over a flat organization of SONs. In the end, the
result is a set of SONs, each represented by a peer which functions similar to a
super-peer.

We now describe in more detail the structure of SONs in SOWES; with particular
emphasis on SONs interconnections and information retrieval aspects of SOWES.
One important point is that when two individual SONs are merged into a new SON,
the SON hierarchy is not maintained as in DESENT. Instead, links are created be-
tween peers in the two individual SONs ensuring sufficient connectivity, and then
only the merged SON is used for further merging.

Similar to DESENT, each SON is a group of peers that is described by a cluster
Ci of the peers’ contents. Clusters are represented by cluster descriptors (CDs), one
for each cluster Ci. In addition to the cluster identifier and feature vector, a random
selection of Nr representative peers {R} belonging to the cluster is part of the cluster
description. The value of Nr is chosen high enough to minimize the probability
of all of them disappearing, due to peer failures, during the lifetime of the CD,
but low enough to avoid high communication cost when communicating the CDs.

1 Semantic Overlays for Web Searching.

478 Christos Doulkeridis et al.

As an example, considering the peers in Fig. 3, the CD of cluster C2 would be
CD2 = (C2,F2,{A5,A8}), assuming A5 and A8 are the randomly chosen peers.

In order to ensure the connectivity of the merged SONs, d links are used between
the merged SONs. In this way, the probability that a SON becomes disconnected due
to peer failure is eliminated. The d links between the peers of the two clusters are
formed by iteratively selecting from each SON, the least connected peers, and then
connecting them. The algorithm ensures that there exists a path from each peer to
any other peer within each SON.

As described so far, the resulting SONs are sufficiently connected internally.
However, in order to support inter-cluster queries, the resulting SONs also need
to be sufficiently connected. This is performed during the last step, when there is
one zone and it is achieved by creating d connections from each representative peer
to representatives of other SONs. This ensures connectivity at cluster representative
level and consequently enables query routing among SONs.

Before describing how query routing is performed, we briefly review the connec-
tivity of each peer Q:

• Q maintains Ld connections to other peers that belong in the same global SON,
for each global SON that Q belongs to. These connections were created during
the SON merging phase.

• Q maintains Lp connections to cluster representatives, for each global SON the
peer belongs to.

In addition, cluster representatives of the global SONs maintain Lg connections to
other cluster representatives. These connections are used to ensure inter-SON com-
munication, in order to make any SON reachable from any peer and at the same time
avoid its potential isolation from the rest of the SONs.

5.1.2 Keyword-Based Search

In this section, we describe how keyword-based search is performed. We first de-
scribe in more detail the basic approach to searching, followed by techniques that
reduce the cost of query routing. A query for web documents originates from a
querying peer QP. In an unstructured P2P system, querying is performed by rout-
ing the query to appropriate peers and performing the query on each of these
peers, and then returning matching results. In our context, processing the query
is performed by first determining which clusters might contain relevant data (inter-
cluster routing), followed by searching one or more of these clusters (intra-cluster
routing).

Inter-cluster routing refers to query routing at cluster representative level, which
aims to identify similar cluster descriptions to the query. In order to limit the amount
of costly intra-cluster searching, the inter-cluster routing is performed in two steps.

In the first step, a search for appropriate clusters is performed. A number of
techniques can be used to find these clusters. Potential solutions include random

Distributed Semantic Overlay Networks 479

jumps or some gossiping approach that allow peers to become familiar with a small
set of peers outside their cluster. However, both these techniques and their variants
impose a query horizon, i.e., they cannot guarantee that remote peers are reached in
very large networks. In order to overcome such limitations, we use the links created
among cluster representatives to route queries. In the absence of more sophisticated
mechanisms, this routing takes the form of flooding. In this way, we can guarantee
that the query contacts all clusters (i.e., their cluster representatives), thus enabling
access even to the most distanced peers. Those cluster representatives reached in
this way having a similarity to the query that is larger than a certain threshold, return
their CD to the originating peer QP.

In the second step, QP determines which clusters are most appropriate (based
on the results of step 1), and forwards the query to these for intra-cluster
search ing. In a real system the number of clusters to search is determined by the
number of results returned, so that the number of clusters searched can be
limited.

Intra-cluster routing refers to query routing within a cluster. Routing always
starts from a cluster representative (which has been found during inter-cluster rout-
ing as described above), and it is performed as flooding starting from the representa-
tive through its Ld connections. Each peer that received the query executes it locally
and if it has matching results these are returned to QP.

5.2 P2P Image Retrieval

The widespread use of digital image equipment enables end-users to capture and edit
their own image content, sometimes of high intellectual or commercial value. The
centralized character of Web search raises issues regarding royalties, in the case of
protected content, censorship, and to some degree information monopoly. Moreover
current tools for image retrieval are limited in query expressiveness and lack se-
mantic capabilities. Image content is only partially covered by web search engines,
although it is evident that there is a tremendous wealth of digital images available
on computers or other devices around the world. This is probably due to the fact that
image content induces further complicated problems regarding the search: current
centralized image search facilities do not sufficiently support metadata management,
semantics, advanced media querying etc.

In this section, we present a SON-based architecture that adopts the P2P paradigm
for indexing, searching and ranking of image content. The ultimate goal of our ar-
chitecture is to provide a search mechanism for image content relying on image
features. The overall system is described in [51] and the algorithms for query pro-
cessing are introduced in [14]. The application described in this section is a scalable,
decentralized and distributed infrastructure for building a search engine for image
content capitalizing on P2P technology.

480 Christos Doulkeridis et al.

Fig. 6 Architecture of P2P search engine for image content

5.2.1 Architecture

The proposed architecture utilizes a P2P infrastructure for supporting the deploy-
ment of a scalable search engine for multimedia content, addressing future user
needs and search requirements. A high-level abstraction of the architecture, show-
ing the different participating entities, their interconnections and functionality is
shown in Fig. 6.

Collaborating entities in the search engine consist of: (1) content providers and
requestors and (2) information brokers.

Content providers are entities that produce or store images that they would like
to publish. Content requestors are not necessarily contributing content to the search
engine. However their role is important, as they represent the users of the search en-
gine. These roles are not mutually exclusive. Content requestors enjoy a rich reper-
toire of query and searching facilities and they are provided access to thousands or
millions of independent and undiscovered multimedia sources (content providers).
Besides stationary content providers, mobile content providers which are able to
dynamically capture content, also like to exchange image data and make it widely
available.

Information brokers consist of more powerful and less volatile peers in the net-
work. They realize a decentralized indexing service. In addition to the basic form of
metadata that is generated by the content providers, information brokers may em-
ploy more sophisticated (and thus demanding) algorithms that could not be executed
in lightweight peers, due to lack or processing power or lack of more widespread
knowledge on the rest of the multimedia content in the network.

Obviously, the afore-described architecture can be realized by means of a super-
peer network. Content providers are peers that want to make their content searchable
and also be able to search other peers’ content, acting as content requestors. On the

Distributed Semantic Overlay Networks 481

other hand, information brokers are super-peers that form the backbone of the search
engine. In what follows, we describe how SONs can improve the plain super-peer
architecture, in terms of search performance.

5.2.2 Peer Organization

One of the most important factors that influences the performance of P2P systems
is the underlying data distribution to peers (and super-peers). In the general case,
when a peer joins the network, it connects to a super-peer, usually in a random way.
However, data on peers is usually clustered into a few thematic areas that reflect
the user’s interests. It is therefore necessary to detect peers with similar content that
belong to the same community. Additionally, this should occur in a self-organizing
way, without explicit external intervention. Then, queries can be directed to specific
peers only, thus improving query processing performance.

Semantic overlay networks can improve the basic architecture of the distributed
search engine for image content. SONs are created in order to form communities that
store similar content. After SONs have been formed, a super-peer become respon-
sible for one or more SONs. This is achieved by reassigning peers to super-peers,
in such a way that the assignment corresponds to SON membership. The result is
that a super-peer indexes peers that store similar content. Consequently, queries can
be answered by being directed to a limited set of super-peers, which are responsible
for content relevant to the query.

5.2.3 Similarity Search

The SON-based super-peer architecture is a good starting point for constructing
an efficient search mechanism. The aim is to support queries like “retrieve all im-
ages similar to a given an image” or “retrieve the k most similar images to a given
one”.

Similarity search over image content usually involves having images represented
by objects in a high dimensional data space. Features of this data space may in-
clude both text-based features (such as key words, annotations) and visual features
(such as color, texture, shape, faces). This feature extraction is a semi-automatic
process and it takes place on each peer, before joining the search engine. Then sim-
ilarity search is performed by computing the similarity or distance of high dimen-
sional objects, provided that there exists a commonly accepted similarity or distance
function.

SIMPEER [14] is a super-peer system that supports similarity search over high-
dimensional data. This system can realize the search mechanism required on
top of the architecture described above. After presenting its functionality in
short, we show the difference in query processing performance induced by a
SON-mechanism.

482 Christos Doulkeridis et al.

P1

SP1

Routing Clusters

Peer Cluster

P2

P3

P4
SP2

P6

P5

SP3

Range
Query

P1

SP1

P2

P3

P4

SP2

P6

P5

SP3

(a) SON-based routing clusters. (b) Random routing clusters.

Fig. 7 Super-peer routing clusters and range query

SIMPEER relies on a three-level clustering scheme and supports efficient P2P
similarity search in metric spaces. Given a super-peer network, each peer connects
to a super-peer and maintains its own data, represented in a high dimensional space.
In a construction phase, each peer applies a clustering algorithm on its local data.
Thereafter, each super-peer gathers the clusters of its associated peers and applies
on them a clustering algorithm resulting in a new cluster set that describe the data
indexed by this super-peer. These clusters are broadcasted at the super-peer network,
in order to form routing clusters at super-peers.

Figure 7a depicts the routing information stored at each super-peer, namely the
routing clusters of all other super-peers. The cluster information of peers is stored
only at the corresponding super-peer of each peer. At query time, each super-peer
decides where to forward a query, based on its routing clusters. Assume a range
query, initiated at a super-peer SPq. First, SPq examines its routing clusters to find
to which of its neighboring super-peers the query should be forwarded to. Each
recipient super-peer SPr checks whether its local peers can provide any results, by
inspecting their clusters. If the query overlaps with some clusters, SPr contacts only
the peers responsible for these clusters. Otherwise, SPr simply forwards the query
to its neighboring super-peers, using its routing clusters.

Figure 7 depicts the effects of SONs for our search engine using SIMPEER. In
Fig. 7a the peer clusters assigned to a routing cluster are similar, leading to high
intra-SON similarity. The inter-SON similarity, i.e., the overlap between routing
clusters of different super-peers, is low. In this case SIMPEER has been shown to
work well, meaning that only few super-peers and peers that can provide relevant
results are queried, resulting in reduced network traffic and response time. However,
for the case depicted in Fig. 7b, each peer cluster is assigned randomly to a super-
peer, resulting in routing clusters that are not well-separated. Thus, the routing abil-
ity of the routing clusters is reduced, while the network traffic and the number of
contacted super-peers are increased.

Distributed Semantic Overlay Networks 483

6 Related Work

Semantic Overlay Networks (SONs), have been proposed as an approach for se-
mantically organizing peers, so that queries can be forwarded to only those peers
containing documents within specific topics. In the seminal paper [9], SONs are pre-
sented as thematic focused groups of peers, which share common interests. In this
respect, a P2P network is organized into SONs, in order to enable efficient routing
of queries only to relevant peers. The advantage of this approach is that it reduces
the routing cost, namely it reduces the flooding cost in the case of unstructured P2P
networks and decreases the number of peers that need to be contacted in the case of
structured P2P systems. In principle, SONs also enhance the quality of results, an
important issue in the case of distributed information retrieval tasks like P2P web
search.

In the following, we review existing algorithms and techniques for semantic over-
lay network generation in P2P systems. A taxonomy of semantic overlay networks
is presented in Table 1, by first distinguishing them based on the underlying P2P
architecture, namely unstructured and structured. Then, within each architecture,
three basic methods for SON generation are identified: clustering, classification and
gossip-based.

Unstructured Structured

DESENT [12]
Distributed K-means [15]

Topic-segmented overlays [3] pSearch [47]
Clustering SSW [23] WonGoo [31]

Super-peers [13] SWOP [18]
Klampanos et al. [19]

Semantic peer [26]

Content-based overlays [27]
Fairness index [49] HSPIR [25]

Classification iClusterDL [37] Content-based overlays [27]
iCluster [35]

REMINDIN’ [48]
Associative overlays [7]

Shortcuts [44]
INGA [29]

Gossiping Acquaintances [5] p2pDating [34]
Metric social networks [42] GridVine [2]

SON reformulation [20]
Epidemic protocol [52]

Chatty Web [1]
Language models [24]

Table 1 Taxonomy of semantic overlay network generation algorithms

484 Christos Doulkeridis et al.

6.1 Unstructured P2P

6.1.1 Clustering

Although several papers describe how to use SON-like structures, little work exists
on the issue of to actually create SONs in an unsupervised, decentralized and dis-
tributed way in unstructured networks. One important difficulty arises when there is
a lack of background knowledge about peer contents. In the following, SON con-
struction methods that use unsupervised learning are presented, with most of these
approaches relying on clustering algorithms.

A distributed (but not decentralized) P2P clustering algorithm is presented in [15],
so that for a given query, the querying peer can identify the most promising clusters
and route the query precisely to peers containing relevant documents.

In [3], topic-segmented overlays are proposed, which partition peers into groups
of similar topics. The approach is based on assembling peer representations at one
site and perform a clustering that is then communicated to all peers. Cluster updates
are treated similarly; the site determines any changes of the global cluster descrip-
tions and informs other peers on demand.

Klampanos et al. [19] propose to cluster peer contents, in order to generate a
cluster-based architecture for P2P information retrieval. Individual peer documents
are clustered using a hierarchical clustering algorithm and document clusters are
evaluated using two metrics: (1) the average standard deviation of term frequency
among the documents of each cluster and (2) the number of peer documents within
a specific topic, which shows the expertise of a peer. Then a one-pass peer clustering
algorithm is used to identify content-aware groups, i.e., peer clusters. However this
algorithm is not distributed, assuming all knowledge of peer clusters is available at
one location.

Semantic small world (SSW) [23] aims at small world network construction by
semantic clustering of peer contents. Each peer is represented by the centroid of its
largest cluster in the semantic space. This forms the peer’s semantic label. Further-
more, each peer maintains short and long range contacts, where short range contacts
refer to neighboring peer clusters, while long range contacts refer to peers with data
at randomly chosen points in the semantic space.

In [13], SONs are generated using hierarchical clustering of peer contents. After
SON construction, each SON is assigned to a super-peer, resulting in a super-peer
organization of SONs. This leads to performance improvements, both in terms of
retrieval quality and associated search costs.

Recently, a measure for cluster cohesion, called clustering efficiency, has been
proposed in [36], as a way to evaluate SON quality. In contrast to existing measures,
clustering efficiency takes into account the neighborhood of a peer, not only its
direct neighbors. Maintenance of neighboring links is based on a periodic rewiring
procedure, which triggers the process of discovering similar peers.

Another approach to improve on some of the problems of Gnutella-like sys-
tems, is to use a super-peer architecture where a number of peers/clients are con-
nected to a super-peer, which (1) indexes the data stored on its peers, as well as

Distributed Semantic Overlay Networks 485

(2) communicates with other super-peers so that queries that can not be satisfied
from the local super-peer can be forwarded to other super-peers. Super-peer ap-
proaches benefit from the advantages of both the centralized and the distributed
paradigm. They combine the efficiency of centralized search with the intrinsic fea-
tures of P2P. An interesting study of super-peer networks is presented by Yang
and Garcia-Molina [53]. The authors discuss design issues concerning super-peer
networks and come up with a set of useful rules of thumb. Edutella [33] is an-
other super-peer approach, based on a hypercube topology [41], for routing queries.
Super-peers maintain indices of peer contents and routing indices, and searching
is practically achieved through routing at super-peer level. A super-peer architec-
ture can also be used to realize a hierarchical summary index as described in [43].
In [28], clustering policies are proposed to generate semantic clusters in super-peer
networks. Particular emphasis is put on managing heterogeneous data schemes.

6.1.2 Classification

One of the problems of unsupervised techniques is that it is generally difficult to
identify coherent clusters, without exploiting any background knowledge. As a so-
lution to this, several papers have advocated the use of background knowledge, in
order to generate groups of peers with similar content. These methods belong to the
category of supervised learning and they usually employ classification algorithms
or assume the existence of a common ontology among peers.

In [49], a P2P architecture where nodes are logically organized into a fixed num-
ber of clusters is presented. The main focus is on fairness with respect to the load
of individual nodes. For this reason, the fairness index is proposed, as a metric for
inter-cluster load balancing. Furthermore, intra-cluster load balancing is considered,
in order to achieve load balancing among peers that belong to the same cluster.

In [35], the authors present iCluster, a system where peers become members
of SONs by creating and maintaining two types of links: short-range and long-
range links. Short range links connect peers inside a SON, while long range links
are used to interconnect SONs and assist searching. The actual SON creation is
based on a periodic rewiring procedure, with each peer trying find other similar
peers. An application of this approach in a digital library context is the iClusterDL
system [37]. Notice that according to the authors SONs can be generated either
through document clustering or classification, however we choose to record this
work as classification mainly due to the way experiments were performed.

In [26], the authors address the issue of SON creation in a Peer Data Management
System (PDMS) where peers have different schemas and they are connected through
schema mappings. Each peer is represented by a set of concepts. Each concept will
be associated to at most one SON. Heterogeneity is solved using the WordNet as
background thesaurus. The authors define a distance function among sets of con-
cepts and they use the BUBBLE framework [16] for clustering. At peer join time,
neighbor selection can be performed in two ways: range selection (select the peers
in the SON with distance below a threshold) and k-NN selection (the k closest peers

486 Christos Doulkeridis et al.

semantically). Especially the k-NN approach, requires setting a value for the radius,
which requires some non-negligible communication and synchronization with the
joining peer. Updates seem to flood the network and their propagation does not have
a stopping mechanism.

6.1.3 Gossip-Based

Several papers related to SON construction rely on gossiping protocols for dis-
tributing information in the P2P network. Once information about peers’ contents
is spread in the network, a peer can establish links to relevant peers. The advan-
tage of gossip-based approaches is that they are completely distributed and support
self-organization. However, one of their disadvantages is that they can provide no
guarantees that relevant peers will be acquainted in finite time, especially in the case
of really large and dynamic P2P networks. Obviously, depending on the application,
gossip-based approaches can provide an efficient solution for SON generation and
subsequent searching.

Associative overlays, proposed in [7], are similar to SONs. The underlying con-
cept is that peers which have previously satisfied queries are more likely candi-
dates for answering a current query. Hence, such peers are organized into overlay
networks. The approach has advantages over blind search in unstructured P2P net-
works, especially for searches for rare items.

A similar notion has been recently proposed. In Metric Social Networks [42],
peers establish links based on query histories, thus forming overlay networks for
improving the efficiency of similarity search. The main idea is to exploit the concept
of social networks, with peers creating relationships to other peers according to the
similarity of their data. Peer links are generated based on query results, trying to
identify peers that contributed significantly to the results of a query.

Cholvi et al. [5] propose the use of acquaintances as an extension to Gnutella-like
networks to improve searching. Peers with similar contents are linked together, so
that searches for a particular topic can be routed to more relevant peers in less time.
Semantic communities of peers are created in this way. The basic intuition of this
approach is that efficient searching is achieved because requests that initiate from a
particular community can be fulfilled within the community with high probability.

In [44], peers that share similar interests create shortcuts to each other, thus en-
riching the original overlay connections. The use of interest-based shortcuts en-
hances the basic search mechanism employed by Gnutella. Essentially, the creation
of interest-based groups of peers is quite similar to the concept of semantic overlay
networks.

The use of shortcuts has also been employed for generating semantic social over-
lay networks [29]. In the system called INGA, peers create and maintain shortcuts
to other peers in a lazy manner, by examining past queries both issued by the peer
itself and routed through the peer. Shortcuts are maintained at four different level
serving different purposes: (1) at the content provider layer, shortcuts are created
to remote peers which have successfully answered a query, (2) at the recommender

Distributed Semantic Overlay Networks 487

layer, information is maintained about remote peers who have issued a query, (3) at
the bootstrapping layer, shortcuts to well connected remote peers are kept, and (4)
at the network layer, connections are maintained to peers of the underlying network
topology. The authors study the comparative performance of INGA to the approach
presented in [44] and their results show that INGA performs better.

Yet another approach where peers collect and maintain information about other
peers that answered successfully past queries is presented in [48]. The authors study
query evaluation of RDF data distributed over data repositories. Similarly to previ-
ous works, the objective of keeping information of successful past query evaluation
is to enable future peer selection. This approach has been later extended, in order to
support ranking of peers [30].

Aberer et al. [1] present a similar gossip-based technique for creation of semantic
links among peers. The main focus of the paper is on producing global semantics
from local interactions among peers.

In [24], statistical language models on peers are used to describe peer contents.
Then SONs are created by having peers periodically exchange information about
their nearest neighbors in the semantic space. Through random meetings with other
peers, each peer maintains locally a set of references about interesting peers, which
will be used at query time.

Voulgaris et al. [52] propose an epidemic protocol for SON construction. This
is essentially a gossiping approach that enables peers to become familiar with other
semantically related peers. In this way peer clustering is performed using a semantic
proximity function that quantifies the semantic similarity of peers.

In [20], the authors study the problem of keeping SONs updated, without having
to reconstruct the overlay network. The approach is based on having a cluster rep-
resentative for each cluster, which assembles relocation requests and serves them
in a second phase. The cluster reformulation problem is modeled in a novel way as
a game, where peers decide which clusters to join based on potential gains in the
recall of their future queries.

6.2 Structured P2P

6.2.1 Clustering

In the context of structured P2P systems, several research papers have dealt with the
issue of improving the basic search provided by the underlying DHT. In general, two
are the main goals that should be achieved. First, in document retrieval applications,
support for semantic retrieval is required, in contrast to existing exact matching of
keywords to documents. Semantic overlay networks are useful in this direction, as
peers are organized based on the semantics of their content. Second, improvements
to the performance of the underlying structured P2P protocol can be achieved, using
SON-based techniques. The objective is to reduce the search cost and the increase
the precision of the search, by contacting only carefully selected peers.

488 Christos Doulkeridis et al.

Tang et al. [47] propose pSearch, a system for SON creation on top of structured
P2P networks. The approach is based on the use of LSI to compute the (multidi-
mensional) semantic key that can provide the coordinates for a document in a CAN
network, and then use a nearest-neighbor search technique in order to find appropri-
ate documents. Thus the indices of semantically related documents are assigned to
the same or neighboring peers in the overlay.

Improvements to the approach are presented in WonGoo [31]. Mainly the ap-
proach tries to improve on the costly update process of pSearch. This is achieved
by computing LSI of terms not documents, so as terms in a corpus are not signif-
icantly affected when the corpus changes, the LSI of terms do not need to be up-
dated. In terms of the actual SON generation, WonGoo uses similar techniques with
pSearch.

However, some of the inherent problems of LSI, like processing cost and choos-
ing number of dimensions, make it difficult to employ this technique in a large-
scale dynamic document repository. Furthermore, both [25, 47] assume a central
LSI computation, which presumes that all documents or a sample of reasonable size
must be assembled at a central location, which is infeasible for a large P2P system,
especially when acquisition of global knowledge is impossible.

In [18], the SWOP protocol for construction of small-world P2P overlays has
been proposed. Similar to other papers, peers maintain cluster links and long
links to neighboring and distant nodes respectively. In this way, small-world over-
lay network can improve the performance of the underlying structured P2P, in
this case Chord. Furthermore, exploiting the nice properties of small world net-
work, the authors propose an effective object replication algorithm, suitable for
handling dynamic query workloads for popular objects, such as the flash crowd
scenario.

6.2.2 Classification

There are only few papers that use classification techniques for semantic overlay
network creation over structured P2P systems.

Liu et al. [25] propose HSPIR, a hierarchical SON based on CAN [38] and Range
Addressable Network [21]. Support for semantics is achieved by using Latent Se-
mantic Indexing (LSI) [10]. A document is represented using the vector space model
and LSI and it is classified using support vector machines. A query is classified in
order to match a topic and then routed to the appropriate peer responsible for this
topic using CAN. Then this peer forwards the query to other peers inside the SON
in a hierarchical way, exploiting the range addressable network.

In [27], the authors present a system that exploits existing classifications of peers
in taxonomies, in order to build overlays with peers based on taxonomy information.
This enables the creation of Content-based Overlay Networks (CONs), which is es-
sentially a content-based grouping of peers. One advantage of CONs over traditional
DHT-based systems is that queries that retrieve only few results can be broadened
exploiting the information stored in the taxonomy.

Distributed Semantic Overlay Networks 489

6.2.3 Gossip-Based

A similar approach to [5, 44] has been described in [34]. Peers perform random
meetings with other peers at regular intervals, thereby progressively establishing
connections to friendly peers. An advantage of this approach is that it respects peer
autonomy, as each peer may independently decide which connections to create and
which to avoid. Another nice feature of this family of techniques is adaptivity to
changes in the peer’s underlying content and interests. The authors present this SON
generation method as an improvement of P2P web search over a structured P2P
infrastructure [32].

A different notion of SONs, as outlined in [2], is related to schema mappings
and peers that are logically interconnected through schema mappings. The GridVine
system is built on top of a structured P2P network, called P-Grid. Through local
schema translations and semantic gossiping, global SONs are created.

6.3 Evaluation

In this section, we present a meaningful evaluation of the aforementioned ap-
proaches. The aim is to identify their comparative advantages and disadvantages
based on the nice properties that are supported by each approach. A summary of
this comparison is presented in Table 2.

A set of quality indices is employed, in order to perform the evaluation. A SON
generation method is evaluated based on its adherence to the following properties:
distributed, decentralized, unsupervised, scalable, delf-organizing, autonomy. For a
more general discussion regarding the requirements for SON generation we refer
to [50].

The rationale for classifying a SON generation algorithm is briefly explained in
the following. An algorithm is distributed when it is executed at several sites, in-
stead of a single one. Most SON generation algorithms fulfill this criterion, with
few exceptions, for example the approach in [19] describes a peer clustering algo-
rithm that is not distributed. Decentralization characterizes algorithms that do not
require a centralized location for assembling data or processing algorithms. For in-
stance, pSearch [47] requires the computation of LSI in a centralized manner, there-
fore it is not decentralized. The distinction between supervised and unsupervised
approaches is easy, as it is based on the existence of background knowledge or the
use of supervised learning techniques. Scalability is an important requirement and
it is not always supported by SON generation methods. An approach is deemed
scalable if it can scale up to hundreds of thousands of peers, as opposed to some
hundreds or thousands of peers only. For such large-scale networks, it is unclear
whether gossip-based approaches can produce results of acceptable quality, as they
are usually evaluated at much smaller scale. Self-organization is a necessary prop-
erty for P2P systems, and approaches that work in a bottom-up manner, starting at
peer level and converging at some fixed point without external intervention, usually

490 Christos Doulkeridis et al.

satisfy this requirement. Peer autonomy is the typical case for SON creation meth-
ods in unstructured P2P networks, however it is often violated in structured P2P
systems, when peers are assigned specific parts of the global index.

D
is

tr
ib

ut
ed

D
ec

en
tr

al
iz

ed
U

ns
up

er
vi

se
d

Sc
al

ab
le

Se
lf

-o
rg

an
iz

in
g

A
ut

on
om

y

DESENT [12]
√ √ √ √ √ √

Distributed K-means [15]
√ √ √ √

SSW [23]
√ √ √ √ √

Klampanos et al. [19]
√ √ √ √

Topic-segmented overlays [3]
√ √ √

Fairness Index [49]
√ √ √ √ √

Super-peers [13]
√ √ √ √ √ √

iClusterDL [37]
√ √ √ √ √

iCluster [35]
√ √ √ √ √

Unstructured P2P REMINDIN’ [48]
√ √ √ √ √

Associative overlays [7]
√ √ √ √ √

Shortcuts [44]
√ √ √ √ √

INGA [29]
√ √ √ √ √

Acquaintances [5]
√ √ √ √ √

Metric social networks [42]
√ √ √ √ √

SON reformulation [20]
√ √ √ √ √

Epidemic protocol [52]
√ √ √ √ √

Chatty Web [1]
√ √ √ √ √

Language models [24]
√ √ √ √ √

Semantic peer [26]
√ √ √ √ √

pSearch [47]
√ √ √

HSPIR [25]
√ √ √

WonGoo [31]
√ √ √

Structured P2P SWOP [18]
√ √ √ √ √

p2pDating [34]
√ √ √ √ √

Content-based overlays [27]
√ √ √

GridVine [2]
√ √ √

Table 2 Evaluation of existing semantic overlay network techniques

7 Summary and Future Trends

In this chapter, distributed semantic overlay networks for peer-to-peer systems
have been presented. Having described the requirements for overlay construction,
a semantic overlay network generation algorithm with salient features has been

Distributed Semantic Overlay Networks 491

presented. Furthermore, searching over semantic overlay networks has been dis-
cussed, demonstrating the advantages in terms of improved performance. A number
of applications can be deployed exploiting semantic overlay networks and two such
examples have been presented, namely P2P web search and P2P image retrieval.
Finally, a comprehensive overview of the research related to semantic overlay net-
works has been conducted.

Future research related to semantic overlay networks looks promising. One re-
search area that has attracted interest lately is social networks. Semantic overlay
networks can help to identify social communities in the case that such explicit in-
formation is not available. In addition, more advanced tasks like social network
mining can be performed using techniques and experiences from semantic overlays.

Another interesting research direction is peer ranking in the context of semantic
overlays. Most approaches so far consider peers inside a SON as equal, however
there exist several applications that could exploit ranking such peers according to
specific criteria. For example, in the case that an application needs to return a few
results fast to the user, contacting the highest ranked peers instead of all, would
result in savings in response time. Such an application is top-k retrieval, which is
quite common in today’s web search.

Personalization is an interesting topic that can be studied in the context of seman-
tic overlay networks. In scenarios where users have different preferences or when
objective criteria either do not exist or are not helpful, it is not possible to estab-
lish commonly accepted semantic overlays. Thus it is interesting to study semantic
overlay generation and maintenance in uncertain environments.

In spite of the rich existing work in the field of SONs, several challenges have not
been efficiently addressed yet, therefore, distributed SON management is deemed as
a future promising research direction.

References

1. Aberer, K., Cudré-Mauroux, P., Hauswirth, M.: The chatty web: emergent semantics through
gossiping. In: Procedings of 12th International Conference on World Wide Web (WWW), pp.
197–206 (2003)

2. Aberer, K., Cudré-Mauroux, P., Hauswirth, M., Pelt, T.V.: GridVine: Building internet-scale
semantic overlay networks. In: Proceedings of International Conference on Semantic Web
(ISWC), pp. 107–121

3. Bawa, M., Manku, G.S., Raghavan, P.: SETS: Search enhanced by topic segmentation. In:
Proceedings of the 26th Annual International ACM Conference on Research and Development
in Information Retrieval (SIGIR), pp. 306–313 (2003)

4. Bender, M., Michel, S., Triantafillou, P., Weikum, G.: Global document frequency estimation
in peer-to-peer web search. In: Proceedings of 9th International Workshop on the Web and
Databases (WebDB), pp. 62–67 (2006)

5. Cholvi, V., Felber, P., Biersack, E.: Efficient search in unstructured peer-to-peer networks.
Tech. rep., Institut EURECOM (2003)

6. Clarke, I., Sandberg, O., Wiley, B., Hong, T.: Freenet: A distributed anonymous information
storage and retrieval system. In: Proceedings of the ICSI Workshop on Design Issues in
Anonymity and Unobservability, pp. 46–66 (2000)

492 Christos Doulkeridis et al.

7. Cohen, E., Fiat, A., Kaplan, H.: Associative search in peer-to-peer networks: Harnessing latent
semantics. In: Proceedings of the 22nd Annual Joint Conference of the IEEE Computer and
Communications Societies (INFOCOM) (2003)

8. Crespo, A., Garcia-Molina, H.: Routing indices for peer-to-peer systems. In: Proceedings of
the 22nd International Conference on Distributed Computing Systems (ICDCS), pp. 23–34
(2002)

9. Crespo, A., Garcia-Molina, H.: Semantic overlay networks for P2P systems. In: Proceedings
of the 3rd International Workshop on Agents and Peer-to-Peer Computing (AP2PC), pp. 1–13
(2004)

10. Deerwester, S.C., Dumais, S.T., Landauer, T.K., Furnas, G.W., Harshman, R.A.: Indexing
by latent semantic analysis. Journal of the American Society of Information Science 41(6),
391–407 (1990)

11. Doulkeridis, C., Nørvåg, K., Vazirgiannis, M.: The SOWES approach to P2P web search
using semantic overlays. In: Proceedings of 15th International Conference on World Wide
Web(WWW), pp. 1027–1028 (2006)

12. Doulkeridis, C., Nørvåg, K., Vazirgiannis, M.: DESENT: Decentralized and distributed se-
mantic overlay generation in P2P networks. IEEE Journal on Selected Areas in Communica-
tions (J-SAC) 25(1), 25–34 (2007)

13. Doulkeridis, C., Nørvåg, K., Vazirgiannis, M.: Peer-to-peer similarity search over widely dis-
tributed document collections. In: Proceedings of the 6th Workshop on Large-Scale Dis-
tributed Systems for Information Retrieval (LSDS-IR) (2008)

14. Doulkeridis, C., Vlachou, A., Kotidis, Y., Vazirgiannis, M.: Peer-to-peer similarity search in
metric spaces. In: Proceedings of the 33rd International Conference on Very Large Data
Bases(VLDB), pp. 986–997 (2007)

15. Eisenhardt, M., Mueller, W., Henrich, A.: Classifying documents by distributed P2P cluster-
ing. GI Jahrestagung pp. 286–291 (2003)

16. Ganti, V., Ramakrishnan, R., Gehrke, J., Powell, A.L., French, J.C.: Clustering large datasets
in arbitrary metric spaces. In: Proceedings of the 15th International Conference on Data En-
gineering (ICDE), pp. 502–511 (1999)

17. Gnutella. http://en.wikipedia.org/wiki/Gnutella
18. Hui, K.Y.K., Lui, J.C.S., Yau, D.K.Y.: Small-world overlay P2P networks: Construction, man-

agement and handling of dynamic flash crowds. Computer Networks 50(15), 2727–2746
(2006)

19. Klampanos, I.A., Jose, J.M.: An architecture for information retrieval over semi-collaborating
peer-to-peer networks. In: Proceedings of the 2004 ACM Symposium on Applied Computing
(SAC), pp. 1078–1083 (2004)

20. Koloniari, G., Pitoura, E.: Recall-based cluster reformulation by selfish peers. In: ICDE Work-
shops, pp. 200–205 (2008)

21. Kothari, A., Agrawal, D., Gupta, A., Suri, S.: Range addressable network: A P2P cache archi-
tecture for data ranges. In: Proceedings of the 3rd International Conference on Peer-to-Peer
Computing (P2P), p. 14 (2003)

22. Li, J., Loo, B., J.M.Hellerstein, Kaashoek, M., Karger, D., Morris, R.: On the feasibility of
peer-to-peer web indexing and search. In: Proceedings of the 2nd International Workshop on
Peer-to-Peer Systems (IPTPS), pp. 207–215 (2003)

23. Li, M., Lee, W.C., Sivasubramaniam, A.: Semantic small world: An overlay network for peer-
to-peer search. In: Proceedings of the 12th IEEE International Conference on Network Proto-
cols (ICNP), pp. 228–238 (2004)

24. Linari, A., Weikum, G.: Efficient peer-to-peer semantic overlay networks based on statisti-
cal language models. In: Proceedings of Workshop on Information Retrieval in Peer-to-Peer
Networks (P2PIR) (2006)

25. Liu, F., Li, M., Huang, L.: Distributed information retrieval based on hierarchical semantic
overlay network. In: Proceedings of the 3rd International Conference on Grid and Cooperative
Computing (GCC), pp. 657–664 (2004)

Distributed Semantic Overlay Networks 493

26. Lodi, S., Penzo, W., Mandreoli, F., Martoglia, R., Sassateli, S.: Semantic peer, here are the
neighbors you want! In: Proceedings of 11th International Conference on Extending Database
Technology (EDBT), pp. 26–37 (2008)

27. Löser, A.: Taxonomy-based overlay networks for P2P systems. In: Proceedings of the 8th
International Database Engineering and Applications Symposium (IDEAS), pp. 407–412
(2004)

28. Löser, A., Naumann, F., Siberski, W., Nejdl, W., Thaden, U.: Semantic overlay clusters within
super-peer networks. In: Proceedings of the 1st International Workshop on Databases, Infor-
mation Systems, and Peer-to-Peer Computing (DBISP2P) (2003)

29. Löser, A., Staab, S., Tempich, C.: Semantic social overlay networks. IEEE Journal on Selected
Areas in Communications 25(1), 5–14 (2007)

30. Löser, A., Tempich, C.: On ranking peers in semantic overlay networks. In: Wissensmanage-
ment, pp. 209–216 (2005)

31. Lv, J., Cheng, X.: WonGoo: A pure peer-to-peer full text information retrieval system based
on semantic overlay networks. In: Proceedings of the 3rd IEEE International Symposium on
Network Computing and Applications(NCA), pp. 47–54 (2004)

32. Michel, S., Triantafillou, P., Weikum, G.: Minerva∞: A scalable efficient peer-to-peer search
engine. In: Proceedings of 6th International Middleware Conference, pp. 60–81 (2005)

33. Nejdl, W., Wolpers, M., Siberski, W., Schmitz, C., Schlosser, M., Brunkhorst, I., Löser,
A.: Super-peer-based routing and clustering strategies for RDF-based P2P networks.
In: Proceedings of the 12nd International Conference on World Wide Web (WWW),
pp. 536–543 (2003)

34. Parreira, J.X., Michel, S., Weikum, G.: p2pDating: Real life inspired semantic overlay net-
works for web search. In: Proceedings of 2005 Workshop on Heterogeneous and Distributed
Information Retrieval (HDIR) (2005)

35. Raftopoulou, P., Petrakis, E.G.M.: iCluster: A self-organizing overlay network for p2p infor-
mation retrieval. In: Proceedings of the 30th European Conference on IR Research (ECIR),
pp. 65–76 (2008)

36. Raftopoulou, P., Petrakis, E.G.M.: A measure for cluster cohesion in semantic overlay net-
works. In: Proceedings of the 6th Workshop on Large-Scale Distributed Systems for Informa-
tion Retrieval (LSDS-IR) (2008)

37. Raftopoulou, P., Petrakis, E.G.M., Tryfonopoulos, C., Weikum, G.: Information retrieval and
filtering over self-organising digital libraries. In: Proceedings of the 12th European Confer-
ence on Research and Advanced Technology for Digital Libraries (ECDL) (2008)

38. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Schenker, S.: A scalable content-
addressable network. In: Proceedings of International Conference on Data Communication
(SIGCOMM), pp. 161–172 (2001)

39. Ritter, J.: Why Gnutella can’t scale. No, really! http://www.darkridge.com/˜jpr5/
doc/gnutella.html (2001)

40. Rowstron, A., Druschel, P.: Pastry: Scalable, distributed object location and routing for large-
scale peer-to-peer systems. In: Proceedings of the International Middleware Conference, pp.
329–350 (2001)

41. Schlosser, M., Sintek, M., Decker, S., Nejdl, W.: HyperCuP – Hypercubes, ontologies and
efficient search on P2P networks. In: Proceedings of International Workshop on Agents and
Peer-to-Peer Computing (AP2PC), pp. 112–124 (2002)

42. Sedmidubský, J., Barton, S., Dohnal, V., Zezula, P.: Adaptive approximate similarity searching
through metric social networks. In: Proceedings of the 24th International Conference on Data
Engineering (ICDE), pp. 1424–1426 (2008)

43. Shen, H.T., Shu, Y., Yu, B.: Efficient semantic-based content search in P2P network. IEEE
Transactions on Knowledge and Data Engineering 16(7), 813–826 (2004)

44. Sripanidkulchai, K., Maggs, B., Zhang, H.: Efficient content location using interest-based lo-
cality in peer-to-peer systems. In: Proceedings of the 22nd Annual Joint Conference of the
IEEE Computer and Communications Societies (INFOCOM) (2003)

494 Christos Doulkeridis et al.

45. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A scalable peer-
to-peer lookup service for internet applications. In: Proceedings of International Conference
on Data Communication (SIGCOMM), pp. 149–160 (2001)

46. Suel, T., Mathur, C., wen Wu, J., Zhang, J., Delis, A., Kharrazi, M., Long, X., Shanmugasun-
daram, K.: ODISSEA: A peer-to-peer architecture for scalable web search and information
retrieval. In: Proceedings of 6th International Workshop on the Web and Databases (WebDB)
(2003)

47. Tang, C., Xu, Z., Dwarkadas, S.: Peer-to-peer information retrieval using self-organizing se-
mantic overlay networks. In: Proceedings of International Conference on Data Communica-
tion (SIGCOMM), pp. 175–186 (2003)

48. Tempich, C., Staab, S., Wranik, A.: REMINDIN’: Semantic query routing in peer-to-peer
networks based on social metaphors. In: Proceedings of the 13th International Conference on
World Wide Web (WWW), pp. 640–649 (2004)

49. Triantafillou, P., Xiruhaki, C., Koubarakis, M., Ntarmos, N.: Towards high performance peer-
to-peer content and resource sharing systems. In: Proceedings of the 1st Biennial Conference
on Innovative Data Systems Research (CIDR) (2003)

50. Vazirgiannis, M., Nørvåg, K., Doulkeridis, C.: Peer-to-peer clustering for semantic overlay
network generation. In: Proceedings of the 6th International Workshop on Pattern Recognition
in Information Systems (PRIS’06) (2006)

51. Vlachou, A., Doulkeridis, C., Mavroeidis, D., Vazirgiannis, M.: Designing a peer-to-peer ar-
chitecture for distributed image retrieval. In: Proceedings of the 5th International Workshop on
Adaptive Multimedial Retrieval: Retrieval, User, and Semantics (AMR), pp. 182–195 (2007)

52. Voulgaris, S., van Steen, M., Iwanicki, K.: Proactive gossip-based management of semantic
overlay networks. Concurrency and Computation: Practice and Experience 19(17), 2299–2311
(2007)

53. Yang, B., Garcia-Molina, H.: Designing a super-peer network. In: Proceedings of the 19th
International Conference on Data Engineering (ICDE), pp. 49–60 (2003)

54. Zhao, B., Kubiatowicz, J., Joseph, A.: Tapestry: An infrastructure for fault-tolerant wide-area
location and routing. Tech. rep., U.C.Berkeley (2001)

Self-adaptation and Self-organization for Search
in Social-Like Peer-to-Peer Networks

Lu Liu, Jie Xu, Duncan Russell, and Zongyang Luo

Abstract For resource discovery in social networks, people can directly contact
some acquaintances that potentially have knowledge about the resources they are
looking for. However, in current peer-to-peer (P2P) networks, each peer node lacks
a “social” network, making it difficult to route queries efficiently. Similarly to social
networks where people are connected by their social relationships, two peer nodes
can be linked in unstructured P2P networks if users in those nodes are interested
in each other’s resources. In this chapter, a social model is presented for adaptive
and efficient resource discovery in P2P networks by mimicking different human
behaviours in social networks.

1 Introduction

As an emerging technology, the innovations of peer-to-peer (P2P) networks offer
many interesting avenues of research for scientific communities. As a major design
pattern for future systems opposed to the traditional client-server paradigm, research
on P2P networks is extremely important, which will possibly significantly alter the

Lu Liu
School of Computing, University of Leeds, Leeds, LS2 9JT, UK,
e-mail: luliu@comp.leeds.ac.uk

Jie Xu
School of Computing, University of Leeds, Leeds, LS2 9JT, UK,
e-mail: jxu@comp.leeds.ac.uk

Duncan Russell
School of Computing, University of Leeds, Leeds, LS2 9JT, UK,
e-mail: duncanr@comp.leeds.ac.uk

Zongyang Luo
School of Computing, University of Leeds, Leeds, LS2 9JT, UK,
e-mail: scszluo@leeds.ac.uk

X. Shen et al. (eds.), Handbook of Peer-to-Peer Networking, 495
DOI 10.1007/978-0-387-09751-0 18, © Springer Science+Business Media, LLC 2010

496 Lu Liu, Jie Xu, Duncan Russell, and Zongyang Luo

way of day-to-day use of software systems. In the last few years, great achievements
have been made on P2P resource sharing and data transfer. However, we will not
reap all the benefits of utilising these resources in P2P networks unless we have an
efficient way to discover them. Efficient resource discovery remains a fundamental
challenge for large-scale P2P networks.

For resource discovery in social networks, people can directly contact some ac-
quaintances that potentially have knowledge about the resources they are looking
for. However, in current P2P networks, each peer node lacks a “social” network,
making it difficult to route queries efficiently. Similarly to social networks where
people are connected by their social relationships, two autonomous peer nodes can
be connected in unstructured P2P networks if users in those nodes are interested in
each other’s data. The similarity between P2P networks and social networks, where
peer nodes can be considered as people and connections can be considered as re-
lationships, leads us to believe that human tactics in social networks are useful for
improving the performance of resource discovery [1] by self-organising autonomous
peer nodes in unstructured P2P networks.

The theories of small world in social sciences have been used in the design
of P2P systems. But most studies of constructing small world in P2P networks
are based on the concept of organising peer nodes into groups or clusters (e.g.,
[2–5]). However, the simple community formation and discovery becomes much
more complex due to the lack of a central server. A large communication overhead
is required to compensate for the server for group management and resource discov-
ery.

In contrast, social communities are formed naturally by daily intercommunica-
tions between people. No additional overhead is required for maintenance of so-
cial communities. If P2P networks are self-organised like social networks, a large
communication cost for group construction, group maintenance and group discov-
ery can be saved, which can significantly improve overall performance of P2P
networks.

To address this problem, an Adaptive and Efficient Social-Like Peer-to-peer
(AESLP) model for resource discovery is presented in this chapter, which demon-
strates how human strategies in social networks can improve resource discovery
in P2P networks, by mimicking different human behaviours in social networks.
AESLP could be deployed on the top of any unstructured P2P networks to improve
the performance of resource discovery. Here AESLP is discussed by building upon
the Gnutella network which is a well-known unstructured P2P network.

Unlike previous models (e.g., [2–5]), we do not intentionally construct peer com-
munities. In contrast, AESLP is a self-organising and self-adaptive P2P system,
which gives peer nodes a social network, and lets them meet and connect to each
other. In AESLP, peer nodes have the ability to self-organise themselves in a coop-
erative manner similarly to social networks. Peer nodes that have the same interests
will gradually connect to each other and form peer communities spontaneously,
which can significantly eliminate communication overhead of previous community-
based P2P systems.

Self-adaptation and Self-organization for Search in Social-Like Peer-to-Peer Networks 497

2 Background

Sripanidkulchai [6] presented a content location solution in unstructured P2P net-
works in which peer nodes loosely organise themselves into interest-based structure.
When a peer node joins the system, it first searches the network by flooding to lo-
cate content. The lookup returns a set of peer nodes that store the content. These
peer nodes are potential candidates to be added to a “shortcut list”. One peer node
is selected at random from the set and added. Subsequent queries will go through
the peer nodes in the shortcut list. If a peer cannot find content from the list, it will
generate a lookup with Gnutella protocol. From their results, a significant amount
of flooding can be avoided which makes Gnutella a more competitive solution.

Sripanidkulchai’s model was further extended in study [7] on SWAP infrastruc-
ture [8] by classifying the shortcuts into four layers: shortcuts to remote peers which
have successfully answered a query; shortcuts to remote peers who have issued a
query; shortcuts to well connected remote peers; and shortcuts to peers on an un-
derlying default network. However, this shortcut overlay network is still constructed
based on routing by flooding and maintenance overhead is potentially increased with
a hierarchical architecture.

Cholvi [9] presented a topology adaptation mechanism to increase the search
efficiency. Each peer node created two types of links: neighbour links which connect
to a random set of peer nodes and acquaintance links which connect to a set of peer
nodes chosen based on common interests, and use these lists to efficiently route
queries in the network.

In [10], Bender proposed three routing methods: semantic query routing based
on the content similarity between the query and the data held by target peer nodes;
social query routing based on social relationships; and spiritual query routing based
on behavioural affinity. Their experimental results show that social networks are
able to boost search result quality in a P2P network.

Search techniques described above provide useful solutions to the problem of
resource discovery in P2P networks based on social phenomena. However, none
of these have explored the possibility of building a both self-adaptable and self-
organising P2P system. P2P systems are highly dynamic in nature. Each peer node
should have self-adaptability to modify its behaviour according to the environmen-
tal changes. In AESLP, each node is able to self-adapt searches by using different
types of queries according to its own situation and also self-justify forwarding de-
gree (number of receivers) of each query running through according to the proba-
bility of successfully finding the requested files. Moreover, different from any other
methods discussed above, AESLP enables peer nodes not only to forward queries
to the “good” nodes that can potentially offer the requested resources or know who
has the requested resources, but also to avoid sending queries to the “bad” nodes
that cannot help find any requested files. AESLP mimicks eight different human
behaviours in social networks and shows how human behaviours can bring about
benefit in improving the performance of resource discovery in P2P networks.

498 Lu Liu, Jie Xu, Duncan Russell, and Zongyang Luo

3 AESLP: Adaptive and Efficient Social-Like Peer-to-Peer

In this section, we will generate these eight different social behaviours based the
social theories that can be used in the resource discovery in P2P systems and then
mimick these social behaviours in a P2P network.

3.1 Knowledge Index Creation and Update

Social behaviour 1: in social networks, people remember and update potentially
useful knowledge from social interactions, and then random and diffuse behaviours
gradually become highly organised [11]. For example, if a man named Bob success-
fully borrows an Oxford English dictionary from his friend Alice, this successful
interaction will be remembered by Bob. When Bob needs this dictionary again, he
will preferentially seek help directly from Alice rather than other people. However,
if Alice does not have the Oxford English dictionary and cannot provide any useful
information to help Bob find this dictionary, Bob would avoid contacting Alice if he
needs the dictionary again in the near future.

Fig. 1 Main components of an AESLP node

Similarly to people in social networks, each peer node in the AESLP network
builds a knowledge index that stores associations between topics and the related
peer nodes by the results of searches. Each knowledge index includes two sub-lists
(as shown in Fig. 1): a friend list and a black list. In the friend list, peer nodes that
have successfully responded to the query are associated with the requested topics.
The query originator will put a neighbouring node into the black list associated
with the query topic, if no results on this topic are found by the peer node nor its
successor(s).

Self-adaptation and Self-organization for Search in Social-Like Peer-to-Peer Networks 499

AESLP uses a TTL (Time-to-Live) to prevent infinite propagation. TTL repre-
sents the number of times a message can be forwarded before it is discarded. In the
AESLP network, a newly joined node will send its first query to a set of randomly
selected peer nodes. As shown in Fig. 1, if a search is successful, the query origina-
tor updates its friend list to associate the peer nodes that have responded successfully
to the query with the requested topic. The new obtained knowledge is stored in the
local friend list. In the meantime, the query originator also removes invalid cached
knowledge in the local friend list according to the results of searches. The black
list is also updated with search results. If the query originator sends a request to a
peer node, but no results about the requested topic are found by queries via this peer
node, this node will be put into the black list of the query originator associated with
the requested topic.

Therefore, peer nodes can learn from the results of previous searches, which
makes future searches more focused. When more searches have been done, more
knowledge can be collected from search results. If this process continues, each node
can cache a great deal of knowledge that is useful to quickly find the peer nodes
with the required resources in the future.

Fig. 2 Structure of sub-lists in the knowledge index

In AESLP, the information saved in the sub-lists of knowledge index (including
the friend list and the black list) are maintained in a two-dimensional map. As shown
in Fig. 2, a list can contain a maximum of n topics and each topic is associated with
a maximum of m peer nodes, so that a maximum of n×m pairs of associations
between query topics and peer nodes can be stored in a list.

A Least Recently Used (LRU) policy were used to maintain a list without dupli-
cates, where the most recently used topic is at the top and the least recently used at
the bottom. The advantage of LRU for removing old index items is that it has con-
stant time and space overhead and can be very efficiently implemented. The least
recently used topic will be discarded when the list reaches its maximum n. In the
same way, the peer nodes associated with each topic are sorted by time last seen,
where the most recently seen node at the head and the least recently seen node at

500 Lu Liu, Jie Xu, Duncan Russell, and Zongyang Luo

the end. The least recently seen node will be dropped when the maximum size m is
reached.

Social behaviour 2: in social networks, some events with associated people fade
from a person’s memory with time [12] and a personal network is adjustable with
changing environments [13].

In the AESLP network, peer nodes can update their knowledge about other peer
nodes from daily search results. Some old and invalid knowledge is replaced by
new obtained knowledge. The invalid knowledge that fails to be updated with daily
searches will drop to the bottom of the lists and will be removed by using a LRU
policy, when the list reaches a maximum.

Fig. 3 Example of a knowledge collection

Figure 3 illustrates an example of knowledge collection process of a peer node.
Node A with an empty knowledge index searches for the files on the topic “radar
remote sensing”. Since no information is cached, node A will send the query to the
randomly selected nodes: node C, node D and node E. Then node D further forwards
the query to its neighbouring node F. In this case, the search is successful at node F.
Thus, node F responds to node A with the requested topic “radar remote sensing”.
Node A then associates node F with the topic “radar remote sensing” into the local
friend list. For a following query on “radar remote sensing”, node A can find node F
directly associated with the query from the local friend list and preferentially send
the query to node F rather than node D and node E.

As shown in Fig. 3, node A updates its black list with search results. Node E, a
neighbour of node A, will be added into the black list associated with the requested
topic “radar remote sensing”, because no results are found by node E nor its suc-
cessors. But node D will not be put into the black list, because node D’s successor,
node F, helps node D find the requested files successfully. If node A does the same

Self-adaptation and Self-organization for Search in Social-Like Peer-to-Peer Networks 501

search on “radar remote sensing” again, it will avoid forwarding the query to node
E, regarding the information in the black list.

3.2 Routing Algorithm for Simple Queries

3.2.1 Query Processing

Fig. 4 Query initialisation and processing

When a peer node generates a query, it will search the local friend list to find
some associated peer nodes. The query originator will prefer to send the query to
these peer nodes found from the friend list and avoid sending the query to associated
peer nodes in the black list (Fig. 4). The query originator also attaches a list of “black
nodes” associated with the query topic regarding the local black list to help message
receivers select peer nodes.

Fig. 5 Flowchart of query handling

As shown in Fig. 5, when a peer node receives a query, it will first check whether
the message has been already received. Redundant messages will be discarded with-
out further processing. Then the peer node will search the local content index to find

502 Lu Liu, Jie Xu, Duncan Russell, and Zongyang Luo

matched files. If the query needs to be further forwarded (T T L > 0), the message
receiver will use the local knowledge index to find associated peer nodes using the
AESLP routing algorithm and multicast the query to these peer nodes as shown in
Fig. 4.

Social behaviour 3: in a social network, communities are self-organised with re-
gard to the common interests. In the AESLP network, because links between peer
nodes are built according to the results of searches, a node has more probability
to link to other peer nodes with the same interests, which have files of interest to
him/her, with a high degree of likelihood. Therefore, peer nodes that have the same
interests will be highly connected to each other and form a virtual community spon-
taneously, which is a similar environment to Watts’s model [14] in social networks.

3.2.2 Adaptive Forwarding

Analogously to social networks, AESLP utilises a semantic approach to route
queries to a selected subset of neighbouring nodes on the P2P overlay. In addition,
AESLP also involves a dedicated strategy to address the network overload problem
of existing P2P systems (e.g., Gnutella).

In some existing query routing methods (e.g., [15–17], the number of peer nodes
to be forwarded in each hop is set to a static value. A fixed number of peer nodes
are selected in each hop neglecting the probability of finding the requested file in
these peer nodes. In order to conduct a more efficient search in AESLP, the number
of peer nodes to be forwarded is adjustable according to the correlation degree of
the selected node to the query between a minimal number FNmin and a maximum
number FNmax. When the correlation degree of a selected peer node is high, there
is a high possibility that the selected peer node may share a desired file or has the
knowledge about who shares the file. The probability of forwarding the query to
this peer node should also be high by defining a high cut-off of node selection. In
contrast, if the correlation degree is low, a low cut-off should be set to limit the
scope of querying.

(a) a static routing strategy (b) an adaptive routing strategy

Fig. 6 Self-adaptive routing

Self-adaptation and Self-organization for Search in Social-Like Peer-to-Peer Networks 503

Figure 6 shows examples of two routing strategies with a static number of re-
ceivers per hop (R = 3) and an adaptive number of receivers per hop (R = 2 ∼ 4),
respectively. In Fig. 6, the black dots represent the peer nodes that share the re-
quested resources, while the grey dots show the peer nodes that are highly correlated
with the query and know who has the requested resources. As shown in Fig. 6, the
adaptive routing strategy achieves better search performance by finding more target
nodes with fewer query messages.

3.2.3 Node Selection

Social behaviour 4: for resource discovery in social networks, people usually recall
information in memory to find the right people to contact. The persons recalled from
memory may directly relate to their requests. For example, Bob wants to borrow an
Oxford English dictionary and remembers that he once borrowed it from his friend
Alice. Therefore, he can directly contact Alice again for the dictionary.

Social behaviour 5: however, in most circumstances, people cannot find the per-
sons who are directly related to their requests, but people can find some acquain-
tances that potentially have knowledge about the resources they are looking for, or
can provide background information or give advice on how to find the resources
[18]. For example, Bob may never have borrowed or cannot clearly remember
whether he has ever borrowed an Oxford English dictionary. But Bob believes his
friend Alice, who is a linguist, probably has the dictionary or at least she has more
knowledge about who has the dictionary. In this case, the Oxford English dictionary
is in the area of linguistics and Bob has found that Alice has abundant knowledge on
the interest area of linguistics from previous intercommunications. Alice probably
does not have the dictionary, but she will use her own knowledge to help Bob find
the dictionary with a high likelihood.

The node selection procedure of AESLP is shown in Fig. 7, where n is the num-
ber of peer nodes that have already been selected in the first and second phase of
node selection. Message receivers only trust the information about the “black nodes”
provided by the query originator or by their own local black list concerning the se-
curity of information. When a peer node receives a query which needs to be further
forwarded, the local routing algorithm will exclude a list of black nodes provided by
the query originator from the node selection procedure together with the peer nodes
associated with the requested topic in the local black list.

The routing algorithm then starts the three-phase procedure of node selection:
searching for the directly related peer nodes, searching for the correlated peer nodes
and searching for random peer nodes, from the local friend list. In the first phase, the
routing algorithm searches for the peer nodes directly associated with the requested
topic from the local friend list and sorts them with the time of receipt. The peer
node that is inputted or updated most recently will be selected first. These directly
associated peer nodes have the greatest likelihood of finding the requested files.
Hence, at most FNmax peer nodes will be forwarded.

504 Lu Liu, Jie Xu, Duncan Russell, and Zongyang Luo

Fig. 7 Flowchart of the node selection procedure

However, the success probability of finding FNmax directly associated nodes in
the first phase is very low, especially for new peer nodes with little knowledge. If
there are not enough directly associated nodes found in the first phase, the algorithm
will move to the second phase that searches for the peer nodes sharing content asso-
ciated with the interest area of the requested topic in the local friend list. An interest
area in AESLP is a semantic area with a set of topics. The corresponding interest
area of a specific topic and the other topics in this interest area can be found from
the Open Directory Categories [19], which is the most widely distributed database

Self-adaptation and Self-organization for Search in Social-Like Peer-to-Peer Networks 505

with a hierarchical topic structure. AESLP users use the common topic hierarchy of
the Open Directory to formalise a query. When a user generates a query to search
files about the topic “Gnutella”, the query will be constructed as “Computer: Soft-
ware: Internet: Client: File Sharing: Gnutella”. The closest parent directory “File
Sharing” is the interest area of the topic “Gnutella”. The other topics in the same
area (BitTorrent, Gnutella, FastTrack, Napster, Freenet, Overnet and eDonkey) will
be used in the second phase of node selection. Users can also define a category for
their own query, if Open Directory cannot provide any satisfactory category for the
query.

These peer nodes sharing content associated with the other topics in the same
interest area of the requested topic will be sorted according to the degree of corre-
lation to the interest area of the requested topic. The routing algorithm prefers to
select the peer nodes with higher degrees of correlation rather than the peer nodes
with lower degrees of correlation. If two or more nodes have the same correlation
degree, the peer node that responded most recently will be put first.

Social behaviour 6: searching for a piece of information in social networks is
most likely a matter of searching the social network for an expert on the topic to-
gether with a chain of personal referrals from the searcher to the expert [20].

Social behaviour 7: in social networks, a person does not need to tell every-
body he/she is an expert in the areas which has been indicated with his/her social
behaviours.

In the AESLP network, it is not necessary for a peer node to declare its interest
since that has already been implied by its shared files. If a peer node has a large
amount of content in a particular area like an “expert”, it is very likely that it will
also have other content or knowledge on this area. In our simulations, the correlation
degree of a selected node in a particular area is generated by how many topics in the
area the peer node is associated with:

C =
nmatches

ntotal
(1)

where nmathes is the number of topics in this area that the peer node is associated
with and ntotal is the total number of topics in this area.

Different from any other P2P algorithm, the cut-off criteria R for the second
phase are different for different peer nodes between FNmax and FNmin. The cut-off
criterion R of peer node with respect to the query is determined by the correlation
degree of the peer node to the interest area of the requested topic with the equation:

R = Round(C× (FNmax−FNmin))+FNmin (2)

where the function Round(x) returns the closest integer to the given value x.
When the correlation degree of a peer node is very low (C ≈ 0), there is a low
likelihood to find the requested files from the peer node. Therefore, the probability
of querying the node should be low with a low cut-off (R ≈ FNmin). In contrast,
when the selected node is highly correlated with the area of the requested topic by
matching most topics in this area (C ≈ 1), the cut-off of the node R≈ FNmax.

506 Lu Liu, Jie Xu, Duncan Russell, and Zongyang Luo

Fig. 8 Flowchart of the second phase of node selection

The flowchart in Fig. 8 shows the second phase of the node selection algorithm.
As shown in the flowchart, the peer nodes associated with the interest area of the
requested topic are sorted with their correlation degrees. Because peer nodes are
taken from the list in order, the cut-offs of these peer nodes R will decrease with
the reduced correlation degrees C (according to Equation (2)). But n is increased by
one for each new node selected. The query will be sent to the selected peer nodes
only when the number of selected nodes n is smaller than its cut-off to the query
R(n < R).

If n ≥ R, node selection procedure is completed in the second phase. If all peer
nodes associated with the area of the requested topic (C > 0) have been taken from
the list in the second phase but there are still not enough nodes selected n < FNmin,

Self-adaptation and Self-organization for Search in Social-Like Peer-to-Peer Networks 507

the selection procedure will move to the third phase to randomly pick up nodes
from the rest of cached nodes irrelevant to the requested topic as well as its interest
area (C = 0) and forward the query to them, until FNmin peer nodes are forwarded
(n = FNmin).

3.2.4 Query Routing Example

Figure 9 illustrates a simple example of query routing with AESLP where FNmax = 5
and FNmin = 1. Node A receives a query with the topic “radar remote sensing”.
Node A will first check the black list to exclude node F which is associated with
the requested topic “radar remote sensing” in the black list. In the first round of
selection, node B is selected from the local friend list which is directly associated
with the requested topic “radar remote sensing”. The number of selected nodes n is
increased by one: n = 0→ n = 1.

Fig. 9 Query routing example (two nodes selected)

Due to n < FNmax(n = 1,FNmax = 5), node A further searches for the peer nodes
associated with the topics “optical remote sensing”, “laser remote sensing”, and
“visual remote sensing” which are from the same interest area of the requested topic
“radar remote sensing”. In this case, node A gets node C and node D associated with
these topics from the friend list. Since node C is associated with two topics “optical
remote sensing” and “laser remote sensing”, but node D is associated with only
one topic “optical remote sensing” in the area composed by the four topics, node C
(CC = 2

4) is more correlated with the area of remote sensing than node D (CD = 1
4)

according to the cached knowledge. Hence, node C will be sorted on the top of node
D in the list.

The cut-off of node C is RC = 2
4 × (5− 1)+ 1 = 3 and the cut-off of node D is

RD = 1
4 × (5− 1) + 1 = 2 by using Equation (2). The query will be sent to node

C, because the number of selected nodes is smaller than the cut-off of node C:
n < RC(n = 1,RC = 3). Then n = 1→ n = 2. The selection procedure will complete

508 Lu Liu, Jie Xu, Duncan Russell, and Zongyang Luo

and node D is not selected, because n ≥ RD(n = 2,RD = 2). The actual number of
queried nodes is two in this case.

Node C may not have the requested files, but it will use its own cached knowledge
to propagate the query further and try to find the peer nodes for the query that will
have a higher likelihood of success. In this example, node C knows that node G is
associated with the requested topic according to its local friend list and the requested
file is obtained in node G.

Fig. 10 Query routing example (three nodes selected)

Figure 10 illustrates a similar example, where node D is associated with one more
topic “visual remote sensing” in the same area of the requested topic. In this case,
node D is also selected, because n < RD (where n = 2 and RD = 2

4 ×(5−1)+1 = 3))
and the actual number of nodes to be queried is three in the second example.

3.3 Routing Algorithm for Multi-Topic Queries

3.3.1 Routing Algorithm for Conjunctive Queries

AESLP also supports queries with conjunctive topics, such as a query on “radar
remote sensing” and “mini satellite”. For a conjunctive query with multiple topics, a
search is successful on a peer node if a requested file is found by matching all query
topics. This peer node will respond to the query originator with the requested topics.
Moreover, the peer nodes that can find any requested topic of the conjunctive query
will also inform the query originator with the matched topic(s), even though they
cannot find the requested file completely matching all query topics. This response
information will be cached by the query originator for future queries.

Figure 11 shows an example of the knowledge collection process with conjunc-
tive queries. Node A with an empty knowledge index searches for files on “radar
remote sensing” and “optical remote sensing”, which randomly sends the query

Self-adaptation and Self-organization for Search in Social-Like Peer-to-Peer Networks 509

Fig. 11 Example of knowledge collection of a conjunctive query

to node C, node D and node E. The query is successful at node C by finding the
requested file matching both the requested topics “radar remote sensing” and “op-
tical remote sensing”. Thus, node C responds to node A. Node A then adds node
C associated with the two topics into the local friend list: “radar remote sensing”
and “optical remote sensing”. Node E and node F cannot find any matched files, but
they can partially satisfy the query by matching one of the requested topics on either
“radar remote sensing” or “optical remote sensing”. Node E and node F respond to
node A which are then associated with a matched topic into the friend list of node A.
For a following query on “radar remote sensing”, node A can find at least two peer
nodes, node C and node F, directly associated with the query from the local friend
list.

As shown in Fig. 11, node D’s successor, node F, helps node D find the informa-
tion about one of the requested topics “radar remote sensing”, but no results about
the other query topic “optical remote sensing” are found in node D and its succes-
sor(s) (e.g., node F). Therefore, node D will be put into the black list with the topic
“optical remote sensing” only. If node A does the same search on “radar remote
sensing” and “optical remote sensing” again, the node routing algorithm in node
A will avoid forwarding the query, regarding information in the black list, to node
D, because node D is associated with one of the requested topics: “optical remote
sensing”, in the black list.

Similarly to the single-topic query processing, when a node receives a conjunc-
tive query Q which needs to be forwarded, the “black nodes” that are provided by the
query originator and the “black nodes” that are associated with any requested topic
in the local black list will be excluded from the three-phase selection procedure.

In the first phase, the peer nodes that can completely satisfy the conjunctive query
will be selected from the local friend list with FNmax. If n < FNmax, the node se-
lection procedure will continue to the second phase to find the peer nodes that are

510 Lu Liu, Jie Xu, Duncan Russell, and Zongyang Luo

Fig. 12 Flowchart of the second phase of node selection procedure for multi-topic queries

correlated with the query as shown in Fig. 12. Two kinds of peer nodes will be con-
sidered: the peer nodes that are associated with any topic of the conjunctive query
and the peer nodes that are associated with the interest area of any topic of the
conjunctive query.

Analogously to the single-topic query processing, the correlation degree of a peer
node to the interest area of a requested topic T is given by Equation (1):

CT =
nmatches

ntotal

For a conjunctive query with N topics t1 ∧ t2 ∧ t3 . . .∧ tN (where ∧ represents
the logical conjunction function: “and”), a peer node is associated with t1, t2, . . . , tm,
and is not associated with tm+1, tm+2, . . . , tm+k but with corresponding correlation
degrees Cm+1,Cm+2, . . . ,Cm+k(N = m + k).

Self-adaptation and Self-organization for Search in Social-Like Peer-to-Peer Networks 511

The correlation degree Cindirect of the interest areas that the peer node is not
associated with is given by:

Cindirect = E(Cti) =
1
k

m+k

∑
i=m+1

Cti

We prefer to forward the query to the peer nodes that are directly associated
with the most topics of the conjunctive query (with ratio Cdirect) and simultaneously
highly correlated with the interest areas of the requested topics they are not associ-
ated to (with ratio Cindirect). The correlation degree of the node to the conjunctive
query Q is given by:

CQ = Cdirect +(1−Cdirect)×Cindirect

=
m

m+ k
+

1
m+ k

×
m+k

∑
i=m+1

Cti (i = m+1, . . . ,m+ k)
(3)

The cut-off criterion R of peer node with respect to the conjunctive query is
determined by the correlation degree of the peer node to the conjunctive query Q
with the Equation (2):

RQ = Round(CQ× (FNmax−FNmin))+FNmin

If n < FNmin, the selection procedure will proceed to the third phase to randomly
pick up peer nodes from the rest of cached nodes irrelevant to the requested topics
as well as their interest areas (C = 0) with cut-off FNmin.

Figure 13 shows an example of conjunctive query routing by AESLP where
FNmax = 5 and FNmin = 1. Suppose node A generates a conjunctive query with two
topics: “mini satellite” and “radar remote sensing”. Node A will first check the local
black list to exclude node F which is associated with one of the requested topics
“mini satellite” in the black list.

In the first round of selection, node B is selected which is directly associated with
both the topics “mini satellite”and “radar remote sensing”. Due to n < FNmax(n =
1,FNmax = 5), node A will further retrieve the peer nodes that are associated with
any topic of the conjunctive query and the peer nodes that are associated with the
interest area of any topic of the conjunctive query according to the local friend list.
In this case, node A finds node C, node D and node E from the local friend list, which
are all associated with one of the requested topics: “mini satellite”. Among them,
node C is also associated with two topics “optical remote sensing” and “laser remote
sensing”in the same area of the other requested topic “radar remote sensing”, node D
is associated with one topic “optical remote sensing”, but node E is associated with
none in this area. Thus, node C (CC = 1

2 + 1
2 × 2

4 = 3
4 ,RC = Round(3

4 ×(5−1)+1) =
4) is more correlated with the query than D (CD = 1

2 + 1
2 × 1

4 = 5
8 ,RD = Round(5

8 ×
(5− 1) + 1) = 4) and node E (CE = 1

2 ,RE = Round(1
2 × (5− 1) + 1 = 3)). The

request will be sent to node C, because the number of selected nodes to be queried is

512 Lu Liu, Jie Xu, Duncan Russell, and Zongyang Luo

Fig. 13 Conjunctive query routing example (three nodes selected)

smaller than the cut-off of node C: n < RC(n = 1,RC = 4). Then n+1→ n = 2. Node
D is also selected because n < RD(n = 2,RD = 4) and n+1→ n = 3. The selection
procedure then stops and node E is not selected because n≥ RE(n = 3,RE = 3). The
actual number of nodes to be queried is three in this case.

Fig. 14 Conjunctive query routing example (four nodes selected)

However, if node E is not only associated with the requested topic “mini satel-
lite”, but also with the topic “laser remote sensing” which is in the same area of the
other requested topic “radar remote sensing” as in Fig. 14, node E is also selected,
because n < RE (where n = 3,CE = 1

2 + 1
2× 1

4 = 5
8 ,RE = Round(5

8×(5−1)+1)= 4)
and the actual number of nodes to be queried is four.

Self-adaptation and Self-organization for Search in Social-Like Peer-to-Peer Networks 513

3.3.2 Routing Algorithm for Query Packs

A query pack consists of several conjunctive queries, like (“mini satellite” and
“radar remote sensing”) or (“pico satellite” and “visual remote sensing”). To route
a query pack, the node selection algorithm first excludes the peer nodes that are
associated with any conjunctive query in the local black list and in the black list
provided by the query originator. The node selection algorithm then tries to find the
peer nodes that can satisfy any conjunctive query in the query pack from the local
friend list. A maximum of FNmax peer nodes will be selected.

In the second phase, the routing algorithm produces a list of peer nodes that are
associated with any topic of the query pack and the peer nodes that are associated
with the interest area of any topic of the query pack. For a given peer node, the rout-
ing algorithm generates a list of correlation degrees (C1,C2, . . . ,CM) of these peer
nodes to all conjunctive queries (Q1,Q2, . . . ,QM) in the query pack (Q1∨Q2 . . . ,QM)
by using Equation (3) (where ∨ represents the logical disjunction function “or”).
The query pack is successful if any conjunctive query in the query pack can be sat-
isfied. We use the largest correlation degree of a conjunctive query as the correlation
degree of the peer node to the query pack C = MAX(C1,C2, . . . ,CM) to generate the
cut-off R of the peer node by using Equation (2).

Let’s reuse the example network illustrated in Fig. 13 as an example of message
routing of the query pack (Q1 ∨Q2), where Q1 = “mini satellite” ∧ “radar remote
sensing” and Q2 = “pico satellite” ∧ “visual remote sensing”). For node D, the cor-
relation of the first conjunctive query Q1 is CQ1 = 1

2 + 1
2 × 1

4 = 5
8 and the correlation

of the second conjunctive query Q2 is CQ2 = 1
2× 1

4 + 1
2× 1

4 = 1
4 . Thus, the correlation

degree of node D to the query pack C = MAX(CQ1 ,CQ2) = 5
8 .

These peer nodes are sorted according to their correlation degrees to the query
pack. The query pack is forwarded to a given peer node only in case the cut-off R of
the peer node is larger than the number n of selected peer nodes, which is the same
as the single-topic query and the single conjunctive query processing.

3.4 Adaptive Query

In order to efficiently search the network, two kinds of queries are generated at
different stages of searches, known as ordinary queries and active queries. For the
ordinary queries, the target nodes sharing the desired files will respond to the infor-
mation related to the requested topic only. For the active queries, the target nodes
will not only respond to the requested topic but also inform the query originator of
other associated topics it shares in the same interest area.

As illustrated in Fig. 15, when the query originator generates a query with the
topic “radar remote sensing”, the target node that shares the desired files will answer
the query about “radar remote sensing” as well as the associated topics “optical
remote sensing”, “laser remote sensing” and “visual remote sensing”. The newly

514 Lu Liu, Jie Xu, Duncan Russell, and Zongyang Luo

Fig. 15 Ordinary query and active query of AESLP

obtained information will be put into the local friend list by the query originator for
future queries.

With these active queries, the query originator can gather more pieces of knowl-
edge from each successful query, but extra traffic will be generated for shipping such
additional knowledge. The extra traffic could be significant if every node generates
all queries in this manner, which is difficult to be handled by bandwidth-limited
networks. In contrast, if peer nodes search the network only with ordinary queries,
each new node accumulates knowledge slowly by gathering one piece of knowledge
from each successful query, especially for those peer nodes which are seldom online
or request the network.

To address these issues, AESLP adopts a trade-off solution for bandwidth-limited
networks. The recently joined nodes will utilise active queries to quickly accumu-
late a large amount of useful information regarding their interests. After the cached
knowledge reaches a certain threshold ratio r of the maximum size of the friend list
nmax knowledge, the peer nodes will use ordinary queries to discover the required files
with low traffic cost. If the ratio of cached knowledge rcached ≤ r, active queries will
be used to search the network. Otherwise, ordinary queries will be adopted. More-
over, this process is not only applicable for recently joined nodes, but also enables
peer nodes to quickly recover from unpredictable knowledge loss.

Social behaviour 8: the query generation strategy of AESLP is similar to the
human strategy in social networks where newly joined persons normally are more
active to adapt to new environments. When a person joins to a new society, he/she
will not only passively learn knowledge by remembering useful information from
daily occasional events happening in the society, but also actively collect potentially

Self-adaptation and Self-organization for Search in Social-Like Peer-to-Peer Networks 515

useful knowledge consciously. When he/she seeks out help in a new society, com-
munication with the other people who can be of assistance is not normally limited
to a strict exchange of assistance; often, he/she would like to know more about the
people who can be of assistance in order to expand his/her knowledge of the new
society, which may be useful at a later time.

4 Simulations Methodology

In this section, we evaluate the performance of AESLP by simulations in a dynamic
environment with a comparison to other relevant methods. The AESLP simulator
is programmed using the Java Language. The main components are illustrated in
Fig. 16.

Fig. 16 Structure of the AESLP simulator

516 Lu Liu, Jie Xu, Duncan Russell, and Zongyang Luo

4.1 Content Generation and Distribution

In the simulations of AESLP, each file is shared with a few topic keywords. The
topic keyword distribution to files is uneven in P2P file sharing networks, where
popular topics are widely distributed to files but unpopular topics only attract little
attention by people. This phenomenon affects the performance of resource discovery
in P2P networks, where files with popular topics can be easily targeted, but files
with unpopular topics are difficult to be discovered. Previous studies observe that
the distribution of keywords in files could be approximated by the Zipf’s law in the
form of y ∼ 1

xα , where y is frequency, x is rank and α is constant. The estimated
distribution in the study [20] has been followed in our simulations to generate topic
keyword distribution to files. In each simulation, we generate 1280 topics, distribute
them to 10,000 files, and each file is randomly assigned three topics.

Previous measurement studies have shown that the distribution of the number of
shared files in P2P networks is also unbalanced. Some nodes observed in existing
P2P networks tend to download a large number of files, but share few files or none
at all [21]. The performance of P2P networks is dependent on the number of shared
files each peer node chooses to share. These requested files are more likely to be
discovered in the peer nodes sharing a large volume of files. Moreover, these peer
nodes also possibly attract more queries from many other peer nodes. In the simula-
tions, we implement the distribution of file sharing in the measurement study [20],
where about 42% of peer nodes share 10 files or less including 27% of “free-riders”
who share nothing to the network.

The measurement study [22] for the music sharing network in Stanford shows
that most peer nodes only share one or a few styles of music that are highly corre-
lated with users’ interests. In our simulations, each peer node is randomly assigned
a primary interest area and shares a number of files to the network with a probabilis-
tic method: these shared files are mostly relevant to the primary interest area of a
node with a probability of 90%, but are occasionally irrelevant to this area. For files
relevant to the primary interest area, at least one of the topics of each file should be
in the interest area of the hosting node. A total of 32 interest areas are generated and
each covers 40 topics.

4.2 Topology Initialisation and Evolution

In order to better observe the evolution of network topology in the simulations,
we set up a growing network started with a small-size random network (with 100
peer nodes). In the beginning of each simulation, each peer node randomly connects
to four peer nodes bi-directionally to generate a random topology. Since there has
been no interaction between peer nodes at the beginning of each simulation, each
peer node keeps an empty knowledge index. Each list of the knowledge index can
contain a maximum of 60 topics and each topic can be associated a maximum of 60
peer nodes. The threshold ratio r of AESLP is defined as 80%.

Self-adaptation and Self-organization for Search in Social-Like Peer-to-Peer Networks 517

Some popular P2P networks are growing very fast on the Internet [23]. However,
previous measurement studies (e.g., [24]) have observed that the size of some mature
P2P networks stays constant. The phenomenon of quick growth to stability has not
been considered by any other P2P simulation, to the best of my knowledge. The
simulation network starts from a small set of peer nodes (100 peer nodes). A number
of peer nodes (30 peer nodes) join the network each day of the first month in each
simulation until the network reaches 1000 peer nodes. Then the network becomes a
mature network with 1000 peer nodes.

4.3 Network Churns

In the dynamic Internet environment, network churns are usually caused firstly by
peer nodes frequently going online and offline and secondly by content sharing and
removing. A high network churn significantly influences the performance of P2P
systems, which even leads to the maintenance difficulty of consistent DHTs [25–27]
in structured P2P systems. The study [24] measures network churns by using user
IDs instead of IP addresses which have been used in previous measurement studies
(e.g., [28]). IP address aliasing is a significant issue in the deployed P2P systems
(almost 40% of peer nodes use more than one IP address over one day according to
their measurements). Therefore, our simulations follow the availability distribution
of peer nodes in the study [26], where nearly 50% of peer nodes are present on the
network less than 30%.

The study [29] argues that user interest shift is a factor affecting performance
of P2P file-sharing networks, especially in today’s dynamic information era. To ad-
dress this issue, 1% of peer nodes randomly shift their interest each day in the simu-
lations. Their major requested topics and additional file sharing will follow the new
interests after shifting interest. Content sharing of each peer node changes with time
and users’ interest, which has seldom been considered by previous P2P simulations.
To simulate the dynamics of file sharing, we randomly pick 1% of peer nodes to
share an extra 10% files to the network and 1% of peer nodes to remove 10% of
shared files from the network every day.

Network churns in these cases could affect the “correctness” of information in the
knowledge index. The selected peer nodes that previously had the requested files
could be offline from the network at the moment of requesting. Or, the requested
files that were previously available on the selected peer nodes could have already
been removed from the network.

4.4 Search Network

In each time step of simulations, we randomly choose an online node as the query
originator and start a lookup with a query topic. According to the study [22], peer

518 Lu Liu, Jie Xu, Duncan Russell, and Zongyang Luo

nodes are only interested in a subset of total available content on the network. In
order to resemble query behaviours in P2P networks [30, 31], these query topics
are generated with a probabilistic method: each topic is randomly selected from the
current primary interest area of the query originator with a probability p = 90%, but
sometimes from a random area with a probability of ((1− p) = 10%). Each query is
tagged by a TTL to limit the life time of a message to four hops in the simulations.
Queries are then propagated with the AESLP routing algorithm.

Even though request frequency is variable for different users in different periods,
the study [21] observes that each peer node generates an average of two requests
each day. This has been implemented in our simulations. One simulation day is de-
fined as: number o f nodes× request f requency time steps, which varies according
to the number of peer nodes in the simulation network from 200 (100×2) time steps
a day in the network of 100 peer nodes to 2000 (1000× 2) time steps each day in
the network of 1000 peer nodes. We run simulations to trace the results of about
two months (60 days, 92,100 time steps). Each average result is generated from the
experimental results of each day.

5 Simulation Results

5.1 Initial Simulations

Due to the complexity of AESLP and numerous customised functions offered by the
AESLP simulator, there are many combinations of parameters to experiment with
and lots of scenarios to test which could generate far too many graphs to analyse.
In this section, we only present an analysis of simulation results from the most
pertinent experiments as we see.

Many search methods are emerging in unstructured P2P system in the last
decade. Most of existing search methods, such as [32, 33], are obviously differ-
ent from the methods we are presenting in this chapter. In contrast, NeuroGrid [34]
is a well-known method closely related to AESLP, which enables peer nodes to
learn the results of previous searches to make future searches more focused. In this
section, NeuroGrid will be simulated and analysed as a benchmark to evaluate the
performance of AESLP. Additionally, as the first unstructured P2P search method,
the Gnutella-like random protocol has been widely used as a benchmark for many
follow-up unstructured protocols (e.g., [26]), which is also simulated and compared
as a benchmark to evaluate the performance of NeuroGrid.

In this section, the initial simulation results are presented to provide a compari-
son among the AESLP, two relevant methods: RAN and NEURO, and two derived
methods: OSLP and ASLP:

• RAN: a constrained Gnutella routing strategy. Received queries are randomly
passed to FNmin connected peer nodes in each hop.

Self-adaptation and Self-organization for Search in Social-Like Peer-to-Peer Networks 519

• NEURO: NeuroGrid routing strategy with the adaptive number of receivers. In
each hop, received queries are passed to a maximum of FNmax peer nodes that
are directly associated with the requested topic from the local knowledge index.
If not enough matches are found (< FNmin), the algorithm randomly forwards a
query to FNmin peer nodes from the rest of the connected nodes.

• OSLP: a derived method of AESLP which enables peer nodes to search the net-
work with ordinary queries only. OSLP can be regarded as a special type of
AESLP with the threshold ratio r = 0%.

• ASLP: a derived method of AESLP which enables peer nodes to search the net-
work with active queries only. ASLP can also be regarded as a special type of
AESLP with the threshold ratio r = 100%.

There are no active queries in the NEURO algorithm. In order to do an equivalent
comparison, NEURO is compared with one of the derived methods: OSLP (which
searches the network with ordinary queries only) to test the performance of the
social-like P2P routing protocol. OSLP will be further compared to AESLP and the
other derived method: ASLP to show the gains and deficiencies of active queries.
As discussed in Section 4, the default parameters are set in Table 1.

Table 1 Default simulation parameters

Parameter Value

Content parameters

Files 10,000

Topics 1280

Interests 32

Network parameters

Nodes 100∼ 1000

Newly joined nodes (per day) 30

Size of lists 60×60

Query parameters

TTL 4

Query Topic 1

FNmax 5

FNmin 2

Request structure 90%

Time steps (searches) 92100

520 Lu Liu, Jie Xu, Duncan Russell, and Zongyang Luo

5.2 Performance Comparison to Relevant Methods

From the results in Fig. 17a, b, OSLP achieves better performance than NEURO
and RAN by finding more files. Maximum possible recall is defined as the ratio
of the number of files on online nodes that match to the query to the total number
of matched files in the network. In Fig. 17a, the maximum possible recalls are all
below 31%, because a large amount of files are available on a large number of offline
nodes. Since many new files are added into the network by newly joined peer nodes,
recall decreases during the network growing period, while the number of found files
keeps increasing.

(a) Recall (b) Number of found files

(c) Number of query messages (d) Recall per query message

Fig. 17 Performance comparison

As shown in Fig. 17c, OSLP needs a few more query messages introduced by
the second phase of node selection procedure, but the search efficiency of OSLP is
still better than NEURO by achieving higher recalls per query message as shown in
Fig. 17d. At the early stage of searches, it is very difficult for peer nodes to find the
directly associated nodes with the requested topic from the local knowledge index
by using either OSLP or NEURO method due to the limited knowledge cached, but
OSLP is capable of retrieving the peer nodes which share the associated files with
the relevant topics more often. These selected peer nodes which are highly corre-
lated with the interest area of the requested topic have more knowledge about the
query than randomly selected peer nodes. Thus, OSLP can find the requested files
more efficiently with the same knowledge. More successful searches, in turn, help to

Self-adaptation and Self-organization for Search in Social-Like Peer-to-Peer Networks 521

build the knowledge index more efficiently. Therefore, OSLP has better search capa-
bilities and better knowledge-collecting capabilities. With these advantages, OSLP
achieves better performance than NEURO and RAN.

5.3 Performance Comparison to Derived Methods

The performance of AESLP is further evaluated by comparing to the two derived
methods: OSLP (r = 0%) and AESLP (r = 100%). The effect of active queries is
analysed in this experiment.

(a) Recall (b) Average traffic per query

Fig. 18 Performance comparison to derived methods

With active queries, ASLP and AESLP achieve better performance than OSLP
as shown in Fig. 18a. Since ASLP utilises high-cost active queries for all searches,
ASLP reaches even better performance than AESLP. Moreover, AESLP and ASLP
can discover the requested resources more efficiently in the early stage, because
they can more rapidly establish the knowledge index than OSLP by gathering more
pieces of knowledge from each successful query.

Threshold can be set according to the network bandwidth. ASLP is a special type
of AESLP with the threshold ratio r = 100%. Since ASLP achieves the best perfor-
mance by achieving a higher recall as shown in Fig. 18a, ASLP (r = 100%) is rec-
ommended for use in the network with abundant bandwidth. Figure 18b shows the
average traffic in bytes generated per query, where we use the message structure of
Gnutella protocol and the length of a topic is set as 50 characters. The average traffic
in bytes generated per query is the sum of the network traffic generated by not only
query messages but also response messages. As shown in Fig. 18b, the traffic gener-
ated by each ASLP query is increasing to a huge value by visiting more peer nodes
and transferring more knowledge information, which can be a heavy traffic load for
the network when many queries occur at the same time. However, the performance
of AESLP has been clearly improved with only little more traffic compared to OSLP.
Therefore, AESLP is a good trade-off solution for the bandwidth-limited networks
which achieves good performance with relatively low traffic.

522 Lu Liu, Jie Xu, Duncan Russell, and Zongyang Luo

5.4 Topology Evolution

In the Watts’s model [14], a small world network is a kind of networks with a high
clustering coefficient and a short average path length to other peer nodes. These
two properties of small world networks have been recorded to observe topology
evolution in the simulations.

(a) Average clustering coefficient (b) Average path length

Fig. 19 Topology evolution

Figure 19a, b show the average clustering coefficient and the average path length
observed in the simulations. As shown in Fig. 19a, the clustering coefficient of
AESLP is greater than other routing methods. Even though the network size in-
creases quickly at the early stage of the simulations, the average path lengths of
AESLP and NEURO only increase a little due to the increasing connectivity of
network. The average path length of AESLP increases even less. With the active
behaviours of newly joined AESLP nodes, these new nodes are more capable of
quickly adapting to the new environment, which only slightly affect overall perfor-
mance.

The average path length of AESLP is only marginally smaller than that of
NEURO method. However, by using different routing strategies, search perfor-
mances are clearly different as shown in Fig. 17. Thus, AESLP is more capable of
discovering the short path between the query originators and the target peer nodes.
From the results shown in Fig. 19a, b, we can see that the small-world phenomenon
appears in the AESLP network with a high clustering coefficient and a short average
path length. The visibility of peer nodes is increased by the well-connected nodes
which are useful to improve the search performance as shown in Fig. 17.

5.5 Effects of Parameters

In this section, simulations employing different parameters are carried out to show
the effects and contributions of simulation parameters (e.g., the size of lists, request
structure, the number of receivers in each hop).

Self-adaptation and Self-organization for Search in Social-Like Peer-to-Peer Networks 523

5.5.1 Size of Lists

The size of list in the knowledge index is an important parameter, which determines
the storage overhead required for each peer node. In this section, we will compare
the search performance of AESLP with different sizes of lists. The simulation pa-
rameters changed for this experiment are shown in Table 2.

Table 2 Changes to parameters modifying the size of lists

Parameter Value

Size of lists 0×0;30×30;60×60;90 ×90

Fig. 20 Recall with different sizes of knowledge index

Figure 20 shows recall by AESLP in the network where each node has a knowl-
edge index with lists containing a maximum of 10× 10, 30× 30, 60× 60 and
90× 90 entries (pairs) between topics and associated peer node addresses, respec-
tively. Clearly shown in Fig. 20, the query originators have more difficulty in find-
ing the requested files from the nodes with less knowledge. However, recall only
increases a little by changing the size of lists from 60× 60 to 90× 90 entries.
This result suggests that a large knowledge index containing most commonly used
topics achieves close performance to a knowledge index with an even larger size.
As shown in Fig. 20, in the worst case of 10× 10 entries, AESLP still achieves
obviously higher performance than NEURO due to its better knowledge collection
capability and search capability.

524 Lu Liu, Jie Xu, Duncan Russell, and Zongyang Luo

5.5.2 Request Structure

AESLP is simulated with different request structures. By using the AESLP sim-
ulator, the requested topic is selected from the primary interest area of the query
originator with a probability p, but is from a random area with a probability (1− p).
In the case of p = 90%, 90% of the requested topics are randomly selected from the
interest area of the query originator. On the contrary, in the case of p = 0%, a purely
random topic is chosen as the requested topic which is the worst case since the query
originator cannot benefit from the repeated queries in its interest area. Parameters
are set as shown in Table 3.

Table 3 Changes to parameters for simulation modifying request structure

Parameter Value

Request structure 0%; 50%; 90%

Fig. 21 Recall with different request structures

Figure 21 shows the results of recall by AESLP on the representative samples of
p of 0, 50, and 90%, respectively. In the simulations, the request scope is enlarged by
setting a smaller p. Since the probability of finding directly associated peer nodes
from the knowledge index decreases with smaller p, recall decreases along with
p, which means the peer nodes are generally more difficult to target the requested
files in the network where users have very wide interests. But the performance of
AESLP is still better than that of NEURO even in the worst case of p = 0% as
shown in Fig. 21, because AESLP can still find the peer nodes that potentially have
the knowledge about queries even if the directly associated peer nodes cannot be
found from the local knowledge index.

Self-adaptation and Self-organization for Search in Social-Like Peer-to-Peer Networks 525

5.5.3 Number of Receivers

The minimum number of receivers FNmin and the maximum number of receivers
FNmax are important factors to achieve adaptive query forwarding. In this experi-
ment, AESLP is simulated with different FNmin and FNmax to see the effect that
each setting makes.

Effect of the Minimum Number of Receivers
The different minimum numbers of receivers tested in the experiment are shown

in Table 4.

Table 4 Changes to parameters for simulation modifying the maximum number of receivers

Parameter Value

FNmin 1; 2; 3

(a) Recall (b) Average traffic per query

Fig. 22 Alteration of the minimum number of receivers in each hop

As shown in Fig. 22a, b, recall achieved at the end of simulation increases by
about 65% by changing FNmin from 2 to 3, while the traffic generated per query
increases even more significantly by about 120%. This result shows that network
traffic is very sensitive to the change of the parameter FNmin, where the number of
query messages jumps from O(∑4

i=1 2i) = O(30) to O(∑4
i=1 3i) = O(120) (T T L = 4).

Therefore, flooding would occur in the network by setting a large FNmin.
From the results in Fig. a, recall per message decreases clearly with increasing

FNmin. However, if a very small FNmin is defined as FNmin = 1, a very limited peer
nodes could be accessed for answering a query, which seriously affects the speed of
knowledge collection. Therefore, recall is very low in the case of FNmin = 1. From
the results discussed above, we suggest that FNmin should be carefully defined by
application developers who would consider adoption of AESLP in their application.
In this case, FNmin = 2 is a good trade-off to achieve both high search performance
and efficiency.

526 Lu Liu, Jie Xu, Duncan Russell, and Zongyang Luo

(a) with alteration of the minimum number
of receivers

(b) with alteration of the maximum number
of receivers in each hop

Fig. 23 Recall per message

Effect of the Maximum Number of Receivers
The different maximum numbers of receivers tested in the experiment are changed

as shown in Table 5.

Table 5 Changes to parameters for simulation modifying the maximum number of receivers

Parameter Value

FNmax 2; 5; 10

(a) Recall (b) Average traffic per query

Fig. 24 Alteration of the maximum number of receivers in each hop

As shown in Fig. 24a, b, recall increases by about 30% while the network traffic
increases about 50% by changing the maximum number of receivers in each hop
FNmax from 5 to 10. Compared to the results with changing the minimum number
of receivers FNmin shown in Fig. 22b, network traffic is more sensitive to the alter-
nation of the minimum number of receivers FNmin rather than the alternation of the
maximum number of receivers FNmax.

Self-adaptation and Self-organization for Search in Social-Like Peer-to-Peer Networks 527

The number of receivers in each hop is adjusted according to the correlation of
the selected peer nodes to the query. It is very difficult for a peer node to reach a
very high correlation by matching most of topics in a specific area. The number of
receivers in each hop is usually much less than the maximum number of receivers
FNmax, while the number of receivers in each hop must be larger than the minimum
number of receivers FNmin. Therefore, the total network traffic is more correlated to
FNmin rather than FNmax.

Recall per message is only slightly changed by alternation of FNmax (as shown in
Fig. 23b) compared to the alteration of FNmin, since adaptive lookups are achieved
by AESLP. Since a high efficiency is performed by a bigger FNmax, application
developers could consider defining a bigger FNmax to achieve a higher recall rather
than a bigger FNmin.

5.6 Query Packs

We continue to evaluate the performance of AESLP by simulations with query
packs. In this experiment, each query pack consists of two conjunctive queries
and each conjunctive query contains two query topics, such as (“mini satellite” and
“radar remote sensing”) or (“pico satellite” and “visual remote sensing”). Because
the matching probability decreases significantly to match both of the querying top-
ics, in this experiment, the querying topics are chosen under the assumption that
there is at least one possible file existing in the network that can satisfy the query
pack.

(a) Recall (b) Recall per message

Fig. 25 Query packs routing

From the results in Fig. 25a, b, AESLP achieves better performance than NEURO
and RAN, which is similar to that of single keyword lookups. Compared to single
keyword lookups, recall of each query pack still keeps high. But the number of
found files drops to about 16 files by a query pack at the end of simulation, because
the number of files matching both two topics is much less than the number of files
matching one topic.

528 Lu Liu, Jie Xu, Duncan Russell, and Zongyang Luo

Fig. 26 Number of found files for query packs

Different from single keyword searches, we are surprised to see that the number
of found files by RAN decreases at the early stage of searches, while the number of
found files by NEURO and AESLP keep increasing as shown in Fig. 26. Because the
querying topics are chosen under the assumption that there is at least one possible
file existing in the network that can satisfy the query pack, the actual matching
probability of RAN decreases with new adding files in the early stage, which leads
to the decrement of the number of found files.

6 Conclusions and Future Work

Due to the similarity of social networks and P2P networks, we believe that hu-
man strategies in social networks are useful for improving resource discovery by
building an efficient social-like peer-to-peer network. In this chapter, we have pre-
sented AESLP for resource discovery by self-organising autonomous peers with
social strategies.

In the AESLP network, each peer node can learn from the previous search re-
sults, both in success and failure, which makes future searches more efficient. No
extra communication overhead is required for AESLP to obtain additional infor-
mation from neighbouring nodes on the P2P overlay. Each peer node maintains
a knowledge index (including a friend list and a black list) about resources lo-
cated in the network. Each peer node works as an autonomous agent which pro-
vides local message processing and routing services. AESLP is not only efficient for
the previously queried topics but also for the topics that have not been previously
queried.

AESLP enables peer nodes not only to forward queries to the “good” nodes that
can potentially offer the requested resources or know who has the requested re-
sources, but also to avoid sending queries to the “bad” nodes that cannot help find
any requested files.

AESLP is a self-adaptive algorithm. The number of peer nodes to be forwarded
in each hop is adaptive according to the correlation degree of the peer node to the
query. Moreover, the different types of queries are also utilised in accordance with

Self-adaptation and Self-organization for Search in Social-Like Peer-to-Peer Networks 529

different search stages, which enables peer nodes to accumulate knowledge effi-
ciently with low communication cost. AESLP is an also self-organising algorithm,
peer communities are formed and maintained spontaneously, where peer nodes are
self-organised based on their daily intercommunications. Each peer node can auto-
matically detect potential interests of other peer nodes in the network according to
their previous behaviours and preferentially links to the peer nodes that have similar
interests. Global behaviours then emerge as the result of all the local behaviours that
occur. Finally, the peer nodes with similar interests will be highly connected to each
other.

In future work we will further optimize and extend the social-like peer-to-peer al-
gorithms to deal with more complex queries and cooperate with semantic languages.
Although AESLP is designed for resource discovery in P2P file sharing networks,
which is also applicable and will be extended for service discovery in Grid comput-
ing environments with numerous service providers. With the cooperation of Grid
computing environments, the usage of P2P networks could be broadened from sim-
ple file provision to more advanced services, such as sharing redundant computing
power for complicated scientific calculation and sharing extra bandwidth for real
time video transmission.

References

1. Liu, L., Antonopoulos, N., Mackin, S.: Social Peer-to-Peer for Resource Discovery. 15th
Euromicro International Conference on Parallel, Distributed and Network-based Processing,
Naples, Italy (2007)

2. Liu, L., Antonopoulos, N., Mackin, S.: Fault-tolerant Peer-to-Peer Search on Small-World
Networks. Journal of Future Generation Computer Systems 23 (2007) 921–931

3. Hui, K.Y.K., Lui, J.C.S., Yau, D.K.Y.: Small World Overlay P2P Networks. Workshop on
Quality of Service, Montreal, Canada (2004)

4. Salter, J., Antonopoulos, N.: An Optimised 2-Tier P2P Architecture for Contextualised Key-
word Searches. Journal of Future Generation Computer Systems 23 (2007) 241–251

5. Triantafillou, P.: PLANES: The Next Step, In Peer-to-Peer Network Architectures. SIG-
COMM Workshop on Future Directions in Network Architectures, Karlsruhe, Germany
(2003)

6. Sripanidkulchai, K., Maggs, B., Zhang, H.: Efficient Content Location Using Interest-Based
Locality in Peer-to-Peer Systems. IEEE Infocom, San Francisco (2003)

7. Loser, A., Staab, S., Tempich, C.: Semantic Social Overlay Networks. Journal of Selected
Areas in Communications 25 (2007) 5–14

8. Broekstra, J., Ehrig, M., Haase, P., Harmelen, F.v., Kampman, A., Sabou1, M., Siebes1, R.,
Staab, S., Stuckenschmidt, H., Tempich, C.: A Metadata Model for Semantics-based Peer-
to-Peer Systems. WWW Workshop on Semantics in Peer-to-Peer and Grid Computing, Bu-
dapest, Hungary (2003)

9. Cholvi, V., Felber, P., Biersack, E.: Efficient search in unstructured peer-to-peer networks.
European Transactions on Telecommunications 15 (2004)

10. Bender, M., Crecelius, T., Kacimi, M., Michel, S., Parreira, J.X., Weikum, G.: Peer-to-Peer In-
formation Search: Semantic, Social, or Spiritual? IEEE Data Engineering Bulletin 30 (2007)
51–60

530 Lu Liu, Jie Xu, Duncan Russell, and Zongyang Luo

11. Newcomb, T.M.: Social Psychology : the Study of Human Interaction. - 2nd ed. Revised.
Routledge and Kegan Paul, London (1975)

12. Cowan, N., Nugent, L.D., Elliott, E.M., Ponomarev, I., Saults, J.S.: The Role of Attention in
the Development of Short-Term Memory: Age Differences in the Verbal Span of Apprehen-
sion. Child Development 70 (1999) 1082–1097

13. Fisher, K.M., Lipson, J.I.: Information Processing Interpretation of Errors in College Science
Learning. Instructional Science 14 (2004) 49–74

14. Watts, D., Strogatz, S.H.: Collective Dynamics of Small-World Networks. Nature 393 (1998)
440–442

15. Lv, Q., Cao, P., Cohen, E., Li, K., Shenker, S.: Search and Replication in Unstructured Peer-
to-Peer Networks. ACM SIGMETRICS, Marina Del Rey, CA (2002)

16. Joseph, S.: P2P MetaData Search Layers. International Workshop on Agents and Peer-to-Peer
Computing, Melbourne, Australia (2003)

17. Maymounkov, P., Mazi‘eres, D.: Kademlia: A Peer to Peer Information System Based on the
XOR Metric. Internation Workshop on Peer-to-Peer Systems, Cambridge, MA (2002)

18. Waloszek, G.: Personal Networks. SAP AG, Product Design Center (2002)
19. Open Directory Categories.
20. Makosiej, P., Sakaryan, G., Unger, H.: Measurement Study of Shared Content and User Re-

quest Structure in Peer-to-Peer Gnutella Network. International Conference on Design, Anal-
ysis, and Simulation of Distributed Computing System, Arlington, Virginia (2004)

21. Pauli, C., Shepperd, M.: An Empirical Investigation into P2P File-Sharing User Behaviour.
Americas Conference on Information Systems, Omaha, Nebraska (2005)

22. Crespo, A., Garcia-Molina, H.: Semantic Overlay Networks for P2P Systems. Stanford Uni-
versity (2002)

23. Distributed Computing Association White Paper. (2003)
24. Bhagwan, R., Savage, S., Voelker, G.M.: Understanding Availability. International Workshop

on Peer-to-Peer Systems, Berkeley, CA (2003)
25. Rhea, S., Geels, D., Roscoe, T., Kubiatowicz, J.: Handling Churn in a DHT. USENIX Annual

Technical Conference, Boston, MA (June 2004)
26. Yang, B., Garcia-Molina, H.: Efficient Search in Peer-to-Peer Networks. International Con-

ference on Distributed Computing Sys-tems, Vienna, Austria (2002)
27. Vuong, S., Li, J.: Efa: an Efficient Content Routing Algorithm in Large Peer-to-Peer Overlay

Networks. International Conference on Peer-to-Peer Computing, Linköping, Sweden (2003)
28. Saroiu, S., Gummadi, P.K., Gribble, S.D.: A Measurement Study of Peer-to-Peer File Sharing

Systems. International Conference on Multimedia Networking and Computing, Santa Bar-
bara, CA (2002)

29. Ren, Y., Sha, C., Qian, W., Zhou, A., Ooi, B.C., Tan, K.-L.: Explore the “Small World Phe-
nomena” in Pure P2P Information Sharing Systems. International Symposium on Cluster
Computing and the Grid, Tokyo, Japan (2003)

30. Koutrika, G., Ioannidis, Y.: Personalization of Queries Based on User Preferences. Prefer-
ences, Dagstuhl, Germany (2004)

31. Klemm, A., Lindemann, C., Vernon, M.K., Waldhorst, O.P.: Characterizing the Query Be-
havior in Peer-to-Peer File Sharing Systems. Internet Measurement Conference, Taormina,
Sicily, Italy (2004)

32. Crespo, A., Garcia-Molina, H.: Routing Indices for Peer-to-Peer Systems. International Con-
ference on Distributed Computing Systems, Vienna, Austria (2002)

33. Tsoumakos, D., Roussopoulos, N.: Adaptive Probabilistic Search for Peer-to-Peer Networks.
Third International Conference on Peer-to-Peer Computing, Linköping, Sweden (2003)

34. Joseph, S.: NeuroGrid: Semantically Routing Queries in Peer-to-Peer Networks. International
Workshop on Peer-to-Peer Computing, Pisa, Italy (2002)

Data Sharing in P2P Systems

Rabab Hayek, Guillaume Raschia, Patrick Valduriez, and Noureddine Mouaddib

Abstract In this chapter, we survey P2P data sharing systems. All along, we focus
on the evolution from simple file-sharing systems, with limited functionalities, to
Peer Data Management Systems (PDMS) that support advanced applications with
more sophisticated data management techniques. Advanced P2P applications are
dealing with semantically rich data (e.g., XML documents, relational tables), us-
ing a high-level SQL-like query language. We start our survey with an overview
over the existing P2P network architectures, and the associated routing protocols.
Then, we discuss data indexing techniques based on their distribution degree and
the semantics they can capture from the underlying data. We also discuss schema
management techniques which allow integrating heterogeneous data. We conclude
by discussing the techniques proposed for processing complex queries (e.g., range
and join queries). Complex query facilities are necessary for advanced applications
which require a high level of search expressiveness. This last part shows the lack of
querying techniques that allow for an approximate query answering.

Rabab Hayek
LINA, 2 rue de la Houssiniere, 44322, Nantes, France,
e-mail: rabab.hayek@univ-nantes.fr

Guillaume Raschia
LINA, 2 rue de la Houssiniere, 44322, Nantes, France,
e-mail: guillaume.raschia@univ-nantes.fr

Patrick Valduriez
INRIA, 2 rue de la Houssiniere, 44322, Nantes France,
e-mail: Patrick.Valduriez@inria.fr

Noureddine Mouaddib
LINA, 2 rue de la Houssiniere, 44322, Nantes France,
e-mail: Noureddine.Mouaddib@univ-nantes.fr

X. Shen et al. (eds.), Handbook of Peer-to-Peer Networking, 531
DOI 10.1007/978-0-387-09751-0 19, © Springer Science+Business Media, LLC 2010

532 Rabab Hayek et al.

1 Introduction

The recent years have witnessed a paradigm shift in the design of internet-scale dis-
tributed systems, with widespread proliferation of peer-to-peer technologies. Nowa-
days, the P2P model is used for diverse applications and services – including content
storage and sharing (file-sharing, content distribution, backup storage) and commu-
nication (voice, instant messages, multicast) to name a few.

But, what is the P2P paradigm?

From the application perspective, the P2P paradigm is a way to leverage vast
amounts of computing power, storage, and connectivity from personal computers
distributed around the world [31]. Thus, the P2P model allows distributed systems
to scale up on a world wide scale without the need for an expensive infrastructure,
like the one it would be incurred by a client-server model.

From the system perspective, the P2P paradigm is about managing autonomous,
unreliable resources that connect to the system in order to provide together
the desired objectives, which that system is supposed to achieve. The manage-
ment of such resources should be done without any global information or central
control.

In other words, the P2P model overcomes the limitations of centralized and
client-server models by introducing symmetry in roles, where each node is both a
client and a server. But unlike Grid systems, P2P networks do not arise from the col-
laboration between established and connected groups of systems. Instead, they are
characterized by ad hoc connections between autonomous and dynamic resources.
Thus, P2P systems pose new challenges including resource discovery, reliability and
availability.

In late 1999, P2P systems gained much attention with Napster’s support for music
sharing, and then have became a very interesting medium through which users share
huge amount of data. Popular examples of P2P data sharing systems (e.g., Gnutella,
KaZaa) report millions of users, sharing petabytes of data. However, a key challenge
is implementing efficient techniques for search and data retrieval, without which an
enormous shared data collection remains useless.

In a P2P data sharing system, users should be able to locate relevant data in a
resource-efficient manner. Let us examine the generic architecture of a given peer,
as shown by Fig. 1. Queries are submitted through a user interface. Then, they are
handled by a data management layer which includes several techniques for support-
ing an efficient distributed query processing. This data management layer has been
enriched all along the evolution of P2P systems from simple file-sharing systems
with limited functionalities, to Peer Data Management Systems (PDMSs) which are
dealing with semantically rich data.

In early P2P file sharing systems, the data management layer lacks several com-
ponents. At a given peer, filename-based queries are blindly broadcasted in the net-
work in order to locate the requested files. Besides, all the visited peers locally

Data Sharing in P2P Systems 533

Local

Data source

Data Management Layer

Indexing

Caching

User Interface

Network Layer

Metadata

Repository

QueryAnswer

Query

Processing

Schema

Management

Replication
Clustering
Network

Fig. 1 Peer generic architecture

evaluate the received queries and return results, if any, to be finally merged at the
requesting peer. The performance of these systems is quite dependent of the topol-
ogy of the underlying network, and the associated routing protocol. This is discussed
in Section 2.

To enhance the search performance, P2P works started to employ data indexing
techniques (e.g., [6, 82]). At a given peer, the index allows to select a set of relevant
peers to which the query is directly sent (i.e., location indexes), or to determine the
direction through which relevant peers may be located (i.e., forwarding indexes).
Section 3 discusses the P2P indexing schemes.

Parallel works have focused on data replication and caching techniques in order
to improve the availability and the consistency of data, against the dynamic and
autonomous nature of P2P systems. In this work, we do not detail these techniques,
however good pointers can be found in [11, 15, 46].

In Schema-based P2P systems [93], each peer can provide its own database
with its own schema, and may issue queries according to its local schema. In this
case, irrespective of using data indexes, peers have to apply schema management
techniques that provide a common ground for distributed query processing (e.g.,
[12, 45]). The basic idea is to identify content or structure similarities among peers.
Semantic mappings are then defined to specify these similarities, and based on the
semantic mapping definitions, queries are reformulated for each specific peer. Se-
mantic mappings and other metadata are stored in a specific repository. The schema
management techniques are presented in Section 4.

534 Rabab Hayek et al.

Network clustering has been also proposed as a viable solution to improve query
processing in P2P systems (e.g., [7, 55]). Clustering techniques aim to organize the
network into groups based on some criteria. A clustering criterion may be a physical
network parameter (e.g., latency, bandwidth), peer property/behavior (e.g., connec-
tivity, stability), or application-dependent parameter (e.g., similarity of interests). In
this chapter, we do not discuss P2P clustering techniques. However, representative
works are [7, 56, 81, 83].

Finally, we note that the data management layer presented in Fig. 1 may include
additional components depending on other application requirements, such as trust
and security.

All the above techniques have a common objective which is improving the effi-
ciency of locating data. However, they should not restrict the search expressiveness.
Certainly, the required level of search expressiveness is related to the data model
used by the application. For instance, advanced P2P applications which are deal-
ing with semantically rich data require a higher expressiveness level than key-based
lookups or keyword searches. Processing complex queries in P2P systems is dis-
cussed in Section 5.

Note that throughout this thesis, the terms “node” and “peer” are used inter-
changeably to refer to the entities that are connected in a peer-to-peer network.

2 P2P Networks

P2P systems are application-level virtual networks with their own overlay topolo-
gies and routing protocols. The overlay topology defines how the nodes are con-
nected to each other, while the routing protocol defines how nodes can exchange
messages in order to share information and resources. The network topology and
the associated routing protocol have significant influence on application properties
such as performance, scalability, and reliability. P2P network overlays can be classi-
fied into two main categories: unstructured and structured, based on their structure.
By “structure” we refer to the control on overlay creation and data placement.

2.1 Unstructured

Most popular P2P applications operate on unstructured networks. In these networks,
peers connect in an ad-hoc fashion and the placement of content is completely un-
related to the overlay topology. Although P2P systems are supposed to operate in a
fully decentralized manner (i.e., fully decentralized routing mechanisms), in prac-
tice, unstructured networks with various degrees of centralization are encountered.
Accordingly, three categories can be identified.

Data Sharing in P2P Systems 535

2.1.1 Hybrid Decentralized Architectures

In these networks, a central server facilitates the interaction between nodes by in-
dexing all their shared files (Fig. 2). Whenever a query is submitted, the central
server is addressed to identify the nodes storing the requested files. Then, the file
exchange may take place directly between two nodes. Certainly, this approach pro-
vides a very good search efficiency. However, the central server, which is a single
point of failure, renders hybrid decentralized networks inherently unscalable and
vulnerable to malicious attacks.

Fig. 2 Hybrid decentralized architecture Fig.3 Pure decentralized architecture

The class of P2P systems relying on such hybrid architectures, i.e., including a
server (e.g., red node) and peers (e.g., blue nodes), is usually called the first gener-
ation of P2P systems (1GP). A well-known example is Napster [4].

2.1.2 Pure Decentralized Architectures

In pure decentralized networks, there is a complete symmetry in node roles with-
out any central coordination. Each node is both a client a server, i.e., each node
may issue requests and serve/forward requests of other nodes (bi-colored nodes in
Fig. 2). Hence, they exhibit high fault tolerance against node dynamicity and failure.
However, resources are maintained locally and nodes have only limited knowledge.
Thus, guarantees on lookup efficiency and content availability can not be provided.
Here, search mechanisms range from brute flooding to more sophisticated mecha-
nisms, such as random walks [11] and routing indices [6]. These mechanisms have
direct implications on network scalability.

Representative examples of pure decentralized P2P systems are Gnutella [2], and
FreeHaven [79].

536 Rabab Hayek et al.

2.1.3 Partially Decentralized Architectures

In these networks, there is a differentiation in roles between supernode and leafn-
ode. Each supernode acts as a proxy for all its neighboring leaves by indexing their
data and forwarding queries on their behalf. In practice, several supernodes are des-
ignated in the system to avoid all the problems associated to a single server (Fig. 4).
Like pure decentralized P2P networks, the set of supernodes can be organized in
a P2P fashion and communicate with one another in sophisticated ways. They are
dynamically assigned and, if they fail, the network will automatically take action to
replace them with others.

Fig. 4 Partially decentralized architecture

Examples of partially decentralized P2P systems are KaZaa [3], Gnutella2 [1],
and Edutella [12]. Note that partially decentralized networks are also referred as
hierarchical networks, while pure decentralized ones are referred as flat networks.
Both categories represent the so-called, second P2P generation (2GP).

2.2 Structured

In an attempt to remedy the scalability problem of unstructured systems, some
works have focused on introducing “structure” into network topologies. The topol-
ogy overlay is tightly controlled, and the content may be distributed according to
specific rules. These works led to the third generation of P2P systems (3GP), i.e.,
structured systems. Aiming basically to act as a decentralized index, structured over-
lays provide a mapping between content (e.g., file identifier) and location (e.g., node
address), in the form of a distributed routing table.

Structured networks consist in partitioning a key space among peers, so that each
peer is responsible for a specific key space partition, i.e., it should store all the
resources (or pointers) which are mapped into keys, which are in the respective
key-space partition. Then a routing algorithm is defined to allow a deterministic
search based on key content. A representative class of structured overlays are the
Distributed Hash Tables DHT s (e.g., [44, 82]). Freenet [43] is often qualified as

Data Sharing in P2P Systems 537

a loosely structured system because the nodes of its P2P network can produce an
estimate (not with certainty) of which node is most likely to store certain data. They
use a chain mode propagation approach, where each node makes a local decision
about which node to send the request message next.

Table 1 summarizes the P2P categories we outlined, with examples of P2P sys-
tems and infrastructures. P2P infrastructures do not constitute working applications,
but provide P2P based-services (e.g., location and routing, anonymity, reputation
management) and application frameworks. The infrastructures listed here are loca-
tion and routing infrastructures. Note that according to the centralization criteria, all
structured systems and infrastructures rely on pure decentralized topologies where
all participants have equal roles.

Structure
Decentralization

Hybrid Partial Full

Unstructured

Napster KaZaa Gnutella
Publius Morpheus FreeHaven

Gnutella2
Edutella

Structured infrastructures

Chord
CAN

Trapestry
Pastry

Structured systems

OceanStore
Mnemosyne
Scan, Past
Kademlia

Table 1 A classification of P2P systems and infrastructures based on network structure, and degree
of decentralization [13]

2.3 Unstructured vs. Structured: Competition or Complementarity?

An important question is: should the P2P overlay be “Structured” or “Unstruc-
tured”? Are the two approaches competing or complementary?

Some have considered unstructured and structured routing algorithms as compet-
ing alternatives. When generic key lookups are required, structured routing schemes
guarantee locating relevant nodes within a bounded number of hops, based on strong
theoretical foundations. The routing unstructured approaches, however, may have
large costs or fail to find available data (in particular unpopular data). Despite of
the lookup efficiency of structured overlays, several research groups are still lever-
aging unstructured P2P schemes. In fact, there are two main criticisms for struc-
tured systems [98]. First, the strict network structure imposes high overhead for

538 Rabab Hayek et al.

handling node join and leave, although some works have defended performance
during churn (e.g., [26]). Second, the lookup efficiency of these systems is lim-
ited to exact-match queries. Their ability to implement keyword searches and more
complex queries is still an open issue. Therefore, given a P2P application, the best
suited network overlay depends on that application functionalities and performance
metrics.

Recently, some have started to justify that unstructured and structured approaches
are complementary, not competing. The approach presented in [60] improves the
unstructured Gnutella network by adding structural components. The motivation
behind is that unstructured routing mechanisms are inefficient for data that are not
highly replicated across the P2P network, while structured key-based lookup per-
forms efficiently, irrespective of replication. In [21], the authors leverage the idea of
cohabiting several P2P overlays on a same network, so that the best overlay could
be chosen depending on the application. The distinctive feature of this proposal is
that, in the joint overlay, the cohabiting overlays share information to reduce their
maintenance cost while keeping the same level of performance.

Finally, we agree with the statement saying that the “unstructured vs. structured”
taxonomy is becoming less useful, for two reasons. First, almost no network topolo-
gies are truly “unstructured”. Unstructured P2P proposals, which used initially blind
flooding and random walks, have evolved to exploit inherent structure (e.g., small
world and scale-free features), or to incorporate structure through clusters and su-
perpeers. Second, a new class of schema-based P2P systems, also called Peer Data
Management systems PDMSs, has emerged [93]. Examples of such systems com-
bine approaches from P2P research as well as from the database and semantic web
research areas. These systems allow the aggregation and integration of data from
autonomous, distributed data sources. They are dealing with heterogeneity of nodes
and structure within data.

Following this statement, some studies have adopted database taxonomy rather
than networking taxonomy (e.g., [20, 39]) in order to categorize P2P search net-
works. The structure is implicitly determined by the type of the employed index. In
the following section, we discuss the different data indexing schemes that have been
proposed in the P2P literature.

3 Data Indexing in P2P Systems

P2P search techniques rely basically on data indexes. A data indexing scheme
should take into account the following requirements. First, the creation/maintenance
of indexes should not overload either the nodes by an extensive usage of their re-
sources, or the network by a large bandwidth consumption. Second, the mechanism
of maintaining indexes should not restrict peer autonomy. Instead, it should recover
from node leave and join in a resource-efficient manner.

Data Sharing in P2P Systems 539

Obviously, the use of indexes should contribute to enhance the efficiency of
searches made in the system. For instance, this efficiency can be quantified by the
rate of successful searches (a search is successful if it locates, at least, one replica of
the requested object), the response time, the number of returned results, the number
of hops made to find a first query matching, and the number of messages exchanged
in the network, which is an important metric from the system point of view.

The related trade-offs between index update cost, efficiency of the associated
search technique, and peer churn are critical to evaluate a P2P indexing scheme.

3.1 Index Types

A P2P index can be local, centralized or distributed according to where it is main-
tained in the system, and to the distribution of data which it refers to.

3.1.1 Local Index

A node only keeps references to its own data, without obtaining any information
about data stored at other nodes. The very early Gnutella design [2] adopted the
local-index approach. This approach enables rich queries, but also generates huge
traffic overhead since the query needs to be flooded widely in the network. Further-
more, any guarantees on search success can not be provided.

Considering that the key part of P2P searching approaches is an efficient routing
mechanism, the local-index approaches can be seen as index-free, since they do
not support query routing with any forwarding or location hints [97]. A forwarding
index allows to reach the requested object within a varying number of hops (with the
network size), while a location index allows to reach the target in a single hop. Based
on the same reasoning, the search techniques that have been proposed to improve
the performance of index-free systems, are referred as blind search techniques [86].

Breadth First Search (BFS)

The originally Gnutella algorithm uses flooding (BFS traversal of the underlying
graph) for object discovery, and contacts all accessible nodes within a Time-To-
Leave (T T L) value (Fig. 5). Small T T L values reduce the network traffic and the
load at peers, but also reduce the chances of a successful search.

Modified BFS [89] is a variation of the BFS scheme in which the peers randomly
choose only a ratio of their neighbors to forward the query to (Fig. 6). This approach
reduces the number of messages needed for query routing at the cost of loosing
available query answers, which might be found by the original BFS.

540 Rabab Hayek et al.

Fig. 5 Example of BFS: the received query is forwarded to all the neighbors

Fig. 6 Example of modified BFS: the received query is forwarded to a randomly selected set of
neighbors

Iterative Deepening

In [11], the idea of iterative deepening has been borrowed from artificial intelligence
and used in P2P searching. This method is also called expanding ring. The querying
node periodically issues a sequence of BFS with increasing T T L values. The query
terminates when sufficient number of results is found, or the predefined maximum
value of TTL is reached. Iterative deepening is tailored to applications where the
initial number of results found at peers that are closer to the query originator is
important. In this case, it achieves good performance gains compared to the original
BFS. In other cases, its overhead and response time may be much higher.

Random Walks

In the standard random walk algorithm, the querying node forwards the query mes-
sage to one randomly chosen neighbor. This neighbor randomly selects one of its
neighbors and forwards the query to that neighbor, and so on until there is a query

Data Sharing in P2P Systems 541

match. This algorithm indeed reduces the network traffic, but massively increases
the search latency.

In the k-walker random walk algorithm [11], the query is replicated at the origina-
tor, so it sends k query messages to an equal number of randomly chosen neighbors.
Each of these messages follows its own path, having intermediate nodes forward it
to a randomly chosen neighbor at each step. These query messages are also known
as walkers. When the TTL of a walker reaches zero, it is discarded (Fig 7).

Fig. 7 Example of random walks: each received walk is forwarded to only one neighbor

The algorithm’s most important advantage is the significant message reduction it
achieves. It produces k ·T T L messages in the worst case, a number which seldom
depends on the underlying network. It also achieves some kind of local “load bal-
ancing”, since no nodes are favored in the forwarding process over others. However,
the most serious problem of this algorithm is its highly variable performance. Suc-
cess rates and number of hits vary greatly depending on network topology and the
random choices made. Another drawback is its inability to adapt to different query
loads.

Adamic et al. [50] addressed the first problem of random walks by recommend-
ing that instead of using purely random walks, the search protocol should bias its
walks toward high-degree nodes (i.e., nodes with large number of connections).
They assume that high-degree nodes are also capable of higher query throughputs.
Certainly, the relevance of such assumption is constrained by the design of balanc-
ing rules to avoid overloading high-degree nodes, which may not have the capacity
to handle a large number of queries.

Finally we note that, in spite of their name, the Local Indices proposed in [24] do
not belong to this type of indexes. An index is locally maintained at a given node,
however, it refers to remote data stored at other nodes.

542 Rabab Hayek et al.

3.1.2 Centralized Index

The index is centralized at dedicated servers, but the described data is distributed.
In fact, the centralized schemes [4] were the first to demonstrate the P2P scala-
bility that comes from separating data index from the data itself. The centralized
index is a location (non-forwarding) index that allows to locate relevant data within
one hop, which is very efficient. However, the central servers are single points of
failure which renders the system inherently unscalable and vulnerable to malicious
attack.

The P2P research community has rapidly turned its back on centralized archi-
tectures. Furthermore, P2P systems that only use local indexes are becoming rare,
since routing the query in a blind manner is still providing a poor trade-off between
the traffic overhead and the lookup efficiency. In practice, all current P2P systems
are implementing distributed indexes.

3.1.3 Distributed Index

The index refers to data from distributed sources, and is itself distributed across the
network. Here, we are talking about the global index, which is (may be virtually)
obtained from the set of indexes materialized in the network. A hybrid decentralized
approach consists in distributing such global index among some specialized nodes
(e.g., supernodes and ultrapeers). A pure decentralized approach distributes the in-
dex among all participants, that is, each node in the system maintains a part of that
index.

An early P2P proposal for a distributed index was Freenet [43]. Freenet uses a
hash function to generate keys, by which the shared files are identified. Each node
maintains a dynamic routing table containing the addresses of other nodes and the
file keys they are thought to hold. To search for a file, the user sends a request mes-
sage specifying the key and a T T L value. Upon receiving a query message, a node
checks its local table for either a match or another node with keys close to the tar-
get. If the file is eventually found at a certain node (before exceeding T T L), the
query response traverses the successful query path in reverse, adding a new rout-
ing table entry (the requested key and the file provider) at each peer. A subsequent
request with the same key will be served with this cached entry. The request will
be forwarded directly to the node that had previously provided the data. Freenet
allows to significantly reduce the traffic overhead in the system. However, it only
supports exact-match queries, and only one result is returned. Another limitation is
that Freenet takes time to build an efficient index upon the arrival of a new node.

As said before, almost all of the current P2P proposals rely on distributed in-
dexes, which can range from simple forwarding hints to exact object locations.
These indexes can be distinguished according to whether they are semantic-free, or
they capture data semantics. The semantic index is human-readable. For example, it
might associate information with keywords, document names, or database keys. A

Data Sharing in P2P Systems 543

free-semantic index typically corresponds to the index by a hash mechanism, i.e.,
the DHT schemes.

3.2 Semantic-Free Index: DHT

Structured systems have emerged mainly in an attempt to address that scalability
problem of Gnutella-like systems. They use the Distributed Hash Table (DHT) as
a substrate, in which the overlay topology and the data placement are tightly con-
trolled.

Various DHT schemes differ in the topologies, routing protocols, fault tolerance,
and resilience to churn. In the following, we present the main geometries (i.e., the
topology and the associated routing strategies) used for DHT-based systems, and
discuss their search efficiency and their robustness.

3.2.1 Tree

Tree is the first geometry which is used for organizing the peers of a DHT and rout-
ing queries among them. In this approach, nodes and objects are assigned unique
identifiers (e.g., 160-bit key). The leaf nodes of the binary tree represent the key-
space partitions (peer’s identifiers). The depth of that tree is log(n), where n is the
number of peers. The responsible for a given object key is the peer whose identifier
has the highest number of prefix bits which are common with the key. A search is
routed toward the requested object based on longest prefix matching at each inter-
mediate peer until reaching the responsible peer. The distance between two peers
is then the height of the smallest common subtree. Tapestry [25] uses similar pre-
fix matching in order to forward query messages. To avoid the problem of single

L3

L1

27AB

43C9

44AF

1D76

42A2

4228

6F43

51E5

L1

L1

L2

L2

L1

L4

4227

Fig. 8 Tapestry routing mesh from the perspective of a single node. Outgoing neighbor links point
to nodes with a common matching prefix. Higher level entries match more digits. Together, these
links form the neighbor map [25]

544 Rabab Hayek et al.

point of failure that root nodes constitute in the Plaxton Tree model, Tapestry as-
signs multiple roots to each object. Such approach allows reliability at the cost of
redundancy.

For each level in a tree topology there are several choices to select routing table
entries. To illustrate, each Tapestry node maintains a neighbor map as shown in
Fig. 8. The neighbor map has multiple levels, each level l containing pointers to
nodes whose identifier must be matched with l bits. For instance, the node in Fig. 8
maintains at the third level of its routing table one pointer to one node matching his
identifier with 3 digits.

The tree geometry has good neighbor selection flexibility, i.e., each peer has
2i − 1 options in choosing a neighbor at a level i. However, it has no flexibility
for message routing: there is only one neighbor which the message must be for-
warded to, i.e., this is the neighbor that has the most common prefix bits with the
given key. Several applications have been designed on the top of Tapestry, such as
OceanStore [47]. Pastry [14] is a scheme similar to Tapestry, however, it differs in
the approach to achieving network locality and object replication. It is employed by
the PAST large-scale persistent P2P storage utility [15].

3.2.2 Ring

The Ring geometry is based on a one dimensional cyclic space such that the peers
are ordered on the circle clockwise with respect to their keys. Chord [44] is the
prototypical DHT ring. Chord supports one main operation: find a peer with the
given key. The keys are assigned both to data and peers by means of a variant of
Consistent Hashing [48]. Each key on the key-space is mapped to the peer with the
least identifier greater or equal to the key, and this peer is called the key’s successor.
Thus to say, this peer is responsible for the corresponding data. The use of consistent
hashing tends to balance load, as each node receives roughly the same number of
keys.

N1

N14

N21N42

N38

N32

N54

N51

N48

N8

Finger Table

N8+16

N14
N14
N21
N32
N42

N8+1

N8+4

N8+32

N14

N8+8

N8+2

Fig. 9 The finger table at node 8 on a Chord ring of 10 nodes, m = 6 [44]

Data Sharing in P2P Systems 545

In Chord, a peer needs to track the addresses of only m other peers, not all peers
such in the original Consistent Hashing proposal. Each peer p maintains a “finger
table” containing m = log(n) entries such that the ith entry provides the address of
the peer whose distance from p clockwise in the circle is 2i−1 mod n (see Fig. 9).
Hence, any peer can route a given key to its responsible in logn hops because each
hop reduces the distance to the destination by half. In Chord, a peer needs to track
the addresses of only m = O(logn) other peers, not all peers such as in the original
Consistent Hashing proposal.

The correctness of the Chord routing protocol relies on the fact that each peer is
aware of its successors. When peers fail, it is possible that a peer does not know its
new successor, and that it has no chance to learn about it. To avoid this situation,
peers maintain a successor list of size r, which contains the peer’s first r successors.
When the successor peer does not respond, the peer simply contacts the next peer
on its list.

3.2.3 Hypercube

The Hypercube geometry is based on partitioning a d-dimensional space into a set
of separate zones and attributing each zone to one peer. Peers have unique identifiers
with log n bits, where n is the total number of peers Each peer p has log n neighbors
such that the identifier of the ith neighbor and p differ only in the ith bit. Thus, there
is only one different bit between the identifier of p and each of its neighbors. The
distance between two peers is the number of bits on which their identifiers differ.
Query routing proceeds by greedily forwarding the given key via intermediate peers
to the peer that has minimum bit difference with the key. Thus, it is somehow similar
to routing on the tree. The difference is that the hypercube allows bit differences to
be reduced in any order while with the tree bit differences have to be reduced in
strictly left-to-right order.

The number of options for selecting a route between two peers with k bit differ-
ences is (log n) · (log n−1) · · · · ·(log n−k), i.e., the first peer on the route has log n
choices, and each next peer on the route has one choice less than its predecessor.
Thus, in the hypercube, there is great flexibility for route selection. However, each
node in the coordinate space does not have any choice over its neighbors coordi-
nates since adjacent coordinate zones in the coordinate space can not change. The
high selection flexibility offered by the Hypercube is at the price of poor neighbor
selection flexibility.

The routing geometry used in CAN [82] resembles a hypercube geometry. CAN
uses a d-dimensional coordinate space which is partitioned into n zones and each
zone is occupied by one peer (see Fig. 10). When d = log n, the neighbor sets in
CAN are similar to those of a log n dimensional hypercube.

Other DHTs geometries are the Butterfly geometry which is used in Viceroy [30],
and the XOR geometry which is used by Kademlia [69]. Certainly, two or more
geometries can be combined together to provide a hybrid geometry that satisfies
better the DHT requirements. To illustrate, Pastry [14] combines the tree and ring
geometries in order to achieve more efficiency and flexibility.

546 Rabab Hayek et al.

node B’s virtual coordinate zone

1,0

0,0
0,0 0,1

C D E

B
(0−0.5, 0−0.5)

A
(0.5−1, 0−0.5)

(0.5−0.75, 0.5−1)

(0−0.5, 0.5−1) (0.75-1,0.5-1)

1,1

Fig. 10 2-dimensional [0;1]× [0;1] coordinate space partitioned between 5 CAN nodes [82]

3.3 Semantic Index

The initial unstructured file sharing P2P systems offered a filename-based search
facility, while the DHT-based systems offered only a key-based lookup. However,
as stated before, the P2P systems should be able to do more than “finding” things,
i.e., to capture data semantics and to allow for rich, complex queries. Works on both
P2P networks, unstructured and structured, have been started in order to support
P2P applications with higher levels of search expressiveness. First enhancements
to existing file sharing P2P systems have early provided keyword search facilities.
Later, providing large-scale Information Retrieval (IR), e.g., for searching the world
wide web, becomes an appealing application for P2P networks. Consequently, the
well known IR techniques have been brought into the context of P2P networks, in
order to support a decentralized document management (e.g., storing, clustering,
indexing) and retrieval.

Recently, the Database and P2P paradigm have meet. The former was slowly
moving toward a higher degree of distribution, and thus requiring a new class of
scalable, distributed architecture. The latter has started to explore more expressive-
ness infrastructures in order to extend the representation and query functionalities
it can offer to advanced applications. The P2P Data Management Systems (PDMS)
are the point where the two paradigms meet.

As the P2P networks are going to be adaptable, i.e., to support a wide range of
applications, they need to accommodate many search types. Index engineering has
been always at the heart of P2P search methods. In the following, we introduce
the various types of semantic indexes employed by current P2P systems. Then, the
query capabilities will be discussed in Section 5.

3.3.1 Keyword Lookup

Gnutella [2] provides a simple keyword match. Queries contain a string of keywords
and peers answer when they have files whose names contain all that keywords. In its
first version, Gnutella was a local-index system. Queries were flooded in the entire
network and peers only used their local indexes for filename matches.

Data Sharing in P2P Systems 547

As a way to improve the performance of unstructured Gnutella-like systems, the
notion of ultrapeer was introduced, so that the peer are organized into a hierarchical
network overlay. In [16], each peer maintains an index of filename keywords, called
the Query Routing Table (QRT), and forwards it to its ultrapeer. Upon receiving a
query, the latter sends the query only to leaves which have a match based on their
QRTs. Later, there has been a proposal to exploit the network hierarchy in order to
build a hierarchical index. Aggregated QRTs are distributed amongst the ultrapeers
to improve the query forwarding from an ultrapeer to another.

In other approach, [24] suggested the local indices: data structures where each
node maintains an index of the data stored at nodes located within a radius r from
itself. The query routing is done in a BFS-like way, except that the query is pro-
cessed only at the peers that are at certain hop distances from the query originator.
To minimize the overhead, the hop distance between two consecutive peers that pro-
cess the query must be 2 ·r+1. In other words, the query must be processed at peers
whose distance from the query originator is m · (2 · r + 1) for m = 1,2, This al-
lows querying all data without any overlap. The processing time of this approach is
less than that of standard BFS because only a certain number of peers process the
query. However, the number of routing messages is comparable to that of standard
BFS. In addition, whenever a peer joins/leaves the network or updates its shared
data, a flooding with T T L = r is needed in order to update the peers’ indices, so the
overhead becomes very significant for highly dynamic environments.

Routing Indices [6] have been proposed to support query routing with informa-
tion about “direction” towards data, rather than providing its actual location. Doc-
uments are assumed to fall into a number of topics, and queries request documents
on particular topics. Routing Indices (RIs) store information about the approximate
number of documents from every topic that can be retrieved through each outgoing
link (i.e., not only from that neighbor but from all nodes accessible from it).

Fig. 11 Example of routing indices [6]

Figure 11 shows an example of a P2P network with RIs built over four topics of
interest. The first row of each RI contains the summary of the local index presented
before (i.e., radius r = 2). In particular, the summary of A’s local index shows that A

548 Rabab Hayek et al.

has 300 documents: 30 about databases, 80 about networks, none about theory, and
10 about languages. The rest of the rows represent a compound RI. In the example,
the RI shows that node A can access 100 database documents through D (60 in D,
25 in I, and 15 in J).

Given a query, the termination condition relates to a minimum number of hits. A
node that can not satisfy the query stop condition with its local repository will for-
ward it to the neighbor with the highest “goodness” value. Three different functions
which rank the out-links according to the expected number of documents that could
be discovered through them are proposed. The routing algorithm backtracks if more
results are needed. A limitation of this approach is that RIs require flooding in order
to be created and updated, so they are not suitable for highly dynamic networks.
Moreover, stored indices can be inaccurate due to topic correlations, over-counts or
under-counts in document partitioning and network cycles.

3.3.2 Peer Information Retrieval

The amount of data published in the internet and its amazing growth rate become
beyond centralized web search engines. Recently, P2P systems start to represent
an interesting alternative to build large-scale, decentralized Information Retrieval
systems.

IR systems define representations of both documents and queries. They may only
support a boolean retrieval model, in which documents are indexed and a document
can match or not a given query. Note that the local and routing indices described
in the above section allow for such a retrieval model. Current IR systems are sup-
porting the retrieval model with a ranking function that quantifies the order amongst
the documents matching the query. This becomes essential in the context of large
document collections, where the resulting number of matching documents can far
exceed the number a user could possibly require. To this end, the IR system defines
relationships between document and query representations, so that a score can be
computed for each matching document, w.r.t. the query at hand.

A P2P system differs from a distributed IR system in that it is typically larger,
more dynamic with node lifetimes measured in hours. Furthermore, a P2P system
lacks the centralized mediators found in many IR systems that assume the respon-
sibility for selecting document collections, rewriting queries, and merging ranked
results [18]. In the following, we first introduce the main IR techniques used for
indexing documents. Then, we present the P2P IR systems that have been proposed
in the literature.

Inverted Index

The inverted index, or sometimes called inverted file, has became the standard tech-
nique in IR. For each term, a list that records which documents the term occurs in is
maintained. Each item in the list is conventionally called a posting. The list is then

Data Sharing in P2P Systems 549

called a postings list (or inverted list), postings list and all the postings lists taken
together are referred to as the postings.

Vector Space Model

The representation of the set of documents and queries as vectors in a common
vector space is known as the Vector Space Model (VSM) and is fundamental to
support the operation of scoring documents relative to a query. Each component of
the vector represents the importance of a term in the document or query. The weight
of a component is often computed using the Term Frequency * Inverse Document
Frequency (TF*IDF) scheme.

• Term Frequency: the frequency of each term in each document.
• Inverse Document Frequency: the document frequency d ft is the number of doc-

uments, in a collection of N documents, that contain a term t. The Inverse Docu-
ment Frequency of term t is given by: log(N/d ft).

Viewing a collection of N documents as a collection of vectors leads to a natural
view of a collection as a term-document matrix: this is an M×N matrix whose rows
represent the M terms (dimensions) of the N columns, each of which corresponds to
a document.

Latent Semantic Index

Latent Semantic Index (LSI) uses Singular Value Decomposition (SVD) to trans-
form and truncate the term-document matrix computed from VSM. This allow to
discover the semantics underlying terms and documents. Intuitively, LSI transforms
a high-dimensional document vector into a medium-dimensional semantic vector
by projecting the former into a medium-dimensional semantic subspace. The basis
of the semantic subspace is computed using SVD. Semantic vectors are normalized
and their similarities are measured as in VSM.

Several solutions for text-based retrieval in decentralized environments have been
proposed in the literature.

PlanetP [33] is a publish-subscribe service for P2P communities, supporting con-
tent ranking search. PlanetP maintains a detailed inverted index describing all docu-
ments published by a peer locally (i.e., a local index). In addition, it uses gossiping to
replicate a term-to-peer index everywhere for communal search and retrieval. This
term-to-peer index contains a mapping t → p if term t is in the local index of peer p.
PlanetP approximate T F · IDF by dividing the ranking problem into two stages. In
first, peers are ranked according to their likehood of having relevant documents. To
this end, PlanetP introduces the Inverse Peer Frequency (IPF) measure. Similar to
IDF , the idea behind is that a term is of less importance if it is present in the index
of every peer. Second, PlanetP contacts only the first group of m peers from the top

550 Rabab Hayek et al.

of the peer ranked list, to retrieve a relevant set of documents. It stops contacting
peers when the top-k document ranking becomes stable, where k is specified by the
user. A primary shortcoming of PlanetP is the large amount of metadata that should
be maintained, which restricts its scalability.

The PeerSearch system [28] proposes another approach that places documents
onto a DHT network according to their semantic vectors produced by Latent Se-
mantic Indexing (LSI) in order to reduce document dimensionality and guarantee
solution scalability. However, as semantic vectors have to be defined a priori, the
method cannot efficiently handle dynamic scenarios and adapt to changing collec-
tions.

A query-driven indexing method has recently been proposed in [37]. However,
the solution is based on single-term indexing and does not consider indexing with
term combinations. A recent work proposes the AlvisP2P search engine [85], which
enables retrieval with multi-keywords from a global document collection available
in the P2P network. One of the merits of the proposed approach is that indexing is
performed in parallel with retrieval. However, a main limitation is that the quality
of the answer obtained for a given query depends on the popularity of the term
combinations it contains.

3.3.3 Peer Data Management

While existing architectures for distributed systems have been reaching their matu-
rity (e.g., distributed database systems, data integration systems), the P2P paradigm
has emerged as a promising alternative to provide a large-scale decentralized in-
frastructure for resource sharing. Grible et al. have addressed an important question
how data management can be applied to P2P, and what the database community
can learn from and contribute to the P2P area? [36]. The P2P paradigm has gained
much popularity with the first successful file sharing systems (e.g., Gnutella, KaZaa)
because of the ease of deployment, and the amplification of the desired system prop-
erties as new nodes join (i.e., this is aligned with the definition of the P2P paradigm).
However, the semantics provided by these systems is typically weak. So far in this
report, we have reviewed P2P systems that support key lookups or keyword search.
In order to support advanced applications which are dealing with structured and
semantically rich data, P2P systems must provide more sophisticated data access
techniques. The overlapping of P2P and database areas has lead to a new class of
P2P systems, called Peer Data Management Systems (PDMS) or schema-based P2P
systems (see Fig. 12).

In distributed databases, the location of content is generally known, the query
optimizations are performed under a central coordination, and answers to queries
are expected to be complete. On the other side, the ad-hoc and dynamic membership
of participants in P2P systems makes difficult to predict about the location and the
quality of resources, and to maintain globally accessible indexes which may become
prohibitive as the network size grows.

Data Sharing in P2P Systems 551

Fig. 12 Schema capabilities and distribution [93]

The work that has been done in PDMSs mainly addresses the information in-
tegration issue. In fact, the potential heterogeneity of data schemas makes sharing
structured data in P2P systems quite challenging. This issue will be discussed in
Section 4. Besides, PDMSs have started to study the design and the implementa-
tion of complex query facilities (e.g., join and range queries). This is a fundamental
building block of a given PDMS which attempts to be a fully distributed data system,
with a high level of query expressiveness. Processing complex queries requires the
employment of data access techniques which deal with the structure and semantics
within data. Section 5 discusses complex queries in P2P systems.

4 Schema Management in P2P Systems

Semantic heterogeneity is a key problem in large scale data sharing systems [57].
The data sources involved are typically designed independently, and hence use dif-
ferent schemas. To be able to allow meaningful inter-operation between different
data sources, the system needs to define schema mappings. Schema mappings define
the semantic equivalence between relations and attributes in two or more different
schemas.

The traditional approach for querying heterogeneous data sources relies on the
definition of mediated schema between data sources [38] (see Fig. 13). This me-
diated schema provides a global unified schema for the data in the system. Users
submit their queries in terms of the mediated schema, and schema mappings be-
tween the mediated schema and the local schemas allow the original query to be
reformulated into subqueries executable at the local schemas. There is a wrapper
close to each data source that provides translation services between the mediated
schema and the local query language [88].

In data integration systems, there are two main approaches for defining the map-
pings: Global-as-view (GAV) which defines the mediated schema as a view of the
local schemas, and Local-as-View (LAV) which describes the local schemas as a
view of the mediated schema [54]. In GAV, the autonomy of data sources is higher

552 Rabab Hayek et al.

Fig. 13 Schema mapping using a global mediated schema

than LAV because they can define their local schemas as they want. However, if
any new source is added to a system that uses the GAV approach, considerable
effort may be necessary to update the mediator code. Thus, GAV should be fa-
vored when the sources are not likely to change. The advantage of a LAV model-
ing is that new sources can be added with far less work than in GAV. LAV should
be favored when the mediated schema is not likely to change, i.e., the mediated
schema is complete enough that all the local schemas can be described as a view
of it.

Given the dynamic and autonomous nature of P2P systems, the definition of a
unique global mediated schema is impractical. Thus, the main problem is to sup-
port decentralized schema mapping so that a query on one peer’s schema can be
reformulated in a query on another peer’s schema. The approaches which are used
by P2P systems for defining and creating the mappings between peers’ schemas
can be classified as follows: pairwise schema mapping, mapping based on machine
learning techniques, common agreement mapping, and schema mapping using IR
techniques.

4.1 Pairwise Schema Mappings

In this approach, the users define the mapping between their local schemas and the
schema of any other schema which is interesting for them. Relying on the transitivity
of the defined mappings, the system tries to extract mappings between schemas
which have no defined mapping.

Piazza [45] follows this approach (see Fig.14). In Piazza, the data are shared as
XML documents, and each peer has a schema, expressed in XMLSchema, which
defines the terminology and the structural constraints of the peer. When a new peer
(with a new schema) joins the system for the first time, it maps its schema to the
schema of some other peers of the network. Each mapping definition begins with
an XML template that matches some path or sub-tree of an instance of the target

Data Sharing in P2P Systems 553

schema, i.e., a prefix of a legal string in the target DTD’s grammar. Elements in the
template may be annotated with query expressions (in a subset of XQuery) that bind
variables to XML nodes in the source.

Fig. 14 An example of pairwise schema mapping in piazza

The Local Relational Model (LRM) [66] is another example that follows this ap-
proach. LRM assumes that the peers hold relational databases, and each peer knows
a set of peers with which it can exchange data and services. This set of peers is
called p’s acquaintances. Each peer must define semantic dependencies and trans-
lation rules between its data and the data shared by each of its acquaintances. The
defined mappings form a semantic network, which is used for query reformulation
in the P2P system.

PGrid also assumes the existence of pairwise mappings between peers, initially
constructed by skilled experts [10]. Relying on the transitivity of these mappings and
using a gossiping algorithm, PGrid extracts new mappings that relate the schemas
of the peers between which there is no predefined schema mapping.

4.2 Mapping Based on Machine Learning Techniques

This approach is usually used when the shared data is defined based on ontologies
and taxonomies as proposed in the Semantic Web [5]. It uses machine learning
techniques to automatically extract the mappings between the shared schemas. The
extracted mappings are stored over the network, in order to be used for processing
future queries.

GLUE [8] uses this approach. Given two ontologies, for each concept in one,
GLUE finds the most similar concept in the other. It gives well founded proba-
bilistic definitions to several practical similarity measures. It uses multiple learn-
ing strategies, each of which exploits a different type of information either in the
data instances or in the taxonomic structure of the ontologies. To further improve

554 Rabab Hayek et al.

mapping accuracy, GLUE incorporates commonsense knowledge and domain con-
straints into the schema mapping process. The basic idea is to provide classifiers
for the concepts. To decide the similarity between two concepts A and B, the data
of concept B is classified using A’s classifier and vice versa. The amount of values
that can be successfully classified into A and B represent the similarity between
A and B.

4.3 Common Agreement Mapping

In this approach, the peers that have a common interest agree on a common schema
description for data sharing. The common schema is usually prepared and main-
tained by expert users. APPA [76] makes the assumption that peers wishing to co-
operate, e.g., for the duration of an experiment, agree on a Common Schema De-
scription (CSD). Given a CSD, a peer schema can be specified using views. This
is similar to the LAV approach in data integration systems, except that, in APPA,
queries at a peer are expressed in terms of the local views, not the CSD. Another
difference between this approach and LAV is that the CSD is not a global schema,
i.e., it is common to a limited set of peers with common interest (see Fig. 15). Thus,
the CSD makes no problem for the scalability of the system. When a peer decides
to share data, it needs to map its local schema to the CSD. In APPA, the mappings
between the CSD and each peer’s local schema are stored locally at the peer. Given
a query Q on the local schema, the peer reformulates Q to a query on the CSD using
locally stored mappings.

Fig. 15 Common agreement schema mapping in APPA

AutoMed [70] is another system that relies on common agreements for schema
mapping. It defines the mappings by using primitive bidirectional transformations
defined in terms of a low-level data model.

Data Sharing in P2P Systems 555

4.4 Schema Mapping Using IR Techniques

This approach extracts the schema mappings at query execution time using IR tech-
niques by exploring the schema descriptions provided by users. PeerDB [62] follows
this approach for query processing in unstructured P2P networks. For each relation
which is shared by a peer, the description of the relation and its attributes is main-
tained at that peer. The descriptions are provided by users upon creation of relations,
and serve as a kind of synonymous names of relation names and attributes. When a
query is issued, some agents are flooded to the peers to find out potential matches
and bring the corresponding meta-data back. By matching keywords from the meta-
data of the relations, PeerDB is able to find relations that are potentially similar to
the query relations. The found relations are presented to the user who has issued the
query, and she decides on whether or not to proceed with the execution of the query
at the remote peer which owns the relations.

Edutella [12] also follows this approach for schema mapping in super-peer net-
works. Resources in the Edutella are described using the RDF metadata model, and
the descriptions are stored at superpeers. When a user issues a query at a peer p, the
query is sent to p’s super-peer where the stored schema descriptions are explored
and the address of the relevant peers are returned to the user. If the super-peer does
not find relevant peers, it sends the query to other super-peers such that they search
relevant peers by exploring their stored schema descriptions. In order to explore
stored schemas, super-peers use the RDF-QEL query language. RDF-QEL is based
on Datalog semantics and thus compatible with all existing query languages, sup-
porting query functionalities which extend the usual relational query languages.

Independently of the approach used to implement the schema mappings, P2P sys-
tems attempt to exploit the transitive relationships among peer schemas to perform
data sharing and integration [99]. While in traditional distributed systems, schema
mappings form a semantic tree, in P2P systems the mappings form a semantic graph.
By traversing semantic paths of mappings, a query over one peer can obtain rele-
vant data from any reachable peer in the network. Semantic paths are traversed by
reformulating queries at a peer into queries on its neighbors.

5 Querying in P2P Systems

The support of a wider range of P2P applications motivates the evolution of current
P2P technologies in order to accommodate many search types. As said before, a
P2P system should support the operating application with an appropriate level of
query expressiveness. Advanced applications which are dealing with semantically
rich data require an expressiveness level higher than filename-based or key-based
lookup. In the following, we discuss the different techniques used for processing
complex queries in P2P systems. These querying techniques can be distinguished
according to:

556 Rabab Hayek et al.

• Search completeness: the network is entirely covered by the search mechanism.
Relaxing the search completeness leads to partial lookup.

• Result completeness: the found result set is entirely returned to the user. Relaxing
the result completeness leads to partial answering.

• Result granularity: generally, the returned results are retrieved from, and thus
have the same type as, the original queried data (e.g., music files, XML docu-
ments, database tuples). Returning results at a different level of granularity (by
making data abstraction) leads to approximate answering. The term “approxi-
mate” may still be ambiguous, due to its wide employment in query processing
proposals. However, the following sections tend to give a precise definition of
what we are referring to by “approximate answers”.

5.1 Partial Lookup

The advantages of P2P data sharing systems, like scalability and decentralization,
do not come for free. In large-scale dynamic systems, it is nearly impossible to
guarantee a complete search. Let Q be a query issued by a peer p in the system, and
PQ the set of relevant peers, i.e., the peers that store, at least, one query result. Q is
said to be a total-lookup query if it requires all the results available in the system.
Here, the set PQ should be entirely visited. In the case where Q requires any k results,
Q is said to be a partial-lookup query.

The impracticality of an exhaustive flooding, the limited knowledge provided by
indexes and the errors they may contain, and the incorrect semantic mappings are
reasons among others for considering that all queries in P2P systems are in reality
processed as being partial-lookup queries. In other terms, the query Q issued by
peer p in a P2P network of size N will be routed in a subnetwork of size N′, and
thus a subset P′Q ⊆ PQ can be targeted. The filename-based, key-based and keyword-
based searches have been presented earlier in this chapter. Here, we discuss three
types of complex queries: range, multi-attribute and join queries. The importance of
these queries has been recognized in many distributed environments (e.g., parallel
databases, Grid resource discovery) since they significantly enhance the application
ability to precisely express its interests.

5.1.1 Range Queries

Range queries are issued by users to find all the attribute values in a certain range
over the stored data.

Several systems have been proposed to support range queries in P2P networks.
The query processing in these systems rely on underlying DHTs, or other indexing
structures. Some argue that DHTs are not suited to range queries [9]. The hash func-
tions used to map data on peers achieve good load balancing, but do not maintain
data proximity, i.e., the hash of two close data may be two far numbers. Despite of

Data Sharing in P2P Systems 557

this potential shortcoming, there have been some range query proposals based on
DHTs.

Instead of using uniform-hashing techniques, Gupta et al. [9] employ locality
sensitive hashing to ensure that, with high probability, similar ranges are mapped
to the same peer. They propose a family of locality sensitive hash functions, called
min-wise independent permutations. The simulation results show good performance
of the solution. However, there is the problem of load unbalance for large networks.
In [64] the authors extend the CAN protocol using the Hilbert space-filling curve
and load balancing mechanisms. Nearby ranges map to nearby CAN zones, and
if a range is split into two sub-ranges, then the zones of the sub-ranges partition
the zone of the primary range. Thus, the one-dimensional space of data items is
mapped to the multi-dimensional CAN zones. Conversely, multi-dimensional data
items are mapped to data points in one-dimensional space through the space-filling
curve in [27]. Such a construction gives the ability to search across multiple at-
tributes.

Some works rely on Skip list data structure which, unlike DHT, does not require
randomizing hash functions and thus can support range queries. SkipNet [63] is a
lexicographic order-preserving DHT that allows data items with similar values to
be placed on contiguous peers. It uses names rather than hashed identifiers to order
peers in the overlay network, and each peer is responsible for a range of strings.
This facilitates the execution of range queries. However, it is not efficient because
the number of peers to be visited is linear in the query range.

Other proposals for range queries avoid both DHT and Skip list structures.
P-Grid [10] is based on a randomized binary prefix tree. One limitation is that
P-Grid considers that all nodes in the system have a fixed capacity, and content
is heuristically replicated to fill all the node capacity. However, there is no formal
characterization of either the imbalance ratio guaranteed, or the data-movement cost
incurred.

BATON [40] is a balanced binary search tree with in-level links for efficiency,
fault-tolerance, and load-balancing. VBI-tree [41] proposes a virtual binary overlay
which is an enhancement of BATON, and focuses on employing multi-dimensional
indexes to support more complex range query processing. Common problems to bal-
anced tree overlay structures is that peer joining or leaving can cause a tree structural
change, and the update strategies may get prohibitive under a high churn environ-
ment.

5.1.2 Join Queries

Distributed data among peers could be seen, in some cases, as a set of large relational
tables fragmented horizontally. Running efficient join queries over such massively
dispersed fragments is a challenging task. Two research teams have done some ini-
tial works on P2P join operations.

In [80], the authors describe a three layer architecture of the PIER system and
implement two equi-join algorithms. In their design, a key is constructed from a

558 Rabab Hayek et al.

“namespace” (relation) and a “resourceID” (primary key by default). Queries are
multicast to all peers in the two namespaces to be joined. The first algorithm is a
version of the symmetric hash join algorithm [WA91]. Each peer in the two names-
paces finds the relevant tuples and hashes them to a new query namespace. The
resource ID in the new namespace is the concatenation of join attributes. The sec-
ond algorithm, called “fetch matches”, assumes that one of the relations is already
hashed on the join attributes. Each peer in the second namespace finds tuples match-
ing the query and retrieves the corresponding tuples from the first relation. The au-
thors leverage two other techniques, namely the symmetric semi-join rewrite and
the Bloom filter rewrite, to reduce the high bandwidth overheads of the symmet-
ric hash join. For an overlay of 10,000 peers, they evaluated the performance of
their algorithms through simulation. The results show good performance of the pro-
posed algorithms. However, for the cases where the join relations have a large num-
ber of tuples, this solution is not efficient, especially in terms of communication
cost.

In [72], the authors considered multicasting to a large number of peers inefficient.
Thus, they propose using a set of dedicated peers called range guards to monitor
partitions of join attributes. Join queries are therefore sent only to range guards
which decide the peers that should be contacted to execute the query.

5.1.3 Multi-Attributes Queries

There has been some work on multi-attribute P2P queries. The Multi-Attribute Ad-
dressable Network (MAAN) [59] is built on top of Chord to provide multi-attribute
and range queries. They use a locality preserving hash function to map attribute val-
ues to the Chord identifier space, which is designed with the assumption that the
data distribution could be known beforehand. Multi-attribute range queries are exe-
cuted based on single-attribute resolution in O(logn+n ·smin) routing hops, where n
is the number of peers of the DHT and smin is the minimum range selectivity across
all attributes. The range selectivity is defined to be the ratio of the query range to
the entire attribute domain range. However, the authors notice that there is a query
selectivity breakpoint at which flooding becomes better than their scheme. Another
drawback of MAAN is that it requires a fixed global schema which is known in
advance to all peers. The authors followed up with the RDFPeers system to allow
heterogeneity in peers schemas [58]. Each peer contains RDF based data items de-
scribed as triples 〈sub ject, predicate,ob ject〉. The triples are hashed onto MAAN
peers. The experimental results show improvement in load balance, but no test for
skewed query loads was done.

5.1.4 Fuzzy Queries

Information Need vs Query: In information systems, the information need is what
the user (or group of users) desires to know from the stored data, to satisfy some

Data Sharing in P2P Systems 559

intended objective (e.g., data analysis, decision making). However, the query is what
the user submits to the system in an attempt to get that information need.

Precision vs Accuracy: Let us examine what is the relation between precise query
statements and the accuracy of the returned results according to the information
need. Consider the following relational table (Table 2) that maintains some patient
records in a given hospital.1

Table 2 Patient table

Id Age Sex BMI Disease

t1 36 Female 17 Malaria
t2 23 Male 20 Malaria
t3 45 Female 16.5 Anorexia
t4 33 Female 23 Malaria
t5 55 Female 21 Rheumatism
t6 19 Male 18 Malaria

Suppose now that a doctor requires information about young patients diagnosed
with Malaria (i.e., the information need). In a conventional SQL query, we must
decide what are the ages of people considered as young. In the case where such age
values fall into the [21,35] range, the SQL query is written as follows:

Select all From Patient Where age in [21, 35]
and Disease = Malaria

The query above will return two tuples: t2 and t4. Unlike other contexts where
the young term is well defined, such in banking applications where the age of clients
precisely decides of the advantages they may benefit from, this term may not have
a precise definition in biological contexts. For instance, the tuple t6 may bring ad-
ditional information to the doctor, affecting its analysis or decision. From this point
of view, we say that the query results are not accurate, although the query has been
precisely stated. One way to include tuple t6 in the result set is to expand the scope
of the selection predicate in order to encompass more data. Thus, the previous query
is modified as follows:

Select all From Patient Where age in [18, 35]
and Disease = Malaria

Although it selects more tuples, the query still fails to find tuples lying just out-
side the explicit range of the selection predicate (e.g., tuple t1). This is due to the
crisp boundaries of the search range. Furthermore, there is no measure of inclusion,
i.e., there is no way to know which tuples are strongly satisfying the information
need and which are weakly satisfying it. Introducing fuzziness into user queries is a

1 Body Mass Index (BMI): patient’s body weight divided by the square of the height.

560 Rabab Hayek et al.

viable solution for that problem, i.e., introducing some imprecision in query state-
ments may in some cases improve accuracy.

A fuzzy set is a class with unsharp boundaries. The grade of membership of an
object in a fuzzy set is a number in the unit interval or, more generally, a point in a
partially ordered set [51].

The application of gradual predicates, such as the YOUNG predicate presented in
Fig. 16, results in associating membership degrees to tuples in a PATIENT relational
table. For example, a tuple whose attribute value t.age is equal to 21 will be asso-
ciated with a membership degree of 0.5 according to the YOUNG predicate. Hence,
tuples can “partially” belong to the result set depending on how well they fit the
information need.

Fig. 16 Gradual predicate on attribute AGE

In [77], fuzzy techniques have been used in the design of P2P reputation systems
based on collecting and aggregation peers’ opinions. Characterizing peer’s reputa-
tion by either “bad” or “good” based on some defined threshold is not adequate, as it
would characterize in the same way a positive reputation produced by the collection
of only positive opinions by many users and a reputation built with a limited number
of heterogeneous opinions that produce a value immediately above the threshold; the
same reasoning can be applied to negative reputations.

A recent work tends to introduce fuzziness into the BestPeer platform [94].
In [68], the authors propose FuzzyPeer, a generic P2P system which supports simi-
larity queries. An image retrieval application is implemented as a case study. Fuzzy
queries like “find the top-k images which are similar to a given sample” are very
common in such applications because it is difficult for humans to express precisely
an image’s content in keywords or using precise attribute values. The authors in-
vestigate the problem of resolving similarity queries. The approach that consists in
setting a similarity threshold and accepting objects only above this value is rejected.
In fact, choosing the threshold value is not trivial given that the interpretation of
an image depends on the user’s perception of the domain. The approach proposed
in [68] is based on the following observation: if two queries are similar, the top-k
answers for the first one may contain (with high probability) some of the answers
for the second query. In FuzzyPeer some of the queries are paused (i.e., they are not
propagated further) and stay resident inside a set of peers. We use the term frozen for
such queries. The frozen queries are answered by the stream of results that passes
through the peers, and was initiated by the remaining running queries. Then, the

Data Sharing in P2P Systems 561

authors propose distributed optimization algorithm in order to improve the scalabil-
ity and the throughput of the system.

5.2 Partial Answering

As seen before, a first repercussion of the scale of P2P systems on query processing
is that all queries can partially search the network. Another issue is that the amount
of available data in P2P systems is dramatically increasing. More specifically, it
becomes difficult to retrieve a few data items within a large structured data set in
current PDMSs. Consider that a user issues the following query Q: select hotels in
Nice where price ¡ 100(euros) and proximity ¡ 8(km). The set RQ of results returned
by the set of relevant peers P′Q may include a number of hotels that is so far from
the one required by the user. Therefore, rank-aware queries like top-k and skyline
queries started to emerge in order to provide a partial result subset R′Q, with the k
results having the highest grades of membership to the result set RQ, i.e., R′Q ⊆ RQ.
Indeed, the user is interested in the most relevant available results, which may be
specified in the query as follows: select hotels with cheap price, and yet close to the
beach. The degree of relevance (score) of the results to the query is determined by
a scoring function.

Ranking results in a distributed manner is difficult because ranking is global: all
results (matching a query) have to be ranked w.r.t. each other. In a completely dis-
tributed system, the results returned for identical queries should ideally be the same,
which is not an issue in a centralized implementation. In a large-scale P2P system,
the lack of a central location to aggregate global knowledge makes the problem of
ranking challenging.

5.2.1 Top-k Queries

Given a dataset D and a scoring function f , a top-k query retrieves the k data items
in D with the highest scores according to f . The scoring function is specified by the
user according to its criteria of interests.

In unstructured P2P systems, one possible approach for processing top-k queries
is to route the query to all peers, retrieve all available answers, score them using
the scoring function, and return to the user the k highest scored answers. However,
this approach is not efficient in terms of response time and communication cost.
Top-k is a popular aspect of IR. As mentioned before, PlanetP [33] supports content
ranking search in Peer IR systems. The top-k query processing algorithm works as
follows. Given a query Q, the query originator computes a relevance ranking of
peers with respect to Q, contacts them one by one from top to bottom of ranking
and asks them to return a set of their top-scored document names together with their
scores. To compute the relevance of peers, a global fully replicated index is used
that contains term-to-peer mappings. This algorithm has very good performance in

562 Rabab Hayek et al.

moderate-scale systems. However, in a large P2P system, keeping up-to-date the
replicated index is a major problem that hurts scalability.

In the context of APPA, a fully distributed solution is proposed to execute top-k
queries in unstructured P2P systems [74]. The solution involves a family of algo-
rithms that are simple but effective. It executes top-k queries in completely dis-
tributed fashion and does not depend on the existence of certain peers. It also ad-
dresses the volatility of peers during query execution and deals with situations where
some peers leave the system before finishing query processing.

In [92], the authors leverage the usage of super-peer networks, and propose an
algorithm for distributed processing of top k queries on the top of Edutella [12]. In
Edutella, a small percentage of nodes are super-peers and are assumed to be highly
available with very good computing capacity. The super-peers are responsible for
top-k query processing and other peers only execute the queries locally and score
their resources. A limitation of this framework is that it assumes a global shared
schema as well as consistent ranking methods employed at peers.

As for other complex queries, processing top-k queries in DHTs is quite chal-
lenging. A solution is to store all tuples of each relation by using the same key (e.g.,
relation’s name), so that all tuples are stored at the same peer. Then, top-k query
processing can be performed at that central peer using well-known centralized algo-
rithms. However, the central peer becomes a bottleneck and single point of failure.
In the context of APPA, a recent work has proposed a novel solution for Top-k
query processing in DHT systems [75]. The solution is based on the TA algorithm
[FLN03, GKB00, NR99] which is widely used in distributed systems. The solution
is based on a data storage mechanism that stores the shared data in the DHT in a
fully distributed fashion, and avoids skewed distribution of data among peers.

5.2.2 Skyline Queries

Top-k queries are sometimes difficult to define, especially if multiple aspects (i.e.,
scoring functions) have to be optimized. It is often not clear how to weight these
aspects in order to obtain a global rank. Given such a multi-preference criteria, the
concept of skyline queries provide a viable solution by finding a set of data points
that are not dominated by any other points in a given data set. A point dominates
another point if it is no worse in all concerning dimensions and better in at least one
dimension according to user preferences. Objects belonging to skyline are precisely
those objects that could be the best under some monotonic scoring functions. Most
existing studies have focused mainly on centralized systems, and resolving skyline
queries in a distributed environment such as a P2P network is still an emerging topic.

Reference [73] is the first attempt on progressive processing of skyline queries
on a P2P network such as CAN [82]. The authors present a recursive region parti-
tioning and a dynamic region encoding method to enforce a partial order over the
CAN’s zones, so that all the participating machines can be correctly pipelined for
query execution. During the query propagation, data spaces are dynamically pruned
and query results are progressively generated. Therefore, users do not have to wait

Data Sharing in P2P Systems 563

for query termination to receive partial results, substantially reducing the query re-
sponse time. However, this work focuses only on constrained skyline queries [32]
where users are only interested in finding the skyline points among a subset of data
items that satisfies multiple hard constraints. Besides, it suffers from workload im-
balance caused by skewed query ranges.

A more recent work [84] has proposed an efficient solution for skyline query
processing in the context of BestPeer. BestPeer [94] is a P2P platform that supports
both structured and unstructured overlays. The solution proposed in [84] is called
Skyline Space Partitioning (SSP), and is implemented in the BestPeer’s structured
network, called BATON [40]. It supports processing unconstrained skyline queries,
which search skyline points in the whole data space. This work deals with the issue
of imbalanced query load.

5.3 What About Approximate Answering?

To fix the ideas previously presented, and to eliminate any ambiguity, we precise
here that “approximate answering”,

• Is not only about approximating the search space: In Section 5.1, the fact of
relaxing search completeness, due either to the limited coverage of routing pro-
tocols or to the inaccuracy of data indexes, has been referred as “partial lookup”.

• Is not only about introducing flexibility into user’s queries: By flexible queries
we refer to queries that may contain keywords, wildcards, ranges, or include
user’s preferences (e.g., top-k, skyline queries) or user’s perception of the queried
domain (e.g., fuzzy queries). This flexibility certainly supports users with more
facilities to express their interests.

• Is not only about approximating query evaluation techniques: Query evaluation
techniques, which are initially defined in centralized environments, can be only
approximated in the context of P2P systems. Examples are [49] in which the
notion of relaxed skyline is introduced, and [42] in which the well-known TA
algorithm [87] is extended to adapt to P2P scenarios. For more illustration, the
top-k answers returned to a user in a P2P system do not exactly match the set
of top-k answers which would be obtained if all data were available and pro-
cessed under a central coordination. This is considered as a natural repercussion
of the nature of P2P networks on any computation method requiring some global
information.

• It is about returning approximate results, represented at a different level of ab-
straction: As P2P systems start getting deployed in e-business and scientific
environments, the vast amount of data within P2P databases poses a different
challenge that has not been intensively researched until recently. In collaborative
and decision support applications, a user may prefer an approximate but fast an-
swer. Approximate answers do not belong to the original result set RQ. However,
they provide data descriptions R̃Q, which may be queried or used as an alternative
dataset for other operations input, including querying, browsing, or data mining.

564 Rabab Hayek et al.

Aggregation Queries

Aggregation queries have the potential of finding applications in decision support,
data analysis and data mining. For example, millions of peers across the world may
be cooperating on a grand experiment in astronomy, and astronomers may be inter-
ested in asking decision support queries that require the aggregation of vast amounts
of data covering thousands of peers [17].

Consider a single table T that is horizontally partitioned and distributed over a
P2P system. An aggregation query can be defined as follows:

Select Agg-Op(col) From T Where selection-condition

The Agg-Op may be any aggregation operator such as SUM, COUNT, AVG, MAX, and
MIN. Col may be any numeric column of T , or even an expression involving multi-
ple columns, and the selection-condition decides which tuples should be involved in
the aggregation. Recently, traditional databases and decision support systems have
witnessed the development of new Approximate Query Processing techniques AQP
(e.g., [19, 95]) for aggregation queries. These techniques are mainly based on sam-
pling, histograms, and wavelets.

Initial works have aimed to support aggregation queries in P2P systems by in-
troducing OLAP techniques which employ materialized views over data ([61, 67]).
However, the distribution and management of such views seems to be very difficult
in such dynamic and decentralized environments. A recent work has investigated
the feasibility of online sampling techniques for AQP in P2P systems [17]. The au-
thors abandon trying to pick uniform random samples, which are nearly impossible
to obtain in P2P systems. Instead, they have proposed to work with skewed samples
while being able to accurately estimate the skew during sampling process.

Note that aggregation queries are not flexible, i.e., they are precisely formulated
with specific operators. However, the aggregate values returned to the user provide
information about tendencies within data. For example, the data cube [35], which is
the most popular data model used for OLAP systems, generalizes the GROUP BY
operation to N dimensions. Pre-computed aggregate values are stored in the cube
cells and then, the OLAP system provides tools to navigate within these cells. This
allows, for example, to examine the total number of sales of a given product in the
last week of the current year, which have been reported in all cities of France (see
Fig. 17).

Fuzzy Summaries

As seen before, fuzziness can be introduced into the user interface to allow more
flexibility in query formulation. Fuzzy queries may be interpreted in a quantitative
preference framework, provided that: (1) a membership function gives a similarity
value of tuples to elementary query requirements (the fuzzy or gradual predicates)
and (2) fuzzy aggregation computes an overall score that allows ranking items in
the result set. However, we believe that it could not be the users’ very first intention

Data Sharing in P2P Systems 565

product

date

city

Fig. 17 Data cube

when they deal with such fuzzy queries. The simple fact that they need to define
membership functions to compute attribute-oriented scores is somehow less natural
than explicitly formulating preferences into query [90].

The literature also offers studies of how to express concepts or needs through
constructs such as operators or linguistic variables [52]. One of the main challenges
of extending query languages is to enrich query formulation without drastically re-
ducing the performance of the query evaluation process. Linguistic summaries, stud-
ied by Yager et al. in [96], serve that concern by expressing the content of a set of
data. The new expression is a description of the data using linguistic terms. Many
works, some prior to Yager’s, fall into the domain of linguistic summaries.

Quantified summaries approaches [71, 78] use fuzzy quantifiers in addition to
linguistic terms to describe the data. For instance, in SummarySQL [78], evaluating
“summary most from PATIENTS where age is young” provides a degree of validity
for the proposition “most PATIENTS are young”. Linguistic summaries also com-
prise fuzzy rules-based summaries. Such summaries are discovered by searching
associations and relations between attribute values [23] or by exploiting fuzzy func-
tional dependencies [22, 29]. They produce, in the case of gradual rules of Bosc et
al. [23], propositions such as “the more age is old, the more patient day is high2”. It
is also possible to summarize records by repeatedly generalizing linguistic descrip-
tions. This approach uses techniques from automatic learning and classification. Its
output is a tree of descriptions. Lee and Kim’s “is-a” hierarchies [53] and the Sain-
tEtiQ model [34] are instances of this approach.

At the end of this chapter, we lighten the importance of querying such fuzzy
summaries in centralized as well as in distributed P2P environments. First of all,
these database summaries are a means of significantly reducing the volume of in-
put for processes that require access to the database. The response time benefits
from the downsizing. However, this response time gain is made clearly at the ex-
pense of a loss of precision in the answer (i.e., this what we are calling approximate

2 Patient day: number of days spent in a hospital.

566 Rabab Hayek et al.

answering). This is of no importance when only a rough answer is required. Be-
sides, imprecision can be sometimes a requirement. This is the case for instance
when querying a medical database for anonymous, statistical information. Indeed,
precise information can violate medical confidentiality. The loss of precision is also
of no importance when a request only aims at determining the absence of informa-
tion in a database. This is the case when one wants to know if a database is likely to
answer the query.

Existing techniques have been proposed for querying fuzzy summaries in cen-
tralized environments [65, 91], however, such techniques have not been studied in
P2P environments yet. The next chapter proposes a solution for managing fuzzy
summaries in P2P systems to support DB applications with approximate query fa-
cilities.

References

1. http://www.gnutella2.com
2. http://www.gnutella.com
3. http://www.kazaa.com
4. http://www.napster.com
5. http://www.w3.org/2001/sw/
6. A.Crespo, H.G.Molina: Routing indices for peer-to-peer systems. In: Proc. of the 28 tn Con-

ference on Distributed Computing Systems (2002)
7. A.Crespo, H.G.Molina: Semantic overlay networks for p2p systems. Tech. rep., Computer

Science Department, Stanford University (2002)
8. A.Doan, J.Madhavan, R.Dhamankar, P.Domingos, A.Halevy: Learning to match ontologies

on the semantic web. The VLDB Journal 12(4), 303–319 (2003)
9. A.Gupta, D.Agrawal, A.El-Abbadi: Approximate range selection queries in peer-to-peer sys-

tems. In: CIDR (2003)
10. K.Aberer et al.: P-grid: a self-organizing structured p2p system. SIGMOD Rec. 32(3), 29–33

(2003)
11. Q.Lv et al.: Search and replication in unstructured peer-to-peer networks. In: ACM Int. con-

ference on Supercomputing (2002)
12. W.Nejdl et al.: Edutella: a p2p networking infrastructure based on rdf. In: WWW’02 (2002)
13. S.Androutsellis-Theotokis, D.Spinellis: A survey of peer-to-peer content distribution tech-

nologies. ACM Comput. Surv. 36(4), 335–371 (2004)
14. A.Rowstron, P.Druschel: Pastry: Scalable decentralized object location and routing for large-

scale peer-to-peer systems. In: IFIP/ACM International Conference on Distributed Systems
Platforms (Middleware) (2001)

15. A.Rowstron, P.Druschel: Storage management and caching in PAST, a large–scale, persistent
peer-to-peer storage utility. In: Proc.SOSP (2001)

16. A.Singla, C.Rohrs: Ultrapeers: another step towards gnutella scalability. Tech. rep. (2002)
17. B.Arai, G.Das, D.Gunopulos, V.Kalogeraki: Approximating aggregation queries in peer-to-

peer networks. In: ICDE (2006)
18. M.Bawa, G.S.Manku, P.Raghavan: Sets: search enhanced by topic segmentation. In: SIGIR

’03: Proceedings of the 26th annual international ACM SIGIR conference on Research and
development in informaion retrieval, pp. 306–313 (2003)

19. B.Babcock, S.Chaudhuri, G.Das: Dynamic sample selection for approximate query process-
ing. In: SIGMOD (2003)

Data Sharing in P2P Systems 567

20. B.Cooper, H-G.Molina: Ad hoc, self-supervising peer-to-peer search networks. ACM Trans.
Inf. Syst. 23(2), 169–200 (2005)

21. B.Maniymaran, M.Bertier, A-M.Kermarrec: Build one, get one free: Leveraging the coexis-
tence of multiple p2p overlay networks. In: Proc of the 27th International Conference on
Distributed Computing Systems ICDCS, p. 33. IEEE Computer Society, Washington, DC,
USA (2007)

22. P.Bosc, D.Dubois, H.Prade: Fuzzy functional dependencies and redundancy elimination. JA-
SIS 49(3), 217–235 (1998)

23. P.Bosc, O.Pivert, L.Ughetto: On data summaries based on gradual rules. In: Fuzzy Days, pp.
512–521 (1999)

24. B.Yang, H-G.Molina: Improving search in peer-to-peer networks. In: Proc of the 22 nd Inter-
national Conference on Distributed Computing Systems (ICDCS) (2002)

25. B.Zhao, J.Kubiatowicz, A.Joseph: Tapestry: An infrastructure for fault-tolerant wide-area lo-
cation and routing. Tech. rep., Computer Science Division, U. C.Berkeley (2001)

26. B.Zhao, L.Huang, J.Stribling, S.Rhea, A.Joseph, J.Kubiatowicz: Tapestry: A resilient global-
scale overlay for service deployment. IEEE J. Selected Areas Commun. 22, 41–53 (2004)

27. C.Schmidt, M.Parashar: Enabling flexible queries with guarantees in p2p systems. IEEE Int.
Comput. 08(3), 19–26 (2004)

28. C.Tang, Z.Xu, M.Mahalingam: Peersearch: Efficient information retrieval in peer-to-peer net-
works. Tech. Rep. HPL-2002-198, HP Labs (2002)

29. J.C.Cubero, J.M.Medina, O.Pons, M.A.V.Miranda: Data summarization in relational
databases through fuzzy dependencies. Inf. Sci. 121(3–4), 233–270 (1999)

30. D.Malkhi, M.Naor, D.Ratajczak: Viceroy: a scalable and dynamic emulation of the butterfly.
In: Proc of the twenty-first annual symposium on Principles of distributed computing, pp.
183–192 (2002)

31. D.Milojicic, et al: Peer-to-peer computing. Tech. rep., HP labs (2002)
32. D.Papadias, Y.Tao, G.Fu, B.Seeger: An optimal and progressive algorithm for skyline queries.

In: ACM SIGMOD, pp. 467–478 (2003)
33. F.Cuenca-Acuna, C.Peery, R.Martin, T.Nguyen: Planetp: Using gossiping to build content ad-

dressable peer-to-peer information sharing communities. In: HPDC-12 (2003)
34. G.Raschia, N.Mouaddib: A fuzzy set-based approach to database summarization. Fuzzy sets

and systems 129(2) pp. 137–162 (2002)
35. J.Gray, S.Chaudhuri, A.Bosworth, A.Layman, D.Reichart, M.Venkatrao, F.Pellow,

H.Pirahesh: Data cube: A relational aggregation operator generalizing group-by, cross-
tab, and sub-totals. J. Data Mining Knowl. Discov. 1(1), 29–53 (1997)

36. S.Gribble, A.Halevy, Z.Ives, M.Rodrig, D.Suciu: What can databases do for peer-to-peer? In:
WebDB Workshop on Databases and the Web (2001)

37. G.Skobeltsyn, T.Luu, Žarko, I.P., M.Rajman, K.Aberer: Query-driven indexing for scalable
peer-to-peer text retrieval. Infoscale p. 14 (2007)

38. G.Wiederhold: Mediators in the architecture of future information systems. IEEE Computer
25, 38–49 (1992)

39. J.M.Hellerstein: Toward network data independence. SIGMOD Rec 32, 200–203 (2003)
40. H.Jagadish, B.Ooi, Q.Vu: Baton: A balanced tree structure for peer-to-peer networks. In:

VLDB (2005)
41. H.Jagadish, B.Ooi, Q.Vu, R.Zhang, A.Zhou: Vbi-tree: A peer-to-peer framework for support-

ing multi-dimensional indexing schemes. In: ICDE, p. 34 (2006)
42. I.Chrysakis, D.Plexousakis, I.Chrysakis, D.Plexousakis: Semantic query routing and dis-

tributed top-k query processing in peer-to-peer networks. Tech. rep., Department of Computer
Science, University of Crete (2006)

43. I.Clarke, S.Miller, T.Hong, O.Sandberg, B.Wiley: Protecting free expression online with
freenet. IEEE Int. Comput. 6(1), 40–49 (2002)

44. I.Stoica, R.Morris, D.Karger, M.F.Kaashoek, H.Balakrishnan: Chord: A scalabale peer-to-peer
lookup service for internet applications. In: Proc ACM SIGCOMM (2001)

568 Rabab Hayek et al.

45. I.Tartinov et al.: The Piazza peer data management project. In: SIGMOD (2003)
46. S.Iyer, A.Rowstron, P.Druschel: Squirrel: a decentralized peer-to-peer web cache. In: PODC

’02: Proceedings of the twenty-first annual symposium on Principles of distributed computing,
pp. 213–222 (2002)

47. J.Kubiatowicz, D.Bindel, Y.Chen, S.Czerwinski, P.Eaton, D.Geels, R.Gummadi, S.Rhea,
H.Weatherspoon, C.Wells, B.Zhao: Oceanstore: an architecture for global-scale persistent
storage. SIGOPS Oper. Syst. Rev. 34(5), 190–201 (2000)

48. D.Karger, E.Lehman, T.Leighton, R.Panigrahy, M.Levine, D.Lewin: Consistent hashing and
random trees: distributed caching protocols for relieving hot spots on the world wide web. In:
STOC ’97: Proceedings of the twenty-ninth annual ACM symposium on Theory of computing,
pp. 654–663 (1997)

49. K.Hose, C.Lemke, K.Sattler: Processing relaxed skylines in pdms using distributed data sum-
maries. In: CIKM, pp. 425–434 (2006)

50. L.Adamic et al.: Search in power law networks. Phys. Rev. E 64, 46,135–46,143 (2001)
51. L.A.Zadeh: Fuzzy sets. Inf. Control 8, 338–353 (1965)
52. L.A.Zadeh: Concept of a linguistic variable and its application to approximate reasoning-I.

Inf. Syst. 8, 199–249 (1975)
53. D.H.Lee, M.H.Kim: Database summarization using fuzzy ISA hierarchies. IEEE Trans. on

Systems, Man and Cybernetics-Part B: Cybernetics 27, 68–78 (1997)
54. M.Lenzerini: Data integration: a theoretical perspective. In: PODS ’02: Proceedings of the

twenty-first ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems,
pp. 233–246 (2002)

55. Y.Li, L.Lao, J.H.Cui: Sdc: A distributed clustering protocol for peer-to-peer networks. In:
Networking, pp. 1234–1239 (2006)

56. L.Ramaswamy, B.Gedik, L.Liu: A distributed approach to node clustering in decentralized
peer-to-peer networks. IEEE Trans. Parallel Distributed Syst. 16(9), 814–829 (2005)

57. J.Madhavan, P.A.Bernstein, A.Doan, A.Halevy: Corpus-based schema matching. In: ICDE
’05: Proceedings of the 21st International Conference on Data Engineering, pp. 57–68 (2005)

58. M.Cai, M.Frank: Rdfpeers: a scalable distributed rdf repository based on a structured peer-to-
peer network. In: WWW, pp. 650–657 (2004)

59. M.Cai, M.Frank, J.Chen, P.Szekely: Maan: A multi-attribute addressable network for grid
information services. In: GRID (2003)

60. M.Castro, M.Costa, A.Rowstron: Should we build gnutella on a structured overlay? SIG-
COMM Comput. Commun. Rev. 34(1), 131–136 (2004)

61. M.Espil, A.Vaisman: Aggregate queries in peer-to-peer olap. In: DOLAP (2004)
62. W.Ng, B.Ooi, K-L.Tan, A.Zhou: Peerdb: A p2p-based system for distributed data sharing. In:

ICDE, pp. 633–644 (2003)
63. N.Harvey, M.Jones, S.Saroiu, M.Theimer, A.Wolman: Skipnet: A scalable overlay network

with practical locality properties. In: USENIX Symposium on Internet Technologies and
Systems (2003)

64. O.Sahin A.Gupta, D.Agrawal, A.El-Abbadi: Query processing over peer-to-peer data sharing
systems. Tech. rep., University of California, Santa Barbara (2002)

65. H.Y.Paik, N.Mouaddib, B.Benatallah, F.Toumani, M.Hassan: Building and querying e-catalog
networks using p2p and data summarisation techniques. J. Intell. Inf. Syst. 26(1), 7–24 (2006)

66. P.Bernstein, F.Giunchiglia, A.Kementsietsidis, J.Mylopoulos, L.Serafini, I.Zaihrayeu: Data
management for peer-to-peer computing: A vision. In: Proc. of the 5th International Workshop
on the Web and Databases (WebDB) (2002)

67. P.Kalnis, W.Ng, B.Ooi, D.Papadias, K.Tan: An adaptive peer-to-peer network for distributed
caching of olap results. In: SIGMOD (2002)

68. P.Kalnis, W.Ng, B.Ooi, K.Tan: Answering similarity queries in peer-to-peer networks. Inf.
Syst. 31(1), 57–72 (2006)

69. P.Maymounkov, D.Mazieres: Kademlia: A peer-to-peer information system based on the xor
metric. In: Int. Workshop on Peer-to-Peer Systems (IPTPS), pp. 53–65 (2002)

Data Sharing in P2P Systems 569

70. P.McBrien, A.Poulovassilis: Defining peer-to-peer data integration using both as view rules.
In: DBISP2P, pp. 91–107 (2003)

71. H.Prade, C.Testemale: Generalizing database relational algebra for the treatment of incom-
plete/uncertain information and vague queries. Inf. Sci. 34(2), 115–143 (1984)

72. P.Triantafillou, T.Pitoura: Towards a unifying framework for complex query processing over
structured peer-to-peer data networks. In: DBISP2P, pp. 169–183 (2003)

73. P.Wu, C.Zhang, Y.Feng, B.Zhao, D.Agrawal, A.El-Abbadi: Parallelizing skyline queries for
scalable distribution. In: EDBT, pp. 112–130 (2006)

74. R.Akbarinia, E.Pacitti, P.Valduriez: Reducing network traffic in unstructured p2p systems us-
ing top-k queries. Distrib. Parallel Databases 19(2–3), 67–86 (2006)

75. R.Akbarinia, E.Pacitti, P.Valduriez: Processing top-k queries in distributed hash tables. In:
Euro-Par, pp. 489–502 (2007)

76. R.Akbarinia, V.Martins, E.Pacitti, P.Valduriez: Design and implementation of appa. In: Global
Data Management (Eds. R. Baldoni, G. Cortese and F. Davide). IOS press (2006)

77. R.Aringhieri, E.Damiani, S.Vimercati, S.Paraboschi, P.Samarati: Fuzzy techniques for trust
and reputation management in anonymous peer-to-peer systems. J. Am. Soc. Inf. Sci. Technol.
57(4) (2006)

78. D.Rasmussen, R.R.Yager: SummarySQL – a fuzzy tool for data mining. Intell. Data Anal. 1,
49–58 (1997)

79. R.Dingledine, M.Freedman, D.Molnar: The free haven project: distributed anonymous storage
service. In: International workshop on Designing privacy enhancing technologies, pp. 67–95.
Springer-Verlag New York, Inc., New York, NY, USA (2001)

80. R.Huebsch, J.Hellerstein, N.Lanham, B.Thau, L.Shenker, I.Stoica: Querying the internet with
pier. In: VLDB (2003)

81. S.Ratnasamy, M.Handley, R.Karp, S.Shenker: Topologically-aware overlay construction and
server selection. In: Proceedings of IEEE INFOCOM’02 (2002)

82. S.Ratnasamy, P.Francis, M.Handley, R.M.Karp, S.Shenker: A scalable content – addressable
network. In: SIGCOMM (2001)

83. K.Sripanidkulchai, B.M.Maggs, H.Zhang: Efficient content location using interest-based lo-
cality in peer-to-peer systems. In: INFOCOM (2003)

84. S.Wang, B.Ooi, A.Tung, L.Xu: Efficient skyline query processing on peer-to-peer networks.
In: ICDE (2007)

85. T.Luu, G.Skobeltsyn, F.Klemm, M.Puh, Žarko, I.P., M.Rajman, K.Aberer: Alvisp2p: Scalable
peer-to-peer text retrieval in a structured p2p network. In: Proc VLDB (2008)

86. D.Tsoumakos, N.Roussopoulos: A comparison of peer-to-peer search methods. In:
Int.Workshop on the Web and Databases (WebDB), pp. 61–66 (2003)

87. U.Guntzer, W.Balke, W.Kieβ ling: Optimizing multi-feature queries for image databases. In:
VLDB (2000)

88. J.D.Ullman: Information integration using logical views. In: ICDT ’97: Proceedings of the
6th International Conference on Database Theory, pp. 19–40 (1997)

89. V.Kalogeraki, D.Gunopulos, D.Yazti: A local search mechanism for peer-to-peer networks.
In: Proc CIKM. USA (2002)

90. A.Voglozin, G.Raschia, L.Ughetto, N.Mouaddib: Handbook of Research on Fuzzy Informa-
tion Processing in Databases, vol. 1, chap. From User Requirements to Evaluation Strategies
of Flexible Queries in Databases, pp. 115–142 (2008)

91. W.A.Voglozin, G.Raschia, L.Ughetto, N.Mouaddib: Querying the SAINTETIQ summaries–a
first attempt. In: Int.Conf.On Flexible Query Answering Systems (FQAS) (2004)

92. W.Balke, W.Nejdl, W.Siberski, U.Thaden: Progressive distributed top-k retrieval in peer-to-
peer networks. In: ICDE (2005)

93. W.Nejdl, W.Siberski: Design issues and challenges for rdf- and schema-based peer-to-peer
systems. SIGMOD Record 32, 2003 (2003)

94. W.Ng, B.Ooi, K.Tan: Bestpeer: A self-configurable peer-to-peer system. In: ICDE (2002)
95. X.Li, Y.J.Kim, R.Govindan, W.Hong: Multidimensional range queries in sensor networks. In:

SENSYS (2003)

570 Rabab Hayek et al.

96. R.R.Yager: On linguistic summaries of data. In: Knowledge Discovery in Databases,
pp. 347–366. MIT Press (1991)

97. B.Yang, P.Vinograd, H.Garcia-Molina: Evaluating guess and non-forwarding peer-to-peer
search. In: ICDCS ’04: Proceedings of the 24th International Conference on Distributed Com-
puting Systems (ICDCS’04), pp. 209–218 (2004)

98. Y.Chawathe, S.Ratnasamy, L.Breslau, N.Lanham, S.Shenker: Making gnutella-like p2p sys-
tems scalable. In: In Proc. ACM SIGCOMM (2003)

99. Y.Halevy, G.Ives, D.Suciu, I.Tatarinov: Schema mediation for large-scale semantic data shar-
ing. VLDB J. 14(1), 68–83 (2005)

Managing Linguistic Data Summaries
in Advanced P2P Applications

Rabab Hayek, Guillaume Raschia, Patrick Valduriez, and Noureddine Mouaddib

Abstract As the amount of stored data increases, data localization techniques be-
come no longer sufficient in P2P systems. A practical approach is to rely on com-
pact database summaries rather than raw database records, whose access is costly
in large P2P systems. In this chapter, we describe a solution for managing linguistic
data summaries in advanced P2P applications which are dealing with semantically
rich data. The produced summaries are synthetic, multidimensional views over rela-
tional tables. The novelty of this proposal relies on the double summary exploitation
in distributed P2P systems. First, as semantic indexes, they support locating relevant
nodes based on their data descriptions. Second, due to their intelligibility, these sum-
maries can be directly queried and thus approximately answer a query without the
need for exploring original data. The proposed solution consists first in defining a
summary model for hierarchical P2P systems. Second, appropriate algorithms for
summary creation and maintenance are presented. A query processing mechanism,
which relies on summary querying, is then proposed to demonstrate the benefits that
might be obtained from summary exploitation.

Rabab Hayek
LINA, 2 rue de la Houssiniere, 44322, Nantes, France,
e-mail: rabab.hayek@univ-nantes.fr

Guillaume Raschia
LINA, 2 rue de la Houssiniere, 44322, Nantes, France,
e-mail: guillaume.raschia@univ-nantes.fr

Patrick Valduriez
INRIA, 2 rue de la Houssiniere, 44322, Nantes, France,
e-mail: Patrick.Valduriez@inria.fr

Noureddine Mouaddib
LINA, 2 rue de la Houssiniere, 44322, Nantes France,
e-mail: Noureddine.Mouaddib@univ-nantes.fr

X. Shen et al. (eds.), Handbook of Peer-to-Peer Networking, 571
DOI 10.1007/978-0-387-09751-0 20, © Springer Science+Business Media, LLC 2010

572 Rabab Hayek et al.

1 Introduction

As revealed by the large number of P2P research papers and surveys (including the
previous chapter), data localization has been the main issue addressed in the P2P
community. However, advanced data management techniques, which allow more
than locating data, are strongly required to support database applications. These ap-
plications are facing the information explosion problem: a huge amount of informa-
tion is generated and stored each day into data sources (e.g., biological, astronomi-
cal database applications). This ever increasing amount of available data, in addition
to the high distribution of connected resources, makes search techniques no more
sufficient for supporting P2P database applications. To illustrate, in a scientific col-
laborative application, a doctor may require information about patients diagnosed
with some disease, without being interested in individual patient records. Besides,
in today’s decision-support applications, users may prefer an approximate but fast
answer, instead of waiting a long time for an exact one.

To address the problem of managing voluminous databases, the data summariza-
tion paradigm has emerged into the database field. The objective of data summariza-
tion is to synthesize the information which is disseminated within large datasets, in
order to provide the essential. Obviously, data summarization is of higher impor-
tance in P2P systems. In these systems, the participants share a global database
which is equivalent to the aggregation of all their local databases, and thus may be-
come much more voluminous. Therefore, Reasoning on compact data descriptions
that can return approximate answers like “dead Malaria patients are typically chil-
dren and old” to queries like “age of dead Malaria patients”, is much more efficient
than retrieving raw records, which may be very costly to access in highly distributed
P2P databases.

The authors in [21] propose a new solution for managing linguistic data sum-
maries in P2P systems. The produced summaries are synthetic, multidimensional
views over relational tables. The novelty of this proposal relies on the double ex-
ploitation of summaries in distributed P2P systems. First, as semantic indexes, they
support locating relevant nodes based on their data descriptions. Second, due to
their intelligibility, these summaries can be directly queried to approximately an-
swer a query without the need for exploring original data, which might be highly
distributed in P2P systems.

This work makes the following contributions. Section 2 first proposes a summa-
rization process that exhibits many salient features making from it an interesting
process to be integrated into P2P environments. In Section 3, a summary model
is defined in the context of hierarchical P2P systems. The network is organized
into domains, where a domain is defined as being the set of a supernode and its
associated leaf nodes. In a given domain, peers cooperate to maintain a global sum-
mary over their shared data. Section 4 discusses the gains that might be obtained
in query processing from the use of data summaries. In Section 5, the performance
of the summary proposal is evaluatedthrough a cost model and a simulation model.

Managing Linguistic Data Summaries in Advanced P2P Applications 573

Simulation results show that the cost of query routing is significantly reduced with-
out incurring high costs of summary updating. Section 6 discusses related works,
and Section 7 concludes.

2 Summarization Process

In this section, we first briefly discuss the existing approaches of data summariza-
tion according to some required characteristics. Then, we define the input data and
describe the summarization process of the approach adopted in [21]. Finally, the
structure of distributed summaries in P2P systems is formally defined.

2.1 Data Summarization

The data summarization paradigm has been extensively studied in centralized envi-
ronments to address the problem of managing voluminous data sets. In the literature,
many approaches have been proposed, each satisfying the requirements of specific
applications. Here, we discuss the characteristics that should control the choice of a
data summarization process in order to satisfy the purposes discussed in our intro-
duction.

• Compression: the summarization process should provide compact versions of
the underlying data. However, we are not referring here to (syntactic) com-
pression techniques. These techniques consider a data source as a large byte
string and thus use compression algorithms such as Huffman or Lempel-Ziv
coding. They were mainly proposed to deal with throughput and space stor-
age constraints. In fact, we are concerned with compression (or data reduction)
techniques that can provide fast and approximate answers. This is very efficient
in the context where obtaining an exact answer is a time-consuming process,
and an approximate answer may give information that are sufficiently satis-
fying. Examples of such techniques are discrete wavelet transform and linear
regression used in signal processing [19], sampling and histograms [14] used in
statistics. Index trees such as B+Tree [8] and K-d-Tree [6] could also be con-
sidered as data reduction techniques in the database field. These indexes do not
provide approximate answers, however, they allow to optimize and accelerate
the access within a large data set.

• Intelligibility: the summarization process should synthesize the information
disseminated within large datasets in order to provide the essential. In fact, the
data summarization techniques are data reduction techniques that are supposed
to provide intelligible representations of the underlying data. Three categories

574 Rabab Hayek et al.

of database summarization techniques have been proposed in the literature. The
first one focuses on aggregate computation. Examples are OLAP and multidi-
mensional databases which allow an end-user to query, visualize and access part
of the database using cubes of aggregate values computed from raw data [5].
The second category, so-called semantic compression (SC), deals with inten-
tional characterization of groups of individuals to provide higher-level models
such as decision trees or association rules. Examples are [12, 24] which explic-
itly refer to semantic compression of structured data.
The last category is interested in metadata-based semantic compression (MDBSC)
approaches. These approaches use metadata to guide the compression pro-
cess. The produced summaries are highly comprehensible since their descrip-
tions rely on user-defined vocabularies. The main difference between SC and
MDBSC is that the latter provide data descriptions which precisely fit the user
perception of the domain, whereas the former aims to identify hidden pat-
terns from data. One representative of the MDBSC approaches is the Attribute-
Oriented Induction process (AOI). It provides reduced versions of database re-
lations using is-a hierarchies, i.e., a concept tree built over each attribute do-
main [11].

• Robustness: the summarization process should handle the vagueness and the
imprecision inherent to natural language. The theory of fuzzy sets provides
a formal framework associated with a symbolic/numerical interface using lin-
guistic variables [17] and fuzzy partitions [23]. Hence, the linguistic summaries
have the advantages of being robust and formulated in a user-friendly language
(i.e., linguistic labels).

• Scalability: the summarization process should be scalable in terms of the
amount of processed data. It should be able to treat voluminous databases with
low time complexity, and controlled memory consumption. Besides, an impor-
tant issue is the ability of the process to be parallelized and distributed among
multiple processors or computers.

In [21], the approach used for data summarization is based on SaintEtiQ [22]:
an online linguistic approach for summarizing databases. The SAINTETIQ model
aims at apprehending the information from a database in a synthetic manner. This is
done through generating linguistic, multidimensional summaries that are arranged
and incrementally maintained in a hierarchy. The hierarchies of SAINTETIQ sum-
maries differ from those obtained by the is-a approach in that they rely on one set
of linguistic terms, without level assignment. Indeed, the SAINTETIQ model pro-
ceeds first in an abstraction of data by the use of a user-defined vocabulary, and then
in performing a classification that produces data descriptions at different levels of
granularity (i.e., levels of abstraction). The SAINTETIQ process exhibits many in-
teresting features and is proposed to be efficiently integrated into P2P environments,
as it is revealed in the rest of this section.

Managing Linguistic Data Summaries in Advanced P2P Applications 575

2.2 Input Data

The summarization process takes as input the original data to be summarized, and
the “Background Knowledge” BK which guides the process by providing informa-
tion about the user’s perception of the domain.

2.2.1 Data Model

The data to be summarized come from relational databases. As such, the data are
organized into records, with a schema R(A1,A2, . . . ,An). Each attribute Ai is defined
on an attribute domain Di, which may be numeric or symbolic. Thus, each tuple t
consists of n attribute values from domains D1 to Dn. It is given by:

t = 〈t.A1, t.A2, . . . , t.An〉

A constraint on these data is that it should be complete: any value t.Ai is necessarily
known, elementary, precise, and certain. In other terms, all records with a null value
are dismissed.

2.2.2 Background Knowledge

A unique feature of the summarization system is its extensive use of a Background
Knowledge (BK), which relies on linguistic variables and fuzzy partitions.

Consider the following relational database of a given hospital, which is reduced
to a single Patient relation (Table 1).1 Figure 1 shows a linguistic variable defined on
the attribute AGE where descriptor YOUNG ADULT is defined as being plainly satis-
factory to describe values between 19 and 37 and less satisfactory as the age is out
of this range. Similarly, Fig. 2 provides the linguistic variable defined on attribute
BMI.2 Thus, linguistic variables come with linguistic terms (i.e., descriptors) used
to characterize domain values and, by extension, database tuples. For a continuous
domain Di, the linguistic variable is a fuzzy partition of the attribute domain. For a
discrete domain Di (DISEASE and SEX in our example), the BK element is a fuzzy
set of nominal values. In short, the BK supports the summarization process with
means to match attribute domain values with the summary expression vocabulary.

Note that the BK, given by users or experts of the data domain, concerns the at-
tributes which are considered as pertinent to the summarization process. In our ex-
ample, we have excluded the patient day attribute. However, when the descriptions
of that attribute values might be useful for the hospital application (i.e., requiring
information about the length of stay of patients), a corresponding fuzzy partition
should be also provided.

1 Patient day: number of days spent in the hospital.
2 BMI is the patient’s body weight divided by the square of its height.

576 Rabab Hayek et al.

Table 1 Raw data

Id Age Sex BMI Patient days Disease

t1 16 Female 16 350 Anorexia
t2 60 Male 32 4 High blood pressure
t3 18 Female 17 280 Anorexia
t4 17 Female 18 230 Anorexia
t5 54 Female 26 14 Osteoporosis

0 10 20 40 50 6011 13 17 19 37 39 64 67 70
0

1 child adolescent young adult oldmiddle adult

age(years)30

Fig. 1 Fuzzy linguistic partition on age

obese

25 30 40
0

1

10 15 20
18.517.5 24 28.5

BMI

underweight overweightnormal

Fig. 2 Fuzzy linguistic partition on BMI

2.3 Process Architecture

A service oriented architecture has been designed for the summarization process
in order to incrementally build data summaries. By “incremental”, we mean that
the database tuples are processed one by one, and the final hierarchy of summaries
is obtained by repeating this summarization process for each tuple in the table at
hand. The architecture is organized into two separate services: online mapping and
summarization.

2.3.1 Mapping Service

The mapping service takes as input the original relational records and performs an
abstraction of the data using the BK. A representation of the data under the form
of fuzzy sets is obtained. Basically, the mapping operation replaces the original
attribute values of every record in the table by a set of linguistic descriptors defined
in the BK. For instance, with the linguistic variable defined on the attribute AGE

(Fig. 1), a value t.AGE = 18 years is mapped to {0.5/adolescent,0.5/young adult}

Managing Linguistic Data Summaries in Advanced P2P Applications 577

where 0.5 is a membership grade that tells how well the label young adult describes
the value 18. Extending this mapping to all the attributes of a relation could be seen
as locating the overlapping cells in a grid-based multidimensional space which maps
records of the original table. The fuzzy grid is provided by the BK and corresponds
to the user’s perception of the domain.

In our example, tuples of Table 1 are mapped into four distinct grid-cells denoted
by c1, c2, c3, c4, and c5 in Table 2. The fuzziness in the vocabulary definition of BK
permits to express any single value with more than one fuzzy descriptor and thus
avoid threshold effect thanks to the smooth transition between different categories.
For instance, the tuple t3 of Table 1 is mapped to the two grid cells c1 and c2 since
the value of the attribute age is mapped to the two linguistic terms: adolescent and
young adult. Similarly, the tuple t4 is mapped to c1 and c3 since the value of the at-
tribute BMI is mapped to {0.7/underweight,0.3/normal}. The tuple count column
gives the proportion of records that belongs to the cell, and 0.5/young adult says
that young adult fits the data only with a degree of 0.5. The degree of a label is the
maximum of membership grades to that label, computed over all the tuples in the
corresponding grid cell. For instance, the degree of adolescent in c1 is equal to one,
which is the maximum grade value of the two tuples t1 and t3.

Table 2 Grid-cells mapping

Id Age Sex BMI Disease Tuple count

c1 Adolescent Female Underweight Anorexia 2.2
c2 0.5/Young adult Female Underweight Anorexia 0.5
c3 Adolescent Female 0.3/Normal Anorexia 0.3
c4 Middle adult Male Obese High blood pressure 1
c5 Middle adult Female Overweight Osteoporosis 1

Therefore, the BK leads to the point where tuples become indistinguishable and
then are grouped into grid-cells such that there are finally many more records than
cells. Every new (coarser) tuple stores a record count and attribute-dependent mea-
sures (min, max, mean, standard deviation, etc.). It is then called a summary.

2.3.2 Summarization Service

The summarization service is the last and the most sophisticated step of the SAIN-
TETIQ system. It takes grid-cells as input and outputs a collection of summaries
hierarchically arranged from the most generalized one (the root) to the most spe-
cialized ones (the leaves) [22]. Summaries are clusters of grid-cells, defining hyper-
rectangles in the multidimensional space. In the basic process, leaves are grid-cells
themselves and the clustering task is performed on K cells rather than N tuples
(K << N).

From the mapping step, cells are introduced continuously in the hierarchy with a
top-down approach inspired of D.H. Fisher’s Cobweb [16], a conceptual clustering

578 Rabab Hayek et al.

algorithm. Then, they are incorporated into best fitting nodes descending the tree.
Three more operators could be apply, depending on partition’s score, that are create,
merge and split nodes. They allow developing the tree and updating its current state.
Figure 3 represents the summary hierarchy built from the cells c1, c2, c3, c4, and c5.

c
adolescent, young adult, middle adult

underweight, normal

[Φ]

c1 c2 c3 c4 c5
adolescent;

underweight
young adult;
underweight

adolescent;
normal

middle adult;
obese

middle adult;
overweight

[t5][t4] [t2][t3][t1,t3,t4]

Fig. 3 Example of SaintEtiQ hierarchy

The SAINTETIQ process has been successfully integrated to an existing DataBase
Management System (DBMS) thanks to the design of a service-oriented architec-
ture where service calls are made through the SOAP protocol. On the other hand,
the eXtensible Markup Language XML is the format adopted for exchanging data
with the DBMS, as well as for summary representation all along the summarization
process (i.e., raw data, BK, grid cells and the final summaries are represented and
exchanged under the form of XML documents).

2.3.3 Scalability Issues

Memory consumption and time complexity are the two main factors that need to
be taken care of in order to guaranty the capacity of the summary system to han-
dle massive datasets. First, the time complexity of the SAINTETIQ process is in
O(n), where n is the number of candidate tuples to incorporate into a hierarchy
of summaries. However, the number of candidate tuples that are produced by the
mapping service is dependent only on the fuzziness of the BK definition. A crisp
BK will produce exactly as many candidate tuples as there are original tuples. Be-
sides, an important feature is that in the summarization process, raw data have to be
parsed only once, and this is performed with a low time cost. Second, the system
requires low memory consumption for performing the summary construction algo-
rithm as well as for storing the produced summaries. Moreover, a cache manager is
in charge of summary caching in memory and it can be bounded to a given mem-
ory requirement. Usually, less than a hundred of summaries are needed in the cache
since this number covers the two or three top levels of even a wide hierarchy. Least
recently used summaries are discarded when a required summary is not found in
the cache.

Managing Linguistic Data Summaries in Advanced P2P Applications 579

On the other hand, the parallelization of the summary system is a key feature
to ensure smooth scalability. The implementation of the system is based on the
Message-Oriented Programming paradigm. Each sub-system is autonomous and
collaborates with the others through disconnected asynchronous method
invocations. It is among the least demanding approaches in terms of availability
and centralization. The autonomy of summary components allows for a distributed
computing of the summary process. Once a component completes the treatment
and evaluates the best operator for the hierarchy modification, if needed, a simi-
lar method is successively called on children nodes. The cache manager is able to
handle several lists of summaries residing on different computers [22].

2.4 Distributed Summary Representation

In this section, we introduce basic definitions related to the summarization process.

Definition 1. Summary Let E = 〈A1, . . . ,An〉 be a n-dimensional space equipped
with a grid that defines basic n-dimensional areas called cells in E. Let R be a
relation defined on the cartesian product of domains DAi of dimensions Ai in E.
Summary z of relation R is the bounding box of the cluster of cells populated by
records of R.

The above definition is constructive since it proposes to build generalized sum-
maries (hyper-rectangles) from cells that are specialized ones. In fact, it is equivalent
to performing an addition on cells:

z = c1 + c2 + . . .+ cp

where ci ∈ Lz, the set of p cells (summaries) covered by z.
A summary z is then an intentional description associated with a set of tuples Rz

as its extent and a set of cells Lz that are populated by records of Rz.
Thus, summaries are areas of E with hyper-rectangle shapes provided by BK.

They are nodes of the summary tree built by the SAINTETIQ system.

Definition 2. Summary Tree A summary tree is a collection S of summaries con-
nected by �, the following partial order:

∀z,z′ ∈Z , z � z′ ⇐⇒ Rz ⊆ Rz′

The above link between two summaries provides a generalization/specialization
relationship. And assuming that summaries are hyper-rectangles in a multidimen-
sional space, the partial ordering defines nested summaries from the larger one to
the single cells. General trends in the data could be identified in the very first levels
of the tree whereas precise information has to be looked at near the leaves.

In [21], a summary tree is also considered as an indexing structure over dis-
tributed data in a P2P system. Thus, a new dimension has been added to the defini-

580 Rabab Hayek et al.

tion of a summary node z: a peer-extent Pz, which provides the set of peers having
data described by z.

Definition 3. Peer-extent Let z be a summary in a given hierarchy of summaries S,
and P the set of all peers who participated to the construction of S. The peer-extent
Pz of the summary z is the subset of peers owning, at least, one record of its extent
Rz: Pz =

{
p ∈ P | Rz∩Rp �= /0

}
, where Rp is the view over the database of node p,

used to build summaries.

Due to the above definition, the notion of data-oriented summary in a given database
is extended to a source-oriented summary in a given P2P network. In other words,
summaries can be used as database indexes (e.g., referring to relevant tuples), as
well as semantic indexes in a distributed system (e.g., referring to relevant nodes).

The summary hierarchy S will be characterized by its Coverage in the P2P sys-
tem; that is, the fraction of data sources described by S. Relative to the hierarchy S,
Partner Peer is a peer whose data is described by at least a summary of S.

Definition 4. Partner peers The set of Partner peers PS of a summary hierarchy S is
the union of peer-extents of all its summary nodes in S: PS = {∪z∈SPz}.

For simplicity, in the following we designate by “summary” a hierarchy of sum-
maries maintained in a P2P system, unless otherwise specified.

3 Summary Model for Hierarchical P2P Networks

In this section, we first define the problem of managing data summaries in P2P sys-
tems. Second, we describe the architecture of the summary model adopted for hi-
erarchical networks. Then, we present the solutions proposed for summary creation
and maintenance.

3.1 Problem Statement

Given a P2P network, we consider the two following assumptions.

• Each peer p owns some tuples (Rp) in a global, horizontally partitioned relation
R.

• Users that are willing to cooperate agree on a Background Knowledge BK,
which represents their common perception of the domain.

Thus, here the problem of semantic heterogeneity among peers is not addressed,
since it is a separate P2P issue on its own. Besides, this work mainly targets col-
laborative database applications where the participants are supposed to work on
“related” data. In such a context, the number of participants is also supposed to

Managing Linguistic Data Summaries in Advanced P2P Applications 581

be limited, and thus the assumption of a common BK seems not to be a strength
constraint. An example of such BK in a medical collaboration is the Systematized
Nomenclature of Medicine Clinical Terms (SNOMED CT) [2], which provides a
common language that enables a consistent way of capturing, sharing and aggre-
gating health data across specialties and sites of care. On the other hand, the used
summaries are data structures that respect the original data schemas [22]. Hence,
we can assume that the techniques that have been proposed to deal with information
integration in P2P systems (e.g., [15, 20]) can be used here to overcome the hetero-
geneity of both data and summary representations, in the context of heterogeneous
data.

Let G = (V,E) be the graph corresponding to a P2P network of size N, where
V is the set of nodes (i.e., |V | = N), and E is the set of links between nodes. The
ultimate goal is to maintain a global summary that completely describes the global
relation R. However, as stated before, the relation R is horizontally partitioned and
distributed among autonomous peers. Hence, the problem can be defined as follows.
Given that each peer pi locally maintains a Local Summary LSi, we aim to construct
the global summary GSc such that:

GSc = ∪N
i=1(LSi)

The local summaries are obtained by integrating the summarization process pre-
viously defined into each peer’s DBMS. The operator ∪ designates the summary
merging operation which will be discussed later.

The autonomous and dynamic nature of P2P networks makes the convergence to
GSc quite challenging. It is difficult to build and to keep this summary consistent
relative to the current data instances it describes. So, the problem can be redefined
as follows.

Given the set of materialized local summaries {LSi,1≤ i≤ N}, we require to
build/materialize the set of global summaries {GS j,1≤ j ≤ NG} such that:

• GS j =∪l
i=1(Si), where Si is a local or global summary. Here, the latter is defined

as being the merging result of, at least, two summaries (i.e., l ≥ 2).
• The set of materialized local/global summaries (each having its set of partner

peers PGS j), and the set of links (Es ⊂ E) between nodes belonging to differ-
ent sets of partner peers (i.e., links connecting different summaries), provide
together an approximation of the virtual summary GSc.

GSc ≈ ({LSi,1≤ i≤ NL},{GS j,1≤ j ≤ NG},Es) (1)

NL is the number of local summaries, which is the number of peers that have
not participated to any existing global summary GS j. While NG is the number
of global summaries built in the network (i.e., |∪NG

j=1 (PGS j)|+NL = N).
• A “good” trade-off should be achieved between the cost of updating the set of

materialized summaries and the benefits obtained from exploiting these sum-
maries in query processing.

582 Rabab Hayek et al.

3.2 Model Architecture

Data indexes are maintained in P2P systems using one of the following approaches.
A centralized approach maintains a global index over all the data shared in the
network, and thus provides a centralized-search facility. A hybrid decentralized ap-
proach distributes indexes among some specialized nodes (e.g., supernodes), while a
pure decentralized approach distributes indexes among all the participants in the net-
work (e.g., structured DHTs, Routing Indices). Each of these approaches provides
a different trade-off between the cost of maintaining the indexes and the benefits
obtained for queries. In [21], the second approach is adopted since it is the only one
that exploits peer heterogeneity, which is a central key to allow P2P systems scaling
up without compromising their decentralized nature [25]. Besides, some also argue
that the super-peer networks [7] are the most suited for content-based search [13, 27]
since their inherent hierarchical structure allows to build a similar hierarchy over the
shared data and metadata.

domain j

Global

Complete summary

Local

Databases

summaries

summaries

domain i

Fig. 4 Model architecture for hierarchical P2P networks

Let us examine the architecture of the summary model which is presented in
Fig. 4. It is clear that the hierarchy among global summaries follows the hierar-
chical structure of the underlying network (two summary levels). The network is
organized into domains, where a domain is defined as being the set of a supernode
and its associated leaf nodes. In a given domain, peers cooperate to maintain a global
summary over their shared data. The set of global materialized summaries and links
between the corresponding domains, provide an approximation of the summary GSc

(Equation 1).

3.3 Summary Management

In this section, we present the algorithms for summary construction and mainte-
nance in a given domain. First, the algorithms are presented in a static context,

Managing Linguistic Data Summaries in Advanced P2P Applications 583

where all participants remain connected, and then they are extended to cope with
peer dynamicity.

3.3.1 Summary Construction

Each global summary GS is associated with a Cooperation List (CL) that provides
information about its partner peers. An element of CL is composed of two fields.
A partner identifier PeerID, and a 2-bit freshness value v that provides informa-
tion about the description freshness as well as the availability of the corresponding
database.

• value 0 (initial value): descriptions are fresh relative to the original data,
• value 1: descriptions need to be refreshed,
• value 2: original data are not available. This value is used while addressing peer

volatility in Section 3.3.3.

Algorithm 18 shows the messages exchanged between peers in order to build a
global summary GS. The algorithm starts at a superpeer (referred later as Summary
Peer SP) who broadcasts a SUMPEER message that contains its identifier, to indicate
its ability to host summaries. Since SP is supposed to have high connectivity, a
small value of T T L (Time-To-Live) is sufficient to cover a large number of peers
(e.g., T T L = 2).

The message contains also a hop value h, initialized to 0, which is used to com-
pute the distances between SP and the visited peers. A peer p who received a first
SUMPEER message, maintains information about the corresponding summary peer
SP (i.e., Line 13). Then, p sends to SP a LOCALSUM message that contains its local
summary LS, and thus becomes a partner peer in the SP’s domain. Upon receiving
this last message, SP merges LS to its current global summary GS, and adds a new
element to CL.

However, a peer p who is already a partner may receive a new SUMPEER mes-
sage. In such a case, only if the new summary peer is nearer than the old one (based
on latency), it chooses to drop its old partnership through a DROP message (i.e., Line
11), and it proceeds to participate to a new domain. We now suppose that a peer p
does not belong to any domain (i.e., p is not a partner peer), and wants to participate
to a global summary construction. Using a selective walk, it can rapidly find a sum-
mary peer SP (i.e., FIND message). The information about SP, which is maintained
at each of its partners, makes the selective walk even shorter. Once a partner or a
summary peer is reached, the FIND message is stopped (i.e., Line 27).

3.3.2 Summary Maintenance

An important issue for any indexing technique is to efficiently maintain the indexes
against data changes.

584 Rabab Hayek et al.

Algorithm 18: Global Summary Construction
1: // Definition of different types of messages
2: SUMPEER=〈sender〉〈id,h,T T L〉; FIND=〈sender〉〈h,T T L〉
3: LOCALSUM=〈sender〉〈LS〉; DROP=〈sender〉〈〉
4: // Treatment of messages
5: Switch msg.type
6: // Receiving information about a summary peer
7: Case (SumPeer):
8: msg.h++; msg.T T L−−
9: if (this.SumPeer=null) or (this.SumPeer.h > msg.h) then

10: if (this.IsPartner) then
11: Send DROP message to this.SumPeer.id
12: end if
13: this.SumPeer:= 〈msg.id,msg.h〉
14: LOCALSUM:= new msg (this.LS); Send LOCALSUM to msg.sender
15: IsPartner:= True
16: end if
17: if msg.T T L > 0 then
18: Send msg to all neighbors
19: end if
20: end Case
21: // Searching for a summary peer
22: Case (Find):
23: msg.T T L−−; msg.h++

24: if (this.Is SumPeer) then
25: PEERSUM:= new msg (this.id, msg.h, 1); Send PEERSUM to msg.sender
26: else
27: if (this.SumPeer �= null) then
28: PEERSUM:= new msg (this.SumPeer.id, (msg.h + this.SumPeer.h), 1)
29: Send PEERSUM to msg.sender
30: else
31: if (msg.T T L > 0) then
32: p′:= highest degree peer in N(p); Send msg to p′
33: end if
34: end if
35: end if
36: end Case
37: // arrival of a new partner
38: Case (LocalSum):
39: CoopList.add (msg.sender, 0); GlobalSum:= merge (GlobalSum, msg.LS)
40: end Case
41: // departure of a partner
42: Case (Drop):
43: CoopList.remove (msg.sender)
44: end Case

For a local summary, it has been demonstrated that the summarization process
guarantees an incremental maintenance (using a push mode for exchanging data
with the DBMS), while performing with a low complexity. This allows for an online
data processing without the need for an overall summary computation.

Managing Linguistic Data Summaries in Advanced P2P Applications 585

In this section, a strategy for maintaining global summary data is proposed: a
global summary GS which has been obtained by merging the local summaries of the
set of peers PGS, and its associated cooperation list CL. The objective is to keep GS
consistent with the current instances of the local summaries.

The latters are supposed to be consistent with the current instances of the original
data sources. The maintenance strategy uses both push and pull techniques, in order
to minimize the number of messages exchanged in the system.

Push: Cooperation List Update

Each peer p in PGS is responsible for refreshing its own element in the cooperation
list CL. The partner p monitors the modification rate issued on its local summary
LS. When LS is considered as enough modified, the peer p sets its freshness value v
to 1, through a push message. The value 1 indicates that the local summary version
being merged while constructing GS does not correspond any more to the current
instance of the database.

An important feature is that the frequency of push messages depends on modi-
fications issued on local summaries, rather than on the underlying databases. It has
been demonstrated in [22] that, after a given process time, a summary becomes very
stable. As more tuples are processed, the need to adapt the hierarchy decreases and
hopefully, once all existing attribute combinations have been processed, incorporat-
ing new tuple consists only in sorting it in a tree. A summary modification may be
detected by observing the appearance/disappearance of descriptors in the summary
intention.

Pull: Summary Update

The summary peer SP, in its turn, monitors the fraction of old descriptions in GS,
i.e., the number of ones in CL. Upon each push message sent to update a freshness
value, this fraction value is checked. If it exceeds a threshold value α , the summary
update mechanism will be then triggered. Note that the threshold α is our parameter
by which the freshness degree of GS will be controlled. In order to update GS, all
the partner peers will be pulled to merge their current local summaries into a GS’s
version. The algorithm is described as follows.

SP initiates a summary update message Sum U pdate which is then propagated
from a partner to another. This message contains a new summary NewGS (initially
empty), and a list of peer identifiers PeerIDs which initially contains the identifiers
of all GS’s partners (provided by CL). When a partner p receives the Sum U pdate
message, it first merges NewGS with its local summary and removes its identifier
from PeerIDs. Then, it sends the message to another partner chosen from PeerIDs.
If p is the last visited peer (i.e., PeerIDs is empty), it updates the summary data:
GS is replaced by the new version NewGS, and all the freshness values in CL are

586 Rabab Hayek et al.

reset to zero. This strategy avoids conflicts and guarantees a high availability of
the summary data, since only one update operation is performed by the last visited
partner.

3.3.3 Peer Dynamicity

In P2P systems, another crucial issue is to maintain the data indexes against network
changes. Besides the freshness of summary descriptions, the availability of the orig-
inal data sources should be also taken into account, given the dynamic behavior of
peers.

In unstructured P2P systems, when a new peer p joins the system, it contacts
some existing peers to determine the set of its neighbors. If one of these neighbors is
a partner peer, p sends its local summary LS to the corresponding summary peer SP,
and thus becomes a new partner in the SP’s domain. When a partner peer p decides
to leave the system, it first sets its freshness value v to two in the cooperation list,
through a push message. This value reminds the participation of the disconnected
peer p to the corresponding global summary, but also indicates the unavailability of
the original data. Here, there are two alternatives to deal with such a freshness value.
First, one can keep the data descriptions and use it, when a query is approximately
answered using the global summary. A second alternative consists in considering
the data descriptions as expired, since the original data are not accessible. Thus, a
partner departure will accelerate the summary update initiating. In [21], the authors
have adopted the second alternative and consider only a 1-bit freshness value v: a
value 0 to indicate the freshness of data descriptions, and a value 1 to indicate either
their expiration or their unavailability.

However, if peer p failed, it could not notify its summary peer by its departure.
In that case, its data descriptions will remain in the global summary until a new
summary update is executed. The update algorithm does not require the participation
of a disconnected peer. The global summary GS is reconstructed, and descriptions
of unavailable data will be then omitted.

Now, when a summary peer SP decides to leave the system, it sends a release
message to all its partners using the cooperation list. Upon receiving such a message,
a partner p makes a selective walk to find a new summary peer. However, if SP
failed, it could not notify its partners. A partner p who has tried to send push or
query messages to SP will detect its departure and thus search for a new one.

4 Query Processing

We describe now how a query Q, posed at a peer p, is processed. The adopted
approach consists in querying at first the global summary GS that is available to
peer p. Thus, peer p first sends Q to the summary peer SP of its domain, which then

Managing Linguistic Data Summaries in Advanced P2P Applications 587

proceeds to query the corresponding global summary GS. The type of the query, pre-
cise or flexible (when using linguistic terms), and the nature of the returned results
allow to distinguish four cases of summary querying. These cases are illustrated
when presenting the two phases of the summary querying mechanism: 1) query re-
formulation and 2) query evaluation.

4.1 Query Reformulation

First, a precise query Q must be rewritten into a flexible query Q· in order to be
handled by the summary querying process. For instance, consider the following
query Q on the Patient relation in Table 1:

select age from Patient where sex = ‘‘female’’
and BMI < 19 and disease = ‘‘anorexia’’

This phase replaces the original value of each selection predicate by the corre-
sponding descriptors defined in the Background Knowledge (BK). Therefore, the
above query is transformed to Q·:

select age from Patient where sex = ‘‘female’’ and
BMI in {underweight,normal} and disease = ‘‘anorexia’’

The mechanism that assists this query rewriting phase is already defined and used
in the mapping service of the summarization process.

Let QS (resp.QS·) be the Query Scope of query Q (resp.Q·) in the domain, that
is, the set of peers that should be visited to answer the query. Obviously, the query
reformulation phase may induce false positives in query results. To illustrate, a pa-
tient having a BMI value of 20 could be returned as an answer to the query Q·,
while the selection predicate on the attribute BMI of the original query Q is not sat-
isfied. However, false negatives cannot occur, which is expressed by the following
inclusion: QS ⊆ QS·.

In [21], a user query is supposed to be directly formulated using descriptors de-
fined in the BK (i.e., Q = Q·). As we discussed in the introduction of this work, a
doctor that participates to a given medical collaboration, may ask queries like “the
age of female patients diagnosed with anorexia and having an underweight or nor-
mal BMI”. This assumption eliminates potential false positives that may result from
query rewriting. Note that an interface has been defined to allow users to formulate
their queries, using linguistic terms, without having knowledge of the pseudo-code
language used in the querying mechanism. To illustrate the formulation of queries,
recall the following notations:

• R: the schema of the summarized relation
• A: the set of attributes of relation R (|A|= n)
• Ai: The ith attribute of relation R

588 Rabab Hayek et al.

• t: a tuple of the relation R
• z: a summary node of the summary hierarchy S built over the relation R

In the query Q, we distinguish the set X of attributes whose values x are specified by
the query predicates, from the set Y of attributes on which the query is projected. In
other terms, the general form of query Q is given by: Select Y from R where X = x.

For each attribute Ai ∈ X , a “required characteristic” is defined as being a lin-
guistic term that appears in the query for attribute Ai. The set Ci of these required
characteristics is given by: Ci =

{
d1

i ,d2
i , . . . ,dm

i

}
. By extension, the characteriza-

tion of query Q is the set of k characterizations defined on the attributes of set X :
C = {C1, . . . ,Ck}, where k = |X |. In our example: X = {sex,BMI,disease}, Y =
{age}, Csex = { f emale}, CBMI = {underweight,normal}, Cdisease = {anorexia},
and C = {Csex,CBMI ,Cdisease}.

Finally, a logical proposition P is associated to a query characterization such that:

P =
k∧

i=1

(
mi∨
j=1

d j
i)

Intuitively, the presence of multiple required characteristics on a given attribute
denotes an alternative, and thus the intra-attribute logical connector is disjunctive
(i.e., Ci =

∨mi
j=1 d j

i). However, the presence of simultaneous characterizations of
different attributes implies that the inter-attribute connector is conjunctive (i.e.,
P =

∧k
i=1(Ci)). In our example, the query Q is transformed to the proposition P=

(female) AND (underweight OR normal) AND (anorexia). In fact, the proposition P
represents the canonical form of the query, which will be evaluated by the summary
querying process.

4.2 Query Evaluation

First of all, to eliminate any ambiguity, it is worthy to recall that all along our work,
we designate by (local/global) summary a hierarchy of summary nodes whose struc-
ture has been described in Section 2.4.

This phase deals with matching the set of summary nodes organized in the hi-
erarchy S, against the query Q. A valuation function has been defined to valuate
the corresponding proposition P in the context of a summary node z, and thus to
determine if z is considered as a result. Then, a selection algorithm performs a fast
exploration of the hierarchy and returns the set ZQ of most abstract summary nodes
that satisfy the query. For more details see [26].

Once ZQ determined, the evaluation process is able to achieve two distinct tasks:
(1) Summary answering, and (2) Peer localization.

Managing Linguistic Data Summaries in Advanced P2P Applications 589

4.2.1 Approximate Answering

A distinctive feature of the approach presented in this chapter is that a query can be
processed entirely in the summary domain. An approximate answer can be provided
from summary descriptions, without having to access original database records.

In the result set ZQ, distinct summary nodes may answer the query in different
manners. For instance, the set ZQ contains summary nodes in which the attribute
BMI is described either by underweight, or normal, or even by the both descriptors.
A classification task has been defined in order to regroup the summary nodes in ZQ

according to their characteristics vis-a-vis the query: summary nodes that have the
same required characteristics on all predicates (e.g., sex, BMI and disease) form a
class. The aggregation in a given class is a union of descriptors: for each attribute
in the selection set Y (i.e., age), the querying process supplies a set of descriptors
which characterize the summary nodes that answer the query through the same in-
terpretation [26]. For example, according to Table 2, the output set obtained for the
different classes found in zQ is:

• {female,underweight,anorexia}⇒ age = {adolescent,young adult}
• {female,normal,anorexia}⇒ age = {adolescent}

In other words, all female patients diagnosed with anorexia and having an under-
weight or normal BMI are adolescent and young girls. Moreover, the information
provided by the tuple count columns may further indicate that almost all of these
girls are adolescent (i.e., a value of 2.5 for adolescent, and a value of 0.5 for young
adult).

4.2.2 Peer Localization

In centralized environments, returning exact answers to the flexible query Q is sim-
ply an extension of the mechanism of returning approximate answers. The extent
Rz of a summary node z (see Definition 1) provides the original records that are
described by that summary intention. Thus, such a functionality only requires to
connect to the underlying database in order to retrieve data.

However, in P2P systems, a summary node may describe tuples that are highly
distributed in the network. Therefore, the query Q should be first forwarded to the
relevant peers whose databases contain the result tuples. In Definition 3, the Peer-
extent dimension has been added to a summary node structure, in order to provide
the set of peers Pz having data described by its intent.

Here, one can assume that in a given local summary, the extents of its summary
nodes are maintained to be able to retrieve raw data from the underlying database.
While in a global summary this information is omitted and only the Peer-extents
of its summary nodes are maintained to be able to reach the relevant peers in the
distributed network.

590 Rabab Hayek et al.

Based on the Peer-extents of summary nodes in the set ZQ, the set PQ of relevant
peers is defined as follows: PQ = {∪z∈ZQPz}. The query Q is directly propagated
to these relevant peers. However, the efficiency of this query routing depends on
the completeness and the freshness of summaries, since stale answers may occur in
query results. We define a False Positive as the case in which a peer p belongs to PQ

and there is actually no data in the p source that satisfies Q (i.e., p /∈ QS). A False
Negative is the reverse case in which a p does not belong to PQ, whereas there exists
at least one tuple in the p data source that satisfies Q (i.e., p ∈ QS).
In the case where exact answers are required, suppose now that processing a
query Q in a given domain di returns Ci results, while the user requires Ct re-
sults. We note that, if Ct is less than the total number of results available in the
network, Q is said to be a partial-lookup query. Otherwise, it is a total-lookup
query. Obviously, when Ci is less than Ct , the query should be propagated to
other domains. To this end, the following variation of the flooding mechanism is
adopted.

Let Pi the subset of peers that have answered the query Q in the domain di:
|Pi| = (1−FP) · |PQ|, where FP is the fraction of false positives in query results.
The query hit in the domain is given by: (|Pi|/ |di|). As shown by many studies, the
existing P2P networks have small-world features [4]. In such a context, users tend to
work in groups. A group of users, although not always located in geographical prox-
imity, tends to use the same set of resources (i.e., group locality property). Thus, the
probability of finding answers to query Q in the neighborhood of a relevant peer
in Pi is supposed to be high (i.e., query answers are supposed to be nearby). This
probability is also high in the neighborhood of the originator peer p since some of
its neighbors may be interested in the same data, and thus have cached answers to
similar queries. Such assumptions are even more relevant in the context of interest-
based clustered networks. Therefore, the summary peer SPi of domain di sends a
flooding request to each peer in Pi as well as to peer p. Upon receiving this request,
each of those peers sends the query to its neighbors that do not belong to its domain,
with a limited value of T T L. Once a new domain is reached or T T L becomes zero,
the query is stopped. Besides, the summary peer SP sends the request to the set of
summary peers it knows in the system. This will accelerate covering a large num-
ber of domains. In each visited domain, the query is processed as described above.
When the number of query results becomes sufficient (i.e., larger than Ct), or the
network is entirely covered, the query routing is terminated.

5 Performance Evaluation

In this section, we devise a simple model for the summary management cost. Then,
we evaluate that model by simulation using the BRITE topology generator and
SimJava.

Managing Linguistic Data Summaries in Advanced P2P Applications 591

5.1 Cost Model

A critical issue in summary management is to trade off the summary updating cost
against the benefits obtained for queries.

5.1.1 Summary Update Cost

Here, the first undertaking is to optimize the update cost while taking into account
query accuracy. In the next section, we discuss query accuracy which is measured
in terms of the percentage of false positives and false negatives in query results. The
cost of updating summaries is divided into: usage of peer resources, i.e., time cost
and storage cost, and the traffic overhead generated in the network.

Time Cost

A unique feature of SAINTETIQ is that the changes in the database are reflected
through an incremental maintenance of the summary hierarchy. The time complex-
ity of the summarization process is in O(K) where K is the number of cells to be
incorporated in that hierarchy [22]. For a global summary update, we are concerned
with the complexity of merging summaries. The MERGING method that has been
proposed is based on the SAINTETIQ engine. This method consists in incorporat-
ing the leaves Lz of a given summary hierarchy S1 into an another S2, using the
same algorithm described by the SAINTETIQ summarization service (referenced in
Section 2.3.2). It has been proved that the complexity CM12 of the MERGING(S1,S2)
process is constant w.r.t the number of tuples [18]. More precisely, CM12 depends on
the maximum number of leaves of S1 to incorporate into S2. However, the number of
leaves in a summary hierarchy is not an issue because it can be adjusted by the user
according to the desired precision. A detailed Background Knowledge (BK) will
lead to a greater precision in summary description, with the natural consequence of
a larger summary. Moreover, the hierarchy is constructed in a top-down approach
and it is possible to set the summarization process so that the leaves have any desired
precision.

Storage Cost

We denote by k the average size of a summary node z. In the average-case assump-
tion, there are ∑d

i=0 Bi = (Bd+1 − 1)/(B− 1) nodes in a B-arity tree with d, the
average depth of the hierarchy. Thus the average space requirement is given by:
Cm = k.(Bd+1− 1)/(B− 1). Based on real tests, k = 512 bytes gives a rough esti-
mation of the space required for each summary. An important issue is that the size
of the hierarchy is quite related to its stabilization (i.e., B and d). As more cells are

592 Rabab Hayek et al.

processed, the need to adapt the hierarchy decreases and incorporating a new cell
may consist only in sorting a tree. Hence, the structure of the hierarchy remains sta-
ble and no additional space is required. On the other hand, when we merge two hier-
archies S1 and S2 having sizes of Cm1 and Cm2 respectively, the size of the resultant
hierarchy is always in the order of the max(Cm1,Cm2). However, the size of a sum-
mary hierarchy is limited to a maximum value which corresponds to a maximum
number of leaves that cover all the possible combinations of the BK descriptors.
Thus, storing global summaries does not impose high space storage constraints on
the summary peers.

According to the above discussion, the usage of peer resources is optimized by
the summarization process itself, and the distribution of summary merging while up-
dating a global summary. Thus, the focus in [21] is on the traffic overhead generated
in the P2P network.

Network Traffic

Recall that there are two types of exchanged messages: push and update messages.
Let local summaries have an average lifetime of L seconds in a given global sum-
mary. Once L expired, the node sends a (push) message to update its freshness value
v in the cooperation list CL. The summary update algorithm is then initiated when-
ever the following condition is satisfied:

∑
v∈CL

v/|CL| ≥ α

where α is a threshold that represents the ratio of old descriptions tolerated in the
global summary. While updating, only one message is propagated among all partner
peers until the new global summary version is stored at the summary peer SP. Let
Frec be the reconciliation frequency. The update cost is:

Cup = 1/L+Frec messages per node per second (2)

In this expression, 1/L represents the number of push messages which depends
either on the modification rate issued on local summaries or the connection/discon-
nection rate of peers in the system. Higher is the rate, lower is the lifetime L, and
thus a large number of push messages are entailed in the system. Frec represents the
number of update messages which depends on the value of α . This threshold is the
system parameter that provides a trade-off between the cost of summary updating
and query accuracy. If α is large, the update cost is low since a low frequency of
update is required, but query results may be less accurate due both to false positives
stemming from the descriptions of non existent data, and to false negatives due to
the loss of relevant data descriptions whereas they are available in the system. If α
is small, the update cost is high but there are few query results that refer to data no
longer in the system, and nearly all available results are returned by the query.

Managing Linguistic Data Summaries in Advanced P2P Applications 593

5.1.2 Query Cost

When a query Q is posed at a peer p, it is first matched against the global summary
available at the summary peer SP of its domain, to determine the set of relevant
peers PQ. Then, Q is directly propagated to those peers. The query cost in a domain
d is given by:

Cd = (1+ |PQ|+(1−FP) · |PQ|) messages,

where (1−FP) · |PQ| represents the query responses messages (i.e., query hit in
the domain).

Here we note that, the cooperation list CL associated with a global summary pro-
vides information about the relevance of each database description. Thus, it gives
more flexibility in tuning the recall/precision trade-off of the query answers in do-
main d. The set of all partner peers PH in CL can be divided into two subsets:
Pold = {p ∈ PH | p.v = 1}, the set of peers whose descriptions are considered old,
and Pf resh = {p ∈ PH | p.v = 0} the set of peers whose descriptions are considered
fresh according to their current data instances. Thus, if a query Q is propagated
only to the set V = PQ ∩Pf resh, then precision is maximum since all visited peers
are certainly matching peers (no false positives), but recall depends on the fraction
of false negatives in query results that could be returned by the set of excluded
peers PQ\Pf resh. On the contrary, if the query Q is propagated to the extended set
V = PQ∪Pold , the recall value is maximum since all matching peers are visited (no
false negatives), but precision depends on the fraction of false positives in query
results that are returned by the set of peers Pold .

Now we consider that the selectivity of query Q is very high, such that each
relevant peer has only one result tuple. Thus, when a user requires Ct tuples,
we have to visit Ct relevant peers. The cost of inter-domain query flooding is
given by:

Cf = ((1−FP) · |PQ|+2) ·
T T L

∑
i=1

ki messages,

where k is the average degree value (e.g., average degree of 3.5, similar to Gnutella-

type graphs). Remember that, the set of relevant peers who have answered the
query (i.e., (1− FP) · |PQ|), the originator and the summary peers participate to
query flooding. In this expression, we consider that a summary peer has on aver-
age k long-range links to k summary peers. As a consequence, the total cost of a
query is:

CQ = Cd · Ct
(1−FP)·|PQ| +Cf · (1− Ct

(1−FP)·|PQ|) (3)

In this expression, the term Ct/((1−FP) · |PQ|) represents the number of domains

that should be visited. For example, when Ct = ((1−FP) · |PQ|), one domain is
sufficient and no query flooding is required.

594 Rabab Hayek et al.

5.2 Simulation

The performance of the proposed solutions is evaluated through simulation, based
on the above cost model. First, we describe the simulation setup. Then we present
simulation results to evaluate various performance dimensions and parameters: scale
up, query accuracy, effect of the freshness threshold α .

5.2.1 Simulation Setup

In [21], the SimJava package [10] and the BRITE universal topology generator [1]
are used to simulate a power law P2P network, with an average degree of 4. The
simulation parameters are shown in Table 3.

Table 3 Simulation parameters

Parameter value

Network configuration

Local summary lifetime L Skewed distribution, Mean=3h, Me-
dian=1h

Number of peers n 16–5000

Workload configuration

Number of queries q 200
Matching nodes/query hits 10%

System parameter

Freshness threshold α 0.1–0.8

In large-scale P2P file-sharing systems, a user connects mainly to download some
data and may then leave the system without any constraint. As reported in [25], these
systems are highly dynamic and node lifetimes are measured in hours. As such,
data indexes should be mainly maintained against network changes. In collaborative
database applications, however, the P2P system is supposed to be more stable. Here,
the data indexes should be mainly maintained against data changes, since the shared
data may be submitted to a significant modification rate.

As stated before, the work presented in this chapter targets collaborative appli-
cations sharing semantically rich data. In simulation tests, synthetic data have been
used since it was difficult to obtain/use real, highly distributed P2P databases. Fu-
ture works aim to employ the summary proposal in the context of astronomical
applications, which seem to be attractive because of the huge amount of informa-
tion stored into the databases. Thus, to provide meaningful results, the performance
of the proposed solutions has been evaluated in worst contexts where the data are

Managing Linguistic Data Summaries in Advanced P2P Applications 595

highly updated. Local summary lifetimes are supposed to follow a skewed distribu-
tion with a mean lifetime of 3 hours, and a median lifetime of 60 minutes. Note that
summary lifetimes of hours means that the underlying data is submitted to a very
high modification rate, since the summaries are supposed to be more stable than
original data (as discussed in Section 3.3.2). Besides, such lifetime values allow to
predict the performance in large-scale data sharing P2P systems where the rate of
node departure/arrival dominates the global summary update initiating.

The tests have been made on moderated-size P2P networks, i.e., the number of
peers varies between 16 and 5000. In the used query workload, the query rate is
0.00083 queries per node per second (one query per node per 20 minutes) as sug-
gested in [7]. Each query is matched by 10% of the total number of peers. Finally,
our system parameter α varies between 0.1 and 0.8.

5.2.2 Update Cost

This first set of experiments quantifies the trade-off between query accuracy and the
cost of updating a global summary in a given domain. Figure 5 depicts the fraction
of stale answers in query results for different values of the threshold α . Here, the
worst case is illustrated. For each partner peer p having a freshness value equal to
1, if it is selected in the set PQ then it is considered as false positive. Otherwise, it
is considered as false negative. However, this is not the real case. Though it has a
freshness value equal to 1, the peer p does not incur stale answers unless its database
is changed relative to the posed query Q. Thus, Fig. 5 shows the worst, but very
reasonable values. For instance, the fraction of stale answers is limited to 11% for
a network of 500 peers when the threshold α is set to 0.3 (30% of the peers are
tolerated to have old/non existent descriptions).

Fig. 5 Stale answers vs. domain size

As mentioned in Section 5.1.2, if we choose to propagate the query only to the set
V = PQ∩Pf resh we eliminate the possible false positives in query results. However,
this may lead to additional false negatives. Figure 6 shows the fraction of false

596 Rabab Hayek et al.

Fig. 6 False negative vs. domain size

negatives in function of the domain size. Here, for a peer having a freshness value
equal to 1, the probability of the database modification relative to the issued query
is taken into account. We see that the fraction of false negatives is limited to 3% for
a domain size less than 2000 (i.e., network size less than 8000). The real estimation
of stale answers shows a reduction by a factor of 4.5 with respect to the preceded
values.

Figure 7 depicts the update cost in function of the domain size, and this for two
threshold values. The total number of messages increases with the domain size,
but not surprisingly, the number of messages per node remains almost the same.
In the update cost Equation(2), the number of push messages for a given peer is
independent of domain size. More interestingly, when the threshold value decreases
(from 0.8 to 0.3) we notice a little cost increasing of 1.2 on average. For a domain of
1000 peers, the update cost increases from 0.01056 to 0.01296 messages per node
per minute (not shown in figure). However, a small value of the threshold α allows
to reduce significantly the fraction of stale answers in query results, as seen in Fig. 5.

Fig. 7 Number of messages vs. domain size

Managing Linguistic Data Summaries in Advanced P2P Applications 597

We conclude therefore that tuning the system parameter, i.e., the threshold α , do not
incur additional traffic overhead, while improving query accuracy.

5.2.3 Query Cost

This set of experiments compares the algorithm for query processing against
centralized-index and pure non-index/flooding algorithms. A centralized-index ap-
proach is very efficient since a single message allows locating relevant data. How-
ever, a central index is vulnerable to attack and it is difficult to keep it up-to-date.
Flooding algorithms are very used in real life, due to their simplicity and the lack
of complex state information at each peer. A pure flooding algorithm consists in
broadcasting the query in the network till a stop condition is satisfied, which may
lead to a very high query execution cost. Here, the flooding is limited by a value 3
of T T L.

According to Table 3, the query hit is 10% of the total number of peers. For the
query processing approach, which is mainly based on summary querying (SQ), it is
considered that each visited domain provides 10% of the number of relevant peers
(i.e., 1% of the network size). In other words, we should visit 10 domains for each
query Q. From Equation(3), we obtain: CQ = (10 ·Cd + 9 ·Cf) messages. Figure 8
depicts the number of exchanged messages to process a query Q, in function of the
total number of peers. The centralized-index algorithm shows the best results that
can be expected from any query processing algorithm, when the index is complete
and consistent, i.e., the index covers the totality of data available in the system, and
there are no stale answers in query results. In that case, the query cost is: CQ =
1+2 · ((0.1) ·n) messages, which includes the query message sent to the index, the
query messages sent to the relevant peers and the query response messages returned
to the originator peer p.

In Fig. 8, we observe that the algorithm SQ shows good results by significantly
reducing the number of exchanged messages, in comparison with a pure query flood-
ing algorithm. For instance, the query cost is reduced by a factor of 3.5 for a network
of 2000 peers, and this reduction becomes more important with a larger-sized net-

Fig. 8 Query cost vs. number of peers

598 Rabab Hayek et al.

work. We note that in these tests, the worst case of the SQ algorithm is considered,
in which the fraction of stale answers of Fig. 5 occurs in query results (for α = 0.3).

6 Related Work

Current works on P2P systems aim to employ content-based routing strategies,
since the content of data can be exploited to more precisely guide query propa-
gation. These strategies require gathering information about the content of peer’s
data. However, the limits on network bandwidth and peer storage, as well as the in-
creasing amount of shared data, call for effective summarization techniques. These
techniques allow exchanging compact information on peer’s content, rather than
exchanging original data in the network.

Existing P2P systems have used keyword-based approaches to summarize text
documents. For instance, in [3] documents are summarized by keyword vectors,
and each node knows an approximate number of documents matching a given key-
word that can be retrieved through each outgoing link (i.e., Routing Indices RIs).
Although the search is very bandwidth-efficient, RIs require flooding in order to be
created and updated, so the method is not suitable for highly dynamic networks.
Other works (e.g., [9]) investigate Vector Space Model (VSM) and build Inverted
Indexes for every keyword to cluster content. In this model, documents and queries
are both represented by a vector space corresponding to a list of orthogonal term
vectors called Term Vector. The drawback of VSM is its high cost of vector repre-
sentations in case of P2P churns. In [13], a semantic-based content search consists in
combining VSM to Latent Semantic Index (LSI) model to find semantically relevant
documents in a P2P network. This work is based on hierarchical summary structure
over hybrid P2P architecture, which is closely related to what we are presenting in
this paper. However, instead of representing documents by vector models, we de-
scribe structured data (i.e., relational database) by synthetic summaries that respect
the original data schema.

To the best of our knowledge, none of the P2P summarization techniques al-
lows for an approximate query answering. All works have focused on facilitating
content-based query routing, in order to improve search efficiency. We believe that
the novelty of the approach proposed in this chapter relies on the double exploita-
tion of the employed data summaries. These summaries allow for a semantic-based
query routing, but also to approximately answer the query using their intentional
descriptions.

7 Conclusion

This chapter proposed a model for summary management in hierarchical P2P sys-
tems. The innovation of this proposal consists in combining the P2P and database
summarization paradigms, in order to support data sharing on a world wide scale.

Managing Linguistic Data Summaries in Advanced P2P Applications 599

The database summarization approach that we proposed provides efficient tech-
niques for data localization as well as for data description in P2P systems. In fact,
the produced summaries are semantic indexes that support locating relevant data
based on their content. Besides, an important feature is that these summaries are
compact data descriptions that can approximately answer a query without retrieving
original records from huge, highly distributed databases.

This work made the following contributions. First, an appropriate summary
model for hybrid P2P systems is proposed. Then, efficient algorithms for summary
management are described, and a query processing mechanism that relies on sum-
mary querying is presented. Performance evaluation showed that the cost of query
routing in the context of summaries is significantly reduced in comparison with
flooding algorithms, without incurring high costs of summary maintenance.

In the summary model for hierarchical P2P networks [21], it has been assumed
that peers are grouped around high-connectivity nodes. However, to better exploit
the data locality property of most of current P2P systems, future works intend to
study the organization of nodes based on similarity between their summaries. On-
going works on the SAINTETIQ model aim to define a similarity distance between
summaries. However, such a proposal requires a complete study of the obtained
clustering scheme, i.e., the number of clusters, the cluster sizes, the stability against
node dynamics.

Besides, one can notice that the proposed summaries can serve data anonymiza-
tion purposes. To illustrate, a given hospital which is participating to a medical col-
laborative application may first perform an obfuscation of its database through the
generation of a local summary. Then, the different participants exchange and share
such intelligible summaries, represented in a higher abstraction level. This allow
to learn the “essential” from a given database without revealing personal informa-
tion about patients. A future work plans to study how these summaries can be also
used to make a data source anonymization. In fact, due to the peer-extent infor-
mation, a peer may reveal the source providing a given summary while executing
the summary update algorithm. In some cases, participants may also prefer hiding
the characterization of their data. Hence, a given participant can exploit data sum-
maries of other participants without being able to precise which source is providing
a specified summary.

References

1. http://www.cs.bu.edu/brite/
2. http://www.snomed.org/snomedct
3. A.Crespo, H.G.Molina: Routing indices for peer-to-peer systems. In: Proc. of the 28 tn Con-

ference on Distributed Computing Systems (2002)
4. A.Iamnitchi, M.Ripeanu, I.Foster: Locating data in (small-world?) peer-to-peer scientific col-

laborations. In: IPTPS, pp. 232–241 (2002)
5. A.Shoshani: OLAP and statistical databases: Similarities and differences. In: Proceedings

of the Sixteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems, pp. 185–196. ACM Press (1997)

600 Rabab Hayek et al.

6. Bentley, J.L.: Multidimensional binary search trees used for associative searching. Commun.
ACM 18(9), 509–517 (1975). DOI http://doi.acm.org/10.1145/361002.361007

7. B.Yang, H.G.Molina: Comparing hybrid peer-to-peer systems. In: Proc VLDB (2001)
8. Comer, D.: Ubiquitous b-tree. ACM Comput. Surv. 11(2), 121–137 (1979). DOI http://doi.

acm.org/10.1145/356770.356776
9. F.Cuenca-Acuna, C.Peery, R.Martin, T.Nguyen: Planetp: Using gossiping to build content ad-

dressable peer-to-peer information sharing communities. In: HPDC-12 (2003)
10. F.Howell, R.McNab: Simjava: a discrete event simulation package for java with the applica-

tions in computer systems modeling. In: Int. Conf on Web-based Modelling and Simulation,
San Diego CA, Society for Computer Simulation (1998)

11. Han, J., Fu, Y., Huang, Y., Cai, Y., Cercone, N.: Dblearn: A system prototype for knowledge
discovery in relational databases. In: Proceedings of the 1994 ACM SIGMOD International
Conference on Management of Data, Minneapolis, Minnesota, May 24-27, 1994, p. 516. ACM
Press (1994)

12. H.Jagadish, R.Ng, B.Ooi, A.Tung: Itcompress: An iterative semantic compression algorithm.
In: 20th International Conference on Data Engineering, p. 646 (2004)

13. H.Shen, Y.Shu, B.Yu: Efficient semantic-based content search in p2p network. IEEE Trans.
Knowl. Data Eng. 16(7) (2004)

14. Ioannidis, Y.: The history of histograms (abridged). In: VLDB ’2003: Proceedings of the 29th
international conference on Very large data bases, pp. 19–30. VLDB Endowment (2003)

15. I.Tartinov, et al: The Piazza peer data management project. In: SIGMOD (2003)
16. K.Thompson, P.Langley: Concept formation in structured domains. In: Concept formation:

Knowledge and experience in unsupervised learning, pp. 127–161. Morgan Kaufmann
17. L.A.Zadeh: Concept of a linguistic variable and its application to approximate reasoning-I.

Inf. Syst. 8, 199–249 (1975)
18. M.Bechchi, G.Raschia, N.Mouaddib: Merging distributed database summaries. In: ACM Six-

teenth Conference on Information and Knowledge Management (CIKM) (2007)
19. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical recipes in C (2nd

ed.): the art of scientific computing. Cambridge University Press, New York, NY, USA (1992)
20. R.Akbarinia, V.Martins, E.Pacitti, P.Valduriez: Design and implementation of appa. In: Global

Data Management (Eds. R. Baldoni, G. Cortese and F. Davide). IOS press (2006)
21. R.Hayek, G.Raschia, P.Valduriez, N.Mouaddib: Summary management in p2p systems. In:

EDBT, pp. 16–25 (2008)
22. R.Saint-Paul, G.Raschia, N.Mouaddib: General purpose database summarization. In: Proc

VLDB, pp. 733–744 (2005)
23. Ruspini, E.H.: A new approach to clustering. Inf. Control 15, 22–32 (1969)
24. S.Babu, G.Minos, R.Rajeev: Spartan: A model-based semantic compression system for mas-

sive data tables. In: Proc. of the 2001 ACM Intl. Conf. on Management of Data (SIGMOD),
pp. 283–295 (2001)

25. S.Saroiu, P.Gummadi, S.Gribble: A measurement study of peer-to-peer file sharing systems.
In: Proc of Multimedia Computing and Networking (MMCN) (2002)

26. W.A.Voglozin, G.Raschia, L.Ughetto, N.Mouaddib: Querying the SAINTETIQ summaries–a
first attempt. In: Int.Conf.On Flexible Query Answering Systems (FQAS) (2004)

27. W.Nejdl, W.Siberski: Design issues and challenges for rdf- and schema-based peer-to-peer
systems. SIGMOD Record 32, 2003 (2003)

Case Study: Scoop for Partial Read from P2P
Database

Farnoush Banaei-Kashani and Cyrus Shahabi

Abstract In this paper we propose Scoop, a mechanism to implement the “partial
read operation” for peer-to-peer databases. A peer-to-peer database is a database
that its relations are horizontally fragmented and distributed among the nodes of
a peer-to-peer network. The partial read operation is a data retrieval operation re-
quired for approximate query processing in peer-to-peer databases. A partial read
operation answers to β -queries: given β ∈ [0,1] and a relation R, a fraction β of
the tuples in R must be retrieved from the database to answer a β -query. Despite
the simplicity of the β -query, due to the distributed, evolving and autonomous na-
ture of the peer-to-peer databases correct and efficient implementation of the partial
read operation is challenging. Scoop is designed based on an epidemic dissemina-
tion algorithm. We model the epidemic dissemination as a percolation problem and
by rigorous percolation analysis tune Scoop per-query and on-the-fly to answer β -
queries correctly and efficiently. We prove the correctness of Scoop by theoretical
analysis, and verify the efficiency of Scoop in terms of query cost and query time
via extensive simulation.

Farnoush Banaei-Kashani
University of Southern California, Department of Computer Science, Los Angeles, CA 90089-
0781, USA e-mail: banaeika@usc.edu

Cyrus Shahabi
University of Southern California, Department of Computer Science, Los Angeles, CA 90089-
0781, USA, e-mail: shahabi@usc.edu

X. Shen et al. (eds.), Handbook of Peer-to-Peer Networking, 601
DOI 10.1007/978-0-387-09751-0 21, © Springer Science+Business Media, LLC 2010

602 Farnoush Banaei-Kashani and Cyrus Shahabi

1 Introduction

1.1 Motivation and Problem Definition

A peer-to-peer database is a database that its relations are horizontally fragmented
and distributed among the nodes of a peer-to-peer network. Each node is potentially
both a client and a server of the database. Peer-to-peer databases are distinguished
from the more generic distributed databases by the sheer size of the database in
terms of the participating nodes, as well as higher dynamism of the data, nodes, and
the interconnection network. Correspondingly, these distinctive features necessitate
provision of more scalable and dynamic data management mechanisms for peer-to-
peer databases (as compared to those for the generic distributed databases). Peer-to-
peer databases lie at the intersection of the database and networking research fields,
and currently numerous researchers and focus groups from both communities are
actively working to provide the required data management capabilities for this new
generation of the distributed databases.1

Here, we focus on unstructured peer-to-peer databases. With these databases, the
process of query answering is comparable to that in regular unindexed databases.
Due to the considerable amount of churn in unstructured peer-to-peer databases,
construction and maintenance of distributed index structures (e.g., a DHT [24, 30])
are not cost-efficient. Without index, to answer a user query, first the query is dis-
seminated throughout the network to scan the database and retrieve the data rele-
vant to the query (analogous to the sequential scan in regular unindexed databases).
Subsequently, the retrieved data are processed locally at the querying node to
answer the user query.2 In this paper, we introduce a basic data retrieval oper-
ation, termed the partial read operation, to execute the first step of the query
answering, specifically as required for approximate query answering discussed
below.

Approximate query answering is a desirable generalization of exact query an-
swering, arguably essential for efficient query answering in unstructured peer-to-
peer databases. With these unindexable databases, returning exact answers (i.e.,
the complete result-set) requires a complete scan of the entire database for each
query. Considering the large size of the peer-to-peer databases and the abundance
of the database users with numerous queries, answering all queries with exact re-
sult is obviously too costly to scale. Besides, with most of the peer-to-peer database
applications the workload mainly consists of exploratory queries for which exact
results are unnecessary and redundant [11]. With approximate query answering,
queries are assumed to be satisfied by an approximate/partial result, which is a sub-
set of the complete result-set of the query. Along with the query, users specify the

1 For instance, see the publications at the recurrent DBISP2P workshop (held in conjunction with
VLDB) and the NetDB workshop (held in conjunction with ICDE).
2 Here, by “query” we refer to user queries such as SQL queries. In this paper, we also use
“query” to refer to β -queries, i.e., requests for retrieving the tuples of the base relations stored
in the database, as we later define formally. The intended meaning is apparent from the context.

Case Study: Scoop for Partial Read from P2P Database 603

required “completeness” of the approximate result that satisfies the query. Corre-
spondingly, the database system can reduce the overhead of the data retrieval and
query processing to the least sufficient to satisfy the query, effectively enhancing
the efficiency of the query answering by eliminating the redundancy of the result.
If required, still a query can be answered exactly. An exact query is simply a spe-
cific case of approximate query requiring the most complete result-set, the exact
result.

Formally, an approximate query is defined as an arbitrary query with a user-
defined completeness ratio ε ∈ [0,1]; any fraction ε of the complete result-set X ,
noted as X (ε), is sufficient to satisfy the approximate query. An exact query is an ap-
proximate query with ε = 1. Approximate queries are also called partial query. To
answer a partial query, first the peer-to-peer database should be sampled to retrieve
a certain fraction βi (also called the completeness ratio, in lack of other conveying
terms) from each input relation Ri of the query. Subsequently, using partial query
processing techniques such as [23, 31] the retrieved data are processed locally at the
querying node to generate the final partial result-set X (ε). The main challenge with
answering partial queries is with devising a basic sampling operation that given any
β ∈ [0,1], retrieves a fraction β of an input relation R (i.e., retrieving a partial rela-
tion noted as R(β)), where R is horizontally fragmented and distributed among the
nodes of the peer-to-peer database. We term such a sampling operation the partial
read operation. Partial read is a nonprobability sampling operation, because it is not
expected to guarantee randomness of the sample retrieved from the database. It is in-
formative to note that with structured peer-to-peer databases, since the placement of
the data objects is a priori known, partial read is trivial to implement. In this paper,
we focus on implementing the partial read operation in unstructured peer-to-peer
databases.

To be applicable, the partial read operation must be both correct and effi-
cient. A partial read is correct if |R′|/|R| ≥ β , where R′ is the retrieved portion
of the input relation R. This is a sufficient condition for correctness of the par-
tial read. However, ideally the redundancy of the data retrieval is minimal when
|R′|/|R| = |R(β)|/|R| = β . A peer-to-peer database is a fragmented database which
is randomly distributed among a variable set of nodes with unknown popula-
tion. Under such circumstances, to be correct the partial read operation must im-
plement a distributed query dissemination scheme to visit sufficient number of
nodes and retrieve sufficient number of tuples, such that in expectation the col-
lective set of the retrieved tuples R′ satisfies the correctness condition with high
probability. On the other hand, the efficiency of the partial read operation is de-
fined in terms of the query time (or sampling time) and query cost (or sam-
pling cost), which respectively map to the total communication time and com-
munication cost of disseminating the query for distributed data retrieval. There
is a trade-off between the query time and the query cost, with higher cost to
achieve shorter time and vice versa. An efficient partial read operation satisfies the
ideal case of the correctness condition with a balanced query time versus query
cost. Scoop is a mechanism to implement the partial read operation correctly and
efficiently.

604 Farnoush Banaei-Kashani and Cyrus Shahabi

1.2 Related Work

Data retrieval from networks has been previously studied as a search problem, but
none of the proposed search mechanisms can satisfy the correctness and efficiency
requirements of the partial read operation. There are two main proposals for search
in unstructured peer-to-peer networks: search by flooding [18, 33] and search by
random walk [1, 6, 10, 19, 20]. With both of these search mechanisms, query is dis-
seminated throughout the network by recursive forwarding from node to node. With
flooding each node that receives the query forwards it to all of its neighbors, whereas
with random walk query is forwarded to only one (uniformly or non-uniformly) se-
lected random neighbor. None of these approaches can strike a balance between the
two metrics of efficiency for search, i.e., the communication time and the communi-
cation cost. Flooding is most efficient in communication time but incurs too high of
redundant communication to be practical, whereas random walk is potentially more
efficient in communication cost but is intolerably slow in scanning the network. In
[33], a two-tier hierarchy is proposed where flooding is restricted to the supernodes
at the top tier. This solution only alleviates the communication cost of flooding and
the problem resurfaces as the top tier scales. In [19], using k random walkers in
parallel is proposed as a way to balance the communication cost and the commu-
nication time of the query. However, this proposal does not provide any rigorous
solution for selecting the value of k for optimal performance.

Previous search mechanisms are not only inefficient, but also inappropriate for
executing partial read. With Top-K queries, the relevant data is ordered in terms
of a preference measure, whereas partial read allows unbiased data retrieval. Also,
as mentioned above the main benefit of the approximate query answering is that
it allows trading off completeness of the result for better efficiency by limiting the
scan of the database to a just sufficiently large fraction of the database that sat-
isfies the β -query. To enable such a trade-off, a search mechanism that is used
to implement the partial read should allow adjusting the coverage of the database
(i.e., the fraction of the network nodes, and hence data objects, visited during dis-
semination) according to the user specified parameter β of each query. With both
flooding and random walk, TTL (Time-To-Live) is the control parameter that can
be used to limit the coverage of the network. However, it is not clear how one
can adjust TTL according to β for sufficient coverage (where the size of the net-
work is also unknown). TTL is often set to a fixed value, a value that is selected in
an ad hoc fashion based on the average performance of the typical search queries
and must be re-adjusted as the peer-to-peer database evolves. Alternatively, TTL
is gradually increased to expand the coverage, each time repeating the query dis-
semination from the beginning, until sufficient fraction of the database is covered
to answer the query. Although this scheme may result in correct partial read, due
to the redundancy of repeating the query dissemination, query cost can even ex-
ceed that of the regular flooding. Finally, another problem specific to the flood-
ing is that the granularity of the coverage is too coarse (the number of covered
nodes grow exponentially with TTL), rendering fine adjustment of the coverage
impossible.

Case Study: Scoop for Partial Read from P2P Database 605

1.3 Scoop

1.3.1 Overview

We propose Scoop as a sampling mechanism to implement partial read. To sample
the database, beginning from the originator of the query Scoop spreads the query
throughout the network. While spreading, the query inspects the nodes of the net-
work to locate and retrieve a fraction β of the tuples of the input relation R. With
Scoop, the spread of the query is modelled on epidemic dissemination of diseases
in social networks.3 By epidemic dissemination, query spreading is probabilistic,
i.e., when a node receives a query, it replicates and forwards the query to each of its
neighbors independently with a forwarding probability 0≤ p≤ 1. Therefore, a node
forwards the replicas of the query to zero or more neighbors at each time. Such a
query forwarding algorithm is obviously more flexible as compared to both flooding
and random walk and subsumes these dissemination mechanisms. The communi-
cation graph of the epidemic dissemination (i.e., the subgraph of the peer-to-peer
network covered by the dissemination) is sparse with small values of p. The com-
munication graph grows larger and denser with larger values of p such that with
p = 1 the epidemic dissemination is equivalent to regular flooding which covers the
entire network.

Scoop specifically implements SIR (Susceptible-Infected-Removed), which is a
classic epidemic dissemination model [12]. Our main contribution with Scoop is
derivation of a closed-form formula that given a partial read request, maps the value
of the completeness ratio β to an appropriate value for the forwarding probability p
such that the request is correctly satisfied. Leveraging on this derivation, Scoop on-
the-fly and per read-request tunes p based on β such that the communication graph
grows just sufficiently large to cover a fraction of the database that satisfies the par-
tial read request. For partial read requests with small β the communication graph is
sparse and as β increases the graph becomes denser. Since both the communication
cost and communication time of the sampling increase proportional to the size of
the communication graph, the partial read requests with higher completeness ratio
are more expensive, as expected.

1.3.2 Correctness and Efficiency

In Section 3.3, we rigorously prove that Scoop satisfies the ideal case of the correct-
ness condition for the partial read operation. Scoop achieves correctness without a
priori knowledge about the size of the network. With each value of p Scoop covers a
certain fixed fraction of the network nodes independent of the size of the network. In
other words, for the same value of p, size of the communication graph is always pro-

3 In the literature, sometimes gossip-based or rumor-based spreading techniques are also termed
epidemic techniques [5, 7, 15, 16]. Here, we are not referring to such many-to-many communi-
cation techniques, but specifically to the techniques that are modelled after disease spreading in
social networks.

606 Farnoush Banaei-Kashani and Cyrus Shahabi

portional to the size of the entire network, such that its relative size (i.e., the covered
fraction of the network) is fixed. This property allows answering β -queries (which
expect retrieving a fixed fraction of a relation) without acquiring and maintaining
global knowledge about the current size of the network. Intuitively, this is feasible
because unlike flooding and random walk with which a query never dies unless it is
explicitly terminated (e.g., when TTL expires), with epidemic dissemination query
forwarding is probabilistic and with some non-zero probability each replica of the
query may naturally die at each step. The dissemination terminates whenever all
replicas of the query die. The larger the network, the more it takes for the dissemi-
nation to die and, therefore proportionally, the larger is the communication graph of
the dissemination.

Scoop is also efficient, in that it strikes a balance between the communication
cost and communication time of the sampling. Since epidemic dissemination is es-
sentially a flood-based technique, as we show in Section 6, its communication time
is low and comparable with that of the regular flooding. On the other hand, due to
the phase transition phenomenon associated with the SIR epidemic model, for the
common case of the partial read requests the communication cost of the Scoop is
up to two orders of magnitude less than that of the regular flooding and comparable
with the low communication cost of the random walk. Intuitively, with epidemic
dissemination the dense communication graph of the regular flooding, which with
numerous loops represents a large amount of redundant and duplicate query for-
warding, is reduced to a sparse communication graph. With fewer loops, the sparse
graph contains less redundant paths and therefore, causes less duplicate queries,
while covering almost the same set of nodes. Hence, epidemic dissemination can
be tuned such that the overhead of the flooding is effectively eliminated while its
reachability and communication time is preserved.

It is also important to mention that Scoop is simple to implement, and since it
is a randomized mechanism, it is inherently reliable to use with dynamic peer-to-
peer databases. Moreover, with Scoop the larger the degree of a node, the larger its
load. However, as Gribble et al. have shown in [26], with peer-to-peer databases the
degree of connectivity of the nodes is positively correlated with the amount of the
shared resources of the nodes. Therefore, with Scoop the load is distributed among
the nodes roughly proportional to the resources of the nodes, which is a desirable
load balancing property.

1.3.3 Originality

The process of epidemic disease dissemination has been previously used as a model
to design other information dissemination techniques [13]. Particularly, in the net-
working community, epidemic dissemination is termed probabilistic flooding and is
applied for search and routing in various types of networks [8, 17, 27]. We distin-
guish Scoop from this body of work in two ways. First, although epidemic algo-
rithms are simple to implement, due to their randomized and distributed nature they
are often difficult to analyze theoretically. For the same reason, most of the previous

Case Study: Scoop for Partial Read from P2P Database 607

work restrict themselves to empirical study of the performance with results that are
subject to inaccuracy and lack of generality. We employ the percolation theory to
rigorously tune Scoop to its best operating point. Second, to the best of our knowl-
edge those of the few percolation-based theoretical studies of epidemic algorithms
often adopt simplistic mathematical models [12] that assume a homogenous topol-
ogy (a fully connected topology) for the underlying network to simplify the analysis.
However, recently it is shown that considering the actual topology of the network in
the analysis extensively affects the results of the analysis [9]. We perform our anal-
ysis of Scoop assuming an arbitrary random graph as the underlying topology of the
peer-to-peer network and specifically derive final results for a power-law random
graph, which is the observed topology for some peer-to-peer databases [26].

We originally described our preliminary ideas with Scoop in a poster paper [2].
This paper is merely a descriptive introduction to Scoop (equivalent to the intro-
duction section of the current paper). The current paper extends the poster paper by
including the Scoop algorithm, analytical details, and experimental results.

1.3.4 Experimental Results

We performed an empirical study via simulation to evaluate the efficiency of Scoop.
In lack of other existing solutions, we compared Scoop with hypothetical partial
read operations that use scope-limited flooding (i.e., flooding with limited TTL)
and k-random-walkers (with various k) for query dissemination. As we explained
in Section 1.2, these dissemination mechanisms are not originally appropriate for
execution of the partial read requests and we had to artificially inform them about
the coverage required to satisfy each request. Our results show that even under such
artificial conditions, Scoop still outperforms scope-limited flooding in communica-
tion cost while maintaining a reasonable communication time. Also, to our surprise,
Scoop not only has a much better communication time as compared to that of the
random-walk but also outperforms a 32-random-walker (the optimal case as sug-
gested in [19]) even in communication cost.

1.3.5 Summary of Contributions

To summarize, we enlist our contributions with Scoop as follows:

• Identifying and formulating a basic query type, i.e., β -query, as an essential
type of sub-query for answering generic approximate queries in peer-to-peer
databases.

• Developing an epidemic-based query answering mechanism to evaluate β -queries
in unstructured peer-to-peer databases with arbitrary random graph topology. The
novelty with this query answering mechanism is in introducing a generic and
rigorous analytic approach based on percolation analysis to control the epidemic
dissemination for both correct and efficient query answering.

608 Farnoush Banaei-Kashani and Cyrus Shahabi

• Evaluation of the proposed query answering mechanism by extensive empirical
analysis via simulation.

It is important to note that although Scoop is applicable to the more generic
distributed databases, it is particularly designed to accommodate the scalability and
dynamism requirements of the peer-to-peer databases (as discussed above).

1.4 Roadmap

The remainder of this paper is organized as follows. In Section 2, we define the par-
tial read problem with further details. Section 3 introduces the generic case of Scoop
for partial read from peer-to-peer databases with arbitrary random graph topology.
In Section 4, we specialize our results from Section 3 to develop a specific case of
Scoop for the real-world peer-to-peer databases with power-law topology. In Sec-
tion 5, we briefly discuss several variants of Scoop. Section 6 presents the results of
our empirical study on Scoop. Finally, Section 7 concludes the paper and discusses
the future directions of this research.

2 Partial Read Operation

Given β ∈ [0,1], a partial read operation must retrieve a fraction β of the relation R,
which is horizontally fragmented and distributed among the nodes of the network
N. We term such a partial read request a β -query. It is important to note that the
semantics of the β -query is less restrictive as compared to that of the stronger top-
k query. While both these types of queries are useful and popular in peer-to-peer
databases, they require distinct query answering mechanisms. To answer a β -query,
beginning from the originator of the β -query (which is the same node where the
user query is issued), query is disseminated through the network to visit a fraction

N

n

|n|/|N|

R

r

|r|/|R|

Fig. 1 Partial read

Case Study: Scoop for Partial Read from P2P Database 609

γ of the nodes of the network which collectively store a sub-relation r such that
|r|/|R|= β (see Fig. 1).

Regardless of the choice of the dissemination mechanism to implement the par-
tial read operation, the main challenge is tuning the dissemination mechanism per
β -query such that the query is correctly satisfied. Figure 2 depicts the parameter
mapping process for tuning a generic dissemination mechanism. At Step I, consid-
ering the distribution of the tuples among the nodes, γ (i.e., the fractional size of
the subset n of the nodes that should be visited to retrieve r) is calculated based
on β . Subsequently, at Step II some parameter(s) of the dissemination mechanism
(such as parameter p for the epidemic dissemination) is tuned based on γ such that
the dissemination actually covers n nodes of the network. Specifics of Step II of
the mapping process depend on the particular dissemination mechanism applied to
implement the partial read.

p
Data Distribution Parameter Tuni ng

I II

Fig. 2 Parameter mapping process for tuning a generic dissemination mechanism

With Scoop, we employ an epidemic dissemination mechanism to implement
the partial read operation. We assume the tuples of the relation R are uniformly
distributed among the nodes of the network (hence, the mapping at Step I will be
trivial γ = β), and focus on the specifics of Step II for epidemic dissemination to
derive p as a function of γ (or equivalently, β). Before describing Scoop and its
tuning process, here we provide some definitions.

2.1 Definitions

2.1.1 Communication Graph

Communication graphs are used to represent and visualize query dissemination over
networks. A network with the node-set N and link/edge-set E can be modelled as an
undirected graph G(N,E). For a query dissemination initiated at time t = t0 on G, the
communication graph at any time t ≥ t0 is a subgraph Gt(Nt ,Et) of G, where Et ⊆ E
is the set of links traversed by at least one query replica during the time interval [t0, t],
and Nt ⊆ N is the set of nodes visited by at least one query replica during the same
time interval. Associated with any link e of Gt is a weight we that is the number of
times the link e is traversed during the time interval [t0, t]. We assume a discrete time
model; thus, the dynamic process of disseminating a query is completely represented
by the set of communication graphs {Gt0 ,Gt0+1,Gt0+2, ...,Gt0+T}, where at time
t = t0 +T the query dissemination is terminated (hence, for all t ≥ (t0 +T), Gt0+t =

610 Farnoush Banaei-Kashani and Cyrus Shahabi

Gt0+T). For example, Fig. 3 depicts the 6 first communication graphs of a query that
is initiated at node A and disseminated based on the random walk dissemination
mechanism.

A

t=t0

A
1

t=t0+1

A

1

1

t=t0+2

A

1
1

1

t=t0+3

A

1

2
1

t=t0+4

A
2

1
1

1

t=t0+5

Fig. 3 Communication graph

2.1.2 Efficiency Measures for Sampling

We define two metrics to measure the efficiency of query dissemination mechanisms
used for sampling from networks:

1. Query cost (or sampling cost, or communication cost) C: Assuming uniform
cost for traversing the links of the network and uniform query size, we model
the communication cost of disseminating a query based on a particular dissemi-
nation mechanism as the total number of query replicas communicated between
the nodes of the network during the entire process of query dissemination. In
communication-graph terminology:

C = ∑
e∈Et0+T

we

2. Query time (or sampling time, or communication time) T: Assuming uniform
latency for the network links, the sampling time is the total time it takes to dis-
seminated the query. In communication-graph terminology:

T = T

Case Study: Scoop for Partial Read from P2P Database 611

3 Scoop: Partial Read by Epidemic Dissemination

Epidemic dissemination is inspired by epidemic spreading of contagious diseases
in social networks (i.e., networks that model a society, with nodes as people and
links as social links between people who are in contact). A contagious disease first
appears at one node (the originator of the disease), and then through the social links
disseminates throughout the network in a flood-like fashion, from the infected per-
son to its direct neighbors in the social network, from the infected neighbors to
their neighbors, and so on. The success in transmission of the disease through a
social link is probabilistic, i.e., the disease is transmitted from an infected node to
its susceptible neighbor with probability p (0 ≤ p ≤ 1) and is ceased with proba-
bility 1− p. The value of p depends on the infectiousness of the particular disease
as well as some other environmental parameters, and with simple disease spreading
models the value is generic to all links of the network. When the spreading termi-
nates, the disease has covered/reached a sample h of the total node population H
(h⊆ H), where the relative size of h increases with increasing value of p (although
not necessarily linearly).

With epidemic dissemination by Scoop, we model the query dissemination mech-
anism on the disease spreading process. By analogy, we take the dissemination of
a query in a peer-to-peer database as the spreading of a disease in a social net-
work. With this analogy, the infection probability p translates to the query forward-
ing probability, and the infected sample h maps to the sampled node-set n. Among
various disease spreading models, we model epidemic dissemination on the SIR
(Susceptible-Infected-Removed) disease spreading model. Below, first we describe
the SIR disease spreading model, which readily defines our epidemic query dis-
semination mechanism with Scoop. Thereafter, for our SIR-based epidemic query
dissemination mechanism we develop a percolation model to derive γ as a function
of the query forwarding probability p for peer-to-peer databases with arbitrary ran-
dom graph topology. The function γ(p) is a one-to-one function. Therefore, in turn,
it defines p as a function of γ , which enables Step II of the tuning process for Scoop.

3.1 SIR Epidemic Dissemination

With the SIR disease spreading model, at any particular time during dissemination
of the disease (or equivalently, the query), each node of the network is in one of the
three states susceptible (S), infected (I), or removed (R). A “susceptible” node is li-
able to infection but is not infected yet; an “infected” node is currently infected and
is able to infect its neighbors; and a “removed” node has recovered from the infec-
tion and is both immune to further infection and impotent to infect other nodes. The
discrete-time and dynamic process of SIR epidemic dissemination can be explained
as follows. Initially, at time t0 all nodes of the network are susceptible except the

612 Farnoush Banaei-Kashani and Cyrus Shahabi

originator of the disease, which is infected. As the disease propagates throughout
the network, if at time t ≥ t0 a susceptible node A has an infected neighbor B, at
time t + 1 with probability p node A conceives the disease from B and becomes
infected (see Fig. 4 for the state transition diagram of a node). An infected node
remains in the infectious state for a period of time τ (during which it is able to in-
fect its neighbors), and then finally becomes removed. We assume τ = 1 without
loss of generality. The disease dissemination terminates (dies out) at time t0 + T
(where T ≥ 1) when all nodes of the network are either in the removed state (af-
fected by the disease) or the susceptible state (survived the disease), and none of
the nodes are in the infected state. By analogy, with the SIR-based epidemic query
dissemination of Scoop, when the query dissemination terminates the set of the
removed nodes is the set n of nodes visited by the query, and the set of suscepti-
ble nodes is the set N\n of the nodes not covered by the query dissemination (see
Fig. 1).

I

τ

RS

Fig. 4 State diagram for SIR epidemic dissemination

3.2 Percolation Model

To tune the epidemic dissemination with Scoop, we need to answer two questions:

1. How large p should be for the query dissemination to prevail a large network?
For a query to prevail a network N, we should have:

lim
|N|→∞

|n|
|N| = γ (1)

with γ > 0. In other words, the size of the covered node-set n must be comparable
to the size of the entire network N, otherwise the partial read operation cannot
satisfy any β -queries other than the trivial β -query with β = 0. With too small
values of p, the dissemination dies out quickly, and the query fails to prevail and
covers an infinitesimally small number of nodes as compared to the total number
of nodes |N| in large networks; i.e., we have:

lim
|N|→∞

|n|
|N| = 0

2. How can we derive γ as a function of p? γ is an increasing function of p. Having
γ(p), we can fulfill Step II of the tuning process (see Fig. 2) by deriving p(γ) as
γ−1(p). In other words, given a β -query and assuming γ = β , we can tune the
forwarding probability p of Scoop on-the-fly to satisfy the β -query.

Case Study: Scoop for Partial Read from P2P Database 613

p = 0.1

p = 0.4 p = 0.5 p = 0.6

p = 0.2 p = 0.3

b. Site precolation instances

a. A site grid

Fig. 5 Site percolation problem

To answer these questions, we model the epidemic dissemination process as a
percolation problem. First, we illustrate this percolation problem by describing two
toy percolation problems (Figs. 5 and 6). Consider the grid in Fig. 5a. Each cell of
the grid is called a site. Suppose we color each site of the grid independently with
probability p. Figure 5b depicts several instances of the colored grid with various
probabilities. As p increases, larger clusters of colored sites appear. Particularly, at
p = 0.6 there is a giant cluster (marked in black) that spans from the top side of the
grid to the bottom side. When such a giant cluster appears in a colored grid, we say
the grid percolates. It is proved [21, 22, 29] that there exists a critical probability pc

614 Farnoush Banaei-Kashani and Cyrus Shahabi

(in this case, pc ≈ 0.59) such that whp4 the grid percolates only if p≥ pc. The size
of the giant cluster depends on the value of p and as p increases the giant cluster
grows such that at p = 1 the giant cluster covers the entire grid. The toy problem
described above is called a site percolation problem on two dimensional grid.

Equivalently, one can define the dual bond percolation problem where a set of
nodes are arranged into a grid (see Fig. 6a) with a bond (not shown) between every
pair of adjacent nodes. Suppose each bond is colored independently with probability
p. In this case a giant cluster is a cluster of nodes connected with colored bonds that
percolates from one side to the other side of the grid (in Fig. 6b the giant cluster is
marked in black).

p = 0.6

a. A bond grid b. Bond percolation instance

Fig. 6 Bond percolation problem

We model the epidemic dissemination process as a bond percolation problem
on an arbitrary random graph. Our problem differs from the toy bond percolation
problem described above in two ways. First, instead of a grid we assume an arbi-
trary random graph as the underlying bonding structure among the nodes. With an
arbitrary random graph, each node is not restricted to a fixed number of neighbors
(e.g., four neighbors as in two dimensional grid) but can have a random number of
neighbors according to some arbitrary degree distribution. On the other hand, unlike
a grid, a random graph is not delimited by sides. For a bond percolation problem on
a random graph, a giant cluster is defined as a cluster of nodes (i.e., a set of nodes
connected with colored bonds) where the size of the cluster is comparable to the
size of the entire graph.

This bond percolation problem models the epidemic dissemination as follows:
the underlying random graph represents the physical topology of the peer-to-peer
network (i.e., the logical overlay); and a cluster generated with the coloring prob-
ability p, is an instance of the communication graph of a query if the query was
initiated by a node within the cluster and disseminated with the forwarding prob-
ability p. With this model, we can answer the two questions raised before as
follows:

4 “whp” stands for “With High Probability”.

Case Study: Scoop for Partial Read from P2P Database 615

1. How large p should be for the query dissemination to prevail a large network?
The query prevails the network if and only if a giant cluster exists. Thus, whp
query prevails the network if and only if p≥ pc, where pc is the critical percola-
tion probability of the bond percolation problem.

2. How can we derive γ as a function of p? To derive γ(p) we should derive the
relative size of the giant cluster as a function of the coloring probability p, for all
p≥ pc.

Next, we solve the bond percolation problem for the critical probability pc, and
the size of the giant cluster as a function of p.

3.3 Tuning Scoop

3.3.1 Definitions

We use the generating-function formalism [32] to represent probability distribu-
tion functions. Particularly, the generating function G0(x) for the distribution of the
node-degree k in an arbitrary random graph is defined as:

G0(x) =
∞

∑
k=0

pkxk (2)

where pk is the probability that a randomly chosen node of the graph has degree k.
From Equation (2), one can derive the n-th moment of the node degree distribution
as follows:

〈kn〉=
[
(x

d
dx

)nG0(x)
]

x=1
(3)

Also, for a random graph represented by the generating function G0(x), we define
G1(x), which is the generating function for the distribution of the degree of the nodes
we arrive at by following a randomly chosen link from the graph. G1(x) depends on
G0(x) and is derived as follows:

G1(x) =
1
〈k〉G′

0(x) (4)

3.3.2 Analysis

First, consider the bond percolation model described in Section 3.2. Suppose the
coloring probability is p. A cluster of nodes connected by the colored bonds is itself
a random graph embedded within the underlying random graph G0(x). It is easy
to derive the generating function G0(x; p) for the degree distribution of the graphs
representing the clusters based on G0(x):

616 Farnoush Banaei-Kashani and Cyrus Shahabi

G0(x; p) =
∞

∑
m=0

∞

∑
k=m

pk

(
k
m

)
pm(1− p)k−mxm (5)

=
∞

∑
k=0

pk

k

∑
m=0

(
k
m

)
(xp)m(1− p)k−m (6)

=
∞

∑
k=0

pk(1− p+ xp)k (7)

= G0(1+(x−1)p) (8)

Similarly one can derive G1(x; p) as follows:

G1(x; p) = G1(1+(x−1)p) (9)

Next, we derive the distribution of the size s (i.e., the number of nodes) of the
clusters. Assume H0(x; p) is the generating function for the distribution of the size
of the clusters. Observing that each cluster consists of a node connected to k other
sub-clusters (where k is distributed according to G0(x; p)), we derive the distribution
of the cluster size by a recursive argument as follows:

H0(x; p) = xG0(H1(x; p); p) (10)

and similarly:
H1(x; p) = xG1(H1(x; p); p) (11)

From H0(x; p), we can also compute the average size 〈s〉 of the clusters using Equa-
tion (3):

〈s〉= H ′
0(1; p) = 1+G′

0(1; p)H ′
1(1; p) (12)

However, according to Equation (11) we have:

H ′
1(1; p) = 1+G′

1(1; p)H ′
1(1; p) =

1
1−G′

1(1; p)
(13)

Thus:

〈s〉= 1+
G′

0(1; p))
1−G′

1(1; p)
= 1+

pG′
0(1)

1− pG′
1(1)

(14)

Now, since at the critical probability pc the giant cluster appears, the average size
of the clusters 〈s〉 goes to infinity at p = pc; i.e.:

〈s〉= 1+
pcG′

0(1)
1− pcG′

1(1)
→ ∞ (15)

Therefore, the critical probability pc can be computed as:

pc =
1

G′
1(1)

=
1

〈k2〉
〈k〉 −1

(16)

Case Study: Scoop for Partial Read from P2P Database 617

This concludes the solution for the first question raised in Section 3.2. To answer
the second question, i.e., calculating the relative size of the giant cluster as a function
of p, we observe that for p ≥ pc, H0(x; p) remains the distribution of the finite size
clusters, i.e., all clusters except the giant cluster. Thus, we have:

H0(1; p) = 1− γ(p) (17)

Using Equation (10) we can derive γ(p) as follows:

γ(p) = 1−G0(y; p) (18)

where according to Equation (11), y = H1(1; p) is the solution of:

y = G1(y; p) (19)

We solve these equations for γ(p) numerically by iteration.

4 A Real-World Example of Scoop

In Section 3, we described the generic case of Scoop for the peer-to-peer databases
with arbitrary random graph topology. As captured by empirical studies, some of
the real-world peer-to-peer databases such as Gnutella [18] and Kazaa [28] have
power-law random graph topologies [11, 14, 25, 26]. Here we specialize the generic
case of Scoop for the peer-to-peer databases with power-law topology.

4.1 Network Topology

In this section, we assume the topology of the peer-to-peer database is a power-law
(or scale-free) random graph, i.e., a random graph [4] with power-law probability
distribution for node degrees. Intuitively, in a power-law random graph most of the
nodes are of low degree while there are still a few nodes with very high connectivity.
We define the power-law probability distribution function for the node degree k as
follows:

pk = Ck−ηe−k/ν (20)

where η , ν , and C are constants. η is the skew factor of the power-law distribu-
tion, often in the range 2 < η < 3.75 for real networks. For example, a case study
reports η = 2.3 for Gnutella [26]. The less the skew factor, the heavier the tail of
the power-law distribution, which translates to larger number of highly connected
nodes. A pure power-law distribution does not include the exponential cut-off fac-
tor (e−k/ν), allowing for nodes with infinite degree, which is unrealistic for real
peer-to-peer databases. The cut-off factor with index ν shortens the heavy tail of
the power-law distribution such that the maximum node degree for the nodes of the

618 Farnoush Banaei-Kashani and Cyrus Shahabi

graph is in the same order of magnitude as ν . Finally, C is the normalization fac-
tor that is computed as C = [Liη(e−1/ν)]−1, where Liη(x) = ∑∞

k=1
xk

kη is the η-th
polylogarithm function of x.

4.2 Analysis

The generating function of the power-law degree distribution (see Equation 20) can
be represented based on the polylogarithm function as follows:

G0(x) =
Liη(xe−1/ν)
Liη(e−1/ν)

(21)

From Equation (3), we can compute the first and the second moments of the
power-law degree distribution5:

〈k〉 = (x
d
dx

)G0(x)
∣∣∣∣
x=1

=
Liη−1(e−1/ν)
Liη(e−1/ν)

〈k2〉 = (x
d
dx

)2G0(x)
∣∣∣∣
x=1

=
Liη−2(e−1/ν)
Liη(e−1/ν)

Consequently, from Equation (16) we can derive the critical probability pc for a
power-law graph as follows:

pc =
Liη−1(e−1/ν)

Liη−2(e−1/ν)−Liη−1(e−1/ν)
(22)

In Fig. 7, we illustrate pc as a function of ν for various η values in a real-world
power-law peer-to-peer database, i.e., Gnutella. For Gnutella, the skew factor η is
estimated as low as η = 1.4 and as high as η = 2.3, in different scenarios. Also, ν
is in the range of 100 to 1000. As illustrated by this example, the critical probability
pc in power-law networks can be as low as 0.01.

We also solved Equation (18) to derive γ(p) for power-law networks by numeri-
cal iteration. In Fig. 8a, we show our result for a power-law random graph with the
skew factor η = 2.3.

4.3 Algorithm

1. Seeding the Query (Phase I)
To make sure the query dissemination is initiated by a node belonging to the
giant cluster, the actual query originator initiates a selective walker to locate a

5 Note: d
dx Liη (x) = 1

x Liη−1(x)

Case Study: Scoop for Partial Read from P2P Database 619

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

100 200 300 400 500 600 700 800 900 1000

Cut-off Index (nu)

C
ri

ti
ca

l P
ro

b
ab

ili
ty

 (
P

c)

Power-law skew factor (eta) = 2.3

Power-law skew factor (eta) = 1.4

Fig. 7 Critical probability in power-law peer-to-peer databases

highly connected node in the network. With the selective walk, at each hop the
query is forwarded to a neighbor with the maximum connectivity degree until the
walker reaches a node with a connectivity degree higher than the degree of all its
neighbors. In [1], it is shown that in a power-law network whp such a selective
walker finds a highly connected node belonging to the giant cluster in O(logN)
hops, where N is the size of the network. Our experiments also verify this result.

2. Disseminating the Query (Phase II)
Next, the SIR-based epidemic query dissemination is initiated at the highly con-
nected node located by the selective walker. The query is disseminated with a
forwarding probability p > pc selected according to Equation (18), such that
γ(p) satisfies the given β -query.

5 Variants of Scoop

Since in peer-to-peer databases some nodes may refrain from participating in query
dissemination, here we introduce a family of variants for the basic case of Scoop to
model this behavior. With this family, unlike the original SIR model where initially
all nodes are in the “susceptible” state, some nodes begin in the “removed” state.
In the context of the disease epidemic, these nodes represent the people who are
vaccinated. We term such nodes the blocked nodes.

We consider three different variants with blocking for the basic Scoop, each rep-
resenting a particular real-world scenario:

1. Scoop with uniform blocking: In this case, nodes are blocked with uniform proba-
bility. This case models the networks where nodes autonomously decide whether
or not to participate in the query dissemination.

2. Scoop with negative degree-correlated blocking: In this case, the nodes with
lower connectivity degrees are blocked with higher probability. For example,
this case models the peer-to-peer file-sharing networks where low degree nodes

620 Farnoush Banaei-Kashani and Cyrus Shahabi

are usually also low-bandwidth and therefore, to avoid congestion and possi-
ble isolation, may refrain from participating in query dissemination with higher
probability.

3. Scoop with positive degree-correlated blocking: This case is opposite to the pre-
vious case, where nodes with higher connectivity degrees are more probably
blocked. This case models the scenario where, for example, high degree nodes
of a power-law network are attacked and disabled.

6 Experiments

We conducted two sets of experiments via simulation to (1) study the behavior of
Scoop empirically, and (2) evaluate the efficiency of Scoop. For this purpose, we
implemented a discrete-time event-driven simulator in C++. We used an Enterprise
E220 SUN server to perform the experiments.

6.1 Methodology

With the first set of experiments, we studied the relation between the forwarding
probability p and the size of the sample node-set covered by the Scoop query dis-
semination. Therefore, with these experiments data content of the nodes is irrel-
evant. With the second set of experiments, we evaluated the efficiency of various
partial read operations in resolving β -queries. Our Monte Carlo simulation was or-
ganized as a set of “runs”. For the first set of experiments each run consists of (1)
selecting a network topology, (2) selecting a query originator, and finally (3) ini-
tiating 50 query disseminations per forwarding probability p (for each one of the
partial read operations) while varying p from 0 to 1, and recording the average size
of the covered node-set as well as C and T. For the second set of experiments a run
comprises (1) selecting a network topology, (2) selecting an object-set (a multiset
of tuples), (3) distributing the object-set among the network nodes, (4) selecting a
query originator and finally (5) initiating the query for 50 times per β (for each of
the partial read operations) while varying β from 0 to 1, and recording the average
value of their efficiency numbers C and T. With this set of experiments, all issued
queries are answered correctly by Scoop and we focus on reporting the efficiency
of the query answering with Scoop. Each result data-point reported in Section 6.2 is
the average result of 50 runs. The coefficient of variance across the runs was below
2.5% and hence show the stability of the result. The high stability of the perfor-
mance is an expected benefit of the randomization inherent in Scoop.

We generated a set of 100 undirected power-law graphs G(N,E) each with |N|=
50000 and |E| ≈ 200000. The skew factors of the graphs are all about η = 2.3 as
measured in [26]. The minimum number of edges per node is 4, and the cut-off index

Case Study: Scoop for Partial Read from P2P Database 621

of the graphs is ν = 100. The graphs are generated using the preferential attachment
model proposed by Barabasi et al. [3].

We considered a 5-dimensional content space and generated 100 object-sets. For
each object-set, we first generated |U |= 100000 objects u = 〈a1,a2, ...,a5〉, where ai

is an integer value uniformly selected from the interval [1,10]. Thereafter, we repli-
cated the objects according to the object replication scheme defined in Section 4.1
with the total number of objects |R|= 500000. R is uniformly distributed among the
set of network nodes N.

6.2 Results

Figure 8 illustrates the results of our first set of experiments. Figure 8a depicts the
relation between the query forwarding probability p and the relative size γ of the
covered node-set n. First, we notice how close the results of our theoretical analysis
conforms with the performance of the basic case of Scoop in practice, specially for
our p values of interest close to the critical forwarding probability pc. Also, we ob-
serve that while performance of the Scoop with negative degree-correlated blocking
is almost identical to that of the basic Scoop (they overlap in the figure), with pos-
itive degree-correlated blocking, the coverage for the same forwarding probability
decreases significantly. This shows (1) the importance of the highly connected nodes
in the performance of Scoop, and (2) the independence of its performance from the
nodes with lower connectivity degrees, which are often low-bandwidth and volatile.
Figure 8b confirms our previous conjecture that the sampling cost of Scoop is lin-
early proportional to the query forwarding probability. Also, (from Fig. 8a, b) notice
that with p = 0.3 almost 80% of the network nodes can be covered with only about
25% of the sampling cost of the regular flooding (with p = 1). Besides, the size of
the covered node-set becomes sublinearly proportional to the network size starting
at pc ≈ 0.05, where the sampling cost is almost two orders of magnitude less than
that of the flooding. Finally, Fig. 8c illustrates how the sampling time reduces as the
forwarding probability goes from pc towards 1, because the giant cluster becomes
more strongly connected. Also, we observe that in the worst case, the sampling time
with Scoop only increases by a factor of 4 over the minimum possible sampling time
with flooding.

Figures 9 and 10 illustrate the results of our second set of experiments. With these
experiments, we compared the efficiency of Scoop in answering β -queries with that
of partial read operations based on random walk and scope-limited-flooding dis-
semination mechanisms. As we mentioned in Section 1.2, unlike Scoop, these two
partial read operations are unable to determine whether they have covered a suffi-
ciently large fraction of the network to satisfy a particular β -query. Nevertheless,
to be able to compare Scoop with these partial read operations, for each particular
β -query with given β we calculated the absolute (not relative) number of nodes that
must be covered to satisfy the query, and terminated the random walk and flooding

622 Farnoush Banaei-Kashani and Cyrus Shahabi

0

5

10

15

20

25

30

35

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Probability (p)

T
im

e
(T

)

c. Sampling time vs. forwarding probability

b. Sampling cost vs. forwarding probability

γ

a. Nodes sample size vs. forwarding probability

Fig. 8 Verification of the analytical results

Case Study: Scoop for Partial Read from P2P Database 623

0

50000

100000

150000

200000

250000

300000

350000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ββββ

S
am

p
lin

g
 T

im
e

(#
 s

im
u

la
ti

o
n

 s
te

p
s)

Scoop
1-RW
1-RW Self Avoiding
16-RW
16-RW Self Avoiding
32-RW
32-RW Self Avoiding

b. Sampling time

ββββ
a. Sampling cost

Fig. 9 Scoop vs. random walk

as soon as their coverage exceed the required number of nodes. Scoop can decide
on the required coverage on its own.

Figure 9b shows that, as one can expect, the sampling time of Scoop is always
incomparably shorter than that of the random walk, even with 32 parallel walkers
(in the figure, the Scoop plot lies on the x axis). However, to our surprise, Scoop also
outperforms random walk in sampling cost (see Fig. 9a). In other words, to cover the
same number of nodes the SIR-based dissemination uses a “lighter” communication
graph with less query forwarding (see Section 2.1.1 for the definition of the com-
munication graph) as compared to that of the random walk. This can be justified by
considering the fact that multiple random walkers are traversing the topology with

624 Farnoush Banaei-Kashani and Cyrus Shahabi

no (even implicit) inter-communication to avoid redundant traversal. However, with
the SIR-based dissemination adopted by Scoop the more a part of the topology is
explored the less the chance of it to be re-explored; hence, redundant traversal is
reduced. Also note that as illustrated in Fig. 9a, the random walk algorithms with
different number of walkers incur the same sampling cost. This should not be sur-
prising; more walkers enhance the sampling time of the random walk by scanning
the network in parallel, but a single random walker walks as much as 32 random
walkers walk in aggregate to cover the same number of nodes. Finally, notice that
among random walk algorithms, self-avoiding random walk (with which each ran-
dom walker avoids its repeated paths) always outperforms regular random walk in
sampling time.

Figure 10a shows that Scoop always outperforms scope-limited flooding in sam-
pling cost. Notice the step-like diagram for the scope-limited flooding. Since at each
hop flooding scans an exponentially larger number of new nodes, unlike Scoop it
cannot be tuned properly to cover a certain fraction of the network nodes with fine
granularity. Finally, Fig. 10b shows that although the sampling time of Scoop always
exceeds that of the flooding (which is optimal), even in the worst case it remains tol-
erable.

7 Conclusion and Future Work

In this paper, we proposed Scoop to answer β -queries. Scoop is easy to implement
because each node of the peer-to-peer database can simply toss a biased coin with
probability p to decide whether the query should be disseminated through a link or
not. We showed through percolation analysis that the value of p can be rigorously
computed for each β -query such that the query is correctly satisfied. Also, with
a comparative empirical study we showed that Scoop outperforms flooding by up
to two orders of magnitude in communication cost while maintaining a tolerable
response-time. Also, as compared to a 32-random-walker, Scoop has not only faster
response time but also less communication cost.

We intend to extend this study in three directions. First, since Scoop is essen-
tially a flood-based dissemination technique with relatively short communication
time (see Fig. 8c), considering the typical rate of churn in peer-to-peer databases we
do not expect significant changes happening during a Scoop dissemination. Hence,
we do not anticipate the performance of Scoop is noticeably affected by the typical
rate of churn. However, for the peer-to-peer databases that may intrinsically have
higher churn such that the time-scale of the dynamic changes in the peer-to-peer
database is comparable to that of the query dissemination, we are planning to use
dynamic percolation analysis to factor in the effect of the changes during the query
dissemination. Second, we intend to explore the more specific characteristics of the
topologies of the peer-to-peer databases such as degree correlations, sparsity, and

Case Study: Scoop for Partial Read from P2P Database 625

Scoop vs. Scoped-limited Flooding

0

5

10

15

20

25

30

35

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
ββββ

S
am

p
lin

g
 T

im
e

(#
 s

im
u

la
ti

o
n

 s
te

p
s)

Scope-limited Flooding
Scoop

b. Sampling time

β

a. Sampling cost

Fig. 10 Scoop vs. scope-limited flooding

expansion/conductance, and consider these characteristics (in addition to the degree
distribution) in our percolation-based analysis of the query dissemination. Third, we
plan to extend our proposed family of data retrieval operations to include operations
for answering continuous data retrieval requests. For this purpose, we will adopt the
SIS (Susceptible-Infected-Susceptible) disease dissemination model. Unlike SIR,
which models epidemic diseases that disseminate once throughout the social net-
work and quickly disappear, SIS models endemic diseases that become resident in
the social network and continuously disseminate.

626 Farnoush Banaei-Kashani and Cyrus Shahabi

Acknowledgments

This research has been funded in part by NSF grants IIS-0238560 (PECASE), IIS-
0534761, IIS-0742811 and CNS-0831505 (CyberTrust), and in part from the ME-
TRANS Transportation Center, under grants from USDOT and Caltrans. Any opin-
ions, findings, and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of the National Sci-
ence Foundation.

References

1. Adamic, L., Lukose, R., Puniyani, A., Huberman, B.: Search in power-law networks. Physics
Review Letters 64(46135) (2001)

2. Banaei-Kashani, F., Shahabi, C.: Partial selection query in peer-to-peer databases (poster pa-
per). In: Proceedings of the 22nd International Conference on Data Engineering (ICDE)
(2006)

3. Barabasi, A., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512
(1999)

4. Bollobas, B.: Random Graphs. Academic Press, New York (1985)
5. Boyd, S., Ghosh, A., Prabhakar, B., Shah, D.: Gossip algorithms: Design, analysis and ap-

plications. In: Proceedings of the Conference on Computer Communications (INFOCOM)
(2005)

6. Crespo, A., Garcia-Molina, H.: Routing indices for peer-to-peer systems. In: Proceedings of
the 22nd International Conference on Distributed Computing Systems(ICDCS) (2002)

7. Demers, A., Greene, D., Hauser, C., Irish, W., Larson, J.: Epidemic algorithms for replicated
database maintenance. In: Proceedings of the sixth annual ACM Symposium on Principles of
Distributed Computing (PODC) (1987)

8. Ganesan, D., Krishnamachari, B., Woo, A., Culler, D., Estrin, D., Wicker, S.B.: An empirical
study of epidemic algorithms in large scale multihop wireless networks. Tech. Rep. CSD-TR
02-0013, UCLA (2002)

9. Ganesh, A., Massoulié, L., Towsley, D.: The effect of network topology on the spread of
epidemics. In: Proceedings of the Conference on Computer Communications (INFOCOM)
(2005)

10. Gkantsidis, C., Mihail, M., Saberi, A.: Hybrid search schemes for unstructured peer-to-peer
networks. In: Proceedings of the Conference on Computer Communications (INFOCOM)
(2005)

11. Gummadi, K., Dunn, R., Saroiu, S., Gribble, S., Levy, H., Zahorjan, J.: Measurement, model-
ing, and analysis of a peer-to-peer file-sharing workload. In: Proceedings of the Symposium
on Operating Systems Principles (SOSP) (2003)

12. Hethcote, H.: The mathematics of infectious diseases. SIAM Review 42(4), 599–653 (2000)
13. Hromkovic, J., Klasing, R., Monien, B., Peine, R.: Dissemination of information in intercon-

nection networks (broadcasting and gossiping). Combinatorial Network Theory pp. 125–212
(1996)

14. Jovanovic, M.: Modeling large-scale peer-to-peer networks and a case study of gnutella. Mas-
ter’s thesis, University of Cincinnati (2001)

15. Karp, R., Schindelhauer, C., Shenker, S., Vocking, B.: Randomized rumor spreading. In:
Proceedings of the Symposium on Foundations of Computer Science (FOCS) (2000)

16. Kempe, D., Dobra, A., Gehrke, J.: Gossip-based computation of aggregate information. In:
Proceedings of the Symposium on Foundations of Computer Science (FOCS) (2003)

Case Study: Scoop for Partial Read from P2P Database 627

17. Li, L., Halpern, J., Haas, Z.: Gossip-based ad hoc routing. In: Proceedings of the Conference
on Computer Communications (INFOCOM) (2002)

18. Limewire.com: Gnutella (2006). Http://www.limewire.com/
19. Lv, Q., Cao, P., Cohen, E., Li, K., Shenker, S.: Search and replication in unstructured peer-to-

peer networks. In: Proceedings of the 16th International Conference on supercomputing (ICS)
(2002)

20. Lv, Q., Ratnasamy, S., Shenker, S.: Can heterogeneity make gnutella scalable? In: Proceedings
of the 1st International Workshop on Peer-to-Peer Systems (IPTPS) (2002)

21. Molloy, M., Reed, B.: A critical point for random grraphs with a given degree sequence.
Random Structures and Algorithms 6, 161–180 (1995)

22. Newman, M., Strogatz, S., Watts, D.: Random graphs with arbitrary degree distribution and
their applications. Physical Review E 64(026118) (2001)

23. Ozsoyoglu, G., Du, K., Guruswamy, S., Hou, W.: Processing real-time, non-aggregate queries
with time-constraintsin case-db. In: Proceedings of the 8th International Conference on Data
Engineering (ICDE) (1992)

24. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content-addressable
network. In: Proceedings of the Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communication (SIGCOMM) (2001)

25. Ripeanu, M.: Peer-to-peer architecture case study: Gnutella network. In: Proceedings of the
First International Conference on Peer-to-Peer Computing (P2P) (2001)

26. Saroiu, S., Gummadi, P., Gribble, S.: A measurement study of peer-to-peer file sharing sys-
tems. In: Proceedings of Multimedia Computing and Networking (MMCN) (2002)

27. Sarshar, N., Boykin, P.O., Roychowdhury, V.: Percolation search in power law networks: Mak-
ing unstructured peer-to-peer networks scalable. In: Fourth International Conference on Peer-
to-Peer Computing (P2P) (2004)

28. SharmanNetworks: Kazaa (2006). Http://www.kazaa.com/
29. Stauffer, D., Aharony, A.: Introduction to Percolation Theory, second edn. Taylor and Francis

(1992)
30. Stoica, I., Morris, R., Karger, D., Kaashoek, M., Balakrishnan, H.: Chord: A scalable peer-to-

peer lookup service for internet applications. In: Proceedings of the Conference on Applica-
tions, Technologies, Architectures, and Protocols for Computer Communication (SIGCOMM)
(2001)

31. Vrbsky, S., Liu, J.: Approximate - a query processor that produces monotonically improving
approximate answers. IEEE Transactions on Knowledge and Data Engineering (TKDE) 5(6),
1056–1068 (1993)

32. Wilf, H.: GeneratingFunctionology, second edn. Academic Press (1994)
33. Yang, B., Garcia-Molina, H.: Designing a super-peer network. In: Proceedings of the 19th

International Conference on Data Engineering (ICDE) (2003)

Part V
Incentive Mechanisms

Incentive Mechanisms for Cooperation
in Peer-to-Peer Networks

Daniel A. G. Manzato and Nelson L. S. da Fonseca

Abstract Peer-to-peer networks have recently emerged as a solution for the well-
known problems of scalability imposed by client-server architecture. In these net-
works, the roles of serving and being served are not always asymmetrical, that is to
say, one selfsame participant may at times cooperate and at others enjoy the coop-
eration of others. Moreover, quite often the figure of central authorities or servers
is lacking, which implies an autonomy for the entities to decide on the patterns
of behavior they will display, with the power to act selfishly, lavishly, selflessly or
quite simply fairly, that is to say, cooperating only when possible. The feasibility
of peer-to-peer systems is strongly based on the premise of cooperative behaviors.
Moreover, the concept of synergy is fundamental to such systems, that is, it is ex-
pected to exploit the local resources of the participants so that their joint utilization
results in a better result than the sum of the respective individual utilization. Thus,
leaving the decision to cooperate or not under the sole responsibility of the partic-
ipants, without any outside influence or incentive, entails putting at risk not only
the system’s efficiency, but also its very feasibility. This chapter sets out a study of
incentive mechanisms for cooperation. The chapter place greater emphasis on the
different incentive patterns used in common by the various incentive schemes in
peer-to-peer networks.

Daniel A. G. Manzato
University of Campinas, Institute of Computing,
Av. Albert Einstein, 1251, P.O. Box 6176
13084-971, Campinas, SP, Brazil, e-mail: dmanzato@ic.unicamp.br

Nelson L. S. da Fonseca
University of Campinas, Institute of Computing,
Av. Albert Einstein, 1251, P.O. Box 6176
13084-971, Campinas, SP, Brazil, e-mail: nfonseca@ic.unicamp.br

X. Shen et al. (eds.), Handbook of Peer-to-Peer Networking, 631
DOI 10.1007/978-0-387-09751-0 22, © Springer Science+Business Media, LLC 2010

632 Daniel A. G. Manzato and Nelson L. S. da Fonseca

1 Introduction

With the predominance of client-server architecture in the majority of computing
systems until just a short time ago, hitherto, there was no concern with ensuring
certain patterns of behavior by the constituent entities, both clients and servers. In
this architecture, while the servers are already intrinsically made available to attend
to requests, it is not expected that clients will have any type of helpfulness towards
one another or towards the very servers that attend them. This asymmetry, pecu-
liar to this type of architecture, assures that each role is properly performed by the
respective constituent elements, either serving or requesting services.

Nevertheless, decentralized architectures have recently emerged as a solution for
the well-known problems of scalability imposed by client-server architecture. In
these architectures, the roles of serving and being served are not always asymmet-
rical, that is to say, one selfsame participant may at times cooperate and at others
enjoy the cooperation of others. Moreover, quite often the figure of central author-
ities or servers is lacking, which implies an autonomy for the entities to decide on
the patterns of behavior they will display, with the power to act selfishly, lavishly,
selflessly or quite simply fairly, that is to say, cooperating only when possible.

Peer-to-peer and ad hoc networks, plus multi-agent systems, are examples where
the agents display this kind of autonomy to opt for patterns of behavior. However,
the feasibility of such systems is strongly based on the premise of cooperative be-
haviors. Moreover, the concept of synergy is fundamental to such systems, that is,
it is expected to exploit the local resources of the participants so that their joint
utilization results in a better result than the sum of the respective individual utiliza-
tion [22]. Thus, leaving the decision to cooperate or not under the sole responsibility
of the participants, without any outside influence or incentive, entails putting at risk
not only the system’s efficiency, but also its very feasibility.

To aggravate the problem mentioned, the option of assuming cooperative behav-
ior incurs costs, as resources are consumed, such as bandwidth, storage, process-
ing, memory or even energy. Particularly on mobile devices, common in wireless
networks, these resources can be precious, increasing yet further the entities’ lack
of interest in cooperating selflessly. Studies carried out in file-sharing peer-to-peer
networks show that just 30% of users share their resources and, further, that the
majority of requests are met by just 1% of the principal clients [1]. Such levels of
cooperation would destroy the feasibility of the majority of decentralized systems
mentioned, while imposing a particular loss on applications for content distribu-
tion that are time-sensitive [12–14], as is the case of media-streaming peer-to-peer
networks [6, 11, 25–27].

Thus is it that incentive mechanisms for cooperation have recently been receiving
special attention in the media, at the same time that decentralized systems are gain-
ing ground over the traditional client-server architectures. In general, these mech-
anisms must be designed so as to discourage uncooperative behaviors, taking into
consideration the naturally heterogeneous nature of clients, and also certain circum-
stances where cooperation is not possible, either for a static reason, for instance,
limited hardware, or for a dynamic reason, such as network congestion. In such cir-

Incentive Mechanisms for Cooperation in Peer-to-Peer Networks 633

cumstances, the incentive mechanism must exempt the client from penalties, which
is not always at all simple to implement, as will be addressed in Section 3.

This chapter sets out a study of incentive mechanisms for cooperation. As the
number of approaches proposed in the literature is huge, we have opted to place
greater emphasis on the different incentive patterns used in common by the various
incentive schemes. An incentive pattern consists of a set of abstract mechanisms that
the incentive schemes can apply, with a view to stimulating cooperation [22, 23].
An incentive scheme may use more than one incentive pattern, implementing their
abstract concepts so as to be effective for the peculiarities of the application that
will use it. It is hoped, with studying incentive patterns, to furnish information so
that a broader scope of existing incentive schemes can be understood, and also for
analysis of future proposals still to come.

The rest of this chapter is organized in the following manner: Section 2 dis-
cusses the different types of uncooperative behavior, including a proposed taxon-
omy [20, 21]. Section 3 seeks to study the incentive patterns mentioned, considering
properties such as type of remuneration, effectiveness against uncooperative behav-
iors, anonymity and scalability. Section 4 sets out a selection of works related to
incentive schemes, comparing them with the patterns seen in the previous section.
Lastly, some closing remarks are made in Section 5.

2 Characteristics and a Classification of Uncooperative
Behaviors

An understanding of the different types of uncooperative behavior is necessary for
a correct analysis of the existing incentive patterns, and also for the conception
of new incentive schemes. This section is organized according to the taxonomy of
uncooperative behaviors proposed in[20, 21], which can be seen in Fig. 1.

According to [20, 21], a cooperative transaction consists of two phases: negoti-
ation and processing. In the first phase, negotiation, the entities reach an agreement
on the services rendered and respective remunerations. The importance of this first
phase lies in the equalization of differences of resources, standards of access and
asymmetry of topology between the entities. For example, an entity overburdened
with network traffic or with a limited link might present a routing cost higher than
the others. In the second phase of the cooperation transaction, processing, we have
the cooperation and respective remuneration. In this context, it is customary to de-
nominate the entity that cooperates as provider and the entity that enjoys the services
of the former as the consumer. These terms, along with the operations of the phase
of processing cooperation transactions are illustrated in Fig. 2 [22].

Cooperation is beneficial to the consumer entity, which repays the provider en-
tity for the favor received by means of a remuneration, so as to encourage it to
continue with this cooperative behavior. In the absence of this remuneration, that
is to say, without an incentive, the provider entity might refuse to cooperate, which
would characterize selfish behavior. This type of uncooperative behavior may be

634 Daniel A. G. Manzato and Nelson L. S. da Fonseca

Fig. 1 Taxonomy of uncooperative behaviors [20, 21]

Fig. 2 Terminology of a cooperation transaction [22]

classified as a profitable behavior, as the provider entity refuses to cooperate with
the consumer not seeking to harm it, but rather to save its own resources with a
profit, as it would obtain nothing in return as remuneration. Going further, this self-
ish behavior may be classified as misbehavior, that is, it may be characterized as
unreasonable, given that the provider entity was in a position, with abundant re-
sources, for instance, to cooperate, unlike an entity in a contention situation where
saving its resources would be vital – such as the power battery of a mobile device
at the end of its charge, for instance. As examples of selfish behaviors, one might
mention a user who refuses to make his files available to the others, in a peer-to-peer
network for file sharing; a TV viewer who refuses to pass on video streaming in a
media-streaming peer-to-peer network; and an agent refusing to pass on packets in
an ad hoc network.

When the consumer entity remunerates the provider insufficiently, or also makes
use of the same remuneration to consume more resources that agreed on in the
negotiation phase of the cooperative transaction, we are faced with lavish behavior.
Just like selfish behavior, this can be justified as profitable, as the consumer entity is
not aiming at simply harming the provider, but rather at obtaining an advantage over
it. What differentiates profitable behavior into being selfish or lavish is the fact of its
being practiced by the provider or by the consumer, respectively. Lavish behavior
can also be classified as misbehavior, characterizing it as unreasonable, for reasons
analogous to those presented for selfish behavior. As examples of lavish behaviors,
one might mention users who always download the same files instead of storing

Incentive Mechanisms for Cooperation in Peer-to-Peer Networks 635

them locally, in a peer-to-peer network for file sharing; viewers who request a video
quality better than its peripherals can reproduce in a video-streaming peer-to-peer
network; and an agent who sends unnecessary packets in an ad hoc network, such
as excessive advertising for the services he offers.

Misbehavior may be unprofitable, that is to say, the agent misbehaving might
aim at quite simply harming the others, without obtaining profit for himself. In this
case, we have malicious behavior. In [20, 21], it is provided a categorization of
different types of uncooperative behaviors into separate layers or domains – link,
network, transport, discovery and application. Malicious behavior only takes place
when, even though unprofitable in the layer in question, it becomes profitable in
higher layers. For example, in an incentive scheme based on reputation, spread-
ing defamatory information would consume resources of the network layer, and is,
therefore, not a profitable behavior in this domain of cooperation. Nevertheless, in
the domain of the application layer, this behavior would be considered profitable
if another entity providing services were excluded from the network due to its bad
reputation.

Considering all the domains of cooperation together, malicious behavior would
only be displayed by dishonest entities, that is, those whose aim is not to gain an
advantage over the other, based on logical rules for the maximization of their ben-
efits, but rather to degrade the performance of the system as a whole or of certain
specific entities. In this case, it is not appropriate to address this malicious behav-
ior through incentive schemes, but rather through additional mechanisms that detect
and effectively punish the entities responsible. As an example of malicious behavior
one might mention attacks of denial of service – a type of attack where an entity
makes another unavailable by bombarding it with multiple requests for service, in
the different types of existing networks.

Lastly, an uncooperative behavior may be classified as reasonable when the en-
tity thus behaving is in fact unable to cooperate due to the scarcity of its own re-
sources. In this case, we have forgivable noncooperation. Scarcity of resources may
be permanent, when the entity shows limitations on resources such as computing
power, memory, bandwidth or energy; or transient, when, for instance, the entities
face situations of overload or connectivity problems. In both cases, an ideal incen-
tive mechanism should spare the entity from the obligation of cooperation, that is to
say, allow it to enjoy the cooperation of others while demanding nothing in return.
Naturally, it is important to make a distinction between forgivable noncooperations
and other misbehaviors, which poses a problem for incentive mechanisms [20, 21].
One may mention, as examples of forgivable noncooperations, an entity that refuses
to cooperate because it has become a routing bottleneck in an ad hoc network, or a
user that needs to limit the number of connections attended to, as he made available
a popular file in a peer-to-peer network, quickly becoming the provider of many
transfers, which exhausts his bandwidth.

It should also be mentioned that use of a given incentive mechanism may lead to
new uncooperative behaviors, over and above those it seeks to combat. For example,
in a scenario of remuneration by reputation, an entity may be defamatory about other
entities in the network so as to boost its relative reputation, and even manage to

636 Daniel A. G. Manzato and Nelson L. S. da Fonseca

exclude certain entities from the group of providers that compete with it. Still within
the same scenario of reputation, a group of entities may put out false mutual praises
so as to enhance their reputations within the group, acting dishonestly towards the
others. Such uncooperative behaviors would not exist if the reputation mechanism
in question were not being used.

In a scenario of remuneration by payment, certain uncooperative behaviors may
likewise be induced, when remuneration is linked to the scarcity of resources of
the provider entity. This type of remuneration is denominated flexible [20, 21] and
is addressed in the negotiation phase of cooperation transactions, as mentioned be-
fore. In this scenario, a consumer entity might maliciously prevent a given provider
entity from cooperating with the others, which would not consume its resources,
consequently, reducing their value, as they would now abound. On the other hand,
a provider entity might manage to raise its remuneration by making its competitors
unavailable, for example, by attacks of denial of service [20, 21]. In this case, such
attacks are considered profitable rather than malicious, since they bring benefits to
those entities that practice them. Once again, these induced uncooperative behaviors
would not exist if the incentive mechanism were not being applied.

3 Comprehensive Study of Incentive Patterns

Study of the various incentive patterns is important to enable an understanding of a
broader scope of incentive schemes, as well as for an analysis of future proposals.
This section is organized according to the taxonomy of incentive patterns proposed
in [22, 23], which may be seen in Fig. 3. Firstly, trust-based patterns are discussed,
and later on those based on trade.

Fig. 3 Taxonomy of incentive patterns [22, 23]

Incentive Mechanisms for Cooperation in Peer-to-Peer Networks 637

3.1 Trust Based Incentive Patterns

In trust-based patterns, provider entities cooperate with consumers because they
trust them. This trust may be static – it does not vary over time and as a result of
their behaviors; or dynamic – the opposite case. Thus, there is no explicit remu-
neration from the consumer to the provider. On the contrary, the repayment for the
cooperation takes place naturally, because: (1) the entities make up a group with
the same ideals, or (2) because the reputation of the provider has been raised, and
as a consequence other entities will later on cooperate with it. These two cases are
presented below.

3.1.1 The Collective Pattern

In the collective pattern, entities mutually help one another because they share the
same ideals, which are common to the collective group, without individual interests.
Thus, when the group wins, everybody wins, when the group loses, everybody loses.
The upshot of this model is that no entity is tempted to not cooperate with a view to
gaining an advantage over the rest, since the group as a whole would be affected, and
on top of this, no gain in terms of resources savings would be obtained individually.

Making an analogy, one might compare this model to a corporate organization.
Taking into account that in such a scenario all profits and losses are shared equally
among its partners, none of them are motivated not to collaborate with the produc-
tivity of the other, given that their interests are in common. Another comparison,
from the computing field, is that of an ad hoc sensor network. In these networks, it
makes no sense, for example, for one sensor to cooperate less than another, since
they all pursue the same goal. The abstraction of a collectivity seen as one sole en-
tity allows the collective pattern to be combined with the others, set out below. For
example, one may consider each entity belonging to the other models as being a set
of machines, instead of just one.

This incentive pattern belongs to the scope of patterns based upon trust, as the
entities cooperate because they have mutual and unconditional trust in each other –
as they are part of the same collective. What is involved is static trust, that is, the
reputation of the members does not vary over time and as a result of their behaviors.
For this very reason it is important to guarantee that each entity belonging to the
collective is in actual fact a genuine member. If not, one might have, for instance, an
entity from another collective enjoying the resources of the group without offering
anything in return, as its interests and responsibilities would be focused on another
group.

While other incentive patterns always display some type of remuneration for the
entity that cooperated, such as reputation, currency or service in return, the collec-
tive incentive pattern is the only one that dispenses with this procedure. This feature
derives from the collective nature of the group and the lack of individual interests.
As we shall see later on, in the other patterns, this remuneration, when not consumed

638 Daniel A. G. Manzato and Nelson L. S. da Fonseca

immediately, may be stored in different locations – at the provider, consumer or even
at third-party entities.

The three main types of uncooperative behaviors – selfish, lavish and forgivable –
are naturally addressed in this incentive pattern, given their intrinsic characteristics.
The selfish and lavish behaviors do not occur due to the lack of individual interests,
while forgivable noncooperation is tolerated due to the unconditional trust existing
among the members of the group. This is the incentive pattern that best addresses
forgivable noncooperations, exempting them from punishments.

One drawback of this pattern, and of the others based on trust, is the impossibility
of maintaining the anonymity of the entities, since they need to identify themselves
to prove that they are trustworthy. Given that the entities have static situations of
trust in this model, it is the consumers who must relinquish anonymity, identifying
themselves as a member of the group (the provider entities need not identify them-
selves as they have their reputations unchanged after their cooperation). Depending
on the nature of the application in question, the characteristic of anonymity may be
particularly desirable. For example, one may mention an on-demand video service
whose programming is characterized as “adult”, where, in consequence, viewers
would prefer not to be identified.

Another disadvantage of this pattern is restricted scalability. In this context, scal-
ability is understood as being the capacity of the incentive pattern to remain efficient
and effective as the number of entities participating increases. In general, trust-based
patterns are not highly scalable [22, 23]. Specifically for this case, a relatively large
collective may present challenges to ensure that its entities are authentic (that they
are not exclusively from other groups), since it is impracticable for all of them to
know each other mutually in a numerous group.

Application of the collective incentive pattern in peer-to-peer networks, while
somewhat specific, may be highly useful. In file-sharing networks, one may have
select and closed groups of users who cooperate with one another, in a manner sim-
ilar to what happens to the private trackers of the BitTorrent system [3]. Normally
these groups allow the inclusion of new users only after invitations made by some
member, which restricts the entry of uncooperative users. In video-streaming net-
works one may have the same concept, especially considering the growing quantity
of cooperative IPTV (Internet Protocol Television) systems emerging. However, due
to the restricted scalability of the incentive pattern, along with issues of authenticity
of the members mentioned above, it is important that the number of members of the
groups should not grow too much. In any event, the idea of combining this incentive
pattern with the others existing, through the abstraction of a collective as being one
sole entity, is applicable to any context of peer-to-peer networks.

3.1.2 The Community Pattern

In the community pattern, unlike the previous pattern, the entities cooperate with
one another based on individual interests, without the concept of the collective. In

Incentive Mechanisms for Cooperation in Peer-to-Peer Networks 639

cooperating, an entity boosts its reputation in that community, and this reputation
will be necessary for it to be able to enjoy cooperation from others later on. In this
context, a given entity might refuse to cooperate with another whose reputation is
poor, or even more radically, if the latter’s reputation is lower than its own. In other
words, the motivation for the entities to pursue the enhancement of their reputations,
and, consequently, cooperate more, is for them to be qualified to enjoy cooperation
from the largest possible number of members of the group.

One may compare this model of incentive with a group of students in the same
class. The more helpful ones will always manage to get help from their classmates
when they need it, as they have already done this on previous occasions, thus achiev-
ing a good reputation in the group. Meanwhile those more self-centered, who have
refused to help in the past, will quite surely face difficulties to achieve this in the
future. Various computing systems also use this model; and some peer-to-peer net-
works for file sharing may be cited, as is the case of Kazaa [15]. In these networks,
generally, a user may make various transfers of files from others with reputations
below his own. On top of this, on receiving multiple requests, a given user may
prioritize attention to those with better reputations.

Just like the collective, this pattern also belongs to the scope of trust-based
patterns, given that the entities cooperate with those who display greater trust-
worthiness, that is to say, good reputations. Unlike the collective, this trustwor-
thiness is dynamic, varying over time and as a result of the behaviors displayed.
Consequently, it is necessary to ensure that the entities do not cheat on reputa-
tions in a manner divorced from reality, with the defamation of good cooperators
or false praise of those who do not cooperate. This issue is particularly delicate
when this pattern is combined with the collective. Given that each entity of the
community is an abstraction of a collective where collectivism is practiced, mem-
bers of this latter may cooperate only among themselves, which is already fore-
seen in the collective pattern, boosting their reputations in the community, and,
consequently, enjoying resources from outside the group, without providing any-
thing in exchange. One way of getting around this problem would be to attribute
reputations to the groups instead of to each individual member of the collective
groups [22, 23].

As the remuneration in this incentive pattern is reputation, it is interesting to note
where this is stored. Going back to the analogy of the students in the same class,
it would make no sense for one of them to assert to the others that his reputation
is good, or rather, that he himself is a helpful person. Thus, in this model it is the
consumers that need to remember from which providers they have enjoyed cooper-
ation, and, further, how much each one of them cooperated, so as to make it feasible
to quantify the individual reputation of each one. Normally, these reputations are not
absolute, but rather relative to the rest of the group. For this to come about, overall
knowledge of all the reputations is necessary, which can be obtained by spreading
such information in the network or by its being stored at central entities. Naturally
this latter approach would raise disadvantages, as being one sole critical point in the
system.

640 Daniel A. G. Manzato and Nelson L. S. da Fonseca

Selfish and lavish uncooperative behaviors are combated by this pattern, pro-
vided the information on reputations is available to all entities in the group alike.
Otherwise a certain entity might refuse to cooperate with a given sub-set of the
community, operating only with those in which it had future interests. Lavish behav-
ior, in particular, could be fought effectively with the provider diminishing the repu-
tation of a consumer if the latter displayed such behavior. In this case, the reputations
would be stored or changed by the providers too, as well as the consumers. How-
ever, forgivable noncooperation is not as well handled as in the collective, where
trust was unconditional and static. In any event, given the difficulty involved in dif-
ferentiating lack of cooperation into selfish or forgivable noncooperation, one may
take into account the track record of the entity, that is to say, those who have built
up a certain trustworthiness could refuse to cooperate in a situation of overload,
without this having a negative impact on their reputation.

As mentioned above, the impossibility of maintaining the anonymity of the en-
tities is a drawback for trust-based patterns. In the case of this model, as the trust-
worthiness of the entities is dynamic, both consumers and providers must identify
themselves – the consumers to prove that they deserve the cooperation they seek,
through their reputations, and the providers so as to have their reputations boosted,
after completion of their efforts of cooperation.

Given that this is a trust-based pattern, it also displays limited scalability. In par-
ticular, the existence of many entities in the group may interfere with the spread of
information on reputations which, as we have seen, helps in combating misbehav-
ior. Even if this information on reputation were not propagated, scalability could
still be compromised, as it is unlikely that the same pair of entities would cooperate
with one another multiple times in a numerous group, which makes the local infor-
mation useless. Use of central entities for the storage of these reputations, already
suggested, may also impose bottlenecks on the system’s performance, affecting even
further the scalability in question.

Application of the community incentive pattern in peer-to-peer networks is
widespread and well-known, representing one of the leading paradigms in the area
of incentives to cooperation: reputation systems. In file-sharing networks, as al-
ready mentioned, this pattern is typically used to restrict availability of the con-
tents in the network, favoring members with better track records of behavior. In
media-streaming networks, there are various proposals for incentive schemes that
use reputation for various ends: a stimulus to longer sojourns, seeking to reduce
breakdowns in distribution trees; the selection of better stream providers, to obtain
a differentiated service; a model to threaten selfish clients, so as to prevent unco-
operative behavior. All these scenarios are illustrated in Section 4. Given that the
reputations are dynamic and reflect the historical behavior of the members, they can
be applied in heterogeneous groups, which may or may not contain uncooperative
entities, which makes this incentive pattern less specific than the collective. Never-
theless, due to the large number of participants that any peer-to-peer network has the
potential to achieve, it is important to consider the issues of limited scalability of this
pattern, the storage and availability of information on reputation and occurrences of
defamation of good cooperators or false praise for those who do not cooperate.

Incentive Mechanisms for Cooperation in Peer-to-Peer Networks 641

3.2 Trade Based Incentive Patterns

In trade-based patterns, the provider entities obtain an explicit remuneration from
consumers for their cooperation. This remuneration consists of a return of cooper-
ation, which may occur immediately, while the cooperation transaction occurs, or
later on, through a promise, which will be honored by the consumer entity itself or
by a third-party entity in its favor. These possibilities are discussed below.

3.2.1 The Barter Trade Pattern

In the barter trade incentive pattern, the entities cooperate so as to complete a direct
exchange of favors, which exchange occurs simultaneously, that is to say, while one
entity is cooperating, it is also enjoying, at the same time, cooperation from the en-
tity benefiting from its cooperation. The upshot is that neither of the entities leaves
obligations pending after termination of the cooperation transaction, and also, those
entities that refuse to cooperate obtain nothing from the others. This is the only in-
centive pattern in which the members assume symmetrical roles in the interactions,
with consumer acting as provider and vice versa, at the same time.

An example to illustrate this model is fairs for exchange, popularly know as
“swap marts”. At these fairs, people exchange objects for keeps, without the use of
currency, and thus they must have something that belongs to them to obtain a new
object that they seek. Moreover, after a certain trade, neither party owes anything to
the other, as he has already paid for what he received, at that very same moment.
Typically common, these days, are fairs for swapping books, where people barter
books already read for those they would like to read. In the computing field, some
systems may be cited, as is the case of BitTorrent [2, 9], whose incentive mechanism
will be better described later on. In this network, the greater the sending bandwidth
made available by the client, the greater the receiving rate obtained, or rather, the
more you cooperate, the more you gain.

This incentive pattern belongs to the scope of patterns based on trade, as the en-
tities cooperate to receive an explicit remuneration in return, unlike those addressed
previously, in which the cooperation is on trust. This is the only incentive pattern
that naturally displays the characteristic of persistence, that is, remuneration occurs
even when the entities participating in a cooperation disconnect from one another
straight afterwards [22, 23]. For the other patterns to display this characteristic, it
is necessary to introduce a third entity, for example, a bank, which is trustworthy
and is always available to honor the promises made by the entities that are related
to it. On the other hand, the introduction of this third entity may breach another
characteristic that is intrinsic to the barter trade incentive pattern: the characteristic
of localization, which is the lack of need for interaction with third-party entities in
operations of cooperation and remuneration [22, 23].

Given that remuneration of cooperation in this incentive model takes place im-
mediately and consists of another cooperation in exchange, it need not be stored,
as happens in the other patterns, except in the collective. Consequently, difficulties

642 Daniel A. G. Manzato and Nelson L. S. da Fonseca

with spreading information on reputations in the network, repetitive reputation cal-
culations, the introduction of central entities or distributed storage of reputations
are not necessary. This fact makes the barter incentive pattern relatively simple to
implement, although too powerful.

If on the one hand uncooperative selfish and lavish behaviors are very well han-
dled in this incentive pattern, considering the requirement of immediate remunera-
tion, this does not happen with forgivable noncooperation. Due to the symmetrical
nature of the cooperation protocol, those entities that do not cooperate, even if jus-
tifiably, cannot enjoy any benefits. However, one can get around this limitation by
combining this pattern with the collective, when appropriate. In this case, for each
collective where the collective mechanism exists, the cooperation of some members
with the outside medium (through barter) might offset the lack of justified coopera-
tion from other members of the same collective.

In this incentive model, both entities participating in a cooperation can remain
anonymous. As explained in [22, 23], trust, and the consequent breakdown of
anonymity are necessary when remuneration does not take place simultaneously.
The term trust, in this context, is not restricted to trust-based incentive patterns. For
example, if a consumer entity remunerated a provider with a promissory note, check
or banknotes, incentive patterns to be seen further on, the creditor entity must trust
that the debtor will honor the promise in the future, will have funds in its bank ac-
count, or also that the notes used are genuine, respectively. The barter pattern avoids
such risks with the use of simultaneous remuneration, and also with the non-use
of promises, that is to say, guaranteeing that payment will also be a cooperation in
exchange.

Another great advantage of this incentive pattern is its scalability, a direct conse-
quence of the linkage in time between initial cooperation and the respective remu-
neration. The lack of need to store remuneration, the characteristic of localization
and freedom from the obligation of mutual trust between the entities make this one
of the most scalable incentive patterns among those existing. Furthermore, consider-
ing that an entity will only act as a provider if it is also interested in the cooperation
of the consumer entity, the larger the group, the greater the chances of finding pairs
whose interests match.

Among the drawbacks of this pattern, one may mention the difficulty of the
equivalence of the transactions. For this to occur it is necessary for the parties to
remain accessible throughout the whole transaction. Moreover, additional mecha-
nisms may be necessary so as to ensure remuneration in exchange, even if this is
synchronous, preventing lavish behavior [22, 23]. Lastly, quite often, use of this in-
centive pattern is not feasible, that is to say, the use of deferred remunerations is
more appropriate.

Application of the barter incentive pattern in peer-to-peer networks became pop-
ular with the BitTorrent system, in file-sharing networks. As it was a great success,
various other similar proposals arose, principally in media-streaming networks. In
particular, consideration was given to the very logistics of content distribution with
scaling the BitTorrent, which inspired media-streaming peer-to-peer networks in
mesh format, such as CoolStreaming [28]. Given that in both networks with a mesh

Incentive Mechanisms for Cooperation in Peer-to-Peer Networks 643

and those with trees the synchronized distribution of content is common, in which
members use their incoming bandwidth to receive the streaming desired at the same
time that they employ their outgoing bandwidth to pass it on to the other participants,
the barter incentive pattern proves to be an excellent option, especially considering
its advantages in relation to the other existing patterns (anonymity, persistence, scal-
ability and localization).

3.2.2 The Bearer Notes Pattern and the Bearer Bills Pattern

In the bearer notes and bearer bills patterns of incentive, entities also cooperate to
obtain an explicit remuneration in exchange. The difference between them and the
barter pattern lies in the temporal de-linkage between cooperation and remuneration,
which allows the provider entity to enjoy its payment at a point in time after its
cooperation. In this context, a promissory note may be understood as a promise of
cooperation in favor of its bearer, to be honored in demand in the future [22, 23].
In the bearer notes pattern, it is the consumer entity that issued the note that must
honor it later on, that is to say, the roles of issuer and debtor of that note are assumed
by the same entity. In the case of the bearer bill, it is another entity, on an order from
the issuing entity, that must honor the bill in the future, that is, the roles of issuer
and debtor are assumed by different entities. In both cases, the motivation for the
entities to cooperate acting as providers is to obtain promissory instruments, which
make them creditors in the group, and therefore capable of enjoying cooperation in
the future, when they wish.

These incentive models can be compared to a hypothetical society in which
money is not used as remuneration. In lieu of this, every time a person rendered
his services to another, this latter would give him a kind of “service voucher” in
return, in his specialty. For instance, on repairing the electrical installation of the
residence of a doctor, an electrician might gain a medical consultation to treat his
health in future. This would be nothing else but a bearer note, issued and honored
by the same entity, the doctor, who enjoyed a certain cooperation, the service of
the electrician. In a similar way, the doctor might also be married to a dentist, now
remunerating the electrician with dental treatment, to be performed by his spouse.
In this case we would have a bearer bill, issued by an entity, the doctor, and honored
by another, the dentist, to remunerate the cooperation received.

In the computing field, the bearer note and bearer bill incentive models may
also be recognized in other systems, such as the old BBS systems and the present-
day IRC forums. In these systems, the server, on receiving an upload from a user,
remunerates him by releasing a credit for downloading, which may be done at any
time in the future. While this procedure illustrates a bearer note (the server issues
and honors the promise), a bearer bill may be exemplified in the same systems with
a transfer of credits from the quota of one user to another, a typically common
operation. Thus, the user requests an upload from the server, which cooperates and,
consequently, obtains remuneration through a deduction from the quota of that user.
Instead of this latter making an upload later on to honor his promise of repayment to

644 Daniel A. G. Manzato and Nelson L. S. da Fonseca

the server, he asks a friend, another user of the system, to make this contribution, and
then transfers the credit obtained to his account, taking it out of the red. We have,
therefore, one entity as issuer of a promissory instrument (the user whose download
quota was reduced), another entity as debtor, the user who effectively honors the
promissory bill, making the upload) and, lastly, a third party entity as creditor (the
server, which made the initial cooperation).

Just like the barter incentive pattern, the bearer notes and bearer bills patterns
also belong to the scope of trade-based patterns, since the entities receive an explicit
remuneration for their cooperation. We may subdivide this category into two: on the
one side, immediate remuneration, where we find the barter pattern, on the other,
deferred remuneration, where we have the bearer note and bearer bills patterns, plus
other to be presented. In this second subcategory, given that repayment does not
occur immediately, and that what guarantees it in the future is a promise which, in
this context, is in the form of promissory instruments, it is important to ensure the
authenticity of these promises, so that dishonest entities do not forge them to gain
an advantage over the others.

Promises in the form of promissory instruments are the types of remuneration
in the bearer note and bearer bill incentive patterns. Unlike the community pattern,
in which the remuneration, in the form of reputation, is normally stored at the con-
sumers, in these patterns, it is stored at the providers, who may be regarded as the
bearers of the instruments. It is interesting to note a new concept introduced by these
incentive models: that of transferring remuneration among the entities, that is to say,
after receipt of its remuneration, a provider entity may, possibly, pass it on to others
that come to cooperate with it, in this way, avoiding issuance of a new promissory
note.

Selfish uncooperative behavior is fought effectively in both the bearer bill and
bearer notes patterns, as entities do not cease to cooperate, seeking to obtain the
promissory instruments. However, as to lavish behavior, while it is unconditionally
avoided in the bearer notes pattern, since the entity that becomes the debtor of the
promissory is the same that issues it, in the bearer bills pattern it is necessary for
the entity that becomes the debtor to be trustworthy to contain abuse by the issuer.
If this premise is not true, an entity may feel itself at liberty to issue third party
promissory notes at the cost of any other entities, passing on to them all its repay-
ment liabilities, which would probably never be honored. With regard for forgivable
noncooperation, the bearer notes pattern does not handle this very well, given that
the entity that issued the promissory note will, itself, have to become the debtor of
that promise, whether or not it is in a position to do so. This incentive pattern, with
barter, and for analogous reasons, are the ones least able to deal with forgivable non-
cooperation. The bearer bills pattern, on the other hand, can handle this issue better.
If an entity needs a certain cooperation but is unable to become debtor of a promise,
in a situation of overload, for example, it may convince another entity to become a
debtor on its behalf, in this way issuing a bearer bill.

With regard for the anonymity of entities in the bearer note and bearer bills pat-
terns, in general both issuers and debtors of these need to identify themselves so as
to prove their trustworthiness [22, 23]. As both roles are assumed by the same entity

Incentive Mechanisms for Cooperation in Peer-to-Peer Networks 645

in the bearer notes pattern, the drawback of breach of anonymity is the same as hap-
pens in the trust-based patterns, that is, there is no way for the consumer to remain
anonymous. In the case of the bearer bill, however, if the debtor of the promissory
bill is sufficiently trustworthy, it would be possible for the issuer not to identify it-
self, provided the chances of issue of false bearer bills is eliminated, or rather, those
for which the debtor does not authorize their participation in the issuer’s transaction.
In this context of trust based on identity, it is interesting to note how the bearer note
and community patterns lead the consumer to want to change or renew his iden-
tity, to get rid of the obligations assumed, while on the other hand, they lead the
providers to want to maintain it, to receive the repayments for the cooperation they
have already rendered.

As a result of the need for trust of the entities in these patterns, scalability is
restricted. However, supposing that these patterns were being applied in an ambient
free from dishonesty, the problems linked to proof of trustworthiness would not
exist, making the scalability of these patterns less restricted than the trust-based
patterns. In these latter, as we have seen, such information is indispensable in any
event, as it determines the levels of cooperation among the entities.

3.2.3 The Banking Pattern

In the banking pattern of incentives, just as in the bearer notes and bearer bills
patterns, entities cooperate to obtain a specific remuneration in exchange, which
remuneration will be enjoyed at a point in time after the cooperation. The difference
lies in the type of remuneration which, instead of being a promissory note, is a
check. However, in this scenario, one may understand a check as being a bearer bill
whose debtor is a bank [22, 23], that is to say, a check is a special type of bearer bill,
to be issued by the consumer entities as remuneration for the provider entities after
the respective cooperation. The upshot of this is that each entity, in this incentive
pattern, has a bank account at an associate bank. In this way, the bearer of a check
presents it to his bank to have his account credited. If the bank in question is different
from the bank issuing the check, a transaction between banks becomes necessary.
In brief, the motivation for entities to cooperate is to obtain checks as payments that
will be credited to their accounts, enabling them to pay for future cooperation events
they may come to require.

One may compare this incentive model to the use of checks in the banking sys-
tem of present-day society. Each person has one or more bank accounts, associated
to specific banks, and uses checks to remunerate the services he has enjoyed. The
bearer of a check presents it to his bank to have his account credited, and it is then
up to the different banking institutions to make the due monetary clearing between
them. People, then, render services to others to increase their accounts and to be
able to pay for what they wish, later on.

In the computing field, one may mention ad hoc networks that make use of
incentive mechanisms based on this pattern, as is the case of TermiNodes and
Sprite [20, 21]. While in TermiNodes [4, 5] each entity has a security module that

646 Daniel A. G. Manzato and Nelson L. S. da Fonseca

manages its own bank account, and thus this incentive model implemented is totally
distributed, in Sprite [29], there are dedicated nodes that act as banks, centralizing
the management of the accounts that belong to the same groups, and employing
inter-bank transactions when necessary.

This incentive pattern, just like the bearer notes and bearer bills patterns, belongs
to the scope of trade-based patterns, and also to the category of deferred remunera-
tion, where there is a temporal de-linkage between cooperation and remuneration. In
this way, given that what guarantees repayment of future cooperation is the checks
issued, it is important to guarantee their authenticity, so as to avoid forgeries. Nev-
ertheless, as the banks are well-known entities and these, in their turn, know the
identity of their clients, we have it that the risk of forged checks is less than that of
forged promissory instruments.

The type of remuneration in this pattern, as mentioned above, consists of a check.
Like the other patterns with deferred remuneration, the checks are also stored at the
providers, until they are presented to the banks. It is important to note, in the case of
this pattern, the distinction between storage of the checks (promises) and the storage
of the bank accounts that each entity has. These latter, usually, are held in banks. Just
as in the case of promissory instruments, checks may also be transferable.

Selfish uncooperative behavior is suitably fought in the banking system pattern,
as entities do not cease to cooperate with the aim of obtaining checks that boost their
bank accounts. Lavish behavior is also handled well: as the banks are trustworthy,
always honor their promises and know the identity of their account holders, which
means that abuses by issuing entities fall back on them, ensuring that this kind of
misbehavior does not occur. With regard for forgivable noncooperation, this can be
dealt with in a way similar to the bearer bills pattern: if an entity needs coopera-
tion but is prevented from cooperating in return to “cover” its bank account, it may
convince another entity to do so, subsequently depositing the resulting check in its
account.

Analogously to what happens in the bearer notes and bearer bills patterns, both
the issuing entities and the debtors of the checks need to identify themselves to
prove their trustworthiness [22, 23]. However, as the debtors of the checks are the
banks, who do not mind revealing their identities, we have it that the question of
their anonymity is no longer a problem in this incentive pattern. Considering, once
again, that the banks are trustworthy and know the identity of their clients, there is
also a possibility that the issuing entities need not identify themselves, provided the
chances of false checks being issued is eliminated, that is, those without the consent
of the respective bank.

Given that the set of debtor entities that needs to prove their trustworthiness to
the providers is limited to the banks, and therefore considerably reduced, we have it
that this incentive pattern scales better than the bearer notes and bearer bills patterns.
Nevertheless, this scalability is limited not only by the accessibility of the banks,
but also by the transactions among them that prove necessary. In this context, the
existence of one sole bank might, on the one hand, resolve the questions of inter-
bank interaction, on the other, it might represent one sole point of access and easily
become a bottleneck for the system. The existence of multiple banks, however, while

Incentive Mechanisms for Cooperation in Peer-to-Peer Networks 647

it does eliminate the issue of one sole point of access, reveals its difficulties in inter-
bank transactions.

3.2.4 The Banknotes Pattern

In the banknotes pattern of incentives, the entities also cooperate seeking to obtain
an explicit remuneration in return, which will be enjoyed at a time after the coopera-
tion. The difference between this and the other patterns with deferred remuneration
once again lies in the type of remuneration which, in this case, consists of the ban-
knotes. One may understand a banknote, in this context, as a bearer note pre-issued
by a central authority [22, 23], that is to say, a banknote is a particular type of bearer
note which is used by the consumer entities to remunerate the providers. Thus, the
motivation for the entities to cooperate is to obtain these notes, which will enable
them to pay for any future cooperation they may come to require.

This incentive model may be compared to the use of banknotes in present-day
society. People may remunerate services they have enjoyed by means of notes they
have in their possession. In this way, people render their services to others to accu-
mulate money in cash, which will be used later on for what they wish. In computing,
one may mention systems of a payment mechanism based on exchanges of tokens,
without the existence of banks or bank accounts. In these systems, the entities re-
ceive a token, which takes on the role of a banknote, when cooperating. Later on,
this token can be exchanged for services or cooperation that the entity desires, and
is therefore the motivation for everyone to cooperate.

Just like the banking, bearer note and bearer bill patterns, this one also belongs
to the scope of trade-based patterns and with deferred remuneration. As the promise
that ensures future repayment of the cooperation given is in the form of banknotes,
a guarantee of their genuineness is fundamental. Bearing in mind that banks are
not present in the transactions of cooperation and remuneration, the fact is that the
risk of forgery is greater in this pattern than in the banking pattern, which may re-
quire the use of additional security mechanisms, such as an encrypted infrastructure.
However, the computing power necessary for installing such an infrastructure may
perhaps not be available, as in some of the ad hoc networks set up by entities with
limited resources.

The type of remuneration of this pattern, as already mentioned, consists of ban-
knotes. Just as in the other patterns with deferred remuneration, these are stored at
the providers, which may be regarded as bearers of the notes. More than in any other
incentive pattern, the concept of transfer of remuneration applies to this model. It
is also worth reiterating that in the patterns already studied, the remuneration was
either kept at the consumer (in the community pattern) or was non-existent (in the
collective pattern), or did away with storage as it was immediate (in the barter pat-
tern).

Due to entities’ interest in obtaining the banknotes, to enable them to pay for co-
operation they want in the future, selfish uncooperative behavior is effectively com-
bated. Lavish behavior is also avoided, recalling that the entities are billed directly

648 Daniel A. G. Manzato and Nelson L. S. da Fonseca

for cooperation they enjoy. As to forgivable noncooperation, this can be handled in
a manner analogous to treatment in the banking and bearer bill patterns: if an entity
needs cooperation but is prevented from doing the same thing to obtain banknotes
and make that payment, it may convince another entity to do this for it, that is, to
assume responsibility for its debt.

Taking into account, once again, that in this incentive pattern banknotes are pre-
issued by a central authority, which assumes the roles of issuer and debtor of that
type of promissory instrument, anonymity of the consumer is guaranteed, regardless
of the trustworthiness of ant entity involved in the cooperation transaction, just as
happens in the barter pattern, only. Nevertheless, considering the possibility of forg-
ing the banknotes, there may be a demand for the trustworthiness of the consumer,
which would entail a breach of anonymity, that is, either the banknotes are beyond
forgery or consumer anonymity is compromised. In any event, the trustworthiness
of the central authority that pre-issues the banknotes is fundamental, although this
is not a problem.

As the central authority need to not be accessible in transactions of cooperation
and remuneration, unlike the banks in the case of the banking system, we have it
that this pattern is more scalable than the banking pattern, avoiding the problems re-
lated to the accessibility of the banks, already mentioned (availability and inter-bank
transactions). Moreover, according to [22, 23], this is the most-scalable incentive
pattern among all those presented.

Application of the incentive patterns with deferred remuneration – bearer notes,
bearer bills, banking system and banknotes – in peer-to-peer networks is also
widespread and well-known, representing another principal paradigm in the area
of incentives to cooperation: the systems of payment. One can find these patterns
in various proposals for incentive schemes, in both file-sharing networks and also
media-streaming. Although the types of remuneration vary from one to another,
with the forms of tokens or balances appearing chiefly, all systems of payment have
one selfsame objective in common: allowing the de-linkage over time between co-
operation and remuneration. Depending on the type of application in question, this
factor may lead to a whole series of advantages. For example, in a media-streaming
peer-to-peer network, one may attain the following benefits:

• The system may draw on cooperation from users offline, who decide to go on
cooperating even when they are not using the system, seeking to accumulate a
balance.

• Users using their outgoing bandwidth for other purposes (other applications) may
opt not to cooperate for a certain period of time, provided they have a balance to
pay for their immediate consumption.

• Less-qualified users may, making use of their balances, obtain a streaming qual-
ity better than what their outgoing bandwidth would permit on-line with the
barter pattern. In this way, the asymmetry of incoming and outgoing band-
width of different access technologies ceases to be a problem in multicast video
distribution.

Incentive Mechanisms for Cooperation in Peer-to-Peer Networks 649

• Better-qualified users may continue cooperating with more network bandwidth
than necessary, building up a balance for a subsequent financial reward, at the
end of a stipulated period.

Given that trade-based incentive patterns, in general, are more scalable than those
based on trust, for reasons already discussed, one may state that they are more easily
employed in peer-to-peer networks, considering once again the large quantity of
participants these may reach. On the other hand, this makes it important to ensure
the question of authenticity of the remunerations, and also that service promises will
be duly issued and honored, irrespective of the context of the peer-to-peer network
employed.

A summary of the incentive patterns studied in this section is presented in
Table 1. The main characteristics, pros and cons of each one are pointed out.

4 Selection of Incentive Schemes

Various works concerning incentive mechanisms have been presented in the litera-
ture. These works discuss economic issues of peer-to-peer and ad hoc networks and
multi-agent systems, taking into consideration the autonomy of the entities to decide
whether to assume a cooperative behavior or not. While some propose new incentive
schemes that can be related to the incentive patterns already studied, others inves-
tigate issues arising from the use of existing schemes, such as an enhancement of
quality of the service, boosting scalability, strategic mobility of the entities and new
induced uncooperative behaviors. The aim of this section is to provide an overview
of the research performed in the area of incentives to cooperation, through the pre-
sentation of some selected works.

4.1 Incentive Mechanism for the CoopNet Network

In [16, 17], an incentive mechanism was proposed for the CoopNet system [25–27].
CoopNet is a live video-streaming peer-to-peer network with synchronized distri-
bution, which makes use of Layered Multiple Description Coding, or LMDC, and
multiple distribution trees. These trees are sensitive to the constant connections and
disconnections of participant nodes, since depending on the position of a given in-
terior node, various descendant nodes may be affected by its disconnection. On top
of this, CoopNet also faces the problem of poor cooperation from clients, which has
an adverse affect on the system’s scalability.

The incentive mechanism proposed in [16, 17] seeks to ease both the problem of
poor cooperation and also that of constant connections and disconnections of clients.
Thus, it consist of two parts, one of them a primary incentive and the other sec-
ondary. The primary incentive implements the barter pattern and seeks to increase
cooperation from clients, improving the scalability of the network. The secondary

650 Daniel A. G. Manzato and Nelson L. S. da Fonseca

Patterns Characteristics Pros Cons

Collective Trust based; Static trust; No re-
muneration

No motivation to behave self-
ishly; Easily combined with
other patterns; Selfish, lavish
and forgivable behaviors well
addressed

No anonymity for consumers;
Restricted scalability; Authen-
tic membership required

Community Trust based; Dynamic trust;
Remuneration stored at con-
sumers

Applicable to heterogeneous
groups; Address selfish and
lavish behaviors if reputation
is globally available; Address
forgivable noncooperation if
track record of entities is kept

No anonymity for providers
and consumers; Restricted
scalability; Propagation and
storage of reputation required;
Prevention of false defama-
tions and false praises is
necessary

Barter trade Trade based; Immediate remu-
neration

No storage of remuneration;
No pendencies left after co-
operation (persistence); No
third-party entities required
for transactions (localization);
Anonymity for providers and
consumers; Good scalability;
Selfish and lavish behaviors
very well addressed

Forgivable noncooperation not
addressed; Symmetrical coop-
eration/remuneration not al-
ways applicable

Bearer notes Trade based; Deferred remu-
neration; Promises in the form
of promissory notes; Remuner-
ation stored at providers

De-linkage between coopera-
tion and remuneration; Selfish
and lavish behaviors addressed

No anonymity for consumers;
Restricted scalability; Authen-
tic promises required; Forgiv-
able noncooperation not ad-
dressed

Bearer bills Trade based; Deferred remu-
neration; Promises in the form
of promissory bills; Remuner-
ation stored at providers

De-linkage between co-
operation and remuneration;
Anonymity for consumers pos-
sible; Selfish and forgivable
behaviors addressed

Restricted scalability; Authen-
tic promises required; Trusted
promissory debtors required;
Lavish behavior not well ad-
dressed

Banking Trade based; Deferred re-
muneration; Promises in the
form of checks; Remuneration
stored at providers and banks

De-linkage between coop-
eration and remuneration;
Anonymity for consumers and
low risk of forged promises,
given that banks are trusted;
Selfish, lavish and forgivable
behaviors addressed

Restricted scalability

Banknotes Trade based; Deferred remu-
neration; Promises in the form
of banknotes; Remuneration
stored at providers

De-linkage between coop-
eration and remuneration;
Anonymity for providers
and consumers; Enhanced
scalability; Selfish and lavish
behaviors addressed; Forgiv-
able noncooperation partially
addressed

Genuine banknotes required

Table 1 Summary of incentive patterns

incentive implements the community pattern and seeks to increase session times,
reducing the breaks in the trees; to this end, it sees to it that clients have reputations
that are directly proportional to their times of presence, while the cooperation de-
manded of them will be inversely proportional to their reputations. With the stimulus
of cooperating less, clients remain connected for a longer time, seeking to enhance
their reputations.

The barter pattern is implemented through the equation BOi =CRi.BIi, where BOi

is the outgoing bandwidth of the i-th client made available for cooperation purposes,

Incentive Mechanisms for Cooperation in Peer-to-Peer Networks 651

BIi is the incoming bandwidth used for reception of the stream at the quality desired,
and CRi is its cooperation rate, that is to say, how much the system demands of it
in cooperation as a function of its consumption. For example, with CRi = 1, it is
required that the client cooperate exactly the same quantity of bandwidth that it
consumes; with CRi = 2, it is required to cooperate double its consumption; with
CRi = 0.5, it is required to cooperate half its consumption, and so on.

The community pattern is implemented through two equations: Ri = ti/(t·+ 1),
where Ri is the reputation of the i-th client, ti its time of presence in the system
and t· the time of presence of the oldest client considered; and CRi = UBCR −
Ri(UBCR − LBCR), where LBCR and UBCR are, respectively, the lower and upper
bounds for the cooperation rates practiced by the system. The first equation is re-
sponsible for calculating the reputation of the i-th client as a function of its time
of presence, while the second equation calculates its cooperation rate as a function
of its reputation. Thus, each client connected to the system has its own cooperation
rate, which varies over time. This cooperation rate is the same used in implement-
ing the barter pattern, that is to say, we have both patterns, barter and community,
acting together and implementing the two incentives that make up the mechanism
proposed.

One particularity of this mechanism is that, depending on the upper and lower
limits adopted in the above equation, one has a deficit or excess of resources in the
system. Typically, the values of 0.5 and 1.5 are used, respectively, which allow older
clients to cooperate at up to half of what they consume (rates below 1), while more
recent clients cooperate up to 50% more than they consume (rates above 1). It is,
therefore, a system that uses the excess cooperation from certain clients to allow
other clients to cooperate less than what is necessary, thus providing these latter
with a stimulus to remain connected to the network for a longer time.

The results show that the primary incentive eliminates all occurrences of block-
age, besides doubling, on the average, the qualities received, given that all the clients
begin to cooperate unconditionally. This provides strong evidence that the scalabil-
ity of the system increases. Meanwhile, the secondary incentive presents a cost of
use that corresponds to 2 to 4 describers in 16 to the lesser at the quality received.
The benefits obtained with this are notable only in situations of a Flash Crowd, in
which the arrival rates are high. In these cases, it is possible to reduce the breakages
in the trees by around 45%, doubling the average time of presence. Thus, its use is
advantageous only when the arrival rates are sufficiently high for the gain obtained
to offset the cost incurred.

An alternative employment for the secondary incentive of the mechanism pro-
posed is the economic purpose of keeping clients connected to the system for a
longer time. Just as occurs with free analog television, it is the advertisers who pay
the costs of distribution, and they also pursue a larger audience. Similarly, in a sys-
tem of distribution of digital streaming like CoopNet one may, on the one hand, have
the advertisers shouldering the costs of the central servers where the service and the
distribution trees originate; on the other, the clients of the peer-to-peer network al-
ways cooperating, based on the primary incentive, and remaining connected for a
longer time, based on the secondary incentive. While the first factor provides greater

652 Daniel A. G. Manzato and Nelson L. S. da Fonseca

scalability for the system, so that more clients can be served, the second satisfies the
economic interests of the advertisers, who have a larger audience and, consequently,
have a great motivation to go on maintaining the service.

4.2 Altruism in Peer-to-Peer Media Streaming

In [8] a framework for the explicit modeling of altruism was proposed for the con-
text of media streaming peer-to-peer networks with multicasting at application level,
such as CoopNet [25–27] and SplitStream [6]. This framework considers a system
parameter K that relates the bandwidth consumed and cooperated by clients, in a
manner similar to the model proposed in [16, 17]. The K parameter may vary from
1 to ∞: when it assumes the value 1, each client cooperates with exactly the same
bandwidth he consumes; assuming the value 2, each client cooperates with double
the bandwidth he consumes; and so on. The limit of bandwidth cooperated is the
capacity of the client’s outgoing bandwidth, that is to say, the lower of the following
values: (1) bandwidth consumed times K and (2) the capacity of the outgoing band-
width. Given that parameter K is the same for all clients, unlike the model proposed
in [16, 17], it cannot be less than 1, as in this case, the sum total of all the band-
width cooperated would be less than the sum total of all the bandwidth consumed,
or rather, the demand for bandwidth would be greater than supply, and in this way
the system would begin to saturate and block new clients.

One notes once again the use of the barter incentive pattern, that is to say, remu-
neration occurs simultaneously with the cooperation effected. While the client re-
ceives the media stream from the higher nodes of the multicast tree (remuneration),
he passes this on to its lower nodes, using his outgoing bandwidth (cooperation).

The principal idea of this work is to distribute the excess outgoing bandwidth
accumulated in the system equally to all the clients connected, improving the qual-
ities of streaming they receive. That is, given that each client is already receiving
its rightful bandwidth, calculated by the ratio between its cooperated bandwidth and
the parameter K, the excess bandwidth is distributed gradually, thus entailing the
maximization of bandwidth obtained by each client, if this is not yet at its maxi-
mum value. This maximum value is either the bandwidth of the stream obtained or
the capacity of the client’s incoming bandwidth. It is not hard to observe that this
approach is only effective in a heterogeneous ambient, where client bandwidth are
separate, besides the natural asymmetry of the incoming and outgoing links of each
client. If this premise is not true, either there will be a lot of excess bandwidth, when
the majority of clients can contribute what the parameter K determines, or there will
be no excess capacity to be distributed, when the majority of clients have limited
outgoing bandwidth.

A distributed protocol was proposed for calculation of the excess bandwidth to be
redistributed. In principle, this calculation would call for overall knowledge of use
of all the clients’ bandwidth, so as to determine the excess quantity. However, us-
ing concepts of multiple distribution trees and codification into multiple describers,

Incentive Mechanisms for Cooperation in Peer-to-Peer Networks 653

presented in [6, 7, 24–27], a proposal was made to try the gradual and periodic
admission of each client to the various trees, until the excess bandwidth is exhausted.
In this case, through priorities attributed to each client in each separate tree, one can
determine the order of the trees in which the client will cease to participate if the sys-
tem’s excess bandwidth is reduced. In consequence, when this is exhausted, clients
are disconnected from the trees in which they have lower priorities, to offer a place
to those with higher priorities. This distributed protocol was evaluated, via simula-
tions, and compared with what would be the “ideal” protocol, with knowledge of
clients’ bandwidths.

The results show that the distributed protocol may attain good levels of use of
excess bandwidth, if compared to the protocol with overall knowledge. On top of
this, it proved the efficacy of allocating the bandwidth received by each client; that
this matches the policy of modeling by altruism, as originally proposed. Neverthe-
less, an analysis was also made of the price of implementing this policy, in terms
of breakdowns in the distribution trees. That is to say, each time a certain client
is disconnected from a tree, there is an interruption in the reception of the related
describer, which causes a temporary worsening of the quality received, until the
tree is reestablished. Some breakdowns are inevitable, as is the case of those aris-
ing from arrivals and departures of clients in the network. Others are the outcome
of the policy proposed, such as those arising from disconnections of clients with
lower priorities. It was concluded that the cost of the policy proposed is double the
fundamental cost of maintaining the distribution trees.

What did not emerge clearly, though, is how much this additional cost affects the
improvement obtained by the excess bandwidth determined by the altruism param-
eter K. On the other hand, it was asserted that the rate of breakdowns varies little
as a function of K (in spite of which, the greater the parameter K, the greater the
degree of admission of nodes, the wider the trees and, consequently, the smaller the
rate of breakdowns). Moreover, it was shown that small increases in K, from 1 to
1.5, for example, provide good results in terms of increase of excess bandwidth.
However, there was no evaluation of the relative gain from the policy, that is to say,
how many more describers each client receives on the average, considering the ad-
ditional capacities afforded by the excess bandwidth accumulated in the system, and
how many less, as a result of the temporary losses caused by the breakdowns in the
distribution trees.

4.3 Multicast with Incentive in Peer-to-Peer Media Streaming

Another incentive scheme for media streaming peer-to-peer networks based on rep-
utation was proposed in [19], that is to say, it uses the community incentive pattern.
It was proposed to the SplitStream architecture [6], yet according to the authors it is
sufficiently generic to be used in practically any system with multicasting at appli-
cation level and with multiple distribution trees. The only requirement of the policy
is that the trees should be periodically rebuilt, so as to maximize the chances of a

654 Daniel A. G. Manzato and Nelson L. S. da Fonseca

higher node with uncooperative behavior becoming a node below those to whom
it denied cooperation in the past, allowing it, thus, to be retaliated. This approach
constitutes a threat model based on the experiences that the nodes have had of one
another previously.

Some approaches have been proposed to identify the uncooperative nodes in mul-
ticast trees. The main difficulty lies in the false positives, that is to say, those nodes
that are cooperating, but that sporadically refuse to serve certain requests as they are
saturated – which configures forgivable noncooperation, as we have already been
discussed. To get around this problem, use was made of a combination of the var-
ious approaches proposed, given that each one of them, used individually, was not
sufficient to effectively reduce the number of false positives. With regard for the cost
of periodically rebuilding the trees, it was estimated that this would be very low, not
making the proposal unfeasible. The results show that, for a small fraction of selfish
users (5%), the system is able to identify and punish them with a denial of service,
which becomes an interesting incentive to cooperation. Studies with higher rates of
selfish users were left for future works.

It is interesting to note how the proposal gets around the problem of changing
identity when the entity is bad (this issue was already commented before, in Sec-
tion 3). It is suggested that each one of the distribution trees should be rebuilt at
a time, at predefined time intervals. Additionally, a new node joining the network
can only sign up for new distribution trees when these are rebuilt. In this way, if a
certain node with a bad reputation opted to disconnect and reconnect to “clean up”
its bad name, it would have to wait a given period of time to once again enjoy the
streaming quality it hitherto had. Naturally, this policy of punishing new arrivals
also hurts cooperative users. For example, if students were connecting to the system
to attend a lecture, they would need to join k time intervals in advance, where k is
the number of distribution trees that the system uses and the intervals are the times
between one tree rebuild and another. In this case, if the time were 15 seconds and
k = 16, for instance, then the students would need to connect 4 minutes before the
start of the lecture.

One drawback of the incentive scheme proposed is the fact that it does not con-
sider how much each node must cooperate, unlike the previous schemes, failing to
exploit the heterogeneous nature of the clients. This means that two users with dif-
ferent cooperation capacities (outgoing bandwidth) may obtain the same streaming
quality (incoming bandwidth) provided only that they do not fail to cooperate, which
might call into question issues of the policy’s fairness. As a consequence, this prob-
lem might lead to new uncooperative behaviors, such as users declaring outgoing
bandwidth smaller than they effectively have, so as not to consume their resources
beyond the strictly essential.

4.4 Client Selection with Differentiated Service

Yet another proposal of an incentive mechanism for media streaming peer-to-peer
networks was presented in [12–14] and it is percentile-based. Unlike the three

Incentive Mechanisms for Cooperation in Peer-to-Peer Networks 655

mechanisms presented so far, designed for live streaming with synchronized dis-
tribution through multicast trees, this mechanism was proposed for streaming on
demand with asynchronous distribution, and consequently, remuneration. In this
scheme, the entities that cooperate are remunerated with a score, which may be
understood as a reputation. This score is mapped to a percentile, which indicates the
position, in terms of cooperation, in which the user is classified in relation to the
others. For example, a user that displays a percentile of 90% cooperates less than
just 10% of the members of the network. The user’s percentile is then taken into
consideration at the moment when he requests streaming: he can only be served by
those clients who have a percentile lower than his. One sees quite clearly the use of
the community incentive pattern in this incentive scheme.

For this type of application, one sees that the selection of good candidates to
serve a given request is an important issue in improving the quality of the streaming
received. Good candidates are understood as being those that display good avail-
ability, good rates offered and good network route dynamics, from the supplier to
the consumer of the streaming. While the arbitrary selection of candidates reveals
an unforeseeable quality of service, which is worsened with the number of suppliers
chosen, the selection of good candidates provides good and foreseeable qualities,
regardless of the number of suppliers considered. In this way, the motivation for co-
operation introduced by this scheme is the increase of the percentile, which allows
the entity to make a more inclusive selection of good candidates to serve its requests,
obtaining better and more foreseeable qualities of service than those afforded by
arbitrary selection. Unlike the majority of incentive mechanisms based on reputa-
tion and designed for file-sharing peer-to-peer networks, the idea of this mechanism
is not an increase of availability of the content desired, but rather a differentia-
tion of service, which promotes an enhancement in the quality of the streaming
received.

For each entity to be able to determine how much cooperation it is advantageous
to provide, a function of use of resources was defined. This function takes into con-
sideration the quality of the flow received and the cost of the cooperation. In this
way, through simulations, it is proven that the mechanism proposed does provide
almost optimal quality of service when the network is not congested. When com-
pared to its non-utilization, one sees that the network cannot achieve the same levels
of quality of service only with the cooperation of a few altruistic users. as sometimes
happens in the file-sharing peer-to-peer networks. One also concludes that the mech-
anism may not be efficient when the network is completely congested or idle, situa-
tions in which the quality received may be very low or almost optimal, respectively,
regardless of its use. Another conclusion is that the mechanism reduces the quantity
of redundant data necessary to compensate the loss of packets, typically present in
media-streaming sessions and normally controlled by techniques of stream coding,
such as FEC (Forward Error Correction) and MDC (Multiple Description Coding).

To get around the issue of unfair change of identities, pursued by users with low
percentiles due to their uncooperative behaviors, this mechanism likewise does not
privilege newly-arrived users, just as the previous mechanism. Therefore, newly-
arrived clients are submitted to the arbitrary selection of candidates to have their

656 Daniel A. G. Manzato and Nelson L. S. da Fonseca

requests served, and they are subject to a policy of best endeavor, given that the
quality to be obtained is unforeseeable and depends on the altruistic users in the
system.

4.5 Incentives in BitTorrent

The incentive mechanism used in the BitTorrent system [2] is described in [9]. It
is a scheme denominated tit-for-tat, which is quite simply the direct application of
the barter incentive pattern in the context of peer-to-peer networks for file sharing.
Users strive to receive a given file at a rate proportional to that they simultaneously
deliver this very same file to other users. In other words, the greater the outgoing
bandwidth made available by the user for purposes of cooperation, the greater the
receiving rate achieved, minimizing the time required for the complete transfer of
the file.

In this system, each file made available for transfer is segmented into parts of
equal size, in such a way that each user can obtain a different segment and pass it on
to the others in the network. In this way, the server needs to transmit the file made
available just once, in theory. In practice, quite possibly some segment may become
unavailable in the network due to disconnection of the client that maintained it, thus
entailing another transfer of that segment by the server.

Each file made available is also linked to the address of a coordinating system
(Tracker) responsible for assisting the users to discover which clients possess which
parts of the file. However, it is the local application that is responsible for the lo-
gistics of the connections. It is found that random graphs display good qualities in
terms of sturdiness. To discover which segments of the file must be obtained first,
and, moreover, from which users, some policies are defined and used by the local
applications, which take such decisions interacting with one another.

The application is also responsible for controlling the relation between the
clients’ sending and receiving rates, ensuring the efficacy of the tit-for-tat system.
Certain strategies determine when and how much the client must cooperate more or
less, based on his receiving rate, so as to maximize the utilization of his resources.
Given that the consumption of the servers’ resources – mainly bandwidth – may be
considerably minimized, the BitTorrent system has become a highly useful tool for
the publication of files on the Internet, chiefly for open code applications that make
available their sources and binary codes, as is the case of some Linux distributions.

4.6 Trading in Trust, Tokens and Stamps

In [18] an interesting incentive scheme based on stamps was proposed as be-
ing a generalization of the mechanisms based on reputation (community incen-
tive pattern) and payment (incentive patterns based on deferred remuneration). A

Incentive Mechanisms for Cooperation in Peer-to-Peer Networks 657

comparative study was presented of these two models, listing the properties and
types of economies and incentives induced by them. It was demonstrated that the
essence of both can be captured by a more generic scheme, denominated stamp
trading.

In this mechanism, the entities must obtain, firstly, personalized stamps of the
entity from which they wish to enjoy cooperation, before requesting it, so as to have
means to make the respective payment. To obtain these personalized stamps, they
trade their own stamps, issued by them, or stamps from other entities they have
in their possession, respecting a swap or exchange rate that indicates the value of
each type of stamp. These values are calculated by a central entity and according
to different policies, proposed and analyzed in the work. Irrespective of the policy,
every time an entity refuses to cooperate upon the presentation of one of its stamps
by another requesting entity, the value of that type of stamp is reduced, that is to
say, the trustworthiness or reputation of that entity falls. The value of a stamp may
also drop with the number of issues made by the same entity, or rather, the greater
the number of stamps of the same type circulating in the network, the smaller will
be their value.

One of the issues discussed in this work is whether the reputation of the entities
can be considered a currency. It was argued that on the one hand it can, considering
that it can be traded so as to induce an economy, but, on the other, it cannot, bearing
in mind that it cannot be bought or sold, but rather lost or won. The stamps, in prin-
ciple, recall the bearer bonds, seen above, since cooperation is effected through their
presentation to the entity that issued them. However, unlike the bearer bonds, they
are pre-issued and later on traded, subject to variable prices based on the different
reputations that exist. In this case, they recall more banknotes, with the difference
of having been pre-issued by the entities, rather than by one sole central authority.

4.7 Mobility in Ad hoc Wireless Networks with Incentives

The focus of the work presented in [10] is not a proposal for a new incentive scheme,
but rather the study of a strategic mobility that the nodes of ad hoc wireless networks
may display when existing incentive mechanisms are employed, such as those of
reputation (community incentive pattern) and those of payment (incentive patterns
based on deferred remuneration). This mobility is induced by the fact of autonomous
entities seeking to maximize the use of their resources. Given that the incentive
mechanisms oblige them to cooperate in any event, strategies of geographical move-
ments are then assumed so as to prioritize their interests.

For example, with reputation schemes, the entities seek to minimize the quantity
of traffic passed on – to economize their resources, as they do not gain an explicit
reputation for passing-on – and they become indifferent to the number of hops nec-
essary for their packets to reach their destinations – there is no charge for the num-
ber of hops. In this case, they remain closer to the edges of the network’s topology,
where there is less traffic to be passed on, and are not concerned that their packets

658 Daniel A. G. Manzato and Nelson L. S. da Fonseca

use more hops to reach opposite sides or ends. On the other hand, with payment
schemes, the entities seek to maximize the quantity of traffic passed on, since they
are paid for each packet passed on, and also to minimize the number of hops nec-
essary for their packets to reach their destinations, as one pays the other entities
that pass on the packets. In this case, then, they try to remain close to the center
of the network’s topology, where there is more traffic to be passed on and smaller
distances, in terms of hops, to the different destinations of their packets.

By means of models based on game theory and simulations, it is proven that
the strategic mobility of users may degrade performance of the network, due to the
inefficient topologies that are formed. Generally speaking, it is a problem caused
by uncooperative behaviors induced by the incentive mechanism used. With regard
to the inefficient topologies formed, one identifies two trends: one clustering, which
leads the nodes to stay as close as possible to one another, and another of dispersion,
which leads them to the formation of simple chains. In both cases, even though
the final topologies are different, one concludes that strategic mobility, in general,
degrades the capacity of the ad hoc wireless networks. Therefore, future incentive
mechanisms proposed for this context must consider this factor, as well as fighting
the uncooperative behaviors already expected, such as the non-routing of packets
due to high energy and bandwidth costs.

5 Final Remarks

We have seen that, with the predominance of the client-server architecture until a
short while ago, until then there was no concern with ensuring certain patterns of
behavior of the constituent entities, as these had clearly defined roles in the network.
However, decentralized architectures have emerged as a form of resolving the prob-
lems of scalability imposed by the previous architecture. In this new context, entities
both serve and are served. Moreover, they are free to decide between cooperating
or not, especially due to the lack of central authorities or servers. These facts, along
with the cost of cooperation, which is quite often high, due to the consumption of
local resources, lead the entities to practice uncooperative behaviors.

On the other hand, the majority of decentralized systems rely on such coop-
eration to make them efficient, and principally, viable, which fact is particularly
important for applications that distribute content sensitive to time, as is the case
of media streaming. Thus, incentive mechanisms for cooperation are necessary in
this context, and have received particular attention in the literature, recently. Such
mechanisms have been the subject of the study in this chapter.

Firstly, a study was made of the different types of uncooperative behavior com-
mon in decentralized systems, such as peer-to-peer and ad hoc networks and multi-
agent systems. There was then a presentation of the existing incentive patterns,
their characteristics and how they combat uncooperative behaviors, with a view to
providing information for the understanding of a wider scope of existing incentive
schemes, as well as future proposals as yet to come. Given that the number of re-

Incentive Mechanisms for Cooperation in Peer-to-Peer Networks 659

lated works is vast, including proposals for new schemes and studies of questions
arising from the use of already-known schemes, a selection was made of these, then
presented in the sequence.

One notes that a good incentive mechanism is one that effectively fights the com-
mon uncooperative behaviors, and also those induced by its use. On top of this,
ideally, it exempts forgivable noncooperations from punishment, an issue that can-
not always be regarded as trivial, as per the study made in Section 3.

However, no incentive mechanism is ideal for all types of contexts, that is to say,
it is important to take into account the specific features of each type of application
in designing the incentive scheme to be employed, that is, in choosing the incentive
patterns to be used. Section 4 illustrated how different schemes, made up of separate
patterns, may be pertinent to the most varied types of systems, such as live media
streaming, media streaming on demand or file sharing. Lastly, one may mention
that there is a trend towards combining different incentive patterns in the definition
of new incentive schemes, so as to bring together the advantages and offset the
shortcomings of each one [22, 23].

An interesting topic for future studies is the understanding of how effective in-
centive mechanisms are when subject to malicious behavior such as attacks. The
conception of robust incentive mechanisms is still a challenging issue. Another topic
to be considered for further investigation is the handling of new uncooperative be-
haviors induced by the employment of incentive schemes. For instance, how the im-
pact of mobile users can change the effectiveness of incentive mechanisms. Other
forms of interference include Sybil and white-washing. A discussion of these issues
as well as the workarounds for them is quite useful. Furthermore, the conception
of incentive mechanisms based on Game Theory can bring new perspectives to the
treatment of uncooperative behavior.

References

1. Adar, E., Huberman, B.A.: Free riding on gnutella. First Monday 5(10) (2000)
2. Bittorrent. http://www.bittorrent.com/ (2008). (Access Date)
3. Bittorrent tracker. http://en.wikipedia.org/wiki/BitTorrent tracker (2008). (Access Date)
4. Buttyán, L., Hubaux, J.P.: Nuglets: a virtual currency to stimulate cooperation in self-

organized ad hoc networks. Tech. Rep. DSC/2001, EPFL (2001). URL citeseer.ist.
psu.edu/buttyan01nuglets.html

5. Buttyán, L., Hubaux, J.P.: Stimulating cooperation in self-organizing mobile ad hoc networks.
ACM/Kluwer Mobile Networks and Applications (MONET) 8(5), 579–592 (2003)

6. Castro, M., Druschel, P., Kermarrec, A.M., Nandi, A., Rowstron, A., Singh, A.: Splitstream:
High-bandwidth multicast in a cooperative environment. In: Proceedings of the 19th ACM
Symposium on Operating Systems Principles (SOSP’03), pp. 298–313. ACM Press (2003)

7. Chou, P.A., Wang, H.J., Padmanabhan, V.N.: Layered multiple description coding. In: Pro-
ceedings of the Packet Video Workshop (2003)

8. hua Chu, Y., Zhang, H.: Considering altruism in peer-to-peer internet streaming broadcast. In:
Proceedings of the 14th international workshop on network and operating systems support for
digital audio and video (NOSSDAV ’04), pp. 10–15. ACM Press, New York, NY, USA (2004)

660 Daniel A. G. Manzato and Nelson L. S. da Fonseca

9. Cohen, B.: Incentives build robustness in bittorrent. In: Proceedings of the First Workshop on
the Economics of Peer-to-Peer Systems (2003)

10. Figueiredo, D.R., Garetto, M., Towsley, D.: Exploiting mobility in ad-hoc wireless networks
with incentives. Tech. Rep. 04-66, UM-CS (2004)

11. Guo, Y., Suh, K., Kurose, J.F., Towsley, D.F.: P2cast: peer-to-peer patching scheme for vod
service. In: Proceedings of the twelfth international conference on World Wide Web, pp.
301–309. ACM Press (2003)

12. Habib, A., Chuang, J.: Incentive mechanism for peer-to-peer media streaming. In: Proceedings
of the 12th IEEE International Workshop on Quality of Service (IWQoS’04), pp. 171–180
(2004)

13. Habib, A., Chuang, J.: Service differentiated peer selection: An incentive mechanism for peer-
to-peer media streaming. IEEE Transactions on Multimedia 8(3), 610–621 (2006)

14. Habib, A., Chuang, J., Hefeeda, M.M.: Do we need incentive mechanisms for peer-to-peer
media streaming. IEEE Communications, Submitted but not published (2003)

15. Kazaa. http://www.kazaa.com/ (2008). (Access Date)
16. Manzato, D.A.G., da Fonseca, N.L.S.: An incentive mechanism for peer-to-peer networks with

media streaming. In: Proceedings of the 49th IEEE Global Telecommunication Conference
(GLOBECOM 2006), pp. 1–6 (2006)

17. Manzato, D.A.G., da Fonseca, N.L.S.: Incentive mechanism for the coopnet network.
Peer-to-Peer Networking and Applications (P2PNA) 1(1), 29–44 (2008). DOI 10.1007/
s12083-007-0004-0

18. Moreton, T., Twigg, A.: Trading in trust, tokens, and stamps. In: Proceedings of the First
Workshop on the Economics of Peer-to-Peer Systems (2003)

19. Ngan, T.W.J., Wallach, D.S., Druschel, P.: Incentives-compatible peer-to-peer multicast. In:
Proceedings of the 2nd Workshop on Economics of Peer-to-Peer Systems (2004)

20. Obreiter, P., König-Ries, B., Klein, M.: Stimulating cooperative behavior of autonomous de-
vices – an analysis of requirements and existing approaches. In: Proceedings of the Second
International Workshop on Wireless Information Systems (WIS2003), pp. 71–82 (2003)

21. Obreiter, P., König-Ries, B., Klein, M.: Stimulating cooperative behavior of autonomous de-
vices – an analysis of requirements and existing approaches. Tech. Rep. 2003-1, Universität
Karlsruhe, Faculty of Informatics (2003)

22. Obreiter, P., Nimis, J.: A taxonomy of incentive patterns – the design space of incentives for
cooperation. In: Proceedings of the Second International Workshop on Agents and Peer-to-
Peer Computing (AP2PC’03), Springer LNCS 2872, pp. 89–100 (2003)

23. Obreiter, P., Nimis, J.: A taxonomy of incentive patterns – the design space of incentives for
cooperation. Tech. Rep. 2003-9, Universität Karlsruhe, Faculty of Informatics (2003)

24. Padmanabhan, V.N., Sripanidkulchai, K.: The case for cooperative networking. In: Proceed-
ings of the First International Workshop on Peer-to-Peer Systems (IPTPS), pp. 178–190.
Springer-Verlag (2002)

25. Padmanabhan, V.N., Wang, H.J., Chou, P.A.: Resilient peer-to-peer streaming. In: Proceedings
of the 11th IEEE International Conference on Network Protocols (ICNP), pp. 16–27. IEEE
Computer Society (2003)

26. Padmanabhan, V.N., Wang, H.J., Chou, P.A.: Supporting heterogeneity and congestion control
in peer-to-peer multicast streaming. In: Proceedings of the Third International Workshop on
Peer-to-Peer Systems (IPTPS), pp. 54–63. Springer (2004)

27. Padmanabhan, V.N., Wang, H.J., Chou, P.A., Sripanidkulchai, K.: Distributing streaming me-
dia content using cooperative networking. In: Proceedings of the 12th international work-
shop on network and operating systems support for digital audio and video (NOSSDAV), pp.
177–186. ACM Press (2002)

28. Zhang, X., Liu, J., Li, B., Yum, T.S.P.: Donet/coolstreaming: A data-driven overlay network
for live media streaming. In: IEEE INFOCOM, vol. 3, pp. 2102–2111 (2005)

29. Zhong, S., Chen, J., Yang, Y.R.: Sprite: A simple, cheat-proof, credit-based system for mobile
ad-hoc networks. In: Proceedings of IEEE INFOCOM (2003)

Bandwidth Trading as Incentive

Kolja Eger and Ulrich Killat

Abstract In P2P networks with multi-source download the file of interest is frag-
mented into pieces and peers exchange pieces with each other although they did
not finish the download of the complete file. Peers can adopt different strategies to
trade upload for download bandwidth. These trading schemes should give peers an
incentive to contribute bandwidth to the P2P network. This chapter studies differ-
ent trading schemes analytically and by simulations. A mathematical framework for
bandwidth trading is introduced and two distributed algorithms, which are denoted
as Resource Pricing and Reciprocal Rate Control, are derived. The algorithms are
compared to the tit-for-tat principle in BitTorrent. Nash Equilibria and results from
simulations of static and dynamic networks are presented. Additionally, we discuss
how trading schemes can be combined with a piece selection algorithm to increase
the availability of a full copy of the file. The chapter closes with an extension of the
mathematical model which takes also the underlying IP network into account. This
results in a TCP variant optimised for P2P content distribution.

1 Introduction

P2P systems for file-sharing have to define functions for constructing and main-
taining the overlay topology, to search and request for content and to transfer the
content between peers. Some P2P applications like BitTorrent are optimised for the
dissemination of the content. Hence, they are also denoted as P2P Content Distri-
bution Networks (CDNs). To speed-up the dissemination of the file a multi-source

Kolja Eger
Siemens AG, Corporate Technology Information and Communications, Otto-Hahn-Ring 6, 81739
Munich, Germany, e-mail: kolja.eger@siemens.com

Ulrich Killat
Hamburg University of Technology (TUHH), Institute of Communication Networks, 21071
Hamburg, Germany, e-mail: killat@tuhh.de

X. Shen et al. (eds.), Handbook of Peer-to-Peer Networking, 661
DOI 10.1007/978-0-387-09751-0 23, © Springer Science+Business Media, LLC 2010

662 Kolja Eger and Ulrich Killat

download (or swarming principle) is applied. Here, the file of interest is fragmented
into pieces or chunks. When a peer completes the download of a single piece, it
offers it to other peers which so far have not downloaded this piece. Thus, peers
exchange pieces with each other although they did not finish the download of the
complete file. Therefore, the resources in the P2P network are used more efficiently
and the network depends not solely on the altruistic or cooperative behaviour of
the peers. The swarming principle rather exploits the two-way interest of peers in
different chunks, which the other one provides. Since most of the peers behave self-
ishly and are interested in maximising their own download rates, the mutual interest
results in peers, which bargain for bandwidth with each other.

Peers can adopt different strategies to trade upload for download bandwidth.
These trading schemes should give peers an incentive to contribute bandwidth to
the P2P network. Hence, peers can maximise their own download rates by appropri-
ately allocating their upload bandwidths and free-riding is decreased and/or avoided
in the network. The design of a trading scheme can follow different objectives. From
the user perspective, a peer might choose a strategy which outperforms all other
strategies. Since the total capacity in the network is finite, the increase in download
performance for this peer happens at the expense of others. On the other hand, a pro-
tocol designer might look for a strategy for which fairness is realised among peers
although peers behave selfishly.

This chapter discusses different approaches to realise fairness in P2P content dis-
tribution networks. A mathematical framework for bandwidth trading is introduced.
The model is based on congestion pricing (or network utility maximisation) which
is used for the resource allocation in IP networks. The allocation of bandwidth is
modelled as optimisation problem. Two distributed algorithms, which are denoted
as Resource Pricing and Reciprocal Rate Control, are derived from this optimisa-
tion problem. Hence, their equilibrium points are optimal with respect to efficiency
and fairness. In the first trading scheme, each peer receives a (virtual) payment for
uploading data to others. These payments control the sending rates in the future.
Peers with higher price offers will receive higher rates whereas the rate will de-
crease for peers with lower price offers. Furthermore, the total payment a peer can
afford is limited to its own upload capacity. In the second trading scheme peers use
their download rates from other peers as the payment information. Thus, no explicit
pricing must be implemented in the protocol.

The two proposed trading schemes are compared to BitTorrent’s tit-for-tat prin-
ciple. Here, a peer uploads to others from which it receives the highest download
rates. We discuss the existence of a Nash Equilibrium for each trading scheme and
present results from simulations of static as well as dynamic networks.

A trading scheme is only one of the building blocks of a P2P protocol. Since
every peer starts with no piece at the beginning a good implementation has to ensure
that new peers have a decent chance to finish their first piece fast. Furthermore, the
selection of pieces to download is important for the future exchange with other
peers. Besides finding the peers which provide good download rates, a peer should
download rare pieces to ensure that it has something of interest for others in the
future. Hence, we discuss additionally how trading schemes can be combined with

Bandwidth Trading as Incentive 663

a piece selection algorithm. Thus, the availability of a full copy of the file in the
network can be increased.

Bandwidth trading is affected by the performance in the underlying network, e.g.
by packet loss. Based on the mathematical framework for P2P we discuss also a rate
control algorithm for P2P over IP networks. We denote the approach as TCPeer,
because a peer adopts the functionality of TCP and extends it with information from
the overlay network.

2 Trading Schemes for P2P Content Distribution

Trading schemes give peers an incentive to contribute bandwidth to the P2P content
distribution network. Hence, peers can maximise their own download rates by ap-
propriately allocating their upload bandwidths and free-riding is decreased and/or
avoided in the network.

An example is the game theoretical approach in BitTorrent. We compare it with
two other schemes that are based on the resource pricing (or congestion pricing) ap-
proach [14, 15] for transport-layer protocols. Both proposed pricing algorithms use
rate control at the application layer. In a real implementation this can be realised by
the application putting different amounts of data into the socket buffers of the TCP
connections. A more sophisticated approach is to schedule the traffic directly at the
queue of the network interface card, e.g. with Linux Traffic Control [13]. Further-
more, a combined approach of rate control at the application and the transport layer
is discussed in Section 6.

In the following section a general P2P network model is introduced, from which
the two proposed pricing algorithms are derived in Sections 2.2 and 2.3. For com-
parison, the tit-for-tat principle used in BitTorrent is described in Section 2.4.

2.1 P2P Network Model

Similar to the model for IP networks in [14, 15] we model the resource allocation
in P2P networks as optimisation problem. Consider a P2P network consisting of a
set of peers P and a set of services, whereby each peer p ∈ P is interested in one
or several services and/or offers different services. Providing a service consumes
resources. In this work we concentrate on resources (e.g. access bandwidth) which
are divisible and where any allocation of resources has a benefit for a requesting
peer. We assume that the resource is scarce such that competition is present and
denote the capacity of this resource at peer p as Cp.

To differentiate between service providing and service requesting peers in our
mathematical model we introduce the set of service providers or servers S and the
set of service customers or clients C. The terms server and client are also used for
P2P networks. In this context, a server is a peer which offers at least one service and

664 Kolja Eger and Ulrich Killat

a client is a peer which requests at least one service. A peer can be a server and a
client at the same time.

Since each peer has only a partial view of the whole P2P network, a service
requesting peer is not aware of all peers that provide this service, and vice versa.
We define the set of peers which offer at least one service to the client c as the set
of servers S(c) of client c. The other way round C(s) is the set of the known clients
of the server s. Furthermore, if c ∈ C(s) then also s ∈ S(c) holds. The client-server
architecture can be interpreted as a special case of a P2P application where the set
S(c) consists of one single server.

Suppose the utility of a client c is defined by a utility function Uc, which depends
on the total service rate yc. Furthermore, yc is the total of the rates xsc of all servers s
of client c. The optimisation problem for P2P networks is

P2P SYSTEM :

maximise ∑
c∈C

Uc(yc) (1)

subject to ∑
s∈S(c)

xsc = yc, ∀c ∈ C (2)

∑
c∈C(s)

xsc ≤Cs, ∀s ∈ S (3)

over xsc ≥ 0. (4)

Maximising the aggregated utility of the service rate yc over all clients is the objec-
tive of the whole system, where yc is the sum of the rates xsc of all servers s of c.
This problem is constrained by the resource capacity at the servers.

To ensure some kind of fairness among peers, the utility function in (1) is set ad-
equately. In general, different fairness criteria deviate from each other, because they
trade-off between fairness and efficiency differently. The concept of proportional
fairness [15] makes a widely accepted compromise between fairness and efficiency
and is used frequently in congestion pricing algorithms. In contrast to max-min fair-
ness, which gives absolute priority to small flows, proportional fairness depends on
the proportional changes of two rate allocations. Hence, smaller flows are treated
less favourably. The concept can be extended to weighted proportional fairness.
Here, a client c has a willingness-to-pay Wc that weighs the value of the client. As
already well studied for IP networks [14], we set the utility function of all peers to

Uc (yc) = Wc ln(yc) . (5)

This utility function ensures a weighted proportional fair resource allocation. Fur-
thermore, the function in (5) is concave and strictly increasing. Hence, the opti-
misation problem in (1)–(4) has a unique optimum with respect to the total service
rate yc. With a logarithmic utility function we assume the law of diminishing returns
applies for peers. This means that the performance enhancement decreases with in-
creasing total service rate. Such a utility function represents users with elastic traffic

Bandwidth Trading as Incentive 665

demands [20] and is applicable when users have no delay requirements. It is used
often for data transfers [14]. Hence, it is relevant for P2P file-sharing.

As shown in [8] for a connected P2P network, the optimum of (1)–(4) with re-
spect to the total download rate yc and the offered price λc is

y·c = ∑
s∈S(c)

x·sc =
Wc∑s∈S Cs

∑d∈CWd
(6)

and

λ ·c = ∑d∈CWd

∑s∈S Cs
, (7)

respectively.

2.2 Resource Pricing

To derive a scalable, distributed algorithm, where each entity works with limited
information about the network conditions and users in the network, we divide the
global optimisation problem in (1)–(4) into sub-problems. These are derived with
the Lagrangian

LP2P (x,y,λ ,ν,n) =

∑
c∈C

(
Uc(yc)−λc

(
yc− ∑

s∈S(c)
xsc

))
+ ∑

s∈S
νs

(
Cs− ∑

c∈C(s)
xsc−ns

)
, (8)

where ns ≥ 0 is a slack variable for the inequality constraint in (3) for server s and λc

and νs are Lagrange multipliers. Like in [15] Lagrange multipliers are interpreted
as prices for the usage of resources. Hence, we say λc and νs are prices per unit
offered by the client c and charged by the server s, respectively. By looking at the
Lagrangian in (8) we see that the problem is separable into the sub-problems for
each client and server

CLIENT c :

maximise Uc (yc)−λcyc (9)

over yc ≥ 0 (10)

SERVER s :

maximise ∑
c∈C(s)

λcxsc +νs

(
Cs− ∑

c∈C(s)
xsc−ns

)
(11)

over xsc ≥ 0. (12)

The rate xsc is set by the server s and also the capacity constraint is related to the
servers. Hence, we propose a primal algorithm that adapts the rate xsc at server s. A

666 Kolja Eger and Ulrich Killat

simple method to optimise (11) is by iterative descent algorithms (see Section 3.2
of [2]). The partial derivative of (11) with respect to xsc depends on the Lagrange
multipliers λc and νs. The offered price λc can be derived from the client problem
in (9). However, the charged price νs can not be derived. Thus, we estimate νs by the
average offered price per unit capacity. Hence, the proposed distributed algorithm is

xsc(t +1) = max

(
ε,xsc(t)+ γxsc(t)

(
λc(t)− ∑d∈C(s) xsd (t)λd (t)

Cs

))
. (13)

Here, γ is a positive step size and ε is a small positive constant. Hence, the sending
rate xsc does not fall below ε . This models a kind of probing, which is necessary
to receive information about the offered price of the client. The offered price λc is
computed by setting the derivative with respect to yc of the CLIENT problem in (9)
to zero. If we use the logarithmic utility function in (5)

λc(t) =
Wc

max(η ,yc(t))
=

Wc

max
(
η ,∑s∈S(c) xsc(t)

) . (14)

Here, a small positive constant η is introduced to ensure a bounded price offer if the
total service rate is zero.

The algorithm in (13)–(14) is denoted as Resource Pricing in the following. It is
interpreted from an economical perspective as follows: Since λc is the price per unit
bandwidth, the product xscλc is the total price which is paid by peer c. Hence, the
sum over all clients in the numerator of (13) represents the total revenue of server s.
Dividing the total revenue by Cs returns the average price server s obtains per unit
capacity. If the offered price by client c is higher than the average price, then server
s increases its upload rate to c and decreases it otherwise. Additionally, (13) scales
the price difference by the rate xsc. This model reflects a market for service capacity
where prices control the rate allocations. Since the service capacity is a non-storable
commodity the market is a spot market, where the current demand influences the
future prices.

In [6] we show that the algorithm in (13)–(14) fulfils fundamental properties for
the resource allocation in a distributed environment. We derive conditions for the
efficiency of the algorithm and prove that the equilibrium point of (13)–(14) coin-
cides with the optimum of the global optimisation problem in (1)–(4). Furthermore,
global asymptotic stability of the equilibrium point is proven for a continuous model
without delays as well as a discrete model with delays.

The resource pricing algorithm can be used in P2P content distribution net-
works, where the willingness-to-pay is set to the upload bandwidth of a peer. Hence,
Wq = Cq for peer q and the total download rate in steady-state in (7) becomes

y·q =
Cq∑p∈P Cp

∑c∈CCc
, (15)

where P is the set of peers in the network and C is the set of peers which currently
are downloading the file. This model gives peers an incentive to contribute to the

Bandwidth Trading as Incentive 667

network since a peer with a high upload capacity can offer higher prices than others
and therefore receives a higher download rate.

2.3 Reciprocal Rate Control

The resource pricing algorithm assumes the correct signalling of the price offers.
Thus, an implementation must ensure that malicious users cannot forge their price
offers to obtain higher download rates. When this is not possible in a specific ap-
plication, an upload rate control algorithm can only be based on the download rates
of the connected peers (like in BitTorrent). This means a peer is only willing to
provide upload bandwidth to another peer when it receives in return bandwidth
from it.

In the context of pricing mechanisms the download rates can be interpreted as
the price a remote peer is willing to pay for the upload bandwidth allocated to it.
In the resource pricing algorithm the total price paid to peer p by a remote peer q for
the allocation of the rate xpq is the product xpqλq. Hence, by replacing xpqλq with
the rate xqp in (13) we get

xpq(t +1) = max

(
0,xpq(t)+ γ

(
xqp(t)− xpq(t)

∑r∈N (p) xrp(t)
Cp

))
. (16)

Here, the set N (p) denotes the set of neighbours of peer p. Since it uses the rate as
implicit price we denote it as Reciprocal Rate Control (RRC). We show in [10] that
the equilibrium point x· of the distributed algorithm in (16) finds an efficient and
weighted fair resource allocation, if it is feasible. A peer uses its full upload band-
width and downloads from a specific peer with the same rate as it is uploading, i.e.

x·qp = x·pq, ∀q ∈N (p). (17)

Furthermore, the total download rate over all connections is equal to the upload
capacity of the peer

y·p = ∑
q∈N (p)

x·qp = Cp. (18)

The reciprocal rate control algorithm is restricted to peers that did not complete the
download already. If feasible, it ensures that a peer receives at least the rate which it
provides to the network. Seeds cannot run the algorithm and have to use other rules
for their upload. (E.g. these peers can upload to peers, which have nothing at all.)
Therefore, an advantage of explicit prices used by resource pricing as compared to
implicit prices is that fairness is preserved also over the altruistically contributed
resources in the network.

668 Kolja Eger and Ulrich Killat

2.4 BitTorrent

Also in BitTorrent each peer controls to whom it uploads data. This peer selection is
called choking/unchoking. When a remote peer is selected for upload an UNCHOKE
message is sent. An upload is stopped with a CHOKE message. Each peer uploads
to a fixed number of other peers (the default value is four) and chooses to upload
to others from which it gets the highest download rates. This principle is called
tit-for-tat, because it is based on reciprocity. Unchoking by download rates is not
applicable for seeds. Therefore, the peer selection of the seeds is based on the upload
rates to the connected peers. This is driven by the idea that high upload rates are
only achieved when no one else uploads to the peer. Hence, those peers should be
preferred which are not served by others.

By default this tit-for-tat strategy is run every ten seconds by every peer, whereby
the download rates are determined by a moving average over the last 20 seconds.
To discover new peers with better performance a so-called optimistic unchoke is
done additionally. Here, one of the peers is unchoked independently of its rate.
The optimistic unchoke is changed every 30 seconds to provide enough time to
be possibly unchoked by the remote peer in return. Another rule in BitTorrent is
to choke a peer when it has sent no data message in the last minute. This is called
anti-snubbing.

The unchoking algorithm of BitTorrent gives peers an incentive to upload data to
the network since it increases the chance to be unchoked by others with increasing
upload capacity. Analytical models of BitTorrent’s incentive mechanism are pre-
sented in [19, 21]. In their simplified models global information is assumed, i.e. the
peers know the upload bandwidth of all other peers. In this case an optimistic un-
choke is needless and the peer selection achieves an equilibrium [21]. Peers form
groups with a group size equal to the number of unchokes plus one. Furthermore,
groups consist of peers with similar upload bandwidth depending on the descending
order of the bandwidth (see [21] for details). Hence, the download rate of a peer
depends not only on the upload bandwidth but also on its ratio to the bandwidth
of other peers in the network. Thus, peers with the same upload bandwidth can be
members in different groups and achieve different download rates. Further on, the
peers with the lowest upload bandwidths form a group which can be smaller than
the other groups.

3 Nash Equilibrium

Most peers in a P2P network behave selfishly and try to maximise their performance
only. Therefore, we can interpret the trading of bandwidth as a non-cooperative
game and study the Nash equilibrium. In the Nash equilibrium no peer gains by
only changing its strategy while all other players keep their strategy unchanged.
This means a Nash equilibrium corresponds to a set of strategies where every player
has found the best response to the actions of the other players [18].

Bandwidth Trading as Incentive 669

The Nash equilibrium for the BitTorrent protocol is studied in [19]. Here, each
peer can choose its upload bandwidth between zero and its physical upload capacity.
Since a higher upload bandwidth is associated with a higher cost, a peer is interested
primarily in maximising its download rate while also minimising its cost at the same
time. [19] shows that a Nash equilibrium exists for networks consisting of groups
(with a group size larger than the number of unchokes plus one) of peers where peers
belonging to the same group have identical upload bandwidths. In this situation
the best case for a peer is to upload to other peers in its group. The threshold to
be unchoked is exactly the upload bandwidth divided by the number of unchokes
(which is assumed to be equal for all peers). Therefore, a peer will be choked by
the peers of its group when it reduces its upload bandwidth. This results in inferior
performance.

On the other hand a Nash equilibrium does not exist when peers have different
upload capacities as it is demonstrated by an example in [19]. In this case some peers
can decrease their upload bandwidths and are still unchoked by the same remote
peers. Additionally, these peers can increase the number of peers to unchoke and
are possibly unchoked by further peers in return. Hence, the strategies of peers are
diverse and not only restricted by choosing an upload bandwidth. This complicates
the discussion of the Nash equilibrium for BitTorrent.

In the following we study the Nash equilibria for the two proposed pricing
schemes in steady-state. Assume for resource pricing that a peer cannot forge its
price offer λ . It can be seen directly from (15) that any reduction of upload capac-
ity will result in a decrease of the download rate. When maximising the download
rate has priority over minimising the upload cost every peer will upload with its
physical upload capacity. Thus, the steady-state of the system (13)–(14) is the Nash
equilibrium.

Similarly, the existence of the Nash equilibrium for reciprocal rate control can
be shown for the steady-state with (17) and (18). Since a peer receives exactly the
rate which it provides to the other peer, it gains nothing by reducing its upload
bandwidth. Hence, in steady-state its total download rate is its own upload capacity.

4 Performance Evaluation

The discussed trading schemes for P2P content distribution are evaluated by sim-
ulations in the following. We restrict our analysis to the application layer. It is
widely assumed that the bottlenecks in P2P networks are the access links of the
users [1, 19]. This seems reasonable because most peers are home users who are
connected e.g. with DSL or cable modems to the Internet. Furthermore, the core
of the Internet shows a low utilisation of the available bandwidths [17] and small
packet loss rates due to congestion [11].

Additionally, we omit the TCP behaviour in this section and discuss briefly
the interaction between P2P and the transport protocol in Section 6. Furthermore,
we present in [7] a simulation analysis of the differences between packet-level

670 Kolja Eger and Ulrich Killat

and flow-level simulations for BitTorrent. Since home users often have asymmet-
ric access links (e.g. ADSL) and/or set the upload bandwidth in the P2P application
lower than their physical upload capacity, we assume the uplink is the bottleneck in
the whole network.

The bandwidth trading schemes depend on the number of neighbours and espe-
cially on the number of connections where both sides are interested in data of the
other side. Thus, the topology generated by the protocol and the implemented piece
selection algorithm influence the results of bandwidth trading. To concentrate on the
trading schemes in the simulations we omit the piece selection algorithm for now
and assume connected peers are always interested in pieces of each other. Further-
more, for BitTorrent anti-snubbing is neglected, because it can result in situations
where a peer does not contribute its upload bandwidth although it can transfer data
to other peers. This can cause inefficiency in the network.

The overlay topology is constructed in the simulations according to the original
BitTorrent implementation [3, 4]. Here, a peer asks a so-called tracker, a centralised
component that stores information about all peers, for a list of other peers in the
network. The tracker returns a random subset of length NR to the requesting peer.
Hence, a peer opens a new connection to a remote peer based on the list returned by
the tracker or when a remote peer asks for it.

We will present results for static and dynamic P2P networks. Further simulation
results can be found in [10].

4.1 Static networks

One major difference of the two pricing schemes to BitTorrent’s tit-for-tat strategy
is their convergence to a steady-state. To demonstrate the basic functionality of all
algorithms we run a simulation for a small network of 10 peers with homogeneous
upload capacities of C = 1. The superposition of the download rates of the peers is
depicted in Fig. 1. Whereas the download rates of the peers oscillate between 0.4
and 1.6 for BitTorrent, the rates converge fast to a fair allocation for the Resource
Pricing (RP) and the Reciprocal Rate Control (RRC) algorithm where each peer
receives exactly its upload capacity.

0 200 400
0

0.5

1

1.5

Round

D
ow

nl
oa

d
R

at
e

0 200 400
0

0.5

1

1.5

Round

D
ow

nl
oa

d
R

at
e

0 200 400
0

0.5

1

1.5

Round

D
ow

nl
oa

d
R

at
e

(a) Bit Torrent (b) Resourse Pricing (c) PRC

Fig. 1 Superposition of the download rates of 10 peers for different trading schemes

Bandwidth Trading as Incentive 671

The oscillations with BitTorrent are caused by the optimistic unchoke. For the
ideal case where peers have global information about the upload bandwidth of other
peers, analytical studies [19, 21] show that the tit-for-tat strategy has an equilibrium
point. Since the optimistic unchoke is a random process, the mean values of the
download rates are closer together. In this example the mean download rates of the
10 peers lie between 0.77 and 1.23.

Especially, the performance of BitTorrent depends on the number of neigh-
bours. To study the influence of the topology on the download performance sim-
ulations are run with varying parameter NR. The network population was 1000
peers, each peer starting with a small random offset to avoid synchronisation
effects. The simulation consisted of 1000 iterations of the respective algorithm
and was repeated 5 times. We set γ = 0.1 for RP and RRC and ε = 0.1C/NC,
whereby NC denotes the number of connections of a peer. The capacity of all peers
is C = 1.

The empirical cumulative distribution function (CDF) of the mean download
rate over the 1000 iterations is depicted over all runs in Fig. 2. To compare
the three algorithms Fig. 2a, c, d, show the results for download rates between
0.95 and 1.05. With BitTorrent’s tit-for-tat algorithm peers receive highly differ-
ent download rates while providing the same upload capacity. To see its perfor-
mance on a larger scale the CDF for download rates between 0.5 to 2 is depicted in
Fig. 2b.

Tit-for-tat depends on the number of neighbours. With NR = 2 a peer has on
average four connections only [10] and therefore no choice in selecting peers. This
results in a poor performance where 10% of the peers receive half or less of what
they provide. Download rates are distributed more equitably with increasing NR. For
NR = 10 all peers receive a mean download rate of ±20% of their upload capacity,
whereas this percentage decreases to ±10% for NR = 50.

Nonetheless, the distribution of download rates with BitTorrent is not as uni-
formly distributed as with the two proposed pricing algorithms. Nearly all peers
receive download rates between 0.98 and 1.02 with both algorithms and values of
NR > 2. Furthermore, the download rates at the end of each simulation were equal
to one for every peer. This means the pricing algorithms converged. Thus, the dif-
ferences of the CDFs for different values of NR in Fig. 2c, d are due to differences
in the rate of convergence.

For the next simulation we consider heterogeneous peers with upload capacities
of integers between 1 and 10. The capacity is determined randomly at the start of
the simulation. With a total of 1000 peers there are on average 100 peers with the
same capacity in the network. The download performance of each peer is measured
by the ratio of mean download rate to upload capacity. Figure 3 shows the median
and the 2.5 to 97.5 percentile range of the mean download rates for peers with the
same upload capacity. By using BitTorrent the median for peers with an upload
capacity of C = 1 is much larger as the fair share of one whereas the peers with
C = 10 receive mostly a rate lower than their contribution. One reason for this is
the optimistic unchoke since a low capacity peer gains more than it invests com-
pared to a high capacity peer. Another reason is the incapability to find the right

672 Kolja Eger and Ulrich Killat

0.95 0.975 1 1.025 1.05
0

0.2

0.4

0.6

0.8

1

Mean Download Rate

E
m

pi
ric

al
 C

D
F

NR=2

NR=5
NR= 10

NR= 50

0.5 0.75 1 1.25 1.5 1.75 2
0

0.2

0.4

0.6

0.8

1

Mean Download Rate

E
m

pi
ric

al
 C

D
F

NR=2
NR=5

NR= 10

NR= 50

0.95 0.975 1 1.025 1.05
0

0.2

0.4

0.6

0.8

1

E
m

pi
ric

al
 C

D
F

N
R
= 2

N
R
= 5

N
R
= 10

N
R
= 50

0.95 0.975 1 1.025 1.05
0

0.2

0.4

0.6

0.8

1

E
m

pi
ric

al
 C

D
F

N
R
= 2

N
R
= 5

N
R
= 10

N
R
= 50

(a) Bit Torrent (b) Bit Torrent (larger scale)

Mean Download Rate Mean Download Rate

(c) Resource Pricing (d) Reciprocal Rate control

Fig. 2 Empirical CDF for varying parameter NR

match, which also explains the different performances between peers with the same
capacity.

For resource pricing and reciprocal rate control the median of the download per-
formance is very close to the upload capacities of the peers. Additionally, the small
percentile range indicates that peers with the same upload capacity receive nearly
the same download performance.

4.2 Dynamic Networks

We conducted simulations also for dynamic networks where interarrival times be-
tween peers and session times of peers are negative exponentially distributed ran-
dom variables. We set NR = 10 and compare the performance for two cases with
different interarrival times but for the same average peer population of 1000. We as-
sume the respective algorithm is run per unit time. The resulting CDFs are depicted

Bandwidth Trading as Incentive 673

<−1−><−2−><−3−><−4−><−5−><−6−><−7−><−8−><−9−><−10−>
0

1

2

3

4

5

6

7

8

9

10

11

Upload Capacity

M
ea

n
D

ow
nl

oa
d

R
at

e

BitTorrent
Resource Pricing
Reciprocal Rate Control

Fig. 3 Median and the 2.5–97.5 percentile range of the mean download rates for heterogeneous
peers (NR = 10)

0.9 0.95 1 1.05 1.1
0

0.2

0.4

0.6

0.8

1

Mean Download Rate / Upload Capacity

E
m

pi
ric

al
 C

D
F

BitTorrent

RRC

RP

0.9 0.95 1 1.05 1.1
0

0.2

0.4

0.6

0.8

1

Mean Download Rate / Upload Capaci ty

E
m

pi
ric

al
 C

D
F

BitTorrent

RRC

RP

(a) T arr
 = 10, T ses

 = 10000 (b) T arr
 = 1, T ses

 = 1000

Fig. 4 CDFs for dynamic networks (NR = 10)

in Fig. 4a, b. With a mean interarrival time between peers of T arr = 10, i.e. on
average 10 iterations of the algorithm before a new peer enters, the two pricing
schemes achieve nearly uniformly distributed download performances for heteroge-
neous peers.

For T arr = 1 in Fig. 4b the CDF shows higher variability in the achieved down-
load performance for the two proposed algorithms. Furthermore, the results for re-
ciprocal rate control deteriorate more than for resource pricing comparing it with
the results in Fig. 4a.

674 Kolja Eger and Ulrich Killat

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Peer Session Time

M
IN

(M
ea

n
D

ow
nl

oa
d

R
at

e
/ U

pl
oa

d
C

ap
ac

ity
)

BitTorrent
Resource Pricing
Reciprocal Rate Control

Fig. 5 Minimal download performance (T arr = 1,T ses = 1000)

Especially for T arr = 1,T ses = 1000 some peers stay only a very short time in
the network and merely run the trading algorithm a few times. This results in a
poor download performance as it can be seen from Fig. 5. Here, the minima of
the download performances of peers with similar session times are measured for
time intervals of 25 time units. For all schemes the minimal download performance
increases with the session time of the peers, but the increase is more pronounced
for the two trading schemes. After around 500 time units the minimal download
performance in the network is above 0.9.

In conclusion, BitTorrent’s tit-for-tat strategy gives peers an incentive to con-
tribute upload bandwidth to the network. But it cannot avoid unfairness among peers
with respect to the experienced download performance. The two proposed alterna-
tives improve fairness. In static and dynamic simulations both algorithms show good
convergence and better fairness as the tit-for-tat strategy used in BitTorrent.

5 Bandwidth Trading and Piece Selection

In Section 4 we assume peers have always parts of the file which are of interest for
the remote peers. This simplification enables to study the incentive schemes without
discussing a specific piece selection algorithm. It is also applicable to systems with
network coding [12] where linear combinations of all pieces are exchanged and no
piece selection is run. When network coding is not used, piece and peer selection
depend on each other. Besides finding the peers which provide good download rates,
a peer should download rare pieces to ensure that it has something of interest for
others in the future. Furthermore, requesting rare pieces increases the availability of
a full copy of the file in the network.

Bandwidth Trading as Incentive 675

The optimisation problem in (1)–(4) can be extended to a multi-objective op-
timisation problem, where beside rates also the content availability is maximised.
An optimisation problem for the content availability for BitTorrent-like networks is
presented in [5]. However, the authors of [5] prove that the optimisation problem is
NP-complete. Hence, no algorithm finds the optimum of the problem in polynomial
time unless the well-known P = NP problem in complexity theory is resolved.

On the other hand analytical and simulation-based studies [1, 19] show that Bit-
Torrent’s piece selection is efficient. Piece selection in BitTorrent follows the fol-
lowing rules [3]: Firstly, when some bytes are received from a specific chunk the
remaining parts of that chunk are requested. This scheme is called strict priority.
Since peers forward only complete chunks (where data integrity is verified) to other
peers, this mechanism ensures that chunks are completed fast. When strict priority
is not applicable, the rarest chunk is requested. Since a peer has only a local view of
the network it can only estimate rarity based on the information of its neighbours.
This information is available to the peer by the BitTorrent messages BITFIELD and
HAVE. When a peer has no chunk at the beginning of the download, BitTorrent
deviates from the rarest-first policy and the new peer requests a piece randomly.
This is intended to ensure a faster completion of the first piece such that the upload
bandwidth of that peer can be used by others.

We discuss in the following how the resource pricing algorithm in (13)–(14) can
be combined with BitTorrent’s piece selection. We choose resource pricing instead
of reciprocal rate control, because it has two advantages. It ensures fairness also
for the resources contributed by the seeds and has higher flexibility by defining the
willingness-to-pay appropriately. For example, when the content distribution is re-
alised by proprietary software of the content providers, they may set the willingness-
to-pay for each peer according to the subscription status of the user. Furthermore,
when the content owner contributes also resources to the P2P network, the owner
has influence how these are allocated to the peers. Additionally, proprietary software
(e.g. for set-top boxes) and the combination of P2P content distribution with IP mul-
timedia subsystems as discussed in [16] have the potential to reduce the influence
of malicious peers.

Assume we replace BitTorrent’s peer selection by resource pricing but keep the
other functionalities of BitTorrent. This means a peer controls the upload rate to
all its neighbours with (13)–(14) and peers request pieces according to the rules in
the BitTorrent specification [3].1 We evaluate this new approach and compare it to
the original BitTorrent implementation by simulations at the application layer. In
the first simulation scenario a constant number P of peers is present in the network.
Further on, S and L denote the number of seeds and leechers in the network, respec-
tively.2 Hence, P = S+L. To keep the number of seeds and leechers constant in our
simulation we assume a leecher leaves the network when its download is completed

1 For BitTorrent as well as the revised version with resource pricing the endgame-mode is ne-
glected. We omitted the endgame mode in our implementation because it is not clearly specified
when a peer switches to the endgame mode. Hence, different implementations realise it differently.
2 Peers that have a full copy of the file and peers that are still downloading the file are denoted in
the BitTorrent specification [3] as seeds and leechers, respectively.

676 Kolja Eger and Ulrich Killat

and a new leecher with no pieces enters the network at this point in time. At the
beginning of the simulation the leechers have a random set of pieces. This simula-
tion setup studies the performance of peers with different download progress. Fur-
thermore, it can be easily studied analytically. The total capacity in the network is
∑S

s=1 Cs +∑L
l=1 Cl , where C denotes the upload capacity of a peer. A proportional re-

lationship between upload capacity and download rate is desirable, because it gives
peers an incentive to contribute bandwidth to the network. In the optimal case the
download rate achieved by trading bandwidth with other leechers is equal to the
peer’s own upload capacity. Another portion of the download rate is contributed by
the seeds in the network. If the resources of the seeds are allocated proportionally
fair with respect to the leecher’s upload bandwidth a leecher l has a total download
rate of

yl = Cl +Cl
∑s∈S Cs

∑m∈L Cm
= Cl

∑p∈P Cp

∑m∈L Cm
. (19)

Equation (19) overestimates the download performance of a peer because it neglects
that a peer needs a piece which is of interest for other peers. This is not always the
case. Particularly, at the start a peer has no data and cannot contribute its resources
to the network. Furthermore, (19) is identical to the steady-state download rate of
resource pricing in (15) because resource pricing is designed to ensure fairness.

As in the previous section the number of neighbours has an influence on the
download performance. In BitTorrent several parameters control the number of
neighbours. So far we have taken only NR, the number of peers returned by the
tracker, into account. Now, we will introduce also the parameters max initiate and
min peers, which are used in BitTorrent [3]. Denote max initiate with NMI and define
it as the number of connections at which the peer stops initiating new connections.
Furthermore, denote min peers with NMP and define it as the lower limit of con-
nections at which a peer does not re-request new peer information from the tracker.
By default, a BitTorrent peer requests NR = 50 addresses of peers at the tracker and
opens if possible up to NMI = 40 connections to other peers. Due to churn the num-
ber of connections changes over time. It can increase above NMI = 40 connections
when remote peers ask for a connection because remote requests are not denied in
the implementation. When many peers leave the network and the number of con-
nections is NMP or below the peer concerned asks the tracker for additional peer
information. To avoid frequent re-requests a peer has to wait at least 300s between
two requests to the tracker.

In the following we will not present a detailed parameter study but use the default
values for BitTorrent. For resource pricing we choose the parameters such that peers
in the network have approximately the same number of neighbours and do not run
out of neighbours. Hence, NR is set to a large value and NMI = NMP. Additionally, we
run simulations with the default parameters of BitTorrent also for resource pricing.

We simulate a network of P = 100 peers, which download a file of size SF =
100MB. Pieces have a size of 256 KB. With BitTorrent each peer unchokes 4 other
peers plus the optimistic unchoke. Additionally, all other parameters are set to the
default values of BitTorrent [3]. For S = 1 and L = 99 and a homogeneous upload

Bandwidth Trading as Incentive 677

700 750 800 850 900 950 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Download time t

E
m

pi
ric

al
 C

D
F

optimal

RP (50,40,20)

RP (50,25,25)

RP (50,10,10)

RP (50,5,5) BT (50,40,20)

Fig. 6 CDF of the download time for Resource Pricing (RP) and BitTorrent (BT) with different
parameters (NR,NMI ,NMP)

capacity of C = 1Mbps the optimal download time t is t = SF/yl ≈ 830s using (19).
Figure 6 compares the optimal download time with BitTorrent using default param-
eters and resource pricing with varying parameters NMI and NMP.

The most striking result is the poor performance with resource pricing and pa-
rameters NR = 50, NMI = 40 and NMP = 20, which will be discussed in detail shortly.
The other simulation results are close to the optimal value. The mean download time
with BitTorrent is 866 s and for resource pricing with NMI = NMP = 5, NMI = NMP =
10 and NMI = NMP = 25 around 861 s, 863 s and 864 s, respectively. Looking at the
distribution, 90% of the peers have a download time between 800-940 s, 810-920 s
and 815-900 s with resource pricing and NMI = NMP = 5, NMI = NMP = 10 and
NMI = NMP = 25, respectively. BitTorrent shows a range of 796-940 s. Hence, fair-
ness among peers increases for resource pricing with an increasing value for the
parameters NMI and NMP up to a limit of 25. Although differences are small for
homogeneous peers fairness is better for these cases as with BitTorrent.

As opposed to BitTorrent, where peers upload by default to five other peers,
resource pricing uploads data over all the connections of a peer. This can cause
inefficiency as seen in Fig. 6 for NR = 50, NMI = 40 and NMP = 20. By requesting
data from a large number of other peers the piece selection is not efficient and rare
pieces emerge. This can be seen from Fig. 7, where the number of copies for the
rarest and the most frequent piece is depicted for the inefficient case (NR = 50,NMI =
40,NMP = 20) in comparison to an efficient case (NR = 50,NMI = 10,NMP = 10).

In Fig. 7a the rarest piece is sometimes only available at the seed. Although
the number of copies increases fast in the following another piece becomes rare.

678 Kolja Eger and Ulrich Killat

0 2 4 6 8

x 104

0

20

40

60

80

100

Time t

N
um

be
r

of
 c

op
ie

s
Rarest piece
Most frequent piece

0 2 4 6 8

x 104

0

20

40

60

80

100

Time t

N
um

be
r

of
 c

op
ie

s

Rarest piece
Most frequent piece

(a) Resource Pricing (50,40,20) (b) Resource Pricing (50,10,10)

Fig. 7 Number of copies of rarest and most frequent piece in the network for parameters
(NR,NMI ,NMP)

The piece availability in the network is unstable and peers have highly different
download times. This is different in Fig. 7b. Here, the piece selection works fine and
the network is time invariant. This problem is not specific to resource pricing. Also
BitTorrent shows similar behaviour when peers unchoke a larger number of remote
peers (e.g. with 20 unchokes for the discussed simulation scenario). The reason
for inefficiency lies in the time it takes until a full chunk is uploaded. With many
upload connections the rate per connection decreases and it takes longer to complete
a specific chunk. Hence, when a chunk becomes rare it takes longer with many
connections until further peers offer copies of it. Furthermore, the piece availability
depends on the number of peers in the network. For this simulation setup all pieces
are distributed randomly at the beginning. Hence, on average each piece is available
at half of the peers in the network. With an increasing number of peers also the piece
availability increases in absolute numbers. And, simulations with 1000 peers show
that resource pricing is efficient also with NR = 50, NMI = 40 and NMP = 20.

The differences between resource pricing and BitTorrent are small for networks
where most of the peers are leechers and have homogeneous upload capacities. This
changes when peers have different upload capacities and altruistic behaviour is com-
mon. Figure 8 shows the CDFs for the mean download rate of peers with different
upload capacities of 128 kbps, 512 kbps and 1024 kbps, which are assigned ran-
domly to the peers. In Fig. 8a 1 seed and 99 leechers are in the network. The op-
timal download rates are computed with (19). With resource pricing the download
rate is closer to the optimal values than with BitTorrent. Identical to the results from
Section 4 the download performance with BitTorrent is better for peers with lower
capacities than with higher capacities. Also the range for the same capacity is larger
for BitTorrent than with resource pricing.

When a large number of seeds is present in the network BitTorrent fails to provide
a strong incentive. This is shown in Fig. 8b, where half of the peers are seeds. As
in Fig. 8a the curve to the left, middle and right for each method corresponds to an
upload capacity of 128 , 512 , and 1024 kbps, respectively. Since the three curves of

Bandwidth Trading as Incentive 679

0 2 4 6 8 10 12 14

x 104

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mean download rate yl [Bytes/s]

C
D

F

Optimal
Resource Pricing
BitTorrent

1024kbps
512kbps

128kbps

0 0.5 1 1.5 2 2.5 3 3.5 4

x 105

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mean download rate yl [Bytes/s]

C
D

F

Optimal
Resource Pricing
BitTorrent

(b) 50 seeds and leechers

(a) 1 seed and 99 leechers

Fig. 8 Network with heterogeneous capacities for resource pricing (50,10,10) and BitTorrent
(50,40,20) with parameters (NR,NMI ,NMP)

680 Kolja Eger and Ulrich Killat

BitTorrent are close together, peers do not gain much by contributing higher upload
bandwidth to the network. With resource pricing the incentive for peers is much
stronger and the curves are closer to the computed optimal values.

Up to this point we restricted our attention to a scenario where pieces are fre-
quently available at different peers in the network. This is a desirable state of the
network since download times are near to the optimal values. In the following we
study a scenario where one chunk is rare and observe if the network gets out of this
state and attains a state with balanced piece availability. Assume the rarest chunk
is uploaded by the seed to U other peers. Furthermore, when a peer completes the
rarest chunk it uploads it to others. Hence, for homogeneous peers with capacity
C the number of copies of the rarest chunk increases by (U + 1)i, where i is the
number of time intervals it takes to upload a full chunk to U peers. With a chunk
size of SC this time interval can be computed with U ·SC/C. Hence, the increase of
the rarest chunk is exponentially and at fastest rate with U = 1. For example, with
the default chunk size and homogeneous peers with a capacity of 1 Mbps it takes
around 15 s and 31 s to disseminate a chunk to over hundred peers with one and five
current uploads, respectively.

In simulations we assume the chunk with id 0 is only available at the seed and all
other peers have a random set of chunks except chunk 0. Results for BitTorrent and
resource pricing are depicted in Fig. 9a for a specific run and are summarised for 10
runs in Table 1. The average time until chunk 0 is no longer the rarest chunk in the
network is given in Table 1 along with the 95% confidence intervals.

0 100 200 300 400 500
0

5

10

15

20

25

30

35

40

45

50

Time t

N
um

be
r

of
 c

op
ie

s

BT (50,40,20)

RP (50,5,5) RP (50,10,10)

RP (50,25,25)

Time t
0 100 200 300 400 500

0

5

10

15

20

25

30

35

40

45

50

N
um

be
r

of
 c

op
ie

s

BT (50,40,20)
PDRP (50,5,5)

PDRP (50,40,20)

PDRP (50,10,10)

PDRP (50,25,25)

(a) RP (b) PDRP

Fig. 9 Dissemination of one rare chunk

Table 1 Time until chunk 0 is not the rarest chunk (and 95% confidence intervals)

BT (50,40,20) RP (50,5,5) RP (50,10,10) RP (50,25,25) RP (50,40,20)

85±11 206±37 358±46 1393±423 2120±579

Bandwidth Trading as Incentive 681

Although the simulation results are much larger than the analytical numbers also
the measured dissemination time for the rare chunk increases with the number of
upload connections. With BitTorrent a peer uploads to five other peers at a time and
after around 85 s the chunk 0 is available frequently in the network. With resource
pricing and NMI = 5 each peer has more than five connections because it accepts
remote connection requests. Hence, it takes around 206 s to disseminate the chunk
in the network. For larger values of NMI the time for dissemination increases con-
siderably.

In summary, the results for resource pricing show that fairness is increased with
the number of connections up to a point where the network becomes inefficient.
Furthermore, dissemination of a rare chunk is better for a small number of upload
connections. Hence, there is a trade-off between fairness and efficiency. To adapt
dynamically to the network conditions we extend resource pricing in the following
and make the price offer dependent on the piece availability.

5.1 Piece-Dependent Resource Pricing

We use a linear approach to weigh the price offer λc on every connection depending
on the requested chunk. If the chunk is rare then higher prices are offered. Thus, the
server will increase its rate on this connection. However, this works only as long as
a server uploads and a client downloads different chunks. When all peers request
the same piece also the price offers are similar and roughly the same upload rate is
allocated to them. This extension of resource pricing is denoted as Piece-Dependent
Resource Pricing (PDRP) in the following.

Each client estimates the availability of chunks based on the chunk information
of its neighbours. Denote the number of neighbours of client c that completed chunk
i as f i

c. The price offer of client c for chunk i is

λ i
c = αc

λc

f i
c
. (20)

Here, αc normalises the price offers such that each peer does not offer higher prices
than allowed with its willingness-to-pay. To ensure that Wc = ∑s∈S(c) xscλ i

c holds
we set

αc =
Wc

∑s∈S(c)
xscλ i

c

f i
c

. (21)

With (20) the weighting factor increases linearly with the rareness of a chunk. For
example, a client offers the double price for a piece that is half as frequent as another
piece.

682 Kolja Eger and Ulrich Killat

Table 2 Time until chunk 0 is not the rarest chunk for PDRP

PDRP (50,5,5) PDRP (50,10,10) PDRP (50,25,25) PDRP (50,40,20)

153±15 205±25 238±18 208±15

We repeat the simulation with the rare chunk for piece-dependent resource pric-
ing. The results are given in Fig. 9b and Table 2. For resource pricing with piece-
dependent price offers the rare chunk is disseminated faster for all studied parame-
ter sets. The differences for different parameters with NMI ≥ 10 are small. However,
BitTorrent provides also in this case the best results because peers upload to a small
number of other peers. This means, weighting the price offers by the piece availabil-
ity improves the dissemination time to some extent but also the number of uploads
should be decreased when some pieces are rare.

We also re-run the other simulations for PDRP. Here, all pieces are frequently
available in the network. Hence, PDRP produces very similar results as compared
to the original implementation. Also for many connections (NR = 50, NMI = 40 and
NMP = 20) the weighting of the price offer is too slow and the performance is as
poor as with resource pricing.

In conclusion, BitTorrent networks are a very efficient way for the fast dissemina-
tion of large content in the Internet. Although it provides an incentive to contribute
upload bandwidth to the network it does not avoid unfairness among the peers. Es-
pecially, for peers with different upload capacities and for altruistically contributed
resources the performance becomes unfair. Resource pricing and its extension piece-
dependent resource pricing increases fairness. For a medium number of uploads
(e.g. for the parameter set (NR,NMI ,NMP))=(50,10,10)) the proposed algorithms out-
perform BitTorrent and give peers a strong incentive to contribute resources. Only
for parameter sets where the upload bandwidth is divided among many peers it takes
long until a full piece is provided to another peer. Hence, rare chunks might emerge.
To some extent this can be avoided by higher price offers for rarer chunks. However,
as in BitTorrent, limiting the number of concurrent uploads is a more efficient way.
To trade off between fairness and dissemination time of rare chunks piece-dependent
resource pricing is a good compromise.

6 TCPeer: A TCP Variant for P2P CDNs

The prevalent mechanism to avoid congestion in IP networks is the control of the
sending rate with TCP. Dynamic routing strategies at the IP layer are not deployed
because of problems like route oscillations and out-of-order packet deliveries. How-
ever, with the adoption of P2P technology, routing is done also in these overlay net-
works. With multi-source download protocols peers upload and download to/from
other peers in parallel. Hence, by controlling the sending rates between the peers

Bandwidth Trading as Incentive 683

we may achieve two desirable properties: load balancing at the peers, which up-
load data, and the avoidance of congested links in the IP network. Considering load
balancing, P2P technology has found already its way to content distribution net-
works [22]. But most of the work assumes that a file request is routed to a single
server (in a sophisticated way). Multi-source download protocols adapt faster to
changes at the servers or in the network because data is requested at multiple peers
in parallel. Hence, the total bandwidth of all serving peers can be allocated in a fair
manner to the client peers. Furthermore, also congestion can be avoided. When a
connection between two peers becomes overloaded, the uploading peer can favour
another peer on an uncongested route. Thus, it uses its upload bandwidth more ef-
ficiently. On the other hand the downloading peer could ask for a higher download
rate at other providers of the file. Thus, it could receive the same download rate as
in an uncongested network.

Based on the resource pricing algorithm for P2P networks, in Section 2.2, we
propose in [9] a rate control algorithm for P2P over IP networks. Here, only the ba-
sic idea is outlined: The approach is denoted as TCPeer, because a peer adopts the
functionality of TCP and extends it with information from the overlay network. A
distributed algorithm is proposed, where sending peers control the rate depending on
the price offers by the remote peers and the path prices charged by the routers in the
IP network. Since sending rates depend on the price offers of the remote peers the
algorithm ensures fairness among peers. Furthermore, indicated by the path price a
serving peer is aware of the level of congestion in the underlying IP network. Thus,
it can shift upload bandwidth from congested to uncongested flows. Because of the
change in price offers at the receiving peers other senders will change their send-
ing rates accordingly. The rate allocation of all peers converges to an efficient and
fair allocation of bandwidth in the network. Furthermore, P2P traffic avoids con-
gested links when uncongested routes between some peers exist. In [9] we validate
the functionality of the new approach analytically and by simulations for a small
network, where explicit price information is assumed.

7 Conclusion

In P2P content distribution networks, a peer chooses freely the peers it uploads to
and allocates bandwidth for it. However, peers act frequently on their own interest.
Hence, an incentive to contribute resources to the P2P network should be given
to peers. In this chapter resource pricing for P2P networks is proposed to ensure
fairness among peers. Fairness is of great importance in P2P networks, because it
ensures that the download performance of a peer depends on its allocated upload
bandwidth. Hence, free-riding is decreased and/or avoided in the network.

From a P2P network model two distributed pricing algorithms are derived, which
are denoted as resource pricing and reciprocal rate control. Both increase fairness
among peers as compared to the tit-for-tat scheme of BitTorrent. When the piece
availability is taken into account, a trade-off between efficiency and fairness has

684 Kolja Eger and Ulrich Killat

to be done. With an increasing number of uploads, fairness is improved. However,
rare pieces might emerge because the upload bandwidth is divided between many
peers. One alternative is to set higher prices for rare pieces. This will fasten the
dissemination of rare pieces.

The proposed algorithms are based on the resource pricing model used for IP
networks. Hence, P2P and IP network can be modelled in a single optimisation
problem and TCP variants optimised for the use with multi-source download can be
derived.

References

1. A. R. Bharambe, C. Herley, and V. N. Padmanabhan, “Analyzing and improving BitTorrent
performance,” Microsoft Research, Tech. Rep. MSR-TR-2005-03, 2005. [Online]. Available:
http://www.research.microsoft.com/∼padmanab/papers/msr-tr-2005-03.pdf

2. D. Bertsekas and J. Tsitsiklis, Parallel and distributed computation: numerical methods.
Prentice-Hall. Inc., 1989.

3. “Bittorrent protocol specification v1.0.” [Online]. Available: http://wiki.theory.org/
BitTorrentSpecification

4. B. Cohen, “Incentives build robustness in BitTorrent,” in Proc. 1st Workshop on Economics of
Peer-to-Peer Systems, Berkeley, Jun. 2003.

5. W. Chehai, L. Xianliang, and D. Hancong, “Analysis of content availability optimization
in BitTorrent,” in Proc. 2006 International Conference on Hybrid Information Technology
(ICHIT’06), Los Alamitos, CA, USA, Nov. 2006, pp. 525–529.

6. K. Eger, “A pricing approach to distributed resource allocation in IP and peer-to-peer net-
works,” Ph.D. dissertation, Hamburg University of Technology, 2008.

7. K. Eger, T. Hoßfeld, A. Binzenhöfer, and G. Kunzmann, “Efficient simulation of large-scale
P2P networks: Packet-level vs. flow-level simulations,” in 2nd Workshop on the Use of P2P,
GRID and Agents for the Development of Content Networks (UPGRADE-CN’07), Monterey
Bay, CA, USA, Jun. 2007, pp. 9–16.

8. K. Eger and U. Killat, “Resource pricing in peer-to-peer networks,” IEEE Communications
Letters, vol. 11, no. 1, pp. 82–84, Jan. 2007.

9. K. Eger and U. Killat, “TCPeer: Rate control in P2P over IP networks,” in LNCS 4516: 20th
International Teletraffic Congress (ITC20), Ottawa, Canada, Jun. 2007, pp. 618–629.

10. K. Eger and U. Killat, “Bandwidth trading in BitTorrent-like P2P networks for content dis-
tribution,” Computer Communications, Special Issue: Foundation of Peer-to-Peer Computing,
vol. 31, no. 2, pp. 201–211, Feb. 2008.

11. S. Floyd, “Measurement studies of end-to-end congestion control in the Internet,” Last
modified in April 2007. [Online]. Available: http://www.icir.org/floyd/ccmeasure.html

12. C. Gkantsidis and P. Rodriguez, “Network coding for large scale content distribution,” in Proc.
IEEE INFOCOM, Miami, Mar. 2005.

13. B. Hubert, T. Graf, G. Maxwell, R. van Mook, M. van Oosterhout, P. Schroeder, J. Spaans,
and P. Larroy, Linux Advanced Routing & Traffic Control HOWTO. [Online]. Available:
http://lartc.org/

14. F. Kelly, “Charging and rate control for elastic traffic,” in European Transactions on Telecom-
munications, vol. 8, Jan. 1997, pp. 33–37.

15. F. Kelly, A. Maulloo, and D. Tan, “Rate control in communication networks: shadow prices,
proportional fairness and stability,” in Journal of the Operational Research Society, vol. 49,
Mar. 1998, pp. 237–252.

Bandwidth Trading as Incentive 685

16. A. Liotta and L. Lin, “IP multimedia subsystem - the operator’s response to P2P service de-
mand,” IEEE Communications Magazine, vol. 45, no. 7, pp. 76–83, Jul. 2007.

17. A. Odlyzko, “Data networks are lightly utilized, and will stay that way,” Review of Network
Economics, vol. 2, no. 3, pp. 210–237, Sep. 2003.

18. M. J. Osborne, An Introduction to Game Theory. Oxford University Press, 2004.
19. D. Qiu and R. Srikant, “Modeling and performance analysis of BitTorrent-like peer-to-peer

networks,” Computer Communication Review, vol. 34, no. 4, pp. 367–378, 2004.
20. S. Shenker, “Fundamental design issues for the future Internet,” IEEE Journal on Selected

Areas in Communication, vol. 13, no. 7, Sep. 1995.
21. R. Thommes and M. Coates, “BitTorrent fairness: analysis and improvements,” in Proc. Work-

shop Internet, Telecom. and Signal Proc., Noosa, Australia, Dec. 2005.
22. E. Turrini and F. Panzieri, “Using P2P techniques for content distribution internetworking: A

research proposal,” in Proc. IEEE P2P 2002, 2002.

Part VI
Trust, Anonymity, and Privacy

Reputation-Based Trust Management in
Peer-to-Peer Systems: Taxonomy and Anatomy

Loubna Mekouar, Youssef Iraqi, and Raouf Boutaba

Abstract Trust is required in file sharing peer-to-peer (P2P) systems to achieve bet-
ter cooperation among peers and reduce malicious uploads. In reputation-based P2P
systems, reputation is used to build trust among peers based on their past transac-
tions and feedbacks from other peers. In these systems, reputable peers will usually
be selected to upload requested files, decreasing significantly malicious uploads in
the system. This chapter surveys different reputation-based P2P systems. We will
breakdown a typical reputation system into functional components. We will dis-
cuss each component and present proposed solutions from the literature. Different
reputation-based systems will be described and analyzed. Each system presents a
particular perspective in addressing peers’ reputation.

1 Introduction and Motivation

The most important challenge of online environments is to assure positive interac-
tions and satisfactory transactions. People will usually back up from dealing with
strangers that they did not know before. Therefore, people minimize their interac-
tions and transactions and tend to remain in their comfort zone. Peer-to-Peer file
sharing systems provide a large collection of files available for download. In tradi-
tional systems, little information is given to the user to help in the peer-selection
and file-selection processes. For example, if a user wants to download a file, the
user is given a list of peers that have the requested file. The process of selecting
the right peer with no a priori information is frustrating and risky. To foster positive

Loubna Mekouar
University of Waterloo, Waterloo, Canada, e-mail: lmekouar@bbcr.uwaterloo.ca

Youssef Iraqi
Dhofar University, Salalah, Oman, e-mail: y_iraqi@du.edu.om

Raouf Boutaba
University of Waterloo, Waterloo, Canada, e-mail: rboutaba@bbcr.uwaterloo.ca

X. Shen et al. (eds.), Handbook of Peer-to-Peer Networking, 689
DOI 10.1007/978-0-387-09751-0 24, © Springer Science+Business Media, LLC 2010

690 Loubna Mekouar, Youssef Iraqi, and Raouf Boutaba

interactions and reduce the risk involved in P2P file sharing systems, peers need to
reason about trust and reputation systems are used to this end. Reputation systems
are based on collecting information about peers’ past transactions and computing a
reputation value for these peers. The reputation values will be the basis for identify-
ing trustworthy peers.

In a P2P system, peers communicate directly with each other to exchange
information and share files. P2P systems can be divided into several categories.
Centralized P2P systems (e.g., Napster [14]), use a centralized control server to
manage the system while downloading a file is achieved directly between peers.
These systems suffer from the single point of failure, scalability and censorship
problems. Decentralized unstructured P2P systems try to distribute the control over
several peers. They can be divided into completely-decentralized and partially-
decentralized systems. Completely-decentralized systems (e.g., Gnutella [2]) have
no hierarchical structure between the peers and all peers have equal role and respon-
sibilities. Partially-decentralized P2P systems (e.g., KaZaa [4], Morpheus [5], and
Gnutella2 [3]) occupy the middle ground between centralized and completely de-
centralized systems. These systems have been proposed to reduce the control over-
head needed to run the P2P system by the use of “superpeers” or “supernodes”.
Supernodes are peers that have extra capabilities and assume more responsibilities
than regular peers. A supernode act as a centralized server for the peers connected to
it. Decentralized structured P2P systems like CAN [46] and CHORD [54] are based
on Distributed Hash Tables (DHT) in that they use a hash function to deterministi-
cally map keys such as file names into points in a logical coordinate space. Peers are
responsible for storing (key, value) pairs that are hashed into a point that is located
within their region. Most P2P systems deployed on the Internet are unstructured.

In an open P2P system, peers often have to interact with unknown peers and need
to manage the risks involved in these interactions. For example, if a user wants to
download a file, the user is given a list of peers that can provide the requested file.
The user has then to choose one peer from which the download will be performed.
This process is frustrating to the user as no help is given on how to choose the right
peer. After the download has finished, the user has to check the received file for
malicious content and that it actually corresponds to the requested file (i.e., the re-
quested content). If the file is corrupted, the user has to start the process again. In
traditional P2P systems, little information is given to the user to help in the selec-
tion process. To solve this problem, peers need to be able to reason about trust in
order to avoid untrustworthy peers and reduce risks. Trust management [13] is any
mechanism that allows to establish mutual trust which allows peers to cooperate,
and obtain in the long term an increased utility for the participating peers.

In [55], the authors classify trust management systems into three categories:

• Credential-based trust management systems: in these systems, service providers
and the provided services are trusted, but service requesters are not. Service
providers use credentials to evaluate the trustworthiness of service requesters
and services may be granted or not.

• Reputation-based trust management systems: in these systems, service providers
and provided services are not trusted. Service requesters select service providers

Reputation-Based Trust Management in Peer-to-Peer Systems: Taxonomy and Anatomy 691

based on their reputation values. Reputable service providers are selected to pro-
vide the service.

• Social network-based trust management systems: these systems are based on so-
cial networks. Reputation is computed based on social relationships.

The focus in this work is on reputation-based trust management in P2P file shar-
ing systems. Reputation-based P2P systems [13, 17, 20, 28, 29, 32, 36, 39, 42, 61]
were introduced to build trust among peers. These systems try to evaluate the trans-
actions performed by the peers and associate a reputation value to each peer. The
reputation values will be used as selection criteria among peers.

In this chapter, we will investigate the existing research work proposed to ad-
dress reputation in P2P systems. We will present existing reputation management
schemes in centralized, completely decentralized and partially decentralized P2P
systems. We will describe these schemes and identify key properties for each repu-
tation system to summarize the efforts of researchers in addressing peers’ reputation.

2 Traditional Systems Versus Reputation-Based Systems

The following is the life cycle of a transaction in a traditional P2P system (Fig. 1a):

1. Send a file request (either to the supernode or to other peers depending on the
P2P system)

2. Receive a list of peers that have the requested file
3. Select a peer
4. Download the file

File is good?

Send a request for a file

Receive a list of peers that have the file

Select a peer from the list

Download the file

No Yes
File is good?

Send a request for a file

Receive a list of peers that have the file

Select a peer based on a reputation metric

Download the file

No Update
Reputation

Data

Update
Reputation

Data

Yes

(a) (b)

Fig. 1 (a) Life cycle in a traditional P2P system, (b) Life cycle in a reputation-based P2P system

The following is the life cycle of a transaction in a reputation-based P2P system
(Fig. 1b):

692 Loubna Mekouar, Youssef Iraqi, and Raouf Boutaba

1. Send a file request
2. Receive a list of peers that have the requested file
3. Select a peer or a set of peers, based on a reputation metric
4. Download the file
5. Send feedback and update the reputation data

Most reputation management schemes try to achieve the following goals:

1. Make informed decisions about transaction partners and choose appropriate peers
to download files

2. Isolate malicious peers from the network by downloading files only from rep-
utable peers, hence reducing malicious uploads

3. Increase users’ confidence and satisfaction
4. Help in the bootstrapping process to select peers to connect to in the overlay

network.
5. Motivate peers to exhibit good behavior
6. Use the network resources more efficiently

3 Trust and Reputation

3.1 Trust Definition

Trust is as old as the existence of human beings on this earth. People were grouped
in tribes and within the same tribe, they trusted each other. The concept of trust has
a significant role in the surviving of human beings. We experience and rely on trust
on daily basis. However, trust is difficult to define clearly and precisely.

Researchers from different fields such as psychology, sociology, philosophy, his-
tory, law, business and economics have tackled the concept of trust from different
views. According to the Oxford dictionary [6], trust is a firm belief in the reliability,
truth, ability, or strength of someone or something.

In 1973, Deutsch [21] has specified that trust is the confidence that an individual
will find what is desired from another, rather than what is feared.

In 1990, Diego Gambetta [25] defined trust as follows: Trust (or, symmetrically,
distrust) is a particular level of the subjective probability with which an agent will
perform a particular action, both before we can monitor such action (or indepen-
dently of his capacity of ever to be able to monitor it) and in a context in which it
affects our own action.

In 1996, McKnight and Chervany defined trust as Trust is the extent to which
one party is willing to depend on something or somebody in a given situation with
a feeling of relative security even though negative consequences are possible.

In 2000, Grandison and Sloman [26] defined trust as The firm belief in the com-
petence of an entity to act dependably, securely and reliability within a specified
context.

Reputation-Based Trust Management in Peer-to-Peer Systems: Taxonomy and Anatomy 693

In this chapter, we adopt the following definition proposed in 2006 by Chang
et al. [15]. Trust is defined as The belief the trusting agent has in the trusted agent’s
willingness and capability to deliver a mutually agreed service in a given context
and in a given time slot.

Based on our experience in the physical world, we extract the necessary informa-
tion that can help us build trust in the virtual world to increase users’ confidence and
reduce the risk. Marsh [35] is one of the first researchers to give a formal model of
trust that can be used in computer science. This model is based on social properties
of trust taken from sociology.

3.2 Reputation Definition

Reputation has been widely used in different disciplines such as psychology, sociol-
ogy, business and economics. From the Oxford dictionary, reputation is the beliefs
or opinions that are generally held about someone or something. Abdul Rahman
et al. [12] define reputation as “an expectation about an agent’s behavior based on
information about its past behavior”. Sabater et al. [49] define it as an “opinion
or view of one about something”. Mui et al. [41] define it as “the perception that
an agent creates through past actions about its intentions and norms”. In service-
oriented environments, Chang et al. [15] define reputation as “an aggregation of the
recommendations from all of the third-party recommendations agents and their first,
second and third hand opinions as well as the trustworthiness of the recommenda-
tion agent in giving correct recommendations to the trusting agent about the quality
of the trusted agent”.

3.3 Trust Properties

Trust is personal, subjective and it is based on various factors (i.e., endogenous
and exogenous [15]). In [29], trust can be measured objectively by tracking peers’
contribution to the system.

Trust is fuzzy since trust is imprecise and vague. Trust is dynamic since it is not
stable and it changes as time goes by. Trust is also complex since different ways are
possible for determining trust [15].

The trust relationship is usually asymmetric. The transaction between the trusting
peer and the trusted peer results in a trust value assigned by the trusting peer to the
trusted peer. This value shows the strength of the trust relationship.

The trust relationship can be transitive. In transitive trust [32, 33], if Alice trusts
Bob and Bob trusts Claire and Alice wants to interact with Claire. Alice asks Bob.
Bob will refer Claire to Alice. Alice derives a measure of trust in Claire based on
Bob’s trust to Claire and Alice’s trust to Bob.

694 Loubna Mekouar, Youssef Iraqi, and Raouf Boutaba

3.4 System Model

3.4.1 Modeling the Network

The success of file sharing applications has been behind the tremendous attention
given to P2P technology. As a consequence, this technology has been applied to
different distributed applications (e.g., Skype [8], PPLive [7], UUsee [9]). P2P ap-
plications have witnessed tremendous success among end users.

Centralized P2P systems use a centralized index for the files shared by each peer.
It simplifies the direct exchange and the sharing of files between peers. However,
it represents a single point of failure which reduces the reliability of the system. In
completely decentralized P2P systems, a central authority for storing data and han-
dling all the queries is not available. Interconnected peers are able to participate in
transactions by interacting with each other and make local autonomous decisions to
achieve their objectives. Peers are responsible for storing, sharing information and
handling the queries. Peers act as clients and request services from other peers as
well as servers and provide services to other peers. These systems provide improved
robustness and enhanced scalability compared to centralized systems. In [55], the
authors indicate the interplay between the degree of autonomy and the requirement
of trust. In these systems, peers are autonomous which leads to loosing control over
peers. Since no global view of the system is available, peers will get a partial and
limited perspective of the system by receiving information from other peers. Trust
is more needed to facilitate the interaction among peers. In partially decentralized
P2P systems, some peers (named “superpeers”, “supernodes”) act as local central
indexes for files shared by local peers. These systems provide lower discovery time
as the discovery process involves only the supernodes.

In P2P systems, the following terms are used:

• Peers, users, nodes, agents: peers issue queries and reply to them
• Files, resources, items: the requested items from requester peers.
• Transactions: interactions and experiences between peers. In P2P systems, these

interactions can be sharing a file, CPU cycles, or disk storage. A transaction in a
P2P system involves:

– The requester peer: the peer that requests the service.
– The provider peer: the peer that has the requested service and is available to

provide it to the requester peer.
– Intermediary peer: the peer that is involved in a transaction. This peer partici-

pates to accomplish the transaction and to fulfill the request (e.g., forwarding
messages). The intermediary peer is also referred as a third party peer or a
mediator or a queried peer.

– Recommender peer: peer that sends a feedback to the requester peer.
– Feedback, opinion, rating, experience, appreciation: a peer sends a feedback

as a result of a transaction. A rating is one trust value, while an opinion is

Reputation-Based Trust Management in Peer-to-Peer Systems: Taxonomy and Anatomy 695

considered as an aggregation of all trust values based on previous transactions
with a provider peer.

The following is a list of most important and representative reputation systems
that have been proposed in the literature and will be used throughout the chapter:
eBay [1], DistributedTrust [11], BinaryTrust [13], P2PBasic and P2PEnhanced [17],
EigenTrust [32], Nice [33], DCRC and CORC [29], Travos [56], XRep [18], Regret
[50], MDNT [15], MLE [20], LimitedReputation [36], CredibilityRecords [51], IDA
and MDA [39], FineGrainedTrust [61], and PowerTrust [62].

3.4.2 Modeling the Nodes

In a P2P file sharing system, peers are expected to exhibit good behavior. Ideally,
peers are expected to be trusted, that they will share good quality files, that they will
upload requested files, and that they will send honest feedbacks. Unfortunately, real
life P2P systems have proved that a mechanism is needed to measure explicitly trust
in order to deal only with trustworthy peers.

There are two types of users’ behavior: Good peers and malicious peers.

Good Peers
Those are the well-behaved peers that will usually send an authentic file. The

following is the expected behavior from good peers:

• Availability: available to share a file, to forward a query, to reply to a query.
• Contribution: a peer contributes positively to the system by uploading authentic

files.
• Credibility/Honesty: Upon receiving a reputation query, a recommender peer

sends an honest feedback.

Malicious Peers
Peers that misbehave to impact badly the system. The adversary is another term

to refer to malicious peers as used in [37]. The maliciousness of peers can appear in
different ways and malicious peers can act individually or by forming collectives.
Malicious peers can be one or more of the following:

• Senders of inauthentic data: these peers upload inauthentic and corrupted data
and send spurious information to pollute the system.

• Liar peers: these peers lie in their feedbacks.
• Free riders: take advantage from the system without contributing to it. Although

these peers do not harm directly other peers, they do have an impact on the per-
formance of the system. In the literature, they are also referred to as selfish peers,
free-loaders [29] or rogue peers [52].

• Traitors: peers that induce the milking phenomenon. These peers provide au-
thentic files for a while to get a high reputation value before starting uploading
inauthentic files. These peers abuse from this reputation by harming other peers,
defecting on transactions and increasing the reputation of malicious peers.

696 Loubna Mekouar, Youssef Iraqi, and Raouf Boutaba

• Colluding Peers: these peers know each other and work together to form a ma-
licious collective. These malicious peers can upload inauthentic files, decrease
the reputation of good peers (i.e., defaming), or increase the reputation of other
malicious peers (i.e., flattering).

• Whitewashers: these peers join the system, act maliciously or misbehave then
leave and re-join with new identities to get a new reputation value and eliminate
the bad reputation received previously. In general, it is difficult to trace these
peers and prevent the system from considering them as regular new comers. Sys-
tems with weak identities are vulnerable to whitewashing. Examples of these
systems include KaZaA, Gnutella, and EigenTrust.

• Sybil Attacks: the malicious attacker creates multiple identities allowing the at-
tacker to control a whole portion of the network.

• Denial of Service (DoS) attackers: these peers consume large amount of re-
sources from the system to subvert the whole system and bring it down. In P2P
systems, detection, management, and the prevention from these attacks is still an
open problem.

• Unreliable: they can promise availability of specific services and do not deliver
them.

• Imposter: they can pose as other peers.

Malicious peers act maliciously for different reasons, including personal char-
acteristics, psychological, social, and economic factors. For example, movie and
music industry pollutes P2P networks to minimize the use of these systems and to
push users to buy their products rather than sharing them for free using P2P file
sharing applications. Polluting these systems is achieved by distributing files with
legitimate titles but with silence or random noise.

Peers Identity
To distinguish between peers, identity is required. Each peer in the system is

identified by its identity that must be kept the same during its lifetime. As an ex-
ample, users in Nice choose a PGP style identifier. The identifier includes a plain
text identification string and a public key. Desirable characteristics of peers’ identity
related to trust include:

• Longevity: peers need to keep the same identifiers during their lifetime [47]. It
should be difficult for peers to change their identity easily (i.e., whitewashing)
and start over by obliterating their past behavior.

• Anonymity: according to the application used, peers’ identity can belong to dif-
ferent levels of anonymity. Most P2P applications use a simple, user-generated
pseudonyms. In some applications (e.g., freenet), onion routing is used to pro-
vide the anonymity of peers. However, since the peer identity is protected, it will
be difficult to track the actions done by this peer. In general, there is a tradeoff
between anonymity and trust.

• Unforgeability: Unforgeable identities are generated by a central trusted entity or
a set of trusted entities and are given to new comers when they join the system.
Each user is given only one identity. In TrustMe, for example, users are assigned

Reputation-Based Trust Management in Peer-to-Peer Systems: Taxonomy and Anatomy 697

unforgeable identities. Unforgeable identity is used to protect from whitewashing
(i.e., change of identity to eliminate peer’s history) and sybil attacks (i.e., the use
of multiple identities).

• Spoof-resistance: to prevent malicious peers from impersonating other peers
identities.

• Sybil-attack resistance: peers identity should be resistant to sybil attacks. Some
mechanisms have been proposed to slow the creation of new identities such as
imposing an entry cost or a registration fee (e.g., Nice), requiring from users to
solve a puzzle that can not be done by a computer, or read some text from a JPEG
file.

New Comers Policy
When new comers join the system, these peers do not possess any local informa-

tion regarding other peers in the system. In addition, all the peers in the system do
not know yet the reputation of these new comers. Since new comers to the system
are strangers and their behavior is not known yet, two policies can be adopted:

• The optimistic approach: new comers are trusted. However, other peers may be
disappointed.

• The pessimistic approach: new comers are not trusted. However, in this case, new
comers may not be able to build their reputation.

Reputation systems should welcome new comers and give them a chance to in-
crease their reputation gradually. At the same time, these systems should protect
peers from a new comer in case it turned out to be malicious.

New comers have to assume their responsibility in establishing trust with other
peers by uploading authentic files. They should build and maintain good reputation
to become reputable peers.

3.4.3 Modeling the Reputation Management Infrastructure

In centralized P2P systems, there is a central entity where information regarding
peers’ actions can be gathered and accumulated. Peers are controlled and malicious
peers can be identified somewhat easily. Peers can be protected against malicious
actions performed by malicious peers. For these systems, reputation management is
also centralized since the central entity can handle the trust information in addition
to the lookup mechanism. The use of a centralized reputation management infras-
tructure simplifies significantly the management of trust information. In completely
decentralized systems, malicious peers have more freedom to act maliciously and
perform variety of attacks and it is more difficult to gather all the actions performed
by the peers. In these systems, peers should protect themselves from malicious peers
since they can not be identified easily and hence isolated from the system. Peers are
required to gather information to assess the reliability of peers in providing the re-
quested service. In these systems, a centralized reputation management entity is
possible. [29] is an example where the Reputation Computation Agent RCA is used
to collect reputation information and compute peers’ reputation. However, the use

698 Loubna Mekouar, Youssef Iraqi, and Raouf Boutaba

of a centralized entity will exhibit a single point of failure and will be easy to attack.
A natural possibility is to use a decentralized reputation management infrastructure
to improve the robustness and the scalability of the system. In partially decentral-
ized systems, a centralized reputation management entity is possible. To avoid the
drawbacks of the centralized entity, a partially decentralized reputation manage-
ment system is proposed as in IDA and MDA [39]. In these schemes, the authors
take advantage from the use of supernodes in the partially decentralized architecture.
Since supernodes are already used to handle search requests on behalf of the peers
connected to them, supernodes are used to handle trust data and compute peers’
reputation.

The followings are advantages and drawbacks of different types of trust and rep-
utation management infrastructures:

• Centralized systems: use a trusted centralized server for managing reputation
information. This server will handle and manage all the reputation data

– Advantages:

1. Easy to use and manage
2. Simplifies the mechanism design
3. Offers efficiency since all the reputation data received for peers will be

handled to the requester peer.
4. Helps keeping the data consistent and coherent

– Drawbacks:

1. Difficult to achieve in case not all the peers can trust one entity.
2. Represents a single point of failure and a bottleneck since millions of peers

can send queries to this entity.
3. Represents a single point of attacks by misbehaving peers such as DoS

attacks, sabotage and subversion
4. Expensive to achieve high performance and robustness
5. Not scalable
6. Not resistant to lawsuit

• Completely decentralized systems: information regarding peers’ reputation is
stored at the peer’s level and this information is scattered throughout the net-
work.

– Advantages:

1. No single point of failure
2. No need for a globally trusted entity
3. Provides robustness and scalability
4. Resistant to lawsuit

– Drawbacks

1. Message overhead as many messages are generated in order to maintain
and manage reputation data

Reputation-Based Trust Management in Peer-to-Peer Systems: Taxonomy and Anatomy 699

2. Flooding is required to get the required information from peers in order to
aggregate different local trust values

3. The topology changes frequently due to the transient nature of peers that
can join or leave the system at any time. Some reputation data may be lost
or inaccessible.

4. Reputation data is more vulnerable to tampering with.

• Partially decentralized systems

– Advantages:

1. Efficient search for reputation data of the provider peers compared to com-
pletely decentralized systems

2. Easier to manage
3. Resistant to lawsuit
4. Scalable
5. Small number of supernodes to manage reputation data
6. Easy access to reputation data by other supernodes
7. Alleviating the peer from the burden of replying to unnecessary queries as

it is the case in completely decentralized P2P systems. Peers are contacted
by their supernodes only if they have the requested file.

8. Efficient enforcement of service differentiation

– Drawbacks:

1. Supernodes should be trusted to handle reputation data
2. Additional load for supernodes

4 The Anatomy of Reputation Systems

The goal from file sharing applications is to share files, and sharing experiences be-
tween peers will ultimately lead to providing peers with the adequate environment
by identifying good peers and isolating malicious ones. Reputation-based P2P sys-
tems create the appropriate environment for peers to rely on each other for down-
loading authentic files. Since we can not predict future peers actions, peers’ past
actions are used to measure its reputation.

Open systems need robust reputation management. A good reputation system
should [30]:

• Identify malicious peers in order not to be selected as transactions partners: this
is a precaution measure before starting the transaction.

• Spread information regarding a malicious peer in case that a negative transaction
occurred: this is a revenge measure after ending a transaction to help other peers
in future interactions.

The survey of different reputation systems reveals the important mechanisms
used to achieve good reputation management. The peer looking for a file is the

700 Loubna Mekouar, Youssef Iraqi, and Raouf Boutaba

requester peer, and peers that have the requested file are the provider peers. The
components and issues involved in finding a file and downloading it in the case of a
reputation-based P2P file sharing application are the followings:

1. The Local Trust: Here important issues include:

a. What kind of trust information is gathered?
b. Where to store trust information?
c. Is the local trust information sufficient?

2. The Reputation Query: The requester peer sends a reputation query regarding the
potential provider peers. Related issues include:

a. To whom the requester peer should send a reputation query?
b. How many peers, should the requester peer contact?
c. What kind of information is sent to the requester peer?

3. The Reputation Computation

a. How to deal with liar recommender peers?
b. How to deal with fraudulent recommender peers?
c. How to compute the reputation?

4. The Use of Reputation

a. How to choose a peer based on the reputation value?
b. How to evaluate a transaction after downloading a requested file?

5. Credibility Assessment
6. Incentives, Rewards and Punishment

In the following, we will explain and describe each one of these important compo-
nents and present important solutions proposed in the literature.

4.1 The Local Trust

The requester peer sends a file search query and gets a search reply from the system
containing a list of peers. The requester peer may or may not have previously in-
teracted with some of the peers in the list. If the requester peer is not a new comer,
and has already downloaded files from other peers, local trust information based on
previous transactions can be used. The requester peer may:

• Eliminate from the list malicious peers that it has already interacted with.
• Accept to deal with good peers that have already provided him a good service.
• May not have any trust information for some of the peers if it did not interact

with them in the past.

Reputation-Based Trust Management in Peer-to-Peer Systems: Taxonomy and Anatomy 701

4.1.1 What Kind of Trust Information is Gathered?

Some reputation management schemes uses the number of negative and positive
downloads (e.g., EigenTrust), other schemes use the negative downloads only (e.g.,
complaints in Binarytrust). For other schemes the size of the download is more im-
portant than the number of uploads (e.g., IDA, MDA). In debit-credit reputation
computation DCRC and credit-only reputation computation CORC [29], peers con-
tribution is tracked and is considered as its reputation.

For each transaction, the following information can be gathered for each peer:

1. The type of trust information:

• The quality of the transaction: positive, negative or both (e.g., satisfied and
unsatisfied transactions in EigenTrust, complaints for negative transactions in
BinaryTrust).

• The quantity of the transaction: the size of the files downloaded as positive for
authentic files or negative otherwise (e.g., satisfactory downloads and uploads
in IDA and MDA).

Relying only on positive transactions will lead to dealing with malicious peers
that conducted few successful transactions. While relying only on negative trans-
actions may eliminate good peers. A combined approach is more efficient in
identifying the real behavior of the peers.

2. A trustworthiness value which represents the outcome of the interaction. This
value can be a binary value 0 or 1 (e.g., XREP, Travos, CredibilityRecords) which
means that a requester peer is satisfied from the transaction or not, the provider
peer is trusted or not trusted. The trustworthiness value can also be a discrete
value (e.g., Excellent, Good, Fair and Poor) as in Amazon and DistributedTrust, a
scaled integer (e.g., 1–5) (e.g., MDNT) or a real value on a continuous scale from
[0,1] (e.g., Nice, PeerTrust), a probability value (for EigenTrust and PowerTrust).
While a binary value does not allow partial trust, a continuous value expresses
better how much trust is given. However, assigning {0,1} is much easier. The
trustworthiness value can be the result of a transaction (e.g., a cookie which is
a signed receipt of successful transactions in Nice) or computed based on either
the quality or the quantity of a transaction or a combined approach. In DCRC and
CORC, peers’ willingness to share the content they have and forward queries in
addition of staying connected in case they are chosen to upload the requested file
is considered for computing the peers’ score. In some reputation systems, a value
of 0 from [0,1] does not make a distinction between a malicious peer and a new
comer to the system.

3. The time of the interaction: this can be used when computing reputation values
(e.g., FuzzyTrust, Regret, MDNT, FineGrainedTrust).

4. The context of the interaction: the context of the interaction can differ from an
application to another. An application may have different contexts. In the file
sharing application, we assume to concentrate on one context which is providing
authentic, not corrupted files.

702 Loubna Mekouar, Youssef Iraqi, and Raouf Boutaba

Peers may keep track of all the records with every trusted peer (e.g., eBay) or
only one record that summarizes all the transactions (e.g., TrustModel). Adopting
this approach will reduce the storage cost. Keeping track of trust data will allow to
benefit from the followings [15]:

• Recency: giving more weight to the recent values of the trust values. In this case,
the use of time of interaction is important.

• Trend: it is preferable to know not only the trust value at a specific time slot
but also the trend line over the last few time slots. Understanding the trend is
important.

• Cyclical poor performance: keeping history of trust values according to their time
slots may help in detecting such behavior.

• Variability in trustworthiness: it is important to know the variance value to detect
the variability of the service provided.

It is important to note that the focus is more on the trustworthiness of peers rather
than files since malicious peers can generate a large number of inauthentic files.
Thus, identifying and isolating malicious peers will improve significantly the qual-
ity of the shared files. In [18], a reputation scheme is proposed for both peers and
resources (e.g., files) to overcome the limitations of reputation schemes that tackle
only the problem of peers’ reputation. In the XRep protocol, each peer maintains two
experiences repositories to keep track of authentic and inauthentic resources in ad-
dition to good and malicious peers, the peer had direct transactions with. Credence
is another reputation scheme for identifying content that is not authentic (e.g., dam-
aged, corrupt, missing contents, dangerous content, misleading metadata designed
to confound user searches). However, computing reputations for files is usually time
consuming when dealing with a large collection of files.

4.1.2 Where to Store Trust Information?

Distributing the trust data history is a challenging task [47]. Provider peers may
change their pseudonyms easily to erase prior history. Some mechanisms can be
deployed to avoid this by imposing an entry fee (e.g., Nice) or by using real names.
However, the anonymity of peers may be affected. But, it is also important to protect
the identities of the peers from malicious peers.

While in centralized P2P systems, the central entity will be used to store trust
information (e.g., eBay, amazon), in completely decentralized P2P systems, the trust
information regarding a trusted peer can be stored at:

• The trusting peer’s level: in this case, it is necessary to contact all the trusting
peers that have interacted with the trusted peer to compute the trusted peer’s rep-
utation. This task is very challenging in completely decentralized systems where
trust information is scattered throughout the network (e.g., CredibilityRecords).

• The trusted peer’s level: in this case, trust information is gathered at the trusted
peer’s level (e.g., EigenTrust, Nice). This makes the reputation computation
process easier, however, malicious peers may manipulate this information. A

Reputation-Based Trust Management in Peer-to-Peer Systems: Taxonomy and Anatomy 703

solution for this problem is to store the trust information at another peer’s level.
In DCRC and CORC, each peer is responsible of storing its own reputation for
fast retrieval. To prevent malicious peers from thwarting the reputation system,
reputation scores are signed by the RCA private key. To avoid that trusting peers
drop negative reputation scores resulting from downloading files, the RCA keep
the negative scores until these peers send credits for contributing to the system.

• Both the trusting peer’s and the trusted peer’s levels: since negative transactions
may be deleted from the trusted peers records, the trusting peers keep this infor-
mation (e.g., Nice).

• Third-Party peers: trust data is stored at another peer instead of the trusting or
the trusted peers. If the trusted peer is responsible to store its reputation data, it
can easily manipulate it. To prevent against such threat, another peer is selected
to be responsible for storing this data. Another problem that may occur is that
this intermediary peer may report false trust information. To solve this issue,
a set of peers is responsible to store trust information of each peer. This way,
minimizing the impact of false trust reports. As an example, in secure Eigen-
Trust, a distributed hash table is used to assign to each peer, score managers that
are responsible to store and compute peers’ global trust values. Also in Bina-
ryTrust, the storage of the output of negative transactions is realized by other
peers.

Since the local trust information stored at each peer’s level in completely decen-
tralized P2P systems is proportional to the size of the network, the storage cost in-
creases linearly as the number of peers increases. Trust management schemes should
be able to minimize the storage cost.

In partially decentralized P2P systems, trust information can be stored at the
supernode level and sent regularly to the trusted peer (e.g., IDA). To avoid tampering
with this data, reputation information is encrypted and signed by a shared key known
only to supernodes.

When storing reputation data at peer’s level, reputation-based P2P systems need
to provide mechanisms to ensure that reputation data is stored securely to prevent
malicious peers from thwarting the reputation system and also to ensure the avail-
ability of trust information even with the transient nature of peers in P2P systems.

4.1.3 Is the Local Trust Information Sufficient?

At this stage, it is important to know if it is sufficient to choose the trusted peer ac-
cording to local personal trust information or maybe it is necessary to get feedbacks
form other peers in the system. In case where a few well-behaved peers know each
other and always exchange files between them, local trust information is sufficient
for making decisions. In systems where millions of peers are available to share files,
local trust information is very limited. Therefore, relying on external advice from
other peers is imperative. Reputation systems help in predicting peers’ future be-
havior based on their past behavior. Since reputation is based on peers’ opinions,
the credibility of the peers must also be assessed.

704 Loubna Mekouar, Youssef Iraqi, and Raouf Boutaba

4.2 The Reputation Query

To gather more information regarding the peers that have the requested file, the
requester peer needs to ask other peers about their opinions. The requester peer
queries about the requested peers’ reputations in a specific recommendation context.

In centralized reputation systems, there is no need to gather reputation data from
other peers since the information is already collected and stored at the central en-
tity. In [29], the RCA facilitates the collection of trust data and the computation of
reputation scores. In partially decentralized reputation systems, supernodes are used
to collect reputation data (e.g., IDA, MDA). While in completely decentralized rep-
utation systems, on demand processing of peers’ reputation is needed by querying
peers and collecting reputation data to compute peers’ reputation.

In reputation-based systems, the reputation scheme collects, distributes and ag-
gregates feedbacks about peers’ past behavior. This scheme will help peers to iden-
tify trustworthy peers and decide whom to trust. However, for reputation systems
to operate effectively is very challenging. These challenges will be detailed in the
following sections.

4.2.1 To Whom the Requester Peer Should Send a Reputation Query?

In the physical world, when recommendations are needed for a person for example,
it is not practical to send a query to any person. It is preferable to target the people
who know better this person and ask for their feedbacks (e.g., co-workers, friends).
The same process can be applied for the virtual world, however, in completely de-
centralized P2P systems, it is difficult to find the peers who interacted previously
with the provider peer.

The followings can be the receivers of the reputation query:

1. The neighbors of the requesting peer: the requester peer can use its neigh-
bors in the overlay network to get reputation information. For example, in the
basic polling (P2PBasic) and the enhanced polling (P2PEnhanced) algorithms
(P2PRep protocol), the requester peer broadcasts a reputation query, asking for
the reputation of the provider peers. In LimitedReputation, the requester peer
sends a reputation query to its neighbors (Neighbor-voting).

2. The peers that have already interacted with the requester peer and that are trust-
worthy: the requester peer will not send a reputation query to a malicious peer.
Most probably, the malicious peer’s recommendation is not credible. Another al-
ternative in this approach is to ask the trustworthy peers to ask the trustworthy
peers that they have interacted with (e.g., EigenTrust). Using this transitive trust,
the requester peer gets more recommendations. In FuzzyTrust, recommender
peers are chosen based on their number of performed transactions and local trust
values. In LimitedReputation, the requester peer can also select recommender
peers from its friends (Friend-voting), where friends are peers who have proved
to be reputable.

Reputation-Based Trust Management in Peer-to-Peer Systems: Taxonomy and Anatomy 705

3. The peers that have already provided the requester peer with accurate recom-
mendations in previous queries (e.g., MDNT): the requester peer keeps track
of past recommendations and uses metrics to identify good recommender peers.
These recommender peers are knowledgeable peers and their opinions/ratings are
accurate.

4. Specific selection of peers: as an example of social-based trust systems, Regret
groups peers according to their relationships with the trusted agent. The most
representative agent is selected as a recommender peer based on fuzzy rules.

5. Random selection of recommender peers: the requester peer can choose ran-
domly some peers for their opinion.

4.2.2 How Many Peers Should the Requester Peer Contact?

The requester peer can send a reputation query asking for recommendations to the
followings:

• A small number of peers: for example, a Time To Live (TTL) can be used to limit
the number of queried peers and reduce the generated communication overhead.
The forwarding of the query continues until the TTL is exhausted. However, with
the TTL, the requester peer will not get a wide view of the peers’ reputation, but
the communication overhead will be reduced significantly. In case of Nice, a
query is forwarded to only 5 users instead of following all the paths from the
requester peer.

• A large number of peers: the more information gathered, the more precise is the
reputation of the provider peers. However, this approach incurs additional com-
munication overhead. Each forwarded message consumes bandwidth and pro-
cessing at each peer it visits. This approach may impact badly the performance
and the scalability of the system.

Sending a reputation query and asking for a feedback means that the requester
peer is asking for peers’ vote on the provider peers. Reputation-based systems can
be divided into the following categories:

• Excessive voting systems: these systems require the voting process to collect and
aggregate reputation values for each provider peer. This will incur high amount
of message overhead and will introduce additional latency. Examples of these
systems are: DistributedTrust, BinaryTrust, P2PRep, XRep and EigenTrust

• Moderate voting systems: these systems require the voting process in a mod-
erate way. The voting process is restricted only to some of the peers in the net-
work. This mechanism reduces significantly the traffic overhead and hence, using
the network resources more efficiently. Examples of these systems are: the work
done by Marti et al. LimitedReputation [36] and Selcuk et al. CredibilityRecords
[51],

• No voting system: these system require no voting mechanism for computing rep-
utation values. However, a high volume of traffic overhead is generated due the

706 Loubna Mekouar, Youssef Iraqi, and Raouf Boutaba

use of a central entity for computing reputation values. As an example of these
systems: DCRC and CORC in [29].

In general, there is a tradeoff between accuracy and communication overhead.
The larger the number of feedbacks received from recommender peers, the more ac-
curate peer’s reputation is. The number of recommender peers is determined accord-
ing to the requirements of the P2P application. In addition, if providing a feedback
is manually performed and a rewarding mechanism is not provided, the system may
not be able to collect sufficient number of feedbacks to compute reputation scores
accurately.

The feedbacks sent to the requester peer include information regarding previous
interactions with some of the provider peers. It is important to know what kind of
information is conveyed in feedbacks. The content of feedbacks is needed for both
credibility analysis and reputation computation.

4.2.3 What Kind of Information is Sent to the Requester Peer?

For each provider peer, local trust information stored at the recommender’s peer
level can be sent to the requester peer in addition to the following information:

1. A confidence value: this value confirms how confident the recommender peer is
in the trust value.

2. the time of recommendation: this time is provided when the feedback is gener-
ated (i.e., eBay, Nice, MDNT, EigenTrust, Travos, Regret).

The confidence value is usually based on the number of interactions that occurred
between a recommender peer and a provider peer. A small number of interactions
indicates uncertainty and does not reflect the real peer’s trust value, while a large
number of interactions increases the accuracy of the provided trust information.
The confidence value can also be a subjective value given by the recommender peer
based on its own experience. The concept of the confidence value is similar to re-
viewing a submitted paper and getting a feedback from a reviewer who indicates
explicitly its expertise in the field. This represents how confident is the reviewer in
the review. In Travos, the confidence value is a metric that represents the accuracy
of the trust value based on the number of transactions. If the requester peer has a
low confidence value in its assessment of trust for a provider peer, then seeking rec-
ommendations from other peers is necessary while, having a high confidence value
means that the requester peer does not need to ask for recommendations. In fact, it
could be that the recommendations received will add more misleading information
than giving more accuracy to the peer’s reputation.

At the queried peers, the trust information is filtered and only transactions cor-
responding to the context of recommendation are chosen to be sent to the requester
peer. In case that recommendations pass through intermediary peers (e.g., PeerTrust,
Nice, BinaryTrust, MLE) [48], additional information regarding these peers may
be added to ensure the transparency of this process. In case of TrustModel, each

Reputation-Based Trust Management in Peer-to-Peer Systems: Taxonomy and Anatomy 707

intermediary peer adds some comments on the credibility of the recommendation
received.

The identity of recommender peers can be revealed or not. In P2PBasic, the iden-
tity of peers sending the feedback is not required, while in P2PEnhanced, the iden-
tity of these peers is included in the feedbacks. This way, the requester peer is able to
identify the peer sending the feedback and gives a weight to its feedback according
to the trust given to this peer.

In some of the proposed reputation systems, the history of all trust transactions
for a specific context are sent to the requester peer. In other systems (e.g., Eigen-
Trust), only an aggregated trust value is sent to reduce the communication overhead
and provide better scalability, but it lacks transparency. Aggregating feedbacks is a
difficult task. The reputation score must represent the real behavior of a peer. The
aggregation method of the trust values was not clearly described in most reputation
systems. In Nice and TrustModel for example, any aggregation method can be used
by each peer according to its requirements or by all the peers in the system to en-
sure homogeneity and avoid conflict of interests. Different approaches have been
proposed for the feedback aggregation method: in Regret, the weighted average of
ratings is computed with the use of recency while, in EigenTrust, the difference be-
tween positive and negative transactions is normalized. In Travos, the feedback is
an aggregation of the number of successful transactions and unsuccessful ones. The
feedbacks received from recommender peers must provide sufficient information
for credibility assessment. Incentive mechanisms are required to encourage peers to
send recommendations.

4.3 Reputation Computation

Eliciting feedbacks from the peers that received the reputation query and had already
interacted with some of the provider peers rises several issues. These peers may:

• Reply to the query honestly: sending the right feedback is the expected behavior
from a well behaved recommender peer.

• Reply to the query dishonestly by lying: sending the wrong feedback in order
to defame competitors or flatter conspirators. Reputation management schemes
should be able to minimize the impact of this threat.

• Ignore the query: a free rider will ignore the need of the requester peer and will
not take into account the reputation query. Ignoring the query by peers that have
already interacted with the provider peers is an act of unreliability.

According to the reputation management scheme, the intermediary peers may
transmit or not the feedback to other peers. Upon reception of feedbacks from other
peers to get transmitted to the requester peer, the intermediary peers could omit the
feedbacks or maliciously manipulate the content. Some security mechanisms are
required to make sure that feedbacks are received intact by the requester peer. As
an example, the recommender peer’s digital signature can be added to ensure the

708 Loubna Mekouar, Youssef Iraqi, and Raouf Boutaba

recommendation integrity. Reputation management systems should provide mecha-
nisms to enforce good contribution and cooperation from the peers that receive the
reputation query.

The requester peer receives feedbacks from recommender peers that can be one-
hop or multi-hop from the trusted peer or even all the peers in the system. Different
types of opinions may result:

• First hand opinion: is a direct opinion from the queried peer to a provider peer.
The queried peer has already interacted directly with the trusted peer.

• Second hand opinion: is an indirect opinion from a peer, that has been contacted
by the queried peer, about a provider peer.

• Third hand opinion: is a public opinion

Different weights can be given to the received feedbacks according to their type.
Typically, a first hand opinion is more trustworthy and then more important than the
other ones.

This is one of the most important issues in reputation management systems
and unfortunately, only few research works have focused on solving this prob-
lem. If the feedbacks received are not credible, the reputation can not be com-
puted accurately. The majority of reputation schemes assume that peers are well-
behaved, honest and do not provide any mechanism to check the accuracy of the
gathered opinions which will reduce significantly the reliability of the reputation
system. This problem is also referred to as mis-representation. In eBay, for ex-
ample, the credibility mechanism is left to members who can go through all the
ratings and decide if a specific member is credible or not. Recently, the credibil-
ity assessment becomes an important issue since in e-commerce transactions where
money plays a vital factor, accurate reputations are necessary in making the right
decisions.

It is imperative to distinguish between two important issues when dealing with
liar and fraudulent recommender peers:

• Liar recommender peers: the recommender peer had actually a transaction with
the provider peer. The recommender peer may reply negatively even if the out-
put of the transaction was positive. The recommender peer may lie and provide
a dishonest feedback for different reasons (e.g., to increase the reputation of a
colluding peer).

• Fraudulent recommender peers: the recommender peer did not interact with the
provider peer before and it provides the requester peer with a feedback. The
feedback can be positive if the provider peer is a colluding peer or negative if the
provider peer is a competitor (i.e., a good contributor peer).

Detecting malicious recommender peers is vital to the accuracy of the reputa-
tions and hence, the reliability of the reputation system. A credibility analysis is
required to filter out recommendations, eliminate the suspicious feedbacks and se-
lect the accurate ones. The content of recommendations form the basis of reputation
computation.

Reputation-Based Trust Management in Peer-to-Peer Systems: Taxonomy and Anatomy 709

4.3.1 How to Deal with Liar Recommender Peers?

According to [30], there are two basic approaches that have been proposed: Endoge-
nous and Exogenous methods. In Endogenous methods, the statistical properties of
the reported feedbacks are used to detect unreliable feedbacks. In these methods,
most of the proposed mechanisms assume that liar peers are the minority among
peers and so the ratings that are different from the majority of peers are inaccurate.
Exogenous methods rely on other information such as the reputation of the recom-
mender or its feedback accuracy given its past recommendations or its relationship
with the provider peer.

The following are some mechanisms that have been proposed to minimize the
impact of liar recommender peers:

• Keeping track of past recommendations (e.g., number of accurate and inaccurate
recommendations) and weight the feedbacks according to the credibility of the
recommender peers (i.e., MDNT, Travos, MLE, CredibilityRecords).

• The multivariate outlier detection technique: this technique is used to detect liar
peers in FineGrainedTrust [61]. Outlier detection is an important task in data
analysis. The outliers describe the abnormal data behavior which means data that
is deviating from the natural data variability.

• The use of suspicious transactions to measure the credibility of recommender
peers [39]: a suspicious transaction is one in which the feedback sent by the
requester peer is different from the one expected knowing the reputation of the
provider peer. Peer’s credibility is computed based on the ratio of the number of
suspicious transactions over all the transactions performed by the peer.

• The use of trust and reputation values as credibility metrics for the recommender
peers (i.e., EigenTrust, Nice, FuzzyTrust, P2PEnhanced). Trustworthy peers are
considered as credible while untrustworthy peers are not. This is based on the
fact that if peers are behaving correctly by sending authentic files, these peers
will most probably be honest in their recommendations. In Regret, social rela-
tionships are also taken into account.

• Redundancy: the use of different score managers to compute the trust value and
use a majority vote to eliminate the false reports by malicious score mangers
(e.g., EigenTrust)

• The use of Beta distribution based on previous recommendations as in Travos
• To let only one rating count from any single IP address
• Enforcing policies: in eBay, when a seller receive multiple feedbacks from the

same buyer within the same week, the net effect on that seller’s feedback score
is based on the number of negatives, neutrals and positive received [22].

Many reputation systems (e.g., EigenTrust, fuzzyTrust, P2PEnhanced) use a rep-
utation value for a recommender peer as a credibility value which is not totally
accurate since some peers could behave well while sending authentic files and pro-
vide at the same time inaccurate recommendations. The credibility of recommender
peers is based on local trust values. These values are not accurate enough to measure

710 Loubna Mekouar, Youssef Iraqi, and Raouf Boutaba

the trustworthiness of recommender peers and it is not practical to collect feedbacks
regarding the credibility of the recommender peers. This approach will incur addi-
tional overhead and waste of network resources. Moreover, if a peer is malicious
according to its reliability in sending authentic files (i.e., its reputation) it will be
difficult to trust its recommendation and there is no guaranty that a reputable peer
will provide an honest opinion.

4.3.2 How to Deal with Fraudulent Recommender Peers?

The followings are some mechanisms that have been proposed to minimize the im-
pact of fraudulent recommender peers:

• Only peers who were actually involved in a transaction are permitted to provide
ratings (e.g., eBay).

• The use of proof of interactions: in TrustMe for example, both entities participat-
ing in a transaction sign a transaction certificate. This proof is needed to report
the output of the interaction.

• The use of proof of processing: in DCRC and CORC, the RCA sends proof
of processing for peers contribution to the system by processing, forwarding
queries, staying online and serving files. To prevent malicious peers from get-
ting credits without actually participating, the RCA maintains a transaction state
where the credit processed list contains the list of peers who have already re-
ceived the credit. The RCA ensures that a peer will collect credit only once for
the same upload.

It is important to indicate that even with the presence of proof of transactions in
some reputation management systems, it is difficult to prove that effectively there
was a transaction between the two parties. In case of a file transfer for example,
it is needed to prove that the file transfer has actually occurred. This proof must
also indicate all information regarding the file transferred (e.g., size), the peer ID
uploading the file, the peer ID downloading it and the time of interaction.

4.3.3 How to Compute the Reputation?

After filtering the feedbacks and getting rid of dishonest reports and fraudulent ones,
the gathered data from different recommender peers is used for reputation compu-
tation in addition to the local trust data available at the requester peer.

Some of the proposed reputation schemes assign more importance to:

• Bad transactions versus good transactions: in some reputation schemes, it is pro-
posed that the negative impact of bad behavior on reputation should outweigh the
positive impact of good behavior.

• Local trust data versus the reputation information gathered from other peers:
since the local trust data is more credible than the data collected from other peers.

Reputation-Based Trust Management in Peer-to-Peer Systems: Taxonomy and Anatomy 711

However, in P2P systems with millions of users, local trust data may not be very
helpful in taking decisions.

• Recent transactions versus old ones: to take into account the recency of interac-
tions, the time of interaction is needed. This will help in identifying the traitors.
In some reputation systems, old transactions are deleted and the focus is more on
the recent transactions. In DCRC, a time stamp is used each time the RCA sends
the reputation scores to peers, while, CORC time-stamps the reputation scores
for expiration.

In some proposed reputation systems, a peer’s reputation is equivalent to the
group of peers it belongs to. A group’s reputation can be, for example, the average
of all the members reputations within this group. If the group has a high reputation,
all its members are reputable. A peer can be rejected from the group in case it turned
out to be acting maliciously.

Reputation systems should be exigent in terms of accuracy of the computed rep-
utation according to the risk involved in the transactions. However, several factors
affect the accuracy of reputation values such as: network overheads, congestion and
loss of trust data during peers’ communication. In some circumstances, this inac-
curacy may be acceptable since the goal from reputation systems is to provide an
approximation of the real peer’s behavior.

Different approaches have been proposed used to aggregate trust values received
from recommender peers and synthesize them to generate a reputation value for a
provider peer [15, 30]:

1. Deterministic approach: In this approach, peers’ reputation is based on a sim-
ple summation or average of collected ratings. Even in the most popular e-
commerce applications that involve a huge amount of money, reputation values
can be computed easily by simple operations. The reputation scheme used in
eBay, for example, is based on the sum of the number of positive and negative
ratings, while in amazon the reputation is computed based on the average of all
the ratings. A weighted average of all the ratings is also possible based on dif-
ferent factors such as the credibility of recommender peers. This approach is
easy to use and can be easily understood by users. Many proposed reputation
systems used this approach for reputation computation. In MDNT, the reputa-
tion value is computed based on the weighting factor for the first, second and
third opinions of third-party agents, the reputation opinion given by a recom-
mender agent, the credibility of the recommender agent, and the time weigh-
ing factor that represents the importance of the opinion depending on the time
of the last interaction between the recommender agent and the provider agent.
In PeerTrust [59], different factors are taken into account such as transaction
and community factors. In DCRC, reputation scores are computed based on
Query-response Credit, the Upload Credit, the Download Debit and the Sharing
Credit. In BinaryTrust, reputation is computed based on the number of negative
complaints.

712 Loubna Mekouar, Youssef Iraqi, and Raouf Boutaba

2. Probabilistic approach:

a. Bayesian Networks: The Bayesian approach uses a probabilistic approach to
the determination of the reputation. It is based on the Bayes formula. Bayesian
systems take binary ratings as input, and are based on computing reputation
scores by statistical updating of beta probability density functions (PDF). Sev-
eral works have used this approach including [41], [58], and [62]. In Travos,
reputation is computed based on Beta Probability Distribution. However, the
Bayesian approach suffers from strong assumptions of independence that are
made.

b. Maximum Likelihood Estimation: MLE [20] uses a probabilistic approach to
compute the reputation value based on the probability of recommender peers
to provide inaccurate information. In MLE, the reputation value is the prob-
ability of a peer to cooperate and it is chosen to maximize the probability of
the available ratings.

3. Fuzzy logic: Trust and reputation can be represented as linguistically fuzzy con-
cepts. The information received from recommender peers is characterized by be-
ing imprecise and not accurately quantified. Fuzzy systems are used to deal with
such situations by providing rules for reasoning with fuzzy measures. Different
factors (e.g., the credibility of recommender peers) can be represented by fuzzy
sets and membership functions are used. Several works have been proposed to
compute reputation scores based on fuzzy logic systems including [50, 53]. Re-
gret considers the following dimensions in reputation computation: the individual
dimension which is the direct trust obtained by previous transactions, the social
dimension which refers to a trust of an agent in relation with a group and fi-
nally the ontological dimension that includes the particularity of each agent. In
FuzzyTrust, fuzzy inference is used to produce local trust values and aggregate
them to global reputation values.

4. Flow models: Systems that compute trust or reputation based on transitive iter-
ation through looped or arbitrarily long chains. As an example, EigenTrust, and
FineGrainedTrust.

4.4 The Use of Reputation

4.4.1 How to Choose a Peer Based on the Reputation Value?

After computing the reputation value, the following approaches can be adopted:

• The ranked-based approach: peers are ranked according to how reliable they are
likely to be. The more reliable they are, the more trusted they are, the more the
requester peer is expecting to get the required file. In this approach, the peer

Reputation-Based Trust Management in Peer-to-Peer Systems: Taxonomy and Anatomy 713

with the highest reputation value will be selected to upload the file. Highly rep-
utable peers will handle almost all the uploads, yielding to an increase in their
reputation. However, these peers will be overwhelmed by download requests.
This approach suffers from unbalanced load share among reputable peers. This
approach has been adopted by EigenTrust and Travos.

• The threshold-based approach: The computed reputation scores may be com-
pared against a trust threshold value. A random peer from the provider peers
whose reputation values are greater than this trust threshold is selected. This ap-
proach spreads the load between these peers. This approach has been adopted by
Nice, MDNT, MLE, and BinaryTrust.

• The Probabilistic-based approach: choose the peer that will upload the file prob-
abilistically based on its trust value. This probability is proportional to its nor-
malized trust value and with a probability of p% select a new comer (e.g., 10%
for EigenTrust). This approach distributes better the load share among reputable
peers, giving them a chance to increase their reputation in addition to increasing
the reputation of new comers.

Once the requester peer finds a provider peer and it is willing to download from it
the requested file, the requester peer becomes the trusting peer and the provider peer
becomes the trusted peer. Both the trusting and the trusted peers will participate in
a transaction.

4.4.2 How to Evaluate a Transaction After Downloading a Requested File?

It is important at this stage that a peer is able to ascertain when a transaction is suc-
cessful. In case of failure, it could be due to network congestion or network failure,
and sometimes it is due to the maliciousness of the transaction partner. Assigning a
trust value based on the quality of the transaction is subjective. The subjectivity of
trust values is inherent in most trust systems.

According to a detailed study on eBay, recommenders peers may not send nega-
tive feedbacks by fear of reprisals or may also tend to reciprocate in both a positive
and a negative way. To deal with the problem of reprisals, some reputation systems
provide mechanisms such as:

• A peer can have an identity as a regular peer and another identity as a recom-
mender peer. Recommender peers will not be easily recognized.

• Recommender peers can remain anonymous as in BinaryTrust. Recommender
peers fill complaints and their identity is not provided. In this case, keeping
records for assessing the credibility of recommender peers may not be possible.
However, the identity of the mediators storing the recommendations are known.

• The privacy of recommender peers is protected by using symmetric-key crypto-
graphic functions as in FineGrainedTrust.

714 Loubna Mekouar, Youssef Iraqi, and Raouf Boutaba

4.5 Credibility Assessment

After assessing the transaction output, it is imperative to update the credibility of
recommender peers. In MDNT, the credibility of the recommender peer is com-
puted based on the distance between the transaction result and the trust value pro-
vided by this recommender peer. Updating the credibility of recommender peers will
be beneficial for the assessment of feedbacks in future transactions. In Travos, the
credibility of recommender peers in terms of accuracy of the provided recommen-
dation is updated according to the transaction output. In MDA, the feedback sent to
the supernode of the trusting peer is used to check if the transaction is considered
suspicious or not. The credibility of the trusting peer is updated accordingly. This
credibility will be used in computing the reputation of the trusted peer.

In completely decentralized P2P systems, credibility values could be stored at the
trusting peer’s level for easy access in case this information is needed. In partially
decentralized systems, peers’ credibility could be also stored at the supernode level.
MDA counts the number of suspicious transactions to measure the credibility of
peers.

4.6 Incentives, Rewards and Punishment

In P2P systems, if all peers receive the same service regardless of their behavior,
peers will not be motivated to strive for high reputation values since they will be
always asked to upload files without receiving any special benefit or reward. This is
why service differentiation is needed.

The system may reward reputable peers with increased connectivity to other
peers, greater bandwidth, and/or higher priority/probability of performed requests.
Rewarding these peers will give users an incentive to get a high reputation value by
sharing authentic files. Peers can also be rewarded for providing feedbacks and shar-
ing trust data with other peers. Several incentive mechanisms have been proposed
to motivate peers to contribute to the system [23, 24, 27, 43–45, 60].

While good peers are rewarded for exhibiting a good behavior, malicious peers
can be punished by sending them lists of peers with low reputation values to down-
load from them. In [43], the authors introduce a reputation-based mechanism that
assigns better service to higher performing peers. The reputation-based policies are
classified into two dimensions: Provider Selection and Contention Resolution. In
Provider Selection policies, a peer among peers providing a service is chosen to pro-
vide the service. Three schemes have been proposed for Provider Selection: Highest
Reputation where peer with the highest reputation is selected, Comparable Reputa-
tion where peers can request services only from peers with reputation values com-
parable to their reputation and Black List where peers with low reputation are not
providing any service. However, in Comparable Reputation policy uses the concept
of “Layered Communities” and provides the requesting peer with a list of peers
having similar reputation values. This approach will incur an important increase of

Reputation-Based Trust Management in Peer-to-Peer Systems: Taxonomy and Anatomy 715

malicious uploads. Indeed, if a peer receives a service from a lower reputable peer,
it will most probably receive a bad service (e.g., malicious file) and hence does
not help the peer in providing good service to others. Contention Resolution poli-
cies help in selecting a peer among all peers requesting a service from the same
provider peer. Two policies are presented: Highest Reputation policy where the peer
with the highest reputation is selected to get the service and Probabilistically Fair
w.r.t Reputation policy where a peer is selected with a probability according to its
reputation.

In [45], the authors analyze the effectiveness of different incentives mecha-
nisms to motivate peers to share files. The authors present a reputation-based peer-
approved scheme. The scheme uses a reputation mechanism based on rating peers
according to the number of files they are advertising. Peers are allowed to down-
load files only from peers with lower or equal rating. The results show that the
scheme can be used to counter the selfish behavior. However, this scheme will al-
low malicious peers to advertise a high number of corrupted files. According to this
scheme, these peers will still receive good service. Even non malicious peers may
advertise a large number of non popular or useless files and still benefit from the
system.

In [60], the authors propose a reputation scheme that combines trust and incen-
tive mechanisms. The proposed scheme uses explicit and implicit evaluations such
as files’ vote and retention time, download volume and users’ rank to construct di-
rect trust relationships. Based on the reputations, service differentiation is used to
motivate users to share, vote on files, rank users and remove fake files. However, per-
formance evaluation is needed to assess the performance of the proposed scheme.

Since the peers differ from each other in the type of services and resources they
contribute to the system, [27] proposes a Service Differentiation Protocol (SDP) for
service differentiation in completely decentralized unstructured P2P networks. This
protocol works as follows:

• During the search phase, a peer sends its reputation score along with the Query
message. Each peer that receives this query extracts the reputation score and
maps this value to a Level of Service (LoS). This peer will provide this LoS to
the requester peer.

• During the content download phase, the peer requesting the file sends its rep-
utation score to the peer uploading the requested file. This peer will send the
file with a rate of transfer according to the reputation score of the requester
peer.

In [38], the contribution of peers rather than the reputation of peers is used as a
guideline for service differentiation. Peers’ contribution is based on their availability
to share files and their involvement in the system (i.e., upload of authentic files).

In [34], the authors propose a service differentiation based on the amount of
services each node has provided to a P2P community. A resource distribution mech-
anism is proposed to increase the utility of the whole network and provide incentive
for nodes to share information. A generalized mechanism that provides incentives
for nodes having heterogeneous utility functions is also described.

716 Loubna Mekouar, Youssef Iraqi, and Raouf Boutaba

5 Design Requirements

Reputation systems should have minimal overhead in terms of infrastructure, com-
putation, storage and message complexity. The design of reputation management
schemes must consider the followings issues [30]:

• Enforcing Local Control: as trust data can be stored by peers in the system, it
is important not to allow these peers to arbitrarily manipulate trust data. Local
control mechanisms are needed to protect trust data.

• Minimizing Storage Cost: this can be achieved by minimizing the trust data that
need to be stored at peers level.

• Minimizing Bandwidth Cost: this can be realized by minimizing the messages
exchanged between peers.

• Fault Tolerance: the topology of P2P networks is changing frequently due to
the transient nature of peers that join and leave at any time. Leaving the system
without any notice, may result in unavailability of trust information stored at
peers level. Trust information need to be replicated to assure having the required
information.

• Scalability: scalability means the ability of the reputation scheme to scale with an
increase in the number of peers. This increase will yield to an increase of trans-
actions among the peers. Peers will need to handle more trust data by collecting,
storing, generating more computations and replying to queries. To investigate the
scalability of a reputation system, it is needed to address the load placed on peers,
especially on highly reputable, due to high demand for upload transactions and
on the network as a result of exchanging messages between peers.

• Reliability: reputation systems should provide mechanisms to protect peers from
malicious threats. Based on peers’ reputation, peers can be identified as good or
malicious. Peers need to rely on reputation systems to efficiently identify mali-
cious peers and isolate them from the system. The more reliable reputation sys-
tems are, the more trust is given by peers to these systems.

6 Centralized Reputation Systems

6.1 e-Commerce Applications

The Internet opened up new opportunities for millions of people to interact with each
other through applications such as electronic markets. However, in e-Commerce
sites, customers do not have enough information about the sellers and the product-
s/services offered. Trust systems create a platform between different parties to learn
from each other and build trust [19, 47].

eBay [1] uses the feedback profile for rating sellers and computing the sell-
ers’ reputation. Buyers rate their transaction partners with a positive or negative

Reputation-Based Trust Management in Peer-to-Peer Systems: Taxonomy and Anatomy 717

feedback, and explain why. The reputation is computed by assigning 1 point for
each positive comment and –1 point for each negative comment. The reputation
score for a seller is the sum of the received ratings.

The reputation system used in eBay has contributed significantly to increase
eBay’s revenues. eBay recognizes that the collected ratings to compute their mem-
bers’ reputations are one of the company’s main assets. eBay relies on a central
trusted server to maintain the reputation system that has been improved recently.
For members identity, eBay members use pseudonyms and personal information is
used to identify members and kept confidential by the system. No special benefits
are given to new users to increase their reputation.

The eBay feedback system suffers from the following issues:

• Easy to attack
• A seller may have a good reputation value by satisfying many small transactions

even if he did not satisfy a transaction with a higher amount
• No mechanism is used to detect liar members that send wrong feedbacks. This

task is left to users to detect such behavior.

eBay’s reputation concept has been widely used to increase the trust level of
online users. Similar reputation systems have been proposed in e-Commerce appli-
cations [15]:

• BizRate.com: is a shopping search engine which lists stores and products.
BizRate.com has an index of over 30 million products provided by more than
40,000 stores. BizRate.com claims that they use feedbacks collected from more
than on million online users each month. BizRate.com uses ShopRank which is
a proprietary shopping search and rating algorithm. This algorithm weights up
price, popularity and availability of products against the reputations of sellers.
BizRate.com provides:

– Rating of products: a rating scale of 1–5 stars (awful, poor, average, very
good, excellent). In addition a breakdown of the overall product rating is also
available (e.g., ease of use, portability, sound quality) and the reviews pro-
vided by users. Based on this information, a user can decide to buy or not
the product.

– Rating of merchants: for each product, a list of stores that sell the product,
along with the price, the availability of the product and the rating of the
store. This rating is based on a smiley scale (poor, satisfactory, good, out-
standing) in addition to a “Customer Certified” logo for stores who satisfy
specific criteria. This logo increases the users’ trust in these stores. Only col-
lected data during the last 90 days is considered for computing the merchants’
reputation.

• Amazon.com: started as online bookstore and expended to sell different kind of
products. Amazon.com uses ratings for products and for merchants. In merchant
rating, sellers are rated based on the quality of the service provided on a scale
from 1 to 5 stars in addition to comments left by buyers. In addition, the “Safe
Buying Guarantee” increases the buyers confidence and encourage them to trust

718 Loubna Mekouar, Youssef Iraqi, and Raouf Boutaba

the sellers. Products in Amazon.com are also rated by users. Electronic products
are only rated while other products are rated and reviews are provided. Users
check reviews and vote whether the reviews are helpful or not.

• Elance.com: is a web-based project marketplace that provides small businesses
easy access to projects such as: web design, development, software, administra-
tive services, writing, etc. Service providers are rated by service buyers while
service providers leave only comments to service buyers.

– Rating of service providers: each project is rated by the service buyer accord-
ing to different criteria (e.g., quality of work, responsiveness, professionalism,
subject matter expertise, adherence to schedule, adherence to work). The rat-
ing is based on a five-point scale from Extremely Unsatisfied to Extremely
Satisfied. In addition to this rating, the service buyers can leave comments to
describe the service provider’s performance. For each criterion, a numerical
score is computed for all projects. The reputation of a service provider is an
overall numerical score based on the projects scores

– Service buyers: Service providers can leave only comments to service buyers
and no rating is provided

• MoneyControl.com: is used to track the stock market. People can read different
posted opinions and rate them. These opinions inform the readers about the stock
market. These opinions help the readers make informed decisions regarding the
stock they want to invest in. Opinions given by users are rated on a five stars
scale. The average of all the ratings provided by users for a specific opinion is its
overall rating and is expressed by a number between 0 and 5. Rating of reviewers
is also available. A user can track the users who always provide good opinions.
These users form the trusted agents network. A reviewer’s reputation is based on
the number of the trusted agents who track this reviewer.

• Yahoo.com: provides a variety of products to customers. Both rating of prod-
ucts and merchants are available. In product rating, users can rate the products
in addition to ratings provided by experts. Customers prefer more this latter rat-
ing since the expert rating is more trusted. Merchants are also rated based on
the feedbacks collected from customers. Customers who made the purchase and
rated the merchant are given more weight than other users.

• Alibris.com: provides information regarding sellers of books, music and movies.
It offers access to more than 50 million books. Both merchants rating and product
rating are available. Merchants are rated based on the number of Alibris orders
delivered by the seller. The rating scale is based on 1–5 stars and new sellers
belong to the 4 stars category during the first 90 days. Products are not rated
based on the content but on the quality of the products since Alibris.com is used
to sell used products.

• CNET.com: provides an up-to-date information regarding technology products.
Ratings of products is realized by editors. These editors are experts and their
opinion is more trusted by customers. Editors use the products and rate them
according to different criteria (e.g., set up, design, features, performance, service
and support) according to the type of the product (e.g., camera, computer). To

Reputation-Based Trust Management in Peer-to-Peer Systems: Taxonomy and Anatomy 719

compute the quality of a product, a specific weight is given to each criterion.
The rating generated is a numerical score between 1 (Abysmal) and 10 (Perfect).
Users can also provide their opinion regarding a specific product to exchange
information between each other. Ratings for merchants is also provided based on
four criteria: site functionality, store standards, order fulfillment, and customer
feedback.

The feedbacks received from online users represents a rich set of collected infor-
mation (e.g., ratings, comments, opinions, feedbacks) that helps the business man-
agers in discovering and identifying the needs of customers and improving the ser-
vices provided to them and hence, increasing the customers’ trust in the business. As
a consequence, the profit generated is increased in addition to the business reputation
and value. The feedbacks received strengthens the relationship between customers
and the business in addition to providing to online users the information needed to
reduce the risk involved in virtual environments. While in physical environments,
customers can really feel the products before buying them, exchanging information
by sending feedbacks allow customers make informed decisions.

6.2 P2P Systems

Although these P2P systems use a distributed overlay for search and control mes-
sages, a centralized reputation system is used.

6.2.1 Reputation Management Using DCRC and CORC

In [28, 29], the reputation system uses objective criteria to track peers’ contribution
in the system. Each peer stores the reputation value locally for a fast retrieval. Two
mechanisms are proposed to compute the reputation:

• The Debit Credit Reputation Computation (DCRC)
• The Credit Only Reputation Computation (CORC)

By using a Reputation Computation Agent (RCA), peers’ reputations are updated
periodically in a secure and distributed manner. The DCRC mechanism credits peers
for serving content and debits for downloading. The second mechanism (CORC)
credits peers for serving content with no debits for downloading. The two mecha-
nisms credit peers for query processing, query forwarding and for staying online.
RCA is responsible for computing peers’ reputation and certain amount of accuracy
is lost due to the periodic update of reputation scores and the loss of data during the
communication with RCA. Peers can be differentiated according to their behaviors
and their capabilities. The behavior of a peer depends on its contribution to forward-
ing, processing requests and uploading files. The capability of a peer depends on the
processing power, memory, bandwidth and storage capacity.

720 Loubna Mekouar, Youssef Iraqi, and Raouf Boutaba

In the DCRC scheme, a peer’s reputation score is computed using the following
components:

• Query-Response Credit: peers are credited for being online and processing
query-response messages.

• Upload Credit: each peer uploading a file gets a credit for serving the file and
contributing to the good functioning of the system

• Download Credit: each peer downloading a file, will get a debit
• Sharing Credit: a peer gets credit for sharing hard-to-find files.

The CORC mechanism is similar to the previous scheme except that the down-
load will not be debited. This score will only increase. In order to prevent peers
from acting maliciously once they get a high CORC score, CORC time stamps the
reputation scores for expiration.

Drawbacks:

• RCA is contacted periodically by peers for updating peers’ reputation scores.
This is potentially a central point of failure.

• RCA needs to be replicated to ensure system robustness. No schemes have been
provided to explain replication mechanisms.

• Malicious downloads are not taken into consideration in peers’ reputation.

In [28], two methods for tracking reputation are proposed: Strong Reputations
and Weak Reputations. In Strong Reputations, the RCA is expected to have a copy
of all the content served by peers to ensure content reliability. In addition, the RCA
crawls periodically the P2P topology to maintain snapshots of the topology. This
assumption is not practical in real P2P systems even with the fact that RCA is not
required to serve the content. This proposed scheme for reputation tracking incur
higher overheads compared to Weak Reputations.

6.2.2 A Fine-Grained Reputation System for Reliable Service Selection:
FineGrainedTrust

In [61], the authors propose a reputation system built upon the multivariate Bayesian
inference theory. Reference [61] defines the reputation of a server (i.e., file provider,
peer) as the probability that he is expected to demonstrate a certain behavior, as
assessed by a client based on self experiences (i.e., the output of direct transactions)
and users’ feedbacks.

For reputation management, a centralized server is used as:

1. Account Manager: crediting/rewarding users and maintaining social groups.
2. Query Processor: for reputation queries
3. Feedback Collector: collects feedbacks
4. Reputation Engine: computing reputation scores

FineGrainedTrust has the following characteristics:

Reputation-Based Trust Management in Peer-to-Peer Systems: Taxonomy and Anatomy 721

• Reputation data: After each transaction with a server, the user will increment the
corresponding Quality of Service QoS level by one. This way, each user keeps
only one vector for each server he interacted with.

• Reputation data storage: QoS information is stored across system users either in a
random fashion or through a distributed hash table. In this latter case, the central
server let λ users store the reputation feedback to improve system tolerance in
case users are not available. The larger this value, the higher fault tolerance, the
larger the communication overhead and the average storage cost.

• Reputation computation: Users keep QoS experiences with servers after each
transaction. They return QoS experiences after receiving a query from the cen-
tralized server. Users may inquire the centralized server about servers’ reputa-
tions. Collecting all QoS information by the centralized server simplifies signif-
icantly the computation of peers’ reputations. Old experiences are not as impor-
tant as recent ones.

Drawbacks:
The centralized server is a single point of failure and is easy to attack (c.f. Section
3.4.3).

7 Decentralized Reputation Systems

Since decentralized P2P applications are characterized by the absence of a central
authority that coordinates the reputation management. Peers store information about
past experiences with other peers and may be required to get other peers’ opinions
for reputation computation. Several decentralized reputation management schemes
have been proposed for completely decentralized systems [13, 17, 20, 32, 36, 42].

7.1 The Distributed Trust Model: DistributedTrust

Abdul-Rahman et al. [11] proposed a model for trust based on distributed recom-
mendations. This work is one of the first works on distributed trust models and that
can be used in P2P systems. The proposed approach is based on four goals:

• Decentralization: each agent is responsible for managing trust information.
• Generalization of the notion of trust by using trust categories and trust values for

different levels of trust in each category.
• The use of explicit trust statements in order to reduce ambiguity.
• Recommendations are used to get trust information regarding other agents in the

system.

In this trust model, a trust relationship is between two entities, is non symmetrical
and is conditionally transitive. The model has two types of trust relationships:

722 Loubna Mekouar, Youssef Iraqi, and Raouf Boutaba

• Direct trust relationship: when an agent has trust in another agent.
• Recommender trust relationship: when an agent trust another agent to give rec-

ommendations about another agent’s trustworthiness.

In this approach, each agent stores its trust data regarding other agents. Key-
based encryption is used to protect recommendation messages from malicious
agents. Network traffic is generated only for recommendations in case that the agent
has not a direct trust value for another agent in the system.

Drawbacks:

• Each agent needs to store all history of past experiences and received recommen-
dations. Storing this information will provide for the user a kind of global view
of the whole network, however, a large storage capacity is needed.

• Updating this information can be time consuming and difficult.
• Increase of network traffic due to message exchange between agents in order to

get reputation information.

7.2 The Binary Distributed Trust Model: BinaryTrust

In [13], the trust model is based on binary trust. An agent can be trust-
worthy or not. Each transaction between two agents can be either
performed correctly or not. When an agent cheats, this agent becomes untrust-
worthy and a complaint is sent to other peers. In [13], only dishonest
transactions are considered, based on the fact that malicious behavior is the excep-
tion. Reputation of a peer is based on the global knowledge of the complaints. PGrid
that is a data storage, is used to store complaints. This trust model works as
follows:

• When a peer file a complaint about another peer, the peer will send complaints
to other peers using insert messages

• When a peer wants to get the trustworthiness of a peer, the peer will search for the
complaints on that peer and will identify the peers that store the complaints. In
order to avoid additional traffic overhead, once the peer requesting the trustwor-
thiness of another peer receives similar trust information from a certain number
of peers, there is no need for further search.

Drawbacks:

• Some peers may receive complaints about themselves. Conflict of interest may
occur and peers can delete this information to drop the complaints.

• No mechanism is provided to prevent from inserting arbitrary complaints about
peers

• Maintenance of PGrid is required.

Reputation-Based Trust Management in Peer-to-Peer Systems: Taxonomy and Anatomy 723

7.3 Reputation Management by Choosing Reputable Servents:
P2PBasic and P2PEnhanced

In [17], the distributed polling algorithm P2PRep is used to allow a servant p (i.e.,
the resource requester) looking for a resource to ask about the reputation of offerers
(i.e., resource providers) by polling peers. After receiving a response from all the
resource providers available to provide peer p with the requested resource, peer
p selects a set of peers from the offerers and broadcasts a message asking other
peers to give their opinion about the reputation of the offerers. Two variants of the
algorithm are provided: in the basic polling, peers send their opinion and peer p uses
the vote to determine the best offerer. In the enhanced polling, the peers provide their
own opinion about the reputation of the offerers in addition to their identities. This
latter will be used by peer p to weight the vote received.

Credibility Management is considered in the enhanced polling algorithm. Trust
data of the peers sending their opinion to the resource requester will be considered
in computing the reputation of the resource providers. Trustworthy peers are given
more weights than untrustworthy peers in the reputation computation. In the basic
polling algorithm, credibility of peers is not taken into consideration.

Drawbacks:

• The proposed schemes incur considerable overhead by polling peers for their
votes. The basic polling algorithm checks whether the voters have provided the
vote by sending TrueVote and TrueVoteReply. In the enhanced polling algorithm,
AreYou and AreYouReply messages are used to check the identity of the voters.
This will further increase the network overhead.

• Each peer has to keep track of past experiences with all other peers. The reputa-
tion of the peers is used to weight their opinions.

In [16], the authors propose SupP2PRep which is a protocol for reputation man-
agement via polling in P2P networks with superpeers. In [16], when a servent is
looking for a resource, it broadcasts a Query message and receives a list of provider
peers. The requester peer polls its peers by broadcasting a message PollRequest re-
questing their opinion about the selected provider peers. These peers reply with a
PollReply. The superpeers collects the PollReply messages into one message Cumu-
lativePollReply and then sent to the requester peer. This proposed protocol incurs
additional messages overhead for direct communication between peers. No perfor-
mance analysis nor performance evaluation are presented.

7.4 Reputation Management by the XRep Protocol: XRep

In this paper [18], the authors propose an approach that uses combined reputations
of servents and resources. The authors describe the XRep protocol used for main-
taining and exchanging reputations and its advantages against security attacks in

724 Loubna Mekouar, Youssef Iraqi, and Raouf Boutaba

P2P systems. In XRep, each servent maintains information based on its own expe-
riences on resources and servents and can share this information with other peers.
Each peer maintains two experience repositories:

• A resource repository: for storing resources identifiers and a binary value to de-
scribe each resource if it is good or bad

• A servent repository: for storing the servent identifier for each peer it interacted
with, in addition to the number of successful and unsuccessful downloads.

The XRep protocol is based on the following phases:

• Resource searching phase: search the peers that have the requested resource.
• Resource selection and Vote polling phase: select the resource from the received

list. The requester peer broadcasts Poll messages to enquire about the reputation
of the resource and the peers providing this resource.

• Vote evaluation phase: evaluate the reputation of the requested resource based on
the received votes.

• Best servent check phase: check that the best servent provides really this resource
and that the resource digest is in fact reliable.

• Resource downloading phase: decide from which servent to download the re-
source and contact this servent directly for the download operation.

Drawbacks:

• Inquiring about the reputation of resources and the resource providers incurs
considerable traffic overhead.

• No performance results are provided to convince the reader that the reputa-
tion management based on both the resources and the servents outperform the
schemes that are based only on the reputation of the servents.

7.5 Reputation Management Using EigenTrust

In [32], the EigenTrust algorithm assigns to each peer in the system a global trust
value based on peer’s history of uploads. This trust value reflects the experiences
of all peers with the peer. The authors propose a distributed and secure method to
compute global trust value based on power iteration.

EigenTrust has the following characteristics:

• Reputation data: local trust values that represents the number of both satisfied
and unsatisfied transactions. Local trust values are normalized and are between 0
and 1.

• Reputation computation: EigenTrust is based on transitive trust. The global repu-
tation of a peer i is given by the local trust values assigned to peer i by other peers,
weighted by the global reputations of the assigning peers. The use of transitive
trust leads to a system where global trust values correspond to the left princi-
pal eigenvector of a matrix of normalized local trust values. Since each peer i

Reputation-Based Trust Management in Peer-to-Peer Systems: Taxonomy and Anatomy 725

computes and reports its own trust value, malicious peers can easily report false
trust values. In secure EigenTrust, a distributed hash table is used to assign score
mangers that are responsible to compute global trust values. Each score manager
is responsible for a set of peers. For each peer, the score manger learns about the
peers that downloaded files from this peer and gets trust assessments from them.

• Credibility mechanism: different score managers are used to compute the global
trust value for a peer. A majority vote is used on the trust values to reduce the
impact of malicious score managers that report false trust values.

• Malicious peers policy: EigenTrust is robust to malicious collectives of peers
who know each other and try collectively to subvert the system. In secure Eigen-
Trust, using the one-way hash function, it is not possible for a score manager to
know from whom the global trust value is computed. Malicious peers can not
increase the reputation of each other. In addition, peers can not know their loca-
tion in the hash space, thus, peers are unable to manipulate their own trust value.
The system break up malicious collective through the presence of pre-trusted
peers.

Drawbacks:

• Normalizing local trust values will not make the distinction between peers who
the requester peer did not interact with and peers that performed more unsatisfied
transactions than satisfied ones.

• The scheme requires reputations for each provider peer to be computed on-
demand which requires cooperation and collaboration from a large number of
peers in performing computations.

• The scheme introduces additional latency and requires long periods of time to
collect data and compute a global trust value for each provider peer.

• The use of a distributed hash table and score managers for each peer in the sys-
tem in order to collect trust local information and compute global trust values
increases significantly the communication overhead.

7.6 Limited Reputation Sharing in P2P Systems:
LimitedReputation

In [36], the proposed algorithms use only limited reputation sharing between peers.
Each peer records statistics and ratings regarding other peers. As the peer re-
ceives and verifies files from peers, it updates the stored data. In the proposed
voting reputation system, the requester peer receives ratings from other peers
and weights them accordingly to the ratings that the requester peer has for these
peers to compute a reputation value. The peers can be selected from the neigh-
bor list (Neighbor-voting) or from the friend list (Friend-voting). In the latter
case, friends are chosen from peers who have proved to be reputable. Note that
a peer can be reputable, but not credible. No mechanism is given to detect liar
peers.

726 Loubna Mekouar, Youssef Iraqi, and Raouf Boutaba

7.7 Reputation Management Using Trust and Credibility Records:
CredibilityRecords

In [51], a reputation-based distributed trust system is proposed. In this system, the
outcomes of past transactions are stored in trust vectors. These vectors are main-
tained by peers that perform the downloads. Trust vectors are constant length, bi-
nary vectors of m bits. Each bit represents the result of a transaction: 1 if successful,
0 if not. A number is associated with each vector to indicate the number of signif-
icant bits. When the requester peer receives a list of provider peers, the peer will
compute the reputation values for these peers based on local information. If this
information is not available, a trust query is issued in order to inquire about the
reputation of the provider peers. The responses are weighted by the credibility rat-
ings of recommender peers. The credibility vectors are similar to the trust vectors.
Each bit represents the result of a previous judgment: 1 if the judgment was right,
0 if not.

7.8 Reputation Management Using CCCI Methodology: MDNT

In [15], the authors presented a conceptual framework for measurement of quality
and trust. They presented quality assessment through CCCI metrics (Correlation of
delivered quality against defined quality, quality Commitment to each of the defined
Quality Assessment Criteria, Clarity of each criterion from both parties’ views and
Influence of each criterion on the overall quality assessment).

The CCCI methodology for a trustworthiness measure provides four metrics, and
defines the maximum possible correlation value for a business service interaction,
Corrqualities and the maximum possible values of Commitcriterionc, Clearcriterionc,
In fcriterionc. The ratio of the correlation value and the maximum possible correlation
value determines the relative correlation value. By using this value, the trustworthi-
ness value can be easily computed.

7.9 Cooperative Peer Groups in Nice

NICE system is a platform for implementing cooperative applications over the In-
ternet. A cooperative application allocates a subset of its resources (e.g., processing,
bandwidth and storage) to be used by peers. In Nice, the resource provider is trusted.
To access a remote resource, the trustworthiness of the resource requester is inferred.
A trust value represents how likely a user consider another user to be cooperative.

In a successful transaction between two users Alice and Bob where Alice con-
sumes a set of resources from Bob, Alice signs a cookie. This cookie states that she
has successfully completed a transaction with Bob. A cookie can be stored by Bob

Reputation-Based Trust Management in Peer-to-Peer Systems: Taxonomy and Anatomy 727

to prove his trustworthiness to others. However a negative cookie may be destroyed
by Bob. In this case, Alice may store it.

In Nice, each user stores a set of signed cookies. In case Alice wants to get
resources from Bob, there are two possibilities:

• Alice has cookies from Bob: Alice gives these cookies to Bob and Bob computes
a trust value for Alice

• Alice has no cookies from Bob: Alice uses the cookies that she has. The users
who signed these cookies are contacted to check if they have cookies from Bob.
For example, Alice has a cookie from Carol, and Carol has a cookie from Bob.
Alice gets a copy of the cookie that Carol has and presents the two cookies to
Bob. This means that Bob trusts Carol and she trusts Alice. Based on these cook-
ies, Bob infer a trust value for Alice. Based on this trust value, the requested
resource will be granted or not to Alice.

In Nice, a query from the requester peer is forwarded to only 5 users instead of
following all the paths. Each time, a user is giving a cookie to another user, a copy
of its cookies are also given. The users will be selected based on the digests that
show a cookie from the resource provider. A digest of negative cookies can also be
sent to identify uncooperative users. A preference list is also used to keep track of
trustworthy resource providers for future use.

8 Partially Decentralized Reputation Systems

While the centralized systems suffer from the single point of failure, the major
challenge in completely decentralized systems is how to collect feedbacks and per-
form reputation computation efficiently. The high amount of traffic generated from
sending a query and getting back results causes inefficiency in using network re-
sources. Moreover, peers in completely decentralized systems have the same role
although these peers have different capabilities in terms of processing power, band-
width, memory and storage capacity, in addition to peers’ uptime. Peers that have
less capabilities and short uptime should not assume the same role, at least not at
the same level. In contrast, the communication protocol used in partially decen-
tralized systems reduces significantly the number of messages exchanged during
the search phase. The supernode architecture offers an intermediate design, min-
imizes the weaknesses of both centralized and completely decentralized systems
and combines the advantages of these systems. Several reputation-based systems
have been proposed for completely decentralized systems. However, all proposed
research works in this field have completely focused on these systems. Almost no
attention was directed toward partially decentralized systems that have received a
tremendous interest from the online community. KaZaA Media Desktop (KMD) a
proprietary partially-decentralized P2P system has introduced a Participation Level
for rating files and peers. This participation level is considered as peers’ reputation
in the literature. Priority is given to peers with high participation level, however

728 Loubna Mekouar, Youssef Iraqi, and Raouf Boutaba

the exact process of how this priority is given is not known. In KaZaA, malicious
peers will still have a high value of participation level even if their participation is
affecting badly other peers if they are uploading corrupted content. KaZaA has no
mechanism to detect malicious peers.

8.1 BitTorrent

BitTorrent, is a widely used second generation P2P protocol that adopts the tit-
for-tat strategy. Using this strategy, peers are able to optimize their download and
upload rates. Recent studies [10, 31, 57] have shown that the tit-for-tat strategy does
not effectively reward good peers and punish free riders. Selfish peers can get more
bandwidth while honest peers can receive low download rates. In [52], trust has
been incorporated to the BitTorrent protocol, however, in this work trust is defined
in terms of uploads compared to the downloads not in terms of maliciousness of the
provider peer.

8.2 The Inauthentic Detector Algorithm (IDA) and the Malicious
Detector Algorithm (MDA)

In [38, 39], trust is addressed according to the following dimensions: (1) Authentic
Behavior, (2) Credibility Behavior, and (3) Contribution Behavior.

• Authentic Behavior: represents peer’s reliability in sending authentic file in terms
of accuracy and technical quality. To measure the Authentic Behavior of peers,
the Inauthentic Detector Algorithm is proposed to identify malicious peers and
isolate them. This scheme takes into account the size of the file uploaded. Ma-
licious uploads are significantly reduced in addition to distributing the load uni-
formly among reputable peers.

• Credibility Behavior: represents peers’ sincerity in providing an honest feedback.
The concept of Suspicious Transaction is introduced and used to compute the
credibility of a peer. A Suspicious Transaction is a transaction in which the ap-
preciation is different from the one expected knowing the reputation of the peer
uploading the requested file. The Malicious Detector Algorithm is proposed to
identify peers that send the wrong feedback and minimize their impact. Peers’
Authentic Behavior is computed according to the credibility of peers download-
ing the requested files.

• Contribution Behavior: represents the positive contribution of a peer to the sys-
tem. Peers’ contribution is based on:

– Peers’ Availability: being available for uploading requested files.

Reputation-Based Trust Management in Peer-to-Peer Systems: Taxonomy and Anatomy 729

– Peers’ Involvement: non-malicious uploads performed versus downloads re-
ceived by a peer.

A contribution-based service differentiation scheme is proposed to differentiate
between peers that contribute positively to the system (i.e., altruistic), and free riders
and malicious peers (i.e., egoistic). This service differentiation is based on peers’
contribution rather than peers’ reputation.

According to [40], service differentiation is divided into two categories: implicit
and explicit. The Implicit service differentiation results from the normal evolution of
the system. Explicit service differentiation, is the one that results from the explicit
decision of supernodes or peers. Using peer’s contribution as a guideline for service
differentiation will provide better service to peers that contribute positively and will
reduce the level of service provided to free riders and malicious peers. Peers are
also forced to continuously contribute to benefit from the services provided hence,
minimizing the impact of the milking phenomenon.

9 Conclusion

Reputation-based trust management in peer-to-peer systems is an interesting re-
search area and very challenging. Reputation is used to build trust among peers,
minimize the risk involved in the transactions and increase users’ confidence and
satisfaction. Reputation is based on evaluating the transactions performed by peers.
In this chapter, we surveyed reputation-based trust management P2P systems. We
investigated the existing research work proposed to address peers’ reputation. To
understand better the functioning of reputation systems, we divided a typical repu-
tation system into components. A description is given to each component to help in
analyzing and summarizing the efforts of researchers in addressing peers’ reputa-
tion. We also presented some of the existing centralized, completely decentralized
and partially decentralized reputation management systems. The survey of differ-
ent reputation systems reveals the important mechanisms used to achieve efficient
reputation management.

The success of reputation-based e-Commerce applications has fostered the ad-
vancement of reputation management and its use in a wide area of applications.
The study of P2P reputation management systems in this chapter exposes the
different mechanisms used to solve the various challenges faced by these sys-
tems. Since reputation management is a risk assessment device, different con-
straints and parameters should be taken into consideration while designing a rep-
utation system according to the risk involved in the transactions. In particular,
file sharing systems are different from e-Commerce applications. The stability of
these reputation systems and their robustness against malicious attacks, and secu-
rity threats are of paramount importance and represent the main future research
directions.

730 Loubna Mekouar, Youssef Iraqi, and Raouf Boutaba

References

1. eBay Feedback. Http://www.ebay.com
2. Gnutella Protocol Specification v0.4. Http://www9.limewire.com/
3. Gnutella2 Specification. Http://www.gnutella2.com/
4. KaZaA. Http://www.kazaa.com/
5. Morpheus. Http://www.morphus.com/
6. Oxford Dictionary. Http://www.askoxford.com/
7. PPLive. Http://www.pplive.com/en/about.html
8. Skype. Http://www.skype.com/intl/fr/welcomeback/
9. UUsee. Http://newteevee.com/2007/03/07/chinas-uusee-scores-235-million/

10. Bharambe, A., Herley, C., Padmanabhan, V.: Analyzing and Improving a BitTorrent Network’s
Performance Mechanisms. In: IEEE 25th INFOCOM, pp. 1–12 (2006)

11. Abdul-Rahman, A., Hailes, S.: A distributed trust model. In: The 1997 workshop on New
security paradigms, pp. 48–60. ACM Press (1997)

12. Abdul-Rahman, A., Hailes, S.: Supporting Trust in Virtual Communities. In: Proceedings
of the 33rd Hawaii International Conference on System Sciences, p. 6007. IEEE Computer
Society, Washington, DC, USA (2000)

13. Aberer, K., Despotovic, Z.: Managing Trust in a Peer-2-Peer Information System. In: 9th
International Conference on Information and Knowledge Management, pp. 310–317 (2001)

14. Oram, A.: Peer-to-Peer: Harnessing the Power of Disruptive Technologies, pp. 21–37.
O’Reilly Books (2001)

15. Chang, E., Dillon, T., Hussain, F.K.: Trust and Reputation for Service-Oriented Environments.
Wiley (2006)

16. Chhabra, S., Damiani, E., di Vimercati, S.D.C., Paraboschi, S., Samarati, P.: A Protocol for
Reputation Management in Super-Peer Networks. In: DEXA Workshops, pp. 979–983 (2004)

17. Cornelli, F., Damiani, E., di Vimercati, S.D.C., Paraboschi, S., Samarati, P.: Choosing Rep-
utable Servents in a P2P Network. In: 11th International World Wide Web Conference,
pp. 376–386 (2002)

18. Damiani, E., di Vimercati, S.D.C., Paraboschi, S., Samarati, P., Violante, F.: A reputation-
based approach for choosing reliable resources in peer-to-peer networks. In: 9th ACM con-
ference on Computer and communications security, pp. 207–216. ACM Press (2002)

19. Dellarocas, C.: The Digitization of Word of Mouth: Promise and Challenges of Online Feed-
back Mechanisms. Management Science 49(10), 1407–1424 (2003)

20. Despotovic, Z., Aberer, K.: P2P reputation management: probabilistic estimation vs. social
networks. Computer Networks 50(4), 485–500 (2006)

21. Deutsh, M.: The resolution of Conflict:Constructive and Destructive. Tech. rep., New Haven,
Yale University Press (1973)

22. eBay: http://www.ebay.com
23. Feldman, M., Lai, K., Stoica, I., Chuang, J.: Robust Incentive Techniques for Peer-to-Peer

Networks. In: Proceedings of the 5th ACM conference on Electronic commerce, pp. 102–111.
ACM, New York, NY, USA (2004)

24. Feldman, M., Papadimitriou, C., Chuang, J., Stoica, I.: Free-riding and whitewashing in Peer-
to-Peer systems. In: Proceedings of the ACM SIGCOMM workshop on Practice and theory
of incentives in networked systems, pp. 228–236. ACM, New York, NY, USA (2004)

25. Gambetta, D.: Can We Trust Trust? In: Trust: Making and Breaking Cooperative Relations,
chap. 13, pp. 213–237. Published Online (2000)

26. Grandisan, T., Sloman, M.: A survey of Trust in Internet Applications. In: IEEE Communica-
tions Surveys, vol. 3 (2000)

27. Gupta, M., Ammar, M.: Service Differentiation in Peer-to-Peer Networks Utilizing Rep-
utations. In: ACM Fifth International Workshop on Networked Group Communications,
pp. 70–82 (2003)

Reputation-Based Trust Management in Peer-to-Peer Systems: Taxonomy and Anatomy 731

28. Gupta, M., Ammar, M.H., Ahamad, M.: Trade-offs between Reliability and Overheads in
Peer-to-Peer Reputation Tracking. Computer Networks 50(4), 501–522 (2006)

29. Gupta, M., Judge, P., Ammar, M.: A Reputation System for Peer-to-Peer Networks. In: ACM
13th International Workshop on Network and Operating Systems Support for Digital Audio
and Video, pp. 144–152 (2003)

30. Josang, A., Ismail, R., Boyd, C.: A Survey of Trust and Reputation Systems for Online Service
Provision. Decis. Support Syst. 43(2), 618–644 (2007)

31. Jun, S., Ahamad, M.: Incentives in BitTorrent Induce Free Riding. In: Workshop on Eco-
nomics of Peer-to-Peer Systems, pp. 116–121 (2005)

32. Kamvar, S.D., Schlosser, M.T., Garcia-Molina, H.: The EigenTrust Algorithm for Reputation
Management in P2P Networks. In: 12th International World Wide Web Conference, pp. 640–
651 (2003)

33. Lee, S., Sherwood, R., Bhattacharjee, B.: Cooperative Peer Groups in NICE. In: IEEE Info-
com, pp. 1272–1282. San Francisco, USA (2003)

34. Ma, R.T.B., Lee, S.C.M., Lui, J.C.S., Yau, D.K.Y.: Incentive and Service Differentiation in
P2P Networks: a Game Theoretic Approach. IEEE/ACM Trans. Netw. 14(5), 978–991 (2006)

35. Marsh, S.: Formalising Trust as a Computational Concept. Ph.D. thesis, University of Stirling
(1994)

36. Marti, S., Garcia-Molina, H.: Limited Reputation Sharing in P2P Systems. In: ACM Confer-
ence on Electronic Commerce, pp. 91–101. New York, USA (2004)

37. Marti, S., Garcia-Molina, H.: Taxonomy of trust: categorizing P2P reputation systems. The
Computer Networks Journal, Special Issue on Management in Peer-to-Peer Systems: Trust,
Reputation and Security 50(4), 472–484 (2006)

38. Mekouar, L., Iraqi, Y., Boutaba, R.: Free Riders under Control through Service Differentiation
in Peer-to-Peer Systems. In: IEEE International Conference on Collaborative Computing:
Networking, Applications and Worksharing (CollaborateCom 2005), pp. 10–20 (2005)

39. Mekouar, L., Iraqi, Y., Boutaba, R.: Peer-to-Peer Most Wanted: Malicious Peers. The Com-
puter Networks Journal, Special Issue on Management in Peer-to-Peer Systems: Trust, Repu-
tation and Security 50(4), 545–562 (2006)

40. Mekouar, L., Iraqi, Y., Boutaba, R.: A Contribution-Based Service Differentiation Scheme for
Peer-to-Peer Systems. Submitted (2008)

41. Mui, L., Mohtashemi, M., Halberstadt, A.: A Computational Model of Trust and Reputation
for E-businesses. In: Proceedings of the 35th Annual Hawaii International Conference on
System Sciences, pp. 2431–2439. IEEE Computer Society, Washington, DC, USA (2002)

42. Papaioannou, T.G., Stamoulis, G.D.: Effective Use of Reputation in Peer-to-Peer Environ-
ments. In: IEEE/ACM CCGrid: International Symposium on Cluster Computing and the Grid,
pp. 259–268 (2004)

43. Papaioannou, T.G., Stamoulis, G.D.: Reputation-based Policies that Provide the Right Incen-
tives in Peer-to-Peer Environments. the Computer Networks Journal: Special Issue on Man-
agement in Peer-to-Peer Systems: Trust, Reputation and Security pp. 563–578 (2006)

44. Ranganathan, K., Ripeanu, M., Sarin, A., Foster, I.: To Share or not to Share’ An Analysis of
Incentives to Contribute in File Sharing Environments (2003)

45. Ranganathan, K., Ripeanu, M., Sarin, A., Foster, I.: Incentive Mechanisms for Large Collab-
orative Resource Sharing. In: International Symposium on Cluster Computing and the Grid,
pp. 1–8 (2004)

46. Ratnasamy, S.: A Scalable Content-Addressable Network. Ph.D. thesis, University ofCalifor-
nia, Berkeley (2002)

47. Resnick, P., Kuwabara, K., Zeckhauser, R., Friedman, E.: Reputation Systems. Commun.
ACM 43(12), 45–48 (2000)

48. Ruohomaa, S., Kutvonen, L., Koutrouli, E.: Reputation Management Survey. In: Proceedings
of the The Second International Conference on Availability, Reliability and Security, pp. 103–
111 (2007)

732 Loubna Mekouar, Youssef Iraqi, and Raouf Boutaba

49. Sabater, J., Sierra, C.: REGRET: Reputation in Gregarious Societies. In: Proceedings of the
fifth international conference on Autonomous agents, pp. 194–195. ACM, New York, NY,
USA (2001)

50. Sabater, J., Sierra, C.: Reputation and Social Network Analysis in Multi-agent Systems. In:
Proceedings of the first international joint conference on Autonomous agents and multi-agent
systems, pp. 475–482. ACM, New York, NY, USA (2002)

51. Selcuk, A., Uzun, E., Pariente, M.: A reputation-based trust management system for P2P
networks. In: Fourth IEEE International Symposium on Cluster Computing and the Grid,
pp. 251–258 (2004)

52. Shah, P., Paris, J.: Incorporating Trust in the BitTorrent Protocol. In: International Sympo-
sium on Performance Evaluation of Computer and Telecommunication Systems, pp. 586–593
(2007)

53. Song, S., Hwang, K., Zhou, R., Kwok, Y.: Trusted P2P Transactions with Fuzzy Reputation
Aggregation. IEEE Internet Computing 9(6), 24–34 (2005)

54. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A Scalable Peer-
to-peer Lookup Service for Internet Applications. In: Proceedings of the ACM SIGCOMM
’01 Conference, pp. 149–160. San Diego, California, USA (2001)

55. Suryanarayana, G., Taylor, R.N.: A Survey of Trust Management and Resource Discovery
Technologies in Peer-to-Peer Applications. Tech. rep., ISR (2004)

56. Teacy, W.T., Patel, J., Jennings, N.R., Luck, M.: TRAVOS: Trust and Reputation in the Context
of Inaccurate Information Sources. Autonomous Agents and Multi-Agent Systems 12(2),
183–198 (2006)

57. Thommes, R., Coates, M.J.: BitTorrent Faireness: Analysis and Improvements. In: Workshop
of the Internet Telecommunications and signal Processing (2005)

58. Wang, Y., Vassileva, J.: Trust and Reputation Model in Peer-to-Peer Networks. In: Proceed-
ings of the 3rd International Conference on Peer-to-Peer Computing, p. 150. IEEE Computer
Society, Washington, DC, USA (2003)

59. Xiong, L., Liu, L.: PeerTrust: Supporting Reputation-Based Trust for Peer-to-Peer Electronic
Communities. IEEE Transactions on Knowledge and Data Engineering 16(7), 843–857 (2004)

60. Yang, M., Feng, Q., Dai, Y., Zhang, Z.: A Multi-dimensional Reputation System Combined
with Trust and Incentive Mechanisms in P2P File Sharing Systems. In: Proceedings of the
27th International Conference on Distributed Computing Systems Workshops, p. 29 (2007)

61. Zhang, Y., Fang, Y.: A Fine-Grained Reputation System for Reliable service Selection in Peer-
to-Peer Networks. Trans. IEEE 18(8), 1134–1145 (2007)

62. Zhou, R., Hwang, K.: PowerTrust: A Robust and Scalable Reputation System for Trusted
Peer-to-Peer Computing. IEEE Transactions on Parallel Distributed Systems 18(4), 460–473
(2007)

P2P Reputation Management Through Social
Networking

Zoran Despotovic

Abstract Reputation systems offer a viable solution to the problem of risk reduction
in online communities, in situation in which other mechanism such as litigation
or security cannot help. Building on the assumption that its participating entities
engage in repeated interactions, a reputation system can either signal what happened
in the past or aggregate the past feedback in such a way as to influence the future
actions of the concerned entity. In the former case, the concerned entity’s behavior
is seen as static, while the sent signal is expected to be indicative of the entity’s
future actions. In the latter case, behavior is dynamic in the sense that the entity can
adjust it given the observed feedback, while the purpose of the reputation system is
to induce adjustments according to the designer’s needs. In this chapter, we discuss
these two classes of solutions in detail. In particular, we investigate how they apply
to P2P networks, what additional problems and difficulties the P2P environment
introduces and what scalable solutions to these problems the current research offers.

1 Introduction

This chapter discusses P2P reputation systems and provides their categorization and
classification. However, to set up the stage, we start with a general discussion on the
phenomenon of reputation and its importance.

Reputation has always been important to humans. Its key role is as an enabler
of interactions in situations when other assurance mechanisms are not viable. When
contractual agreements or enforcement by third parties are not possible, say, due
to unacceptably large transaction costs and the interacting parties have no previous
experience with each other, then it makes sense for them to consult “public opinion”
on their partners. This public opinion constitutes the partners’ reputation. Although

Zoran Despotovic
DOCOMO Communications Laboratories Europe GmbH, Munich, Germany,
e-mail: despotovic@docomolab-euro.com

X. Shen et al. (eds.), Handbook of Peer-to-Peer Networking, 733
DOI 10.1007/978-0-387-09751-0 25, © Springer Science+Business Media, LLC 2010

734 Zoran Despotovic

the phenomenon was observed even in ancient times, it is the modern internet soci-
ety that brought about the current strong need for reputation management. The main
reason is that in a large scale online community a vast majority of interactions are
between complete strangers. Take eBay (www.ebay.com) as an example: it is quite
probable that any given buyer will purchase every new item from a seller she never
met before. P2P systems offer even a more severe example: it is hard to believe that
any two files downloaded by a given peer will come from the same source.

Before we start with technical details, we touch upon two important questions.
The first one has to do with motivation for P2P reputation management: Are there
evidences of the need for P2P reputation management? The answer is: Yes, there are
many. As an example, a report from the Wired magazine reveals that as of Septem-
ber 2004 “forty-five percent of the executable files downloaded through Kazaa, the
most popular file-sharing program, contain malicious code like viruses and Trojan
horses.” The second question is: Would deploying reputation systems effectively de-
crease the threats associated with P2P systems. It is a bit harder to answer this ques-
tion in the context of P2P systems, as there are no deployed reputation mechanisms
which could provide the answer. However, we can rely on analyses of centralized
systems, such as eBay. Recent empirical studies have shown that a great deal of
the commercial success of eBay, the largest online auctioning site, can be attributed
to its reputation mechanism (Feedback Forum) as a means of deterring dishonest
behavior. The analysis of eBay data carried out by [36] has shown that “reputation
profiles were predictive of future performance,” while more specific analyses of [22]
and [28] brought the conclusion that Feedback Forum fulfilled its promises: the pos-
itive feedback of the sellers was found to increase their prices, while the negative
one reduced them.

To start with, we repeat the informal definition of reputation systems from [37].
Resnick et al. [37] define reputation systems as “systems that help people decide
whom to trust, encourage trustworthy behavior, and deter participation by those who
are unskilled or dishonest through collecting, distributing, and aggregating feedback
about the participants past behavior.” The last item in this list, i.e., strategy to aggre-
gate feedback in order to help people make informed decisions prior to interacting
with their partners, is the heart of any reputation system. Assume that all interactions
are logged and interacting partners are presented with complete logs of what hap-
pened before they decide what to do. Most likely they will not find their way through
such logs and the system will fail to fulfill its promise. But, if suitable statistics are
computed from such logs, the situation may change radically.

This holds for any reputation system, irrespective of the properties of its target
environment, e.g., distributed vs. centralized. However, relevant properties of the
environment constrain the space of viable solutions. A solution perfectly acceptable
for a centralized online market such as eBay, may not be acceptable for a decen-
tralized environment such as a P2P network. For example, a reputation system that
needs a large amount of feedback that is scattered throughout the network may be
unusable, because it may take too long to retrieve relevant data from the network
and then aggregate it. Or, consider another example. To enable fast lookup, data can
be stored in a systematic way, e.g., in an underlying Distributed Hash Table (DHT),

P2P Reputation Management Through Social Networking 735

such as [1, 35, 39]. But, nodes storing the data may find it profitable to alter it. This
is not the case when the storage is provided by a single trusted entity, without any
interest in tampering with it.

The dot-com boom in mid nineties was the main driving force for work on online
reputation management. Since then, a large body of work on reputation management
emerged. However, we need to understand that the topic is much older than that. In
particular, reputation has long been a subject of study in economics. An important
part of this chapter deals with the way reputation is modeled in economics, i.e., game
theory. Let us take a look at the following example to illustrate the point. Consider
a market in which sellers sell goods of different qualities. Buyers cannot observe
the quality of any good. Thus, they tend to undervalue high quality goods, as they
may end up purchasing low quality. But then high quality sellers cannot achieve
good prices and may withdraw from the market. So only low quality goods will be
traded. This is what George Akerlof calls the “market for lemons” [4]. Information
asymmetry between sellers and buyers is critical here. A mechanism to break it is
needed. Reputation systems may be such a mechanism.

The chapter is structured as follows. Section 2 introduces the problem that repu-
tation systems address. We first discuss the problem in general, and then also take
a look at the P2P dimension of the problem in Section 2.1. Section 2.2 lists the
main classes of solutions found in the literature. We make a distinction between
signaling and sanctioning reputation systems. A further distinction is made between
probabilistic and ad hoc signaling methods. Each of these classes is discussed in
a separate section. Section 3 describes probabilistic signaling reputation systems,
Section 4 discusses ad hoc signaling methods, while Section 5 looks at sanctioning
reputation mechanisms in detail. Section 6 discusses some practical problems that
originate in the possibility to change identities at no or low cost. We believe that
these problems are so important for practical deployments that they deserve a sec-
tion on their own. We conclude in Section 7 with a discussion and an outline of open
research topic.

2 P2P Reputation Systems

We start this section by setting up the stage for the rest of the chapter. A central
notion we are interested in is an online system in need of a reputation system, e.g., a
P2P file sharing network or eBay. We assume that there are well defined participants
in the system and interactions among them in the context of a specific application.
Examples are eBay buyers competing in auctions to purchase goods from eBay sell-
ers or peers downloading files from one another in a P2P file sharing application.
An obvious way to record all interactions is making a graph. An arc in the graph
would correspond to an interaction between the entities represented by the arc end-
points. We call such a graph social network as it simply encodes interactions among
entities of the considered community, i.e., social interactions. Strictly speaking, a
social network is a multigraph rather than a graph, as any two nodes may be joined

736 Zoran Despotovic

by more than one arc. Nevertheless, we will continue to use the term graph, the term
multigraph will be used only when we want to stress the multiplicity of arcs between
pairs of nodes.

The arcs in a social network can be given another meaning. For any interaction,
the involved entities can rate each other’s behavior in the interaction and the rating
can be added as a weight to the corresponding arc. If so, the social network effec-
tively becomes a directed weighted graph: its nodes represent the entities (agents,
participants) of the considered community, its arcs represent the interactions among
them, while weights represent the rating (feedback) of the corresponding arcs’ end-
points (service providers) as provided by the arcs’ starting points, i.e., service con-
sumers. Figure 1 (taken from [14]) gives an example of such a graph. The figure
assumes that feedback takes the form of ordered pairs with the first component be-
ing a flag d or r and the second a real number from the interval [0,1]. The reasoning
behind this decision is that it introduces another type of interactions, besides the
direct service provisioning in the considered application context. The new type is
interactions in the context of the reputation system itself. Assume that nodes can
ask other nodes for their opinion about some other nodes. This looks like asking
a friend to tell you what experience he had with an eBay seller. Once the service
is provided, you can rate not only the seller but also the friend who provided you
with the recommendation. The latter rating has a different context, it says how good
your friend is in recommending other entities, rather than how good he is in provid-
ing the service (i.e., what quality goods he sells). Thus the way we should under-
stand Fig. 1 is as follows. Node a had three interactions with node b: once node b
acted as a recommender of other entities (flag r) and node a’s contention with the
recommendation was evaluated 0.8 and twice node b provided the service in ques-
tion to node a (flag d) and a’s evaluations of the service provisions were 1 and 0.9
respectively.

The main message of the discussion so far is that one has to decide what interac-
tions are rated, what ratings can be provided, i.e., what is the assumed feedback set
(we will denote it W) from which these ratings are drawn and, in particular, whether
the feedback set explicitly takes into account that interactions belong to possibly
different contexts? Examples of feedback sets are the set {r,d}× [0,1], as above,
the interval [0,1], the two element set {0,1} or any discrete grading such as the
four element set {very good,good,bad,very bad}. In any case, the set W as well as
the semantics associated with its individual elements are assumed to be universally
known and agreed upon. In particular, we are assuming that there is a binary partial
ordering relation (call it “greater than”) defined on W with the interpretation that
“greater” elements mean better feedback.

A number of further questions immediately arise: Where is the graph stored?
How is it used to help making decisions? In a centralized system, the entity run-
ning the system normally provides storage for reputation data graph. In case of a
decentralized system, such as a P2P network, it is not so obvious what the best
strategy for storing the graph is. We describe briefly two possible strategies, a more
elaborate discussion follows in the next section. In the first one, every peer records
ratings it has made about others. When data about a specific target peer is needed,

P2P Reputation Management Through Social Networking 737

Fig. 1 A social network

i.e., ratings the peer has received from other peers, the requesting peer can navigate
through the social network until it reaches the destination peer. Note that, this strat-
egy does not make any assumption on the underlying P2P network. In fact, it is not
aware of it at all. The second strategy assumes that the underlying P2P system is
organized as a DHT. This DHT could be used to store reputation data in the form
of (providerID,rating) key-value pairs. Data about any given peer is in this way
immediately available through using the DHT’s search facility.

We now give a number of possible answers to the second question. They are dis-
cussed by means of examples from Fig. 1. To predict future performance of a peer,
say, j, we could propagate direct experiences of the peers which interacted with j
(peers u and v) through the graph down to the peer doing the assessment (say, peer
i), filtering them out by the recommendation experiences among the neighboring
nodes along the paths in order to decide on their credibility. Different works pro-
pose different strategies for doing this. We stress that most of the existing works do
not model explicitly the context of recommendations but rather use direct experi-
ences as credibility filters. This can be thought of as weighting one’s reports by his
trustworthiness to perform a service rather than his ability to recommend.

Another possibility might be that we simply take average of all reports about a
peer in question. This should be an efficient strategy in terms of communication
overhead spent on retrieving relevant data. However, it is not clear how good indi-
cation of the most likely performance of the target peer it would offer.

In a word, we need an algorithm, denote it A, that operates on the formed social
network, aggregates the feedback available in it, and for any peer given it outputs
a value t ∈ T which represents an indication of the peers likely behavior. Note also
the algorithm may output a recommendation for how the peer running the algorithm
should behave in the interaction with the target peer.

Thus, the social network, the feedback set W , the algorithm to aggregate the
data in the social network and the output set T constitute what we call a reputation
management system.

738 Zoran Despotovic

2.1 P2P Systems Perspective

Reputation graph

P2P Overlay graph

Fig. 2 Social network layered on top of a P2P overlay network

Figure 2 illustrates the difference between the social graph and the underlying
P2P overlay network. The social graph can be seen as another graph layered on top
of the P2P overlay network. Mapping between the nodes in the two graphs need not
necessarily be one-to-one. More than one peer (i.e., P2P overlay node) can act as
one entity in the social graph and vice versa. However, the figure assumes that this
is not the case, i.e., each peer corresponds to one and only one application entity.

Recall that one of the steps in a reputation system operation is retrieving relevant
reputation data. At minimum, this data includes feedback about the node whose rep-
utation is aggregated. So the question is: how can this data be efficiently retrieved?
A possible answer is immediately visible from Fig. 2. The social graph can be di-
rectly used for this purpose. The P2P overlay graph is irrelevant in this case. In
such a solution, every node needs to maintain a list with its interactions with other
nodes. Each entry in the list should include the information such as the physical
(e.g., IP) address of the other interacting node and the feedback associated with the
interaction. These lists at all nodes in the system would effectively constitute a so-
cial graph, that could be used also to retrieve the needed data. A discussion on the
pros and cons of such a solution is given below, after we introduce another possible
solution.

The second possibility is to store the social graph in the underlying P2P network.
The underlying network, be it structured [1, 35, 39] or unstructured [9, 20, 27] can
be seen just as a hash table storing a set of (key,value) pairs. Reputation data that
we need to store has exactly this form. For any reputation data item, key could be
the identifier of the peer which was the target of the corresponding feedback (or,
equivalently, the endpoint of the corresponding edge in the social graph). The actual
feedback could play the role of value. Note that other organizations are also possi-
ble. For example, the key fields might be formed by concatenating the two endpoints

P2P Reputation Management Through Social Networking 739

of the arcs, while the value still holds the associated reputation information. When
the underlying P2P network is unstructured, every peer can store its outgoing edges
from the social graph. When the network is structured, the (key,value) tuples are
stored at peers as dictated by the underlying storage, i.e., each tuple is stored at the
peer whose ID is closest the hashed value of the key.

Which of these two possibilities is better? We believe that the second one is al-
ways better, irrespective of the type of the underlying P2P network. Retrieving rep-
utation data about any specific peer requires flooding if the network is unstructured.
The overhead scales in this case linearly with the number of arcs. This number is typ-
ically higher in the social graph, as unstructured P2P networks are normally made
to follow a power-law outdegree distribution, giving rise to a logarithmic degree on
average. The conclusion is more obvious when the underlying P2P network is struc-
tured. The reputation data about any specific peer can be retrieved with O(logN)
overhead (O(N) to retrieve the entire trust network). So the underlying structured
storage should be used to store the reputation data.

2.2 Classification of Existing Solutions

The main goal of a reputation system is inducing specific behavior, that the repu-
tation system designer finds appropriate. Ideally, this behavior should be exerted in
every interaction, no matter who the interacting entities are. In practice, a weaker
goal is often acceptable: reduce the fraction of interactions with undesired outcomes
as much as possible. Consider again the well known eBay scenario. The best would
be if every purchased item is delivered by the respective seller, and if the quality of
every item is as its buyer expected. If this is not possible the rate of purchases with
unsatisfied buyers should be kept as low as possible. According to [13], there are
two possible ways a reputation system can do this. One is just to signal to the inter-
acting entities what can go wrong in the interactions if they behave in specific ways.
It is then up to the entities to decide what strategies are best for them. For example,
the system may just provide a prospective buyer with indications of the probabilities
that an item the buyer is interested in will not be delivered by the sellers offering it.
Then the buyer can select the seller with the minimum probability and purchase the
item if this probability is not too small. However, whatever the outcome of the in-
teraction and the report on it, they will not enforce the seller to change his behavior
in the future.

If agents are capable of reasoning strategically about one another and adjusting
their behavior dynamically, then another possibility exists. In this case, it is typi-
cally maximization of the long-run profit (over her whole lifetime) that an agent
is interested in. The main task of a reputation system in this case is to sanction
misbehavior through providing correlation between the feedback the agent receives
and the long-run profit she makes. The main (albeit subtle) difference in compari-
son with signaling reputation systems is this should hold irrespective of whether the
agent is the only one offering a specific service.

740 Zoran Despotovic

Put differently, the two approaches make different assumptions on the underlying
behavior. Sanctioning mechanisms assume that behavior is dynamic, i.e., actions
taken by an agent at two different time instants are correlated. Signaling mechanisms
assume no such correlation across time. In the rest of the chapter we will use more
specific terms to denote these two classes of behavior: probabilistic and rational,
respectively. Rational behavior implies that there is an underlying economic model
in which utilities are associated with various choices of the agents and that the agents
act as to maximize their utilities. We will say more on this in Section 5, in which we
discuss sanctioning reputation systems.

Probabilistic behavior assumes that a joint probability distribution is associated
with the set of all peers, describing their innate characteristics and determining how
they behave in the context of direct service provisioning and when reporting on
others’ performance. Thus any event in the form

(. . . , pk performes wk . . . , pl reports wl when pm performs wm . . .),

where wk,wl ,wm ∈W , should have an assigned probability. For instance, a given
distribution may specify

P[p1 misreports on p3|p2 misreports on p3] �= P[p1 misreports on p3],

meaning that peers p1 and p2 misreport on peer p3’s performance in a coordinated
manner, forming thus a collusive group.

The true distribution in not known in advance. It is the goal of reputation sys-
tems to assess the marginal distribution of peer pi performing in specific ways
P[pi performs wm].

When discussing the two classes of reputation systems, we will also pay atten-
tion to the implementation overhead they incur. It is important because P2P net-
works normally involve large numbers, e.g., millions, of nodes. Thus, only scalable
reputation systems are acceptable. Generally, the implementation overhead consists
of:

• the communication costs associated with the process of retrieving the necessary
feedback,

• the involved storage costs,
• and the computation overhead related to the feedback aggregation.

The communication costs are determined by the amount of the necessary feed-
back on which a given algorithm operates, while the storage costs become important
primarily in the case a caching scheme is used to cut the communication costs. The
employed feedback aggregation strategy determines the computation overhead.

The above discussion already indicated the division we will follow. We
established two broad groups of approaches: signaling and sanctioning reputation
mechanisms. Signaling reputation systems aim at reducing risks associated with in-
teractions by signaling relevant parameters associated with the peer behavior. For
example, peers could be assigned probability distributions and every interaction

P2P Reputation Management Through Social Networking 741

of a given peer could be considered as a trial drawn from the peer’s distribution.
A signaling reputation mechanism would try to output relevant parameters of the
distribution associated with any peer. However, we stress that the true underlying
behavior does not have to be static. It can change with time. A signaling reputation
mechanism may even make explicit the assumption that behavior is dynamic, for
example through making weighted averages of the available feedback data items
with more weight put on more recent reports. What makes them signaling is the
outputs they make, i.e., the fact that these outputs can be at best interpreted as indi-
cators (signals) of the likely performance at any instant of time.

A further distinction can be made based on how plausible these signals are, i.e.,
how strong they are. Probabilistic signaling reputation mechanisms assume that the
underlying behavior is probabilistic, just as we described previously. The signals
they output have a clear interpretation, they are parameters of the corresponding
distributions. Ad hoc signaling mechanisms fail to provide a clear interpretation of
their output signals. On the one hand, they are not parameters of probability distri-
butions characterizing peers, and, on the other, they often have relative meaning in
the sense that knowledge of the signal of a specific peer is of little use unless we
know the signals of many or all other peers.

Sanctioning reputation systems rely directly on the assumption that the underly-
ing behavior is dynamic. In fact, they are even more specific, assuming that it is ra-
tional in the game-theoretic sense. This means that the involved agents are interested
in maximizing their long-run profits, i.e., across their entire lifetime. More specif-
ically, when selecting an action today, they reason about what impact the report on
their current behavior can have on what actions their opponents select against them
tomorrow.

This division is followed in the rest of the chapter so that each of the established
classes will be discussed in a separate section. Section 3 deals with probabilistic
signaling mechanisms, Section 4 discusses ad hoc signaling mechanisms, while
sanctioning mechanisms are described in Section 5. Each section includes a gen-
eral description of the corresponding solution class as well as a discussion on the
implementation overhead in the context of P2P systems.

3 Probabilistic Signaling Reputation Mechanisms

The key property of probabilistic signaling reputation mechanisms is that they make
an explicit assumption about probabilistic peer behavior, as we described it in
Section 2.2. In its simplest form, every peer tries to assess parameters of proba-
bility distributions of other peers by considering only own experiences with those
peers or, in the lack of (a sufficient number of) these, by taking into account the sec-
ond level judgments, i.e., reports of the other peers about past behavior of the peers
being assessed. More precisely, the starting assumption is that any peer is associated
with a probability distribution that determines the peer’s behavior in its interactions.
Presumably, the distribution type is known, but its parameters are not. Further, when

742 Zoran Despotovic

reporting its own experiences with others, each peer may lie with some, again un-
known probability.

Given these assumptions, we can use well known probabilistic estimation tech-
niques to learn all unknown parameters, each time we obtain new information, either
a direct experience from an interaction with the peer in question or a new report from
a peer. The main value of these mechanisms is that they offer interacting parties the
possibility to estimate the risks of the interaction and decide whether to enter it or
not, and how to behave if decision to perform the interaction has been made.

Bayesian estimation is a typical representative of statistical estimation tech-
niques. Its main idea is to assign a prior probability distribution to an unknown
parameter and calculate its posterior whenever new observations on the parameter
value become available. We describe in short how it can be used for estimating the
unknown parameter of a Bernoulli distributed random variable. Such a task can be
encountered for example when the interactions among peers have two outcomes and
can be treated as Bernoulli random variables. According to the notation from Sec-
tion 2, this means W = {0,1} and T = [0,1]. Any prior knowledge on the distribution
of the unknown parameter can be conveniently modeled as a beta distribution with
appropriately chosen parameters. Posterior realizations of the variable lead only to a
change in the beta distribution parameters, they do not change the distribution type.
Thus, the unknown parameter remains beta distributed, but now with different pa-
rameters. To be more concrete, assume that the unknown probability θ of a specific
action A of a given peer has the prior distribution Beta(a,b).1 If we now observe n
realizations of the peer’s interactions, k of which were A then the posterior distribu-
tion of θ becomes Beta(a+ k,b+n− k). The Bayes’ estimator of θ is the expected
value of Beta(a+k,b+n−k). It can be shown that this value equals a+k

a+b+n and that
the estimator is asymptotically unbiased and consistent.

All this applies only when own experiences are taken into account. Reference
[30] presents an example in which this approach is used. Besides, it also provides
the minimum bound on the number of encounters one has to have with another peer
in order to remain within a specific probability of estimation error. It is given by
the following inequality: m ≥ 1

2ε2 ln(δ2), where ε and δ are the estimation error
and confidence level respectively. However, it was left unspecified how to apply
the method to integrate reports from direct witnesses when no meaningful decision
can be made based on own experiences only. Reference [8] makes a step towards
this. However, even though the authors discuss a number of possibilities to deal
with the “second hand” opinions they use an intuitive approach in which all second
level information sources are given equal weights. To the best of our knowledge,
there is no P2P reputation model extending the Bayesian estimation technique in
the most natural way (so called “super Bayesian estimation”) to take these or higher
level beliefs into account as well. In comparison with the “one source” Bayesian
models the only difference would be that the samples do not come from the same

1 A random variable Θ is distributed Beta(a,b) if its probability density function is f (θ) =
1

B(a,b)θ
a−1(1−θ)b−1, 0 < θ < 1, a > 0, b > 0, where B(a,b) =

∫ 1
0 xa−1(1− x)b−1dx. a and b are

the parameters of the distribution, the case a = 1 and b = 1 corresponds to the uniform distribution.

P2P Reputation Management Through Social Networking 743

distribution representing the service provider’s trustworthiness but from different
ones as the original samples now pass through the second level sources who may
misreport. But, the probability distribution of these misreports can be also estimated
and updated with new experiences so that calculating the posterior distribution of
the unknown parameters is not harder at all. This also enables an easy separation
of the contexts of recommendations and direct service provisions. We will see later
on that this can bring some benefits. The approach has also some points in common
with works relying on similarity based computation [42], the key difference is that
it has a stronger theoretical foundation. In a similar way it can be extended to cover
third and even higher level experiences.

Maximum likelihood estimation presents another method to make statistical in-
ference. Unlike Bayesian estimation, which provides a method to assess probability
distributions of unknown parameters, maximum likelihood estimation gives most
likely values of the parameters given a set of samples. More specifically, assume
that we know the form of the probability distribution of a random variable but do
not know the exact values of involved parameters. The main idea of the approach is
to compute the likelihood of the observed sample for general values of the unknown
parameters and fit the values that maximize it.

Consider an example taken from [15]. It starts with the assumption that peers
are fully characterized by two parameters: the probability of performing honestly
in their interactions with others (θ j denotes the probability of peer j) and the prob-
ability of lying when asked to report on their experience with others (l j denotes
the probability of peer j). Assume that peer j interacted with peers p1, . . . , pn and
its performances in these interactions were x1, . . . ,xn, where xi ∈ {0,1} (1 denot-
ing the honest performance and 0 the dishonest one). When asked to report on peer
j’ performances, witnesses p1, p2, . . . , pn may lie and misreport. The probability of
observing report yk from peer pk can be calculated as:

P[Yk = yk] =
{

lk(1−θ j)+(1− lk)θ j if yk = 1
lkθ j +(1− lk)(1−θ j) if yk = 0.

Given a random sample of independent reports y1,y2, . . . ,yn, the likelihood function
of the sample is

L(θ j) = P[Y1 = y1]P[Y2 = y2] · · ·P[Yn = yn]. (1)

The maximum likelihood estimation procedure implies simply finding θ j that max-
imizes this expression. This number is the maximum likelihood estimate of the un-
known probability. However, to compute θ j that maximizes (1), one needs to know
all lk’s. [15] proposes a simple trick to estimate these unknowns: every peer needs to
compare the reports about own performances with reports about them. This provides
a rough assessment of the level of lying in the community and can be understood as
the probability of lying of an average peer in the system.

Reference [2] presents another approach to reputation management in P2P net-
works built explicitly on probabilistic assumptions. It does not provide any predic-
tion of a likely future performance of the peers in terms of a probability distribution

744 Zoran Despotovic

over the possible performances. Instead, it tries to assess whether a given peer has
ever cheated in the past. Precisely, the interactions considered in this work are binary
(the peers either cheat or cooperate) and so is the feedback. After any interaction its
participants can file complaints against each other. The complaints are stored in the
underlying DHT. It is assumed that after cheating in an interaction any peer will
file a complaint against its partner, trying to hide in this way its own misbehavior.
Then, the mentioned decision is made by analyzing and separating the probability
distributions of the filed and received complaints of any peer. Though the technique
provides a certain insight to risks associated with interactions, it is very questionable
how precisely the information on whether a peer ever cheated or not can be used to
make decisions on entering an interaction with it.

3.1 Discussion

3.1.1 Performance Analysis

It is somewhat hard to give precise judgment on the performance of the probabilistic
estimation approaches because of the lack of informative simulation results in the
papers we reviewed. Reference [15] assigns randomly probabilities of performing
honest and misreporting own experiences, respectively. It tries to estimates the prob-
abilities of honest performance and reports the average estimation error for various
forms of collusion among peers. The error stays within several percents even when
liars take up to 20–30% of the peer population and relatively small numbers of in-
teractions per peer are considered (up to 30). As the most effective attack against
the mechanism, [15] points out a simple collusive setting with two groups, liars and
honest peers. Honest peers always report honestly, while liars invert the reports on
the performances of the honest peers, and always report honest performance about
the performances of the other liars.

In general, the assessment quality is highly dependent on the amount of infor-
mation used by the mechanism. Probabilistic methods use relatively small amount
of available reputation data, i.e., they do not pay attention to computing accurate
estimates of the credibility of reports. This is generally different from what most
of ad hoc methods do. We will return to this question in the next section, after we
introduce ad hoc mechanisms.

3.1.2 Implementation Overhead

The reputation data on which all previously mentioned probabilistic approaches op-
erate is localized around the target peer, i.e., the peer being assessed. Thus one can
expect that the communication costs associated with the computation are low. [15]
makes this precise by specifying that even a total of 30–40 reports on the perfor-
mances of the target peer are enough for making good estimates. The computation

P2P Reputation Management Through Social Networking 745

overhead and storage costs are virtually negligible. This is to contrast with ad hoc
methods, which typically use much larger amount of data, in many cases even the
entire reputation graph.

However, probabilistic estimation techniques may span a larger fraction of the
network if many levels of reports are considered. An interesting question to inves-
tigate with respect to this is evaluation of dependency of the estimation quality on
the used fraction of available feedback.

4 Ad hoc Signaling Reputation Mechanisms

In this section, we describe a large group of works that approach the problem of P2P
reputation management without making any explicit assumptions on the underlying
peer behavior. This results in somewhat hard-to-understand semantics with respect
to how the outputs of their corresponding algorithms should be used. Therefore,
lacking a better term, we call this body of work ad hoc. Another important property
of this class of solutions is that it typically aggregates all reputation information
available in the formed social network (or at least a considerable amount thereof),
as illustrated in Fig. 1. A natural interpretation of this process involves the follow-
ing steps: (1) enumerating all paths from the trust computation source to the target
node, (2) aggregating the trust values along the paths to give a path wide gossip
and (3) merging these gossips into a final value. Thus particular attention is paid to
computing credibility of available feedback and this is what brings serious benefits
in terms of performance.

Reference [6] presents one of early examples.2 It is one of rare works that makes
explicit distinction between the contexts of recommendation and direct experiences,
i.e., while many of the existing works judge on the credibility of feedback based
on how well the feedback submitters provide the service itself, [6] introduces the
context of recommendations to deal with credibility of feedback.

The feedback aggregation algorithm of [6] can be described as follows. Feedback
is binary in the both contexts so that W = {r,d}×{0,1}. The algorithm starts by
aggregating all direct and recommendation interactions between neighboring nodes.
Given its p “positive” direct experiences (i.e., p (d,1) pairs) and no negative expe-
rience with peer j, peer i computes the “direct trust” toward j as vi j

d (p) = 1−α p,
0 < α < 1; having at least one negative experience with peer j, peer i should put
vi j

d = 0. On the other hand, given p positive and n negative experiences with a recom-
mending peer k the recommendation trust of i toward k becomes vik

r (p,n) = 1−α p−n

if p > n and 0 otherwise. The exact value of parameter α was left unspecified.
Thus the initial social network gets transformed so that for any ordered pair of
nodes there are at most two edges between them, one per context, carrying these
aggregated values. Further, the source node enumerates all paths to the destination
node, selects only those such that the last hop carries direct trust (let us denote

2 The work does not target large P2P networks. We selected it as an interesting illustrative example.

746 Zoran Despotovic

it vk for a generic path path i) while all intermediate ones carry recommendation
trust (denote them v1, . . . ,vk−1) and propagates the direct trust of the destination
node through them according to the formula vpath i = 1−(1−vk)v1v2···vk−1 . The path
path 1 from Fig. 1 presents an example. Then, it groups together the paths with a
common penultimate node (e.g., paths path 1 and path 2 from Fig. 1) and merges
their trust values according to formula vgroup j = m

√
∏m

i=1(1− vpath i), where m is
their number and vpath i their values. Finally, it merges computed trust values of all
groups v = 1−∏s

l=1 vgroup l .A quick inspection of the described steps reveals that
the output value v ∈ [0,1] and thus T = [0,1].

A simple analysis of the presented algorithm shows that, because all paths be-
tween the two concerned nodes must be explicitly taken into account, the algorithm
complexity may be exponential in the number of the nodes in the network. This
is not acceptable in P2P networks in which this number can easily reach the or-
der of magnitude of millions. Note that we are not strict here in the sense that this
explosion must happen if we consider all the paths. As we will see shortly, there
is a way around this problem through a synchronous computation if the feedback
is conveniently propagated and aggregated. However, the above algorithm does not
fulfill this requirement and its computation complexity is in fact exponential, as the
authors show.

Reference [43] offers a polynomial time feedback aggregation algorithm. Unlike
[6], it does not consider the recommendation context separately. Again, direct ex-
periences are rated binary (good and bad, W = {0,1}). The feedback aggregation
algorithm starts, just as in [6], with aggregating the interaction outcomes between
the neighbors, which transforms the initial multigraph into a graph such that only
one edge remains for any ordered pair of nodes. To this end, the authors propose a
well known machine learning technique, delta learning namely, resulting in values
between −1 and 1. To propagate the values over chains the authors use multiplica-
tion, with the constraint that trust over a chain with at least one negative link must
be negative. When merging the values of multiple chains they choose only those
chains carrying maximal values from the source to all the neighbors of the destina-
tion node. In the example from Fig. 1 only one of the two chains from peer i to peer
u would be selected, the one having the larger associated value. The mean value of
all these chains is selected as the algorithm output. Thus, the output values remain
in the interval T = [−1,1]. This computation is polynomial in the number of nodes
(both finding all j’s neighbors and selecting the maximum weighted chains toward
those neighbors are polynomial operations and so is their union) and thus presents
a considerable improvement as compared to [6].

4.1 A Synchronous Algorithm

Reference [38] offers interesting theoretical results relating the complexity of feed-
back aggregation to operations used in the aggregation.3 It also proposes an

3 [38] targets semantic web, but it is directly applicable to P2P networks as well.

P2P Reputation Management Through Social Networking 747

algorithm to aggregate feedback. The algorithm is synchronous in the sense that it
is done for all peers at once. It is important because it provides a feedback merging
method with more efficient computation.

Assume that we have a social network with a feedback set W ⊂ R, i.e., the rec-
ommendation context is left out, and that it is a pure graph, meaning that individual
interactions between neighbors have been merged. At the moment it is not important
how exactly this merging is done, any of the previously discussed strategies will do.
The social graph can be also represented as a matrix M ≡ [Mi j]Ni, j=1, where N is the
number of peers. Assume further that the matrix has been normalized so that for any
1≤ i, j ≤ N:

0≤Mi j ≤ 1 and
N

∑
k=1

Mik = 1.

Reference [38] defines two binary operators: ◦ and $, denoting feedback concatena-
tion (propagation) and feedback aggregation, respectively. The former is applied on
two consecutive edges of a path in the social graph, while the latter applies to two
distinct paths. One can think of ordinary multiplication and addition as examples
of these operators. A new operator, denote it •, is defined in terms of these two as
follows: C = A•B such that Ci j = $(∀k : Aik ◦Bk j), where A and B are matrices rep-
resenting two social graphs. The easiest way to think of the new operation is to keep
in mind that ordinary matrix multiplication is its special case provided that ◦ and $
are ordinary multiplication and addition, respectively. When both A and B equal a
matrix M, where M is the matrix representation of a given social graph, then Ci j is
aggregated feedback on j as seen by i under the constraint that it is aggregated only
across all paths of length 2.

Consider now the following simple algorithm:

Q(0) = M, Q(k) = M •Q(k−1) until Q(k) = Q(k−1). (2)

It can be shown that the computation converges after a finite number of steps if the
matrix M (or equivalently, the trust graph) is irreducible and aperiodic. Let [Qi j]Ni, j=1
be the limit. Further, [38] proves that if $ is commutative and associative and ◦ is
associative and distributes over $, then the aggregated value of all paths (of any
length) between any pair of peers i and j equals Qi j.

Another interesting observation is that the computation can be performed lo-
cally, i.e., peers do not need to retrieve the whole matrix M first and then com-
pute the needed power. After each iteration k, every peers can retrieve from its
neighbors the currently computed opinions of those neighbors about all other peers
and then do the computation of the step k + 1. It turns out that this algorithm re-
quires at most O(N3) computations per peer. However, it is not clear what should
be the overall latency the algorithm introduces because it is determined by the
number of iterations and this number is in turn affected by the network graph
connectivity.

There are a number of other works which can be considered as special cases
of [38]. Reference [33], used as Google’s method for Web pages ranking, and [24],

748 Zoran Despotovic

targeting P2P networks specifically, present two prominent examples. They both use
the ordinary matrix multiplication as the matrix operation from (2).

Similar ideas are followed in [42]. Reference [42] avoids aggregation of the indi-
vidual interactions (transforming the social network into an ordinary graph). Instead,
it operates on the multigraph directly. It does not consider the recommendation con-
text and uses ratings from the interval [0,1], so again W = [0,1]. The main idea is
to aggregate feedback on a given peer by computing a weighted average in which
weights represent the aggregated feedback on the feedback originators themselves.
To see this, consider the following formula:

t j = ∑
e∈incoming(j)

we
tsource(e)

∑ f∈incoming(j) tsource(f)
, (3)

where incoming(j) is the set of all edges ending at node j, we is the feedback belong-
ing to the edge e and tsource(e) should be understood as credibility of the originator of
this feedback. As the authors claim, this formula can be computed by using an itera-
tive computation, similar (but still different) to (2). As such, it suffers from more or
less the same problems: the computation is inefficient and the whole network must
be retrieved. But, the authors also develop a simple caching scheme in which the
credibility values of the feedback originators are taken from a cache (default values
are used in the case of cache miss) and the computed value of a peer replaces its
corresponding cache value.

Building on [12, 44], the same work ([42]) proposes another approach based
on so called collaborative filtering technique. The idea is very similar to the previ-
ous one, the only change is that the weights in (3) are replaced with “similarity
coefficients” between the raters and the computing peer. They are computed by
finding a common set of peers that interacted with the computation source and a
given rater and calculating the standard deviation between the two corresponding
vectors.

4.2 Discussion

Consider algorithm (2) and assume that the operations $ and ◦ are ordinary addition
and multiplication so that • is the ordinary matrix multiplication. As well, assume
that the graph is irreducible and aperiodic so that the computation converges for
sufficiently large k. It turns out that the result is a matrix in which all the rows
are the same and sum up to 1. In parlance of matrix calculus, this is the primary
Eigenvector of matrix M. Applied to our problem, this result can be interpreted as
follows. As the aggregated feedback of every peer is independent of the computation
source, it can be seen as a value that the community as a whole assigns to the peer.
The fact that all the values sum up to 1 has an even more interesting interpretation: It
appears that the community distributed “a unit amount of trust” among the peers. An

P2P Reputation Management Through Social Networking 749

apparent problem with this is that if we have the value for only one peer (suppose
that we used some approximate method to compute it or simply evaluated all the
paths to the target) we will be in trouble with interpreting it. Does it mean that the
value is low because the concerned peer has bad feedback on average or because
it has excellent feedback but had to “share the trust” with other peers, which have
similar feedback. There is another problem, even if we have the values for all the
peers, but they are approximately close we are in doubt whether the whole network
is good or bad.

A similar problem is present in other methods described in this section. Assume
that we have a value, say 0.3, as the aggregated feedback value of a peer. The prob-
lem is how can we use this value to decide whether to interact with this peer or
not? Higher values should imply better service providers, but is this particular value
high enough for us? From the way how the value has been computed in any of the
above methods it is clear that it cannot be interpreted as the (estimated) probability
of specific behavior of the target peer. So, what does the value actually represent?
The lack of a plausible answer to this question is what all the discussed approaches
have in common. Precisely, the computed values lack a plausible interpretation on
an absolute scale and therefore they can be used only in scenarios which involve
ranking the trust values of many peers and selection of the most trustworthy one(s)
among them.

4.2.1 Performance Analysis

Most of the works mentioned in this section do not build their feedback aggregation
algorithms explicitly on the assumption that peer behavior is probabilistic. How-
ever, they all make this assumption when evaluating the algorithms. Thus judging
on their performances requires evaluations in settings with various types of behav-
ior represented by different probability distributions, including uncoordinated (i.e.,
independent) misbehavior of the peers as well as forming collusive groups of dif-
ferent sizes and varying collusion patterns. References [24, 42] offer informative
simulations, a condensed view of which we now present. As presented aggregation
algorithms output a single value, the only meaningful setting in which they can be
applied requires two possible outcomes of interactions. This is reflected in the ter-
minology we follow, peers can be either malicious or trustworthy.

Both [24, 42] report good performance when the fraction of malicious peers
is small (below 45% approximately) and they act independently of one another.
The fraction of misclassified peers remains almost constant and very low (within
5%) in this case. The approximate computation of [42] exhibits very similar be-
havior, the only difference is that the rise of the misclassification rate falls into a
wider region starting at around 35%. Reference [42] reports the complete break-
down of both the original mechanism and the approximate one when malicious
peers take more than a half of the population or when they collude. On the con-
trary, [24] claims almost full effectiveness of their mechanism even in this case.

750 Zoran Despotovic

This is partly due to the assumption that a number of peers exist each of whom is
assigned some non-zero rating by the rest of the community, including the mali-
cious peers. Thus, there must be an arc with a non-zero weight leading from any
node in the social graph to each of the nodes representing these peers. While this
assumption can be simulated when the computation is performed centrally at one
peer, after entire feedback in the network has been retrieved, we do not see a clear
way to enforce this behavior in a distributed computation. Reference [24] also ana-
lyzes various collusion scenarios and identifies the following as the most effective
one. Malicious peers split into two groups. Peers from the first group cheat always,
while the peers from the other group never cheat in direct interactions and give high
ratings to the peers from the first group. We add that such collusion scenarios can
be defeated only by separating the contexts of recommendations and direct service
provisions.

Reference [42], the similarity based technique, may offer a solution to this prob-
lem. This scheme stays effective even when majority of the peers are malicious and
they form collusive groups that make fake interactions. It would be interesting to
check its performance in presence of the mentioned collusive behavior.

4.2.2 Implementation Overhead

In the most of the mentioned approaches, all available information in the network is
used when aggregating the feedback about a single peer. This immediately implies
that all the peers in the network are affected and that the associated communication
costs are high. Further, some of the discussed methods require exploring all the
paths between two given nodes incurring thus a high computation overhead. We
see this as the most serious obstacle to their usability in practice in the context of
P2P systems, although they can be applied to smaller settings without any change.
The approximate method of [42] imposes acceptable overhead as only the direct
witnesses of the target peer’s performance are involved in the computation.

References [24, 38] propose a synchronous algorithm with a polynomial com-
plexity. However, even if we accept its total overhead, it is unclear if the algorithm
as specified is feasible in a P2P network. Peer dynamics may impose a serious prob-
lem. Peers go offline and come online at unpredictable time instants, the social net-
work keeps changing constantly and the recomputation of the algorithm triggered
by such changes may be highly impractical. Instead, we believe that an incremen-
tal computation is something worth further investigation. Caching schemes of [42]
offer important insights with respect to this.

4.3 Bio-inspired P2P Reputation Systems

We now briefly touch upon a growing body of work that emerged in the recent
several years and tries to transfer behavior observed among biological species to

P2P Reputation Management Through Social Networking 751

computing systems. In the light of the categorization of the P2P reputation systems
established earlier, these works do not constitute a group on their own, but rather
belong to the ad hoc methods. Therefore we discuss them in this section.

To illustrate these works, consider [21] as a typical representative. Reference [21]
looks at the process of searching for reputable provider of a service in a P2P network
as being equal to the process used by ants when searching for food. Ants leave
pheromones at specific places to guide other ants finding better routes. The more
visited a route is, the greater amount of pheromone it will have and consequently,
more ants will follow that route. In a similar vein, when a peer requests a service
it first contacts a neighbor that it believes is on the path toward a reputable service
provider. This process is repeated at each hop, until a provider is found. Once the
service has been provided and evaluated, feedback originating at the requesting peer
gets disseminated along the same path the original request took, allowing the nodes
on the path to update their beliefs about the neighbors.

We recommend [40, 41] as two further bio-inspired reputation systems and [11]
as an extensive overview of bio-inspired algorithms in general.

5 Sanctioning Reputation Mechanisms

Sanctioning mechanisms assume that behavior is dynamic, i.e., actions taken by
an agent at two different time instants are correlated. This correlation is naturally
present in game theoretic reputation models, through the main game-theoretic as-
sumption of rational behavior. Every player has a set of strategies and every strategy
profile (i.e., combination of strategies selected by the players) generates an outcome
of the game. A utility value is assigned to each outcome and the goal of each player
is to maximize her own utility.

The game theoretic framework for analyzing reputation is that of repeated games
in which some players are uncertain about payoff structures of their opponents.
The right game-theoretic tool to model mentioned uncertainties is that of games
with incomplete information (Bayesian games), in which different players may have
different information about some important aspects of the game. Central to Bayesian
games are types of the players by which the players’ private information is modeled.
In most of the models the types simply correspond to different payoff structures of
the players, but this needs not always be the case.

Repeated play is modeled by well studied models of repeated games, in which a
given stage game is played many (finitely or infinitely) times and the players maxi-
mize their long-run payoffs, i.e., in the course of the entire repeated game. We will
focus here only on so called δ -discounted (0 < δ < 1) repeated games in which any
k-stage payoff is δ discounted as compared to that of the stage k− 1. Generally,
the set of players may vary among the stages, but the following two extreme cases
are most studied in the literature: (1) models in which all the players stay active
at each stage (we call these players long-run) and (2) the models in which one or
more players stay active in each stage (long-run players) while the others play at

752 Zoran Despotovic

one stage only (short-run players). The latter is more important to us, as large num-
bers of participants in today’s online groups make repeated interactions between the
same players highly improbable. Our main concern in the rest of the section will
be to show how specific behavior of the long-run player can be induced by appro-
priately aggregating feedback on his past play and making it available to the other
players.

An important assumption we make in this section is that the reader is familiar
with the basics of game theory and the its main concepts such as Nash (as well as
Nash-Bayesian) equilibrium, repeated games and so on.

5.1 Modeling Reputation

We now show how game theory formalizes the concept of reputation. Figure 3
(adapted from [26]) presents the working example. The figure shows two game trees
corresponding to two types of one of the players (monopolist). Each game tree is an
example of so called games in extensive form (or dynamic games). Nodes labeled i
belong to player i and only that player moves at those nodes. Possible moves at each
node are shown as labels of the edges leaving the node.

The game from Fig. 3 models a situation two firms might face in a market. As-
sume that player 1 is a firm already established in a market (monopolist hereafter)
and that player 2 is another firm that decides on entering the market or staying out
(entrant). The game is Bayesian as the monopolist has two types, it can be weak
or strong, but the entrant is uncertain about which of these two types it is actually
facing. Notice that the only difference between the two game trees is in the payoffs
of the monopolist. In both cases the monopolist can choose to fight the entry or ac-
quiesce (share the market peacefully), while the entrant chooses whether to enter or
stay out. The payoffs of the two firms are as shown in Fig. 3. It is important to notice
that the strong monopolist prefers fighting the entry (1 > 0, the right-hand side of
the figure) and the entrant prefers staying out if he believes that the fight will occur
(0 > −1). If the entrant stays out the monopolist gets the best payoff he can get in
the game.

Fig. 3 Bayesian chain store game

P2P Reputation Management Through Social Networking 753

Assume now that a weak monopolist plays this stage game against a finite number
of entrants each of whom plays only once but is informed about the whole previous
play. The entrants assign a common prior probability distribution to the set of the
monopolist’s types (weak and strong). After each stage the entrants update their
beliefs on the types using Bayes’ formula and the monopolist’s that stage move.
We are interested in the following problem: Does it pay off for the monopolist to
develop reputation for being strong (remember that it is in fact weak), i.e., fight
eventual early entries in order to deter later ones? Intuitively, this might make sense
because not sharing the market in later stages may offset losses from fighting early
ones.

[26] provide an elaborate analysis of the problem. First, if all the entrants know
that the monopolist is weak (so the prior probability of being strong equals 0 – the
game is no longer Bayesian), then there is only one equilibrium of the repeated
game in which all entrants enter and the monopolist acquiesces at all stages. So,
a monopolist that is known to be weak will never fight an entry under these con-
ditions. Put differently, the monopolist cannot develop reputation for being strong
when its opponents cannot believe that it can be strong. But, as soon as the prior
probability on the monopolist being strong is non-zero there are equilibria in which
the monopolist would prefer to fight some early entries and the affected entrants
would consequently stay out (so fighting would not actually happen as the entrants
stay out). This is exactly the effect of the monopolist’s reputation, or more precisely
the possibility to develop it. The point is that fighting these early entries would con-
vince future entrants that the monopolist is strong so that losses incurred by these
moves would be offset by not sharing the market at later stages. Therefore, the en-
tries might occur only in a number of last stages. Interestingly, this number depends
only on the initial probability that the monopolist is strong, i.e., it is independent of
the total number of stages played. Thus, the payoff the monopolist receives when
the total number of stages grows approaches 3, the payoff corresponding to the mo-
nopolist’s most preferred stage game outcome, when the entrants stay out.

Reference [18] provides a generalization of this finding. Similar to [26], the set-
ting involves one long-run player facing an infinite sequence of short-run opponents.
The key notions [18] introduces are Stackelberg payoff and Stackelberg strategy.
Stackelberg payoff is the best payoff the long-run player can get by committing
himself to a specific strategy in the considered stage game (at this point, the stage
game is not Bayesian). The strategy to which it would commit is called Stackelberg
strategy. The authors form a Bayesian game setting in which the long-run player
has two types: one is the ordinary long-run player with payoffs as given in the stage
game, the other is a new type of the long-run player for which playing Stackel-
berg strategy is the dominant strategy. The main result of [18] is that, under these
conditions, the limit of the long-run player’s payoff in the repeated game when his
discount factor δ approaches 1 (the long run player is sufficiently patient) is exactly
his Stackelberg payoff. Applied to the above example, this means that a monopolist
with a sufficiently high discount factor can always get his Stackelberg payoff (which
equals 3) when playing against an infinite sequence of short-run entrants.

754 Zoran Despotovic

5.1.1 Perfect vs. Imperfect Monitoring

In the above models, the necessary ingredient to talk about reputation effects was
incomplete information, modeled as Bayesian game. Interesting models, perhaps
even closer to the real-world settings, can be obtained if uncertainties on the short-
run players’ side are modeled through so called imperfect monitoring. So far, the
short-run players were perfectly informed about the history of play. Such games are
said to have perfect monitoring. When players do not observe the past actions but
only their imperfect signals, the game is said to have imperfect monitoring. If the
signals are common to all the players (i.e., they are public), then the monitoring is
said to be public, otherwise it is private.

Reference [13] presents an interesting model with private monitoring. The set-
ting involves a long-run seller facing an infinite sequence of one-shot buyers. In
each round, the seller sells an item and the buyers compete in an auction to buy it.
The item is perceived on the buyers’ side as either high or low quality. This percep-
tion is influenced by the seller’s action, which can be either high or low effort. Both
low and high quality perceptions of the buyers are possible under both high and low
effort. Thus the game has private imperfect monitoring as the seller’s actions are
not observed by the buyers. Instead, their imperfect signals (high and low quality)
are. The feedback on the seller’s past play consists of the observed signals. Refer-
ence [13] proposes maintaining a fixed size window of such reports as the feedback
aggregation strategy. Every new report replaces an old, randomly chosen one. The
seller’s optimal strategy in this setting is to always exert high effort if he has zero low
quality reports, otherwise he should follow a mixed strategy in which the probability
of exerting high effort is a linearly decreasing function of the current number of low
quality reports. However, it turns out that there is an efficiency loss in comparison
with the case where the seller can commit to exerting high effort. But there is no
efficiency loss in comparison with the case where the entire feedback history of the
buyer reports is publicly known. The author also shows that the whole mechanism
is pretty robust in the presence of buyers’ misreporting the seller’s actions.

Even though the difference between the information structure games with perfect
and imperfect monitoring seems small, it causes a large difference in the tractability
of these two classes of games. While convenient mathematical tools for analyz-
ing the imperfect public monitoring games have been found [3] and the long-run
player’s payoff characterization results have been obtained [19] there are no similar
results for the imperfect private monitoring. Instead, only specific games have been
analyzed and their equilibria derived. See [25] for more on this.

5.1.2 Truthful Feedback Submission

There are a number of problems with the above models that have to be addressed. In
the models of this section, we have tacitly assumed that feedback is always provided.
Each short-run player was assumed to submit her feedback on the long-run player’s
move at the concerned stage. Is this a valid assumption, given that all our players are

P2P Reputation Management Through Social Networking 755

rational and feedback submission is costly, i.e., it is not free? We have also assumed
that short-run do not misreport on their experience with the long-run player. What is
the impact of this assumption? Finally, to whom should the feedback be submitted in
a P2P system, do we need to have a central authority for that purpose or we can solve
the problem in a distributed manner? We give answers to the first two questions in
the next paragraph, while we touch upon the last question in Section 5.1.4.

The approach taken in models from Sections 3 and 4 was that they permit mis-
reporting and then verify how much it hurts the reputation system performance.
Game-theoretic models take a different approach. They try to make truthful feed-
back provisioning the dominant strategy of the short-run players. [23, 29] analyze
exactly this problem and propose a payment-based system based on the application
of proper scoring rules to the reports. They prove that honest reporting is a Nash
equilibrium and that, on the other hand, the budget is balanced by charging involved
players for payments that are based on the reports of others.

Further references on the topic are [12, 34]. Particularly interesting is [34]. It
assumes that both the service provider and the client rate the provider’s performance
after each interaction. In case of disagreement of ratings, it proposes fines that affect
reputation of both interacting partners. Honest feedback submission has been found
to be a Nash equilibrium.

5.1.3 Evolutionary Settings

Recently, there has been a growing interest in so called evolutionary game-theoretic
models. In an evolutionary setting, a population of players play a given game re-
peatedly for many epochs. Each player is characterized by its strategy. Upon the
completion of one epoch, the payoffs of all players are calculated and the popula-
tion is adjusted for the next epoch so that good strategies reproduce while poor ones
die out. The rates of reproduction depend on the exact scores.

Reference [5] analyzes such a setting with Prisoner’s dilemma as the stage game.
It has been found that the best strategy in the long-run is tit-for-tat. It is remarkably
simple: it starts with cooperating and afterward does whatever the opponent did in
the previous round. Thus reciprocation is one of its main properties. The setting for
experiments in [5] was that in each epoch the same two players played against each
other. Would the main result change if we drop this assumption and assume that the
opponents are matched randomly? This would even better approximate real-world
settings.

Reference [32] offers an answer (it is neatly summarized in [31]). It assumes that
a public label is associated with each player. This label constitutes the reputation of
the player. Everyone can read the label, and all players except the owner of the label
are allowed to change it. Labels are changed after each interaction. Updating labels
of opponents brings in another dimension in the strategy space. Reference [32] de-
scribes it by means of the assessment function. The assessment function takes the
label of self, the label of the opponent and the action of the opponent and produces
the new value for the opponent’s label. On the other hand, the action function maps

756 Zoran Despotovic

the label of self and the opponent to an action, either cooperate or defect. There are
16 possible action functions and 256 possible assessment functions, giving rise to
4096 possible strategies. Reference [32] identified 8 of them as evolutionary stable.
Interesting enough, all of them are remarkably similar to tit-for-tat. This is why [31]
points out indirect reciprocity as the keyword for this setting.

5.1.4 Critiques of Game-Theoretic Modeling

We now briefly discuss some pros and cons of game-theoretic modeling of reputa-
tion. First, feedback needs to be maintained and aggregated (labels of the players,
fixed window of reports, and so on). We did not make it clear who does that and
how. There are P2P settings in which this does not pose a problem. For example,
distribution of every file in BitTorrent [10] is monitored by a tracker. This is an
entity that represents a perfect candidate to perform feedback aggregation when a
reputation system is implemented to support distribution. However, it is not clear
how such an entity could be implemented in fully decentralized systems or for dif-
ferent tasks such as DHT routing. When a centralized entity is not available, the
only alternative is to implement it in a distributed manner. However, this would
lead to a substantial increase of model complexity as strategic choices with re-
spect to feedback aggregation must not be viewed in separation from the rest of the
system.

The next problem is related to the rationality assumption. Is that assumption valid
in a typical P2P setting? There are studies demonstrating that humans do not behave
as fully rational decision makers [7, 16]. So if humans (as opposed to software
agents, for example) are expected to be the participants in the system, then a game-
theoretic model of reputation may fail to be effective.

6 Identities: An Important Practical Problem

All the models discussed so far implicitly assume that identities are stable and un-
changeable. Peers can be unambiguously authenticated and they never leave the sys-
tem and reappear under new identities. This is highly unrealistic in P2P settings. As
the following discussion shows, there is always a price to pay when stable identities
cannot be enforced.

Reference [17] is one of rare works dealing with the problem of unstable identi-
ties. It develops a reputational game-theoretic model in which player play the pris-
oner’s dilemma repeatedly. After each stage, they can choose whether to replace
their identities and erase the reputation they built until that point or just to continue
to play with the old identity. The main result is that no equilibrium can be signifi-
cantly more efficient than the equilibrium in which newcomers pay dues, i.e., they
are treated poorly by the players with established good reputations. This means that
if it is possible to change identities, then there must be an efficiency loss. When

P2P Reputation Management Through Social Networking 757

applied to signaling approaches, this translates to the following reasoning. The best
a peer can do is setup a threshold of minimum reports other peers need to have in
order to be selected as service providers. However, this creates a new problem of
bootstrapping the system.

Another problem is indirectly related to identities. It deals with a range of sim-
ple strategies to seriously reduce the effectiveness of reputation systems [12]. For
example, a peer may collude with another peer or a group of them in order to be
given sufficiently many high ratings. The easiest way to realize this is setup a num-
ber of side identities and use them to rate the main identity. Reference [12] presents
an effective way to reduce the effects of this problem. It implies taking only feed-
back from a set of raters which have rated a set of common peers as the concerned
peer and also gave them similar ratings. To be effective in this case, the adver-
sary needs not only make multiple identities but also rate sufficiently many other
peers.

7 Discussion and Conclusions

In this chapter, we addressed the problem of reputation management through social
networking. We started with a motivation for the work and pointed out that reputa-
tion management is needed in many settings as the only viable solution to promote
trustworthy behavior. Further, we found that empirical studies confirm the effective-
ness of reputation systems.

Social aspect is inherent to reputation systems. We formalized this through the
notion of a social network. The interactions among peers together with the feed-
back the interacting peers make about one another form a social network. The data
available in the social network as well as the algorithms to aggregate this data are
the basis for building reputation systems. The P2P dimension of the problem lies
in being aware that social networks can be huge and must be distributed among the
peers. Therefore, algorithms to aggregate available feedback must be scalable and
operate on a small fraction of available data.

We provided a classification of existing solutions. It is based on the assumptions
various approaches make about underlying behavior and the interpretation of their
outputs. Signaling reputation systems output signals that can be at best interpreted as
probabilities of likely behavior of concerned peers. This is truly the case with prob-
abilistic signaling approaches, that start with the assumption that peers are of certain
types determining their probability distributions. A broad range of other methods,
which we termed ad hoc, do not make this assumption explicit but the outputs they
make can be most reasonably interpreted this way. Sanctioning reputation mecha-
nism assume economic rationality as the defining property of the peers and build
game theoretic models in which maximization of the long-run profits is the main
goal. Different strategies to maintain and share the information about past play lead
to different outcomes, i.e., equilibria. Finding those strategies that lead to desirable
outcomes is the main problem.

758 Zoran Despotovic

However, there are no studies confirming that behavior in real-world online com-
munities is probabilistic or rational. In fact, there are studies confirming that it does
not belong to either of these two extremes. This is what we believe future research
should focus on, i.e., deriving accurate approximations of the true underlying be-
havior and making models tailored specifically for that type of behavior.

References

1. Aberer, K.: P-Grid: A self-organizing access structure for P2P information systems. In: Pro-
ceedings of the Sixth International Conference on Cooperative Information Systems (CoopIS
2001). Trento, Italy (2001)

2. Aberer, K., Despotovic, Z.: Managing Trust in a Peer-2-Peer Information System. In: Proc.
of the IX International Conference on Information and Knowledge Management. Atlanta,
Georgia (2001)

3. Abreu, D., Pearce, D., Stachetti, E.: Toward a Theory of Discounted Repeated Games with
Imperfect Monitoring. Econometrica 58, 1041–1064 (1990)

4. Akerlof, G.: The market for lemons: Quality uncertainty and the market mechanism. Quarterly
Journal of Economics 84, 488–500 (1970)

5. Axelrod, R.: The Evolution of Cooperation. Basic Books, New York (1984)
6. Beth, T., Borcherding, M., Klein, B.: Valuation of Trust in Open Networks. In: Proceedings of

the European Symposium on Research in Computer Security (ESORICS), pp. 3–18. Springer-
Verlag, Brighton, UK (1994)

7. Bolton, G., Katok, E., Ockenfels, A.: How effective are online reputation mechanisms? an
experimental investigation. Discussion paper 25, 2002, Max Planck Institute for Research
into Economic Systems, Germany (2002)

8. Buchegger, S., Le Boudec, J.Y.: The effect of rumor spreading in reputation systems for mobile
ad-hoc networks. In: Proc. of WiOpt ‘03: Modeling and Optimization in Mobile, Ad Hoc and
Wireless Networks. Sophia-Antipolis, France (2003)

9. Chawathe, Y., Ratnasamy, S., Breslau, L., Lanham, N., Shenker, S.: Making Gnutella-like P2P
Systems Scalable. In: SIGCOMM 2003. Karlsruhe, Germany (2003)

10. Cohen, B.: Incentives Build Robustness in BitTorrent. In: 1st Workshop on the Economics of
Peer-to-Peer Systems. Berkeley, CA, USA (2003)

11. Cordon, O., Herrera, F., Stützle, T.: A review of the ant colony optimization metaheuristic:
Basis, models and new trends. Mathware & Soft Computing 9, 141–175 (2002)

12. Dellarocas, C.: Immunizing online reputation reporting systems against unfair ratings and dis-
criminatory behavior. In: Proceedings of the 2nd ACM conference on Electronic Commerce.
Minneapolis, USA (2000)

13. Dellarocas, C.: Sanctioning reputation mechanisms in online trading environments with moral
hazard. Working paper 4297-03, MIT Sloan (2004)

14. Despotovic, Z.: Building Trust-aware P2P Systems: From Trust and Reputation Management
to Decentralized E-Commerce Applications. Ph.D. thesis, École Polytechnique Fédérale de
Lausanne (EPFL) (2005)

15. Despotovic, Z., Aberer, K.: Maximum Likelihood Estimation of Peers’ Performances in P2P
Networks. In: 2nd Workshop on the Economics of Peer-to-Peer Systems. Cambridge, MA,
USA (2004). Available at http://www. eecs.harvard.edu/p2pecon/

16. Fehr, E., Gächter, S.: Altruistic punishment in humans. Nature 14, 137–140 (2002)
17. Friedman, E., Resnik, P.: The Social Cost of Cheap Pseudonyms. Journal of Economics and

Management Strategy 10(2), 173–199 (2001)
18. Fudenberg, D., Levine, D.: Reputation and Equilibrium Selection in Games with a Patient

Player. Econometrica 57(4), 759–778 (1989)

P2P Reputation Management Through Social Networking 759

19. Fudenberg, D., Levine, D.: Maintaining a Reputation when Strategies are Imperfectly Ob-
served. Review of Economic Studies 59, 561–579 (1992)

20. Gnutella: Clip2. The gnutella protocol specification v0.4 (document revision 1.2).
http://www9.limewire.com/developer/gnutella protocol 0.4.pdf (2001)

21. Gómez Mármol, Félix and Martı́nez Pérez, Gregorio and Gómez Skarmeta, Antonio F.: TACS,
a Trust Model for P2P Networks. Wireless Personal Communications, Special Issue on In-
formation Security and data protection in Future Generation Communication and Networking
(2008)

22. Houser, D., Wooders, J.: Reputation in auctions: Theory and evidence from ebay. Working
paper, University of Arizona (2001)

23. Jurca, R., Faltings, B.: Towards Incentive-Compatible Reputation Management. In: AAMAS
2002 Workshop on Deception, Fraud and Trust in Agent Societies. Bologna, Italy (2002)

24. Kamvar, S.D., Schlosser, M.T., Garcia-Molina, H.: EigenRep: Reputation Management in P2P
Networks. In: Proceedings of the World Wide Web Conference. Budapest, Hungary (2003)

25. Kandori, M.: Introduction to Repeated Games with Private Monitoring. Journal of Economic
Theory 102, 1–15 (2002)

26. Kreps, D., Wilson, R.: Reputation and imperfect information. Journal of Economic Theory
27, 253–279 (1982)

27. Lv, Q., Cao, P., Cohen, E., Li, K., Shenker, S.: Search and replication in unstructured peer-to-
peer networks. In: International Conference on Supercomputing, pp. 84–95. New York, USA
(2002)

28. Melnik, M.I., Alm, J.: Does a Seller’s Ecommerce Reputation Matter? Evidence from eBay
Auctions. Journal of Industrial Economics 50(3), 337–349 (2002)

29. Miller, N., Resnick, P., Zeckhauser, R.: Eliciting Honest Feedback in Electronic Markets.
Working paper, SITE02 workshop (2002). Available at: http://www.si.umich.edu/ presnick/-
papers/elicit/

30. Mui, L., Mohtashemi, M., Halberstadt, A.: A Computational Model of Trust and Reputation.
In: Proceedings of the 35th Hawaii International Conference on System Science (HICSS).
Hawaii, USA (2002)

31. Nowak, M., Sigmund, K.: Evolution of indirect reciprocity. Nature 437, 1291–298 (2005)
32. Ohtsuki, H., Iwasa, Y.: How should we define goodness? - reputation dynamics in indirect

reciprocity. Journal of Theoretical Biology 231, 107–120 (2004)
33. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank Citation Ranking: Bringing

Order to the Web. Tech. rep., Stanford University, Stanford, CA, USA (1998)
34. Papaioannou, T.G., Stamoulis, G.D.: Achieving Honest Ratings with Reputation-based Fines

in Electronic Markets. In: Proceedings of the IEEE Infocom Conference. Phoenix, AZ, USA
(2008)

35. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content-addressable
network. In: Proceedings of ACM SIGCOMM ’01, pp. 161–172 (2001)

36. Resnick, P., Zeckhauser, R.: Trust among strangers in internet transactions: Empirical anal-
ysis of ebay’s reputation system. In: M.R. Baye (ed.) The Economics of the Internet and
E-Commerce, Advances in Applied Microeconomics, vol. 11. Amsterdam, Elsevier Science
(2002)

37. Resnick, P., Zeckhauser, R., Friedman, E., Kuwabara, K.: Reputation systems. Communica-
tions of the ACM 43(12), 45–48 (2000)

38. Richardson, M., Agrawal, R., Domingos, P.: Trust management for the semantic web. In:
Proceedings of the Second International Semantic Web Conference, pp. 351–368. Sanibel
Island, FL (2003)

39. Stoica, I., Morris, R., Karger, D., Kaashoek, F., Balakrishnan, H.: Chord: A Scalable Peer-To-
Peer Lookup Service for Internet Applications. In: Proceedings of the 2001 ACM SIGCOMM
Conference, pp. 149–160 (2001)

40. Tajeddine, A., Kayssi, A., Chehab, A., Artail, H.: Patrol: a comprehensive reputation-based
trust model. International Journal of Internet Technology and Secured Transactions 1(24),
108–131 (2007)

760 Zoran Despotovic

41. Wang, W., Zeng, G.: AntRep: A swarm intelligence based trust model in P2P networks. Jour-
nal of Universal Computer Science 13, 1164–1174 (2007)

42. Xiong, L., Liu, L.: Peertrust: Supporting reputation-based trust in peer-to-peer communities.
IEEE Transactions on Knowledge and Data Engineering (TKDE), Special Issue on Peer-to-
Peer Based Data Management 16(7), 843–857 (2004)

43. Yu, B., Singh, M.P.: A Social Mechanism of Reputation Management in Electronic Commu-
nities. In: Proceedings of the 4th International Workshop on Cooperative Information Agents
(CIA), pp. 154–165. Boston, USA (2000)

44. Zacharia, G., Moukas, A., Maes, P.: Collaborative Reputation Mechanisms in Electronic Mar-
ketplaces. In: Proceedings of 32nd Hawaii International Conference on System Sciences.
Hawaii, USA (1999)

State of the Art in Trust and Reputation Models
in P2P networks

Félix Gómez Mármol and Gregorio Martı́nez Pérez

Abstract Ensuring security in a distributed environment such as P2P networks is
a critical issue nowadays. Nevertheless, it is in those kind of scenarios in which
entities can enter or leave the community whenever they want, where traditional
security schemes can not always be applied. Specifically, the use of a PKI (Public
Key Infrastructure) may be unacceptable within highly distributed systems. There-
fore, modeling concepts like trust and reputation may result very helpful and useful
when trying to gain a certain level of security and confidence among inter-operating
entities. Thus, this chapter presents a review of some of the most representative trust
and reputation models for P2P networks, discussing their main characteristics and
also their weaknesses and deficiencies. Open issues and challenges associated with
them will be also covered.

1 Introduction

P2P networks have been widely spread in the recent years. We find them in many
scenarios and applications, from file sharing systems to even military environments.
They have helped to improve and increase the accessibility to the information as well
as the opportunity of communication or the performance of electronic transactions,
for instance.

Consequently, many research works have been done and are still in progress in
order to improve their robustness, applications, scalability or security among other
features.

And it is just security one of the most critical issues when dealing with this kind
of networks. Due to its intrinsic nature, where every peer can enter and leave the net-
work whenever it wants and where most of the times there is no central entity con-
trolling the community, many security threats have arisen during the development
of P2P networks, since malicious behaviors must be managed by all the participants
themselves.

X. Shen et al. (eds.), Handbook of Peer-to-Peer Networking, 761
DOI 10.1007/978-0-387-09751-0 26, © Springer Science+Business Media, LLC 2010

762 Félix Gómez Mármol and Gregorio Martı́nez Pérez

Some of these threats have their origin in the lack of knowledge a peer has
(specially newcomers, who join the network for the first time) about the other peers
belonging to the community, and their current and past behavior.

Without loss of generality we can assume a P2P network where some nodes offer
certain services or carry out certain tasks and other peers apply for those services or
tasks. In such a situation when a newcomer enters the network she will probably not
know any or most of the rest of peers already joined, and vice versa, i.e., they will
recognize her as a stranger.

In the last few years trust and reputation management has been proposed as a
novel approach in order to overcome this problem. In fact, by counting with a system
where every node could ask for the reputation hold by a peer in the community, more
accurate and intelligent choices could be done when deciding which peer to interact
with since, in many cases, fraudulent interactions could be avoided.

And this reputation values come from the trust relationships established among
peers who have had interactions in the past and have evaluated and rated each others.
However, the application of these trust and reputation schemes also has its security
threats. For instance, a collusion could be formed among a set of peers who rated
themselves with the maximum value, increasing this way their reputation in the
community.

Therefore, in this work we are going to present and describe a set of some of
the most representative trust and reputation models for P2P networks currently
published in the literature and we will describe how each one of them deals with
these and other problems.

The rest of the paper is organized as follows. The trust and reputation models
review will be done in Section 2, while Section 3 will show a global analysis of all
the previously described models, talking about common features and deficiencies
detected in most of them, extracting the main steps followed by the majority of those
models and presenting common issues related to trust and reputation management
and how the current proposals tackle such problems. Finally Section 4 will present
some conclusions of our analysis, as well as some future research directions.

2 Trust and Reputation Models

CuboidTrust

CuboidTrust [1] is a global reputation-based trust model for peer to peer networks
which builds four relations among three trust factors including contribution of the
peer to the system, peer’s trustworthiness (in reporting feedbacks) and quality of
resource. It applies power iteration in order to compute the global trust value of
each peer.

A cuboid is built where each small cube with coordinates (x,y,z,), denoted by
Px,y,z, represents the quality of resource z stored at peer y rated by peer x. Once peer

State of the Art in Trust and Reputation Models in P2P networks 763

x has downloaded resource z from peer y, it may rate it as positive (Px,y,z = 1) if
the downloaded resource z is considered authentic, or negative (Px,y,z = −1) if the
downloaded resource z is considered inauthentic or the download is interrupted for
any reason.

Two coefficient matrixes are defined, E and D, whose elements are:

Di j = avg(Pj,i,·) ∈ [−1,1] 1≤ i≤M, 1≤ j ≤M

Ei j = avg(Pi,·, j) ∈ [−1,1] 1≤ i≤M, 1≤ j ≤ N

where M is the number of peers, N is the number of distinct resources, Pj,i,· repre-
sents the vector with X = j and Y = i in the cuboid, and Pi,·, j represents the vector
with X = i and Z = j in the cuboid. Therefore, each element Di j stores the average
score of peer i rated by peer j while each element Ei j stores the average score of
resource j rated by peer i.

The first relation among the three mentioned factors effectively combines two
of them (the trustworthiness score and the contribution score) as it is shown in the
following equation:

Ci =
M

∑
j=1

(Di j×Tj) 1≤ i≤M

where Tj represents the trustworthiness of peer j, and Ci reflects the contribution
of peer i to the system by considering the experiences of all peers belonging to the
network.

The second relation combines the quality of a resource with the trustworthiness
of a peer as follows:

Ti =
N

∑
j=1

(Ei j×Q j) 1≤ i≤M

where Q j is the quality score of resource j, and Ti actually represents the trustwor-
thiness of peer i.

The third relation takes into consideration the trustworthiness of the peers in the
system as well as the quality of the resources being exchanged in the following
manner:

Qi =
N

∑
j=1

(ET
i j ×Tj) 1≤ i≤ N

where ET
i j is the element with coordinates (i, j) of the transposition of matrix E,

denoted as ET , and represents the average score of resource i rated by peer j. Tj

indicates the trustworthiness of peer j and Qi is the quality of resource i in the
system.

And the last relation combines the contribution and the trustworthiness as fol-
lows:

764 Félix Gómez Mármol and Gregorio Martı́nez Pérez

Ti =
M

∑
j=1

(DT
i j×Cj) 1≤ i≤M

where DT
i j represents the average score of peer j rated by peer i, Cj indicates the

contribution score of peer j, and Ti reflects the trustworthiness of peer i.
Combining now these four relations we can obtain:

C = D×T = D×E×Q = D×E×ET ×T =
D×E×ET ×DT ×C = (D×E)× (D×E)T ×C

(1)

And applying power iteration over equation (1), we get

C(k) = R×C(k−1) = R(1)×C(k−2) = · · ·= R(k−1)×C(1) = R(k)×C(0)

where R = (D×E)× (D×E)T , and C(k) represents the global contribution score of
every peer in the system, after k iterations.

Another combination of the four relations can give us the following expression:

Q = ET ×T = ET ×DT ×C = ET ×DT ×D×T =
ET ×DT ×D×E×Q = (D×E)T × (D×E)×Q

(2)

And applying again power iteration over equation (2), we get

Q(k) = S×Q(k−1) = S(1)×Q(k−2) = · · ·= S(k−1)×Q(1) = S(k)×Q(0)

where S = (D×E)T ×(D×E), and Q(k) represents the global quality score of every
resource in the system, after k iterations.

In CuboidTrust the global contribution score of a peer in the system represents
the global trust value of that peer.

EigenTrust

One of the most cited and compared trust models for P2P networks is EigenTrust
[9]. It assigns each peer a unique global trust value in a P2P file-sharing network,
based on the peer’s history of uploads, achieving thus a decreasing in the number of
downloads of inauthentic files.

The local trust value si j is defined as follows:

si j = sat(i, j)−unsat(i, j)

where sat(i, j) is the number of satisfactory transactions peer i has had with peer j
(equally, unsat(i, j) is the number of unsatisfactory transactions).

A probability distribution p (with pi ∈ [0,1]) is defined over pre-trusted peers. For
instance, if some set of peers P are previously known to be trusted, then pi = 1/|P|
if i ∈ P, and pi = 0 otherwise. With a definition like this, a normalized local trust

State of the Art in Trust and Reputation Models in P2P networks 765

value ci j ∈ [0,1] can be defined as:

ci j =

{
max(si j ,0)

∑ j max(si j ,0) if ∑ j max(si j,0) �= 0

p j otherwise

Therefore, if a peer does not trust anybody or does not know anybody, she will
choose to trust the pre-trusted peers.

The global reputation of peer i is defined in EigenTrust in terms of the local trust
values assigned by other peers to peer i, weighted by the global reputation of the
assigning peers. So the aggregation of normalized local trust values is computed as:

tik =∑
j

ci jc jk

being tik the amount of trust that peer i places in peer k based on asking his friends.
Let C be defined as the matrix [ci j] and ti as the vector containing the values tik, then
we have that ti = CT ci.

Peer i may wish to ask her friends’ friends in order to get a wider view. In such
a situation we would have that ti

(2) = (CT)2ci. If she continues in this way (i.e.,
ti

(n) = (CT)nci), she will achieve a complete view of the network after n iterations.
The trust vector ti will converge to the same vector for every peer i, if n is

large enough. In other words, it will converge to the left principal eigenvector of
C. Namely, t is a global trust vector in this model whose elements, t j, quantify how
much trust the system as a whole places in peer j.

Finally, in order to avoid malicious collectives in P2P networks, the global trust
value is re-defined as:

t(k+1) = (1−a)CT t(k) +ap

where a is some constant less than 1 and t(0) = p.

BNBTM

In BNBTM [20] multidimensional application specific trust values are used and
each dimension is evaluated using a single Bayesian network.

Beta probability distribution functions are used in order to represent the distribu-
tion of trust values according to interaction history as follows:

τi =
αi

αi +βī
, (i ∈ {G,L,C}, ī ∈ {Ḡ, L̄,C̄})

where αi = ri + 1 and βī = sī + 1, ri and sī are the number of interactions with
outcome i and ī, respectively, and G means shipping goods as described, L means
shipping lower quality goods, C means not shipping any good, and Ḡ, L̄ and C̄ the
opposite.

Since βḠ = αL +αC−1, then

766 Félix Gómez Mármol and Gregorio Martı́nez Pérez

τi =
αi

∑ j∈{G,L,C}α j−1
=

ri +1

∑ j∈{G,L,C} r j +2

The trust value is then obtained by normalizing this beta function:

Pi =
τi

∑ j∈{G,L,C} τ j +2

This trust value Pi is considered to be reliable if its corresponding confidence γi

is greater than a certain threshold θγ .
An entity can estimate another’s reputation according to the received ratings

about the latter. A Bayesian network is constructed to perform the estimation for
each dimension of trust (G, L, C). This eases both to extend the model to involve
more dimensions of trust and to combine Bayesian networks to form an opinion
about the overall trustworthiness of an entity. Each entity can evaluate its peers ac-
cording to its own criteria, and the dynamic characteristics of criteria and of peer
behavior can be captured by updating Bayesian networks.

After obtaining reputation values for a seller agent, the buyer normalizes them to
get (P′G,P′L,P′C) which are then used to calculate the utility of dealing with the seller.
Buyers can select a utility function UR(x) according to their attitude to risk, where
R is the risk tolerance. Suppose the price of an item is q, its intrinsic value is v, and
the intrinsic value of a lower quality item is v′. Then, the expected utility can be
calculated as:

EU = P′G×UR(v−q)+P′L×UR(v′ −q)+P′C×UR(−q)

EU > 0 means that dealing with the seller is worthy, otherwise is too risky.

GroupRep

GroupRep [18] is a model where trust relationships are classified in three levels: trust
relationships between groups, between groups and peers and only between peers.

Group i trust in group j, TrGiG j , is computed as follows:

TrGiG j =

⎧
⎪⎪⎨
⎪⎪⎩

uGiG j
−cGiG j

uGiG j
+cGiG j

if uGiG j + cGiG j �= 0

Trre f erence
GiG j

if uGiG j + cGiG j = 0 and ∃ Trust path
GiG j

TrGiGstrange otherwise

Where uGiG j ≥ 0 and cGiG j ≥ 0 are the utility and the cost, respectively, that
nodes of group j have given to nodes in group i.

Given a set of reference paths between Gi and G j, the most trustworthy refer-

ence path is that one including the most trustworthy group. Therefore, Trre f erence
GiG j

is
defined as the minimum trust value along the most trustworthy reference path.

State of the Art in Trust and Reputation Models in P2P networks 767

The trust value for strange groups (groups that have not had transactions with Gi)
is calculated with this expression:

TrGiGstrange =

{ uGiGstrange−cGiGstrange
uGiGstrange +cGiGstrange

if uGiGstrange + cGiGstrange �= 0

0 otherwise

Trust value of group Gi about peer j, TrGi
j , is defined as follows:

TrGi
j =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

uG(j)
j −cG(j)

j

uG(j)
j +cG(j)

j

if uG(j)
j + cG(j)

j �= 0∧ j ∈ Gi = G(j)

TrG(j)
strange if uG(j)

j + cG(j)
j = 0∧ j ∈ Gi = G(j)

min{TrGiG(j),TrG(j)
j } if j �∈ Gi

TrG(j)
strange =

⎧
⎨
⎩

uG(j)
strange−cG(j)

strange

uG(j)
strange+cG(j)

strange

if uG(j)
strange + cG(j)

strange �= 0

0 if uG(j)
strange + cG(j)

strange = 0

Where G(j) is the group peer j belongs to, and uG(j)
j ≥ 0 and cG(j)

j ≥ 0 are the
utility and cost, respectively, that peer j gives to other peers in group G(j).

Finally, the trust value between node i and j is expressed as:

Tri j =

{ ui j−ci j
ui j+ci j

if ui j + ci j �= 0

TrG(i)
j if ui j + ci j = 0

AntRep

AntRep [19] is a novel model where reputation evidences are distributed over a P2P
network, based on the swarm intelligence paradigm [10]. Specifically, authors pro-
pose the use of an ant system [2, 3] for building trust relationships in P2P networks
efficiently.

In AntRep each peer has a Reputation Table (RT) which is very similar with the
distance-vector routing table [15], but differs from: (i) each peer in the RT corre-
sponds to one reputation content; (ii) the metric is the probability of choosing each
neighbor as the next hop instead of the hop count to destinations.

There are two kinds of forward ants sent out for a particular reputation:

1. Unicast ants are sent out to the neighbor with the highest probability in the repu-
tation table.

2. Broadcast ants are sent out when there is no preference to neighbors. This hap-
pens either when no path to the reputation has been explored or the information
the node has is outdated.

768 Félix Gómez Mármol and Gregorio Martı́nez Pérez

Once forward ants find the required evidence (reputation information), a back-
ward ant is generated. When the backward ant visits each node i, it updates the
reputation table at the same time. This updating is carried out due to the next rein-
forcement rule:

Pi(t) =
[τi(t)]α [ηi(t)]β

∑ j∈N [τ j(t)]α [η j(t)]β

where ηi is the goodness value of the link between current node and its neighbor
node i. τi is the pheromone deposit, which is defined as follows: if at time t +Δ t,
current node receives a backward ant from node i, then

τi(t +Δ t) = f (τi(t),Δ t)+Δ p
τ j(t +Δ t) = f (τ j(t),Δ t), j ∈ N, j �= i

where Δ p = k
f (c) , being k > 0 a constant, f (c) a nondecreasing function of cost c

and c could be any parameter revealing the information of evidence or the scenario
of current network. f (τi(t),Δ t) is the pheromone evaporation function:

f (τi(t),Δ t) =
τi(t)
eΔ t/k

Finally, α and β are constants varied in different network environments.
Another function of the pheromone is to decide when to send out broadcast for-

ward ants. When node k receives a request at time t, it first searches if there is an
entry for the desired evidence. If no such entry exists, it simply sends out broadcast
ants. Otherwise, it finds the one with the highest probability.

Semantic Web

A model is presented in [24] where the trustworthiness between two agents is com-
puted by searching all the paths that connect themselves; next, for each path the
ratings associated with each edge are multiplied and finally all the paths are added
(normalizing that aggregation).

Let N be the number of paths from agent P to agent Q. Di denotes the number of
steps between P and Q on the ith path. The set of Q’s friends or neighbors is called
M. mi denotes Q’s immediate friend or neighbor on the ith path. wi denotes weight
of the ith path. The weight of each path is calculated as follows (giving a higher
weight to shorter paths):

wi =
1

Di

∑N
i=1

1
Di

If agent P and agent Q are friends, P � Q, or neighbors, P ↔ Q, then P’s trust
in Q, TP→Q, can be got directly. Otherwise

State of the Art in Trust and Reputation Models in P2P networks 769

TP→Q =
N

∑
i=1

Tmi→Q×∏i� j∪i↔ j Ri→ j× 1
Di

∑N
i=1

1
Di

=
N

∑
i=1

Tmi→Q× ∏
i� j∪i↔ j

Ri→ j×wi

Where the reliable factor Ri→ j denotes to which degree i believes in j’s words or
opinions.

Global Trust

In [23] a trust vector is created for each node i,
−→
T Ti = α ·−→DTi +(1−α) ·−−→Repi, being−−→

Repi the addition of indirect trust
−−→
Repi =

−−→
IDTi

1 +
−−→
IDTi

2 + · · ·+−−→
IDTi

m and where
IDT m

i j represents the path of m steps between i and j with the greatest indirect trust

value, and
−→
DTi is i’s vector of direct trust values.

Therefore, IDT m
i j is computed as follows:

IDT m
i j = (Rik1 ⊗Rk1k2 ⊗·· ·⊗Rkm−1km) ·DTkm j

Since A⊗B = min(A,B), in order to get the indirect trust IDT m
i j what is done is

to keep the minimum recommendation Rkpkq along the path of m steps between i
and j and multiply it by the direct trust value of the last node of the path about j,
i.e. DTkm j.

The reputation of j from i’s point of view is computed as:

Repi j = IDTi1 j⊕ IDTi2 j⊕·· ·⊕ IDTir j

And since A⊕B = max(A,B), i obtains the reputation of j by keeping the maxi-
mum indirect trust value of its r acquaintances about j.

PeerTrust

PeerTrust [22] is a reputation-based trust supporting framework, which includes a
coherent adaptive trust model for quantifying and comparing the trustworthiness of
peers based on a transaction-based feedback system. It has two main features: on
the one hand it introduces three basic trust parameters and two adaptive factors in
computing trustworthiness of peers, namely, feedback a peer receives from other
peers, the total number of transactions a peer performs, the credibility of the feed-
back sources, transaction context factor and the community context factor. On the
other hand, it defines a general trust metric to combine these parameters.

Let I(u,v) denote the total number of transactions performed by peer u with peer
v, I(u) denote the total number of transactions performed by peer u with all other
peers, p(u, i) denote the other participating peer in peer u’s ith transaction, S(u, i)
denote the normalized amount of satisfaction peer u receives from p(u, i) in its ith

770 Félix Gómez Mármol and Gregorio Martı́nez Pérez

transaction, Cr(v) denote the credibility of the feedback submitted by v, T F(u, i)
denote the adaptive transaction context factor for peer u’s ith transaction, and CF(u)
denote the adaptive community context factor for peer u. The trust value of peer u
denoted by T (u), is defined in equation (3).

T (u) = α ·
I(u)

∑
i=1

S(u, i) ·Cr(p(u, i)) ·TF(u, i)+β ·CF(u) (3)

where α and β denote the normalized weight factors for the collective evaluation
and the community context factor, respectively.

PeerTrust proposes two different credibility measures. The first one is to use
a function of the trust value of a peer as its credibility factor so feedback from
trustworthy peers are considered more credible and, thus, weighted more than those
from untrustworthy peers. This credibility measurement is defined in equation (4).

Cr(p(u, i)) =
T (p(u, i))

∑I(u)
j=1 T (p(u, j))

(4)

The second credibility measure is for a peer w to use a personalized similarity
measure between itself and another peer v to weight the feedback by v on any other
peers. Let IS(v) denote the set of peers that have interacted with peer v, the common
set of peers that have interacted with both peer v and w, denoted by IJS(v,w), is
IS(v)∩ IS(w). This measure is defined in equation (5).

Cr(p(u, i)) =
Sim(p(u, i),w)

∑I(u)
j=1 Sim(p(u, j),w)

(5)

where

Sim(v,w) = 1−

√√√√√∑x∈IJS(v,w)

(
∑I(x,v)

i=1 S(x,i)
I(x,v) − ∑I(x,w)

i=1 S(x,i)
I(x,w)

)2

|IJS(v,w)|
About the transaction context factor T F(u, i), several transaction contexts such

as the size, the category, or time stamp of the transaction, can be incorporated in the
metric so that the feedback for larger, more important, and more recent transactions
can be assigned a higher weight than those for other transactions.

The incentive problem of reputation systems such as those where users will not
receive rating information without paying or providing ratings, can be addressed in
PeerTrust by building incentives or rewards into the trust metric through community
context factor for peers who provide feedback to others. For example, let F(u) de-
note the total number of feedback peer u gives to others. Then, a community context
factor measure could be defined as follows:

CF(u) =
F(u)
I(u)

State of the Art in Trust and Reputation Models in P2P networks 771

PATROL-F

In the case of PATROL-F [17] the model incorporates many important concepts
in order to compute a peer reputation, such as: direct experiences and reputation
values, the node credibility to give recommendations, the decay of information with
time based on a decay factor, first impressions and a node system hierarchy. It uses
three fuzzy subsystems.

First one is used to set the importance factor of an interaction and related deci-
sions. To decide and choose which data is critical or indispensable, or which data is
needed more quickly, is a concept close to humans that fuzzy logic can model.

Moreover, there is the region of uncertainty where an entity is not sure whether
to trust or not (when the reputation of a host is greater than the absolute mistrust
level φ , but less than the absolute trust level θ). It is in this region where the fuzzy
techniques are effectively applied.

Finally, for the result of interaction (RI) value, fuzzy logic can be used to capture
the subjective and humanistic concept of “good” or “better” and “bad” or “worse”
interaction. RI becomes the result of several concepts effectively combined to pro-
duce a more representative value. The decay factor τ is calculated based on the
difference of a host’s values of RIs between successive interactions.

Trust Evolution

Authors of [21] present a trust evolution model for P2P networks where trust re-
lationships among peers are automatically built, in which two critical dimensions,
experience and context, are taken into account.

The model applies the real numbers within the interval [0,1] in order to quantify
two kinds of trust: direct trust and recommendation trust.

Direct trust (DT) between two peers is computed using the last n interactions
between those entities. An experience vector is used, assigning a weight Wi > 0 to
each interaction, where ∀ i, j i < j ⇒Wi > Wj, that is, the effect of an experience
on DT is regressive with the time.

The content of each cell of the experience vector, di is computed as follows.
On the one hand, a quality tuple is used in order to represent the quality standards
of the interactions, < q1,q2, . . . ,qn >. On the other hand we have the results of the
interaction got by the truster, < r1,r2, . . . ,rn >. Thus, the following rules are applied
in order to compare the results and the standards.

If qi is quantitative and better with the bigger value, then

di =
{ ri

qi
if ri ≤ qi

1 if ri > qi

If qi is quantitative and better with the smaller value, then

772 Félix Gómez Mármol and Gregorio Martı́nez Pérez

di =
{ ri

qi
if ri ≥ qi

1 if ri < qi

If qi is boolean, then di = 1− (ri⊕qi), where ⊕ denotes the exclusive-OR rela-
tionship.

If qi is an application-dependable type, the application should provide a method
to map the comparison of ri and qi to the value in [0,1].

Therefore, the direct trust of the truster A towards the trustee B can be calculated
as follows:

DT A
B = ∑n

i=1 Wi ·di

∑n
i=1 Wi

On the other hand, for a particular recommendation from peer B toward C, peer
A evaluates it as follows. It first calculates Q:

Q =
M · |DT A

C −DT B
C |√

M ·DT B
C · (1−DT B

C)

where M is the number of A’s experiences about C. Then it calculates k1 and k2

according to ki =
∫ 1− αi

2−∞ e−x2/2√
2π , α0 > α1 > 0. Next, it compares Q with ki to get

the result e, where e = satis f ied means that A’s experience is consistent with the
recommendation from B.

e =

⎧
⎪⎨
⎪⎩

satis f ied or + if Q≤ k0

uncertain or / if k0 < Q < k1

unsatis f ied or − if Q≥ k1

Each peer holds a recommendation vector for a particular recommender to record
the recommenders’ behaviors. Each cell of that vector, Ci, has a weight wi, equal to
the weight used in the experience vector. Finally, the recommendation trust of B
from A’s point of view, RT A

B is computed as follows:

RT A
B =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

RT A
B + − ln(RT A

B)
ln(W)−ln(RT A

B)
·
(
∑Ci=+ wi

∑n
i=1 wi

)
· (1−RT A

B) if e = satis f ied

RT A
B if e = uncertain

RT A
B − − ln(1−RT A

B)
ln(W)−ln(1−RT A

B)
·
(
∑Ci=−wi

∑n
i=1 wi

)
·RT A

B if e = unsatis f ied

where W = α0 ·
(
∑Ci �=/ wi

)
+α1 ·

(
∑Ci=/ wi

)
.

Finally, the combination trust of peer A toward peer C is computed as:

CT A
C =

DT A
C +∑n

i=1 RT A
Ri
·RT A

Ri
·DT Ri

C

1+∑n
i=1 RT A

Ri

State of the Art in Trust and Reputation Models in P2P networks 773

TDTM

In TDTM [25] the ant colony system is also applied. On the one hand it identifies
the pheromone and the trust, and on the other hand it identifies the heuristic and
the distance between two nodes. In this model the level of trust increases when an
interaction takes place and it slows down when there are no interactions for a long
time.

Trust-pheromone between node i and j at time t +1 is defined as follows:

τi j(t +1) = ρτi j(t)+στi j(t)

Where ρ is the trust dilution factor and στi j(t) is the additional intensity at each
inter-operation between entities, defined as:

στi j(t)

{ 1
1

1−τi j(t)
+1

if i and j interact at time t

0 otherwise

Given a certain threshold R, and being pi j(t) the trust-degree between i and j
at time t, if pi j(t) > R, then entities i and j have enough trust-degree, so they can
validate their certificate each other, not otherwise. Thus, in this model every entity
has a local trust vector pi(t) = (pi1(t), pi2(t), . . . , pin(t)) (reflecting the trust degree
of peer i with every other one in the network) and the existence of a PKI is assumed.

TACS

TACS [5, 6] (Trust Ant Colony System) is a Trust model for P2P networks based on
the bio-inspired algorithm of Ant Colony System (ACS), where pheromone traces
are identified with the amount of trust a peer has on its neighbors when supplying a
specific service.

It has the particularity that it not only gets the most trustworthy node to interact
with, but it also obtains the most trustworthy path leading to the most reputable peer.
In summary, the steps that compose this model are the next ones:

1. Client C executes TACS in order to find the “optimum” server S offering the
service s

2. TACS launches the ACS algorithm and ants modify the pheromone traces of the
network

3. TACS finishes, having selected the “optimum” path to server S′
4. TACS informs the client C that the “optimum” server found is S′
5. Client C requests service s to the server S′
6. Server S′ provides service s′ to the client C
7. Client C evaluates his satisfaction with the received service s′

774 Félix Gómez Mármol and Gregorio Martı́nez Pérez

8. If client C is not satisfied with the received service s′, she punishes the server S′
evaporating the pheromone of the links leading from C to S′

Each peer has its own pheromone traces for every link in the whole network, so
it needs to know at any time the current topology of that network. When a client
launches a set of ants and these ants are travelling and building the most trustworthy
path leading to the most reputable server they have to decide at each peer whether
to stop or keep looking for that path.

They will stop if they find a node offering the service requested by the client and
whose pheromone traces belonging to the current path leading to it are high enough
(over a certain threshold). Otherwise ants will select one of current node’s neighbors
who has not been visited yet. Which of those not visited neighbors to move towards
is decided using the probability

pk(c,s) =
τcs

∑u∈Jk(c) τcu
(6)

where τcs is the pheromone trace of the link connecting nodes c and s and Jk(c)

is the set of neighbors of node c not visited yet by ant k. Actually, if q ≤ q0 the
neighbor with the maximum pheromone trace is selected, otherwise equation (6) is
used, where q is a random number within the interval [0,1], and q0 is a constant
within the same interval.

Every time an ant crosses a link it modifies its pheromone trace in the following
way:

τcs = τcs +(1−ϕ) ·ϕ · (1− τcs) · τcs

where ϕ ∈ [0,1] is a constant used to control the pheromone local updating.
Once every ant returns to the client having found a path, the client has to decide

which of those paths is better. In order to measure the quality of each path, the next
expression is used:

Q(Sk) =
%Ak√

Length(Sk)
· τk

where Sk is the solution found by ant k, %Ak is the percentage of ants that have

selected the same path as ant k, Length(Sk) is the length of the path Sk, and τk is the
average pheromone of that solution.

Finally, an additional pheromone updating is carried out over the links belonging
to the best path found by all ants in the following way:

τcs = τcs +ρ · τ2
cs ·Q(SBest)

where ρ ∈ [0,1] is a constant used to control the pheromone global updating.
This process of launching ants, modifying pheromone traces and selecting the

most trustworthy path is repeated a number of times (number of iterations) which
depends on the size of the network.

State of the Art in Trust and Reputation Models in P2P networks 775

Once the algorithm has finished, the client applies for the requested service to
the node selected by TACS and assesses its satisfaction with the received service by
measuring its similarity with the originally requested one. If the client is not fully
satisfied, a punishment in terms of pheromone evaporation is carried out all along
the path connecting the client and the server.

Therefore, if the satisfaction (which is a number within the interval [0,1]) is
greater than or equal to 0.5, then the punishment is:

τcs ← τcs−ϕ(1−Sat) ·2 ·d fcs

Otherwise, if satisfaction is less than 0.5 the punishment we have is

τcs ←
(

τcs

d fcs
−ϕ

)
·Sat

where d fcs is a function that assigns values in [0,1] to every link of the path and it
is defined as follows:

d fcs =

√
dcs

L · (L−dcs +1)
, dcs ∈ {1,2, . . . ,L}

being L the actual length of the whole path and dcs the distance of link ecs from the
client (number of hops). Therefore, the last link (the one reaching the server) takes
a value of 1, and the rest take smaller values. The nearer to the client a link is, the
closer to 0 is given.

Finally, all the links falling into the malicious server are also punished, but only
if the satisfaction is under 0.5.

3 Discussion

3.1 Trust and Reputation Management – What for?

P2P networks have provided us with many solutions and advantages in human rela-
tionships, communications and e-businesses, among other fields. However, in most
of the cases, a user belonging to a P2P network will have to interact with many other
unknown or stranger participants, in a human-to-machine (instead of a human-to-
human) manner. This intrinsic feature of P2P networks can lead to the possibility of
being easily defrauded or disappointed.

In the same way we ask our friends or acquaintances their opinion about a good
or a service (a film, a book, etc.) before buying that good or asking for that service,
it would be equally efficient and beneficial to be able to perform the same survey in
virtual communities such as P2P networks.

776 Félix Gómez Mármol and Gregorio Martı́nez Pérez

Having such a useful mechanism in order to assess the global trust or reputation
of a peer in the system, by collecting the recommendations of other users in the
network who have had some previous interactions with that peer, the probability of
being cheated by a malicious entity would be significantly decreased.

In the following subsections we will describe the general steps followed by most
of the trust and reputation models and present some threats directly related with
these specific approaches. Finally, we will analyze the strong and weak points of
every trust and reputation model presented in Section 2, and conclude with some
real systems applying a trust and reputation scheme.

3.2 Trust and Reputation Models Steps

We have seen that the main target followed by every trust and reputation model is, in
summary, to identify those peers who are most reliable supplying a certain service
or more trustworthy carrying out a certain task.

How those peers are selected differs from one model to other but, for instance, in
most of them we can observe more or less the same generic steps [12], as depicted
in Fig. 1. First of all an entity checks its previous experiences with a given peer in
order to form what is usually called direct trust.

Fig. 1 Trust and reputation models steps

This direct trust can be assessed using complex expressions which usually take
into account the number of previous transactions, the importance given to each
transaction, the satisfaction obtained in each one, the time when it was performed,

State of the Art in Trust and Reputation Models in P2P networks 777

etc. Or it could even be computed as the difference between the number of satisfac-
tory transactions and unsatisfactory ones, like in Eigentrust [9].

Additionally the indirect experiences (or experiences of other peers) are taken
into account as well, obtaining what is commonly known as the reputation of a peer.
At this point, some models (like [21, 23, 24]) even distinguish between the trust
given to a peer as a service provider, and as a recommender, filtering out this way
unfair ratings coming from malicious users, since their recommendations will be
discarded.

How this reputation value is obtained is also very specific for each model,
but the main idea is to collect information about the behavior of the target peer
from other peers who have had previous interactions with it. This information or
recommendations are influenced in some models by the reliability of the recom
mender, as we mentioned. Otherwise, a collusion could be established
where a set of malicious peers rated each other with the maximum value.

Therefore, an aggregation between the direct trust or direct experiences and the
reputation or indirect experiences, weighted by the reliability of each recommender
is performed in order to obtain a unique global trust value for a certain peer. Most
of the models do not specify which peer is finally selected. It could be just the one
with highest score, but not necessarily. And only TACS [5], from the studied models,
provides not only the most reputable peer, but the most trustworthy path leading to
it as well.

Once the peer to interact with has been selected, the transaction is effectively
carried out. Then, the user who applied for a service or a task assesses her satis-
faction with the received service or performed task. According to this satisfaction,
a last step of punishing or rewarding the entity the transaction was done with, is
performed.

However, not many models apply a specific and independent step of punish and
reward, but they rather implicitly incorporate it in the rating step. Only TACS [5]
and TDTM [25], from the analyzed ones, do it.

3.3 Common Challenges and Solutions in Trust and Reputation
Management Over P2P Networks

As we have already seen, trust and reputation management in P2P networks provides
several benefits to electronic interactions between users, like a minimum guarantee
of benevolent behavior of another interacting peer.

Nevertheless, this kind of systems also have several common issues and chal-
lenges that need to be addressed when developing such mechanisms. Next we are
going to discuss some of them.

778 Félix Gómez Mármol and Gregorio Martı́nez Pérez

3.3.1 Modeling Trust and Reputation

One of the first things to face when developing a new trust and reputation model, or
when analyzing an existing one is the way of modeling (and consequently manag-
ing) precisely that: trust and reputation.

Thus, some models use bayesian networks (like BNBTM [20]), while others use
fuzzy logic (like PATROL-F [17]), or even bio-inspired algorithms (as is the case
of TACS [5], TDTM [25] and AntRep [19]). Other models, however, just give an
analytic expression to compute trust (for example, GroupRep [18], and other models
such as [23, 24] or [21]).

Each way of modeling trust and reputation has its own advantages and draw-
backs. For instance, fuzzy logic allows us to model concepts like trust, reputation
or recommendations in a manner closer to the way humans understand them. How-
ever, fuzzy logic will be difficult to scale to larger problems because there exist
important limitations with conditional possibility, the fuzzy set theory equivalent of
conditional probability [7].

Bio-inspired mechanisms have demonstrated a high adaptability and scalabil-
ity in dynamic scenarios such as P2P networks. However, in some cases, their
indeterminism and approximation technics can lead to choose a malicious peer
as the most trustworthy one, discarding another clearly benevolent who could be
selected.

Analytic expressions are most of the times easy to read and understand, but they
may not take into consideration all the possible factors involved in the evaluation
of trust and reputation for a certain participant in a P2P network since they need to
manage those factors explicitly, while other approaches effectively deal with them
in an implicit way.

Finally, Bayesian networks provide a flexible mechanism to represent multi-
faceted trust in many contexts of each others’ capabilities (providing different ser-
vices or carrying out several tasks, for instance). It also allows to efficiently com-
bine different aspects of trust. One drawback is, however, that the approach can
be computationally intensive, especially when the variables being studied are not
conditionally independent of one another.

3.3.2 Contextualized Trust and Reputation

Another important concept managed in many trust and reputation models is what is
commonly known as the context. Since a peer can be very trustworthy and benev-
olent when supplying a service or performing a task but, at the same time, very
fraudulent or malicious when dealing with another service or task, it is not fair to
identify it as fully trustworthy or untrustworthy.

That is why several models like CuboidTrust [1], BNBTM [20], PeerTrust [22],
PATROL-F [17] or TACS [5] include a context factor or distinguish in one or another
way the trust placed on a peer depending on the task or service it is requested to
supply or perform.

State of the Art in Trust and Reputation Models in P2P networks 779

3.3.3 P2P Networks Dynamism

Not many models take into account the intrinsic dynamic nature of P2P networks
(i.e. nodes entering and leaving the community whenever they want) when modeling
trust relationships.

Furthermore, only a few ones among the studied models (like CuboidTrust [1],
EigenTrust [9], TACS [6] and PeerTrust [11]) present experiments dealing with this
issue as well as with the fact that also the behavior of peers may be dynamic, i.e.,
peers are not always benevolent or malicious. And how fast and accurate a model
can react against this behavioral changes is an important feature that every trust and
reputation model should consider.

Therefore, in our opinion every trust and or reputation model for P2P networks
should consider three basic scenarios:

1. A static one, where the topology of the network does not change along the time.
This is the simplest scenario where trust and reputation models should work
efficiently. As we said, many authors just consider a situation like this when de-
veloping their models. It is a good starting point but, however, it is not realistic.

2. A dynamic one, where the topology changes along the time, with nodes joining
and leaving the network.
This scenario could be used in order to test the reaction of a trust and reputation
model against changes in the size and topology of the network, and the specific
nodes composing it. For instance, it could be checked the reaction of the model
if a very reputable (or, equally, a very fraudulent) node enters or leaves the
system.
This kind of experiment also allows to test how the model faces the topic of
newcomers and deals with some threats like the Sybil attack [4].

3. An oscillating one, where the behavior of the nodes changes along the time, so
they can be benevolent and become malicious and vice versa.
Finally, this scenario would show if the model has a quick and accurate response
or not against sudden behavioral changes of nodes trying to cheat. A good trust
and reputation model should identify immediately these fluctuations and react
consequently.

3.3.4 Collusion

There are also some security threats related to trust and reputation systems which
are not completely considered in every model. For instance, only PeerTrust [22],
CuboidTrust [1] and EigenTrust [9] explicitly treat the problem of collusion among
malicious nodes.

A collusion consists of several malicious nodes (providing a bad service or per-
forming tasks inadequately) joining in order to increase their reputation values by
fake rating themselves and, on the other hand, decrease the reputation of current
benevolent peers by giving negative recommendations about the latter, as it can be
observed in Fig. 2.

780 Félix Gómez Mármol and Gregorio Martı́nez Pérez

Fig. 2 Malicious peers forming a collusion

It is not easy to overcome this problem, specially when the percentage of nodes
forming the collusion is quite high. Actually, any of the studied models is completely
resilient against this kind of attack. What authors do is to try to minimize its global
impact by punishing every node in the network which is known to belong to the
collusion.

There are even variants of this attack, like a set of nodes providing good ser-
vices but rating positively other malicious peers and negatively other benevolent
ones. Those models which do not distinguish between the reliability of a user when
providing a service or carrying out a task, and when supplying recommendations
cannot effectively tackle this attack.

3.3.5 Identity Management – Sybil Attack

The last challenge we will discuss has to do with the identity management in vir-
tual communities, specifically in P2P networks. It is a fact that cannot be obvi-
ated when designing and developing a new trust and reputation model since many
deficiencies and weaknesses can emerge from an inaccurate management of this
topic.

One of the most common problems related to identity management in trust and
reputation schemes is what is known as Sybil attack. In a Sybil attack the reputation
system of a P2P network is subverted by creating a large number of pseudonymous
entities, using them to gain a disproportionately large influence. A reputation sys-
tem’s vulnerability to a Sybil attack depends on the cost of generating new identities,
the degree to which the reputation system accepts inputs from entities that do not
have a chain of trust linking them to a trusted entity, and whether the reputation
system treats all entities identically.

State of the Art in Trust and Reputation Models in P2P networks 781

Fig. 3 Sybil attack

Figure 3 shows the steps followed in a Sybil attack and some other attacks related
to identity management in trust and reputation models. These steps are:

1. An entity joins the community with a new identity, looking like being a trust-
worthy peer.

2. At a certain moment (probably after gaining some reputation in the system),
this entity swaps her goodness and becomes malicious, obtaining thus a greater
self-profit.

3. Once the system has detected her behavioral change and has identified her as a
malicious participant, she leaves the network.

4. Finally, she generates a new identity and enters again the system, repeating the
process indefinitely.

None of the studied models (except for EigenTrust [9]) considers explicitly the
problem of the Sybil attack.

3.4 Strengths and Weaknesses of the Described Models

Once we have shown and described a number of trust and reputation models
over P2P networks it is time to analyze in depth several important characteristics
and features that define those models as well as some detected weaknesses and
deficiencies.

Thus for instance, CuboidTrust [1] implements the testing scenarios described
before, showing good outcomes and it also considers the problem of collusion. On
the other hand, direct trust or direct experiences are not given a differentiated treat-
ment, and the score takes discrete values in the set {−1,1} instead of continuous
ones in the interval [−1,1].

EigenTrust [9] also implements the three mentioned scenarios as well as the col-
lusion one. Moreover, it also takes into account the Sybil attack. It introduces the
concept of pre-trusted peers, which is very useful in the model, but it is no appli-
cable in all the cases, since there is not always a set of peers that can be trusted by
default, prior to the establishment of the community.

One positive point of BNBTM [20] is its management of trust in different con-
texts, which can be combined to form an overall opinion of the trustworthiness of a
peer. A weak point, in our opinion, is that it only deals with three discrete valuations
for a transaction.

782 Félix Gómez Mármol and Gregorio Martı́nez Pérez

The distinction among trust between groups of peers, between groups and peers,
and only between peers is the strong point of GroupRep [18]. However, it is missing
a global trust value for a peer as a result of the combination of the three previous
ones.

AntRep [19] has the ability to easily adapt to the dynamic topologies of P2P
networks thanks to the use of ant colony systems. As a disadvantage, it just provides
a mechanism to distribute reputation evidences, not to assess those evidences.

Searching all the paths connecting two agents may lead to some scalability prob-
lems in [23, 24]. On the other hand, both models clearly distinguish between direct
trust and indirect trust or reputation, and also between the trust given to a peer as a
service provider and as a recommender.

PeerTrust’s [22] strengths are its good outcomes for the three previously pro-
posed scenarios, as well as for a collusion one. It also introduces a context factor to
distinguish the trust given to a peer for different transactions. However, the way it
measures the credibility of a peer in equation (4) does not distinguish between the
confidence placed on a peer when supplying a service or carrying out a task, and
when giving recommendations about other peers.

This distinction is effectively done, however, in PATROL-F [17] and Trust Evo-
lution [21]. Moreover, PATROL-F allows to model concepts like the result of an
interaction in a similar way humans do thanks to the use of fuzzy logic.

The assumption of the existence of a PKI in a P2P network can be seen as a draw-
back of TDTM [25]. The use of an ant colony system allows it to adapt accurately
to sudden changes in the topology of the network, as it is also the case of TACS [5].

TACS implements the three testing scenarios too, and it has a good performance
in all of them as well. However, it needs every node to know the topology of the
network at every moment, and that is not always feasible in a P2P community.

3.5 Real Scenarios

Finally, let us show some real trust and reputation systems [8] where most of the
concepts explained here are employed. For instance, eBay auction market has a
feedback scheme where every buyer and seller rates each other after a transaction
between them is carried out. These feedbacks are centrally aggregated in order to
get a reputation value for each role. Some studies [14, 16] reveal that buyers provide
ratings about sellers 51.7% of the time, and sellers provide ratings about buyers
60.6% of the time. Of all ratings provided, less than 1% is negative, less than 0.5%
is neutral and about 99% is positive. It was also found that there is a high correlation
between buyer and seller ratings, suggesting that there is a degree of reciprocation
of positive ratings and retaliation of negative ratings.

Another distributed system modeling reputation is PageRank [13], the algorithm
which the search engine of Google is based on. It represents a way of ranking the
search results based on a page’s reputation, which is mainly obtained by the number
of links pointing to it, since the higher is the number of incoming links, the bet-
ter content that page is supposed to have. PageRank applies the principle of trust

State of the Art in Trust and Reputation Models in P2P networks 783

transitivity to the extreme since rank values can flow through looped or arbitrarily
long hyperlink chains. Amazon, BizRate or Advogato are other examples of systems
where a trust and or reputation scheme is applied in many different environments.

4 Conclusions and Future Work

P2P networks have been rapidly spread in the last few years. Nevertheless, together
with its fast development, many security threats have also appeared, compromising
sensitive information and promoting frauds in electronic transactions.

Trust and reputation management has arisen as one of the most innovative and
accurate solutions to most of these threats. By using a trust and reputation system a
peer who wants to interact with another peer in the community has more information
and, therefore, more opportunities to select the right partner to have a transaction
with, rather than with a fraudulent one.

In this work we have presented a description of some of the most representative
trust and reputation models for P2P networks. We have explained how each of them
works, how they manage the concepts of trust and reputation or how they gather
information about other peers in the network.

But we have also discussed the main common characteristics of all the exposed
models, as well as the most important differences among them. We have analyzed
their weaknesses and deficiencies and shown some real examples of systems using
trust and or reputation schemes.

However, there is still some work to do, for instance in the proposal of some
standard patterns to lead a proper and accurate development of trust and reputation
models for P2P networks, as well as validation tools allowing to homogeneously
test every designed trust and reputation model.

Acknowledgements

This work has been supported by a Séneca Foundation grant within the Human Re-
sources Researching Training Program 2007. Thanks also to the Funding Program
for Research Groups of Excellence granted as well by the Séneca Foundation with
code 04552/GERM/06.

References

1. Chen, R., Chao, X., Tang, L., Hu, J., Chen, Z.: CuboidTrust: A Global Reputation-Based Trust
Model in Peer-to-Peer Networks. In: Autonomic and Trusted Computing, no. 4610 in LNCS,
pp. 203–215. 4th International Conference, ATC 2007, Springer, Hong Kong, China (2007)

2. Cordón, O., Herrera, F., Stützle, T.: A review on the ant colony optimization metaheuristic:
Basis, models and new trends. Mathware and Soft Computing 9(2–3), 141–175 (2002)

3. Dorigo, M., Maniezzo, V., Colorni, A.: The Ant System: Optimization by a colony of cooper-
ating agents. IEEE Transactions on Systems, Man, and Cybernetics Part B: Cybernetics 26(1),
29–41 (1996)

784 Félix Gómez Mármol and Gregorio Martı́nez Pérez

4. Douceur, J.R., Donath, J.S.: The sybil attack. In: Proceedings for the 1st International Work-
shop on Peer-to-Peer Systems (IPTPS 02), pp. 251–260 (2002)

5. Gómez, F., Martı́nez, G., Skarmeta, A.F.: TACS, a Trust model for P2P networks. Wireless
Personal Communications, in press (2008)

6. Gómez Mármol, Félix: TACS – Trust Ant Colony System. URL http://ants.dif.um.
es/˜felixgm/research/tacs

7. Halpern, J.Y.: Reasoning about Uncertainty. The MIT Press (2003)
8. Josang, A., Ismail, R., Boyd, C.: A survey of trust and reputation systems for online service

provision. Decision Support Systems 43(2), 618–644 (2007)
9. Kamvar, S., Schlosser, M., Garcia-Molina, H.: The EigenTrust Algorithm for Reputation

Management in P2P Networks. In: Proc. of the International World Wide Web Conference
(WWW). Budapest, Hungary (2003)

10. Kennedy, J., Eberhart, R.C.: Swarm Intelligence. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA (2001)

11. L3S Research Center: PEERTRUST – L3S Research Center. URL http://www.l3s.de/
peertrust

12. Marti, S., Garcia-Molina, H.: Taxonomy of trust: Categorizing P2P reputation systems. Com-
puter Networks 50(4), 472–484 (2006)

13. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: Bringing order
to the web (1998)

14. Resnick, P., Zeckhauser, R.: Trust among strangers in Internet transactions: Empirical analysis
of eBay’s reputation system. In: The Economics of the Internet and E-Commerce, vol. 11, pp.
127–157. Elsevier Science (2002)

15. Stallings, W.: Data and Computer Communications (7th ed.). Prentice-Hall, Inc., Upper Sad-
dle River, NJ, USA (2004)

16. Sundaresan, N.: Online trust and reputation systems. In: Proceedings of the 8th ACM confer-
ence on Electronic Commerce, pp. 366–367 (2007)

17. Tajeddine, A., Kayssi, A., Chehab, A., Artail, H.: PATROL-F – a comprehensive reputation-
based trust model with fuzzy subsystems. In: Autonomic and Trusted Computing, no. 4158
in LNCS, pp. 205–217. Third International Conference, ATC 2006, Springer, Wuhan, China
(2006)

18. Tian, H., Zou, S., Wang, W., Cheng, S.: A group based reputation system for P2P networks.
In: Autonomic and Trusted Computing, no. 4158 in LNCS, pp. 342–351. Third International
Conference, ATC 2006, Springer, Wuhan, China (2006)

19. Wang, W., Zeng, G., Yuan, L.: Ant-based reputation evidence distribution in P2P networks.
In: GCC, pp. 129–132. Fifth International Conference on Grid and Cooperative Computing,
IEEE Computer Society, Changsha, Hunan, China (2006)

20. Wang, Y., Cahill, V., Gray, E., Harris, C., Liao, L.: Bayesian network based trust management.
In: Autonomic and Trusted Computing, no. 4158 in LNCS, pp. 246–257. Third International
Conference, ATC 2006, Springer, Wuhan, China (2006)

21. Wang, Y., Tao, Y., Yu, P., Xu, F., Lu, J.: A Trust Evolution Model for P2P Networks. In: Auto-
nomic and Trusted Computing, no. 4610 in LNCS, pp. 216–225. 4th International Conference,
ATC 2007, Springer, Hong Kong, China (2007)

22. Xiong, L., Liu, L.: PeerTrust: Supporting Reputation-Based Trust in Peer-to-Peer Communi-
ties. IEEE Transactions on Knowledge and Data Engineering 16(7), 843–857 (2004)

23. Yu, F., Zhang, H., Yan, F., Gao, S.: An improved global trust value computing method in
P2P system. In: Autonomic and Trusted Computing, no. 4158 in LNCS, pp. 258–267. Third
International Conference, ATC 2006, Springer, Wuhan, China (2006)

24. Zhang, Y., Chen, H., Wu, Z.: A social network-based trust model for the semantic web. In:
Autonomic and Trusted Computing, no. 4158 in LNCS, pp. 183–192. Third International Con-
ference, ATC 2006, Springer, Wuhan, China (2006)

25. Zhuo, T., Zhengding, L., Kai, L.: Time-based dynamic trust model using ant colony algorithm.
Wuhan University Journal of Natural Sciences 11(6), 1462–1466 (2006)

Anonymity in P2P Systems

Pilar Manzanares-Lopez, Juan Pedro Muñoz-Gea, Josemaria Malgosa-Sanahuja,
and Juan Carlos Sanchez-Aarnoutse

Abstract In the last years, the use of peer-to-peer (P2P) applications to share and ex-
change knowledge among people around the world has experienced an exponential
growth. Therefore, it is understandable that, like in any successful communication
mechanism used by a lot of humans being, the anonymity can be a desirable char-
acteristic in this scenario. Anonymity in P2P networks can be obtained by means
of different methods, although the most significant ones are broadcast protocols,
dining-cryptographer (DC) nets and multiple-hop paths. Each of these methods can
be tunable in order to build a real anonymity P2P application. In addition, there is
a mathematical tool called entropy that can be used in some scenarios to quantify
anonymity in communication networks. In some cases, it can be calculated analyti-
cally but in others it is necessary to use simulation to obtain the network entropy.

Pilar Manzanares-Lopez
Department of Information Technologies and Communications, Polytechnic University of Carta-
gena, Campus Muralla del Mar, 30202 Cartagena, Spain,
e-mail: pilar.manzanares@upct.es

Juan Pedro Muñoz-Gea
Department of Information Technologies and Communications, Polytechnic University of Carta-
gena, Campus Muralla del Mar, 30202 Cartagena, Spain, e-mail: juanp.gea@upct.es

Josemaria Malgosa-Sanahuja
Department of Information Technologies and Communications, Polytechnic University of Carta-
gena, Campus Muralla del Mar, 30202 Cartagena, Spain, e-mail: josem.malgosa@upct.es

Juan Carlos Sanchez-Aarnoutse
Department of Information Technologies and Communications, Polytechnic University of Carta-
gena, Campus Muralla del Mar, 30202 Cartagena, Spain, e-mail: juanc.sanchez@upct.es

X. Shen et al. (eds.), Handbook of Peer-to-Peer Networking, 785
DOI 10.1007/978-0-387-09751-0 27, © Springer Science+Business Media, LLC 2010

786 Pilar Manzanares-Lopez et al.

1 Introduction

Anonymity can be a very desirable characteristic in peer-to-peer (P2P) networks.
This property refers to the ability to do something without revealing one’s identity.
Anonymity can protect whistle-blowers within an organization. In this way, the or-
ganization cannot know who the whistle-blower is and as such can not persecute
that person for their actions. Anonymous P2P systems can allow the development
of applications in which anonymity is required. One example is electronic voting. In
such an application anonymity is needed to prevent the vote being tied to the voter.
In file sharing P2P applications, the anonymity can offer an comfortable environ-
ment to people who want to obtain (or to share) personal information about their
experiences suffering a illness but without breaking their privacy.

Anonymity in P2P networks can be obtained by means of different mechanisms:
source-rewriting mechanisms, broadcast protocols and Dining-Cryptographer
(DC)-nets.

Source-rewriting systems provide anonymity via packet reshuffling. Examples
of these systems in IP networks are Mixes, Onion Routing and Crowds. In these
systems, messages are sent through the network using random paths different than
the shortest path. Each node that forwards the message rewrites the source field of
the packet with its own identifier. This mechanism ensures that when a particular
node A receives a message from a particular node B, node A cannot be certain that
B is the originator of the message. In Onion Routing, messages are routed through
Onion Routers which are a dedicated set of servers. A message is encrypted into a
layered data structure which contains cryptographic information for every hop on
the path. The path through the network is established by the sender, who must have
a complete knowledge of the routers. The last router in the path receives the mes-
sage, decrypts the last layer of the message, and forwards it to the final destination.
In Crowds, the paths are determined locally and on-the-fly by the forwarders instead
of a priori by the senders, and encryption is done via pair-wise key exchange and
symmetric encryption between forwarders. When a Crowds member request a mes-
sage from another, it makes a random choice to either forward the request to another
Crowds member or submit it to the server the request is intended for. In both of these
systems, returned packets follow the reverse route from the sender.

Anonymous systems based on the broadcast mechanism, such as P5, provide
sender and receiver anonymity by transmitting encrypted packets at a constant rate
to all participants. When a node has no data packets to send, it sends noise packets,
which is then propagated throughout the network in the same manner as data pack-
ets. This approach provides strong anonymity, as a passive eavesdropper cannot tell
which packets contain data and which packets are noise.

Finally, anonymous systems based on DC-nets, such as Herbivore, use the
dining-cryptographer problem introduced in 1988 to obtain an anonymous com-
munication. Herbivore organizes nodes into subgroups and requires shared secrets
for nodes across subgroups via either a PKI or offline key exchanges.

Since there are several anonymity systems, it is necessary to define a tool, pro-
cedure or metric to measure or quantify the anonymity of each one, which makes

Anonymity in P2P Systems 787

possible to compare different anonymity implementations. A theoretical anonymity
metric was introduced in 2002 [6] and revised by Diaz in 2006 [5]. This proposal
defines the degree of anonymity as the normalized entropy of the analyzed anony-
mous system. Finally, the last section will present some case studies, where the
entropy, and therefore, the degree of anonymity of some anonymous P2P systems is
calculated.

2 Source-Rewriting Systems

Source-rewriting systems provide anonymity using indirection transmission: mes-
sages are routed from sender to receiver through intermediate nodes building a
multiple-hop path. Examples of this type of protocols designed to offer anonymous
IP communication are Mixes [2], Onion Routing [19] and Crowds [15].

Mixes [2] work by removing the timing correlation between arriving packets and
outgoing packets. A mix is a forwarder node that queues incoming packets for a
period of time 0≤ t ≤ T in such a way that, when finally sent, the packets appear as
if they may have originated from any one of the nodes that contacted that mix in the
last T seconds. In other source-rewriting protocols, including Onion Routing [19]
and Crowds [15], messages are sent through the network via random paths that deter
packet traces. Each node that forwards the message rewrites the source field of the
packet with its own id. Consequently, attackers with limited wiretapping abilities
cannot easily track packets back to their originators. In Onion Routing, the sender
picks a full path through the network and encrypts the packets in layers. Each node
along the path reorders the packets, strips off a layer of encryption and forwards
them. In Crowds, the paths are determined locally and on-the-fly by the forwarders
instead of a priori by the senders, and encryption is done via pair-wise key exchange
and symmetric encryption between forwarders. In both of these systems, returned
packets follow the reverse route from the sender. Source rewriting is also used in
P2P content distribution networks such as Freenet [4] to obfuscate the identity of
request originators.

2.1 Mixes

David Chaum introduced the concept of Mix-net [2] for anonymous communication.
Anonymity is achieved by using mixes, which are proxies that help in hiding the
sender from the receiver, and also provide sender and receiver with unlinkability
against a global eavesdropper.

This system forwards encrypted messages through a chain of nodes, where each
one can only know its predecessor and successor in the chain. The basic principle
followed by this method is that every node in the chain waits until it receives a group
of messages and then it forwards the mix-up of messages. That is, each node collects

788 Pilar Manzanares-Lopez et al.

a group of encrypted messages from the senders, decrypts them, batches, reorders
them, removes the senders’ name and identifying information, and forwards them
to next node (see Fig. 1). This makes it difficult for an eavesdropper to correlate the
output messages with the corresponding input messages. The main drawback of this
system is that each node in the chain has to wait until it gets sufficient number of
messages for a proper mix-up. Some anonymous networks, such as Mixmaster and
GNUnet, are based on this idea.

2.1.1 Mixmaster

Mixmaster [14] is an anonymous network based on the Mix-net concept. In this sys-
tem, messages are encrypted using hybrid RSA and EDE 3DES encryption, while
their sizes are kept constant by appending random noise at the end of the message.
In version two, the integrity of the RSA encrypted header is protected by a hash,
making tagging attacks on the header impossible. In version three the noise to be
appended is generated using a secret shared between the network and the sender of
the message.

Mixmaster allows large messages to be divided in smaller chunks and sent in-
dependently through the network. If all the parts end up at a common mix, then
reconstruction happens transparently in the network, and so large emails can be sent
to users without requiring a special software. It also allows messages to be sent
multiple times, using different paths.

2.1.2 GNUnet

GNUnet is a searchable, decentralized, P2P network, whose main goal is to provide
an anonymous file-sharing application. This network includes a technique for effi-
cient content encoding (ECRS - the encoding for censor-ship resistant sharing) and
a new protocol for anonymous routing, GAP (GNUnet’s Anonymity Protocol) [1],
which is based on Mix-net.

Fig. 1 General architecture of a Mix node

Anonymity in P2P Systems 789

The content encoding technique divides a file into small blocks of 1kb which are
hashed invididually. This blocks are called Data Blocks (DBlocks). The DBlocks are
grouped into Indirection Blocks (IBlocks), and on top of these lies the Root Block
(RBlock), which contains the description of the file and the query-hash to retrieve
the file. Splitting the file into small chunks makes content distribution much easier.
Further, the query for RBlock is sent encrypted so that the intermediaries cannot
assess the information for which the user is looking for.

On the other hand, the GAP protocol has two types of messages: queries and
replies. Furthermore, there exist two types of queries: search queries and download
queries. A node requests for the RBlock of a particular file sending a search query.
Once it gets the RBlock, it can download the entire file by sending several download
queries.After receiving a download query a particular node checks its resources such
as bandwidth, storage space or CPU to determine whether it can process the query
or not. It drops the query if it is too busy. Then, it checks for the availability of the
requested content. Finally, the different nodes in this network achieve anonymity by
acting as intermediaries of messages, as in Mix-net.

2.2 Onion Routing

Onion routing [19] is a technique developed by David Goldschlag, Michael Reed
and Paul Syverson for anonymous communication over a network. The main goal
of this protocol is to protect the identity of an initiator and responder of a message,
and also to protect the content of the message while it is traversing over the network.

The concept of routing onions is the core concept used by this protocol for anony-
mous communication. When an initiator wants to establish anonymous communi-
cation with a responder, he sends the message to an application proxy (see Fig. 2).
Then, it forwards the message to an onion proxy which selects some routers and
establishes a route, constructing an onion. The onion is a recursively layered data
structure that contains the information about the route to be followed over a network.
The routers in the onion are termed as core onion routers.

The next step in this process is to forward the onion to the entry funnel, which is
an entrance for routing in the network. The entry funnel will decrypt the first layer
to see the information about the next hop in the route. This process continues until
the onion reaches the exit funnel. The exit funnel is responsible for traversing the
packet to its destination.

Let us take an example for a better understanding of this protocol: User A wishes
to send a message m to user B. Suppose the routing path is through onion routers
S1, S2, ..., Sn (in that order), where Si has public key Pi. It is assumed that all the
parties involved use a common encryption algorithm E. Then, A sends the mes-
sage m′ = EP1(EP2(...(EPn(m,B),Sn)...,S3),S2) to S1. Each onion router on the path
decrypts the message to find the identity of the next onion router and then for-
wards the encrypted payload to the next router. This process is repeated until the

790 Pilar Manzanares-Lopez et al.

last router sends the message to its final destination, which is able to decrypt the
original message m. If the destination responds to the message, the response mes-
sage will be routed along the same path in reverse.

2.2.1 Tor

Tor [7] is an advanced version of Onion Routing. Instead of using a single onion, Tor
implements an incremental path-construction in which the initiator extends the path
hop by hop and negotiates session keys with each intermediate node on the path. As
a benefit, the anonymous transmission is more reliable since the intermediate nodes
on the path are online after the path construction. Therefore, this system is more
convenient than onion routing in supporting TCP-based applications.

The algorithm to select the onion routers consists of two parts: the first part is
used to select the entrance router, and the second part is used to select subsequent
routers. The entrance router selection algorithm works by automatically selecting
an onion router that is marked by the trusted directory servers as being “fast” and
“stable”. An onion router is marked as “fast” when its bandwidth is above the me-
dian of all bandwidth advertisements. On the other hand, a stable router is defined
as one that advertises an uptime that is greater than the median uptime of all other
routers.

Onion RouterOnion RouterOnion Router

Onion RouterOnion RouterOnion Router

Onion RouterOnion RouterOnion Router

Onion RouterEntry Funnel Exit Funnel Responder
Onion
Proxy

Application

Proxy

Initial
Sender

Fig. 2 Architecture of onion routing

Anonymity in P2P Systems 791

The non-entrance router selection algorithm is intended to optimize onion router
selection for bandwidth and uptime, while not always choosing the very best nodes
every time. Tor has a set of TCP ports that are designated as “long-lived”. If the
traffic transiting a path uses one of these long-lived ports, Tor will optimize the path
for stability by pruning the list of available routers to only those that are marked as
stable. The next part of the algorithm optimizes the path for bandwidth. Briefly, this
algorithm works as follows: Let bi be the bandwidth advertised by the i-th router,
and let us assume that there are N routers. Then the probability that the i-th router is
chosen is approximately bi/(∑N

j=1 b j). The most significant feature of the bandwidth
optimization algorithm is that the more bandwidth a particular router advertises, the
greater the probability that the router is chosen.

2.2.2 Tarzan

Tarzan [8] is a P2P anonymous network based on Onion Routing. All participant
nodes run a software that: (1) discovers other participant nodes, (2) manages tun-
nels through chains of other participants to anonymize the packets, (3) forwards
packets to implement other nodes’ tunnels, and (4) operates a NAT to forward other
participants’ packets onto the ordinary Internet.

Tarzan routes packets through tunnels involving a randomly chosen sequence of
Tarzan peers using mix-style layered encryption. Typical use of Tarzan proceeds in
three stages. First, a node running an application that desired anonymity selects a set
of nodes to form a path (also called tunnel) through the overlay network. Tarzan uses
a simple gossip-based protocol similar to the Name-Dropper resource discovery pro-
tocol [9] for peer discovery. The tunnel initiator clears each IP packet’s source ad-
dress, performs a nested encryption, and encapsulates the result in an UDP packet.
Next, this source-routing node establishes a tunnel using these nodes. Finally, it
routes data packets through this tunnel. That is, if the tunnel consists of a sequence
of nodes h1,h2, ...,hl ,hpnat and the public key for each node is khi, the tunnel ini-
tiator produces the block {{...{{p}khpnat}khl ...}kh2}kh1

from the input packet p, and
forwards it to h1. h1 will decrypt one layer of encryption and forward it on to the
next hop. This process continues until the packet reaches the last node in the tun-
nel, which strips off the innermost layer of encryption. The exit point of the tunnel
is a NAT, which forwards the anonymized packets to servers that are not aware of
Tarzan.

In addition, Tarzan introduces the concept of traffic mimics to implement cover
traffic mechanisms. Upon joining the network, a node a asks k other nodes to ex-
change mimic traffic with it. The node establishes a bidirectional, time-invariant
packet stream witch each of the mimic nodes. Into this packet stream real data can
be inserted. Tarzan uses a structured P2P lookup algorithm to discover the mimic
nodes. Node a chooses its ith mimic as the peer returned by lookup(Ki), where
Ki = hashi(a.IPaddress,date) and hashi is a cryptographic hash function recur-
sively applied i times. The uses of mimics slightly modifies the construction of a
tunnel. Nodes only construct tunnels over links protected by cover traffic. To initiate

792 Pilar Manzanares-Lopez et al.

a tunnel, node a chooses a mimic Ma
i as its first tunnel hop. This node Ma

i hast its
own mimics, and returns this list to a. Node a selects the next hop from the resulting
set and continues by tunneling an establish request to the second hop via the first
hop. It repeats this process for l mimics. Finally, a selects a random node for hpnap

by lookup(random).

2.2.3 I2P

I2P [10], also known as Invisible Internet Project, was started in 2003. I2P uses a
technique called garlic routing for anonymous communication, in which the data is
wrapped with several layers of encryption.

It is important to know the three critical concepts used by this network for a better
understanding of it. First, I2P makes a distinction between the nodes participating
in the network as “routers” and the endpoints, known as “destinations”. Secondly,
I2P makes use of “tunnels” to traverse messages in the network. A tunnel is a path
selected from the set of routers. These tunnels can be categorized as either inbound
tunnels (where everything given to it goes towards the creator of the tunnel) and out-
bound tunnels (where the tunnel creator shoves messages away from them). When
a sender wants to send a message to a certain destination, he will select one of his
outbound tunnels with instructions to forward the message to one of the inbound
tunnels of the destination, thereby reaching the destination. Finally, the third con-
cept is “network database” (or “netDb”), which maintains a pair of algorithms that
are used to share network metadata. The two types of existing metadata are “router-
Info” and “leaseSets”. The routerInfo gives the information that is required to con-
tact a particular router and the leaseSet gives the necessary information required for
routers to contact a destination.

As already stated, the message is wrapped with several layers of encryption so
that the message looks entirely different in each hop of the tunnel. One more feature
of I2P is that every participant in the network chooses the length of the tunnels and,
in doing so, makes a tradeoff between anonymity, latency, and throughput according
to its own needs.

2.3 Crowds

Crowds [15] is an anonymous protocol for web-transactions proposed by Reiter and
Rubin. This protocol involves a group of users called crowd, each of whom wants
to communicate with a corresponding web server but without revealing his identity.
The idea is to randomly route each message through the crowd until one member of
the crowd decides to pass it to the server.

A crowd can be thought of as a collection of user processes (also called jondos).
When a user starts the jondo on the user’s computer, it contacts a server called
blender to request admittance to the crowd. If admitted, the blender reports to this

Anonymity in P2P Systems 793

jondo the current membership of the crowd and information that enables this jondo
to participate in the crowd.

The user selects this jondo as her web proxy by specifying its host name and
port number in her web browser as the proxy for all services. Thus, any request
coming from the browser is sent directly to the jondo. Upon receiving the first user
request from the browser, the jondo initiates the establishment of a random path of
jondos that carries its users’ transactions to and from their intended web servers.
More precisely, the jondo picks a jondo from the crowd at random, and forwards the
request to it. When this jondo receives the request, it flips a biased coin to determine
whether or not to forward the request to another jondo; the coin indicates to forward
with probability p f . If the result is to forward, then the jondo selects a random
jondo and forwards the request to it. Otherwise the jondo submits the request to the
end server for which the request was destined (see Fig. 3).

2.3.1 AP3

AP3 [13] is an anonymous protocol built on top of Pastry [16] and based on Crowds.
It relies on a network of peers to forward messages attempting to hide the originator
identity.

When a node wishes to anonymously send a message, it first creates an anony-
mous request object comprised of the message itself and the address of the intended
recipient. The request (that does not contain any information that can reveal the
originator’s identity) is forwarded to a node in the overlay selected by drawing a
random key. Upon receiving a request, an AP3 node performs a weighted coin toss
to decide whether to fulfill the request and send a message to the intended recipient,
or to forward the message to another randomly selected peer. The decision to for-
ward is made with probability p f . This procedure provides a random path through
the P2P network built from a variable number of random hops.

User − A

User − B Jondo 2

Jondo 1

Jondo 5

Jondo 6

Jondo 3

Jondo 4

SERVER1

SERVER2

Fig. 3 Architecture of crowds. It is possible that random paths have loops

794 Pilar Manzanares-Lopez et al.

While the above mechanism allows nodes to send message without divulging
their identity, it alone is insufficient to support a request-response communication
in which the requester does not wish to divulge his identity. Since destination of a
request doesn’t know the identity of the sender, it is unable to reply. In order to offer
this functionality, AP3 provides Anonymous Channels that allow a node to specify
a return location for a message without divulging their identity.

When a node wishes to construct an anonymous channel, it first picks a channel
identifier (id). It looks up the node closest to this id using Pastry, and then sends
an anonymous message to that node using previously described anonymous send-
ing mechanism. This message travels along a random path and each node along it
remembers the previous node in a local table called the forwarding table.

Thus, if a node wishes to anonymously send a request and receive a response,
it first creates an anonymous channel and then includes the address of the channel
in the anonymously routed request. The response message is transmitted to the re-
sponsible node of the channel id included in the packet, and then it is forwarded to
the sender through the anonymous channel. The nodes in the anonymous channel
reconstruct the path back to the source node by using their forwarding tables. Using
this mechanism, anonymity is preserved as no node along the channel knows if the
previous node is the originator or just another intermediate node.

Additionally, when a path is established, the receiver specifies an expiration time
that defines the period during which entries remain in the forwarding tables. Thus,
forwarding table entries naturally expire over time. If a given channel has expired,
the source node can simply create a new and different anonymous path to serve the
anonymous channel.

2.4 Freenet

Freenet [4] is a P2P anonymous publishing system. In Freenet, a network of nodes is
collectively responsible for storing and serving a set of documents. Each document
is stored on a subset of nodes in the network and it is indexed by the hash of its
contents, called the content-hash key. This key is used to locate the document in the
network. Freenet also has a separate directory service to map names from a certain
namespace to content-hash keys.

Each node maintains a routing table with references to several other nodes. The
routing table includes a list of keys that each neighbor node is likely to serve. To
find a document, a node will send a query to the neighbor with the closest matching
key. If that node does not have the document, it will recursively forward the query
to the node in its own routing table with the closest key, and so on. If a routing loop
is detected, the process backtracks and the query is forwarded to the node with the
next closest key. A time-to-live field in the query is used to limit the extent of the
search.

A successful query causes the routing tables of the nodes along the path to be
updated with a reference to the node that provided the data. Since the local storage

Anonymity in P2P Systems 795

on each node is limited, the routing table is limited in size; if it becomes full, the
least recently used entry is removed. The document is sent back using the path of
the query, and is usually cached along the return path. Caches are also updated by
discarding less recently used items, resulting in popular documents being widely
replicated in the network.

Because of the highly dynamic nature of a Freenet network, it is hard to say
anything certain about the kind of topology it might have. The design intuition is
that each node will specialize in storing and locating similarly valued keys. The
larger structure of Freenet is expected to follow a power-law graph, with several
high-degree nodes providing connectivity between nodes with smaller degree. Such
a structure should support efficient routing even for large networks. Indeed, simu-
lations show that Freenet networks can scale to many thousands of nodes and still
maintain short median routes.

3 Broadcast Systems

In this category, researchers implement broadcast and multicast to achieve anonymity.
An example might illustrate it well. Suppose two partners want to communicate
anonymously with each other in an open environment. They can speak loudly in
such a jargon that only they can understand the meaning of the sentences. Thus,
even though other people within the sound scope can hear the talking, they cannot
understand the content of the conversation. This kind of confidenciality can be used
to provide anonymity in a broadcast scenario.

To hide the content of the message, users usually perform encryption to the mes-
sages using the receiver’s public key. Thus, only desired receivers can recover the
original data. In such a procedure, we find that the messages are propagated into
replicate copies, and usually delivered by broadcasting or multicasting.

3.1 P5

P5 (Peer-to-Peer Personal Privacy Protocol)[17] can be used for scalable anony-
mous communication over Internet. This solution is based on a basic broadcast
channel principle. All participants in the anonymous communication system are
connected to a broadcast channel. All of them send fixed length packets onto this
channel at a fixed rate to the entire group. Such a packet would be a noise packet
or a signal packet, that is, a packet destined for a particular receiver. All the pack-
ets are encrypted using the receiver’s public key, such that only the recipient of the
message may decrypt it. The proposal assumes that there is a mechanism to hide the
sender addresses, e.g., by implementing the broadcast using an application-layer
P2P system.

796 Pilar Manzanares-Lopez et al.

This solution provides receiver anonymity, since the sender does not know where
the receiver is or which host or address the receiver is using, and also provides sender
anonymity, since all messages to a receiver comes from an upstream node, but the
receiver cannot determine if that node is the original sender of the message or just a
forwarder in the broadcast transmission. However, this basic solution does not scale
due to its broadcast nature. As the number of people in the channel increases, the
available bandwidth for any useful communication decreases linearly.

P5 scales the basic broadcast solution by creating a broadcast hierarchy. Different
levels of the hierarchy provide different levels of anonymity, at the cost of commu-
nication bandwidth. In a P5 system with N users, each one have the public keys of
every member K0, ...,KN−1. These N public keys will be used to create a logical
broadcast hierarchy.

P5 constructs a binary tree, called L, where each node of the tree consists of a
bitstring and a bitmask. The bitmask indicates how many of the most significant
bits on the bitstring are valid. The root of L consists of the null bistring and a zero
length bitmask. The root is represented with the label (·/0). The left child of the root
consists of the bistring starting with 0 and a 1-bit length bitmask (corresponding to
label (0/1)) and the right child of the root consists of the bitstring starting with 1
and a 1-bit length bitmask (corresponding to label (1/1)). The rest of children of
the L tree are defined in the same way as shown in Fig. 4.

A tree element (b/m) in L, also called group (b/m), corresponds to a broadcast
channel in P5. If a user sends a message to group (b/m), it will be forwarded to:

• Users in a local region. The message will be forwarded to all the members of the
(b/m) group.

• Users in a path to root. For each m′ < m, this message is also broadcast to all
members of the group (b,m′).

• Users in the subtree. For all m′′ > m, the message is also sent to all groups
(b/m′′).

Fig. 4 Form of the P5 logical broadcast tree (L). The effective broadcast channels of a user in
group (00/2) is shown in boldface

Anonymity in P2P Systems 797

The depth of the L tree is defined at run-time and depends on the number of
members in the system (N). However, P5 fix a maximum depth Ld , which is obtained
considering that a system can accommodate approximately 2Ld · k users, where k is
the least number of members in any channel.

Each user in the system joins a set of such broadcast groups. P5 uses a public
hash function H(·) to map users to some groups. Consider user A, with public-key
KA. Assume bA = H(KA) mod 2Ld . User A will join some group of the form bA/mA,
where mA is chosen independently and randomly by user A. The choice of parameter
m should be secret. Thus, giving a public key, it is public knowledge which set of
groups a user may be in, but it is difficult to determine which specific group in this
set the user has chosen.

Suppose users A and B join groups (bA/mA) and (bB/mB) respectively, and as-
sume both know each other’s public key. Since A knows KB, it can determine bB;
however A does not know the value of mB. Without any knowledge of the mask,
A and B can communicate using the (·/0) channel. The communication efficiency
can be improved as follows. Instead of sending messages through (·/0), A could try
to send messages to some group (bB,m), m > 0. B would receive these messages,
and may replay back to A. It is supposed that the public key of the sender KA is
included in the message. However, in doing so, B sacrifices some anonymity since
A can now map B to a small set of users. In general, B can choose to communicate
back to A using any length mask; however, longer masks trade-off anonymity for
communication efficiency.

A simple and logical anonymity analysis of this broadcast system is presented
in the original paper. This is the main conclusion: Suppose a node A has joined
the binary tree L at group (b/m), and let E(b/m) be the number of members who
receives a broadcast message sent to channel (b/m). Then, the anonymity of a node
communicating using channel (b/m) is strongly related to the set of members who
are part of E(b/m).

In order to proof this property authors consider the sender and receiver anonymity
cases. Sender anonymity is the size of the set of nodes that could have sent a
particular packet to a given host. In P5 a user connected to (b/m) sends packet
at a constant rate (signal or noise), and these packets are received by all users
in E(b/m). If a malicious receiver tries to expose a sender, it can at best relate
packets to its own broadcast group. Further, if the receiver is able to determine
and compromise the router node, then the sender anonymity becomes the effec-
tive broadcast group of the sender. Respect to the receive anonymity, when user
A sends a packet to user B at channel (bB/mB), every member of E(bB/mB) re-
ceives the packet. From the perspective of an external observer, the behavior of the
system is exactly the same whether B receives the packet or not. Thus B’s receiver
anonymity is exactly equivalent to the set of all users who receive the packet, namely
E(bB/mB).

798 Pilar Manzanares-Lopez et al.

3.2 Hordes

Hordes [11] provides sender anonymity by adopting the Crowds probabilistic for-
warding mechanism, and achieves receiver anonymity by performing a multicast
transmission. Figure 5 presents the main infrastructure of Hordes.

The purpose of using a group multicast is that the participants of the group cannot
be easily determined. Since multicast addresses do not work with TCP connections,
the transfers that involve a multicast address require the use of a UDP. The forward
connection can use TCP, and within the data of the TCP payload it encapsulates the
multicast address and a random number, used to identify the return message. Each
intermediate jondo forwards this information to the responding jondo. That jondo
will take the response payload and send it via the multicast address. Each jondo
listens to one multicast address along with other jondos. However, not all jondos
listen to the same address. One reason for this is so that a few jondos on the forward
path will receive the actual reply from the server. It is very important that at least two
jondos listen to an address, so that there is some unlinkability between the multicast
address and the actual client.

The differences between Hordes and Crowds are the following. Crowds use TCP
for all communication, where Hordes use a combination of UDP and TCP. The re-
verse path is much more interesting. Since packets travel directly back to the client
without going through the jondos on the forward path, they are not subject to the
same attacks of request/response matching that Crowds is subject to. In Crowds the
forward and reverse data paths follow the same set of jondos, so a timing attack be-
tween a request and response may reveal information between the two. A problem
with performing an encryption/decryption operation between each jondo is that it
is possible for a local eavesdropper to determine the content of all messages origi-
nating from that jondo. However, this affects both Crowds and Hordes, since their
forward routing schemes are very similar.

Multicast Reply

Anonymous Forwarding

Fig. 5 Hordes infrastructure

Anonymity in P2P Systems 799

4 DC-Net Systems

DC-nets [3] or Dining-Cryptographer networks were introduced by David Chaum
in 1988. This anonymity solution is based on the broadcasting of XOR combination
of messages to the system in predefined time slots. As in other broadcast-based
anonymity systems, the main problem with DC-nets is that bandwidth decreases
quadratically with respect to the number of nodes. That is because they are not used
often in practice.

DC-nets work as follows. Suppose there are three participant, Alice, Bob and
Charlie, one of whom (Alice) wants to communicate a one-bit message to Charlie.
Each pair of users tosses a coin in secret; call these AB, AC and BC. Bob and
Charlie report the XOR of their two coin tosses (Bob reports B = AB⊕BC, Charlie
reports C = AC⊕BC). Alice, on the other hand reports the XOR of her coin tosses
along with her message; that is, she reports A = AB⊕AC⊕m. A eavesdropper or a
participant can then take the XOR of all packets sent in the network, i.e., A⊕B⊕
C = m, since the double-reported coin tosses cancel out to reveal m. Neither the
eavesdropper nor a participant can tell that Alice originated the message since it is
composed with the participation of all parties.

Herbivore, the evolution of CliqueNet, is an anonymous broadcasting protocol
that uses DC-nets.

4.1 Herbivore

The original DC-Net system is not practical because it scales with the number
of users. Herbivore [18] was proposed as an attempt to incorporate DC-nets into
an anonymous broadcast protocol that can be used in the real world. This anony-
mous communication system scales by partitioning the global network into smaller
anonymizing cliques. Small cliques enable the protocol to operate efficiently within
a small group and decouple the performance from the total number of participants
in the network.

Herbivore relies on Pastry for its global organization. Each Herbivore node has a
unique ID that determines its virtual position in relation to other nodes. Once a node
arrives on the Pastry overlay, it finds the closest preexisting clique in the virtual iden-
tifier space and initiates a join protocol. The join protocol authenticates the client to
the clique, authenticates the clique members to the client, and then picks pairwise
PRNG1 seeds to be used for transmission. A node that has exchanged PRNG keys
with all preexisting clique members notifies a randomly selected clique participant
of its intent to join the anonymous communication. This request is broadcast to all
clique members on the anonymous channel, and the node is included in the next
round of communication.

1 Herbivore nodes eliminate the coin tosses and use a computationally secure PRNG (PseudoRan-
domNumberGenerator)-generated bit stream instead.

800 Pilar Manzanares-Lopez et al.

Within a clique, the DC-net protocol is used to communicate bits anonymously.
As in traditional DC-nets, communication in Herbivore takes place in rounds, with a
reservation and transmission phase. The reservation phase enables nodes to anony-
mously sign up for a slot in which to transmit their data. During the transmission
phase, nodes transmit their data in the slots they reserved, or else simply broadcast
the XOR of the keys they derived from their keys in order to assist other nodes’
transmissions.

To enable inter-clique operation and also to contact traditional network services
anonymously, Herbivore relies on proxies to bridge packets between cliques or be-
tween the anonymous and the public network. Each Herbivore node wishing to
communicate with another clique or with such a service, randomly selects one of
the nodes in its clique, other than itself, and anonymously asks it to serve as a
proxy.

5 Analysis of Anonymity

The need for a metric to measure the performance of anonymity implementations
appeared with the development of applications that enable anonymous electronic
transactions, such as untraceable email, electronic voting, anonymous e-coins or
privacy-enhanced web browsing.

As it is presented in [5], there has been different attempts to quantify anonymity
in communication networks. Some authors define the degree of anonymity as a prob-
ability 1− p, where p is the probability assigned by an attacker to potential senders.
This metric considers users separately, and therefore does not capture anonymity
properties very well. Berthold et al. define the degree of anonymity as a function of
log2(N), where N is the number of users of the system. This metric only depends
on the number of users of the system, and therefore does not express the anonymity
properties of different systems.

In 2002, information theoretic anonymity metrics were independently proposed
in two papers published at the same time [6]. Serjantov and Danezis uses entropy
as measure of the effective anonymity set size. Diaz et al. goes one step further,
normalizing the entropy to obtain a degree of anonymity in the scale (0,1).

Entropy provides a measure of the uncertainty of a random variable. Let X be
the discrete random variable with probability mass function pi = Pr(X = i), where
i represents each possible value that X may take with probability pi > 0. In anony-
mous communications, each i corresponds to a node of the anonymity set and the pi

denotes the probability of being the originator of the messages. We denote by H(X)
the entropy of a random variable, and by N the number of nodes in the anonymity
set. H(X) can be calculated as:

H(X) =−
N

∑
i=1

pilog2(pi) (1)

Anonymity in P2P Systems 801

The degree of anonymity is a normalized version of the entropy, which tells how
good the system is performing on 0–1 scale. Therefore, the maximum entropy for
N subjects is reached when all subjects are linked to the item of interest with equal
probability (pi = 1/N). In this case, all subjects are indistinguishable towards the
adversary. The maximum entropy is HM = log2(N).

If we assume that the adversary has no a priori information on the system, the
amount of information gained by the adversary with an attack is the difference in the
entropy before and after the attack: HM−H(X). The degree of anonymity is defined
as the normalized value of this difference in knowledge of the adversary:

d = 1− HM −H(X)
HM

=
H(X)
HM

(2)

If a message goes only through honest nodes the degree of anonymity will be
d|honest nodes = dh = 1. If we assume that the message goes through at least one
corrupt node with probability pc, and it crosses only through honest nodes with
probability ph = 1− pc, the mean degree of anonymity of the system is

d = pc ·d|corrupt nodes + ph ·dh = pc ·dc + ph (3)

Next, it is presented the analysis of anonymity of different anonymous systems.
The analysis of some of the them is extracted from [5].

5.1 Mix

It is considered a system with 10 potential senders, a mix network and a recipient.
The attacker wants to find out which of the senders sent an email to the recipient. By
means of timing attacks and traffic analysis, the attacker assigns a certain probability
to each user as being the sender. First, it is considered an active internal attacker who
is able to control eight of the senders (that means that these eight users have to be
excluded from the anonymity set). Let p be the probability assigned to user 1 and
1− p the probability assigned to user 2. The distribution of probabilities is: p1 = p;
p2 = 1− p, and the maximum entropy for two honest users is: HM = log2(2) = 1.
In Fig. 6 it is showed the variation of the degree of anonymity with respect to p. d
reaches the maximum value (d = 1) when both users are equiprobable (d = 1/2).
The minimum level (d = 0) is reached when the attacker can assign probability one
to one of the users (p = 0 or p = 1).

Next, it is considered a passive global external attacker who is able to analyze
the traffic in the whole system, but who does not control any of the entities (the
anonymity set is, therefore, composed by 10 users). The maximum entropy for this
system is: HM = log2(10). The attacker comes to the following distribution:

pi =
p
3
, 1≤ i≤ 3; pi =

1− p
7

, 4≤ i≤ 10 (4)

802 Pilar Manzanares-Lopez et al.

In this case there are two groups of users, one with three users and the other one
with seven. Users belonging to the same group are seen by the attacker as having
the same probability. The maximum degree d = 1 is achieved for the equiprobable
distribution (p = 0.3). In this case d does not drop to zero because in the worst
case, the attacker sees three users as possible senders with probability p = 1/3
(see Fig. 6), and therefore he cannot identify a single user as the sender of the
message.

5.2 Onion Routing

Let N be the size of the anonymity set; the maximum entropy for N users is:
HM = log2(N). The attacker is able to obtain a subset of the anonymity set that
contains the possible senders. The size of the subset is S (1≤ S ≤ N). It is assumed
that the attacker cannot assign different probabilities to the users that belong to this
subset:

pi =
1
S
, 1≤ i≤ S; pi = 0, S +1≤ i≤ N (5)

Therefore, the entropy after the attack has taken place, and the degree of anony-
mity are:

H(X) = log2(S); d =
H(X)
HM

=
log2(S)
log2(N)

(6)

Figure 8 shows the degree of anonymity with respect to S for N = 5, N = 20
and N = 100. Obviously, d increases with S, i.e., when the number of users that the
attacker is able to exclude from the anonymity set decreases.

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.8

0.9

1

p

de
gr

ee
 o

f a
no

ny
m

ity
 (

d)

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.8

0.9

1

p

de
gr

ee
 o

f a
no

ny
m

ity
 (

d)

Fig. 6 Degree of anonymity for Mixes Fig.7 Degree of anonymity for Mixes

Anonymity in P2P Systems 803

5.3 Crowds

First of all, it is necessary to establish some fundamental definitions. The event
I denotes that the first collaborator on the path is immediately preceded by the
initiator. Hk, k ≥ 1 denotes the event that the first collaborator occupies the kth
position on the path, where the initiator occupies the 0th position, and finally
Hk+ = Hk ∨Hk+1 ∨Hk+2 ∨ Therefore, P(I|H1+) describes, given that a corrupt
node is on the path, the probability assigned to the predecessor of the first collab-
orative node in the path.2 Authors in Crowds paper [15] obtains an expression to
determine P(I|H1+)

P(I|H1+) =
N− p f (N−C−1)

N
= 1− p f

N−C−1
N

(7)

The probability assigned to the rest of collaborative nodes is zero. Assuming that
the collaborative node does not have any extra information about honest nodes, the
probabilities assigned to the rest of honest nodes are:

pi =
1−P(I|H1+)

N−C−1
=

p f

N
(8)

Using equations (7) and (8) in equation (1), the entropy of the system can be
computed by:

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S

de
gr

ee
 o

f a
no

ny
m

ity
 (

d)

N=100N=20

N=5

Fig. 8 Degree of anonymity for onion routing

2 Note that, in Crowds, each node in the path is selected randomly. Therefore, I ⇒ H1+ but the
opposite is not true.

804 Pilar Manzanares-Lopez et al.

H(X) =−N− p f (N−C−1)
N

log2

[
N− p f (N−C−1)

N

]
−

N−C−1

∑
1

p f

N
log2

(p f

N

)
=

=
N− p f (N−C−1)

N
log2

(
N

N− p f (N−C−1)

)
+

N−C−1
N

p f log2

(
N
p f

)
(9)

The degree of anonymity (d) is obtained normalizing the entropy, as it is in-
dicated in equation (2). Taking into account that the size of the anonymity set is
N−C (because the C corrupt nodes are not considered part of the anonymity set),
the maximum entropy is

HM = log2(N−C) (10)

Therefore, knowing the probability that at least one corrupt node being in the
path (pc), d can be computed substituting equations (9) and (10) in equation (3).

The degree of anonymity (d) provided by this system is a function of C, N and
p f . In order to show the variation of d with respect to these three parameters authors
in [5] chose p f = 0.5 and p f = 0.75, and N = 5, N = 20 and N = 100. The degree
d is represented in Figs. 9–11 as a function of the number of collaborating jondos
C. The minimum value of C is 1 (if C = 0 there is no attacker), and the maximum
value of C is N− 1 (if C = N there is no user to attack). For the case C = N− 1 it
is obtained d = 0 because the collaborating jondos know that the real sender is the
remaining non-collaborating jondo. We can deduce from the figures that d decreases
with the number of collaborating jondos and increases with p f . The variation of d
is very similar for systems with different number of users.

5.4 Crowds with Limited Path Lengths

In the above section, it is calculated the entropy of Crowds. In [12], the authors
compute the entropy of a system with fixed length multiple hop-paths. Based on
these works, we introduce an analytical model to calculate entropy when the path
length is L with probability P(L = i), but limited to a maximum of M.

We define q = (N−C)/N as the probability of selecting a honest node, and we
know that

pc = P(H1+)

P(H1) = 1−q

P(I|H1) = 1

and
P(I|H2+) = P(I|H2)+P(I|H3+) = P(I|H3+) = 1/(N−C)

because a node never selects itself to be the next node (P(I|H2) = 0) and if the first
corrupt node on the path occupies the third or higher position, then it is immediately
preceded on the path by any host peer (including the initiator) with equal likelihood.

Anonymity in P2P Systems 805

In order to calculate the mean degree of anonymity of the system, it is only
necessary to calculate the pi associated with every node in the network. It is clear
that pi = 0 for corrupt nodes. The probability assigned to the predecessor node of
the first corrupt node is P(I|H1+). Finally, the rest of honest nodes (N−C−1) share
uniformly the rest of the probability of being the origin of the message. Therefore:

pi =

⎧
⎪⎨
⎪⎩

0 i ∈ C,

P(I|H1+) predecessor,
1−P(I|H1+)

N−C−1 rest

(11)

Thus, it is enough to calculate P(I|H1+). Since I → H1+ the value of this proba-
bility can be simplified as

P(I|H1+) =
P(I∧H1+)

P(H1+)
=

P(I)
P(H1+)

(12)

1 1.5 2 2.5 3 3.5 4 4.5 5

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

number of collaborating jondos (C)

de
gr

ee
 o

f a
no

ny
m

ity
 (

d)

N = 5 users

pf = 0.75

pf = 0.5

2 4 6 8 10 12 14 16 18 20
number of collaborating jondos (C)

N = 20 users

pf = 0.75

pf = 0.5

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

de
gr

ee
 o

f a
no

ny
m

ity
 (

d)

Fig. 9 Degree of anonymity for crowds with Fig.10 Degree of anonymity for crowds with
N = 5 N = 20

number of collaborating jondos (C)

de
gr

ee
 o

f a
no

ny
m

ity
 (

d)

10 20 30 40 50 60 70 80 90 100

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

N = 100 users

pf = 0.75

pf = 0.5

Fig. 11 Degree of anonymity for crowds with N = 100

806 Pilar Manzanares-Lopez et al.

Therefore, to calculate P(I|H1+) it is necessary to previously know P(I) and
P(H1+). First, P(H1+) is calculated. It is assumed that a path of length j is composed
by j−1 intermediate nodes and a destination node, and any node in the path can be
corrupt. Therefore,

P(H1) = (1−q)
P(H2) = q(1−q)

· · ·
P(HM) = qM−1(1−q)

The previous expressions can be simplified as

P(Hi) = qi−1(1−q) (13)

At this point, P(H1+) can be resolved as

P(H1+) =
M

∑
j=1

(
P(l = j) ·

j

∑
i=1

P(Hi)

)
=

M

∑
j=1

(
P(l = j) ·

j

∑
i=1

qi−1(1−q)

)
(14)

where P(l = j) is obtained in each particular anonymous system.
On the other hand, in order to simplify the following operations, P(H1+) can be

expressed as

P(H1+) =
1−q

T
(15)

and inspection of equation (15), the value of T must be

T =
1

∑M
j=1

(
P(l = j) ·∑ j

i=1 qi−1
) (16)

Now, P(I) can be derived as

P(I) = P(H1)P(I|H1)+P(H2+)P(I|H2+) =

= (1−q)+ [P(H1+)−P(H1)]
1

N−C
=

(1−q)(1+T (N−C−1))
T (N−C)

(17)

Then,

P(I|H1+) =
P(I)

P(H1+)
=

1+T (N−C−1)
N−C

(18)

and therefore

Anonymity in P2P Systems 807

pi =

⎧
⎪⎨
⎪⎩

0 i ∈ C,
1+T (N−C−1)

N−C predecessor,
1−T
N−C rest

(19)

Now, the entropy H(X) of the system can be computed as follows

H(X) =−
M

∑
i=1

pilog2(pi) =
(N−C−1)(1−T)

N−C
log2

(
N−C
1−T

)
+

+
1+(N−C−1)T

N−C
log2

(
N−C

1+(N−C−1)T

)
(20)

The maximum entropy (Hmax), considering that the size of the anonymity set
is N −C and that all these nodes have the same probability of being the origin
(1/(N−C)) is equal to:

Hmax =−
N−C

∑
i=1

1
N−C

log2

(
1

N−C

)
= log2(N−C) (21)

Therefore, the degree of anonymity of the system will be

dc =
H(X)
Hmax

=
(N−C−1)(1−T)
(N−C)log2(N−C)

log2

(
N−C
1−T

)
+

+
1+(N−C−1)T

(N−C)log2(N−C)
log2

(
N−C

1+(N−C−1)T

)
(22)

where T = (1−q)/P(H1+) and P(H1+) is obtained from equation (14).
Finally, the mean degree of anonymity of the system is

d = pc ·dc + ph = P(H1+) ·dc +(1−P(H1+)) = 1+P(H1+)(dc−1) (23)

6 Experimental Analysis of Anonymity

If it is not possible to model the entropy of a certain anonymous system analytically,
it can be obtained by simulation or experimentation as follows. Each node, after
selecting a random destination, builds a multi-hop path towards it. After n iterations,
the anonymity metrics can be obtained using the following methodology.

Let us introduce two random variables: X , modeling the senders (X = 1, . . . ,N−
C), and Y , modeling the predecessor observed by the first corrupt node in the path
(Y = 1, . . . ,N−C,(; where (represents that there is not an attacker in the path).

808 Pilar Manzanares-Lopez et al.

The probability distribution computing in the entropy expression (equation (1))
is really the distribution of X conditioned on a particular observation y. There-
fore, the entropy metric evaluates H(X |Y = y) for some y, an it can be calcul-
ated as

H(X |Y = y) =−∑
x

qx,ylog2(qx,y) (24)

The distribution qx,y is an estimate of the true distribution pi. The way to calculate
it is as follows: We keep a counter Cx,y for each pair of x and y. We pick a random
value x for X and simulate a request. The request is forwarded according to the
algorithm until it either is sent to the destination or is intercepted by a corrupt node.
In the former case, we write down the observation y =(, while in the latter case we
set y to the identity of the predecessor node. In both cases, we increment Cx,y. Next,
qx,y can be computed as follows

qx,y =
Cx,y

Ky
(25)

where Ky = ∑x Cx,y.
On the other hand, the average entropy of the system, taking into account that a

message can also go through honest nodes, can be expressed by

H = ∑
y≥1

Pr [Y = y]H(X |Y = y)+Pr [Y =(]H(X |Y =() =

=∑
y

Pr[Y = y]H(X |Y = y) (26)

With these definitions, expression (2) can be redefined as

d =
1

HMax
∑
y

Pr[Y = y]H(X |Y = y) (27)

This methodology has been implemented in a Crowds simulator written in C
language. First, in order to obtain an appropriate value for the number of iterations
we simulate an scenario with l = 4 for different number of iterations. Figure 12
presents the results with the 95% confidence intervals. We can see that from 10,000
iterations, the accuracy of the simulation results is within the 0.1% with respect
to the stable value. Therefore, in our simulations the number of iterations is set to
10,000.

Figures 13 and 14 compares the simulation and the analytical results for Crowds
when N = 100. Figure 13 represents d in function of p f when C = 10, and Fig. 14

Anonymity in P2P Systems 809

represents d in function of C when p f = 0.75. In both cases, the simulation and the
analytical results fit in perfectly.

7 Summary

In this work, the most important methods and applications to provide anonymity in
P2P scenarios have been explained. Although all of them can be configured to have a
good degree of anonymity without wasting communication efficiency, multiple hop
path method seems to be the easiest way to obtain anonymity in a connectionless
(datagram) IP network.

Entropy can be used as a mathematical tool to measure the overlay’s degree of
anonymity. A mathematical study in the case of multiple-hop path with limited and
unlimited path length has been presented. In other (more complex) cases, entropy
can be computed by simulation.

0 10 100 1000 10000 100000
0.75

0.8

0.85

0.9

0.95

1

Number of Samples

d

Fig. 12 d with confidence intervals as a function of the number of iterations

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

pf

d

Simulation
Analytical

Fig. 13 Analytical and experimental evalua-
tion of d for crowds as a function of p f

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C

d
Simulation
Analytical

Fig. 14 Analytical and experimental evalua-
tion of d for crowds as a function of C

810 Pilar Manzanares-Lopez et al.

8 Future Research Directions

In the following we overview the most heatedly discussed problems to sketch the
main challenges in anonymous P2P approaches

Tradeoff Between Performance and Anonymity. Current anonymity approaches
incur extra overhead to both the system and the participants. The overhead is caused
by encryptions and decryptions, anonymous transmissions, and mimic traffics. Most
approaches in unstructured P2P systems suffer the inefficiency problem. On the
other hand, a lot of researches have been proposed to improve the performance of
the non-anonymous P2P systems by refining overlay topology, resource localiza-
tion, and data delivery. However, most of these studies need the user identities in
their optimization, which would compromise the anonymity. For anonymous P2P
applications, without the help of identities, such as IP addresses, the performance
may be severely degraded. Thus, any development of anonymous applications has a
challenging effect on the performance of P2P systems. When providing anonymity,
new efficient anonymous solutions will be urgently required in future P2P research.

Trust and Trust Management. Currently, the conflict is irreconcilable between
anonymity and trust. Most prior approaches of trust and trust management are
identity-based, which means real user identities are needed to make authentica-
tion and verification. However, this mechanism does not work when considering
user’s anonymity. Even though many anonymous schemes correlate a real ID with
a pseudonym, the trust problem becomes more difficult in the proof of the correla-
tion between these two entities. Therefore, trust management schemes need to be
further explored in anonymous P2P environments. Combined with anonymity, trust
management systems should deal with issues including authentication, verification,
reputation or credit record storage, auditing, and misbehavior reporting in anony-
mous environments.

Incentive Versus Free-Riding. A free-rider always consumes resources from oth-
ers while contributing a little or nothing to the system. Because of the open nature
of P2P models, the free-riding phenomenon is popular and degrades the system
performance. Anonymity may exacerbate this problem since the free-riders cannot
be located, and since selfish behaviors might be prevalent without any punishment.
Most existing incentive schemes are implemented in non-anonymous environments.
In those approaches, the awards and punishments are related to users’ real identi-
ties. Therefore, it is difficult to build an incentive mechanism in anonymous envi-
ronments. Researchers are encouraged to design incentive schemes that can effec-
tively correlate the awards and punishments to certain users without destroying their
anonymity.

Acknowledgement

This research has been supported by project grant TEC2007-67966-C03-01/TCM
(CON-PARTE-1) and it is also developed in the framework of “Programa de Ayu-

Anonymity in P2P Systems 811

das a Grupos de Excelencia de la Region de Murcia, de la Fundacion Seneca,
Agencia de Ciencia y Tecnologia de la RM (Plan Regional de Ciencia y Tecnolo-
gia 2007/2010)”. Juan Pedro Muñoz-Gea also thanks the Spanish MEC for a FPU
(AP2006-01567) pre-doctoral fellowship.

References

1. Bennett, K., Grothoff, C.: GAP – practical anonymous networking. In: Proceedings of Privacy
Enhancing Technologies workshop (PET 2003), pp. 141–160 (2003)

2. Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms. Commu-
nications of the ACM 4(2), 84–90 (1981)

3. Chaum, D.: The dining cryptographers problem: unconditional sender and recipient untrace-
ability. Journal of Cryptology 1(1), 65–75 (1988)

4. Clarke, I., Sandberg, O., Wiley, B., Hong, T.W.: Freenet: A distributed anonymous information
storage and retrieval system. In: Proceedings of Designing Privacy Enhancing Technologies:
Workshop on Design Issues in Anonymity and Unobservability, pp. 46–66 (2000)

5. Diaz, C.: Anonymity metrics revisited. In: Anonymous Communication and its Applications
(2006)

6. Diaz, C., Seys, S., Claessens, J., Preneel, B.: Towards measuring anonymity. In: Proceedings
of Privacy Enhancing Technologies Workshop (PET 2002), pp. 54–68 (2002)

7. Dingledine, R., Mathewson, N., Syverson, P.: Tor: the second-generation onion router. In:
SSYM’04: Proceedings of the 13th conference on USENIX Security Symposium, pp. 21–21
(2004)

8. Freedman, M.J., Morris, R.: Tarzan: A peer-to-peer anonymizing network layer. In: Proceed-
ings of the 9th ACM Conference on Computer and Communications Security (CCS 2002),
pp. 193–206 (2002)

9. Harchol-Balter, M., Leighton, T., Lewin, D.: Resource discovery in distributed networks. In:
PODC ’99: Proceedings of the eighteenth annual ACM symposium on Principles of distributed
computing, pp. 229–237 (1999)

10. I2p anonymous network. http://www.i2p2.de/ (2003)
11. Levine, B.N., Shields, C.: Hordes – a multicast based protocol for anonymity. Journal of

Computer Security 10(3), 213–240 (2002)
12. Lu, T., Fang, B., Sun, Y., Cheng, X.: Performance analysis of wongoo system. In: Proceedings

of Fifth International Conference on Computer and Information Technology, 2005. CIT 2005.,
pp. 716–722 (2005)

13. Mislove, A., Oberoi, G., Post, A., Reis, C., Druschel, P., Wallach, D.S.: Ap3: cooperative,
decentralized anonymous communication. In: EW11: Proceedings of the 11th workshop on
ACM SIGOPS European workshop, p. 30 (2004)

14. Möller, U., Cottrell, L., Palfrader, P., Sassaman, L.: Mixmaster Protocol – Version 2. IETF
Internet Draft (2003)

15. Reiter, M., Rubin, A.: Crowds: Anonymity for web transactions. ACM Transactions on Infor-
mation and System Security 1(1), 66–92 (1998)

16. Rowstron, A., Druschel, P.: Pastry: Scalable, decentralized object location and routing for
large-scale peer-to-peer systems. In: IFIP/ACM International Conference on Distributed Sys-
tems Platforms (Middleware), pp. 329–350 (2001)

17. Sherwood, R., Bhattacharjee, B., Srinivasan, A.: P5: A protocol for scalable anonymous com-
munication. In: Proceedings of the 2002 IEEE Symposium on Security and Privacy, pp. 58–70
(2002)

812 Pilar Manzanares-Lopez et al.

18. Sirer, E.G., Goel, S., Robson, M., Engin, D.: Eluding carnivores: file sharing with strong
anonymity. In: EW11: Proceedings of the 11th workshop on ACM SIGOPS European work-
shop, p. 19 (2004)

19. Syverson, P.F., Goldschlag, D.M., Reed, M.G.: Anonymous connections and onion routing.
In: SP ’97: Proceedings of the 1997 IEEE Symposium on Security and Privacy, pp. 44–54
(1997)

Private Peer-to-Peer Networks

Michael Rogers and Saleem Bhatti

Abstract This chapter offers a survey of the emerging field of private peer-to-peer
networks, which can be defined as internet overlays in which the resources and
infrastructure are provided by the users, and which new users may only join by per-
sonal invitation. The last few years have seen rapid developments in this field. We
describe deployed systems, classify them architecturally, and identify some techni-
cal and social tradeoffs in the design of private peer-to-peer networks.

1 Introduction

Most peer-to-peer networks are designed to be open to the public: anyone can join
a Kademlia overlay or share files in Gnutella simply by obtaining the addresses
of other participants, which are often available from public servers [46, 61]. Even
systems designed to protect the privacy of their users often have open member-
ship policies [14, 29, 40, 58]. This openness enables wide participation, ensuring
that a large amount of content is available in file sharing networks, for example,
but it also allows attackers to monitor, join, and disrupt peer-to-peer networks
[5, 11, 44, 71, 73].

In recent years, pervasive surveillance and censorship of the internet and highly
publicised lawsuits against users of file sharing networks have led to increasing
interest in private, authenticated communication between friends [19, 24, 25]. In
a parallel development, creators of collaborative software have sought to combine
the flexibility and autonomy of peer-to-peer networks with the confidentiality and
authentication provided by traditional groupware.

Michael Rogers
University College London, London WC1E 6BT, UK, e-mail: m.rogers@cs.ucl.ac.uk

Saleem Bhatti
University of St Andrews, Fife KY16 9SS, UK, e-mail: saleem@cs.st-andrews.ac.uk

X. Shen et al. (eds.), Handbook of Peer-to-Peer Networking, 813
DOI 10.1007/978-0-387-09751-0 28, © Springer Science+Business Media, LLC 2010

814 Michael Rogers and Saleem Bhatti

This area has so far received relatively little attention from researchers; as with
the first wave of peer-to-peer networks in 1999–2001, the developer community has
often moved ahead of the academic community, opening up new areas of potential
research. Consequently, many of the references in this chapter are to websites rather
than to peer-reviewed papers.

The next section defines the scope of this chapter and describes some of the tech-
nical challenges faced by private peer-to-peer networks. Section 3 provides a survey
of deployed systems, and in Section 4 we classify the systems architecturally and
discuss design tradeoffs. Related research is discussed in Sections 5 and 6 concludes
the chapter.

2 Background

2.1 Definitions

We define a private peer-to-peer network as an internet overlay in which the re-
sources and infrastructure are provided by the users, and new users may only join
the network by personal invitation. This definition excludes systems that rely on
public servers, such as many online social networks and media sharing websites,
but it does not necessarily imply decentralisation – some private peer-to-peer net-
works use central servers, but access to those servers is restricted to invited users,
and the servers are owned and operated by users of the network.

Fig. 1 Friend-to-friend and group-based networks. In a friend-to-friend network (left), users only
connect directly to people they know. In a group-based network (right), any member of a group
may connect directly to any other

Private Peer-to-Peer Networks 815

Some private peer-to-peer networks allow direct connections between any pair
of users, while others only allow direct connections between users who know one
another. We will refer to the former as group-based networks and the latter as friend-
to-friend networks [8, 34]. The distinction is illustrated in Fig. 1.

2.2 Technical Challenges

Firewalls and network address translators create significant problems for peer-to-
peer networks, whether public or private. As the number of internet-connected de-
vices increases, a growing proportion of users are behind “middleboxes” of one kind
or another, and many also have dynamic network addresses that change daily or with
every session.

Studies of peer-to-peer networks have shown rapid turnover or “churn” in the
node population: many nodes are offline at any given time, there are significant
daily and weekly cycles in the number of online nodes, and session durations are
highly variable, with a few nodes staying online for long periods but most spending
only a few hours online in each session [9, 37, 65, 70].

Middleboxes, dynamic network addresses and churn are especially problematic
for private networks because of their restricted topologies. In a group-based net-
work, at least one member of the group must run a stable node that is reachable from
the public internet; the current addresses of other members can then be learned from
that member. In a friend-to-friend network, on the other hand, every user needs at
least one friend with a stable, reachable node.

Some systems cope with this problem by using internal or external lookup ser-
vices for middlebox traversal and address discovery; others require users to ex-
change updated addresses out-of-band if they cannot reconnect to the network. By
monitoring or participating in a lookup service, an attacker may be able to discover
who connects to whom, so the decision to use such services involves a tradeoff
between privacy and ease of use.

Data integrity, confidentiality and authentication are areas where private peer-
to-peer networks may have an advantage over public networks. Because the users
know one another, it is feasible for them to exchange cryptographic keys out-of-
band; private peer-to-peer networks could even be bootstrapped using existing keys
and trust relationships, such as those recorded in the PGP web of trust [10].

“Free riding” is a well-known problem in public peer-to-peer networks, where
users often consume the resources provided by others without contributing anything
in return [1]. Li and Dabek [43] argue that users of private networks will be more
willing to contribute resources than users of public networks, since their contribu-
tions will benefit people they know. However, in some private peer-to-peer systems,
such as those that support anonymous communication, resources can be consumed
by people the provider does not know; free riding could be a problem for such
systems.

816 Michael Rogers and Saleem Bhatti

3 Survey of Deployed Systems

In this section we review a number of private peer-to-peer systems that have been
deployed in recent years.

3.1 Group-Based Networks

Groove [35, 72] is a groupware application for creating “shared spaces” that can
span organisational boundaries. Each member of the group maintains a copy of the
shared space’s state, and encrypted updates are transmitted to other members when
the state changes. It is not necessary to maintain connections between every pair of
members, and indeed firewalls may make this impossible; members who are unable
to communicate directly can exchange messages through dedicated relays. Changes
to the shared space can be made while members are offline and synchronised when
they reconnect.

Two kinds of shared space can be created. In a mutually trusting space, all
changes to the state are authenticated using a single key. This makes it possible
for members to spoof updates from other members. In a mutually suspicious space,
an authentication key is generated for each pair of members, preventing spoofing
but increasing the size of update messages.

Members can only join groups by invitation. The inviter is responsible for com-
municating the new member’s encryption and authentication keys to the group, so
messages from new members can be spoofed by their inviters, even in mutually
suspicious spaces. Any member can evict any other member from a group, which
is done by creating a new group key and transmitting it to all members except the
evicted member.

N2N [20] is a group-based virtual private network (VPN) that uses relay nodes
for address discovery and middlebox traversal.

Shinkuro [66] and PowerFolder [56] support group-based file sharing on local
area networks; wide area connections are also possible if at least one member of the
group acts as a relay. Each group is associated with a shared directory, and changes
are synchronised automatically.

Direct Connect [18, 50] requires one member of each group to run a server, which
is used for address discovery, keyword searches and chat.

Octopod [51] avoids the need for central servers by using OpenDHT [60], a pub-
lic distributed hash table, for address discovery. Each group is associated with a
shared directory, and the group owner can grant other users read-only or read-write
access by sending them the appropriate keys.

WASTE [23, 74] is a group-based network created by Justin Frankel, the author
of Gnutella. Like Gnutella it supports flooded queries and reverse path forwarded
replies; these are used to implement keyword searches, file sharing and chat. Nodes
can relay one another’s messages if all-to-all connectivity is not possible. Links are
encrypted and optionally padded to a constant traffic level, but there is no end-to-end

Private Peer-to-Peer Networks 817

encryption or authentication, so users can eavesdrop on one another and spoof mes-
sages. There are no group keys, so it is hard to evict users from groups.

Phex [52, 53] is a Gnutella implementation that supports the creation of private
networks.

3.2 Friend-to-Friend Networks

Turtle [48, 54] is a friend-to-friend file sharing network designed for censorship
resistance. Searches are flooded through the network, search results are forwarded
back along the reverse path, and virtual circuits can be established for anonymous
file transfer. The virtual circuit architecture is also capable of supporting other ap-
plications, including real-time communication.

Turtle uses a novel key agreement protocol in which friends exchange personal
questions, the answers to which are assumed to be known to both users but not to
eavesdroppers. This avoids the need for out-of-band key exchange, but the strength
of the resulting keys will depend on the extent of the eavesdropper’s knowledge
about the users.

Freenet is a distributed cache where files can be published and retrieved anony-
mously. Early versions of the software depended on nodes learning addresses from
successful queries [14], but Freenet 0.7 uses a new routing algorithm that does not
require connections between untrusted nodes [13].

The new algorithm implements a distributed hash table where efficient routing is
achieved by changing the nodes’ locations in the key space rather than by changing
the topology: each node starts at a random location in the key space and uses a
stochastic algorithm to swap locations with other nodes until the network converges
on a suitable arrangement for efficient routing [63]. Files are stored in the distributed
hash table, allowing publishers and readers to remain anonymous.

Freenet stores two kinds of data: content hash keys (CHKs), which are blocks of
data identified by their cryptographic hashes, and signed subspace keys (SSKs),
which are blocks of data signed with a private key and identified by the hash
of the corresponding public key. SSKs can be updated by anyone who knows
the private key and retrieved by anyone who knows the public key, which makes
it possible to implement a wide range of services over Freenet, including web
browsing, message boards and email. An SSK keypair can be derived from a
keyword, in which case anyone who knows the keyword can retrieve and update
the SSK.

Like Freenet, GNUnet [6] can be configured to connect only to trusted nodes.
GNUnet provides content-based and updatable keys and supports keyword searches
[36]. Queries are routed using randomised flooding, which might seem to reveal
less information about users than Freenet’s social network-based routing. However,
Kugler [41] describes a statistical attack that makes it possible, given a long series
of related requests, to determine whether the requests are likely to have originated at
a neighbouring node or to have been forwarded on behalf of another node. Similar

818 Michael Rogers and Saleem Bhatti

attacks might be possible against Freenet even though its routing algorithm is deter-
ministic, because related requests are routed independently [75].

SockeToome [68] enables friend-to-friend file transfers between users with dy-
namic network addresses, but it is arguably not a peer-to-peer network since no
overlay is constructed. Gazzera [32] and Hybrid Share [39] use manually config-
ured connections for friend-to-friend file sharing.

In anoNet [4], virtual private network (VPN) tunnels between friends are con-
nected to form an encrypted overlay. The overlay uses standard internet protocols
such as BGP, and even has an internal DNS hierarchy. A reserved network prefix
is used to avoid accidentally routing packets between the overlay and the public
internet.

Easter [22] uses email as a substrate for friend-to-friend file sharing. This makes
it possible to circumvent many firewalls, but the protocol requires frequent polling
of email accounts, which might attract the attention of system administrators.

CSpace [16] is a general-purpose friend-to-friend connection service based on
a distributed hash table. The connections established by CSpace can be used for
any application: file sharing, screen sharing and chat have been implemented so far.
Participants in the distributed hash table can observe who connects to whom, which
may have implications for privacy.

The Retroshare [59] instant messaging and file sharing network also uses a DHT
for address discovery. Users can communicate indirectly through mutual friends,
which may allow them to build up trust in one another before requesting direct con-
nections. Galet [31] and Cryptic6 [15] allow friends-of-friends to communicate in
a similar way, but they do not use distributed hash tables or relay servers for ad-
dress discovery, so addresses and encryption keys must be exchanged out-of-band
or through mutually trusted friends. Alliance [3] optionally creates direct connec-
tions between friends-of-friends, which may help with address discovery, churn and
middlebox traversal. Users lose some privacy by revealing their network addresses
to friends-of-friends, but this may be preferable to using a third-party lookup service
operated by strangers.

Tsnecv [28] is a file sharing system for local area networks in which users may
assign different access levels to friends, friends-of-friends and strangers.

3.3 Other Networks

Aimster [2] was the first peer-to-peer system to enable private file sharing between
friends. Because of its reliance on centralised public servers, it was quickly shut
down [24].

GigaTribe [33] uses a public server to coordinate group-based file sharing and
chat, with an optional commercial relay service for users who are unable to connect
directly.

Sneakernet [67] uses small data-carrying devices such as mobile phones and
memory sticks to pass information between friends. A gossip-based protocol allows

Private Peer-to-Peer Networks 819

encrypted messages to travel over multiple hops between a trusted public server and
anonymous users.

Many other systems use websites or other public servers to coordinate peer-to-
peer communication between friends or in private groups, and recently some cen-
tralised instant messaging networks have also begun to support peer-to-peer voice
and video connections. We consider such systems to be outside the scope of this
chapter, however, because of their reliance on public servers.

4 Architecture

The private peer-to-peer networks described in the previous section can be classi-
fied architecturally along four axes: scale, visibility, centralisation, and application
support. Table 1 summarizes existing research works based on these axes.

1. Scale – does the system consist of isolated local networks or a single global
network?

The issue of scale raises difficult technical and social tradeoffs. Large private
networks are likely to face many of the same connectivity challenges as public peer-
to-peer networks, including heterogeneity and churn. Because of their size, they are
also more likely to attract the attention of eavesdroppers and attackers. Users may
feel less of an obligation to contribute to strangers than friends, so free riding may
also be an issue for large networks. On the other hand, the wider range of people
and resources can make large networks more attractive to potential users [45].

Deployed systems deal with these tradeoffs in a variety of ways. At one end of
the axis is WASTE, which is designed for small groups of mutually trusting users;
users can belong to more than one network, but traffic does not pass between net-
works. The group size is limited in practice by the protocol’s use of flooding and
the difficulty of evicting misbehaving users, which encourages users to be cautious
about giving invitations.

At the other end of the axis is Freenet 0.7, which is designed to be a “globally
scalable darknet” [12]. Freenet’s routing algorithm is based on the assumption that
all users belong to a single small-world social network, and it may not be possi-
ble to merge mature networks without seriously disrupting routing. It is difficult to
grow a global network from a single seed, however: not all potential users know
a user of the main network, so recent versions of the software optionally create
connections between strangers in addition to manually configured friend-to-friend
connections [64].

GNUnet and Turtle take an intermediate approach: messages can be forwarded
anonymously across the friend-to-friend overlay, and local networks created by
small groups of users can be merged by establishing friend-to-friend connections
between them. However, GNUnet and Turtle both rely on flooding, which does not
perform well in large networks; thus even in a merged network, communication

820 Michael Rogers and Saleem Bhatti

may effectively be confined to local regions of the overlay. Indirect communication
in Galet, Cryptic6 and Alliance is explicitly local: friends-of-friends can communi-
cate pseudonymously, which may allow users to build up trust in new friends before
connecting to them directly.

The ability to merge mature networks could be important for the growth of private
peer-to-peer systems, because it may be easier for a potential user to find friends who
are interested in setting up a local network than to contact and befriend a member
of an existing network.

2. Visibility – can users connect to everyone in the network, or only to their
friends? Who else can see that they are participating?

The issue of visibility separates group-based networks from friend-to-friend net-
works. This distinction becomes more important as networks grow, because any
user may invite a friend who does not know all the other users. In a group-based
network, the newly invited user will be able to connect to any existing user; thus
group-based networks become less private as they grow, whereas friend-to-friend
networks can (at least in theory) remain private at any scale. Indirect pseudonymous
communication through mutual friends represents an intermediate position between
group-based and strictly friend-to-friend visibility.

Group-based networks could be vulnerable to Sybil attacks [21], where an
attacker uses multiple identities simultaneously, and whitewashing [30], where an
attacker changes identities to escape the consequences of past misbehaviour. For ex-
ample, it is easy to imagine an attacker automatically “inviting” new identities into a
group more quickly than the other users can manually evict them. Such attacks can
be prevented by requiring a certain fraction of existing members to approve each
invitation [57], but this approach does not scale to large groups where not all users
know one another.

Friend-to-friend connections are not a panacea for identity-related attacks, but
they guarantee that every identity within a local scope belongs to a different indi-
vidual, which prevents whitewashing; it might also be possible to use the structure
of social networks to limit the impact of Sybil attacks (see Section 5).

Regardless of whether the network is group-based or friend-to-friend, users may
need to make additional connections to discover one another’s addresses. Some net-
works use public distributed hash tables for address discovery, while others use
external servers for NAT and firewall traversal [27, 38, 62]. Unfortunately, involv-
ing third parties in communication can have implications for autonomy and pri-
vacy: if participants in a public DHT or the operators of a public server can iden-
tify the users of a private network, and perhaps even observe which users con-
nect to which others, many of the benefits of using a private network will have
been lost.

It may be possible to avoid relying on external lookup services if some mem-
bers of the network have reliable nodes with stable network addresses. In a group-
based network, only one member of the group needs a stable address, but in
friend-to-friend network, every user needs at least one friend with a stable address.

Private Peer-to-Peer Networks 821

Table 1 The architecture of deployed private peer-to-peer networks

Name Scale Visibility Centralisation Application support

Direct Connect Local Group Central server File sharing, chat
N2N Local Group Dedicated relays VPN
Groove Local Group Dedicated relays Shared workspace
PowerFolder Local Group Members may run relays Shared workspace
Shinkuro Local Group Members may run relays Shared workspace
WASTE Local Group Members may run relays File sharing, chat
Phex Local Group Members may run relays File sharing
Easter Local Friends Email servers File sharing
Gazzera Local Friends Decentralised File sharing
Hybrid Share Local Friends Decentralised File sharing
Tsnecv Local Configurable Decentralised File sharing
Alliance Flexible Friends-of-friends Decentralised File sharing, chat
Cryptic6 Flexible Friends-of-friends Decentralised File sharing, chat
Galet Flexible Friends-of-friends Decentralised File sharing, chat
Turtle Flexible Friends Decentralised Virtual circuits
GNUnet Flexible Friends Decentralised Distributed cache
Freenet 0.7 Global Friends Decentralised Distributed cache
anoNet Global Friends Decentralised VPN
CSpace Global Friends, DHT Decentralised (DHT) Virtual circuits
Retroshare Global Friends-of-friends, DHT Decentralised (DHT) File sharing, chat
Octopod Global Group, DHT Decentralised (DHT) File sharing

Connections between friends-of-friends may help to mitigate this problem by giving
each node a larger set of neighbours.

If a user cannot contact any previously known nodes when reconnecting to the
network, it may be necessary to exchange updated addresses with a friend out-of-
band, so the use of external address discovery services involves a tradeoff between
privacy and ease of use.

3. Centralisation – Does the Network Rely on a Central Server?

A number of public peer-to-peer networks have been shut down by attacking
their central servers [24], leading to the perception that centralised designs are frag-
ile and should be avoided. However, the risks may be different in private networks,
where servers can be more or less hidden from untrusted parties. Centralisation
can make it easier to manage identities, exchange cryptographic keys, and learn
the current addresses of other users, provided all users trust the operator of the
server.

Direct Connect requires a central server or “hub” for every group. Many other
group-based networks can operate without servers if all users are on the same lo-
cal area network, but require at least one member to act as a relay for wide area
communication. Groove and N2N use dedicated relays that can see who is com-
municating but cannot decrypt the messages they forward. Easter relies on email

822 Michael Rogers and Saleem Bhatti

servers, which are decentralised but may not be controlled by users of the net-
work. Most other friend-to-friend systems rely on manual port forwarding or hole
punching to traverse NATs and firewalls [27, 38, 62]. Friend-to-friend connections
can be lost if both friends change their addresses at the same time, and it may be
necessary to exchange updated addresses through an alternative channel such as
email.

Octopod, Retroshare and CSpace use distributed hash tables for address discov-
ery, which may allow untrusted parties to observe which users connect to which
others. Freenet avoids this problem because its DHT implementation only uses ex-
isting friend-to-friend connections; users can publish their encrypted contact details
under updatable keys for their friends to retrieve anonymously.

4. Application support – what functionality does the network provide?

The systems described in Section 3 are designed for a wide range of purposes,
from business collaboration to resisting censorship. Some focus on supporting a
specific use case, while others aim to provide a general-purpose communication
layer.

N2N and anoNet are the most flexible systems, creating virtual private networks
that can be used by a wide range of existing software. Turtle and CSpace provide
general-purpose virtual circuits, but existing applications cannot use them without
modification. Similarly, Freenet and GNUnet provide general-purpose anonymous
storage layers, but they cannot be used transparently by standard software.

Groove, PowerFolder and Shinkuro create shared workspaces with automatic
synchronisation, which is useful for collaborative projects but may not be ideal for
sharing large collections of files. Groove is also integrated with the Microsoft Office
suite, enabling other applications to make use of its private connections.

Most private peer-to-peer networks simply provide a graphical user interface for
file sharing and chat and do not attempt to integrate with other applications.

The disadvantage of restricting a private network to a single application is that
users must go to the trouble of constructing a new overlay whenever they wish to
use a new application; general-purpose networks avoid this duplication of effort. On
the other hand, by blurring the line between local and wide area networks, and by
supporting existing applications that may not have been designed with security in
mind, general-purpose networks may inadvertently undermine their users’ security
or privacy.

5 Related Research

In a seminal paper that predates most of the systems described in this chap-
ter, Biddle et al. [7] predict that as public peer-to-peer networks come under at-
tack from copyright holders, users will turn to sharing content with their friends
through “the darknet” – not a single global network, but rather a patchwork of

Private Peer-to-Peer Networks 823

local networks, technologically isolated but interconnected through their users.
“In light of strong cryptography,” Biddle et al. argue, “it is hard to imagine how
sharing could be observed and prosecuted as long as users do not share with
strangers.”

Pouwelse et al. [55] identify five research challenges for peer-to-peer systems:
decentralising functionality; maintaining availability in the face of churn; ensur-
ing the integrity of data and metadata; creating incentives to contribute resources;
and achieving network transparency across middleboxes. They suggest that all
five challenges can be addressed by encouraging users to form cooperative social
groups.

A number of researchers have proposed using explicit or implicit informa-
tion about the social connections between users to improve the robustness of
peer-to-peer networks [17, 42, 47]. SybilGuard [77] and SybilLimit [76] use the
structure of social networks to limit the impact of Sybil attacks on open sys-
tems.

Figueiredo et al. [26] describe how to establish VPN connections between users
of social networking websites to create “social VPNs”; the websites act as trusted
third parties for key exchange. Nagaraja [49] proposes an anonymous communica-
tion system that uses a social networking website for key distribution.

Strufe and Reschke [69] describe a peer-to-peer overlay that stores group infor-
mation as well as file information, so users can create authenticated groups for file
sharing and instant messaging. Each group has a single owner who is responsible
for adding and removing members.

These systems are not private peer-to-peer networks according to the definition
used in this chapter, but they demonstrate some of the advantages of incorporat-
ing the social relationships between users into the design of communication net-
works.

6 Conclusions

This chapter has provided a brief survey of the emerging field of private peer-to-peer
networks, which attempt to combine the flexibility and autonomy of peer-to-peer
architectures with the confidentiality and authentication of traditional groupware.
Deployed systems can be classified along four architectural axes: scale, visibility,
centralisation, and application support. Each of these axes involves tradeoffs affect-
ing the robustness, scalability, privacy, and ease of use that the resulting systems can
provide.

Private peer-to-peer networks are already being used in fields as diverse as busi-
ness collaboration, file sharing, social networking, grassroots political activity and
censorship-resistant communication. Considering the varied and sometimes con-
flicting requirements raised by these applications, we do not expect that any single
network will be able to meet the needs of all users; instead we will continue to see
a range of architectures that are adapted to particular uses.

824 Michael Rogers and Saleem Bhatti

References

1. Adar, E., Huberman, B.: Free riding on Gnutella. First Monday 5(10) (2000). URL http://
firstmonday.org/issues/issue5_10/adar/

2. URL http://web.archive.org/web/20010801151157/aimster.com/. Aim-
ster website, archived August 2001, available from http://web.archive.org/web/
20010801151157/aimster.com/

3. URL http://www.alliancep2p.com/. Alliance website, http://www.
alliancep2p.com/

4. URL http://anonet.org/. AnoNet website, http://anonet.org/
5. Banerjee, A., Faloutsos, M., Bhuyan, L.: P2P: Is Big Brother watching you? Tech. Rep.

UCR-CS-2006-06201, Department of Computer Science and Engineering, University of Cal-
ifornia, Riverside (2006). URL http://www1.cs.ucr.edu/store/techreports/
UCR-CS-2006-06201.pdf

6. Bennett, K., Grothoff, C.: GAP - practical anonymous networking. In: Proceedings of the
3rd International Workshop on Privacy Enhancing Technologies (PET 2003), Dresden, Ger-
many, Lecture Notes in Computer Science, vol. 2760, pp. 141–160 (2003). URL http://
gnunet.org/download/aff.ps

7. Biddle, P., England, P., Peinado, M., Willman, B.: The darknet and the future of content protec-
tion. In: Proceedings of the 2nd International Workshop on Digital Rights Management (DRM
2002), Washington, DC, USA, Lecture Notes in Computer Science, vol. 2696, pp. 155–176
(2003). URL http://msl1.mit.edu/ESD10/docs/darknet5.pdf

8. Bricklin, D.: Friend-to-friend networks (2000). URL http://www.bricklin.com/
f2f.htm. Available from http://www.bricklin.com/f2f.htm

9. Bustamante, F., Qiao, Y.: Friendships that last: Peer lifespan and its role in P2P protocols. In:
8th International Workshop on Web Content Caching and Distribution, Hawthorne, NY, USA
(2003). URL http://2003.iwcw.org/papers/bustamante.pdf

10. Cederlöf, J.: Web of trust statistics and pathfinder. URL http://www.lysator.liu.
se/˜jc/wotsap/. Available from http://www.lysator.liu.se/˜jc/wotsap/

11. Christin, N., Weigend, A., Chuang, J.: Content availability, pollution and poisoning in file shar-
ing peer-to-peer networks. In: ACM Conference on Electronic Commerce, Vancouver, Canada
(2005). URL http://www.weigend.com/ChristinWeigendChuang2005.pdf

12. Clarke, I.: Project status update, and request for your help (2005). URL http://
archives.freenetproject.org/message/20050914.103042.4b8aac35.
en.html. Available from http://archives.freenetproject.org/message/
20050914.103042.4b8aac35.en.html

13. Clarke, I., Sandberg, O.: Routing in the dark: Scalable searches in dark P2P networks. In:
DefCon 13, Las Vegas, NV, USA (2005). URL http://www.math.chalmers.se/

˜ossa/defcon13/vegas1_print.pdf
14. Clarke, I., Sandberg, O., Wiley, B., Hong, T.: Freenet: A distributed anonymous informa-

tion storage and retrieval system. In: Proceedings of the International Workshop on Design
Issues in Anonymity and Unobservability, Berkeley, CA, USA, Lecture Notes in Computer
Science, vol. 2009, pp. 46–66 (2001). URL http://www.cl.cam.ac.uk/˜twh25/
academic/papers/icsi-revised.pdf

15. URL http://cryptic6.sourceforge.net/. Cryptic6 website, http://
cryptic6.sourceforge.net/

16. URL http://www.cspace.in/. CSpace website, http://www.cspace.in/
17. Danezis, G., Lesniewski-Laas, C., Kaashoek, M., Anderson, R.: Sybil-resistant DHT routing.

In: 10th European Symposium on Research in Computer Security (ESORICS 2005), Milan,
Italy (2005). URL http://www.cl.cam.ac.uk/users/gd216/sybildht.pdf

18. URL http://dcplusplus.sourceforge.net/. DC++ website, http://
dcplusplus.sourceforge.net/

Private Peer-to-Peer Networks 825

19. Deibert, R., Palfrey, J., Rohozinski, R., Zittrain, J. (eds.): Access Denied: The Practice and
Policy of Global Internet Filtering. MIT Press (2008)

20. Deri, L., Andrews, R.: N2N: A layer two peer-to-peer VPN. In: Proceedings of the 2nd Inter-
national Conference on Autonomous Infrastructure, Management and Security (AIMS 2008),
Bremen, Germany, Lecture Notes in Computer Science, vol. 5127, pp. 53–64 (2008). URL
http://luca.ntop.org/n2n.pdf

21. Douceur, J.: The Sybil attack. In: Proceedings of the 1st International Workshop on Peer-
to-Peer Systems (IPTPS ’02), Cambridge, MA, USA, Lecture Notes in Computer Science,
vol. 2429, pp. 251–260 (2002). URL http://www.cs.rice.edu/Conferences/
IPTPS02/101.pdf

22. URL http://easta.sourceforge.net/. Easter website, http://easta.
sourceforge.net/

23. Ek, M., Hultin, F., Lindblom, J.: WASTE peer-to-peer protocol (2005). URL http://
prdownloads.sourceforge.net/j-waste/waste_documentation-1.1.
pdf?download. Reverse-engineered protocol documentation, available from http://
prdownloads.sourceforge.net/j-waste/waste_documentation-1.1.
pdf?download

24. Electronic Frontier Foundation: RIAA v. the people: Four years later (2007). URL http://
w2.eff.org/IP/P2P/riaa_at_four.pdf. Available from http://w2.eff.
org/IP/P2P/riaa_at_four.pdf

25. Electronic Privacy Information Center, Privacy International: Privacy and Human Rights 2006:
An International Survey of Privacy Laws and Developments. Washington, DC: Electronic Pri-
vacy Information Center (2007). URL http://www.privacyinternational.org/
article.shtml?cmd[347]=x-347-559458

26. Figueiredo, R., Boykin, O., St. Juste, P., Wolinsky, D.: Social VPNs: Integrating overlay and
social networks for seamless P2P networking. In: Workshop on Collaborative Peer-to-Peer
Systems (COPS), Rome, Italy (2008). URL http://ast-deim.urv.cat/wwiki/
images/1/18/Socialvpn-cops08.pdf

27. Ford, B., Srisuresh, P., Kegel, D.: Peer-to-peer communication across network ad-
dress translators. In: USENIX Annual Technical Conference, Anaheim, CA, USA
(2005). URL http://www.usenix.org/events/usenix05/tech/general/
full_papers/ford/ford.pdf

28. Fredriksen, L.: Securing private peer-to-peer networks. Master’s thesis, University of
Tromsø(2007). URL http://www.ub.uit.no/munin/handle/10037/1197

29. Freedman, M., Morris, R.: Tarzan: A peer-to-peer anonymizing network layer. In: 9th ACM
Conference on Computer and Communications Security (CCS 2002), Washington, DC, USA
(2002). URL http://pdos.csail.mit.edu/tarzan/docs/tarzan-ccs02.
pdf

30. Friedman, E., Resnick, P.: The social cost of cheap pseudonyms. Journal of Economics
and Management Strategy 10(2), 173–199 (2001). URL http://www.si.umich.edu/

˜presnick/papers/identifiers/081199.pdf
31. URL http://galet.sourceforge.net/. Galet website, http://galet.

sourceforge.net/
32. URL http://www.lugato.net/gazzera/. Gazzera website, http://www.

lugato.net/gazzera/
33. URL http://www.gigatribe.com/. GigaTribe website, http://www.

gigatribe.com/
34. Gonze, L.: Friendnet (2002). URL http://www.oreillynet.com/pub/wlg/2428.

Available from http://www.oreillynet.com/pub/wlg/2428
35. URL http://www.groove.net/. Groove Networks website, http://www.

groove.net/
36. Grothoff, C., Grothoff, K., Horozov, T., Lindgren, J.: An encoding for censorship-resistant

sharing (2005). URL http://gnunet.org/download/ecrs.ps. GNUnet white pa-
per, available from http://gnunet.org/download/ecrs.ps

826 Michael Rogers and Saleem Bhatti

37. Guha, S., Daswani, N., Jain, R.: An experimental study of the Skype peer-to-peer VoIP sys-
tem. In: Proceedings of the 5th International Workshop on Peer-to-Peer Systems (IPTPS ’06),
Santa Barbara, CA, USA, pp. 1–6 (2006). URL http://saikat.guha.cc/pub/
iptps06-skype.pdf

38. Guha, S., Francis, P.: Characterization and measurement of TCP traversal through NATs and
firewalls. In: Internet Measurement Conference (IMC 2005), Berkeley, CA, USA (2005)

39. URL http://hybrid-share.sourceforge.net/. Hybrid Share website,
http://hybrid-share.sourceforge.net/

40. URL http://www.i2p2.de/. I2P website, http://www.i2p2.de/
41. Kugler, D.: An analysis of GNUnet and the implications for anonymous, censorship-resistant

networks. In: Proceedings of the 3rd International Workshop on Privacy Enhancing Tech-
nologies (PET 2003), Dresden, Germany, Lecture Notes in Computer Science, vol. 2760,
pp. 161–176 (2003). URL http://gnunet.org/papers/GNUnet_pet.pdf

42. Lesniewski-Laas, C.: A Sybil-proof one-hop DHT. In: 1st International Workshop on So-
cial Network Systems (SocialNets 2008), Glasgow, Scotland (2008). URL http://pdos.
csail.mit.edu/papers/sybil-dht-socialnets08.pdf

43. Li, J., Dabek, F.: F2F: Reliable storage in open networks. In: 5th International Workshop on
Peer-to-Peer Systems (IPTPS ’06), Santa Barbara, CA, USA (2006). URL http://pdos.
csail.mit.edu/˜jinyang/pub/iptps-f2f.pdf

44. Liang, J., Kumar, R., Xi, Y., Ross, K.: Pollution in P2P file sharing systems. In: IEEE
Infocom, Miami, FL, USA (2005). URL http://cis.poly.edu/˜ross/papers/
pollution.pdf

45. Liebowitz, S., Margolis, S.: Network externalities (effects). In: New Palgrave Dictionary of
Economics and the Law, MacMillan (1998). URL http://wwwpub.utdallas.edu/

˜liebowit/palgrave/network.html
46. Lua, E., Crowcroft, J., Pias, M., Sharma, R., Lim, S.: A survey and comparison of peer-to-peer

overlay network schemes. IEEE Communications Surveys and Tutorials 7(2) (2005). URL
http://www.cl.cam.ac.uk/users/ekl25/lua.pdf

47. Marti, S., Ganesan, P., Garcia-Molina, H.: SPROUT: P2P routing with social networks.
In: Proceedings of the 9th International Conference on Extending Database Technology
(EDBT 2004), Heraklion, Crete, Greece, Lecture Notes in Computer Science, vol. 3268,
pp. 425–435 (2004). URL http://home.comcast.net/˜sergiomarti/papers/
2004-5.pdf

48. Matějka, P.: Security in peer-to-peer networks. Master’s thesis, Department of Software En-
gineering, Charles University, Prague (2004). URL http://www.turtle4privacy.
org/documents/masterThesis.pdf

49. Nagaraja, S.: Anonymity in the wild: Mixes on unstructured networks. In: Proceed-
ings of the 7th Workshop on Privacy Enhancing Technologies (PET 2007), Ottawa,
Canada, pp. 254–272 (2007). URL http://www.cl.cam.ac.uk/˜sn275/papers/
unstructured-mixes.pdf

50. URL http://web.archive.org/web/20050627012020/www.neo-modus.
com/. NeoModus Direct Connect website, archived June 2005, available from http://
web.archive.org/web/20050627012020/www.neo-modus.com/

51. URL http://sysnet.ucsd.edu/octopod/. Octopod website, http://sysnet.
ucsd.edu/octopod/

52. URL http://www.phex.org/. Phex website, http://www.phex.org/
53. Phex wiki: Creating a private network. URL http://www.phex.org/wiki/index.

php/Creating_a_private_Network. Available from http://www.phex.org/
wiki/index.php/Creating_a_private_Network

54. Popescu, B., Crispo, B., Tanenbaum, A.: Safe and private data sharing with Turtle: Friends
team-up and beat the system. In: 12th International Workshop on Security Protocols,
Cambridge, UK (2004). URL http://www.cs.vu.nl/˜bpopescu/papers/sec_
prot04/sec_prot04.pdf

Private Peer-to-Peer Networks 827

55. Pouwelse, J., Garbacki, P., Wang, J., Bakker, A., Yang, J., Iosup, A., Epema, D., Reinders,
M., van Steen, M., Sips, H.: Tribler: A social-based peer-to-peer system. In: 5th Interna-
tional Workshop on Peer-to-Peer Systems (IPTPS ’06), Santa Barbara, CA, USA (2006). URL
http://iptps06.cs.ucsb.edu/papers/Pouw-Tribler06.pdf

56. URL http://www.powerfolder.com/. PowerFolder website, http://www.
powerfolder.com/

57. Quercia, D., Hailes, S., Capra, L.: TATA: Towards anonymous trusted authentication. In:
Proceedings of the 4th International Conference on Trust Management (iTrust 2006), Pisa,
Italy, pp. 313–323 (2006). URL http://www.cs.ucl.ac.uk/staff/D.Quercia/
publications/querciaTATA06.pdf

58. Rennhard, M., Plattner, B.: Practical anonymity for the masses with MorphMix. In: Proceed-
ings of the 8th International Financial Cryptography Conference (FC 2004), Key West, FL,
USA, Lecture Notes in Computer Science, vol. 3110, pp. 233–250 (2004). URL http://
www.tik.ee.ethz.ch/˜rennhard/publications/FC2004.pdf

59. URL http://retroshare.sourceforge.net/. Retroshare website, http://
retroshare.sourceforge.net/

60. Rhea, S., Godfrey, B., Karp, B., Kubiatowicz, J., Ratnasamy, S., Shenker, S., Stoica, I., Yu, H.:
OpenDHT: A public DHT service and its uses. In: SIGCOMM 2005, Philadelphia, PA, USA
(2005). URL http://berkeley.intel-research.net/sylvia/f230-rhea.
pdf

61. Risson, J., Moors, T.: Survey of research towards robust peer-to-peer networks: Search meth-
ods. Tech. Rep. UNSW-EE-P2P-1-1, University of New South Wales (2004). URL http://
uluru.ee.unsw.edu.au/˜john/tr-unsw-ee-p2p-1-1.pdf

62. Rosenberg, J., Weinberger, J., Huitema, C., Mahy, R.: RFC 3489: STUN - simple traversal
of user datagram protocol (UDP) through network address translators (NATs) (2003). URL
http://www.ietf.org/rfc/rfc3489.txt

63. Sandberg, O.: Distributed routing in small-world networks. In: 8th Workshop on Algorithm
Engineering and Experiments (ALENEX06), Miami, FL, USA (2006). URL http://www.
math.chalmers.se/˜ossa/swroute.pdf

64. Sandberg, O., Clarke, I.: The evolution of navigable small-world networks. Tech. Rep.
2007:14, Department of Computer Science and Engineering, Chalmers University of Tech-
nology (2007). URL http://www.math.chalmers.se/˜ossa/evolution.pdf

65. Saroiu, S., Gummadi, P.K., Gribble, S.: A measurement study of peer-to-peer file sharing
systems. In: Multimedia Computing and Networking (MMCN ’02) (2002). URL http://
www.cs.washington.edu/homes/gribble/papers/mmcn.pdf

66. URL http://shinkuro.com/. Shinkuro website, http://shinkuro.com/
67. URL http://code.google.com/p/sneakernet/. Sneakernet website, http://

code.google.com/p/sneakernet/
68. URL http://www.ziggy.speedhost.com/bdsock.html. SockeToome website,

http://www.ziggy.speedhost.com/bdsock.html
69. Strufe, T., Reschke, D.: Efficient content distribution in semi-decentralized peer-to-peer net-

works. In: Proceedings of the 8th International Netties Conference, Ilmenau, Germany,
pp. 33–38 (2002). URL http://eris.prakinf.tu-ilmenau.de/pub/papers/
strufe02efficient.pdf

70. Stutzbach, D., Rejaie, R.: Towards a better understanding of churn in peer-to-peer net-
works. Tech. Rep. UO-CIS-TR-04-06, Department of Computer Science, University of Ore-
gon (2004). URL http://www.barsoom.org/˜agthorr/papers/tr04-06.pdf

71. Svensson, P.: Comcast blocks some internet traffic. Associated Press (2007). URL http://
www.msnbc.msn.com/id/21376597/

72. Udell, J., Asthagiri, N., Tuvell, W.: Security. In: A. Oram (ed.) Peer-to-Peer: Harnessing the
Power of Disruptive Technologies, chap. 18. O’Reilly (2001). This chapter describes Groove.

73. Veiga, A.: Music labels tap downloading networks. Associated Press (2003). URL http://
www.usatoday.com/tech/webguide/music/2003-11-14-sharestats_x.
htm

828 Michael Rogers and Saleem Bhatti

74. URL http://waste.sourceforge.net/. WASTE website, http://waste.
sourceforge.net/

75. Wright, M., Adler, M., Levine, B., Shields, C.: An analysis of the degradation of anonymous
protocols. In: ISOC Symposium on Network and Distributed System Security, San Diego, CA,
USA (2002). URL http://www.freehaven.net/anonbib/cache/wright02.
pdf

76. Yu, H., Gibbons, P., Kaminsky, M., Xiao, F.: SybilLimit: A near-optimal social network de-
fense against Sybil attacks. In: IEEE Symposium on Security and Privacy, Oakland, CA, USA
(2008). URL http://www.comp.nus.edu.sg/˜yuhf/yuh-sybillimit.pdf

77. Yu, H., Kaminsky, M., Gibbons, P., Flaxman, A.: SybilGuard: Defending against Sybil attacks
via social networks. In: SIGCOMM 2006, Pisa, Italy (2006). URL http://sigcomm06.
stanford.edu/discussion/getpaper.php?paper_id=26

Part VII
Broadcast and Multicast Services

Gossip-Based Broadcast

João Leitão, José Pereira, and Luı́s Rodrigues

Abstract Gossip, or epidemic, protocols have emerged as a powerful strategy to
implement highly scalable and resilient reliable broadcast primitives on large scale
peer-to-peer networks. Epidemic protocols are scalable because they distribute the
load among all nodes in the system and resilient because they have an intrinsic level
of redundancy that masks node and network failures. This chapter provides an intro-
duction to gossip-based broadcast on large-scale unstructured peer-to-peer overlay
networks: it surveys the main results in the field, discusses techniques to build and
maintain the overlays that support efficient dissemination strategies, and provides an
in-depth discussion and experimental evaluation of two concrete protocols, named
HyParView and Plumtree.

1 Introduction

Many distributed systems benefit from the availability of a reliable broadcast ser-
vice. Informally, reliable broadcast ensures that all correct participants receive all
broadcast messages, even in the presence of network omissions or node failures.
Gossip protocols have emerged as a highly scalable and resilient approach to im-
plement reliable broadcast [1, 10, 14, 17]. In a typical gossip protocol, when a node
wants to broadcast a message, it selects t nodes from the system at random (t is a
configuration parameter called fanout) and sends the message to them; upon receiv-
ing a message for the first time, each node repeats this procedure [17].

João Leitão
INESC-ID / IST, Lisbon, Portugal, e-mail: jleitao@gsd.inesc-id.pt

José Pereira
University of Minho, Braga, Portugal, e-mail: jop@di.uminho.pt

Luı́s Rodrigues
INESC-ID / IST, Lisbon, Portugal, e-mail: ler@ist.utl.pt

X. Shen et al. (eds.), Handbook of Peer-to-Peer Networking, 831
DOI 10.1007/978-0-387-09751-0 29, © Springer Science+Business Media, LLC 2010

832 João Leitão, José Pereira, and Luı́s Rodrigues

Gossip protocols are interesting because they are highly resilient (they have an
intrinsic level of redundancy that allows them to mask node and network failures),
scalable (they distribute the load among all nodes in the system), and simple to
implement. In fact, gossip protocols have been proposed as a building block to
solve several other problems in distributed systems such as: consistency manage-
ment in replicated databases [6], failure detection [25], system monitoring [24], and
distributed publish-subscribe brokers [10].

Strictly speaking, in order to select a gossip peer at random among all system
nodes, each node would be required to know the entire system membership. Unfor-
tunately, this solution is not scalable, not only due to the large number of nodes
that may constitute the membership view, but also due to the cost of maintain-
ing the complete membership up-to-date in face of the typical dynamics of large-
scale systems. To overcome this problem, several gossip protocols rely on partial
views [8, 10, 20, 23] instead of full membership information. A partial view is a
small subset of the entire system membership. In each gossip step1 a node extracts
a random sample of peers as targets for gossip messages. The aim of a membership
service (also called a peer sampling service [15]) is to maintain these partial views in
such a way that a random selection of gossip peers from partial views approximates
the random selection from the full membership.

Unfortunately, if each node has only a partial view, the system becomes more
vulnerable to the effect of node failures. In particular, if a large number of nodes fail,
the partial view of a node may include only failed nodes, therefore the network may
become disconnected and several nodes may become isolated. Even if the network
remains connected, if failed nodes are select as targets for gossip, specially in early
gossip steps, the reliability of the gossip broadcast is severely disrupted. Also, the
membership service may take a long time to restore partial views, with a negative
impact on the reliability of all messages disseminated meanwhile. Thus, the quality
of partial views is of paramount importance for the operation of gossip protocols.

A disadvantage of gossip-based broadcast protocols is that they incur in an ex-
cessive message overhead in order to enforce high reliability. This is not the case
with structured broadcast protocols, such as the ones that rely on tree-construction
but, on the other hand, structured protocols are very fragile in the presence of fail-
ures, lacking the natural resilience of epidemic protocols. A promising approach is
to develop new broadcast primitives which combine gossip-based and tree-based
approaches; in such a way one can benefit from the scalability and resilience of pure
gossip-based and approximate the efficiency of the broadcast mechanism to that of
tree-based solutions.

In this chapter we start by describing gossip protocols and their relation with un-
structured overlay networks. We also discuss several strategies used in the develop-
ment of gossip protocols and the characteristics of the unstructured overlay networks
that are used to support those strategies. We then describe two recently proposed

1 We consider that a gossip step happens each time a node transmits (or retransmits) a broadcast
message to a set of peers.

Gossip-Based Broadcast 833

gossip-based protocols: a protocol to build an highly resilient unstructured overlay
network, called HyParView, and a broadcast protocol that approaches the efficiency
of structured tree-based protocols, called Plumtree. Experimental results show that
when combined, these protocols allows one to build a broadcast primitive which is
more resilient and more efficient than other gossip-based broadcast protocols.

2 Gossip-Based Broadcast

The basic idea behind gossip-based broadcast protocols is to have all participants in
the protocol collaborating equally to disseminate information. To this end, when a
node wishes to send a broadcast message, it selects t nodes at random – its gossip
targets – and sends the message to them (t is a typical configuration parameter
called fanout, which is detailed later in Section 2.1). Upon receiving a message for
the first time, a node repeats this process: by selecting t gossip targets at random and
forwarding the message to them.

If a node receives the same message twice – which is possible, as each node
selects its gossip targets in an independent way (without being aware of gossip tar-
gets selected by other nodes) – it simply discards the message. To allow this, each
node has to keep track of which messages it has already seen and delivered. The
history of message identifiers may grow indefinitely during the execution of the
protocol, unless some purging scheme is applied to garbage-collect obsolete entries.
The challenge of selecting an adequate strategy to purge message histories is out of
the scope of this chapter, and it has already been addressed by previous work, for
instance in [18].

The simple operation model of gossip protocols not only provides high scalability
but also a high level of fault tolerance, as its intrinsic redundancy is able to mask
network omissions and also node failures.

2.1 Parameters

Gossip protocols can be parameterized in order to better control their operation. The
two most relevant parameters associated with the configuration of gossip protocols
can be described as follows.

Fanout: This is the number of nodes that are selected as gossip targets by a node
at each gossip step in order to retransmit the message. There is a trade-off asso-
ciated with this parameter between desired reliability level and redundancy level
of the protocol. High fanout values ensure higher levels of fault tolerance level
(increasing the probability of reaching all nodes in the system, or in other words,
of atomic delivery as defined in [17]) but also generate more redundant network
traffic.

834 João Leitão, José Pereira, and Luı́s Rodrigues

Maximum rounds: This is the maximum number of times a given gossip message
is retransmitted by nodes. Each message is transmitted with a round value –
initially with a value of zero – which is increased each time a node retransmits
the message. Nodes will only retransmit a message if its round value is smaller
than the maximum rounds parameter. A gossip protocol can operate in one of the
two following modes:

• Unlimited mode: In this mode of operation the parameter maximum rounds
is undefined and there is no specific limit to the number of retransmissions
executed to each gossip message.

• Limited mode: In this mode of operation the parameter maximum rounds is set
to some integer value (higher than 0), effectively limiting the maximum hops
executed by each message in the overlay.2

The reader should notice that by limiting the number of maximum gossip rounds
one can also limit the maximum number of receivers. For instance, if the message
is forwarded by flooding, in order to reach the entire system the maximum number
of rounds must be set to a value equal or higher than the network diameter.

There is an inherent trade-off between reliability and redundancy level associated
with the use of maximum number of rounds attribute. In unlimited mode (or config-
uring the maximum rounds parameter with high values) there is a higher probability
of achieving atomic delivery but, on the other hand, more redundant messages are
produced.

2.2 Strategies

We distinguish the following three basic approaches to implement a gossip protocol.
These different strategies are distinguished by the way a message is disseminated to
neighbors, and who initiates the gossip exchange: receiver or the sender.

Eager push approach: Nodes send the full payload to random selected peers as
soon as they receive a message for the first time. This is an approach initiated by
the sender.

Pull approach: Periodically, nodes query random selected peers for information
about recently received or available messages. When they become aware of a
message they did not received yet, they explicitly request to that neighbor the
payload of that message. This is a strategy that works best as a complement to a
best-effort broadcast mechanism (i.e., IP Multicast [5]).

Lazy push approach: When a node receives a message for the first time, it gossips
only the message identifier (for instance, a hash of the message) and not the full
payload. If peers receive an identifier for a message they have not yet received,
they explicitly request the payload from the sender.

2 Neighboring relations between nodes form an overlay network, as it will be discussed in
Section 2.4.

Gossip-Based Broadcast 835

The reader should notice that there is a trade-off when selecting eager push, pull,
or lazy push strategies. Eager push strategies produce more redundant traffic but
they also achieve lower latency than the remaining strategies (that require at least an
extra round trip time to produce a delivery). From a latency perspective, lazy push
gossip is very similar to pull gossip.

Another important practical aspect to retain is that, contrary to pull/lazy push
gossip, eager push gossip is not required to maintain copies of delivered messages
for later retransmission upon request. Hence, pull/lazy push gossip approaches are
more demanding in terms of memory usage.

These basic strategies can also be combined to develop more complex gossip
strategies, that usually, try to benefit from the strong aspects of each individual strat-
egy. As the reader can guess, the number of possible combinations is very high, as
one can use different algorithms to switch from one strategy to the other. In the
following, we depict two of these hybrid strategies.

Eager push and pull approach: Gossip is executed in two distinct phases. A first
phase uses push gossip to disseminate a message in a best-effort manner to a
maximum of participants (in this phase, the configuration of the push gossip can
be somewhat conservative). A second phase of pull gossip is used to recover from
omissions that may occur in the first phase. The idea is to lower the amount of
redundancy of the gossip process, without decreasing its efficiency. However, the
use of pull gossip for recovery increases the global delivery latency.

Eager push and lazy push: Gossip is executed by applying eager push to a sub-set
of the gossip targets of each node. The selection of the sub-set of peers can be
made using several strategies (examples can be found in [2, 19]). Lazy push is
used in the remaining gossip targets to recover from omissions and ensure the
gossip properties.

2.3 Peer Sampling Service

A peer sampling service (as described in [15]) is a service that allows nodes
to know a sub-set of the full group of nodes executing the protocol. The in-
terface of this service is quite simple and may only export the following two
methods:

INIT(): This method initializes the service, if it has not been initialized before.
If node p returns from the INIT() call, there should be a non-zero probability of
other participating nodes getting p as a return value when calling the GETPEER()
method.

GETPEER(): This method returns the identifier of a participating node, as long as
there exists more than one node executing the service. In most cases, the returned
node should be selected at random across nodes that have called the init()
method, although the specific distribution (i.e., correlation with returned identi-
fiers from previous call of this method) is implementation dependent.

836 João Leitão, José Pereira, and Luı́s Rodrigues

The GETPEER() method is enough to support the operation of any gossip proto-
col – as a node can call repeatedly this method if it requires more than one peer –
however, in practice, this method can be redefined as:

GETPEER(n,veto): Where n is an integer greater than zero and veto is a node
identifier. This method returns a list with, at most, n identifiers of participating
nodes that does not contain the veto identifier nor the identifier of the invoking
node. This method should be called with n equal to the fanout used by the gossip
protocol and veto should be the identifier of the node who sent the message to
the invoking node.3

The semantics of GETPEER(n,veto) can be informally described as: Return a
sample of at most n peer identifiers in the system which does not contain the identi-
fier of either the invoking peer or the peer identified by veto (if veto is not null).

2.4 Partial View

A partial view is a set of node identifiers provided to each node. This set should
be much smaller than the full system membership. The size constraint is related
with scalability requirements. A viable strategy to promote scalability, if for the
partial view size to grow logarithmic with relation to the total number of processes
in the system. Typically, an identifier is a tuple (ip : port) that allows a node to be
reached. In some cases, such as in DHT’s, the identifier is a random bit string which
is used both to map the nodes in a specific position of the overlay and to support
routing [26, 29].

A membership protocol is in charge of initializing and maintaining the partial
views for each node in face of dynamic changes in the system membership. For
instance, when a new node joins the system, its identifier should be added to the
partial view of (some) other nodes. Furthermore, the new node has to build its own
partial view, including identifiers of peers already in the system. Also, if a node fails
or leaves the system, its identifier should be removed from all partial views as soon
as possible.

Partial views establish neighboring associations among nodes. Therefore, partial
views define an overlay network or, in other words, partial views establish an ori-
ented graph that captures the neighbor relation between all the nodes executing the
protocol. In this graph, nodes are represented by a vertex while a neighbor relation
is represented by an arc originating from the node that contains the target node in
his partial view.

The favored implementation of a peer sampling service is to use a membership
service that maintains a partial view of participating nodes at each node. The se-
lection of nodes to serve as gossip target is then performed locally using the partial
view.

3 When a node wishes to send a message by the first time, the veto argument takes the null value.

Gossip-Based Broadcast 837

2.5 Strategies to Maintain Partial Views

We identify two main strategies that can be employed to maintain partial views,
namely:

Reactive strategy: In this type of approach, a partial view is only updated in
response to some external event that affects the overlay (i.e., a node joining
or leaving the system). In stable conditions, partial views remains unaltered.
Scamp [12, 13] is an example of a reactive algorithm.4

Cyclic strategy: In this type of approach, a partial view is updated every ΔT time
units, as a result of some periodic process that usually involves the exchange
of information with one or more neighbors. Therefore, a partial view may be
updated even if the global system membership is stable. Cyclon (which is further
discussed in Section 2.8.1) is an example of a cyclic algorithm.

Reactive strategies usually rely on some failure detection mechanism to trigger
the update of partial views when a node fails. If the failure detection mechanism is
fast and accurate, reactive mechanisms can provide faster response to failures than
cyclic approaches. This approach is also more efficient as it avoids the communica-
tion overhead required by the cyclic strategy to update views.

On the other hand, a cyclic strategy allows each node to select a wide range of
distinct nodes as gossip targets for different messages even in stable conditions, as
the elements of each partial view are continually changing, making this strategy
more close, in nature, to the original intuition of gossip protocols.

2.6 Partial View Properties

In order to be useful, namely to support fast message dissemination and high level of
fault tolerance to node failures, partial views must own a number of important prop-
erties. These properties, that can be used to measure the quality of partial views, are
intrinsically related with graph properties of the overlay they define. Some relevant
properties are:

Connectivity: The overlay defined by the partial views should be connected. To
consider an overlay as connected, there should be at least one path from each
node to all other nodes.5 If this property is not met, isolated nodes will not be
able to receive or send broadcast messages.

Degree Distribution: In an undirected graph, the degree of a node is simply the
number of edges of the node. Given that partial views define a directed graph, it
is importantto distinguish in-degree from out-degree of a node. The in-degree of

4 To be precise, Scamp is not purely reactive as it includes a lease mechanism that forces nodes to
rejoin periodically.
5 Obviously, if the graph is directed, the path between nodes have to respect the direction of arcs.

838 João Leitão, José Pereira, and Luı́s Rodrigues

a node n is the number of nodes that have n’s identifier in their partial view; it
provides a measure of the reachability of a node in the overlay and also affects the
probability and the maximum amount of redundant messages that n can receive.
The out-degree of a node n is the number of nodes in n’s partial view; it is a
measure of the node contribution to the membership protocol and consequently
a measure of the importance of that node to maintain the overlay.
If the probability of failure is uniformly distributed in the node space, for im-
proved fault-tolerance both the in-degree and out-degree should be evenly dis-
tributed across all nodes executing the membership protocol.

Average Path Length: A path between two nodes in the overlay is the set of edges
that a message has to cross from one node to the other. The average path length
is the average of all shortest paths between all pair of nodes in the overlay. This
property is closely related to the overlay diameter. To ensure the efficiency of the
overlay for information dissemination, it is essential to enforce low values of the
average path length, as this value is related to the time (and number of hops in the
overlay) a message will require to reach all nodes. As the reader could expect,
the average path length is affected by the clustering coefficient. A high clustering
coefficient will increase the average path length.6

Clustering Coefficient: The clustering coefficient of a node is the number of edges
between that node’s neighbors divided by the maximum possible number of
edges across those neighbors. This metric indicates a density of neighbor rela-
tions across the neighbors of a given node, having it’s value between 0 and 1. The
clustering coefficient of a graph is the average of clustering coefficients across
all nodes. This property has a high impact on the number of redundant mes-
sages received by nodes when disseminating data, where a high value to cluster-
ing coefficient will produce more redundant messages. It also has an impact in
the fault-tolerant properties of the graph, given that areas of the graph that ex-
hibit high values of clustering will more easily be isolated from the rest of the
graph.

Accuracy: Accuracy of a node is defined as the number of neighbors of that
node that have not failed divided by the total number of neighbors of that node.
The accuracy of a graph is the average of the accuracy of all correct nodes.
Accuracy has high impact in the overall reliability of any dissemination pro-
tocol using an underlying membership protocol to select its gossip targets. If
the graph accuracy values are low, the number of failed nodes selected as gos-
sip targets will be higher, which in turn, can disrupt the gossip process. To
avoid this, higher fanout values must be used to mask the selection of failed
nodes.

6 The reader should notice that this property is only meaningful if the property of connectivity is
met. If the overlay is not connected then at least one node in unreachable which translates into a
infinite shortest path between all other nodes and that node.

Gossip-Based Broadcast 839

2.7 Performance Metrics

We now introduce three metrics that we will use to evaluate the performance of
gossip-based broadcast protocols.

Reliability: Reliability is defined as the percentage of active nodes in a system
which delivers a given broadcast message. A reliability value of 100% is indica-
tive that the broadcast protocol was successful in delivering a given message
to all active nodes or, in other words, that the broadcast process resulted in an
atomic broadcast as defined in [17].
As the reader should expect, the goal of a gossip-based broadcast protocol is to
obtain a reliability of 100% despite network omissions or node failures.

Relative Message Redundancy (RMR): The relative message redundancy, or sim-
ply RMR, is a metric that captures the message overhead in a gossip-based broad-
cast protocol [19]. It is defined as:

(
m

n−1

)
−1

where m is the total number of payload messages exchanged during the broad-
cast process and n is the total number of nodes that delivers the broadcasted mes-
sage. This metric is only applicable when at least 2 nodes are able to deliver the
message.
A RMR value of zero means that there is exactly one payload message exchanged
for each node in the system, which is clearly the optimal value. By opposition,
high values of RMR are indicative of a broadcast strategy that shows a poor net-
work usage. Note that it is possible to achieve a very low RMR by failing to be
reliable. Therefore, a broadcast protocol should aim to combine low RMR val-
ues with high reliability values. Furthermore, RMR values are only comparable
for protocols that exhibit similar reliability. Finally, note that in pure gossip ap-
proaches, RMR is closely related with the protocol fanout, as the value of this
tends to fanout−1.
Control messages are not considered by this metric. The reason behind this deci-
sion is twofold: first, control messages are typically much smaller than payload
messages and thus, they are not the main source of contribution to the exhaus-
tion of network resources; secondly, control messages can usually be sent using
delay and piggyback strategies, providing a better usage of the available network
resources.

Last Delivery Hop (LDH): The last delivery hop, or simply LDH, is a metric
which measures the round number of the last message which is delivered by
a gossip-based broadcast protocol or, in other words, it measures the maxi-
mum number of hops performed by a message successfully delivered. Natur-
ally, a gossip-based broadcast protocol should aim at minimizing this
metric.
This metric in intuitively related with the diameter of the overlay network used to
disseminate messages. Moreover, it can also provide some comparative measure

840 João Leitão, José Pereira, and Luı́s Rodrigues

relatively to the latency of a gossip-based broadcast protocol. When all links ex-
hibit the same latency, the latency of a gossip broadcast is simply the last deliver
hop multiplied by the per hop latency.

2.8 An Overview of Existing Protocols

Several gossip-based protocols have been proposed in the literature. In this section
we describe some of these works, addressing three different types of protocols. We
start with gossip based membership protocols, that build and maintain unstructured
overlay network, which serve as substrate for the operation of gossip-based broad-
cast protocols. We then present a few gossip-based broadcast protocols.

We conclude by surveying application level multicast protocols that rely in some
sort of tree-like structure to support data dissemination. Some of these protocols are
not gossip-based broadcast schemes. However, they rely in peer-to-peer structured
multicast solutions, being a complementary approach to gossip-based broadcast pro-
tocols.

2.8.1 Gossip-Based Membership Protocols

Scamp

Scamp [12, 13], is a reactive membership protocol that maintains two separate
views, a PartialView from which nodes select their gossip targets, and a InView
with nodes from which they receive gossip messages. One interesting aspect of this
protocol is that the PartialView does not have a fixed size; it grows to values that are
distributed around logn, where n is the total number of nodes executing the protocol,
without n being known by any node.

When a new node wishes to join the overlay, it has to know a node that already
belongs to the overlay, to which it sends a new subscription request. Upon receiving
this request, a node forwards it to all neighbors that belong to its PartialView in
the form of a forwarded subscription request; it also creates c additional copies
of this forwarded subscription request that are forwarded to c random neighbors
from the PartialView; c is a configuration parameter that is related with the level of
fault tolerance supported by this protocol, as it will affect the global distribution of
degree (in-degree and out-degree) values across the overlay. Higher values of c will
produce overlays in which nodes have, on average, higher degrees. In turn, this will
also impact network usage, as well as other graph properties.

Upon receiving a forwarded subscription request a node integrates the new mem-
ber in its local PartialView (if the node is not already present) with a probability p,
where p is equal to 1/(1 + sizeo f (PartialView)). If the node does not integrate the
new member, itforwards the request to a random neighbor in his own PartialView.

Gossip-Based Broadcast 841

To avoid these messages to be forwarded an infinite number of times, which is more
probable when the number of nodes in the overlay is small, there is an upper limit
to the number of times a node can forward the same message. When this limit is
reached, the message is simply dropped.

The InView is used when a node wishes to leave the overlay. An unsubscribing
node, say nu, will send to some of its peers7 in the InView a replace request contain-
ing an element from its PartialView, say np. The node that receives this request will
replace in its Partial View the identifier of nu with the received identifier np. To the
remaining nodes in its InView, nu will simply send a request asking them to remove
its own identifier from their PartialView.

In order to recover from node isolation, this algorithm uses a mechanism in which
nodes periodically send heartbeat messages to all members of their PartialView. If
a node does not receive a heartbeat for a long time, it assumes that it has become
isolated, and it sends a new subscription request to a random node in his own Par-
tialView in order to rejoin the overlay.

When a node fails (i.e., leaves the system without executing the un-subscription
procedure), its identifier will remain in the PartialViews of some correct nodes,
which means that it can still be selected by those nodes as a gossip target. In order to
(eventually) purge these identifiers from the PartialViews of correct nodes, Scamp
relies in a lease mechanism. When a node joins the overlay, its subscription has a
finite lifetime which is called its lease time. When the lease of a node subscription
expires, all peers containing that node identifier in their PartialView should delete
it. Each node is responsible to rejoin the overlay through a new subscription request
sent to a random peer in its PartialView before the expiration of the lease time of its
last subscription. The lease time of each subscription might be set individually by
each node (sending information relative to it in the new subscription request), or be
enforced through a global configuration parameter that affects all nodes.

Cyclon

Cyclon, is a cyclic membership protocol where nodes maintain a fixed length partial
view. The size of the partial view is a protocol parameter: it takes into account the
maximum number of nodes that are expected to participate in the protocol and the
desired level of fault-tolerance.

This protocol relies in a shuffle operation which is executed every ΔT time units
by every node. Basically, to execute a shuffle operation, a node selects the “oldest”
node in its partial view and performs an exchange with that node. In the exchange,
the node provides to its peer a sample of its partial view and, symmetrically, collects
a sample of its peer’s partial view.

7 The number of peers who receive a replace request is sizeo f (InView)− c this is related with the
overlay desired average degree.

842 João Leitão, José Pereira, and Luı́s Rodrigues

2.8.2 Gossip-Based Broadcast Protocols

Bimodal Multicast

Bimodal multicast [1] was one of the pioneer works to combine tree-based best-
effort multicast and gossip-based primitives to build reliable multicast in large scale
distributed systems. The approach works as follows: in a first phase, broadcast mes-
sages are disseminated using the unreliable IP-Multicast [5] primitive; in a sec-
ond phase, participants engage in gossip exchanges in order to mask omissions
that may occur during the first phase. In the second phase, nodes periodically se-
lect a peer with whom they exchange a summary of (recently) received messages
unique identifiers. After this exchange, nodes explicitly request messages that
they miss.

This approach has two major drawbacks. One is that it depends on the availabil-
ity of IP-multicast, which is not widely deployed in large-scale [9]. To overcome
this limitation one could envision to replace IP-multicast by some application-level
multicast protocol. Still, a second drawback persists: the approach requires the
use of two distinct protocols and therefore, it may present undesired complexity.
Moreover, the existence of two distinct protocols may limit the application of op-
timizations that are only possible if both phases are integrated in a single protocol.
Due to these drawbacks, more recent work has favored the use of pure gossip app-
roaches [12, 28].

NeEM

NeEM, or Network Friendly Epidemic Multicast [22], is a gossip protocol that relies
on the use of TCP to disseminate information across a gossip-based overlay. In
NeEM, the use of TCP aims at eliminating correlated message losses due to network
congestion. The authors show that improved gossip reliability can be achieved by
leveraging on the flow control mechanisms of TCP.

NeEM controls buffer management directly, by disabling TCP buffers, and ap-
plies several purging strategies to discard messages when overflow occurs. This en-
ables the gossip protocol to preserve throughput stability, even when the network
became congested and also avoids inter-blocking of nodes, due to exhaustion of
TCP reception buffers.

NeEM uses its own (partial view) membership service, which is gossip-based.
The membership construction and maintenance is based on random walks in the
overlay, with a probabilistically length dependent on a protocol configuration pa-
rameter p whose value is fixed a priori. Random walks are used both when a
node joins the overlay and in a cyclic manner, to advertise neighbors to random
nodes. Nodes which receive these advertisements, will integrate received peers
identifiers in their own partial views, replacing random peers if their views are
full.

Gossip-Based Broadcast 843

CREW

CREW [8] is a gossip protocol for flash dissemination, i.e., fast simultaneous down-
load of files by a large number of destinations using a combination of pull and
push gossip. It uses TCP connections to implicitly estimate available bandwidth
thus optimizing the fanout of the epidemic dissemination process. The emphasis
of CREW is on optimizing latency, mainly by improving concurrent pulling from
multiple sources. A key feature is to maintain a cache of open connections to peers
discovered using a random walk protocol, to avoid the latency of opening a TCP
connection when a new peer is required by the protocol operation.

CREW uses an underlying membership service, also based on partial views,
called Bounce. Bounce is briefly presented in [7] where the authors claim, based
on experimental results, that the use of the overlay produced by Bounce is equiv-
alent to the selection of nodes uniformly at random, from all nodes in the system.
Bounce relies in random walks to establish neighbor relations between nodes. Ran-
dom walks are probabilistically terminated according to a certain probability p that
depends on the degree of the receiving node, a random factor and finally, to avoid
infinite sizes random walks in the overlay, the length of the actual random walk.

2.8.3 Structured Application-Level Multicast

Narada

Narada [4] is an efficient application-level multicast protocol based on dissemina-
tion trees that are constructed in two distinct steps. In the first step, the protocol
creates and maintains a random and rich connected overlay (that the authors name
mesh) which attempts to ensure that: (i) the quality of paths between any two nodes
in the overlay is comparable to the quality of the unicast path between the same
pair of nodes8 and; (ii) each node has a limited number of neighbors. The overlay is
self-organizing and self-improving, adapting itself to changing network conditions
to preserve efficiency, by using a set of heuristics that add or remove links among
nodes.

In a second step, the overlay is used to create several multicast trees rooted at
each source. To this end, a distance vector algorithm is run on top of the overlay.
Nodes that wish to join a multicast group explicitly select their parents among their
neighbors, using information from the routing algorithm.

Narada is targeted toward medium sized groups; all nodes maintain full mem-
bership lists and some additional control information for all other nodes, and con-
sequently it does not scale to very large (and dynamic) systems. Also, the normal
dynamics of the algorithm may partition the overlay affecting the global reliability
of the system (until the protocol is able to repair the overlay).

8 In this context, quality refers to application dependent metrics such as latency or bandwidth.

844 João Leitão, José Pereira, and Luı́s Rodrigues

Scribe

Scribe [3, 27] is a scalable application-level multicast infrastructure built on top of
a structured overlay network, named Pastry [26]. Scribe supports multicast groups
with multiple senders. It constructs a distribution tree for each group, by using a
receiver-based strategy and leveraging in Pastry as follows:

Each multicast group has a node that serves both as rendez-vous point and as a
root for the multicast tree. This node is selected, and can be found by other nodes,
taking advantage of Pastry key-based resource location mechanism (using the mul-
ticast group name). The keys identifying rendez-vous points can be obtained locally
at every node by applying a hash function to the multicast group name. When a node
wishes to join a multicast group it uses Pastry to route a JOIN message to the rendez-
vous point. This message is used to set-up state in the intermediate nodes along the
route, concerning the specific multicast group, thus constructing a distribution tree.

Tree repair is performed as follows: Intermediate nodes periodically send HEART-
BEAT messages to nodes which they have registered as being their children. A node
will suspect that its parent node has failed when it stops receiving HEARTBEAT mes-
sages from it. In this case, the node uses Pastry to route another JOIN message, that
is used to set-up another route to the rendez-vous node, effectively healing the tree
structure.

All state concerning multicast trees is maintained using a soft state approach.
Therefore, nodes have to periodically refresh their interest in belonging to a multi-
cast group by re-sending JOIN messages.

Although Scribe is fault-tolerant and provides a mechanism to handle root fail-
ures, it only provides best-effort guarantees. The authors argue that strong reliability
and order guarantees (among others) are only required by some applications, and
that those properties can be easily provided on top of Scribe.

MON

MON [21], which stands for Management Overlay Network, is a system designed
to facilitate the management of large distributed applications and is currently de-
ployed in the PlanetLab testbed.9 MON builds on-demand overlay structures that
are used by users to issue a set of instant management commands or distribute soft-
ware across a large set of nodes. To that end it uses a random overlay network based
in partial views that is maintained by a cyclic approach. It supports the construction
of both tree structures and directed acyclic graphs structures.

A tree is always rooted at an external entity (named the MON client). To build
the tree, the MON client sends a SESSION message to a nearby MON node. A node
that receives a SESSION message for the first time reply with a SESSIONOK and
becomes a child node of the SESSION sender. It then sends k SESSION messages to
random nodes from its partial view. A node that receives a SESSION message for

9 http://planet-lab.org/

Gossip-Based Broadcast 845

a second time simply sends a PRUNE message to its originator. Hence the tree is
constructed using the combination of a sender-based strategy with a gossip strategy,
where k is the gossip fanout value.

To build a directed acyclic graph, where a node can have more than one parent,
MON employs the same algorithm with the following modifications: In order to
avoid cycles, each node has a level value, where the level at the root is 1 and the
level of other nodes is 1 plus the level of their (first) parent. When a node receives a
second SESSION message, that also carries the level value of the node who sent it,
a node can accept the message, and reply with a SESSIONOK message, if the level
value in the SESSION is smaller than its own (therefore, gaining one more parent
node).

Because MON is aimed at supporting short-lived interactions, it is not required
to maintain these structures for prolonged time. Therefore, it does not owns any
repair mechanism to cope with failures. Also, it only gives probabilistic coverage
of all nodes, as the gossip strategy used to disseminate the SESSION message only
ensures probabilistic atomic broadcast guarantees.

3 The HyParView Protocol

In this section we describe the Hybrid Partial View membership protocol, or simply
HyParView[20]. The motivation behind the design of HyParView is based on the
following two observations:

• The fanout of a gossip protocol is constrained by the desired reliability and fault-
tolerance levels of the protocol. When partial views are used, the quality of these
views has an impact on the fanout required to achieve high reliability.

• High failure rates may have a strong impact on the quality of partial views and
disrupt the broadcast protocol. Even if the membership protocol has healing
properties, the reliability of broadcasted messages after heavy failures may be
seriously affected. Therefore, gossip-based broadcast protocols would strongly
benefit from membership protocols with fast healing properties.

Leveraging on the observations above, HyParView is based on the two following
complementary techniques:

Symmetric partial views: which allow a node to have some control over its in-
degree. Notice that, unlike other membership protocols based on partial views,
this technique offers two interesting properties: (i) it establishes an upper bound
to the in-degree of every node, and (ii) if every node in the system has a full
partial view i.e., if the out-degree of all nodes is equal to the size of partial views),
then every node in the system is known by exactly the same amount of other
nodes (i.e., every node has the same in-degree).

Partial views with a size equal to the fanout +1: which provide some determin-
ism on the selection of gossip targets without changing the behavior of gossip

846 João Leitão, José Pereira, and Luı́s Rodrigues

protocols. This ensures that, as long as the overlay is connected, and every node
has at least one correct node in its partial view, every node in the system will
receive every disseminated message, as the dissemination process implicitly be-
comes a flooding in the overlay.

These techniques allow to use smaller fanout values while ensuring a high re-
liability. To reduce the time required to recover the accuracy of partial views, Hy-
ParView employs two additional techniques:

Unreliable low-cost failure detector: providing a timely detection of failed peers
in the partial view. By immediately removing failed peers from the active view,
one avoids to select such peers as gossip targets. Moreover, this allows a timely
replacement of failed peers by correct ones, improving the overall connectivity
of the overlay network.

Maintain a backup partial view: that is used to fill the main partial view (e.g., the
partial view used to select gossip targets) when it contains free slots, for instance,
after some peers had been detected as failed. This allows to improve the time
required to recover the connectivity degree of the overlay network.

HyParView uses TCP as the unreliable low-cost failure detector. TCP is appropri-
ate because, as described previously, we rely in symmetric partial views to establish
deterministic communication patterns among peers. The use of TCP actually sim-
plifies the implementation of these symmetric relations. Moreover, as initially noted
and proposed in [22], TCP is a network friendly protocol which, unlike UDP, avoids
the exhaustion of the network resources. Finally, TCP also allows to use more con-
servative fanout values, as the gossip protocol is no longer required to mask network
omissions.

The use of a second and larger partial view, as a repository of backup nodes, also
allows to address the fault-tolerance issues that arise due to the use of a small partial
views. Although a smaller partial view increases the probability of a node becoming
disconnected from the overlay due to faults, this limitation is circumvented by rely-
ing on the second partial view, which increases the probability of a node to contain
information about correct nodes and quickly reconnect to the overlay.

Therefore, the HyParView protocol maintains two distinct views at each node. A
small symmetric active view of size fanout+1 (one link from which a message is re-
ceived and fanout links to which the message is relayed). A larger passive view, that
ensures connectivity despite a large number of faults and that must be larger than
log(n). Note that the overhead of the passive view is small, as no TCP connections
are kept open.

Active views of all nodes create an overlay that is used for message dissemina-
tion. Links in the overlay are symmetric: if node q is in the active view of node p
then node p is also in the active view of node q. As we have stated before, the ar-
chitecture of HyParView assumes that nodes use TCP to exchange messages in the
overlay. This means that each node keeps an open TCP connection to every other
node in its active view. This is feasible because the active view is very small. When
a node receives a message for the first time, it forwards the message to all nodes of
its active view (except, obviously, to the node that has sent the message). Therefore,

Gossip-Based Broadcast 847

the gossip target selection is deterministic in the overlay. However, the overlay itself
is created at random, using the gossip membership protocol.

A reactive strategy is used to maintain the active view. Nodes can be added to
the active view when they join the system. Also, nodes are removed from the active
view when they fail (or leave). Notice that each node tests its entire active view
every time it forwards a message. Therefore, the entire overlay is implicitly tested
at every broadcast, which allows a very fast failure detection.

HyParView relies in a join mechanism based on fixed size random walks on the
overlay. The join mechanism allows to add the identifier of a new node both to the
active views and passive views of some random peers. This is achieved by adding
the new node identifier: (i) to the passive view of nodes located in a middle point of
random walks; and (ii) to the active view of nodes where random walks end.

Additionally, the passive view is maintained using a cyclic strategy. Periodically,
each node performs a shuffle operation with one random node in the overlay net-
work, found through a random walk, which will result in the update of both nodes
passive views.

One interesting aspect of our shuffle mechanism is that the identifiers exchanged
in the shuffle operation are not extracted only from the passive view: a node also
sends its own identifier and some nodes collected from its active view to its neighbor.
This increases the probability of having nodes that are active in the passive views
and ensures that failed nodes are eventually expunged from all passive views.

4 Achieving Resilient Broadcast

The HyParView peer sampling service described in the previous section can be used
to implement an efficient and resilient broadcast protocol just by relying on a eager
push strategy to flood the messages in the overlay network defined by the active
views. This algorithm ensures that all links in the overlay are used at least once by
leveraging on the semantics of the getPeer() call of the HyParView protocol. As
discussed before, this ensures that all nodes will receive every broadcast message
as long as the membership protocol is able to maintain the overlay connected. The
reader should notice that the algorithm can work in the “Infect and Die” model [11],
as it only relays messages to other nodes upon the reception of each gossip message
for the first time.

This strategy is only viable because HyParView maintains an active view that
has a small degree.10 The degree of the overlay will determine the relative message
redundancy of the protocol in stable environment, for instance, if the overlay has a
degree of 5, the fanout of the protocol will be 4 (because the overlay has symmetric
links), hence the relative message redundancy expected by this gossip strategy in a
stable environment will tend to a value of 3.

10 In fact, as stated before, HyParView was originally designed to support this specific strategy.

848 João Leitão, José Pereira, and Luı́s Rodrigues

The combination of flooding, generating some amount of message redundancy,
with the mechanisms of HyParView, allows the protocol to: (i) contrary to other
gossip-based approaches, maintain a constant reliability of 100% in the presence of
simultaneous node failures as high as 20%; (ii) lower the number of hops required
by the gossip-based broadcast protocol, to disseminate a message, to the lowest
value allowed by the overlay diameter. This happens because when flooding the
overlay, the protocol uses all available links between nodes, implicitly using all
overlay shortest paths among peers to disseminate a message (independently of the
sender).

Finally, another point that favors this strategy is it simplicity. It is based on a pure
eager push gossip approach, hence it does not have to buffer messages it delivers
and, as it is topology independent, it does not require the maintenance of complex
state related with its neighbors.

5 Building Low Cost Spanning Trees

We now describe the Plumtree protocol[19], a gossip-based dissemination protocol
that can exploit the special properties of the unstructured overlay network provided
by HyParView, in order to efficiently build and maintain a highly resilient spanning
tree, embedded in the original overlay, which allows to improve the cost of the
gossip-based dissemination scheme.

The eager push strategy presented in Section 4 allows to obtain a high reliabil-
ity while ensuring the smallest possible value of last delivery hop. Unfortunately in
a stable environment it still produces a significant RMR (relative message redun-
dancy) value.11 An intuitive approach that could help to further reduce the RMR
value is to use a structured overlay that establishes a multicast tree covering all
nodes in the system. This is the motivation of this protocol, which was originally
described in [19] and named Push-lazy-push multicast tree, or simply, Plumtree

Plumtree has two main components, each one answers a specific challenge of a
fault-tolerance broadcast scheme that employs spanning trees. These can be defined
as follows:

Tree construction This component is in charge of selecting which links of the
random overlay network will be used to forward the message payload using an
eager push strategy. The goal is to provide a tree construction mechanism that is
as simple as possible, with minimal overhead in terms of control messages.

Tree repair This component is in charge of repairing the tree when failures occur.
The process should ensure that, despite failures, all nodes remain covered by
the spanning tree. Therefore,it should be able to detect and heal partitions of the

11 The reader should notice that the RMR value is still lower than those obtained with other proto-
cols that must use higher values of fanout to ensure a (probabilistic) high level of node coverage.

Gossip-Based Broadcast 849

tree. The overhead imposed by this operation should also be as low as possible.
Additionally, this process should recover lost messages, increasing the overall
reliability of the broadcast process.

Consider that the eager push strategy presented in Section 4 is used to flood the
HyParView overlay from a single source. In stable conditions,12 it is likely that mes-
sages triggering deliveries to the application layer (i.e., messages that are received at
a node for the first time) are usually received through the same incoming link (i.e.,
from the same neighbor). Together, these links form a spanning tree that connects all
nodes to a the source node (or root). All other links in the overlay are redundant, and
are only required to mask node failures. Therefore redundant links can be pruned
(removed) from the overlay for as long as no failure exists.

The basic idea behind the Plumtree protocol derives from this simple concept.
The operation of Plumtree combines the basic flooding process with a prune pro-
cess. Initially all links in a random (connected) overlay are considered as being part
of the broadcast tree. Payload messages are only sent to those links (neighbors).
Whenever a redundant (payload) message is received a PRUNE message is used to
remove the link, used to transmit that message, from the tree.

Although this explain how tree construction may be performed, it does not ad-
dress tree repair. Without additional measures, a single node failure is able to parti-
tion the spanning tree, disconnecting a large set of nodes from the source. To solve
the challenge of repairing the spanning tree, a technique based in a lazy push gossip
strategy is employed. This technique enables nodes that do not receive some mes-
sages (due to a failure in the tree) to retrieve those messages from other neighbors
and trigger the creation of new links to the spanning tree, reconnecting the tree. This
procedure enables the whole spanning tree to be repaired. Thus, nodes are required
to announce messages they receive through the links of the overlay that are not part
of the spanning tree by sending IHAVE messages. Whenever a node requests a mes-
sage from a neighbor, by sending a GRAFT message, the link between those nodes
becomes a new branch of the spanning tree. The interested reader can find more
detail on the properties of this mechanism in [19].

Plumtree leverages in the reactive nature of the underlying peer sampling service,
which allows to have a stable spanning tree structure in steady state. Moreover, to
speed up the recovery process of the spanning tree, whenever a new node is added
to the partial view of the underlying peer sampling service, the new link is immedi-
ately added to tree. Redundant branches that are created due to this procedure, are
removed by the tree construction mechanism upon the dissemination of a broadcast
message.

The spanning tree is constructed with a node serving as root, hence it is opti-
mized, at least in terms of last delivery hop (latency), for messages that are sent by
that node. But given that the links of the overlay are symmetric, any node can use

12 Stable conditions in this context concerns not only to no changes in the membership protocol,
but also to a network where links have a low variance in behavior, such as latency or bandwidth.

850 João Leitão, José Pereira, and Luı́s Rodrigues

the same (shared) tree structure to broadcast messages, although this may result in
sub-optimal routing, in terms of last delivery hop.

In summary, the Plumtree design is based on the following principles:

• It constructs a spanning tree on top of HyParView13 that is optimized for systems
with a single source. Nevertheless, the resulting tree is shared and can be used by
any node to broadcast messages.

• The construction of the tree is based on the combination of an eager push algo-
rithm and a pruning process. Because paths in the tree are selected using mes-
sages sent by a root node, our tree construction can be classified as a source-based
strategy.

• The repair of the tree is based on a lazy push gossip approach. In addition to
forwarding the payload through the links that form the spanning tree, nodes also
send IHAVE messages on the remaining links. Whenever a node requests a mes-
sage it has missed from a neighbor, a new branch is added to the tree. Because the
repair process is controlled by the receiver, it can be said that the tree repairing
uses a receiver-based strategy.

The tree built by Plumtree is optimized for a specific sender: the source of the first
broadcast that is used to prune the redundant links from the original overlay in order
to form the spanning tree. As a result, the overlay links that form the spanning tree
are those that were faster to propagate the message disseminated by that specific
node. In a network with multiple senders, Plumtree can be used in two distinct
manners:

• For optimal latency, a distinct instance of Plumtree may be used for each dif-
ferent sender. This however, requires an instance of the Plumtree state to be
maintained for each sender-based tree, with the associated memory and signaling
overhead.

• Alternatively, a single shared Plumtree instance may be used for multiple senders.
Clearly, the last delivery hop value may be sub-optimal for all senders except the
one whose original broadcast created the tree. On the other hand, a single in-
stance of the Plumtree protocol needs to be executed.

6 Experimental Evaluation

This section starts by evaluating the peer sampling service properties that are rel-
evant for data dissemination. Then, the performance of the eager push and the
Plumtree protocols on top of HyParView is assessed.

13 Although Plumtree was developed to leverage on the properties of HyParView, it is not limited
to the use of this peer sampling service.

Gossip-Based Broadcast 851

6.1 Experimental Setting

All simulations described in the section were conducted using the PeerSim Simu-
lator [16]. In order to get comparative figures, both HyParView, Cyclon and Scamp
were implemented in this simulator. In order to validate the implementations of Cy-
clon and Scamp, results obtained with the PeerSim Simulator were compared with
published results for these protocols (those results are not presented here, as this is
not the main focus of the chapter).

A modified version of Cyclon, named CyclonAcked, is also evaluated. This ver-
sion adds a failure detection system to Cyclon, based on the exchange of explicitly
acknowledgments during message dissemination. Thus, CyclonAcked is able, in
less time, to detect failed nodes when it attempts to gossip to them and, therefore, to
perform a faster removal of such elements from partial views, increasing the accu-
racy of the original Cyclon after failures. This benchmark is used to show that the
benefits of the HyParView protocol are not only derived from the use of a reliable
transport (and also, as an unreliable failure detector), but also from the clever use of
two separate partial views.

An eager push gossip broadcast protocol for PeerSim was also implemented. This
gossip protocol is able to use any of the membership protocols referred above as a
peer sampling service (by means of the GetPeer() method). It operates in unlim-
ited gossip mode, such that the global reliability is not affected by the configuration
of the maximum rounds parameter (as shown in Section 2.1).

The eager gossip broadcast protocol was configured so that, when combined with
HyParView, it implements the flood gossip strategy described previously, in Sec-
tion 4. For fairness, the same configuration parameter was used in all membership
protocols.

An implementation of the Plumtree protocol was also developed for the PeerSim
simulator. This implementation relies in HyParView as the underlying membership
protocol, as it was originally designed to leverage on its properties, such as the
symmetry and stability of the active view.

In all simulations, the overlay was created by having nodes join the network one
by one, without running any membership rounds in between. Cyclon was initiated
by having a single node to serve as contact point for all join requests. Scamp was
initiated by using a random node already in the overlay as the contact point. These
are the configurations that provide the best results for each of these protocols. Hy-
ParView achieves similar results with either method. For simplicity, and similarly
to the Cyclon protocol, a single node as contact was used to create the HyParView
overlay.

All simulations conducted in the PeerSim simulator used its cycle based engine.
Each simulation is composed of a sequence of cycles, which begin at cycle 0. Each
simulation cycle is composed, at most, of the following steps:

Failure: In this step, some number (or a percentage) of nodes are marked as failed
(e.g., their internal state is set to Down). This step might not be required for all
simulations and it usually only executes at a predefined cycle (or cycles) of a
given simulation.

852 João Leitão, José Pereira, and Luı́s Rodrigues

Broadcast: In this step a number of nodes14 send a broadcast message. The step is
only terminated when there are no more messages in transit in the overlay (either
gossip messages or any gossip strategy specific control messages).

Data retrieval: In this step, performance information is retrieved by inspecting the
internal state of protocols and components of all correct nodes (e.g., nodes which
have their internal state set to Up in the current simulation cycle).

Membership: In this step, the membership protocol executes any cyclic (e.g., pe-
riodic) step. It is also in this step that any membership protocol that uses TCP
becomes aware of failures that might have happened in the last failure step.

Clean up: All data stored on nodes concerning the broadcast of messages or any
information concerning the state of the overlay in the current cycle is erased
(e.g., temporary state that is maintained at nodes or specific components of the
simulation is deleted).

Although most simulations follow the structure above, some of them are con-
ducted without performing all these steps. For instance, when testing the behavior
of a protocol in a stable environment (i.e., without the presence of node failures)
the failure step is not required. Also, when the goal of the simulation is to evaluate
properties of the overlay network, the broadcast step is not required.

6.2 HyParView and Eager Push Strategy

As noted in Section 2.6, the overlays produced by membership protocols, or peer
sampling services, should exhibit some relevant properties such as low clustering
coefficient, small average shortest path, and balanced in-degree distribution, to con-
tribute for a fast message dissemination and a high level of fault tolerance in gossip-
based broadcast protocols. In this section it is shown how the simulated protocols
perform regarding these metrics.

Average Average Last
clustering shortest delivery

coefficient path hop

Cyclon 0.006836 2.60426 10.6

Scamp 0.022476 3.35398 14.1

HyParView 0.000920 6.38542 9.0

Table 1 Graph properties after stabilization

14 The nodes that send broadcast messages can be selected at random or be predefined.

Gossip-Based Broadcast 853

Table 1 shows values concerning average clustering coefficient, average shortest
path, and last delivery hop for all protocols after a period of stabilization of 50
membership cycles.15 It can be seen that in terms of average clustering coefficient,
HyParView achieves significantly lower values than Scamp or Cyclon. This is not
surprising given that HyParView’s active view is much smaller than other protocols
partial views. Nevertheless, this feature is an important factor, which contributes to
the high resilience that HyParView exhibits to node failures.

In terms of average shortest path, it is clear that HyParView falls behind Scamp
and Cyclon. This is no surprise, as HyParView maintain a much smaller active view,
which limits the number of distinct paths that exist across all nodes. Fortunately,
this has no impact on the latency of the gossip protocol. The small level of global
clustering, and the fact that all existing paths between nodes are used to dissem-
inate every message, makes a HyParView based gossip protocol to deliver mes-
sages with a smaller number of hops than the other protocols, as can also be seen in
Table 1.

Fig. 1 In-degree distribution

Figure 1 shows the in-degree distribution of all nodes in the overlay after the
same stabilization period. Cyclon and Scamp have an in-degree distribution across
a wide range of values, which means that some nodes are extremely popular on the
overlay, while other nodes are almost totally unknown. As stated before, because
of this distribution, some nodes on the overlay have larger probability of receiving
redundant messages, while other nodes have a very small probability of receiving
messages even once. Naturally, nodes which are known by only a few other peers,

15 In fact, this stabilization time is not required by Scamp, as it stabilizes immediately after the join
period. HyParViews active view also stabilizes within 1 – 2 simulation cycles, but its passive view
requires some rounds of membership in order to stabilize completely.

854 João Leitão, José Pereira, and Luı́s Rodrigues

Fig. 2 Average reliability for 1000 messages

have a smaller probability to be selected as gossip targets. Also, such nodes have
an increased probability to become disconnected from the overlay, as the number
of nodes that are required to fail in order to disconnect the node is smaller. This
is particularly obvious in Scamp, where some nodes are only known by one other
node.

Due to HyParViews symmetric active view, almost all nodes in the overlay are
known by the maximum amount of peers possible, which is the active view size (5).
This means that all nodes, with high probability, will receive each message exactly
the same amount of times. Also, there is little probability for any node not to receive
a message at least once. Finally, notice that nodes who have the smallest in-degree
have at least 2 neighbors,16 and that the number of nodes in these conditions is
marginal (with only 2 in 10.000 nodes).

We now evaluate the impact of massive failures in the reliability of the eager push
gossip broadcast, when combined with different membership protocols.

In each experiment, all nodes join the overlay after which they execute 50 cycles
of membership protocol to guarantee stabilization. After the stabilization period,
failures at random are induced in a percentage of all nodes in the system, ranging
from 10 to 95% of node failure. A measure of the reliability of 1.000 messages sent
from random correct nodes was then extracted. All these messages were sent before
the execution of any cycle of a membership protocols. However, the membership
protocols still execute all reactive steps; in particular, they can exclude a node from
their partial views if the node is detected to be failed. The rationale for this setting
is that the interval of the cyclic behavior of the membership protocols is often long
enough to allow thousands of messages to be exchanged; the goal here is to focus
on the impact of failures in the reliability of these specific broadcasts.

16 Obviously, this also means that such nodes have an out-degree of 2.

Gossip-Based Broadcast 855

The average reliability for these runs is depicted in Fig. 2. As it can be seen, mas-
sive percentage of failures have almost no visible impact on HyParView below the
threshold of 90%. Even for failure rates as high as 95%, HyParView still manages
to maintain a reliability value in the order of 90%. Both Scamp and Cyclon exhibit a
constant reliability17 for failure percentages as low as 10%, and their performance is
significantly hampered with failure percentages above 40% (with reliability values
below 50%). On the other hand, CyclonAcked manages to offer a competitive per-
formance. Although the reliability is not as high as with HyParView, it manages to
keep high reliabilities for percentage of failures up to 70%. This behavior highlights
the importance of fast failure detection in gossip protocols and shows the benefits
that come from the use of TCP as an unreliable failure detector.

6.3 Plumtree

In this section, the Plumtree protocol is evaluated. In order to extract comparative
figures, experimental results are shown together with those obtained by the eager
push strategy and a pull based gossip strategy in the same scenarios. The Plumtree
protocol performs better in scenarios with only one (fixed) sender. Nevertheless, the
protocol was evaluated operating in two distinct modes:

Single sender (labeled as s–s) mode in which a single node is the source of all
broadcast messages.

Multiple senders (labeled as m–s) mode in which each broadcast message is sent
by a random (correct) node.

To evaluate the protocol in a stable environment, several simulations were con-
ducted in the following manner: First all nodes join the overlay by using the Hy-
ParView join mechanism. As in the evaluation of the HyParView protocol, this is
achieved by using one single node that serves as contact for all remaining nodes.
No membership cycles are executed during the join process. Simulations are run for
a total of 250 simulation cycles. The first 50 cycles of each run are used to ensure
stabilization and hence, are not depicted in the results. In each simulation cycle, in
the broadcast step, a single node sends a message. The reliability, last delivery hop,
and relative message redundancy of the broadcast protocols are then evaluated for
each message disseminated.

Simulations show that all the gossip-based broadcast protocols were able to
achieve and maintain a reliability of 100% in stable conditions. This includes
Plumtree operating in the two modes described above. This is expected, given
the properties of the HyParView protocol, namely from the connectivity point of
view: HyParView ensures the connectivity of the overlay, and all approaches (ea-
ger push and pull based strategies along with the tree based strategy) ensure that all
nodes in the overlay receive each broadcast message as long as the overlay remains

17 Although their reliability is unable to reach 100% with a fanout of 4.

856 João Leitão, José Pereira, and Luı́s Rodrigues

connected. Still, measurement of reliability in stable conditions serves as a valida-
tion for the design of the Plumtree protocol.

The relative message redundancy (RMR) value (as defined in Section 2.7) is of
paramount importance when evaluating the Plumtree protocol, as this is the main
metric aimed for optimization by this approach. Table 2 shows aggregated values of
relative message redundancy obtained in our experiments for all gossip protocols.
All protocols, in stable conditions, were able to maintain a constant value for RMR
in the last 200 cycles of every simulation. Notice that, as expected, the eager protocol
has a relative message redundancy close to 3. This derives directly from the fanout
value used (4), as explained earlier in the chapter.

RMR

Eager 3.00

Pull 0.00

Plumtree (s-s) 0.00

Plumtree (m-s) 0.00

Table 2 Relative message redundancy in stable environment

In Plumtree, after the stabilization of the protocol, payload messages are only
propagated through links that belong to the spanning tree. The Plumtree algorithm
eliminates redundant branches from the tree. Therefore, Plumtree does not gener-
ate any redundant message. As a result, the RMR value for the Plumtree protocol
presents a constant value of 0.

The pull approach is also able to maintain a constant value of 0 for RMR. This is
expected, as in a pull approach payload is only transmitted when explicitly requested
by the receiver. Therefore, in a stable environment, a single payload message has to
be transfered for each receiver. However, such an approach as some drawbacks as
we show in the following paragraphs.

Table 3 shows the number of messages received by all gossip protocols after
150 cycles of stabilization. The extra control messages received by Plumtree are
essentially due to IHAVE messages. However, the reader should consider that: (i)
usually IHAVE messages are smaller than payload message, hence these messages
will contribute less to the exhaustion of network resources and (ii) IHAVE messages
may be aggregated, by delaying the transmission of these messages and sending
several broadcast message unique identifiers on a single IHAVE message. Notice
that aggregation will not have a significant impact in reliability, as messages are still
sent, only with a delay. Therefore, aggregation would only affect the time required
to repair the spanning tree after failures and the overall latency of the dissemination
process.

Gossip-Based Broadcast 857

Payload Control Total

Eager 39984.00 0.00 39984.00

Pull 9999.00 49994.33 59993.33

Plumtree (s-s) 9999.00 29987.33 39986.33

Plumtree (m-s) 9999.00 29990.00 39989.00

Table 3 Number of messages received

Notice that the pull approach requires much more control messages than Plumtree.
This is expected as the transmission of each payload message requires two distinct
control messages. Additionally, several control messages are sent in the dissemina-
tion process which are redundant, similar to the payload messages sent by the eager
push strategy.

Fig. 3 Last delivery hop in stable environment

Figure 3 presents the values for last delivery hop (LDH). The eager push protocol
and Plumtree with a single sender offer the best performance. The eager protocol
uses all available links to disseminate messages, which ensures that all shortest paths
of the overlay are used. This shows that with a single sender Plumtree is able to
select the links that provide faster delivery.

The pull approach doubles the value of LDH when compared with Plumtree and
the eager protocol.18 This happens because this strategy imposes additional delay

18 Notice that in these experiments we ignore the hop executed by the message explicitly requesting
the transmission of payload.

858 João Leitão, José Pereira, and Luı́s Rodrigues

to the dissemination of payload messages in the overlay. This will have a negative
impact in the latency of the broadcast process.

With multiple senders the Plumtree LDH values are naturally higher. This hap-
pens because the spanning tree is optimized for the first source. Therefore, when
messages are sent by nodes located at leaf positions of the tree, messages are re-
quired to perform additional hops in the overlay to reach all remaining nodes.

The interested reader may refer to [19], where an optimization to the Plumtree
protocol described here is presented and evaluated. This optimization is able to
lower the LDH value when the protocol operates in multiple senders mode. More-
over, the optimized protocol achieves a better distribution of the spanning tree
branches across all nodes in the system.

7 Discussion and Future Directions

In this chapter we introduced some of the most relevant aspects of gossip-based
broadcast protocols. Namely, we have described the basic principles of epidemic
protocols, their typical parameters and operation modes. We have also described the
main gossip strategies that can be found in literature, such as: eager push, lazy push,
and pull; and discussed the associated trade-offs associated with the use of these
techniques. To help the reader in assessing the behavior of different gossip-based
broadcast solutions, we listed several metrics to evaluate the quality of the unstruc-
tured overlay networks created by peer sampling services, discussed their desirable
values, and explained how they affect the epidemic dissemination process. We also
offer a survey of some representative protocols, including gossip-based membership
protocols, gossip-based broadcast protocols, and for completeness, protocols based
on the construction of spanning trees. Finally, we described and evaluated a family
of concrete peer sampling and gossip-based broadcast protocols.

As future directions for research in this field, we consider that the body of work
presented in this chapter can be improved in two distinct aspects:

• The algorithms presented in this chapter may be improved by considering the
(possible) heterogeneity of nodes in the system. An obvious approach to achieve
this is to use an adaptive fanout (and degree) for nodes. This value should be
based on a function of the resources available at each node. By using such strat-
egy, a node which is more powerful (e.g., which has more memory, or more
bandwidth) would contribute more, not only to the maintenance of the unstruc-
tured overlay network, but also to the dissemination process (e.g., by sending
more messages).

• Plumtree-like protocols could benefit from techniques to improved load distri-
bution. For instance, when the current protocol operates in single sender mode,
nodes which are located at the leaf positions of the spanning tree, do not con-
tribute (actively) to the dissemination of messages payloads.

Gossip-Based Broadcast 859

Acknowledgments

This work was partially supported by project “Redico” (PTDC/EIA/71752/2006).

References

1. Birman, K., Hayden, M., Ozkasap, O., Xiao, Z., Budiu, M., Minsky, Y.: Bimodal multicast.
ACM Transactions on Computer Systems 17(2) (1999)

2. Carvalho, N., Pereira, J., Oliveira, R., Rodrigues, L.: Emergent structure in unstructured epi-
demic multicast. In: Proceedings of the 37th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, p. (to appear). Edinburgh, UK (2007)

3. Castro, M., Druschel, P., Kermarrec, A.M., Rowstron, A.: SCRIBE: A large-scale and de-
centralized application-level multicast infrastructure. IEEE Journal on Selected Areas in
communications (JSAC) 20(8), 1489–1499 (2002). URL citeseer.ist.psu.edu/
castro02scribe.html

4. Chu, Y.H., Rao, S., Seshan, S., Zhang, H.: A case for end system multicast. IEEE Journal on
Selected Areas in Communications 20(8), 1456–1471 (2002)

5. Deering, S., Cheriton, D.: Multicast routing in datagram internetworks and extended lans.
ACM Transactions on Computer Systems 8(2), 85–110 (1990)

6. Demers, A., Greene, D., Hauser, C., Irish, W., Larson, J., Shenker, S., Sturgis, H., Swine-
hart, D., Terry, D.: Epidemic algorithms for replicated database maintenance. In: PODC ’87:
Proceedings of the sixth annual ACM Symposium on Principles of distributed computing,
pp. 1–12. ACM Press, New York, NY, USA (1987). DOI http://doi.acm.org/10.1145/41840.
41841

7. Deshpande, M., Xing, B., Lazardis, I., Hore, B., Venkatasubramanian, N., Mehrotra, S.: Crew:
A gossip-based flash-dissemination system. Tech. rep., University of California (2005). URL
http://www.ics.uci.edu/˜mayur/crew_ics_tr_2005.pdf

8. Deshpande, M., Xing, B., Lazardis, I., Hore, B., Venkatasubramanian, N., Mehrotra, S.: Crew:
A gossip-based flash-dissemination system. In: ICDCS ’06: Proceedings of the 26th IEEE
International Conference on Distributed Computing Systems, p. 45. IEEE Computer Society,
Washington, DC, USA (2006). DOI http://dx.doi.org/10.1109/ICDCS.2006.24

9. Diot, C., Levine, B., Lyles, B., Kassem, H., Balensiefen, D.: Deployment issues for the IP
multicast service and architecture. IEEE Network 14(1), 78–88 (2000). URL citeseer.
ist.psu.edu/diot00deployment.html

10. Eugster, P., Guerraoui, R., Handurukande, S., Kouznetsov, P., Kermarrec, A.M.: Lightweight
probabilistic broadcast. ACM Transactions on Computer Systems 21(4), 341–374 (2003).
DOI http://doi.acm.org/10.1145/945506.945507

11. Eugster, P., Guerraoui, R., Kermarrec, A.M., Massoulie, L.: From Epidemics to Distributed
Computing. IEEE Computer 37(5), 60–67 (2004). DOI NA

12. Ganesh, A., Kermarrec, A.M., L. Massouli e.: SCAMP: Peer-to-peer lightweight member-
ship service for large-scale group communication. In: Networked Group Communication,
pp. 44–55 (2001). URL citeseer.ist.psu.edu/ganesh01scamp.html

13. Ganesh, A., Kermarrec, A.M., Massoulié, L.: Peer-to-peer membership management for
gossip-based protocols. IEEE Transactions on Computers 52(2), 139–149 (2003). DOI
http://dx.doi.org/10.1109/TC.2003.1176982

14. Hayden, M., Birman, K.: Probabilistic broadcast. Tech. rep., Cornell University, Ithaca, NY,
USA (1996)

15. Jelasity, M., Guerraoui, R., Kermarrec, A.M., van Steen, M.: The peer sampling service: ex-
perimental evaluation of unstructured gossip-based implementations. In: Middleware ’04:

860 João Leitão, José Pereira, and Luı́s Rodrigues

Proceedings of the 5th ACM/IFIP/USENIX international conference on Middleware,
pp. 79–98. Springer-Verlag New York, Inc., New York, NY, USA (2004)

16. Jelasity, M., Montresor, A., Jesi, G.P., Voulgaris, S.: The Peersim simulator.
http://peersim.sf.net

17. Kermarrec, A.M., Massoulié, L., Ganesh, A.: Probabilistic reliable dissemination in large-
scale systems. IEEE Transactions on Parallel and Distributed Systems 14(3), 248–258 (2003).
DOI http://dx.doi.org/10.1109/TPDS.2003.1189583

18. Koldehofe, B.: Buffer management in probabilistic peer-to-peer communication protocols. In:
Proceedings of the 22th IEEE Symposium on Reliable Distributed Systems (SRDS’03), pp.
76–87. Florence,Italy (2003)

19. Leito, J., Pereira, J., Rodrigues, L.: Epidemic broadcast trees. In: Proceedings of the 26th
IEEE International Symposium on Reliable Distributed Systems (SRDS’2007), pp. 301 – 310.
Beijing, China (2007)

20. Leito, J., Pereira, J., Rodrigues, L.: HyParView: A membership protocol for reliable gossip-
based broadcast. In: DSN ’07: Proc. of the 37th Annual IEEE/IFIP Intl. Conf. on Dependable
Systems and Networks, pp. 419–429. IEEE Computer Society, Edinburgh, UK (2007). DOI
http://dx.doi.org/10.1109/DSN.2007.56

21. Liang, J., Ko, S., Gupta, I., Nahrstedt, K.: MON: On-demand overlays for distributed
system management. In: 2nd USENIX Workshop on Real, Large Distributed Sys-
tems (WORLDS’05) (2005). URL http://cairo.cs.uiuc.edu/publications/
paper-files/worlds05-jinliang.pdf

22. Pereira, J., Rodrigues, L., Monteiro, M.J., Oliveira, R., Kermarrec, A.M.: Neem: Network-
friendly epidemic multicast. In: Proceedings of the 22th IEEE Symposium on Reliable Dis-
tributed Systems (SRDS’03), pp. 15–24. Florence,Italy (2003)

23. Pereira, J., Rodrigues, L., Pinto, A., Oliveira, R.: Low-latency probabilistic broadcast in wide
area networks. In: Proceedings of the 23th IEEE Symposium on Reliable Distributed Systems
(SRDS’04), pp. 299–308. Florianopolis, Brazil (2004)

24. van Renesse, R., Birman, K.P., Vogels, W.: Astrolabe: A robust and scalable technology for
distributed system monitoring, management, and data mining. ACM Transactions on Com-
puter Systems 21(2), 164–206 (2003). DOI http://doi.acm.org/10.1145/762483.762485

25. van Renesse, R., Minsky, Y., Hayden, M.: A gossip-style failure detection service. Tech. Rep.
TR98-1687, Dept. of Computer Science, Cornell University (1998). URL citeseer.ist.
psu.edu/article/vanrenesse96gossipstyle.html

26. Rowstron, A., Druschel, P.: Pastry: Scalable, decentralized object location, and routing for
large-scale peer-to-peer systems. In: Middleware ’01: Proceedings of the IFIP/ACM Inter-
national Conference on Distributed Systems Platforms Heidelberg, pp. 329–350. Springer-
Verlag, London, UK (2001)

27. Rowstron, A., Kermarrec, A.M., Castro, M., Druschel, P.: SCRIBE: The design of a large-scale
event notification infrastructure. In: Networked Group Communication, pp. 30–43 (2001).
URL citeseer.ist.psu.edu/rowstron01scribe.html

28. Voulgaris, S., Gavidia, D., van Steen, M.: Cyclon: Inexpensive membership management for
unstructured p2p overlays. Journal of Network and Systems Management 13(2), 197–217
(2005). DOI 10.1007/s10922-005-4441-x. URL http://dx.doi.org/10.1007/
s10922-005-4441-x

29. Zhao, B., Kubiatowicz, J., Joseph, A.: Tapestry: An infrastructure for fault-tolerant wide-area
location and routing. Tech. Rep. UCB/CSD-01-1141, UC Berkeley (2001). URL citeseer.
ist.psu.edu/zhao01tapestry.html

Employing Multicast in P2P Overlay Networks

Mario Kolberg

1 Introduction

The work on multicast has evolved from bottom IP layer multicast to Application
Layer Multicast. While there are issues with the dep-loyment of IP layer multicast,
it outperforms Application Layer Multicast. However, the latter has the advantage
of an easier dep-loyment. Furthermore, as will be illustrated later in this Chapter,
IP layer multicast has the potential to make parallel overlay operations more ef-
ficient. Application Layer Multicast is primarily used to send application specific
messages/data to a number of nodes.

1.1 IP Layer Multicast

In terms of IP multicast there are two major groups of approaches: Host group multi-
cast [15] and multi-destination multicast [6]. Host-group multicast approaches cre-
ate a group address per multicast tree. Routers in the network then store state for
each active group address. Clearly, this information grows with the number of si-
multaneous active multicast groups. Additionally, there is delay to create a group,
and the network may only support a limited number of group ad-dresses [8].

Consequently, host group multicast is best suited for relatively small numbers of
groups with potentially very large sets of recipients.

In multi-destination multicast routing, messages are sent containing the list of
all the destinations for that message. Multicast-enabled routers inspect all addresses
and make a routing decision for each address. If all addresses will be routed the same
path, the message stays together, if there are different paths for addresses, the mes-
sage gets split and forwarded separately. If a message finally only con-tains a single

Mario Kolberg
Department of Computing Science and Mathematics, University of Stirling, Stirling, Scotland,
e-mail: mko@cs.stir.ac.uk

X. Shen et al. (eds.), Handbook of Peer-to-Peer Networking, 861
DOI 10.1007/978-0-387-09751-0 30, © Springer Science+Business Media, LLC 2010

862 Mario Kolberg

address, it is converted to a unicast message. Multi-destination routing restricts the
group size to about 50 destinations.

The quantitative benefits of IP multicasting have been formulated in the Chuang-
Sirbu Scaling Law which shows that the ratio of the number of edges in the multicast
versus the average unicast path length equals m0.8 (m being the multicast group size).
The per link reduction in message traffic from multicast is hence 1−m−0.2.

1.2 Application Layer Multicast (ALM)

Application Layer Multicast takes the basic multicast approach to the application
layer and implements multicasting functionality as an application service rather than
a network service. Hence the aims and strengths of ALM are rather different to IP
layer multicasting.

IP multicasting requires the implementation of the multicasting algo-rithms in
the network and network nodes. The primary goal of IP layer multicasting is the
reduction of multiple copies of a packet on the same network link. ALM is imple-
mented by application nodes and hence does not necessarily result in a reduction
of multiple copies of packet on links. However, ALM remedies one of the key is-
sues with IP multicasting: easier and possibly immediate deployment over the Wide
Area Network. Three major approaches have been devised for Application Layer
Multicast: Mesh first, Tree first and Implicit approaches. The Mesh first and Tree
first approaches commonly are deployed on unstructured P2P overlays, whereas the
Implicit approach builds multicast forwarding trees on top of the Distributed Hash
Table of structured overlays. Unstructured approaches either organize nodes into a
mesh and construct the multicast tree on top of this mesh (Mesh first approaches)
or construct the multicast tree directly (Tree first approaches). Some of the latter
approaches complement the tree with additional links (mesh).

More recently considerable work has been carried out on topology aware over-
lays aligning the overlay with the underlying IP network topology and hence making
the overlay routing (and multicasting) more efficient. Figure 1 provides an illustra-
tion of sending a message to multiple destination via (a) unicast, (b) IP multicast
and (c) Application Layer Multicast.

The remaining of the chapter is organized as follows. Section 2 dis-cusses the two
IP layer multicast approaches, including the Chuang-Sirbu Scaling Law estimating
the efficiency gain through IP layer multicast. Section 3 concentrates on Application
Layer Multicast illustrating the three approaches. Section 4 concludes the Chapter.

2 Using IP Multicasting for Parallel P2P Overlay operations

Besides using IP multicast for distribution of media, an important use for IP layer
multicast in P2P systems is to make parallel opera-tions in structured P2P overlays

Employing Multicast in P2P Overlay Networks 863

Fig. 1 Sending a packet to three nodes

more efficient [8]. Many structured overlays use parallel lookup messages (e.g.,
EpiChord [23], Kademlia [24]). Other overlays use also parallel messages for main-
tenance operations. EDRA in D1HT [25] for instance uses (log n)-way mes-sages,
where n is the number of nodes in the overlay. Hence group size is typically rela-
tively small, but group formation can be very frequent. For instance in an EpiChord
network, group formation may be as high as one group per second per node. More-
over, group reuse is low, especially in high churn overlays. Here the focus is given
to the second use. The following sections examine how suitable the two main IP
multicast approaches, Host Group Multicasting and Multi-destination Routing, are
for this purpose.

864 Mario Kolberg

2.1 Host Group Multicasting

The prevailing host-group multicast protocols including the PIM [27] family (PIM-
DM, PIM-SM, PIM-SSM and BIDR-PIM), DVMRP [33], and (to a lesser degree)
CBT [4] create a group address per multicast tree, and each router stores state for
each active group address. Consequently, the state in the router grows with the num-
ber of simultaneous multicast groups. Further, there is delay to create a group, and
the network may support only a limited number of group addresses. For a large
overlay it is impractical for each node to have a group address for each set of other
nodes it sends multicast messages to. For example, if there are one million nodes
in the overlay, and each peer conservatively uses 5 groups for those messages it
parallelizes, then the number of groups might reach five times the number of nodes
in the overlay. Worsening the problem is that the average peer session time is as
low as 60 minutes in some overlays, meaning that group state needs to be replaced
relatively frequently. Consequently, host group multicast is designed for relatively
small numbers of very large sets of recipients.

Another issue with the existing approaches is that they are not de-signed for
inter-domain multicasting. Essentially, current approaches are intra-domain solu-
tions. However, P2P overlays are typically global networks spanning many different
domains and hence mes-sages traveling between nodes may cross domains.

In summary, host group multicast is not a good choice for use in pa-rallelizing
overlay network operations with many simultaneous small groups of peers involved
in a message, the groups are short-lived, and span multiple domains.

2.2 Multi-Destination Multicasting

Originally, the concept of multi-destination routing was proposed in the early years
of multicast protocol design [1]. Initially, it was not favored as Ammar observes [2],
as subsequent protocol design fo-cused on enabling large multicast groups. However
in the past sev-eral years, there has been recognition of multi-destination routing as
a complementary multicast technology that is highly scalable with respect to the
possible numbers of groups.

Considering that structured P2P overlays require a large number of relatively
small groups which are also rather short-lived multi-destination routing has consid-
erable advantages. Furthermore, it does not pose a bottleneck for overlay networks
even with millions of nodes.

In multi-destination multicast routing, instead of two or more unicast messages
sent to separate destinations, a single message is sent con-taining the list of all the
destinations and the message content from the original messages. Multicast-enabled
routers route the message by checking all addresses in the message. If all addresses
are routed the same path, the message stays together. However, if addresses are to
be routed differently, a split point is reached. At each such point, duplicate mes-
sages containing the subset of destinations for each forwarding path are created and

Employing Multicast in P2P Overlay Networks 865

routed. This continues until a mes-sage contains only a single address in which case
it is converted to a unicast message and is routed to its destination. Figure 2 illus-
trates this. Here node A is sending a multi-destination multicast message to 4 nodes
B, C, D and E. Routers where a split occurs are shown by filled circles. The numbers
indicate the count of destination ad-dresses in the message.

Fig. 2 Sending a 4-way multi-destination multicast message through a network

Clearly the network routers need to be multi-destination enabled to be able to
check multiple addresses in a message. However, the approach can also work with
only a subset of routers being able to understand multi-destination messages. In that
case, these routers forward multicast packets to other multicast routers using tunnels
through unicast routers.

In multi-destination multicasting, the sender has to be aware of all destinations.
In host group multicasting, this is managed by the rou-ters rather than the send-
ing node. However, multi-destination multi-cast routing does not require state in
routers. Thus there is no router state constraint on the number of multicast groups.
However there is additional processing overhead at each router for the forwarding
al-gorithm to process the list of addresses. Whereas host-group multi-cast routers
have forwarding state for each group address, for a mul-ti-destination packet with N
destinations, there is O(N) work at each router to process the list of addresses and
make a forwarding deci-sion for each destination. Multi-destination routers need to
re-build packets at branching points.

As the destination addresses are included in the message, multi-destination mul-
ticast imposes a maximum group size. Practical group sizes appear to be those with

866 Mario Kolberg

less than 50 members. Since peers in the overlay maintain routing tables or ad-
dresses of other peers, there is no group join overhead when peers are directly
reachable in the overlay. Thus the time to create a new multicast group is not a
factor.

Explicit multicast (XCAST) is an experimental IP protocol for multi-destination
multicast [6] and several XCAST testbeds have been deployed.

There is also work combining host group multicast and multi-destination multi-
cast. He and Ammar [18] analyze the performance of XCAST combined with host-
group multicasting.

2.3 Chuang-Sirbu Scaling Law

An estimation of the reduction in network traffic when using multi-cast rather than
unicast has been captured in the Chuang-Sirbu [14] scaling law. This shows that the
ratio of the number of edges in the multicast path versus the average unicast path
length equals m0.8 (where m is the multicast group size). The per link reduction in
mes-sage traffic from multicast is then 1−m−0.2. The assumptions of the Chuang-
Sirbu law are:

1. Receivers are randomly distributed throughout the network.
2. Multicast trees are shortest-path trees constructed using Dijkstra’s algorithm and

extend only to the edge router.
3. There is little or no control overhead.
4. Networks that are representative of inter-domain routing topolo-gies of the In-

ternet, with average node degree between 3 and 4, and a size between tens and
thousands of routers.

5. The multicast routing at the network layer does not support any reliability mech-
anism.

The first assumption relates to the placement of peers in the network and the dis-
tribution of the set of peers in a parallelized overlay operation. In structured over-
lays, it is generally assumed that peers are randomly distributed throughout the net-
work. Except for topology-aware overlays, neighbors in the overlay are not close to
each other in the network and are unlikely to cluster on the same subnet. As a result,
parallel overlay operations which are directed at a set of adjacent overlay nodes,
such as a parallel lookups, are sent to a random set of network locations.

In the case of topology-aware overlays, the multicast savings can be no worse
than predicted by Chuang-Sirbu and may be better due to the sharing of the tree
path. The remaining assumptions relate to the network and the multicast mechanism.
Using multi-destination routing satisfies assumptions 2, 3, and 5. Structured P2P
overlays are typically used for larger scale networks which satisfy assumption 4.

Further evaluation of Chuang-Sirbu has been done in [26] which derives another
similar expression and confirms it with respect to various networks, and [32] which

Employing Multicast in P2P Overlay Networks 867

Fig. 3 Message savings for different multicast group sizes and varying multicast efficiency ε ac-
cording to Chuang-Sirbu law

finds some shortcomings of Chuang-Sirbu with respect to large groups and provides
a revised formulation. Chalmers and Almeroth [12] using actual multicast data sets
on the Internet and synthesized multicast trees find a slightly lower multicast effi-
ciency ε in the range −0.34 < ε <−0.30. These results are based on an actual mul-
ticast infrastructure in place at the time of the data collection which may constrain
multicast branching points more so than in synthetic topologies. Further, their anal-
ysis includes multicast trees extended to the end points, which produces increased
savings from Chuang-Sirbu if there is clustering of end points at subnets.

In the case of parallelized overlay operations, the size of the multi-cast group
is within the Chuang-Sirbu formulation but is frequently at the lower end of the
formulation, m < 20. In this range, the multi-cast efficiency exponent derived by
Chalmers and Almeroth in [12] is also applicable. For brevity, here we refer to
multicast savings 1−mε with−0.34 < ε <−0.20 as the Chuang-Sirbu law. Figure 3
shows message savings versus group size for a set of values of ε .

2.4 Strengths and Weaknesses

A significant percentage of Internet traffic is due to Peer-to-Peer ap-plications. Mul-
ticast has great potential to reduce the number of dup-licate messages on network
links, and hence the load on the network.

Above it has been discussed that for parallelizing structured overlay messages,
multi-destination routing is a better fit than host group multicasting. However, to
get the full benefit of multicast at the IP layer, multicast enabled routers need to
be installed throughout the Internet, including backbone and edge routers. Clearly
this means a substantial investment for the network operators. Furthermore, mul-
ticast enabled routers are more complex and hence do not reach the extremely high

868 Mario Kolberg

performance of their simpler unicast counterparts [3]. Host group multicast routers
need to keep state for each group, whereas for multi-destination multicast, multiple
addresses are checked for each packet slowing packet processing down. Moreover,
there are a number of security and management issues still to be solved for multicast
[16]. For instance, flooding attacks are easier with multicast routers. Furthermore,
there is no standard billing model for multicast traffic accepted yet [22]. Naturally,
these issues are easier to manage in an Intranet environment, a reason why multicast
is easier deployed in such an environment.

3 Application Layer Multicast

IP multicast has great potential achieving considerable message sav-ings. However,
success of IP multicast depends on the deployment of multicast enabled routers.
As illustrated earlier, this deployment is rather slow and hindered by a number of
issues.

To be able to benefit from some of the multicast advantages, consi-derable work
has been undertaken implementing multicasting at the application layer. Like IP
multicast is implemented in network nodes (routers), Application Layer Multicast
is implemented by application nodes.

Application Layer Multicast [5, 20, 21] has been implemented for unstructured
overlays and also for structured overlays. Approaches for unstructured overlays can
be further categorized according to the routing organization.

In terms of routing table organization two approaches are distin-guished. Firstly,
those approaches that build a richly connected graph (mesh) first and then construct
the multicast tree using the graph are termed mesh-first approaches. The second
group of ap-proaches, which create the distribution tree first and then subse-quently
add additional links for control, are called tree-first ap-proaches. Sometimes Appli-
cation Layer Multicast approaches which work on a structured overlay are termed
implicit approaches, the structured overlay implicitly defines the mesh and the tree.

Key to the success of Application Layer Multicast approaches on P2P overlays is
the efficiency of the approach. Best results have been achieved with approaches that
consider the underlying topolo-gy, i.e., nodes which are close in the overlay are also
close in the un-derlying IP network. This is commonly done with approaches for
unstructured overlays, but more difficult with structured overlay approaches which
impose a predefined overlay topology.

Performance of Application Layer Multicast approaches is typically judged by
the Stretch (ratio of a one-way overlay delay between a pair of nodes over the delay
between the equivalent underlay nodes), Stress (number of times a packet traverses
an underlay link), and Control Overhead (number of control messages introduced
by the Application Layer Multicast approach).

In the following the three categories mesh-first, tree-first and impli-cit approaches
are further discussed by given more details on one or two particular approaches each.

Employing Multicast in P2P Overlay Networks 869

3.1 Mesh First Approaches (NARADA)

NARADA [13] was one of the first Application Layer Multicast protocols. Like
all Application Layer Multicast protocols, NARADA defines a root node, the Ren-
dezvous Point (RP). As this is a MESH first protocol, it is based on all participating
nodes being member of the mesh. If a node wants to join the mesh, it contacts the
RP to get a list of all other nodes in the mesh. The RP keeps track of all nodes in
the multicast group. Once the new node has the list of mesh mem-bers, it randomly
selects some of these nodes and contacts them with a Join-request. If one of these
nodes responds positively, the request has been successful. Otherwise, a different
set of nodes will be tried.

Once the new node has joined the mesh, it will start exchanging re-fresh mes-
sages with its neighbors. Join (and leave) messages will be propagated to all mem-
bers of the mesh. Hence each member is aware of new nodes joining and leaving.
Refresh messages are sent periodically, so neighbors notice if a node vanishes un-
gracefully. Distribution of the node states to all other nodes in the mesh comes at
a high maintenance cost: O(N2) with N being the number of nodes in the mesh.
Hence NARADA does not scale well to large group sizes, however, it balances this
with greater robustness.

In order to setup the multicast tree, all members of the mesh run a routing proto-
col to work out unicast paths between all pairs of nodes. If a node wants to send a
multicast message, the multicast data tree can be computed using the Reverse Path
Forwarding algorithm.

One important aspect of NARADA is its ability to refine the mesh. The quality of
a multicast tree is directly dependant to the quality of the links that form the mesh.
However, than new members join or nodes leave the mesh, random links are added to
the mesh (a new node joining contacts a random set of nodes of the list from the RP).
Hence NARADA nodes make periodic refinements to their links. These refinement
decisions are made by the pair of nodes involved in the link locally through simple
heuristics. Importantly, the RP is not involved in this decision.

3.2 Tree First Approaches

Yoid [17] is also one of the first Application Layer Multicast proto-cols but unlike
NARADA creates the multicast tree directly without creating a mesh first. Clearly
this gives direct control on some cha-racteristics of the trees and it is not dependant
on the quality of the mesh. HMTP (Host Multicast Tree Protocol) [34] is a protocol
rather similar to Yoid, with just slight variations.

Each node wishing join a tree is responsible for finding its parent in the tree. In
doing so a node which wants to join the tree contacts the RP first which responds
with a list of nodes which are already part of the tree. The new node then contacts
nodes from this list to find potential parents. A node can become a parent if this
does not cause a loop in the tree and its maximum number of children has not been

870 Mario Kolberg

reached yet. If a number of parents have been identified, the new node chooses one
of the nodes according to some criteria of interest.

The main difference of HMTP to Yoid is that HMTP sends a join request to the
RP. If the RP has already reached its maximum num-ber of children, it will return its
list of children. HMTP will then query these nodes to find the one nearest to itself.
If this one also has reached its maximum number of children, the node joining will
query these nodes and again find the one closest to itself. Once it finds a node which
can add the new node as a child, the new node has joined the tree. Thus HMTP adds
the element of “closeness” to the selection of the nodes. In both protocols, nodes
will periodically attempt to find better (i.e., closer to itself for HMTP) parents.

In terms of creating a mesh after tree construction, Yoid finds other nodes on the
tree at random, which are not its neighbors. Tree links together with these additional
links form the mesh and are used for tree partition recovery. HMTP does not create
an explicit mesh. Each node simply periodically discovers and caches information
about some other members.

3.3 Implicit Approaches

There are a number of ALM schemes which have been implemented on top of struc-
tured P2P overlays. Here the multicasting is per-formed by one- or many-to-many
communication across the nodes in the overlay.

Major examples of this approach are CAN multicast [28], Scribe [11] on Pastry
[30] as well as Bayeux [36] on Tapestry [35]. Here these two approaches employ
fundamentally different techniques: CAN uses a flooding based replication approach
whereas Bayeux and Scribe form a tree to distribute messages to group members.
Flood-ing and tree based approaches are discussed in the next two chapters in more
details.

It is important to note that implicit multicasting approaches are de-pendant on the
underlying overlay which usually has not been spe-cifically designed with multicast
in mind. Hence the structure is of-ten not optimal for multicast (with the exception
of topology aware overlays). To improve on the multicast routing three approaches
have been developed: proximity routing, topology-based node Id as-signment and
proximity neighbor selection [10, 29]. These con-cepts are briefly discussed below.

When using proximity routing the overlay is constructed as usual, without regard
for the underlying topology. However, when routing a message, not the entry in
the routing whose key is closest to the messages key is necessarily selected but
the entry in the routing ta-ble which is physically closest to the current node. This
approach can be extended slightly to select an entry from the routing table which is
a good compromise between progress in terms of the overlay id space and physical
closeness. While this approach might increase the number of hops to the destination,
it can substantially decrease the delay for each hop. Clearly the larger the routing
tables for each node, the more choice there is. The improvements are proportional
to the size of the routing tables. However, increased routing tables come at the cost

Employing Multicast in P2P Overlay Networks 871

of increased maintenance traffic. Hence while this approach can provide significant
improvements its cost/benefit ratio is worse than the other two approaches. CAN
and Chord [31] overlays have been augmented with this approach.

Topology-based node ID assignment aims at mapping the overlay onto the phys-
ical network in a way that two nodes which are close to each other in the physical
network are also close in the overlay. While this approach clearly brings perfor-
mance gains, it has several problems attached. The main one is that it sacrifices the
uniform population of the ID space. This makes it very difficult to implement this
approach on overlays which use a one-dimensional ID space, such as Chord and
Pastry. Even if it was possible to implement it on such networks, the non-uniform
population of the ID space will cause load balancing issues and can cause node
failure clusters. The latter is due to the fact that neighboring nodes are more likely
to suf-fer from correlated errors which negatively impact the robustness and also
security of the overlay, especially in overlays which dupli-cate entries in neighbor-
ing nodes. Despite the issues with this ap-proach it has yielded a delay stretch of 2
relative to the IP delay, when implemented with CAN.

Proximity neighbor selection also constructs a topology aware overlay. But here
it is not the node ID assignment which is changed, but rather choosing routing table
entries to link to the physically closest node out of all nodes with a node ID in the
desired portion of the ID space. This approach requires some flexibility in choosing
routing table entries without negatively affecting the number of hops for lookups.
Hence it does not work with overlays such as Chord or CAN which have a require-
ment that routing table entries link to par-ticular portions of the ID space. However,
as Castro et al point out it works well with prefix based overlay algorithms such as
Pastry.

An example of a structured overlay approach which was designed to be topology
aware from the start is TOPLUS. This has been aug-mented with an Application
Layer Multicast system called MULTI+ [19]. For the interested reader, Hosseini
et al provide a more com-plete list and comparison of Application Layer Multicast
protocols [20].

3.4 Strengths and Weaknesses

The different approaches to Application Layer Multicasting have different strengths
and weaknesses. Generally, tree first approaches create shared trees, whereas the
mesh first and implicit approaches create source-specific trees. But it cannot be con-
cluded that source-specific trees are necessarily the best trees for a particular source
as the choice for of a particular tree for a source node is limited by the structure
of the mesh. Mesh first approaches are limited in terms of the supported multicast
group size, so they are best suited for smaller groups. On the other hand, implicit ap-
proaches scale well to large group sizes. Implicit approaches also have a comparable
short path length (due to the routing algorithms of the structured overlay) whe-reas
for approaches based on unstructured overlays the path length is not limited. Hence

872 Mario Kolberg

latency sensitive applications are best supported by implicit approaches. In terms of
control overhead, mesh first al-gorithms pose the highest load as nodes send state
information to each other.

4 Conclusions

The main purpose for multicast is to make one-to-many and many-to-many commu-
nication more efficient. An IP multicast enabled network allows the source node to
send data to a number of nodes, with the sender only sending a single copy of the
data and the net-work nodes creating duplicate copies of the data and distributing
these to all the multicast group members.

IP multicasting (either as host group multicasting or multi-destination multicas-
ting) has the best potential to achieve this effi-ciency goal. However, host group
multicasting requires the setting up of multicast groups before being able to send
multicast messages. Furthermore it requires group states in routers. Both of these
characteristics make it not suitable for use with P2P overlay operations. P2P overlay
messages are typically sent to small, frequently changing groups whereas host group
multicasting is best suited to large, infrequently changing groups. Multi-destination
multicast is a better match with these requirements.

Table 1 Comparison of IP multicast and application layer multicast [20]

Issues IP multicast Application layer multicast

Multicast efficiency High Low-medium
Overhead Low-medium Medium-high
Ease of deployment Low High
OSI layer Network Application

However, deployment of multicast enabled routers in the Internet is slow, and
hence IP multicast is not yet widely used, leading to the introduction of Application
Layer Multicast. The main advantage of Application Layer Multicast is that it does
not rely on router support, and hence can be very easily be deployed. However,
due to the fact that the multicasting supported by end system hosts, the multicast
efficiency is not as high as with IP multicast. This is especially true for implicit
approaches which build the multicast trees based on a structured P2P overlay as
here the link between the overlay topology and the IP topology is weak. This issue
is being tackled by topology aware routing in structured overlays. The key concepts
of IP Multi-cast and Application Layer Multicast are summarized in Table 1.

There is also considerable work ongoing in creating hybrid ap-proaches combin-
ing Application Layer approaches with IP multi-casting. The IRTF Scalable Adap-
tive Multicast (SAM) Research Group is active in this area [7, 9].

Employing Multicast in P2P Overlay Networks 873

References

1. L. Aguilar, Datagram Routing for Internet Multicasting, Sigcomm 84, March 1984.
2. M. Ammar. Why Johnny Can’t Multicast: Lessons about the Evolution of the Internet. Keynote

- NOSDAV 2003.
3. H. Asaeda, B. Manning. Gap Analysis in IP Multicast Dissemination, in Sustainable Internet,

Lecture Notes in Computer Science 4866, Springer Verlag, 2007.
4. A. Ballardie. Core Based Trees Multicasting Architecture, Request for Comments (RFC)

2201, Internet Engineering Taskforce (IETF), Sept. 1997.
5. S. Banerjee, B. Bhattacharjee. A Comparative Study of Application Layer Multicast Protocols,

wmedia.grnet.gr/P2PBackground/a-comparative-study-ofALM.pdf
6. R. Boivie, N. Feldman, Y. Imai, W. Livens, D. Ooms, Explicit Multicast (Xcast) Concepts and

Options, Request for Comments (RFC) 5058, Internet Engineering Taskforce (IETF), Nov.
2007.

7. J. Buford. Hybrid Overlay Multicast Framework. IRTF SAM RG. draft-irtf-sam-hybrid-
overlay-framework-02. March08, Work in Progress.

8. J. Buford, A. Brown, M. Kolberg. Exploiting Parallelism in the Design of Peer-to-Peer Over-
lays, Computer Communications Journal, Elsevier Science, Vol. 31(3), 2008.

9. J. Buford, M. Kolberg. Hybrid Overlay Multicast Simulation and Evalua-tion, Proceedings 6th
IEEE Consumer Communications Networking Con-ference, Jan. 2009.

10. M. Castro, P. Druschel, Y. Charlie Hu, A. Rowstron. Topology-aware routing in structured
peer-to-peer overlay networks, in Future Directions in Distributed Computing, Lecture Notes
in Computer Science 2584, Springer Verlag, 2003, extended version: Microsoft Technical Re-
port MSR-TR-2002-82.

11. M. Castro, P. Druschel, A-M. Kermarrec , A. Rowstron. SCRIBE: A large-scale and decen-
tralised application-level multicast infrastructure, IEEE Journal on Selected Areas in Commu-
nications (JSAC) 2002.

12. R. Chalmers and K. Almeroth, Modeling the Branching Characteristics and Efficiency Gains
of Global Multicast Trees, IEEE Infocom, Anchor-age, AK, USA, April 2001.

13. Y. Chu, S.G. Rao, S. Seshan, H. Zhang. A case for end system multicast, IEEE Journal on
Selected Areas in Communications, Volume 20, Issue 8, Oct 2002 Page(s): 1456–1471.

14. J. Chuang and M. Sirbu Pricing multicast communications: A cost-based approach. In Pro-
ceedings of INET 1998.

15. S.E. Deering, D.R. Cheriton, Host groups: A Multicast extension to the Internet protocol,
Request for Comments (RFC) 966, Internet Engineer-ing Taskforce (IETF), Dec. 1985.

16. C. Diot, B. Levine, J. Lyles, H. Kasserm, D. Balensiefen. Deployment is-sues for the IP mul-
ticast service and architecture, IEEE Network, Jan. 2000.

17. P. Francis, Y. Pryadkin, P. Radoslavov, R. Govindan, B. Lindell. YOID: Your Own Internet
Distribution, work in progress, available from http://www.isi.edu/div7/yoid/docs/index.html.

18. Q. He, M. Ammar. Dynamic Host-Group/Multi-Destination Routing for Multicast Sessions.
Telecommunication Systems, Vol. 28, No. 3–4, pp. 409–433, March 2005.

19. L. Garces-Erice, E.W.Biersack. MULTI+: A robust and topology-aware peer-to-peer multicast
service, Computer Communications, Elsevier Science, Vol. 29, pp. 900–910.

20. M. Hosseini, D.T. Ahmed, S. Shirmohammadi, N.D. Georganas. A Survey of Application-
Layer Multicast Protocols, IEEE Communications Surveys & Tutorials, Vol. 9(3), 2007,
pp. 58–74.

21. K. Katrinis, M. May. Application-Layer Multicast, in Peer-to-Peer Systems and Applications,
Lecture Notes in Computer Science 3485, Springer Verlag, 2005.

22. L. Lao, J. Cui, M. Gerla, D. Maggiorini. A Comparative Study of Multi-cast Protocols: Top,
Bottom, or In the Middle?, Proceedings of 24th IEEE INFOCOM, 2005, pp. 2809–2814.

23. B. Leong, B. Liskov, and E. D. Demaine. EpiChord: Parallelizing the Chord Lookup Algo-
rithm with Reactive Routing State Management. Computer Communications, Elsevier Sci-
ence, Vol. 29, pp. 1243–1259.

874 Mario Kolberg

24. P. Maymounkov and D. Mazieres. Kademlia: A peer-to-peer information system based on the
XOR metric, Proceedings of IPTPS 2002, Cambridge, USA.

25. Luiz R. Monnerat and Claudio L. Amorim. D1HT: A Distributed One Hop Hash Table. In
Proceedings of the 20th IEEE International Parallel & Distributed Processing Symposium
(IPDPS), April 2006.

26. G. Phillips, S. Shenker, and H. Tangmunarunkit. Scaling of multicast trees: Comments on the
Chuang-Sirbu scaling law. ACM SIGCOMM 1999.

27. Protocol Independent Multicast Group, Internet Engineering Task Force,
http://www.ietf.org/html.charters/pim-charter.html

28. S. Ratnasamy, M. Handley, R. Karp, S. Shenker. Application-level Multicast using Content-
Addressable Networks, Proceedings of NGC 2001, pp. 14–29.

29. S. Ratnasamy, S. Shenker, I. Stoica. Routing algorithms for DHTs: Some open questions.
Proceedings of IEEE IPTPS 2002.

30. A. Rowstron, P. Druschel. Pastry: Scalable, distributed object location and routing for large-
scale peer-to-peer systems, IFIP/ACM International Conference on Distributed Systems Plat-
forms (Middleware), Heidelberg, Germany, pages 329–350, November, 2001.

31. I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, H. Balakrishnan. Chord: A Scalable Peer-to-
peer Lookup Service for Internet Applications, Proceedings ACM SIGCOMM 2001, August
2001.

32. P. Van Mieghem, G. Hooghiemstra, and R. van der Hofstad. 2001, On the efficiency of multi-
cast. IEEE/ACM Trans. Netw. 9, 6 (Dec. 2001), 719–732.

33. D. Waitzman, C. Partridge, S. Deering. Distance Vector Multicast Routing Protocol, Request
for Comments (RFC) 1075, Internet Engineering Taskforce (IETF), Nov. 1988.

34. B. Zhang, S. Jamin, L. Zhang. Host multicast: A framework for deliver-ing multicast to end
users, Proceedings IEEE Infocom 2002.

35. B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, J. Kubiatowicz. Tapestry: A
Resilient Global-scale Overlay for Service Deployment, IEEE Journal on Selected Areas in
Communications, January 2004, Vol. 22, No. 1.

36. S. Q. Zhuang, B. Y. Zhao, A. D. Joseph, Y H. Katz, J. D. Kubiatowicz. Bayeux: An archi-
tecture for scalable and fault-tolerant wide-area data dissemination, Proceedings of the 11th
International Workshop on Network and Operating Systems Support for Digital Audio and
Video, 2001, pp. 11–20.

Multicast Services over Structured P2P
Networks

Pilar Manzanares-Lopez, Josemaria Malgosa-Sanahuja, Juan Pedro Muñoz-Gea,
and Juan Carlos Sanchez-Aarnoutse

Abstract IP multicast functionality was defined as an efficient method to transmit
datagrams to a group of receivers. However, although a lot of research work has been
done in this technology, IP multicast has not spread out over the Internet as much
as expected, reducing its use for local environments (i.e., LANs). The peer-to-peer
networks paradigm can be used to overcome the IP multicast limitations. In this new
scenario (called Application Layer Multicast or ALM), the multicast functionality
is changed from network to application layer. Although ALM solution can be clas-
sified into unstructured and structured solutions, the last ones are the best option to
offer multicast services due to the effectiveness in the discovery nodes, their mathe-
matical definition and the totally decentralized management. In this chapter we are
going to offer a tutorial of the main structured ALM solutions, but introducing two
novelties with respect to related surveys in the past: first, the systematic descrip-
tion of most representative structured ALM solution in OverSim (one of themost

Pilar Manzanares-Lopez
Department of Information Technologies and Communications, Polytechnic University of Carta-
gena, Campus Muralla del Mar, 30202 Cartagena, Spain,
e-mail: pilar.manzanares@upct.es

Josemaria Malgosa-Sanahuja
Department of Information Technologies and Communications, Polytechnic University of Carta-
gena, Campus Muralla del Mar, 30202 Cartagena, Spain,
e-mail: josem.malgosa@upct.es

Juan Pedro Muñoz-Gea
Department of Information Technologies and Communications, Polytechnic University of Carta-
gena, Campus Muralla del Mar, 30202 Cartagena, Spain,
e-mail: juanp.gea.sanchez@upct.es

Juan Carlos Sanchez-Aarnoutse
Department of Information Technologies and Communications, Polytechnic University of Carta-
gena, Campus Muralla del Mar, 30202 Cartagena, Spain,
e-mail: juanc.sanchez@upct.es

X. Shen et al. (eds.), Handbook of Peer-to-Peer Networking, 875
DOI 10.1007/978-0-387-09751-0 31, © Springer Science+Business Media, LLC 2010

876 P. Manzanares-Lopez et al.

popular p2p simulation frameworks). Second, some simulation comparatives be-
tween flooding-based and tree-based structured ALM solution are also presented.

1 From IP Multicast to ALM

In the early 1990s, IP multicast functionality was defined as an efficient method to
transmit IP datagrams from a data source to a group of receivers. Although a lot
of research work has been done in this technology, IP multicasting has not spread
over the Internet as much as expected [5]. However, peer-to-peer (p2p) networks
can be used to overcome the spread limitations of other multicast technologies. The
p2p-based multicast solutions, which are also called Application Level Multicast
(ALM) solutions, performs data replication at end hosts and not on the router in-
frastructure. The end hosts are interconnected among them by unicast connections
and they are the only responsible for manage the group communication. Therefore,
the multicast functionality is changed from the network level (IP multicasting at
network elements) to the application level (at hosts).

ALM solutions can be classified into unstructured and structured solutions. How-
ever, the structured ALM solutions have some advantages in offering multicast ser-
vices due to the effectiveness in the discovery of data and nodes, their mathematical
definition and the totally decentralized management.

The main structured ALM solutions are not recent proposals (they are dated
around 2002), but there is no doubt that they are still of great importance [20]. For
example, in the last years, they have been used to offer Video on Demand (VoD) and
Internet Protocol Television (IPTV) services in response to the current multimedia
services requirements.

In this chapter we are going to offer a tutorial of the main structured ALM so-
lutions. This tutorial expects to offer to technical and nontechnical readers a global
knowledge of this alternative type of multicast communications. In order to facilitate
the non-expert readability, the descriptions will be complemented with different ex-
amples. For a complete description of each solution, the referenced original papers
can be consulted.

This chapter introduces two novelties with respect to other surveys in the past,
which just classified and summarized (in a technical way) the different structured-
based ALM solutions. First, we are going to describe a recent work done related to
these solutions: the codification of the most representative structured ALM solutions
in OverSim. OverSim is an open-source overlay network simulation framework
for the OMNeT++ simulation environment. We are going to present how Chord-
multicast (the most representative flooding-based ALM solution, which is based
on Chord) and Scribe (the most representative tree-based ALM solution, which is
based on Pastry) are implemented. This will allow readers to extract a methodol-
ogy to simulate any kind of overlay application in OverSim. Second, based on the
implementation of Chord multicast and Scribe, some comparatives of the most rep-
resentative solution of flooding-based and tree-based structured ALM solutions are
presented.

Multicast Services over Structured P2P Networks 877

2 Flooding-Based Structured ALM

In the flooding-based structured ALM solutions (also called overlay-per-group so-
lutions), all the members of a multicast group form a particular overlay. Therefore,
the multicast transmission is transformed into a broadcast transmission to all the
members of the overlay.

2.1 CAN-Multicast

In the middle of 2001, Content Addressable Network (CAN) [14] was introduced as
a distributed infrastructure that provides hash table-like functionality (which maps
key onto values) on Internet-like scales. Authors proposed the use of CAN not only
to peer-to-peer file sharing systems but also to any system that requires efficient
insertion and retrieval of content in a large distributed storage infrastructure. Some
months later, CAN-multicast [15] was presented as an extension of CAN framework
to support multicast service with the dual advantages of simplicity and scalability.

CAN based multicast uses the CAN structure to offer an application level mul-
ticast service. If all the nodes in a CAN system belong to a multicast group, mul-
ticasting a message only requires flooding the message over the CAN system. To
extend this concept, if a subset of CAN nodes are members of a multicast group,
CAN based multicast solution proposes to create a mini-CAN system composed of
members of the multicast group.

In this solution, the underlying CAN system is used to create the mini-CAN as
follows: The multicast group address is mapped onto a point, and consequently the
node of the original CAN that owns this point acts as the bootstrap node in the
construction of the mini-CAN, which is constructed by repeating the usual joining
process.

It can be noticed that a node only maintains routing information for those groups
for which it is a member or for which it serves as a bootstrap node. There is not
relation between the amount of information and the number of multicast sources
and, likewise, there is not relation to the number of multicast members.

Two mechanisms have been proposed to issue the multicast messages to the
group:

• The naive flooding algorithm. On receiving a new message, a node forwards it
to all its neighbors1 (except the neighbor from which it received the message)
only if that message has not been received yet. This is a simple mechanism but it
generates a large amount of duplicate messages.

• The efficient flooding algorithm. In this case, each node analyzes its virtual zone
and its routing table before forwarding a message. A multicast source node sends
a multicast message to all its neighbors. However, on receiving a message, a

1 As is defined in [14], in a d-dimensional space, two nodes are neighbors if their virtual zone
coordinates overlap along d−1 dimensions and abut along one dimension.

878 P. Manzanares-Lopez et al.

node will forward it depending on its relationship with the sender node. If the
node receives the message from a neighbor with which it abuts along dimension
i, it forwards the message to those neighbors with which it abuts along dimen-
sion 1 . . .(i−1) and the neighbors with which it abuts along dimension i on the
opposite side to that from which it received the message. To prevent looping, a
node does not forward a message along a particular dimension if the message has
already traversed at least half-way across the space from the source dimension
along that dimension. Of course, a node caches the received sequence number
and does not forward a message it has already received.

In Fig. 1 node A’s zone abuts along dimension 2 with the source node’s zone.
Therefore, node A should forward the multicast message to its neighbors with which
it abuts along dimension 1 and with which it abuts along dimension 2 on the opposite
side to the sender. In this case, there is not any node that satisfies the second con-
dition. On the other hand, node B’s zone abuts along dimension 1 with the source
node’s zone. Consequently, node B only forwards the multicast message to those
nodes with which it abuts along dimension 1 on the opposite side to the source
node. Node C abuts with source node along dimension 2. Therefore, it will forward
the message to all nodes with which it abuts along dimension 1 (that is, nodes F,
D and E) and to the nodes with which it abuts along dimension 2 on the opposite
direction to the sender (in this case, only node G).

As it can be observed, the efficient flooding algorithm does not eliminate the
duplicate packet completely. For example, nodes D and E will forward the same
message to node H. The original paper [15] proposes an extra rule to reduce the
amount of duplicates: If a node P receives a message along dimension 1 and it
should send the message to another node Q, node P only forwards the message to
Q if the corner CQ (the Q’s coordinate that abuts P along dimension 1 and has the
lowest values along dimensions 2 . . .d) is in contact with P. In our example, CH

corner is in contact with node E. Figures 1 and 2 show the behavior of the efficient
and the enhanced efficient flooding algorithms in our example.

2.2 DKS/Chord Multicast

Chord protocol [17, 18] was introduced in the middle of 2001 as a decentralized
lookup service to efficiently determine the node that stores a data item in a dis-
tributed network. Some years later, in 2003, the Distributed K-ary System (DKS)
[7] was introduced. DKS(N,k,f) is a family of infrastructures for building structured
peer-to-peer solutions. N is the maximum number of nodes that can be in the over-
lay, k is the “search arity” in the network and f is the degree of fault tolerance. In
fact, as DKS’s authors emphasize in the paper, DKS can be seen as a generalization
of the Chord system, but using different techniques to maintain the routing tables.

DKS authors propose in [6] a solution to adapt DKS (and therefore, it can also be
applied to Chord) to achieve multicast replication service in large scale and highly
dynamic environments. This proposal follows the same approach as CAN based

Multicast Services over Structured P2P Networks 879

Fig. 1 An example of the efficient flooding algorithm in a CAN-multicast system. The node re-
sponsible for the shadowed zone is the multicast data source

Fig. 2 An example of the enhanced efficient flooding algorithm in a CAN-multicast system. Note
that now there are no double packets in any

multicast: Members of a multicast group self-organize in an instance of Chord or
DKS(N,k,f). Consequently, a multicast transmission to a certain group just requires
to broadcast the Chord or DKS(N,k,f) instance associated to that group. However,
this proposal differs from the CAN based multicast in the flooding mechanism. As
it is explained in Section 2.1, the efficient flooding algorithm (and also its enhanced
version) produces redundant messages. The Chord/DKS flooding algorithm that is
called “correcting broadcast” eliminates any redundant packets.

880 P. Manzanares-Lopez et al.

In this solution, the underlying DKS(N,k, f) instance is used to create a new
DKS(Ng,kg, fg) corresponding to the multicast group g. Node n of DKS(N,k, f)
that first joins the group must determine the group parameters, that is, the value of
Ng, kg, fg and also the hast function Hg used to map the nodes onto the multicast
instance. These parameters and the address of node n should be available to allow
other nodes to join the system.

The “correcting broadcast” algorithm is able to deliver the multicast packets to
all the group members without redundant messages. It works as follows: the source
node sends the multicast message to all the nodes in its routing table associated to
the multicast group g. The routing table is analyzed level by level in the counter
clockwise direction. A multicast message is sent to the node responsible for each
interval. That message contains the multicast information and a limit value (Limit)
that indicates the receiving node which part of the ring should it cover during the
multicast process.

When a node n receives a multicast message from a node n′, it only sends the
multicast message to each node x that n considers responsible within the interval
(n,Limit). The limit value sent to each node x is computed to guarantee that the
intervals covered by two arbitrary nodes are disjoint.

Figure 3 represents an example of the “correcting broadcast” procedure2 corre-
sponding to a multicast group that has created a DKS(64,2, fg) instance. The overlay
infrastructure of a DKS instance with k=2 can be considered equivalent to a Chord
system infrastructure. Node 0, the multicast source in this example, sends a multi-
cast message to node 33 (the responsible node for interval [32,0) at level (1). The
limit value included in this message is 0. Next, it sends the multicast message to
node 18 (the responsible node for the next interval [16,32) at level (2). In this case,
the limit value is 33, the previous responsible node to which it has sent a multicast
message. Next, it sends the multicast message to node 8 (the responsible node for
the next interval [8,16) at level (3). In this case, the limit value is 18, the previ-
ous responsible node to which it has sent a multicast message. In the next level,
the responsible node of the interval ([4,8)) is also node 8. Therefore, node 0 does
not send the message again to node 8. Finally, node 0 sends the message to node
2 (the responsible node for the next interval [8,16) at level 5 with a limit value of
8). Observing the equivalent Chord routing tables, node 0 sends the message to all
the nodes in its routing table, which is analyzed from the last to the first entry. Each
message includes the multicast information and the limit value.

When a node receives the multicast message, it repeats the above process but
only sends the message to nodes in its routing table within the interval (node, re-
ceived Limit). For example, node 18 only sends the multicast message to nodes 29,
24 and 20, the only nodes of its routing table in the interval (18,33).

2 We consider that all nodes have updated routing tables by means of the “correction-on-use”
standard procedure defined in [7].

Multicast Services over Structured P2P Networks 881

Fig. 3 Multicast transmission in a DKS multicast system, where Ng=64 and kg=2. The overlay
infrastructure of this system can be considered equivalent to a Chord system overlay. Tables in the
left side are the routing tables of nodes 0 and 18 (using DKS nomenclature and also using Chord
nomenclature). Graph in the right side represents the data packet generation when node 0 is the
multicast source. The #i nomenclature in the figure indicates the order in which multicast data
packets are sent by a node

3 Tree-Based Structured ALM

In tree-based structured ALM solutions (also called tree-per-group solutions), nodes
from different multicast groups join the same overlay. Then, each multicast group
forms a particular multicast tree built on top of the overlay network.

3.1 Scribe

At the end of 2001, Pastry [16] was presented as a scalable, distributed object lo-
cation and routing substrate for peer-to-peer applications in a potentially very large
overlay network of nodes connected through the Internet. One of the peer-to-peer

882 P. Manzanares-Lopez et al.

Fig. 4 (a) Creation of multicast group tree in Scribe. Nodes 1250, 1253 and 3960 join the multicast
group whose rendez-vous node is 7876. (b) Data dissemination in Scribe. Any node can deliver
data to the multicast group rendez-vous point (node 7876). Next, that node will start the data
dissemination along the multicast tree

application which uses Pastry as substrate is Scribe [2]. Scribe, which is defined as
a scalable publish/subscribe system, is in fact an ALM service: A topic (multicast
group) is created, some nodes join the topic (multicast group’s members) and an ef-
ficient multicast tree is built for an efficient dissemination of events (multicast data)
to the topic’s subscribers.

Unlike CAN based multicast and DKS/Chord multicast solutions, where the
members of each multicast group must create a different CAN or DKS/Chord in-
stance, the Scribe system is common to all the multicast groups. A multicast group
is identified by the hash of the multicast group’s textual name concatenated with
its creator’s name. Scribe node whose key-identifier is closest to the group-key-
identifier will act as the rendez-vous point for the multicast group, as the root node
in the multicast tree creation, and as the first multicast information forwarder.

The tree is formed by joining the routes from each member to the rendez-vous
point. When a Scribe node wants to join a multicast group, it must send a subscrip-
tion message toward the rendez-vous point of that group using the Pastry routing
algorithm. Each node along the route checks if it is already part of that multicast
tree. If the node is not already part of the multicast tree, it creates a children ta-
ble for the multicast group and adds an entry containing the IP address and node
identifier of the sender node. Then, the node sends the subscription message to the
next node along the route to the rendez-vous point (the new branch composed of
the joining node and its parent must join the multicast tree). However, if the node is
already part of the multicast tree, it just accepts the source node as a child, adding a
new entry in the children table of the multicast group, but the subscription message
is not forwarded toward the rendez-vous point. As it can be seen, some scribe nodes
of a multicast tree are members of that multicast group, but other scribe nodes are
just “multicast information forwarders”.

In Fig. 4a, node 1250 sends a subscription message toward the node responsible
for the multicast group-key-identifier 7876. Node 7532 receives the message, creates
a children table for that multicast group and adds an entry containing node 1250’s
information. Then, 7532 routes the message toward the multicast group root. When
node 1253 joins the group, the subscription message also reaches node 7532. Due

Multicast Services over Structured P2P Networks 883

to now that node forms part of the multicast group tree, it just adds a new entry to
the associated children table.

To offer reliability, each multicast tree must be maintained. Each parent node
should periodically send heartbeat messages to all its children. The absence of
heartbeat messages makes a child suspect that its parent has failed. In this case,
the node sends a new subscription message to join the multicast tree again. On the
other hand, when a Scribe node wants to leave a multicast group, it must check its
children table. If there are no entries (it is a leaf node), it sends an unsubscription
message to its parent in the multicast tree. When the parent receives the unsubscrip-
tion message, it updates its children table removing the entry about the departing
node. If the routing table is now empty, it sends the unsubscription message to its
parent. Otherwise, the message stops in that node.

Any Scribe node can deliver information to any multicast group. The sender just
routes the messages to the multicast group’s rendez-vous node and then, the rendez-
vous node disseminates the messages along the multicast tree (see Fig. 4b). Each
node will send the data messages to all the nodes within the associated children
table.

3.2 Bayeux

At the beginning of 2001, Tapestry [21] was presented as an overlay location and
routing infrastructure that provides location-independent routing of messages di-
rectly to the closest copy of an object or service without any centralized resources.
The inspiration for Tapestry, and also for Pastry, was the location and routing mech-
anisms introduced by Paxton, Rajamaran and Richa (PRR) in [13]. Some months
later, Bayeux [22] was presented as an efficient ALM solution built on Tapestry.

Like Scribe, it supports multiple groups and it builds a multicast tree per group.
However, trees are built in a quite different method. A member joins a multicast
group by sending a join message toward the root (that is, toward the surrogate node
of the multicast group-key-identifier). Then, the root node adds the identity of the
new member to its list of receiver node IDs that it is responsible for, updates its
forwarding table, and uses Tapestry to route another message (a tree message) back
to the new member. Every Bayeux node along the tree message route adds the new
member identifier to its list of receiver node IDs, updates its forwarding table and
resends the message. Any Tapestry node can deliver information to any multicast
group. The sender just routes the information to the multicast group’s root and then,
the root disseminates the messages along the multicast tree. Each node duplicates
(if it is necessary) and forwards data packets according to its forwarding table.

In Fig. 5a, nodes 1250, 1253 and 3960 send a join message toward the multicast
group root. Each time the root (node 7876) receives a join message, it routes a tree
message toward the new member. That tree message, which goes through different
nodes from the join message, is used to fill out the forwarding table at each involved
node.

884 P. Manzanares-Lopez et al.

Fig. 5 (a) Creation of a multicast group tree in Bayeux. Multicast members send a join message
to the surrogate node of the multicast group-key-identifier (node 7876). This node routes a tree
message to each new member. Those tree messages are used to updated the forwarding table of the
involved nodes. (b) Data dissemination in Bayeux. Any node can send data to the multicast group
rendez-vous node (node 7876). Next, that node will start the data dissemination along the multicast
tree

Comparing Scribe and Bayeux solutions, both create very different multicast
trees. A Scribe multicast tree is formed by the Pastry routes from each member to the
multicast group root. However, a Bayeux multicast tree is formed by the Tapestry
routes from the root to each member. Therefore, the Scribe root node cannot auto-
matically rebuild the tree if one of the intermediate nodes fails. In addition, Tapestry
works better than Pastry under a dynamic scenario. As a consequence, Scribe net-
work management is more intensive than in Bayeux. On the other hand, Bayeux
requires more nodes to maintain group membership information (each node in a
route maintains information about leaf nodes in that route). Scribe nodes only main-
tain information about their children. Therefore, in Scribe, the join and departure
messages are both rapid to process and easier to manage than in Balleux.

4 OverSim: A Useful P2P Simulation Tool

Nowadays, there are several open-source P2P simulation frameworks available;
next, we briefly describe the most relevant ones.

Multicast Services over Structured P2P Networks 885

P2PSim [10] is a discrete event simulator for structured P2P networks written in
C++. It was developed in the IRIS project at the Massachusetts Institute of Tech-
nology. There are a range of different underlying network models, including: end-
to-end time graph, G2 graph, GT-ITM, random and Euclidean. It can simulate up to
3,000 nodes on a single PC. However, it is largely undocumented and therefore hard
to extend. Additionally, it has a limited set of statistics.

PeerSim [11] uses query-cycle or discrete-event techniques to simulate unstruc-
tured P2P networks. It is written in Java, and it was developed in the BISON project
at the University of Bologna (Italy). The components can be implemented to gather
statistical data and it can simulate up to 1,000,000 nodes. However, the underly-
ing communication network is not modeled and only the query-cycle simulator is
documented. In any case, it has no any build-in facilities to simulate structured P2P
systems.

PlanetSim [12] is a discrete event simulator written in Java. It was developed in
the Planet project at the University of Rovira i Virgili (Spain). It has a detailed tuto-
rial and it can simulate up to 100,000 nodes. Its design is thoroughly documented.
However, it has a limited simulation of the underlying TCP/IP network and it does
not provide any mechanism to gather statistics. Therefore the programmer must im-
plement it.

OverSim [19] is a new simulation framework based on the well-known discrete
event simulator OMNeT++ [9]. It has been developed in the ScaleNet project at the
University of Karlsruhe (Germany). It can simulate up to 100,000 nodes and its de-
sign is thoroughly documented. Several overlay protocols are already implemented
and most of them are structured P2P protocols, like Chord, Koorde and Pastry.
Unstructured peer-to-peer protocols like GIA are available as well. It implements
three underlying network models: In the so-called Simple model, data packets are
sent directly from one overlay node to another by using a global routing table. The
INET underlay model includes simulation models for all network layers (MAC, IP,
TCP/UDP). Finally, in the SingleHost underlay model each OverSim instance only
emulates a single host, which can be connected to other instances over an existing
real network; that is, overlay nodes are simulated but the MAC, IP, TCP/UDP layers
work in a real scenario. The source code and the API are well documented and the
simulator is able to collect statistical data.

A more comprehensive survey of P2P simulation frameworks can be found in [8].
Among all the available tools OverSim has been chosen because of its flexibility: Its
modular design and the use of the Common API [4] facilitate its extension with new
protocols. In addition, its flexible underlying network scheme can be very useful
during the application development. Another reason to select OverSim is that its
code is well documented.

In this section it is introduced OMNeT++, the well-known network simulation
software, used by OverSim to simulate physical, link and network OSI layers. Next,
OverSim simulation tool is presented. Finally, the Chord-multicast and Scribe pro-
tocol implementations in OverSim are described. Scribe implementation was devel-
oped by the OverSim programmers and Chord-multicast has been developed by the
authors of this chapter. Scribe ALM solution has been chosen to be studied because

886 P. Manzanares-Lopez et al.

it was already implemented in OverSim. On the other hand, Chord-multicast has
been chosen because it was very easy to implement in OverSim.

4.1 OMNeT++

OMNeT++ is a well-known open-source network simulation engine and it is one
of the most used simulation frameworks for the research community. Additionally,
its coding procedure is well documented and it also offers a multiplicity of network
simulation models already implemented.

The development of a simulation model with OMNeT++ has several steps, which
are briefly pointed out:

1. Description of the system structure using the NED language. This step consists
of defining the modules which compose our system and the relationship among
them. This modules are called simple modules, and are described in NED files.
In addition, a file for the network module must be created, which is a module
composed by the simple modules created before. The modules are interconnected
among them using unidirectional gates, and they communicate among them by
means of messages.

2. Implementation of the simple modules in C++. In this step the actions of each
simple module are implemented. Every simple module is coded by means of a
derived class by inheritance of the class cSimpleModule. The node functionality
must be implemented in the handleMessage() method. This function is invoked
by the simulation kernel when a message arrives to a module.

3. Compilation. In order to obtain an executable, the modules are compiled and
linked with the simulation library.

4. Configuration of the simulation. It is necessary to establish the appropriate pa-
rameters for every simulation in the omnetpp.ini file.

OMNeT++ implements many features needed for visualization. The built-in GUI
displays network topologies, nodes and messages. Its features allow for deeper in-
spection of message contents and node variables. The GUI can be disabled for faster
simulation.

4.2 OverSim

OverSim is an overlay simulation tool built over OMNeT++ as simulation engine.
The layered structure of this simulator appears in Fig. 6 [1]. OverSim includes all
the facilities about underlay and overlay networks (and its primitives). Users only
need to code the overlay application in the application layer.

The communication between the overlay layer and the application layer uses the
API described and well documented in [4]. It should be noted that the application

Multicast Services over Structured P2P Networks 887

layer is at the same time divided into two different sublayers (Tier 1 and Tier 2)
as shown in Fig. 6. A simple application can be programmed at Tier 1 sublayer
(for example, the KBRTestApp). However, more complex applications which use
the services provided by the application implemented at Tier 1 (for example, DHT)
must be programmed at Tier 2 (DHTTestApp).

Simple INET SingleHost

Chord ...GiaPastry

TestApp
KBR DHT

Statistics

...

Boot−
strapping

Observer
Global

Configurator

DHT
interface

KBR
interface

interface
UDP

Tier 2

Tier 1

Application

Overlay

Underlay

Example AppDHT TestApp

Fig. 6 OverSim layered structure

To build a P2P simulation using OverSim it is necessary to implement the mod-
ules in the application layer and to define the messages which will be interchanged
among them. Then, the files are compiled in order to obtain an executable instance
of the program.

4.3 Chord-Multicast Implementation

4.3.1 Simulator Structure

We have implemented a simulation model of the Chord-Multicast network for the
OverSim framework. The architecture of this model can be seen in the Fig. 7. The
fact that each multicast group requires the creation of a new Chord overlay network
determines the most relevant characteristics of the Chord-multicast implementation.
First, n Chord-Multicast modules (Chord-Mult-1, ..., Chord-Mult-n) are added in
the overlay layer. Each of this modules is used by a different multicast group. The
functionality of these modules is equivalent to the Chord module, but adding the
multicast transmission facility. Secondly, the communication between the Applica-
tion layer and the Chord module follows the previously described KBR interface.

888 P. Manzanares-Lopez et al.

However, we have created a new interface for the communication with the Chord-
Multicast modules (Chord-Mult interface).

Simple INET SingleHost

Statistics

...

Boot−
strapping

Observer
Global

Chord

Configurator

interface
UDP

Overlay

Underlay

Application App

...

KBR
interface interface

Chord−Mult

Chord−Mult−1 Chord−Mult−n

Fig. 7 Chord-multicast simulator structure

4.3.2 Functionality

When a node wants to join to a specific Chord-Multicast group, it needs to dis-
cover the bootstrap node of that multicast group. This node is obtained performing
a lookup operation in the Chord network, using the multicast group identifier as the
Key. This operation involves the use of the route() function of the KBR interface,
which will route the query to the node responsible of the associated key. In this
node, the query will be directed towards the application layer (App), which imple-
ments an storage functionality that associates the identifier of the multicast group
with the IP address of the bootstrap node for that group. This information will be
replied towards the requester node (that is, the new multicast node).

Next, the node uses the Chord-Mult interface to join the desired multicast group.
This operation is performed using the join(bootstrapNode) function. The Chord-
Mult module takes the bootstrap node and joins to the specific Chord-Multicast
overlay network in the same way as Chord.

Once a node has joined to the multicast group, it can send a multicast message to
the members of this group. That is done using the broadcast() operation. When the
Chord-Mult module receives this request, it consults its Finger Table with direction
down-up, and sends a multicast message to every node in this table. In addition,
every multicast message is attached with a limit field that represents the previous
destination node of the multicast message (the chord-multicast broadcast function-
ality is described in Section 2.1).

Multicast Services over Structured P2P Networks 889

When the rest of nodes receive the multicast message, they will perform an equiv-
alent operation, but they will make sure that the identifier of the node is always
smaller than the limit field of the received message.

Simple INET SingleHost

Statistics

...

Boot−
strapping

Observer
Global

Configurator

KBR
interface

interface
UDP

Tier 2

Tier 1

Application

Overlay

Underlay

Pastry

App

Scribe

Fig. 8 Scribe simulator structure

4.4 Scribe Implementation

4.4.1 Simulator Structure

The OverSim developers have programmed a Scribe simulation model. Contrary to
Chord-multicast, in scribe each multicast group uses the Pastry overlay to manage
all the Scribe functionality. Therefore, the structure of the simulator strongly fits
in with the OverSim structure. Figure 8 represents the architecture of this simula-
tion model. Due to this fact, the Scribe functionality could be implemented in the
application layer.

4.4.2 Functionality

In this case, the Application can communicate with the Scribe multicast functional-
ity using three operations: joinGroup(GroupIdentifier), leaveGroup(GroupIdentifier)
and sendDataToGroup(GroupIdentifier), that are used to join, to leave and to send
data to a specific group, respectively.

890 P. Manzanares-Lopez et al.

Each multicast group is associated to a key (the GroupIdentifier). Thus, the node
responsible of that key becomes the root (rendez-vous point) of the multicast group
tree. Nodes join the group using the joinGroup(GroupIdentifier) function. This func-
tion makes two operations: first, it inserts the group into a list of groups associated
to this node; and secondly, it sends a subscription message towards the rendez-vous
point of that group using the route function implemented in Pastry. When a node
received this kind of message, it checks if it is a member of the multicast group
tree. If so, it terminates the subscription message forwarding; otherwise, it inserts
its relevant node information into the message and forwards it towards the rendez-
vous point, thus subscribing to the multicast group tree. In either case, it adds the
information of the previous node to its list of children in the group multicast tree.

Any overlay node may multicast a message to the group using the sendDataTo
Group(GroupIdentifier) function. This function routes the message using the GroupI-
dentifier as key. Upon receiving this message, the root of the multicast tree forwards
the message to its children in the tree, and so on recursively until reaching the leaves
of the tree. Finally, the leaveGroup() function deletes the group information from
the list of groups the node belongs to.

5 Performance Evaluation

This section shows the performance evaluation of a flooding-based multicast ap-
proach (Chord-multicast) and a tree-based multicast approach (Scribe) using Over-
Sim simulator. The flooding approach to provide multicast creates a separate overlay
network per multicast group and leverages the routing information already main-
tained by a group’s overlay to broadcast messages within the overlay. The tree ap-
proach uses a single overlay and builds a spanning tree for each group, on which
the multicast messages for the group are propagated. In [3] authors examine the
performance of tree and flooding approaches, on Pastry and CAN. Authors evalu-
ated the delay to deliver multicast messages, the network load and the nodes load.
Results show that the tree-based approach achieves lower delay and overhead than
flooding-based approach. The biggest disadvantage of flooding approach is the cost
of constructing an overlay for each group. They also show that multicast trees built
using Pastry provide higher performance than one built using CAN. In the same
way, the flooding approach works better in CAN than in Pastry.

In this work we evaluate Chord-multicast and Scribe using OverSim simulator.
The underlay model used in the simulations has been the Simple network model.
With this model the underlying network is not simulated, that is, the messages are
directly sent from one overlay node to another one. The churn model for the dy-
namic scenario is the LifetimeChurn model, where the lifetime and deadtime follow
a Weibull distribution with mean 10,000 seconds. Results are obtained for differ-
ent scenarios, varying the number of nodes and the multicast group sizes. In all the
figures, the X-axis values (a/b) represent an scenario composed of a Chord (or Pas-
try) nodes, of which only b nodes join the same multicast group. For example, the

Multicast Services over Structured P2P Networks 891

500/125 value represents an scenario composed of 500 Chord (or Pastry) nodes, of
which 125 nodes join the same multicast group.

The result associated to each scenario is the mean value of the results obtained
after running five independent simulations. The confidence intervals obtained in all
the cases are very reduced. For that reason, to simplify the figures, they are not
represented.

500/125 500/250 1000/250 1000/500 2000/500 2000/1000 5000/1250 5000/2500
0

500

1000

1500

2000

2500

3000

Total Number of Nodes/ALM Number of Nodes

A
ve

ra
ge

 N
um

be
r

of
 M

es
sa

ge
s

Chord−Multicast

Scribe

Fig. 9 Average number of application layer data messages in a multicast transmission

Figure 9 represents the average number of data messages that a multicast trans-
mission involves. That is equivalent to the number of nodes involved in the multicast
process. In the Chord-Multicast scenario the results match with the multicast group
size, and they are independent of the total number of nodes in the network. Us-
ing the Chord multicast system, the multicast members create a mini-Chord. Then,
the Chord-multicast procedure distributely generates just one data packet for each
member. On the other hand, in the Scribe scenario the average number of messages
is always greater than in the Chord-Multicast case. Each multicast tree in Scribe is
formed by Scribe nodes joined to the group, but also by Pastry nodes that act just as
forwarders, and all the nodes in the tree receives the data message to contribute to
the forwarding procedure to all the multicast group members. However, this excess
number of data messages is not so important as it could be expected. In most of
the scenarios, the size of the key space (usually 2160) is much greater than the size
of the network. In this situation, Pastry routing algorithm allows a node to reach
the rendez-vous point node in a few hops (the average path length has a complex-
ity of O(logN)). Therefore, the generated Scribe tree has a very limited depth, and
consequently the number of non-multicast forwarder nodes is minimized. Another
important conclusion in Scribe is that the excess number of data packets (respect to

892 P. Manzanares-Lopez et al.

1 2 3 4 5 6 7 8
0

250

500

750

1000

1250

1500

Total Number of Nodes/ALM Number of Nodes

T
ra

ffi
c

C
on

tr
ol

 R
at

e
(k

bp
s) Chord−Multicast

Scribe

Fig. 10 Control traffic rate in chord-multicast and scribe

the multicast group size) depends on the total size of the overlay network, although
that dependence is not strong due to the reason explained before.

Figure 10 represents the control traffic rate in the Chord-Multicast and Scribe
scenarios after a multicast group is formed (that is, the control traffic associated to
the joining of all the nodes is not considered). In Chord-Multicast, it is assumed
that the control traffic is due to stabilize(), fix fingers() and notify() functions. Every
node runs stabilize() periodically to learn about newly joined nodes. The function
stabilize() in node n notifies (by means of notify() function) to its successor of its
existence, giving the successor the chance to change its predecessor to n. Each node
periodically calls fix fingers() function to initiate its finger table and to actualize and
verify all the finger table entries. The stabilize message is sent every 20 seconds,
and it has a length of 256 bits. The notify message has a length of 256 bits. Finally,
fix fingers messages are sent every 120 seconds, and they have a length of 264 bits.

In Scribe, it is assumed that the control traffic is composed by the heartbeat
messages, the refresh messages and the control traffic due to the routing table main-
tenance in Pastry. Periodically, each non-leaf node in the tree sends a heartbeat
message to its children. A child suspects that its parent is faulty when it fails to re-
ceive heartbeat messages. Upon detection of the failure of its parent, a node calls
Pastry to route a join message to the group’s identifier. Pastry will route the message
to a new parent, thus repairing the multicast tree. On the other hand, children table
entries are discarded unless they are periodically refreshed by an explicit message
from the child. The heartbeat message is sent every 3 seconds, and it has a length
of 168 bits. On the other hand, refresh messages are sent every 10 seconds, and the
have a length of 368 bits.

Multicast Services over Structured P2P Networks 893

500/125 500/250 1000/250 1000/500 2000/500 2000/1000 5000/1250 5000/2500
0

250

500

750

1000

1250

1500

Total Number of Nodes/ALM Number of Nodesa

T
ra

ffi
c

C
on

tr
ol

 R
at

e
(k

bp
s) Chord−Multicast

Scribe

Fig. 11 Control traffic rate in chord-multicast and scribe in a dynamic scenario

In this figure, it can observed that the control traffic rate is always much greater
in Chord-Multicast than in Scribe. In both cases, this control traffic is mainly due
to the Chord ring and Pastry infrastructure maintenance. In Chord-multicast, each
node must check each routing table entry independently of the number of nodes.
However, in Pastry only the filled entries are checked. If more than one multicast
group coexisted at the same time, the Pastry control traffic would be shared by all of
them. However, in Chord-multicast, each multicast group requires its own overlay
network infrastructure maintenance.

It is also interesting to point out that the scenario studied in Fig. 10 corresponds
with an ideal scenario, without node joining, leaving and failures (that is, without
churn). Therefore, that figure represents in fact background maintenance traffic.
Figure 11 represents the results obtained in a dynamic scenario. In this case, the
control traffic is always higher in both ALM systems. However, this increase is
higher in Chord multicast than in Scribe.

Finally, Fig. 12 shows the average number of overlay hops to reach all the multi-
cast group members. This parameter is directly related with the delay and the band-
width required to perform the multicast communication. In Scribe, the number of
overlay hops depends on the overlay network size as well as on the multicast group
size. Obviously, in Chord-multicast the number of overlay hops only depends on the
multicast group size. In addition, the obtained simulation results seem to suggest
that, in Chord-multicast scenarios, the increment of this parameter with the mul-
ticast group size follows a logarithmic law, which is beneficial for large multicast
group sizes.

894 P. Manzanares-Lopez et al.

500/125 500/250 1000/250 1000/500 2000/500 2000/1000 5000/1250 5000/2500
0

1

2

3

4

5

6

7

8

9

Total Number of Nodes/ALM Number of Nodes

A
ve

ra
ge

 N
um

be
r

of
 H

op
s

Chord−Multicast

Scribe

Fig. 12 Average number of overlay hops to reach all the multicast members

6 Summary

IP Multicast technology has not spread over the Internet as much as expected. Nowa-
days, overlay networks have become an alternative solution to offer multicast ser-
vices. In these solutions, which are called Application Level Multicast (ALM), mul-
ticast end hosts are the only elements in charge of the multicast functionality. In this
paper we have described the main ALM solutions based on structured P2P solutions,
which are classified into flooding-based solutions and tree-based solutions.

Some performance metrics of the most representative solution of both alterna-
tives (Chord-multicast and Scribe) have been evaluated by means of simulation.
Among the available open-source P2P simulation framework, OverSim has been
chosen because of its flexibility and well documented code. These characteristics
have allowed to easily implement Chord-multicast, contributing to the OverSim
community.

7 Future Research Directions

The multicast services over structured P2P networks can facilitate the rapid de-
ployment of the Information Technologies in those scenarios in which IPv4 infras-
tructure cannot. For example, multimedia distribution services like VoD or live-TV
(IPTV) can be implemented using, among others, multicast structured P2P services

Multicast Services over Structured P2P Networks 895

for both managing and transmission purposes. Nevertheless, a research work must
be done in order to guarantee the demanding QoS requirements of these services.

Traditionally there are two scenarios in which multimedia contents distribution
can take place: ISP private distribution networks and Internet. However, recently a
new scenario has arisen in the market. It is known as in-home and in-building (or
community) network. In this case, the network is commonly built using the low-
power communication infrastructure with the PLC (Power Line Communications)
technology as a transmission media. However, this media presents strong asymme-
tries among the set of outlets (i.e., the connection point). This fact recommends
the use of self-organized multicast distribution systems to distribute the information
and manage the group membership. It is an open question how each structured ALM
solution works in this new scenario and what are their performance metrics.

Acknowledgement

This research has been supported by project grant TEC2007-67966-C03-01/TCM
(CON-PARTE-1) and it is also developed in the framework of “Programa de Ayu-
das a Grupos de Excelencia de la Region de Murcia, de la Fundacion Seneca,
Agencia de Ciencia y Tecnologia de la RM (Plan Regional de Ciencia y Tecnolo-
gia 2007/2010)”. Juan Pedro Muñoz-Gea also thanks the Spanish MEC for a FPU
(AP2006-01567) pre-doctoral fellowship.

References

1. Baumgart, I., Heep, B., Krause, S.: OverSim: A Flexible Overlay Network Simulation Frame-
work. In: Proceedings of 10th IEEE Global Internet Symposium (GI’07), May 11, pp. 79–84.
IEEE (2007)

2. Castro, M., Druschel, P., Kermarrec, A.M., Rowstron, A.: Scribe: A Large-scale and Decen-
tralized Application-level Multicast Infrastructure. IEEE Journal on Selected Areas in Com-
munications 20(8), 100–110 (2002)

3. Castro, M., Jones, M.B., Kermarrec, A.M., Rowstron, A., Theimer, M., Wang, H., Wolman,
A.: An Evaluation of Scalable Application-level Multicast Built Using Peer-to-peer Overlays.
In: Proceedings of the IEEE INFOCOM, San Francisco, April, IEEE (2003)

4. Dabek, F., Zhao, B., Druschel, P., Stoica, I.: Towards a Common API for Structured Peer-to-
Peer Overlays. In: Proceedings of the 2nd International Workshop on Peer-to-Peer Systems,
20-21 February, pp. 33–44. Springer (2003)

5. Diot, C., Levine, B.N., Lyles, B., Kassem, H., Balensiefen, D.: Deployment Issues for the
IP Multicast Service and Architecture. IEEE Network, Special Issue on Multicasting 14(1),
78–88 (2000)

6. El-Ansary, S., Alima, L.O., Brand, P., Haridi, S.: Efficient Broadcast in Structured P2P Net-
works. In: Proceedings of the 2nd. International Workshop on Peer-to-Peer Systems (IPTPS),
LNCS 2735, Berkeley, CA, USA, February 20–21, pp. 304-314. Springer (2003)

7. Ghodsi, A., Alima, L.O., El-Ansary, S., Brand, P., Haridi, S.: DKS(N,k,f): A Family of
Low Communication, Scalable and Fault-Tolerant Infrastructures for P2P Applications. In:

896 P. Manzanares-Lopez et al.

Proceedings of the 3rd. International Workshop on Global and P2P Computing on Large Scale
Distributed Systems (CCGRID2003), Tokyo, Japan, May 12-15, pp 344–350. IEEE (2003)

8. Naicken, S., Livingston, B., Basu, A., Rodhetbhai, S., Wakeman, I., Chalmers, D.: The State
of Peer-to-Peer Simulators and Simulations. ACM Computer Communications Review, 37(2),
pp. 95–98. ACM (2007)

9. OMNet++ Discrete Event Simulation System. http://www.omnetpp.org/
10. P2PSim: A Simulator for Peer-to-Peer Protocols. http://pdos.csail.mit.edu/p2psim/.
11. PeerSim: A Peer-to-Peer Simulator. http://peersim.sourceforge.net/.
12. PlanetSim: Object Oriented Simulation Framework for Overlay Networks.

http://planet.urv.es/trac/planetsim/.
13. Plaxton, C.G., Rajaraman, R., Richa, A.W.: Accessing Nearby Copies of Replicated Objects

in a Distributed Environment. In: Proceedings of the 9th. ACM Annual Symposium on Paral-
lel Algorithms and Architectures, pp. 311–320, New York. ACM (1997)

14. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A Scalable Content-
Addressable Network. In: Proceedings of ACM SIGCOMM, San Diego, CA, USA, August
27-31, pp. 161–172. ACM (2001)

15. Ratnasamy, S., Handley, M., Karp, R., Shenker, S.: Application-level Multicast using
Content-Addressable Networks. In: Proceedings of the 3rd. International Workshop of Net-
worked Group Communication (NGC), LNCS 2233, London, UK, November 7-9, pp. 14–29.
Springer (2001).

16. Rowstron, A., Druschel, P.: Pastry: Scalable, Decentralized Object Location and Routing for
Large-Scale Peer-to-Peer Systems. In: Proceedings of the IFIP/ACM International Confer-
ence on Distributed Systems Platforms (Middleware), LNCS 2218, Heidelberg, Germany,
November 12–16, pp. 329–350. Springer (2001)

17. Stoica, I., Morris, R., Karger, D.R., Kaashoek, M.F., Hari, Balakrishnan H.: Chord: A Scalable
Peer-to-Peer Lookup Service for Internet Applications. In: Proceedings of ACM SIGCOMM,
San Diego, CA, USA, August 27–31, pp. 149–160. ACM (2001)

18. Stoica, I., Morris, R., Liben-Nowell, D., Karger, D.R., Kaashoek, M.F., Dabek, F., Bal-
akrishnan, H.: Chord: A Scalable Peer-to-peer Lookup Protocol for Internet Applications.
IEEE/ACM Transactions on Networking. 11(1), 17–32 (2003)

19. The OverSim P2P Simulator. http://oversim.org/.
20. Yiu, W.P.K., Jin, X., Chang, S.H.G.,: Vmesh: Distributed segment storage for peer-to-peer

interactive video streaming. IEEE Journal on Selected Areas in Communications 25(9),
1717–1731 (2007)

21. Zhao, B.Y., Huang, L., Stribling, J., Rhea, S.C., Joseph, A.D., Kubiatowicz, J. D.: Tapestry:
A Resilient Global-Scale Overlay for Service Deployment. IEEE Journal on Selected Areas
in Communications 22(1), 41–53 (2004)

22. Zhuang, S.Q., Zhao, B.Y., Joseph, A.D., Katz, R.H., Kubiatowicz, J.D.: Bayeux: An Archi-
tecture for Scalable and Fault-tolerant Wide-area Data Dissemination. In: Proceedings of the
11th. International Workshop on Network and Operanting Systems Support for Digital Audio
and Video (NOSSDAV01), Port Jefferson, NY, USA, June 25–26, pp. 11–20. (2001)

Multicast Routing in Structured Overlays
and Hybrid Networks

Matthias Wählisch and Thomas C. Schmidt

Abstract Key-based routing has enabled efficient group communication on the ap-
plication or service middleware layer, stimulated by the need of applications to ac-
cess multicast. These developments follow a continuous debate about network layer
multicast that had lasted for about 30 years history of the Internet. The IP host group
model today still faces a strongly divergent state of deployment. In this chapter, we
first review the key concepts of multicast and broadcast data distribution on struc-
tured overlays. Second, we perform a comprehensive theoretical analysis examining
the different distribution trees constructed on top of a key-based routing layer. Char-
acteristic performance measures of the multicast approaches are compared in detail
and major structural differences are identified.

Overlay multicast overcomes deployment problems on the price of a performance
penalty. Hybrid approaches, which dynamically combine multicast in overlay and
underlay, adaptively optimize group communication. We discuss current schemes
along with its integration in common multicast routing protocols in the third part
of this chapter. Finally, we reconsider and enhance approaches to a common API
for group communication, which serves the requirements of data distribution and
maintenance for multicast and broadcast on a middleware abstraction layer, and in
particular facilitates hybrid multicast schemes.

Matthias Wählisch
HAW Hamburg, Department of Informatik, Berliner Tor 7, 20099 Hamburg, Germany;
Freie Universität Berlin, Institut für Informatik, Takustr. 9, 14195 Berlin, Germany,
e-mail: waehlisch@ieee.org

Thomas C. Schmidt
HAW Hamburg, Department of Informatik, Berliner Tor 7, 20099 Hamburg, Germany,
e-mail: t.schmidt@ieee.org

X. Shen et al. (eds.), Handbook of Peer-to-Peer Networking, 897
DOI 10.1007/978-0-387-09751-0 32, © Springer Science+Business Media, LLC 2010

898 Matthias Wählisch and Thomas C. Schmidt

1 Introduction

In recent years the Internet community experienced two significant disruptions. The
advent and overwhelming success of Napster and successors from 1999 on demon-
strated an imperative desire of Internet users to take advantage of transparent end-
to-end application services. The Internet, originally designed as a logical end-to-end
overlay on top of heterogeneous physical networks, apparently had failed to serve
these needs in its current server-centric and NAT-burdened state of deployment. In
the year 2001, when Napster failed legally and early versions of Gnutella broke
down technically, proposals for using an abstract name space to combine nodes and
content emerged, which organized within Distributed Hash Tables (DHTs).

Structured peer-to-peer systems offer multicast services in an infrastructure-
agnostic fashion. They are reasonably efficient and scale over a wide range of group
sizes. However, they do not allow for layer 2 interactions and thus do not facilitate
unrestricted scaling in shared end system domains. Stability issues for tree-based
overlay multicast under churn arise as well, as the departure of branching nodes
close to the root may have disastrous effects on data distribution. These drawbacks
may be mitigated by hybrid approaches, where overlay multicast routing only takes
place among selected nodes which are particularly stable and form a virtual infras-
tructure. Hybrid multicast schemes inherit major efficiency from the IP layer, while
sustaining ease in deployment and infrastructure-transparency from selected group
distribution in overlay networks.

In this chapter, we first review the key concepts of multicast and broadcast data
distribution on structured overlays in Section 2. In Section 3, a comprehensive theo-
retical analysis of distribution trees constructed on top of a key-based routing layer
analytically derives distributions of key performance measures, e.g., hop counts and
the replication loads per node. Current approaches to a multicast deployment in hy-
brid architectures are presented in Section 4. Section 5 is dedicated to redesigning
a common API for group communication, which serves the requirements of data
distribution and maintenance for multicast and broadcast on a middleware abstrac-
tion layer, and in particular facilitates hybrid multicast schemes. A final discussion
concludes this contribution.

2 Overview of Structured Approaches to Group Communication

Derived from structured P2P routing and distributed indexing, several group com-
munication services have been developed as application layer or overlay multicast
with the aim of seamless deployability. Among the most popular approaches are
multicast on CAN [29], Bayeux [43] as derived from Tapestry and Scribe [8, 9]
based on Pastry. These approaches essentially branch in two algorithmic directions.
The first uses DHTs to generate a structured sub-overlay network of group members,
which thereafter is flooded (CAN, Prefix Flooding). The second class erects distri-
bution trees. Identifying rendezvous points from group ID hashes, Scribe generate

Multicast Routing in Structured Overlaysand Hybrid Networks 899

shared trees from reverse path forwarding, while Bayeux constructs shortest paths
trees from source-specific client subscriptions. Recently, bi-directional shared trees
have been introduced by BIDIR-SAM [38].

Group communication protocols should fulfill the following minimal perfor-
mance requirements:

Coverage The protocol arranges packet delivery at all group members.
Uniqueness From overlay routing, each peer receives a multicast (or broadcast)

packet at most once.

The latter prevents protocols from inducing loops, and thus limits the load on peers.
DHT-based multicast performance has been thoroughly studied in [10] with the

comparative focus on tree-based and flooding approaches. The separate construction
of mini-overlays per group as needed for a selective flooding showed to incur signif-
icant overhead. In addition, flooding was found to be outperformed by forwarding
along trees, where a shared group tree combined with proximity-aware routing as in
Scribe could minimize the overlay delay penalty down to a factor of two.

2.1 Flooding of (Sub-)Overlays

The main idea of flooding approaches is to create a sub-overlay on top of the base
overlay network and to assign members of a multicast group to it. Such a group
specific overlay can be flooded according to a broadcast scheme derived from the
key-based routing protocol in use. No group-specific multicast states are required,
as data transmission will solely rely on unicast routing within the sub-overlay. Mul-
ticast join and leave procedures are thus identical to joining and leaving a structured
overlay network.

Each peer within the dedicated multicast overlay is a multicast source or a re-
ceiver. Consequently, forwarding of multicast packets is limited to group members
and does not involve arbitrary peers. Depending on the bootstrap mechanism, sub-
overlays may be created per group or per source-specific channel. Only in the first
case, multicast senders are also required to participate in data reception.

2.1.1 Multicast on CAN

A well-known approach of group-oriented flooding is Multicast on CAN [29]. Based
on the Content Addressable Network (CAN) [28, 30], source(s) and receivers of a
multicast group G create a so called “mini”-CAN, which is flooded thereafter using
the CAN broadcast forwarding algorithms.

For bootstrapping a multicast mini-CAN, the group address is hashed into the
d-dimensional CAN identifier space, and serves as identifier of the group-specific
bootstrap node. It will be contacted using the base overlay to perform the regu-
lar CAN bootstrap mechanism, i.e., identification and assignment of CAN zones.

900 Matthias Wählisch and Thomas C. Schmidt

Possible bootstrap load at a responsible peer can be reduced by varying the group
address mapping under multiple hash functions.

A source within the group-specific mini-CAN forwards multicast data to all its
neighbors, which then recursively distribute packets within the group-specific mini-
overlay. For a detailed description, we refer the reader to the previous chapter. Even
though avoided by an optimized forwarding rule, nodes may receive messages more
than once. Multicast on CAN, thus, does not comply with the uniqueness con-
straints.

2.1.2 Prefix Flooding

Another flooding approach to multicast is the so called prefix flooding [10, 40], typ-
ically implemented on top of Pastry [31]. In contrast to multicast on CAN, prefix
flooding distributes data using a (prefix-based) multicast distribution tree, which in-
herently avoids message duplications. Based on the overlay peer IDs composed of
an alphabet with k digits, all N nodes within the sub-overlay can be naturally ar-
ranged in a prefix tree, branching recursively at longest common prefix of at most
(k− 1) lnN neighboring vertices. Leaves are labeled with overlay identifiers of the
peers, while inner vertices represent the shared prefix of their children. If a broadcast
packet is sent from the root of the tree towards its leaves, the packet will be repli-
cated wherever prefixes branch. To decide on packet replication, a peer receiving
a message is required to determine the current branching position on the distribu-
tion tree. This context awareness is achieved by sending packets carrying the prefix
currently addressed. IP addresses of prefixes will be resolved according to unicast
destinations as provided by the key-based routing layer.

Implementation for Pastry: The idea of prefix flooding naturally corresponds to
the prefix routing of Pastry. The Pastry routing table of a peer directly reflects the
elements of a prefix tree (see Fig. 1). Every row in a Pastry routing table represents
a level of the prefix tree, every column a child of an inner vertex. Each peer holds
a subset of the prefix tree in its routing table. Merging the routing tables of all
peers from a group specific Pastry network would form the multicast distribution
tree, provided the routing tables are complete at each node. The latter can be easily
achieved by a proactive routing table maintenance.

Pastry peers flood their routing tables. Thereby they flood the prefix tree, which
corresponds to the overlay broadcast in prefix space. In detail, the idea is as fol-
lows: A source sends its data to all routing table entries. Each destination prefix
corresponds to the root of a sub-tree. The receiving peers determine their position
on the tree, i.e., the level of descend D in the prefix tree at which they receive the
data, and forward the packets downwards. This is equal to sending data to all rout-
ing table entries starting at row D+1. Note that the tree position can be encoded in
the row number, which reduces the packet size as compared to carrying the entire
destination prefix.

The prefix flooding fully complies to the minimal performance requirements.

Multicast Routing in Structured Overlaysand Hybrid Networks 901

Fig. 1 Pastry routing table for
peer 101 and the correspond-
ing spanning prefix tree using
a binary key space. Next hop
pointers are highlighted by
dashed lines

1*

*

0*

11* 10*

111 101

001 1
0

100 1

100 001

111

2.1.3 Distributed Tree Construction

Recently, the authors in [3] introduced the Distributed Tree Construction (DTC).
The underlying idea is to predefine a geometric area of the overlay space that covers
all members of the distribution tree. The source thereafter initiates flooding of this
area, which is achieved by means of the key based routing in use. Data is replicated
until it hits the border of the designated area. DTC works on the assumption that
each peer is informed about its immediate neighbors and the geometry of the overlay
space. The authors specify DTC for Chord and CAN.

Relying on the assumption of complete neighborhood sets, the performance re-
quirements are equally fulfilled by DTC.

2.2 Source-Specific Distribution Trees

Source-specific multicast (SSM) approaches construct distribution trees per (S,G)
channel, i.e. for a group G and a source S. Multicast subscriptions are coupled with
sender addresses, which receivers are required to be aware of. Source addresses may
be learned out-of-band like the group address G, or autonomously via DHT lookup
mechanisms.

The only scheme that follows a pure source-specific distribution model on top
of a structured overlay is Bayeux [43]. Bayeux operates on the suffix-based routing
scheme Tapestry [41, 42]. The creation of a group proceeds from hashing a source-
specific group identifier, which thereafter is used as the name of a trivial file placed
at the source node. Using Tapestry location services, the source root of a session
announces that dummy document into the entire network. Thereby clients will learn
about the group and source ID tuple to perform source-specific subscriptions.

Any receiver subscription (join message) is routed to the source via the overlay.
The source replies with a tree message triggering intermediate peers to set up mul-
ticast forwarding states. This mechanism establishes paths from the source to the
receivers that are optimal even in the presence of asymmetric paths. To enable tree

902 Matthias Wählisch and Thomas C. Schmidt

Fig. 2 Scribe: A source S
distributes data to G . The
owner of key G forwards data
towards all receivers R

001*

00*

0001*

000101

1*

111*

*

R
R

G

R

S

000111001101111101 100111111001 100101

100*

R

maintenance, the multicast source acts as a centralized group controller that pro-
vides a complete receiver tracking. In proceeding along this line, Bayeux admits a
linear growth of state information and violates scalability in the number of multicast
receivers. A more detailed description of Bayeux is given in the previous chapter.

2.3 Shared Distribution Trees

Shared trees distribute multicast traffic from any source and comply to the gen-
eral model of Any Source Multicast (ASM). The most prominent example of ASM
on the overlay is Scribe [9, 32], which constructs a rendezvous-point-based shared
tree in analogy to the native multicast routing protocol PIM-SM [16]. The multi-
cast distribution tree is constructed from receiver subscriptions on reverse paths to
the source. Pastry is used as the underlying (unicast) key-based routing, guiding a
proximity-aware forwarding. Any multicast source sends data to a dedicated ren-
dezvous point (RP), the root of the distribution tree (cf. Fig. 2). This root node is
defined by the hash key of the multicast group ID. Forwarding states are stored
in multicast children tables, maintained in parallel to Pastry routing. The detailed
tree construction scheme and forwarding algorithm are elaborated in the previous
chapter

SplitStream [8], a distributed version of Scribe, allows for load sharing among
multiple RPs. The implications of (distributed) rendezvous points on Scribe and
SplitStream performance have been examined in [2].

Multicast Routing in Structured Overlaysand Hybrid Networks 903

Fig. 3 BIDIR-SAM: A
source sends data to pre-
fixes that cover receivers.
Prefix-directed routing for-
wards to nodes that represent
the selected prefixes

001*

00*

0001*

000101

1*

111*

*

R

R

R

R

R

S

000111001101111101 100101111001

2.4 Bi-directional Shared Distribution Trees

Bi-directional shared trees span the overlay network and enables source specific data
transmission from any overlay node. Protocols that establish spanning trees need to
generate multicast forwarding states from a generic group identifier. But in contrast
to shared trees, the root of the tree is virtualized and multicast sources are enabled
to inject data without utilising a rendezvous point or flooding of sub-overlays.

The concept of a bi-directional shared tree with source-specific shortest paths has
been introduced with the BIDIR-SAM [38] protocol. Its main idea is to construct
a prefix-based multicast distribution tree, in which leaves are labelled with overlay
IDs of the multicast listeners. Multicast branching is performed at inner vertices.
Each inner vertex can be mapped to a DHT member, if the label represents a prefix
of the overlay node address. Such a prefix is said to be associated with the node. A
peer associated with a prefix will be resolved based on a proximity-aware neighbor
set as for example provided by Pastry (cf. Fig. 3).

In contrast to the prefix flooding (cf. Section 2.1), multicast forwarding pro-
ceeds according to a separate multicast forwarding table, which holds the prefixes
of neighbors covering multicast listeners. Every peer may act as a multicast for-
warder, potentially serving as an intermediate destination for a prefix it shares. Con-
sequently, a newly arriving multicast receiver needs to announce its (appropriately
aggregated) prefix to adjacent overlay nodes. Prefix neighbors will then store the
announced prefix in their forwarding tables.

A prefix represents the root of a subtree, which may subsume multiple multicast
listeners. Only the first join and last leave has to be propagated beyond this subtree.

904 Matthias Wählisch and Thomas C. Schmidt

Group membership management is thus bound to the smallest subtree covering the
joining (or leaving) receiver and further multicast listeners. Join or leave propaga-
tion within subtrees follows the prefix flooding scheme (cf. Section 2.1). The first
joining and last leaving receiver of the group need to flood their membership mes-
sage in the complete (unicast) overlay network, while signaling at intermediate tree
levels remains restricted to an exponentially decreasing group of neighbors.

It is worth noting that error resilience of this approach directly follow from the
prefix structure. In contrast to other scalable approaches around, inner vertices of
the tree are labeled by prefixes and remain valid as long as any node throughout the
overlay shares its value. Thus a volatile peer does not change the tree structure, but
may initiate an update of the underlying (unicast) key-based routing table. BIDIR-
SAM is not vulnerable to multicast tree disaggregation, but as stable as the DHT
itself. An arbitrary redundancy can be achieved by sending data to different prefixes
in parallel.

3 Properties of Distribution Trees

All structured approaches to overlay multicast described in the previous section ei-
ther forward data directly according to a shared or source-specific tree, or data dis-
semination is well approximated by some tree. The structural properties of these
distribution trees characterize the main performance values, such as the branching,
i.e., the multicast replication load experienced at end nodes, the hop count distribu-
tion, which implicitly assign the delay distribution. In most cases, these measures
are accessible by analytical means, thus allowing for a direct, unbiased comparison
on arbitrary scales.

The trees employed in the various approaches differ significantly, as will be
shown in the remainder of this section. We will introduce structural properties
and analytically derive the full probability distribution functions for characteris-
tic quantities, whenever the tree shaping can be isolated from the underlying In-
ternet topology. The latter holds in most cases, in which schemes either delegate
topological adaptation to the key-based routing, or remain agnostic of network
proximity.

3.1 CAN Flooding: k-ary Trees with Node Chains

Multicast on CAN devises flooding of a D-dimensional hypercube from any origin
within the overlay. To avoid duplicate packets, CAN optimizes forwarding with re-
spect to the dimension of packet traversal. As a result, packets traverse along higher
dimensions first, while the majority of forwarding hops are conducted in the lowest
dimension. For uniformly partitioned hypercubes, this forwarding order leads to a
unique data delivery, and is visualized in Fig. 4. Data is then distributed according

Multicast Routing in Structured Overlaysand Hybrid Networks 905

A

B

C

D

E

F

G

H

I

1 2 3 4 5 6 7 8 9

S

Dimension 1
2

noisne
mi

D

F5E6E4

E3

E2

E1

E7

E8

E9

F4

F3

F2

F1 F9

F8

F7

F6

G1

G2

G3

G4 G6

G7

G8

G9

G5

H5

H4

H3

H2

H1 H9

H8

H7

H6

I4

I3

I2

I1 I9

I8

I7

I6

I5

E5

D5

eertgnidnopserrocehT)b(ebucrepyhehT)a(

Fig. 4 CAN optimized flooding and its distribution tree

to a tree which is shown correspondingly. This distribution tree admits the shape
of a highly unbalanced k-ary tree with k = 2D, in which D is the CAN dimension.
Branching only occurs at early transits in higher dimensions, but due to dimensional
separation, the optimized flooding is gradually led into long linear chains that for-
ward in the lowest dimension. Further we will assume a uniform partitioning, as
CAN inherently attempts to approximate uniformly sized zones [29].

We will now derive the distribution of the replication load RPL in a multicast
network of N nodes, which is a function of the dimensions a node forwards to. The
multicast source issues 2D packets to its neighbors in the mini CAN. An inner CAN
node receiving a packet from the direction of dimension d will cause a packet repli-
cation of RPL(d) = 1 + 2 · (d−1); a boundary node will terminate straightforward
transmission and replicate a packet only RPL(d) = 2 · (d−1) times. Forwarding in
the highest dimension D will occur at a multiplicity of

(
D
√

N−1
)
, while traversal

in lower dimensions d will admit frequencies of
(

D
√

N−1
) · (D

√
N
)D−d

. In dimen-

sion d,
(
2 · D
√

N
)D−d

forwarding hops hit boundary zones. Observing that the total

number of transmissions is N =
(

D
√

N
)D

, and combining these values will lead to
the probability distribution (P) of the replication load.

For 1≤ d ≤ D, N > 3D,

P{RPL(d) = j}=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

(D√N−3)
(D√N)d if j = 2 ·d−1

2

(D√N)d if j = 2 ·d−2

1
N if j = 2 ·D

(1)

As N grows large for a fixed dimension, this distribution concentrates at the
value j = 1, indicating that the forwarding process proceeds according to long,
dominant chains. This formally confirms the nature of the distribution tree as

906 Matthias Wählisch and Thomas C. Schmidt

shown in the example of Fig. 4. Correspondingly, the mean values of the branching
process

< RPL(d) >=
(N−1) · (D

√
N +1

)

N · (D
√

N−1
) (2)

converges rapidly to 1 with increasing network size.
The distribution of equation (1) is visualized in Fig. 5 for different dimensions

and network sizes.1 The actual shapes of curves only depend on the value of D
√

N,
and admit smooth, evenly distributed weights only for N = 4D. Hence at a given
dimension, CAN achieves optimal balance in packet distribution for network sizes
close to the minimal number of nodes needed to fill the corresponding hypercube.
This observation somewhat contradicts the common believe that CAN serves par-
ticularly well for large-scale content distribution.

(b) Varying network sizes, D = 4(a) Varying dimensions, N = 59049

Fig. 5 Distribution of CAN replication load for different parameter values, bold lines drawn for
N = 4D

Second, we take a closer look at hop counts in CAN. If we index a CAN zone
Zi1,··· ,iD according to its coordinates and renumber zones such that the multicast
source is positioned at the origin, then the number of hops in CAN required to reach
a zone Z reads H(Zi1,··· ,iD) = ∑D

k=1 |ik|. These CAN indices can be considered uni-
formly distributed independent random variables with −) D

√
N/2* ≤ ik ≤) D

√
N/2*,

for any CAN node picked at random. It immediately follows that the average num-
ber of hops < H(Zi1,··· ,iD) > = D

4 (D
√

N), the distribution of the hop count in CAN,
however, turns out to be surprisingly complex.

Consider ı̃k to be independent variables uniformly distributed on 1, . . . ,) D
√

N/2*,
and ĨK = ∑K

k=0 ı̃k. Then ĨK differs from H() only by indices of zero values. ĨK is the
sum of independent identically distributed uniform random variables, admitting a
distribution fk that is the k-fold convolution of the uniform. In detail [15],

1 Interconnecting lines are used to enhance visibility.

Multicast Routing in Structured Overlaysand Hybrid Networks 907

fk(j) = a−k
∞

∑
ν=0

(−1)ν
(

k
ν

)(
j−aν−1

k−1

)
, where a =) D

√
N/2*.

The hop count distribution h(j) can be regained from fk(j) by explicitly account-
ing for zero values at indices. Let Ik be the set of all events with exactly k indices
equal to zero. Expanding conditionals then yields the hop count distribution

h(j) =
D

∑
k=0

h
∥∥

Ik
(j) ·P(Ik)

=
D

∑
k=0

fk(j) ·
(

D
k

)
·
(

1−1/
D
√

N
)k (

D
√

N
)k−D

. (3)

This distribution grows remarkably wide. In fact, from the central limit theorem [15]
it follows that the dispersion σ(h)∼√D D

√
N, which increases for a fixed dimension

with N. Figure 6, displaying the hop count distribution of equation (3) for different
dimensions and network sizes, reflects the divergence of hop count values attained
in CAN flooding. Moderate multicast group sizes N already lead to fluctuations of
about 100%.

(b) Varying network sizes, D = 4(a) Varying dimensions N = 59049

Fig. 6 Hopcount distribution of CAN for different parameter values

Actual delay and jitter values derive from embedding the distribution tree into
the underlay. Assuming independent exponentially distributed link weights in the
underlay with mean 1

α , will lead to an overall composite delay distribution at multi-
cast receivers of the Erlang type with parameters H(.), α .2 Jitter values experienced
on data reception will thus be increased by a factor of 1

α .

2 A simplified, erroneous derivation of CAN delay properties can be found in [20].

908 Matthias Wählisch and Thomas C. Schmidt

3.2 Prefix-directed Forwarding: k-ary Trees with Node
Redundancy

Prefix-directed forwarding may guide the flooding of an overlay network, but may as
well be combined with a multicast group management and allow for selective group
communication as was shown above for BIDIR-SAM. In both cases, the prefix-
based distribution tree forms an abstract structure, which the key-based routing layer
uses to instantiate a distribution tree. Commonly, several nodes share a given prefix
and thereby serve as possible instances for inner nodes of the actual forwarding tree.
This redundancy at inner nodes not only enhances the robustness of the tree-based
routing, but may be exploited for a proximity next hop selection. Correspondence
options between prefix and distribution trees are displayed in Fig. 7.

Fig. 7 Prefix-directed forwarding and possible instances of distribution trees

For a given overlay key space of alphabet size k, we want to derive basic prop-
erties of the corresponding k-ary prefix tree. Therein we assume N overlay nodes
{N } to be uniformly placed at leaf nodes. In particular, for any node K with key
K , the probability of attaining a specific digit x reads

P(δi(K) = x) =
1
k
, where δi(K) denotes the i−th digit of K .

Consider an arbitrary prefix C of length j. The probability for a random overlay
node to share this prefix equals (1

k) j, any (ordered) sequence of keys, l keys with
prefix C and N− l keys not sharing C , occurs with probability (1

k j)l(1− 1
k j)N−l . De-

noting the longest common prefix by LCP, and accounting for all possible orderings
yields the node distribution in prefix space,

P(|{N ∈ {N }‖ LCP(C ,N) = C }|= l) =
(

N
l

)(
1
k j

)l (
1− 1

k j

)N−l

, (4)

which is Binomial. The prefix C of length j correspondents to the root of a subtree
Th− j of height h− j. Hence equation (4) also describes the distribution of nodes
populating subtrees.

Multicast Routing in Structured Overlaysand Hybrid Networks 909

The keys representing the overlay nodes span a random recursive k-ary tree with
inhomogeneous branching rates. An inner vertex represented by the prefix C at level
j−1 on the path to a given node S with key S , will be a branch of the prefix tree,
if a node K with key K exists, such that LCP(S ,K) = C . The latter is equivalent
to the existence of a node that attains a dedicated prefix of length j−1, and any of
k−1 from k values at the j-th digit. The probability that none of the N−1 remaining

nodes carry a dedicated prefix of length j equals
(

1− 1
k j

)N−1
. Hence the branching

probability of the overlay prefix structure at level j−1 reads

PBranch(j−1) =

(
1−

(
1− 1

k j

)N−1
)
· (k−1) (5)

Any multicast group arranges within this overlay prefix structure. Consider a
group G of g receivers. We assume that receivers are independently chosen among
overlay nodes with the uniform probability rg = g

N .3 The BIDIR–SAM algorithm
aggregates multicast receivers according to longest prefixes.

For a given prefix C , the probability that an arbitrary receiver G shares C is
fundamental to the problem. In detail, for a multicast group G, the probability that
a prefix C of length j is attained by at least one of the g receivers reads4

P(|{G ∈ G‖ LCP(C ,G) = C }| ≥ 1)

= 1−
(

1− g
k jN

)N
= 1− e

− g
k j +O

(
1
N

)
. (6)

It is worth noting that in large networks the prefix distribution of multicast receivers
is effectively independent of the network size.

To derive expressions for the replication load, we note that multicast forwarding
occurs in combination with a destination prefix of length j, which rules out next hops
on the tree of shorter prefix length. Denote by RPL(j,g) the multicast replication
load at a node in an overlay participating in BIDIR-SAM with prefix length j. Then

<RPL(j,g)>=
h−1

∑
i= j

(k−1)(1− e−
g
ki). (7)

Characteristic distributions of the replication load are drawn in Fig. 8, showing a
steady decrease in packet replication on the way from source to receivers. Smaller
alphabets noticeably smoothen the distributions, which suggests that k serves as a
tuning parameter for the multicast distribution tree.

We now want to derive the hop count distribution for sparsely scattered receivers
in a prefix tree. On the path from the source to the receivers, a multicast packet tra-
verses an overlay hop, whenever the distribution tree branches at the corresponding
prefix C of length j. Taking the branching rate of equation (5) yields a recurrence
relation for the hop frequency with respect to the tree height h:

3 This assumption is supported in both, theory by [27] and Internet measurements by [11].
4 For the sake of brevity, we omit proofs, which have been elaborated in [38].

910 Matthias Wählisch and Thomas C. Schmidt

(b) k = 16(a) k = 4

Fig. 8 Mean replication load in BIDIR-SAM as function of the prefix length for different alphabets

fh,k,N(j) = fh−1,k,N(j)+
(

1− (
1− k− j)N−1

)
· (k−1) · fh−1,k,N(j−1) (8)

with f1,k,N(0) = 1, f1,k,N(1) =
(

1− (
1− k−1)N−1

)
(k−1).

Solving equation (8) leads to the hop count distribution fh,k,N attained at prefix
routing on N overlay nodes with independent uniformly distributed identifiers:

fh,k,N(j) =
(

h
j

)
·

j

∏
i=0

(
1− (

1− k−i)N−1
)
· (k−1) j. (9)

Note that hop counts only depend on the general overlay and remain independent of
multicast receivers.

The hop count frequency fh,k,N(j) is plotted in Fig. 9 in normalized form. Mean
and width of the distributions grow as k decreases, acting in opposite direction of
the branching properties investigated above. A BIDIR-SAM instance optimizing
replication and signaling load by using a small prefix alphabet will encounter a
moderate increase of routing hops in packet delivery.

3.3 Reverse Path Forwarding: Topology-Induced Trees

Scribe and SplitStream generate distribution trees from forwarding JOIN messages
on reverse paths from receivers to the rendezvous point(s). This approach is com-
mon to multicast routing protocols in the Internet, and suggests a transfer of model-
ing results for multicast tree structures valid in the Internet, cf. [36]. Despite of this
analogy, extensive simulations performed by Birrer and Bustamante, as well as the
authors [2, 38] reveal deviant results: The majority of branches tend to directly at-
tach to the rendezvous point(s), generating very high, unbalanced replication loads.

Multicast Routing in Structured Overlaysand Hybrid Networks 911

(a) k = 4 (b) k = 16

Fig. 9 Normalized hop count distributions for h = 128, k = 4 and k = 16

In addition, largely fluctuating delays cause alienating jitter at receivers, which tend
to build up in SplitStream.

Observing the distributions of packet delay and replication being incompatible
with corresponding Internet measures raises the question about the fundamental
differences of data-driven trees in overlay and underlay. The main conceptual dis-
tinction follows from the method of tree establishment. Distribution trees gener-
ated from reverse paths are shaped according to (reverse) unicast route selection,
which is optimal as long as the routing table entries are invertible. Even though
routes in the Internet frequently show asymmetries due to BGP routing policies,
backbone links can commonly be used in inverse direction without performance
penalty.

In DHT-based group communication, however, the direction of tree establish-
ment is important, as routes are commonly highly asymmetric. Next hop neigh-
bors are selected according to a local, node-dependent view of the routing system,
and – more importantly – may follow a proximity awareness. As a consequence,
paths tend to largely disagree with respect to their direction. As for the example of
Scribe, the key-based routing of Pastry associates prefixes to nodes not uniquely,
but with respect to node proximity. Two different peers are likely to select a differ-
ent destination for the same prefix. Thus diverse paths will be established according
to underlay vicinity, even though packets could jointly traverse on the same link
when following the RP point of view. This results in many divergent, reversely
selected paths, which are likely to overlap only at their destination end point. As
such, the RP is burdened with an unbalanced replication load. At the same time,
first multicast hops, selected reverse oder, are likely to admit the largest distances
in the underlay, leading to largely varying hop delays at the root of the distribution
tree(s).

912 Matthias Wählisch and Thomas C. Schmidt

4 Hybrid Multicast

Structured peer-to-peer systems offer multicast services in an infrastructure-agnostic
fashion. They are reasonably efficient and scale over a wide range of group sizes.
However, they neither take advantage of network layer multicast where available,
nor allow for layer 2 interactions and thus do not facilitate unrestricted scaling in
shared end system domains. Hybrid multicast schemes attempt to combine the po-
tentials of underlay and overlay multicast, targeting at a simultaneous deployment
of multicast services on the network layer wherever available, and on the overlay
otherwise.

Structured approaches to overlay multicast or broadcast can serve a variety of
needs, as has been shown in the previous section. A careful selection of a scheme
with respect to deployment objectives allows for an appropriate balancing of data
flows, facilitates a trade between state maintenance and path lengths, and may over-
come stability issues at inner nodes of the tree structure. However, they show a
performance gap between IP and application layer multicast that widens, when mo-
bility is introduced. Frequent handoffs and topological re-arrangements degrade
the stability of distribution trees and the efficiency of proximity selection. Gary-
falos and Almeroth [18] derived from fairly generic principles efficiency measures
for source specific multicast in different metrics. Overlay trees uniformly admitted
degradations up to a factor of four over native IP layer multicast in the presence of
MIPv6 [22] mobility management. These drawbacks may be mitigated by hybrid
approaches, as well, by placing overlay multicast routing among selected nodes,
which are particularly stable and form a virtual infrastructure.

Hybrid multicast schemes offer the potential to inherit major efficiency from the
IP layer, while sustaining ease in deployment and infrastructure-transparency from
selected group distribution in overlay networks. Such approaches differentiate the
end-to-end design argument [33] with respect to the inhomogeneous nature of the
global Internet: While customer-oriented end system networks, which are mainly
built on top of multicast enabled network access technologies, do significantly profit
of utilizing network layer multicast services, the flow-oriented transition networks
of the Internet core do not.

The design of interconnecting end system domains on the basis of a struc-
tured overlay can be transparently implemented by inter-domain multicast gateways
(IMGs), leading to the hybrid architecture shown in Fig. 10, and a common group
API as introduced in Section 5. It gives full multicast admission control to local
operators and may be interpreted as a globally distributed service peering. It will
enable inter-domain distribution trees to multicast group services, which remain
invisible to the Internet core, while inheriting the full potential of scalability, self-
organization, redundancy and error resilience from the overlay network protocols in
use. Such adaptive schemes of cooperative routing in underlay and overlay bear the
potential to optimise stability and performance, while sustaining ample flexibility
for deployment.

Multicast Routing in Structured Overlaysand Hybrid Networks 913

Internet
Backbone

abcf432 32.4.3.1
abde004 141.4.50.3
cadb341 154.39.8.8

abde004 141.4.50.3
acf43de 21.7.2.4
cadb341 154.39.8.8

abcf432 32.4.3.1
abde004 141.4.50.3
acf43de 21.7.2.4

KBR Overlay

Multicast
Domain

Multicast
Domain

Multicast
Domain

IMG

IMG

IMG

IMG

IMG

IMG

Fig. 10 Inter-domain multicast gateway (IMG) architecture

4.1 Inter-Domain Multicast Tunneling and Overlays

The deployment history of multicast is tightly bound to bridging multicast-agnostic
regions of the Internet. From its beginning, the Multicast backbone (Mbone) was
built on static IP tunnels, serving as virtual point-to-point interconnects between
isolated multicast domains. This inflexible makeshift is currently converted into an
adaptive, dynamic Automatic Multicast Tunneling (AMT) scheme [35], which al-
lows for on demand creation and termination of inter-domain multicast encapsula-
tion. AMT provides full support for group receivers, but limits sender support to the
Source-specific Multicast (SSM) flavor of multicast.

AMT introduces relays and gateways, designed to cooperate in transmitting mul-
ticast traffic via unicast tunnels across multicast-unaware regions of the Internet.
Relays receive native group traffic from the domain they service, encapsulate and
forward it to corresponding gateways that have joined the relay. Gateways receive
multicast traffic as proxies of a multicast-enabled region, a domain or only a single
host, and redistribute data natively. Based on IGMPv3/MLDv2 [7, 37] signaling,
each relay keeps state in a recipient list for each gateway which has joined a partic-
ular group or source-specific channel (source, group). State management may grow
linearly in receiver numbers and raises scalability concerns. Unicast tunneling itself
remains in conflict with efficient packet distribution and may cause significant link
stress.

The lack of group-specific intelligence inherent to the tunneling layer must be
considered as the major shortcoming of traditional multicast deployment strategies.

914 Matthias Wählisch and Thomas C. Schmidt

Overlay techniques may overcome this deficit and likewise allow for encapsula-
tion. Conceptually, a structured peer-to-peer multicast overlay can distribute group
data from relays to gateways according to selective point-to-multipoint paths. It is
thereby well suited to replace the inefficient mesh of unicast tunnels commonly de-
ployed.

Combining the AMT gateway discovery mechanisms with structured P2P over-
lay multicast, Buford [5, 6] introduces such an architecture of enhanced scala-
bility while sustaining transparent interconnects between separate multicast do-
mains. This early work not only attempts to integrate inter-domain multicast tun-
neling with a variety of structured multicast overlay protocols, but in particular
provides a link to activities of the IETF. The generic peer-to-peer protocol of the
P2PSIP working group will include a mandatory support of a DHT [21]. Thus, it
may be reasonable to assume that DHT substrates will populate the future Inter-
net. These may then also be used as underlying routing infrastructure for multicast
protocols.

In the following section, we will work out an architecture which provides trans-
parent support of general multicast eliminating limitations of AMT, and describe its
interaction with IP layer group management and routing.

4.2 Hybrid Shared Tree Architecture

The Hybrid Shared Tree (HST) architecture, which is composed of a prefix-based
P2P group communication scheme and a relay agent forwarding data between native
and overlay multicast, has been introduced in [39]. The core component of the HST
is the Inter-domain Multicast Gateway. The corresponding application interacts with
native and overlay multicast (OLM) components via the API of an enhanced group
communication protocol stack, and thereby enables relaying. In this section, we
assume the existence of such a stack and its middleware, both will be described in
detail in Section 5.

4.2.1 The Inter-Domain Multicast Gateway

The Inter-domain Multicast Gateway (IMG) transparently forwards multicast data
between the overlay and the native network. This gateway will participate in mul-
ticast traffic originating from its attached network, which it will forward into the
overlay according to the multicast receiver domains of this group. It will also adver-
tise group membership and receive data according to any subscription from its IP
multicast domain. With respect to an easy deployment, the IMG should account for
current multicast techniques.

The IMG represents a transition point between overlay and underlay. In this role
it translates between the different protocols. A structured overlay multicast proto-
col does not provide any explicit group management to discover the presence of

Multicast Routing in Structured Overlaysand Hybrid Networks 915

underlay receivers, since applications use direct API calls on the host. An IMG,
which may represent a complete multicast domain consisting of multiple receivers
and sources, acts in this sense as a proxy: It aggregates and then delegates underlay
states to the overlay routing, as well as data originating from underlay sources to the
overlay routing.

In this architecture, the multicast overlay serves as the routing backbone, con-
necting multiple multicast domains. Hence, the construction and destruction of
distribution branches will be triggered by the underlay, which includes receivers,
sources, both or none of them (cf. Fig. 11). The IMG must be informed about lis-
tener and sender activities within the native network by its group communication
stack. On the arrival of new multicast parties in the underlay, this will happen as
follows:

Receiver0,...,n Source0,...,n

Underlay
Multicast
Domain

Underlay
Multicast
Domain

IMG
Underlay

Mcast

Overlay
Mcast

IMG
Underlay

Mcast

Overlay
Mcast

Receiver
Subscription

Data

Overlay
Multicast
Domain

Fig. 11 Schematic view of general inter-domain multicast gateway scenarios

Multicast Source: If the IMG learns about new underlay sources, it immediately
sends a corresponding join to the underlay group management to receive its
traffic. The IMG thereby holds multicast data independent of other receivers in-
cluding those in different multicast domains. It will send this data internally to
the overlay routing instance, which distributes the message with respect to its
forwarding states. If there is no subscription in the overlay, the data will be dis-
carded by the routing protocol and not transmitted into the overlay. In contrast,
an update about new sources propagated on the overlay takes no effect, as joins
are initiated only based on underlay subscriptions.

Multicast Receiver: For each receiver subscribing to a group as the first member
in the underlay network, the IMG invokes a join, processed by the middleware
and delegated to the overlay multicast routing protocol. The OLM instance ini-
tiates an overlay subscription. Data from the source domain can be transmitted
without additional signaling in the underlay, as data is held at the corresponding

916 Matthias Wählisch and Thomas C. Schmidt

Fig. 12 Two small size multicast domains connected via an overlay

IMG. Multicast streams arriving from the overlay in the receiver domain will be
forwarded transparently by the middleware to the IMG, which distributes it into
the native network. If the IMG recognizes that the last receiver in the underlay
network left the multicast group, it has to send a leavemessage into the overlay
to cut multicast branches.

In the following, we describe integrations of the protocol concepts in current
multicast scenarios. We distinguish between two cases: small size multicast domains
without a routing infrastructure, and large size domains which are served by native
multicast forwarders.

4.2.2 Connecting Small Size Domains

A small size multicast domain consists of one IP network, two of which are vi-
sualized in Fig. 12. Native multicast data communication is supported by group
management and routing protocols. Group management is available in IP by IGM-
P/MLD [7, 37].5 Implementing MLD signaling represents the minimal requirement
for multicast enabled devices and can be assumed in any multicast domain. Multi-
cast receivers send MLD (un-)subscriptions to a standardized group address, such
that (potential) routers can track the presence of multicast listeners. The router part
of MLD allows to monitor domain-wide group members by a query report scheme.
The IMG operates in the MLD router part.

Packets destined to a multicast group address may be broadcasted in switched
ethernet domains or selectively forwarded based on MLD snooping operated by
domain switches. An MLD snooping-enabled device should transmit group mem-

5 In the following, we will only refer to MLDv2, omitting IGMPv3 which implements the same
scheme for IPv4.

Multicast Routing in Structured Overlaysand Hybrid Networks 917

Fig. 13 Two large size multicast domains covering multiple layer 3 networks (dashed lines)

bership messages and multicast data only to routers and subscribed receivers, i.e., it
implements multicast on layer 2 [12]. Although MLD snooping is not standardized,
its deployment is common practice [12]. However, an MLD node running the router
part sends periodically group membership queries. This allows not only for learning
about active receivers, but also for preventing the suppression of MLD signaling and
source data by layer 2 devices.

Based on the groupSet call provided by the common group API (see Sec-
tion 5), the IMG requests the MLD state table, which provides information about
active listeners. In particular, the IMG will be informed about the first and last mul-
ticast receiver. Correspondingly, the IMG initiates join and leave calls towards
the overlay.

Interconnecting multiple domains without deploying a multicast routing protocol
is specified in [17]. The IMG operates in concordance with this standard which is
solely based on IGMP/MLD. Running the IMG as MLD proxy easily allows to
connect small multicast networks which are not neighboring. On the one hand, this
approach reduces deployment complexity as the IMG can be placed all over the
multicast domain without obligation to maintain a multicast routing protocol. On
the other hand, this scheme limits its scope by the layer 3 region, because MLD
signaling is not forwarded across routers.

4.2.3 Connecting Large Size Domains

Connecting multicast islands by an IMG MLD proxy architecture requires a layer 2
access in each LAN. It does not scale to establish a separate proxy in any layer 2 do-
main of a corresponding larger network. In addition, most larger network domains
have established a local host-group routing which provides domain-wide multicast,
but fails on global multicast connectivity. In such cases, an IMG should be incor-
porated into the local routing infrastructure to interconnect larger native multicast
islands (cf. Fig. 13).

Like in MLD proxy scenarios, a hybrid multicast gateway must be aware of all
groups within a multicast domain to initiate corresponding states in the overlay. In

918 Matthias Wählisch and Thomas C. Schmidt

contrast to link-local domains, which can solely be monitored by a group member-
ship protocol, group states are distributed in routed multicast sites. Hence, an IMG
requires an interface to the routing infrastructure, where subscriptions occur. The
place within the network depends on the multicast routing protocol deployed. In
rendezvous point (RP) schemes like PIM-SM, all receiver subscriptions and source
data will be registered at the RP. Flooding schemes like DVMRP distribute the in-
formation across all neighboring routers while states are shared on a rendezvous
link in BIDIR-PIM.

In the following, we sketch methods to integrate the IMG in the two most inter-
esting multicast routing architectures.

PIM-SM

The Protocol Independent Multicast Sparse Mode (PIM-SM) [16] establishes ren-
dezvous points (RP). These entities receive listener and source subscriptions of a
domain. To be continuously updated, an IMG has to be co-located with the RP.
Whenever PIM register messages are received, the PIM routing instance must sig-
nal a new multicast source within the group communication stack. Subsequently,
the IMG joins the group and a shared tree between the RP and the sources will be
established, which may change to a source specific tree after a sufficient number
of data has been delivered. Source traffic will be forwarded to the RP based on the
IMG join, even if there are no further receivers in the native multicast domain.

Designated routers of a PIM-domain send receiver subscriptions towards the
PIM-SM RP. The reception of such messages invokes an internal update call at
the IMG, which initiates a join towards the overlay routing protocol. Overlay mul-
ticast data arriving at the IMG will then transparently be forwarded in the underlay
network and distributed through the RP instance.

BIDIR-PIM

Bidirectional PIM [19] is a variant of PIM-SM. In contrast to PIM-SM, the protocol
pre-establishes bidirectional shared trees per group, connecting multicast sources
and receivers. The rendezvous points are virtualized in BIDIR-PIM as an address
to identify on-tree directions (up and down). Routers with the best link towards the
(virtualized) rendezvous point address are selected as designated forwarders for a
link-local domain and represent the actual distribution tree.

The IMG should be placed at the RP-link, where the rendezvous point address is
located. As source data in either cases will be transmitted to the rendezvous point
address, the BIDIR-PIM instance of the IMG receives the data and can signal new
senders towards the stack.

The first receiver subscription for a group within a BIDIR-PIM domain needs
to be transmitted to the RP to establish the first branching point. Using an update
invocation, an IMG will thereby be informed about group requests from its domain,
which are then delegated to the overlay.

Multicast Routing in Structured Overlaysand Hybrid Networks 919

5 A Common API for Group Communication

A structured overlay network consists of three functional groups: a routing scheme,
a set of services and the applications. The routing, based on a decentralized key ap-
proach, is responsible for locating peers associated with specific key ranges. Such
routing algorithm is independent of the applications built upon it. Services like
group communication supplement the structured overlay and can be developed in-
dependently of both, the underlying overlay routing and the application. A well
designed protocol architecture should separately account for these components and
offer pluggable modular building blocks.

Modeling routing, services and applications in a self consistent way leads to a
layered architecture which will attain flexibly interchangeable modules from com-
mon interface definitions between all components. Flexibility emerges from two
perspectives. Firstly, the development process may be simplified as modules can be
reused. Secondly, deployed modules can be combined from tailored units. In the
scenario of structured P2P networks, an application can be composed of overlay
implementations best suited for current requirements on performance and service
needs. This may not only reduce complexity, but also diminish maintenance over-
head from unwanted services.

In the following, we will explain the common API for key-based routing, the
Dabek model, which usually serves as basis for higher services like group commu-
nication. Further on, we present approaches to implement a modular group commu-
nication stack merging native with structured overlay multicast and thus facilitating
hybrid deployments (cf. Section 4).

5.1 General Design Principles for Structured Overlay Networks –
The Dabek Model

The first ideas towards a layered architecture with a common API for structured
overlays have been presented by Dabek et al. in [13]. The concept is known as the
Dabek model and has been implemented in numerous simulators [1, 4, 24, 26] and
DHT stacks [14, 34]. The basis of the Dabek model is a unified overlay routing
interface.

Dabek et al. observed that many peer-to-peer services and applications are built
upon a key-based routing (KBR) module which can locate peers for multiple pur-
poses. Based there on, the authors suggest a compound P2P layer consisting of three
tiers: Tier 0 represents the fundament of overlay communication, the KBR layer.
Tier 1 implements higher level abstractions, complemented by tier 2 for end user
applications and further, higher level services.

Dabek’s model focuses on tier 0. The meaning of tier 1 and 2 has not been fully
elaborated. Both tiers may accommodate services with direct access to the KBR
layer. Reusable abstractions for specific purposes are dedicated to reside on tier 1.

920 Matthias Wählisch and Thomas C. Schmidt

Fig. 14 A compound P2P layer according to the Dabek model [13] with typical application classes.
Interactions between the layer components are highlighted by arrows

The DHT abstraction6 is an example for this. This component provides a store-and-
retrieval key management service on the overlay for applications like file sharing.
On top of the DHT abstraction, further services may be available, such as an addi-
tional caching to be used by ’end-user’ applications or specific store and retrieval
functions. This concept of stacked services may actually result in additional tiers,
not foreseen by the model. To avoid such complicacies, we assume that tiers 0 to 2
of the Dabek model reflect a routing, a service and an application layer (cf. Fig. 14).

5.1.1 The Common Key-Based Routing API

The key-based routing layer provides the option to forward data along overlay hops.
With respect to the concepts of layered architectures, an implementation may del-
egate messages to the KBR component that performs the routing. Hence, all appli-
cation data will be encapsulated in overlay messages and delivered by the KBR.
However, this may be inefficient, because it can cause double encapsulation, at the
service and the KBR layer. Additionally, a tier 1 service may follow a different rout-
ing strategy than the overlay paths. Thus, a common API should remain open with
respect to adaptable message forwarding as well as KBR state access.

The KBR API by Dabek et al. consists of two functional groups. The first part
provides function calls for sending and receiving data messages above tier 0, and
also for controlling the overlay routing path for messages initiated by the service or
application. These are subsumed as message routing. The second part allows access
to the KBR routing states at peers.

The message routing calls offer all required primitives to perform an overlay
routing configurable by higher layers. They are summarized in Table 1 with respect
to the implementation at the specific layers. In the following, we describe the use
of these different functions. Starting at a source peer that calls route, data will
be forwarded towards the (destination) key by the KBR protocol. This request can

6 Although, DHTs are equipped with a KBR, the aim of distributed hash tables is the management
of key-value-pairs. This is a conceptually different task compared to the KBR.

Multicast Routing in Structured Overlaysand Hybrid Networks 921

be supplemented by a predefined first hop, the hint. At all intermediate peers be-
tween source and destination, the KBR implementation invokes forward at the tier
above. This upcall informs the application about its intention to forward the mes-
sage for key K to the nextHopNode. All passed parameters can be modified. Thus,
tier 1 and 2 applications can effectively override the default KBR (overlay) routing
behavior by changing the nextHopNode. Finally, the message will be provided to
the application at the peer responsible for K via deliver.

Table 1 The KBR message routing API calls implemented at the corresponding layers [13]

Tier message routing

1-2 forward(key↔K, msg↔M, nodehandle↔nextHopNode)
deliver(key→K, msg→M)

0 route(key→K, msg→M, nodehandle→hint)

For a detailed description of the state access functions, we refer to [13]. An
overview is given in Table 2. These calls are limited to local operations and do
not involve communication with other nodes. Applications can invoke these func-
tions from higher tiers to inquire on the local peer routing states. Nevertheless, local
lookups will fail whenever the requested information is not locally available. To
facilitate a global peer access, the message routing functions can be used.

Table 2 The KBR state access API calls implemented at the corresponding layers [13]

Tier state access

1-2 update(nodehandle→n, bool→joined)
0 nodehandle [] local lookup(key→K, int→num, boolean→safe)

nodehandle [] neighborSet(int→num)
nodehandle [] replicaSet(key→k, int→max rank)
boolean range(nodehandle→N, rank→r, key↔lkey,key←rkey)

The routing as well as the state access functions require a common key parame-
ter that corresponds to the overlay address. Consequently, all applications using one
of the primitives must be aware of the hash function in use.

5.1.2 Limitations of the KBR API

The generic approach of the KBR API does not provide information about the actual
overlay routing protocol or implementation-specific parameters, like the key length
in KBR or the dimension in CAN (cf. Section 2.1). Such meta information are of

922 Matthias Wählisch and Thomas C. Schmidt

interest for services which implement cross layering or operate adaptive to the un-
derlying KBR. An example are routing services that are derived from the local state
information, but want to construct their own forwarding tables. Using the common
API, these services can retrieve generic destination values, but are not enabled to
reconstruct the underlying routing structure.

To make the protocol parameters visible to upper tiers, the common API needs
extensions. One possible concept would include dynamic maps to present the KBR
specific configurations in the form of key value pairs. The corresponding schemes
can be implemented by information bases similar to Management Information Bases
(MIBs). The implementation of this approach requires only a getter call. The actual
parameter set is then defined by the protocol instance.

In using such a rich, compound P2P layer concept, existing key-based routing
implementations can be enhanced by new services without changing the KBR com-
ponent. For this purpose, a new service is only required to implement the common
KBR calls. However, more complex services such as overlay multicast need to pro-
vide an own common API towards applications.

5.2 Towards a Structured P2P Group Communication API

P2P group communication is strongly driven by the lack of infrastructure support
for multicast. Although overlay multicast (OLM) is mainly used as a supplement
for expanding native multicast regions, its mediator role between application and
network layer may shape and enhance group communication. This is one reason,
why an OLM scheme should be implemented in a flexible, common group com-
munication framework which simultaneously accounts for specifics of the overlay
and underlay. The core architecture for an enhanced group communication stack is
shown in Fig. 15.

Fig. 15 Generic stack architecture for cooperated underlay and overlay multicast

Multicast Routing in Structured Overlaysand Hybrid Networks 923

The main task of an OLM component is the distribution of data according to the
host group model. Destined for a group address, messages are replicated along an
existing (virtual) routing infrastructure similar as in native networks. On the uni-
cast side, routing in structured overlays can be provided by the KBR layer and
the access may be decoupled from a specific implementation using the common
primitives. Thus, structured overlay group communication requires at least the KBR
layer.

The KBR layer connects peers to a unicast network. Multicast domains will be
established, when overlay nodes form a group. Group creation and maintenance
is operated by the OLM protocol. A special case is broadcast, which inherently
floods all nodes of the network. This may happen in contrast to the establishment of
selected routing paths. Hence, multicast and broadcast follow different distribution
schemes and require a different API towards the application. A modular OLM stack
should account for these conceptual different challenges and solutions.

Besides flexibility, an OLM design should also be guided by a compatibility prin-
ciple with respect to native network services. On the one hand, the API calls, e.g.,
joining and leaving groups, should be compliant to well-known functions such that
application developers are not distracted. On the other hand, the OLM middleware
should provide an interface which allows transmission of data to both, overlay and
native multicast networks.

Overlay group communication differs from native IP networks with respect to
addressing. An IP stack is fed with the correct network address type to perform rout-
ing, whereas the key-based routing layer maps an arbitrary identifier to the deployed
key space which commonly is not invertible and does not allow to recover original
IDs. Applications need to regain those identifiers explicitly, and it may be an advan-
tage for the overlay routing to be aware of the application addresses, as well. Based
on application addresses, the overlay scheme may for instance aggregate or scope
groups. Thus, the design of an OLM middleware should preserve common group
functions, but also include support for specific aspects of the layers involved, and
remain open for additional functionalities arising from structured overlay networks.

5.2.1 Current State of the Art

The Dabek model (cf. Section 5.1) proposes the multicast abstraction CAST [13].
The idea is to provide overlay services in a generic multicast module. CAST consists
of a set of interfaces for group management and data distribution (join(groupId),
leave(groupId), multicast/anycast(msg, groupId)) as well as a
basic multicast routing on top of the KBR layer. Routing within CAST is built upon
a dedicated tree management and forwarding scheme which is similar to Scribe.
Calling the join function initiates a subscription message routed towards the hash
of the group id, employing the KBR route. At all intermediate peers, the upcall
forward is invoked to establish corresponding multicast states in CAST. On top
of CAST, the authors have foreseen further multicast implementations, e.g., Scribe
or Bayeux.

924 Matthias Wählisch and Thomas C. Schmidt

This approach of a universal routing protocol as part of the middleware layer may
conflict with the forwarding strategy pursued by services above CAST. A simple
example can be identified in the difference between Scribe [9] and Bayeux [43]
(cf.Section 2). While Scribe creates a rendezvous point-based shared tree according
to reverse path forwarding, Bayeux sets up source-specific states along the path from
the source to the new receiver. Thus for Bayeux, CAST would establish multicast
states in the opposite direction. Indeed, the idea of providing the P2P layer with
a generic multicast routing logic is valuable for applications agnostic to routing
services, but fails in general for overlay multicast modules. Group specific routing
forms the core component of overlay multicast, which may change by approach and
domain-specific demand. In this sense, a service abstraction should only provide an
interface definition, but not a routing logic.

Another application layer multicast (ALM) middleware architecture including
a wrapper API is currently presented in [23]. The authors assume that an ALM
protocol consists of the following parts: group management, topology management
and traffic management, which can be adopted by different ALM protocols. For
the latter, they propose an API for interoperability and transparency. The API calls
support the selection of different transport protocols as well as a native networks
and an overlay transmission mode.

The motivation of the suggested API is to provide a unique interface for sup-
porting structured and unstructured ALM protocols. As mentioned by the authors,
the requirements slightly differ which is reflected in the API design. Unstructured
group management introduces functions unknown in the context of structured over-
lay multicast, an external group management for example. Many unstructured mul-
ticast schemes rely on central management and provide a global view on the group
structure. In general, the simultaneous support of centralized and decentralized ap-
proaches poses a severe challenge to a common middleware. Actually, such a coop-
erative deployment scenario is less likely than KBR protocols jointly operating with
network layer multicast, as both are fully distributed and explicitly neglect a server
infrastructure.

The authors in [25] present a middleware for unstructured application layer mul-
ticast only. They decompose the ALM component in several functional units, e.g.,
a metric estimator or a logic net to maintain and optimize the overlay network. The
proposed API does not account for a transparent overlay and underlay group com-
munication and consists only of simple receive/send calls.

5.2.2 Current Challenges

Current concepts for the implementation of structured application layer multicast
[13, 23, 25] deal with the modularization of the OLM/ALM component and a cor-
responding API definition. The APIs presented either focus on a common tree con-
struction interface or a direct adoption of native group management calls. However,
the concepts do not account for two further important aspects:

(a) Which type of addresses may join the application?

Multicast Routing in Structured Overlaysand Hybrid Networks 925

(b) How does the OLM API provide dedicated broadcast?

Commonly, a structured overlay network does not restrict the address space to
any specific type. Each address will be handled as a string and hashed to the same
identifier space without further syntactical or semantical processing. Nevertheless,
the overlay may require special addresses for group communication to predefine a
subset of group members like a broadcast address. Applications operate in differ-
ent contexts and denote communication parties with respect to a domain-specific
namespace. Special addresses should be available in all namespaces to allow for its
continuous use.

Dedicated broadcast can be offered by a structured OLM API, after all appli-
cations have joined a specific “all-hosts” multicast group. This obviously does not
meet native broadcast, which works without active receiver subscriptions. The prob-
lem can easily be fixed by distinguishing broadcast and multicast data. Supplement-
ing the API with an additional broadcast interface may be one simple solution.
However, broadcast and multicast operate on the same overlay, which may results
in key collisions while hashing identical identifiers, since there is no reserved ad-
dress space. Consequently, the OLM middleware should foresee a specific, but well-
known broadcast address which can also be used to identify broadcast and multicast
data on the same channel.

There are two natural options to guarantee that broadcast addresses used by dif-
ferent applications are always mapped on the same overlay key. The API may define
a broadcast address which belongs to a specific context, but is obligatory for all ap-
plications. Application programmers then have to use this specific address and need
to account for context switches, if regular group communication is based on a dif-
ferent namespace.

Alternatively, broadcast addresses should be embedded in every namespace.
These multiple, dedicated addresses can then be mapped by the middleware to a
common identifier which does not conflict with multicast addresses. For this rea-
son, an OLM should be aware of namespaces, and each namespace should include
a unique broadcast address. This can be implemented, e.g., by using the natural
255.255.255.255 for IPv4 or the link-local all-nodes address for the IPv6 names-
pace. Application layer addresses like SIP URLs can reserve the asterisk for broad-
cast identification.

Based on the distinction of broadcast and multicast data, a group communication
framework can identify data and follow the distribution algorithms implemented.
OLM approaches which do not support a dedicated broadcast scheme may assure
an all-node reachability by an automatic pre-subscription via multicast.

5.3 Architectural Components

The design goals of an application layer multicast service for structured overlay
networks are twofold. On the one hand, the architecture for the OLM component

926 Matthias Wählisch and Thomas C. Schmidt

itself needs to be defined along with its placement in the global system. On the other
hand, a generic API for each of the interchangeable modules must be identified.

There is a common sense in the literature to modularize P2P components, even
though the perspectives differ. The Dabek model introduces a common 3 tier peer-
to-peer stack with a generic routing layer for structured overlays while contributions
in the field of ALM protocols focus more on decomposing the ALM service. In the
following, we describe the architectural components required for an enhanced group
communication stack and the corresponding API.

5.3.1 Architectural Overview

Overlay multicast supplements nodes without a global multicast connectivity with
a wide-area group communication service. Thus, it is important to provide a trans-
parent (virtual) network stack to application developers beyond the P2P context.

Fig. 16 An application layer
multicast middleware embed-
ded in a P2P stack

The overall architecture is displayed in Fig. 16. The group communication stack
consists of a middleware, underlay and overlay multicast modules. The middleware
manages data exchange between the application and group services. Depending on
availability and application requests, it creates a transparent overlay or a native net-
work communication channel. In addition to common multicast interfaces for ap-
plications, the middleware provides a service API reflecting group communication
states.

Overlay data will be handled by the broadcast or multicast implementation, de-
pending on the destination address in use. Since broadcast will be delivered without
explicit subscription, it is only the multicast implementation that internally provides
join and leave calls.

Multicast Routing in Structured Overlaysand Hybrid Networks 927

The overlay multicast protocols operate on overlay unicast communication. For
this reason they are connected with the key-based routing layer via the common API
(see Section 5.1). The KBR can be used twofold: On the one hand, it may operate as
a transmission layer delivering data to overlay peers. On the other hand, it provides
group protocol implementations with unicast routing states. In the latter case, over-
lay multicast and broadcast data need not use the KBR layer for transmission, but
may sent data directly to peers. Therefore, the multicast and broadcast components
need to provide an interface to the IP layer, as well.

5.3.2 An API Proposal

The overlay routing is based on hashed keys. As the applications are unaware of any
overlay specifics, the mapping of the underlay destination address to the key space
should be performed on the ALM layer as already suggested by Dabek et al. Never-
theless, it is important to preserve the original address, because an application may
receive streams directed to different multicast addresses from different receivers via
the same communication channel. The IP address noted in the IP header cannot be
used, as the root of a key may change due to volatile peers.

As an overlay is used in a specific context, the identifiers selected by the applica-
tions are likely to belong to the same namespace. Thus, we suggest to pre-initialize
the communication channel between application and group stack with the corre-
sponding context to simplify the API calls.

The destination group address configured by the application is a common appli-
cation layer or network address and is denoted by address. In contrast, overlay
IDs are identified as key. The application can choose, if it sends the data to the un-
derlay or overlay. We denote the corresponding data type mode which also allows
to leave the decision at the group communication stack, if the mode is unspecified.
In the following, we will describe the API calls used between the group communi-
cation stack and the application.

Table 3 The multicast communication API calls implemented at the corresponding layers

Tier message routing

2 void receive(address→a, message→msg)
1 init(namespace→n)

void join(address→a, mode→m)
void leave(address→a, mode→m)
void send(address→a, mode→m, message→msg)

At first, we explain calls to function for sending and receiving multicast data,
thus, reflecting typical source and receiver instances (cf. Table 3). After the group
communication stack is preinitialized with a namespace via init, a multicast lis-
tener invokes the join call for group subscriptions. The join call is implemented

928 Matthias Wählisch and Thomas C. Schmidt

by the ALM stack. Depending on the mode, this may result in an IGMP/MLD join,
if the address equals a valid IP multicast address. The address of joins towards the
overlay will be pre-processed by the middleware to implement, e.g., group aggrega-
tion and broadcast. The middleware creates a corresponding overlay key. A peer is
able to unsubscribe via leave. Multicast data will be accepted via receivewhich
is implemented by the application and delivers overlay and underlay messages. The
address passed to this upcall represents the destination used by the application in-
stance of the source.

A multicast source can distribute data via send implemented at the middleware.
If the overlay parameter has been configured, the middleware decides to forward it
to the broadcast or multicast module based on the destination address.

To request multicast states, we define the group service calls summarized in Ta-
ble 4. All registered multicast groups will be returned by the groupSet. The result
distinguish between sender and listener states. The information can be provided by
group management or routing protocols.

Table 4 The multicast state access API calls implemented at the corresponding layers

Tier message routing

2 address updateListener(mode→m)
address updateSender(mode→m)

1 nodehandle [] groupSet(mode→m)
nodehandle [] neighborSet(mode→m)
bool designatedHost(address→a)

A routing specific function is the neighborSet call which can be invoked at
the middleware to get the set of multicast routing neighbors. If the host has the
role of a designated forwarder or querier, the designatedHost call returns true.
Such an information is provided by almost all multicast protocols to handle packet
duplication, if multiple multicast instances serve on the same subnet.

Applications on top of the group communication stack can be informed about
state changes by corresponding upcalls. The event of a new receiver subscription or
leave will be signaled via updateListener. Thereupon, the group service may
call groupSet to pull updated information. A source state change will be notified
via updateSender.

Based on this set of primitives for multicast communication and state access,
hybrid multicast can be implemented according to section 4.

6 Discussions and Conclusions

In this chapter, we presented and analyzed approaches to application layer group
communication based on structured overlay networks. These protocol concepts

Multicast Routing in Structured Overlaysand Hybrid Networks 929

range from flooding of group-specific overlays, over shared and source-specific
schemes, to the more recent concept of bi-directional shared trees. Overlay packet
distribution in all protocols is established on top of a common key-based unicast
routing layer.

Operating in a push model, all schemes under consideration (approximately) dis-
tribute data according to a tree. We extracted and discussed key properties of the
corresponding tree structures, based on theoretical models for the geometric for-
warding in can CAN and for prefix trees, or on current experimental evaluations for
data driven trees. Structures were identified to differ significantly, leading to a large
variation in performance measures such as replication load, hop counts and delays.
Optimized tree construction and data transmission throughout the underlay are key
controls for efficient group communication in structured overlays. Corresponding
insights into the inherent properties of distribution schemes may serve as an á priori
measure in future deployment decisions.

Flooding protocols are more suitable for broadcast scenarios, in which network
nodes handle only one group of all network members, and reduce the multicast
complexity by omitting group management. Flooding can be naturally achieved
on the basis of CAN geometry or the key-based prefix structure. The key advan-
tage of CAN, i.e., strictly limited replication costs for a fixed dimension, where
shown to weaken at the price of hop chains growing large with increasing node
numbers.

Data driven trees, which do not exploit DHT structures for tree construction,
attain minimal group maintenance costs when trees are constructed from reverse
paths. However, these shared trees admit degenerate structures and operate at de-
graded performance, since link selection in the key-based routing layer follows
asymmetric rules. As a consequence, sources tend to deliver data along unbalanced
trees and suboptimal paths. Such a problem does not arise, if the source constructs
its tree according to forward routes, as it is done in source-specific schemes, or for
forwarding states that allow for bi-directional traversal. Prefix directed forwarding
was shown to be the most balanced approach, complying strict logarithmic bounds
in replication load, hop counts and signaling costs. Routes are selected in forward
direction, and distribute data along paths that are optimally chosen from the source
to destinations.

Overlay multicast is increasingly recognized as a supplement for the current In-
ternet backbone routing, which has not been globally multicast-enabled, yet. Unlike
conventional mono-layer solutions, hybrid schemes may augment the native mul-
ticast that is well-adopted in enterprise domains by group services on structured
overlays, thereby bridging the inter-domain multicast gap. A wide deployment of
such approaches requires a seamless integration with current native multicast pro-
tocols. This requires a group communication stack to be simultaneously aware of
overlay and underlay protocols. Offering such a multi-layer integration to appli-
cations requires a common API. In this chapter, we explored both, the ingredients
required for a scalable hybrid architecture and the conceptual expressiveness needed
at a common group communication programming interface.

930 Matthias Wählisch and Thomas C. Schmidt

6.1 Future Research Directions

From a general perspective, conceptually antithetic approaches compete for serv-
ing group communication best: Mesh-based pull models that commonly operate on
unstructured P2P routing run in contention with tree-based push models that have
implementations on both, structured and unstructured routing layers. Both have been
studied since several years. Greedy pull models as used in popular applications like
BitTorrent or PPLive are considered to deliver superior, more flexible application
performance, while the traditional, tree-based multicast push model minimizes net-
work resource consumption and facilitates an overall optimum for large data distri-
bution tasks.

P2P networks produce an unintentional, but outstanding load on the Internet
backbone and at ISP peering points, having led to ongoing debates and traffic block-
ing. In response, the IETF has started work on application-layer traffic optimiza-
tions, paving the way for dynamic adaptation of streams and thus minimizing the
P2P load. Efficiency, infrastructure-compliance and reliability of data distribution
has thus turned back into focus, forcibly stressed by the increasing success of P2P
applications on large scale. Hand in hand with open deployment questions, research
is drawn back to analyzing and designing optimized structures for a compliant data
dissemination, which is most likely facilitated by protocols based on (multi-) trees.

More recently, approaches rose focus on a merging of overlay and native multi-
cast. Up until now, no clear analysis is available about a most feasible choice of the
overlay multicast paradigm, nor about a dedicated protocol best fitting such scenar-
ios. Keeping in mind that ongoing research investigates solutions for re-architecting
the Internet, the identification of suitable building blocks for hybrid group commu-
nication remains an open, challenging topic.

Global multicast complicates this optimization process as group members may be
arbitrarily distributed over several ISPs. At the moment, there has been no research
conducted in this promising field.

References

1. Baumgart, I., Heep, B., Krause, S.: OverSim: A Flexible Overlay Network Simulation Frame-
work. In: M. Faloutsos, et al. (eds.) Proceedings of the 10th IEEE Global Internet Symposium,
pp. 79–84. IEEE Computer Society, Washington, DC, USA (2007)

2. Birrer, S., Bustamante, F.E.: The Feasibility of DHT-based Streaming Multicast. In: MAS-
COTS ’05: Proceedings of the 13th IEEE International Symposium on Modeling, Analysis,
and Simulation of Computer and Telecommunication Systems, pp. 288–298. IEEE Computer
Society, Washington, DC, USA (2005). DOI http://dx.doi.org/10.1109/MASCOT.2005.73

3. Bradler, D., Kangasharju, J., Mühlhäuser, M.: Optimally Efficient Prefix Search and Multicast
in Structured P2P Networks. Technical Report TUD-CS-2008-103, TU Darmstadt (2008)

4. Brown, A., Kolberg, M.: Tools for Peer-to-Peer Network Simulations. IRTF Internet Draft –
work in progress 0, P2PRG (2006)

5. Buford, J.: Hybrid Overlay Multicast Framework. IRTF Internet Draft – work in progress 2,
SAM RG (2008)

Multicast Routing in Structured Overlaysand Hybrid Networks 931

6. Buford, J.: SAM Overlay Protocol. IRTF Internet Draft – work in progress 1, SAM RG (2008)
7. Cain, B., Deering, S., Kouvelas, I., Fenner, B., Thyagarajan, A.: Internet Group Management

Protocol, Version 3. RFC 3376, IETF (2002)
8. Castro, M., Druschel, P., Kermarrec, A.M., Nandi, A., Rowstron, A.I.T., Singh, A.: Split-

Stream: High-Bandwidth Content Distribution in Cooperative Environments. In: M.F.
Kaashoek, I. Stoica (eds.) Peer-to-Peer Systems II. Second International Workshop, IPTPS
2003 Berkeley, CA, USA, February 21–22, 2003 Revised Papers, LNCS, vol. 2735, pp. 292–
303. Springer–Verlag, Berlin Heidelberg (2003)

9. Castro, M., Druschel, P., Kermarrec, A.M., Rowstron, A.: SCRIBE: A large-scale and decen-
tralized application-level multicast infrastructure. IEEE Journal on Selected Areas in Com-
munications 20(8), 100–110 (2002)

10. Castro, M., Jones, M.B., Kermarrec, A.M., Rowstron, A., Theimer, M., Wang, H., Wolman,
A.: An Evaluation of Scalable Application-level Multicast Built Using Peer-to-peer Overlays.
In: Proceedings of the Twenty-Second Annual Joint Conference of the IEEE Computer and
Communications Societies (Infocom 2003), vol. 2, pp. 1510–1520. IEEE Computer Society,
Washington, DC, USA (2003)

11. Chalmers, R.C., Almeroth, K.C.: On the topology of multicast trees. IEEE/ACM Trans. Netw.
11(1), 153–165 (2003). DOI http://dx.doi.org/10.1109/TNET.2002.804835

12. Christensen, M., Kimball, K., Solensky, F.: Considerations for Internet Group Management
Protocol (IGMP) and Multicast Listener Discovery (MLD) Snooping Switches. RFC 4541,
IETF (2006)

13. Dabek, F., Zhao, B.Y., Druschel, P., Kubiatowicz, J., Stoica, I.: Towards a Common API for
Structured Peer-to-Peer Overlays. In: M.F. Kaashoek, I. Stoica (eds.) Peer-to-Peer Systems
II, Second International Workshop, IPTPS 2003, Berkeley, CA, USA, February 21-22,2003,
Revised Papers, LNCS, vol. 2735, pp. 33–44. Springer–Verlag, Berlin Heidelberg (2003)

14. Druschel, P., et al.: FreePastry. http://freepastry.rice.edu/FreePastry/ (2008)
15. Feller, W.: An Introduction to Probability Theory and Its Applications, vol. 1, 3rd edition edn.

Wiley & Sons, New York (1968)
16. Fenner, B., Handley, M., Holbrook, H., Kouvelas, I.: Protocol Independent Multicast - Sparse

Mode (PIM-SM): Protocol Specification (Revised). RFC 4601, IETF (2006)
17. Fenner, B., He, H., Haberman, B., Sandick, H.: Internet Group Management Protocol (IGMP) /

Multicast Listener Discovery (MLD)-Based Multicast Forwarding (”IGMP/MLD Proxying”).
RFC 4605, IETF (2006)

18. Garyfalos, A., Almeroth, K.: A Flexible Overlay Architecture for Mobile IPv6 Multicast.
IEEE Journal on Selected Areas in Communications 23(11), 2194–2205 (2005)

19. Handley, M., Kouvelas, I., Speakman, T., Vicisano, L.: Bidirectional Protocol Independent
Multicast (BIDIR-PIM). RFC 5015, IETF (2007)

20. Hazarika, S., Towsley, D.: Delay Analysis of Application Level Multicast on Content Ad-
dressable Networks. In: Proceedings of Globecom 2004, pp. 1271–1277. IEEE Comm. Soc.,
Dallas, TX (2004)

21. Jennings, C., Lowekamp, B.B., Rescorla, E., Baset, S.A., Schulzrinne, H.: REsource LOcation
And Discovery (RELOAD). IETF Internet Draft – work in progress 00, P2PSIP Working
Group (2008)

22. Johnson, D.B., Perkins, C., Arkko, J.: Mobility Support in IPv6. RFC 3775, IETF (2004)
23. Lim, B., Ettikan, K.: ALM API for Topology Management and Network Layer Transparent

Multimedia Transport. IRTF Internet Draft – work in progress 0, individual (2008)
24. López, P.G., Pairot, C., Mondéjar, R., Ahulló, J.P., Tejedor, H., Rallo, R.: PlanetSim: A New

Overlay Network Simulation Framework. In: T. Gschwind, C. Mascolo (eds.) Proceedings
4th International Workshop on Software Engineering and Middleware (SEM 2004). Revised
Selected Papers, LNCS, vol. 3437, pp. 123–136. Springer–Verlag, Berlin Heidelberg (2005)

25. Mimura, N., Nakauchi, K., Morikawa, H., Aoyama, T.: RelayCast: A Middleware for
Application-level Multicast Services. In: S. Matsuoka, Y. Ishikawa (eds.) Proceedings of the
3st IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID ’03),
pp. 434–441. IEEE Computer Society, Washington, DC, USA (2003)

932 Matthias Wählisch and Thomas C. Schmidt

26. Naicken, S., Livingston, B., Basu, A., Rodhetbhai, S., Wakeman, I., Chalmers, D.: The State
of Peer-to-Peer Simulators and Simulations. SIGCOMM Computer Communication Review
37(2), 95–98 (2007)

27. Phillips, G., Shenker, S., Tangmunarunkit, H.: Scaling of multicast trees: comments on the
chuang-sirbu scaling law. In: SIGCOMM ’99: Proceedings of the conference on Appli-
cations, technologies, architectures, and protocols for computer communication, pp. 41–51.
ACM Press, New York, NY, USA (1999). DOI http://doi.acm.org/10.1145/316188.316205

28. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Schenker, S.: A Scalable Content-
Addressable Network. In: SIGCOMM ’01: Proceedings of the 2001 conference on Applica-
tions, technologies, architectures, and protocols for computer communications, pp. 161–172.
ACM, New York, NY, USA (2001)

29. Ratnasamy, S., Handley, M., Karp, R.M., Shenker, S.: Application-Level Multicast Using
Content-Addressable Networks. In: J. Crowcroft, M. Hofmann (eds.) Networked Group Com-
munication, Third International COST264 Workshop, NGC 2001, London, UK, November
7-9, 2001, Proceedings, LNCS, vol. 2233, pp. 14–29. Springer–Verlag, London, UK (2001)

30. Ratnasamy, S.P.: A Scalable Content-Addressable Network. Ph.D. thesis, University of Cali-
fornia, Berkeley (2002)

31. Rowstron, A., Druschel, P.: Pastry: Scalable, distributed object location and routing for large-
scale peer-to-peer systems. In: IFIP/ACM International Conference on Distributed Systems
Platforms (Middleware), pp. 329–350 (2001)

32. Rowstron, A., Kermarrec, A.M., Castro, M., Druschel, P.: Scribe: The Design of a Large-Scale
and Event Notification Infrastructure. In: J. Crowcroft, M. Hofmann (eds.) Networked Group
Communication. Third International COST264 Workshop, NGC 2001. Proceedings, LNCS,
vol. 2233, pp. 30–43. Springer–Verlag, Berlin Heidelberg (2001)

33. Saltzer, J.H., Reed, D.P., Clark, D.D.: End-to-End Arguments in System Design. ACM Trans.
Comput. Syst. 2(4), 277–288 (1984). DOI http://doi.acm.org/10.1145/357401.357402

34. Shudo, K., Tanaka, Y., Sekiguchi, S.: Overlay Weaver: An Overlay Construction Toolkit.
Computer Communications 31(2), 402–412 (2008). Special issue on foundations of peer-
to-peer computing

35. Thaler, D., Talwar, M., Aggarwal, A., Vicisano, L., Pusateri, T.: Automatic IP Multicast With-
out Explicit Tunnels (AMT). Internet Draft – work in progress 9, IETF (2008)

36. Van Mieghem, P.: Performance Analysis of Communications Networks and Systems. Cam-
bridge University Press, Cambridge, New York (2006)

37. Vida, R., Costa, L.H.M.K.: Multicast Listener Discovery Version 2 (MLDv2) for IPv6. RFC
3810, IETF (2004)

38. Wählisch, M.: Scalable Adaptive Group Communication on Bi-directional Shared Prefix
Trees. Technical Report B-08-14, FU Berlin, Mathematik/Informatik (2008). URL http://
www.inf.fu-berlin.de/inst/pubs/index08.html

39. Wählisch, M., Schmidt, T.C.: Between Underlay and Overlay: On Deployable, Efficient,
Mobility-agnostic Group Communication Services. Internet Research 17(5), 519–534 (2007).
Selected papers from the TERENA networking conference 2007

40. Wählisch, M., Schmidt, T.C., Wittenburg, G.: Broadcasting in Prefix Space: P2P Data Dis-
semination with Predictable Performance. Technical report, Open Archive: arXiv.org (2008).
URL http://arxiv.org/abs/0811.3387

41. Zhao, B.Y., Huang, L., Stribling, J., Rhea, S.C., Joseph, A.D., Kubiatowicz, J.D.: Tapestry: A
Resilient Global-Scale Overlay for Service Deployment. IEEE Journal on Selected Areas in
Communications 22(1), 41–53 (2004)

42. Zhao, B.Y., Kubiatowicz, J.D., Joseph, A.D.: Tapestry: An Infrastructure for Fault-tolerant
Wide-area Location and. Technical Report UCB/CSD-01-1141, University of California at
Berkeley (2001)

43. Zhuang, S.Q., Zhao, B.Y., Joseph, A.D., Katz, R.H., Kubiatowicz, J.D.: Bayeux: An Architec-
ture for Scalable and Fault-tolerant Wide-area Data Dissemination. In: J. Nieh, H. Schulzrinne
(eds.) Proceedings of the 11th International Workshop on Network and Operating Systems
Support for Digital Audio and Video (NOSSDAV ’01), pp. 11–20. ACM, New York, NY,
USA (2001)

Multicast and Bulk Lookup in Structured
Overlay Networks

Ali Ghodsi

Abstract Structured overlay networks are often used to implement a Distributed
Hash Table (DHT) abstraction. In this chapter, we argue that structured overlay net-
works are suitable for doing efficient group communication. We provide algorithms
that enable a node to efficiently broadcast a message to all other nodes in a struc-
tured overlay network, without inducing any redundant messages. We also provide
algorithms that enable any node to efficiently send a message to all nodes in a speci-
fied set of identifiers. Such algorithms have found usage in many structured overlay
networks that implement range queries. Similarly, we provide algorithms that enable
any node to efficiently send a message to the nodes responsible for any of the identi-
fiers in a specified set of identifiers. Finally, we look at a case study of implementing
efficient Application Level Multicast (ALM) using the group communication algo-
rithms on top of structured overlay networks.

1 Introduction

In this chapter, we show how the interconnectivity of the nodes in a structured over-
lay network can be used for group communication. In other words, we provide al-
gorithms which enable any node to send a message to all nodes on the ring. We also
provide algorithms that enable any node to efficiently send a message to all nodes in
a specified set of identifiers, e.g., broadcast a message to all nodes with identifiers
in the set {3,4,21,22}. Similarly, we provide algorithms that enable any node to
efficiently send a message to the nodes responsible for any of the identifiers in a
specified set of identifiers.

Ali Ghodsi
SICS, Box 1263, SE-164 29 Kista, Sweden, e-mail: ali@sics.se

X. Shen et al. (eds.), Handbook of Peer-to-Peer Networking, 933
DOI 10.1007/978-0-387-09751-0 33, © Springer Science+Business Media, LLC 2010

934 Ali Ghodsi

1.1 Motivation

The lookup operation provided by structured overlay networks is sometimes insuffi-
cient for some applications, since it is limited to finding keys that exactly match the
provided query. The lookup operation does not provide for complex queries con-
taining wild-card expressions, such as “find all items which have a key containing
the keyword music”.

One solution to the above problem is to broadcast a query to all nodes, or some
of the nodes, which are part of the structured overlay network. In fact, many popular
peer-to-peer applications – such as Skype, Kazaa, and Gnutella – build a network
where the nodes are randomly interconnected. Queries are recursively flooded or
broadcast to all neighbors. The lack of structure in the random networks, however,
leads to disadvantages. For example, some nodes might receive the same message
redundantly from different neighbors, wasting bandwidth. Furthermore, the freedom
of letting nodes randomly interconnect might lead to the overlay network partition-
ing into several components which have no interconnection, even though all nodes
are connected in the underlay network. Group communication on top of structured
overlay networks does not suffer from these disadvantages [6, 7, 15]. On the con-
trary, when using structured overlay networks, it is possible to guarantee that the
time complexity is logarithmic to the number of nodes in the structured overlay
network, and that the message complexity is equal to the number of nodes in the
structured overlay network.

Group communication can be used as a basic building block to provide overlay
multicast. Our approach will be to create one structured overlay network per mul-
ticast group, and whenever a node requests to multicast information to a group, it
broadcasts the information to all the nodes within the structured overlay network
that represents the multicast group. We will also show how this scheme can take
advantage of IP multicast where it is available, and thus only use the overlay to
connect different IP multicast capable networks.

Aside from doing group communication, broadcast algorithms have many uses
when constructing structured overlay networks. In particular, a variant of broadcast
is useful, whereby a node sends a message to all nodes which have identifiers in
a certain interval. Such an algorithm can often be used when implementing range
queries, since they often involve reaching all nodes in an interval of the identifier
space.

2 Preliminaries

Our goal is to construct general group communication algorithms which can be
used on as many structured overlay networks as possible. Hence, we will strive to
depend as little as possible on the structure induced by the routing pointers. Our aim
is to make our algorithms applicable to any ring-based structured overlay networks.
Nevertheless, ring-based structured overlay networks significantly differ in how they

Multicast and Bulk Lookup in Structured Overlay Networks 935

place routing pointers. For example, in many structured overlay networks – such
as Pastry [32], Tapestry [37] – routing pointers are placed according to prefixes
of the identifiers of the nodes. Other structured overlay networks – such as Chord
[34], DKS [19], and SkipNet [21] – place pointers according to the relative distance
of nodes on the ring. We will disregard such differences and represent the routing
pointers uniformly.

Our assumption is that the system is ring-based, i.e., each node has an identifier
from an identifier space, I = {0,1, · · · ,N− 1}, of a fixed size N, and each node
has a pointer to its predecessor – the first node met going in clockwise direction
on the ring – and successor – the first node met going in anti-clockwise direction
on the ring. The predecessor and successor pointers are represented by pred and
succ, respectively. Thus, n.succ denotes the successor of node n. Furthermore, we
represent the routing pointers of each node in monotonically increasing distances.
That is, all the pointers of a node n are represented by a function, rt, where rt(1)
points to the successor of n, rt(2) points to the node in the routing table of n which
is the second closest to n going in clockwise direction starting at n, etcetera. Hence,
rt sorts all the pointers of a node n according to their clockwise distance to n, with
rt(1) being the successor of the node, and rt(K) being the predecessor of the node,
given that the node n has K pointers. The variable K might vary at different nodes
and times.

We avoid redundant pointers to simplify our algorithms. For example, in
Chord [35], some pointers of a node might be pointing at the same node, i.e.,
rt(3) = rt(4) = 10. Our algorithms will be simplified if all the pointers are unique.
Therefore, we represent the pointers by another function u. The successor of a node
is always represented by u(1), and u(2) points to the second closest node etcetera,
while guaranteeing that u(i) �= u(j) for any two distinct i and j. We assume that a
node has M unique pointers. Again, M might vary at different nodes and times. For
convenience, we sometimes use u(0) to denote the identifier of the local node, i.e.,
u(0) = n at node n, but it is not counted by M.

For the sake of preciseness, we now formally define the above definitions. We
will use the notation x⊕y for (x + y) modulo N for all x,y∈I , where N = |I |.
Similarly, x,y is defined as (x− y) modulo N for all x,y∈I . For example, if the
size of the identifier space is 16, then 15⊕2 = 1, while 1,2 = 15.

Distances on the identifier space are measured in clockwise direction. Hence, the
distance d between any two identifiers x and y is defined as:

d(x,y) = y, x

The successor of an identifier is its closest node in clockwise direction. Hence,
the successor S of an identifier x for a set of nodes P is defined as:

S(x) = x⊕min{d(x,y) | y ∈P}

The successor of a node p is therefore defined by the function succ at node p as:

succ = S(p⊕1)

936 Ali Ghodsi

The above function u can be formally defined as follows. Let the set R contain
all the pointers of a node n, i.e., R = {rt(k) | 1≤ k ≤ K}∪{n}. We define the local
successor function at a node as:

s(i) = i⊕min({ j, i | j ∈ R})

The function u at node n can now be defined for the domain [0, |R|−1] as :

u(i) =
{

n if i = 0
s(u(i−1)⊕1) otherwise

(1)

We will initially assume that all pointers are correct and no failures occur.

Interval Notation

We now introduce some notation to make our discussions about the identifiers
and intervals on the ring more precise. The whole identifier space can be repre-
sented by an interval of the form [x,x) or (x,x] for an arbitrary x ∈ I , where
the start of an interval is excluding the first identifier if the left bracket is round,
(, and it is including the first identifier if it is square, [. Similarly, the end of an
interval is including the last identifier if the right bracket is square,], and exclud-
ing the last identifier if it is round,). For any x ∈ I , we note that [x,x] = {x}
and (x,x) = I \{x}. Hence, a node n is responsible for (n.pred,n]. For exam-
ple, if the size of the identifier space is 16, then (2,10] is the set of identi-
fiers 3,4, · · · ,9,10. The interval (10,2] is equivalent to the identifiers 0,1,2, and
11,12,13,14,15.

Sets of Identifiers

We now connect the interval notation to a set representation. Often a notation of the
sort (i, j] is used to represent intervals of the identifier space. Such an interval is
a compact representation of a set of identifiers. For example, in an identifier space
of size 16, the interval (14,3] represents the set of identifiers {15,0,1,2,3}. It is
therefore possible to apply the operations available for sets on intervals, such as
taking the union or intersection of two intervals. For example, the interval [11,15]
represents the set of identifiers {11,12,13,14,15}. Therefore, the union of the in-
tervals, (14,3]∪ [11,15], is the set of identifiers {0,1,2,3,11,12,13,14,15}. Simi-
larly, the intersection of the intervals, (14,3]∩ [11,15], is the set of identifiers {15}.
It might, of course, not be possible to represent a set of identifiers as a single
interval.

In our algorithms, we make extensive use of the basic set operations on intervals.
The reason for this is that the semantics of the operations are well defined. In a
system implementation, these can be implemented and optimized as fit.

Multicast and Bulk Lookup in Structured Overlay Networks 937

Resource Consumption

We use message complexity as a measure of resource consumption. The message
complexity of an algorithm is the total number of messages exchanged by the algo-
rithm. Sometimes, the message complexity does not convey the real communication
overhead of an algorithm, as the size of the messages is not taken into account.
Hence, on a few occasions, we use bit complexity to measure the total number of
bits used in the messages by some algorithm.

Time complexity will be used to measure the time consumption of an algorithm.
We assume that the transmission time takes at most one time unit and all other
operations take zero time units. The worst case time complexity is often the same
if we assume that the transmission of a message takes exactly one time unit, but for
some algorithms the worst time complexity increases if we assume that the time it
takes to send a message takes at most one time unit.

2.1 Desirable Properties

The group communication algorithms we present in this chapter share the following
correctness properties:

• Termination. The algorithm eventually terminates.
• Coverage. All the designated nodes that are reachable from the initiation to the

termination of the algorithm should receive the message.
• Non-redundancy. Each node receives the message at most once.

The two first properties are liveness properties, while the last property is a safety
property. The last two properties bear some more discussion. We discuss the terms
designated and reachable, as it comes to the coverage property.

The particular group communication algorithm determines what constitutes a
designated node. For example, in a broadcast algorithm all nodes are designated
nodes. In some other algorithms, perhaps only a subset of the nodes are considered,
e.g., all nodes with identifiers in a certain interval.

The nodes that can be visited by traversing the successor pointers, starting at
some initiator and stopping whenever the initiator is reached or overshot,1 are re-
garded as nodes reachable from that initiator. We assume that the pointers of any
node, as defined by the function u, always point at some node which is reachable
from the initiator.

The reason that the coverage property is technically involved is to avoid idiosyn-
crasies that are theoretically possible in a ring-based structured overlay network. For
example, one can construct a loopy ring, where the state of the successor and pre-
decessor pointers seems correct from the perspective of any two neighboring nodes,
but the overall ring structure is inconsistent. Figure 1 shows a loopy ring, where

1 We say that a node p overshoots an identifier i if p routes to j when d(p, i)≤ d(p, j).

938 Ali Ghodsi

Fig. 1 A loopy network where (u.succ).pred = u for every node u, but for every node u there is a
node v between u and u.succ

pointers between the successor and a predecessor of a node are symmetric, i.e., for
every node u, u’s successor has a predecessor pointer pointing at u. However, be-
tween any node and its successor there is another node. Consequently, if the ring
is traversed starting at some initial node and stopping whenever the initial node is
reached or overshot, not all the nodes in the system have been visited. It is not clear
how such a loopy network could occur. There are algorithms for making such ring
states consistent [26, 27], but it is not in the scope of our group communication
algorithms to deal with such scenarios.

By the last correctness property, non-redundancy, we mean that the same mes-
sage should never be transmitted more than once to the same node. This is different
from non-redundant delivery of messages, which is adopted by others [23, pg 33f].
The latter is achieved by associating a globally unique identifier with every invo-
cation of the algorithm, and filtering any message with previously seen identifiers.
Thus, the application is delivered the message at most once, even though the node
might receive the same message multiple times. This comes at the cost of transmit-
ting redundant messages, and maintaining state associated with previously received
messages.

3 Broadcast

In this section we provide algorithms for broadcasting to all nodes in the structured
overlay network. Hence, every node is considered to be a designated node by the
algorithm.

Multicast and Bulk Lookup in Structured Overlay Networks 939

A naı̈ve broadcast algorithm would start at the initiating node and traverse the
successor pointers, ensuring that all nodes receive the message. The algorithm
would terminate whenever the successor pointer of a node points to the initiator or
overshoots the initiator. In other words, if p initiates the algorithm, a node q would
only forward the request to its successor if q.succ ∈ (q, p).

The naı̈ve algorithm is correct. The algorithm would eventually terminate, even
in the presence of churn, as it is impossible to keep forwarding the message to
a successor infinitely without ever using a successor pointer which points at, or
overshoots, the initiator. The algorithm would cover all reachable nodes that remain
in the system until the algorithm terminates. No node would ever get the message
more than once, as the condition for forwarding ensures that nodes that previously
received the message are not forwarded to.

The algorithm would, however, incur a message complexity of O(n) and a time
complexity of O(n), where n is the number of nodes in the system.

3.1 Simple Broadcast

The naı̈ve algorithm can be improved. Assume the identifier space is {0, · · · ,1023},
and only nodes with odd identifiers exists, i.e., 1, 3, 5, · · · , 1023. Assume node 1
is to broadcast a message, and it happens to have node 511 in its routing table. A
simple improvement of the naı̈ve algorithm would be to let the initiator 1 delegate
responsibility to node 511 to traverse the successor pointers in the range 512 to 0
on the ring, while 1 itself traverses the successor pointers in the range 2 to 510. Our
message complexity will still be n, but our time complexity will be halved to n

2 . It is
obvious that all nodes in the system would be covered, and that no redundant mes-
sages would be sent. Our simple broadcast algorithm applies the idea of delegation
recursively for every pointer that points to a node that has not previously been sent
to.

The simple broadcast algorithm, shown by Algorithm 19, works as follows. The
initiating node partitions the identifier space into M parts, and delegates to each rout-
ing neighbor the responsibility to cover all nodes in its part. More concretely, the
initiating node i delegates responsibility to node u(M) to cover all nodes in the inter-
val (u(M), i), node u(M−1) is delegated responsibility to cover (u(M−1),u(M)),
etcetera, down to node u(1) (successor of i) to cover nodes in (u(1),u(2)). Each
delegatee further partitions the part to which it has been delegated into pieces which
it further delegates to other nodes. This is recursively repeated until no node has
any routing pointers left in the interval it has been delegated, whereby the algorithm
terminates.

We now argue why the simple broadcast algorithm is correct.
Termination. The algorithm only forwards a message to a node u(i) if u(i) is in

the interval (n, limit). Hence, the beginning of the interval strictly increases (modulo
arithmetic) toward limit each time a message is forwarded. Similarly, the end of the
interval (limit), either stays the same or decreases toward n. Hence, each time a node

940 Ali Ghodsi

Algorithm 19: Simple broadcast algorithm

1: receipt of STARTSIMPLEBCAST(msg) from app at n
2: sendto n : SIMPLEBCAST(msg, n)
3: end receipt event

4: receipt of SIMPLEBCAST(msg, limit) from m at n
5: Deliver(msg)
6: for i := M downto 1 do
7: if u(i) ∈ (n, limit) then
8: sendto u(i) : SIMPLEBCAST(msg, limit)
9: limit := u(i)

10: end if
11: end for
12: end receipt event

sends a message to some other node, it delegates to it a strict subset of the interval
that itself was responsible for. Since the intervals are discrete and have a finite size,
eventually there is either no node in the interval or the interval is empty. Hence,
eventually the algorithm terminates.

Non-redundancy. We have shown that each node delegates a subset of its own
interval to any node it forwards to. Hence, a tree is induced by the broadcast, where
the initiator is the root of the tree, and where a node is the immediate parent of all
the nodes it directly sends a message to. We show that every node delegates non-
overlapping intervals to all its children. This is is a consequence of the fact that the
pointers at any given node are unique and a node never sends a message to itself,
since 0 (and consequently u(0)) is not covered by the index i in the for-loop. Hence,
every node n is delegated responsibility to cover an interval (n, limit), and n sends a
message to any neighbor in that interval, delegating each of them non-overlapping
subsets of (n, limit). Furthermore, the interval delegated to a node by a node n never
contains the identifier of any of n’s children.

By structural induction on the broadcast tree, the same node cannot occur more
than once in the subtree of any node. The statement is true for the base case, which
is any tree containing only one node. For the induction step, assume the hypothesis
is true for the subtrees, T1, · · · ,Tn that are formed by an arbitrary node p’s respective
children. Then it is also true for the subtree formed at p, since the intervals of each
tree is non-overlapping and p does not occur in any of those intervals. Hence, no
node ever receives the same message twice.

Coverage. By structural induction on the broadcast tree, the subtree at a node p
covers all the nodes that have an identifier in that interval. It is true for the base
case, which is any tree containing only one node p. Since the interval given to p is
of the form (p, limit), no node in the system can have an identifier in that interval,

Multicast and Bulk Lookup in Structured Overlay Networks 941

otherwise one of them would be p’s successor u(1), contradicting that p is the only
node. For the induction step, assume the hypothesis is true for the subtrees of p’s re-
spective children. Then all the intervals delegated to p’s children have been covered,
which only leaves the identifiers of p’s children to be covered for p to ensure that
its delegated interval is covered. But those identifiers are covered since p directly
sends a message to its children. Hence, p and its children will cover all the nodes in
the interval delegated to p. Since the initiator starts with the whole identifier space
as its delegated interval, all nodes will be covered.

The simple broadcast algorithm is in fact broadcasting over the k-ary tree [1],
which systems such as Chord, Pastry, and DKS use. Consequently, the time com-
plexity of the algorithm is logk(n), for n nodes, given that the pointers are selected
according to the k-ary tree principle [1]. For example, in Chord, the time complexity
will be log2(n). Furthermore, the message complexity is n, since all nodes receive
the message and no node receives the message more than once. Most importantly,
no single node ever needs to send a message to more than M nodes, given that it has
pointers to M nodes.

Figure 2 shows the example of a ring and Fig. 3 shows the how a simple broadcast
would disseminate over that ring if a broadcast was initiated by node 1.

3.2 Simple Broadcast with Feedback

The operation provided by the simple broadcast algorithm is useful for some appli-
cations, such as overlay multicast or publish/subscribe systems. It is, however, not
sufficient if the broadcasting node wishes to receive a feedback or a response from
the nodes it is broadcasting to. This is especially the case if broadcasting is used
to implement arbitrary or complex queries. A naı̈ve solution would be to inform all
nodes of the identity of the initiator, and let them directly send their feedback to the
initiator. But this is not scalable as the initiator quickly becomes a bottleneck as the
number of nodes becomes large.

The Simple Broadcast with Feedback Algorithm (Algorithm 20) efficiently col-
lects responses from all nodes after broadcasting. It extends the simple broadcast
algorithm by letting each node maintain a set, Ack, of all nodes that it has sent the
message to. Each node also has a variable par, pointing to the parent, from which it
received the broadcast message. Every node waits to receive a response from each
of the nodes in its Ack set before it sends its own response together with the gathered
responses to par. Naturally, nodes that are delegated an interval in which they have
no neighbors, can immediately send their response to par as they do not need to
wait on a response from any node. As a side note, these will be the nodes that are
the leafs of the induced broadcast tree.

The feedback algorithm has twice the time and message complexity as the simple
broadcast algorithm.

942 Ali Ghodsi

Fig. 2 The figure shows an identifier space {0, · · · ,63} and 12 nodes with identifiers
1,6,11,16,23,27,31,38,43,50,55, and 59. Single arrowed lines represent a routing pointer and
each double arrowed line represents a node’s predecessor pointer and the corresponding successor
pointer

4 Bulk Operations

In this section we generalize the problem and provide two operations: bulk op-
eration and bulk owner operation. Bulk operation takes a set of identifiers I, re-
ferred to as the bulk set, and sends a message to all nodes that have identifiers
in the set I. Hence, the designated nodes are all nodes with an identifier in the
bulk set I. Bulk owner operation takes a set of identifiers I and broadcasts to the
nodes that are responsible for the identifiers in the set I. The notion of respon-
sibility is the same as in Chord, where every node n is responsible for all iden-
tifiers between its predecessor and itself, i.e., the identifiers (n.pred,n]. Hence,
the designated nodes are those which are responsible for an identifier in the bulk
set I.

Multicast and Bulk Lookup in Structured Overlay Networks 943

Fig. 3 The figure shows how a simple broadcast initiated by node 1 would disseminate in the
system depicted by Fig. 2. Each box represents the node receiving the broadcast message (in bold)
and the interval that it is delegated responsibility to cover

Naı̈ve Solution

The simple broadcast algorithms presented in the previous section can easily be
modified to only broadcast to parts of the ring. The initiating node i can set limit to
any identifier, and the simple broadcast algorithm will ensure that only nodes in the
range [i, limit) get the broadcast message.

It would be desirable if an initiating node i could broadcast to any node in an
arbitrary interval (k,m]. This could naı̈vely be achieved if the initiating node first
routes an ordinary lookup message to the successor of k, which then broadcasts to
everyone in (k,m]. There is, however, a more efficient solution which we describe
next.

Motivation

A main motivation for bulk operation is that it can be used to build a bulk lookup
or bulk insert operation. In many applications, such as file systems built on top of
structured overlay networks, it is desirable to lookup many keys in parallel. We
have encountered file systems built on top of structured overlay networks, in which
thousands of simultaneous lookups were issued to fetch a large file [3, 33]. In such
cases, there is a significant overhead induced by marshaling and sending thousands
of lookups. With the bulk owner operation, the identifiers of all those keys would be
described by the bulk set I, which is then used to do parallel lookups. The advantage
of the bulk operation is that it guarantees that a node will send at most as many
messages as it has pointers, which is often O(logn) pointers in an n node system.
Furthermore, if the routing pointers are placed according to the k-ary principle, such
as in Chord, the worst case time complexity of the whole operation is O(logn), in
an n node system. Bulk operation improves the bit complexity when compared to
making parallel lookups for every identifier. Hence, it does not trade bit complexity
for message complexity by sending fewer, but larger messages. The reason for this is

944 Ali Ghodsi

Algorithm 20: Simple broadcast with feedback algorithm
1: receipt of STARTBCAST(msg) from app at n
2: sendto n : BCAST(msg, n)
3: end receipt event

4: receipt of BCAST(msg, limit) from m at n
5: FB := Deliver(msg)
6: par := n
7: Ack := /0
8: for i := M downto 1 do
9: if u(i) ∈ (n, limit) then

10: sendto u(i) : BCAST(msg, limit)
11: Ack := Ack∪{u(i)}
12: limit := u(i)
13: end if
14: end for
15: if Ack = /0 then
16: sendto par : BCASTRESP(FB)
17: end if
18: end receipt event

19: receipt of BCASTRESP(F) from m at n
20: if m = n then
21: sendto app : BCASTTERM(FB)
22: else
23: Ack := Ack−{m}
24: FB := FB∪F
25: if Ack = /0 then
26: sendto par : BCASTRESP(FB)
27: end if
28: end if
29: end receipt event

that multiple lookups often end up sending the same message several times between
the same pair of nodes.

The bulk operation algorithm has two extreme cases. If the whole identifier space
is used as the bulk set I, it reduces to the simple broadcast described in the previous
section. If only one identifier (singleton) is used as the bulk set I, the algorithm
reduces to a simple lookup. We therefore think that the bulk operation should be the
basic operation provided in structured overlay network APIs.

4.1 Bulk Operations

The bulk operation algorithm is given by Algorithm 21. It is very similar to the
simple broadcast algorithm (Algorithm 19). The algorithm is initiated by sending

Multicast and Bulk Lookup in Structured Overlay Networks 945

a BULK message with two parameters. The first parameter I is a set of identifiers,
while the second parameter msg is the message to be sent to all nodes with identifiers
in I.

One major difference between the bulk algorithm and the broadcast algorithm is
that in the broadcast algorithm, every node that received a message also delivered
it to the application, while in the bulk algorithm some nodes might be acting as
forwarders, which never deliver messages to the application. This is necessary and
can be seen if the bulk algorithm is used with a singleton containing one identifier.
Then it might be that the only way for the algorithm to reach its destination is to
route through other nodes.

Another difference with the simple broadcast algorithm is that it only sends a
message to a node u(i) if u(i) has an identifier in I, or if there are identifiers in
I which are between u(i) and u(i + 1), in which case u(i) is the closest preceding
node which can forward the request closer to any potential nodes in that range. This
is implemented by creating a set of identifiers J := [u(i), limit), and only sending a
message to u(i) if the intersection of I and J is non-empty. When sending a message
to u(i), only identifiers in the intersection of I and J are delegated to u(i).

Whenever an interval I∩J is delegated to some node u(i), that interval is removed
from I to ensure that no two nodes are delegated overlapping intervals.

Algorithm 21: Bulk operation algorithm

1: receipt of BULK(I, msg) from m at n
2: if n ∈ I then
3: Deliver(msg)
4: end if
5: limit := n
6: for i := M downto 1 do
7: J := [u(i), limit)
8: if I∩ J �= /0 then
9: sendto u(i) : BULK(I∩ J, msg)

10: I := I− J
11: limit := u(i)
12: end if
13: end for
14: end receipt event

Figure 4 shows an example of how the bulk message disseminates in the system
depicted by Fig. 2. Node 1 initiates the algorithm, and wishes to broadcast to all
nodes in the interval [30,45]. Note that a bulk message is sent to node 27 with the
responsibility of covering the interval [30,30]. This might seem unnecessary as node
27 is only a forwarder that does not deliver the message to the application layer,

946 Ali Ghodsi

Fig. 4 The figure shows how a bulk message would disseminate in the system depicted by Fig. 2.
The bulk operation is initiated by node 1, who wishes to send a message to all nodes in the interval
[30,45]. Each box represents the node receiving the broadcast message and in parenthesis the
interval that it is delegated responsibility to cover. Dotted arrows indicate that the receiving node
is merely a forwarder which will not deliver the message to the application

nor does it forward the message to any other node. Nevertheless, node 23 which
delegated the interval [30,30] to node 27, has to ensure that it covers all nodes in
the region [30,37] and does not know whether a node with identifier 30 exists or
not. Therefore it delegates that interval to node 27, which knows that no such node
exists.

4.2 Bulk Operations with Feedbacks

Algorithm 22 shows the algorithm for doing bulk operation with feedback from all
the nodes with identifiers in a prescribed bulk set I.

In the simple broadcast with feedback, the nodes that are merely forwarding the
message will not provide any feedback to the initiator. Nevertheless, they will for-
ward, on behalf of other nodes, feedback on its way back to the initiator, hence
forwarding nodes should be placed in the waiting Ack set.

4.3 Bulk Owner Operations

We now extend the bulk operation to introduce the bulk owner operation, which is
designed to reach all the nodes that are responsible for an identifier in the bulk set I.

Algorithm 21 reaches every node that has an identifier in the bulk set I. These
nodes should also be reached by the bulk owner algorithm, since every node is
responsible for its own identifier. Sometimes, however, a node n responsible for an
identifier in the bulk set is not itself in the bulk set, i.e., n /∈ I. We first show how
Algorithm 21 can be naı̈vely changed to accomplish this, and thereafter we optimize
it.

Multicast and Bulk Lookup in Structured Overlay Networks 947

Algorithm 22: Bulk operation with feedback algorithm
1: receipt of BULKFEED(I, msg) from m at n
2: if n ∈ I then
3: FB := Deliver(msg)
4: else
5: FB := /0
6: end if
7: par := m
8: Ack := /0
9: limit := n

10: for i := M downto 1 do
11: J := [u(i), limit)
12: if I∩ J �= /0 then
13: sendto u(i) : BULKFEED(I∩ J, msg)
14: I := I− J
15: Ack := Ack∪{u(i)}
16: limit := u(i)
17: end if
18: end for
19: if Ack = /0 then
20: sendto par : BULKRESP(FB)
21: end if
22: end receipt event

23: receipt of BULKRESP(F) from m at n
24: if m = n then
25: sendto app : BULKFEEDTERM(FB)
26: else
27: Ack := Ack−{m}
28: FB := FB∪F
29: if Ack = /0 then
30: sendto par : BULKRESP(FB)
31: end if
32: end if
33: end receipt event

The simplest way to ensure that all the designated nodes are reached is to add the
statements found in Algorithm 23 after the for loop in Algorithm 21 . Hence, each
node n first executes the statements in Algorithm 21 and thereafter checks to see if
there are any identifiers in the bulk set I that are between itself and its successor,
i.e., (n,u(1)], in which case it sends a message to its successor u(1).

The naı̈ve extension has one major drawback, it might deliver the same message
to the same node multiple times. Algorithm 24 optimizes the naı̈ve extension to
avoid the sending of redundant messages.

We modify the algorithm to add another parameter R, which holds a set of iden-
tifiers. A node sending a BULKOWN message sets R to the set of identifiers which
the destination node is potentially responsible for. Initially, R is equal to the bulk set

948 Ali Ghodsi

Algorithm 23: Extension to bulk operation
1: J := (n,u(1)]
2: if I∩ J �= /0 then
3: sendto u(1) : BULK(I∩ J, msg)
4: end if

I. This set R is always checked when receiving a BULKOWN message to determine
if there are any identifiers in R that the local node is responsible for.

The first modification to avoid redundant messages is to let every node keep a
boolean variable sendsucc which indicates whether the node sent a message to its
successor or not. If sendsucc is true after executing the for loop, the node will not
again send a message to its successor.

The last described modification to the algorithm does not ensure that a node will
not send a redundant message. Even if sendsucc is false, the successor might have
received the BULKOWN message from some parent of the current node. The second
modification is to include a parameter next whenever sending a message to any
node m, where next is the closest successor of m which is known to have received
the BULKOWN message. Hence, a node will not send a message to its successor if
next is its successor, or if sendsucc is true. Initially, next is set to the identifier of the
initiator.

5 Fault-Tolerance

So far we have assumed that failures do not occur. If the goal is to have best effort
delivery, then the broadcast and the bulk algorithms will be providing best effort
delivery in the presence of failures. However, this is not the case with the algorithms
which provide feedback. In those, every node, prior to sending its feedback, waits to
receive feedback from all nodes to which it has sent a message. If any of those nodes
fail, the waiting node will block forever, making the whole algorithm deadlock.

A straightforward approach to ensure termination for all algorithms, is to in-
troduce timeouts. Hence, a node waiting for feedback, can time out and send its
response back to its parent. A premature timeout might result in some nodes send-
ing their feedback to a parent which has timed out. Such messages can simply be
ignored by the node which timed out.

A best effort delivery might, however, be inadequate. For example, assume the
initiating node attempts to broadcast to all nodes in the system. Also assume that it
has M = log2(n), pointers placed as in Chord (or according to the k-ary principle
when k = 2). In such a case, the broadcast will partition the whole space into M
intervals and delegate responsibility to each routing pointer u(i). The pointer u(M)
will be pointing to the predecessor of the initiator, and u(M− 1) will be delegated
roughly half of the identifier space. If u(M−1) fails, then roughly half of the nodes
will not be reached by the broadcast. This is exacerbated as u(M−1) might not have

Multicast and Bulk Lookup in Structured Overlay Networks 949

Algorithm 24: Bulk owner operation algorithm
1: receipt of STARTBULKOWN(I, msg) from m at n
2: sendto n : BULKOWN(I, I, n, msg)
3: end receipt event

4: receipt of BULKOWN(I, R, next, msg) from m at n
5: MS := R∩ (u(M),n]
6: if MS �= /0 then
7: Deliver(msg, MS)
8: end if
9: limit := n

10: lnext := next
11: sentsucc :=false
12: for i := M downto 1 do
13: J := (u(i), limit]
14: if I∩ J �= /0 then
15: K := (u(i−1),u(i)]
16: sendto u(i) : BULKOWN(I∩ J, I∩K, lnext, msg)
17: I := I− J
18: limit := u(i)
19: lnext := u(i)
20: if i = 1 then
21: sentsucc :=true
22: end if
23: end if
24: end for
25: J := (n,u(1)]
26: if I∩ J �= /0 and sentsucc = false and next �= u(1) then
27: sendto u(1) : BULKOWN(/0, I∩ J, limit, msg)
28: end if
29: end receipt event

failed, but just left the system, and the initiator is not yet aware of it. Hence, even
with reliable communication channels and no failures, the algorithm might fail to
cover significant number of nodes. The latter can be avoided if a the ring and the
additional pointers are never stale, as guaranteed by certain systems [19, 25, 29].

In the distributed algorithms field, reliable broadcast has been studied exten-
sively [10, 11, 20]. Reliable broadcast ensures two things. First, if the initiator of a
broadcast does not fail, all correct nodes eventually receive the message. Second, all
correct processes always receive the same set of messages, regardless of any crash
failure.2

The second requirement of reliable broadcast is quite strong. For example, as-
sume an initiating node starts to broadcast a message and then fails before com-
pleting. If some nodes receive and deliver the message, then all other correct nodes
must also eventually receive that message and deliver it. Such a strong requirement,
however, is justified in many scenarios. Reliable broadcast is used as a building

2 It also ensures that a received message actually has been sent, such that messages are not “in-
vented” by the algorithm.

950 Ali Ghodsi

block in middleware for building reliable distributed systems, such as Isis [5] and
Transis [2]. Reliable broadcast, with the additional constraint that all nodes should
deliver messages in the same order, has been shown to be equivalent to the consen-
sus problem [10], which is an important theoretical problem with many implications
in distributed computing [18].

Our goal is to make broadcast or bulk algorithms, which give stronger guarantees
than pure best-effort delivery, but weaker guarantees than reliable broadcast. The
motivation for this is that reliable broadcast is quite costly to achieve. The algorithm
given by Chandra and Toueg [10] has a message complexity of O(n2) for n nodes.
Furthermore, in some application scenarios, the initiating node is using broadcast
to collect information. If the initiating node fails, there is no interest in ensuring
correct delivery to all nodes.

5.1 Pseudo Reliable Broadcast

We will modify our simple broadcast algorithm and introduce pseudo reliable
broadcast. The algorithms will depend on the initiating node not failing. Hence,
it has the correctness properties listed in Section 2.1 with two minor modifications.
First, the coverage property assumes the initiator does not fail. Second, the desig-
nated nodes are all the correct processes. Informally, this means that a broadcast
message will reach all processes that remain in the system between the time the
algorithm is initiated and terminated, provided that the initiating node does not fail.

The pseudo reliable algorithms will use failure detectors that use timeouts to de-
tect when a node has failed. We assume that the failure detector is strongly complete,
which means that it will eventually detect if a node has crashed. The failure detec-
tor might, however, not be accurate, which means that it might give false-positives,
suspecting that a correct, albeit slow, node has crashed. The only consequence of
inaccuracy is increased bandwidth consumption because of the redundant messages
being sent. We assume that whenever a failure detector suspects a failure, it will
immediately trigger the correction of the routing information, ensuring that pointers
to crashed nodes are eventually removed.

There can, however, be a complication in the implementation of the failure de-
tector. The time it takes for a broadcast to terminate depends on the number of
nodes in the system, which in turn determines the depth of the broadcast tree.
Therefore, using a timeout when waiting for an acknowledgment from a child is
problematic, as the parent does not know the depth of its subtree, and can therefore
not determine the time to wait before triggering a timeout. We therefore assume
the implementation of the failure detector is independent of the broadcast algo-
rithm, as is the case with most failure detectors. This can be achieved by having
the failure detector periodically sending a message to its children and awaiting an
acknowledgment.

Multicast and Bulk Lookup in Structured Overlay Networks 951

Pseudo-Reliable Broadcast

We first describe a simple way to provide pseudo-reliability and thereafter suggest
some improvements.

Every broadcast has a globally unique random identifier associated with it, which
is included in every message. Nodes keep track of previously seen identifiers and fil-
ter any message which has an identifier previously seen. Hence, redundant messages
are filtered.

The algorithm works like the broadcast algorithm with feedback. Hence, the
pseudo-reliable algorithm makes use of an Ack set, containing the children of the
node. In addition to keeping the identities of the children in the Ack set, the algo-
rithm keeps track of the interval delegated to each child.

The algorithm is made resilient to failures by using the bulk operation to resume
after a failure. Whenever a node suspects that one of its children has failed, it uses
the Ack set to determine the interval delegated to the failed node. Thereafter, the
bulk algorithm is used to cover all nodes in that interval. The bulk algorithm will
retry to cover all nodes in that interval. If the suspicion is incorrect, then the re-
ceiver will ignore the previously seen message. The algorithm terminates whenever
the initiator’s Ack set is empty. To ensure that the algorithm terminates, it is required
that no node inaccurately suspects its children for a long enough time period, such
that all Ack sets become empty. This requirement is ensured by an eventually perfect
failure detector. Note, however, that this failure detector provides a stronger guar-
antee, as it ensures that, eventually, there will be no inaccurate suspicions by any
node.

Improving Pseudo-Reliable Broadcast

The pseudo-reliable broadcast algorithm can be improved to reduce bandwidth con-
sumption. The basic idea is to try to avoid the re-sending of redundant messages
after failures. We motivate this by an example. Assume all the children of a node q,
except one, are done covering their delegated intervals. Hence, the Ack set of q con-
tains a single child. If q fails, q’s parent p will detect that and reassign the interval
delegated to node q to a new node r. Hence, the new node r will retry to cover all
of q’s children, rather than the remaining one. Even though p’s children will filter
those redundant messages, r will still consume resources to send those messages.

To avoid redundant messages, nodes could periodically send an update of their
current Ack set to their parent. Hence, nodes periodically report their current Ack
set to their parent, which upon receipt of the updated Ack set updates its child’s
delegated interval to the received Ack set. If the previous example was using the
suggested improvement, node q would send its updated Ack set, containing its last
remaining child, to its parent p. When q later crashed, node p would only delegate
an interval containing the remaining child of p to the new node r.

952 Ali Ghodsi

6 Application: Efficient Overlay Multicast

In this section we briefly describe how the algorithms presented in this chapter can
be used to provide efficient overlay multicast. Overlay multicast can also be per-
ceived as topic-based publish/subscribe [17]. In short, a topic-based publish/sub-
scribe system consists of two actors, subscribers and publishers. A subscriber can
subscribe to different topics of interest. Publishers can publish information about an
event and a notification of the event will be sent to all subscribers of that particular
topic.

The motivation for doing multicast in an overlay network is that the Internet, de
facto, does not provide global multicast capability. The reason for this is that many
of the routers that form the back-bone of the Internet have multicast turned off, or do
not support it. Several overlay networks have been built, such as Multicast Backbone
(MBONE) [16], but these lack the self-managing properties that structured overlay
networks possess.

6.1 Basic Design

The basic idea is to store information about all multicast groups in a structured
overlay network, which we refer to as Γ . Every multicast group is represented by
an instance of an overlay network. To multicast a message to a particular group, the
message is broadcast to all nodes in that overlay network, using the pseudo-reliable
broadcast algorithm described earlier. This approach is similar to [31], except our
system avoids sending redundant messages, and reaches all n nodes in a multicast

group in O(logn) time steps, instead of O(n
1
d). Figure 5 shows an example of a

system with two groups.

6.2 Group Management

Group information is stored in the Γ using the group name as a key and group
information as a value. Group information consists of contact information for a
random subset of the members of the group and additional meta-data about the
group. The random subset is kept up to date by the node responsible for the item
containing the group information. The responsible node periodically contacts the
first alive node that it knows in the group information, and asks it for its routing
table. It then updates its random subset by keeping a constant number of those nodes,
giving preference to those just received. The responsible node deletes any group
information when it cannot find any alive node in a group.

To avoid a responsible node receiving too many requests for a popular group
in the Γ , group information is automatically replicated in the overlay, for example

Multicast and Bulk Lookup in Structured Overlay Networks 953

Fig. 5 A Γ containing information about two different multicast groups. The arrows represent
information about random group members in each group

using successor-list replication [9]. Furthermore, group information can be cached
along the lookup path to further relieve nodes in Γ from hot-spots.

Joining and Leaving Multicast Groups

To join a multicast group, a member of the multicast group is obtained by making a
lookup for the groups name in the Γ . After obtaining a random subset of the group
members, the first alive node in that subset is contacted to join that group. The last
node in a multicast group takes special action by deleting the group information in
the Γ .

954 Ali Ghodsi

Group Creation

An atomic create operation is provided by the nodes in the Γ to avoid conflict res-
olution when several nodes try to create a group with the same name. Hence, to
create a group, a request is sent to the responsible node, which checks to see if such
a group already exists, in which case it reports back with a failure. Otherwise, it
creates a group having the creating node as the only node in its group information.
Hence, the first node that reaches the responsible node will be successful in creating
the desired group.

6.3 IP Multicast Integration

We provide a mechanism to integrate overlay multicast with IP multicast to make
efficient use of the network resources.

The integration of overlay and IP multicast is done by modifying the node be-
havior when nodes join a multicast group and when they multicast to a multicast
group.

Joining a multicast groups works as follows. Every multicast group is associated
with a multicast address, which is stored in the Γ together with its group informa-
tion. The joining node first queries the Γ to find out about existing members of
the structured overlay network and the multicast address to be used for that group.
Thereafter, a joining node attempts to discover other nodes in the desired group to
which it can directly IP multicast. This is done by sending a discovery message
to the group’s multicast address. If another node receives this message, it responds
with its contact information. To avoid an explosion of concurrent responses, similar
techniques as used by the Internet Group Management Protocol (IGMP) can be de-
ployed [14]. After establishing contact with an existing node, the joining node joins
the desired multicast group using the same identifier in the overlay as the existing
node. Hence, in each multicast group, nodes that can directly communicate with IP
multicast have the same identifier. Therefore, a routing table entry pointing to the
successor of some identifier, can have many candidate successors. We therefore ex-
tend the routing tables to contain up to a constant number of candidates per routing
entry.

Broadcasting to a multicast group goes in two steps. The first step is to use the
broadcast algorithm to reach one node for every IP multicast island in the multicast
group. This is done by using the previously described broadcast algorithm with a
minor modification. Since each routing pointer might contain more than one can-
didate, the algorithm has to pick one candidate using some desirable metric. The
second step of the broadcast is to let every node that receives the broadcast message
to IP multicast the message.

The advantage of letting candidate nodes share the same identifier is that no
single node need to represent the whole multicast group. Hence, no single node

Multicast and Bulk Lookup in Structured Overlay Networks 955

Fig. 6 (i) shows a graph with a cycle (ii) shows a graph without any cycles

will be a single-point of failure, nor will there exist a single bottleneck for that
group.

7 Related Work

The nodes in a structured overlay network form a graph containing a set of vertices
and a set of edges between the vertices. Each node in the structured overlay network
represents a vertex in the graph, and each pointer from a node a to another node b in
the overlay represents an edge between those vertices. General purpose algorithms
for broadcasting to all nodes in such a graph have existed for many decades in the
field of distributed algorithms [36, Chapter 4] [28, pg 496ff] [4, Chapter 2]. There
is, however, a fundamental difference between those algorithms and the ones we
present in this chapter.

Graphs may contain cycles (see Fig. 6). A cycle starts at a vertex and visits other
vertices by traversing edges, and ends in the start vertex, without ever visiting any
vertex more than once, except for the start vertex, which is visited twice.

The possibility of cycles complicates broadcasting in graphs. Generally, broad-
cast algorithms for graphs prevent messages from traveling in cycles indefinitely.
These algorithms have two disadvantages compared to the overlay broadcast al-
gorithms we will present. First, they bear an additional message complexity as
some messages will be redundant. For example, if the graph consists of three nodes
{a,b,c}, with edges between (a,b), (b,c), and (c,a), only two messages would suf-
fice to broadcast from any node to all other nodes. General broadcast algorithms
for graphs would, however, use four messages to cover those nodes, because each
node would send the message to all neighbors, except the one it got the message
from. For example, if a initiated the broadcast, a would send to b and c, b would
send to c, and c would send to b. This is a consequence of not having global in-
formation about the whole graph at each node. Second, such algorithms use extra
state at each node to avoid messages wandering in cycles indefinitely. In the pre-
vious example, each node would keep track of the received messages. Thus, node

956 Ali Ghodsi

b would drop the message from node c, and node c would drop the message from
node b, as both nodes already have received the message from another neighbor
earlier.

Structured overlay networks contain cycles, the algorithms we present in this
chapter make use of the internal structure of structured overlay networks to avoid
the redundant messages and the extra state associated with avoiding cycles. This is
achieved even though no node has global information about the graph.

There are several attempts to provide multicast on top of structured overlay net-
works. Our approach has several advantages compared to other structured overlay
multicast solutions. First, only nodes involved in a multicast group receive and for-
ward messages sent to that group, which is not the case in other systems, such as
Scribe [8] and Diminished Chord [22]. Second, the multicast algorithms ensure
that no redundant messages are ever sent, which is not the case with many other
approaches [23], such as CAN-Multicast [31]. Finally, the system integrates with
the IP multicast provided by the Internet, such that the overlay is just used to reach
IP-multicast enabled islands, and thereafter IP multicast is used to efficiently reach
all nodes in such an island.

Some application level multicast systems are built for the sole purpose of mul-
ticasting, rather than being built on top of an existing structured overlay, as in our
case. In End-system Multicast or Narada [13], a mesh is built among all nodes par-
ticipating in the multicast, requiring all nodes to know about each other. In our
system, no such mesh is necessary. In other systems, such as Scattercast [12], cen-
tralized proxies or rendezvous are used as special infrastructure nodes. Our solution
makes no such assumptions.

A final note is that the algorithms provided in this chapter can be used on top of
structured overlay networks that have a low constant diameter, such as a one-hop
DHT [24, 30]. Though our algorithms work in such cases, they become trivial as a
single broadcaster will send a message to every other end node in the system. Such
an approach is therefore not scalable. However, if only a fraction of the actual point-
ers at each node are used, the algorithms safely become scalable and the broadcaster
again only directly communicates with a fraction of all the nodes.

References

1. L. O. Alima, S. El-Ansary, P. Brand, and S. Haridi. DKS(N, k, f): A Family of Low Commu-
nication, Scalable and Fault-Tolerant Infrastructures for P2P Applications. In Proceedings of
the 3rd International Workshop on Global and Peer-To-Peer Computing on Large Scale Dis-
tributed Systems (CCGRID’03), pages 344–350, Tokyo, Japan, May 2003. IEEE Computer
Society.

2. Y. Amir, D. Dolev, S. Kramer, and D. Malki. Transis: A communication subsystem for high
availability. In Proceedings of 22nd International Symposium on Fault Tolerant Computing
(FTCS’92), pages 76–84, Boston, MA, USA, 1992. IEEE Computer Society.

3. M. Amnefelt and J. Svenningsson. Keso – A Scalable, Reliable and Secure Read/Write Peer-
to-peer File System. Master’s thesis, KTH/Royal Institute of Technology, Stockholm, Sweden,
2004.

Multicast and Bulk Lookup in Structured Overlay Networks 957

4. H. Attiya and J. Welch. Distributed Computing: Fundamentals, Simulations, and Advanced
topics. Wiley series on parallel and distributed computing. John Wiley & Sons, second edition,
2004.

5. K. P. Birman and T. A. Joseph. Reliable communication in the presence of failures. ACM
Transactions on Computer Systems (TOCS), 5(1):47–76, 1987.

6. M. Castro, M. Costa, and A. Rowstron. Should we build Gnutella on a structured overlay?
SIGCOMM Computing Communication Review, 34(1):131–136, 2004.

7. M. Castro, M. Costa, and A. Rowstron. Debunking Some Myths About Structured and Un-
structured Overlays. In Proceedings of the 2nd USENIX Symposium on Networked Systems
Design and Implementation (NSDI’05), Boston, MA, USA, May 2005. USENIX.

8. M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron. SCRIBE: A large-scale and
decentralised application-level multicast infrastructure. IEEE Journal on Selected Areas in
Communications (JSAC) (Special issue on Network Support for Multicast Communications),
pages 1489–1499, 2002.

9. J. Cates. Robust and Efficient Data Management for a Distributed Hash Table. Master’s thesis,
Massachusetts Institute of Technology, Cambridge, MA, USA, May 2003.

10. T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed systems.
Journal of the ACM, 43(2):225–267, 1996.

11. J. Chang and N. F. Maxemchuk. Reliable Broadcast Protocols. ACM Transactions on Com-
puter Systems (TOCS), 2(3):251–273, 1984.

12. Y. Chawathe. Scattercast: an adaptable broadcast distribution framework. Multimedia Systems,
9(1):104–118, 2003.

13. Y.-H. Chu, S. G. Rao, and H. Zhang. A case for end system multicast. In International
Conference on Measurements and Modeling of Computer Systems (SIGMETRICS’00), pages
1–12, 2000.

14. S.E. Deering. Host extensions for IP multicasting. RFC 1054, May 1988. Obsoleted by RFC
1112.

15. S. El-Ansary, L. O. Alima, P. Brand, and S. Haridi. Efficient Broadcast in Structured P2P Net-
woks. In Proceedings of the 2nd International Workshop on Peer-to-Peer Systems (IPTPS’03),
volume 2735 of Lecture Notes in Computer Science (LNCS), pages 304–314, Berkeley, CA,
USA, 2003. Springer-Verlag.

16. H. Eriksson. MBONE: the multicast backbone. Communications of the ACM, 37(8):54–60,
1994.

17. P. Eugster, P. Felber, R. Guerraoui, and A.-M. Kermarrec. The many faces of publish/sub-
scribe. ACM Computing Surveys, 35(2):114–131, 2003.

18. M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed consensus with
one faulty process. Journal of the ACM, 32(2):374–382, 1985.

19. A. Ghodsi. Distributed k-ary System: Algorithms for Distributed Hash Tables. PhD disserta-
tion, KTH – Royal Institute of Technology, Stockholm, Sweden, October 2006.

20. V. Hadzilacos and S. Toueg. A Modular Approach to Fault-Tolerant Broadcasts and Related
Problems. Technical Report TR94-1425, Cornell University, 1994.

21. N. Harvey, M. B. Jones, S. Saroiu, M. Theimer, and A. Wolman. Skipnet: A scalable overlay
network with practical locality properties. In Proceedings of the 4th USENIX Symposium on
Internet Technologies and Systems (USITS’03), Seattle, WA, USA, March 2003. USENIX.

22. D. R. Karger and M. Ruhl. Diminished Chord: A Protocol for Heterogeneous Subgroup For-
mation in Peer-to-Peer Networks. In Proceedings of the 3rd Interational Workshop on Peer-to-
Peer Systems (IPTPS’04), volume 3279 of Lecture Notes in Computer Science (LNCS), pages
288–297. Springer-Verlag, 2004.

23. B. Koldehofe. Distributed Algorithms and Educational Simulation/Visualisation in Collabo-
rative Environments. PhD thesis, Chalmers University of Technology, Gothenburg, Sweden,
2005.

24. B. Leong, B. Liskov, and E. Demaine. EpiChord: Parallelizing the Chord Lookup Algorithm
with Reactive Routing State Management. In 12th International Conference on Networks
(ICON’04), Singapore, November 2004. IEEE Computer Society.

958 Ali Ghodsi

25. X. Li, J. Misra, and C. G. Plaxton. Concurrent maintenance of rings. Distributed Computing,
19(2):126–148, 2006.

26. D. Liben-Nowell, H. Balakrishnan, and D. R. Karger. Analysis of the Evolution of Peer-to-
Peer Systems. In Proceedings of the 21st Annual ACM Symposium on Principles of Distributed
Computing (PODC’02), pages 233–242, New York, NY, USA, 2002. ACM Press.

27. D. Liben-Nowell, H. Balakrishnan, and D. R. Karger. Observations on the Dynamic Evolution
of Peer-to-Peer Networks. In Proceedings of the First International Workshop on Peer-to-Peer
Systems (IPTPS’02), volume 2429 of Lecture Notes in Computer Science (LNCS). Springer-
Verlag, 2002.

28. N. A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, 1996.
29. N. A. Lynch, D. Malkhi, and D. Ratajczak. Atomic Data Access in Distributed Hash Tables. In

Proceedings of the First Interational Workshop on Peer-to-Peer Systems (IPTPS’02), Lecture
Notes in Computer Science (LNCS), pages 295–305, London, UK, 2002. Springer-Verlag.

30. L. R. Monnerat and C. L. Amorim. D1ht: a distributed one hop hash table. In 20th Interna-
tional Parallel and Distributed Processing Symposium (IPDPS’06), 2006.

31. S. Ratnasamy, M. Handley, R. Karp, and S. Shenker. Application-level Multicast using
Content-Addressable Networks. In Third International Workshop on Networked Group Com-
munication (NGC’01), volume 2233 of Lecture Notes in Computer Science (LNCS), pages
14–29. Springer-Verlag, 2001.

32. A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location and routing for
large-scale peer-to-peer systems. In Proceedings of the 2nd ACM/IFIP International Confer-
ence on Middleware (MIDDLEWARE’01), volume 2218 of Lecture Notes in Computer Science
(LNCS), pages 329–350, Heidelberg, Germany, November 2001. Springer-Verlag.

33. B. Stefansson, A. Thodis, A. Ghodsi, and S. Haridi. MyriadStore. Technical Report TR-2006-
09, Swedish Institute of Computer Science (SICS), May 2006.

34. I. Stoica, R. Morris, D. R. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord: A Scal-
able Peer-to-Peer Lookup Service for Internet Applications. In Proceedings of the ACM SIG-
COMM 2001 Symposium on Communication, Architecture, and Protocols, pages 149–160,
San Deigo, CA, August 2001. ACM Press.

35. I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek, F. Dabek, and H. Balakr-
ishnan. Chord: a scalable peer-to-peer lookup protocol for internet applications. IEEE/ACM
Transactions on Networking (TON), 11(1):17–32, 2003.

36. G. Tel. Introduction to Distributed Algorithms. Cambridge University Press, second edition,
2000.

37. B. Y. Zhao, L. Huang, S. C. Rhea, J. Stribling, A. D. Joseph, and J. D. Kubiatowicz. Tapestry:
A Global-scale Overlay for Rapid Service Deployment. IEEE Journal on Selected Areas in
Communications (JSAC), 22(1):41–53, January 2004.

Part VIII
Multimedia Content Delivery

Peer-to-Peer Content Distribution and
Over-The-Top TV: An Analysis of Value
Networks

Jorn De Boever and Dirk De Grooff

Abstract The convergence of Internet and TV, i.e., the Over-The-Top TV (OTT TV)
paradigm, created opportunities for P2P content distribution as these systems re-
duce bandwidth expenses for media companies. This resulted in the arrival of legal,
commercial P2P systems which increases the importance of studying economic as-
pects of these business operations. This chapter examines the value networks of
three cases (Kontiki, Zattoo and bittorrent) in order to compare how different ac-
tors position and distinguish themselves from competitors by creating value in dif-
ferent ways. The value networks of legal systems have different compositions de-
pending on their market orientation – Business-to-Business (B2B) and/or Business-
to-Consumer (B2C). In addition, legal systems differ from illegal systems as legal
companies are not inclined to grant control to users, whereas users have most control
in value networks of illegal, self-organizing file sharing communities. In conclusion,
the OTT TV paradigm made P2P technology a partner for the media industry rather
than an enemy. However, we argue that the lack of control granted to users will
remain a seed-bed for the success of illegal P2P file sharing communities.

Jorn De Boever
Centre for UX Research / IBBT, K.U.Leuven, Parkstraat 45 Bus 3605 - 3000, Leuven, Belgium,
e-mail: jorn.deboever@soc.kuleuven.be

Dirk De Grooff
Centre for UX Research / IBBT, K.U.Leuven, Parkstraat 45 Bus 3605 - 3000, Leuven, Belgium,
e-mail: dirk.degrooff@soc.kuleuven.be

Portions reprinted, with permission, from (De Boever, J. (2008). Value Networks of Peer-to-Peer
TV: An Analysis of Actors and their Roles. Proceedings of the Third International Conference on
Internet and Web Applications and Services, Athens, Greece). ©2008 IEEE.

X. Shen et al. (eds.), Handbook of Peer-to-Peer Networking, 961
DOI 10.1007/978-0-387-09751-0 34, © Springer Science+Business Media, LLC 2010

962 Jorn De Boever and Dirk De Grooff

1 Over-The-Top TV and P2P Systems

During the past decades, the broadcasting industry has evolved in tremendous ways,
driven by new challenges and opportunities caused by regulatory decisions and tech-
nological evolutions. These evolutions have been characterized by three main mod-
els, which strongly resemble the three architectures for interaction that Lechner and
Hummel [15] identified: the mass communication (e.g., unidirectional client/server
model, linear analogue TV), the mass customization (e.g., non linear interactive
model, interactive television, interactive client/server models), and the multilateral
community model (e.g., bittorrent clients, communities, Gnutella clients). We will
give a brief overview of these three interaction models applied to the TV industry
and we will dilate upon in which of these paradigms P2P (Peer-to-Peer) technology
fits in.

1.1 Evolutions of TV

First, TV arose after the Second World War as it entered more and more living
rooms to become a commodity that filled in much of the leisure time of households.
In those days, television was an analogue, linear medium that provided limited or no
interactivity. The offer of programs was confined because of the restricted amount
of players. In other words, television was a one-way, passive, lean-back medium and
the audience had to take what was available. This model is called the unidirectional
mass communication model [15].

Next, in the eighties-nineties, more players entered the market in countries where
governments decided to stop the monopoly position of public broadcasting compa-
nies and allow (limited) competition. The viewers benefited from these regulatory
decisions as the program offer expanded providing the end users with more alter-
natives. As new players entered the market, another evolution was on its way, the
interactive non linear digital TV paradigm or the interactive mass customization
model [15], which promised to bring a new TV experience in which users would
become more involved in the programs by several kinds of interactive function-
alities. TV would be more personalized and users would no longer be bound by
fixed program guides as VoD (Video-on-Demand) was introduced. Other interactive
functionalities were developed to engage users in programs such as “push-the-red-
button” functionality. The digitalization and introduction of interactivity led to new
challenges e.g., on the domain of advertisements as the audience became more frag-
mented and as customized ads were possible. Another challenge emerged as new
competitors entered the market, e.g., many ISPs (Internet Service Provider) started
offering content themselves.

Finally, the Internet created a third model, i.e., the multilateral community
model [15], which introduced new challenges to the industry as they were facing
issues such as social networks, user-generated content, new players, and innovative
advertising models. This paradigm meant a tremendous shift in the power relations

Peer-to-Peer Content Distribution and Over-The-Top TV 963

between the commercial industry and the end users as the Internet allowed users to
gain control of what, where and how they consumed content. Many users started par-
ticipating in all kinds of independent, self-correcting, self-organizing, decentralized
communities to build software (e.g., open source), create user-generated content
(e.g., video images of 9/11, Wikipedia) and to exchange media files (e.g., decentral-
ized P2P file sharing) [5]. In addition, the end users gained a strong voice as new
gatekeepers who decide which content has sufficient quality and which not, and as
such filtering out uninteresting content. There is no question that this changed bal-
ance of powers had a disrupting impact on the business models of the media industry
that was forced to reflect on its role in the value network.

The question presents itself: where are peer-to-peer (P2P) systems situated within
these interaction models? Surprisingly, P2P technology is utilized in all three men-
tioned interaction models. As the media industry wants to preserve control of their
content, they will implement the unidirectional mass communication model, or the
interactive mass customization model, whereas the end users that are frustrated with
the restrictions regarding the use of the content will organize themselves in decen-
tralized P2P networks (i.e., the multilateral community model).

1.2 Over-The-Top TV

As previously mentioned, the TV landscape has already handled the shift from the
analogue, linear broadcast generation to the interactive digital broadcast generation.
However, a new generation shift is on the move, which stimulates content providers
and broadcasters to deliver video or TV over the traditional Internet. The broad-
casting industry is forced to distribute their content over the Internet as their audi-
ence watches less TV and spends more time surfing the Internet. EIAA Mediascope
Europe [9] found that 40% of their sample watched less TV in favor of the Inter-
net. Youngsters (16–24 years old) in Europe even spend more time on the Inter-
net than watching TV. To preserve advertising revenues, broadcasters have to enter
the slippery market of traditional Internet content distribution. This recent trend of
convergence between the traditional Internet and TV, called Over-The-Top (OTT)
TV/video, challenges the business models of the involved players active in the in-
dustry, and explores the boundaries of the best effort Internet. The term OTT TV
has probably become more popular as the research company Forrester utilized this
term in a report. OTT TV does not mean that the actors abandon former generations.
Rather, it implies that the actors in the TV industry get involved in multi-channel
distribution as the audience becomes more fragmented.

Introducing video/TV on the Internet brings along many challenges as video con-
tent requires a lot of bandwidth capacity, which also causes an increased traffic load
on the infrastructure of ISPs (Internet Service Providers). The IDC [14] estimated
that, between 2006 and 2010, the volume of information on the Internet will be
multiplied by six. Probably, one of the driving forces of this increasing volume
of data on the Internet will be caused by video, which put a lot of pressure on

964 Jorn De Boever and Dirk De Grooff

diminishing costs of distributing bandwidth consuming content. Distributing high
quality video and TV to mass audiences over the Internet requires massive amounts
of bandwidth, resulting in more costs. Accordingly, broadcasters, and other com-
panies that have to distribute bandwidth consuming content over the Internet, are
looking for new models that are characterized by low marginal costs of content
distribution. Norton [19] compared several Internet content distribution models and
came to the conclusion that P2P systems were the least expensive for the distribution
of video content. Liebau et al. [17] compared the costs of two cases of P2P content
distribution – BBC’s integrated Media Player and Octoshape’s P2P streaming of the
Eurovision Song Contest – with the costs of client/server content distribution. These
authors concluded that P2P content distribution can attain cost-savings up to 90%
in comparison with server-based content delivery.

In summary, the OTT TV paradigm involves issues on the level of: video qual-
ity (High Definition or not?), bandwidth expenses, Quality of Service (best effort
model), multi-channel distribution, new competitors, user-generated content, piracy,
new consumption patterns, advertising, social networks, personalization of the offer,
asymmetric network architectures, new value chains, etc. In this digital ecosystem,
where TV and Internet are converging, P2P technology might become an important
partner of the entertainment industry rather than an enemy as P2P systems have
been put forward as an interesting method to distribute video to mass audiences in
a scalable and cost-efficient manner. Consequently, P2P technology might team up
with the media industry in the OTT TV/video generation for content delivery, which
has already resulted in the foundation of several commercial companies that offer
P2P content distribution.

In this context, the question arises how the different players – in this case the
actor offering/owning the content, the P2P provider and the end user – will position
themselves strategically in their OTT TV value network? However OTT TV/video
has implications on several levels (e.g., copyrights, net neutrality, user behavior),
the aim of the present chapter is to address an important aspect of business models,
namely value networks. Value networks describe the architecture of which actors
execute which roles and how this results in value creation. In order to grasp how
players can generate added value, it is important to get a grip on value networks.

After framing our work within the existing literature and theories, we will ana-
lyze three cases – Kontiki, Zattoo and bittorrent clients – by means of an actor-roles
analysis so as to understand these value networks. These cases were chosen because
of their different orientations which make them interesting to compare: Kontiki of-
fers costumer-related services; Zattoo comprises linear TV over the Internet; and the
bittorrent clients are file sharing applications. This analysis allows us to grasp how
several actors position and distinguish themselves from competing companies, what
motivates actors to execute certain roles and to identify who creates value. Next, we
will discuss the ambiguous role of the ISPs in the value chain. On the one hand, ISPs
welcomed the arrival of P2P file sharing networks – such as Napster and KaZaA –
as these file sharing applications drove the customers to broadband subscriptions.
On the other hand, ISPs are worried about the arrival of recent legal, commercial
P2P systems as these systems cause an increased traffic load on their infrastructure,

Peer-to-Peer Content Distribution and Over-The-Top TV 965

while their revenues for content distribution drop as the content providers partially
outsource content delivery to the end users.

2 Theoretical Framework

Before expanding on business modeling theory, we will provide a review of the
most relevant economics literature about P2P systems. As we will demonstrate in
this literature review, most of the rare academic papers and articles – that address
the economic aspects of P2P systems – focus on one or a few elements of business
modeling.

2.1 P2P Systems and Business Modeling

Some authors analyzed the strengths and obstacles of P2P systems to distribute con-
tent in a commercial and legal way [7, 24]. MacInnes and Hwang [18] examined
several P2P systems on several aspects (e.g., revenue sources, technology, security,
etc.) to determine which of the investigated P2P system had the most promising op-
portunities. From the selected applications (Napster, KaZaA, Kontiki, SETI@home
and Groove Virtual Office) the authors concluded that Kontiki and Groove had the
most commercial potential because they did well for instance on the level of rev-
enues and benefits offered to the end users.

Other academics designed new services that integrated P2P-technology which
refers to the domain of value proposition. On the one hand, Wierzbicki and Goworek
[31] designed a business model for a P2P Content Delivery Network (CDN) where
users would have to pay to access content. After buying the content, the users would
have the opportunity to resell their goods. On the other hand, Gehrke and Schu-
mann [11] proposed a transaction model based on P2P technology to trade physical
goods. These researchers tried to launch new services that differ from the already
existing services on the market.

Although the business modeling approach, proposed by Ballon [4], emphasizes
that the financial model is not limited to the revenue model, the revenue models are a
popular topic in the literature which inspired some academics. Hummel, Muhle and
Schoder [13] explored several direct and indirect revenue models. A direct revenue
model means that users have to pay to view or download content via e.g., pay-
per-view, subscriptions, micropayments, etc. In the case of indirect revenue mod-
els, the end users can consume the content for free as the content is paid by third
parties via advertisements, bundling with other products or subsidies. According
to these authors, a viable revenue model should at least fulfill the requirements of
differentiated charging and allocation effectiveness. Differentiated charging implies
that the revenues should be proportionate to the amount of use. Allocation effec-
tiveness relates to the fact that the rightful owners should be remunerated. Several

966 Jorn De Boever and Dirk De Grooff

P2P systems have failed on the issue of allocation effectiveness, leading to several
lawsuits throughout the world.

Finally, some articles explored the use of Digital Rights Management (DRM)
techniques to maintain control of when, how and where users are able to consume
the content [8, 10]. Content owners want to preserve control of the access, frequency,
time and location of consumption. This does not only relate to preventing piracy,
but also to provide different versions of digital goods to consumers. The problem of
DRM is that these techniques mainly suit the needs of the content owners whereas
they often conflict with the users’ needs.

2.2 Business Modeling Theory

Before determining the definition of value networks, it is important to grasp the
meaning of the concept business model. Many discussions and criticisms have been
expressed in the academic society regarding the interpretation of the term business
model, leading to a wide array of definitions [20, 22, 28]. Today, there is still no
general agreement on its interpretation, leading some of the critics to doubt the
use of this term. For instance, Porter [23] complained that many business modeling
researchers analyzed the Internet as an isolated economy with no reference to the
physical markets, which made him conclude that “The business model approach to
management becomes an invitation for faulty thinking and self-delusion” (p. 73).

The vague conceptualization of business modeling points to the fact that re-
searchers have failed to build on existing work [21]. However, several attempts have
been made trying to stop this jumble of definitions and interpretations by proposing
integrated frameworks [4, 21]. From our point of view, a business model should be
considered as a conceptual instrument to gain insight into a complex reality so as to
make business operations in terms of value creation intelligible. For a profound dis-
cussion on business modeling, we refer to the aforementioned authors as this topic
is not the main focus of this chapter.

We have adopted the approach of Ballon [3, 4]. Based on the existing literature,
this author has given the initial impetus to make business modeling operational for
design and evaluation. This theory stresses the importance of control and value cre-
ation to deduce a framework for designing and evaluating business models [4]. The
two levels that operate within the control section are the value network (i.e., the ar-
chitecture of actors, roles and the relationships between them), and the functional
architecture (i.e., the architecture of the technical components). The two levels that
function within the domain of value creation are the financial model (i.e., the fi-
nancial streams, revenues, costs, profits) and value proposition (i.e., the outline and
positioning of the product or service). These four main pillars constitute a business
model. The reasoning behind this framework is that a business model might disclose
certain opportunities if there is a fit between all the components of a business model,
including a fit with the entire ecosystem in which a company operates. Ballon [3]
formulated the following definition of the concept business model:

Peer-to-Peer Content Distribution and Over-The-Top TV 967

A description of how a company or a set of companies intend to create and capture value
with a product or service. A business model defines the architecture of the product or ser-
vice, the roles and relations of the company, its customers, partners and suppliers, and the
physical, virtual and financial flows between them. (p. 7)

This definition is broader and more comprehensive than other definitions. For
instance, this definition explicitly mentions that the unit of analysis does not only
encompass a single company, but several contextual aspects in the ecosystem, in-
cluding all involved players and stakeholders, must be integrated in the analysis or
design of business models.

After having introduced the main concepts related to business modeling theory, in
the rest of this chapter, we will focus on one of the four pillars of business modeling,
namely value networks of P2P providers. We analyze the value networks as we want
to comprehend how different P2P providers position themselves in the market.

2.3 Value Networks

As we already mentioned, our theoretical framework consists of the work of Bal-
lon [3, 4]. We focus on value networks because the architecture of value networks
reveals which actors perform what roles, resulting in the determination of who gen-
erates what kind of value. Value networks can depict several forms which allow
actors to position and to distinguish themselves from competitors [6]. Examining
value networks makes it possible to interpret what motivates several stakeholders
to execute certain roles [25]. For our analysis, it is important to provide clear de-
scriptions of the concepts so as to exclude misunderstandings. Ballon [4] defined
the following concepts:

• Value networks: “The architecture of actors and roles in the (future) market-
place.”

• Role: “A role is a distinct value adding activity within the value network that
potentially can exist as a (commercial) entity in the marketplace, with its own
cost and revenue balance.”

• Actor: “An actor is a (commercial) entity active in the marketplace, integrating
one or more roles.”

• Relationship: “A relationship is the expression of an interaction between roles or
actors.”

In the definitions of “role” and “actor”, it is questionable whether the term “com-
mercial entity” is appropriate as this would exclude users from examination [6].
In our analysis, we have identified the following roles: content production, content
aggregation, platform content aggregation, platform provision, content distribution,
network provision, customer ownership, marketing and consumption. These roles
have been identified based on the work of several authors [15, 16, 25, 29]. In the
analysis, we will verify whether the execution of the different roles matches the in-
terests of the involved actors. Regarding this topic, we will pay specific attention

968 Jorn De Boever and Dirk De Grooff

to the roles of network operators, which will be treated in a separate section. We
focus on the digital distribution of video content over the Internet by means of P2P
systems. We will first define the different roles that we have identified.

Content production or provision. The content, which ends up with users, has
been produced by persons or organizations with creative ideas. This role might for
instance be performed by production studios, broadcasters and increasingly by end
users. Content might be published on platforms for several reasons: to increase the
scope of the audience (e.g., broadcasters), for advertising purposes (e.g., music in-
dustry), to increase visibility (e.g., user-generated content), etc.

Content aggregation. Once content has been produced, an editorial filtering pro-
cess is being carried out in which one decides which content is appropriate and
sufficiently qualitative. Examples of content aggregators are broadcasters and web-
site owners that gather content for their services. Moreover, because of the massive
amounts of content that are being offered on some platforms, the bundling of adver-
tisements and other services belongs to the content aggregation role as well. Some-
times, end users are involved in the filtering process – for instance by mechanisms
such as ratings and “most viewed” lists.

Platform content aggregation. Van Audenhove, Delaere, Ballon and Bossuyt [29]
made a distinction between “content aggregation” and “platform content aggrega-
tion”. Whereas content aggregation mainly relates to the editorial process (i.e., fil-
tering, editing and branding), platform content aggregation focuses primarily on as-
sembling content providers and content aggregators on the same platform. Several
content aggregators utilize several channels to publish their content, and sometimes
they publish their content on the same platform as other content aggregators.

Platform provision. This comprises the technical infrastructure to offer the plat-
form. Platform provision serves as the technical linkage between the content and the
end users. In many cases, content aggregators and platform content aggregators will
make use of the services of external companies for the technical support of a plat-
form. In addition, the roles of platform content aggregation and platform provision
will sometimes be executed by the same actor. These companies will try to obtain
content deals with content aggregators and content providers so as to be able to offer
as much useful content as possible on their platform which might be interesting for
an advertising model.

Content distribution. When exploring P2P system cases, content distribution
should be considered as a separate role. It is characteristic of P2P systems to in-
volve the end users in distributing the content. In most cases, the actor, responsible
for platform provision, will provide the end users with P2P software so as to exploit
the capacity that is residing on the end users’ equipment. Involving users in this role
implies that these users defray the costs content distribution.

Network operators. The network operators are primarily the ISPs that offer the
infrastructure for data transport. On the one hand, they offer users access to the con-
tent that is available on the Internet. On the other hand, they equip content provider-
s/aggregators with the means to deliver the content to the consumers. ISPs play an
important role in the distribution of video content because this content causes an
important load on their network infrastructure [12]. In addition, ISPs are no longer

Peer-to-Peer Content Distribution and Over-The-Top TV 969

solely actors that offer a network infrastructure, but they play the roles of (platform)
content aggregators as well. We will dilate on this role in a separate section.

Customer ownership. This role concerns which actor possesses important infor-
mation regarding their customers and allows the actor to maintain close relationships
with their clients [4]. The significance of customer ownership results from purposes
of e.g., branding, profiling, reputation management, consumer confidence, customer
satisfaction, etc. We have to notice that it is sometimes hard to designate this role to
certain actors. A distinction can be made between direct and intermediate customer
ownership [4]. It is direct when the actor producing or publishing the content has
the role of customer ownership, and it is intermediate when the actor positions itself
between the provider/publisher and the customer. On some platforms, there is plenty
of content available that lacks a specific or familiar brand, which makes it unlikely
that customer ownership resides with the content providers. In these cases, the role
of customer ownership is carried out by the aggregators.

Marketing. In this chapter, marketing particularly relates to the use of advertise-
ments to support the content and/or the platform. In other words, this does not relate
to the process of creating advertisements which implies that the marketing compa-
nies are not taken into consideration. Marketing can be linked to the content, e.g.,
commercials between two programs. In such cases, this role resides with the con-
tent provider. In addition, commercials are often displayed at the platform level, so
it resides with the platform provider or platform content aggregator. For advertising,
it is important to be able to reach the target audience of the product or service of the
announcement.

Consumption. The eventual object of content providers is for their goods or ser-
vices to be consumed by the end users so as to be able to increase revenues from
advertising, increase availability and visibility of content.

3 Case Studies

In this section, we will examine the value networks of content delivery via P2P
networks by means of three case studies. The cases under investigation are the fol-
lowing P2P providers: Kontiki, Zattoo and bittorrent clients.

3.1 Case 1: Kontiki

Even though VeriSign decided to acquire Kontiki in 2006, for an amount of about
$62 million, they announced that they would sell this service in 2008 [1]. Kontiki
offers a service of hybrid P2P content distribution that targets media and other com-
panies for business communication and media content. A few of the realizations of
this company include the BBC iPlayer [26] and Hi-Q Video of AOL [27]. Table 1
presents the results of the analysis of the value network of Kontiki. In this table, the

970 Jorn De Boever and Dirk De Grooff

role of platform content aggregation is represented between brackets because we
did not have an example in which this role was executed. Whether this role will be
carried out or not depends on the requirements of the demanding companies.

Table 1 Value network of Kontiki

Actors

Roles Broadcasters Kontiki End Users

Content production � - -
Content aggregation � - -
Platform content aggregation (�) - -
Platform provision - � -
Content distribution - � �
Customer ownership � - -
Marketing � - -
Consumption - - �

Depending on who asks Kontiki for peer-assisted delivery solutions, the content
is being generated by broadcasters, studios, companies and even by end users (con-
tent production). These content providers often use the Internet to expand their reach
and availability. Broadcasters filter and bundle content in their editorial office (con-
tent aggregation). In other words, the broadcasters decide what is (not) available on
the platform and under which conditions. For some of the content providers, such
as broadcasters, distributing content on the Internet is mostly an additional service,
whereas for others – e.g., Open Media Network – online content provision is their
core business. The end users are rather passive in the sense that they are not involved
in the content aggregation process.

At the moment, there are no obvious examples of platform content aggregation.
From the examples we have seen, there is no actor playing the role of platform con-
tent aggregator. This of course depends on the requirements the demanding party
formulates. If there is a party who demands an application that aggregates several
content aggregators, then Kontiki will develop such a platform that enables all these
parties to distribute their content via this P2P platform. However, there are mostly
single content aggregators who demand an exclusive distribution platform that op-
erates fully under their control. The major advantage of this approach, for content
aggregators, is that they are able to design the user interface themselves so as to
highlight their brand. The application might be a stand alone application, but it might
be integrated in websites and portals as well.

Kontiki operates almost exclusively in the domain of platform provision. It con-
centrates on the technical services of the content distribution platform: content deliv-
ery, security, intelligent network use, centralized control, monitoring, etc. It provides
the necessary facilities for content providers or aggregators to distribute content to
the target audience. This offers opportunities for the content aggregators to bring
their brand into prominence. In this sense, Kontiki should be regarded as an inter-

Peer-to-Peer Content Distribution and Over-The-Top TV 971

mediate actor that offers technical services to content providers and aggregators.
The content distribution model utilizes a hybrid P2P technology which means that
the idle resources – that reside on the end users’ personal computers – are exploited
to provide a kind of distributed cache system.

In this model, it is obvious that customer ownership is deposited with the content
aggregators or providers. For instance, in the case of the iPlayer, it is evident that
BBC establishes the most important relations with end customers. Probably, most
users do not even know that Kontiki offers some of the technical functionality. In this
sense, Kontiki has no interest in Business-to-Consumer (B2C) customer ownership
as key information about the end users has no value for the P2P technology provider
for e.g., its brand or reputation. Kontiki does not have direct relations with the end
users, because this P2P provider should be considered in a Business-to-Business
(B2B) environment where they offer services to other companies.

Kontiki offers its clients the possibility to integrate an advertising or payment
model. The revenues from these advertisements or payments end up with the con-
tent providers/aggregators. In this case, the role of Kontiki is limited to technical
support as well. How the advertising or payment model is integrated depends on the
requirements and needs of the client content aggregator/provider.

The consumers in a B2C perspective consume the content from broadcasters.
That is why we stated that the role of customer ownership is carried out by content
aggregators/providers. The end users are more than customers because they are in-
volved in content distribution as well. Even though Kontiki utilizes the resources of
the end users for content distribution, this company does not have a direct relation-
ship with the end users as they operate exclusively in a B2B environment. Kontiki is
an actor in a B2B market because they limit themselves to technical services to other
companies. This enterprise focuses on a secure content distribution model tailored
to the needs of their clients. In this value network, the assets are highly concentrated
on the part of the broadcaster, which makes that Kontiki should be regarded as a
supporting partner to which the technical components are outsourced. Further, we
have to remark that the role of the user might expand in the value network. As we
already mentioned, Kontiki offers customer-related services. If there is a content ag-
gregator who decides to distribute user-generated content as well, then Kontiki will
allow this. The only roles that are fixed in this case are the roles of the P2P provider,
Kontiki. The other roles are not determinate as it depends on the requirements of
the demanding content provider/aggregator. This results from the fact that Kontiki
is only an actor in a B2B environment and not in the B2C market.

3.2 Case 2: Zattoo

Zattoo was founded in 2005 and can be regarded as an actor that tries to trans-
late the linear broadcast model on the Internet by live streaming of TV channels.
This enterprise offers a platform where broadcasters can stream their channels live
on the Internet. The main operations of Zattoo include the gathering of several TV

972 Jorn De Boever and Dirk De Grooff

channels on one platform (platform content aggregation and platform provision) and
the delivery of content via their P2P streaming platform (content distribution). VoD
services are not available via this platform. Despite the fact that the distribution of
TV content on the Internet is increasing, the core business of the broadcasters re-
mains offering “traditional” television. As more TV viewers spend an increasing
amount of time on the Internet, Zattoo tries to offer a way for broadcasters to re-
gain this “lost audience”. In this sense, the Zattoo platform should be regarded as
a supplement for broadcasters involved in multi-channel distribution, and not as a
replacing content distribution model.

Table 2 Value network of Zattoo

Actors

Roles Broadcasters Zattoo end users

Content production � - -
Content aggregation � � -
Platform content aggregation - � -
Platform provision - � -
Content distribution - � �
Customer ownership � � -
Marketing � � -
Consumption - - �

The content available on the platform has been generated by production studios
or by broadcasters themselves (content production). Next, all the content is being
filtered and bundled in an editorial process and advertisements are added in the
programming (content aggregation). Zattoo is active as well on the level of content
aggregation as they insert advertisements into their platform. When users switch
channels, there is a buffer time of 5–7 seconds, which is utilized by Zattoo to display
advertisements.

Table 2 indicates that Zattoo is active on the level of platform content aggrega-
tion and platform provision as they make several TV channels available on their
platform. The technical provision for the reproduction of content is leveraged as
well by Zattoo by means of a media player. Zattoo partly delivers the content via
their P2P live streaming infrastructure. They offer a streaming platform that is more
scalable and cost efficient than the traditional unicast model. In a nutshell, the pri-
mary roles of Zattoo are collecting, distributing and presenting content. This value
network is quiet similar to the model of traditional linear TV, where cable compa-
nies and telecom operators gather content aggregators, supply a platform and take
care of the distribution.

Besides the use of the facilities of the broadcasters and Zattoo for the distribu-
tion of content, the idle resources available on the peers’ equipment are involved
in the content distribution as well because it comprises a P2P system. The users
of Zattoo have to download software to be able to view the content, which is also

Peer-to-Peer Content Distribution and Over-The-Top TV 973

P2P software. This implies that the available bandwidth of the users is utilized to
distribute the content which results in decreased costs for broadcasters to distribute
video content.

In this case study, it is not immediately obvious who of the actors maintains the
most important relationship with the end users (customer ownership). Zattoo takes
care of the aggregation of different TV channels, but the audience watches the TV
channels and not Zattoo. We already reasoned that the Zattoo model strongly re-
sembles the model of traditional linear TV, which means that this company is trying
to bring the traditional TV experience to the Internet. However, it seems that the
most prominent relationship with the customers resides with the broadcasters. This
is a consequence of the fact that users are solely interested in the content and not
in which technology distributes it. The technology should only be regarded as an
enabling technology with which users can satisfy their basic needs for certain types
of content. The broadcasters need to have direct relationships with its customers for
e.g., branding and reputation management. Notwithstanding the fact that the broad-
casters have the direct customer relationship with its audience, we argue that Zattoo
has an indirect relationship with the audience as well. They have an interest in main-
taining good customer relations with the end users as this company depends to some
extent on an advertising model which requires them to catch sufficient “eyeballs”.
The fact that Zattoo is partially depending on an advertising model, which forces
them to be active in a B2C environment, has implications as well in that it obliges
this P2P provider to be active in the B2B market as well since most of the eyeballs
(B2C) will be captured by offering popular content (B2B). In other words, Zattoo
has to attract as many popular TV channels as possible to entice an audience so as
to keep their advertisement model viable.

The role of marketing is executed by two actors, namely the broadcasters and the
P2P provider. The content aggregators, i.e., the broadcasters, offer their traditional
commercials within and between their television programs. In this way, the users of
Zattoo view the same commercials that are available on regular TV. Additionally,
as already mentioned, Zattoo in its role of platform content aggregator offers ads
on its platform by means of banners, text-based ads and video commercials. Zattoo
utilizes the buffer period, to switch from one TV channel to another, to integrate
advertisements. In conclusion, users are confronted with advertisements on the level
of the content aggregators (broadcasters) as on the level of the platform content
aggregator (P2P technology provider).

In contrast to the case of Kontiki, which is situated entirely in the B2B domain,
Zattoo is active in the B2B and the B2C market. Even the B2B relationship between
Zattoo, the broadcasters and the advertising industry is not completely straightfor-
ward. On the one hand, some of the small broadcasters are clients of Zattoo as they
want to utilize this platform to distribute content and they have to remunerate Zattoo
for these services. On the other hand, we can say that Zattoo is most likely a client
of the popular broadcasters as they need these popular TV channels to feed their
advertising model. For this reason, Zattoo actively tries to attract popular TV chan-
nels. In summary, besides the broadcasters, Zattoo wants to maintain a relationship
with the end users as well to support their advertising model (B2C).

974 Jorn De Boever and Dirk De Grooff

In conclusion, Zattoo is the central service provider for the broadcasters in this
story, which gives Zattoo most control in the B2B value network. By copying the
linear TV model on the Internet by means of live streaming, their service addresses
the fear of broadcasters that on demand content makes it more difficult to control
how the audience consumes the content. Another strength of live streaming consists
of the fact that premium content is available as all popular series, movies, sports
events that are on the traditional TV are simultaneously available on Zattoo as well.
In comparison with the “Zattoo model”, which is a live streaming model, on de-
mand streaming platforms – such as Joost and Babelgum – suffer from the fact that
broadcasters and other content aggregators will not provide most of their prime-
time content or blockbusters because most of these programs have specific licenses
which restrict when and where this content might be viewed. This is caused by
content producers who want to retain control of their content for repurposing and
versioning strategies. Table 2 displays the execution of different roles in the value
network by the three main actors (i.e., broadcasters, P2P technology provider and
consumers). From a B2C perspective, Zattoo should be considered as an intermedi-
ary actor between the content provider and the end customers. As a consequence,
most control in the B2C value network resides with the broadcasters. The roles of
the end users are limited to passive consumption and distribution of content.

3.3 Case 3: Bittorrent Clients

Before beginning this analysis, we have to highlight that bittorrent will be written
in lower-case letters to avoid confusion with the BitTorrent company. Bram Cohen,
developed the bittorrent protocol and introduced a new era in the file sharing history
as this technology was very suitable for sharing large files such as video, games
and software. The fact that these bittorrent clients are file sharing systems implies
that these can be considered as on-demand services. We focus on systems such as
XTorrent and Bitcomet and related torrent sites e.g., The Pirate Bay and Mininova.
These systems and websites are primarily utilized to share and download content
in an illegal way. Torrent sites are websites where torrent files are made available.
These torrent files contain metadata about the different parts of a file and about the
tracker that coordinates the file exchange among computers. The reason we are in-
terested in this case is because it allows us to demonstrate how the value networks
of legal, commercials systems differs from the illegal use of P2P systems. In this
case, we focus on the illegal sharing of content via bittorrent clients. This implies
that legal downloads – e.g., the experiments of some broadcasters e.g., the Cana-
dian TV program “Canada’s Next Great Prime Minister” and the Norwegian series
“Nordkalotten 365” – are excluded from our analysis so as to be able to compare
the value networks of legal use of P2P technology with the value networks where
content is shared illegally. Of course, we have to remark that the technology itself is
not illegal; it is the way people use it that is often illegal. Table 3 outlines the value
network of bittorrent clients/websites.

Peer-to-Peer Content Distribution and Over-The-Top TV 975

Table 3 Value network of bittorrent clients

Actors

Roles Broadcasters Bittorrent End Users

Content production � - -
Content aggregation - - �
Platform content aggregation - � -
Platform provision - � -
Content distribution - - �
Customer ownership - � -
Marketing - � -
Consumption - - �

The content available via bittorrent clients/sites has been produced by media
companies, artists and production studios (content production). These content own-
ers want to maintain control of their content with the result being that they license
their productions. However, many users seem to dislike the restrictions of licensed
content and want to gain control of the content themselves. Some of these users
videotape this content in movie theatres (i.e., CAM versions), copy it from a DVD
(i.e., DVDrip) or have screeners that they release on torrent sites. In other words,
users decide which content is available on torrent sites (content aggregation). Much
of the files have been aggregated by the so-called “release groups” which are per-
sons or a group of persons that publish content on torrent sites. Some of the release
groups have gained an important status in the peer community as a trusted source
for files. For example, aXXo is one of the most popular and trusted release groups
on torrent sites with the result that this group is a real Internet celebrity. In addition,
the whole peer community is passively involved in the content aggregation process
just by consuming certain content as this has an impact on the filtering process.
As users download content or make it available, they influence the ranking of the
content on torrent sites which has an impact on the choices of other users. Further,
in the former cases (Kontiki and Zattoo), users are offered only one version of the
content, whereas in this case users have to choose a version from the search results.
Furthermore, there is a lot of fake and low quality content available in those search
results which users try to avoid. This makes the role of content aggregator for the
peer community even more important as the most downloaded and shared content
is perceived as most trustworthy.

Platform content aggregation takes place by meta-search engines – such as Tor-
rentz and TorrentPond – which allow users to search content on different torrent
sites simultaneously. In this way, end users do not have to browse through several
sites to find their content as this is assembled on one search engine. The platforms
(i.e., the sites and the software providers) are often either proprietary or open source
(platform provision).

The execution of the role of content distribution is distinct from the former cases
as users are entirely responsible for this, with the result that content might become

976 Jorn De Boever and Dirk De Grooff

unavailable if users stop uploading. This has major implications on the level of QoS
(Quality of Service) because of the transient connectivity of peers. If peers gradually
stop seeding certain content, this content will slowly become unavailable to other
interested peers. The speed of exchanging files depends on the number of seeders,
free riders and on the download/upload capacity of peers. These characteristics of
bittorrent systems make it a best effort model with limited or no guarantees on the
level of QoS. However, users seem to accept these flaws because these systems
allow them to have full control of the content and also because they can download
this content for free.

Customer ownership resides mainly with the torrent sites that have an interest
in maintaining good relations with the end users as their revenue model consists of
an advertising model (Marketing). For this reason, they want to acquire the most
popular release groups to publish the most popular content on their sites so as to
attract a large audience to support their advertising model. In Section 2.1, we cited
a research [13] that stressed the importance of allocation effectiveness in a revenue
model which emphasizes the significance that the content owners should be remu-
nerated. The bittorrent case study is an example of bad “allocation effectiveness”
as content owners are not involved in the transactions and revenues, which caused
many lawsuits concerning copyright infringements.

In summary, the actors creating and owning the content are not remunerated
for their work which causes many lawsuits. Whereas there are some organizations
providing the platform and the technology, the peer community exercises their in-
fluence over most parts of the value network. The cooperating peers – forming a
decentralized, self-organizing community that offers the content – decide which
content is fake or has bad quality, they distribute the files and finally they con-
sume the content. In other words, the end users control the value network as they
break loose from the restrictions imposed by the media industry or as Benkler [5]
formulated this trend: “(. . .) individuals are less susceptible to manipulation by a
legally defined class of others – the owners of communications infrastructure and
media” (p. 9).

4 The Role of ISPs

We did not elaborate on this role in the case studies as the execution of this role is
the same in different cases. It is interesting however to expand on the role ISPs or
network operators play as they take care of an important part of content distribution
by leveraging the infrastructure through which the content can be delivered to end
users. We treat this role in a separate section because ISPs or network operators find
themselves in an ambiguous position [6, 7].

In the beginning, the ISPs welcomed the arrival of (illegal) P2P systems – such
as Napster in 1999 – because it drove Internet users from dial-up to broadband con-
nections, leading to more revenues for the network providers. After a few years the
penetration of broadband connections caused the amount of dial-up connections to

Peer-to-Peer Content Distribution and Over-The-Top TV 977

fade away. This increasing number of broadband connections resulted in more users
sharing and downloading content, leading to more traffic on the ISPs’ infrastruc-
tures. Haßlinger [12] found that more than 50% of traffic volume on the ISP net-
works was emanating from P2P systems. In addition, users began exchanging more
bandwidth consuming content such as video and software, which increased network
traffic originating from P2P systems even more [30]. The saturation of broadband
connections combined with the increased traffic load meant a first turning point in
the position of the ISPs regarding P2P systems as they feared that their networks
would become congested by traffic that is hard to optimize.

Today, the arrival of legal, commercial P2P systems inclines the ISPs’ opinion
even further to a reluctant attitude towards P2P systems as the content owners and
P2P technology providers bypass the ISPs to distribute content with the result that
the revenues for ISPs will shrink: “ISPs are those who suffer under the P2P appli-
cations, because they typically charge broadband traffic in a flat rate manner while
the content providers apply P2P technology to move traffic from their servers into
the network” [17]. P2P systems are cost efficient because content owners outsource
content distribution to the end users by utilizing the available resources on the edges
of the Internet. P2P technology providers utilize this money-saving characteristic
mainly to promote their business. The end users, whose resources are utilized, are
confronted with an increasing content offer which urges them to exchange even
more content. Additionally, P2P technology changes the traffic patterns of the ISP
network as this technology stresses the upload link whereas most of ISPs’ infras-
tructure has an asymmetric architecture (e.g., ADSL) that has been oriented to the
download link [24]. In other content distribution models, the content providers or
owners have to remunerate the ISP or network provider for the load on the ISPs’
infrastructure, e.g., bandwidth, caching, etc. In other words, as a service becomes
more popular, the actor offering the content will have to remunerate the ISP propor-
tionate to the load their service has caused on the infrastructure. Content provider-
s/owners that utilize P2P systems shift these costs to the end users by outsourcing of
the distribution role to these end users. However, many users have “all-you-can-eat”
or “fair use policies” subscriptions which allow them to exchange content in an al-
most unrestricted way. In other words, the ISPs or network operators are confronted
with: (1) an increased load on their networks (especially the upload link) and (2)
decreasing revenues as content providers outsource the distribution role to the end
users. In addition, many of the P2P systems are to a large extent self-organizing
systems which causes a lot of message traffic to keep the network operational. All
these issues have resulted in a negative attitude of several network providers to-
wards P2P content distribution, causing ISPs to threaten to queue, throttle and even
block P2P systems. We have to notice that the ISPs hold a very strong position be-
cause they offer the bridge between content and end users. In this way, ISPs might
decide which content users can access and which not. In addition, ISPs play an in-
creasing amount of roles as today they provide their own video content and other
services, which make these P2P applications competitors for their own services. All
issues mentioned in this section relate to debates on net neutrality, Walled Garden
and consumer lock-in strategies. The BBC iPlayer, for instance, has already been

978 Jorn De Boever and Dirk De Grooff

confronted with resistance from ISPs, who fear that the success of such applications
might clog their network, which reveals itself in headlines such as: “ISPs to BBC:
We will throttle iPlayer unless you pay up” [2].

As was mentioned in Section 2.2 of this chapter, it is important that all com-
ponents of a business model fit together [4]. We argue that the business model of
most P2P technology providers does not fit the revenue model of many ISPs. This
might inspire ISPs to change their revenue models from a flat rate or all-you-can-eat
model to a model of layered pricing proportionate to the traffic volume that each
user generates [24].

Throttling P2P traffic or introducing usage-based pricing seems to be an unsatis-
factory solution for network providers as this might result in unfavorable churn rates.
From this analysis, it is clear that P2P technology providers or content providers
and ISPs will have to cooperate in order to increase performance and to achieve
fair usage of network resources. This challenge to optimize network utilization has
resulted in the P4P working group (Provider Portal for aPPlications) in which P2P
providers and ISPs cooperate for instance to “(1) facilitate network applications,
in particular P2P applications, to achieve the best possible application performance
under efficient and fair usage of network resources; and (2) allow network providers
to achieve efficient and fair usage of their resources to satisfy application require-
ments, reduce costs, and increase revenue” [32]. Both P2P providers and network
operators have an interest in cooperation as they provide services to the same end
users. Therefore, the P4P working group proposes a technical framework in which
both parties exchange information so as to optimize traffic flows. More information
about the P4P framework can be found in [33].

This argumentation seems to indicate that cooperation between content providers,
ISPs and P2P providers will be one of the prerequisites for a viable, commercial P2P
system.

5 Discussion and Conclusion

The present study examined the value networks of three cases where P2P tech-
nology is utilized to distribute content. The results indicate that the compositions
of the value networks, i.e., the architecture of the relationship between actors and
roles, vary considerably from case to case. Although there are more than three ac-
tors involved in the whole process, we analyzed the roles of the broadcaster/content
owners, the P2P technology provider and the end users as these are the most promi-
nent players in these value networks. In this discussion section, we will compare the
roles of the three cases studied and will try to provide an adequate interpretation of
the results.

First, we will compare the roles of the broadcasters across the three selected
cases. Interestingly, we found that broadcasters exert most control of the value net-
work in the case of Kontiki. This probably results from the fact that Kontiki is only
an actor in the B2B environment as they offer custom-tailored services to broad-

Peer-to-Peer Content Distribution and Over-The-Top TV 979

casters in terms of technical infrastructure. Therefore, Kontiki has no interest in
maintaining customer relations with the end users, which gives most of control of
the B2C value network to the broadcasters. The similarity between the roles of the
broadcasters of the Kontiki and Zattoo case is notable. In the case of Zattoo, the
broadcasters want to control the value network for their customer relations as well.
Broadcasters want to rule over the value networks as they attach great importance to
having control of: (1) when and where users may consume content, (2) who might
access the content, (3) at what speed the content must be distributed, and (4) QoS. It
is interesting to note that content owners have almost no role in the case of bittorrent
clients. It may be speculated that this is probably so because, in the case of bittorrent
clients, there is a self-organizing community of peers that want to have control of
the available content and they therefore have to deprive the content owners of their
content.

Second, the roles executed by the P2P technology providers differ conspicuously
between the three cases. Although we did not focus on revenue models in our anal-
ysis, the data allow us to discuss these as well because revenue models influence to
some extent the configuration of value networks. The roles of Kontiki are limited to
the technical provision of the platform and the delivery of content. As we already
mentioned, this most likely emanates from the fact that Kontiki is an actor in the
B2B value network where they offer customer-related services, which implies that
they let their customers execute the other non-technical roles. Kontiki has no inter-
est in controlling the B2C value network as they receive revenues directly from the
content providers who want to use their services. Facing that, the difference with
the Zattoo case is very remarkable as this P2P technology provider has much con-
trol of the value network as they are involved in for instance content aggregation,
customer ownership and marketing. This might be explained by the fact that Zattoo
is partially depending on an advertising model which implies they must attract an
audience in order to be a tempting platform for advertisers. To attract an audience
for advertisements, they have to make sure that popular content is available on their
platform. Therefore, Zattoo wants to exert most control of the B2C value network as
their revenues are partially depending on ads. In other words, Zattoo is active in the
B2B as well as in the B2C market. In the B2B market, some (smaller) players have
to pay Zattoo to distribute their content via the Zattoo platform. In the B2C mar-
ket, the revenues are depending on an advertising model. In the bittorrent case, the
software providers and torrent sites only have an average amount of roles. However,
they have little control as what is available on the bittorrent network depends on the
preferences of the peer community. The users themselves put index information of
the content on torrent sites and not the owners of the torrent sites themselves.

Third, we compared the roles of the end users over the selected cases. In all three
cases, users were involved in content distribution which implies that users do not
only share content but also the costs of content distribution. In the Kontiki and Zat-
too case, it is interesting to note that the users are rather passive as they are only
involved in content distribution and, of course, they consume the content in the end.
Interestingly, users have no choice to upload content. If they download the P2P soft-
ware and consume the content, then they upload this content as well. Furthermore,

980 Jorn De Boever and Dirk De Grooff

the Zattoo and Kontiki users do not have control of the content they have down-
loaded as they are being restricted where, how and when they are able to consume
the content. In the case of Kontiki, we have to remark that whether or not users can
have control of the content depends on the requirements of the demanding content
owner as Kontiki offers customer-related services. Probably, the limited freedom of
end users in these two cases, results from an unresponsive attitude of the broad-
casters towards granting more control to the end users. In contrast with the former
two cases, the users of bittorrent clients are actively involved in the value network.
Moreover, the users or peers have most control of the value network as this is a
self-organizing community of peers: the users introduce the content online; decide
what is popular and what is not popular. The bittorrent peers have full control of
the content once it is downloaded as the content is physically available on their hard
drive, which implies that they can decide when, how and where they are going to
consume it. Once downloaded, they can choose whether or not to keep the content
uploadable on the bittorrent network. The disadvantage of this self-organizing com-
munity is that it is an absolute best effort model with no guaranteed QoS, and there
is a lot of fake or corrupted content available.

The current findings reinforce the view that content owners are still determined
to maintain control of what end users can do with their content. Despite all the
utopian voices that have been raised, announcing a new era where the end users
are in control, the value networks of the “legal”, commercial P2P systems seem to
indicate that content owners do not show any inclination to grant more control to
end users. This probably results from the requirements of the content owners who
elaborate versioning strategies and who want to prevent piracy as much as possible.
Overall results of this study imply that end users are deprived of control in the legal,
commercial cases, whereas the end users rule over the value networks of illegal file
sharing activities.

In addition, it is remarkable that the two “legal” cases – i.e., Kontiki and Zattoo –
both have hybrid P2P architectures, whereas the “illegal” case has a decentralized
architecture. Again, this might be explained by the importance the media indus-
try attaches to control, which relates to several issues. Indeed, hybrid P2P systems,
which have some centralized components, allow the industry to control and monitor
traffic more easily in comparison with decentralized P2P networks. The business
models force the media industry to be able to monitor user behavior for instance to
support their advertising model or to implement a payment model. Moreover, the
industry wants to provide services with guaranteed performance levels in terms of
availability and speed. Another important issue in legal, commercial content deliv-
ery is security as the industry does not want its customers to be confronted with
viruses or malicious nodes. These are all issues in decentralized systems that might
be solved by implementing hybrid P2P architectures. Therefore, the needs of the me-
dia industry – regarding control, security, QoS, business model – cannot be gratified
by decentralized self-organizing communities. This explains why legal, commercial
P2P systems generally require hybrid architectures.

The hybrid architectures belong to the unidirectional mass communication model
(e.g., Zattoo) and the interactive mass customization model (e.g., Kontiki). Indeed

Peer-to-Peer Content Distribution and Over-The-Top TV 981

both of these interaction architectures are (partially) centralized and controlled by
the media industry. On the other hand, the bittorrent clients, which are mainly used
for illegal purposes, belong to the multilateral community model as users control
the content.

The results of the analysis indicate that revenue models have an important im-
pact on the configuration of value networks. For that reason, a promising line of
study would be to explore and to suggest direct and indirect revenue models for P2P
systems. A possible revenue model might consist of, for instance, revenue sharing
between content owners and P2P providers. In another conceivable revenue model,
users might be remunerated for uploading content since users, which participate in
uploading, are actually participating in cost sharing as their resources are utilized by
other peers. For instance, former In2Movies, which does not exist anymore, allowed
users to assemble points by uploading content with which they could buy content
with a discount.

As we explained in Section 2.2, value networks cover only one of the four pillars
of business modeling. Therefore, further research should be done to investigate the
relation of value networks with the three remaining pillars – i.e., the functional
architecture, the financial model and the value proposition – in the ecosystem in
which P2P providers operate.

Finally, the convergence of the Internet and TV, which resulted in the OTT TV
paradigm, made P2P technology a partner for the industry rather than an enemy.
This results from the fact that P2P systems demonstrated to be scalable models
with low marginal costs in terms of bandwidth consumption. In this way, the OTT
TV paradigm led to the arrival of new P2P systems to distribute content in a legal,
commercial way. However, the fact that end users are not bound by restrictions
in illegal P2P file sharing communities will remain a seed-bed for the success of
systems such as bittorrent clients.

Acknowledgement

FLEET – an interdisciplinary research project in FLEmish E-publishing Trends – is
an IWT SBO project, with research partners IBBT SMIT, Cemeso, LSTS, MOFI,
ICRI, CUO IBBT, MICT, ECDC and TNO. Additionally, we would like to thank
Dr. Verónica Donoso for many useful comments on this chapter.

References

1. Ali R (6 May 2008) VeriSign’s Sale of Kontiki: $1 Million plus Stake in New Business.
Available via PaidContent.org.
http://www.paidcontent.org/entry/419-verisigns-sale-of-kontiki
-1-million-plus-stake-in-new-business/. Cited 6 Aug 2008

982 Jorn De Boever and Dirk De Grooff

2. Anderson N (13 Aug 2007) ISPs to BBC: We will throttle iPlayer unless you pay up.
Available via Ars Technica.
http://arstechnica.com/news.ars/post/20070813-isps-to-bbc-we-
throttle-iplayer-unless-you-pay-up.html. Cited 22 May 2008

3. Ballon P (2006) Business Modeling for ICT Products and Services: Conceptual Framework
and Design Criteria [Report]. In: Limonard S (ed) Integrated Methodological Framework:
Investigating Business Models for Broadband Services – the Case of iDTV, TNO, Delft

4. Ballon P (2007) Business Modeling as the Configuration of Control and Value. Paper pre-
sented at the 20th Bled eConference, Bled, Slovenia.

5. Benkler Y (2006) The Wealth of Networks: How Social Production Transforms Markets and
Freedom. Yale University Press, London

6. De Boever J (2008a) Value Networks of P2P TV: An Analysis of Actors and their Roles. In:
Mellouk A, Bi J, Ortiz G, Chiu DKW, Popescu M (eds) Proceedings of The Third Interna-
tional Conference on Internet and Web Applications and Services, IEEE Computer Society,
Los Alamitos

7. De Boever J (2008b) Peer-to-Peer Content Distribution: An Analysis of the Internal and Ex-
ternal Potentials and Obstacles. In: Cordeiro J, Filipe J, Hammoudi S (eds) Proceedings of the
Fourth International Conference on Web Information Systems and Technologies, INSTICC,
Portugal

8. Einhorn MA, Rosenblatt B (2005) Peer-to-Peer Networking and Digital Rights Management:
How Market Tools Can Solve Copyright Problems. Policy Anal 534:1–22

9. European Interactive Advertising Association (2007) EIAA Mediascope Europe Study.
Available via EIAA.
http://www.eiaa.net/Ftp/casestudiesppt/EIAA%5FMediascope%5FEur
ope%5F2007%5\Flaunch%2Epdf. Cited 5 Jun 2008

10. Fetscherin M (2006) Digital Rights Management: What the Consumer Wants. J Digit Asset
Management 2(3/4):143–149

11. Gehrke N, Schumann M (2003) Constructing Electronic Marketplaces using Peer-to-Peer
Technology. Paper presented at the 36th Hawaii International Conference on System Sciences,
Big Island, Hawaii

12. Haßlinger G (2005) ISP Platforms Under a Heavy Peer-to-Peer Workload. In: Steinmetz R,
Wehrle K (eds) Peer-to-Peer Systems and Applications, Springer-Verlag, Berlin Heidelberg

13. Hummel T, Muhle S, Schoder D (2005) Business Applications and Revenue Models. In:
Steinmetz R, Wehrle K (eds) Peer-to-Peer Systems and Applications, Springer-Verlag, Berlin
Heidelberg

14. IDC (2007) The Expanding Digital Universe: A Forecast of Worldwide Information Growth
Through 2010. Available via EMC.
http://www.emc.com/about/destination/digital_universe/pdf/
Expanding_Digital_Universe_\Executive_Summary_022507.pdf. Cited 4
Apr 2007

15. Lechner U, Hummel J (2002) Business Models and System Architectures of Virtual Commu-
nities: From a Sociological Phenomenon to Peer-to-Peer Architectures. Int J Electron Comm
6(3):41–53

16. Lechner U, Hummel J, Eikemeier C (2003) Business Model Peer-to-Peer – Is there a future
beyond file sharing? Paper presented at the First Conference on Design, Analysis and Simu-
lation of Distributed Systems, Orlando, Florida

17. Liebau NC, Pussep K, Graffi K, Kaune S, Beyer A, Jahn E, Steinmetz R (2007) The Impact of
the P2P Paradigm on the New Media Industries. Paper presented at the Americas’ Conference
on Information Systems, Keystone, Colorado, USA

18. MacInnes I, Hwang J (2003) Business Models for Peer to Peer Initiatives. Paper presented at
the 16th Bled Electronic Commerce Conference, Bled, Slovenia

19. Norton WB (2007) Video Internet: The Next Wave of Massive Disruption to the U.S. Peering
Ecosystem. Paper presented at the Stanford Networking Seminar, Stanford, USA

Peer-to-Peer Content Distribution and Over-The-Top TV 983

20. Osterwalder A, Pigneur Y (2002) An e-Business Model Ontology for Modeling e-Business.
Paper presented at the 15th Bled Electronic Commerce Conference – e-Reality: Constructing
the e-Economy, Bled, Slovenia.

21. Osterwalder A, Pigneur Y, Tucci CL (2005) Clarifying Business Models: Origins, Present,
and Future of the Concept. Commun AIS 16(2005):1–25

22. Picard RG (2000) Changing Business Models of Online Content Services: Their Implications
for Multimedia and Other Content Producers. Int J Media Management 2(2):60–68

23. Porter ME (2001) Strategy and the Internet. Harvard Bus Rev 79(3):62–78
24. Rodriguez P, Tan S-M, Gkantsidis C (2006) On the Feasability of Commercial, Legal P2P

Content Distribution. ACM SIGCOMM Computer Commun Rev 36(1):75–78
25. Rupp P, Estier T (2003) A Model for a Better Understanding of the Digital Distribution of

Music in a Peer-to-Peer Environment. Paper presented at the 36th Hawaii International Con-
ference on System Sciences, Island of Hawaii, (Big Island), Hawaii

26. Slocombe, M (16 May 2005) BBC iMP: Public Trial For 5,000 in September. Available via
Digital Lifestyles.
http://digital-lifestyles.info/2005/05/16/bbc-imp-public-tri
al-for-5000-in-september/. Cited 16 May 2005

27. TimeWarner (14 Nov 2005) AOL.com Is First Major Portal to Deliver DVD Quality Videos
(Press Release). Available via TimeWarner.
http://www.timewarner.com/corp/newsroom/pr/0,20812,1129718,
00.html. Cited 10 Oct 2007

28. Timmers P (1998) Business Models for Electronic Markets. Electron Markets J 8(2):3–8
29. Van Audenhove L, Delaere S, Ballon P, Van Bossuyt M (2007) Changing Content Industry

Structures: The Case of Digital Newspapers on ePaper Mobile Devices. Paper presented at
the 11th International Conference on Electronic Publishing, Vienna, Austria

30. Werbach, K (2008) The Implications of Video Peer-to-Peer on Network Usage. In: Noam
EM, Pupillo LM (eds) Peer-to-Peer Video: The Economics, Policy, and Culture of Today’s
New Mass Medium, Springer Science + Business Media, LLC, New York

31. Wierzbicki A, Goworek K (2005) Peer-to-Peer Direct Sales. Paper presented at the Fifth IEEE
International Conference on Peer-to-Peer Computing, Konstanz, Germany

32. Xie H, Krishnamurthy A, Silberschatz A, Yang YR (2007) P4P: Explicit Communications for
Cooperative Control Between P2P and Network Providers. P4PWG Whitepaper. Available via
DCIA.
http://www.dcia.info/documents/P4P_Overview.pdf. Cited 5 Nov 2008

33. Xie H, Yang YR, Krishnamurthy A, Liu Y, Silberschatz, A (2008) P4P: Provider Portal for
Applications. ACM SIGCOMM Computer Commun Rev 38(4):351–362

Live Video and IP-TV

Maria Luisa Merani and Daniela Saladino

Abstract This Chapter aims at providing a comprehensive insight into the most re-
cent advances in the field of P2P architectures for video broadcasting, focusing on
live video streaming. After introducing a classification of P2P video solutions, the
first part of the Chapter provides an overview of the most interesting P2P IP-TV sys-
tems currently available over the Internet. It also concentrates on the process of data
diffusion within the P2P overlay and complements this view with some measure-
ments that highlight the most salient features of P2P architectures. The second part
of the Chapter completes the view, bringing up the modeling efforts to capture the
main characteristics and limits of P2P streaming systems, both analytically and nu-
merically. The Chapter is closed by a pristine look at some challenging, open ques-
tions, with a specific emphasis on the adoption of network coding in P2P streaming
solutions.

1 Live Streaming and IP-TV

Traditionally, video delivery over the Internet relies upon the consolidated client-
server paradigm. In this perspective a centralized server has to be accessed by all
clients that wish to download the desired video stream, as Fig.1 illustrates.

This simplified view immediately suggests that the server access bandwidth is
the most limiting factor against system scalability, at least in terms of network re-
sources. Referring to the case of constant bit rate connections, when the number of
concurrently active clients increases and the sum of the bandwidths that their flows

Maria Luisa Merani
Department of Information Engineering, University of Modena and Reggio Emilia, Italy,
e-mail: marialuisa.merani@unimore.it

Daniela Saladino
Department of Information Engineering, University of Modena and Reggio Emilia, Italy,
e-mail: daniela.saladino@unimore.it

X. Shen et al. (eds.), Handbook of Peer-to-Peer Networking, 985
DOI 10.1007/978-0-387-09751-0 35, © Springer Science+Business Media, LLC 2010

986 Maria Luisa Merani and Daniela Saladino

Fig. 1 Conventional client-server architecture

require equals the server access bandwidth, then the video streaming system satu-
rates. No more users can be supported, otherwise congestion will soon appear and
markedly penalize the throughput of the video application.

More generally, the client-server approach entails that the video server be the
edge of as many unicast connections as the number of clients: one video stream per
client is individually and separately taken to destination, consuming bandwidth and
network resources, and possibly generating congestion along all traversed paths.
Definitely, not a smart solution for several video applications: it suffices to think of
the broadcasting of television events, where the same information has to be simul-
taneously delivered to each subscriber.

Multicasting at the IP-layer, probably the cleanest solution from a conceptual
viewpoint, was first proposed to relieve the problem, but IP multicast never took
place over the global Internet [32]. The violation of the stateless principle of IP
routers, the lack of scalability, the increased difficulty in performing congestion and
error control at transport layer on multicast connections were probably the technical
factors that mostly limited its inception.

One of the novelty of P2P for video delivery over the Internet resides in moving
the multicast approach to the application layer. Another unique point being that it
is up to the same end-users of the multicast group to collaborate in the process of
swarming the information across the network to other users: a node in the overlay
will not only receive the desired video, but will also cooperate to distribute the video
to other peers. As we will see in next Section, the way video information propagates
across the peer overlay provides the most relevant metric to classify P2P systems
for video delivery.

In P2P solutions the video stream is divided into relatively small, equal size
chunks, that typically contain a few seconds of the original video. Participating peers
make some of their untapped resources available to the system, most notably their
upload bandwidth, to pass the video chunks they already own to other peers: this
greatly relieves the burden on the original streaming server. Moreover, the infras-
tructure requirements of the application-layer approach are minimal, and this really

Live Video and IP-TV 987

makes P2P attractive for video distribution over the Internet, for a variety of hetero-
geneous services.

To conclude this introductory discussion, observe that P2P had already gained its
slice of popularity in file sharing applications, well before it was extended to video
delivery. It is however worth underlining that the migration of the P2P approach
to this new realm was not painless: video applications exhibit peculiar features,
most prominently the real-time constraints that the great majority of them imposes
on information delivery; also, video services are and will be bandwidth eager, by
far a more challenging characteristic than VoIP, another very common real-time
application.

Hence, the focus shifts: whereas efficient indexing and searching techniques are
of paramount importance in P2P systems for file sharing, a careful scheduling to
minimize delays is required when the P2P overlay handles video, as well as a sat-
isfying resilience to peer churning, i.e., to a swift increase/decrease in the number
of peers within the overlay. The ultimate goal is to warrant a satisfying and constant
Quality of Experience (QoE) to the peers viewing the video.

2 A Taxonomy of P2P Video Broadcasting Systems

Video applications over the Internet span quite a broadcast range: from video-
conferencing, (imposing very strict time constraints), to live video streaming with
nearly synchronized users (this is what we will mainly refer to in what follows, in-
terchangeably using the IP-TV and video broadcasting terms), to video on demand
(the most delay-tolerant category).

Let us illustrate the main classification of the P2P systems devised for IP-TV,
employing the approach to overlay construction as the sorting criterion. P2P solu-
tions are accordingly distinguished in tree-based and mesh-based architectures [18].
In the former the video stream propagates from the source via a tree of peers, so
that the video gradually spreads over the entire overlay, from the root of the tree to
its last leaves. Recall that the tree is built at the application layer, and relies on the
underlying unicast IP connections.

Figure 2 illustrates the idea: in this example, peers A and B receive the video
from the source root and then forward it to peers C and D, E and F, respectively; in
turn, peer C is in charge of delivering it to leaf peers G and H, peer F to leaf peer I.

This solution is also termed push-based, as the video is pushed along the tree,
a topology that naturally meets the multicasting demand. How is the tree formed?
When a new peer has to join it, bandwidth and delay are the indicators that typically
drive the choice of the parent node: the peer can select the parent depending on the
round trip time from it, on the application throughput the parent experiences, on its
uploading bandwidth. Avoiding loops is the constraint to respect.

Easy as it appears, this solution unfortunately exhibits several drawbacks: it is
prone to outages, as the departure of a non-leaf peer from the overlay deprives all
its descendants of the video content; it does not utilize the upload bandwidth of

988 Maria Luisa Merani and Daniela Saladino

Fig. 2 Tree based P2P overlay

leaf peers, that only receive content, but do not collaborate in distributing the video
across the overlay.

Next natural step is therefore to resort to a multi-tree overlay, where peers that
are leaves in a tree are not so in a different one, and robustness and better effi-
ciency is achieved via multiple, disjoint trees. Figure 3 reports a simple example of a
multi-tree topology, with differently shaded arrows identifying different trees. In the
multi-tree topology, the source encodes the video stream into multiple substreams,
each substream flowing on a different tree. A peer typically joins more trees, de-
pending on its access link bandwidth, and experiences a quality that depends on the
number of substreams it receives. The push mechanism of the single tree topology
is retained, as packets belonging to one substream are simply forwarded from the
parent node to its children peers along the corresponding tree.

Fig. 3 The multi-tree concept

The main objective to pursue in this articulated topology is to build – and main-
tain – short and balanced trees. It follows that peers often need to be dynamically
reallocated within trees, due to the events of peer joining and departing.

Live Video and IP-TV 989

The approach is completely different in mesh-based overlays, also termed pull-
based architectures . There is no predefined topology here, no a priori notion of trees
for data delivery. Rather, each peer maintains a list of partners and periodically ex-
changes with them information about the available data. It then “pulls” the desired
blocks of video from one of the peers that advertises them, also supplying avail-
able data to other partners. Partnerships are updated at a proper rate, to ensure both
robustness to failures and efficiency in the data diffusion process.

At first sight, the swarming process of this solution closely resembles popular
P2P systems for file sharing like BitTorrent. There is however a significant differ-
ence: video has to obey strict time requirements, its blocks need to be delivered
without suffering an unbearable delay and jitter; if it were not so, quality would be
unfavorably affected. It follows that the scheduling peers adopt to pull the blocks
from their parents is significantly different from the ones implemented in P2P file
sharing architectures: it has to minimize delay, so as to guarantee that the majority
of the downloaded chunks respect the playback deadline.

Some among the currently most popular P2P systems fall within the mesh cat-
egory, and we have chosen to describe their main features in greater detail in next
Section.

What is the best solution between mesh and tree? We anticipate here that both ar-
chitectures enjoy benefits and drawbacks: the pull-based overlay, the most diffused
in commercial systems, is simple to implement and to maintain; it is efficient, as
data forwarding is not restricted to specific directions; it is resilient to swift peer dy-
namics [6]. Yet, it often suffers significant delays at start-up time and when switch-
ing channel, as well as non negligible time lags between peers viewing the same
video. The time spent by the peer in the process of information exchange, required
to know which partner owns which information, is responsible for a large fraction
of the service delay the peer experiences [13]. On the contrary, delays are definitely
confined in tree-based systems, but the signaling overhead and the complexity in
system design and management, to guarantee stable and resilient trees, is not to be
underestimated [18].

So far, we have assumed that both tree and mesh-based overlays be organized in a
flat, non hierarchical manner. Recently however, an architecture has been proposed,
where peers are structured in tiers [26]. The starting point of the proposal is that in
a mesh-based overlay not only most of the data blocks propagate via tree structures,
but also the majority of them is delivered via an implicit stable backbone [26].

The solutions the authors put forth is therefore a layered architecture, where a
first backbone tier of more stable peers with sufficient access bandwidth is organized
in a tree structure, and serves more fluctuating nodes, that are placed in a second
tier; this second tier can accommodate diverse overlay structures, i.e., either mesh
or additional trees.

It therefore appears useful to further distinguish P2P system topologies in flat
and layered categories. This classification also turns out convenient when discussing
hybrid architectures, that combine the adoption of the P2P paradigm and of content
replication servers, strategically placed over the Internet: these systems can well
be framed within the layered category, provided the nodes of the tier-1 backbone

990 Maria Luisa Merani and Daniela Saladino

represent the stable, always available servers, as opposed to the less predictable
end-user peers of the second tier.

Last, P2P architectures for IP-TV can be distinguished on the basis of the number
of their potential users, classifying P2P systems in small or large size overlays. P2P
architectures serving the needs of prosumers (producers and consumers), wishing to
broadcast their own video content fall within the first class, and are separated from
large P2P systems tailored to the requirements of major TV broadcasters and service
content providers. Within the first category, pure P2P overlays, that do not rely upon
the presence of content delivery servers, represent an appealing solution; on the
contrary, hybrid systems represent the most popular proposal when scalability, as
well as reliable service provisioning, are the major constraints.

3 Popular P2P Streaming Systems

There are several P2P systems that are worth being cited, most notably because they
experience wide commercial success and rely upon a large basis of users. Among
them, we mention PPLive [21], SopCast [25], UUSee [31], GridMedia [9], offering
real-time services, and Joost [14] and Babelgum [5], offering Video-on-Demand
(VoD) services. All of these systems are proprietary, have received a great success
all over the world and their majority has been developed in China.

In what follows we briefly glide over their main features, beginning with PPLive
[21]. It is one of the most popular P2P live streaming systems, born in China in
2004. It belongs to the mesh-based family, employs a pull-based protocol for video
content transmission and mostly relies on TCP. It offers more than 200 channels, has
an average of 400,000 daily users and the bit rate of its video programs ranges from
250 kbit/s to 400 kbit/s. It also offers a few channels at a rate of 800 kbit/s. Channels
are encoded with two video formats: Window Media Video (WMV) or Real Video
(RMVB) [2]. In PPLive the number of partner nodes of every peer depends on the
popularity of the selected channel and on the peer’s access type: peers with high
bandwidth access (also termed campus peers) have about 40 partners; peers with
residential access have a number of partners that ranges from about 10 to 30.

SopCast [25] is another P2P streaming application that provides both VoD and
live services, born in China in December 2004. It was able to support more than
100,000 concurrent users only a few months after its introduction. It employs a
mesh-based architecture and mostly relies on UDP. In contrast to PPLive, both resi-
dential and high bandwidth access peers typically download from 2 to 5 other peers.

UUSee [31] is an additional instance of very large scale P2P streaming solution
and was developed in China too. It has several streaming servers around the world,
simultaneously offers more than 800 channels, with 100,000 concurrent users, and
provides a streaming rate of 400 kbit/s. It belongs to the mesh-based family and
employs the pull-based approach. It relies on TCP for data transmission and the
number of partners for each user is around 50.

Live Video and IP-TV 991

GridMedia [9] is still a Chinese large scale P2P live streaming system (there is
no doubt that China gets the lion’s share in this field!), implementing a hybrid push-
pull protocol. It is able to support more than 224,000 simultaneous users and its
streaming rate is 300 kbit/s. The streaming server can support up to 800 connections
[30], therefore reaching 240 Mbit/s outgoing bandwidth at server side.

Finally, there are two interesting P2P Video-on-Demand (VoD) streaming solu-
tions, both conceived in Europe: Joost and Babelgum.

Joost [14] is a VoD P2P system for distributing TV content. It was created by
Niklas Zennstroem and Janus Friis, the Skype founders, in 2006. It relies on a mesh-
based P2P streaming overlay and every peer receives 95% of the video frames from
about 25 peers. Joost employs mostly UDP as transport protocol. In particular, UDP
is used to transmit data packets and TCP for control messages only. An important
feature of Joost is the adoption of a NAT detection mechanism in order to improve
system performance: if some peers lie behind the same NAT device, they tend to
transmit video content to each other.

Babelgum [5] is a Video-on-Demand P2P streaming system too, conceived by
Silvio Scaglia in 2005. It employs TCP for both control and data packets distribu-
tion. Every peer receives 95% of the video frames from about 8 peers.

Both systems, Joost and Babelgum, exhibit a hybrid architecture. Their behavior
is not purely P2P: rather, they resort to the help of some streaming servers located
around the world to distribute the video contents.

4 The Diffusion Process and a Reference System

4.1 Mesh-Based Systems

As promised earlier, we now concentrate on the main characteristics exhibited by
an unlayered, mesh-based overlay. The focus is primarily on CoolStreaming, [6, 12,
19], one of the most popular pull-based systems (at least in its original version),
generally referenced as the benchmark among the scientific community.

Its developers initially preferred to describe its design as a “data-driven” ap-
proach, rather than mesh-based: indeed, no specific overlay structure confines the
data flow direction.

The concept behind a mesh system is simple: peers help each other and cooperate
in the delivery process, exchanging video chunks. For a generic pull-based architec-
ture it can be affirmed that, when a new peer joins the system because it desires to
view the video, the peer first contacts the origin node, where the original video is
available. In the simplest case, what happens next is that the origin server redirects
the new peer to a tracker, maintaining a membership list: the tracker provides the
peer a set of potential partners, that the new node contacts to establish the relation-
ships required to start receiving video chunks. As soon as such relationships are set,
the peer starts receiving the buffer maps of its partners, i.e., short control messages

992 Maria Luisa Merani and Daniela Saladino

that every peer periodically forwards to indicate its available chunks. The new peer
will in turn forward its buffer maps, although at the very beginning they will reveal
that the node has no content to share with other participants of the overlay. From
the buffer maps it receives, the new peer can identify its potential parents, i.e., the
most appropriate partners from which to start fetching the video chunks via a proper
scheduling algorithm.

Note that there is a signification distinction between the terms overlay mem-
bers, partners and parents [12]: the first term identifies all end-users in the overlay,
wishing to view the same video; the second term refers to the peers that exchange
information with the reference peer about chunk availability via their buffer maps;
the third term indicates what peers (the parents) are actually providing video content
to the peer (the child). The mutual relation between overlay members, partners and
parents is graphically represented in Fig. 4.

Fig. 4 Overlay members, partners and parents

As for the buffer map, its simplest structure hosts a string of zeros and ones,
where the one indicates that the chunk is available at the peer, whereas the zero tells
that the peer does not own the chunk; a proper offset allows to identify the first chunk
of the sequence that the map refers to. This is exactly the description of the buffer
maps in the original CoolStreaming prototype, that employed 120 bit long strings.
Given a chunk contains one second of video, we immediately conclude that there

Live Video and IP-TV 993

are a couple of minutes available in the peer buffer, a typical order of magnitude for
most P2P systems.

4.2 Scheduling

After receiving the buffer maps, the peer can request the chunks that it is missing and
that other peers advertise. The request scheduling is a delicate issue: video chunks
have to meet severe playback deadlines; if they do not, their late arrival translates
into a loss, and ultimately in a degraded quality experienced by the end-user viewing
the video. This constraint translates in rejecting the classical round robin scheduler,
in favor of heuristics that keep the number of late or lost chunks to a minimum,
possibly equal to zero.

As an example, we refer to the scheduling algorithm of the first CoolStreaming
release [6], that starts by determining all potential suppliers of every chunk. The
chunks with fewer suppliers are considered first, and for each chunk, a unique sup-
plier is identified: it is the one with the highest bandwidth and enough available
time to transmit the chunk. Once a schedule is specified, an individual bit sequence
resembling the buffer map is sent to each supplier, indicating the chunks that the
peer intends to pull from it. The video chunks are then delivered to the requesting
peer via UDP connections, properly enhanced by the congestion control mechanism
TFRC implements [7, 29].

In passing by, we mention that TCP is alternatively adopted by some P2P stream-
ing systems for transporting video data, despite its overhead in terms of connection
opening and closing phase, as well as retransmission handling.

4.3 Software Architecture and Overlay Membership

Let us now more thoroughly dissect the software architecture of a peer, to logically
frame the different modules that constitute it: following the description in [13], in
the peer we distinguish the P2P streaming engine and the media player, as Fig. 5
indicates.

The streaming engine has the responsibility of fetching video chunks from part-
ners; of storing the retrieved chunks in a buffer; of passing the chunks to the media
player. It is also in charge of providing the available chunks to those peers requesting
them and to manage the buffer maps. Finally, it continuously updates the partnership
list. Referring again to the first CoolStreaming, each node periodically establishes
new partner relations with randomly chosen partners: the node that provides the
lowest average number of chunks per unit time is discarded and replaced by a new,
better performing partner.

994 Maria Luisa Merani and Daniela Saladino

Fig. 5 Software components in a peer

An additional, last point deserves a further refinement in our discussion: the over-
lay membership management. In small to medium sized overlays, peers retrieve
membership information directly from the tracker server, the unique repository of
the system view: this is exactly what we have assumed in our first discussion. It is
not so for large size P2P streaming systems, such as CoolStreaming: here a new
node joining the system contacts the source, that redirects it to another peer, called
deputy peer (rather than to the tracker server), randomly selected from its own mem-
bership cache. The deputy (i) provides a list of eligible partners, that the new peer
contacts to establish its partner relationships, and also (ii) updates its own cache to
record the entry of the new peer. This redirection guarantees a more uniform partner
selection, as well as a reduced load over the video source. What is interesting to ob-
serve is that in each peer of the overlay there has to be not only a partnership cache,
but also a membership cache.

Why is this cache present in all peers and how is it managed?
The answer to the first question is important: the ultimate goal is to disseminate

among all peers a uniform, although forcedly partial view of the overlay members.
This is necessary for the deputy functions we cited above, but also because each peer
periodically consults its membership cache to replace partners, either when some of
them depart or when some better performing nodes become available. This happens
in a decentralized manner, without placing any burden on the origin server.

The answer to the second question is that a gossiping protocol is employed to
create and update the membership cache, which in turn triggers the explanation of
what we mean by the term gossip-like algorithm. A gossip algorithm, also tagged
as epidemic, presents the following characteristics: a peer sends a new message (in

Live Video and IP-TV 995

our case it periodically announces it exists) to a random subset of other peers; in
the next round these peers propagate the message in the same manner, and so do
next peers that receive it. Gradually, in a totally distributed manner, the information
the peer exits propagates in the overlay, contributing to the construction of the local
view of the overlay members at each peer that receives it.

When discussing the weaknesses of mesh-based systems, we already evidenced
that excessive initial delays are expected to plague this architecture: indeed, Cool-
Streaming earlier release had Achille’s heel of long startup delays, as well as a high
failure rate in joining a channel during a peer churn [12].

The diffusion process it adopted was then radically modified, and we intention-
ally describe it next, with the intent to understand how CoolStreaming and in general
P2P streaming overlays have to evolve to fulfill commercial system requirements.

4.4 New CoolStreaming

The New CoolStreaming adopts a multiple substream solution to better swarm the
video among its peers; in turn, this calls for a fundamental change in the architecture
of the peer buffer, in its management, as well as in the scheduling scheme; moreover,
a new, hybrid push-pull mechanism that the peers adopt to download video chunks is
developed. Last but not least, CoolStreaming now employs multiple servers, strate-
gically located. Equivalently, the system does not rely on a pure P2P overlay any
longer; rather, it now adopts a hybrid architecture, where the streaming capacity is
proportionally amplified with the number of servers, and the content is taken closer
to the end-users.

Let us see in detail the multiple substream solution and the novel buffer organi-
zation at the peer. As before, the video is divided in blocks of equal size; the novelty
relies in splitting the blocks in different substreams, as Fig. 6 reports. Video chunks
are grouped according to the following pattern: given that K substreams have to be
formed, the j-th substream (j = 1,2, . . . ,K) is made of the chunks with the following
sequence number in the original stream: j + i ·K, i = 0,1,2,

A peer can subscribe to one or more substreams, fetching the corresponding
chunks from multiple parents. Although no specific coding technique is employed,
the critical point resides in maintaining the synchronization among different sub-
streams.

The structure of the peer buffer has to be accordingly modified: a synchronization
buffer precedes the cache buffer and hosts the chunks received from each substream,
sequentially ordered, as the example in Fig. 7 shows. The chunks are then combined
in a single stream as soon as chunks with contiguous sequence numbers are received
from each substream.

In the example of Fig. 7 the video chunk with sequence number 11 is yet to be
received and therefore the combination process halts at this point in the sequence.

996 Maria Luisa Merani and Daniela Saladino

Fig. 6 Decomposition of the original video stream in K substreams (K = 4 in the considered
example)

As for the buffer maps exchanged by peers in the New CoolStreaming system,
these too have undergone a significant rethinking: a buffer map now specifies not
only the chunk availability at the peer, but also the peer current requests. In greater
detail, the map is composed of two vectors, whose dimension is equal to K, the
number of substreams: the elements of the first vector indicate the sequence number
of the last chunks the peer received for every substream; the elements of the second
vector specify what substreams the peer wants to subscribe to.

We close this shot with the description of the new content delivery mechanism
adopted by CoolStreaming. As previously anticipated, peers in the original Cool-
Streaming prototype had to deliberately fetch – pull – each chunk from other peers.
The revisited architecture inherits the pull mechanism only for the first chunk of
the requested substream; from then onward, the parent peer will keep continuously
forwarding – pushing – all chunks to the requesting node.

Fig. 7 Logical organization of the peer buffer when K = 4 substreams are considered

Live Video and IP-TV 997

Periodically, parent peers are updated, to replace nodes that either departed, ex-
perienced a failure, or provided insufficient video content. We refer the interested
reader to [12], as well as to [4], for details about the parent reselection process.

5 Measurements and Quality Monitoring

In this Section we are going to present a few significant measurements about some
large P2P commercial systems, namely, PPLive, SopCast and CoolStreaming. We
will also examine a small P2P architecture, featuring a moderate number of users.

Both measurements performed at network edge and at a central facility will be in-
troduced and commented: the former are attained client-side, where the single peer
itself can capture the local upload and download traffic and analyze it; the latter are
performed server-side. The log-server has a complete view of the system: to cite a
few significant records, number of peers connected, session duration, upload/down-
load bandwidth of each peer, peers’ IP address/port number.

There are several reasons for measuring and monitoring system parameters: per-
haps the most important is to guarantee a satisfying viewing experience to system
users. This is an essential feature for wide commercial success of any P2P streaming
solution, that has to guarantee video playback continuity, without video freezing and
skipping, in order not to discourage the users. If a user is unsatisfied he/she could
decide to abandon the system. Therefore, the main goal is to optimize as much as
possible the quality perceived client-side, the Quality of Experience (QoE).

Different factors could threaten the QoE: participating nodes heterogeneity, fre-
quent peers churn, delays. In what follows we explain the most significant IP-TV
quality metrics, that in turn have a deep impact on QoE: initial start-up delay, video
switching delay, video playback continuity.

The start-up delay is the time interval between the instant a channel is selected
and the instant when the video playback starts on the screen. This is a critical delay,
with a straightforward influence on the viewing experience of the user.

If the user decides to watch another video, he/she switches channel and this
causes the video switching delay, which is definitely than that experienced in tra-
ditional television.

As for video playback continuity, each video chunk has a playback deadline.
Hence, if a certain video chunk is not in the buffer before its playback deadline, two
situations can occur. If there are no video chunks in the buffer of the player, the user
experiences freezing of the video, that is the playback of last video frame. If there
are some video chunks in the buffer, the player plays them back although they might
be not continuous: in this circumstance the user experiences skipping of the missed
chunk’s frames [13].

We now provide a glimpse at some specific attributes of the examined P2P sys-
tems, as can be inferred from local measurements. Next, their behavior and partly
their performance will be discussed, with the help of the measures available at the
central facility.

998 Maria Luisa Merani and Daniela Saladino

5.1 Network Edge Measurements

This subsection focuses on measurements performed client-side, displaying some
of the features exhibited by PPLive, SopCast, as well as by an instance of a small
P2P overlay.

The first measurements illustrate what transport protocol the different P2P stream-
ing systems adopt. Not all streaming architectures employ the same transport proto-
col: some of them exclusively utilize TCP, others UDP only, and others both. In the
latter case, the system typically uses TCP for control traffic and UDP to carry data
packets.

In order to know what kind of transport protocol a system relies upon, it is suf-
ficient to check how many TCP and UDP packets are exchanged among the local
peer and its partner nodes. The results we obtained for SopCast and PPLive are
graphically shown in Figs. 8 and 9, respectively. We can conclude that SopCast em-
ploys UDP to transport both video and control packets. In contrast, PPLive employs
UDP for data and TCP to carry control traffic. Unlike UDP, TCP guarantees reli-
able packet delivery and enforces congestion control: this first feature is useful for
signaling traffic, but not necessarily for live video traffic, that has strict time restric-
tions.

Fig. 8 Number of UDP and TCP packets exchanged in a time window of 600 s by a SopCast peer

We now turn our attention to the P2P application throughput : to locally assess
it, we once more resort to traffic captures performed by the peer. The values of the
upload and download throughput that the PPLive client achieves are graphically rep-
resented in Fig. 10 for an ADSL connection. As expected, the ADSL upstream and

Live Video and IP-TV 999

Fig. 9 Number of UDP and TCP packets exchanged in a time window of 600 s by a PPLive peer

downstream asymmetry directly reflects in the throughput values the P2P applica-
tion exhibits. To be accurate, the traffic exchanged by the local peer and captured
to execute this analysis contains not only video chunks but also control messages,
useful to manage peer’s partnerships, and, in particular, buffer maps. Yet, control
packets represent a far smaller percentage with respect to data.

There are no great differences between PPLive and SopCast, whose channels
have both a streaming rate of about 400 kbit/s, so we choose not to report the results
referring to the latter system.

Next measurements are concerned with the download throughput that the local
peer achieves via its best partners, i.e., the peers from which it receives most of the
packets.The results obtained for PPLive are shown in Fig.11: this figure reports the
total throughput of the local peer, as well as the contributions provided by the best
four partners and by the best partner. We can observe that the local peer receives
about one third of the total chunks from the best four partners and much less from
the best partner. This suggests that in PPLive every peer has to connect to several
other peers, among which the chunk requests are equally allocated.

Until now, we have presented some results referring to large systems, featuring
a vast group of users. However, there exist P2P live video streaming solutions be-
longing to the small overlay category, that are equally worth being investigated.

We focus our attention on one of them, providing only a few TV channels: its
floor of users is therefore quite moderate, typically of the order of a few hundreds.

The system we have examined is StreamerOne [28]: it is the first Italian P2P live
video streaming platform, and currently provides only a few test channels. It is based
on a mesh architecture, with no predefined topology. Every peer maintains a list of

1000 Maria Luisa Merani and Daniela Saladino

partners and periodically exchanges with them information about the available data,
via the buffer maps. It then pulls the desired video blocks from one of the peers that
advertises them.

StreamerOne architecture encompasses the presence of one control server and of
various streaming servers, one for each broadcasted channel. When a peer joins the
system, it receives from the control server the references to all streaming servers.

Once the peer has selected the desired channel, it receives from the corresponding
streaming server a list of 10 peers to exchange video information with. Peers are
selected randomly from the set of peers watching the same channel, and the worst
contributor is periodically purged from the list and replaced by a new one.

Additionally, every peer receives from the control server a list of peers, not nec-
essarily watching the same channel, with which to exchange further information
about the system, such as name, number of users and current quality of all channels.

In the beginning, Streamerone broadcasted television channels with a rate of 160
kbit/s. Recently, its developers switched to an H.264 based transmission, with a 224
kbits/s rate, that guarantees better video quality.

For this system too, we take a look at a few interesting sets of local measures,
namely:

– the number of partner nodes from which the peer receives data packets;
– the Cumulative Distribution Function (CDF) of the received packets length.

The first measurement is useful to understand how many peers cooperate with the
user to visualize the requested video. Figure 12 shows that in one hour of experiment
there are on average 5 other peers providing the local peer the desired data packets.

Fig. 10 Download and upload throughput of a PPLive peer

Live Video and IP-TV 1001

Fig. 11 Total and partial download throughputs of a PPLive peer

At first, the user receives data only from two peers, one of which is the streaming
server. Then, as it starts receiving buffer maps, the local peer contacts more partners
to request – and obtain – the chunks it needs.

0 600 1200 1800 2400 3000 3600
0

1

2

3

4

5

6

7

8

9

10

Time (s)

P
ee

r
nu

m
be

r

Fig. 12 Evolution of the number of partner peers in a small system

1002 Maria Luisa Merani and Daniela Saladino

The second experiment aims at providing an indicative characterization of the
traffic that the peer receives from and sends to the P2P network. Figure13 graph-
ically shows the Cumulative Distribution Function (CDF) of the packet size, as
derived from the local data. We can observe that the CDF follows a bimodal dis-
tribution, underlining two kinds of packets, large and small. The first ones convey
data, have a size larger than 1500 bytes and sum up to 40% of the total number of
packets. The second ones carry control information (conveying, e.g., buffer maps)
and have a length that ranges from approximately 60 to 200 bytes. Although de-
rived for the small P2P overlay, it is important to note that the bimodal distribution
is typically observed in large systems too.

5.2 System Measurements

In this subsection we will comment some of the measurements that are typically
performed server-side. The examined systems will be CoolStreaming, PPLive and
the small P2P overlay considered earlier, StreamerOne. The main reference sources
will be [4] for CoolStreaming and [2] for PPLive, as log-server traces for these
systems are not publicly available.

One of the most common measurements carried out on P2P video streaming sys-
tems is the number of peers joining/leaving the system and the number of peers
contributing in data streaming transmission evolution during time. Figure14 qual-
itatively reports a typical behavior for the number of simultaneous CoolStreaming
users, as reported in [4], during the peak hours between 18:00 and 23:00 (6:00 and

0 200 400 600 800 1000 1200 1400 1600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

IP packet length (B)

C
D

F

Fig. 13 Packet size CDF in a small system

Live Video and IP-TV 1003

11:00 p.m.). These results underline the great scalability of the P2P solution, which
easily supports more than 40,000 concurrent users.

Fig. 14 Evolution of the number of simultaneous users in CoolStreaming

This type of measurement has been performed on PPLive too [2]. The number
of peers for one of its popular television channels is qualitatively represented in
Fig. 15. By observing the figure, we can say that the examined program reaches
a large number of concurrent users, about 2,700. Moreover, the peaks of the users
occur at 12 AM and 7 PM, suggesting that people tend to watch IP-TV outside office
hours [2].

As expected, the number of concurrent users in the system is tightly correlated
to the popularity of the program. For this reason, the authors of [2] have performed
the same measurements during the Spring Festival Gala on Chinese New Year too,
that is the most popular event in China. The results obtained emphasize a sudden in-
crease of the users from 50,000 to 200,000 when the corresponding program starts,
and a prompt decrease when the program ends. Again, these observations suggest
that the P2P system scales well. An important feature, common to all P2P streaming
systems, is the following: when a TV program ends, peers immediately and simul-
taneously leave the network, so that a batch-departure occurs. This phenomenon
is not present in P2P systems for file sharing, where users depart at different
instants [2].

A large scale P2P streaming system typically attracts millions of users from all
over the world. Therefore, another relevant feature to monitor is the geographical
distribution of the users . This measurement requires a comparison between every
peer’s IP address and a database containing all the associations between ranges of
IP addresses and corresponding geographical areas. The results reported for PPLive
in [2] are shown in Figs. 16 and 17, that show the user geographical distribution
in a generic weekday and in the Spring Festival Gala day on Chinese New Year,

1004 Maria Luisa Merani and Daniela Saladino

Fig. 15 Evolution of the number of simultaneous users in PPLive in a whole day

Fig. 16 Users geographical distribution in PPLive in a generic weekday

respectively. In Fig. 16 we can see that the highest percentage of users are from Asia.
In Fig. 17 the situation is a bit different: the percentage of users from outside Asia
is higher during this event, indicating that PPLive gathers hundreds of thousands of
users from all over the world when important events are broadcasted.

Classifying user connections on the basis of their upload capacity is a further,
useful distinction to perform. We can distinguish users into private, when their IP
addresses are not visible outside their own LAN, and public, when their IP addresses
are visible. If some peers have the same IP address, they are typically users behind
a NAT device. By checking the user capacity to establish TCP connections a peer
can be further categorized as [4]:

- Direct-connect: peer with public address, that can establish partnerships to and
from other peers;

Live Video and IP-TV 1005

- Universal Plug and Play (UPnP): peer with private address, that can estab-
lish partnerships with other peers and the other peers can establish partnerships
with it;

- NAT: peer with private address, that the other peers cannot establish partnership
with;

- Firewall: peer with public address, that the other peers cannot establish partner-
ship with.

The CoolStreaming analysis performed in [1] provides the peers classification
shown in Fig.18. We notice that only a small percentage of the peers are UPnP and
direct-connect nodes: they are 30% of the total and contribute with more than 80%
to the upload bandwidth [1]. On the other hand, there is a significant percentage
of users behind NAT devices, having limited uploading capacities. The remaining
small percentage represents peers that usually stay in the system for a short period
of time. Most of them are NAT/firewall peers [1]. We anticipate here that a similar
situation occurs in the small overlay we have examined.

An additional system feature that is worth mentioning is the session duration
time, i.e., the time that elapses between the join and the departure of the peer from
the system.

The results reported in [4] for the CoolStreaming system are shown in Fig. 19,
where the qualitative distribution of the session duration is shown. We observe that,
once the users successfully obtain the video stream, they are stable and remain
within the system for the entire program duration [4]. But there are also many short
sessions, that depend on the startup failures of newly joined nodes. Literature pro-
vides different indications for the statistical description of the session duration time:
[16] relies upon a lognormal distribution function; on the contrary, [10] adopts a
Weibull distribution to describe the lifetime of the viewers. To the authors’ knowl-
edge, there are however no precise, quantitative studies that try to fit experimental
data to some specific distributions.

Last parameter we comment upon is the start-up delay. Figure 20 plots its Cu-
mulative Distribution Function (CDF) as reported in [4] for the native, pull-based
only CoolStreaming scheme, as well as for the new CoolStreaming, based on the
hybrid push-pull architecture. It is immediate to conclude that, although the pull-
based system is simple and robust, the hybrid solution definitely exhibits a superior
performance.

Fig. 17 Users geographical distribution in PPLive during the spring festival gala

1006 Maria Luisa Merani and Daniela Saladino

Fig. 18 Peer classification in CoolStreaming

Fig. 19 Distribution of sessions duration in CoolStreaming

Similar conclusions are attained in [30], where both simulations and real traces
indicate that the pull-push hybrid approach can significantly reduce play-back de-
lays.

A deeper insight into some of the most significant quality-related metrics is pro-
vided in [20], where the performance of a large – undisclosed – live P2P video
system is evaluated.

In order to shed some light on how a small system works, we next present and
discuss some measurements performed server-side on this kind of architecture. The
parameters that have been monitored are:

– the number of users in the weekday and during peak hours;
– the geographical distribution of the users;
– the percentage of free riders upon the total number of peers.

Figure 21 plots the number of StreamerOne users during a soccer match of the
2008 European Championship. The number of concurrent users remains fairly low

Live Video and IP-TV 1007

Fig. 20 Start-up delay CDF in CoolStreaming

until about 14:00, it then increases reaching the peak (around 1300 peers) when the
match begins. This number progressively decreases at the end of the match. It is
immediate to notice that the number of users of this small system is by far lower
than in CoolStreaming and PPLive.

Next, Fig. 22 represents the geographical distribution of the users in the small
overlay. We observe that most of them are located in Europe, but there is also a non
negligible amount of U.S.A. nodes. The remaining percentage represents users from
the rest of the world.

0 2 4 6 8 10 12 14 16 18 20 22 24
0

200

400

600

800

1000

1200

1400

Time (hours)

P
ee

r
nu

m
be

r

Fig. 21 Evolution of the number of peers during a very popular event in a small system

1008 Maria Luisa Merani and Daniela Saladino

A last, important feature that we take into consideration is the presence of free
riders, without any distinction between nodes lying behind a NAT device or a fire-
wall. These peers do not contribute to the diffusion of the video stream, as they
receive chunks from others, without uploading anything. Free riders therefore rep-
resent a serious threat to the functionality of any P2P system. As Fig. 23 shows,
their number is significant in the small overlay, where their negative impact on per-
formance has to be properly limited. If no countermeasures are taken, the risk is to
unbearably degrade the QoE level that “good”, collaborative users expect.

Fig. 22 Geographic distribution of peers in a small P2P system

17.30 18.00 18.30 19.00 19.30 20.00
0

200

400

600

800

1000

1200

1400

Time (hh.mm)

P
ee

r
nu

m
be

r

Total no. of peers
Free riders

Fig. 23 Total number of users and free riders in a small system

Live Video and IP-TV 1009

6 Modeling Insights

Now that we have understood how P2P streaming systems work and how their be-
havior can be monitored, we shift our attention to some of the most significant con-
tributions in the field of modeling that recently appeared in literature. The goal is
to delineate the effects on performance of the main system attributes: upload and
download capacity of the peers; classes of peers and their cardinality; buffering
available at peers and bearable playback delay; free riders and churns that dynami-
cally and unpredictably spoil system equilibrium.

6.1 First Modeling Efforts

To begin with, we develop some simple considerations that help understand the
advantages of the P2P solution with respect to the traditional, centralized client-
server architecture, no matter whether P2P is employed for file sharing or for video
streaming.

Following [3] and more substantially [17], we investigate how the server-side
capacity us needed to support a rate r to N identical users can be decreased, when
each peer makes available a fraction η of its upload bandwidth u to the system.

In this simple, deterministic setting, we observe that

us = max [0,N(r−η ·u)] . (1)

The relation between N and us is depicted in Fig. 24, for r = 700 kbit/s, an upload
bandwidth u = 400 kbit/s and for different values of η , namely, η = 0.9,0.5 and 0.
From visual inspection, it is straightforward to conclude that when the P2P system is
well designed, a considerable saving is achieved in server capacity : as an example,
when N = 2×104 peers populate the system, us can be decreased from 14 Gbit/s to
6.8 Gbit/s for η = 0.9.

Next, inevitable question is: how can the efficiency η be computed?
To answer, we resort to [17]: the focus of this work is on P2P for file sharing,

rather than for video streaming, yet its analysis can be easily adapted to our case as
well. In details, this work assumes that the upload bandwidth of a peer will not be
utilized only if all of its partners already have the chunks of that peer: it follows that
the efficiency η is

η = P[there is at least one peer that wants a chunk the peer has] . (2)

If K is the number of partner peers and the distribution of chunks between peers is
independent from peer to peer, and identical for all peers, then

η = 1−P[peer j needs no chunks from peer i]K (3)

1010 Maria Luisa Merani and Daniela Saladino

0 2 4 6 8 10

x 104

0

1

2

3

4

5

6

7
x 107

Number of peers in the overlay

Se
rv

er
 c

ap
ac

it
y

η = 0
η = 0.5
η = 0.9

Fig. 24 Server capacity to support N simultaneous viewers in the P2P architecture (η �= 0) and in
the client server approach (η = 0)

We next denote by ni the number of chunks that peer i possesses, out of the M
available for sharing in the peer buffer, and assume ni is uniformly distributed in
[0, . . . ,M−1]. We can therefore write:

P[peer j needs no chunks from peer i] = P[peer j has all pieces of peer i] =
= ∑M−1

h=1
1
M ·∑h

k=0
1
M ·P[peer j has all chunks of peer i|ni = k,n j = h] , (4)

where last expression directly derives from the hypothesis that

P[ni = k] = P[n j = k] =
1
M

, ∀k ∈ [0,M−1] . (5)

Further elaborating on (4) leads to

P[peer j needs no chunks from peer i] =

= 1
M2 ∑M−1

n j=1∑
n j
ni=0

(
M−ni

n j−ni

)

(
M
n j

) = 1
M2 ∑M−1

n j=1

(
M +1

n j

)

(
M
n j

) =

= 1
M2 ∑M−1

n j=1
M+1

M+1−n j
= M+1

M2 ∑M−1
n j=1

1
M+1−n j

= M+1
M2 ∑M

m=2
1
m (6)

having set m = M +1−m j.

Live Video and IP-TV 1011

Replacing last outcome in η expression, it can be concluded that

η = 1−
(

M +1
M2

)K

·
(

M

∑
m=2

1
m

)K

. (7)

The (K, η) relation, illustrated in Fig. 25 for three different values of the buffer
size M, reveals that it is useless to increase the number of partner peers K above
5− 10, as efficiency has already reached unity. It also suggests that the number of
available chunks M in the peers’ cache plays a significant role when determining η :
when M is large, η increases. On the other hand, when M grows, the playback delay
that the peer experiences also increases, a phenomenon that needs to be accurately
monitored. Interestingly 5− 10 is deemed an adequate partner range for several of
the current P2P IP-TV applications.

100 101
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Size of partner group

E
ff

ic
ie

nc
y

M = 5
M = 10
M = 100

Fig. 25 Efficiency as a function of the parent group size K, for different values of the number M
of available chunks in the peers’ buffer

6.2 More Recent Contributions

A deeper insight into the fundamental characteristics of P2P streaming systems that
rely upon a fully connected mesh is achieved in [27].

1012 Maria Luisa Merani and Daniela Saladino

To understand its contribution, let us introduce some proper assumptions and
notations.

A fluid model is employed to describe the video stream that propagates from the
server at rate r, and to describe the bits – as opposed to chunks – that propagate
among peers. The system initially examined is bufferless, i.e., bits are not cached in
the peer before being played back or before being copied to other peers.

Let N be the number of peers in the system and let ui denote the upload bandwidth
of the i-th peer, i = 1,2, . . . ,N. When all peers in the system receive the video at rate
r, the system is said to guarantee universal streaming.

The first result that is provided states that the maximum achievable streaming
rate, rmax, is given by

rmax = min

{
us,

us +∑N
i=1 ui

N

}
(8)

that implies all peers contribute to the swarming process with their entire upload
bandwidth (equivalently, the efficiency ηi is 1, ∀ i, i = 1,2, . . . ,N).

For most real P2P systems, a useful reference is a two class model, where a user
can be classified as either a super peer or an ordinary peer: typically, the former has
a high-speed access, such as from a campus network, whereas the second utilizes
a residential, ADSL access: we assume all peers in either class exhibit the same
upload capacity. We denote by N1 and N2 the number of super peers and ordinary
peers, respectively, and by u1 and u2 their upload capacities. A further hypothesis is
that u2 < r < u1.

It immediately follows from (8) specialized to the latter case, that universal
streaming can be achieved whenever the following inequality is satisfied:

r ≤ φ(N1,N2) = min

{
us,

us +N1u1 +N2u2

N1 +N2

}
(9)

Let us now examine in greater detail the φ(N1,N2) term.
Let peers of both classes join the system following a Poisson process, of rate λi,

i = 1,2, and indicate by μi, i = 1,2, the rate at which they leave. No hypothesis is
made about their sojourn times, that can be arbitrary. Let N1(t) and N2(t) indicate
the number of peers of the two classes in the system at time t: note that they are two
independent Poisson random variables [22].

Focusing on the second term in φ(N1,N2), which is the significant one for all the
cases of practical interest, we can compute the probability of achieving universal
streaming as

P

[
r ≤ us +N1(t)u1 +N2(t)u2

N1(t)+N2(t)

]
= P

[
N1(t)≥ cN2(t)−u

′
s

]
, (10)

where
c =

r−u2

u1− r
and u

′
s =

us

u1− r
. (11)

Live Video and IP-TV 1013

Recalling that N1(t) and N2(t) are independent Poisson random variables, hence
obey the following distribution,

fi(n) =
e−ρiρn

i

n!
with ρi =

λi

μi
and i = 1,2 , (12)

it is possible to write

P[universal streaming] = ∑∞
l=0 P[N1(t)≥ cl−u

′
s|N2(t) = l] · f2(l) =

= P[N2(t)≤) u
′
s

c *]+∑∞
l=M+1 P[N1(t)≥ �cl−u

′
s�] · f2(l) =

= F2(M)+∑∞
l=M+1

(
(1−F1(

⌈
cl−u

′
s

⌉
)+ f1(

⌈
cl−u

′
s

⌉
)
)
· f2(l) , (13)

where

Fi(n) =
n

∑
l=0

fi(l) and M =

⌊
u
′
s

c

⌋
. (14)

Making use of (13), it is now possible to explore the achievable performance of
the P2P system. The work in [27] examines a “small” overlay, with a number of
simultaneous peers in the proximity of 75, and a “large” overlay, whose number
of simultaneous peers are in the proximity of 7500. The considered rates are r = 3
units, u1 = 7 units and u2 = 1 units, to be interpreted, e.g., as 300, 700 and 100
kbit/s, respectively. The average sojourn times are set to 1

μ1
= 1

μ2
= 30 minutes for

both classes; in the small overlay λ2 is set to 100 peers per hour, so that ρ2, the
average number of ordinary peers, turns out to be equal to 50; in the large overlay,
λ2 is set to 10000 peers per hour, leading to ρ2 = 5000. In both scenarios λ1 is then
varied: in the proximity of 25 in the small system, near 2500 in the large one.

Having defined the probability of degraded service as

Pdegr = 1−P[universal streaming] , (15)

Figure 26 qualitatively reports Pdegr as a function of the ratio ρ1
ρ2

, determined in
[27] for both a small and a large overlay, when us = 7: this figure shows that in
both systems performance improves when the arrival rate of super peers increases
(equivalently, when the ρ1

ρ2
ratio increases). It can further be observed that the P2P

system with a large population performs better, as the large overlay provides univer-
sal streaming over a much wider range of system parameters: the physical justifica-
tion behind this behavior is that the departure of super peers has a confined effect in
the large overlay, whereas it can lead to a significant worsening in the small system.

The study also points out that when the system scales towards larger dimensions,
the role of the server and its upload rate us become more and more marginal.

Once the assumptions of bufferless peers is removed, the analytical, closed-form
approach has to be abandoned in favor of numerical solutions obtained via a sim-
ulation tool. The most salient outcome derived by the authors of [27] is that the
buffer introduction brings a remarkable improvement to system performance. For
instance, they observe that the large overlay previously examined, that achieved a

1014 Maria Luisa Merani and Daniela Saladino

Fig. 26 Probability of failing to achieve universal streaming in a small and in a large overlay, as a
function of ρ1

ρ2
, when λ2 = 100

probability of degraded service equal to 0.5 at ρ1
ρ2

= 0.5, experiences a Pdegr of ap-
proximately 0.05 when buffering is introduced. Moreover, a cache that can store 30
seconds of the video is already sufficient to exploit almost all the potential buffering
gain. Analogous results hold for the small overlay.

Finally, it is observed that buffering can even bring a larger improvement than
increasing the infrastructure server bandwidth us.

What is the limit of the analysis just described? Mainly the assumption that all
N peers are connected to each other and that all N− 1 peers contribute with their
available content to the stream the remaining peer is viewing: definitely not what
happens in a real system, as we previously described. Being able of utilizing all the
peer upload bandwidth it is not only a matter of random fluctuations in the peer
numbers, N1(t) and N2(t).

To mention only a few additional key elements, we observe that a successful
system behavior heavily depends on the scheduling algorithm employed by peers,
on the parents they rely upon, on the type of connections that peers experiment (they
can be fully visible or belong to the free rider class, meaning that they can download
content but do not contribute to the system with any upload bandwidth).

Yet, the main goal of [27] is to determine the maximum achievable streaming rate
rmax and to tie the evaluation of the probability of degraded service to it: as such, it
represents a genuine effort.

There are a few, additional papers that deal with the performance evaluation of
P2P streaming systems. Although we do not have room to cite here all their out-
comes, yet we believe that they deserve a careful citation: [23] for the theoretical ef-
fort in finding heuristics with provable good performance; [30] for the mathematical

Live Video and IP-TV 1015

analysis that helps comprehend why the pull-based approach is so efficient in uti-
lizing peer upload capacity; [8] for a model relying on stochastic graph theory, able
to capture the fundamental properties of the mesh-based systems. The interested
reader is strongly encouraged to enrich his/her knowledge through these excellent
references.

6.3 A Numerical Comparison Between Mesh and Multiple-Trees

If we abandon the analytical world and consider the simulative approach, an inter-
esting comparison between mesh-based and multiple tree-shaped overlays is per-
formed in [16].

In this work, the hypothesis is that both systems employ Multiple Description
Coding (MDC). For this technique, a video stream is divided into multiple sub-
streams: each can be independently decoded and the quality of the received video
increases with the number of decoded substreams. Every peer can subscribe to a
different number of substreams, depending on its download bandwidth. The MDC
choice helps in counteracting the heterogeneity in peers’ bandwidth, and therefore
warrants a better bandwidth usage.

In the multiple tree approach, different substreams propagate via disjoint trees;
each peer can join different trees, subject to the constraint that it has to be an internal
node in only one tree, and has to appear as a leaf in the remaining trees of the overlay.
Moreover, the trees have to be balanced and short, meaning that the number of their
internal nodes as well as their depth have to be comparable.

Proper rules are set to handle node arrivals and departures [16]: as an example, a
new peer is added as an internal node to the tree with the lowest number of internal
nodes; a new internal node is placed as a child for the node with the lowest depth
that can accept a new child or has a leaf child; when an internal node departs, the
subtree that was rooted in it tries to rejoin the tree as a whole, but if it does not
succeed, its constituent nodes independently rejoin the tree.

In the examined mesh-based approach, the content delivery mechanism is very
similar to the one BitTorrent adopts. A new peer contacts the bootstrapping node,
that replies providing a random subset of peers able to act as parents for the node;
connected peers have a parent-child relationship, like in the tree-based architecture.
Peers periodically indicate what video chunks they have available to their child peers
and in turn request – pull – chunks from their parents.

The packet scheduling aims at profitably utilizing the upload bandwidth that
peers make available to the mesh-based system; it also strives to guarantee an ade-
quate quality of the received video allowing for the reception of several substreams;
it finally guarantees a timely delivery of the requested video chunks.

The crucial difference between the two approaches, correctly outlined by the
authors of this paper, lies in the delivery process of the substreams. Whereas in
the multiple-tree overlay all chunks belonging to one substream statically follow
the same tree to propagate among peers, in the mesh overlay the delivery tree is

1016 Maria Luisa Merani and Daniela Saladino

individually chosen for each chunk and is dynamically shaped as the chunk crosses
the network. This greatly helps at efficiently employing all the available bandwidth
of the peers. In contrast, in the multiple tree overlay there might be occurrences
where one of the internal peers does not have sufficient upload bandwidth “to feed”
all its child peers.

In terms of similarity between the two architectures, the first perspective that [16]
takes is to state that the superposition of multiple trees is essentially equivalent to
a mesh. Another similarity is that in both architectures video chunks follow a tree
to reach their destination: it is manifest in the multiple-tree overlay, but even in the
mesh-based case it is possible to capture the snapshots of the per-chunk trees, i.e., of
the delivery paths that each single video chunk follows [26]: these are indeed trees,
whose internal nodes are quite stable and whose depth is typically longer compared
to tree-based systems, mainly because of their dynamic formation. Additionally, the
per-chunk trees exhibit a high degree of correlation, sharing several internal links.

The content delivery mechanism of both push and pull-based architectures is nu-
merically examined in [16] by simulation: initially, 200 homogeneous peers with
symmetric upload and download bandwidths are considered, in a system that em-
ploys 20 substreams, each coded at a rate bwd = 80 kbit/s. The access link band-
width of each peer is set equal to K × deg× bwd , where K, K ≥ 0, is a tunable
parameter and deg indicates the degree of each peer, i.e., the number of incoming
and outgoing connections the peer can support. When deg is the same for all peers,
K× bwd is the average per-connection bandwidth. The physical topology underly-
ing the examined systems, as well as the adopted congestion control protocol, is
detailed in [16].

The study determines the percentage of bandwidth utilization over the entire sys-
tem and the average quality delivered to each peer: the first metric quantifies the
effects of the content bottleneck phenomenon, i.e., of the situation where a parent
peer does not possess any useful chunk to deliver to a particular child, even though
it has some upload bandwidth available, as well as the effects of a low link ac-
cess bandwidth at the peers; the second performance index is defined as the average
number of substreams a peer receives during a session and is strictly related to the
quality of the received video.

The system bandwidth utilization is determined as a function of the average per
connection bandwidth, K × bwd : in the mesh-based system its behavior is practi-
cally independent of the peers’ bandwidth, and it takes on high values, of the order
of 0.95, revealing that the mesh always allows to fully leverage the upload band-
width that peers make available to the system. In the multiple tree-based architec-
ture, when the average per-connection bandwidth is low, system utilization is poor:
this is caused by parent peers that cannot satisfyingly support all their downstream
connections in the trees; when the per-connection bandwidth is high, system utiliza-
tion drops again, although for a different reason: the content bottleneck phenomenon
appears. In between these two extremes, satisfying values of bandwidth utilization
are achieved, that are however slightly lower – of the order of 0.9 – with respect to
the alternative system: they are obtained in the proximity of K = 1, i.e., when the

Live Video and IP-TV 1017

per-connection bandwidth is slightly higher than the description bandwidth bwd .
Figure 27 illustrates this behavior in a qualitative manner.

Fig. 27 The qualitative dependence of system bandwidth utilization on the average per-connection
bandwidth

Next, the behavior of the average received quality is investigated. As Fig. 28
indicates, quality always increases with the per-connection bandwidth in the mesh
system, in a practically linear manner; in the multiple tree approach, increasing the
per-connection bandwidth causes the average quality to reach the target value of
deg, but this limit is not trespassed.

It can be concluded that the mesh-system can fruitfully exploit any value of peer
bandwidth, delivering a proportionally higher quality.

When the number of peers that a chunk visits before reaching the destination
peer is computed, the simulations reveal that the average path length is longer in the
mesh-based approach, as expected.

When the effect of bandwidth heterogeneity among peers is taken into account,
both architectures display better utilization and quality.

In contrast, when the effects of the overlay size are examined, the study indicates
that the mesh successfully scales, whereas the bandwidth utilization and the quality
of the multiple tree approach gradually worsen. This can be explained by the fact
that with no changes in the degree, the depth of the trees increases.

As for the ability to cope with churns, this comparative study assumes that the
duration of the peer session is lognormally distributed, and that the peer interarrival
times obey a Pareto distribution, with properly set parameters [16].

It is observed that the path from source to individual peers is more stable in the
mesh, and that for both approaches the ancestor changing rate increases with peer

1018 Maria Luisa Merani and Daniela Saladino

Fig. 28 Average received quality as a function of the per-connection bandwidth

population, due to the fact that the average distance between peers increases with
peer population.

In conclusion, this numerical investigation provides useful insights when the
main focus is on bandwidth utilization and quality; with respect to these perfor-
mance metrics, its outcomes indicate that the mesh-based architecture consistently
achieves superior performance. However, the study only partially investigates the
delays introduced by the mesh architecture, a critical issue, as also [12, 30] have
evidenced.

7 Open Issues and Promising Solutions

A wide, large-scale deployment of P2P architectures to distribute live video stream-
ing over the Internet still requires sound answers to several challenging questions:
we provide a brief “to-do list” in what follows.

7.1 QoS and QoE

On the QoS/QoE side, the scarce control that P2P systems have on the quality the
viewers endure is undoubtedly an issue, mainly in highly dynamic environments.
This limit is intrinsic to the structure of the current Internet; nevertheless, it needs to

Live Video and IP-TV 1019

be adequately tackled in the light of commercial, pervasive adoption of P2P-based
solutions.

Directly related to the QoE issue, there lies the necessity to decrease the start-
up delays, that are often in the order of several tens of seconds: definitely a new,
undesired experience for viewers of ordinary TV channels, that on the contrary often
and rapidly change channel. As [2] indicates, possible solutions to investigate are
network coding and redundant downloading. Another suggested approach requires
the employment of dedicated servers, that provide the video at relatively low quality,
whereas the P2P overlay guarantees the high quality video [13]. When a peer joins
the system, it first – and quickly – receives the low quality stream from the server,
then begins to effectively employ the P2P network to obtain the video at a higher
quality.

Also, smaller playback lags are needed, to avoid the weird situation where the
frames that some peers view are minutes behind other peers. This calls for efficient
chunk scheduling techniques and more intelligent peering strategies.

On the measurement side, the remote monitoring of P2P systems is a further,
significant chapter: [11] represents a good example of how to track playback con-
tinuity, start-up latency and playback lags in a network-wide manner relying upon
the harvesting of buffer maps.

However, this is “only” passive monitoring: active countermeasures are still to
be devised, to assure and protect a satisfying viewing experience; they should come
into play as soon as the monitoring results indicate the need to intervene.

7.2 Network Awareness

On the network side, a crucial point is represented by the impact that P2P traffic
has on ISP infrastructures: simple peer selection and random scheduling usually
place a significant burden on the underlying network, and peers are highly spread,
as the geolocalization analysis shows. Network-aware resource allocation within the
overlay should substantially help in relieving the strain.

Finally, users lying behind NAT and firewalls may not be able to contribute to the
system with their upload bandwidth: better NAT traversal schemes have to be put
into use; how to treat such users, what QoE they should receive is also an interesting
dilemma. The work in [6] suggests some simple schemes to improve the overlay
construction when peers lie behind a NAT: we report them in Fig. 29. As shown in
Fig. 29a, one of the peers could take on the responsibility of broadcasting to all other
users behind the NAT; alternatively, the incoming P2P traffic could be confined, yet
some redundancy be guaranteed, as Fig. 29b summarizes.

We dot not have room to explore in detail all these interesting questions; rather,
we have intentionally decided to concentrate on a specific, promising instance of
enhancement, that is, network coding.

1020 Maria Luisa Merani and Daniela Saladino

Fig. 29 (a) A possible optimization scheme for NAT users; (b) An alternative solution

7.3 Network Coding for P2P Streaming

To scout this novel research topic, we refer to [15, 24], notwithstanding that there
are several alternative approaches that are equally worth being investigated.

The first step to understand the potential of network coding for P2P video stream-
ing was performed in [15], where a conventional pull-based P2P overlay was di-
rectly compared with an analogous scheme enhanced by the adoption of random
network coding . In the latter system, each video chunk b is further divided into n
blocks b = [b1,b2, . . . ,bn], each block bi having a fixed size k. When a video chunk
has to be transmitted to a peer, the parent, say p, rather than sending the entire
chunk, chooses m blocks out of the n within the chunk, m≤ n, and a set of random
coefficients c1,c2, . . . ,cm in the Galois field GF(28), to produce one coded block x
of size k:

x =
m

∑
i=1

cp
i ·bp

i . (16)

As each coded block is a linear combination of m original blocks, it is uniquely
identified by the coefficients of the combination. Then, the parent peer p transmits
the coded block, together with the coefficients of the linear combination (a overhead
not to be underestimated).

As the session proceeds, a peer accumulates coded blocks from its parents and in
turn encodes blocks to forward to its child peers. The destination peer d can recover
the original video chunk as soon as it has received n linear independent coded blocks
x = [x1,x2, . . . ,xn], taking advantage of the following relation:

Live Video and IP-TV 1021

b = A−1 ·xT , (17)

where A is the matrix of the coding coefficients of x (each row in A corresponds to
the coefficients of one coded block).

The decoding process becomes faster resorting to Gauss-Jordan elimination: now
the peer starts to decode a video chunk as soon as it receives its first coded block.
Moreover, if the peer receives a coded block that is linearly dependent on previously
received blocks, the elimination process provides an all zeros row; in turn, this event
triggers the discarding of the coded block, while the receiver keeps waiting for ad-
ditional data. In other words, there is no need of an a priori check on the received
blocks, to guarantee they are linear independent.

What the authors of the study in [15] observe is that the overlay with random
network coding is more resilient against network dynamics and achieves a better
bandwidth usage. This has to be ascribed to the finer granularity introduced by the
coding mechanism in the streaming process: the system unit is the coded block,
rather than the entire video chunk.

Also note that in this overlay a peer missing a video chunk may be served by mul-
tiple randomly selected peers that have coded blocks of the same requested chunk.

Last remark becomes crucial for the design of the novel P2P streaming system
proposed in [24], and termed R2.

Here too, random network coding is confined within the single chunk, for the
primary reason of reducing the number of blocks that the encoder has to manipulate,
therefore limiting its complexity.

However, to enhance the probability of having different multiple sources for the
same video chunk, each contributing with its own coded block, this new system
employs a random push, rather than the explicit pull requests that are typical of
mesh-based systems, to drive the diffusion process.

In greater detail, it is the destination peer, say d, that – very frequently – adver-
tises what its missing chunks are (rather than what its availability is), via its buffer
maps. Now any peer p that receives this information and possesses any of these
chunks can potentially act as one of the origins for that chunk. Indeed, the algo-
rithm states that, if p possesses the chunk, p randomly decides whether to push out
one coded block of the chunk that d is missing.

A video chunk is therefore truly served by multiple originating peers, and this
choice allows to take full advantage of the benefits random network coding brings
in. While the session proceeds, the receiving peer accumulates coded blocks from
different contributing peers into its local buffer; as in [15], it immediately starts the
progressive decoding process resorting to Gauss-Jordan elimination.

The reader is referred to [24] for the thorough description of R2 and of all its
characteristics and constituent algorithms.

The idea behind the R2 proposal is depicted in Fig. 30, that helps to understand
how it departs from a traditional pull-based overlay, whose concept is shown in
Fig. 31.

As intuition also suggests, the newly proposed architecture allows the adoption
of much larger video chunks than pull-based overlays. This can be qualitatively

1022 Maria Luisa Merani and Daniela Saladino

Fig. 30 The concept behind R2 and its adoption of network coding

Fig. 31 The concept behind a traditional pull-based mesh system

explained observing that in a conventional system a missing video chunk is served
by one partner peer at a time. In contrast, a missing video chunk in R2 is typically
sent by multiple originating peers, and each of them selects via a proper algorithm
(i) which chunk to send; (ii) what coding coefficients to use. Equivalently, peers
collaborate, randomly and without any explicit knowledge of each other, to the re-
construction of each chunk.

Several additional assumptions are introduced in [24] and contribute to the sat-
isfying performance of the system: to cite a few, playback is synchronized, so as to
maximize the overlap of playback buffers in the peers; peers receive buffer maps in
an extremely timely manner; when composing coded blocks, peers attribute higher
priority to video chunks close to the – common – playback deadline. Under such hy-
potheses, that are quite cumbersome indeed, the study comes to the conclusion that
R2, when properly tuned, outperforms conventional P2P solutions: it significantly

Live Video and IP-TV 1023

reduces the number of playback skips in a streaming session, therefore achieving
better playback quality; it quickly fills buffers at the peers at start-up time and it
maintains them adequately filled during the entire session, despite of peers’ depar-
tures and arrivals.

On the negative side, the new system has to be carefully tuned in terms of chunk
and block size; it does imply complex choices, such as the synchronization of peers;
it mandates buffer maps to be almost continuously exchanged and control messages
to constitute a non negligible fraction of the entire traffic. Nevertheless, it truly rep-
resents the first step toward a deeper understanding of the potential of random net-
work coding in P2P overlays.

8 Summary

The aim of this Chapter is to provide the reader an up-to-date, fresh picture on P2P
technology as applied to live streaming systems.

After introducing the motivations behind the P2P approach for video delivery, a
taxonomy of P2P video broadcasting architectures is presented.

A representative round-up of some popular streaming systems comes next, fol-
lowed by a more detailed characterization of the software architecture of mesh-
based solutions.

Measurements performed both at network edge and server side offer a tangible
description of some large and small overlay features.

The modeling section outlines a systematic view of the analytical and simula-
tive efforts in capturing the essential features and limit behavior of P2P streaming
solutions, as currently witnessed by scientific literature.

A look at some challenging open questions that, when solved, will open the way
to a massive introduction of the P2P technology in streaming systems, completes
the different views gathered by the chapter.

References

1. Xie, S., Keung, G.Y., Li, B.: A measurement of a large-scale peer-to-peer live video streaming
system. Packet Video 2007, November 2007, pp. 153–162.

2. Hei, X., Liang, C., Liang, J., Liu, Y., Ross, K.W.: A measurement study of a large-scale P2P
IPTV system. IEEE Transactions on Multimedia, Vol. 9, Issue 8, December 2007, pp. 1672–
1687.

3. Tewari, S., Kleinrock, L.: Analytical model for BitTorrent-based live video streaming. Proc.
of IEEE CCNC 2007, Consumer Communications and Networking Conference, January
2007, pp. 976–980.

4. Li, B., Xie, S., Keung, G.Y., Liu, J., Stoica, I., Zhang, H., Zhang, X.: An empirical study of
the Coolstreaming+ system. IEEE Journal on Selected Areas in Communications, Vol. 25,
Issue 9, December 2007, pp. 1627–1639.

5. Babelgum, “Babelgum Homepage” http://www.babelgum.com/

1024 Maria Luisa Merani and Daniela Saladino

6. Zhang, X., Liu, J., Li, B., Yum, T.S.P.: Coolstreaming/DONet: a data-driven overlay network
for efficient live media streaming. Proc. of IEEE Infocom 2005, 13–17 March 2005, Vol.3,
pp. 2102–2111.

7. Floyd, S., Handley, M., Padhye, J., Wiedmer, J.: Equation based congestion control for unicast
applications. Proc. of ACM/SIGCOMM 2000, May 2000, Vol. 1, pp. 1–14.

8. Carra, D., Lo Cigno, R., Biersack, E. W.: Graph Based Analysis of Mesh Overlay Streaming
Systems. IEEE Journal on Selected Areas in Communications, Vol. 25, Issue 9, December
2007, pp. 1667–1677.

9. GridMedia, “GridMedia Homepage,” http://www.gridmedia.com/
10. Zhang, M., Sun, L., Yang, S.: iGridMedia: providing delay-guaranteed peer-to-peer live

streaming service on Internet, Proc. of IEEE Globecom 2008, to appear.
11. Hei, X., Liu, Y., Ross, K.W.: Inferring network-wide quality in P2P live streaming sys-

tems, IEEE Journal on Selected Areas in Communications, Vol. 25, Issue 9, December 2007,
pp. 1640–1654.

12. Li, B., Xie, S., Qu, Y., Keung, G.Y.; Lin, C., Liu, J., Zhang, X.: Inside the New Coolstreaming:
principles, measurements and performance implications. Proc. of IEEE Infocom 2008, 13-18
April 2008, pp.1031–1039.

13. Hei, X., Liu, Y., Ross, K.W.: IPTV over P2P streaming networks: the mesh-pull approach,
IEEE Communications Magazine, Vol. 46, Issue 2, February 2008, pp.86–92.

14. Joost, “Joost Homepage,” http://www.joost.com/
15. Wang, M., Li, B.: Lava: a reality check of network coding in peer-to-peer live streaming,

Proc. of IEEE Infocom 2007, May 2007, pp. 1082–1090.
16. Magharei, N., Rejaie, R., Guo, Y.: Mesh or multiple-tree: a comparative study of live p2p

streaming approaches. Proc. of IEEE Infocom 2007, May 2007, pp. 1424–1432.
17. Qiu, D., Srikant, R.: Modeling and performance analysis of BitTorrent-like peer-to-peer net-

works. Proc. of ACM SigComm, pp. 367–378.
18. Liu, J., Rao, S.G., Li, B., Zhang, H.: Opportunities and Challenges of Peer-to-Peer Internet

Video Broadcast. Proceedings of the IEEE, Vol.96, Issue 1, January 2008, pp. 11–24.
19. Li, B., Yin, Y.: Peer-to-peer live video streaming on the internet: issues, existing approaches,

and challenges. IEEE Communications Magazine, Vol. 45, Issue 6, June 2007, pp. 94–99.
20. Agarwal, S., Singh, J.P., Mavlankar, A., Baccichet, P., Girod, B.: Performance and quality-of-

service analysis of a live P2P video multicast session on the Internet, Proc. of the International
Workshop on Quality of Service, Enschede, The Netherlands, 2008.

21. PPLive, “PPLive Homepage,” http://www.pplive.com/
22. Kleinrock, L.: Queueing systems. Volume I: Theory. John Wiley & Sons, New York, 1975.
23. Massoulie, L., Twigg, A., Gkanttsidis, C., Rodriguez, P.: Randomized decentralized broad-

casting algorithms, Proc. of IEEE Infocom 2007, May 2007, pp. 1073–1081.
24. Wang, M., Li, B.: R2: random push with random network coding in live peer-to-peer stream-

ing, IEEE Journal on Selected Areas in Communications, Vol. 25, Issue 9, December 2007,
pp. 1655–1666.

25. SopCast, “SopCast Homepage,” http://www.sopcast.com/
26. Wang, F., Liu, J., Xiong, Y.: Stable peers: existence, importance, and application in peer-to-

peer live video streaming. Proc. of IEEE Infocom 2008, 13–18 April 2008, pp. 1364–1372.
27. Kumar, R., Liu, Y., Ross, K.: Stochastic fluid theory for P2P streaming systems. Proc. of

IEEE Infocom 2007, May 2007, pp. 919–927.
28. StreamerOne, “StreamerOne Homepage,” http://www.streamerone.it/
29. Handley, M., Floyd, S., Padhye, J., Wiedmer, J.: TCP Friendly Rate Control (TFRC): protocol

specification, RFC 3448, January 2003, ftp://ftp.rfc-editor.org/in-notes/rfc3448.txt, proposed
standard.

30. Zhang, M., Zhang, Q., Sun, L., Yang, S.: Understanding the power of pull-based streaming
protocol: can we do better? IEEE Journal on Selected Areas in Communications, Vol. 25,
Issue 9, December 2007, pp. 1678–1694.

31. UUSee, “UUSee Homepage,” http://www.uusee.com/
32. Sentinelli, A., Marfia, G., Gerla, M., Kleinrock, L., Tewari, S.: Will IPTV ride the peer-to-

peer stream? IEEE Communications Magazine, Vol.45, Issue 6, June 2007, pp. 86–92.

Providing VoD Streaming Using P2P Networks

Juan Pedro Muñoz-Gea, Josemaria Malgosa-Sanahuja, Pilar Manzanares-Lopez,
and Juan Carlos Sanchez-Aarnoutse

Abstract Overlays and P2P systems, initially developed to support IP multicast
and file-sharing, have moved beyond that functionality. They are also proving to be
key technologies for the delivery of video streaming. Recently, there have been a
number of successful deployments for “live” P2P streaming. However, the question
remains open whether similar P2P technologies can be used to provide VoD (Video-
On-Demand) services. A P2P VoD service is more challenging to design than a P2P
live streaming system because the system should allow users arriving at arbitrary
times to watch (arbitrary parts of) the video.

In this work, the requirements to supply P2P VoD services and the different de-
sign decisions that have to be adopted are surveyed. The open problems are also
presented.

Juan Pedro Muñoz-Gea
Department of Information Technologies and Communications, Polytechnic University of Carta-
gena, Campus Muralla del Mar, 30202 Cartagena, Spain,
e-mail: juanp.gea.sanchez@upct.es

Josemaria Malgosa-Sanahuja
Department of Information Technologies and Communications, Polytechnic University of Carta-
gena, Campus Muralla del Mar, 30202 Cartagena, Spain, e-mail: josem.malgosa@upct.es

Pilar Manzanares-Lopez
Department of Information Technologies and Communications, Polytechnic University of Carta-
gena, Campus Muralla del Mar, 30202 Cartagena, Spain,
e-mail: pilar.manzanares@upct.es

Juan Carlos Sanchez-Aarnoutse
Department of Information Technologies and Communications, Polytechnic University of Carta-
gena, Campus Muralla del Mar, 30202 Cartagena, Spain, e-mail: juanc.sanchez@upct.es

X. Shen et al. (eds.), Handbook of Peer-to-Peer Networking, 1025
DOI 10.1007/978-0-387-09751-0 36, © Springer Science+Business Media, LLC 2010

1026 Juan Pedro Muñoz-Gea et al.

1 Introduction

Overlays and P2P (peer-to-peer) systems, initially developed to support IP multicast
and file-sharing, have moved beyond that functionality. With the increasing band-
width capacity provided by the Internet, they are also proving to be key technologies
for the delivery of video streaming.

The basic solution for streaming video over the Internet is the client-server
model: a client connects with a server and the video is streamed to the client from
the server. One variation of the client-server model is the Content Delivery Net-
work (CDN) model: the server first pushes the video to a set of content delivery
servers, and the client, in order to download the video, is directed to a nearby con-
tent delivery server. The advantages of the CDN model respect to the client-server
model are the following: it shortens the users’ startup delays, reduces the traffic on
the network and serves more users. However, the major challenge for server based
video streaming solutions is its scalability, because the bandwidth provision must
grow proportionally with the client population. This makes the server based video
streaming solutions expensive [14].

P2P networking has emerged as a new paradigm to build distributed network
applications. The basic design philosophy of P2P is to encourage users to act as
both clients and servers, namely as peers. In a P2P network, a peer not only down-
loads data from the network, but also uploads the downloaded data to other users
in the network. Recently, there have been a number of successful deployments for
“live” P2P streaming. Coolstreaming [24], which was built in March 2004, has been
recognized as one of the earliest large-scale P2P live streaming systems. It was con-
structed using a new concept called data-driven model, which is somewhat similar
to the technique used in BitTorrent. Since then, there have been several commer-
cial systems that have attracted a large number of viewers, such as PPLive [16] and
SopCast [18].

On the other hand, Video-on-Demand (VoD) has been identified as the key fea-
ture to attract consumers to IPTV (Internet Protocol Television) service. VoD service
allows users to watch any point of video at any time. Compared with live stream-
ing, VoD offers more flexibility and convenience to users and truly reaches the goal
of watch whatever you want whenever you want. The question has remained open
whether P2P technology can be used to provide VoD services. It is more challenging
to design a P2P VoD service than a P2P live streaming system because even though
a large number of users may be watching the same video, they are asynchronous to
one another (different users may watch different portions of the same video at any
given moment).

A fundamental component of any P2P VoD system is its overlay network struc-
ture, related to the organization of participating peers into an overlay structure.
Based on this component, P2P VoD systems can be broadly classified into tree-
based and mesh-based categories. Tree-based systems have well organized over-
lay structures and they typically distribute video by actively pushing data from a

Providing VoD Streaming Using P2P Networks 1027

peer to its children peers. One major drawback of tree-based streaming systems is
their vulnerability to peer departure, which will temporarily disrupt video deliv-
ery to all peers in the subtree rooted at the departed peer. On the other hand, in a
mesh-based P2P streaming system, peers are not confined to a static topology. In-
stead, peer relationships are established/terminated based on the content and band-
width availability on peers. This kind of system tries to achieve fast file downloading
by swarming. With this method, a file is divided into small size segments, and the
server disperses them to different users. The users download from their neighbors
the segments that they currently do not have. Since multiple neighbors are main-
tained at any given moment, mesh-based video streaming systems are highly ro-
bust to peer failures. Therefore, this chapter is going to concentrate on mesh-based
approaches.

An important component of any mesh-based P2P VoD system is the content
forwarding policy, that is, the way the multimedia content is stored and trans-
mitted to each participating peer through the overlay. There are two main cate-
gories for this component: the buffer-forwarding and the storage-forwarding ap-
proaches. In the buffer-forwarding approach each client caches a limited number
of segments around its current “play offset”. In the storage-forwarding approach
each peer stores a great number of segments at its local storage (such as hard
disk).

Another key aspect in mesh-based P2P VoD systems is the design of mechanisms
to find a partner with necessary segments. Due to scalability concerns these mech-
anisms usually use distributed searching structures, like the distributed hash table
(DHT) and the skip-list. In the buffer-forwarding approaches, peers are sorted in the
distributed searching structures by the play offset. On the other hand, in the storage-
forwarding approaches, peers are sorted in the distributed searching structures by
the segments they store. In both cases, when a client wants to play a segment, it first
looks for the supplying peers of that segment and then sends requests to those peers
for the service.

The collaboration with a partner for content delivery (data scheduling) is an-
other very important and challenging problem in mesh-based P2P VoD systems.
The scheduling scheme in mesh-based P2P VoD systems has two main compo-
nents: how to send requests to adequate neighbors, and how to evaluate the requests
received from many peers. For the buffer-forwarding approaches, many heuristics
have been proposed to address this issue, such as round robin or smallest-delay.
Some recently proposed schemes use network coding to improve the throughput.
On the other hand, for the storage-forwarding approaches several modifications of
the BitTorrent segment selection algorithm have been proposed. In addition, the use
of rateless coding, such as LT or Raptor codes, is a new alternative to address this
issue.

In this work the requirements to supply P2P VoD services and the different de-
sign decisions that have to be adopted are surveyed. Several specific solutions are
classified and analyzed in order to give an overview of the state of the art until now.
The open problems are also presented.

1028 Juan Pedro Muñoz-Gea et al.

2 P2P VoD Services Overview

In a general VoD streaming service, videos have to be delivered to users with low
delay and VCR-like operation support (e.g. pause, fast-forward, fast-rewind). VCR
operations change the location of the viewing point, the video playback direction
and the video playback speed, and they introduce extra complexity and overhead
into the VoD system. In a P2P VoD service these operations raise a challenging
issue, because the neighboring peers may not have the data at the new playback
point, or sufficient uplink capacity to support faster playback rate. In addition, peers
have heterogeneous capacities in terms of network bandwidth, memory size, etc.,
which make it difficult to determine where and when to fetch the expected data
segments from multiple suppliers within playback deadlines. On the other hand,
unlike a traditional VoD service (with dedicated server or CDN), in a P2P VoD
service peers dynamically join and leave the system (this phenomenon is denoted as
peer churn). Peer churn introduces dynamics and uncertainty into the P2P network
and it can degrade the user’s viewing quality.

Two other very important characteristics of general VoD streaming services,
which also have to be taken into account for P2P VoD services, are the following:
First, the whole video must be delivered to a new peer that joins the VoD service.
Therefore, VoD systems must find an efficient way to provide the latecomers with
the initial missing part of the video. Second, a client will stop watching a VoD
stream when its QoS degrades. This last observation reveals the importance of a
robust failure recovery protocol in a VoD streaming system.

Based on the above discussion, the following dominant problems for P2P VoD
streaming are considered:

• Effective handling of clients asynchronous requests: The system is expected to
deliver the video in full-length to every peer.

• Robust failure recovery: The failure recovery protocol should quickly reorganize
the network with the available peers.

• Small control overhead: The control overhead must be kept small to make the
system scalable.

3 Overlay Network Structure for P2P VoD

As it was previously said, a key aspect of any P2P VoD system is the organiza-
tion of participating peers into an overlay structure. Based on this component P2P
VoD streaming systems can be broadly classified into two categories: tree-based and
mesh-based. Both structures were also presented in the previous chapter. There are
other systems which combine the conventional client-server architecture with the
P2P mesh-based approach. This structure is called hybrid network.

Providing VoD Streaming Using P2P Networks 1029

3.1 Tree-Based Network Structure

Tree-based P2P systems were originally designed to be used as multicast structures
at the application layer without network layer support. However, in this kind of
system the users are synchronous, and in a VoD service the users are asynchronous.
Therefore, the use of a tree-based P2P system to provide VoD services is not direct.
In the last years, several mechanisms have been proposed to solve this problem.
For example, in [6] the authors designed a tree-based P2P VoD system inspired
by the patching scheme [11]. Users that arrive within a predefined time interval T
constitute a session, and together with the server they form a tree-based P2P system.
The server starts streaming the entire video over the tree, and when a new client joins
the session, it joins the tree and retrieves the stream from it. In addition, the new
client must obtain a patch, the initial portion of the video that it has missed (from
the start of the session to the time it joined the base tree). The patch is available at the
server as well as other users who have already cached the patch. Figure 1 illustrates
a snapshot of the solution above when a new user arrives at time 40. Each user is
marked with its arrival time to the system. It shows two sessions, starting at time 20
and 31, respectively, with time interval T equal to 10. User E has to create a new
session because its arrival time to the system (31) is out of the time interval T of the
user A (20 + 10 = 30). One major drawback of tree-based streaming systems is their
vulnerability to peer departure, which will temporarily disrupt video delivery to all
peers in the subtree rooted at the departed peer.

A (20.0)

B (21.0) C (24.0)

D (27.0)

E (31.0)

F (34.0) G (35.0)

I (35.8) H (35.5)J (37.0)K (39.9)

L (40.0)

Base Stream

Patch Stream

Fig. 1 A snapshot of the patching scheme with T = 10 at time 40

1030 Juan Pedro Muñoz-Gea et al.

3.2 Mesh-Based Network Structure

Peers in mesh-based P2P systems are not confined to a static topology, they dy-
namically connect to a subset of random peers in the system. Figure 2 represents an
overview of a mesh-based P2P VoD architecture. This kind of system tries to achieve
fast file downloading by swarming. With this method, a file is divided into small size
segments and the server disperses them to different users. The users download from
their neighboring peers the segments that they currently do not have, and they have
to be received before their playback time. To fully utilize users upload bandwidth
and achieve the highest downloading throughput possible, the segments at differ-
ent users have to be different from each other so that there is always something to
exchange. This is the so-called diversity requirement in mesh-based P2P system.
On the other hand, since multiple neighbors are maintained at any given moment,
mesh-based systems are highly robust to peer failures. Therefore, this chapter is go-
ing to concentrate on mesh-based approaches. Within this kind of networks, several
suppliers search and data scheduling mechanisms for both storage-forwarding and
buffer-forwarding approaches are going to be introduced.

3.3 Hybrid Network Structure

Hybrid network structures try to incorporate the P2P mesh-based downloading
methodology into the conventional client-server VoD service to have the best of
both solutions. There exist several hybrid solutions. Some of them, like BASS [3]
and PONDER [5], use a P2P network to download the majority of the content, and
the server provides the missing data when the playback time is reached. In PON-
DER, when the playback time approaches, the client prepares a missing data vector
Vmissing, which is a bit map indicating missing segments. The missing data vector

Fig. 2 An overview of P2P mesh-based architecture. Each peer stores some segments for serving
others

Providing VoD Streaming Using P2P Networks 1031

is sent to the server together with the deadline for these segments, and the server
streams them. In addition, in PONDER, the server also streams the first segments to
a new client in order to reduce the startup delay.

Other hybrid systems, like PPB [10] and SPB [9], use the P2P network to down-
load the first segments and the rest of the segments are retrieved from a multicast
or broadcast transmission performed by a server. Specifically, in PPB (P2P Batch-
ing) the server starts streaming the hole video in a multicast channel. When a new
client joins the system, it downloads the leading portion of the video from a P2P net-
work with the nodes that previously arrived at the system. In SPB (Skyscraper-based
Peer-to-Peer Broadcasting) the video is partitioned into X segments. While the first
segment is delivered by P2P manner, the rest of X − 1 segments are placed on the
individual broadcast channels and transmitted periodically. When a new client is ad-
mitted to the system, it first joins the P2P network for the requested video. Once the
first segment for the requested video has been received from the supplying peers in
the P2P network, the client downloads the other video segments from the broadcast
channels.

4 Forwarding Approaches

The content forwarding policy is another important component of any P2P VoD
system, that is, the way the multimedia content is stored and transmitted to each
participating peer through the overlay. There are two main categories for this com-
ponent: the buffer-forwarding and the storage-forwarding approaches. There also
exist hybrid-forwarding approaches which integrate both the buffer-forwarding and
the storage-forwarding. In addition, several pre-fetching techniques are sometimes
used to manage the traffic congestion or dynamic departures of peers.

4.1 Buffer-Forwarding

In the buffer-forwarding approach, each client caches a limited number of segments
around its current play offset, and it exchanges its cached segments with partners
who have close play offset and can thus provide the expected data with high prob-
ability. The users need to search for such partners when joining or taking a VCR
operation. Since the contents buffered in one peer are continuously changing, an ad-
ditional structure is needed for the partner search. In this structure the participating
peers organize themselves based on the playback progress. After locating the part-
ners, the user collaborates with them to schedule the data transmission and exchange
the content. Figure 3 depicts the general framework of a typical buffer-forwarding
P2P VoD system. It is noticed that the users form two types of overlay networks: the
index overlay, for suppliers search, and the data overlay, for media transmission.

1032 Juan Pedro Muñoz-Gea et al.

This approach has two main drawbacks: First, a peer only redistributes the video,
that it is currently watching, to the peers that are watching approximately the same
video scene, and it does not redistribute the content that it has stored in its storage.
Second, the upload bandwidth of the peers that have not content in their buffers
cannot be utilized.

4.2 Storage-Forwarding

In the storage-forwarding approach each peer stores a great number of random video
segments at its local storage (such as hard disk). This approach can be used when
peers have a large storage capacity. For example, in VMesh [23] each peer keeps a
list of peers who have the previous and the next video segments. Following the list,
it can quickly find the peers with the next requested segments. Furthermore, a peer
also keeps a list of peers storing the same segment for load balancing purpose. If a
node is loaded, it redirects some of its requests to other peers on its list. The main
drawback of this kind of systems is the need to have a big storage capacity in order
to achieve a good performance. In addition, the upload bandwidth of the peers has
to be high enough to support several connections.

Fig. 3 General framework of a typical buffer-forwarding P2P VoD system

4.3 Hybrid-Forwarding

A hybrid-forwarding P2P VoD architecture integrates both the buffer-forwarding
and the storage-forwarding approaches. The peers watching the same video form

Providing VoD Streaming Using P2P Networks 1033

an overlay with the buffer-forwarding approach, and each peer replicates one or
multiple segments of the video it has watched before in its storage.

An interesting hybrid-forwarding P2P VoD architecture is proposed in [8]. In the
example shown in Fig. 4, peers 3, 7, 130, 118, 104 and 1 form video-1 buffer-
forwarding overlay, and peers 134, 34, 115, 43, 22 and 1 form video-2 buffer-
forwarding overlay. Some peers watching video 2, such as peer 115, can forward
their stored segments to the peers watching video 1 (e.g. peer 7). The idle peers
(e.g. peer 27, 12, and 75) are encouraged to contribute their stored segments to
serve other peers. In the hybrid-forwarding architecture, the peers may have both
buffer-forwarding and storage-forwarding outgoing links (e.g. peer 115). These two
kinds of outgoing links participate in different video sessions and compete for the
limited upload bandwidth. Furthermore, when the buffer-forwarding parents of peer
7 (e.g. peers 130 and 118) jump to other positions, peer 7 can still have a stream
supply from its storage-forwarding parent (e.g. peer 115).

4.4 Pre-Fetching

The idea of pre-fetching is that nodes download future segments, though they are not
immediately useful. This mechanism increases the playback continuity providing
easy access to segments when they are needed and minimizing the overhead of
segments propagation from remote locations. It is specially recommended when
managing the traffic congestion or dynamic departures of peers. A representative
example is proposed in [12]. This system consists of two independent modules:
the pre-fetching module, which downloads the full file with lower priority, and the
sliding window, which downloads the immediately needed segments with higher
priority.

Fig. 4 A hybrid-forwarding P2P VoD system

1034 Juan Pedro Muñoz-Gea et al.

However, pre-fetching mechanisms can also be used with other objectives. For
example, in BulletMedia [21] the pre-fetching mechanism tries to ensure that all
segments are replicated at least k times, where a typical value of k is 4. When a peer
has spare incoming bandwidth, it determines which segments it should pre-fetch in
order to ensure good diversity across the overlay. To achieve this, the peer examines
its local cache and determines the set of segments it is not replicating currently. Then
it selects segments at random from this set, and performs a lookup in a DHT. The
DHT response includes a count of the number of peers replicating the segments.
If the number of replicas is below a pre-defined threshold then the peer begins to
retrieve the segments.

In [7] the prefetching mechanism is used to reduce the seeking distance. In VoD
applications with frequent seeks, the next position the peer will access may not be
the following segment, it will probably be any other segment in the whole video.
The proposal in this work is that each peer performs pre-fetching basing on the
segment access probability, which is estimated from the seeking statistics in the
previous sessions. In order to represent the seeking statistics, the authors employ
Flajolet-Martin (FM) [4] sketches.

5 Suppliers Search

A key aspect in mesh-based P2P VoD systems is the design of mechanisms to find
partners with needed segments. It is very challenging to develop an efficient sup-
pliers search mechanism among a large population of collaborative peers. Due to
scalability concerns, the search mechanism should consist of a distributed structure
with sub-linear search efficiency. Today, some distributed structures have been pro-
posed with logarithmic search efficiency, for example, the DHT (distributed hash
table) structure.

5.1 Searching in Buffer-Forwarding

In the buffer-forwarding approaches, peers are sorted in the distributed search struc-
tures by the play offset. Given the play offset as the sorting key, these struc-
tures support searching mechanisms in a distributed manner. However, the main-
tenance cost of these search structures is not trivial, since all peers need to be reg-
istered in the structure. Some buffer overlapping may occur among the different
nodes, and removing the nodes whose buffer range is fully covered by other nodes
does not reduce the total buffer coverage. The BAS (buffer-assisted search) struc-
ture [2] tries to maintain as few peers as possible for better search efficiency. In
other words, it wants to minimize the search structure size without sacrificing the

Providing VoD Streaming Using P2P Networks 1035

search effectiveness. This problem can be formulated as the Minimum Buffer Cover
(MBC), which is a variation of the well-known NP-hard problem Minimum Set
Cover.

However, there are other systems that use more novel management schemes. For
example, in RINDY [1], a video is divided into a series of timeslots which encap-
sulate the content of one second, and the buffer window can contain at most w
timeslots. The distance between any two peers is calculated from their current play-
ing positions. For instance, the distance from peer j to peer i is d ji = cur j − curi.
If d ji is negative, then the playing position of peer j is behind of that of peer i
and peer j is called a back-neighbor of peer i; otherwise peer j is called a front-
neighbor of peer i. The neighbors are organized into a series of concentric, non-
overlapping logical rings according to their relative distances (see Fig. 5). The
radius of the i-th ring is w · 2i (the ith ring covers the area between the two cir-
cles with radii w · 2i−1 and w · 2i). A peer’s innermost ring, whose ring num-
ber is zero, is responsible for collecting some neighbors with close playing po-
sitions (this ring is called gossip-ring). Outer rings are mainly used to improve
the speed of lookup operations (these rings are called skip-rings). For the gossip-
ring, each peer keeps track of at most m neighbors, called near-neighbors; for
each skip-ring, a peer tries to maintain at most k front far-neighbors and k back
far-neighbors.

In [22] the use of a skip list is proposed to implement the suppliers search mech-
anism of a VoD streaming system. A skip list is a probabilistic data structure with
efficiency comparable to a binary search tree, in which every element associates a
key with a specific value. It is built in layers, where the bottom layer is a linked list
ordered according to the key of every element, and each higher layer acts as a fast
route for the lists below. An element in layer i appears in layer i+1 with some fixed
probability p (two commonly-used values for p are 1/2 or 1/4).

Fig. 5 Neighbor distribution over rings for peer P

1036 Juan Pedro Muñoz-Gea et al.

A search for the value associated with a specific key begins at the head element
in the top list, and proceeds horizontally traversing forward pointers that do not
overshoot the element containing the searched key. When no more progress can be
made at the current level of forward pointers, the search moves down to the next
level. When no more progress can be made at level 1, the element that contains
the desired key is in front of the current element. The pseudo-code of the search
algorithm appears in Table 1, and Fig. 6 represents an example of this algorithm.
In this example, the algorithm searches for the value associated with key 12. The
mapping between a skip list and a VoD streaming overlay is straightforward: the
playback offset of a client serves as its key in the skip list, and this key is updated
over time according to the playback progress.

Table 1 Search in skip lists

Search(list, keySearch)
x = list->header

FOR i = list->level DOWNTO 1 DO
WHILE x->forward[i]->key < keySearch DO

x = x->forward[i]

x = x->forward[1]
IF x->key = keySearch THEN RETURN x->value

ELSE RETURN failure

5.2 Searching in Storage-Forwarding

In the storage-forwarding approach, depending on the capacity of its local storage,
each peer stores a number of segments randomly chosen from the N segments of the
video. In this way, there are multiple copies of each video segment in the network.
When a client wants to play a segment, it first looks for the supplying peers of
that segment and then sends requests to those peers for the service. If there is no
supplying peer, the requesting peer requests the media server for the target segment
as the last resort. In this section the searching mechanisms of two representative
storage-forwarding proposals are presented.

In Vmesh [23], each storage peer should register its stored segments in a DHT
network in order to allow other peers to locate them. A new client searches for its
segment of interest in the DHT network and starts playing the video when the re-

3

6

7
9

12 19
25

26

Nil

Header

Fig. 6 Example of searching in skip lists

Providing VoD Streaming Using P2P Networks 1037

quested data arrives. Then, it continues to request the next segment when the current
one is nearly finished. In order to shorten the segment location latency, the peers also
form an overlay mesh among themselves. This overlay mesh is represented in Fig. 7.
In this figure every circle represents a peer and the number inside represents the ID
of the segment it holds. Each peer keeps a list of pointers (i.e., the IP addresses)
pointing to some peers which store the next video segment and the previous video
segment. By using the pointer list, clients could request for the locations of the next
required segment. Besides, for the load balancing issue, each peer also keeps a list
of pointers to some peers which are storing the same segment. If a node is loaded, it
redirects some of its requests to other peers on its list.

BulletMedia [21] also uses a DHT to store information about content location
within the peers of the mesh overlay. However, the DHT does not store information
at a segment granularity, instead, sets of contiguous segments are deterministically
grouped into chunks (e.g., 100 segments in a chunk), and each one is assigned a
unique key (chunkId). Each peer monitors its content cache and when all associated
segments with a particular chunkId are present, the peer inserts an entry into the
DHT. When a peer performs a seek operation, it determines the chunkId of the
block and then queries the DHT.

6 Data Scheduling

Data scheduling is an additional, important and challenging problem in mesh-based
P2P VoD systems. The scheduling scheme in mesh-based P2P VoD systems has two
main components: how to send requests to adequate neighbors, and how to evaluate
the requests received from many peers.

Fig. 7 In VMesh, storage peers hold several video segments and at the same time, they keep a list
of peers who possess the next / previous / current segments for random seeking and load balancing
purposes

1038 Juan Pedro Muñoz-Gea et al.

6.1 Scheduling in Buffer-Forwarding

Many heuristics have been proposed to address the issue of buffer-forwarding ap-
proaches, such as round robin or smallest-delay. For example, in OCTOPUS [13]
the system schedules packets based on partners’ bandwidths. Each peer assigns
an initial scheduling bandwidth to every partner (W (x) = Sbps/N), where Sbps
means the streaming rate of media file and N the number of partners and it is
adjusted in data transferring according to the success ratio of scheduling. The
system calculates the success ratio of scheduling for the past periods in func-
tion of the scheduling results from every partner. If success ratio is 1, it is obvi-
ous that the predefined scheduling bandwidth W (x) is less than the actual band-
width, and the scheduling bandwidth values can be enlarged to make full use
of the bandwidth resource of partners. But if the success ratio is low, it is ob-
vious that the scheduling bandwidth is too large and the service capacity of the
partner is not so strong. The value of scheduling bandwidth may have to be
decreased.

However, the previous schemes suffer from inefficient use of network resources
in large and heterogeneous networks. Some recently proposed schemes use network
coding (NC) to improve the system throughput. Wang and Liu [22] proposed di-
rectly applying the linear NC into VoD streaming. The original data segments are
denoted as c1,c2, ...,cw, where w is called coding window (CW). A random linear
coding on {ci} is a vector fi =∑βi×ci, for i ∈ (1...w), where the coefficient vector
βi is randomly generated in a finite field Fq of size q. fi is referred to as combined
data segments, which also spans a range of w. If all fi are linearly independent,
once a node has a subset of fi that spans range w, it can recover all the w original
segments by solving a set of linear equations.

However, it is difficult to apply network coding to VoD systems because some
segments may miss the playback deadline before being decoded, which causes
severe performance degradation. In conventional network coding the CW is al-
ways the same as the number of expected segments. The deadline-aware network
coding (DNC) [2] scheme tries to use a CW that is as large as possible for bet-
ter coding efficiency while controlling the CW size so that no segment misses
its play deadline. DNC estimates the CW to be the maximum number of seg-
ments that can be retrieved from the partners before the most urgent deadline.
Then the problem is to find an assignment for retrieving segment j from part-
ner i, so that the number of received segments is maximized before the most
urgent deadline. The authors transformed the DNC problem into the Max-Flow
problem.

6.2 Scheduling in Storage-Forwarding

For the storage-forwarding approaches several modifications of the BitTorrent seg-
ment selection algorithm have been proposed. On the other hand, when individual

Providing VoD Streaming Using P2P Networks 1039

peers are under common control (this is the case of residential home gateways or set-
top boxes-STBs-under the control of a content provider), the use of rateless coding
such as LT or Raptor codes is a new alternative to address this issue.

BitTorrent regards all segments as equally important, and it employs Tit-for-Tat
(TFT) strategy in determining to which neighbors a peer serves content, (that is, a
peer favors a neighbor who transmits data in return). However, in a VoD system
the highest priority is given to the segments close to their playback time. BiToS
[20] supports the VoD service by modifying the segment selection algorithm of
BitTorrent. A peer in BiToS has three components, as shown in Fig. 8: The received
buffer stores all the segments that have been received, the high priority set contains
the segments close to their playback time which have not been downloaded yet, and
the remaining piece set contains the segments that have not been downloaded. A
segment in the high priority set is downloaded with probability p while one in the
remaining pieces set is downloaded with probability 1− p. By setting the value of
p greater than 0.5, the blocks in the high priority set are given preference over the
ones in the remaining pieces set to be downloaded earlier.

In [19] the peers are set-top boxes (STBs), which are under the control of a con-
tent provider. Each video is chopped into windows of contiguous data of size W ,
and it is pushed to a population of STBs (supposing that there are M STBs). The
authors propose two data placement schemes: full-striping and code-based. The full
striping scheme stripes each window in M blocks, each of size W/M, and each one
is pushed to only one box. A full window is reconstructed at a particular box by con-
currently downloading M− 1 distinct blocks for the window from the other M− 1
boxes. Code-based placement tries to reduce the maximum number of simultaneous
connections that a box can serve to y (for some y < M−1). In order to achieve this,
it applies LT coding [15]. It divides each window into k source symbols, and gener-
ates Ck coded symbols (C is called the expansion ratio). A viewer can reconstruct a
window of a video by concurrently downloading any Cky/M distinct symbols from
an arbitrary set of y boxes out of (M−1) boxes.

19 18 17 15 14 13 12 11 10 9 7 6

Remaining Pieces Set High Priority Set Selection
 Process

19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Downloading

Downloaded

Not Available

Deadline Missed

Media
Player

Received Buffer

Fig. 8 BiToS peer structure

1040 Juan Pedro Muñoz-Gea et al.

7 Technical Challenges

In this section some of the technical challenges to be overcome are discussed. It
is commonly assumed that users want to collaborate in a P2P network however, in
reality, this is not always the case. There could be many users that refuse to con-
tribute bandwidth. Designing incentive mechanism that enable users to cooperate
is absolutely necessary in these systems in order to achieve a good performance.
It is well-known that the P2P file downloading protocol BitTorrent uses Tit-for-Tat
(TFT) as incentive to induce peers to help each other. In P2P streaming, this does not
work since many peers cannot contribute uploading bandwidth greater than or equal
to the playback rate. This is related with the asymmetric nature of nodes, that is,
nodes behind ADSL and cable can receive several hundreds of kilobits per second
but can fundamentally only donate less.

On the other hand, NATs impose fundamental restrictions connectivity of nodes
on an overlay and may prohibit direct communication with one another. In the last
years several protocols have been proposed for dealing with NATs. For example,
STUN (Session Traversal Utilities for NAT) [17] provides a means for an endpoint
to determine the IP address and port allocated by a NAT that corresponds to its
private IP address and port. It also provides a way for an endpoint to keep a NAT
binding alive.

8 Summary

It is more challenging to design a P2P VoD service than a P2P live streaming system
because although a large number of users may be watching the same video, they
are asynchronous to one other. In this chapter the dominant problems for P2P VoD
streaming have been presented.

An important component of any P2P VoD system is the organization of partici-
pating peers into an overlay structure. Based on this component these systems have
been classified into two categories: tree-based and mesh-based. Hybrid networks,
which combine the conventional client-server architecture with the P2P mesh-based
architecture, have been also presented.

Another important component of any P2P VoD system is the content forward-
ing policy, that is, the way the multimedia content is stored and transmitted to each
participating peer through the overlay. There are two main categories for this com-
ponent: the buffer-forwarding and the storage-forwarding approaches. There also
exist hybrid-forwarding approaches which integrate both the buffer-forwarding and
the storage-forwarding.

In mesh-based P2P VoD systems, suppliers search and data scheduling are identi-
fied as the two main mechanisms. Several mechanisms for both storage-forwarding
and buffer-forwarding approaches have been introduced. Finally, several technical
challenges to be overcome have been presented.

Providing VoD Streaming Using P2P Networks 1041

9 Future Research Directions

Most P2P streaming systems are not ISP-Friendly because data exchanges among
nodes are driven by content availabilities. That is, nodes connect to multiple ran-
dom peers, local and remote, and exchange data between different networks. These
video exchanges significantly increase the traffic volume on links within and be-
tween ISPs. How ISPs should manage the P2P video streaming traffic deserves fur-
ther investigation to maintain the stability of their network infrastructures.

On the other hand, several ISPs have started to provide IPTV services. It will be
beneficial for ISPs to integrate P2P technology into their IPTV systems to signifi-
cantly reduce their server and network infrastructure cost. Many interesting research
problems need to be addressed to develop an integrated IPTV solution for network
providers and IPTV users.

Acknowledgement

This research has been supported by project grant TEC2007-67966-C03-01/TCM
(CON-PARTE-1) and it is also developed in the framework of “Programa de Ayudas
a Grupos de Excelencia de la Región de Murcia, de la Fundación Séneca, Agen-
cia de Ciencia y Tecnologı́a de la RM (Plan Regional de Ciencia y Tecnologı́a
2007/2010)”. Juan Pedro Muñoz-Gea also thanks the Spanish MEC for a FPU
(AP2006-01567) pre-doctoral fellowship.

References

1. Cheng, B., Jin, H., Liao, X.: Supporting vcr functions in p2p vod services using ring-assisted
overlays. In: Proceedings of the IEEE International Conference on Communications 2007
(ICC 2007), pp. 1698–1703 (2007)

2. Chi, H., Zhang, Q., Jia, J., Shen, X.: Efficient search and scheduling in p2p-based media-
on-demand streaming service. IEEE Journal on Selected Areas in Communications 25(1),
119–130 (2007)

3. Dana, C., Li, D., Harrison, D., Chuah, C.N.: Bass: Bittorrent assisted streaming system for
video-on-demand. In: 2005 IEEE 7th Workshop on Multimedia Signal Processing, pp. 1–4
(2005)

4. Flajolet, P., Martin, G.N.: Probabilistic counting algorithms for data base applications. Journal
of Computer and System Sciences 31(2), 182–209 (1985)

5. Guo, Y., Mathur, S., Ramaswany, K., Yu, S., Patel, B.: Ponder: Performance aware p2p video-
on-demand service. In: Proceedings of the IEEE Global Telecommunications Conference,
2007. GLOBECOM’07, pp. 225–230 (2007)

6. Guo, Y., Suh, K., Kurose, J., Towsley, D.: P2Cast: peer-to-peer patching scheme for VoD
service. In: Proceedings of the 12th International Conference on World Wide Web, pp.
301–309 (2003)

1042 Juan Pedro Muñoz-Gea et al.

7. He, Y., Guobin, S., Xiong, Y., Guan, L.: Probabilistic prefetching scheme for p2p vod applica-
tions with frequent seeks. In: Proceedings of the IEEE International Symposium on Circuits
and Systems (ISCAS 2008), pp. 2054–2057 (2008)

8. He, Y., Lee, I., Guan, L.: Distributed throughput maximization in hybrid-forwarding p2p
vod applications. In: Proceedings of the 2008 IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), pp. 2165–2168 (2008)

9. Ho, K.M., Lo, K.T., Feng, J.: Cooperative transmission strategy for video-on-demand system.
In: Proceedings of the International Conference on Information Networking, 2008. ICOIN
2008, pp. 1–5 (2008)

10. Ho, K.M., Poon, W.F., Lo, K.T.: Peer-to-peer batching policy for video-on-demand system. In:
Proceedings of First International Conference on Communications and Networking in China,
2006. ChinaCom’06, pp. 1–6 (2006)

11. Hua, K., Cai, Y., Sheu, S.: Patching: A multicast technique for true video-on-demand ser-
vices. In: Proceedings of the 12th ACM International Conference on Multimedia, pp. 191–200
(1998)

12. Janardhan, V., Schulzrinne, H.: Peer assisted vod for set-top box based ip network. In: P2P-
TV ’07: Proceedings of the 2007 workshop on Peer-to-peer streaming and IP-TV, pp. 335–339
(2007)

13. Liao, X., Jin, H.: Octopus: A hybrid scheduling strategy for p2p vod services. In:
GCC ’07: Proceedings of the Sixth International Conference on Grid and Cooperative Com-
puting, pp. 26–33 (2007)

14. Liu, Y., Guo, Y., Liang, C.: A survey on peer-to-peer video streaming systems. Peer-to-Peer
Networking and Applications 1(1), 18–28 (2008)

15. Luby, M.: Lt codes. In: FOCS ’02: Proceedings of the 43rd Symposium on Foundations of
Computer Science, p. 271 (2002)

16. Pplive. http://www.pplive.com/ (2005)
17. Rosenberg, J., Mahy, R., Matthews, P., Wing, D.: Session traversal utilities for nat (stun). RFC

5389 (Proposed Standard) (2008). URL http://www.ietf.org/rfc/rfc5389.txt
18. Sopcast. http://www.sopcast.org/ (2005)
19. Suh, K., Diot, C., Kurose, J., Massoulié, L., Neumann, C., Towsley, D.F., Varvello, M.: Push-

to-peer video-on-demand system: Design and evaluation. IEEE Journal on Selected Areas in
Communications 25(9), 1706–1716 (2007)

20. Vlavianos, A., Iliofotou, M., Faloutsos, M.: Bitos: Enhancing bittorrent for supporting stream-
ing applications. In: Proceedings of INFOCOM 2006. 25th IEEE International Conference on
Computer Communications, pp. 1–6 (2006)

21. Vratonjić, N., Gupta, P., Knežević, N., Kostić, D., Rowstron, A.: Enabling dvd-like features
in p2p video-on-demand systems. In: P2P-TV ’07: Proceedings of the 2007 workshop on
Peer-to-peer streaming and IP-TV, pp. 329–334 (2007)

22. Wang, D., Liu, J.: A dynamic skip list-based overlay for on-demand media streaming with vcr
interactions. IEEE Transactions on Parallel Distributed Systems 19(4), 503–514 (2008)

23. Yiu, W.P.K., Jin, X., Chan, S.H.G.: Vmesh: Distributed segment storage for peer-to-peer inter-
active video streaming. IEEE Journal on Selected Areas in Communications 25(9), 1717–1731
(2007)

24. Zhang, X., Liu, J., Li, B., Yum, T.S.: Coolstreaming/donet: A data-driven overlay network
for peer-to-peer live media streaming. In: Proceedings of IEEE INFOCOM 2005. 24th An-
nual Joint Conference of the IEEE Computer and Communications Societies., pp. 2102–2111
(2005)

Part IX
Mobile P2P

Peer-to-Peer Overlay in Mobile Ad-hoc
Networks

Marcel C. Castro, Andreas J. Kassler, Carla-Fabiana Chiasserini, Claudio Casetti,
and Ibrahim Korpeoglu

Abstract Wireless multi-hop networks such as mobile ad-hoc (MANET) or wire-
less mesh networks (WMN) have attracted big research efforts during the last years
as they have huge potential in several areas such as military communications, fast
infrastructure replacement during emergency operations, extension of hotspots or
as an alternative communication system. Due to various reasons, such as charac-
teristics of wireless links, multi-hop forwarding operation, and mobility of nodes,
performance of traditional peer-to-peer applications is rather low in such networks.
In this book chapter, we provide a comprehensive and in-depth survey on recent re-
search on various approaches to provide peer-to-peer services in wireless multi-hop
networks. The causes and problems for low performance of traditional approaches
are discussed. Various representative alternative approaches to couple interactions

Marcel C. Castro
Department of Computer Science, Karlstads University, Universitetsgatan 2, SE-651 88, Karlstad,
Sweden, e-mail: Marcel.Cavalcanti@kau.se

Andreas J. Kassler
Department of Computer Science, Karlstads University, Universitetsgatan 2, SE-651 88, Karlstad,
Sweden, e-mail: Andreas.Kassler@kau.se

Carla-Fabiana Chiasserini
Dipartimento di Elettronica, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino,
Italy, e-mail: chiasserini@polito.it

Claudio Casetti
Dipartimento di Elettronica, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino,
Italy, e-mail: casetti@polito.it

Ibrahim Korpeoglu
Department of Computer Engineering, Bilkent University, 06800 Ankara, Turkey,
e-mail: korpe@cs.bilkent.edu.tr

X. Shen et al. (eds.), Handbook of Peer-to-Peer Networking, 1045
DOI 10.1007/978-0-387-09751-0 37, © Springer Science+Business Media, LLC 2010

1046 M. Castro, A. Kassler, C.F. Chiasserini, C. Casetti, I. Korpeoglu

between the peer-to-peer overlay and the network layer are examined and compared.
Some open questions are discussed to stimulate further research in this area.

1 Introduction

A mobile ad-hoc network (MANET) is a collection of autonomous mobile nodes
that communicate using wireless links without support from any pre-existing in-
frastructure network. In such a multi-hop network, nodes operate as both end hosts
and routers, forwarding packets wirelessly towards other mobile nodes that may not
be within the direct transmission range of each other. MANETs are formed with
the key motivation that users can benefit from collaborations with each other. Wire-
less mesh networks (WMN) are comprised of a wireless mesh backbone formed
of quasi-stationary wireless mesh routers which wirelessly relay packets generated
by (mobile) mesh clients, that connect to the wireless mesh routers like to normal
access points. WMNs are emerging as an attractive infrastructure for next genera-
tion wireless access networks and they share many properties with MANETs such
as multi-hop forwarding. While MANETs typically operate standalone and more
autonomous, Internet access for MANETs and WMNs is desirable. Multi-hop net-
works such as MANETs or WMNs have been considered to support future ubiqui-
tous and pervasive computing scenarios, and therefore will be intrinsic part of the
future Internet.

Recently, applications based on the Peer-to-Peer (P2P) communication paradigm
are increasing in popularity. Examples are popular file-sharing applications (e.g.,
Kazaa [41], Gnutella [56]), upcoming P2PSIP solutions for Voice over IP, or P2P
video streaming that use P2P techniques to form an overlay on top of existing net-
works. P2P computing refers to technology that enables two or more peers to col-
laborate spontaneously in a network of equals (peers) by using appropriate infor-
mation and communication systems without the necessity for central coordination.
In that sense, P2P networks are overlay networks typically operated on infrastruc-
tured (wired) networks, such as the Internet. However, the P2P overlay network is
dynamic, where peers come and go (i.e., leave and join the group) for sharing files
and data through direct exchange. Such peer-to-peer communication paradigm will
be very important in wireless multi-hop networks as centralized servers might not
be available or located in the Internet. Therefore, P2P will be an interesting alter-
native for decentralizing services or making its own local resources available in the
multi-hop network to serve local user communities.

P2P overlay networks in the Internet and mobile ad-hoc networks share many
key characteristics such as self-organization and decentralization due to the com-
mon nature of their distributed components [33]. They also share a high degree of
dynamicity as nodes can join and leave the network at any given time. These com-
mon characteristics lead to further similarities between the two types of networks:
both have a frequently changing topology caused by nodes joining and leaving

Peer-to-Peer Overlay in Mobile Ad-hoc Networks 1047

dynamically. Also in a MANET terminals are mobile and communication follows a
hop-by-hop connection establishment.

The common characteristics shared by P2P overlays and MANETs also dictate
that both networks are faced with the same fundamental challenge, that is, to provide
connectivity in a decentralized and dynamic environment. Thus, there exists a syn-
ergy between these two types of networks in terms of the design goals and principles
of their routing protocols and applications built on top: both P2P and MANET rout-
ing protocols and applications have to deal with dynamic network topologies due to
membership changes or mobility.

In addition, P2P overlays over the Internet rely on the IP routing infrastructure,
which is resource rich especially in terms of bandwidth availability. Mobile ad-hoc
networks, instead, are rather limited in bandwidth, and a high maintenance traffic, as
it is used currently in structured overlay networks, will lead to scalability problems
when legacy P2P services are used “as-is” in multi-hop environments. Thus, one of
the main issues is how to efficiently provide the same kind of P2P services imple-
mented in legacy wired networks in multi-hop networks, and how to enable efficient
overlay services and applications on the resource constrained wireless multi-hop
networks.

The common characteristics, challenges, and design goals between P2P over-
lays and mobile ad-hoc networks point to new research directions in wireless net-
working, that is, to exploit the synergies between P2P overlays and multi-hop
networks such as MANETs. There are several examples where knowledge on
interactions between P2P and MANET can either help to realize more efficient
P2P networks and services on top of multi-hop networks or will lead to the de-
sign of better and more scalable routing protocols [8, 24, 53, 70]. Understand-
ing such interactions will also help to clarify, what support from routing layer
shall be required for scalable operation of P2P on top of heterogeneous mobile
networks.

The remaining part of this chapter is then organized as follows. In Section 2,
we give a brief overview on structured and unstructured overlay networks. We
introduce wireless multi-hop networks and highlights key properties of wireless
operation and multi-hop forwarding. The challenges encountered while deploy-
ing P2P services in mobile ad-hoc networks are detailed in Section 3. Section 4
provides a detailed survey of related approaches including work on both unstruc-
tured (e.g., flooding based protocols, unstructured key lookup, and proactive search
routing) and structured (e.g., topology dependent and topology independent) P2P
overlays for MANETs. Recent studies, such as ORION [39], MPP [26], P2PSI
[31], ZP2P [38], VRR [8], SSR [24], CrossROAD [18], MADPastry [70], Mesh-
Chord [7], and Hashline [61] will be introduced. Additionally, the respective ad-
vantages and disadvantages are evaluated. Section 5 introduces important P2P
application scenarios for MANETs, such as decentralized name service (e.g., MAP-
NaS [71] and P2PNS [2]), overlay-based multicast (e.g., XScribe [19]), and
multimedia services (e.g., P2PSIP [20]). Finally, Section 6 concludes the
chapter.

1048 M. Castro, A. Kassler, C.F. Chiasserini, C. Casetti, I. Korpeoglu

2 Overview on Peer-to-Peer and Ad-Hoc Networks

Wireless multi-hop networks feature several peculiar aspects which significantly dif-
ferentiate them from other wireless systems and pose serious technical challenges.
In this section, we highlight the main characteristics of these systems and discuss
some of their most challenging issues, i.e., wireless multi-hop communication, mo-
bility, and traffic routing in multi-hop networks.

2.1 Peer-to-Peer Overlay Networks

We begin however with a brief overview on peer-to-peer networks. There are nu-
merous peer-to-peer overlay networks proposed with very different architectures
and protocols. The architectures for P2P overlays can be categorized into two main
classes: unstructured P2P overlays and structured P2P overlays.

Unstructured overlays do not impose a rigid relation between the overlay topol-
ogy and where resources or their indices are stored. This has a number of advan-
tages like; easy implementation and simplicity, supporting dynamic environments
and keyword search (instead of exact match queries). But the major drawback
of such overlay is scalability problem. Search operation for a resource may take
a long time and consume network resources extensively, since most of the time
there is no relation between the name of resources and their locations. Depend-
ing on the degree of centralization, unstructured P2P overlays are usually classified
into three sub-categories: 1) hybrid decentralized overlays such as Napster, Pub-
lius, and Bittorent [45, 52] (Figs. 1a, 2) purely decentralized overlays such as ini-
tial version of Gnutella and Free Haven [56, 57] (Figs. 1b, 3) partially centralized
overlays such as Gnutella version 0.6, Fasttrack/Kazaa, Morpheus, Overnet/eDon-
key2000 [30, 41, 56] (Fig. 1c). In all categories, the resources (or services) are to-
tally distributed to peers and there is usually no relation between the locations of
resources and the network topology. But depending on the category, central or dis-
tributed indices, clustering, super-peer concept, caching and replication can be used
[1, 43].

A common feature provided by peer-to-peer overlay networks is a lookup ser-
vice (i.e., searching for resources) handling flat identifiers with an ordinary query-
response semantic. Such a service is often implemented using DHTs (Distributed
Hash Tables), such as CAN, Chord, Pastry, and Bamboo [54, 55, 58, 62] . Unlike
unstructured P2P networks with their random topology, DHTs impose a structure
on the overlay topology by no longer choosing routing table entries arbitrarily. In-
stead, routing table entries have to satisfy certain criteria depending on the respec-
tive DHTs. At the core of each DHT lies the ability to route a packet based on a key,
towards the node in the network that is currently responsible for the packet’s key.
This process is referred to as indirect or key-based routing. This structure enables
DHTs to introduce an upper bound on the number of overlay hops towards the node
currently responsible for the packet’s key. This upper bound is commonly O(logn),
with n being the number of nodes in the network. This bound is achieved through

Peer-to-Peer Overlay in Mobile Ad-hoc Networks 1049

Peer

Peer

PeerPeer

Peer

PeerPeer

Peer

Index
Server

Peer

Peer

PeerPeer

Peer

PeerPeer

Peer

Peer

Peer

PeerPeer

Peer

PeerPeer

Peer

(a) Hybrid decentralized (b) Purely decentralized

(c) Partially centralized

Peer

Peer

PeerPeer

Peer

PeerPeer

Peer

Super
Peer

Super
Peer

Super
Peer

Super
Peer

Fig. 1 Unstructured P2P overlays

routing strategies employed by the respective DHTs. Those strategies include reduc-
ing the Euclidean distance in the overlay ID space to the destination in each overlay
routing step (e.g., CAN [54]), halving the numerical distance to the destination in
each routing step (e.g., Chord [62]), or increasing the length of the matching pre-
fix/suffix between the current node’s overlay ID and the key in each overlay routing
step (e.g., Pastry [58] and Bamboo [55]). Although DHTs can route packets very
efficiently in comparison to unstructured P2P networks, they usually induce higher
overhead due to the need for maintenance traffic of their routing tables. The mainte-
nance traffic routine can be initiated by network change, such as in Chord and Pastry,
or within certain periodicity regardless of network status, such as in Bamboo. While
reactions to changes in the routing layer operate on very small timescale, reactions
to changes in overlay structure are not so fast. In [55], the approach to use periodic
updates has been shown to be beneficial during churn or in dynamic network, since
it does not cause management traffic bursts during congestion. As we will show
in Section 4, management traffic can impact network performance when applied to
bandwidth limited wireless environments. However, as argued by [25], DHT ap-
proaches outperform unstructured approaches when the number of nodes, the num-
ber of objects, or the query rate increases, since they do not introduce flooding in the
network.

2.2 Characteristics of Wireless Multi-hop and Mobility

Wireless multi-hop communication has many use cases, both in standalone deploy-
ments, but also to extend the reach of infrastructure, e.g., hotspots. Such wireless

1050 M. Castro, A. Kassler, C.F. Chiasserini, C. Casetti, I. Korpeoglu

communication involving potentially multiple intermediate nodes poses several fun-
damental challenges, also stemming from hidden and exposed terminals resulting in
packet loss, and high and variable delay and thus low performance in general. Sev-
eral of these factors play a significant role in any wireless communication scenario.
However, as communication is extended to multiple hops, several new wireless is-
sues come into play. Single hop communication results in most cases in a single
collision and interference domain. In contrast, in multi-hop cases the roles of col-
lision and interference become more complex and depend on many factors such as
radio environment, modulation schemes, transmission power, or sensing ranges. As
a result, adjacent links and even links further separated, affect each other during
transmission and they might have to share the wireless channel. In single channel
networks, a two-hop configuration hence effectively halves the available bandwidth.
Other links still within interference range also might affect links further down a
multi-hop path, reducing the link bandwidth even further. Such behavior has many
subtle performance implications to higher layers such as TCP [32], which are not
visible in single hop networks.

To alleviate such problem, in WMNs mesh routers may be equipped with mul-
tiple radios (such as of-the-shelf 802.11a/b/g cards) to simultaneously transmit/re-
ceive over different orthogonal frequency channels. However, to fully exploit the
available resources, it is necessary to develop mechanisms to effectively assign
available channels to a limited number of radio interfaces per node. If a mesh is
rather unplanned or channel allocation is done poorly, interference might be quite
high leading to the same problems.

Another problem area is mobility of nodes, quite common to MANET scenar-
ios. as a result, the network might become disconnected for a long period or the
high mobility might lead to frequently changing communication paths. Such ef-
fects impose several challenges such as long delays, disrupted communications,
and intermittent connectivity to communication protocols. As a result, most higher
layer protocols such as TCP cease functioning or show dramatically low perfor-
mance. Therefore, commonly assumed communication design principles such as
the permanent availability of a dedicated end-to-end path have to be reconsidered
leading to new communication paradigms that are significantly more delay tolerant
than common approaches such as digital postal service through store-carry-forward
message delivery. This style of delivery carries information between intermittent
communication opportunities, and might be an attractive alternative of enabling
communication where it is otherwise impossible. Such communication paradigms
might also be useful for other contexts such as satellites networked into an inter-
planetary Internet [6] or postal service like data delivery into rural areas where
communication infrastructure is not available [13]. Instead of assuming an al-
ways on connection, communication entities rather carry information between inter-
mittent communication opportunities, leading to the opportunistic communication
paradigm.

Peer-to-Peer Overlay in Mobile Ad-hoc Networks 1051

2.3 Traffic Routing in Multi-hop Networks

Routing is an essential function for Internet and also very important for wireless
multi-hop networks, e.g., MANETs. Indeed, while at the MAC and physical layer
it is commonly assumed that the IEEE 802.11 standard is adopted, a large number
of different proposals on traffic routing have been presented within the IETF (The
Internet Engineering Task Force) and are still under discussion.

Typically routing protocols in MANETs can be classified in flat and hierarchical
schemes. Flat routing protocols distribute information as needed to any network
node that can be reached or receive information. No effort is made to organize the
network or its traffic, only to discover the best route hop-by-hop to a destination by
any path. Hierarchical routing protocols, instead, group nodes together by function
into a hierarchy, e.g., if there are powerful nodes, they may be selected as backbone
routers, while lower powered node may be used for access purposes.

In the context of wireless ad-hoc and mesh networks, flat routing schemes have
been far more successful than hierarchical solutions, thus, below, we focus on flat
routing and review the most relevant schemes that have been proposed in the liter-
ature as well as those solutions that are mostly used in practical implementations.
On the other hand for more opportunistic communication style in delay tolerant net-
works, new type of more probabilistic routing protocols have been developed as the
main challenge is to cope with long periods of disconnection and opportunistically
exploit communication possibilities.

2.3.1 Topology-Based Schemes

The routing protocols falling in this category exploit information related to the net-
work topology. They can be further classified in (i) reactive protocols and (ii) proac-
tive protocols. Reactive schemes create routes only when required by a source node.
Once a route is established, it is maintained by a route maintenance procedure until
either the source does not need the route any longer or there is no available path in
the network. Examples of reactive solutions are the well known Ad-hoc On Demand
Distance Vector (AODV) [50] routing and Dynamic Source Routing (DSR) [34] pro-
tocols. In AODV, when a route to a new destination is needed, the node broadcasts
a RREQ (Route REQuest) message to find a route to the destination. A route can be
determined when the RREQ reaches either the destination itself, or an intermediate
node with a “fresh enough” route to the destination. A “fresh enough” route is a
valid route entry for the destination whose associated sequence number is at least
as great as that contained in the RREQ. The route is made available by unicasting
a RREP (Route REPly) back to the origination of the RREQ. Each node receiving
the request caches a route back to the originator of the request, so that the RREP
can be unicast from the destination along a path to that originator, or likewise from

1052 M. Castro, A. Kassler, C.F. Chiasserini, C. Casetti, I. Korpeoglu

any intermediate node that is able to satisfy the request. While AODV builds and
maintains routing tables at every node, DSR obtains and encodes the source route in
each packet header to the destination. It follows that DSR leads to a greater overhead
with respect to AODV, although it can handle both unidirectional and bidirectional
links and allows nodes to store more than one route for each source-destination pair.

Proactive schemes, instead, attempt to continuously maintain consistent, up-to-
date routing information from each node to any other node in the network. As in
AODV, every node has one or more tables, which are used to store routing infor-
mation; upon topology changes, a node propagates update messages throughout
the network in order to maintain a consistent view. Hence, in highly dynamic net-
works the overhead of proactive approaches is significantly higher than with reactive
schemes, however when proactive solutions are applied, nodes always store routes
to any possible destination in the network. Among the most interesting proactive so-
lutions, there are the Optimized Link State Routing Protocol (OLSR) [14] and BAT-
MAN (Better Approach to Mobile Ad-hoc Networking) [47], which deserve special
attention because, along with AODV, are the protocols typically used in practical
implementation of MANETs and mesh networks.

OLSR is a link-state routing protocol which exploits Hello and Topology Con-
trol (TC) messages to discover and then discriminate link state information through-
out the ad-hoc network. Individual nodes use this topology information to compute
next hop destinations for all nodes in the network using shortest hop forwarding
paths. More specifically, using Hello messages the OLSR protocol performs a dis-
tributed election of a set of multipoint distribution relays (MPRs), such that there
exists a path to each of its 2-hop neighbors via a node selected as an MPR. These
MPR nodes then source and forward TC messages which contain the MPR selec-
tors. Such approach has several benefits: the forwarding path for TC messages is not
shared among all nodes but varies depending on the source, only MPRs source TC
messages, and not all links of a node are advertised but only those which represent
MPR selections.

BATMAN has been specifically designed for wireless mesh networks. The ba-
sic idea is to divide the knowledge about the best end-to-end paths between nodes
in the mesh to all participating nodes. Each node perceives and maintains only the
information about the best next hop towards all other nodes. Thereby, the need for
a global knowledge about local topology changes becomes unnecessary. Addition-
ally, an event-based but flooding mechanism prevents the occurrence of contradict-
ing topology information and limits the amount of topology messages flooding the
mesh (thus minimizing overhead of control-traffic). Since it adopts a hop-by-hop
forwarding approach, BATMAN may be particularly suitable for networks whose
connectivity level is not very high.

2.3.2 Geographic-Based Routing

Geographic routing protocols do not require knowledge of the network topology but
rely on geographic position information, i.e., each node must be able to determine its
own location and the source has to be aware of the location of the destination [63].

Peer-to-Peer Overlay in Mobile Ad-hoc Networks 1053

With this information, a message can be routed to the destination following differ-
ent approaches. Greedy Perimeter Stateless Routing (GPSR) [37] tries to bring the
message closer to the destination at each step, using only local information (greedy
forwarding). Additionally, in regions of the network where such a greedy path does
not exist, GPSR recovers by forwarding in perimeter mode. That is, a packet tra-
verses successively closer faces of a planar subgraph of the full radio network con-
nectivity graph until reaching a node closer to the destination, where greedy for-
warding resumes. Alternatively, one can consider another notion of progress toward
the destination, namely the minimum angle between neighbor and destination, as in
Compass Routing [40] which however is not loop free. Clealy, whenever the destina-
tion node is mobile, geographic routing may be highly inefficient and the exchange
of nodes location may lead to an exceedingly high overhead.

2.3.3 Probabilistic Routing

This approach has low complexity and is particularly suitable for networks with
spotty connectivity, i.e., the so-called opportunistic networks. The basic idea is that
context information, such as the users work address, the probability of physically
meeting with other users or visiting particular places, can be exploited to identify
suitable forwarders based on context information about the destination. Here, the
mobility of nodes is exploited to deliver information from one node to another when
they come into mutual communication range. Examples of protocols falling in this
category are the Probabilistic ROuting Protocol (PROPHET) [42] and MaxProp [5].
PROPHET is an evolution of the epidemic approach that introduces the concept
of delivery predictability. The delivery predictability is the probability for a node
to encounter a certain destination. The delivery predictability for a destination in-
creases when the node meets the destination, and decreases (according to an ageing
function) between meetings. Transitivity is also taken into account, i.e., if node X
frequently meets node Y, and node Y often meets node Z, then nodes X and Z have
high delivery predictability with respect to each other. Also, when two nodes X and
Y meet, they exchange their delivery predictability to destinations of the messages
they store in their buffers, and messages are transfered from, say, X to Y only if Y’s
delivery predictability is higher than the one of X. The same technique is used by
MaxProp, which, in addition, exploits information about frequently visited places.

3 Challenges of Deploying P2P Services in Mobile Ad-hoc
Networks

The suitability of MANETs for applications that rely on a P2P architecture for in-
formation exchange presents designers with several challenges. Indeed, not only do
mobile nodes require content delivery but they also act as content providers. Mobile
users are expected to offer data services in an effective manner, despite the scarcity
of bandwidth and the intermittent connectivity due to the highly-dynamic nature of

1054 M. Castro, A. Kassler, C.F. Chiasserini, C. Casetti, I. Korpeoglu

MANETs. Below, we list some of the technical challenges in delivering information
to mobile users depending on a P2P organization.

Bandwidth Constraints
The challenge of introducing P2P concepts in multi-hop networks is that P2P

overlays designed for the wired Internet rely on the IP routing infrastructure, which
is resource rich especially in terms of bandwidth availability. As we have seen
in Section 2.2, mobile ad-hoc networks are however rather limited in bandwidth.
Therefore, a high maintenance traffic, e.g., as it is used currently in structured over-
lay networks, will lead to scalability problems when legacy P2P services are used
“as-is” in multi-hop environments. One of the main issues is therefore how to effi-
ciently provide the same kind of P2P services implemented in legacy wired networks
in multi-hop networks, and how to enable efficient overlay services and applications
on the resource constrained wireless environment. As it is presented in Section 4,
several approaches try to overcome such challenge by integrating, or applying cross-
layering techniques between the P2P and the MANET routing layer.

P2P Overlay Maintenance
Keeping the overlay routing table of each node up to date is one of the main tasks

of a DHT system. Efficient routing depends on routing information being current
and consistent. Invalid entries cause unnecessary overhead because of misrouted
messages and suboptimal routing. To avoid these inconsistencies, DHT protocols
employ maintenance mechanisms to keep the routing tables up to date. Typically,
nodes probe their neighboring nodes via periodic ping request and response mes-
sages to learn whether they are still available or not. In MANETs, such mainte-
nance traffic further contributes to congestion and collisions. As nodes mobility
might lead to topology changes in the MANET routing layer, there might be po-
tential for misrouted messages if the overlay routing and the MANET routing have
inconsistent topology information. Also, triggering such maintenance traffic during
network rerouting further contributes to network instability. To this end, cross-layer
and integrated approaches are applied by, for example, exploiting the network rout-
ing messages (such as CrossROAD [18]) or cache information (such as SSR [24])
in order to maintain the P2P overlay.

Network Resiliency
In P2P networks with structured overlay, DHTs are considered to be very resis-

tant against node failures. Backup and recovery mechanisms, that use distributed
redundant information, ensure that no information is lost if a node suddenly fails.
Depending on the subjacent DHT topology, the DHT experiences a reduced routing
performance until the recovery has finished.

When DHT protocols are used in an ad-hoc environment, resilience is as a very
important issue. The resilience of a DHT determines how much time may pass be-
fore expensive recovery mechanisms have to be evoked. As the quality of connec-
tions in ad-hoc networks is highly dependent on the environment and on the nodes
mobility, nodes may often become temporarily inaccessible. If the recovery process

Peer-to-Peer Overlay in Mobile Ad-hoc Networks 1055

is started too early, an avoidable overhead is caused if the node becomes accessible
again. However, if the topological structure allows the DHT protocol to delay recov-
ery mechanisms without losing routing capability, these costly recovery measures
can be avoided and the maintenance costs of a DHT can be significantly reduced.
As an example described in Section 4.3.1, [12] studies a compromise made between
overlay management traffic in the overlay and network congestion to find a balance
between lookup efficiency and management traffic overhead.

The worst case scenario is represented by a network where long delays and dis-
rupted communications exist, as mentioned in Section 2.2. In this case, a node which
is partly available and unavailable over a longer period of time can stress the whole
network because of numerous join and leave procedures. Note that this scenario can
easily be provoked by node movement along the network perimeter and, clearly, re-
silience mechanisms are needed to counteract the negative effects of this condition.

Routing Stretch
Unlike the P2P overlay in the Internet, where the neighbor is directly reachable

using an underlying routing protocol, in the P2P overlay in MANETs scenario, con-
tacting the neighbor may require going through multiple (wireless) hops. For this
purpose, a pointer is maintained for every overlay’s neighbor as a path through the
network, consisting of a set of physical links from the node hosting the pointer to its
overlay’s neighbor.

When routing to a destination via DHTs, the node resorts to simple greedy rout-
ing: it selects the overlay’s neighbor that makes the most progress in the ID space,
and then forwards the packet along the pointer. Forwarding along this pointer can
be achieved either through a source route inserted by the sender (e.g., SSR [24]) or
through embedded state in the network in the form of incremental source routes to
the overlay neighbor (e.g., VRR [8]). Both techniques will be discussed later. When
the packet reaches the overlay-neighbor, it repeats the same greedy routing process
until the packet makes it all the way to the destination. Therefore, routing proceeds
at two levels: along the overlay from one overlay neighbor to another, and then
from one overlay neighbor to another along the pointer source route via hop-by-hop
through MANET routing protocols.

The ratio between the cost of selected route using the overlay-neighbor to the
optimal shortest path routing through the MANET is defined as the routing stretch
metric. Small routing stretch means that the selected route is efficient compared
to the shortest path route. This is a key quantitative measure of route quality used
by the P2P overlay, and affects global resource consumption, delay, and reliability.
Thus, minimizing routing stretch is a critical issue for a multi-hop environment as
both delay and packet loss increase significantly with the growth of the number of
hops in the physical path.

Exploiting Heterogeneity
Another important point while deploying P2P overlay is which nodes should

participate in the overlay given that not all nodes in a network may be overlay mem-
bers [73]. While typically nodes in an overlay are initially placed manually, nodes

1056 M. Castro, A. Kassler, C.F. Chiasserini, C. Casetti, I. Korpeoglu

may also dynamically and automatically decide to join and make services available.
This issue may be especially important in multi-hop environments because overlay
participation may be dictated by topological location which might change over time.
Note, that other (e.g., physical) constraints may drive the decision to participate in
the overlay. For example, nodes with limited power may not wish to act as overlay
routers for other nodes.

Query Propagation
The propagation of query messages in the network is a critical aspect of the

information sharing mechanism in P2P networks. Indeed, there are two contrasting
requirements that arise in MANETs. On the one hand, queries for information must
be forwarded by relays until they reach nodes holding such information, and some
redundancy in forwarding is necessary to compensate for the unreliable nature of
broadcast transmission of queries (i.e., no acknowledgments). On the other hand,
congestion deriving from excessive spreading of queries and reply duplication must
be limited. The simplest solution for query propagation is, of course, plain flooding
of requests, but this is hardly viable in tightly-meshed, bandwidth-hungry wireless
networks where congestion is more than likely. More refined approaches, are among
others:

1. Limiting query range. The introduction of a query time to live (T T L) can shorten
the reach of broadcast queries. A balance should be stricken between small values
of T T L, which limit the success probability of a query, and query load.

2. Smart relaying. By forcing each relay to wait for a query lag time before re-
broadcasting the query, the propagation of a request can be halted if a node in
the neighborhood returns a response in the meantime (thus making any further
query propagation useless). Coupling the query lag time with a smart selection of
intermediate nodes for query rebroadcast may turn out to be very beneficial. As
shown in [46], the Preferred Group Broadcasting (PGB) limits the network load
through local, receiver-based decisions to rebroadcast a message. Intermediate
nodes still wait for a lag time before rebroadcasting, however its length depends
on the value of the signal-to-noise ratio (SNR) associated to the received mes-
sage.

3. Target selection. Steering the queries toward the right direction is, of course, the
main remedy against broadcast storms. Targeting a specific node that is known to
store the information can be exploited at the application level, by leveraging the
knowledge of the address and position of the last node encountered, which hap-
pened to cache the desired information. However, node targeting proves very in-
efficient in a MANET built by rapidly-moving nodes and running fast-dynamics
applications. For this reason, a better approach is targeting areas of the network
where the requested information is more likely to be cached, as proposed in [23].

Cooperative Content Caching
In purely decentralized overlays, a highly debated issue addresses the most ap-

propriate caching strategy in an environment where a cache-all-you-see approach is

Peer-to-Peer Overlay in Mobile Ad-hoc Networks 1057

clearly unfeasible but where the availability of sought-after information from nearby
nodes is the key to success. This issue can be addressed through distributed caching
strategies where nodes may cache highly popular contents that pass by, or record
the data path and use it to redirect future requests [69]. Another viable solution is to
eliminate information replicas among neighboring nodes [28], which however may
require the nodes composing the MANET to coordinate their caching decisions. An
interesting aspect is also how to minimize data access cost when network nodes
have limited storage capacity. The scheme proposed in [64] makes use of cache ta-
bles that, in mobile networks, need to be maintained in a similar vein as routing
tables.

As is clear from the above discussion, solutions to cooperative caching in mobile
multi-hop networks, which are distributed and rely on lightweigth communication
protocols, are still to be found. Finally, when different copies of the same informa-
tion are injected in the network, maintaining cache consistency among the different
nodes becomes a critical issue [10, 29].

Information Distribution and Survival
A final, critical issue pertains to achieving a desired distribution of the informa-

tion within an area: regardless of how the information is distributed at the outset,
the system should be able to identify where the information should be stored in
the network area. In addition, a node storing the information acts as provider for
that information; of course, this role may exact a high toll from nodal resources in
terms of bandwidth or power consumption; it is advisable that the role of content
provider be handed over to neighboring nodes quite frequently, without altering the
information distribution. One or more nodes running out of power may affect the
distribution of information and disrupt the P2P structure. Therefore, regardless of
the initial information distribution, and of the density of nodes, information should
never be allowed to die out. Related to the information survival is the evaluation
of the minimum number of copies of a specific information that can satisfy users’
needs (i.e., in terms of information retrieval time or response rate).

Security
Deploying security mechanisms in P2P networks is quite difficult due to the char-

acteristics of P2P paradigm such as anonymity, decentralization, self-organization
and frequent disconnections. Security in P2P over mobile ad-hoc networks is even
more challenging due to node mobility and easy access to wireless channels. Most
security solutions require use of public keys for authentication, shared secret estab-
lishment, or integrity checking, and hence somehow depend on a public key infras-
tructure (PKI) [36].

PKI is needed by asymmetric cryptography to establish the validity of the pub-
lic keys. For this purpose, PKI stores digital certificates that attach a public key
to the name of its owner by the digital signature of a trusted third party called
the Certification Authority (CA). The management of certificates is a complex
duty that requests a substantial infrastructure, especially in large-scale applications.

1058 M. Castro, A. Kassler, C.F. Chiasserini, C. Casetti, I. Korpeoglu

Integration of PKI and CAs, or a similar security infrastructure, into P2P over
MANET is a challenging task due to ad-hoc and infrastructureless nature of the
network and lack of centralized entities. Even in P2P networks with servers (hy-
brid centralized or partially centralized – see Section 2.1), these servers usually do
not fully control the peer behaviors as much as servers can do in a conventional
client-server model. Thus, the centralized architecture of PKI may introduce sev-
eral important problems that contradict with the important characteristics of the
P2P networks and MANETs. Additionally, PKI and security services may intro-
duce substantial amount of control traffic into the network, which means more load
to bandwidth-limited wireless channels of MANETs.

4 Overview of P2P Solutions for Mobile Ad-hoc Networks

In the following, we present and discuss various approaches to improve performance
of peer-to-peer communication in wireless multi-hop networks, such as MANETs
or WMNs. As several proposals try to integrate different layers to reduce bad in-
teractions, we will first give an overview on different principles that guide the var-
ious integration and interaction possibilities, both in the area of unstructured (in
Section 4.2) and structured (in Section 4.3) though there may be some overlapping
similarities between the two.

4.1 Integration Principles Between P2P and MANET Routing
Layer

One of the main differences between P2P and MANET is related to the level where
they operate: P2P is essentially focused on building and maintaining overlay net-
work connections at the application level, while the main focus of MANET is to
provide multi-hop connectivity among wireless mobile nodes at the network level
[59]. Due to the characteristics of multi-hop communication and the low resource
availability in such networks, simply deploying a P2P overlay protocol as is on
top of MANET routing layer (as shown in Fig. 2a) might cause poor performance,
significant message overhead and redundancy in communication. The performance
penalties of such transparent layering are better detailed in Section 4.3.1, where a
packet level performance analysis of Bamboo over static multi-hop networks has
been conducted.

One alternative for avoiding bad interactions between those layers is the paradigm
of cross-layer design, as shown in Fig. 2b. Here, information from, for instance, the
routing or MAC layer is made available at the peer-to-peer layer or vice versa in
order to improve the performance. Various approaches implement different cross-
layer interactions, as detailed in Sections 4.2 and 4.3. As a result, a cross-layered

Peer-to-Peer Overlay in Mobile Ad-hoc Networks 1059

(a) Layered design (b) Cross-layered design (c) Integrated design

Fig. 2 Design choices of P2P and MANET integration

design could offer a significant performance improvement if compared to the simple
layered approach.

Another alternative to increase performance is to integrate peer-to-peer layer with
routing layer beyond the strict layering rule [15], as shown in Fig. 2c. Typically new
routing mechanisms (such as key-based routing) are developed, and try to imple-
ment peer-to-peer concepts in the routing layer itself. In the next sections we pro-
vide an overview of these approaches, by also trying to evaluate the key features of
each of them.

4.2 Unstructured P2P Networks for MANETs

Actually, several works on the convergence of peer-to-peer systems and mobile ad-
hoc networks have dealt with the straightforward implementation of unstructured
P2P overlays in MANETs. Those approaches combine ad-hoc routing and unstruc-
tured overlay flooding, usually using the route discovery mechanisms of the ad-hoc
routing protocol to locate the desired resource in the network.

One of the first documented system is 7DS [48], which attempts to enable P2P
resource sharing and information dissemination in mobile environments, been rather
a P2P architecture proposal than a practical application.

In [39], ORION aims at providing peer-to-peer services in a MANET, bring-
ing a general purpose distributed lookup service and enhancing file transmission
schemes to enable file sharing in MANETs. ORION applies the integration (Fig. 2c)
of Gnutella-style [56], flooding into the AODV [49] ad-hoc routing to locate re-
quested files in the network. With ORION, each node in the MANET has a local
repository containing the files that the node is sharing. When a node wants to locate
a certain file, it issues a query message that is broadcasted through the network.
Whenever a node receives such a query message, it sets up the reverse route to the
originator - just as AODV does with its route request (RREQ) packets - and retrans-
mits the query message to its physical neighbors. Furthermore, each intermediate
node checks its local repository for any files that match the description (e.g., file
name, key words, etc.) specified in the query message. If such files are found, the
node will send a response message containing the identifiers of all matching files

1060 M. Castro, A. Kassler, C.F. Chiasserini, C. Casetti, I. Korpeoglu

back to the requester using the AODV-style reverse route. Each intermediate node
on the response path will also update its file information cache with the file iden-
tifiers contained in the response message and the provider (i.e., the sender of the
response message). After the requester has received a response, it will then send a
data request for the desired files to (one of) the provider(s) using the AODV-style
routes discovered during the search. The provider will then divide the requested file
into blocks and send data packets containing the various blocks of the requested file
back to the requester. The basis of ORION is AODV, and it concentrates only on file
sharing applications, providing an application layer routing protocol which causes
unnecessary overhead.

The MPP (Mobile Peer-to-Peer) protocol [26] is also proposed as a file sharing
system in MANETs. In contrast to ORION, MPP adapts the overlay structure to the
physical MANET structure via a cross-layer communication channel (Fig. 2b) be-
tween the MANET network layer and the P2P layer. The MPP protocol stack reuses
existing network protocols as much as possible. For node-to-node communication,
the protocol utilizes an enhanced version of the Dynamic Source Routing (DSR)
protocol [60]. More specifically, EDSR (Enhanced Dynamic Source Routing) com-
bines Gnutella-style flooding and DSR ad-hoc routing. For the transportation of
user data it uses HTTP over TCP. To connect the application layer protocol with
the network layer protocol (EDSR), the Mobile Peer Control Protocol (MPCP) is
used. The MPCP is the inter-layer communication channel between the application
and the network layer. Using the MPCP, the application can register itself in the
EDSR layer to initialize search requests and to process incoming search requests
from other nodes. It communicates to the corresponding protocol all incoming and
outgoing requests and responses, except the file exchange itself. Besides file sharing
applications, MPP also intends to provide location aware services.

In MPP, when a node wants to locate a desired file, it will issue a search request
that is flooded throughout the MANET, leveraging the EDSR route discovery pro-
cess. Whenever a node receives such a search request, it will communicate with
its application using the MPP protocol stack to see if the application can provide a
matching file. Each intermediate node adds its own node address to the search re-
quest to create a DSR-style route and retransmits the search request to its physical
neighbors. If the application can provide the requested file, a reply message will be
send back to the requester using the reverse path information as contained in the
search request. After the requester has received a reply, it will download the de-
sired file from the provider using HTTP. Responses to queries performed by MPP’s
nodes (and also ORION’s nodes), result in a network-wide broadcast of search re-
quests, giving a routing algorithm complexity of O(n) [21], where n is the number
of nodes. This is clearly a downside of both approaches as they might not scale to
both growing network sizes and increasing request rates.

Hoh et al. proposes in [31] a P2P file sharing system over MANETs based on
swarm intelligence, called P2PSI. Basically, it is an hybrid push-and-pull system
composed by two processes. In the advertisement process (push), each hotspot1

1 In [31], authors consider a quite large portion of peers to be free-riders, who only retrieve files
from others without making contributions to share files. Therefore nodes willing to share files

Peer-to-Peer Overlay in Mobile Ad-hoc Networks 1061

periodically advertises a seed message containing digest information about files to
be shared within a limited area (e.g., as determined by the hop count). Every node
can independently make the decision on when to advertise and which files to adver-
tise to its neighbors, and such decision can be based on e.g., a ranking system to
maximize the number of report delivered [68]. In order to reduce seed message size,
Bloom filter technique [3] is applied as a method for summarizing the list of shared
files. Upon a node receives a seed message, it will cache this information. When
been queried, the node that has the cache of the file information will send a reply to
the querying node. In the discovery process (pull), the node willing to search for a
file, first checks if it has cached the desired file information. If not, the node deploy
query messages, forwarded at intermediate nodes based on their pheromone table, to
find the identity of the node holding the desired file. The pheromone table records
the pheromone intensity on each neighbor link, which denotes the probability of
routing a query message via that neighbor based on the number of hops traversed
by reply message.

According to [31], the search accuracy of a cross-layered approach, such as
P2PSI, is always higher than that of a layered one, as request success ratio decreases
at larger network sizes due to increased overhead for the layered approach. In order
to avoid such redundancy overhead between P2PSI file discovery and network route
discovery process, a cross-layered design (Fig. 2b) is used integrating P2PSI and
ARA (Ant-based routing) protocol [4]. The advantage of such design was experi-
mentally observed by implementing P2PSI in the ns-2 simulator and comparing it
against two cross-layered design service discovery protocols: CL dsr and CL dsdv
[65]. The results show that as the network size and node mobility increase, the re-
quest success ratio of the P2PSI outperforms CL dsr and CL dsdv. Indeed the per-
formance of request success ratio of CL dsr deteriorates as it utilizes flooding to
search for a file which becomes the performance bottleneck when the network size
grows. The same behavior emerges in CL dsdv since it fails to converge as the node
mobility increases.

In order to reduce the heavy overhead of always broadcasting search requests in
the MANET, zone-based protocols, such as ZP2P (Zone-based P2P by [38]) have
been proposed. ZP2P is based on the concept of local zones, determined by a fixed
hop-count. When a node is interested in a certain object, it will first check its lo-
cal cache to see whether any of its zone members can provide the desired object.
However, in case the requested object is not available in the node’s own zone, it will
initiate a bordercast of the request through its border nodes, i.e., to those of its zone
members that are exactly k hops away. In case a border node finds that there are no
members in its zone that could provide the requested object, it will continue the bor-
dercast by forwarding the request to its own border nodes. This process continues
until either a predefined TTL expires or the whole network has been searched.

By introducing the concept of local zones into the P2P search process, some of
the network-wide broadcasts may become unnecessary. However, whether or not a
requested file can be provided by nodes inside the requester’s own zone depends

are called hotspots and they are assumed to provide almost all popular files and some private
collections.

1062 M. Castro, A. Kassler, C.F. Chiasserini, C. Casetti, I. Korpeoglu

entirely upon chance. Especially in larger networks, the cases where a request could
be satisfied locally can be expected to be rare [70]. Hence, the utility of local zones
will evidently not scale with growing network sizes. The propagation of requests
using bordercasts can lower the overall traffic as a certain number of inner nodes
might not have to forward the requests. Nonetheless, with growing network sizes,
the bordercast process will quickly encounter the same problems of a regular broad-
cast as the number of zones that need to be contacted also increases. Furthermore,
the efficacy of a bordercast depends entirely on factors such as the zone radius and
the node density inside the zones. In networks with low or medium node density,
it is likely that the routes from the center node of a zone to its border nodes will
involve most (if not all) of the inner nodes. Thus, in such networks, the border-
cast will closely resemble a regular broadcast, and the performance of ZP2P can
be expected to be worse than that of a regular broadcast, due to the additional con-
tinuous (update) advertisement messages that need to be exchanged. Although not
explicitly addressed in [38], nodes need to periodically re-issue their advertisements
to take into consideration the effects of node mobility on zone memberships. This
will cause ZP2P to generate additional traffic, with respect to a regular broadcast
application.

4.3 Structured P2P Networks for MANETs

The concept of DHT was first proposed by Plaxton [51] without the aim to ad-
dress P2P routing problems. But, it soon proved to be a useful substrate for large
distributed systems and a number of projects have been proposed to build Internet-
scale facilities leveraging the DHT concept. On the other hand, ad-hoc networks
gained great importance due to the increasing occurrence of scenarios which do not
have a centralized infrastructure. Whenever there is a need for a scalable data man-
agement without any infrastructure, the combination of ad-hoc network and DHT
technology seems to be a promising solution [33]. The questions, whether this is
beneficial, and how current solutions perform such combination will be discussed
in the following sections.

4.3.1 Transparent Layered DHT on Top of Broadcast Based Ad-hoc Routing
Protocol

Deploying a DHT directly on top of an existing broadcast based ad-hoc routing pro-
tocol does not require any changes to the routing or overlay layer. In that approach,
every file name and peer is hashed to a key by standard hash algorithms (e.g., SHA-
1 [22]). Every peer should maintain a small routing table of size O(logn), in which
each entry directs to an intermediate peer closer to the requested key. The peer
closest to the requested key knows the address of the actual peer storing the re-
quested file. In order to route to these intermediate peers, standard MANET routing
protocols are deployed which usually acquire topology information using broadcast,

Peer-to-Peer Overlay in Mobile Ad-hoc Networks 1063

increasing the routing algorithm complexity to O(nlogn). As described by [21], this
is due to the fact that network routing protocols in MANET introduce complexity
of O(n) to find the route between every two peers, although there are only O(logn)
peers needed in the P2P overlay.

In order to maintain the correctness of each overlay routing table, peers need to
periodically communicate with each other through overlay management protocols.
These protocols should be triggered more frequently in MANETs due to mobility
and characteristics of the underlying physical networks. Otherwise, routing infor-
mation at the overlay might not be consistent. In [12], the performance of Bamboo
is evaluated in a static multi-hop environment common to ad-hoc networks. When
deploying Bamboo over MANET following a layered approach (Fig. 2a), the over-
lay network forms a virtual network in the application layer while the underlying
network is transparently managed by MANET routing protocols such as AODV.

Bamboo uses proactive management traffic in order to maintain the network
structure. Neighbor ping is generated by every node in order to make sure that the
node can still reach its one-hop neighbors in the overlay, and it is also used to main-
tain a RTT estimation for retransmission timeout calculations. Nodes also perform
leafset update by periodically choosing a random node from its leafset, and execute
a leafset push followed by a leafset pull. Bamboo considers that two nodes share the
same level when one node contains the other node in its routing table. Therefore,
the local routing table update is used to exchange the node information in that level.
Data storage updates are also performed in order to maintain the desired number of
replicas among the peers.

However it is expected that the proactive management maintenance introduced
by Bamboo increases network traffic, and consequently as the network grows, high
congestion will be experienced. In order to find a balance between management traf-
fic in the overlay and network congestion, three different configurations for Bamboo
management traffic were compared in [12]; “no” management, “standard” man-
agement (used by [55]), and “custom” management. Table 1 presents the param-
eters used by each configuration. The comparison carried tries to find a balance
between lookup efficiency and management traffic overhead. Too frequent manage-
ment traffic will lead to high overhead in multi-hop environments and thus lead to
network congestion. No management, on the other hand, will leads to low lookup
efficiency.

Simulations were performed using ns-2 over different scenarios, where the nodes
were positioned on a grid at a distance of 200m, with 250m of transmission range
and 500m of carrier sense range using two ray ground as radio propagation model.
The transmission rate is set to 11Mbps, and the basic rate to 1Mbps. The AODV-UU
routing protocol was adopted using default settings proposed by [66]. Simulations
were performed for 60 seconds without bootstrapping period. During the experi-
ments, every 2 seconds, each node generates a 500-byte PUT message with a random
key to store data in the overlay. All nodes also try to acquire random selected keys
that are located on other nodes generating a 32-byte GET message every 2 seconds.

Figure 3a presents the total Bamboo management overhead, which represents the
aggregation of the overlay management traffic including: neighbor ping, leafset up-
date, routing table update, and data storage update, for the three different scenarios.

1064 M. Castro, A. Kassler, C.F. Chiasserini, C. Casetti, I. Korpeoglu

Table 1 Bamboo management timers (secs)

NO Standard Custom

Leafset update – 1 5
Local routing update – 5 10
Global routing update – 10 20
Data storage update – 2 6
Neighbor ping 0,5 0,5 0,5

As expected, the overhead introduced by Bamboo increases with number of nodes,
and is much higher for “standard” timeout settings compared to “no”, and “custom”
management. This is mainly due to the aggressiveness of periodic updates required
by Bamboo to monitor the status of other nodes in the overlay and update the over-
lay data structures. On the other hand, in the case of “no” management, each node
does not generate periodic updates, but neighbor ping is still performed in order to
maintain the leafset peers.

Figure 3b also illustrate the success rate behavior of Bamboo over the scenar-
ios chosen by [12]. As the number of nodes increases, network load increases and
success ratio decreases accordingly as illustrated in Fig. 3b. For example, in the 36
nodes grid, the success ratio is 61, 41 and 19%, respectively for “no”, “custom” and
“standard” management. The lower success ratio for higher number of nodes can be
explained by the higher percentage of management and routing overhead in order
to maintain the overlay structure, as shown in Fig. 3a. The ability to find the des-
tination nodes which are responsible for the specific keys degrades as management
overhead increases network contention. This results in higher number of resent and
dropped packets over the wireless links due to network congestion and consequently
problems in the routing layer, as shown in more details over the simulation results
presented in [12].

Other related publications, such as [17] which deploys Chord over MANET rout-
ing protocols, also indicate that simply deploying a standard MANET routing layer
does not scale with increasing number of clients, network size, and mobility. The
reasons are manifold such as the characteristics of multi-hop communication, the
consistency problem between the two routing layers, and the design assumptions
for MANET routing protocols which assume traffic characteristics unlike those of
structured overlay protocols.

4.3.2 Integrating DHT over the Network Layer

As illustrated in Section 4.3.1, the characteristics of the underlying ad-hoc network
protocol has great effect on the performance of the overlay as the DHT induces
a constant flow of control and query messages. An optimized interaction between
ad-hoc network and DHT is essential to create an efficient combination. There are

Peer-to-Peer Overlay in Mobile Ad-hoc Networks 1065

0

200

400

600

800

1000

1200

4 9 16 25 36 49

Number of Nodes

T
o

ta
l O

ve
rl

ay
 T

ra
ff

ic
 (

K
b

yt
es

) NO management
CUSTOM management
STANDARD management

(a) Managment Overhead (b) Success Rate

0

10

20

30

40

50

60

70

80

90

100

4 9 16 25 36 49
Number of Nodes

S
u

cc
es

s
R

at
io

 (
%

)

NO management

CUSTOM management

STANDARD management

Fig. 3 Impact of bamboo management traffic

several approaches proposed in the literature that try to exploit similarities between
ad-hoc network and DHT in order to integrate them in a system with higher per-
formance, by also reducing the overheads. The examined approaches analyzed here
are VRR [8], SSR [24], CrossROAD [18], MADPastry [70], MeshChord [7], and
Hashline [61].

Virtual Ring Routing (VRR) [8], proposed by Microsoft Research Centre, is a
networking routing protocol which pushes peer-to-peer concepts to the network
layer itself. Caesar et al. argue that VRR brings benefits when implemented over
MANETs, as it balances the load of managing hash-table keys across nodes, and
avoids flooding of routing messages through the network. Based on Pastry [58],
VRR organizes the nodes into a virtual ring ordered by their identifiers. Each node
maintains a small number of routing paths to its neighbors in the ring.

In VRR, node identifier are fixed, unique and location independent. To maintain
the integrity of the virtual ring with node and link failures, each node maintains
a virtual set (vset) of cardinality r (predecessor and successor nodes). The routing
path between a node and each of its virtual neighbors is called vset-path. The routing
table also maintains the physical neighbor set (pset) with the identifiers of the nodes
that it can directly communicate with at the link layer. Such information is gathered
through broadcast of hello messages periodically. The routing information for a
vset-path is also stored on the nodes along the paths. Then, a node maintains a
routing table with information about the vset-paths to its virtual neighbors, other
vset-paths that are routed through the node, and the pset of physical neighbors. As
described in [8], VRR requires rp + k routing table entries per node on the average,
where p is the average path length, and k is the number of physical neighbors. Since
node identifiers are random2 and location independent the virtual neighbors of a
node will be randomly distributed across the physical network. So, the probability
that a random node has a path to a random destination is O(rp/n). Therefore, a

2 VRR hashes the node current IP address in order to obtain the node identifiers.

1066 M. Castro, A. Kassler, C.F. Chiasserini, C. Casetti, I. Korpeoglu

packet is expected to reach a node that has a vset-path to the destination after visiting
O(n/(rp)) nodes.

Unlike routing protocols that forward packets based on destination address, VRR
nodes route packets to destination identifiers (keys) by forwarding them to the next
hop towards the path endpoints whose identifier is numerically closest to the desti-
nation identifier from among all the endpoints in their routing table. An advantage
of such scheme is that these keys can identify application objects instead of just
VRR nodes. Control messages to set up new vset-paths are routed using existing
vset-paths avoiding the flooding on the network.

Scalable Source Routing protocol (SSR) [24] brings the same concept of VRR
while trying to integrate the P2P overlay into the network layer. But while VRR does
not assume any specific MANET routing protocol integration, SRR combines the
Dynamic Source Routing protocol (DSR) [35] in the physical network with Chord
routing in the virtual ring formed by the address space. Fuhrmann states that SSR
trades off shortest path for a reduced amount of state information, leading to less
maintenance overhead. Therefore, besides the successor, SSR’s nodes store the ad-
dresses of O(logn) additional nodes at exponentially spaced distances to reduce the
average request path length from O(n) to O(logn), where n is the number of nodes
in the network.

Following the DSR concept, data packets of SSR contain a source address, a des-
tination address and a source route. However according to SSR design, the source
route does not have to span the entire path from the source to destination. When
the virtual ring has been established, SSR can route messages to any destination.
By constructing the route cache, each node contains source routes to the node’s
neighbors in the virtual ring. Beside that, the caches will contain source routes to
other destinations also. For example, all nodes that are part of a source route in the
cache can be viewed as potential destinations. When routing a packet, the respective
node chooses the (intermediate) destination from its cache that is physically clos-
est to itself and virtually closest to the final destination of the packet. It appends
the source route from its cache to the packet’s header. The nodes along this source
route can then forward the packet using the source route in the packet. This routing
step is repeated at all intermediate nodes and all subsequent destinations until the
packet has reached its final destination. If the virtual ring has been formed consis-
tently, this routing algorithm is guaranteed to succeed for any source and destination
pair.

To maintain the virtual ring consistency in SSR, all nodes must have valid source
routes to their respective virtual neighbors; e.g., its predecessor and successor in the
address ring. The nodes need also to have information about their physical neigh-
borhood, information which is gathered through a periodic beacon message (e.g.,
hello message). The state maintenance of the virtual ring continues until all nodes
have mutually correct virtual neighbors, in order to guarantee network convergence.
In order to reduce the routing stretch, SSR’s nodes use the source routes in their
routing caches to prune unnecessarily long source routes, e.g., routes contain cycles
or a shorter sub-path to one of the nodes in the source route is known (short cut).
However, as discussed by [70] the effectiveness of this source route pruning entirely

Peer-to-Peer Overlay in Mobile Ad-hoc Networks 1067

depends upon the available cache entries and there are no guarantees as to how well
the source routes in the system can be pruned.

CrossROAD is proposed by [18] as a way to reduce communication overhead
introduced by Pastry when deployed over mobile ad-hoc networks. Different from
VRR and SSR integrated approaches, a cross-layered architecture defining inter-
actions between P2P and routing layers allows CrossROAD to exploit additional
information to optimize the overlay management. These interactions are handled
by the Network Status module (NeSt) [16], an external data sharing module, which
provides interfaces for cross-layer interactions throughout the protocol stack. Each
node running CrossROAD piggybacks advertisements of its presence in the overlay
into routing messages periodically sent by OLSR. Thus, each node in the network
becomes aware of the other peers in the overlay network. Then, each node in the
overlay maintains a routing table of size O(n). Since each node knows all nodes
taking part in the overlay, the sender of a specified message can directly identify the
closest destination for the selected key, and subsequently use the OLSR protocol
at the network layer to deliver the message through the shortest path (O(1) virtual
hops in the overlay).

Reference [18] states that such mechanism reduces the overhead required to build
and maintain DHTs in legacy systems such as Pastry, however at the cost of addi-
tional overhead in the OLSR layer. However, no remote connections are required
by CrossROAD to initialize the overlay routing table, neither in case of disconnec-
tion events or network partitioning. It directly exploits the network routing protocol
that collects topology changes periodically sending its LSU (Link State Update)
packets, and directly updates its own routing table and the related abstraction in the
NeSt. In this way CrossROAD becomes aware of topology changes with the same
delays of the routing protocol. Nevertheless, it is worth to mention the lack of re-
sults regarding scalability of CrossROAD to both growing network sizes and node
mobility.

In order to take physical location into consideration, MADPastry is proposed by
[70]. MADPastry integrates (Fig. 2c) the application layer Pastry and the reactive
ad-hoc routing protocol AODV. The concept of random landmark [67] is used to
create physical clusters where nodes share a common overlay ID prefix. Since there
are generally no stationary nodes available in MANETs, MADPastry works without
any fixed landmark nodes. Instead, it uses a set of landmark keys, which are sim-
ply overlay IDs that divide the overlay ID space into equal-sized segments. Nodes
associate themselves with the temporary landmark node that is currently closest to
them (e.g., as determined by the hop count) by adopting its overlay ID prefix. For
that purpose, temporary landmark nodes send out beacons periodically. These bea-
cons are broadcast and whenever a node overhears a landmark beacon, it stores the
current landmark node’s ID and the distance to it as given by the hop count of the
beacon. As broadcast imposes serious network burden, landmark beacons are only
propagated within the landmark’s own cluster, i.e., beacons are only forwarded by
nodes belonging to that cluster.

When a MADPastry’s node intends to advertise a resource, it will now insert the
resource descriptor under two different keys. The first key is the regular hash key (of

1068 M. Castro, A. Kassler, C.F. Chiasserini, C. Casetti, I. Korpeoglu

the resource’s URI, etc.) inserted into the network. To obtain the second key under
which the resource descriptor is stored, the regular resource key is altered to make
sure the descriptor will be stored in the resource host’s own MADPastry cluster.
For this purpose, the resource key’s prefix is replaced with the host’s own cluster
prefix (current landmark node’s ID). Hence, intra-cluster communication can be ex-
pected to travel only short physical paths, as lookups process will try to find the
corresponding resource descriptor in its physical vicinity (local cluster members).
However such optimization might be useful for popular files or standard services
that are hosted by multiple nodes. Only if this local lookup provides no (appro-
priate) answer, will the request be forwarded as in a regular network-wide lookup.
Following this process, the first key remains fixed during the lifetime of a node,
while the second one can change depending on the node’s position in the physical
network.

To be able to route packets along the network, MADPastry nodes maintain three
different routing tables: a standard AODV routing table for physical routes from a
node to specific target nodes, as well as a stripped down Pastry routing table and
a standard leafset for indirect routing. Differently from Pastry routing table which
consist of log2b N rows, the stripped down Pastry routing table only needs to con-
tain log2b K rows, with K being the number of landmark keys. Using such approach,
MADPastry avoids the expensive Pastry routing table maintenance overhead, but
it deliberately sacrifices the O(logn) bound on the number of overlay hops during
a key lookup. MADPastry also perform a proactive routing table maintenance, by
periodic pinging its “left” and “right” leaf. According to Zahn, this is necessary to
guarantee overlay routing convergence. The remaining routing entries are gained by
overhearing data packets. Then, the accuracy of the Pastry routing tables and leafsets
largely depend on the number of packets that a MADPastry node receives or over-
hears. With the idea of proximity awareness using random landmarking, physical
clusters of nodes sharing a common overlay ID prefix are created, avoiding longer
overlay hops per lookup.

MeshChord, proposed by [7], is an specialization of Chord applied to wire-
less mesh networks, where the availability of a wireless infrastructure, and the
1-hop broadcast nature of wireless communication are taken into account while
performing key lookup. In MeshChord, routers are assumed to be stationary, but
they can be switched on/off during network lifetime. If a client in the mesh net-
work wants to find a certain resource, it sends a key lookup message to its ref-
erence mesh router (a mesh router within its transmission range). The reference
router forwards the resource request in the DHT overlay according to the rules
specified by the Chord protocol, until the resource query can be answered. As in
Chord, in a n-node system, each MeshChord’s node maintains information about
only O(logn) other nodes, and resolves lookups via O(logn) messages to other
nodes.

MeshChord explores location awareness by assigning IDs to peers according
to their coordinates, accomplished by, for example, the use of GPS receivers. Be-
sides that, MeshChord also takes advantages of 1-hop broadcast communication by
overhearing lookup request packets in order to speed up lookup operation. Then,

Peer-to-Peer Overlay in Mobile Ad-hoc Networks 1069

by overhearing a lookup request at the MAC layer, a node can reply to it if the
requested ID is comprised between its ID and the ID of its predecessor in the unit
ring.

It is worth observing in [7] that location awareness tends to decrease the lookup
operations under dynamic network conditions. In fact, location-aware ID assign-
ment tends to rule out the possibility of having close-by peers in the physical net-
work which are far-away in the overlay (e.g., in Chord, possibly corresponding to
the last fingers in the finger table). However, MeshChord achieves a considerable
reduction in message overhead, and improvement in query response time while uti-
lizing location awareness and overhearing strategies.

Hashline [61], a DHT-based file sharing system for wireless ad-hoc networks,
also integrates the P2P query functionality with the network routing. Hashline is
able to answer location queries and also discover and maintain routing information
that is used to transfer files from a source peer to another peer. In this way, it enables
the proposed P2P file sharing system to run on an ad-hoc collection of wireless
nodes without requiring a separate MANET routing protocol at the network layer.

The basic idea in Hashline is the adaptation of the CAN [54] P2P routing pro-
tocol. Unlike CAN, however, [61] uses a one-dimensional space, called hashline,
into which keys and node IDs are mapped. The hashline is divided hierarchically
into segments so that each node is responsible from one segment. The values (loca-
tion information) of the keys falling into a segment are stored in the corresponding
node responsible for that segment. The relationship between segments can be con-
sidered as a tree consisting of parents and children, so that the hashline segment of
a parent spans the hashline segments of all its children.

In [61], when a node would like to find the location of a file with key k, the node
forwards the query to one of its children if k falls into the hashline segment of one
of the children. Otherwise the query is forwarded to the parent. Hence a tree based
routing is used. At the end, the node that is responsible for the hashline segment
including the key receives the query. That node knows the location of the file and
also the route to that location. It answers the query together with the location and
route information. The requester can then download the file from that location using
the learned route. Hence the download operation does not require a different routing
protocol to find the route to the location where the file is stored. In this way, queries
and downloaded files are efficiently routed in the network. However, the operations
performed to keep the tree-based routing state up-to-date when a node leaves or joins
are quite costly. Hence the proposed protocol is suitable for low mobility wireless
networks. As described by [61], the number of routing table entries mantained by
each Hashline’s node is at most k, where k is the number of of physical neighbors.

4.4 Summary and Comparison of the Solutions

As seen, a number of different approaches exist that could potentially be used as
building blocks for large scale distributed network applications in multi-hop net-
works, such as MANETs or Mesh Networks. The varying characteristics of the

1070 M. Castro, A. Kassler, C.F. Chiasserini, C. Casetti, I. Korpeoglu

presented approaches sometimes make it difficult to compare them directly against
each other. Therefore, Table 2 intends to assess the different approaches accord-
ing to:

• Fusion with Underlay: integration principle between P2P and MANET interac-
tions;

• P2P overlay protocol: inspired P2P protocol;
• Routing Algorithm: routing algorithm deployed at the network layer;
• Overlay Adaptation: overlay topology reaction to network change;
• Periodic management: periodic management information exchanged among peer

nodes at the overlay layer ;
• Location Awareness: use of location information to construct the overlay;
• Proposed Applicability: proposed applicability and use cases considered;
• Prototype Implementation: prototype implementation availability.

It is interesting to analyze that all unstructured approaches utilize a Gnutella-like
protocol. Structured approaches are mainly based on Chord and Pastry (as Bamboo
is inspired by Pastry). Regarding routing algorithms, most approaches studied rely
on reactive routing protocols, such as AODV, DSR, and ARA. Proactive routing
algorithms, such as CrossROAD, appear to be very expensive in terms of resource
usage and routing table maintenance traffic injected into the network.

The cross-layered or integrated design (Fig. 2b, c) of unstructured P2P overlays
and ad-hoc routing is an intuitive and simple solution for the discovery of objects
in MANETs. It is a straightforward approach as the changes and enhancements to
the underlying ad-hoc routing protocols are minimal since, for example, reactive
MANET routing protocols already have the capability of broadcasting requests and
directly replying to the requester. However, first and foremost, the obvious disadvan-
tage of such approaches is their poor scalability when network size grows. The main
reason is that network-wide broadcast of search requests scales to neither growing
network sizes nor increasing request rates. P2PSI and ZP2P try to scale to large
MANETs under mobility by applying ant colony behavior and zone-based broad-
casting, respectively.

Despite Bamboo/AODV, the DHT-based protocols avoid duplicated overhead
through integration or cross-layering design. They also try to avoid broadcast-
ing whenever possible, and optimize their DHT entries by overhearing packets.
A significant difference among these systems is the use of location aware infor-
mation by MADPastry and MeshChord, compared to the other DHT-based pro-
tocols. MADPastry exploits the concept of random landmarking to create overlay
clusters, while MeshChord assumes that nodes are stationary, have their own po-
sition information available, and uses MAC layer overhearing to reduce search
latency. Furthermore, since reply and file transfer messages are unicasted for all
unstructured and structured approaches, their reliability depends entirely on the
scalability and performance of the chosen (reactive or proactive) ad-hoc routing
protocol.

Peer-to-Peer Overlay in Mobile Ad-hoc Networks 1071

Ta
bl

e
2

A
ss

es
sm

en
to

f
re

la
te

d
ap

pr
oa

ch
es

So
lu

ti
on

s
Fu

si
on

w
ith

un
de

rl
ay

P2
P

O
ve

rl
ay

pr
ot

oc
ol

R
ou

tin
g

al
go

ri
th

m
O

ve
rl

ay
ad

ap
ta

tio
n

Pe
ri

od
ic

m
an

ag
em

en
t

L
oc

at
io

n
aw

ar
en

es
s

Pr
op

os
ed

ap
pl

ic
ab

ili
ty

Pr
ot

ot
yp

e
im

pl
em

en
ta

tio
n

O
R

IO
N

In
te

gr
at

ed
G

nu
te

lla
-l

ik
e

A
O

D
V

N
/A

N
/A

(N
ot

A
p-

pl
ie

d)
N

o
Fi

le
sh

ar
in

g
N

o

M
PP

C
ro

ss
-l

ay
er

ed
G

nu
te

lla
-l

ik
e

D
SR

N
/A

N
/A

N
o

Fi
le

sh
ar

in
g

an
d

lo
ca

tio
n

aw
ar

e
se

rv
ic

es

no

P2
PS

I
C

ro
ss

-l
ay

er
ed

G
nu

te
lla

-l
ik

e
A

R
A

N
/A

N
/A

N
o

Fi
le

sh
ar

in
g

N
o

Z
P2

P
C

ro
ss

-l
ay

er
ed

G
nu

te
lla

-l
ik

e
A

O
D

V
N

/A
N

/A
Y

(v
ia

lo
ca

l
zo

ne
s)

Fi
le

sh
ar

in
g

N
o

(S
D

L
sp

ec
ifi

ca
tio

n)

B
am

bo
o/

A
O

D
V

L
ay

er
ed

B
am

bo
o

A
O

D
V

Pr
oa

ct
iv

e
L

ea
fs

et
an

d
ro

ut
in

g
ta

bl
e

N
o

Fi
le

sh
ar

in
g,

de
ce

nt
ra

liz
ed

na
m

e
se

rv
ic

e,
P2

PS
IP

Y
es

(L
in

ux
ba

se
d)

V
R

R
In

te
gr

at
ed

Pa
st

ry
A

O
D

V
R

ea
ct

iv
e

L
ea

fs
et

ta
bl

e
N

o

Fi
le

sh
ar

in
g,

de
ce

nt
ra

liz
ed

na
m

e
se

rv
ic

e,
P2

PS
IP

Y
es

(W
in

do
w

s
ba

se
d)

1072 M. Castro, A. Kassler, C.F. Chiasserini, C. Casetti, I. Korpeoglu

Ta
bl

e
2

(C
on

tin
ue

d)

So
lu

ti
on

s
Fu

si
on

w
ith

un
de

rl
ay

P2
P

O
ve

rl
ay

pr
ot

oc
ol

R
ou

tin
g

al
go

ri
th

m
O

ve
rl

ay
ad

ap
ta

tio
n

Pe
ri

od
ic

m
an

ag
em

en
t

L
oc

at
io

n
aw

ar
en

es
s

Pr
op

os
ed

ap
pl

ic
ab

ili
ty

Pr
ot

ot
yp

e
im

pl
em

en
ta

tio
n

SS
R

In
te

gr
at

ed
C

ho
rd

D
SR

R
ea

ct
iv

e
Su

cc
es

so
r

an
d

pr
ed

ec
es

so
r

N
o

Fi
le

sh
ar

in
g,

de
ce

nt
ra

liz
ed

na
m

e
se

rv
ic

e,
P2

PS
IP

Y
es

(L
in

ux
ba

se
d)

C
ro

ss
R

O
A

D
C

ro
ss

-l
ay

er
ed

Pa
st

ry
O

SL
R

Pr
oa

ct
iv

e
O

L
SR

to
po

lo
gy

in
fo

rm
at

io
n

N
o

M
ul

tic
as

t-
ba

se
d,

w
hi

te
bo

ar
d

ap
pl

ic
at

io
ns

N
o

M
A

D
Pa

st
ry

In
te

gr
at

ed
Pa

st
ry

A
O

D
V

R
ea

ct
iv

e
L

ea
fs

et
ta

bl
e

Y
(v

ia
cl

us
te

r
fo

rm
at

io
n)

Fi
le

sh
ar

in
g,

de
ce

nt
ra

liz
ed

na
m

e
se

rv
ic

e
N

o

M
es

hC
ho

rd
C

ro
ss

-l
ay

er
ed

C
ho

rd
D

SR
R

ea
ct

iv
e

Pr
ed

ec
es

so
r

an
d

fin
ge

r
ta

bl
e

Y
(v

ia
co

or
di

na
tio

n
in

fo
rm

at
io

n)

Fi
le

/R
es

ou
rc

e
sh

ar
in

g
N

o

H
as

hl
in

e
In

te
gr

at
ed

C
A

N
C

us
to

m
R

ea
ct

iv
e

N
/A

Y
(v

ia
tr

ee
fo

rm
at

io
n)

Fi
le

/R
es

ou
rc

e
sh

ar
in

g
N

o

Peer-to-Peer Overlay in Mobile Ad-hoc Networks 1073

5 P2P Application Scenarios for Mobile Ad-hoc Networks

The P2P solutions presented in the previous Section provide ways to deploy effi-
cient distributed resources in MANETs using flooding, or key-based routing. These
solutions are important building blocks to realize P2P applications in MANETs.
In this section, we detail their use in important applications and services such as
decentralized name service, overlay-based multicast, and multimedia services.

5.1 Decentralized Name Service

Nearly all Internet applications use persistent, human-readable names for users,
hosts, and services. In the current Internet, this is done using the the Domain Name
System (DNS), which is a centralized, distributed system with a single root of trust.

In peer-to-peer systems such as P2PSIP [20], it is useful to have human-readable,
user-friendly names, but a centralized naming service is an undesirable choke point.
It is difficult to implement a centralized service in a MANET, therefore it is inter-
esting to decentralize service using P2P concepts.

As an example, MAPNaS, a decentralized name service for MANETs, is pro-
posed by [71] in order to identify a resource (e.g., a file, a service, etc) by a unique
resource key that is mapped into the logical DHT space. Due to the lack of a fixed
network topology, there are no dedicated resource directory servers. Instead, every
node functions both as a resource host (e.g., of its own files and services) and as a
resource directory for certain remote resources.

While mobile devices often have limited hardware and maybe storage capabil-
ities, the design goal of MAPNaS is to keep the architecture simple, where nodes
store the resource descriptors (the resource key along with the specific network ad-
dress of the resource) they are responsible for in their local MAPNaS repository.
Furthermore, every node advertises which resources it is willing to share through
MAPNaS. When a node in the network wants to make a local resource (e.g., a ser-
vice, a file, etc.) available to other nodes in the network, it assigns a hash key to that
resource, e.g., by hashing the resource’s URI. Using that key, the node will then con-
struct a resource descriptor consisting of the resource key and the physical network
address (e.g., IP address) of the resource provider (in this case, the node address).
Using the DHT, the descriptor is routed to the node currently responsible for the
resource key. That recipient node will then store the resource descriptor in its local
repository.

Resource discovery with MAPNaS works similarly to the resource advertise-
ment process. First a lookup request is sent to the node currently responsible for
the hash key of the resource’s identifier. Then, the eventual destination node will
check its local repository and send back the matching resource descriptor (or mul-
tiple descriptors in case several nodes are hosting the same resource). As the DHT
in MAPNaS is realized through MADPastry [72], location replications of resource
descriptors are restricted to MADPastry’s clusters.

1074 M. Castro, A. Kassler, C.F. Chiasserini, C. Casetti, I. Korpeoglu

In traditional SIP networks the main task of a SIP server is to resolve an Ad-
dress of Record (AoR) to the current IP address (Contact URI) of a user. This name
resolution usually depends on Domain Name Server (DNS). P2PNS [2] presents a
distributed name service using DHT to resolve AoRs to Contact URIs without rely-
ing on DNS and central SIP servers. Apart from this decentralized name resolution
the call setup is based on the standard SIP protocol. In P2PNS there is a separation
between the overlay layer (key-based routing), the data storage layer (distributed
hash table), the name resolution layer (P2PNS Cache) and the protocols, that utilize
the name service (like SIP or DNS). Hence, the specification of the key-based rout-
ing protocol is independent of P2PNS, and key-based routing solutions discussed
earlier could be easily applied in the MANET environment.

The P2PNS architecture comprises a name resolution and caching layer (P2PNS
Cache) on top of an overlay which provides key-based routing and DHT services.
In P2PNS, a two-stage name resolution mechanism is proposed to efficiently han-
dle frequent IP address changes. A user chooses an arbitrary name as AoR (e.g.,
name@p2pname.org). Then a mapping from the selected AoR to the corresponding
nodeID 3 is stored in the DHT. In this case the name resolution layer first queries the
DHT for the nodeID (given the user’s AoR) of the destination node and in a second
step resolves this nodeID to the current IP address of nodes.

5.2 Overlay-Based Multicast

Overlay-based multicast is one option to implement multicast at the P2P layer. Usu-
ally, multicast protocols are classified as operating at the network layer, like routing
protocols, or at the application layer, where “application” denotes all possible layers
above the transport. Overlay-based multicast runs only at nodes involved in the re-
lated application, and it just requires standard unicast support from the routing level.
There are basically two approaches: (1) structured approach and (2) unstructured
approach. In the structured approach, a multicast routing structure, like a tree, is es-
tablished at the overlay level. Hence parent-child relationships are defined between
peers making up the tree and the packets are forwarded over these peers towards the
receiver peers which are also part of the overlay tree. In the unstructured approach,
no such structure is established and used. Instead the sender has to know which re-
ceivers are interested in the packets and sends them to each receiver using a different
mechanism, such as unicasting the same packet to each receiver. This requires the
sender to know the potential receivers of the multicast data, which can be achieved
through a multicast group membership protocol.

Applying existing P2P multicasting solutions developed for wired and infrastruc-
ture-based networks to MANETs will not work efficiently due to various reasons

3 Every peer chooses once a 160 bits nodeID for joining the overlay. This nodeID is retained even if
the peer changes its IP address or leaves the overlay from time to time. The DHT allows to resolve
the nodeID to the current IP address of a peer.

Peer-to-Peer Overlay in Mobile Ad-hoc Networks 1075

discussed before. Therefore, existing solutions must be adapted or new solutions
must be developed.

XScribe [19] is an structured P2P multicasting protocol for ad-hoc networks. It
is based on the well known P2P multicasting protocol Scribe [11], which was devel-
oped for wired P2P networks. XScribe can be used to implement various multicas-
ting services and works together with CrossROAD in order to obtain the network
topology.

In XScribe, the sender is required to know receivers of a multicast group using
a membership management protocol. The sender obtains this knowledge using a
cross-layer approach, where each multicast receiver sends its bitmask (indicating
which groups it is interested in) embedded into the CrossROAD routing packets.
When the sender has a packet to sent to a group/topic (hence to the receivers that are
interested in that topic), the sender directly sends the packet to each receiver using
the CrossROAD DHT overlay. Therefore, the packet is unicasted to each receiver
without the need to setup a tree or any other multicasting structure before sending
data.

Even though this seems to be inefficient, simulation results in ad-hoc networks
show that XScribe performs better compared to deploying the original Scribe proto-
col over MANETs with standard routing due to the reduced routing stretch between
peer nodes in the overlay structure.

5.3 Multimedia Services

In P2P file sharing applications, the main concern is to locate files to a given query.
Once located, the user can decide to download the file, which then is downloaded
out-of-band (i.e., not through the P2P overlay itself, but through the underlying
networking and transport mechanisms). Hence for file and resource sharing P2P
applications, data transport is not the main concern.

For P2P multimedia services, however, the situation is different. For non-realtime
media, the media is typically located, downloaded and then played back from the
local disk, in contrast media streaming provides faster response time at less client
storage. Media streaming, however, requires a different type service provisioning
and transport from the underlying network. Certain amount of network resource
such as high bandwidth and controlled delay. To guaranteed smooth delivery admis-
sion control [9] needs to be implemented in order to provide real time streaming,
which requires also tight control and end-to-end delay.

Providing P2P media services over ad-hoc networks is challenging due to the
characteristics of multi-hop forwarding and the wireless medium (see Section 2.2.
On the one hand, if some peers become hot-spots as media uploaders, the upload
capacity of peers may be much more restrictive than the upload capacity of media
servers located on the Internet; as thse peers are usually connected via bandwidth-
constrained wireless links. On the other hand, if the load is evenly distributed among
peers, serving the media content from lots of peers provides scalability and can

1076 M. Castro, A. Kassler, C.F. Chiasserini, C. Casetti, I. Korpeoglu

increase system throughput. Another issue is that the connection between an up-
loading peer and a downloading peer may not be stable during the duration of the
streaming session, due to node mobility or peer disconnections [27]. Additionally
the download path that is going over multiple peers may cause additional delay and
increased jitter.

P2P streaming can utilize multiple peers as the sources of the same media file.
As a result, if there are N such source peers, then each one will require R/N upload
capacity where R is the streaming rate. Additionally, a peer that has downloaded
the content may start serving the content to other peers, in this way increasing the
number of serving peers.

The characteristics of wireless multi-hop networks require modifications of ex-
isting P2P media applications to run efficiently. For example, in [44], the authors
propose a new set of criterias and methods to select super-peers in a P2P network
providing IP telephony service. For ad-hoc networks, the selection criteria depend
not only on the CPU, memory and storage capabilities of candidate super-peers, but
also on the location of super-peers, their accessibility and their distance to other
super-peers.

6 Summary

In this chapter, we have investigated the opportunities and challenges of the ap-
plication of peer-to-peer concepts to mobile ad-hoc networks. An overview of P2P
overlay networks shows that unstructured P2P systems do not impose a rigid relation
between the overlay topology and resource locations, representing an easy imple-
mentation for dynamic environments such as MANETs. DHTs impose a structure
on the overlay topology by satisfying certain criteria depending on the respective
DHTs. An overview of mobile ad-hoc networks characteristics shows that mobile
ad-hoc networks impose several problems in terms of wireless multi-hop character-
istics leading to high and varying packet loss and delay, caused by collisions and in-
terference among nodes. Future challenges such as disrupted communications, and
intermittent connectivity in these scenarios are also envisioned. Most of the relevant
schemes of MANET routing protocols are also briefly presented, giving focus on
flat routing approaches such as topology-based, geographic-based, and probabilistic
routing.

Although there is an inherent similarity, common peer-to-peer systems must be
modified in many ways to enable their use in ad-hoc networks. Several approaches
improve the performance of unstructured and structured P2P communication in
wireless multi-hop networks. Meanwhile, different principles, such as layered, inte-
grated and cross-layered design, guide to different integration and interaction possi-
bilities between the peer-to-peer layer and the network layer. According to the simu-
lation results, the deployment of a P2P protocol as is on top of ad-hoc routing layer
cause significant message overhead and redundancy in communication. Thus, the
integrated and cross-layered designs for unstructured P2P are shown to be intuitive

Peer-to-Peer Overlay in Mobile Ad-hoc Networks 1077

and simple as modifications to the ad-hoc routing protocols are minimal. However,
the network-wide broadcast of ad-hoc routing due to search requests (reactive) or
topology change (proactive) does not scale to neither growing network sizes nor net-
work mobility. In order to overcome that, some proposals push the DHT concept to
the ad-hoc routing layer, enabling key-based routing for MANETs. Moreover, some
of them explicitly considers physical locality in order to construct the overlay, while
trying to keep minimum overhead.

As peer-to-peer applications gain greater importance in the infrastructure Inter-
net, efficient porting of such applications to wireless scenarios is also discussed.
Therefore, the solutions presented in Session V pave the way to the deployment of
distributed applications such as decentralized name service, overlay-based multi-
cast, multimedia service, and several other possibilities.

Acknowledgement

This work was supported by the European Commission in the framework of the
FP7 Network of Excellence in Wireless COMmunications NEWCOM++ (contract
n. 216715)

References

1. Androutsellis-Theotokis, S., Spinellis, D.: A survey of peer-to-peer content distribution tech-
nologies. ACM Computing Surveys 36(4), 335–371 (2004)

2. Baumgart, I.: P2pns: A secure distributed name service for p2psip. In: Proc. of Mobile P2P
(2008)

3. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun. ACM
13(7), 422–426 (1970). DOI 10.1145/362686.362692. URL http://portal.acm.org/
citation.cfm?id=362692

4. Bouazizi, I.: Ara - the ant-colony based routing algorithm for manets. In: Proc. of ICPPW.
IEEE Computer Society, Washington, DC, USA (2002). URL http://portal.acm.
org/citation.cfm?id=848286

5. Burgess, J., Gallagher, B., Jensen, D., Levine, B.: MaxProp: Routing for vehicle-based
disruption-tolerant networks. In: Proc. of INFOCOM. Vancouver, Canada (2006)

6. Burleigh, S., Hooke, A., Torgerson, L., Fall, K., Cerf, V., Durst, B., Scott, K., Weiss, H.: Delay-
tolerant networking: an approach to interplanetary internet. IEEE Communications Mag-
azine 41(6), 128–136 (2003). DOI http://dx.doi.org/10.1109/MCOM.2003.1204759. URL
http://dx.doi.org/10.1109/MCOM.2003.1204759

7. Burresi, S., Canali, C., Renda, M.E., Santi, P.: Meshchord: A location-aware, cross-layer spe-
cialization of chord for wireless mesh networks. In: Proc. of PerCom. Hong Kong (2008)

8. Caesar, M., Castro, M., Nightingale, E.B., OShea, G.: Virtual ring routing: Network routing
inspired by dhts. In: Proc. of ACM SIGCOMM. Pisa, Italy (2006)

9. Calafate, C., Cano, J.C., Manzoni, P., Malumbres, M.: A qos architecture for manets support-
ing real-time peer-to-peer multimedia applications. In: ISM (2005)

10. Cao, J., Zhang, Y., Cao, G., Xie, L.: Data consistency for cooperative caching in mobile envi-
ronments. IEEE Computer 37, 60–66 (2007)

1078 M. Castro, A. Kassler, C.F. Chiasserini, C. Casetti, I. Korpeoglu

11. Castro, M., Jones, M.B., Kermarrec, A.M., Rowstron, A., Theimer, M., Wang, H., Wolman,
A.: An evaluation of scalable application level multicast built using peer-to-peer overlays. In:
Proc. of INFOCOM (2003)

12. Castro, M.C., Villanueva, E., Ruiz, I., Sargento, S., Kassler, A.J.: Performance evaluation of
structured p2p over wireless multi-hop networks. In: Proc. of MESH (2008)

13. Cerf, V., Burleigh, S., Hooke, A., Torgerson, L., Durst, R., Scott, K., Fall, K., Weiss, H.:
Delay-tolerant networking architecture. http://www.ietf.org/rfc/rfc4838.txt.
IETF RFC 4838

14. Clausen, T., Jacquet, P., Laouiti, A., Muhlethaler, P., Qayyum, A., Viennot, L.: Optimized link
state routing protocol. In: Proc. of the IEEE INMIC. Pakistan, USA (2001)

15. Conti, M., Maselli, G., Turi, G., Giordano, S.: Cross-layering in mobile ad hoc network design.
Computer 37(2), 48–51 (2004)

16. Conti, M., Maselli, G., Turi, G., Giordano, S.: Cross layering in mobile ad hoc network design.
In: IEEE Computer (2004)

17. Cramer, C., Fuhrmann, T.: Performance evaluation of chord in mobile ad hoc networks. In:
Proc. of MobiShare (2006)

18. Delmastro, F.: From pastry to crossroad: Cross-layer ring overlay for ad hoc networks. In: Per-
vasive Computing and Communications Workshops, 2005. PerCom 2005 Workshops. Third
IEEE International Conference on, pp. 60–64 (2005). URL http://ieeexplore.ieee.
org/xpls/abs_all.jsp?arnumber=1392801

19. Delmastro, F., Passarella, A., Conti, M.: P2p multicast for pervasive ad hoc networks. Perva-
sive and Mobile Computing 4(1), 62–91 (2007). DOI http://dx.doi.org/10.1016/j.pmcj.2007.
03.001

20. Dhara, K.K., Krishnaswamy, V., Baset, S.: Dynamic peer-to-peer overlays for voice systems.
In: Proc. of IEEE International Conference on Pervasive Computing and Communications
Workshops (2006)

21. Ding, G., Bhargava, B.: Peer-to-peer file-sharing over mobile ad hoc networks. In: Proc. of
PERCOMW (2004)

22. Eastlake, D.E., Jones, P.E.: Us secure hash algorithm 1 (sha1). http://www.ietf.org/
rfc/rfc3174.txt. IETF RFC 3174

23. Fiore, M., Casetti, C., Chiasserini, C.F.: Efficient retrieval of user contents in manets. In: Proc.
of INFOCOM. Anchorage, AK, USA (2007)

24. Fuhrmann, T., Di, P., Kutzner, K., Cramer, C.: Pushing chord into the underlay: Scalable rout-
ing for hybrid manets. Tech. rep., Universität Karlsruhe (TH) (2006)

25. Gerla, M., Lindemann, C., Rowstron, A.: P2p manet’s - new research issues. In: Perspectives
Workshop: Peer-to-Peer Mobile Ad Hoc Networks - New Research Issues (2005)

26. Gruber, I., Schollmeier, R., Kellerer, W.: Performance evaluation of the mobile peer-to-peer
protocol. In: Proc. of GP2PC (2004)

27. Guangtao, X., Li, M.L., Deng, Q.N., You, J.Y.: Stable group model in mobile peer-to-peer
media streaming system. In: First IEEE International Conference on Mobile Ad Hoc and
Sensor Systems (2004)

28. Hara, T.: Effective replica allocation in ad hoc networks for improving data accessibility. In:
Proc. of INFOCOM, pp. 1568–1576 (2001)

29. Hara, T.: Replica allocation methods in ad hoc networks with data update. Mobile Networks
and Applications 8(4) (2003)

30. Heckmann, O., Bock, A.: The edonkey2000 protocol. Tech. rep., Darmstadt University of
Technology (2002)

31. Hoh, C., Hwang, R.: P2p file sharing system over manet based on swarm intelligence: A cross-
layer design. In: Proc. of WCNC (2007)

32. Holland, G., Vaidya, N.H.: Analysis of tcp performance over mobile ad hoc networks. In:
Proc. of MobiCom, pp. 219–230 (1999)

33. Hu, Y.C., Das, S.M., Pucha, H.: Peer-to-peer overlay abstractions in manets. In: J. Wu (ed.)
Theoretical and Algorithmic Aspects of Sensor, Ad Hoc Wireless, and Peer-to-Peer Networks,
pp. 858–871. CRC Press (2005)

Peer-to-Peer Overlay in Mobile Ad-hoc Networks 1079

34. Johnson, D.B.: Routing in ad hoc networks of mobile hosts. In: Proc. of the IEEE Workshop
on Mobile Computing Systems and Applications, pp. 158–163. Santa Cruz, USA (1994)

35. Johnson, D.B., Maltz, D.A.: Dynamic source routing in ad hoc wireless networks. In: Imielin-
ski, Korth (eds.) Mobile Computing, vol. 353. Kluwer Academic Publishers (1996). URL
citeseer.ist.psu.edu/johnson96dynamic.html

36. Karakaya, M., Korpeoglu, I., Ulusoy, O.: Free riding in peer-to-peer networks. In: IEEE
Internet Computing, to appear, 2009 (2009)

37. Karp, B.N., Kung, H.T.: Gpsr: Greedy perimeter stateless routing for wireless networks. In:
Proc. of MobiCom, pp. 243–254 (2000)

38. Kellerer, W., Schollmeier, R.: Proactive search routing for mobile peer-to-peer networks:
Zone-based p2p. In: Proc. of ASWN (2005)

39. Klemm, A., Lindemann, C., Waldhorst, O.P.: A special-purpose peer-to-peer file sharing sys-
tem for mobile ad hoc networks. In: Proc. of IEEE VTC (2003)

40. Kranakis, E., Singh, H., Urrutia, J.: Compass routing on geometric networks. In: Proc. of
CCCG, pp. 51–54. Vancouver, Canada (1999)

41. Liang, J., Kumar, R., Ross, K.: Understanding kazaa. http://citeseer.ist.psu.
edu/liang04understanding.html (2004)

42. Lindgren, A., Doria, A., Schelen, O.: Probabilistic routing in intermittently connected net-
works. ACM Mobile Computing and Communications Review 7(3), 19–20 (2003). DOI
http://dx.doi.org/10.1109/MCOM.2002.1018018

43. Lua, E.K., Crowcroft, J., Pias, M., Sharma, R., Lim, S.: A survey and comparison of peer-
to-peer overlay networks schemes. IEEE Communications Surveys and Tutorials 7(2), 72–93
(2004)

44. M. Mani W. Seah, N.C.: Super nodes positioning for p2p ip telephony over wireless ad hoc
networks. In: MUM (2007)

45. M. Waldman A. D. Rubin, L.F.C.: Publius: a robust, tamper-evident, censorship-resistant web
publishing system. In: Proc. of USENIX. ACM Press, Denver, Colorado, USA (2000)

46. Naumov, V., Baumann, R., Gross, T.: An evaluation of inter-vehicle ad hoc networks based on
realistic vehicular traces. In: Proc. of ACM MobiHoc, pp. 1568–1576. Florence, Italy (2006)

47. Neumann, A., Aichele, C., Lindner, M., Wunderlich, S.: Better approach to mo-
bile ad-hoc networking (b.a.t.m.a.n.). http://tools.ietf.org/html/
draft-wunderlich-openmesh-manet-routing-00 (2008). Work in progress

48. Papadopouli, M., Schulzrinne, H.: A performance analysis of 7ds: a peer-to-peer data dis-
semination and prefetching tool for mobile users. In: Proc. of IEEE Advances in Wired and
Wireless Communications (2001)

49. Perkins, C., Royer, E.: Ad hoc on-demand distance vector routing. In: Proc. of IEEE WMCSA
(1999)

50. Perkins, C.E., Royer, E.M.: Ad hoc on-demand distance vector routing. In: Proc. of the IEEE
Workshop on Mobile Computing Systems and Applications, pp. 90–100. New Orleans, USA
(1999)

51. Plaxton, C., Rajaraman, R., Richa, A.: Accessing nearby copies of replicated objects in a
distributed environment. In: Proc. of ACM SPAA (1997)

52. Pouwelse, J., Garbacki, P., Epema, D., Sips, H.: The bittorrent p2p file-sharing system: Mea-
surements and analysis. Peer-to-Peer Systems IV pp. 205–216 (2005). URL http://dx.
doi.org/10.1007/11558989_19

53. Pucha, H., Das, S.M., Hu, Y.C.: Ekta: An efficient dht substrate for distributed applications in
mobile ad hoc networks. In: Proc. of the Sixth IEEE Workshop on Mobile Computing Systems
and Applications (WMCSA 2004). English Lake District, UK (2004)

54. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content-addressable
network. In: Proc. of ACM SIGCOMM. San Diego, USA (2001)

55. Rhea, S., Geels, D., Roscoe, T., Kubiatowicz, J.: Handling churn in a DHT. In: Proc. of
USENIX (2004). URL http://citeseer.ist.psu.edu/648942.html

1080 M. Castro, A. Kassler, C.F. Chiasserini, C. Casetti, I. Korpeoglu

56. Ripeanu, M.: Peer-to-peer architecture case study: Gnutella network. In: Proc. of Peer-to-Peer
Computing, pp. 99–100 (2001). URL http://ieeexplore.ieee.org/xpls/abs_
all.jsp?arnumber=990433

57. Roger Dingledine Michael J. Freedman, D.M.: The free haven project: Distributed anony-
mous storage service. In: Proceedings of the Workshop on Design Issues in Anonymity and
Unobservability, LNCS (2000)

58. Rowstron, A., Druschel, P.: Pastry: Scalable, distributed object location and routing for large-
scale peer-to-peer systems. In: Proc. of ACM/IFIP Middleware. Heidelberg, Germany (2001)

59. Schollmeier, R., Gruber, I., Finkenzeller, M.: Routing in mobile ad hoc and peer-to-peer net-
works: a comparison. In: Proc. of Workshop on Peer-to-Peer Computing. In Networking
(2002)

60. Schollmeier, R., Gruber, I., Niethammer, F.: Protocol for peer-to-peer networking in mobile
environments. In: Proc. of ICCCN (2003)

61. Sozer, H., Tekkalmaz, M., Korpeoglu, I.: A peer-to-peer file search and download protocol for
wireless ad-hoc networks. to appear in Computer Communications (To Appear)

62. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A scalable peer-
to-peer lookup service for internet applications. In: Proc. of ACM SIGCOMM. San Diego,
USA (2001)

63. Stojmenovic, I.: Position based routing in ad hoc networks. IEEE Communications Magazine
40(7), 128–134 (2002). DOI http://dx.doi.org/10.1109/MCOM.2002.1018018

64. Tang, B., Gupta, H., Das, S.: Benefit-based data caching in ad hoc networks. IEEE Trans. on
Mobile Computing 7(3), 62–91 (2008)

65. Varshavsky, A., Reid, B., de Lara, E.: A cross-layer approach to service discovery and selec-
tion in manets. Proc. of IEEE Mobile Adhoc and Sensor Systems Conference (2005). URL
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1542832

66. Wiberg, B.: Porting aodv-uu implementation to ns2 and enabling tracebased simulation. Mas-
ter’s thesis, Uppsala University (2002)

67. Winter, R., Zahn, T., Schiller, J.: Random landmarking in mobile, topology-aware peer-to-peer
networks. In: Proc. of FTDCS (2004)

68. Wolfson, O., Xu, B., Yin, H., Cao, H.: Search-and-discover in mobile p2p network databases.
In: Proc. of Int. Conf. on Distributed Computing Systems (2006)

69. Yin, L., Cao, G.: Supporting cooperative caching in ad hoc networks. IEEE Transactions on
Mobile Computing 5(1) (2006)

70. Zahn, T.: Structured peer-to-peer services for mobile ad hoc networks. Phd thesis, Freien
University Berlin (2006)

71. Zahn, T., Schiller, J.: Mapnas: A lightweight, locality-aware peer-to-peer based name service
for manets. In: Proc. of LCN, pp. 499–500. IEEE Computer Society, Washington, DC, USA
(2005). DOI http://dx.doi.org/10.1109/LCN.2005.87

72. Zahn, T., Schiller, J.: Dht-based unicast for mobile ad hoc networks. In: Proc. of
PerCom (2006). URL http://ieeexplore.ieee.org/xpls/abs_all.jsp?
arnumber=1598963

73. Zhu, Y., Rexford, J., Bavier, A., Feamster, N.: Ufo: A resilient layered routing architecture.
In: Technical Report TR-780-07, Princeton University (2007)

Opportunistic Information Retrieval in Sparsely
Connected Ad Hoc Networks

Mooi-Choo Chuah and Jian-bin Han

1 Introduction

With the advancement in technology, many users carry wireless computing de-vices
e.g., PDAs, cell-phones etc. Such devices can form mobile ad hoc networks and
communicate with one another via the help of intermediate nodes. Such ad hoc
networks are very useful in several scenarios e.g., battlefield operations, vehicular
ad hoc networks and disaster response scenarios. The ability to access important
information in these scenarios is highly critical. Many ad hoc routing schemes have
been designed for ad hoc networks but such routing schemes are not useful in some
challenging network scenarios where the nodes have intermittent connectivity and
suffer frequent partitioning. Recently, disruption tolerant network technologies [5,
12] have been proposed to allow nodes in such extreme network-ing environment
to communicate with one another. Several DTN routing schemes [4, 14] have been
proposed.

Although routing is an important design issue for such sparsely connected net-
works, it is important to design an information retrieval system that works in ex-
treme networking conditions so that information can be accessed rapidly and ef-
ficiently. For example, in a battlefield, soldiers need to access information related
to detailed geographical maps, intelligent information about enemy locations, new
commands from the general, weather information etc. In addition, a particular data
item may be of interests to multiple soldiers so replicating the data item at multiple
nodes permits other nodes to access it more easily. This allows us to save battery

Mooi-Choo Chuah
Department of Computer Science and Engineering, Lehigh University, 19 Memorial Drive West,
Bethlehem, PA 18015, USA, e-mail: chuah@cse.lehigh.edu

Jianbin Han
Department of Computer Science and Engineering, Lehigh University, 19 Memorial Drive West,
Bethlehem, PA 18015, USA, e-mail: jih206@lehigh.edu

X. Shen et al. (eds.), Handbook of Peer-to-Peer Networking, 1081
DOI 10.1007/978-0-387-09751-0 38, © Springer Science+Business Media, LLC 2010

1082 Mooi-Choo Chuah and Jian-bin Han

power, bandwidth consumption and the data item retrieval time. Such data caching
also means that the source of the data items need not know the identities of the nodes
that need to access the data items.

Researches on data access and dissemination techniques in ad hoc and sensor
networks are not new. For example in [15], the authors design schemes for placing
the storage node such that the total energy cost for gathering data to the storage
nodes and replying queries can be minimized. The approach in [15] is not directly
applicable to our problem since they assume stationary nodes in their environments.
They also do not consider how a node can discover the replicas of the data items.
In [1], the authors propose three distributed caching techniques for well-connected
ad hoc networks, namely CacheData, CachePath and Hybrid-Cache. However, their
techniques are only useful for well-connected ad hoc net-works since they assume
the routes from the publisher to the receivers do not change frequently. In [8, 9],
we design and study information retrieval schemes for single-attribute queries. In
[8, 9], we assume every node is trusted to store data or queries and we do not address
multiple-attribute queries.

In this chapter, we consider a system where we have queries with multiple at-
tributes. In addition, a small number of moving index and storage point(ISP)s may
be deployed to store replicated data and/or advertise indices of published data items.
We compare such a system with another system that does not have ISPs but uses reg-
ular nodes encountered opportunistically to store replicated indices or data. Specifi-
cally, we present three information retrieval schemes, namely (a) the Pre-determined
ISP advertisement (PISA) scheme where ISPs advertise indices of data items with
attribute values that fall within different pre-determined ranges, (b) the ORNA-ID
scheme which uses opportunistically encountered nodes for advertising indices, and
(c) ORNA-DD scheme which uses opportunistically encountered nodes for storing
replicated data. Then, via simulation studies, we compare the query performance
of these three schemes. Our results indicate that the query success rates achieved
by the ORNA-ID scheme is slightly better than that for the PISA scheme in dense
environment. This indicates that either architecture can be deployed depending on
the trust levels nodes have among themselves or with some specially deployed stor-
age nodes. In addition, our results indicate that the ORNA-DD (that incorporates
data duplication) scheme provides 91% gain in query success rate and 128% gain
in the overall success rate in the sparsest network scenario which we studied. This
shows that index duplication alone is not sufficient to achieve high query success
rate in sparse network scenarios. Instead, data duplication needs to be used. Last
but not least, our results also demonstrate that the square-root duplication approach
can improve the query performance but is not as effective in sparse mobile ad hoc
networks as in the wired network environments.

The rest of the paper is organized as follows. In Section 2, we discuss related
work. In Section 3, we describe our system model. In Section 4, we present the
various data, index and query replication techniques and two specific information
retrieval schemes we study. In Section 5, we describe our simulation model and
present performance evaluation of the proposed schemes. In Section 7, we provide
our concluding remarks and discuss future research.

Opportunistic Information Retrieval in Sparsely Connected Ad Hoc Networks 1083

2 Related Work

In [9, 21], the authors considers the storage node placement problem in sensor net-
works with the goal of minimizing the total energy cost for gathering data to the
storage nodes and replying queries. The authors consider both fixed and dynamic
tree models. For fixed tree model, they give an exact solution on how to place storage
nodes to minimize total energy cost. For the dynamic tree model, they al-low each
sensor node to select the storage nodes such that the communication cost for data
forwarding and query diffusion and reply can be minimized once the storage nodes
have been positioned.

In [21], the authors present three distributed caching schemes, namely (a) Cache-
Data which caches data items that pass by a node, (b) CachePath which caches the
path to the nearest cache, and (c) HybridCache which caches the data item if its
size is small enough or else the path to the data will be cached. LRU policy is used
for cache replacement. These three approaches however do not take into consider-
ations how nodes within a neighborhood can collaborate such that the data caching
will always generate better benefits in terms of access cost. In addition, their ap-
proach also assumes well-connected ad-hoc networks. In sparse net-works, there
may not be a path connecting a querying node and a data generating node. Thus,
to ensure good querying performance, a query needs to be replicated and stored at
some intermediate nodes to increase the chance of having that query answered by
data generating nodes. Alternatively, published data items need to be replicated to
increase this chance.

In [1], the authors design a protocol called Mercury to support multi-attribute,
range-based searches. There are two main components in Mercury: (a) Mercury
handles multi-attribute queries by creating a routing hub for each attribute in the
application schema. Each routing hub is a logical collection of nodes. Queries are
passed to exactly one of the hubs corresponding to the attributes that are queried,
while a new data item is sent to all hubs for which it has an associated attribute. (b)
Each routing hub is organized into a circular overlay of nodes and data is placed
contiguously on this ring. Their evaluation shows that Mercury is able to achieve
logarithmic-hop routing and near-uniform load balancing. Mercury is de-signed for
overlay networks with static nodes. Thus, its technique is not directly applicable to
the network environments that we study. The PISA scheme we de-sign and evaluate
in this paper is an adapted version of the Mercury protocol for mobile environments.

In [20], the authors describe Snoggle, an implementation which uses information
retrieval techniques to index information and process user queries. Their hierarchi-
cal system consists of indexing points (IPs), a key indexing point (KIP) and dis-
tributed object sensors. The IPs collect data from object sensors within their range
and organize the data into an inverted index table. IPs periodically send aggregated
information to the KIP. The KIP publishes the aggregated information forwarded by
all IPs. The IPs also provide message routing for the traffic between IPs, KIP and
users. A user can issue a local or distributed query. A user performs a local query
by directing his query to a specific IP within the transmission range of his wireless
device. A distributed query is performed when the user queries the KIP. The KIP

1084 Mooi-Choo Chuah and Jian-bin Han

then returns a list of IPs that may have the data items that the user is interested in.
The user can then query the individual IPs. Our approach in this pa-per differs from
theirs in multiple ways: (a) our architecture is distributed such that it can still work
without the indexing point, (b) our system uses replicated data or indices to improve
query performance, (d) users can query data-generating nodes directly.

In [13], the author considered the data replica allocation problem in ad hoc
networks. More specifically, the author proposed three replica allocation methods,
namely (a) Static Access Frequency (SAF) which makes use of the access frequency
to each data item, (b) dynamic access frequency and neighborhood (DAFN) method
which makes use of the access frequency of data items and the neighborhood of
mobile hosts, and (c) dynamic connectivity based group (DCG) which considers
both the access frequency and the whole network topology. In SAF, each mobile
host caches the data items that it accesses most frequently. In DAFN, the approach
is similar to SAF except that replications among neighboring nodes are eliminated.
In DCG, nodes that are connected form groups and the replica allocation is deter-
mined based on the group access frequency. The disadvan-tage of these approaches
is that they assume full knowledge of access frequencies and the ability to share
such information in well-connected ad hoc networks.

3 System Model

In this chapter, we assume that there are two types of network entities: (a) reg-
ular nodes which are wireless devices e.g., PDAs and cell-phones carried by in-
dividuals, and (b) indexing and storage points (ISPs) which are special moving
nodes which run server software modules that support content-based information re-
trievals. These ISPs may be wireless routers mounted on moving vehicles e.g., cam-
pus buses [4]. All the nodes (either ISPs or regular nodes) support communi-cations
using disruption tolerant networking technology [5, 12]. Users can subscribe to the
information retrieval services via the traditional subscription procedures similar to
ordering Internet services. The users’ wireless devices will run the client modules
that support content-based information retrievals.

We further assume that users can publish their data items e.g., region-based
weather, sensor data readings, enemy intelligent information for others to query.
The data items can be labeled using some meta-data descriptions. For example, a
data item describing enemy intelligent information may take the form: (<cate-gory=
“Al-Qaeda.GRPlocation”>,<clearance, “ >′′, 5 >, encrypted data). This data item
basically describes the location of an Al-Qaeda group that only soldiers with a clear-
ance level higher than 5 can access. The nodes that publish data items are referred
to as the data nodes. The published data items can be stored at regular nodes or
at the ISPs. Any publisher can store his data items at some designated ISPs based
on the categories the data items belong to or store his data items at any ISPs that
he encounters opportunistically. In addition, a publisher can choose to replicate his
published data items to increase the chances of letting others find them.

Opportunistic Information Retrieval in Sparsely Connected Ad Hoc Networks 1085

Any authorized user can send a query to retrieve data items of interests to
him. A query may take the form: Query(<category=“Al-Qaeda.GRPLocation”,
<clearance, “ >′′, 3>, expired:20:00). This query looks for the locations of all
Al-Qaeda groups that can be accessed with a clearance level above 3. The query
expires at a certain time. Since the nodes in the network scenarios we are consider-
ing are frequently partitioned, a user can choose to duplicate his query to increase
his chances of getting a reply before his query expires. The nodes that generate the
queries are referred to as the querying nodes.

There are four important components in our information retrieval system: (a)
the data caching component is related to how and where the published data items
are stored, (b) the index advertising component is related to how published data
is advertised, and (c) the query dissemination component is related to how queries
are disseminated, and (d) the message routing component which determines how a
response can be sent to a querying node. We will explain the approaches used for
different components in Section 4.

4 Data/Index/Query Dissemination Schemes

In this work, we assume that each data item has two attributes denoted as (x,y) and
each of the attribute has a value that falls within a range [dmin,dmax]. Each query
has a query identifier and an expiration time. Each data also has a data identifier,
some meta-descriptions, and an expiration time. Each data-generating node main-
tains two bloom filters: one for attribute 1, and one for attribute 2. In this work, we
assume that every node sends beacons periodically for node discovery. When a data
node or ISP hears the beacon of a new node, it sends an index advertisement (IA)
message that contains its bloom filters information. That way, any node knows if
the other node (which sent the IA) it encounters has any data items of interest to
itself.

4.1 Data Caching

A publisher can (a) store published data items only in his own devices but let ISPs
advertise the meta-data descriptions (referred to as index) of his published data
items, or (b) select other nodes to store replicated copies of his published data items.
Our earlier work [8, 9] has indicated that data replication helps to improve the suc-
cess rate of single-attribute queries with an expiration time.

A publisher may choose to replicate its data items. In some schemes, special
moving nodes called the Index Storage Point (ISP)s are deployed to store data
items so a publisher can push its data items to such ISPs. In other schemes, a pub-
lisher can binary spread its replicated copies to any regular nodes it encounters. The

1086 Mooi-Choo Chuah and Jian-bin Han

binary spread [8, 16] method can quickly disseminate all the replicated copies. In
non-homogeneous mobility models, a publisher can choose nodes which move
faster to store his replicated data items since such nodes can meet more nodes.
A friendliness metric (FM), which is a moving average of the number of new
nodes encountered by a node within an observation window, is used to identify
nodes with higher mobility. The nodes that move faster can meet more nodes
and hence have a higher FM value. The FM metric can be included in the bea-
cons periodically sent out by a node. When a publisher’s wireless device encoun-
ters another node, it can tell whether the other node has a FM value that ex-
ceeds a certain threshold. If it does, then the publisher will send his replicated
data copies to that node. If the FM metric is not supported, then, a publisher
merely binary spreads his replicated copies to any nodes that his wireless device
encounters.

4.2 Index Advertising

A publisher may decide to ask other nodes to advertise the data items that he pub-
lishes. There are two ways whereby this can be done: (a) publishing the indices
at Index Storage Points (ISPs) or (b) publishing the indices at regular nodes that a
publisher encounters.

Approach (a) works as follows: when a publisher generates a data item, it will
send meta-data descriptions of this data item to some predetermined ISPs. Each ISP
is chosen to advertise indices of the data items with their first or second at-tribute
values falling into a particular range as in the Mercury [1] approach. For example,
assume that the minimum and maximum value of each of the two attributes are 1
and 8 (i.e., dmin=1,dmax=8). ISP1 advertises indices of data items with values of
their first attribute falling within the range [1,4] or values of their second attribute
falling within the range [5–8], ISP2 advertises indices of data items with values of
their first attribute falling within the range [5–8], or values of their second attribute
falling within the range [5–8], ISP3 advertises indices of data items with values of
their first attribute falling within the range [1–4] or values of their second attribute
falling within the range [1–4], and ISP4 advertises indices of data items with the
values of their first attribute within the range [5–8] or values of their second at-
tribute within the range [1–4]. Then, when a publisher generates a data item, it will
send notification messages to three ISPs which take care of the ranges its attribute
values fall into. For example, if a data item has attribute values (1,5), then notifi-
cation messages will be sent to ISP1, ISP2, and ISP3. Approach (a) assumes that
all regular nodes know how the index ranges are distributed among the different
ISPs.

Approach (b) works as follows: a publisher generates M tokens for each index
of a newly generated data items and binary spread them to nodes that the publisher
encounters. That means, each node that has an index with more than one token is
allowed to pass half of the tokens to another node that it encounters until it only has
an index with one token.

Opportunistic Information Retrieval in Sparsely Connected Ad Hoc Networks 1087

4.3 Query Dissemination

When ISPs are deployed, a querying node knows which ISP to enquire for the in-
formation of data nodes with matching data items. Upon receiving the information
from the ISP, the querying node can proceed to retrieve the relevant data items. In
addition, a node also can retrieve data items from a data node that it en-counters.

A node, n1, which is interested in data items with certain attribute values e.g.,
(3,6) does not know where such items are stored if no ISPs are deployed. In such
cases, there are two ways whereby node n1 can find such data items: (a) since each
data node broadcasts its index advertisement, any node that can hear such an adver-
tisement can determine if the other node has data items of interest to itself, (b) if
n1 encounters another node that advertises indices, it can query that node if its ad-
vertised indices match with pending queries which n1 stores. A response message
that contains the data node identifier will be sent to the querying node. Then, the
querying node can directly retrieve the data items from the relevant data-generating
nodes.

To allow more queries to successfully retrieve data items, a node can decide to
replicate its query when no ISPs are deployed. Our early work [8, 9] has shown
that query duplication also helps in improving the query success rate and reduces
the query response time. If a query is replicated and stored at multiple nodes, then
multiple query responses may be generated. Such redundant responses cause the
transmission efficiency of the system to be low. To increase the transmission effi-
ciency of the information retrieval system, each node can cache the identifiers of
the query responses it has generated so that it does not relay any redundant query
responses.

4.4 DTN Message Routing Scheme

Once a query response is generated by a node, the query response will be delivered
to the querying node using the underlying DTN message routing scheme. In this
paper, we use Prophet [14] as our DTN message routing scheme. Other DTN routing
schemes can be used as well.

Prophet uses the history of encounters and transitivity to route messages for in-
termittently connected networks. In this scheme, each node broadcasts a beacon pe-
riodically. This probabilistic routing scheme establishes a probabilistic metric called
delivery predictability at every node A for each known destination B. This metric
indicates how likely it is that node A will be able to deliver a message to that desti-
nation. The delivery predictability ages with time and also has a transitive property,
i.e., a node A that encounters node B which encounters node C al-lows node A to
update its delivery predictability to node C based on its (A’s) de-livery predictability
to node B and node B’s delivery predictability to node C. In Prophet, a node will
forward a message to another node it encounters if that node has higher delivery
predictability to the destination than itself. Such a scheme was shown to produce

1088 Mooi-Choo Chuah and Jian-bin Han

superior performance than epidemic routing [18]. The three equations used for up-
dating the delivery predictability are as follow:

P(a,b) = P(a,b)old +(1−P(a,b)old) ·α (1)

P(a,b) = p(a,b)old × γ k (2)

P(a,c) = P(a,c)old +(1−P(a,c)old)×P(a,b)×P(b,c)β (3)

In [14], α is set to 0.75, β is set to 0.25 and γ is set to 0.98. When a node
receives a message that needs to be relayed, it will pass it to another node which has
the highest delivery predictability to the destination.

4.5 Three Information Retrieval Schemes

In this work, we specifically consider three schemes: (a) Pre-determined ISP Ad-
vertisement (PISA) scheme, (b) Opportunistic Regular Node Advertisement with
Index Duplication (ORNA-ID) scheme, and (c) Opportunistic Regular Node Adver-
tisement with Data Duplication (ORNA-DD).

In PISA, only index duplication is used but not data or query replication. In PISA,
ISPs are used to store indices of all generated data items. Every time a data gener-
ating node generates a data item, it will send meta-descriptions of that data item
to three pre-determined ISPs. The ISPs also periodically broadcast all the indices
they have received. In addition, a data node will also advertise indices of all data
items they publish to any newly discovered neighbor. When a node n1 encounters
a data-generating node, n2, n1 can determine from the index advertisement sent by
n2 whether n2 carries any data items that match the stored queries n1 has. If n2

has matching data items, then n1 will retrieve such items from n2. When a node n1

generates a query, it will send the query to the closest ISP that contains the index
information of data items that match this query. Upon receiving the reply from the
ISP, node n1 will send queries to the appropriate data-generating nodes to retrieve
the data items of interest.

In the ORNA-ID scheme, only index duplication but not query or data replication
is used. In this scheme, there is no ISP. Regular nodes are used to store indices of
the published data items and/or queries that have not expired yet. Every node that
generates a data item creates M copies of an index, and binary-spray these M copies
of the index to nodes that they encounter. Every node that has more than one copy
of the index can give half of the copies it has to any node that it encounters that
does not have this index yet. Binary spraying is used because this is the quickest
way of spreading extra message copies to other nodes in sparsely connected net-
works. When a node encounters another node, they will exchange their aggregated
indices with each other. Thus, a node n1 can determine if the other node (say n2)

Opportunistic Information Retrieval in Sparsely Connected Ad Hoc Networks 1089

it encounters has any data items that match its stored queries. If there is, n1 will
send n2 queries to retrieve those data items. Every query contains the identifier of
the original querying node. If n2 does not contain matching data items but have
index information of the matching data items, then n2 will send information of the
data-node that generate these matching data items to n1. Next, n1 can send messages
directly to the originating data nodes to retrieve such data items. In addition to index
duplication, query duplication can be used in this scheme too. The advantage of the
ORNA-ID scheme over the PISA scheme is that no special ISP nodes need to be
deployed. The disadvantage is that a node has to trust all other regular nodes.

In the ORNA-DD scheme, only data duplication is used. Regular nodes are used
to store replicated copies of the published data items. Every data-node generates W
copies of any data item it produces and binary spread these copies to the nodes it
encounters. Again, any node that stores data items advertises the aggregated indices
of these data items to any new nodes it encounters. If the other node discovers that
the advertised list contains data items that match its stored queries, it will send
messages to retrieve the data items.

5 Performance Evaluation

5.1 Simulation Setup

To investigate the usefulness of the three informational retrieval schemes we de-
scribe in Section 4.5, we implement these schemes in NS-2 version 2.31 [17]. We
assume that the wireless bandwidth is 2 Mb/s and the transmission range is 250 m.
We use two network scenarios: (a) a network that consists of 40 nodes randomly
distributed over (i) 1400×1400 m2, (ii) 2000×2000 m2, (iii) 3000×3000 m2 , and
(iv) 4000× 4000 m2, (b) a network with 100 nodes distributed over a larger area
than scenario (a) but maintains the same node densities.

5.1.1 Node Movement Model

The nodes move either according to (a) the random waypoint (RWP) mobility model
[3], (b) the Zebranet [19] model, (c) the UMass [23] model, or (d) the Community-
Based (CB) model. For the RWP model, each node selects a random destination and
moves towards the destination with a speed chosen randomly between (vmin, vmax)
m/s. After the node reaches its destination, it pauses for a period of time and repeats
this movement pattern. Unless otherwise stated, vmin is set to 0, and vmax is set to 5
m/s for all nodes in the homogenous model. For the Zebranet model [19], we create
a semi-synthentic model as follows: we synthesize node speed and turn angle dis-
tributions from the observed data and create other node-movements using the same
distribution. We use both distance and time scaling to fit the original data found in

1090 Mooi-Choo Chuah and Jian-bin Han

the trace into the network environment that we are interested in. The average node
speed in the Zebranet model is 6m/s. The UMass model is based on traces collected
from a real vehicular ad hoc network. For this model, we extract the locations of
twenty buses at different times from multiple traces, and scale their relative loca-
tions to fit into the geographical area of interest. We mimic the CB model proposed
in [16] as follows: x% of nodes randomly choose their initial locations and move
according to RWP within a restricted area (1% of the total area) centered around
their initial locations; while, the other (100–x)% of nodes moves freely according to
RWP within the entire simulation area. The default value of x is 50.

5.1.2 Data Item Generation Model

There are 10 data generating nodes. Each data node generates a data item every
50s. The values of the two attributes of each data item are chosen uniformly from
the range [1,8]. Therefore, there are 64 types of data items. We keep track of the
number of data items of each type in the system and re-select attribute values of a
new data item such that there are about 3 copies of data items of a particular type.
Each data item has a default expiration time of 1000s. The data size is fixed at 1000
bytes.

5.1.3 Query Model

There are 20 nodes that generate queries. By default, each querying node generates
a query every 50s. The query looks for all data items of a particular type (recall
that we have 64 types of data items and there are on the average three data items
per type). Each query has an expiration time of 1000s. Each query either uniformly
chooses one of these 64 data types or chooses it based on Zipf-like distribution. The
Zipf-like distribution has been frequently used [16] to model non-uniform access
pattern. In the Zipf-like distribution, the access probability of the ith (data item is
represented as follows:

Pi =
1

iΘ ∑1
k=1

1
kθ

(4)

where 0 < θ < 1. When θ = 1 (the default value we use), it follows the strict
Zipf distribution. θ = 0.8 has been shown to generate access pattern similar to those
real web traces [2].

The performance metrics that we use to compare different combinations of
schemes are

• Query success ratio – there are two metrics related to this. The first one (referred
to as query success rate) measures the ratio of the number of queries which suc-
cessfully retrieve at least 1 data item over the total number of generated queries.
The second one (referred to as overall success ratio) measures the ratio of queries

Opportunistic Information Retrieval in Sparsely Connected Ad Hoc Networks 1091

that successfully retrieve all data items in that category over the total number of
generated queries.

• Query response time – this is measured as the average time it takes for the suc-
cessful query response to arrive back at a node that issues a query.

• Data efficiency – this is measured as the number of useful data bytes over the
number of total transmitted data bytes (does not include control over-head but
include the data bytes due to the transmissions of replicated data copies). Each
data point reported in the simulation results section is the average of 10 runs.

5.2 Simulation Results

5.2.1 Impact of Node Density

In our first experiment, we compare the performance of the various schemes using
networks of different node density. For the ORNA-ID scheme, we replicate four
copies of each index. For the ORNA-DD scheme we replicate four copies of each
generated data item. Each query uniformly chooses one of the data categories. We
use the 40-nodes network but vary the area which the nodes move. The nodes move
according to either the RWP or the Zebranet mobility model. We will discuss more
on the impact of mobility models in the next subsection. Here, we focus our discus-
sion on the performance comparison of the three schemes.

The results for average query success ratio and overall success ratio for the PISA,
ORNA-ID, ORNA-DD schemes are plotted in Figs. 1, 2 and 3 respectively. The
results indicate that as the network becomes sparser, fewer queries can be success-
ful due to the increasing node encounter time. The results also indicate that the
ORNA-ID scheme performs slightly better than the PISA scheme in denser envi-

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

x 10–5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Node Density

D
el

iv
er

y
R

at
io

/O
ve

ra
ll

R
at

io

Random Way Point, Delivery Ratio
Random Way Point, Overall Ratio
Zebra, Delivery Ratio
Zebra, Overall Ratio

Fig. 1 Success ratio/overall success ratio for PISA

1092 Mooi-Choo Chuah and Jian-bin Han

ronment but similar success rate in very sparse environment irrespective of whether
the RWP or Zebranet model is used. This indicates that either architecture can be
used in real-life deployments. The PISA scheme should be used if nodes only trust
specially deployed storage nodes while the ORNA-ID scheme can be used if nodes
trust one another. The ORNA-DD gives the best query success ratio, the overall suc-
cess rate, and smaller query response time. The ORNA-DD scheme achieves 91%
higher query success rate and 128% higher overall success rate when compared to
those achieved using the other two schemes in the sparsest scenario (40 nodes over
4000× 4000 m2). This shows that data duplication yields better results than index
duplication in sparse networks. The only drawback of the ORNA-DD scheme is
that more storage space is required in the network. We also have conducted some
simulation studies where the query replication feature is added to the ORNA-ID
scheme but the results indicate that there is no further improvement in the query
performance.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

x 10–5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Node Density

D
el

iv
er

y
R

at
io

/O
ve

ra
ll

R
at

io

Random Way Point, Delivery Ratio
Random Way Point, Overall Ratio
Zebra, Delivery Ratio
Zebra, Overall Ratio

Fig. 2 Success ratio/overall success ratio of the ORNA-ID scheme

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

x 10–5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Node Density

D
el

iv
er

y
R

at
io

/O
ve

ra
ll

R
at

io

Random Way Point, Delivery Ratio
Random Way Point, Overall Ratio
Zebra, Delivery Ratio
Zebra, Overall Ratio

Fig. 3 Success ratio/overall success ratio of the ORNA-DD scheme

Opportunistic Information Retrieval in Sparsely Connected Ad Hoc Networks 1093

Figures 4 and 5 plot the successful query response time distribution obtained
using the PISA and the ORNA-DD schemes. We did not include the response time
distribution of the ORNA-ID scheme because it is very similar to that achieved
using the PISA scheme. The average query response time achieved by the ORNA-
DD scheme is the smallest because there are more copies of the same data item
in the network and hence a querying node can retrieve it faster. The average query
response time for the PISA scheme is slightly better than the ORNA-ID scheme
because the querying nodes know which ISP to query for the information of data
items that will match its stored queries.

Figure 6 plots the data efficiency obtained using the PISA and the ORNA-DD
schemes. The data efficiency for the ORNA-ID scheme is not shown because it is
similar to that for the PISA scheme since the same index replication factor is used.
From Fig. 6, we see that the data efficiency for the ORNA-DD scheme is lower than
that of the PISA or the ORNA-ID scheme because the query generation rate we
use is comparable to the data generation rate. Thus, the cost of data duplication is

0 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Delay (sec)

C
D

F

RWP, 1400x1400

RWP, 4000x4000

Zebra, 1400x1400

Zebra, 4000x4000

100 200 300 400 500 600 700 800 900

Fig. 4 CDF of the successful query response time for the PISA scheme

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Delay (sec)

C
D

F

RWP, 1400x1400
RWP, 4000x4000
Zebra, 1400x1400
Zebra, 4000x4000

Fig. 5 CDF of the successful query response time for the ORNA-DD scheme

1094 Mooi-Choo Chuah and Jian-bin Han

not amortized over many successful queries. When we increase the query rate to 1
query/10s, then ORNA-DD achieves higher data efficiency than the PISA/ORNA-
ID scheme.

Another interesting observation from Fig. 5 is that the data efficiency achieved
using the PISA scheme has a concave shape with its lowest data efficiency occurring
when the node density corresponds to the scenario with 40 nodes distributed over
2000× 2000 m2. The concave shape can be explained as follows: we only com-
pute the data efficiency of successful queries. As the network becomes sparser, it
takes longer time for the querying node to get a reply from the ISP and then retrieve
data items from a data-node so the data efficiency drops. Beyond a certain node
density level, the inter-node encounter time becomes too long that such queries can
no longer be successful. In sparser networks, queries can only be successful if the
querying nodes happen to discover data nodes (which results in higher data effi-
ciency because data items are retrieved using single hop transmissions). However,

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2
× 10–5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RWP, PISA
Zebra, PISA
RWP, ORNA-DD
Zebra, ORNA-DD

D
at

a
E

ffi
ci

en
cy

Node Density

Fig. 6 Data efficiency vs. node density for the PISA and the ORNA-DD schemes

1=RWP, 2=Zebra, 3=UMass, 4=CB

0

0.2

0.4

0.6

0.8

1

1 2 3 4

Mobility Models

S
u

cc
. R

at
e/

O
ve

ra
ll

S
u

cc
. R

at
e

Success Ratio

Overall Success Rate

Fig. 7 Success rate/overall success rate for different mobility models

Opportunistic Information Retrieval in Sparsely Connected Ad Hoc Networks 1095

a convex shape is observed for the ORNA-DD scheme. This may be due to the fact
that having 4 replicated copies in the 40 nodes over 2000×2000 m2 scenario gives
the querying nodes the best chance to encounter data nodes and hence the highest
data efficiency. It will be interesting to develop an analytical framework to compute
the optimal number of data copies to replicate to achieve certain query success rate
and data efficiency.

5.2.2 Impact of Mobility Model

From the plots in Figs. 1, 2, 3, 4, 5 and 6, one can see that the ORNA-DD scheme
achieves the best query performance irrespective of which mobility model is used.
In addition, we observe that higher query success rate and overall success rate is
achieved when the Zebranet model is used as compared to those achieved using
the RWP model. This is because the nodes within the Zebranet model move faster
than the nodes in the RWP model. Recall that the average node speed for the RWP
model is 2.5 m/s while the average node speed for the Zebranet is 6 m/s. The mean
successful query response time is also smaller with the Zebranet model.

To further understand the impact of mobility models on the query performance
of the ORNA-DD scheme, we choose the 40 nodes distributed over 3000×3000 m2

scenario and repeat the experiment in Section 5.2.1 using the UMASS and CB mod-
els. The results for the query success rate, the overall success rate and data effi-
ciency are plotted in Figs. 7 and 8 respectively. From the plots, one can see that the
query performance achieved when the nodes are moving according to the Zebranet
model is the best because the nodes move on the average with a speed of 6 m/s.
The performance for the CB model is poorer than the RWP model because fewer
queries can be satisfied with some nodes moving only within a small local area in
the CB model. The UMASS model has the highest internode encounter time among

1=RWP, 2=Zebra, 3=UMass 4=CB

0

0.2

0.4

0.6

0.8

1

1 2 3 4

Mobility Models

D
at

a
E

ff
ic

ie
n

cy

Data Efficiency

Fig. 8 Data efficiency for different mobility models

1096 Mooi-Choo Chuah and Jian-bin Han

the 4 mobility models, and hence fewer queries can be answered before they expire.
The data efficiency plot is a bit misleading since it only represents the data effi-
ciency of successful queries. This plot indicates that for UMASS and CB models,
only those queries that can be satisfied with fewer hops can be successful.

5.2.3 Impact of the Index/Data Replication Factors

In order to ensure that the schemes we design still perform well in larger networks,
we conduct some experiments using 100 nodes that are distributed over (a) 1600×
1600 m2, (b) 3200× 3200 m2, (c) 4750× 4750 m2, and (d) 6300× 6300 m2. The
size of the geographical area is chosen such that the node densities for the four cases
are the same as in the 40-node scenario. The nodes move according to the RWP

0 0.5 1 1.5 2 2.5 3 3.5 4

× 10–5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Node Density

D
el

iv
er

y
R

at
io

/ O
ve

ra
ll

R
at

io

Delivery Ratio, 4 copies
Delivery Ratio, 8 copies
Delivery Ratio, 12 copies
Overall Ratio, 4 copies
Overall Ratio, 8 copies
Overall Ratio, 12 copies

Fig. 9 Query success rate/overall success rate for the ORNA-ID scheme with different index repli-
cation factors

0 0.5 1 1.5 2 2.5 3 3.5 4

× 10–5

0

50

100

150

200

250

300

350

400

450

500

Node Density

D
el

ay
 (

se
c)

4 copies
8 copies
12 copies

Fig. 10 Average query response time for the ORNA-ID scheme with different index replication
factors

Opportunistic Information Retrieval in Sparsely Connected Ad Hoc Networks 1097

model within a specified area. Ten nodes are selected to be data generating nodes
with each node generating a data item every 50s. 20 nodes are randomly selected to
be querying nodes with each generating queries at a rate of 1 query/10s. Again, a
uniform query model is used in this experiment. We study both the ORNA-ID and
ORNA-DD schemes with varying number of replicated index or data copies. We
vary the number of replicated indices from 4 to 12 for the ORNA-ID scheme and
vary the number of replicated data copies from 4 to 12 for the ORNA-DD schemes.
Figures 9, 10, and 11 plot the query success rate, overall success rate, average query
response time and data efficiency for the ORNA-ID scheme. Figures 12, 13, 14 plot
the query success rate, overall success rate, average query response time, and data
efficiency for the ORNA-DD scheme.

0 0.5 1 1.5 2 2.5 3 3.5 4
× 10–5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Node Density

D
at

a
E

ffi
ci

en
cy

4 copies
8 copies
12 copies

Fig. 11 Data efficiency for the ORNA-ID scheme with different index replication factors

0 0.5 1 1.5 2 2.5 3 3.5 4
× 10–5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Node Density

D
el

iv
er

y
R

at
io

/ O
ve

ra
ll

R
at

io

Delivery Ratio, 4 copies
Delivery Ratio, 8 copies
Delivery Ratio, 12 copies
Overall Ratio, 4 copies
Overall Ratio, 8 copies
Overall Ratio, 12 copies

Fig. 12 Query success rate/overall success rate for the ORNA-DD scheme with different data
replication factors

1098 Mooi-Choo Chuah and Jian-bin Han

Figures 9 and 10 indicates that the query success rate/overall success rate, and
the average response time does not improve significantly as the number of index
duplications increases from 4 to 12. In addition, the data efficiency drops (shown
in Fig. 11) as the index replication factor increases from 4 to 12. However, if data
replication is used, we see from Figs. 12 and 13 that the query success rate/overall
success rate can improve by 8.4 to 31.4% and the average response time reduces by
a factor of 8 to 27% when the data replication factor increases from 4 to 8 and the
node density varies from the least dense to the densest scenario. From Fig. 14, one
can see that the price to pay is a decrease in data efficiency. The decrease in data
efficiency is about 16 to 10% when the data replication factor increases from 4 to 8.
The improvement in the delivery ratio as the data replication factor changes from 8
to 12 is another 8–10% but at the cost of another 10% drop in the data efficiency.
Thus, 8 copies seem to be a good compromise if the fixed replication factor approach
is used for this network model.

0 0.5 1 1.5 2 2.5 3 3.5 4

× 10–5

0

50

100

150

200

250

300

350

400

Node Density

D
el

ay
 (

se
c)

4 copies
8 copies
12 copies

Fig. 13 Average query response time for the ORNA-DD scheme with different index replication
factors

0 0.5 1 1.5 2 2.5 3 3.5 4

× 10–5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Node Density

D
at

a
E

ffi
ci

en
cy

4 copies
8 copies
12 copies

Fig. 14 Data efficiency for the ORNA-DD scheme with different index replication factors

Opportunistic Information Retrieval in Sparsely Connected Ad Hoc Networks 1099

5.2.4 Non-uniform Access Pattern

Next, we investigate how the access patterns affect the query success rate, delay,
etc when the ORNA-DD scheme is used. As indicated in Section 5.1, Zipf-based
queries are often used to represent non-uniform access patterns. In [10], the authors
found that using square-root replication factor is useful for non-uniform access pat-
terns. Thus, we also compare the query performances we obtain by using a fixed
number of data replication factor (set to 4 per data item) or using a square root
replication factor which is based on the access frequency of each data item. For the
square root approach, the replication factor used for the top 5 frquently accessed
data items are (i) 13, (ii) 10, (iii) 8, (iv) 6, and (v) 6. The rest of the 32 more fre-
quently accessed data items are replicated 4 times, while the remaining 27 items are
replicated 3 times. We use the 100-node scenario and the nodes move according to
the RWP model. The query model used is the Zipf-based model. Figures 15, 16, and
17 plot the results we obtain for the query success rate/overall success rate, aver-
age response time, and data efficiency respectively. From the plots, we see that the

0 0.5 1 1.5 2 2.5 3 3.5 4

× 10–5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Node Density

D
el

iv
er

y
R

at
io

/ O
ve

ra
ll

R
at

io

Delivery Ratio, square-root data duplication
Delivery Ratio, fixed data duplication
Overall Ratio, square-root data duplication

Overall Ratio, fixed data duplication

Fig. 15 Query success rate/overall success rate for the ORNA-DD scheme

0 0.5 1 1.5 2 2.5 3 3.5 4

× 10–5

0

50

100

150

200

250

300

350

400

Node Density

D
el

ay
 (

se
c)

square-root data duplication

fixed data duplication

Fig. 16 Avg response time for the ORNA-DD scheme

1100 Mooi-Choo Chuah and Jian-bin Han

square root replication factor does give higher query success rate but similar overall
success rate when compared to that achieved in the fixed copy scheme. The average
response time using the square-root replication factor is smaller than using the fixed
copy approach. Since more frequently accessed data items have higher replication
factors, they can be found more easily by the querying nodes, and hence result in
smaller query response times. Since the more frequently accessed data items can
be retrieved using fewer hops, the data efficiency using the square root approach is
slightly higher than that achieved us-ing the fixed copy approach.

We are also interested in understanding how our scheme performs when a non-
homogeneous mobility model e.g., the Community-based mobility model is used.
Thus, we repeat the experiment using the CB model where 50 nodes move locally
and 25 nodes move globally. The locally moving nodes are constrained to move
within an area which is 1% of the whole area. In this experiment, we still have 10
nodes generating data items and 20 nodes generating queries. For the CB model,
both the data and querying nodes are randomly selected from the locally moving
nodes. The data generation rate is set such that there are a total of 200 data items

0 0.5 1 1.5 2 2.5 3 3.5 4

× 10–5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Node Density

D
at

a
E

ff
ic

ie
nc

y square-root data duplication
fixed data duplication

Fig. 17 Data efficiency for the ORNA-DD scheme

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.00E+00 1.00E-05 2.00E-05 3.00E-05 4.00E-05 5.00E-05

Node Density

D
el

iv
er

y
R

at
io

CB, Fixed Factor, Delivery Ratio

CB, Square-Root Factor, Delivery Ratio

CB, Fixed Factor, Overall Ratio

CB, Sqrt Factor, Overall Ratio

Fig. 18 Query success rate/overall success rate (CB Model)

Opportunistic Information Retrieval in Sparsely Connected Ad Hoc Networks 1101

in the network. The data expiration time is set at 1000s. The query generation rate
is set to 1 every 10s. The query expiration is also set to 1000s. The query model
we use is the Zipf-based query model. The replication approach we use is either the
square-root-based or fixed replication factor (set to 4 copies) approach.

We plot the query success rate/overall success rate, average retrieval latency and
data efficiency results obtained for both replication approaches with the CB model in
Figs. 18, 19, and 20 respectively. Our results indicate that the square-root replication
approach still gives better performance than the fixed approach with the CB model.
The query performance difference between the two replication approaches is more
obvious in the CB model. Compared Figs. 15 and 18, we see that the query success
ratio is lower with the CB model when compared to that with the RWP model. The
degradation is caused by the fact that if a data node selects a locally moving node to
cache its data, then it is more difficult for the querying nodes (which are also locally
moving nodes) to retrieve data items from them. The data efficiency (in Fig. 20) for
the CB model is lower than that for the RWP model (in Fig. 20).

0

50

100

150

200

250

300

350

400

0.00E+00 1.00E-05 2.00E-05 3.00E-05 4.00E-05 5.00E-05
Node Density

D
el

ay
 (

se
c)

CB, Fixed Factor,Delay

CB, Square-Root Factor, Delay

Fig. 19 Avg retrieval latency (CB model)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.00E+00 1.00E-05 2.00E-05 3.00E-05 4.00E-05 5.00E-05

Node Density

D
at

a
E

ff
ic

ie
n

cy

CB, Fixed Factor

CB, Square-Root Factor

Fig. 20 Data efficiency (CB Model)

1102 Mooi-Choo Chuah and Jian-bin Han

6 Discussion

In the previous section, we have evaluated three information retrieval schemes,
namely, the PISA, ORNA-ID and ORNA-DD schemes. The PISA scheme assumes
that special nodes are deployed to act as the index storage points. The per-formance
of the PISA scheme will be similar to the scheme proposed in the Snoggle paper
[20]. These two schemes assume that index storage points advertise the available
data items as well as where such data items can be found in the system. These two
schemes also allow regular nodes that happen to be within the transmission range of
the storage nodes to retrieve data items directly from the storage nodes. In a sparse
network environment, the inter-node encounter times are long and hence these two
schemes will not perform better than the ORNA-DD scheme where data items are
replicated and stored at multiple storage nodes. However, one may argue that the
improvement in the data retrieval success rate achieved by the ORNA-DD scheme
comes with a cost – extra storage capacity needs to be provided to store the repli-
cated data items. We counter argue that storage capacity is cheap these days compare
to the transmission cost. By providing replicated data copies, a querying node has
a higher chance of encountering a storage node that has the data items it is looking
for. Our results have shown that relatively high data retrieval success rate can be
achieved by merely replicating four copies of each data item.

In addition, one would be interested in knowing how the retrieval performance
achieved by the ORNA-DD scheme compares to that of the CACHE DATA scheme
[21] we discuss in the related work section. To allow such comparison, we assume
that each querying node knows the identifiers of the ten data generating nodes. Thus,
a querying node will send a data retrieval message to all these ten nodes whenever
a query is generated. Upon receiving a query, each data generating node will check
if it carries data items that match the attributes of interest to the querying node. We
implement this CACHE DATA scheme and compare the results we obtain for the
ORNA-DD scheme earlier using network scenarios with different node densities.
Both the data and query expiration time is set to 1000s. Tables 1 and 2 tabulate the
results we obtain for the CACHE-DATA scheme and the ORNA-DD scheme. The
results indicate that the ORNA-DD scheme achieves higher data retrieval success
rate at a lower storage cost. Since nodes exchange their query lists upon encounter-
ing each other, and queries are replicated to all the ten data-generating nodes, the

Table 1 Simulation results for CACHE-DATA scheme

First delivery Overall delivery
ratio (%) ratio (%) Latency Data efficiency Buffer usage

1400×1400 54 40 14.5 0.13 19.7

2000×2000 52 32 51 0.09 16.4

3000×3000 41 6 131 0.06 13.2

4000×4000 28 2 181 0.04 11.9

Opportunistic Information Retrieval in Sparsely Connected Ad Hoc Networks 1103

Table 2 Simulation results for ORNA-DD scheme

First delivery Overall delivery
ratio (%) ratio (%) Latency Data efficiency Buffer usage

1400×1400 90 87 211 0.25 3.8

2000×2000 81 58 320 0.22 3.8

3000×3000 55 29 455 0.29 3.7

4000×4000 36 17 509 0.36 3.5

intermediate nodes end up caching many data items on transit,and hence the storage
cost of the CACHE-DATA scheme becomes higher than that for the ORNA-DD
scheme.

7 Concluding Remarks

In this chapter, we have presented three information retrieval schemes, namely the
PISA, ORNA-ID and ORNA-DD schemes which can work well in sparsely con-
nected ad hoc networks. Via simulations, we compare their performances using two-
attribute queries which either uniformly retrieve available data categories or retrieve
categories based on a Zipf-based model. Our results indicate that when the network
is sparse, index duplication is not sufficient to achieve high query success rate. Data
duplication needs to be used instead. Our results also show that with data duplica-
tion, the query success rate can improve by 91% and the overall success rate can
improve by 128%. In addition, we have shown that for non-uniform access patterns,
the square root based replication technique can still improve the query performance
even though not all data copies can be disseminated before the data expires in very
sparse environment.

In this chapter, we have used synthetically generated mobility models. In the
near future, we intend to compare the performance of our schemes with another
scheme that has been designed [22] using more realistic mobility models [6, 11]. In
addition, we intend to study the retrieval performance with range queries. Last but
not least, before any information retrieval system using our designed schemes can
be deployed, security issues need to be addressed. In [7], we present the security
design of such a system.

Acknowledgement

This work has been supported by DARPA under Contract W15P7T-06-C-P430. Any
opinions, findings, and conclusions or recommendations expressed in this paper are
those of the authors and do not necessarily reflect the views of the sponsor of this
work. The authors would like to thank Peng Yang for helping to generate the simu-
lation results for the CACHE data scheme.

1104 Mooi-Choo Chuah and Jian-bin Han

References

1. A. R. Bharambe et al. (2004). Mercury: supporting scalable multi-attribute range queries. In
Proceedings of ACM Sigcomm, Aug/Sept

2. L. Breslau et al. (1999). Web Caching and Zipf-like Distributions: Evidence and Implica-
tions. In IEEE Infocom.

3. J. Broch et al. (1998). A Performance Comparison of Multhop wireless Adhoc Network Rout-
ing Protocols. In ACM Mobicom.

4. J. Burgess et al. (2006). MaxProp: Routing for vehicle-based disruption tolerant networks. In
Proceedings of IEEE Infocom

5. V. Cerf et al. (2007). Delay Tolerant Networking Architecture. RFC4838
6. A. Chaintreau et al. (2007). Impact of Human Mobility on Opportunistic Forwarding Algo-

rithms.IEEE Transaction on Mobile Computing, pp 606–620
7. M. Chuah, R. Metgzer (2008). Secure Data Retrieval System for DTNs. In Proceedings of

IEEE Milcom, Oct/Nov
8. M. Chuah, P. Yang (2007). Data-Centric information retrieval schemes for Disruption Tolerant

Net-works. In Lehigh CSE Department Technical Report.
9. M. Chuah, P. Yang (2007). Performance evaluations of a content-based information retrieval

scheme for DTNs. In Proceedings of Milcom
10. E. Cohen, S. Shenker (2002). Replication strategies in unstructured peer-to-peer networks. In

Proceedings of ACM Sigcomm
11. N. Eagle, A. Pentland (2005). Reality Mining: Sensing Complex Social Systems. Journal of

Per-sonal and Ubiquitous Computing.
12. K. Fall (2003). A delay tolerant network architecture for challengednetworks. In Proceedings

of ACM Sigcomm
13. T. Hara (2001). Effective Replica Allocation in AdHoc Networks for Improving Data Acces-

sibility. In Proceedings of IEEE Infocom.
14. A. Lingren et al. (2004). Probabilistic Routing in Intermittently Connected Networks. In Pro-

ceedings of Workshop on Service Assurance with Partial and Intermittent Resources
15. B. Sheng et al. (2006). Data Storage Placement in Sensor Networks. In Proceedings of ACM

Mobihoc
16. T. Spyropoulos et al. (2007). Efficient routing in intermittently connected mobile networks:

multiple copy case. IEEE/ACM Transactions on Networking
17. In The network simulator ns-2. http://www.isi.edu/nsnam/ns/.
18. A. Vahdat, D. Becker. Epidemic Routing for partially connected adhoc networks. Technical

Report CS-200006, Duke University
19. Y. Wang et al. (2005). Erasure-Coding Based Routing for Opportunistic Networks. In Pro-

ceedings of ACM workshop on DTN.
20. H. Wang et al. (2008). Snoogle: A search engine for the physical world. In Proceedings of

IEEE Infocom.
21. L. Yin, G. Cao. (2004). Supporting Cooperative Caching in Adhoc Networks. In Proceedings

of IEEE In-focom
22. E. Yoneki et al. (2007). A Social-Aware Overlay for Publish/Subscribe Communication in

Delay Tolerant Networks. In Proceedings of ACM MSWiM, Oct
23. X. Zhang et al. (2007). Modeling of a Bus-based Disruption Tolerant Network Trace: Mobility

Model-ing and Impact on Routing. In Proceedings of ACM Mobicom.

The MOBI-DIK Approach to Searching
in Mobile Ad Hoc Network Databases

Yan Luo, Ouri Wolfson, and Bo Xu

Abstract In this chapter, we introduce the mobile ad-hoc network (MANET)
database by discussing its definition, historical background and scientific fundamen-
tals. Existing related projects are presented and classified into two main categories,
pedestrian and vehicular projects based on their target users. Two main paradigms
(i.e., report pulling and report pushing) for answering queries in MANET databases
are discussed in details. Then we present the MOBIDIK approach to searching in
MANET databases and compare it with alternatives. Finally, the key applications
and the future research directions are addressed.

1 Introduction: MANET Databases

A Mobile Ad-Hoc Network (MANET) database is a database that is stored in the
peers of a MANET. The network is composed by a finite set of mobile peers that
communicate with each other via short range wireless protocols, such as IEEE
802.11, Bluetooth, Zigbee, or Ultra Wide Band (UWB). These protocols provide
broadband (typically tens of Mbps) but short-range (typically 10–100 meters) wire-
less communication. On each mobile peer there is a local database that stores and
manages a collection of data items, or reports. A report is a set of values sensed
or entered by the user at a particular time, or otherwise obtained by a mobile peer.
Often a report describes a physical resource such as an available parking slot. All
the local databases maintained by the mobile peers form the MANET database. The

Yan Luo
Department of Computer Science, University of Illinois at Chicago, Chicago, IL, USA

Ouri Wolfson
Department of Computer Science, University of Illinois at Chicago, Chicago, IL, USA

Bo Xu
Department of Computer Science, University of Illinois at Chicago, Chicago, IL, USA

X. Shen et al. (eds.), Handbook of Peer-to-Peer Networking, 1105
DOI 10.1007/978-0-387-09751-0 39, © Springer Science+Business Media, LLC 2010

1106 Yan Luo, Ouri Wolfson, and Bo Xu

peers communicate reports and queries to neighbors directly, and the reports and
queries propagate by transitive multi-hop transmissions. Figure 1 below illustrates
the definition.

Fig. 1 A MANET database

MANET databases enable matchmaking or resource discovery services in many
application domains, including social networks, transportation, mobile electronic
commerce, emergency response, and homeland security.

Communication is often restricted by bandwidth and power constraints on the
mobile peers. Furthermore, often reports need to be stored and later forwarded, thus
memory constraints on the mobile devices constitute a problem as well. Thus, care-
ful and efficient utilization of scarce peer resources (specifically bandwidth, power,
and memory) are an important challenge for MANET databases.

2 Historical Background

Consider mobile users that search for local resources. Assuming that the informa-
tion about the existence and location of such a resource resides on a server in the
cloud, a communication infrastructure is necessary to access the server. Such an
infrastructure may not be available in military/combat situations, disaster recovery,
in a commercial flight, etc. Even if the infrastructure and a server are both avail-
able, a user may not have the properly equipped device (e.g., the device may have
Bluetooth but not Wi-Fi), or may not be willing to pay the dollar-cost that is usually
involved in accessing the server through the cellular infrastructure. In other words,
a cloud-computing search may have accessibility and cost problems.

Currently, Google and local.com provide static local information (e.g., the loca-
tion of a restaurant, pharmacy, etc.), but not dynamic information such as the current
exact location of a taxi cab, a nearby person of interest, or an available parking slot.

The MOBI-DIK Approach to Searching in Mobile Ad Hoc Network Databases 1107

These dynamic resources are temporary in nature, and thus require timely, real-time
update rates that cannot be provided by web crawling.

In cloud-computing search, the searches issued by a user may be tracked by a
search engine and used to find the identity of the user. The association of searches
with the user identity may generate serious privacy concerns, a lesson given by the
recent AOL incident (see [1, 8]) . A concern that is particular to conducting local
search in the cloud is that the location of the user is potentially disclosed when the
user provides his/her area of geographical interest to the search engine. Furthermore,
some information, such as the status of home appliances, is simply not worth putting
in the cloud.

Cloud-computing search can be complemented by a MANET database search.
The MANET database is distributed among local peers, thus the MANET search
does not depend on availability of an infrastructure. This also makes the MANET
database more amenable to host the information that is otherwise not worth putting
in the cloud. Furthermore, communication among mobile peers is free since it uses
the unlicensed spectrum, thus the cost concern is addressed. The response time of
MANET database search is higher because the database of neighboring peers can be
accessed faster than the web is crawled. Finally, MANET database search addresses
the privacy concern because the P2P communication can be totally anonymous, and
searches as well as the database are distributed among autonomous entities.

Currently, there are quite a few experimental projects in MANET databases.
These can be roughly classified into pedestrians and vehicular projects. Vehicular
projects deal with high mobility and high communication topology change-rates,
whereas pedestrians projects have a strong concern with power issues. The follow-
ing are several active experimental MANET database projects for pedestrians and
vehicles:

3 Scientific Fundamentals

There are two main paradigms for answering queries in MANET databases, one is
report pulling and the other one is report pushing.

Report pulling means that a mobile peer issues a query which is flooded in the
whole network, and the answer-reports will be pulled from the mobile peers that
have them (see e.g., [5]). Report pulling is widely used in resource discovery, such
as route discovery in mobile ad hoc networks and file discovery by query flooding
in wired P2P networks like Gnutella. Flooding in a wireless network is in fact rel-
atively efficient as compared to wired networks because of the wireless broadcast
advantage, but there are also disadvantages which will be explained below.

Another possible approach for data dissemination is report pushing. Report push-
ing is the dual problem of report pulling; reports are flooded, and consumed by
peers whose query is answered by received reports. So far there exist mechanisms
to broadcast information in the complete network, or in a specific geographic area
(geocast), apart from to any one specific mobile node (unicast/mobile ad-hoc rout-
ing) or any one arbitrary node (anycast). Report pushing paradigm can be further

1108 Yan Luo, Ouri Wolfson, and Bo Xu

Pedestrians projects Features

7DS – Columbia University [19]
http://www.cs.unc.edu/ maria/7ds/

Focuses on accessing web pages in environ-
ments where only some peers have access to
the fixed infrastructure.

iClouds – Darmstadt University
http://iclouds.tk.informatik.tu-darmstadt.de/

Focuses on the provision of incentives to
brokers (intermediaries) to participate in the
mobile P2P database.

MoGATU – University of Maryland,
Baltimore County
http://mogatu.umbc.edu/

Focuses on the processing of complex data
management operations, such as joins, in a
collaborative fashion.

PeopleNet – National University
of Singapore [16]
http://www.ece.nus.edu.sg/research/projects/
abstract.asp?Prj=101

Proposes the concept of information Bazaars,
each of which specializes in a particular type
of information; reports and queries are prop-
agated to the appropriate bazaar by the fixed
infrastructure.

MoB – University of Wisconsin
and Cambridge University
http://www.cs.wisc.edu/ suman/projects/ago-
ra/

Focuses on incentives and the sharing among
peers of virtual information resources such as
bandwidth.

Mobi-Dik – University of Illinois at Chicago
http://www.cs.uic.edu/˜wolfson/html/p2p.html

Focuses on information representing phys-
ical resources, and proposes stateless algo-
rithms for query processing, with particular
concerns for power, bandwidth, and memory
constraints.

divided into stateful methods and stateless methods. Most stateful methods are
topology-based, i.e., they impose a structure of links in the network, and maintain
states of data dissemination. PStree [9], which organizes the peers as a tree, is an
example of topology based methods.

Another group of stateful methods is cluster- or hierarchy-based method, such as
[20], in which moving peers are grouped into some clusters or hierarchies and the
cluster heads are randomly selected. Reports are disseminated through the network
in a cluster or hierarchy manner, which means that reports are first disseminated to
every cluster head, and each cluster head then broadcasts the reports to the member
peers in its group. Although cluster- or hierarchy-based methods can minimize the
energy dissipation in moving peers, these methods will fail or cost more energy in
highly mobile environments since they have to maintain a hierarchy structure and
frequently re-select cluster heads.

Another stateful paradigm consists of Location-based methods (see [15]). In
location-based methods, each moving peer knows the location of itself and its neigh-
bors through some localization techniques, such as GPS or Atomic Multilateration
(see [15]).

The simplest location-based data dissemination is Greedy Forwarding, in which
each moving peer transmits a report to a neighbor that is closer to the destination
than itself. However, Greedy Forwarding can fail in some cases, such as when a

The MOBI-DIK Approach to Searching in Mobile Ad Hoc Network Databases 1109

Vehicular projects Features

CarTALK 2000 – A European project
http://www.cartalk2000.net/

Develops a co-operative driver assistance
system based upon inter-vehicle communi-
cation and mobile P2P databases via self-
organizing vehicular ad-hoc networks.

FleetNet – Internet on the Road Project
http://www.ccrle.nec.de/Projects/fleetnet.htm

Develops a wireless multi-hop ad hoc net-
work for intervehicle communication to im-
prove the driver’s and passenger’s safety and
comfort. A data dissemination method called
“contention-based forwarding” (CBF) is pro-
posed in which the next hop in the forward-
ing process is selected through a distributed
contention mechanism based on the current
positions of neighbors.

VII – Vehicle Infrastructure Integration, a US
DOT project
http://www.its.dot.gov/vii/

The objective of the VII project is to
deploy advanced vehicle-to-vehicle (using
the mobile P2P paradigm) and vehicle-
to-infrastructure communications that could
keep vehicles from leaving the road and en-
hance their safe movement through intersec-
tions.

Grassroots – Rutgers University [7]
http://paul.rutgers.edu/
∼gsamir/dataspace/grassroots.html

Develops an environment in which each
vehicle contributes a small piece of traffic in-
formation to the network based on the P2P
paradigm, and each vehicle aggregates pieces
of the information into a useful picture of the
local traffic information.

report is stuck in local minima, which means that the report stays in a mobile
peer whose neighbors are all further from the destination. Therefore, some recov-
ery strategies are proposed, such as GPSR (Greedy Perimeter Stateless Routing
[12]). Other location-based methods, such as GAF (Geographic Adaptive Fidelity
[24]) and GEAR (Geographical and Energy Aware Routing [28]), take advantage of
knowledge about both location and energy to disseminate information and resources
more efficiently.

In stateless methods, the most basic and simplest one is flooding-based method,
such as [17]. In flooding-based methods, mobile peers simply propagate received
reports to all neighboring mobile peers until the destination or maximum a hop is
reached. Each report is propagated as soon as is received. Flooding-based meth-
ods have many advantages, such as no state maintenance, no route discovery, and
easy deployment. However, they inherently cannot overcome several problems, such
as implosion, overlap, and resource blindness. Implosion refers to the waste of
resources taking place when a node forwards a message to a neighbor although the
latter may have already received it from another source. Overlap occurs when two
nodes read the same product record or coupon, and thus push into the network the
same information. Resource blindness denotes the inability of the protocol to adapt

1110 Yan Luo, Ouri Wolfson, and Bo Xu

the node’s behaviour to its current availability of resources, mainly power [18].
Therefore, other stateless methods are proposed, such as gossiping-based methods
and negotiation-based methods.

Gossiping-based methods, such as [6], improve flooding by transmitting received
reports to a subset of randomly selected neighbors; another option is to have some
neighbours simply drop the report. For example, the neighbors that are not them-
selves interested in the report drop it. The advantages of gossiping-based methods
include reducing the implosion and lowering the system overhead. However, dis-
semination, and thus performance, is reduced compared to pure flooding.

Negotiation-based methods solve the implosion and overlap problem by trans-
mitting first the id’s of reports; the reports themselves are transmitted only when
requested (see [13]). Thus, some extra data transmission is involved, which costs
more memory, bandwidth, and energy. In addition, in negotiation-based methods,
moving peers have to generate meta-data or a signature for every report so that ne-
gotiation can be carried out, which will increase the system overhead and decrease
the efficiency.

Another important stateless paradigm for data dissemination in MANET data-
bases is store-and-forward. In contrast to flooding, store-and-forward does not prop-
agate reports as soon as they are received; rather they are stored and rebroadcast
later. This obviously introduces storage and bandwidth problems, if too many re-
ports need to be saved and rebroadcast at the same time . To address these, methods
such as [22] rank all the reports in a peer’s database in terms of their relevance
(or expected utility), and then the reports are communicated and saved in the order
of their relevance. Or, the reports requested and communicated are the ones with
the relevance above a certain threshold. The notion of relevance quantifies the im-
portance or the expected utility of a report to a peer at a particular time and at a
particular location. Other store-and-forward methods include PeopleNet [16] and
7DS [19].

In summary, the paradigms for data dissemination in MANET databases are sum-
marized in Fig. 2 below.

4 The MOBI-DIK Approach

Report pulling and stateful approaches suffer when the network topology is dy-
namic, disconnected, and/or sparse. Thus we propose a store-and-forward algo-
rithm, MOBI-DIK, based on the following ideas and results:

1. In MOBI-DIK the growing-local-database problem of store-and-forward algo-
rithms is addressed by prioritization; each mobile peer prioritizes the reports in
order to accommodate them in limited power, bandwidth, and memory. The pri-
ority of a report depends on its size (the larger the report, the more resources it
consumes), demand (how many peers are querying it), and supply (how many
peers already have it). The demand of a report is estimated by sampling of the
queries that it satisfies. But sampling does not work for estimating the supply,
because supply increases continuously as the report is being disseminated. Thus,

The MOBI-DIK Approach to Searching in Mobile Ad Hoc Network Databases 1111

Fig. 2 Query answering methods in MANET databases

a. We examined estimating the supply of a report based on various indicators
such as the age of the report and the number of times it is received by a mo-
bile peer. We found that no single indicator is a good predictor of supply in all
environments. For example, in some environments the intuition that the age
of the dataitem is a good predictor of novelty is correct. However, in an envi-
ronment where many new peers are entering the system, the number of times
a report is received by a mobile peer is a much better indicator of supply.

b. We developed and implemented an algorithm called MALENA that combines
various indicators to estimate the current supply [25]. The combination uses a
machine learning system that is trained from previously received reports, and
automatically learns the best indicator for the current environment.

c. We compared MALENA with three approaches to ranking of reports [25]. In
the first two approaches, ranking is based on a single individual supply indi-
cator that is found to be an optimal indicator in an environment that disfavors
another. The third approach is PeopleNet [16]. The comparison is conducted
by simulations using real Bluetooth traces collected at a major conference
event. The comparison shows that in each individual environment MALENA
approaches or outperforms the best algorithm for that environment and out-
performs the inferior one by up to 5 times. This is important since the best
algorithm depends on the global environment, and the global environmental
parameters change and are usually not known to a mobile peer.

d. Simulations show that, with each mobile peer storing 1000 reports and allo-
cating 10% of its power to MALENA, the performance of MALENA reaches
56% of the ideal benchmark (where a central server is employed, and it
instantaneously broadcasts each new report to all the mobile peers). 30% of
the reports received by MALENA are received within 10 minutes. We also
calculated the CPU consumption of MALENA. On a typical PDA, each exe-
cution of the MALENA computation takes less than half a millisecond.

1112 Yan Luo, Ouri Wolfson, and Bo Xu

2. An additional issue arising in a Store-and-forward algorithm such as MOBI-DIK
is how many reports to communicate in each transmission. If too many, excessive
collisions arise, and if too few, then the search capability suffers. We developed
an analytical model that computes the throughput of a transmission in an 802.11
ad hoc network (see [22]). The throughput is computed based on collision factors
such as the transmission size, the transmission frequency, the density of mobile
peers, and so on. Using this analytical model we proposed a method by which
a mobile peer dynamically adjusts the P2P transmission size depending on the
period of time between two P2P transmissions of a peer. The objective is to opti-
mize the bandwidth and energy utilization; optimization occurs when the number
of reliably received reports delivered per unit of energy is maximized. Simula-
tions show that by dynamically adjusting the transmission size, the performance
of the mobile P2P search is improved by up to an order of magnitude.

3. In MOBI-DIK a peer propagates reports when a new neighbor is encountered or
when new reports are received (old reports to new neighbors, or new reports to
old neighbors), thus adapting to both low and high mobility environments.

4. We compared MOBI-DIK with the three existing mobile P2P algorithms, namely
RANDI [21], PeopleNet [16], and 7DS [19]. MOBI-DIK outperforms PeopleNet
and 7DS by an order of magnitude, and is up to two times better than RANDI.
More details are provided in Appendix A. The advantage of MOBI-DIK in a
practical application, namely parking slot discovery, was demonstrated in [26].

5. We studied how the availability of a fixed infrastructure (e.g., the internet) can
be exploited to augment the P2P data dissemination (absence of a central server
is assumed). The general idea is that when a match (i.e., a query and a report
that match each other) occurs at a broker, the broker sends the matching report
to the query originator via the infrastructure. Since the cellular transmission is,
per byte, 16 times more energy-costly than P2P transmission, it is not even clear
that backchannel communication is beneficial. However, we determined that it
is. More details are provided in Appendix A.

6. We demonstrated the MOBI-DIK algorithm in the context of specific queries
and reports. The queries are K-nearest-neighbor queries, and the reports are the
current locations of mobile sensors. Thus, the MOBI-DIK algorithm is special-
ized to process this specific spatial query in a data-to-query fashion. Similarly, it
can be specialized for in-network processing of other types of queries, e.g. spa-
tial window queries. We compare the MOBI-DIK continuous-KNN performance
with that of the in-network KNN algorithm given in [23], called DIKNN. It pro-
cesses queries in a query-to-data fashion. The results show that MOBI-DIK is
up to 50 times more accurate than DIKNN when the P2P network is sparse, but
DIKNN is more accurate when the network is dense. More details are provided
in appendix B.

7. We studied the application of MOBI-DIK in the dissemination of real-time traffic
information. In this application, the real-time traffic information is produced by
and disseminated to vehicles throughout a road network. This application com-
plements the existing real-time traffic information dissemination methods which
tend to cover only selected highways where speed sensors are deployed. We

The MOBI-DIK Approach to Searching in Mobile Ad Hoc Network Databases 1113

compared MOBI-DIK with Grassroots [7], a flooding based mobile P2P traffic
information dissemination algorithm. The results show that MOBI-DIK outper-
forms Grassroots when the vehicle density is sparse or when the available band-
width is small. In some cases MOBI-DIK outperforms Grassroots by 50%. These
results demonstrate the benefit of store-and-forward, information prioritization,
and bandwidth adaptation. More details are provided in Appendix C.

5 Key Applications

MANET databases provide mobile users a search engine for transient and highly
dynamic information in a local geospatial environment. MANET databases employ
a unified model for both the cellular infrastructure and the mobile ad hoc environ-
ments. When the infrastructure is available, it can be augmented by the MANET
database approach.

Consider a MANET database platform, i.e., a set of software services for data
management in a MANET environment; it is similar to a regular Database Manage-
ment System, but geared to mobile P2P interactions. Such a platform will enable
quick building of matchmaking or resource discovery services in many application
domains, including social networks, emergency response and homeland security, the
military, airport applications, mobile e-commerce, and transportation.

1. Social Networks In a large professional, political, or social gathering, MANET
databases are useful to automatically facilitate a face-to-face meeting based on
matching profiles. For example, in a professional gathering, MANET databases
enable attendees to specify queries (interest profiles) and resource descriptions
(expertise) to facilitate face-to-face meetings, when mutual interest is detected.
Thus, the individual’s profile that is stored in MANET databases will serve as
a “wearable web-site”. Similarly, MANET databases can facilitate face-to-face
meetings for singles matchmaking.

2. Emergency Response, Homeland Security, and the Military MANET data-
bases offer the capability to extend decision-making and coordination capability.
Consider workers in disaster areas, soldiers and military personnel operating in
environments where the wireless fixed infrastructure is significantly degraded or
non-existent. As mobile users involved in an emergency response naturally clus-
ter around the location of interest, a self-forming, high-bandwidth network that
allows database search without the need of potentially compromised infrastruc-
ture could be of great benefit. For instance, the search could specify a picture of
a wanted person.

3. Airport Applications A potential opportunity that will benefit both the con-
sumer and the airport operations is the dissemination and querying of real-time
information regarding flight changes, delays, queue length, parking information,
special security alerts and procedures, and baggage information. This can aug-
ment the present audio announcements that often cannot be heard in nearby
restaurants, stores, or restrooms, and augment the limited number of displays.

1114 Yan Luo, Ouri Wolfson, and Bo Xu

4. Mobile E-commerce Consider short-range wireless broadcast and mobile P2P
dissemination of a merchant’s sale and inventory information. It will enable a
customer (whose cell phone is query-capable) that enters a mall to locate a de-
sired product at the best price. When a significant percentage of people have
mobile devices that can query retail data, merchants will be motivated to provide
inventory/sale/coupons information electronically to nearby potential customers
The information will be disseminated and queried in a P2P fashion (in, say, a
mall or airport) by the MANET database software.

5. Transportation Safety and Efficiency MANET databases software can im-
prove safety and mobility by enabling travelers to cooperate intelligently and
automatically. A vehicle will be able to automatically and transitively communi-
cate to trailing vehicles its “slow speed” message when it encounters an accident,
congestion, or dangerous road surface conditions. This will allow other drivers to
make decisions such as finding alternative roads. Also, early warning messages
may allow a following vehicle to anticipate sudden braking, or a malfunctioning
brake light, and thus prevent pile-ups in some situations. Similarly, other resource
information, such as ridesharing opportunities, transfer protection (transfer bus
requested to wait for passengers), will be propagated transitively, improving the
efficiency of the transportation system.

6 Future Research Directions

Further work is necessary on data models for mobile P2P search applications. Work
on sensor databases (e.g. Tinydb [14]) addresses data-models and languages for sen-
sors, but considers query processing in an environment of static peers (see e.g., POS
[4]). Cartel [10] addresses the translation of these abstractions to an environment
in which cars transfer collected data to a central database via fixed access points.
Work on MANET protocols deals mainly with routing and multicasting. In this
landscape there is a gap, namely general query-processing in MANET’s; such pro-
cessing needs to be cognizant of many issues related to peer-mobility. For example,
existing mobile P2P query processing methods deal with simple queries, e.g., selec-
tions; each query is satisfied by one or more reports. However, in many application
classes one may be interested in more sophisticated queries, e.g., aggregation. For
instance, in mobile electronic commerce a user may be interested in the minimum
gas price within the next 30 miles on the highway. Processing of such P2P queries
may present interesting optimization opportunities.

After information about a mobile resource is found, localization is often critical
for finding the physical resource. However, existing (self)-localization techniques
are insufficient. For example, GPS is not available indoors and the accuracy of GPS
is not reliable. Thus, furthering the state of the art on localization is important for
mobile P2P search.

As discussed above, MANET databases do not guarantee answer completeness.
In this sense, the integration with an available infra-structure such as the internet or
a cellular network may improve performance significantly. This integration has two

The MOBI-DIK Approach to Searching in Mobile Ad Hoc Network Databases 1115

aspects. First, using the communication infrastructure in order to process queries
more efficiently; and second, using data on the fixed network in order to provide
better and more answers to a query. The seamless integration of MANET databases
and infrastructure databases introduces important research challenges.

Other important research directions include: incentives for broker participation in
query processing (see [27]), and transactions/atomicity/recovery issues in databases
distributed over mobile peers (virtual currency must be transferred from one peer to
another in an atomic fashion, otherwise may be lost).

Of course, work on efficient resource utilization in mobile peers, and coping
with sparse networks and dynamic topologies is still very important for mobile P2P
search.

References

1. M. Barbaro and T. Zeller. A Face Is Exposed for AOL Searcher No.
4417749, New York Times, August 9, 2008. http://www.nytimes.com/2006/08/09/
technology/09aol.html? r=1&scp=11&sq=google

2. R. Barr, “An Efficient, Unifying Approach to Simulation Using Virtual Machines”, PhD thesis,
Cornell University, 2004.

3. D. Choffnes and F. Bustamante, “An Integrated Mobility and Traffic Model for Vehicular
Wireless Networks”, VANET, 2005.

4. L. Cox, M. Castro, and A. Rowstron, “POS: Practical Order Statistics for Wireless Sensor
Networks”, 26th IEEE ICDCS, Lisbon, Portugal, July 2006.

5. S. M. Das, H. Pucha, and Y. C. Hu, “Ekta: An Efficient DHT Substrate for Distributed Applica-
tions in Mobile Ad hoc Networks”, in Proc. of the 6th IEEE Workshop on Mobile Computing
Systems and Applications, English Lake District, UK, 12 2004.

6. A. Datta, S. Quarteroni, and K. Aberer, “Autonomous Gossiping: A Self-Organizing Epidemic
Algorithm For Selective Information Dissemination in Wireless Mobile Ad-Hoc Networks,”
in The International Conference on Semantics of a Networked World, 2004.

7. S. Goel, T. Imielinski, K. Ozbay, “Ascertaining Viability of WiFi based Vehicle-To-Vehicle
Network for Traffic Information Dissemination,” The 7th Intel. IEEE Conf. on Intelligent
Transportation Systems, 2004.

8. S. Hansell. AOL Removes Search Data On Vast Group Of Web Users, New
York Times, August 8, 2008. http://query.nytimes.com/gst/fullpage.html?res=
9504E5D81E3FF93BA3575BC0A9609C8B63

9. Y. Huang and H.G. Molina, “Publish/subscribe in a Mobile Environment”, MobiDE, 2001.
10. B. Hull, et al., “CarTel: A Distributed Mobile Sensor Computing System”, In Proc. of 4th Intl.

Conf. on Embedded Networked Sensor Systems, pp. 125–138, Nov 2006.
11. B. Karp and H. Kung. Gpsr: Greedy perimeter stateless routing for wireless networks. In Proc.

of MOBICOM, 2000.
12. B. Karp and H. T. Kung, “GPSR: Greedy Perimeter Stateless Routing for Wireless Sensor

Networks,” in The 6th Annual ACM/IEEE International Conference on Mobile Computing
and Networking (MobiCom’00), pp. 243–254, Aug 2000.

13. J. Kulik, W. Heinzelman, and H. Balakrishnan, “Negotiation-Based Protocols for Dissemi-
nating Information in Wireless Sensor Networks,” Wireless Networks, vol. 8, pp. 169–185,
2002.

14. S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “TinyDB: an Acquisitional
Query Processing System for Sensor Networks”, ACM Transactions on Database System,
30(1):122–173, 2005.

1116 Yan Luo, Ouri Wolfson, and Bo Xu

15. M. Mauve, A. Widmer, and H. Hartenstein, “A Survey on Position-Based Routing in Mobile
Ad-Hoc Networks,” IEEE Network, vol. 15, no. 6, pp. 30–39, 2001.

16. M. Motani, V. Srinivasan, and P. Nuggehalli, “PeopleNet: Engineering a Wireless Virtual So-
cial Network,” International Conference Mobile Computing and Networking (MobiCom’05),
Aug 2005.

17. R. Oliveira, L. Bernardo, and P. Pinto, “Flooding Techniques for Resource Discovery on High
Mobility MANETs”, Workshop on Wireless Ad-hoc Networks, 2005.

18. A. A. Papadopoulos and J. A. McCann, “Towards the Design of an Energy-Efficient, Location-
Aware Routing Protocol for Mobile, Ad-hoc Sensor Networks”, in Proc. of the 15th Int. Work-
shop on Database and Expert Systems Applications (DEXA), 2004.

19. M. Papadopouli and H. Schulzrinne, “Design and Implementation of a P2P Data Dissemina-
tion and Prefetching Tool for Mobile Users”, First NY Metro Area Networking Workshop,
IBM TJ Watson Research Center, Hawthorne, NY, 2001.

20. A. Visvanathan, J. H. Youn, and J. Deogun, “Hierarchical Data Dissemination Scheme
for Large Scale Sensor Networks,” in IEEE International Conference on Communications
(ICC’05), pp. 3030–3036, May 2005.

21. O. Wolfson and B. Xu, “Mobile Peer-to-peer Data Dissemination with Resource Constraints”,
MDM, 2007.

22. O. Wolfson, B. Xu, H.B. Yin, and H. Cao, “Search-and-Discover in Mobile P2P Network
Databases”, in Proc. of the 26th IEEE International Conference on Distributed Computing
Systems (ICDCS’06), Lisbon, Portugal, 2006

23. S.-H. Wu et al: Diknn: an itinerary-based knn query processing algorithm for mobile sensor
networks. ICDE07.

24. Y. Xu, J. Heidemann, and D. Estrin, “Geography-informed Energy Conservation for Ad hoc
Routing,” in The ACM International Conference on Mobile Computing and Networking,
pp. 70–84, Rome, Italy, July 2001.

25. B. Xu, O. Wolfson, and C. Naiman, “Flooding by Machine Learning in Mobile Ad Hoc Net-
works”, accepted, to appear in ACM Transactions on Autonomous and Adaptive Systems
(TAAS).

26. B. Xu, O. Wolfson, C. Naiman, N. Rishe, and R. Tanner, “A Feasibility Study on Disseminat-
ing Spatio-temporal Information via Vehicular Ad-hoc Networks”, V2VCOM, 2007.

27. B. Xu, O. Wolfson, and N. Rishe, “Benefit and Pricing of Spatio-temporal Information in
Mobile Peer-to-Peer Networks”, Proc. of Hawaii Intl. Conf. on System Sciences (HICSS-39),
Jan 2006.

28. Y. Yu, R. Govindan, and D. Estrin., “Geographical and Energy Aware Routing: A Recursive
Data Dissemination Protocol for Wireless Sensor Networks,” Technical Report UCLA/CSD-
TR-01-0023, UCLA, May 2001.

Appendix A. Comparison of MOBI-DIK with RANDI,
PeopleNet, and 7DS

From the algorithmic point of view, the main differences of 7DS and PeopleNet from
MOBI-DIK are: (1) they have no energy/bandwidth management for determining
the transmission size; (2) the broker function is much more simplistic (no ranking);
(3) 7DS does not have a good strategy to determine when to communicate. The
main difference of RANDI from MOBI-DIK is that it does not take supply into
account when ranking reports. The four algorithms are implemented in SWANS
(Scalable Wireless Ad-hoc Network Simulator) built at Cornell [2]. We augmented

The MOBI-DIK Approach to Searching in Mobile Ad Hoc Network Databases 1117

SWANS with a feature that tracks the energy consumed for computation and for
802.11 communication (including transmitting, receiving, and listening). In order
to put the performance of the algorithms in perspective, we also define an ideal
benchmark offline algorithm. In the ideal benchmark algorithm, when a report is
produced, it is instantaneously disseminated to all the mobile peers currently in the
system.

Figure 3 shows some simulation results. The performance measure, response-
time bounded throughput, was developed by us and it integrates two traditional eval-
uation metrics for data access, namely throughput and response-time. Specifically,
the response-time bounded throughput is the average number of distinct matches
received by a mobile peer within a certain time limit c. c is called the response-time
bound. The following observations are made from the simulation results:

 0

 20

 40

 60

 80

 100

 120

 140

 0 30 60 90 120 150 180 210 240 270 300

th
ro

ug
hp

ut
 (

m
at

ch
es

/p
ee

r)

response-time bound (second)

(a) On average each peer has 20 neighbors

 0

 20

 40

 60

 80

 100

 120

 140

0 3600 7200 10800 14400 18000 21600 25200 28800

th
ro

ug
hp

ut
 (

m
at

ch
es

/p
ee

r)

response-time bound (second)

MOBIDIK-with-backchannel
MOBIDIK-without-backchanel

RANDI

MOBIDIK-with-backchannel

MOBIDIK-without-backchanel
RANDI

PeopleNet
7DS

Ideal Benchmark

PeopleNet

7DS
Ideal Benchmark

(b)On average each peer has 0.1 neighbor

Fig. 3 Comparison among MOBI-DIK, RANDI, PeopleNet, and 7DS. 802.11 bandwidth=2 Mbps,
transmission range=100 meters, 15% of battery energy allocated to a mobile P2P algorithm, 1
report produced every 10 seconds, mean of report size=1500 bytes, query size = 100 bytes, mean
of reports database size=100K bytes

1118 Yan Luo, Ouri Wolfson, and Bo Xu

1. With at least 15% of the battery energy allocated to each mobile peer, a mobile
P2P database performs reasonably close to an ideal centralized database.

2. MOBI-DIK outperforms PeopleNet and 7DS by an order of magnitude.
3. Supply-and-demand ranking doubles the performance of a mobile P2P database

(see Fig. 3 a).
4. The backchannel improves the performance of MOBI-DIK by nearly 30% even

though it is more energy costly.
5. The backchannel is particularly beneficial when the peer density is low.

Appendix B: Query-to-Data and Data-to-Query in P2P
KNN-Query Processing

In this appendix we demonstrate the MOBI-DIK algorithm in the context of
K-nearest-neighbors (KNN) queries, where the reports are the current locations of
mobile sensors. Thus, the MOBI-DIK algorithm is specialized to process this spe-
cific spatial query. We compare the MOBI-DIK continuous-KNN performance with
that of the in-network KNN algorithm given in [23] (called DIKNN). This section is
organized as follows. In ‡B.1 we discuss the instantiation of MOBI-DIK for KNN
query processing. In ‡B.2 we compare MOBI-DIK and the DIKNN algorithm [23]
which is designed especially for KNN query processing in mobile sensor networks.

B.1 KNN Query Processing in MOBI-DIK

We consider a system where there is a single static sink. The sink is continuously
interested in knowing the k mobile peers that are closest to a static query point q.
Thus the sink and every other peer have a query Q which contains the coordinates
of q. Q is known to all the peers before the KNN query processing and therefore
it is not transmitted during a P2P interaction. A report is produced by each mobile
peer O every one second. The report, referred to as the location report, contains the
current timestamp, the current location of O, and the peer-id of O. We refer to the
location included in a report R as the home location of R.

For the computation of the demand, Q(R), i.e., the degree to which a report R
satisfies the KNN query Q is negatively correlated to the distance between the home
location of R and the query point q, and is [0− 1] normalized. For example, if the
distance between the home location of R and q is 1.4 mile, and the maximum dis-
tance between q and the home location of a report in the peer’s database is 2 miles,
then the demand for R is (1−1.4/2 = 0.3).

The reports propagate via P2P to the sink, which is one of the peers. The sink
answers the KNN queries based on the latest location of each peer maintained in the
sink’s reports database.

The MOBI-DIK Approach to Searching in Mobile Ad Hoc Network Databases 1119

B.2 Comparison Between Query-to-Data by DIKNN,
and Data-to-Query by MOBI-DIK

The DIKNN Algorithm. In the literature there is no algorithm for in-network pro-
cessing of continuous KNN queries [23]. Thus we use an instantaneous algorithm,
DIKNN, and execute it repeatedly. In DIKNN, the query issued by the sink is ge-
ographically routed from the sink to the nearest neighbor of the query point p by
GPSR [11]. The query is then disseminated to all the peers in a circular searching
area centered at p. The size of the searching area is determined based on the density
of the network, such that the k nearest neighbors are inside the searching area with
a high probability. At the end of the dissemination, the aggregated query response is
routed back to the sink. Simulation Method. The mobile P2P algorithms are imple-
mented in SWANS (Scalable Wireless Ad-hoc Network Simulator) built at Cornell.
100 peers move within a L×L square area according to the random way-point mo-
bility model with mean speed 1 mile/hour and mean pause time 180 seconds. In this
setup, the average number of peers D within a circle with radius 100 meters (i.e.,
the transmission range), is

D = 100
π×100×100

L2

We refer to D as the peer density. D is a system parameter. It has values 20 and 1,
representing high and low connectivities. In other words, even though MOBI-DIK
is geared towards a sparse connectivity environment, we evaluate it in dense ones
as well. L is chosen such that the peer density equals to the value of D. The whole
simulation runs for 8 simulated hours.

The sink is located at the center of the northwest quadrant of the simulated square
area. The query point is located at the center of the southeast quadrant. The query
is issued every one second. For MOBI-DIK, this means that KNN’s are computed
at the sink using the local database every 1 second. The local database has the last
known location of each peer, but some of these locations may be outdated, thus the
computed KNN may not be accurate. The accuracy of each KNN query is measured
by the fraction of the correctly returned KNN’s.

The size of each report is 24 bytes, including 16 bytes for the coordinates of
the location, 4 bytes for the timestamp, and 4 bytes for the peer-id. The size limit of
each reports database is randomly chosen from [1200, 3600] bytes. Thus the average
number of members in a reports database is 2400K/24 = 100. All the simulation
parameters and their values are listed in Table B.1.

For DIKNN, we do not simulate its operation. Instead, we compute the upper
bound of its query accuracy. Assume that the geographic routing is reliable and
instantaneous, and the searching area contains all the K-nearest neighbors, thus the
query is correctly delivered to them. Then with DIKNN, a correct KNN is returned
to the sink if and only if there exists a path between this KNN and the sink at the
time when the query is issued. For each query, we compute the fraction of the correct

1120 Yan Luo, Ouri Wolfson, and Bo Xu

Table B.1 Simulation parameters and their values

Parameter Unit Values

Number of concurrent peers 100

Total number of peers 100

Transmission range r Meter 100

Peer density D Number of peers in
a circle with radius r

1, 2, 3, 4, 5, 6, 7

Data transmission speed Bits/second 2M

Battery allocation fraction F 1

Report production rate P Reports/second/peer 1

Report size range Byte 24

Query size Byte 16

Reports database size range Byte [1200, 3600]

Demand database size Byte 16

Average motion speed Miles/hour 1

Average pause time Second 180

Mobility model Random way-point

Simulation run time Hours 8

KNN’s for which there are paths between them and the sink, and take this fraction
to be the accuracy of DIKNN.

The above simulation method favors MOBI-DIK in the sense that MOBI-DIK is
designed for continuous queries and DIKNN is designed for instantaneous queries.
On the other hand, it favors DIKNN in the following senses. First, DIKNN is opti-
mized for KNN query processing whereas MOBI-DIK is a general purpose query
processing algorithm. Second, MOBI-DIK is compared with the upper bound accu-
racy of DIKNN.

Simulation results. Figure 4 a shows the accuracy of MOBI-DIK and DIKNN when
k is 10, for different peer densities. Figure 4 b, c show the accuracy when peer den-
sity is 2 and 1 respectively, for different values of k. From these figures it can be seen
that the accuracy of MOBI-DIK is by far higher than that of DIKNN when the peer

The MOBI-DIK Approach to Searching in Mobile Ad Hoc Network Databases 1121

(b) Accuracy as a function of k with peer density = 2

(c) Accuracy as a function of k with peer density =1. The accuracy is zero
for DIKNN for all the k values.

ac
cu

ra
cy

ac
cu

ra
cy

ac
cu

ra
cy

100%

80%

60%

40%

20%

0%

80%

60%

40%

20%

0%

0%

5%
10%

15%
20%
25%
30%

1 2 3

peer density

MARKET

DIKNN

MARKET

DIKNN

MARKET

DIKNN

4 5

5 10 15 20

5 10 15 20

K

6

(a) Accuracy as a function of peer density with k =10. The accuracy is zero
for DIKNN for peer density 1.

K

Fig. 4 Accuracy

1122 Yan Luo, Ouri Wolfson, and Bo Xu

density is low. When the peer density is below 2, the DIKNN algorithm completely
fails, with 0% accuracy. In this case MOBI-DIK manages to provide up to 30% ac-
curacy. When the peer density is 2, MOBI-DIK outperforms DIKNN by an order
of magnitude, regardless of the value of k. In this case the accuracy of MOBI-DIK
reaches 60% for k = 20. The reason for the poor performance of DIKNN in a sparse
network is that, with very high probability there does not exist a path between the
sink and a KNN. When the sink and the KNN are disconnected, the query does not
reach the KNN and the KNN is not collected in the query response. MOBI-DIK,
on the other hand, does not need a contemporaneous path to collect results. This
demonstrates the benefit of store-and-forward in a sparse network.

When the peer density is higher than 5 (see Fig. 4 a), DIKNN starts to outperform
MOBI-DIK.

Appendix C. Comparison of MOBI-DIK with Grassroots
in Dissemination of Real-time Traffic Information

The application scenario is as follows. A set of vehicles move on a road network.
Each vehicle m has a digital map of the road network. For each road segment s in the
road network, the digital map stores the estimated travel time of s. Each vehicle m
is equipped with a GPS receiver. Every time m travels through a road segment s and
reaches the end of it, m produces a report that includes the travel time experienced
by m on s. The report is disseminated using a mobile P2P algorithm (MOBI-DIK
or Grassroots). Upon receiving a report, m updates the estimated travel time of the
corresponding road segment in its own digital map.

We propose a novel metric, called the difference in knowledge (DIK), as the
performance measure. The DIK measures the difference between the actual traffic
condition on a road segment and that known to a vehicle. Formally, let s1,s2, . . . ,sn

be all the road segments in the road network. Let p be the location of a vehicle O at
t. Let be the actual travel time of a road segment sk. Let T (O,sk) be the travel time
of sk maintained at O’s digital map. The difference in knowledge of O at t, denoted
DIK(O, t) is

DIK(O, t) = ∑
k=1

(
1
gk
|T (sk)−T (o,sk)|

)
(1)

where gk is the free-flow travel time along the shortest-distance path from p to the
middle point of sk. Intuitively, the difference in knowledge of O is the weighted
sum of the difference in knowledge of O between the true map and its local digi-
tal map for each road segment. The farther away the road segment is from O, the
lower its weight. Specifically, the weight of a road segment sk is 1/gk. To put the
results in perspective we evaluated MOBI-DIK and Grassroots against the case in
which reports are not disseminated at all. By comparing with this case, called Non-
Info, we evaluate the benefit of reports dissemination. The comparison uses the

The MOBI-DIK Approach to Searching in Mobile Ad Hoc Network Databases 1123

STRAW/SWANS simulation test-bed [3]. The STRAW system simulates vehicle
traffic mobility on a 3.2km×2.2km region of downtown Chicago.

(a) Bandwidth allocation = 1% (b) Bandwidth allocation = 100%

Fig. 5 Comparison among MOBI-DIK, Grassroots, and NonInfo. 802.11 band-width=2 Mbps,
transmission range=250 meters

Figure 5 shows some simulation results. From the figure it can be seen that both
MOBI-DIK and Grassroots significantly outperform NonInfo, by up to an order
of magnitude. Furthermore, when the vehicle density is small, MOBI-DIK outper-
forms Grassroots; this demonstrates the advantage of store-and-forward. When a
small fraction of 802.11 bandwidth is allocated to traffic information dissemination
(the rest may be reserved for emergent dissemination of safety-related messages
such as a malfunctioning brake or a deployment of an airbag), MOB-DIK also out-
performs Grassroots; this demonstrates the benefit of information prioritization and
bandwidth adaptation. Grassroots outperforms MOBI-DIK when the bandwidth al-
location and vehicle density are high, and therefore we are defining a system that
adaptively transitions between the two algorithms depending on these parameters.

Part X
Fault Tolerance in P2P Networks

Managing Network Partitions in Structured P2P
Networks

Tallat M. Shafaat, Ali Ghodsi, and Seif Haridi

Abstract Structured overlay networks form a major class of peer-to-peer systems,
which are touted for their abilities to scale, tolerate failures, and self-manage. Any
long-lived Internet-scale distributed system is destined to face network partitions.
Consequently, the problem of network partitions and mergers is highly related to
fault-tolerance and self-management in large-scale systems. This makes it a crucial
requirement for building any structured peer-to-peer systems to be resilient to net-
work partitions. Structured overlays have mainly been studied under churn (frequent
joins/failures), which as a side effect solves the problem of network partitions, as it
is similar to massive node failures. Yet, the crucial aspect of network mergers has
been ignored. In this chapter, we motivate the problem of network partitions and
mergers in structured overlays. We discuss how a structured overlay can automat-
ically detect a network partition and merger. We present an algorithm for merging
multiple similar ring-based overlays when the underlying network merges. We eval-
uate the algorithm for various scenarios and show that even when falsely detecting a
merger, the algorithm quickly terminates and does not clutter the network with many
messages. The algorithm is flexible as the tradeoff between message complexity and
time complexity can be adjusted by a parameter.

Tallat M. Shafaat
Royal Institute of Technology (KTH), Electrum 229, 164 40 Kista, Sweden,
http://www.ict.kth.se/˜tallat,
e-mail: tallat@kth.se

Ali Ghodsi
Swedish Institute of Computer Science (SICS), Box 1263, 164 29 Kista, Sweden,
http://www.sics.se/˜ali,
e-mail: ali@sics.se

Seif Haridi
Royal Institute of Technology (KTH), Electrum 229, 164 40 Kista, Sweden,
http://www.ict.kth.se/˜haridi,
e-mail: haridi@kth.se

X. Shen et al. (eds.), Handbook of Peer-to-Peer Networking, 1127
DOI 10.1007/978-0-387-09751-0 40, © Springer Science+Business Media, LLC 2010

1128 Tallat M. Shafaat, Ali Ghodsi, and Seif Haridi

1 Introduction

Structured overlay networks and distributed hash-tables (DHTs) are touted for their
ability to provide scalability, fault-tolerance, and self-management, making them
well-suited for Internet-scale distributed applications. As these applications are long
lived, they will always come across network partitions. Since overlays1 have been
touted for their ability to be fault-tolerant and self-manage, they have to be resilient
to network partitions.

Although network partitions are not very common, they do occur. Internet fail-
ures, resulting in partitioned networks can occur due to large area link failure, router
failure, physical damage to a link/router, router misconfiguration and buggy soft-
ware updates. Overloaded routers, network wide congestion due to denial of service
(DoS) attacks and routing loops [27] can also have the same effect as a network par-
tition. Similarly, natural disasters can result in Internet failures. This was observed
when an earthquake in Taiwan in December 2006 exposed the issue that global
traffic passes through a small number of seismically active “choke points” [32].
Several countries in the region connect to the outside world through these choke
points. A number of similar events leading to Internet failures have occurred [13].
On a smaller scale, the aforementioned causes can disconnect an entire organization
from the Internet [26], thus partitioning the organization. Apart from physical fail-
ures, DoS (denial of service) might control enough nodes to effectively partition the
overlay.

Infact, while deploying an overlay-based application on Internet, the first major
problem reported and strongly suggested to be solved by Mislov et. al. [24] was:

A reliable decentralized system must tolerate network partitions.

While deploying ePOST [24] on PlanetLab, Mislov et. al. recorded the number of
partitions experienced over a period of 85 days. Figure 1 shows their results, which
clearly suggests that partitions occur all the time.

Apart from network partitions, the problem of merging multiple overlays is very
interesting and useful in itself. It is common to build independent overlays regardless
of existing overlays, and later merge them. This helps in decentralized bootstrapping
of overlays [6]. Also, it may happen that overlays originally build independently
have to be later merged due to overlapping interests.

Consequently, a crucial requirement for practical overlays is that they should be
able to deal with network partitions and mergers. Most overlays cope with network
partitions, but not with network mergers. This is because a network partition, as
seen from the perspective of a single node, is identical to massive node failures.
Since overlays have been designed to cope with churn (node joins and failures),
they can self-manage in the presence of such partitions. However, most overlays
cannot cope with network mergers, which is the focus of this chapter.

1 In this chapter, we use the word overlay for structured overlay network.

Merging Overlays 1129

Fig. 1 Number of connected components observed over a 85 day period on PlanetLab. Figure
taken from ePOST [24]

The merging of overlays gives rise to problems on two different levels: rout-
ing level and data level. The routing level is concerned with healing of the routing
information after a partition merger. The data level is concerned with the consistency
of the data items stored in the overlay. In this chapter, we focus mainly on the prob-
lem of dealing with partition mergers at the routing level, with a short discussion of
issues faced on the data level.

Chapter Organization

Section 2 serves as a background for this chapter. A reader already familiar with
a ring-based overlay such as Chord can safely skip this section. Section 3 shows
how an overlay can detect a network partition and later, merger, in the underlying
network, thus triggering the overlay merger algorithm. Section 4 introduces solu-
tions on the routing level for merger of multiple ring-based overlays. Thereafter,
Section 5 evaluates different aspects of the introduced algorithms. Section 6 dis-
cusses related work, including solutions for tree-based overlays. Finally, Section 7
summarizes the chapter and presents some open challenges currently faced by the
research community.

2 Preliminaries

The rest of the chapter focuses on ring-based structured overlay networks. Next, we
motivate this choice, and thereafter briefly define ring-based overlays. Finally, we
show how Chord deals with network partitions and failures.

1130 Tallat M. Shafaat, Ali Ghodsi, and Seif Haridi

Motivation for the Unidirectional Ring Geometry

We confine ourselves to unidirectional ring-based SONs, such as Chord [31], Skip-
Net [12], DKS [9], Koorde [16], Mercury [4], Symphony [23], EpiChord [17], and
Accordion [19]. But we believe that our algorithms can be adapted easily to other
ring-based overlays, such as Pastry [28]. For a more detailed account on direction-
ality and structure in SONs, please refer to Onana et al. [3] and Aberer et al. [1].

The reason for confining ourselves to ring-based overlays is twofold. First, ring-
based overlays constitute a majority of the overlays. Second, Gummadi et al. [11]
diligently compared the geometries of different overlays, and showed that the ring
geometry is the one most resilient to failures, while it is just as good as the other
geometries when it comes to proximity.

To simplify the presentation of our algorithms, we use notation that indicates the
use of the Chord [31] overlay. But the ideas are directly applicable to all unidirec-
tional ring-based SONs.

A Model of a Ring-based Overlay

A ring-based overlay makes use of an identifier space, which for our purposes is
defined as a set of integers {0,1, · · · ,N −1}, where N is some apriori fixed, large,
and globally known integer. This identifier space is perceived as a ring that wraps
around at N −1.

Every node in the system, has a unique identifier from the identifier space. Node
identifiers are typically assumed to be uniformly distributed on the identifier space.
Each node keeps a pointer, succ, to its successor on the ring. The successor of a
node with identifier p is the first node found going in clockwise direction on the
ring starting at p. Similarly, every node also has a pointer, pred, to its predecessor
on the ring. The predecessor of a node with identifier q is the first node met going in
anti-clockwise direction on the ring starting at q. A successor-list is also maintained
at every node r, which consists of r’s c immediate successors, where c is typically
set to log2(n), where n is the network size.

Ring-based overlays also maintain additional routing pointers on top of the ring
to enhance routing. To be concrete, assume that these are placed as in Chord. Hence,
each node p keeps a pointer to the successor of the identifier p + 2i (mod N) for
0≤ i < log2(N). The algorithms presented can easily be adapted to other schemes
for placing these additional pointers.

Dealing with Partitions and Failures in Chord

Chord handles joins and leaves using a protocol called periodic stabilization. Leaves
are handled by having each node periodically check whether pred is alive, and set-
ting pred := nil if it is found dead. Moreover, each node periodically checks to see

Merging Overlays 1131

if succ is alive. If it is found to be dead, it is replaced by the closest alive successor
in the successor-list.

Joins are also handled periodically. A joining node makes a lookup to find its
successor s on the ring, and sets succ := s. Each node periodically asks for its suc-
cessor’s pred pointer, and updates succ if it finds a closer successor. Thereafter, the
node notifies its current succ about its own existence, such that the successor can
update its pred pointer if it finds that the notifying node is a closer predecessor than
pred. Hence, any joining node is eventually properly incorporated into the ring.

As mentioned previously, a single node cannot distinguish massive simultaneous
node failures from a network partition. As periodic stabilization can handle massive
failures [20], it also recovers from network partitions, making each component of
the partition eventually form its own ring. We have simulated such scenarios and
confirmed these results. The problem that remains unsolved, which is the focus of
the rest of the paper, is how several independent rings can efficiently be merged.

3 Detecting Network Partitions and Mergers

For multiple overlays to be merged, at least one node needs to have knowledge
about at least one node in another ring. This is facilitated by the use of passive lists.
Whenever a node detects that another node has failed, it puts the failed node, with the
failed node’s routing information2 into its passive list. Every node periodically pings
nodes in its passive list to detect if a failed node is again alive. When this occurs, it
starts an overlay merging algorithm. Hence, a network partition will result in many
nodes being placed in passive lists. When the underlying network merges, this will
be detected and rectified through the execution of an overlay merging algorithm.

An overlay merging algorithm can also be invoked in other ways than described
above. For example, it could occur that two overlays are created independently of
each other, but later their administrators decide to merge them due to overlapping
interests. It could also be that a network partition has lasted so long, that all nodes
in the rings have been replaced, making the contents of the passive lists useless.
In cases such as these, a system administrator can manually insert an alive node
from another overlay into the passive list of any of the nodes. The overlay merger
algorithm will take care of the rest.

The detection of an alive node in a passive list does not necessarily indicate the
merger of a partition. It might be the case that a single node is incorrectly detected
as failed due to a premature timeout of a failure detector. The overlay merging algo-
rithm should be able to cope with this by trying to ensure that such false-positives
will terminate the algorithm quickly. It might also be the case that a previously failed
node rejoins the network, or that a node with the same overlay and network address
as a previously failed node joins the ring. Such cases are dealt with by associating
with every node a globally unique random nonce, which is generated each time a

2 By routing information we mean a node’s overlay identifier, network address, and nonce value
(explained shortly).

1132 Tallat M. Shafaat, Ali Ghodsi, and Seif Haridi

node joins the network. Hence, if the algorithm detects that a node in its passive list
is again alive, it can compare the node’s current nonce value with that in the passive
list to avoid a false-positive, as that node is likely a different node that coincidentally
has the same overlay and network address.

4 Merging the Overlays

This section presents both simple and gossip-based Ring Unification [29]. Since the
latter algorithm builds on the previous, we hope that this has a didactic value. In
this section, we use Chord notation to simplify the presentation of the algorithms,
though the ideas are directly applicable to all unidirectional ring-based overlays [1].

4.1 Simple Ring Unification

In this section, the simple ring unification algorithm (Algorithm 25) is presented.
As shown later, the algorithm will merge the rings in O(N) time for a network size
of N. Though the problem of dealing with network mergers is crucial, such events
happen rarely. Hence, it might be justifiable in certain application scenarios that
a slow paced algorithm runs in the background, consuming little resources, while
ensuring that any potential problems with partitions will eventually be rectified.
Later, it is shown how the algorithm can be improved to make it complete the merger
in substantially less time.

Algorithm 25 makes use of a queue called detqueue, which will contain any
alive nodes found in the passive list (Section 3). The queue is periodically checked
by every node p, and if it is non-empty, the first node q in the list is picked to
start a ring merger. Ideally, p and q will be on two different rings. But even so, the
distance between p and q on the identifier space might be very large, as the passive
list can contain any previously failed node. Hence, the event MLOOKUP(id) is used
to get closer to id through a lookup. Once MLOOKUP(id) gets near its destination
id, it triggers the event TRYMERGE(a,b), which tries to do the actual merging by
updating succ and pred pointers to a and b.

The event MLOOKUP(id) is similar to a Chord lookup, which tries to do a greedy
search towards the destination id. One difference is that it terminates the lookup
if it reaches the destination and locally finds that it cannot merge the rings. More
precisely, this happens if MLOOKUP(id) is executed at id itself, or at a node whose
successor is id. If an MLOOKUP(id) executed at n finds that id is between n and
n’s successor, it terminates the MLOOKUP and starts merging the rings by calling
TRYMERGE. Another difference between MLOOKUP and an ordinary Chord lookup
is that an MLOOKUP(id) executed at n also terminates and starts merging the rings
if it finds that id is between n’s predecessor and n. Thus, the merge will proceed in
both clockwise and anti-clockwise direction.

Merging Overlays 1133

Algorithm 25: Simple Ring Unification Algorithm
1: every γ time units and detqueue �= /0 at p
2: q := detqueue.dequeue()
3: sendto p : MLOOKUP(q)
4: sendto q : MLOOKUP(p)
5: end event

6: receipt of MLOOKUP(id) from m at n
7: if id �= n and id �= succ then
8: if id ∈ (n,succ) then
9: sendto id : TRYMERGE(n,succ)

10: else if id ∈ (pred,n) then
11: sendto id : TRYMERGE(pred,n)
12: else
13: sendto closestprecedingnode(id) : MLOOKUP(id)
14: end if
15: end if
16: end event

17: receipt of TRYMERGE(cpred,csucc) from m at n
18: sendto n : MLOOKUP(csucc)
19: if csucc ∈ (n,succ) then
20: succ := csucc
21: end if
22: sendto n : MLOOKUP(cpred)
23: if cpred ∈ (pred,n) then
24: pred := cpred
25: end if
26: end event

The event TRYMERGE takes a candidate predecessor, cpred, and a candidate suc-
cessor csucc, and attempts to update the current node’s pred and succ pointers. It
also makes two recursive calls to MLOOKUP, one towards cpred, and one towards
csucc. These recursive calls attempt to continue the merging in both directions.
Figure 2 shows the working of the algorithm.

In summary, MLOOKUP closes in on the target area where a potential merger
can happen, and TRYMERGE attempts to do local merging and advancing the merge
process in both directions by triggering new MLOOKUPs.

4.2 Gossip-Based Ring Unification

The simple ring unification presented in the previous section has two disadvantages.
First, it is slow, as it takes O(N) time to complete the ring unification. Second, it
cannot recover from certain pathological scenarios. For example , assume two dis-
tinct rings in which every node points to its successor and predecessor in its own
ring. Assume furthermore that the additional pointers of every node point to nodes

1134 Tallat M. Shafaat, Ali Ghodsi, and Seif Haridi

1:mlookup(q)

2:mlookup(p)

3:trymerge

3a:csucc
3b:cpred

4:trymerge

4b:cpred4a:csucc P

q

clockwise progressanti-c
lockwise progress

anti-clockwise progress

clockwise progress

Fig. 2 Filled circles belong to Overlay1 and empty circles belong to Overlay2. The algorithm starts
when p detects q, p makes an MLOOKUP to q and asks q to make an MLOOKUP to p.

in the other ring. In such a case, an mlookup will immediately leave the initiat-
ing node’s ring, and hence terminate. We do not see how such a pathological sce-
nario could occur due to a partition, but the gossip-based ring unification algorithm
(Algorithm 26) rectifies both disadvantages of the simple ring unification algorithm.
Moreover, the simple ring unification is less robust to churn, as we discuss in the
evaluation section.

Algorithm 26 is, as its name suggests, gossip-based. The algorithm is essentially
the same as the simple ring unification algorithm, with a few additions. The intuition
is to have the initiator of the algorithm immediately start multiple instances of the
simple algorithm at random nodes, with uniform distribution. But since the initia-
tor’s pointers are not uniformly distributed, the process of picking random nodes is
incorporated into MLOOKUP. Thus, MLOOKUP(id) is augmented so that the current
node randomly picks a node r in its current routing table and starts a ring merger
between id and r. This change alone would, however, consume too much resources.

Two mechanisms are used to prevent the algorithm from consuming too many
messages, which could give rise to positive feedback cycles that congest the net-
work. First, instead of immediately triggering an MLOOKUP at a random node, the
event is placed in the corresponding node’s detqueue, which is only checked pe-
riodically. Second, a constant number of random MLOOKUPs are created. This is
regulated by a fanout parameter called F . Thus, the fanout is decreased each time a
random node is picked, and the random process is only started if the fanout is larger

Merging Overlays 1135

Algorithm 26: Gossip-based Ring Unification Algorithm
1: every γ time units and detqueue �= /0 at p
2: 〈q, f 〉 := detqueue.dequeue()
3: sendto p : MLOOKUP(q, f)
4: sendto q : MLOOKUP(p, f)
5: end event

6: receipt of MLOOKUP(id, f) from m at n
7: if id �= n and id �= succ then
8: if f > 1 then
9: f := f −1

10: r := randomnodeinRT()
11: at r : detqueue.enqueue(〈id, f 〉)
12: end if
13: if id ∈ (n,succ) then
14: sendto id : TRYMERGE(n,succ)
15: else if id ∈ (pred,n) then
16: sendto id : TRYMERGE(pred,n)
17: else
18: sendto closestprecedingnode(id) : MLOOKUP(id, f)
19: end if
20: end if
21: end event

22: receipt of TRYMERGE(cpred,csucc) from m at n
23: sendto n : MLOOKUP(csucc,F)
24: if csucc ∈ (n,succ) then
25: succ := csucc
26: end if
27: sendto n : MLOOKUP(cpred,F)
28: if cpred ∈ (pred,n) then
29: pred := cpred
30: end if
31: end event

than 1. The detqueue, therefore, holds tuples, which contain a node identifier and
the current fanout parameter. Similarly, MLOOKUP takes the current fanout as a pa-
rameter. The rate for periodically checking the detqueue can be adjusted to control
the rate at which the algorithm generates messages.

5 Performance Evaluation

In this section, a short evaluation of the two algorithms for ring-based overlays from
various aspects and in different scenarios is presented. A detailed evaluation can be
found in the original paper [29]. For the evaluation, there are two measures of in-
terest: message complexity, and time complexity. A differentiation is made between
the completion and termination of the algorithm. Completion means the time when

1136 Tallat M. Shafaat, Ali Ghodsi, and Seif Haridi

the rings have merged. Termination means the time when the algorithm terminates
sending any more messages. Unless said otherwise, message complexity is until
termination, while time complexity is until completion.

The simulation scenario had the following structure. Initially nodes join and fail.
After a certain number of nodes are part of the system, a partition event is inserted,
upon which the simulator divides the set of nodes into as many components as re-
quested by the partition event, dividing the nodes randomly into the partitions but
maintaining an approximate ratio specified. The simulator then drops all messages
sent from nodes in one partition to nodes in another partition, thus simulating a
network partition in the underlying network and therefore triggering the failure han-
dling algorithms. Furthermore, node join and fail events are triggered in each par-
titioned component. Thereafter, a network merger event simply allows messages
to reach other network components, triggering the detection of alive nodes in the
passive lists, and hence starting the ring unification algorithms.

The simple ring unification algorithm and the gossip-based ring unification algo-
rithm were simulated for partitions creating two components of approximately the
same size, and for fanout values from 1 to 7. For all the simulation graphs to follow,
a fanout of 1 represents the simple ring unification algorithm. A time unit was equal
to the time it takes for a message to reach its destination node.

To proper understand the performance of the proposed algorithm, let us study
scenarios where only one node starts the merger of the two rings. The two nodes
that are involved in the merger are randomly selected, with uniform probability, i.e.
the node p that detects the merger and the node that p detects from its passive list.

To study the scalability of ring unification, consider network sizes of powers of 2.
Results for time complexity are shown in Fig. 3a. The graph for the gossip-based
algorithms is linear, which suggests a O(logn) time complexity. In contrast, the
simple ring unification graph (F=1) is exponential, indicating that it does not scale
well, i.e. ω(logn) time complexity. Figure 3b plots the number of ring unification
messages sent by each node during the merger, i.e. the total number of messages in-
duced by the algorithm until termination divided by the number of nodes. The linear
graph on a log-log plot indicates a polynomial messages complexity. As expected,
the number of messages per node grows slower for simple ring unification compared
to gossip-based ring unification.

It is evident from Fig. 3a, b that the simple ring unification algorithm (F = 1)
consumes minimum messages but takes maximum time when compared to different
variations of the gossip-based ring unification algorithm. For higher values of F ,
the time complexity decreases while the message complexity increases. Increasing
the fanout after a threshold value (around 3–4 in this case) will not considerably
decrease the time complexity, but will just generate many unnecessary messages.
Figure 4 illustrates this tradeoff between time and message complexity. It shows
that the goals of decreasing time and message complexity are conflicting. Thus,
to decrease the number of messages, the time for completion will increase. Simi-
larly, opting for convergence in lesser time will generate more messages. A suitable
fanout value can be used to adapt the ring unification algorithm according to the
requirements and network infrastructure available.

Merging Overlays 1137

 20

 30

 40

 50

 60

 70

 80

 90

 256 512 1024 2048 4096 8192 16384
 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000
T

im
e

un
its

T
im

e
un

its

Network size (log2)

F 1
F 2
F 3
F 4
F 5
F 6
F 7

(a) Time complexity.
Only F 1 is plotted against the right y-axis.

 1

 10

 100

 1000

 10000

 256 512 1024 2048 4096 8192 16384

M
es

sa
ge

s/
no

de
 ti

ll
te

rm
in

at
io

n
(lo

g)

Network size (log2)

F 1
F 2
F 3
F 4
F 5
F 6
F 7

(b) Message complexity

Fig. 3 Evaluation of time and message complexity when only one node starts the merger

1000

10000

100000

1e+06

1e+07

1e+08

30 40 50 60 70 80 90 100

M
es

sa
ge

s
til

l t
er

m
in

at
io

n
(lo

g)

Time units

256
512

1024
2048
4096
8192

Fig. 4 Tradeoff between time and message complexity

We now consider a scenario where a node may falsely detect a merger. Figure 5
shows the message complexity of the algorithm in case of a false detection. As can
be seen, for lower fanout values, the message complexity is less. Even for higher
fanouts, the number of messages generated are acceptable, thus showing that the al-
gorithm is lean. This result is important as most overlays do not have perfect failure
detectors, and hence can give rise to inaccurate suspicions.

Since overlays are always subject to churn, it is important to study how often
the partitioned components do not converge to a ring under churn. Experiments
with 200 different seeds for sizes ranging from 256 to 2048 nodes were executed.
An execution was considered successful if 95% of the nodes had correct successor
pointers, as all successor pointers can not be correct while nodes are joining and
failing. Thereafter, the remaining pointers are updated by Chord’s periodic stabi-
lization. For the 200 executions, only 1 unsuccessful execution was observed for
network size 1024 and 2 unsuccessful executions for network size 2048. The unsuc-
cessful executions happened only for simple ring unification, while executions with

1138 Tallat M. Shafaat, Ali Ghodsi, and Seif Haridi

0

2000

4000

6000

8000

10000

12000

1 2 3 4 5 6 7

M
es

sa
ge

s
til

l t
er

m
in

at
io

n

Fanout

2000 nodes
4000 nodes
6000 nodes
8000 nodes

10000 nodes

Fig. 5 Message complexity for false detection of merger

gossip based ring unification were always succecessful. Even for the unsuccessful
executions, given enough time, periodic stabilization updates the successor pointers
to correct nodes.

As we discuss in Section 6.3, the problem of merging overlays can be solved
by a self-stabilizing ring algorithm. Thus, a comparison between ring unification
with a Self-Stabilizing Ring Network (SSRN) [30] protocol is necessary. The re-
sults comparing time and message complexity for various network sizes for the two
algorithms are presented in Fig. 6a,b, depicting that ring unification consumes lesser
time and messages compared to SSRN. The main reason for the better performance
of Ring Unification is that it has been designed specifically for merging rings. On
the other hand, SSRN is a non-terminating algorithm that runs in the background
like periodic stabilization to find closer nodes. As evaluated previously, simple ring
unification (fanout=1) does not scale well for time complexity, which can be seen in
Fig. 6a.

Simulations suggest that a fanout value of 3–4 is good for a system with several
thousand nodes, even with respect to churn and false-positives.

6 Related Work

Much work has been done to study the effects of churn on a structured overlay
network [22], showing how overlays can cope with massive node joins and failures,
thus showing how overlays are resilient to partitions. In contrast, there has not been
much focus on merging the overlays once the underlying network merges. In this
section, we discuss some related work, including merging tree-based overlays.

6.1 Merging P-Grid Overlays

In this section, we briefly describe P-Grid [2] and show how multiple P-Grid over-
lays can be merged [6].

Merging Overlays 1139

syalrevOgnigreM

100

1000

10000

100000

256 512 1024 2048 4096 8192

Ti
m

e
til

l s
ta

bi
liz

at
io

n
(lo

g)

Network size (log2)

Ring network
F 1
F 2
F 3
F 4
F 5

(a) Time complexity.

1

10

100

1000

256 512 1024 2048 4096 8192

M
es

sa
ge

s
pe

r n
od

e
til

l s
ta

bi
liz

at
io

n
(lo

g)

Network size (log2)

Ring network
F 1
F 2
F 3
F 4
F 5

(b) Message complexity.

Fig. 6 Comparison of ring unification and SSRN [30]

6.1.1 P-Grid

P-Grid structures the overlay as a tree, and uses prefix-based routing. P-Grid di-
vides the key-space into mutually exclusive partitions, thus each key belongs to a
unique partition. To lookup a key, prefix routing is employed to reach the partition to
which the key belongs. Nodes in P-Grid take responsibilities of key-partitions. Each
node is reponsible for a single key-partition, while a key-partition can have multiple
nodes responsible for it. The number of nodes per key-partition varies, and is depen-
dent on the load, i.e. size of data items stored in a particular key-partition. Nodes
in one key-partition are called structural replicas, as they replicate the same keys.
Thus, when a lookup reaches the key-partition, any structural replica in the key-
partition can reply to the lookup. For routing, each node maintains pointers to other
key-partitions.

Figure 7a, b show two P-Grid overlays. In Fig. 7a, the key space is divided into
four key-partitions, {00·,01·,10·,11·}. Nodes a and e are structural replicas for key-
partition 00·, and have routing entries for key partitions 01· and 1·.

6.1.2 Merger

Assume there are two overlays, O1 and O2, and a peer from one overlay knows
about a peer from the other overlay by one of the methods discussed in Section 3.
We describe the merger of multiple P-Grid overlays by explaining what happens
when peers from different overlays interact, and how do peers from one overlay find
peers from the other overlay to interact.

Meeting of peers from different networks

Assume two peers p and q from two different overlays meet. There can be the fol-
lowing three cases.

1140 Tallat M. Shafaat, Ali Ghodsi, and Seif Haridi

Case 1: p and q have same path

When peers from two different overlays meet such that their paths are exactly
the same, i.e. they are structural replicas of the same key-partition though the key-
partitions belong to different overlays, they become mutual structural replicas. Since
P-Grid employes anti-entropy to keep structural replicas updated, the peers will rec-
oncile their content and view. For example, peer c, belonging to O1 (Fig. 7a), and
peer y, belonging to O2 (Fig. 7b), share the same path, i.e prefix 10. Thus, they be-
come structural replicas and execute anti-entropy. It is worth noting that in this case,
despite the overlay merger process, whichever keys were originally accessible will
continue to be accessible during the merge process.

Case 2: p’s path is a strict prefix of q

When peers from two different overlays meet such that the path to one, p, is a
strict prefix to the path of the other peer q, the peer with the shorter path executes
a normal network joining algorithm. This rejoining can be done by p by either ex-
tending its path to replicate q, or replicate another peer recommended by q due to
other considerations, like load balancing.

For instance, peer x, belonging to O2 (Fig. 7b), shares a strictly smaller prefix
0 with peer a, belonging to O1 (Fig. 7a). Thus, if x and a interact, x can extend
its path to replicate a, i.e. structurally replicate prefix 00. In this case, the key-space
partitioning changes, thus some keys might need to be shipped to other nodes before
rejoining/extending the path.

Case 3: p and q do not share any prefix

If the two peers interacting from different overlays do not share any prefix, they
refer each other to peers with longer mutual match of path. This is similar to propa-
gating the merger information, discussed shortly.

Updating routing tables

When overlays merge, apart from peers originally belonging to different overlays
becoming structural replicas of the same key-partition, it is important that routing
tables are also updated. Thus after merger, when c exchanges its view with y, c will
have two routes for the prefix 11, w and h. This might lead to keys being unavailable,
as a lookup from a peer initially part of O1 for prefix 11 routed through c may either
endup at h or w. Since w does not yet have keys for O1, the lookup will fail. This is
certainly undesireable.

The afore-mentioned problem can be remedied in various ways. A simple so-
lution is to forward lookups to all routing entries matching the prefix. In the case
mentioned, this would lead c to route lookups for prefix 11 to both h and w. While
this method solves the problem, it suffers from the problem of increased message
complexity. Another solution would be to mark lookups and routing entries with the
overlay’s unique identification. Lookups are then forwarded to peers in the routing
table that originally belonged to the same overlay. In the afore-mentioned case, the

Merging Overlays 1141

a
01*

1*

b

c,h

e
01*

1*

b

g

b
00*

1*

a

g,h

f
00*

1*

e

g,h

0*

00* 01*

1*

10* 11*

c
0*

11*

e

h

g
0*

11*

b

h

d
0*

10*

a,b

g

h
0*

10*

a,b

c

x

1* v,w

u

1* y,w

0* 1*

10* 11*

y
0*

11*

x

w

v
0*

11*

u

z

z
0*

10*

x

y

w
0*

10*

x

v

(a) A P-Grid Overlay.O1.

(b) A P-Grid Overlay.O2.

(c) a Possible P-Grid Overlay after O1 andO2 merge.

a
01*

1*

b

c,h

e
01*

1*

b

g

b
00*

1*

a

g,h

f
00*

1*

e

g,h

0*

00* 01*

1*

10* 11*

c
0*

11*

e

h

g
0*

11*

b

h

d
0*

10*

a,b

g

h
0*

10*

a,b

c

x

1* v,w

u

1* y,w

y
0*

11*

x

w

v
0*

11*

u

z

z
0*

10*

x

y

w
0*

10*

x

v

01* b 00* a

Fig. 7 Merger of two P-Grid overlays

1142 Tallat M. Shafaat, Ali Ghodsi, and Seif Haridi

lookup will contain a field marked O1, thus c will forward the lookup to it’s routing
entry that has a tag O1, in this case h not w. Once the merging process completes,
the peers need not be distinguished according to their original overlay. This method
suffers from two problems. First, in practice, it is difficult for peers to keep track
of which overlay they belong to. Second, identifying the completion of the merge
process in a decentralized way is problemetic. A simple solution might be to use a
timeout, after which the merge is considered complete.

Propagating merger information

The merger information can be propagated by triggering new interactions between
peers. This can be done by flooding the information about the new network to all
entries in a peer’s routing table. For example, when c and y interact, y can inform its
routing table entries w and x about c. Consequently, w and x can use c’s entries to find
suitable peers for interaction, e.g. h for w. This flooding results in logarithmic time
spreading of the information of the new overlay, though consumes extra messages.

6.2 Merging Pastry Overlays

The original Pastry overlay [28] did not handle network mergers. Merging of Pas-
try overlays was designed while deploying ePOST [24], a reliable peer-to-peer ap-
plication, on the Internet. In Pastry, each node has a leafset, which it periodically
exchanges with other nodes in it’s leafset. To detect the partition and merger, the
nodes employ a strategy similar to Section 3, adding failed nodes in their leafset
into passive lists. The difference being that in Pastry, far away nodes are not added
to the passive lists.

After a node detects a merger by being able to ping a previously failed node in
its leafset, it exchanges its leafset with the other node. Since exchange of leafsets is
periodic, this will have a cascading effect that will eventually merge the overlays.
The merger can be executed faster if multiple nodes at different parts of the over-
lay detect the merger and exchange leafsets. Executing this algorithm will fix the
overlay geometry, while the routing tables are updated lazily. It is worth noting that
since the merger spreads by a cascading effect, it is slow compared to gossip-based
Ring Unification.

6.3 Overlay Construction from Random Graph

The problem of constructing an overlay from a random graph is, in some respects,
similar to merging multiple overlays after a network merger, as the nodes may
get randomly connected after a partition heals. Shaker et al. [30] have presented

Merging Overlays 1143

a ring-based algorithm for nodes in arbitrary state to converge into a directed ring
topology. Their approach is different from the work presented in this chapter, in the
sense that they provide a non-terminating algorithm which should be used to re-
place all join, leave, and failure handling routines of an existing overlay. Replacing
the topology maintenance algorithms of an overlay may not always be feasible, as
overlays may have intricate join and leave procedures to guarantee lookup consis-
tency [9, 18, 21]. In contrast, the algorithms presented in this chapter are terminat-
ing, and they work as a plug-in for an already existing overlay.

Montresor et al. [25] show how Chord [31] can be created by a gossip-based pro-
tocol [14]. However, their algorithm depends on an underlying membership service
like Cyclon [34], Scamp [8] or Newscast [15]. Thus the underlying membership
service has to first cope with network mergers (a problem worth studying in its own
right), where after T-Chord [25] can form a Chord network. One needs to investi-
gate further how these protocols can be combined, and their epochs be synchronized,
such that the topology provided by T-Chord is fed back to the overlay when it has
converged. Though the general performance of T-Chord has been evaluated, it is not
known how it performs in the presence of network mergers when combined with
various underlying membership services.

As shown below, it might happen that an initially connected graph can be split
into two separate components by the Chord [31] and SSRN [30] protocols. This
scenario is a counter-proof of the claim that SSRN is self-stabilizing. Consider a
network which consists of two perfect rings, yet the nodes have fingers pointing to
nodes in the other ring. This can easily happen in case of unreliable failure detec-
tors [5] or networks partitions. Normally, the PS rate is higher than fixing fingers,
thus due to a temporary partition, it might happen that nodes update their succes-
sor pointers, yet before they fix their fingers, the partition heals. In such a scenario,
SSRN splits the connected graph into two separate partitions, thus creating a par-
tition of the overlay, while the underlay remains connected. An example of such a
scenario is shown in Fig. 8, where the filled circles are nodes that are part of one ring
and the empty circles are nodes that are part of the other ring. Each node has one
finger pointing to a node in the other ring. The fix-finger algorithm in Chord updates
the fingers by making lookups. In this case, a lookup will always return a node in
the same ring as the one making the lookup. Consequently, the finger pointing to
the other ring will be lost. Similarly, the pointer jumping algorithm used by SSRN
to update its fingers will also drop the finger pointing to a node in the other ring.
On the contrary, the ring-unification algorithm proposed in this paper will fix such
a graph and converge it to a single ring.

6.4 Data Consistency

This section gives a short discussion of the issues on the data level amid network
partitions and mergers. The data level is concerned with availability and consistency
of data stored in the overlay. Availability is achieved by replicating the data. When

1144 Tallat M. Shafaat, Ali Ghodsi, and Seif Haridi

Fig. 8 A case where chord and the ring network protocol would break a connected graph into two
components. Lines represent successor pointers while dashed lines represent a finger

the overlay partitions, a high replica factor and geographically spread replicas may
increase availability. Similarly, proper routing while the overlays are merging guar-
antees availability of data during the merge process. Once the overlays merge, the
data in one overlay becomes available to nodes in the other overlay.

The data level is also concerned with the consistency of the data items stored
in the overlay. The solutions to this problem might depend on the application and
on the semantics of the data operations, e.g. immutable key/value pairs or mono-
tonically increasing values. It is also known that it is impossible to achieve strong
(atomic) data consistency, availability,3 and partition tolerance in overlays [9, 10].

The problem of network partitions and mergers has been studied in other dis-
tributed systems, such as in distributed databases [7] and distributed file sys-
tems [33]. These studies focus on problems created by the partition and merger
on the data level. Such ideas, if combined with algorithms such as those proposed in
this chapter for the routing level, can be used for handling data updates in overlays.
The details of which is, nevertheless, outside the scope of this chapter.

7 Summary

The problem of partitions and mergers in structured peer-to-peer systems, when the
underlying network partitions and recovers, is of crucial importance. This chapter
presents algorithms for merging similar ring-based and tree-based structured overlay
networks after the underlying network merges.

Though the problem of dealing with network mergers is crucial, such events hap-
pen more rarely. Hence, it might be justifiable in certain application scenarios that
a slow paced algorithm runs in the background, consuming little resources, while
ensuring that any potential problems with partitions will eventually be rectified. For
ring-based overlays, we have shown how the algorithm can be tuned to achieve a
tradeoff between the number of messages consumed and the time before the overlay

3 By availability we mean that a get/put operation should eventually complete.

Merging Overlays 1145

converges. Evaluations in realistic dynamic conditions have been presented, and it
has been showed that with high fanout values, the algorithm can converge quickly
under churn. We have also shown that the solution generates few messages even if
a node falsely starts the algorithm in an already converged overlay. We have also
briefly discussed solutions for tree-based ovelays.

7.1 Open Questions

We believe that dealing with partitions and mergers is a small part of a bigger, and
more important, goal: making overlays that can recover from any configuration.
We believe that it is desirable to make a self-stabilizing ring algorithm, which can
be proved to recover from all possible states, including loopy [20] and partitioned
while consuming minimum time and messages.

We believe that it is interesting to investigate whether gossip-based topology
generators, such as T-man [14] and T-chord [25], can be used to handle network
mergers. These services, however, make use of an underlying membership service,
such as Cyclon [34], Scamp [8], or Newscast [15]. Hence, one has to first investigate
how well such membership services recover from network partitions (we believe this
to be interesting in itself). Thereafter, one can explore how such topology generators
can be incorporated into an overlay.

Acknowledgement

This work has been funded by the European Union in the SELFMAN Project (Con-
tract 034084) and SICS Center for Networked Systems (CNS).

References

1. K. Aberer, L. O. Alima, A. Ghodsi, S. Girdzijauskas, S. Haridi, and M. Hauswirth. The
Essence of P2P: A Reference Architecture for Overlay Networks. In Proceedings of the 5th
International Conference on Peer-To-Peer Computing (P2P’05), pages 11–20. IEEE Com-
puter Society, August 2005.

2. K. Aberer, P. Cudré-Mauroux, A. Datta, Z. Despotovic, M. Hauswirth, M. Punceva, and
R. Schmidt. P-Grid: a self-organizing structured P2P system. SIGMOD Record, 32(3):29–33,
2003.

3. L. O. Alima, A. Ghodsi, and S. Haridi. A Framework for Structured Peer-to-Peer Overlay Net-
works. In Post-proceedings of Global Computing, volume 3267 of Lecture Notes in Computer
Science (LNCS), pages 223–250. Springer Verlag, 2004.

4. A. R. Bharambe, M. Agrawal, and S. Seshan. Mercury: Supporting Scalable Multi-Attribute
Range Queries. In Proceedings of the ACM SIGCOMM 2004 Symposium on Communication,
Architecture, and Protocols, pages 353–366, Portland, OR, USA, March 2004. ACM Press.

1146 Tallat M. Shafaat, Ali Ghodsi, and Seif Haridi

5. T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed systems.
Journal of the ACM, 43(2):225–267, 1996.

6. A. Datta. Merging Intra-Planetary Index Structures: Decentralized Bootstrapping of Overlays.
In Proceedings of the First International Conference on Self-Adaptive and Self-Organizing
Systems (SASO 2007), pages 109–118, Boston, MA, USA, July 2007. IEEE Computer Society.

7. S. B. Davidson, H. Garcia-Molina, and D. Skeen. Consistency in a partitioned network: a
survey. ACM Computing Surveys, 17(3):341–370, 1985.

8. A. J. Ganesh, A.-M. Kermarrec, and L Massoulié. SCAMP: Peer-to-Peer Lightweight Mem-
bership Service for Large-Scale Group Communication. In Proceedings of the 3rd Interna-
tional Workshop on Networked Group Communication (NGC’01), volume 2233 of Lecture
Notes in Computer Science (LNCS), pages 44–55, London, UK, 2001. Springer-Verlag.

9. A. Ghodsi. Distributed k-ary System: Algorithms for Distributed Hash Tables. PhD disserta-
tion, KTH – Royal Institute of Technology, Stockholm, Sweden, December 2006.

10. S. Gilbert and N. A. Lynch. Brewer’s conjecture and the feasibility of consistent, available,
partition-tolerant web services. ACM Special Interest Group on Algorithms and Computation
Theory News, 33(2):51–59, 2002.

11. K. Gummadi, R. Gummadi, S. Gribble, S. Ratnasamy, S. Shenker, and I. Stoica. The impact
of DHT routing geometry on resilience and proximity. In Proceedings of the ACM SIGCOMM
2003 Symposium on Communication, Architecture, and Protocols, pages 381–394, New York,
NY, USA, 2003. ACM Press.

12. N. Harvey, M. B. Jones, S. Saroiu, M. Theimer, and A. Wolman. Skipnet: A scalable overlay
network with practical locality properties. In Proceedings of the 4th USENIX Symposium on
Internet Technologies and Systems (USITS’03), Seattle, WA, USA, March 2003. USENIX.

13. F. Jahanian C. Labovitz, A. Ahuja. Experimental Study of Internet Stability and Wide-Area
Backbone Failures. Technical Report CSE-TR-382-98, University of Michigan, November
1998.

14. M. Jelasity and Ö. Babaoglu. T-man: Gossip-based overlay topology management. In Pro-
ceedings of 3rd Workshop on Engineering Self-Organising Systems (EOSA’05), volume 3910
of Lecture Notes in Computer Science (LNCS), pages 1–15. Springer-Verlag, 2005.

15. M. Jelasity, W. Kowalczyk, and M. van Steen. Newscast Computing. Technical Report IR–
CS–006, Vrije Universiteit, November 2003.

16. M. F. Kaashoek and D. R. Karger. Koorde: A Simple Degree-optimal Distributed Hash Table.
In Proceedings of the 2nd Interational Workshop on Peer-to-Peer Systems (IPTPS’03), volume
2735 of Lecture Notes in Computer Science (LNCS), pages 98–107, Berkeley, CA, USA, 2003.
Springer-Verlag.

17. B. Leong, B. Liskov, and E. Demaine. EpiChord: Parallelizing the Chord Lookup Algorithm
with Reactive Routing State Management. In 12th International Conference on Networks
(ICON’04), Singapore, November 2004. IEEE Computer Society.

18. X. Li, J. Misra, and C. G. Plaxton. Brief Announcement: Concurrent Maintenance of Rings.
In Proceedings of the 23rd Annual ACM Symposium on Principles of Distributed Computing
(PODC’04), page 376, New York, NY, USA, 2004. ACM Press.

19. J. Li, J. Stribling, R. Morris, and M. F. Kaashoek. Bandwidth-efficient management of DHT
routing tables. In Proceedings of the 2nd USENIX Symposium on Networked Systems Design
and Implementation (NSDI’05), Boston, MA, USA, May 2005. USENIX.

20. D. Liben-Nowell, H. Balakrishnan, and D. R. Karger. Observations on the Dynamic Evolution
of Peer-to-Peer Networks. In Proceedings of the First International Workshop on Peer-to-Peer
Systems (IPTPS’02), volume 2429 of Lecture Notes in Computer Science (LNCS). Springer-
Verlag, 2002.

21. N. A. Lynch, D. Malkhi, and D. Ratajczak. Atomic Data Access in Distributed Hash Tables. In
Proceedings of the First Interational Workshop on Peer-to-Peer Systems (IPTPS’02), Lecture
Notes in Computer Science (LNCS), pages 295–305, London, UK, 2002. Springer-Verlag.

22. R. Mahajan, M. Castro, and A. Rowstron. Controlling the Cost of Reliability in Peer-to-
Peer Overlays. In Proceedings of the 2nd International Workshop on Peer-to-Peer Systems

Merging Overlays 1147

(IPTPS’03), volume 2735 of Lecture Notes in Computer Science (LNCS), pages 21–32,
Berkeley, CA, USA, 2003. Springer-Verlag.

23. G. S. Manku, M. Bawa, and P. Raghavan. Symphony: Distributed Hashing in a Small World. In
Proceedings of the 4th USENIX Symposium on Internet Technologies and Systems (USITS’03),
Seattle, WA, USA, March 2003. USENIX.

24. A. Mislove, A. Post, A. Haeberlen, and P. Druschel. Experiences in building and operating
ePOST, a reliable peer-to-peer application. In Willy Zwaenepoel, editor, Proceedings of the 1st
ACM SIGOPS/EuroSys European Conference on Computer Systems. ACM European Chapter,
April 2006.

25. A. Montresor, M. Jelasity, and Ö. Babaoglu. Chord on Demand. In Proceedings of the 5th
International Conference on Peer-To-Peer Computing (P2P’05). IEEE Computer Society, Au-
gust 2005.

26. D. Oppenheimer, A. Ganapathi, and D. A. Patterson. Why do internet services fail, and what
can be done about it? In USITS’03: Proceedings of the 4th conference on USENIX Sympo-
sium on Internet Technologies and Systems, pages 1–1, Berkeley, CA, USA, 2003. USENIX
Association.

27. V. Paxson. End-to-end routing behavior in the Internet. IEEE/ACM Transactions on Network-
ing (TON), 5(5):601–615, 1997.

28. A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location and routing for
large-scale peer-to-peer systems. In Proceedings of the 2nd ACM/IFIP International Confer-
ence on Middleware (MIDDLEWARE’01), volume 2218 of Lecture Notes in Computer Science
(LNCS), pages 329–350, Heidelberg, Germany, November 2001. Springer-Verlag.

29. T. M. Shafaat, A. Ghodsi, and S. Haridi. Handling Network Partitions and Mergers in Struc-
tured Overlay Networks. In Proceedings of the 7th International Conference on Peer-to-Peer
Computing (P2P’07), pages 132–139. IEEE Computer Society, September 2007.

30. A. Shaker and D. S. Reeves. Self-Stabilizing Structured Ring Topology P2P Systems. In
Proceedings of the 5th International Conference on Peer-To-Peer Computing (P2P’05), pages
39–46. IEEE Computer Society, August 2005.

31. I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek, F. Dabek, and H. Balakr-
ishnan. Chord: a scalable peer-to-peer lookup protocol for internet applications. IEEE/ACM
Transactions on Networking (TON), 11(1):17–32, 2003.

32. Taiwan Earthquake on December 2006. http://www.pinr.com/report.php?ac=view report&
report id=602, January 2008.

33. D. B. Terry, M. Theimer, K. Petersen, A. J. Demers, M. Spreitzer, and C. Hauser. Managing
Update Conflicts in Bayou, a Weakly Connected Replicated Storage System. In Proceedings
of the 15th ACM Symposium on Operating Systems Principles (SOSP’95), pages 172–183.
ACM Press, December 1995.

34. S. Voulgaris, D. Gavidia, and M. van Steen. Cyclon: Inexpensive membership management
for unstructured p2p overlays. Journal of Network and Systems Management, 13(2), 2005.

Load Balancing in Structured P2P Networks

Yingwu Zhu

Abstract In this chapter we start by addressing the importance and necessity of load
balancing in structured P2P networks, due to three main reasons. First, structured
P2P networks assume uniform peer capacities while peer capacities are heteroge-
neous in deployed P2P networks. Second, resorting to pseudo-uniformity of the hash
function used to generate node IDs and data item keys leads to imbalanced overlay
address space and item distribution. Lastly, placement of data items cannot be ran-
domized in some applications (e.g., range searching). We then present an overview
of load aggregation and dissemination techniques that are required by many load
balancing algorithms. Two techniques are discussed including tree structure-based
approach and gossip-based approach. They make different tradeoffs between esti-
mate/aggregate accuracy and failure resilience. To address the issue of load imbal-
ance, three main solutions are described: virtual server-based approach, power of
two choices, and address-space and item balancing. While different in their designs,
they all aim to improve balance on the address space and data item distribution. As
a case study, the chapter discusses a virtual server-based load balancing algorithm
that strives to ensure fair load distribution among nodes and minimize load bal-
ancing cost in bandwidth. Finally, the chapter concludes with future research and a
summary.

1 Introduction

1.1 Motivation

The basic approach to the load balancing issue in structured P2P networks or
distributed hash tables (DHTs) [8, 10, 13] is consistent hashing [15]. Nodes are

Yingwu Zhu
Seattle University, Seattle WA 98122, USA,
e-mail: zhuy@seattleu.edu

X. Shen et al. (eds.), Handbook of Peer-to-Peer Networking, 1149
DOI 10.1007/978-0-387-09751-0 41, © Springer Science+Business Media, LLC 2010

1150 Yingwu Zhu

associated with IDs that are generated by hashing their IPs or public keys, while
data items are assigned with keys that are derived from hashing their names or con-
tents. By node IDs and data keys respectively, nodes and data items are mapped
into a one-dimensional ring (or identifier space), and data items are assigned to the
nearest node in the clockwise direction. Ideally, all nodes are responsible for an
equally-sized portion of the identifier space (or arc of the ring). That is, nodes are
evenly distributed over the ring. When data keys are numerous and uniformly ran-
dom, each node is supposed to own a same number of keys or data items. However,
the consistent hashing approach can cause considerable load imbalance.

First, the consistent hashing approach causes some node responsible for a max-
imum arc length of O(logN

N) with high probability due to pseudo-uniformity of the
hash function, even though the average arc length is 1

N , where N is the number of
nodes. In other words, the approach does not evenly partition the
one-dimensional identifier space among nodes, which we call address space im-
balance. If data item keys are numerous and uniformly random, some nodes re-
ceive more than their fair share, causing load imbalance of O(logN) with high
probability.

Second, the consistent hashing approach assumes uniform node capacities while
the capabilities of nodes (e.g., storage and bandwidth) are heterogeneous in de-
ployed P2P networks, differing by multiple orders of magnitude [9]. This further
aggravates the problem of load imbalance.

Finally, the consistent hashing approach destroys data semantics by randomizing
placement of data items which is not applicable to some applications. For example,
to support range searching in a database application the items need to be in a specific
order or even at specific addresses, on the ring. In such cases, the data items are
likely to be unevenly distributed over the ring due to skewed distributions of data
keys, worsening the issue of load imbalance.

The primary goal of P2P systems is to harness all available resources (e.g., stor-
age, bandwidth, and CPU) in the network so that users can access all available
objects “efficiently”. From the P2P system perspective, “efficiently” is interpreted
as striving to ensure fair load distribution among all peer nodes. With the afore-
mentioned load imbalance issue in DHTs, achieving load balance is of fundamental
importance. As a result, various load balancing algorithms have been proposed for
DHTs.

1.2 Load Definition

Each data item in the system has an associated load. The load could represent the
number of bits to store the item, the bandwidth of transferring the item, the CPU
cycles of serving the item, or the number of requests for the item (i.e., popularity
of the item). The discussions in this chapter do not assume a particular resource.
It is worth pointing out that the popularity distribution of data items might cause
the problem of “hot spots”. The load balancing algorithms presented in the chapter

Load Balancing in Structured P2P Networks 1151

are, by no means, intended to neglect other load balancing techniques not discussed
here, such as caching and replication.

1.3 Goals

In particular, a load balancing algorithm should strive to achieve some or all of the
following (often conflicting) goals:

• Minimize load imbalance. To provide best-quality services, each node should
have same utilization which is defined as the ratio of load and capacity on a node.
As nodes are heterogeneous, load should be assigned to a node proportional to
its capacity.

• Decentralization. To ensure robust load balancing, the algorithm should avoid
any centralized control; Load balancing operations such as load information
aggregation and dissemination and load movement should be fully distributed.

• Responsiveness. Churn is the norm in P2P networks. Frequent node arrivals and
departures cause rapid load migration among nodes. The algorithm should react
to dynamically changing load distribution, rebalancing load in a timely manner.

• Efficiency. The algorithm should be resource-friendly, minimizing resource con-
sumption in load balancing. For example, load transfer among nodes for rebal-
ance costs bandwidth; the less the cost, the more feasible the algorithm. In other
words, a resource-intensive algorithm is impractical for most environments, if
not all.

2 Load Information Aggregation and Dissemination

To react to the change of load status system wide, many load balancing algorithms
need to continuously monitor system status by periodically performing load infor-
mation aggregation and dissemination. With collected load status, they make in-
formed decisions on load balancing. The primary goal is to gain a summary view
of the global load status and spread the summary view among nodes in a timely
manner. In what follows, we briefly discuss two main techniques in the literature for
load information aggregation and dissemination.

2.1 Tree Structure-Based Approach

In this approach, a tree spanning all (physical) nodes on the DHT overlay is con-
structed for information aggregation and dissemination and is layered atop the over-
lay. Each physical node is a leaf node and each subtree represents a logical group

1152 Yingwu Zhu

of nodes. The logical group of nodes can correspond to a set of nodes within an
administrative domain [11] or a set of neighboring nodes on an arc of the ring (i.e.,
a region of the DHT identifier space) [14]. An internal non-leaf node, which we call
virtual node, is planted on a DHT node in certain manner. Namely, a key is assigned
to a virtual node and the virtual node is planted in a DHT node which is responsible
for the key. A virtual node on a higher level of the tree corresponds to a larger set of
nodes, either from a larger domain or from a longer arc of the ring. The root node
corresponds to all the physical nodes on the overlay.

For load information aggregation, each leaf node reports its local load status (e.g.,
load, capacity, etc.) to its parent node which aggregates all information from its chil-
dren and then propagates the aggregate upwards. As such, the root node gathers the
load information and generates a summary view of the global load status. Then, the
root node disseminates the summary view to each leaf node along the tree in a top-
down fashion. The information aggregation and dissemination delay is determined
by the tree height.

2.2 Gossip-Based Approach

This approach relies on gossip-style exchange of data and uses data synopsis tech-
niques to estimate the distribution of values (e.g., load and capacity) held by the
nodes. Each node maintains a list of k values, initially set to the local value held
by the node. In each round, a node i randomly picks a partner j and requests the
k values held by j. After receiving the k values, node i merges the 2k values into
a list of k values in certain manner. In the simplest form, the merging operation
randomly picks k values, at the risk of discarding important information. Haridasan
et al. [5] proposes three different synopsis techniques, including Concise Counting,
Equi-Width Histograms and Equi-Depth Histograms, to estimate the distribution of
values, with limited information loss and consuming less storage space and commu-
nication bandwidth.

In Equi-Depth Histograms technique, each node initially divides the range [0,xi]
(xi is a local value) into k equally-sized bins, each represented by a pair
< value,counter >. After exchanging data with a partner, each node orders all col-
lected pairs, and computes which consecutive bins, when merged, yield the smallest
combined bin (with the least counter). The identified bins are merged into a new bin,
by adding their counters as the new counter and using the arithmetic mean of their
values as the new value. This process repeats until the desired number of bins are
left. The goal of Equi-Depth Histograms technique is to minimize disparity across
all bins. After a sufficient number of gossips, the resulting bins comprises a synopsis
which allows the node to estimate the distribution of values (which could be load or
capacity) among the nodes.

Load Balancing in Structured P2P Networks 1153

2.3 Summary

Tree-based and gossip-based approaches make different tradeoffs between aggre-
gate/estimate accuracy and failure resilience. Tree-based approaches produce ag-
gregates hierarchically and under no-failure scenarios result in exact aggregates. In
the presence of node churn as nodes continuously join and leave, gossip-based tech-
niques are more resilient, though it may not be always possible to generate exact
aggregates.

3 Load Balancing

When some nodes are becoming overloaded, various operations can be taken to re-
balance load among nodes, including load movement/transfer and node movement.
In what follows, we provide an overview of three different approaches, namely vir-
tual server-based approach [3, 4, 10, 14], the power of two choices [2], and address-
space and item balancing [6].

3.1 Virtual Server-Based Approach

Chord [10] was the first to propose the concept of virtual servers as a means of
improving load balance. Like a physical node, a virtual server owns an ID, manages
a routing table, and is in charge of a region of the DHT identifier space. The data
items whose IDs fall into a virtual server’s responsible region are stored on the
virtual server. By allowing each physical node to host logN virtual servers (which
means the physical node is responsible for logN non-contiguous regions of the DHT
identifier space), Chord ensures that with high probability the number of objects on
any node is within a constant factor of the average, on the assumption that nodes
are homogeneous and data item keys are uniformly distributed. In the same vein,
CFS [3] accounts for node heterogeneity by assigning to each node some number of
virtual servers proportional to the node capacity. To shed load from an overloaded
node, CFS dynamically turns off some of its virtual servers. Simply removing virtual
servers from an overloaded node, however, can result in thrashing as this may causes
another node becoming overloaded.

Leveraging Chord and CFS, recent work [4, 14] achieves load balance by trans-
ferring load from an overloaded node to a lightly loaded node in the unit of virtual
servers. Virtual server transfer, as load movement, comes free as it can be simulated
as a leave operation followed by a join operation, both supported by all DHTs.

1154 Yingwu Zhu

3.2 Power of Two Choices

This approach [2] assumes a set of d ≥ 2 universally agreed hash functions
h1(), · · ·,hd(). It bases item insertion on sampling. To insert an item x, the approach
calculates h1(x), · · ·,hd(x) using the d hash functions, and contacts d nodes respon-
sible for the hash values. The least loaded node among the d nodes stores the item
x while the other nodes each keeps a redirection pointer for x. If a node becomes
overloaded (lightly loaded), load shedding (stealing) is triggered by performing item
re-insertions. For homogeneous nodes and data items, choosing d = 2 yields a load
balance of within loglogN factor of optimal, and when d =Θ(logN), the load bal-
ance is within a constant factor of optimal.

The power of two choices can also be applied to node insertion [16, 17]. When
a new node joins, a three-step process is performed: (1) Generation of d hash val-
ues in the DHT identifier space according to some algorithm; (2) Sampling of the
DHT nodes responsible for these hash values; and (3) Splitting the load of the most
heavily loaded DHT node according to some algorithm (e.g., even split or split pro-
portionally to their capacity) and giving a load share to the new node. Take Chord
as the DHT example. Assume the most heavily loaded node is X which is currently
storing n items, v1, · · ·,vn, sorted in increasing order of keys. The new node will be
assigned an ID which is an immediate successor of v n

2
on the Chord ring, thereby

taking over half of X’s items. In other words, the new node will become X’s new
predecessor node on the Chord ring by taking over half of X’s load.

3.3 Address-Space and Item Balancing

Karger et al. [6] presented two load balancing protocols whose provable perfor-
mance guarantees are within a constant factor of optimal. One is address-space bal-
ancing and the other is item balancing.

Address-space balancing aims to balance the distribution of the key address space
to nodes in the settings where items are uniformly mapped to the DHT nodes via
consistent hashing. Each node has a fixed set of O(logN) virtual servers and it
chooses exactly one of the virtual servers to be active at any time. The selection of
the active virtual servers is determined as follows: Each node occasionally identifies
which of its O(logN) virtual servers spans the smallest address (which is defined
in [6]) and activates the particular virtual server.

Item balancing, on the other hand, balances the distribution of items to nodes in
the settings where items are arbitrarily mapped to the DHT nodes. Let li denote the
load on node i in terms of the number of items and ε is a constant (0 < ε < 1). Each
node i occasionally contacts another node j at random. If l j≤εli, then the nodes
performs a load balancing operation, distinguishing two cases1:

1 For li≤εl j , the nodes performs similar operations.

Load Balancing in Structured P2P Networks 1155

• Case 1: i = j + 1, namely, node i is node j’s successor. Node j increases its ID

such that
li−l j

2 items with the smallest keys get assigned from i to j. Both nodes

end up with load
li+l j

2 .
• Case 2: i�= j +1. If l j+1 > li, then we set i := j +1 and go to case 1. Otherwise,

node j moves between nodes i− 1 and i to capture half of node i’s items, while
node j’s old items are handled by its former successor node j +1.

3.4 Discussion

Conventionally, DHTs randomize item assignments to nodes via consistent hashing.
Thus, the primary goal of load balancing in DHTs is to evenly partition the address
space among the nodes. Virtual server-based approach [3, 4, 10, 14, 18, 19], which
has each node host multiple virtual servers, ensures with high probability that the
number of items on any node is within a constant factor of the average. To handle
dynamic load, Zhu et al. [14] and Godfrey et al. [4] proposed to move virtual servers,
the basic unit of load, among nodes to do load balancing. The main drawbacks of
the virtual server-based approach are multiplicative increases of routing states and
communication bandwidth. The address-space balancing [6], avoids the drawbacks
by activating only one virtual server per node at any time. Another proposal, Y0 [19],
increases the size of routing tables by at most a constant factor with logN virtual
servers per node.

The power of two choices [2], which assumes each item as the basic unit of load,
takes a different approach by storing every newly inserted item onto the least loaded
node among a set of randomly sampled nodes. Load movement is achieved by item
re-insertions. The idea can also be applied to node insertions for load balancing [16,
17] by splitting the load of the most heavily loaded node from a set of sampled
nodes and giving a load share to the new node.

The item balancing [6] addresses the load balancing issue in the presence of ar-
bitrary distributions of items. Instead of moving load (represented by virtual servers
in the virtual server-based approach or items in the power of two choices approach)
among nodes, it moves nodes in the address space by re-assigning their IDs to
balance load.

4 Case Study: Efficient, Proximity-Aware Load Balancing [14]

4.1 Overview

The load balancing algorithm discussed in the case study is essentially a virtual
server-based approach, assuming that each DHT node hosts multiple virtual servers.
Load re-assignment is performed via virtual servers. The first goal is to ensure

1156 Yingwu Zhu

fair load distribution by assigning load to each node proportional to its capacity.
The second goal is to use proximity information to guide load re-assignment and
transfer, thus minimizing load movement cost and making load balancing fast and
efficient. The approach conceptually consists of three steps: Load balancing infor-
mation (LBI) aggregation and dissemination, proximity-aware virtual server assign-
ment (VSA), and virtual server transfer (VST). At the heart of the algorithm is
proximity-aware VSA. For ease of exposition, the discussions are based on Chord.
However, all the techniques discussed here are applicable or easily adaptable to
other DHTs.

4.2 LBI Aggregation and Dissemination

The primary goal of LBI aggregation and dissemination is to gather system-wide
LBI and then spread the aggregate across the nodes. By the LBI aggregate, heav-
ily loaded nodes (heavy nodes for short) and lightly loaded nodes (light nodes for
short) are identified, and then the heavy node knows which virtual servers to shed
(similarly, the light node knows the amount of additional load to take) to ensure fair
load distribution across nodes. The LBI aggregation and dissemination is based on
a distributed k-ary tree [12] that is built atop of the underlying DHT.

The construction of the k-ary tree (KT) is a recursive process of splitting the
underlying DHT identifier space. Each KT node is associated with a responsible re-
gion of the DHT identifier space while the root KT node owns the whole identifier
space. In the beginning of building the k-ary tree, there is only the KT root node.
The partitioning of the DHT identifier space starts from the KT root node. A KT
node X’s responsible region is split into k equal parts, each of which is taken by
one of X’s k children. That is, X’s i-th child will be responsible for the i-th fraction
of X’s responsible region. A KT node is hosted by a virtual server that is responsi-
ble for the KT node’s key which is produced by taking the center point of the KT
node’s responsible region of the identifier space. The KT grows as the partitioning
continues in a top-down fashion until certain termination condition is met. That is,
if a KT node X’s responsible region is completely covered by that of X’s hosting
virtual server, then X is a KT leaf node and it stops growing children. The k-ary tree
is self-repairing, fault-tolerant, and fully distributed.

The aggregation of LBI is performed along the KT in a bottom-up manner: Each
KT node periodically, at an interval T , requests LBI from its children, while each
KT leaf node simply asks its hosting virtual server to report LBI. Note that it is
guaranteed that a KT leaf node will be planted in each virtual server. Thus, having
each KT leaf node ask its hosting virtual server to report LBI can gather the LBI
of the underlying DHT. Since a DHT node hosts multiple virtual servers, in order
to avoid reporting redundant LBI of a DHT node, a DHT node (say i) randomly
chooses one of its virtual servers to report LBI, in the form of < Li,Ci,Li,min >
(where Li, Ci, and Li,min stand for the total load of virtual servers, the capacity, and

Load Balancing in Structured P2P Networks 1157

the minimum load of virtual servers on the node i, respectively). Each KT node
(say, X) runs the routine KT node report LBI() as outlined in Fig. 1. This process
is continued along the KT in a bottom-up fashion until the KT root node is reached.
As a result, the KT root node produces a system-wide LBI < L,C,Lmin > , where
L, C, and Lmin represent the total load, the total capacity, and the smallest load of
virtual servers in the system, respectively.

procedure KT node report LBI(KT node X)
1: if (X is a KT leaf node) then
2: < Lx,Cx,Lx,min >←− receive < Li,Ci,Li,min > from X’s hosting virtual server
3: else
4: Receive < Li,Ci,Li,min >s from k children /* i = 1, ...,k */
5: Lx ←− ∑k

i=1 Li

6: Cx ←− ∑k
i=1 Ci

7: Lx,min ←− the smallest Li,min

8: end if
9: if (X is not a KT root node) then
10: Report < Lx,Cx,Lx,min > to X’s parent /* report to the parent node */
11: end if

Fig. 1 LBI aggregation algorithm.

After LBI aggregation, the KT root node disseminates the summary < L,C,Lmin >
along the KT in a top-down fashion to each KT leaf node, which in turn distributes
< L,C,Lmin > to its own hosting virtual server. As a result, all DHT nodes are guar-
anteed to have a copy of < L,C,Lmin > . Let Li denote the sum of the loads of all
virtual servers on a DHT node i, and Ci represent the capacity of a DHT node i.
Recall that one of the goals of the load balancing algorithm is to ensure fair load
distribution over DHT nodes by assigning the load to a DHT node in proportion to
its capacity. Let Ti denote the target load of a DHT node i proportional to its capac-
ity. We have Ti = (L

C + ε)Ci (ε is a parameter for a tradeoff between the amount of
load moved and the quality of balance achieved. Ideally, ε is 0). Therefore, a DHT
node i can be defined as:

• A heavy node if Li > Ti.
• A light node if (Ti−Li)≥Lmin.
• A neutral node if 0≤(Ti−Li) < Lmin.

Each heavy node i determines a subset of its virtual servers {vi,1, · · ·,vi,m} (m≥1)
that minimizes ∑m

k=1Li,k subject to the condition that (Li−∑m
k=1Li,k)≤Ti (where Li,k

denotes the load of the virtual server vi,k on the DHT node i). This subset of virtual
servers, if removed, make the heavy node i to become light. Note that this choice
of virtual servers on heavy nodes would minimize the total amount of load moved
for load balancing throughout the system, thereby minimizing the load movement
cost. Each light node j, one the other hand, is willing to take additional load ΔL j =
Tj−L j, without becoming overloaded.

1158 Yingwu Zhu

4.3 Proximity-Aware VSA

VSA is performed along the KT in a bottom-up fashion. Each heavy node i, after
determining the subset of its virtual servers to shed, i.e., {vi,1, · · ·,vi,m}, randomly
chooses one of its virtual servers to report VSA information

< Li,1,vi,1, ip addr(i) >, · · ·,< Li,m,vi,m, ip addr(i) >

to its hosted KT leaf node, which in turn propagates the information upwards along
the tree. Similarly, each light node j randomly selects one of its virtual server to
report VSA information < ΔL j, ip addr(j) > to its hosted KT leaf node, which in
turn propagates the information upwards along the tree.

During the propagation of VSA information along the KT, each KT node (say X)
runs the routine KT node V SA() as described in Fig. 2. It collects the VSA informa-
tion into V SA pool from either its hosting virtual server or its children (lines 2−6).
If the number of VSA information reaches a predefined paring threshold, X would
serve as a rendezvous point for virtual server assignment, by running the subroutine
KT node rendezvous point(). This subroutine uses a best-fit heuristic approach2 to
perform virtual server assignment. The successfully assigned VSA information is
sent back to corresponding DHT nodes for virtual server transferring, while the un-
paired VSA information is propagated to X’s parent. This VSA process is continued
in a bottom-up fashion along the KT until it reaches the KT root node. Then, the KT
root node serves as the last rendezvous point (without a pairing threshold constraint)
for virtual server assignment.

As the VSA process proceeds along the KT in a bottom-up sweep, it recursively
assigns virtual servers among DHT nodes scattered in an increasingly larger con-
tiguous portion of the DHT identifier space3 until the whole DHT identifier space
(for which the KT root node is responsible). In other words, the VSA process is
identifier space-based in that the virtual server assignments are performed earlier
among those DHT nodes which are closer to each other in the DHT identifier space.
The VSA process is proximity-oblivious because the logical closeness in the DHT
identifier space does not necessarily reflect physical closeness of DHT nodes.

The basic idea behind proximity-aware VSA is that proximity information is
utilized to guide VSA such that virtual server assignments are prioritized among
physically close heavy nodes and light nodes, localizing VST and thus saving band-
width. Recall that proximity-oblivious VSA, performed along the KT in a bottom-
up sweep, ensures that virtual servers are assigned earlier among DHT nodes if
they are logically closer to each other in the DHT identifier space. The key to
proximity-aware VSA includes that (1) it first maps the VSA information of heavy
and light nodes onto the DHT overlay such that the VSA information of physically

2 Computing an optimal re-assignment of virtual servers from heavy nodes to light nodes is NP-
complete. We use this simple greedy algorithm to find an approximation solution to minimize the
load to be re-assigned and moved.
3 Note that here the location of a DHT node in the identifier space is represented by its randomly
chosen virtual server.

Load Balancing in Structured P2P Networks 1159

procedure KT node VSA(KT node X)
1: V SA pool ←− /0
2: if (X is a KT leaf node) then
3: V SA pool ←−VSA information from X’s hosting virtual server /* receive the VSA information from its hosting

virtual server */
4: else
5: V SA pool ←− VSA information from k children
6: end if
7: if (V SA pool.size ≥ pairing threshold ‖ X is a KT root node) then
8: KT node rendezvous point(X ,V SA pool) /* X serves as a rendezvous point*/
9: else
10: Report V SA pool to X’s parent /* propagate the VSA information to its parent */
11: end if
procedure KT node rendezvous point(KT node X , VSA information pool)
1: light list ←− remove all < ΔLj = Tj −Lj , ip addr(j) >s from pool /* light list maintains the VSA information

of light nodes */
2: heavy list ←− remove all < Li,r ,vi,r , ip addr(i) >s from pool /* heavy list maintains the VSA information of

heavy nodes */
3: pool ←− /0
4: Case (heavy list �= /0)
5: Remove the most loaded virtual server vi,r from heavy list, and assign it to a DHT node j in light list such that

ΔL j is minimized and subject to the condition that ΔLj ≥ Li,r

6: if (vi,r can be assigned) then
7: Remove < ΔL j , ip addr(j) > from light list
8: if (ΔL j −Li,r ≥ Lmin) then
9: Insert < ΔL j −Li,r , ip addr(j) > into light list
10: end if
11: Send the assigned information < vi,r , ip addr(i), ip addr(j) > to DHT nodes i and j /* prepare for virtual

server transfer */
12: else
13: pool ←− pool ∪ {< Li,r ,vi,r , ip addr(i) >}
14: end if
15: end Case
16: pool ←− pool ∪ light list
17: if (pool.size > 0 && X is not a KT root node) then
18: Report pool to X’s parent /* report un-assigned VSA information to its parent */
19: end if

Fig. 2 Virtual server assignment algorithm.

close nodes are close together in the DHT identifier space, and (2) then each vir-
tual server in the VSA process propagates upwards the VSA information which has
been mapped to it, instead of the VSA information of the DHT node it belongs to.
Consequently, the bottom-up VSA process along the KT naturally guarantees that
virtual servers are assigned earlier among physically closer heavy nodes and light
nodes.

Leveraging on landmark clustering [7], each DHT node i measures distances to a
set of m (e.g., m with a typical value of 15) distributed landmark nodes, obtaining a
landmark vector < vi,1, · · ·,vi,m >. Conceptually, DHT node i is mapped into a point
in a m-dimensional Cartesian space (which we call landmark space) by having the
landmark vector as its coordinates. Two physically close DHT nodes (say, i and j)
would have similar/close landmark vectors and be close to each other in the land-
mark space. However, the landmark space is usually of relatively high dimension
while the DHT identifier space is of low dimension (e.g., 1-dimension in Chord and
Pastry), so it is infeasible simply using the landmark vector as the key to map the
VSA information of DHT nodes onto the DHT overlay. Space filling curves such

1160 Yingwu Zhu

as Hilbert curve [1] are used to generate the key from a landmark vector while pre-
serving proximity relationships. That is, if two nodes have close landmark vectors,
the resulting two keys are same or close. In other words, if two points (dictated by
two landmark vectors) are close together in the m-dimensional landmark space, by
space filling curves they will be mapped to two points that are also close together in
the one-dimensional space, i.e., proximity is preserved by the mapping.

To summarize, proximity-aware VSA works as follows. Each heavy/light node
independently generates a landmark vector which is used to derive a key by space
filling curves. Each DHT heavy/light node (say i) then publishes its VSA informa-
tion (e.g., < Li,r,vi,r, ip addr(i) >/< ΔL j = Tj − L j, ip addr(i) >) onto the DHT
overlay with the derived key. As such, the VSA information published by physi-
cally close nodes will be stored close together in the DHT identifier space. Given
the published VSA information by all participating DHT heavy and light nodes,
the proximity-aware VSA differs from the proximity-oblivious VSA in that each
individual virtual server independently reports the VSA information (if any) which
has been mapped into its responsible region of the DHT identifier space4 to the
KT leaf node which it hosts. In case of multiple KT leaf nodes planted in a vir-
tual server, the virtual server reports the VSA information to only one of its KT
leaf nodes to avoid sending redundant information. As a result, each KT leaf node
has the VSA information of DHT heavy nodes and light nodes which are physi-
cally close together unless no VSA information is reported by its hosting virtual
server. If the KT leaf node has the VSA information, it performs the following
operations:

• If the number of the VSA information reaches the predefined pairing threshold,
it can immediately serve as a rendezvous point for the virtual server assignments
by running the routine KT node rendezvous point(), as outlined in Fig. 2.

• Otherwise, it propagates the VSA information to its KT parent node.

Then, the VSA process proceeds along the KT in a bottom-up sweep, as de-
scribed in the proximity-oblivious VSA. Note that a k-ary subtree covers a contigu-
ous portion of the DHT identifier space and the subtree’s root node may serve as
a rendezvous point for virtual server assignments, so this bottom-up VSA process
naturally guarantees that the virtual servers are assigned among DHT nodes, recur-
sively in a decreasing physical closeness order as the rendezvous point moves up
along the KT.

4.4 VST

The VST process is quite simple and straightforward. Upon receiving the paired
VSA information (say, < vi,r, ip addr(i), ip addr(j) >), the heavy DHT node i will

4 In the proximity-oblivious VSA, one of a DHT node’s virtual servers instead is randomly chosen
to report the DHT node’s own VSA information.

Load Balancing in Structured P2P Networks 1161

 0.1

1

 10

 100

 1000

 10000

 100000

1 10 100 1000 10000

N
od

e
Lo

ad

Node Capacity

(a) Before

 0.1

1

 10

 100

 1000

 10000

 100000

1 10 100 1000 10000

N
od

e
Lo

ad

Node Capacity

(b) After

Fig. 3 Load scatterplot with respect to node capacity for Gaussian distribution of virtual server
load and Gnutella-like node capacity profile. (a) shows scatterplot before load balancing and (b)
shows scatterplot after load balancing

transfer its virtual server vi,r to the light DHT node j. Note that the VST process can
be performed partly overlapping with the VSA process for fast load balancing. The
transferring of a virtual server unavoidably causes the KT to restructure because the
KT node which is planted in the virtual server has to migrate with the virtual server.
In order to keep the KT relatively stable, a lazy migration protocol could be adopted
for the KT node. Only after the transferring of a virtual server is fully completed
or after the whole VSA process is fully completed will the KT node migrate. Note
that the restructuring of the KT is fully distributed and inexpensive because each KT
node migration only involves at most k + 1 messages (one message with the parent
and k messages with the k child nodes).

4.5 Discussion

As an example of virtual server-based approach, this load balancing algorithm
strives to achieve two goals. The first goal is to balance load distribution by assign-
ing load to each node proportional to its capacity. Figures 3, 4 show the scatterplot
of node load before and after load balancing for different virtual server load distri-
butions and node capacity profiles. The algorithm successfully assigns load to nodes
proportional to their capacity. The second goal, which distinguishes this algorithm
from others, is to minimize load movement cost by localizing virtual server assign-
ments and transfer. Zhu et. al [14] have shown, via detailed simulations, that this
algorithm can reduce bandwidth cost in load movement over proximity-oblivious
algorithms by 11-65%, for various combinations of physical topologies of nodes
comprising the DHT overlay, virtual server load distributions, and node capacity
profiles.

1162 Yingwu Zhu

 0.1

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000 10000

N
od

e
Lo

ad

Node Capacity

(a) Before

 0.1

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000 10000

N
od

e
Lo

ad

Node Capacity

(b) After

Fig. 4 Load scatterplot with respect to node capacity for Pareto distribution of virtual server load
and Zipf-like node capacity profile. (a) shows scatterplot before load balancing and (b) shows
scatterplot after load balancing

5 Future Research

The following research topics remain unexplored for load balancing in P2P
networks.

Evaluation framework. Numerous load balancing algorithms exist for the struc-
tured P2P network, with different design goals and assumptions. One possible future
research topic is to build a framework to comprehensively understand and compare
the performance of the different load balancing algorithms. The framework needs
to base evaluation on a list of metrics, which may include quality of load balanc-
ing (i.e., minimize load imbalance across nodes), responsiveness/convergence time
(i.e., how fast does the algorithm react to load imbalance and achieve balance), cost
(i.e., bandwidth cost in load movement/migration), and failure resilience. Due to
heavy-tailed query distributions, high churn rates, and wide variation in node ca-
pacity found in the P2P network, it is challenging for a load balancing algorithm
to fulfill the aforementioned list of metrics, which are often conflicting. A frame-
work helps system designers understand tradeoffs in different algorithms and iden-
tify what tradeoffs and goals in algorithms are specifically critical to the structured
P2P network.

Balancing multiple resources. Existing algorithms assume only one bottle-
necked resource. However, a system could be constrained in more than one resource,
e.g., in both bandwidth and storage. To make an algorithm capable of handling mul-
tiple resources, we need to properly quantify the load of each data item on the mul-
tiple resources. For example, we may represent the load of each data item by a load
vector where each element corresponds to a resource. Existing algorithms need to
be adapted or new algorithms need to be designed for balance of multiple resources.

Secure load balancing. The open and anonymous nature of P2P networks opens
the door to various attacks. Few algorithms, if any, consider security against attacks.
For example, a node may claim itself a heavily loaded node and shed its load to

Load Balancing in Structured P2P Networks 1163

other nodes, raising the problem of free riding. On the other hand, malicious nodes
can disguise themselves as lightly loaded nodes and steals away data items from
heavily loaded nodes, thereby causing the problem of data availability. Worse, they
can launch denial-of-service attacks and serve malicious data.

6 Summary

This chapter addressed the importance and necessity of load balancing in structured
P2P networks, due to the three main reasons. First, structured P2P networks assume
uniform peer capacities while peer capacities are heterogeneous in deployed P2P
networks. Second, resorting to pseudo-uniformity of the hash function used to gen-
erate node IDs and data item keys leads to imbalanced overlay address space and
item distribution. Finally, placement of data items cannot be randomized in some ap-
plications (e.g., range searching). We discussed tree structure-based approach and
gossip-based approach, two main techniques in load information aggregation and
dissemination, which are used by many load balancing algorithms to monitor and
react to continuously changing system status. We also presented three load balanc-
ing algorithms, namely virtual server-based approach, power of two choices, and
address-space and item balancing. While different in their designs, either moving
loads (expressed by virtual servers or items) or moving nodes, they all aim to im-
prove balance on the address space and data item distribution in DHTs. As a case
study, we discussed an efficient, proximity-aware load balancing algorithm that is
essentially a virtual server-based approach, not only achieving fair load distribu-
tion over nodes but also minimizing load balancing cost in bandwidth. We finally
presented three possible research directions on load balancing.

References

1. T. Asano, D. Ranjan, T. Roos, E. Welzl, and P. Widmaier, “Space filling curves and their use
in geometric data structure,” Theoretical Computer Science, vol. 181, pp. 3–15, July 1997.

2. J. Byers, J. Considine, and M. Mitzenmacher, “Simple load balancing for distributed hash
tables,” in Proceedings of the 2nd International Workshop on Peer-to-Peer Systems (IPTPS),
Feb. 2003.

3. F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica, “Wide-area cooperative storage
with CFS,” in Proceedings of the 18th ACM Symposium on Operating Systems Principles
(SOSP ’01), (Banff, Canada), pp. 202–215, Oct. 2001.

4. B. Godfrey, K. Lakshminarayanan, S. Surana, R. Karp, and I. Stoica, “Load balancing in
dynamic structured P2P systems,” in Proceedings of IEEE INFOCOM, pp. 2253–2262, Mar.
2004.

5. M. Haridasan and R. van Renesse, “Gossip-based distribution estimation in peer-to-peer net-
works,” in Proceedings of IPTPS, (Tampa Bay, FL), Feb. 2008.

6. D. R. Karger and M. Ruhl, “Simple efficient load balancing algorithms for peer-to-peer sys-
tems,” in Proceedings of IPTPS, Feb. 2004.

1164 Yingwu Zhu

7. S. Ratnasamy, M. Handley, R. Karp, and S. Shenker, “Topologically-aware overlay construc-
tion and server selection,” in Proceedings of IEEE INFOCOM, (New York, NY), pp. 1190–
1199, June 2002.

8. A. Rowstron and P. Druschel, “Pastry: Scalable, decentralized object location, and routing for
large-scale peer-to-peer systems,” in Proceedings of the 18th IFIP/ACM International Con-
ference on Distributed System Platforms (Middleware), (Heidelberg, Germany), pp. 329–350,
Nov. 2001.

9. S. Saroiu, P. K. Gummadi, and S. D. Gribble, “A measurement study of peer-to-peer file shar-
ing systems,” in Proceedings of Multimedia Computing and Networking(MMCN), (San Jose,
CA), Jan. 2002.

10. I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakrishnan, “Chord: A scalable peer-
to-peer lookup service for internet applications,” in Proceedings of ACM SIGCOMM, (San
Diego, CA), pp. 149–160, Aug. 2001.

11. P. Yalagandula and M. Dahlin, “A scalable distributed information management system,” in
Proceedings of ACM SIGCOMM, pp. 379–390, Aug. 2004.

12. Z. Zhang, S. Shi, and J. Zhu, “SOMO: self-organized metadata overlay for resource manage-
ment in p2p DHT,” in Proceedings of the 2nd International Workshop on Peer-to-Peer Systems
(IPTPS), Feb. 2003.

13. B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph, “Tapestry: An infrastructure for fault-
tolerance wide-area location and routing,” Tech. Rep. UCB/CSD-01-1141, Computer Science
Division, University of California, Berkeley, Apr. 2001.

14. Y. Zhu and Y. Hu, “Efficient, proximity-aware load balancing for DHT-based P2P systems,”
IEEE Transactions on Parallel and Distributed Systems, vol. 16, no. 4, pp. 349–361, 2005.

15. D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and D. Lewin, “Consistent hash-
ing and random trees: distributed caching protocols for relieving hot spots on the World Wide
Web,” in Proceedings of the 29th ACM Symposium on Theory of Computing (STOC), pp. 654–
663, May 1997.

16. J. Ledlie and M. Seltzer, “Distributed, secure load balancing with skew, heterogeneity, and
churn,” in Proceedings of IEEE INFOCOM, Mar. 2005.

17. X. Wang and D. Loguinov, “Load-balancing performance of consistent hashing: asymp-
totic analysis of random node join,” IEEE/ACM Transactions on Networking, vol. 15, no. 4,
pp. 892–905, 2007.

18. D. Wu, Y. Tian, and K. Ng, “On the effectiveness of migration-based load balancing strategies
in DHT systems,” in Proceedings of IEEE ICCCN, pp. 405–410, Oct. 2006.

19. P. Godfrey and I. Stoica, “Heterogeneity and load balance in distributed hash tables,” in Pro-
ceedings of IEEE INFOCOM, Mar. 2005.

Acyclic Preference-Based Systems
A Self-Stabilizing Approach for P2P Systems

Fabien Mathieu

Abstract Acyclic preference-based systems recently appeared as an elegant way to
model many P2P unstructured or hybrid systems. The strength of these systems is a
self-stabilizing property that allows to provide analytical results in addition to em-
pirical validation. In this chapter, we give the keys to understand and use acyclic
preference-based. After a brief introduction to the roots and notation of the model,
the main convergence theorem is exposed and a description of P2P-relevant prefer-
ences is given. Ensues an explanation of the combinatory techniques used to refine
the convergence study, and a statistical description, based on mean field assump-
tions, of the stable configurations of acyclic preference-based systems. For some
preferences, we observe that the stable configuration is a small-world.

1 Introduction

During the last decade, the increase of Internet users’ resources (storage, network
access, CPU, . . .) and the advances in multimedia coding have made the down-
load of large files, including audio and video content, feasible with only the help of
peer-to-peer (P2P) exchanges. As a result, P2P file-sharing networks like KaZaA,
eMule [10, 11] or BitTorrent [8] are now widely popular.

Following this success, P2P technology proposes more and more functionalities,
streaming being one of the most noticeable. Live streaming applications like Cool-
Streaming [55], PPLive [21], SopCast [48], TVants [53], or UUSee [54] become
more and more popular, as do Video-on-Demand applications [3, 27, 31].

All these P2P applications rely on the same paradigm: if you want to serve a
large amount of users with little or no server capacity, you have to take the resources
where they are present, that is from the users themselves.

Fabien Mathieu
Orange Labs, 38–40 rue du général Leclerc, 92794 Issy-les-Moulineaux, France,
e-mail: fabien.mathieu@orange-ftgroup.com

X. Shen et al. (eds.), Handbook of Peer-to-Peer Networking, 1165
DOI 10.1007/978-0-387-09751-0 42, © Springer Science+Business Media, LLC 2010

1166 Fabien Mathieu

In other words, the key to make a P2P system work is to answer the following
question: who gets what from whom?

While the answer is generally straightforward for classical server/client architec-
tures, it becomes a major challenge for P2P networks, which are decentralized by
nature. Of course, many other questions can be sources of trouble, such as availabil-
ity, fairness, robustness . . . The heterogeneous and dynamic nature of the peers also
add to the difficulty.

There are roughly two basic approaches to answer the who gets what from whom?
question: structured or unstructured (so-called hybrid approaches try to combine
both of them).

The aim of the structured approaches is to fit the peers within a pre-determined
structure. The structure is a guide that tells the peers how to behave. Many structured
solutions have been proposed in the context of distributed hash tables (DHTs) [19,
40, 43, 47, 50, 56], which are used to locate content in a P2P system. Structured
solutions have also been proposed to solve the P2P live streaming issue [5, 14].

The structures themselves are generally graphs, like trees, interior-node-disjoint
trees [5], de Brujin graphs [14, 19], regular graphs, . . . They can be built on top of a
topological structure (ring [40, 50], d-torus [43], hypercube [40, 47, 50, 56], . . .).

The main strength of structured approaches is that the behavior of the system
is determined by a known structure, which can be designed to ensure optimal or
quasi-optimal performance. However, maintaining a structure when there is churn
(arrivals and departures of peers) can be costly. Moreover, most structures assume
that peers have similar capacities, and all but a few proposals [51] have difficulties
to handle heterogeneous peers.

On the other hand, the idea behind unstructured approaches is to let the peers take
decisions based on their own view of the system: there is no explicit structure, but
an implicit one resulting in a sum of local choices. Note that the term self-structured
may be more appropriate than unstructured. Self-structured approaches are mostly
employed in content distribution (e.g., filesharing [17, 42], streaming [4]), and are
hybrided in some DHTs[19, 40].

By design, self-structured approaches should be robust to churn and hetero-
geneity. But, as their structure is not known a priori, it can be difficult to predict
their performance, and the validation of a self-structured system is often empiri-
cal only. However, some progress has been made in order to give some theoretical
grounds [4, 42] to self-structured systems.

The aim of this chapter is to present and give insight into one of the models
for self-structured systems: preference-based systems (p.b.s.). P.b.s. have been
introduced to model the dynamics of collaborations between peers acting in-
dependently according to some personal preferences.

Acyclic Preference-Based Systems 1167

1.1 Stable Marriage: A Brief Overview

The roots of p.b.s. come from Gale and Shapley’s stable marriage theory, which has
been adapted to handle P2P networks’ specific characteristics.

The most famous (often considered as recreational mathematics) version of the
problem appeared in 1962 in the seminal paper [20]. The problem is to try to match
some men and women in a way such that no adultery can happen. Formally, an in-
stance of the Stable Marriage problem involves two sets M and W (men and women),
and assumes that each member of each gender has strict preferences over some
members of the opposite gender. A configuration of the instance is a matching be-
tween M and W . It is unstable if there is a pair (m,w) not in the given configuration
such that each one prefers being matched with the other rather than being like it
is in the current configuration. Instability means possible adultery because both m
and w have interest in eloping together. The goal of the theory is to find and de-
scribe the stable configurations of the instance. It has been proved that if there is no
preference tie, a stable configuration always exists, which can be computed using a
proposal/disposal algorithm.

An extension of the problem, known as college admissions, allows participant
from one set to have more than one mate from the other set. Its applications are, for
instance, affecting graduating medical students to their first hospital appointment, or
young assistant teachers to universities [24, 45]. Like the stable marriage problem,
a stable configuration always exists.

Then, the case of interest for P2P modeling is when only one set of participants
is evolved. This variant is known as the Roommates problem when only simple
matchings are allowed, and b-matching otherwise (where b is the standard notation
used to describe matching quotas) [12, 23, 25]. It has applications in many areas,
for instance in the pairwise kidneys exchange program [46]. The main issue with
this variant is that the corresponding systems might admit no stable configuration,
whatsoever. Note that centralized algorithms give a stable configuration if one ex-
ists [6, 22, 23, 52].

1.2 Going P2P

The interest in the matching theories for P2P systems is rather intuitive: given a set
of peers, each one having a list of neighbors for potential connections, the theory
can give some insight into these connections under a scheme where each peer tries
to maximize its own benefits.

As the stable marriage theory and its b-matching variant have been widely stud-
ied for almost fifty years, one could think modeling P2P with it should be straight-
forward. In practice, it offers a steady theoretical background, but P2P networks
have specificities that force a new perspective on the problem. Thus the need of
introducing preference-based systems.

1168 Fabien Mathieu

The details of differences between standard b-matching and preference-based
systems are the following:

• most of the time, preferences in b-matching studies are supposed to be arbitrary.
On the other hand, P2P preferences are mostly based on objective values.

• b-matching mainly cares about the existence of stable configurations, and how to
compute them. Most P2P preferences fall under a powerful existence/uniqueness/
self-stabilization theorem which makes such questions irrelevant.

• dynamics and performance of configurations are fundamental for P2P, while not
extensively studied in b-matching research.

1.3 Outline

This chapter is structured as follows: in Section 2,we give the basics of preference-
based systems. This includes the notation, the main convergence theorem for acyclic
p.b.s., and a description of P2P-relevant preference classes. Section 3 is then devoted
to deepen the convergence theorem in order to give tighter convergence bounds
depending on the preference class. Section 4 describes the stable configurations of
acyclic systems. Lastly, Section 5 concludes the chapter.

2 Acyclic Preference-Based Systems

This section sets the main framework: notation and definitions are presented in Sec-
tion 2.1; the main theorem for acyclic preferences is then stated in Section 2.2, and
lastly Section 2.3 gives a description of the set of acyclic preferences.

2.1 Notation and Definition

We present here the standard notation used for handling preference-based
systems [15, 17, 33, 37, 38]. A large part of it is based on the literature on
b-matching [6, 9].

An instance of the problem is composed of a set of peers, with an acceptance
graph, preferences and quotas. A configuration is a valid set of effective collabora-
tions, and the dynamics are modeled by a process called initiative, where peers try
to improve their collaborations in a selfish, decentralized, manner.

2.1.1 Preference-Based Systems

A preference-based system consists of a set P of n peers (or nodes), whose possible
interactions are described by an acceptance graph G, a mark matrix m and a quota
vector b.

Acyclic Preference-Based Systems 1169

The acceptance graph G = (V,E) is an undirected graph. It describes com-
patibilities: a peer i and a peer j are capable of collaborating (we say that i is
acceptable for j, and vice versa) if, and only if (iff) {i, j} ∈ E. For instance, the
acceptance graph can represent the peers’ knowledge of other peers, the existence
of common interests between peers, or a pre-existing overlay graph. Although some
of the results we provide are true for any kind of acceptance graph, we mainly
consider Erdös-Rényi graphs G (n, p) in this chapter (each possible edge exists
with probability p independently of the others; hence the expected degree is d =
p(n−1)). The advantage of using G (n, p) graphs is that theoretical analysis is made
easier.

The mark matrix m defines how peers value each other. It is used for determining
the preferences. For {i, j}∈E, m(i, j) denotes the mark of j for i. If m(i, j) < m(i,k),
then we say that i prefers j to k. We assume that there is no preference tie, i.e., that
all marks within a row are distinct.1 The sign of the inequality is arbitrary, and has
no impact on the model. By default, we assume lower marks are preferred (which
is suitable for distance or latency marks), but for marks like bandwidths, it may be
the opposite. The matrix m can have various shapes (cf Section 2.3), which affect
the resulting preferences. Note that a peer is not necessarily aware of the full mark
matrix. In fact, it may not even be aware of all the values of its corresponding row in
the matrix. However, we assume that a peer can always find out the value of a given
neighbor by contacting it.

Lastly, the quota vector b limits the collaborations: a peer i cannot have more
than b(i) simultaneous collaborations. Without loss of generality, one can assume
that b(i) is not greater than the degree of i in the acceptance graph. For convenience,
we often assume that b is a constant in this chapter, although the model allows any
kind of integer distribution.

2.1.2 Configurations

The state of collaborations in a preference-based system is called a configuration.
Formally, a configuration C is a subset of E. The neighbors C(i) of i in C are
called mates of i. If c(i) denotes the number of mates for peer i, the existence
of quotas implies c(i) ≤ b(i) for all i ∈ P. If c(i) < b(i), we say that i is under-
mated.

The evolution of a configuration comes from the resolution of blocking edges.
A blocking edge is an edge e between two neighbors that are not matched together
(e ∈ E \C), such that both could gain by collaborating (even at the price of possibly
dropping an existing collaboration). Blocking edges are the equivalent of possible

1 Ties in the preferences raise many issues ([24–26, 35, 36, 44]) that will not be discussed in this
chapter. Note that ties can be easily avoided if we assume that the peers possess distinct ids that
are used to break any tie that may happen.

1170 Fabien Mathieu

adulteries in the original marriage theory. Formally, an edge e = {i, j} ∈ E \C is
blocking iff the two following conditions are verified:

• c(i) < b(i) (i is under-mated), or ∃k ∈C(i),m(i, j) < m(i,k) (i prefers j to one of
its mate);

• c(j) < b(j) or ∃k ∈ C(j),m(j, i) < m(j,k) (symmetrical to the previous condi-
tion).

A peer that belongs to at least one blocking edge is eligible. A configuration with
no blocking edge (or equivalently no eligible peer) is stable.

2.1.3 Initiatives

In a preference-based system, the resolution of blocking edges is local: peers inde-
pendently try to find and resolve a blocking edge they belong to. This scheme is
called initiative, and we assume that it is atomic. Initiatives are the elementary steps
of the system evolution. An initiative is active if it succeeds in resolving a blocking
edge.

An initiative scheme is formally described as a (possibly random or time vary-
ing) selection function from V to V that gives for any peer i a neighbor to try. The
selection can be restricted to blocking neighbors if the peer knows the blocking
edges it belongs to. Otherwise the choice is made among all neighbors non adja-
cent to i in C. Typical initiative schemes are best mate (best blocking neighbor se-
lection), decremental (round-robin-like selection), or plain random. Both best mate
and decremental initiatives require a complete knowledge of the neighbors’ ranking,
whereas random initiative only requires to evaluate a peer’s value on the fly. Note,
that hybrid initiative schemes can be designed in order to increase the performance
of a preference-based system (cf [38], or Section 3.2).

Starting from an initial configuration, the sequence of initiatives performed by
peers during time will entirely define the system evolution. Standard sequences are
for instance round-robin, which models a peer mono-periodic activity (each peer
performs a periodic initiative, the time period being the same), or uniformly ran-
dom, which models an homogeneous Poisson activity (each peer follows a Poisson
process, the intensity being the same). We can also consider adversarial sequences,
which are built in order to exhibit worst cases. By convention, the time unit (t.u.)
is the time needed to perform a sequence of n initiatives (in other words, the time
cost of each atomic initiative is 1

n t.u.). This is a convenient scaling, because t t.u.
corresponds to an average of t initiatives per peer.

Another time measure for the initiative is the round. A round is a sub-sequence
where each peer that was eligible at the beginning of the round either takes an ini-
tiative or ceases to be eligible during the round. For a round-robin sequence, a time
unit is a round, but this is not true in the general case.

Acyclic Preference-Based Systems 1171

2.1.4 Nodes and Edges’ Stability

The initiative process gives a new definition of stability: a configuration C is stable if
the only configuration reachable from C using any sequence of any initiative scheme
is C itself. This definition is equivalent to the one given in Section 2.1.2 (no blocking
edge). The advantage of the initiative approach of stability is that it can be defined
at a local level: an edge e of a configuration C is stable iff e exists in all reachable
configurations. In other words, a stable edge is a collaboration that initiatives cannot
break.

Whenever a node is adjacent to a stable edge, its degree of mating freedom is
lessened. The free quota of a node i, denoted b′(i), is the difference between b(i)
and the stable edges adjacent to i. Free quotas form a configuration-dependent vector
that can only decrease with time. They allow to define stability for a node: a node i
is stable (or inactive), if b′(i) = 0 or if all the non-stable neighbors of i share a stable
edge with it.

The last definitions which are useful for stability are warmness and hotness. For
a given configuration C, an un-matched edge e = {i, j} of the acceptance graph
(e ∈ E \C) is warm iff:

• j belongs to the b′(i) best non-stable neighbors of i,
• i belongs to the b′(j) best non-stable neighbors of i.

Hotness is a more restrictive condition: an un-matched edge e = {i, j} between two
non-stable neighbors is hot with respect to C iff i is the best non-stable neighbor of
j and vice versa.

By extension, we call warm node (resp. hot node) a peer adjacent to a warm
edge (resp. hot edge). Intuitively, warm and hot edges are ready-to-be-stabilized
edges. They are a central concept in acyclic preference-based systems, because of
the following Lemma 1, which is used to demonstrate many properties of the acyclic
p.b.s.:

Lemma 1 ([16, 33]). If C is a non-stable configuration of a given acyclic p.b.s.,
there is at least one hot edge with respect to C.

2.2 Acyclicity: Main Convergence Theorem

A preference cycle, or Kieschnick cycle, is a cycle of k≥ 3 peers i1, . . . , ik, such that
each one prefers its successor to its predecessor: i1 prefers i2 to ik, i2 prefers i3 to
i1, . . . , ik prefers i1 to ik−1 (or equivalently m(i1, i2) < m(i1, ik), m(i2, i3) < m(i2, i1),
. . . , m(ik, i1) < m(ik, ik−1)).

In this chapter, we are interested in acyclic preference-based systems, that is
p.b.s. which contain no preference cycle. Note that the acyclicity property is en-
tirely defined by the acceptable values of the mark matrix, and is independent from
quotas or initiatives. By convention, we call acyclic a mark matrix that produces an

1172 Fabien Mathieu

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

Time

D
is

or
de

r
n=100,d=50
n=1000,d=10
n=1000,d=50

0 2 4 6 8 10
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Time

di
so

rd
er

Peer 1 removed
Peer 100 removed
Peer 300 removed
Peer 600 removed

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Time

di
so

rd
er

Churn=30/1000
Churn=10/1000
Churn=3/1000
Churn=0.5/1000
No churn

(a). Static p.b.s. (b) Atomic alteration (c) Churn

Fig. 1 The self-stabilization property for three basic scenarios

acyclic p.b.s. The classification of the acyclic mark matrices, and their link with P2P
systems will be deepened in Section 2.3.

Acyclic p.b.s. are characterized by a property that makes them unique among
other p.b.s.:

Theorem 1 ([16]). An acyclic preference-based system always admits a
unique stable configuration, which is self-stabilizing under initiatives.

Sketch of proof: The complete proof, available in [16], is in two steps: first, show-
ing the self-stabilization, which proves the existence of a stable configuration, then
the uniqueness.

The self-stabilization is a consequence of the irreversibility of the configuration
evolution: given any sequence of initiatives, the corresponding sequence of configu-
ration is irreversible. In other words, if the configuration evolves from C1 to C2 �=C1

at some time t, a consequence of the acyclicity is that C �= C1 for all configurations
C that occur after t. Because the number of possible configurations is finite, any
p.b.s. eventually reaches a configuration from which it cannot evolve, i.e., a stable
configuration.

The uniqueness is proved by contradiction: If we consider two distinct stable
configurations A and B, and a peer i with different mates in A and B, we can construct
a preference cycle starting from i. �

Before pursuing further, let us illustrate the practical importance of Theorem 1
with an example, taken from [18]: in Fig. 1, we can see the evolution of a p.b.s.
configuration with time. In details, we observe the distance between the actual and
stable configurations (for details on the parameters and distance used, see [18]).
Three distinct scenarios are considered:

Static case Fig. (1a) In a first set of simulations, a p.b.s. is set starting from the
empty configuration, C/0. We observe the convergence towards the stable config-
uration stated by Theorem 1;

Acyclic Preference-Based Systems 1173

Fig. 2 The spring metaphor:
because of the self-stabilizing
property, the current con-
figuration is continuously
attracted to the stable configu-
ration, as if there was a spring
between them. This is true
even if the stable configura-
tion evolves during time Time

C
on

fi
gu

ra
tio

n

Stable configuration

Current configuration

Atomic alteration Fig. (1b) In the second set of simulations, a p.b.s. is in its stable
configuration, then a peer is removed from the system. This alteration changes
the stable configuration. The system then converges towards its new stable con-
figuration. We can see that the new stable configuration stays close to the old one,
and that the system converges back quickly. Note that some peers induce more
disorder than others when removed. This comes from a sort of domino effect (for
more details, see [18]).

Continuous churn Fig. (1c) Finally, we consider continuous churn: peers are re-
moved or introduced in the system according to a churn intensity. We observe
that the system cannot cope with the evolving stable configuration, especially for
high churn intensity. However, the self-stabilization manages to keep the system
close to the stable configuration (the distance is roughly proportional to churn
intensity). Note that if the churn stops at some time, then the system converges
like in the other experiments.

This simple example suggests that the configuration of a p.b.s. should be always
close to the stable configuration, because of the self-stabilization. This is the spring
effect (cf Fig. 2).

Thus the Theorem 1 justifies a two-step approach for analyzing the performance
of acyclic preference-based systems:

How fast is the self-stabilizing process? The proof of the theorem only gives the
number of possible configurations as a bound, which is far too high to be of a
practical use: this number, also known as the number of involutions of a set of
size n, has a factorial-like asymptotic behavior [7]. Thus there is a need for tighter
bounds in order to evaluate the force constant of the spring.

What is the stable configuration? If the self-stabilization is fast enough com-
pared to the characteristic time of the system and the possible churn intensity,
then the stable configuration will give a good approximation of the effective con-
figurations of the system. Therefore the generic properties of stable configura-
tions can be used to estimate the performance of the system.

These two questions will be addressed in the next sections. But first let us take a
closer look at the shape of the acyclic preferences.

1174 Fabien Mathieu

Fig. 3 Matrices and corre-
sponding preferences: sym-
metric and global matrices
form two distinct subsets
of the acyclic matrices, but
symmetric matrices can de-
scribe all acyclic preferences,
including global preferences Matrices

Preferences

Acyclic

Global

Acyclic

Symmetric

2.3 Acyclic Classes

The set of the acyclic matrices is only a small subset of all possible mark matrices.
In fact, if you pick up a mark matrix with random values, it is very likely that the
corresponding preferences contain a cycle. For instance, if you consider any subset
of 3 peers among n, with random marks between them, the probability that they
form a preference cycle is 1

4 ; thus the probability of having no preference cycle of

length 3 is (3
4)(

n
3), which is very low for n large

On the other hand, many matrices with specific properties are acylic. For instance
([16]):

Global matrices A mark matrix m is global if all its rows are identical with respect
to its acceptable entries (in other words, m(i,k) = m(j,k) for all i, j that accept
k). The corresponding preferences follow a total order among the nodes, and are
thus called node-based (or just global).

Symmetric matrices A matrix m that verifies m(i, j) = m(j, i) for all acceptable
pairs {i, j} is acyclic. Note that the corresponding preferences, which are edge-
based, form the whole set of the acyclic preferences (i.e., any acyclic preference
can be described by a symmetric mark matrix [1, 16]). The links between acyclic,
global and symmetric matrices and the corresponding preferences are summa-
rized by Fig. 3.

Linear combination of global and symmetric matrices Such matrix are acyclic as
long as the linear combination produces no ties [15] (but as stated in Sec-
tion 2.1.1, ties are easy to remove).

Let us remark that it is always possible to merge acyclic preferences together, if
we use a representation by symmetric matrices and a linear combination.

2.3.1 P2P-Relevant Cases

Now that we have an idea of the possible acyclic p.b.s., let us see how standard P2P
measurements fit into our framework.

Capacity A peer in a P2P network possesses many node-based values that are
relevant for preferences: access bandwidth, storage or CPU capacity, average
uptime,. . . For instance, the filesharing protocol BitTorrent [8] uses a Tit-for-Tat

Acyclic Preference-Based Systems 1175

policy that makes a peer upload preferentially to the neighbors from whom it
downloads the most. This can be seen as a preference system where the mark of a
peer is its upload bandwidth (divided by its quota, i.e., its number of simultaneous
upload connections).

Proximity All values that correspond to a sort of distance (in the physical net-
work or in a virtual space) or similarity measure are edge-based by nature. For
instance, many P2P systems try to minimize the latencies, such as the DHT Pas-
try [47] or online real-time gaming applications [34]. Similarly, massively mul-
tiplayer online games (MMOG) require connecting together players with nearby
coordinates in a virtual space [13, 28, 29]. Some authors also propose to connect
participants of a filesharing system according to their common interests [32, 49],
which is a symmetric measure. The co-uptime, which is the average shared up-
time, can also be a relevant measure for all collaborative applications.

Complementarity The measure of the difference between the resources of peers
can also be valuable. For instance, a peer in a distributed storage application
may want to find neighbors that are online when it is not, in order to keep its
data available even when it is not connected. This is complementary uptime.
Similarly, in a filesharing system like BitTorrent, where all participants want a
same content which is divided into pieces, it may be convenient to collaborate
with the peers possessing the most complementary set of file pieces. As a special
case of a linear combination of a global and a symmetric value, complementary
preferences are acyclic [16].

2.3.2 Considered Preferences

All acyclic preferences do not have the same self-stabilization and stable configura-
tion. In order to exhibit generic and specific properties of these systems, we focus
here on four classes of acyclic preferences:

Global As we said before, a node-based (or global) matrix is equivalent to a total
order among the nodes. Therefore we do not need to explicit the mark matrix
m for node-based preferences, and we can use an ordered node labeling instead.
We arbitrarily choose 1, . . . ,N as labels, 1 been the best (if 1 is ranked first for all
nodes that accept 1, and so on. . .).

Geometric the nodes are associated to n points picked uniformly at random on
a t-dimensional torus (t ≥ 1). The (symmetric) marks are the distances between
those points. These preferences allow a theoretical analysis of proximity-based
performance.

Meridian latencies we considered random subsets of n nodes taken from the 2500
nodes dataset of the Meridian Project [41]. The marks are the (symmetric) laten-
cies between those nodes. We do not perform analysis for those marks, but use
them in Section 4.6.2 for validating the geometric approach.

Random acyclic preferences Each edge receives a random uniformly distributed
value. The name is justified because as stated before, all acyclic preferences
can be described edge-based marks. Hence uniformly distributed (symmetric)

1176 Fabien Mathieu

random marks are a convenient way to perform a uniform sampling of the acyclic
preferences [1, 16].

3 Self-Stabilization Speed

In this section, we want to respond to the question How fast is the self-stabilizing
process?. The answer, which is a good indicator of the strength of the self-
stabilization process, is given theoretically when possible, and through simulations
otherwise: while theoretical results can only be given for specific parameters (for in-
stance, only best mate initiatives are investigated, and most of the tight convergence
bounds only concern the case b = 1), simulations allow to investigate a broader set
of situations.

3.1 Upper Bounds

We first propose to give upper bounds for the convergence time with best mate ini-
tiative. For the case b = 1, we show upper bounds, linear in rounds and exponential
in number of initiatives. Both bounds are tight for some adversarial sequence. Then
we propose a weaker round-bound for b > 1.

3.1.1 Convergence (Rounds)

For b = 1, the maximum time (in round) is given by Theorem 2:

Theorem 2 ([37]). Starting from any configuration, an adversarial sequence takes
at most) n

2* rounds to converge. The bound is tight for a round robin sequence (and
thus for any adversarial sequence).

Proof. The proof relies on Lemma 1 (the existence of hot edges in any non-stable
configuration). The best-mate initiative of a hot node stabilizes the corresponding
hot edge, so after each round (until stabilization), at least one stable edge is formed.
As b = 1, the stable configuration has at most) n

2* edges, so the stabilization cannot
last more than) n

2* rounds. This bound is tight because it is reached for global prefer-
ences and complete acceptance graph, if we use a round robin sequence of initiatives
with the pattern n,(n−1), . . . ,2,1, starting from the empty configuration C/0.

3.1.2 Convergence (Initiatives)

We now want to measure the convergence in term of active initiatives. The bound
now depends whether the initiative sequence is round-robin or fully adversarial.

Acyclic Preference-Based Systems 1177

• For a round robin sequence, the convergence is given by Theorem 3:

Theorem 3 ([37]). Starting from any configuration, a round robin sequence takes at

most ∑
) n

2 *−1
k=0 n− (2k +1)≈ n2

4 active initiatives to converge. This bound is tight.

Proof. The reasoning is the same that for Theorem 3. As long as the current config-
uration is not stable, there exists at least two hot nodes, so after at most n−1 active
initiatives, the round robin initiative is forced to match a strong pair. The remaining
non stable nodes are less than n− 2, and if the configuration is not stable yet, at
least two of them are hot, so after at most n−3 active initiatives, a new stable edge
is formed. . .

If we continue this process, we see that the number of active initiatives cannot be
more than

) n
2 *−1

∑
k=0

n− (2k +1)≈ n2

4
.

Like for Theorem 3, one can see that this bound is reached for global preferences
and complete acceptance graph, if we consider a round robin sequence with the
pattern n,(n−1), . . . ,2,1, starting from C/0.

• For an adversarial sequence, the convergence is given by Theorem 4:

Theorem 4 ([37]). Starting from any configuration, an adversarial sequence takes
at most 2n−1−1 active initiatives to converge. Reciprocally, there is a sequence that
needs Θ(λ n) active initiatives to converge, with λ ≈ 1.6826, thus proving that the
complexity of the adversarial daemon stand somewhere between these two bounds.

Sketch of proof: Like for previous proofs, the 2n−1−1 bound relies on Lemma 1.
The key is to focus on two hot nodes, and to consider the moment where they stabi-
lize. Before that moment, they do not take initiatives, and after that they are inactive.
This gives a recursion on the number of nodes that are allowed to take initiatives,
and the bound follow.

The Θ(λ n) bound is obtained for node-based preferences with complete graph,
by using a sequence that selects the worst active node, that is the active node with
highest label. The study of the configuration evolution for this sequence gives the
bound. �

Remark 1. In all previous convergence bounds, global preferences are used for
reaching the bounds. From a convergence point of view, it seems that global prefer-
ences are the worst possible, and it is indeed the case most of the time. More gen-
erally, global preferences often display a non-typical behavior compared to other
acyclic preferences.

3.1.3 b-Matching Generalization

If b > 1, Theorem 2 can be adapted and give a) nb
2 * bound for the number of rounds

(the argument is the same: at least one hot edge is stabilized per round). However,

1178 Fabien Mathieu

this is not a tight bound. For instance, if we take b = n− 1 (which is a limit case
where there is virtually no quota, because a node can collaborate with all other nodes
simultaneously), each node can stabilize all its neighbors after n− 1 initiatives, so
we have a bound of n−1 rounds, which is far less than) n(n−1)

2 *.
The reason is that if b > 1, the system can have warm edges in addition of hot

edges. Warm edges stabilize just like hot edges, but they are harder to count, which
makes difficult to get a tight bound. However, we still can give a few results for
global preferences:

Theorem 5 ([38]). For node-based preferences, the convergence time is bounded by
b

b+1 n rounds for the complete acceptance graph, and by n otherwise.

Note that simulations (cf Section 3.3) show that b
b+1 n is a rather accurate

bound that reveals well the actual behavior: the few first quotas are the most time-
consuming. On the other hand, a complete acceptance graph seems to be the worst
case, so the n bound of the general case is clearly an overestimate, not to say the
) nb

2 * bound.

Sketch of proof: For the complete acceptance graph, the proof relies on the fact that
the stable configuration is made of cliques of size b+1 ([18]), and that b rounds are
enough to stabilize one clique. For an arbitrary acceptance graph, we can only tell
that b rounds are enough to stabilize the b best non-stable nodes, which gives the n
bound. �

3.2 Expected Convergence Time

Now, we focus on the convergence expected in practice under realistic initiative
behaviors, namely the poisson and round-robin sequences. The results presented
here are for b = 1 and best-mate initiative. We give upper bounds for the expected
convergence time of p.b.s., measured in time units.

3.2.1 Generic Upper Bound

The following theorem gives an upper bound for the expected convergence time
which is true for any acyclic p.b.s. (with b = 1 and best mate initiative).

Theorem 6 ([38]). The expected convergence time is bounded by n
4 for a poisson

sequence, and by n+1
6 for a round-robin sequence.

Sketch of proof: Like almost all proofs for estimating the convergence time, The-
orem 6 is based on Lemma 1: any non-stable configuration admits at least to hot
nodes, and the expected time between two consecutive hot node initiatives is thus
less than 1

2 for a poisson sequence, or 1
3 (1 + 1

n) for a round-robin sequence. Mul-
tiplying this n

2 , which is the maximum number of edges to stabilize, gives the
result. �

Acyclic Preference-Based Systems 1179

Fig. 4 Expected conver-
gence time for node-based
preferences with complete
acceptance graph. Each point
represents the average over
100 simulations

Remark 2. For node-based preferences with complete acceptance graph, a non-
stable configuration admits exactly two hot nodes (the two best non-stable nodes).
Thus we can hope that Theorem 6 gives good bounds for such systems. The bounds
are in fact very accurate, as shown by Fig. 4: global preferences are the worst possi-
ble case, like already observed in Section 3.1.

Remark 3. The tightness of the n
4 for a round-robin sequence is consistent with

the tightness of the) n
2* bound from Theorem 2: the former is a bound for the

expected convergence time while the latter is an absolute bound for all possible
sequences.

3.2.2 Node-Based Preferences

For node-based preferences and an Erdös-Rényi acceptance graph (G (n, p), we can
provide better bounds:

Theorem 7 ([38]). For node-based preferences and expected degree d = p(n− 1),
the expected convergence time is O(d + log(n)) for a poisson sequence and O(d)
for a round-robin sequence.

Sketch of proof: The key of the proof is to count the hot nodes in an unsta-
ble configuration. Combinatory techniques show that it is of the same order of
magnitude of n

d . Then we deduce an average time between two hot node selec-
tion of the same order of magnitude than d

n , which give the O(d) behavior for
poisson and round-robin sequences. Lastly, a specific care must be taken regard-
ing the end of convergence, when almost all possible edges are stabilized. In this
endgame phase, almost all non-stable nodes are hot. During that phase, the non-
stable nodes will be stabilized in 0(1) for a round-robin sequence (1 time unit sta-
bilizes all existing hot nodes). In contrast, for a poisson sequence, a standard balls
ans bins calculus shows that O(log(n)) time units are needed to resolve all the hot
nodes. �

1180 Fabien Mathieu

3.2.3 Random Acyclic Preferences

For random acyclic preferences, we have a similar result:

Theorem 8 ([38]). For random acyclic preferences and expected degree d = p(n−1),
the expected convergence time is O(log(d) + log(n)) for a poisson sequence and
O(log(d)) for a round-robin sequence.

Sketch of proof: Using combinatory techniques, we prove that about one half of the
non-stable nodes are hot. This result is used to prove that an endgame configuration
is reached in O(log(d)). Then the endgame add an extra O(log(n)) behavior for a
poisson sequence. �
Remark 4. We have d < n, so O(log(d) + log(n)) can be simplified in O(log(n)).
The “improper” notation O(log(d)+ log(n)) is only motivated because in practice,
the impact of d is greater than the impact of n (cf Section 3.3).

3.2.4 Other Acyclic Preferences

For other preferences, the key to give the expected convergence time would still be
to estimate the distribution of hot nodes. It may be difficult for preferences based on
real measurements, like the Meridian latencies. Similarly, it may be hard to give the
distribution for geometric preferences because of the inter-nodes correlations.

However, we proposed in [38] to use a peer value distribution to determine if the
convergence should be closer to the node-based case or to the random acyclic case.
The idea is to observe if there is correlations between the rankings. The more we
see good nodes, that is nodes that have good rankings in all the preferences of their
neighbors, the more the convergence behavior is likely to be node-based (O(d) or
O(d + log(n))). On the other hand, the absence of good nodes tends to indicate a
random acyclic convergence (O(log(d)) or O(log(d)+ log(n))).

This rule of thumb is verified for the preferences studied in this chapter. More
generally, it may apply for any class of acyclic preferences (for instance the linear
combination of two or more simple preferences), and for arbitrary acceptance graphs
and quotas. Of course, its validity should always be checked for a specific p.b.s., for
instance by means of simulations.

3.3 Simulations

The previous results provide a good theoretical ground for p.b.s., but they are not
sufficient to describe all possible p.b.s.: for instance, only the best mate initiative is
studied and the bounds for b > 1 are rather weak. This is why we propose the use
of simulations. We begin by giving the results for the best-mate initiative, then we
give a brief overview of other possible initiatives. All technical details on how the
simulations were performed can be found in [38].

Acyclic Preference-Based Systems 1181

3.3.1 Best-Mate Initiative

In the following, we show how each of the main parameters of the system affects
the self-stabilization process under best-mate initiative. Quotas higher than 1 may
be used to show how the results seen for b = 1 extend to b≥ 1.

Neighborhood size

We first consider systems where n is fixed and d = p(n−1) (the average neighbor-
hood size) varies. Results for n = 100 and b = 4 are shown in Fig. 5 (each point
represents the average over 100 samples). Depending on the preferences, two dis-
tinct behaviors can be observed:

• For global preferences (m = G) the convergence time grows linearly; note that
the round-robin sequence is slightly slower than the poisson sequence for d close
to n, but faster otherwise;

• other preferences: the convergence time grows logarithmically; round-robin se-
quences are slightly faster than poisson preferences; the two fastest preferences
(random acyclic and geometric) are hard to distinguish.

0 20 40 60 80 100
0

10

20

30

40

50

Average degree d

C
on

ve
rg

en
ce

 ti
m

e

m=G
m=M
m=RD
m=RS

(a) Round-robin sequence (b) Poisson sequence

0 20 40 60 80 100
0

10

20

30

40

50

Average degree d

C
on

ve
rg

en
ce

 ti
m

e

m=G
m=M
m=RD
m=RS

Fig. 5 Convergence time as a function of the expected degree d

System size

We now consider systems where the size n of the system varies between 35 and
300 and the expected degree is set to 30. Results are shown in Fig. 6 (each point
represents the average over 100 samples; b = 4). The trend is that if d is fixed,
n seems to have little effect on the convergence time. In details, we can observe
that:

1182 Fabien Mathieu

• the curves slightly increase with n for poisson sequences (a = P);
• for round-robin sequences, they are almost flat, except for global preferences

(m = G) where the curve decreases at the start (n close to d);
• poisson sequences takes longer than round-robin sequences, except for the case

mentioned above (global preferences, n close to d);
• like in Fig. 5, random and geometric preferences converge both faster than Merid-

ian preferences, and the global preferences scenarios are last.

0 50 100 150 200 250 300
0

2

4

6

8

10

12

14

16

18

Number of peers

C
on

ve
rg

en
ce

 ti
m

e

m=G
m=M
m=RD
m=RS

(a) Round-robin sequence

0 50 100 150 200 250 300
0

2

4

6

8

10

12

14

16

18

Number of peers

C
on

ve
rg

en
ce

 ti
m

e

m=G
m=M
m=RD
m=RS

(b) Poisson sequence

Fig. 6 Convergence time as a function of the number of nodes n (with fixed degree d)

Quotas

Lastly, we study the effect of quotas by considering different values of b for systems
with n = 100 and complete acceptance graph. Results are shown in Fig. 7 (each
point represents the average over 100 samples). Like for the previous simulations,
the behavior depends on the preferences used:

• Node-based (m = G): the convergence time increases with b; most of the varia-
tions happen for small values of b; poisson sequences are slightly faster;

• other preferences: the growth is linear for random acyclic and geometric prefer-
ences, and almost linear for Meridian latencies, with a higher slope at the start;
round-robin sequences are slightly faster;

• random acyclic and geometric preferences are indistinguishable for small values
of b, but geometric becomes closer to Meridian as b increases.

Interpretation

The three experiments above give some hints about the design of systems based on
measures like bandwidth, distances or latencies. The main interest of these simula-
tions is that the bounds proved in Section3.2 for b = 1 are also validated for b > 1.

Acyclic Preference-Based Systems 1183

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

Quota b

C
on

ve
rg

en
ce

 ti
m

e

m=G
m=M
m=RD
m=RS

(a) Round-robin sequence

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

Quota b

C
on

ve
rg

en
ce

 ti
m

e

m=G
m=M
m=RD
m=RS

(b) Poisson sequence

Fig. 7 Convergence time as a function of the quota b

We should retain as a rule of thumb that for node-based systems, the conver-
gence time grows linearly with the average degree of the acceptance graph,
so d may be the main parameter to consider. The quota b is less important,
especially past the first values.

On the opposite, in systems based on more symmetric measures (such
systems can be classified by analyzing the good nodes distribution), the
convergence time is roughly proportional to the quota, so b should be
the main parameter to consider. The logarithmic influence of d is less
important.

Note that the simulations show that for some specific parameters, a poisson se-
quence can be faster than a round-robin sequence, despite the endgame advantage
for the round-robin sequences. This is caused by a so-called node-saturation effect,
which happens for node-based preferences when d is close to n and b greater than
three. More details about this can be found in [38].

3.3.2 Random and Hybrid Initiatives

Although most of this section is devoted to the best mate initiative, we would like
to examine the other initiatives before ending it. Random-mate initiatives need less
overhead than best-mate initiatives, because the nodes do not need to keep track
of the rankings and mates of their neighbors. The counterpart is that random ini-
tiatives are less effective with respect to the convergence time: a random-mate ini-
tiative on a hot node may fail to stabilize an edge, unlike a best-mate initiative.
However, the time for complete convergence is not the only measure that mat-
ters. The time needed for reaching “good enough” configurations is important too.
Figure 8 monitors the evolution of a satisfaction measure (cf [38] for a detailed

1184 Fabien Mathieu

definition of the measure) for different preferences and initiatives. For Meridian
preferences (geometric or random acyclic preferences yield similar results), the
best-mate initiative clearly outperforms the random-mate initiative with respect to
the average satisfaction (Fig. 8a). On the other hand, for node-based preferences
(Fig. 8b), the random-mate initiative only takes a few time units to produce a high
satisfaction, whereas the best-mate initiative needs more than 50 t.u. to reach the
same levels.

0 50 100 150
0

0.2

0.4

0.6

0.8

1

Time

A
ve

ra
ge

 S
at

is
fa

ct
io

n

i=B
i=H
i=R

(a) Meridian preferences

0 50 100 150
0

0.2

0.4

0.6

0.8

1

Time

A
ve

ra
ge

 S
at

is
fa

ct
io

n
i=B
i=H
i=R

(b) Node-based preferences

Fig. 8 Evolution of satisfaction (n = 200, b = 3, complete acceptance graph and round-robin
sequence)

In order to understand this phenomenon, we need a detailed understanding
of the convergence process for node-based preferences. Figure 9 shows snap-
shots of a converging node-based preference system with different initiatives. The
y-coordinate indicates the satisfaction of the nodes, which are sorted by increasing
value. Figure 9d shows the stable configuration, which should serve as reference.
With a best-mate initiative (Fig. 9a), the convergence is abrupt and goes from the
best nodes (right) to the worst (left); good nodes stabilize quickly all their connec-
tions; bad nodes are mostly single, or have one non-stable connection. The reason
is that bad nodes continuously try to connect to the best not stabilized nodes. Those
nodes stabilize quickly (they are hot), breaking the bad-nodes connections in the
process. Therefore bad nodes cannot keep their mates until full convergence. In
contrast, the random-mate initiative induces a sort of uniform convergence for bad
and good nodes alike (Fig. 9b): as bad nodes are not continuously trying to connect
to good nodes, their connections break less often.

Hybrid initiatives can be used to merge the advantages of best and random ini-
tiatives. For instance, we proposed in [38] that a node performs a random initiative
while it has not fulfilled its quota, and switches to best-mate when it has established
enough collaborations. Figure 9 gives an idea of the resulting convergence process:
good nodes still converge quickly, but bad nodes keep a minimal satisfaction be-
cause of the random part of the hybrid initiative. Going back to Fig. 8, we see that
the performance of hybrid initiative is good for all preferences, with respect to both
convergence and transitory satisfaction, so it could be a good solution for systems
where the exact nature of the marks is unknown or versatile.

Acyclic Preference-Based Systems 1185

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Value

S
at

is
fa

ct
io

n

(a) Best-mate

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Value

S
at

is
fa

ct
io

n

(b) Random-mate

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Value

S
at

is
fa

ct
io

n

(c) Hybrid

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Value

S
at

is
fa

ct
io

n

(d) Stable configuration

Fig. 9 a–c: Satisfaction of nodes 100 t.u. after the empty configuration C/0. d: Stable configura-
tion. Parameters are: n = 300, complete acceptance graph, b = 20, global preferences, round-robin
sequence

4 Stable Configuration Description

Now we want to answer the second question of interest for acyclic preference-based
systems: assuming that the self-stabilization ensures that the configuration of a sys-
tem is stable, or almost stable, what are the properties of the stable configuration?

For b = 1, we propose a generic mean-field approach. For node-based prefer-
ences, we show the existence of a fluid limit for which we give an explicit solution:
the stable mate of a peer follows an exponentially decreasing distribution centered
around that peer (stratification effect [18]). For random acyclic and geometric pref-
erences, the fluid limit indicates a power-law distribution. The validity of the fluid
limit can be validated by comparing to an exact solution for node-based preferences,
and by simulations otherwise.

Lastly, we extend the results to multiple matchings. Although the corresponding
fluid limits have no explicit solution, the same asymptotical behavior than for b = 1
is observed (exponential for peer-based preferences, power-law for other classes).
As an interesting side-effect, the stable configuration for distance-based classes with
enough quotas is a small world.

1186 Fabien Mathieu

4.1 Specific Notation

Because we want to focus on a specific configuration (the stable one), we need ad-
ditional notation to express precisely how mated peers are ranked. If j is acceptable
for i, ri(j) denotes the rank of j in i’s list (1 being the best). ri is called the ac-
ceptable ranking of i. If i has more than k acceptable neighbors, r−1

i (k) is the kth

node in i’s acceptable ranking. Similarly, for j �= i, Ri(j) denotes the rank of j in the
complete graph (the acceptability condition is omitted.2) Ri is called the complete
ranking of i. For K < n, R−1

i (K) is the Kth node in i’s complete ranking.
All stable mating probabilities that are discussed in this section are designed by

D. Subscripts and arguments are used to precise the meaning of D whenever needed.
For instance: DRi(K) denotes the probability that i has a stable mate with complete
rank K; Dn,d(i, j) is the probability that i↔ j, knowing there is n nodes and that the
expected degree of the acceptance graph is d; for c≤ b(i,), Dri,c(k) is the probability
that the cth stable mate of i has relative rank k. . .

The complementary cumulative distribution function (CCDF) of D is denoted S,
and the scaled version of D and S are denoted D and S .

4.2 Acyclic Formulas

We first consider the case b = 1 (simple matching). The results will be extended
to multiple matchings in Section 4.5. We give a generic formula that describes the
complete rank of the mate C(i) of a peer i in a stable configuration C.

4.2.1 Generic Formula

Let DRi(K) be the probability that Ri(C(i)) = K (the probability that the mate of i,
if any, has rank K). The CCDF of D is SRi(K) := 1−∑K−1

L=1 , which is the probability
that i’s mate has a rank greater than K (Ri(C(i))≥K) or has no mate (short notation:
Ri(C(i)) ≮ K). Following the approach proposed in [18], we first give a generic exact
formula that describes DRi , then we propose a simplified mean-field approximation.

For solving DRi(K), one can observe that i is mated with its Kth peer j = R−1
i (K)

iff:

• {i, j} is an edge of the acceptance graph; this happens with probability p as G is
supposed to be a G (n, p) graph.

• i is not mated with a node better than j (Ri(C(i)) ≮ K);
• j is not mated with a node better than i (R j(C(j)) ≮ R j(i)).

2 We assume for simplicity that m is complete and not limited to the edges of G. For all considered
preferences but random acyclic, the completion is straightforward. For random acyclic preferences,
we assume that dummy random values are assigned to non-acceptable edges.

Acyclic Preference-Based Systems 1187

This leads to the following exact formula:

DRi(K) = pP(Ri(C(i)) ≮ K)×
×P(R j(C(j)) ≮ R j(i)|Ri(C(i)) ≮ K)

= pSRi(K)P(R j(C(j)) ≮ R j(i)|Ri(C(i)) ≮ K)
(1)

4.2.2 Mean-Field Approximation

Solving (1) is difficult to handle, mainly because of possible correlations between
R j(C(j)) ≮ R j(i) and Ri(C(i)) ≮ K. The solution is to adopt a mean field assump-
tion:

Assumption 1 The events node i is not with a node better than j and node j is not
with a node better than i are independent.

This assumption has been proposed in [18] to solve (1) in the case of node-
based preferences. It is reasonable when n is large and p is small. Then (1) can be
approximated by

DRi(K) = pSRi(K)SR j(R j(i)). (2)

We propose now solve Equation 2 for specific preferences.

4.3 Node-Based Preferences

We assume here that the preferences comes from marks on nodes. This is equivalent
to assume a total order among the nodes. Therefore we do not need to explicit the
mark matrix m, and we can use an ordered node labeling instead. We arbitrarily
choose 1, . . . ,n as labels, 1 been the best (i.e., 1 is ranked first for all nodes that
accept 1, and so on. . .).

Because the nodes’ label express their complete ranks, we can directly consider
D(i, j), the probability that node i is mated with node j. Node j has rank j for i if
j < i, and j−1 if j > i, because a rank does not rank itself. This gives the relation
between D and DR:

D(i, j) =

⎧
⎨
⎩

DRi(j) if j < i,
0 if j = i (mating is not reflexive),
DRi(j−1) if j > i.

(3)

Using the CCDF S(i, j) := 1−∑ j−1
k=1 D(i,k), we get the node-based version of

Equation (2):

D(i, j) =
{

0 if i = j,
pS(i, j)S(j, i) otherwise.

(4)

1188 Fabien Mathieu

This equation was originally proposed in [18], where it was also shown that it gives a
very good approximation of the empirical distribution. It can be numerically solved
by using a double iteration.

4.3.1 Fluid Limit

For node-based preferences, we propose to prove that, under a constant degree scal-
ing, D admits a fluid limit. This limit gives a complete description of D that can be
applied to all values of n and p, while Equation (4) needs to be solved for each set
of parameters.

4.3.2 Constant Degree Scaling

In order to compare the distributions for arbitrary values of n, we need a scaled
version of D, where a peer i is represented by a scaled ranking 0≤ α < 1. In details,
we associate to each i the number α(i) = i−1

n , and to each real number α the node
i(α) =)nα*+1. The scaled version of D, denoted D , is then defined by

Dn(α,β) = nD()nα*+1,)nβ*+1).

Dn is a piecewise constant function. Its set of function values is the set of the
(nD(i, j)) values. The factor n in its definition allows to express D(i, j) as an integral
of D :

D(i, j) =
∫ j

n

j−1
n

Dn(
i−1

n
,x)dx =

∫ i
n

i−1
n

Dn(x,
j−1

n
)dx

The scaling of the CCDF is defined by

Sn(α,β) = 1−
∫ β

0
Dn(α,x)dx, (5)

and the relation between S and S is

S(i, j) = S (
i−1

n
,

j−1
n

). (6)

4.3.3 Convergence Theorem

We now want to show the existence of a continuous limit for D . The problem is the
existence of an intrinsic discontinuity for α ≈ β , because D(i, i) = 0. However, this
discontinuity is just a reminder of the fact that a node cannot mate with itself, so we
propose to make D more “continuous” by introducing

Acyclic Preference-Based Systems 1189

D̃(α,β) =
{

D(α,β) if)nα* �=)nβ*,
np(S()nα*+1,)nα*+1))2 otherwise.

The fluid limit of D̃ is then given by the following theorem:

Theorem 9. Let d > 0 be a constant. If n → ∞ with p = d
n , the function D̃n,d

uniformly converge towards

D∞(α,β) =
ded(|β−α|)

(1− e−d min(α,β) + ed|β−α|)2
. (7)

This result indicates that asymptotically, the average degree in the acceptance
graph completely defines the mating distribution. The consequence is that we can
explicitly describe the so-called stratification effect [18]: the mating distribution
is exponentially decreasing with |β −α|, with intensity d. In other words, a peer
with scaled rank α tends to mate with a mate of same scaled rank, with a standard
deviation of the same order than 1

d .
Sketch of proof: The complete proof of Theorem 9 is available in [39]. It uses four
distinct steps:

• prove that the D̃N functions are uniformly Cauchy on [0,1]2;
• use the Cauchy convergence to show that SN and D̃N have limits S∞ and D∞;
• give a PDE verified by S∞;
• solve the PDE, and use the solution to get D∞.

�
Note that the existence of a fluid limit was proposed as a conjecture in [18], and

proved for α = 0 (but the expression of the fluid limit in the general case was not
provided).

Theorem 9 gives two immediate corollaries:

• using the CCDF of D∞, the probability that a node of scaled rank α has no mate
is 1

1+e−dα (e−d−1) ;

• for i �= j (discrete case), a good approximation for D(i, j) is

D(i, j)≈ pep(| j−i|)

(1− e−pmin(i, j) + ep| j−i|)2
. (8)

4.3.4 Validation

We compared the fluid limit approximation (8) to the mean-field equation (4), which
is known to be accurate [18].

1190 Fabien Mathieu

Representative results are shown in Fig. 10. n was set to 50 or 2000, and d to 5
or 30. Because D is 2-dimensional, we arbitrarily set the scaled rank α to 0.1 or 0.9
(but the convergence validation holds for any α).

Fig. 10 Validation of the fluid limit for node-based preferences

We observe a gap for j =)nα*+ 1, because the mean field formula sets D to 0
whereas the fluid limit uses a continuous extension.

Besides this gap, n = 50 (Fig. 10a, b) shows some difference between the mean
field and the fluid limit. The error is especially noticeable for d = 30 Fig. (10b).
However, for n = 2000 (Fig. 10c, d), there is practically no error.

These results are consistent with the complete proof of Theorem 9 [39], which
shows that the convergence is O(d2

n e8d).

Remark 5. For the record, if b = 1, there exists an exact recursive formula for the
node-based stable configuration, which gives the same fluid limit than the mean
field approach. A complete description of the formula, including its construction,
its PDE counterpart and resolution, can be found in [39]. However, the issue with
that exact formula is that it cannot be generalized for other preferences or for b > 1.
This is why we prefer not to present that formula here and focus on the mean field
formulas.

Acyclic Preference-Based Systems 1191

4.4 Acyclic and Distance-Based Preferences

We now consider geometric and random acyclic preferences. Following the ap-
proach used for node-based preferences, we first focus on the complete rank dis-
tribution. Under the mean field assumption, we propose a recursive formula for D,
then we solve the corresponding fluid limit. The results are extended to the distance
and acceptable ranking distributions.

4.4.1 Complete Rank Distribution

Assumption 1 is not enough for solving (2) in the case of geometric or random
acyclic preferences. Therefore, we propose this additional assumption:

Assumption 2 For geometric and random acyclic preferences, the following ap-
proximations hold:

• DRi(K) is independent of i (and therefore denoted DR(K));
• the complete ranking is symmetric: Ri(j) = R j(i).

The first approximation just states that in average, all nodes have the same mate
distribution, while the second one tells that Ri(j) is a good approximation of R j(i).
These approximations were motivated by the uniform distributions used for shaping
the preferences. In particular, they do not apply for node-based preferences, where
the mate distribution is strongly affected by a node’s mark. Under these assumptions,
we get

DR(K) = pS2
R(K), with SR(K) = 1−

K−1

∑
L=1

DR(L). (9)

This equation gives an immediate recursion for SR:

SR(K) =
{

1 if K = 1,
SR(K−1)− pS2

R(K−1) otherwise.
(10)

DR is then directly given by DR(K) = SR(K)−SR(K +1).

Fluid limit

We now give the fluid limit of DR. The scaled version of DR is defined like for
node-based preferences, except that there now only one parameter. For 0 ≤ α < 1,
we define DR(α) := (n− 1)DR()(n− 1)α**+ 1). The scaling factor is now n− 1
because it is the upper bound for K (while n was the upper bound for i, j in Section
4.3). DR can be expressed as an integral of DR:

DR(K) =
∫ K

n−1

K−1
n−1

DR(x)dx.

1192 Fabien Mathieu

The scaled CCDF, SR, is then naturally defined as:

SR(α) = 1−
∫ α

0
DR(x)dx.

Theorem 10. We assume that d = p(n− 1) is a positive constant. As n → ∞, SR

uniformly converges towards

S∞(α) =
1

dα +1
. (11)

In particular, the probability that a node has no mate in the stable configuration
is SR(1) = 1

d+1 , and a good approximation for SR(K) is

SR(K) =
1

p(K−1)+1
. (12)

Sketch of proof: The proof is a simpler version of the proof of Theorem 9, which
can be found in [39]. First we prove that the DR functions are uniformly Cauchy,
which is simpler here because there is only one variable and no need for a continu-
ous extension. This proves the uniform convergence towards S∞. Then we deduce
from (10) a differential equation verified by S∞:

−Ṡ∞(α) = dS 2
R (α), (13)

with the boundary condition SR(0) = 1. The resolution of (13) gives (11), which
completes the proof. �

Validation

In order to validate the mean field formula (9), we considered random acyclic in-
stances, and geometric preferences in a 1-dimensional torus and in a 6-dimensional
torus. Figure 11 shows the accuracy of the formula for representative parameters.
n was set to 50 or 2000. We used 3 values of p: 1, 1

10 and 1
100 . For each set of

parameters, the empirical distribution was calculated over 100 instances.
For p = 1 (Fig. 11a, b), the mean-field assumptions hardly hold. As a conse-

quence, the curves depend of the type of preferences, and the fluid limit is not
accurate. This is especially visible if K is close to the boundaries (that is 1 or n).
In particular, the non-mate probability is clearly over-estimated. However, the fluid
limit manages to give the O(1

K) behavior that is common to all considered pref-
erences. From that point of view, the fluid limit performs better than the recursive
Equation (10), which gives SR(K) = δ 1

K for p = 1.
For p = 1

10 (Fig. 11c, d), the curves are nearly indistinguishable. We verify that
all types of preferences (acyclic or geometric) tend to have the same behavior and
that Theorem 10 gives precise approximations.

Acyclic Preference-Based Systems 1193

Fig. 11 Empirical validation of the fluid limit for random acyclic and geometric preferences

For p = 1
100 (Fig. 11e, f), the curves are indistinguishable.

We conclude that fluid-limit based on the mean-field formula is very effective for
computing the complete ranking distribution, even if n is not very large and p is not
very small.

4.4.2 Distance Distribution

For geometric preferences, the actual distance between a node and its mate may be a
more valuable performance indicator than the ranking. We call SX (x) the probability
that the distance between a node i and its mate C(i) is not less than x (in other words,
the distance is greater than x or i is unmated). Under the fluid limit, we get a good
estimate of SX :

1194 Fabien Mathieu

SX (x) =
1

dBt(x)+1
, (14)

where Bt is the size of a ball of radius x in the t-torus.

Proof. In the fluid limit, a ball of radius x contains nBt(x) nodes, because it occupies
a ratio Bt(x) of the torus. Therefore the farest node in a x-ball centered at a node i
should have a complete rank nBt(x) for i, while being at a distance x from i. We
deduce that SX (x) = SR(nBt(x)). Equation (12) concludes.

The value of Bt(x) depends on the dimension t and on the norm used. If we con-
sider the maximum norm, then Bt(x) = min((2x)t ,1). For other norms, the formula
may be more complicated because the ball may partially overlap itself in the torus.
Should we have chosen R

t (with uniform point distribution) instead of the t-torus,
Bt(x) would just have been the size of a ball of radius x.

Figure 12 shows SX for t = 1 and t = 3, with the taxicab norm. With this norm,
we have B1(x) = min(2x,1) and

B3(x) =

⎧
⎪⎪⎨
⎪⎪⎩

4
3 x3 if 0≤ x≤ 1

2 ,
4
3 x3−4(x− 1

2)3) if 1
2 ≤ x≤ 1,

1− 4
3 (3

2 − x)3 if 1≤ x≤ 3
2 ,

1 if x≥ 3
2 .

We used n = 2000 and p = 1
100 , and the fluid limit and empirical distribution of SX

were indistinguishable.

Fig. 12 Distance distribution
(n = 2000, p = 1

100)

4.4.3 Acceptable Rank Distribution

Now we want to investigate the probability that the mate of a node has an acceptable
rank k. We call Dr(k) this probability. Like for the other distributions, we introduce
the CCDF Sr(k) := 1−∑k−1

l=1 Dr(k).
Following the complete ranking method, we consider the conditions for a node i

to be mated with its kth best neighbor j = r−1
i (k):

Acyclic Preference-Based Systems 1195

• i must have k neighbors or more,
• it must not be mated with someone better than j,
• j must not be mated with someone better than i.

With the acceptance ranking, there is intrinsic correlations between these events
that complicates things. Despite of that, assuming that these events are independent
allows us to give a first, non-accurate, recursive formula:

Dr(k) = Sr(k)
1− I1−p(n− k +1,k)

k +1
, (15)

where Ix is the regularized incomplete beta function.

Proof. i has k neighbors or more with probability 1− I1−p(n− k + 1,k). The prob-
ability that i is not with better than j is Sr(k). For the reciprocal, we can use K = k

p
as a (very rough) approximation of the complete rank; then Equation (12) gives the
probability 1

k+1 . Formula (15) follows.

The results are shown in Fig. 13. One can observe that Equation (15) is not ac-
curate for Dr(1), which provokes a gap between the empirical distribution and the
formula.

Fig. 13 Acceptable ranking
CCDF (n = 2000,p = 1

100)

In an attempt to adjust the formula, we propose a more accurate estimation of
Dr(1): under the normalized fluid limit, the scaled rank of the first neighbor j of
a given peer i follows the distribution de−dα . j and i are mate if j is mated with
someone with a scaled rank greater or equal to α , which happens with probability

1
dα+1 . Thus we have

Dr(1)=
∫ ∞

0
de−dα

dα+1 dα
=
∫ ∞

1
e−t+1

t dt
=eE1(1)≈ 0.596

(16)

The accuracy of Dr(1) = eE1(1) (E1 denotes the exponential integral) is verified
in Fig. 14. If we use this value for adjusting the fluid limit, we get a better estima-
tion of Sr for small values of k (cf Fig. 13). However, this adjustment introduces a

1196 Fabien Mathieu

Fig. 14 Dr(1) as a function
of p (n = 2000)

gap for larger values of k. In a further version, we will aim at unifying these two
estimates, which will require a better understanding of the correlations that occur
when considering the acceptable rank.

4.5 b-Matching Generalization

We now extend our results to the case of multiple matchings. For simplicity, we still
assume that the quota vector b is a scalar, i.e., that all nodes share the same number
of authorized collaborations. For distance and acyclic preferences, we focus on the
complete rank, although distance and acceptable ranking could be derived using the
same techniques than for b = 1.

4.5.1 Mean Field Formulas

A peer can now have up to b mates. For 1 ≤ c ≤ b, Dc denotes the distribution of
the complete ranking of the cth best mate, and Sc denotes the corresponding CCDF.
Like we did for b = 1, we can give the conditions for a node j = R−1

i (K) to be the
cth mate of a node i:

• {i, j} is an acceptable edge,
• the (c−1)th mate of i (if c > 1) is better than j, but the cth (if any) is not,
• the bth mate of j (if any) is not better than i.

By extending Assumption 1, we obtain a generic mean field formula for multiple
matchings:

DRi,c(K) =
{

pSRi,1(K)SR j ,b(R j(i)) if c = 1, otherwise
p(SRi,c(K)−SRi,c−1(K))SR j ,b(R j(i)).

(17)

Like for the simple matching case, this formula can be adapted to specific pref-
erences.

Acyclic Preference-Based Systems 1197

We first consider node-based preferences. Dc(i, j) being the probability that the
cth mate of i is j, we have the following system, which can be solved by a double
iteration on i and j (cf [18])

Dc(i, j) =

⎧
⎨
⎩

0 if i = j,
pS1(i, j)Sb(j, i) if i �= j, c = 1,
p(Sc(i, j)−Sc−1(i, j))Sb(j, i) if i �= j, c > 1.

(18)

Then, for acyclic and distance-based preferences, we also extend Assumption 2
(homogeneity of the distributions and symmetry of the complete ranking). This
gives the following system:

DR,c(K) =
{

pSR,1(K)SR,b(K) if c = 1,
p(SR,c(K)−SR,c−1(K))SR,b(K) if c > 1.

(19)

Using SR,c(1) = 1 and DRc(K) = SR,c(K)− SR,c(K + 1), Equation (19) immedi-
ately gives an iterative computation of SR,c .

Figure 15 shows Sc(i, j) (node-based) and SR,c (acyclic/geometric) as obtained
by (18) and (19). The parameters are b ∈ {2,3,4}, n = 2000, p = 1

100 , and i = 1001
(for Sc(i, j)). We verified for each set of parameters that the curves coincide with
the empirical distribution. S and SR (CCDF for b = 1) are also plotted for serving as
landmarks. We see that the curves have a behavior that is similar than for the simple
matching case: for node-based preferences, it seems that the distributions Dc(i, .) are
still exponentially decreasing, even if the multiplicity of matchings creates offsets
between the distribution peaks and i. For acyclic and geometric preferences, we still
observe a kind of power law behavior.

4.5.2 Fluid Limits

Fluid limits also exist for b > 1. We will not present the proofs here, because they are
essentially the same than for the simple matching fluid limits, only more complex
to write because of the multiple distribution involved. Therefore we just give the
equations verified by those limits.

For node-based preferences, the scaled limit S of the CCDF verifies:

∂ySc(α,β) =
{−dS1(α,β)Sb(β ,α) for c = 1, otherwise
−d (Sc(α,β)−Sc−1(α,β))Sb(β ,α), (20)

with border conditions Sc(α,0) = 1.
Similarly, for acyclic and distance-based preferences, the scaled limit SR of the

CCDF verifies

ṠR,c =
{−dSR,1SR,b if c = 1,
−d(SR,c−SR,c−1)SR,b if c > 1,

(21)

with the boundary condition SR,c(0) = 1.

1198 Fabien Mathieu

Fig. 15 Complete rank CCDFs for b > 1. Node-based (resp. acyclic/geometric) distributions are
on the left (resp. right) side. n = 2000, p = 1

100 , and i = 1001 (for Sc(i, j)

There is no simple explicit solution for Equations (20) and (21). However, (18)
and (19) can still be used as a difference equation to approximate a numerical solu-
tion. The reason for which we give these limits is that we think that they can give us
valuable information about the asymptotical behavior of the distribution (exponen-
tially decreasing or power law), even if this work is still to be done.

4.6 Some Basic Applications

We now propose to give two simple examples of the interest of having a good de-
scription of the stable configuration: the stratification effect for node-based prefer-
ences, and the small-world effect for geometric preferences.

Acyclic Preference-Based Systems 1199

4.6.1 Stratification Trade-off

As we have seen, for node-based preferences, the mates of a given peer i have, in
average, the same rank than i. This is the stratification effect ([18]), which guaran-
tees some fairness in the stable configuration: the expected gain of a node tends to
be the value offered by this node, measured in terms of ranking. However, we also
observed that the exponential decreases of the Dc(i, .) functions provokes a standard
deviation of the same order that 1

d , where d is the average degree in the acceptance
graph. This gives the following stratification trade-off:

• if d is too small, the standard deviation is high. In particular, if the mark ma-
trix is non uniformly distributed, there can be a big difference between the
expected gain and gift, measured with the marks. This issue has been high-
lighted in [18] for explaining a possible workaround of BitTorrent’s Tit-for-Tat
policy;

• on the other hand, a high d will enforce the fairness. However, increasing the
size of the acceptance graph degree has a cost for the nodes: convergence time,
memory usage, overlay management,. . . Also, the absence of long-range mates
makes the diameter of the stable configuration high, which can be problematic if
messages are to be spread using stable edges.

Note that there are similar trade-offs between cost and quality for b, which is the
maximal degree in the stable configuration.

This suggests that most node-based preference systems (this includes the sys-
tems based on the sharing of an access bandwidth, a storage or CPU capacity,
an expected uptime,. . .) should admit an optimal pair (d,b) with respect to
the stable collaborations properties, whose values depend on the weight put
on performance measures like diameter, fairness homogeneity, convergence
time or overhead cost.

4.6.2 Small-World Effect and Preference Dimension

A small world is a sparse graph with a low average shortest path length (ASPL) and
a high clustering coefficient. In details:

• sparse graph means that the average degree is O(log(n)) or even O(1),
• low ASPL means O(log(n)),
• high clustering coefficient means that two nodes sharing an edge are likely to

have a common neighbor. The clustering coefficient is a probability, that must be
compared to a reference value, for instance the clustering coefficient of a random
graph with same number of nodes and edges.

1200 Fabien Mathieu

In [30], Kleinberg proved that a n-dimensional grid can be turned into a small world
by adding long-range edges that follow a Ω(1

xn) distribution.
For multiple matchings, the stable configuration in geometric preferences is

likely to have a high clustering coefficient, because most of the stable edges link
close nodes. Moreover, the power-law rank distribution tells that long-range edges
exist. So the stable configuration is likely to be eligible as a small-world.

Type of preferences ASPL Clustering Coefficient

1-torus 7.4 0.055

2-torus 6.7 0.043

Meridian 6.1 0.031

3-torus 5.9 0.033

4-torus 5.1 0.027

Random Acyclic 5 0.0043

Table 1 ASPL and clustering (n = 2000, p = 1
10 , b = 10)

In Table 1, we give the ASPL and clustering coefficient for some preferences,
using the parameters N = 2000,p = 1

10 ,b = 10. The reference clustering is here
b

n−1 ≈ 0.005. We verify that for the t-tori, the stable configurations are small-
worlds. This seems to be a specific property of geometric preferences: like previ-
ously observed in [16], the stable configurations of random acyclic preferences are
not small-worlds, because of their clustering coefficient (they behave like an incom-
plete b-regular graph). Similarly, node-based preferences have a high clustering but
the corresponding ASPL is too high (Θ(n)).

The small-world property of a distance-based stable configuration only re-
sults from how the nodes rank each other: the actual distances are only used
for sorting the nodes, but the values are never involved in the configuration
construction. Nevertheless, they reveal valuable insight about the topology of
the underlying set of distances.

For instance, we calculated the ASPL and clustering obtained by using the Merid-
ian Project’s real-world latencies, which are known to produce small-worlds config-
uration [16]. One can observe that the results are very close to the one obtained with
3-torus, suggesting that somehow, 3 may be seen as sort of dimension for the latency
space. Considering the recent eager for estimating the Internet dimension (see for
instance [2]), this unexpected result is appealing.

Acyclic Preference-Based Systems 1201

5 Conclusion

We gave a large overview of the acyclic preference-based systems, with an empha-
sis on relevant preferences such as node-based or geometric preferences. Regarding
the self-stabilization property of such systems, we gave techniques for estimating
the convergence time, but we also proposed the use of simulation in order to clearly
separate the importance of each parameter. Then we gave a statistical description of
the stable configurations obtained from node-based, geometric and random acyclic
preferences. Starting from a generic formula for the rank distribution, we introduced
mean-field and fluid limit techniques in order to give explicit formulas. We proved
and validated by means of simulations that the distributions are exponentially de-
creasing for node-based preferences (stratification effect), and power-law otherwise.
As an interesting consequence, for distance-based preferences, the stable configura-
tions behave similarly to Kleinberg’s grids, and are small-world graphs.

All these results should provide a general guideline for designers of new systems
that use preference-based interactions. Of course, not all questions about the acyclic
preference-based systems (or more generally preference-based systems) are covered
in this chapter. However, this is a handbook, and we hope that the methods deployed
here can give leads to anyone wishing to further pursue this area. For instance, how
to use hot and warm nodes for evaluating the convergence speed; how to employ
mean field and fluid limit approaches to describe the stable configuration; how to
balance between theory and simulation in order to have both strong theoretical and
practical results.

References

1. Abraham, D.J., Levavi, A., Manlove, D., O’Malley, G.: The stable roommates problem with
globally-ranked pairs. In: WINE, pp. 431–444 (2007)

2. Abrahao, B., Kleinberg, R.: On the internet delay space dimensionality. In: Proceedings of the
2008 Internet Measurement (2008)

3. Babelgum: Babelgum. URL http://www.babelgum.com/
4. Bonald, T., Massoulié, L., Mathieu, F., Perino, D., Twigg, A.: Epidemic live streaming: opti-

mal performance trade-offs. In: Proceedings of the International Conference on Measurement
and Modeling of Computer Systems (SIGMETRICS) (2008)

5. Castro, M., Druschel, P., Kermarrec, A.M., Nandi, A., Rowstron, A., Singh, A.: Splitstream:
high-bandwidth multicast in cooperative environments. In: SOSP ’03: Proceedings of the
nineteenth ACM symposium on Operating systems principles, pp. 298–313. ACM, New York,
NY, USA (2003). DOI http://doi.acm.org/10.1145/945445.945474

6. Cechlárová, K., Fleiner, T.: On a generalization of the stable roommates problem. ACM
Transactions on Algorithms 1(1), 143–156 (2005)

7. Chowla, S.: The asymptotic behavior of solutions of difference equations. In: Proceedings
of the International Congress of Mathematicians, Vol. I, 377, American Mathmatical Society.
(1950)

8. Cohen, B.: Incentives build robustness in bittorrent. In: P2PECON (2003)
9. Diamantoudi, E., Miyagawa, E., Xue, L.: Random paths to stability in the roommate problem.

Games and Economic Behavior 48(1), 18–28 (2004)

1202 Fabien Mathieu

10. Http://www.edonkey2000.com/index.html
11. Http://www.emule-project.net/
12. Fleiner, T.: The stable b-matching polytope. Mathematical Social Science 46(2), 149–158

(2003)
13. Frey, D., Royan, J., Piegay, R., Kermarrec, A., Anceaume, E., Fessant, F.L.: Solipsis: A de-

centralized architecture for virtual environments. In: International Workshop on Massively
Multiuser Virtual Environments. IEEE (2008)

14. Gai, A., Viennot, L.: Incentive, resilience and load balancing in multicasting through clustered
de bruijn overlay network (prefixstream). In: Proceedings of the 14th IEEE International
Conference on Networks (ICON), vol. 2, pp. 1–6. IEEE Computer Society (2006)

15. Gai, A.T., Lebedev, D., Mathieu, F., de Montgolfier, F., Reynier, J., Viennot, L.: Acyclic pref-
erence systems in p2p networks. In: Proceedings of the 13th International Parallel Processing
Conference (Euro-Par), pp. 825–834 (2007)

16. Gai, A.T., Lebedev, D., Mathieu, F., de Montgolfier, F., Reynier, J., Viennot, L.: Acyclic pref-
erence systems in p2p networks. In: Euro-Par, pp. 825–834 (2007)

17. Gai, A.T., Mathieu, F., de Montgolfier, F., Reynier, J.: Stratification in p2p networks: Appli-
cation to bittorrent. In: Proceedings of the 27th IEEE International Conference on Distributed
Computing Systems (ICDCS), pp. 30–39 (2007)

18. Gai, A.T., Mathieu, F., de Montgolfier, F., Reynier, J.: Stratification in p2p networks: Applica-
tion to bittorrent. In: ICDCS, p. 30 (2007)

19. Gai, A.T., Viennot, L.: Broose: A practical distributed hashtable based on the de-bruijn
topology. In: P2P ’04: Proceedings of the Fourth International Conference on Peer-to-Peer
Computing, pp. 167–164. IEEE Computer Society, Washington, DC, USA (2004). DOI
http://dx.doi.org/10.1109/P2P.2004.10

20. Gale, D., Shapley, L.: College admissions and the stability of marriage. American Mathemat-
ical Monthly 69, 9–15 (1962)

21. Hei, X., Liang, C., Liang, J., Liu, Y., Ross, K.W.: Insights into pplive: A measurement study
of a large-scale p2p iptv system. In: In Proc. of IPTV Workshop, International World Wide
Web Conference (2006)

22. Irving, R.: An efficient algorithm for the stable roommates problem. Journal of Algorithms 6,
577–595 (1985)

23. Irving, R., Leather, P., Gusfield, D.: An efficient algorithm for the “optimal” stable marriage.
J. ACM 34(3), 532–543 (1987)

24. Irving, R.W., Manlove, D., Scott, S.: The hospitals/residents problem with ties. In: SWAT ’00:
Proceedings of the 7th Scandinavian Workshop on Algorithm Theory, pp. 259–271. Springer-
Verlag, London, UK (2000)

25. Irving, R.W., Manlove, D.F.: The stable roommates problem with ties. Journal Algorithms
43(1), 85–105 (2002). DOI http://dx.doi.org/10.1006/jagm.2002.1219

26. Iwama, K., Miyazaki, S., Manlove, D., Morita, Y.: Stable marriage with incomplete lists and
ties. In: ICALP, pp. 443–452 (1999)

27. Joost: Joost. URL http://www.joost.com/
28. Kawahara, Y., Aoyama, T., Morikawa, H.: A peer-to-peer message exchange scheme for large-

scale networked virtual environments. Telecommunication Systems 25(3) (2004)
29. Keller, J., Simon, G.: Solipsis: a massively multi-participant virtual world. In: Intern. Conf.

on Parallel and Distributed Techniques and Applications (2003)
30. Kleinberg, J.: The small-world phenomenon: an algorithm perspective. In: STOC ’00: Pro-

ceedings of the thirty-second annual ACM symposium on Theory of computing, pp. 163–170.
ACM, New York, NY, USA (2000). DOI http://doi.acm.org/10.1145/335305.335325

31. Kontiki: Kontiki. URL http://www.kontiki.com/
32. Le Fessant, F., Handurukande, S., Kermarrec, A.M., Massoulié, L.: Clustering in peer-to-peer

file sharing workloads. In: IPTPS (2004)
33. Lebedev, D., Mathieu, F., Viennot, L., Gai, A.T., Reynier, J., de Montgolfier, F.: On using

matching theory to understand p2p network design. In: Proceedings of the International Net-
work Optimization Conference, pp. 1–6 (2007)

Acyclic Preference-Based Systems 1203

34. Lin, Y.J., Guo, K., Paul, S.: Sync-ms: synchronized messaging service for real-time multi-
player distributed games. In: Proc. of the 10th IEEE International Conference on Network
Protocols (2002)

35. Manlove, D.: The structure of stable marriage with indifference. Discrete Applied Mathemat-
ics 122, 167–181 (2002)

36. Manlove, D.F., Irving, R.W., Iwama, K., Miyazaki, S., Morita, Y.: Hard variants of stable
marriage. Theoretical Computer Science 276(1-2), 261–279 (2002)

37. Mathieu, F.: Upper bounds for stabilization in acyclic preference-based systems. In: SSS,
pp. 372–382 (2007)

38. Mathieu, F.: Self-stabilization in preference-based systems. Peer-to-Peer Networking and Ap-
plications 1(2), 104–121 (2008)

39. Mathieu, F., Postelnicu, G., Reynier, J.: The stable configuration in acyclic preference-based
systems. Tech. Rep. RR-6628, INRIA (2008)

40. Maymounkov, P., Mazières, D.: Kademlia: A peer-to-peer information system based on the
xor metric. In: IPTPS, pp. 53–65 (2002)

41. Meridian Project: Http://www.cs.cornell.edu/People/egs/meridian/
42. Qiu, D., Srikant, R.: Modeling and performance analysis of bittorrent-like peer-to-peer net-

works. In: Proceedings of ACM SIGCOMM, pp. 367–378. ACM, New York, NY, USA (2004).
DOI http://doi.acm.org/10.1145/1015467.1015508

43. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Schenker, S.: A scalable content-
addressable network. In: SIGCOMM ’01: Proceedings of the 2001 conference on Applica-
tions, technologies, architectures, and protocols for computer communications, pp. 161–172.
ACM, New York, NY, USA (2001). DOI http://doi.acm.org/10.1145/383059.383072

44. Ronn, E.: On the complexity of stable matchings with and without ties. Ph.D. thesis, Yale
University (1986)

45. Roth, A.E.: The evolution of the labor market for medical interns and residents: A case study
in game theory. Journal of Political Economy 92(6), 991–1016 (1984)

46. Roth, A.E., Sonmez, T., Utku Unver, M.: Pairwise kidney exchange. Journal of Eco-
nomic Theory 125(2), 151–188 (2005). Available at http://ideas.repec.org/a/eee/jetheo/v125y
2005i2p151-188.html

47. Rowstron, A., Druschel, P.: Pastry: Scalable, decentralized object location and routing for
large-scale peer-to-peer systems. In: IFIP/ACM International Conference on Distributed Sys-
tems Platforms (Middleware), pp. 329–350 (2001)

48. SopCast: Sopcast. URL http://www.sopcast.com/
49. Sripanidkulchai, K., Maggs, B., Zhang, H.: Efficient content location using interest-based lo-

cality in peer-to-peer systems. In: INFOCOM (2003)
50. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A scalable peer-

to-peer lookup service for internet applications. In: SIGCOMM ’01: Proceedings of the 2001
conference on Applications, technologies, architectures, and protocols for computer commu-
nications, pp. 149–160. ACM, New York, NY, USA (2001). DOI http://doi.acm.org/10.1145/
383059.383071

51. Sung, Y.W., Bishop, M., Rao, S.: Enabling contribution awareness in an overlay broadcasting
system. SIGCOMM Computer Communication Review 36(4), 411–422 (2006). DOI http:
//doi.acm.org/10.1145/1151659.1159960

52. Tan, J.J.M.: A necessary and sufficient condition for the existence of a complete stable
matching. Journal of Algorithms 12(1), 154–178 (1991). DOI http://dx.doi.org/10.1016/
0196-6774(91)90028-W

53. TVants: Tvants. URL http://tvants.en.softonic.com/
54. UUsee: Uusee inc. URL http://www.uusee.com/
55. Zhang, X., Liu, J., Li, B., Yum, T.: Coolstreaming/donet : A data-driven overlay network for

peer-to-peer live media streaming. In: INFOCOM (2005)
56. Zhao, B.Y., Kubiatowicz, J., , Joseph, A.D.: Tapestry: An infrastructure for fault-tolerant wide-

area location and routing. Tech. Rep. UCB/CSD-01-1141, U. C. Berkeley (2001)

Part XI
Measurement and P2P Traffic

Characteristics

The Behavior of Free Riders in BitTorrent
Networks

Manaf Zghaibeh, Kostas G. Anagnostakis, and Fotios C. Harmantzis

Abstract In this chapter we report on the results of two large-scale measurement
studies on BitTorrent. We focus on identifying the strategic behavior of users in re-
sponse to the incentives that are embedded in the design of BitTorrent. Our results
regarding the first study that was performed in year 2005 illustrate a gap between
what system designers and researchers expect from users in reaction to the provided
incentives, and how users react to them. In particular, we divide users in BitTorrent
into four classes based on their interactions with the system. We also provide a mea-
surement of free riders’ volume in the BitTorrent environment.
On the other hand, the results of the second study that we conducted in year 2007
show that free riders’ population has significantly changed comparing to our first
measurement study. We categorize free riders based on the behavior they exhibit in
multiple-torrent system into three types: cheaters, strategic and lucky peers. Further-
more, we refute the findings of other studies that suggested that free riders belong
to a specific bandwidth capacity class. We also argue that the Tit-for-Tat mechanism
reacts successfully against inter-class bandwidth capacity strategic peers. Finally,
we present our vision to a modified approach of the optimistic unchoke policy in
BitTorrent.

Manaf Zghaibeh
Stevens Institute of Technology, Hoboken, NJ 07030, USA,
e-mail: manaf.Zghaibeh@stevens.edu

Kostas G. Anagnostakis
Institute for Infocomm Research, Heng Mui Keng Terrace 119613, Singapore,
e-mail: kostas@i2r.a-star.edu.sg

Fotios C. Harmantzis
Stevens Institute of Technology, Hoboken, NJ 07030, USA,
e-mail: fotios.harmantzis@stevens.edu

X. Shen et al. (eds.), Handbook of Peer-to-Peer Networking, 1207
DOI 10.1007/978-0-387-09751-0 43, © Springer Science+Business Media, LLC 2010

1208 Manaf Zghaibeh, Kostas G. Anagnostakis, and Fotios C. Harmantzis

1 Introduction

Many Peer-to-Peer (P2P) content distribution systems are susceptible to threats and
attacks. Some of these attacks are related to the persistent vulnerabilities in the de-
sign of those systems, the innovated methods the attackers use, or both. In some
cases, such threats and attacks may lead to performance limitations that could dev-
astate the P2P system, i.e., MojoNation [5]. BitTorrent [2], our topic in this chap-
ter, is also a subject to attacks that substantially affect its performance even that
they have not degraded the system as a whole yet. Accounting about 53% of all
P2P traffic in 2004 [3], BitTorrent emerged in the last few years as one of the
most important applications in the Internet. It attracted millions of users mainly
because of its relatively high download speeds compared to other P2P file sharing
applications.

The most significant threat that has been addressed in the BitTorrent environment
is the free riding threat. In P2P, a free rider is a user who obtains resources from
the network without contributing back to it, either selfishly or unintentionally. This
behavior leads to a tangible level of unfairness to the remaining participants who
contribute. Free riding has been the major threat that jeopardized the performance
of most of the P2P content distribution protocols. Significant amount of research
has been done on detecting, measuring, and proposing solutions to that problem.
However, some of those remedies were not able to overcome the inherited design
limitations of some of those systems.

In general, P2P content distribution mechanisms rely on the cooperation among
their participants in order to realize the benefits of their systems. However, although
cooperation is a virtue and highly appreciated in P2P networks, it might look as
naivety to some users, not necessary, or costly to others. System designers have
considered to build mechanisms that address the last two concerns: necessity and
cost. First, when designing a P2P mechanism, the proposed mechanism has to en-
sure that cooperation is necessary to advance the position of the user in the sharing
process. Second, the mechanism must take into account reducing the cost of sharing,
and increasing the cost of selfish behavior. Yet, with regard to the naivety concern,
spreading cooperation as a virtue in P2P system is not a norm that system designers
were able to handle, at least not now. In other words, there will always be selfish
and malicious users who will always rummage around for methods to circumvent
the system and spread their values, i.e., selfishness.

For BitTorrent, its specification unambiguously indicates that its mechanism re-
duces the cost of sharing by redistributing the load from one single node to multi-
ple nodes who participate in the sharing process [10]. The specification also sug-
gests that undertaking a cooperative behavior is necessary for peers to enhance their
positions, especially that the mechanism employs a reciprocal exchange process,
i.e., Tit-for-Tat [7]. Furthermore, the design of BitTorrent emphasizes that its in-
centive mechanism is robust against selfishness and malicious behavior [10]. How-
ever, recent studies have argued and suggested that even that BitTorrent is renowned
for having a reputation of fairness and robustness, its incentives are not sufficient
enough to deter users from thwarting the system [8, 13, 15, 16, 18].

The Behavior of Free Riders in BitTorrent Networks 1209

In this chapter, we analyze and investigate the behavior of users in BitTorrent.
The chapter is composed of the results of two large-scale measurement studies that
we performed on BitTorrent. The first part of the chapter includes the findings of the
first measurement study that was conducted in years 2005–2006 [22]. In that study,
we show how users in BitTorrent recognize the incentives provided in the system.
We also question whether those incentives are sufficient enough to drive users to-
wards the desired level of cooperation. Moreover, we classify the users of BitTorrent
into four clusters based on their contribution to the system: major contributors, users
with balanced download and upload behavior, users who downloaded at least twice
as they uploaded, and free riders.

In the second part of the chapter we present the findings of the second mea-
surement analysis study which we performed on BitTorrent in year 2007 [23]. In
this most recent study we revisit the free riding problem from another point of
view. We isolate and characterize free riders into three classes: lucky peers, strate-
gic peers, and cheaters. We try to determine whether free riders in BitTorrent be-
long to a specific bandwidth capacity category, since there has been some detailed
research suggesting that peers who exploit the system in BitTorrent are high band-
width capacity peers [13], while another study argued that they are low bandwidth
capacity peers [8].

Moreover, some researchers indicated incompetency in the role of Tit-for-Tat
when it performs between inter-class bandwidth capacity peers, i.e., between high
bandwidth capacity peers and low bandwidth capacity peers. Therefore, we question
this matter; we take further steps in analyzing the performance of BitTorrent in order
to determine whether the employed Tit-for-Tat is to blame for its shortcomings and
inefficiency, if exist. Finally, we present our modified approach to the optimistic
unchoke policy that is meant to reduce the effects of free riding.

2 BitTorrent Background

BitTorrent [2] is a content distribution system that lowers the cost of sharing by re-
distributing the load from one peer to multiple peers. This is achieved through many
steps in the sharing process. When a user wishes to share a content that he owns
using the BitTorrent system, he has first to create a meta-data file using a BitTor-
rent client. The process of creating the meta-data file (its size is usually less than
100 KBytes) logically divides the content into small equal size pieces (24 KBytes-4
MBytes), where each piece will be transferred as single chunk during the sharing
process. The meta-data file, which is called a torrent, includes several information
about the content to be shared such as the name of the content, its size, the hashes
of the pieces, and the address of the tracker. The tracker is a central node that is
responsible for helping peers find each other. It keeps a list that contains the ad-
dresses of all peers who participate in distributing the content and their positions in
the download and upload process. After creating the .torrent file, the user uploads it
to a public server (website) where it will be available to others.

1210 Manaf Zghaibeh, Kostas G. Anagnostakis, and Fotios C. Harmantzis

If a user wants to obtain the content, he first downloads the .torrent file form
the website. Then he initializes the download process using the BitTorrent client.
The client reads the information embedded in the meta-data file and contacts the
tracker notifying it with the name of the content. The tracker responds with a list
that contains a partial random set of the addresses of peers who are joined in the
swarm.1 It is the responsibility of the peer to contact the members of the list and
start downloading the pieces of the content. After downloading each piece, the peer
verifies its integrity by checking the hash information in the torrent file (SHA-1
stamps). Please note that the user who announced his content for sharing must keep
at least one client offering the complete content to be downloaded by the peers in
the swarm. However, this is only required until the user uploads all the pieces of the
content to the remote peers. Finally, BitTorrent defines two types of peers: Seeder
and Leecher peers. A seeder is a peer who owns a complete copy of the content and
shares it, while a leecher is a peer who does not own any piece or has partial copy
of the content, i.e., not all the pieces.

To facilitate the distribution process, BitTorrent implements a rate-based Tit-for-
Tat incentive mechanism to reciprocate services among peers. The Tit-for-Tat mech-
anism is known to be a highly effective strategy for the iterated prisoner dilemma
[7]. The two-player multi-round game starts when the first player cooperates at the
beginning of the game, then he responds based on the previous action of his op-
ponent. If the second player keeps cooperating, the first player will always coop-
erate. If the second player defects, the first player will retaliate. This strategy is
fully deployed in BitTorrent using the choke, unchoke and optimistic unchoke poli-
cies. Although a peer in BitTorrent might be connected to many other peers in the
swarm, he typically uploads to a small number of them, based on those policies. The
peer unchokes other peers, whom he had received data from recently, by uploading
to them. The unchoke process starts the reciprocal exchange of data between two
peers, which is mainly intended to restrain free riding behavior among peers. On the
other hand, when the peer does not receive an acceptable level of service from his
opponent, or when his opponent defects from the reciprocal exchange, the local peer
retaliates by choking him and refraining from uploading to him. Moreover, the peer
always optimistically unchokes one randomly selected peer at a time, regardless of
his cooperation level, in an attempt to provoke him into cooperation. This policy is
important in order to discover new peers with better rates comparing to what the
peer is being connected to, and replacing them with faster ones if necessary. Finally,
in the Tit-for-Tat, peers forgive quickly, i.e., there is no harboring in the game.

3 Previous Work

The incentive techniques of BitTorrent have been discussed in many publica-
tions. Feldman and Chuang [11] argue that the Tit-for-Tat mechanism employed in

1 A swarm is a group of peers who are joined in a single torrent.

The Behavior of Free Riders in BitTorrent Networks 1211

BitTorrent helped increase the cooperation level among peers. Similarly, Andrade
et al. [6] emphasize that the reciprocity algorithm in BitTorrent makes the system
appealing to be used and that the design of BitTorrent increases cooperation among
peers. The paper also suggests that in some cases and due to the large number of
seeders, BitTorrent fails in reducing free riding, since there is no specific mecha-
nism embarked to limit their gains. On the other hand, Jun and Ahamad [15] argue
that BitTorrent lacks fairness: It does not punish free riders effectively, neither it
does reward users who contribute properly.

The unchoke mechanism is also discussed in another bulk of the literature. Cohen
[10], the creator of BitTorrent, presents the unchoke mechanism as the only efficient
method used in BitTorrent to maximize the download rates of the peers. Legout
et al. [16] evaluate the unchoke mechanism in BitTorrent and question its efficiency
in providing reasonable reciprocation in balancing upload and download rates. The
paper concludes that the unchoke mechanism provides fairness to leechers in con-
necting to others and a reasonable level of reciprocation.

Piatek et al. [18] found that altruistic behavior exhibited by some peers is the
dominant factor in expediting BitTorrent transfers. The authors argue that the Tit-
for-Tat mechanism has little to do with the altruism of the peers and the performance
of BitTorrent, and that BitTorrent is still working today because most of the peers
are not trying to subvert the system by tweaking their clients.

Qiu and Shroff [20] analyze the Tit-for-Tat mechanism deployed in BitTorrent.
The study concludes that the system converges to a Nash equilibrium when peers
utilize their pre-set upload capacities and try to maximize their downloads. Another
study also targeted the Tit-for-Tat mechanism and found that the robustness of Bit-
Torrent is not related to it. Halesand and Patarin [14] argue that the presence of
altruistic peers in swarms is the major factor behind the robustness of BitTorrent. In
some cases when swarms are being highly infested with selfish peers, the authors
argue that BitTorrent does not reach to expectations and that such swarms tend to
die fast.

Liogkas et al. [17] tested the robustness of BitTorrent against selfish peers. The
authors deploy three kinds of exploits that try to abuse the system in order to achieve
higher download rates than other peers. They conclude that BitTorrent proved to be
robust against their attacks even that their strategic clients were able to exploit the
system. Moreover, the study claims that the optimistic unchoke policy fortifies the
robustness of the system by giving leechers chances to connect to fast leechers or
seeders.

Guo et al. [13] state that BitTorrent lacks fairness where peers with high band-
width capacities tend to exploit the system and download much more than they
upload. Moreover, the authors also claim that BitTorrent provides fluctuating down-
load services and poor availability services. Bharambe et al. [8] suggest that the
Tit-for-Tat mechanism is not efficient enough in deterring unfairness, and relates
this inadequacy to the heterogeneity of peers’ bandwidth capacities. The authors
also argue that low bandwidth capacity peers can download more than they upload
when high bandwidth capacity peers are present in swarms.

1212 Manaf Zghaibeh, Kostas G. Anagnostakis, and Fotios C. Harmantzis

Our work is different from the existing studies on BitTorrent. It provides a mea-
surement of the volume of free riders in a real world BitTorrent trace. It classifies
users in BitTorrent based on the behavior they exhibit into different clusters. More-
over, this study also characterizes and identifies free riders based on two attributes,
first, the behavior they reflect in multiple-torrent file condition, and second, their
bandwidth capacity. Finally, we consider this study as an in-depth analysis of the
Tit-for-Tat mechanism when it functions between inter-class bandwidth capacity
peers, to the best of our knowledge no other study has considered this angle of anal-
ysis for the Tit-for-Tat.

4 Methodology

In this section we describe the methodology we followed in our work. We begin by
justifying our choice of using the measurement method, then we describe the tools
that we employed to collect BitTorrent samples and our approach in luring peers to
keep them interacting with our system and tools.

Studies on P2P had been performed using modeling [12, 13, 20], simulation [5,
21, 24, 25], and measurement [4, 9, 19] methods. In this chapter, we believe that
our goals can be more accurately pursued using measurement analysis. Our choice
is based on the need to capture how BitTorrent actually performs under realistic
scenarios. Furthermore, we aim in this study to identify free riders and measure
their volume in BitTorrent, and investigate how real users interact with the system.
This can be efficiently deduced from data collected from actual peers.

4.1 First Measurement Study

Table 1 First measurement parameters

Number of trackers 2

Number of torrents 700

Average content size 630 MByte

Number of peers 65,063
Average number of peers per torrent 93

Number of ctorrent clients 4

The Behavior of Free Riders in BitTorrent Networks 1213

In the first measurement study we utilized the following methods: (i) A modified
BitTorrent client that is able to aggressively request new peers from the main tracker
and try to connect to as many peers as possible to track their download progress
and their connection time. The tool is developed using a robust C-language BitTor-
rent client called ctorrent. We modified the ctorrent client into ctorrent-bigbro to be
able to only connect to the remote peers and monitor their progress without being
involved in any download or upload activity, to avoid accidentally accessing ille-
gal content. The ctorrent-bigbro provided us with the download volumes of remote
peers and their connection times only. However, since the remote peer does not re-
port its uploaded volume, we calculated this attribute from the IP-ID field which is
embedded within each packet sent by the remote peer.

(ii) The other method we used for getting detailed information about the per-
formance of BitTorrent peers was obtaining the information directly from trackers.
Trackers provided us with full logs of the activities of all peers, including their
download/upload volume and their connection time.

In the first measurement we traced around 1000 torrents, involving more than a
hundred thousand peers. After weeding out the uninformative torrents we ended up
with 700 torrents that gathered more than 65,000 peers.2 Table 1 lists some of the
measurement parameters.

4.2 Second Measurement Study

In collecting our data for the second measurement we also used two methods: a
passive and a proactive one. (i) For the passive method we ran multiple trackers
each on an independent platform. The trackers provided us with complete logs of the
activities of all peers. The platforms we used to run the trackers were robust enough
to perform the tracking critical functions. Each platform was dedicated solely for the
purpose of running its specific tracker. Furthermore, each platform was adequately
provided with a network interface that was capable of handling the requests of large
number of peers. During our sampling, we did not have any discontinuity in our
traces due to congestion problems at the trackers.

(ii) The proactive method we used in the second measurement study was deploy-
ing a number of BitTorrent clients. Each of those clients was a BitTornado [1] client
that had a function of participating in the download and upload processes of the of-
fered torrent. As we will discuss later, we classify peers based on their connection
speeds into two types: high bandwidth capacity peers and low bandwidth capac-
ity peers. Accordingly, our clients played the roles of strategic and non-strategic
peers who joined the swarms as low bandwidth and high bandwidth capacity peers.
The purpose of this method is to help us better understand how different peers in

2 Because of the discrepancy of the IP-ID method that we used in measuring the uploaded volume
by the remote peers, we ignored the samples in which the total uploaded volume did not match or
was not close to the total downloaded volume by all peers.

1214 Manaf Zghaibeh, Kostas G. Anagnostakis, and Fotios C. Harmantzis

Table 2 Second measurement parameters

Number of trackers 4

Number of contents 139

Content type Number of contents

3-part content 58
4-part content 41
5-part content 40

Content type Number of torrents

3-part content 174
4-part content 164
5-part content 200

Average part size 800 MByte

Number of peers 312,047
Average number of peers per torrent 580

Number of BitTornado clients 32

the swarm who belong to different bandwidth capacities interact with our special
clients. That entitles us perceive how the Tit-for-Tat performs between peers in inter-
class bandwidth capacity classes.

The trackers hosted different sets of unique torrents that we created using the
BitTornado clients. Each content we offered consisted of three to five parts, with
each part having a unique torrent associated with it. Using this approach in offering
contents leads to better isolate peers and classify them based on their behaviors.
Moreover, following this approach attracted peers to stay connected to our trackers
for longer times which assisted us studying their behaviors more comprehensively.
For example, a peer who appeared to be a free rider in one of his downloads could
have possibly achieved that based on either a selfish behavior, i.e., strategic peer, or
malicious behavior, i.e., cheater, or he could have just been a lucky peer. However,
using the multiple-torrent content method at least diminished the incomprehension
in identifying lucky peers from strategic or cheater peers. In other words, a peer who
cheated in obtaining the first part of the content will most likely cheat in obtaining
the remaining parts; this argument also applies on strategic peers. Yet, a peer who
got lucky downloading a part of the content without contributing back to the system,
will not necessarily get lucky obtaining the remaining parts of the content.

We ran four independent trackers that hosted 139 contents.3 The contents were
arranged as follows: 58 3-part contents, 41 4-part contents, and 40 5-part contents, a

3 All the contents we offered were not intellectually protected.

The Behavior of Free Riders in BitTorrent Networks 1215

total of 538 torrents. The sizes of shared parts varied between 700 and 1050 MBytes
with an average of 800 MBytes per part. The total number of peers joined our system
reached 312,047 peers, with an average of 580 peers per torrent. Finally, for the
second method, we used 8 BitTornado clients per tracker. Table 2 summarizes the
parameters of our measurement.

5 Results and Discussion

In this section we present the findings of our two measurement studies that we per-
formed on BitTorrent.

5.1 First Measurement Study

We analyze our data in an attempt to understand how users in BitTorrent per-
ceive and respond to the incentives provided; and whether the incentives are strong
enough to drive users to a satisfactory level of cooperation.

We investigate how users follow different strategies by monitoring their down-
load and upload behaviors and deducing their cooperation levels. The strategies are
set by fine-tuning the parameters of the BitTorrent client. Some of these param-
eter changes could boost the download progress of users and advance their gain
compared to others who probably are not aware of the existence of these options
or their significance. Such behavior induces free riding. There was no clear under-
standing about the magnitude of free riding in BitTorrent before this measurement
study. Most of the work on BitTorrent prior to this study is likely to focus on the
Tit-for-Tat mechanism and particularly whether it is an effective technique to deter
free riding.

As mentioned in Section 2, BitTorrent uses the Tit-for-Tat strategy that is known
to provide a strong incentive for cooperation. It reciprocates services to nodes that
cooperate and periodically chokes nodes that choose not to cooperate. Moreover,
BitTorrent relies on the optimistic unchoke policy in order to discover new peers
and to encourage other peers to cooperate. However, although this policy is used to
incite peers who do not provide reciprocal services to cooperate, we suspect that it
also furnishes opportunities for peers to free ride.

In each of the torrents in this study we isolated four different clusters of BitTor-
rent users. Each cluster is characterized by different level of cooperation exhibited
by its members.

The first cluster we isolated includes users who profited from the system as much
as they benefited it: The volume downloaded by those users almost equals the vol-
ume they uploaded. Contemplating in this behavior, it seems that the members of
this cluster, who comprise the majority of users in our samples, did not follow
any definite approach in downloading or uploading their files. Or in other words,

1216 Manaf Zghaibeh, Kostas G. Anagnostakis, and Fotios C. Harmantzis

they just simply ran the BitTorrent client on its default without changing any of its
settings.

The second cluster we isolated in our samples contains peers who we classify as
the major contributor leechers in the system. Their high cooperation level is clearly
seen in the considerable volume they uploaded which is more than twice than the
volume they downloaded. This behavior gives the impression that the members in
this cluster were either altruistic or, as the members in the first cluster, did not fol-
low specific strategy in their interaction with other peers. However, they are dif-
ferentiated from the peers in the first cluster by their higher bandwidth capacities.
Nonetheless, we suggest that members in clusters 1 and 2 are the honest peers who
responded to the incentives provided since they exhibited medium to high levels of
cooperation. However, it is not clear whether their reaction to the incentives was
driven by altruism, carelessness, or by the lack of knowledge of the possibility in
exploiting the resources of the system and free riding.

The third cluster in our samples includes free riders: Users who completed their
downloads without contributing to the system. The maximum upload speed we ob-
served from those users was less than 2 KB/s. On the other hand, they were fast
enough downloading with speeds reached up to 300 KB/s. Moreover, as an expected
selfish conduct, those peers left the system as soon as they completed their down-
loads.

The last group contains users who downloaded at least as twice as they uploaded.
They are also characterized by disconnecting immediately after they completed their
downloads. They remarkably benefited from the system as well. However, their lim-
ited contribution to the system makes them distinguishable from free riders. This
behavior is explicable if we assume that those peers are fairly acquainted to Bit-
Torrent mechanisms, or at least, aware of the parameters put available in most of
BitTorrent GUI clients, thus, allowing them to follow advanced sharing strategies
compared to peers in clusters 1 and 2. Based on this classification, it is obvious that
peers in cluster 2 are structuring an enjoyable downloading source to peers in this
cluster and to free riders.

In general, using the operational parameters in BitTorrent helps users to strate-
gize themselves to augment their gain on the account of other users. However, we
suspect that the use of such parameters has counter effects on the functionality of
the optimistic unchoke mechanism. For example, a peer can easily change the max-
imum number of incoming connections that are allowed, which would increase the
probability of having incoming connections that periodically optimistically unchoke
him. This presumably makes the optimistic unchoke mechanism in BitTorrent sus-
ceptible to parameters tweaking. Nevertheless, as long as the population of such
peers is limited in BitTorrent, the system will still be capable of performing well
and will still be an attractive choice for users. Yet, if the population of such peers
significantly increased, we believe that the optimistic unchoke would be incompe-
tent in handling such scenario.

On the other hand, the behavior of free riders is possibly related to either more
advanced strategies compared to those adopted by peers in cluster 4, or to cheating.
With some modifications to a BitTorrent client, users will be able to apply several

The Behavior of Free Riders in BitTorrent Networks 1217

threat scenarios that allow them to completely free ride without contributing to the
system. Some threat scenarios are very well known now: Serving false pieces, con-
necting directly to seeders, and using multiple identities. Therefore, since the upload
volumes of such peers is very limited, we are inclined to believe that this behavior
is closer to cheating than parameters tweaking.

Upload speed (kB/s)

0 100 200 300

D
ow

nl
oa

d
sp

ee
d

(k
B

/s
)

0

100

200

300

Fig. 1 Upload speed vs. download speed for a sample torrent

Torrents

0 100 200 300 400 500 600 700

N
um

be
r

of
 p

ee
rs

0

30

60

90

120

150

180
Peers uploading more than twice as fast as they download
Peers with normal behavior
Peers disconnecting immediately after download
Cheaters

Fig. 2 Distribution of peers joined in 700 torrents

Figure 1 demonstrates the distribution of peers joined in a torrent based on their
download and upload speeds. The figure shows that free riders are positioned on the

1218 Manaf Zghaibeh, Kostas G. Anagnostakis, and Fotios C. Harmantzis

download speed axis, users in cluster 4 are located between the download speed axis
and the y = 2x line, where the x = 2y line separates users in clusters 1 and 2.

To get a comprehensive view of the clusters we identified above, Fig. 2 illustrates
the fraction of each cluster in each torrent in our samples. The figure shows that the
majority of users belong to cluster 1 and cluster 2. Furthermore, we notice that at
least 50% of users in all our samples uploaded as much as they downloaded, i.e.,
cluster 1; where users in cluster 2 who have been taken advantage from formed
about 17%. On the other hand, cluster 4, users who disconnected immediately after
they completed their downloads, comprised about 10% of the total number of users
in a torrent, while free riders population reached about 10%.

5.2 Second Measurement Study

We investigate the free riding problem more meticulously by categorizing free riders
in view of their upload volumes to the rest of the network. Based on their types, we
try to determine whether free riding is a behavior that is associated with a particular
class of bandwidth capacities, i.e., high bandwidth capacity peers or low bandwidth
capacity peers. Finally, we examine the robustness of the Tit-for-Tat mechanism
against different bandwidth capacity strategic and non-strategic clients.

5.2.1 Free Riders: Who Are They?

In the previous subsection we limited our analysis regarding free riders to their
volumes and speeds. In this part of the analysis and with the most recent data that
we collected, we try to take the analysis steps forward to comprehend the behavior
of free riders and identify them more clearly.

We suggested that the free rider term is used to recognize peers who exploit the
design limitation of the P2P system intentionally or unintentionally and download
without contributing back to it, or delivering minimum upload volumes comparing
to the volumes they download.

Free Riders Volume: Previously we found that the free riders percentage in our
2005 samples reached up to 10% of the total population of the peers who joined
the torrents. The maximum upload speed we observed from those peers was less
than 2 KB/s, while their download speed reached in some torrents 300 KB/s. How-
ever, in our most recent samples which we collected in 2007 [23], we find that those
numbers have noticeably changed comparing to what they were before. Figure 3
illustrates free riders percentage in our data samples in ascending order. Each point
on the x axis represents a torrent from our samples, while the y axis signifies free
riders percentage (only shown up to 20% for resolution purposes). In all our sam-
ples, free riders were present. Their volumes varied between a minimum percentage
of 2.8, and surprisingly, a maximum percentage of 16.8 of the total population of
peers.

The Behavior of Free Riders in BitTorrent Networks 1219

Torrents

0 100 200 300 400 500

F
re

e
rid

er
s

pe
rc

en
ta

ge
 (

%
)

0

2

4

6

8

10

12

14

16

18

20

Fig. 3 The percentage of free riders in 538 torrents

The Cumulative Distribution Function (CDF) of the percentage of free riders
clearly describes their presence in our samples, Fig. 4. The figure indicates that in
about 20% of the torrents the percentage of free riders varied between 10.8 and 16.8,
while in 75% of the torrents their percentage was between 2.8 and 9.

Dissecting Free Riders: In the next step of our analysis on free riding we dissect
the samples with respect to the convention we suggested previously to determine
their types, i.e., strategic, cheaters, or lucky peers. Our goal in this phase of the study
is to categorize free riders based on their interaction with other peers in multiple-
torrent contents. That will help us later to understand their strategies in case they
follow any, or realize any deficiency in BitTorrent design, if exists.

In Fig. 5 we notice the categorization of free riders. In our convention here we
presume that a cheater is a free rider with a zero upload volume, and that a strategic
peer is a free rider who scarcely uploaded to other peers. We indicate that this per-
ception is related to the levels of participation of free riders in the multiple-torrent
contents: 3-part, 4-part, or 5-part contents. For example, a cheater would exhibit the
same 0 KByte upload volume in at least two of the multiple-torrent contents which
he participated in, while a free rider who reflected the same limited upload behavior
in at least two torrents of multiple-torrent content would be classified based on our
norm, as a strategic peer. Finally, if a peer showed a free riding behavior in one tor-
rent and normal cooperative behavior in other torrents, we would classify him as a
lucky user. Please note that the criterion we use here to sort free riders is only based
on the volume they upload in multiple-torrent contents, not on their bandwidth ca-
pacities.

As Fig. 5 shows, the majority of free riders in our samples are strategic peers.
Their individual upload contribution was less than 5% of their individual download
volume. On the other hand, cheaters who exhibited unique 0 KByte upload vol-
umes comprised about 8% of the total population of free riders. Interestingly, lucky
peers who free rode in a single torrent of a multiple-torrent content and behaved
cooperatively in other parts comprised about 22% of free riders population. Finally,
the remaining 24% of free riders represents those who only participated in a single
torrent.

1220 Manaf Zghaibeh, Kostas G. Anagnostakis, and Fotios C. Harmantzis

Free rider percentage

2.8 3.8 4.8 5.8 6.8 7.8 8.8 9.8 10.8 11.8 12.8 13.8 14.8 15.8 16.8

F
ra

ct
io

n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 4 CDF of the percentage of free riders

Free riders type
Strategic Lucky Cheaters Unidentified

P
er

ce
nt

ag
e

(%
)

0

10

20

30

40

50

60

70

80

90

100

46

22

8

24

Fig. 5 Free riders type

Download rate (KB/s)
25 125 225 325 425 525 625 725

F
ra

ct
io

n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 6 CDF of free riders download rate

Free Riders Download Rate: Before we conclude the analysis on identifying
free riders in our samples, we present in Fig. 6 their download speeds. The figure
demonstrates the Cumulative Distribution Function (CDF) for download rates of
all free riders in our samples. As we stated before, in the 2005 study we observed

The Behavior of Free Riders in BitTorrent Networks 1221

that free riders speeds cropped up to 300 KB/s. However, and as Fig. 6 shows, the
average download rate reached up to 790 KB/s as an upper bound for some free
riders.

5.2.2 Who Exploits BitTorrent?

The next step in our analysis study is to determine the nature of peers who take
advantage of BitTorrent’s unfairness. Those peers either free ride or flourish, in
the sense that they benefit from the system without providing satisfactory levels
of contribution to assist other peers. Many measurement, analytical, and modeling
studies have labeled this trend as the dark unfair side of BitTorrent [6, 15, 16].
Moreover, some of those studies have related this theme to the heterogeneity in
peers’ bandwidth capacities, denoting that peers within a class of specific bandwidth
capacity are taking advantage of the system, as well as of peers who do not belong to
the same class [8, 13]. However, researchers disagreed on which class of bandwidth
capacity is exploiting the system. Two major arguments exist here:

• High bandwidth capacity peers exploit the system: Guo et al. [13] argue that
peers with high bandwidth capacities tend to download more than they upload,
although the authors mention that the performance of the peer in such systems
fluctuates widely with the population of the peers.

• Low bandwidth capacity peers exploit the system: Bharambe et al. [8] contradict
[13] and state that low bandwidth capacity peers tend to download more than
they upload.

Bandwidth capacity (KB/s)

50 150 250 350 450 550 650 750 850 950 1050 1150

F
ra

ct
io

n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 7 CDF of the bandwidth capacities of peers in our samples

However, in our samples, neither of these two arguments apply. We did not find
among the peers who participated in the offered torrents a trend that supports ei-
ther of the two previous statements. Figure 7 shows the Cumulative Distribution
Function (CDF) of the bandwidth capacities of the peers in all our samples. It in-
dicates that about 23% of those peers have bandwidth capacities within the range

1222 Manaf Zghaibeh, Kostas G. Anagnostakis, and Fotios C. Harmantzis

of 0 and 50 KB/s, while the majority of peers have bandwidth capacities between
100 and 650 KB/s. Figure 8 shows that peers who exploited the system in our sam-
ples diversified in their bandwidth capacities. Based on their upload and download
volumes, 27% of peers who downloaded at least twice the volume they uploaded
(including free riders: strategic, lucky, and cheaters) had bandwidth capacities less
than 50 KB/s, while the majority of those peers belonged to a class of bandwidth
capacities between 100 and 800 KB/s. However, these two ratios almost evenly split
between the two types of bandwidths when their percentages are normalized based
on the population of peers in our samples.

Therefore, our finding opposes the arguments about the bandwidth capacities of
peers who take advantage of the system in BitTorrent. We argue in this stage of the
study that the gain which those peers accomplished by taking advantage of others
is not related to their bandwidth capacities, yet, to another cause as we will discuss
later. We find that peers who flourished and exploited the system on the account of
others belong to different classes of bandwidth capacities. That is, peers with small
bandwidth capacities were able to exploit the system as much as high bandwidth
capacity peers did, with respect to their population.

However, it is important to clarify that measurement analysis studies usually dif-
fer in their conditions. For example, in the 2007 study the population of peers with
high bandwidth capacities has increased compared to what it was in the 2005 study.
This could be related to the advance of the Internet backbone speed and the con-
nection speeds of the users. Moreover, it is clear that BitTorrent users have become
more acquainted with the system and the protocol, which is due to the increased
popularity of the system.

5.2.3 Is the Tit-for-Tat Robust?

Many questions arise on how peers with different bandwidth capacities are able to
significantly gain from the system, and who to blame about this cooperation inade-
quacy in the system. Accordingly, many answers emerged trying to justify the be-
haviors of peers and clarify the shortcomings of BitTorrent. However, studies which
attempted to answer the first question usually targeted the altruism and the egoism
of peers [18], while making the Tit-for-Tat incentive mechanism in BitTorrent re-
sponsible for the unfairness became the major justification for the second question
[8, 14].

Tit-for-Tat is the successful outcome of the iterated prisoner dilemma that is used
in BitTorrent [7]. Moreover, the optimistic unchoke is the first move in the Tit-for-
Tat game. A peer optimistically unchokes his opponent in order to provoke him into
cooperative exchange of data blocks. Based on the reaction of the opponent to this
move, the peer will cooperate with his opponent if he reciprocates the service, or,
he will choke him if he declines the cooperation.

In general, we do not expect optimality in the performance of Tit-for-Tat. Even if
there is an imperfection in its role, the question here is whether this imperfection is
acceptable or whether it is beyond the tolerable limits in which it is fundamentally

The Behavior of Free Riders in BitTorrent Networks 1223

Bandwidth capacity (KB/s)

50 150 250 350 450 550 650 750 850 950 1050 1150

F
ra

ct
io

n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 8 CDF of bandwidth capacities of peers who downloaded at least as twice as they uploaded

harming the performance of BitTorrent. Therefore, it is essential to understand when
the Tit-for-Tat succeeds and when it fails. Theoretically, the mechanism succeeds
when the reciprocation of data blocks between two peers takes place. In addition
to that, after the first move in the Tit-for-Tat in BitTorrent, i.e., the optimistic un-
choke, if the remote peer declines the reciprocation of services, then the mechanism
chokes him successfully. Therefore, conceptually, the Tit-for-Tat attained its goal:
It rewarded cooperative peers by reciprocating services with them and punished the
uncooperative ones by choking them.

On the other hand, the optimistic unchoke has been the main component to blame
for the incompetency of BitTorrent. The rationale behind this assumption is based
on losing the first move to uncooperative peer, i.e., uploading to the remote peer
before discovering that he is uncooperative. Finally, there has been also some doubt
about the ability of the Tit-for-Tat incentive mechanism to work in heterogeneity
environment where the bandwidth capacities of peers differ, which was related to
the unfairness that we discussed previously.

In this phase of the analysis we try to understand how the Tit-for-Tat performs
in the wild. Our goal is to determine whether the Tit-for-Tat is to blame for the
volume of free riding and the unbalanced contribution of peers that we observed
previously. To pursue this target, we investigate this problem from a peer’s level. We
deploy the regular BitTorrent clients that we mentioned previously. The objective
of this method is to monitor how peers with different bandwidth capacities interact
with our BitTornado clients that have different participation strategies. The deployed
BitTornado clients have only one advantage over other clients: they obtain from the
trackers complete lists that contain the identities of all peers in the swarm, while
regular clients receive partial lists. We configure the BitTornado clients to adapt the
following behaviors and bandwidth capacities:

Low Bandwidth Strategic Clients (LBS): we set the download capacities of
those clients to 20 KB/s, we limited their number of uploads to one, and their max-
imum upload rate to 1 KB/s. As Fig. 9 shows, peers who uploaded to our clients
were both low bandwidth peers and high bandwidth peers; however, the major

1224 Manaf Zghaibeh, Kostas G. Anagnostakis, and Fotios C. Harmantzis

contributors were low bandwidth capacity peers with an average contribution level
of 64%, while high bandwidth capacity peers contributed an average of 36%.

Low Bandwidth Non-strategic Clients (LBNS): we set the download capacities
of those clients to 20 KB/s, and limited their maximum upload rate to 8 KB/s. In this
arrangement, the performance of our clients was nearly balanced between uploading
and downloading. Figure 9 shows that they were able to download the same volume
from high bandwidth capacity peers and low bandwidth capacity peers.

High Bandwidth Strategic Clients (HBS): we limited the number of uploads
to one, and the maximum upload rate to 1 KB/s. Our clients connected to low band-
width capacity peers and high bandwidth capacity peers as well. The major upload-
ers to those clients in this case were high bandwidth capacity peers with an average
upload volume of 71%. On the other hand, the contribution of low bandwidth ca-
pacity peers was limited to 23%.

High Bandwidth Non-strategic Clients (HBNS): we set their maximum up-
load rate to 300 KB/s. The contribution of high bandwidth capacity peers to our
clients reached an average of 63%, while low bandwidth capacity peers uploaded an
average of 37%.

To further investigate this point, we look into the choking messages our clients
have received from the members of their swarms. Figure 9 gives us a better in-
sight on how remote peers interacted with our clients and whether the Tit-for-Tat
mechanism performed successfully with different types of peers related to different
bandwidth capacities. As the figure demonstrates, LBS clients have been choked
mostly by the high bandwidth capacity peers. On the contrary, HBS clients were
choked mostly by the low bandwidth peers. Interestingly, neither low bandwidth
capacity peers nor high bandwidth capacity peers discriminated against the non-
strategic clients. The volumes of the choking messages that were received by our
two types non-strategic clients were relatively close to each other and thus did not
suggest a selective behavior from remote peers.

To conclude this part of the analysis, we argue that the Tit-for-Tat mechanism
succeeds indeed in rewarding cooperative peers and punishing uncooperative ones,
regardless of their bandwidth capacities. We also argue that the Tit-for-Tat does not
discriminate peers based on their bandwidth capacities. The mechanism success-
fully reciprocates a fair exchange among peers with different bandwidth capacities.
However, the mechanism reacts effectively against inter-class bandwidth capacity
strategic peers. That is, BitTorrent successfully chokes high bandwidth capacity
peers from LBS users and low bandwidth capacity peers from HBS users, when
the Tit-for-Tat detects unbalanced reciprocation exchange. On another venue, we
emphasize our previous interpretation that what drives successful exploitation of
resources in BitTorrent is directly related to the first move in the Tit-for-Tat, i.e.,
the optimistic unchoke. For example, consider that the number of pieces of a shared
content is 6,000 data chunks and the number of peers who join the swarm during the
sharing process is about 600 peers. For a strategic peer who is only relying on the
first move of the Tit-for-Tat and utilizing a single slot of his upload link, i.e., 1 KB/s,
connecting to five remote peers concurrently would be a sufficient arrangement for
him to free ride and to exploit the system. The strategic peer would reciprocate a

The Behavior of Free Riders in BitTorrent Networks 1225

Client’s type

LBS LBNS HBS HBNS

P
er

ce
nt

ag
e

0

10

20

30

40

50

60

70

80

90

100

64

43

33
3736

57

67
63

19

39

74

52

81

61

26

48

Low bandwidth contributor

High bandwidth contributor

Choked by low bandwidth peers

Choked by high bandwidth peers

Fig. 9 Peers contribution levels and choking volume

service with one of the five remote peers using his single upload slot, while waiting
for the other four peers to optimistically unchoke him. After optimistically unchok-
ing him, if those four remote peers discovered that this strategic peer is not willing
to reciprocate services, they would choke him. However, the strategic peer will be
continuously probing other remote peers trying to connect to them and take advan-
tage of the optimistic unchoke. Furthermore, the lack of memory in BitTorrent helps
the strategic peer to re-exploit remote peers repeatedly. That is, in a worst case sce-
nario, if the strategic peer was able to obtain 10 pieces from each remote peer using
the optimistic unchoke, he would be entirely able to free ride, even without the need
to use his single upload slot.

5.2.4 The Population of Peers and the Optimistic Unchoke

The size of the swarm also has a direct relation with the degree of exploitation in
the system. In principle, a peer would punish his opponent when he does not re-
ciprocate services with him; the punishment is achieved by choking the opponent.
However, since this punishment is not perpetual, the choked peer could possibly be
optimistically unchoked by the same peer who choked him before. Logically, if the
size of the swarm is small, then the selfish peer will not find many peers to opti-
mistically unchoke him, yet, his chances to be repeatedly optimistically unchoked
by the peer who had previously choked him will increase. While if the size of the
swarm is large, then the probability that the peer will optimistically unchoke one
of his previously choked peers decreases because there are many other peers avail-
able in the swarm to choose from. However, in this case, the chance that the selfish
peer will find more peers to optimistically unchoke him will increase. We study this
conjecture by monitoring the download progress of our strategic clients in swarms
that have different sizes, Fig. 10. The figure shows that strategic peers were able
to finish their downloads in small populated swarms faster than they did in large
swarms. Our explanation to this surprising finding revolves on the notion that our

1226 Manaf Zghaibeh, Kostas G. Anagnostakis, and Fotios C. Harmantzis

strategic peers in the heavily populated swarms were faced by tough competition
from other remote peers who offered better services than they did. Thus, those peers
were matched through the Tit-for-Tat with other members of the swarm leaving our
clients in continuous search for peers to unchoke them. However, in small swarms,
the competition was not strong and our clients were able to connect to other remote
peers easily.4

Time interval (Minutes)

100 150 200 250 300 350 400 450 500

M
ea

n
do

w
nl

oa
d

vo
lu

m
e

(M
B

yt
e)

0
50

100
150
200
250
300
350
400
450
500
550
600
650
700

Average swarm population: 119 peers

Average swarm population: 637 peers

Fig. 10 Average download volume for strategic peers in different swarms

5.2.5 Modified Approach to BitTorrent

Although we argued that free riding in BitTorrent has a profound relation with
the optimistic unchoke policy, however, bypassing the implementation of the pol-
icy would have devastating effects on the system because of its essential role in
discovering the fast peers. We also suggested in the previous subsection that the no-
harboring characteristic of the Tit-for-Tat makes the system susceptible to exploita-
tion by selfish peers. Therefore, we propose a simple modification on the design of
BitTorrent that requires the peer to remember the disappointing outcomes of the op-
timistic unchoke policy he performed on remote peers. This method is a protective
policy to guard the peer from interacting with selfish clients frequently. However,
the memory will be adaptive based on the behavior of the remote peers who are
remembered.5 For example, a remote peer who is recorded in the memory of a lo-
cal peer will be tested after a period of time t by optimistically unchoking him. If
he shows a cooperative behavior, the local peer will essentially continue interacting
with him and remove him from the memory. On the other hand, if the remote peer
reveals the same selfish behavior, then the local peer will keep him in his memory,
yet, will try him again if needed after 2t. Every time the remote peer reflects a selfish
behavior, his waiting time in the memory table will be doubled.

4 The percentage of strategic clients was 7% in small and large swarms.
5 An exponential backoff rule.

The Behavior of Free Riders in BitTorrent Networks 1227

We experiment this proposed policy in a 200-peer network. Each peer maintains
a history table to save his interactions with the selfish peers. In this experiment,
our goal is to test for the proposed policy, therefore, we monitor how successful
the selfish peers were in obtaining the pieces of the file via the optimistic unchoke
policy. The number of selfish peers in this experiment is 30 and the number of the
pieces of the file is 800.

Figure 11 shows the preliminary results of our experiment. It demonstrates the
number of downloaded blocks by selfish peers in our configuration. The figure sig-
nifies the original implementation of the optimistic unchoke policy and our pro-
posed approach. The x axis in the figure represents the time slots of the experiment
while the y axis stands for the mean number of pieces obtained by the selfish clients
through the optimistic unchoke policy only. We find significant improvement in the
performance of the system under the memory backoff approach. In this prelimi-
nary experiment, the memory backoff approach succeeds in reducing the effects of
free riding that is caused by optimistically unchoking selfish peers repeatedly. As
we notice in the figure, the number of blocks obtained by the optimistic unchoke
policy in the original implementation of BitTorrent is much more than the number
of blocks obtained via the memory backoff approach. Moreover, this approach is
sufficient enough to initiate exchanges between new comers and other peers in the
system.

Time slots

20 40 60 80 100 120 140 160

M
ea

n
nu

m
be

r
of

 p
ei

ce
s

0

50

100

150

200

250

300
Original implementation, 95% C.I.

Memory−backoff approach, 95% C.I.

Fig. 11 Pieces obtained via the optimistic unchoke

6 Conclusions

In this chapter we presented the results of two major measurement analysis studies
of BitTorrent file sharing system.

Our findings support that peers in BitTorrent might remarkably enjoy higher
download speeds comparing to other P2P file-sharing systems. It appears that the in-
centive mechanisms adopted in BitTorrent are succeeding in promoting cooperation

1228 Manaf Zghaibeh, Kostas G. Anagnostakis, and Fotios C. Harmantzis

among peers until now. However, the level of cooperation in BitTorrent does not
seem to be as satisfactory as expected.

Our results in the first measurement study show that while the majority of peers
in our samples contributed to the system as much as they benefited from it, 17%
of the peers were the main contributors to the system, and more than 10% of peers
downloaded as twice as they uploaded to others. Moreover, the results show that the
percentage of free riders in our samples reached up to 10% of the total population
joined in a torrent. This is an indication that BitTorrent may not be providing a
strong enough incentive to reduce free riding since there is no explicit mechanism
in its design to punish or at least discourage free riding.

However, the results of the most recent measurement study that we performed
on BitTorrent show that the volume of free riders is increasing in the BitTorrent
environment. It reached up to 16.8% of the total population of peers joined in the
torrents. We argue that this increase in their population is related to the advance in
the connection speeds of users and their increased knowledge about the strategic
options of BitTorrent clients. Using our multiple-torrent contents methodology, we
classified free riders based on their upload volumes into three types: cheaters, strate-
gic, and lucky peers. Our results show that strategic peers comprised the majority
of free riders uploading up to 5% of their download volumes, while cheaters who
exhibited 0 KBytes upload volume were 8% of the total population of free riders.

In our analysis we also refute what other studies had come across relating peers
who exploit the system in BitTorrent to specific bandwidth capacities. We argue
based on our finding that high bandwidth capacity peers exploit the system as well
as low bandwidth capacity peers. Simply put, we do not relate the exploitation of
resources in BitTorrent to bandwidth capacity. However, we relate this problem to
the type of the peer, i.e., strategic or regular peer.

On the other phase of the analysis we used four types of BitTorrent clients to
interact with other peers in the swarms: low bandwidth strategic clients LBS, low
bandwidth non-strategic clients LBNS, high bandwidth strategic clients HBS, and
high bandwidth non-strategic clients HBNS. Our results indicate that the Tit-for-
Tat performs well in spreading cooperation amongst peers in BitTorrent regardless
of their bandwidth capacity. It punishes uncooperative peers by choking them and
rewards cooperative peers by reciprocating fair services with them. We also argue
that the Tit-for-Tat reacts effectively against inter-class bandwidth capacity strategic
peers. The mechanism prevents LBS peers from being served by high bandwidth
capacity peers, and similarly, chokes HBS from being served by low bandwidth
capacity peers. However, we emphasize our previous finding that the optimistic
unchoke represents a critical shortcoming of the Tit-for-Tat mechanism, and thus
BitTorrent. Furthermore, one of the surprising outcomes we found in this study is
that our strategic clients in small swarms were able to finish their downloads faster
than those in large swarms. We argued that this finding has to do with the compe-
tition the selfish or strategic peers face in heavily populated torrents which hinders
their efforts in connecting to remote peers. Finally, based on our analysis on the
optimistic unchoke, we proposed a modified approach to its role in BitTorrent. Our
approach relies on requiring the peer to remember the identities of the remote peers

The Behavior of Free Riders in BitTorrent Networks 1229

who denied him the service after he optimistically unchoked them. The goal of this
approach is to limit the number of times the local peer optimistically unchoke self-
ish peers in the near future. Our approach employs the exponential backoff policy in
which the local peer retries his punished clients when needed and extends their stay
in the punished list if they exhibit the same selfish behavior. Based on the prelim-
inary results we obtained, this policy seems to drastically reduces the exploitation
that is caused by the optimistic unchoke.

7 Future Work

We suggest implementing the memory backoff approach that we presented to the
optimistic unchoking policy in the design of BiTorrent. Although we have shown
that the memory backoff approach is a promising remedy to limit the deficiency of
the optimistic unchoke and thus reduce free riding in BitTorrent, however, our work
in that area needs further development. We encourage carrying on with the research
and modifying BitTorrent with the new policy and testing the system. This could be
achieved either on a PlanetLab platform or in a real network where all clients are
confined to the new modifications.

References

1. BitTornado Official Website. http://www.bittornado.com/
2. BitTorrent Specifications Website. http://www.bittorrent.org/
3. The True Picture of P2P File Sharing. http://www.cachelogic.com/ (2004)
4. Adar, E., Huberman, B.: Free riding on Gnutella. Tech. rep. (2000)
5. Anagnostakis, K.G., Greenwald, M.B.: Exchange-based Incentive Mechanisms for P2P File

Sharing. In: Proceedings of the 24th International Conference on Distributed Computing
Systems, pp. 524–533. IEEE Computer Society, Washington, DC (2004)

6. Andrade, N., M.Mowbray, Lima, A., Wagner, G., Ripeanu, M.: Influences on Cooperation
in BitTorrent Communities. In: Proceedings of the 2005 ACM SIGCOMM Workshop on
Economics of P2P Systems, pp. 111–115. ACM, New York, NY (2005)

7. Axelrod, R.: The Evolution of Cooperation. Basic Books (1984)
8. Bharambe, A.R., Herley, C., Padmanabhan, V.N.: Analyzing and Improving BitTorrent Per-

formance. Tech. Rep. MSR-TR-2005-03, Microsoft Research, Microsoft Corporation One
Microsoft Way Redmond, WA 98052, USA (2005)

9. Chu, J., Labonte, K., Levine, B.N.: Availability and Locality Measurement of P2P File Sys-
tems. In: Proceedings of Scalability and Traffic Control in IP Networks. San Jose, CA (2002)

10. Cohen, B.: Incentives Build Robustness in BitTorrent. In: Proceedings of The 1st Workshop
on Economics of P2P Systems. Berkeley, CA (2003)

11. Feldman, M., Chuang, J.: Overcoming Free-Riding Behavior in P2P Systems. In: ACM Sige-
com Exchanges, vol. 5, pp. 41–50. ACM (2005)

12. Gummadi, K.P., Dunn, R.J., Saroiu, S., Gribble, S.D., Levy, H.M., Zahorjan, J.: Measure-
ment, Modeling, and Analysis of a P2P File-Sharing Workload. In: Proceedings of the Nine-
teenth ACM Symposium on Operating Systems Principles, pp. 314–329. ACM, New York,
NY (2003)

1230 Manaf Zghaibeh, Kostas G. Anagnostakis, and Fotios C. Harmantzis

13. Guo, L., Chen, S., Xiao, Z., Tan, E., Ding, X., Zhang, X.: Measurements, Analysis, and Mod-
eling of BitTorrent-like Systems. In: Proceedings of the Internet Measurement Conference,
pp. 35–48. USENIX Association (2005)

14. Halesand, D., Patarin, S.: How to Cheat BitTorrent and Why Nobody Does. Tech. Rep.
PUBLCS-2005012 (2005)

15. Jun, S., Ahamad, M.: Incentives in BitTorrent Induce Free Riding. In: Proceedings of the 2005
ACM SIGCOMM Workshop on Economics of P2P Systems, pp. 116–121. ACM, New York,
NY (2005)

16. Legout, A., Urvoy-Keller, G., Michiardi, P.: Rarest First and Choke Algorithms Are Enough.
Tech. Rep. inria-00001111, INRIA, Sophia Antipolis (2006)

17. Liogkas, N., Nelson, R., Kohler, E., Zhang, L.: Exploiting BitTorrent for Fun (But Not Profit).
In: Proceedings of the 5th International Workshop on P2P Systems (2006)

18. Piatek, M., Isdal, T., Anderson, T., Krishnamurthy, A.: Do Incentives Build Robustness in
BitTorrent? In: Proceedings of the 4th USENIX Symposium on Networked Systems Design
and Implementation, pp. 1–14 (2007)

19. Pouwelse, J.A., Garbacki, P., Epema, D., Sips, H.: A Measurement Study of the BitTorrent
P2P File-Sharing System. Tech. Rep. PDS-2004-003 (2004)

20. Qiu, D., Shroff, N.B.: Modeling and Performance Analysis of BitTorrent-Like P2P Networks.
In: Proceedings of the ACM SIGCOMM, pp. 367–378. ACM, New York, NY (2004)

21. Schlosser, M.T., Condie, T.E., Kamvar, S.D.: Simulating a P2P File-Sharing Network. In:
Proceedings of The First Workshop on Semantics in P2P and Grid Computing (2003)

22. Zghaibeh, M., Anagnostakis, K.: On the Impact of Practical P2P Incentive Mechanisms on
User Behavior. In: Proceedings of the Joint Workshop on The Economics of Networked
Systems and Incentive-Based Computing (2007)

23. Zghaibeh, M., Harmantzis, F.: Revisiting Free Riding and the Tit-for-Tat in BitTorrent: A
Measurement Study. Journal of Peer-to-Peer Networking and Applications, Published online:
17 July 2008, DOI 10.1007/s12083-008-0013-7

24. Zghaibeh, M., Harmantzis, F.: An “S-string” Scheme for Business-oriented P2P Networks.
Journal of Electronic Commerce Research 7(3–4), 381–398 (2007)

25. Zghaibeh, M., Harmantzis, F.: Lottery-based Pricing Scheme for P2P Networks. Telecommu-
nication Systems Journal 37(4), 217–230 (2008)

The Nature of Peer-to-Peer Traffic

João V. P. Gomes, Pedro R. M. Inácio, Mário M. Freire, Manuela Pereira,
and Paulo P. Monteiro

Abstract The massive adoption of Peer-to-Peer (P2P) applications brings new chal-
lenges for network management. The increase of the bandwidth usage, the shift of
the Internet habits of home users and the easiness to share and provide contents is
changing the traffic characteristics, and breaking strong assumptions in which net-
work design is based. As a response to concerns from network administrators and
Internet Service Providers, traffic management is now a requirement instead of an
option, making the traffic classification functionality into an essential administration
tool. However, the evasive nature of most P2P applicationsrenders the classification

João V. P. Gomes
Nokia Siemens Networks Portugal, S. A., Rua Irmãos Siemens, 1, Alfragide, 2720-093 Amadora,
Portugal; Institute of Telecommunications - Networks and Multimedia Group, Department of Com-
puter Science, University of Beira Interior, Rua Marquês de Ávila e Bolama, 6201-001 Covilhã,
Portugal, e-mail: jgomes@penhas.di.ubi.pt

Pedro R. M. Inácio
Nokia Siemens Networks Portugal, S. A., Rua Irmãos Siemens, 1, Alfragide, 2720-093 Amadora,
Portugal; Institute of Telecommunications - Networks and Multimedia Group, Department of Com-
puter Science, University of Beira Interior, Rua Marquês de Ávila e Bolama, 6201-001 Covilhã,
Portugal, e-mail: pedro.inacio@penhas.di.ubi.pt

Mário M. Freire
Institute of Telecommunications - Networks and Multimedia Group, Department of Computer Sci-
ence, University of Beira Interior, Rua Marquês de Ávila e Bolama, 6201-001 Covilhã, Portugal,
e-mail: mario@di.ubi.pt

Manuela Pereira
Institute of Telecommunications - Networks and Multimedia Group, Department of Computer Sci-
ence, University of Beira Interior, Rua Marquês de Ávila e Bolama, 6201-001 Covilhã, Portugal,
e-mail: mpereira@di.ubi.pt

Paulo P. Monteiro
Nokia Siemens Networks Portugal, S. A., Rua Irmãos Siemens, 1, Alfragide, 2720-093 Amadora,
Portugal; Institute of Telecommunications - Pólo de Aveiro, University of Aveiro, 3810-193 Aveiro,
Portugal, e-mail: paulo.1.monteiro@nsn.com

X. Shen et al. (eds.), Handbook of Peer-to-Peer Networking, 1231
DOI 10.1007/978-0-387-09751-0 44, © Springer Science+Business Media, LLC 2010

1232 J. Gomes, P. Inácio, M. Freire, M. Pereira and P. Monteiro

of their traffic a difficult task to achieve even through Deep Packet Inspections
of the data units, mostly due to the application of encryption and randomization
mechanisms. In order to meet the demand for new and accurate methods for traf-
fic classification in the dark, it is necessary to study and fully understand the deep
nature of P2P traffic. In this chapter, the characteristics of this type of traffic are
discussed and explained, and recent studies about traffic characterisation are intro-
duced and analysed from the perspective that may enable their application for traffic
classification.

1 Introduction

With the recent evolution of Internet to a content distribution oriented architecture,
computer communications have gradually migrated from the client-server paradigm
to the edge services paradigm, and more recently to the Peer-to-Peer (P2P) com-
puting paradigm. Applications like Napster and Gnutella opened the way for a re-
newed look into Internet connections, offering an easy and cheap way to deliver
contents. If a few years ago, the traditional client-server model was responsible for
the asymmetry embedded in Internet traffic, the emergence of the P2P paradigm
and its adoption by a large number of applications have been influencing the In-
ternet traffic behaviour towards a more balanced network, at least in terms of the
amount of data transmitted in both directions. Although P2P applications started to
be popular for providing file-sharing services, they have evolved to become nowa-
days responsible for the biggest portion of traffic in Local Area Networks (LANs).
Voice over Internet Protocol (VoIP) and Instant Messaging (IM) applications have
massively adopted the use of P2P architectures, leading to the growth of traffic load
within the computer networks. Moreover, recent projects for the implementation of
distributed Internet Protocol Television (IPTV) systems over P2P platforms rein-
force the aforementioned tendency, and promise a non-negligible contribution for
the network traffic increase as well.

Even though the popularity of P2P applications was mainly attained with the il-
legal exchange of resources under copyright protection, P2P platforms started to be
used as an economic mean for delivering legal services and contents [11], due to
the low distribution cost they offer. By using the resources of consumers to provide
services to other consumers, providers avoid having to own too many expensive cen-
tral servers and deploying novel high rate connections. BBC iPlayer [1], Joost [3]
or Miro [4] are examples of recent web services where P2P platforms are used as a
cheap solution to deliver video contents. Although the majority of video sharing ser-
vices in the web are still based on centralised servers (for example, YouTube [9] or
Daily Motion [2]), distributed systems based on the P2P architecture are gathering
more interest. As a consequence, traffic load is increasing dramatically in all seg-
ments of computer networks [32], causing the retreat of the bottleneck from LANs
to access or metropolitan networks [25]. If P2P traffic is not ruled and shaped, the ca-

The Nature of Peer-to-Peer Traffic 1233

pacity to guarantee the Quality of Service (QoS) required for multimedia or critical
applications, as well as to fairly distribute bandwidth to all of the Internet users,
is severely reduced. Henceforth, several Internet Service Providers (ISPs) began to
limit, or even block P2P traffic, especially when generated by applications that offer
file-sharing services. What once was an exclusive concern of LANs administrators,
is today considered by some ISPs as an emerging problem for which their networks
are not prepared for, as they were designed under the assumptions of traffic asym-
metry and random on / off activity periods [31]. Furthermore, the flexibility of P2P
applications brought new concerns for network administrators. The easiness to fetch
illegal contents inside organisations, the lack of security, the cases where the com-
munications with external hosts are not allowed, the risk of sharing confidential
data or the excessive resources consumption constitute only a few examples of such
concerns.

Unfortunately, shaping P2P traffic is not a trivial task [28]. The most used and ac-
curate traffic classification methods are based in Deep Packet Inspection (DPI) tech-
niques, which identify network protocols and applications recurring to the recogni-
tion of well known strings inside the packets payload. Such mechanisms present
a considerable trade-off between efficiency and complexity and limitations related
with performance and privacy laws. Additionally, as they are based in payload in-
formation, their effectiveness and scope are limited by the available data within the
packet. The recent versions of applications like BitTorrent or eMule enable the users
to encrypt the packets or obfuscate the protocol, as a response to the DPI based tools
used by ISPs to block their traffic. Another well known case is Skype, whose traffic
is always encrypted by a non disclosed algorithm, not only for security purposes,
but also because of its evasive secondary effect.

The interest in new methods for classification in the dark, based in behavioural
patterns rather than in the packets contents, is thus easily justified. To accomplish
such purpose, it is mandatory to study the characteristics of P2P traffic and its be-
haviour.

Recent studies show that traffic resulting from the use of different P2P applica-
tions presents several behavioural patterns related with its nature [19]. These char-
acteristics reflect the heterogeneous character of this kind of traffic. Mathematical
measures, as the entropy, may then potentially be used to identify traffic from P2P
applications. Therefore, traffic behaviour can be considered for the basis of new
tools for traffic classification. If the behavioural patterns used by classification in the
dark tools draw on the very nature of P2P traffic, they are not so easily disguised or
obfuscated, at least not without prejudicing the P2P application performance per se.

This chapter discusses the impact of P2P traffic in computer networks. Its charac-
teristics are presented and explained, with emphasis in the ones that are consequence
of its nature. Entropy is suggested as a way to measure traffic heterogeneity, allow-
ing this property to be used for P2P traffic characterisation. The subject of traffic
analysis and classification is herein observed from an inside of the network perspec-
tive also, so as to address several issues concerning the integration of P2P traffic
monitoring systems in current networks.

1234 J. Gomes, P. Inácio, M. Freire, M. Pereira and P. Monteiro

2 The Importance of Traffic Characterisation

Internet keeps evolving, offering users new tools and services. Telematic applica-
tions like the ones built on top of the technologies commonly known by Web 2.0 or
of P2P systems emerge every day, pushing the services to the edges of the networks.
This fact increases the importance of the role played by regular users, as it allows
them to provide contents, instead of just request them.

Nevertheless, it is also affecting the way users interact with each other through
networks. Consequently, traffic within the computer networks is changing, present-
ing nowadays different properties. It is logical to think that P2P traffic, which is
typically heavy in terms of the amount of information transmitted, affect the re-
maining flows of information travelling through routers and switches, producing a
rather negative impact in the network availability and performance. Moreover, re-
cent applications and services often raise new and problematic security issues. Such
fact is especially critical when the communication between users is narrower than
ever, turning easier the dissemination of virus, worms or other security threats. Con-
sequently, traffic monitoring mechanisms play a vital role in keeping the network
operational. Yet, the deep inspection of the traffic is not always an option as it is an
extremely demanding task in terms of computation [37]. As so, it is necessary to
use behavioural techniques for traffic monitoring and classification, for which traf-
fic characterisation is an all-important instrument since it helps to understand the
generic characteristics of traffic from each class and its typical behaviour.

When applied to classification, innovative techniques to characterise the traf-
fic, can lead to the development of new business models, besides assuring the QoS
needed for critical and real-time applications and helping to implement security
measures to protect the network users. Accurate mechanisms for traffic classifi-
cation will allow ISPs to charge for specific services, e.g., VoIP communications,
IPTV or torrent downloads. Instead of simply charging for the Internet access and
offering all services within a single package at a unique price, ISPs will be able
to provide a more granular panoply of service level agreements, on an on-demand
basis [14].

2.1 The Effect of Peer-to-Peer Traffic in Computer Networks

Although the original and naive conception of the Internet laid on a distributed net-
work paradigm, in which every node should had the ability to perform both roles of
client and server, its architecture evolved almost completely to the one of centralised
systems. For such reason, Internet traffic lost its symmetry and became characterised
by a large difference in the amount of data sent in upstream and downstream: in
upstream, traffic consists mainly of small requests; while in downstream, the trans-
mitted data is mostly related with the contents provided by a server. For several
years, world wide web and e-mail, which are based in the client-server paradigm,
were the most used services of the Internet, motivating the asymmetry trend of its

The Nature of Peer-to-Peer Traffic 1235

traffic. Naturally, computer networks were gradually redesigned while taking into
account the assumption that the amount of data sent in upstream would be consid-
erable smaller than the one transmitted in downstream.

The unfolding of the P2P paradigm, and the appearance of several tools based
on it, changed the way Internet is used, inspiring a return to its origins. Users are
now able to easily communicate with each others directly, offering services and
requesting them. However, the changes brought by the new architecture influenced
networks in different levels. (Notice that the terms upstream and downstream will
be used, in this chapter, to refer to the data transmission from the client to the server
and vice-versa, respectively.)

2.1.1 Consumption of Resources

The proximity between users of P2P systems was primarily used to directly ex-
change contents (data) between themselves, giving rise to several file-sharing sys-
tems, which rapidly became standard for sharing large multimedia contents. The
simplicity in accessing and searching for contents increased largely the amount of
information shared and transmitted between users.

At the same time, several communication tools for VoIP, IM or video calls were
developed based in P2P platforms. These applications, especially the ones used for
VoIP and video calls, are eager resource consumers, not only because of the large
amounts of data they generate, but also because such traffic needs to be processed
quickly, as it results from real-time applications.

Although at the beginning P2P platforms were mainly used for the illegal shar-
ing of multimedia contents, recent Internet services are using P2P based tools as
cheap means for providing their contents. Such fact is especially actual for video
distribution. IPTV systems like Joost [3], BBC iPlayer [1] or Miro [4] take advan-
tage of the P2P architecture to provide video over Internet Protocol (IP), without the
need to have powerful centralised servers or high bandwidth Internet connections.
Indeed, P2P platforms allow providers to use the resources of their clients to dis-
tribute contents to others alike. In opposition to what happens in the client-server
architecture, where each additional client represents an added cost to the provider,
in P2P systems each new client increases the capacity and the available resources
of the network. Consequently, the dual role played by the nodes in a P2P system
consumes an extremely large portion of bandwidth, when compared with the usual
clients in client-server architectures. Moreover, the real-time nature of most P2P ap-
plications requires more network resources than other widely used Internet services,
like web or e-mail. In addition, several studies show that P2P applications are nowa-
days responsible for the biggest portion of the traffic in LANs [18, 22, 27, 34]. As a
consequence, when used in an abusive way, P2P software generates large amounts
of traffic which can influence negatively the traffic of the remaining applications,
affecting, in this way, the QoS required by other real-time or critical services run-
ning over the network. This problem is decisively contributing for the unpopularity
of P2P traffic among many ISPs and network administrators.

1236 J. Gomes, P. Inácio, M. Freire, M. Pereira and P. Monteiro

Sharing distribution costs between clients has obvious advantages for content
providers. However, that cost is supported by the ISP of each user. When the con-
tents are massively distributed to several users, the impact in ISPs networks can be
highly significant. A meaningful example of this problem is the BBC iPlayer, which
is being largely used, threatening the networks availability. As a consequence, ISPs
are suggesting that BBC and other content providers should share the costs of in-
creasing the overall Internet capacity [32].

2.1.2 Traffic Asymmetry

Although most of the reasons why ISPs fear P2P applications are related with the
amount of traffic they generate, some of them stem from its symmetric nature, which
probably represents their biggest challenge. Actually, one of the most direct effects
of P2P applications in the traffic of computer networks is the destruction of the traf-
fic asymmetry assumption inherited from the client-server models. In the communi-
cations used by typical Internet services like web or e-mail, the traffic generated in
upstream is considerable lower than the one transmitted in downstream, creating the
assumption that the traffic in computer networks is asymmetric. Networks were thus
designed taking that fact into consideration and support nowadays higher debit rates
in downstream than in upstream. Nevertheless, P2P applications increased the traf-
fic generated in upstream by the network nodes. As so, administrators and ISPs face
nowadays a problem for which their networks are not prepared. The referred prob-
lem gains special emphasis in access networks, for which the available bandwidth
in upstream is typically not enough to handle the traffic generated by the growing
number of P2P applications.

2.1.3 Peer-to-Peer Inside Organisations

Many P2P tools employ evasive techniques to prevent the identification of their
traffic (see Section 2.2). Although many companies implement several restrictions
regarding the usage of P2P applications by their collaborators, they are unable to
actually prohibit their utilization and block their traffic. As a result, several problems
threat the health of the internal network.

Similarly to what happens in other contexts (see Section 2.1.1), the excessive
consumption of resources can affect network availability, preventing the normal op-
eration of legitimate applications inside a given organisation. However, there are a
few threats that are specifically problematic for an organisation. The easiness P2P
applications have to establish connections to other nodes, even when they are be-
hind a gateway or a firewall, can open a security breach and render the network
vulnerable to virus, worms and other security threats; it may also ease the exposure
of confidential data to external entities [21]. Moreover, the existence of contents
protected by copyright laws (which are commonly shared using P2P applications)
in machines within the network of the organisation may raise legal issues.

The Nature of Peer-to-Peer Traffic 1237

In some situations, VoIP applications may also raise additional problems for
organisations, for it is not yet clear if VoIP applications should be seen and paid
as telephony services, comparable to the usual telecommunication companies ser-
vices [17, 26]. Thus, it is likely to think that common contracts between organ-
isations and telecommunication companies with a clause for exclusivity may be
compromised by the usage of VoIP applications.

2.1.4 Network Security

The virtual proximity that P2P systems offer to users, which basically allows simple
and fast exchange of contents, brought also new security challenges for computer
networks. The dissemination of virus, worms and other threats is easier than ever.
And, more importantly, as it was described in a previous section, many P2P appli-
cations are used inside private networks, opening a hole in the internal security. In
order to be seen as feasible solutions for content distribution, applications based in
P2P architectures should consider all the security issues they may lead to, and be
able to overcome the problems they can raise.

As any tool that allows data exchanging (e.g., e-mail), P2P systems may be the
vehicles for the exploitation of several security flaws, even if inadvertently. How-
ever, in the case of P2P applications, this fact is specially problematic. Since the
traffic they generate is now intentionally disguised to avoid monitoring systems, the
shared contents are even harder to control, effectively decreasing the security level
of a terminal machine or even of the entire network. Furthermore, the data received
by a machine remains accessible to other users, easing diffusion of infections. In
fact, some studies show that P2P users usually let the client software running even
when they are not sit in front of the computer. During that period, the activities of
the P2P client are not being directly monitored by the user, increasing the risk of
abuse [21].

Skype is usually considered a good case study for security issues related with P2P
applications. Its traffic is encrypted using a closed and proprietary algorithm, which
turns its analysis and detection harder to perform. Moreover, Skype implements
techniques to avoid detection mechanisms and Network Address Translation (NAT)
issues, or even to establish connections behind a firewall. Consequently, and since
most of the applications like Skype also allow file transferring between users, such
data will not be analysed by any security or monitoring mechanism, neither blocked
by a firewall. As so, they can open a hole in the network, through which it may be
easier to pass malicious data into the system.

VoIP and IM applications are also threaten by the typical security challenges most
communication tools face: authentication, non-repudiation, confidentiality, commu-
nication security, integrity, availability, privacy or anonymity [26]. Additionally, P2P
architectures often use the concept of supernode to surpass NAT firewalls (which
basically means that the traffic between two nodes is be forward through an inter-
mediate note), being thus unclear if the referred tools are protected against man-in-
the-middle attacks, in most of the cases.

1238 J. Gomes, P. Inácio, M. Freire, M. Pereira and P. Monteiro

2.2 Making Peer-to-Peer a Practicable Solution: Traffic
Classification

Even though P2P applications may negatively impact computer networks (as ex-
plained in the previous section), they are also seen as an effective solution for dis-
tributed content delivering [11]. To be able to sustain the impact of P2P traffic,
networks should be strictly managed, which involves shaping and prioritising the
entire set of flows so as to distribute the available bandwidth fairly, while having
into account the needs of each traffic class. Achieving such purpose requires accu-
rate classification mechanisms, that can identify what application or traffic class a
certain packet or flow belongs to.

The traffic classification used to be made by recurring to the port numbers of
the transport layer protocol of a given connection. Typically, each protocol was def-
initely associated with a given port number (e.g., ports 80 and 25 were normally used
by Hypertext Transfer Protocol (HTTP) and Simple Mail Transfer Protocol (SMTP)
traffic, respectively). However, these simple classification mechanisms were easily
bypassed using random port numbers, or even port numbers commonly used by
other well known protocols. Notwithstanding the fact that some applications (e.g.,
MSN messenger) do not intend to hide their traffic, turning simple its detection and
classification, most P2P applications integrate evasive techniques to avoid detec-
tion mechanisms and disguise their behaviour. Some of them implement measures
to obfuscate their protocol as a response to the prohibitive rules some ISPs settled
to block protocols like BitTorrent or eMule. Hence, several classification methods
to detect traffic from P2P protocols have been developed, elaborating on the most
diverse approaches. The techniques used by these classification systems are usu-
ally divided into two different groups, which will be described in the subsequent
sections: DPI [14, 22, 29, 33] and classification in dark [10, 13, 16, 23, 24, 30].

2.2.1 Deep Packet Inspection Methods

After the adoption of random port numbers in the P2P connections became a com-
mon feature, the most obvious manner to understand what type of data a certain
packet carries was to look deep into the packet payload and try to recognise patterns
that are common to the traffic of a certain protocol. Based on this idea, DPI meth-
ods try to find data signatures within the packet payload and compare it against a
database containing well known signatures from several protocols.

Figures 1 and 2 present examples of data signatures used to identify HTTP and
SMTP traffic, respectively. A screenshot of the popular network protocol analyser
tool Wireshark [8] is shown in Fig. 1, depicting the deep analysis of one packet
classified as HTTP traffic. It is possible to observe that different protocols from
layer 2 to layer 7 were identified by the tool: Ethernet, IP, Transmission Con-
trol Protocol (TCP) and HTTP. In the bottom of the image, one may find the

The Nature of Peer-to-Peer Traffic 1239

Fig. 1 Example of a signature used by Wireshark to identify an HTTP packet

<protocol name="smtp" longname="SMTP (Simple Mail Transfer
Protocol)" showsumtemplate="smtp">
<execute-code>
<verify>
<if expr="hasstring($packet[$currentoffset:0], ’ˆ220[\x09-\x0d -˜]*
(e?smtp|simple mail)|ˆ(HELO|EHLO) .*\x0d\x0a’, 0)">
<if-true>
<assign-variable name="$protoverify_result" value="%FOUND"/>

</if-true>
</if>

</verify>

Fig. 2 Part of the rule included the XML file containing the NetPDL database used to identify
SMTP traffic recurring to DPI methods

hexadecimal representation of the first 96 bytes of the packet. The bytes highlighted
are the ones used as the packet identification, which ultimately points it as belonging
to HTTP traffic. In Fig. 2, it is represented part of the rule used to identify SMTP
traffic, which belongs to an eXtensible Markup Language (XML) file containing the
NetPDL database used by the NetBee library [7]. This rule is written using the Net-
PDL [5] language. In some solutions, Intrusion Prevention and Detection Systems
(e.g., Snort [6]) are also used as a platform to implement the rules and deeply inspect
the traffic.

DPI methods are known by their accuracy, as they are based in the data carried by
the packets. Their precision is motivating the development of new and more sophisti-
cated DPI mechanisms which open the way for the new business opportunities [14].
Nevertheless, there are also a few important drawbacks associated with these kind
of techniques. Since the classification is achieved recurring to the data encapsulated
in the deepest part of a packet contents and to a potentially large database of signa-
tures, they are useless in the cases where the payload is encrypted (e.g., Skype) or
when no suitable string pattern has been devised yet. Moreover, string matching is
done by sliding each of the signatures through the entire payload, as some of them
may appear anywhere within it. Therefore, DPI methods are not able to process
huge amounts of traffic in high-speed networks [37], at least not without recurring
to expensive equipments for parallel processing.

1240 J. Gomes, P. Inácio, M. Freire, M. Pereira and P. Monteiro

2.2.2 Classification in the Dark

Since looking deep into the contents of the packets is not always a feasible option,
new methods for traffic classification have been developed, using behavioural char-
acteristics of the traffic. These kind of approach is known as classification in the
dark as it does not access the data within the packets. Most classification in the dark
mechanisms use generic characteristics like the number of active connections, the
inter arrival times between packets, the number of different hosts to which a node is
connected, the average value of the packet sizes, the bandwidth usage ratio between
upstream and downstream traffic, etc. Typically, the existent methods correlate sev-
eral combinations of these properties using different tools or measures. Most of
them implement several heuristics that are tested sequentially. As a packet or a flow
matches (or not) each one of the heuristics, so it is classified as belonging (or not) to
a certain protocol. In the literature, it is also possible to find mechanisms that recur
to Naı̈ve Bayes and clustering techniques to associate a set of traffic properties to an
application or protocol.

Additionally, active methods are also described as an alternative for traffic clas-
sification without deep inspection of the packets. Such mechanisms are especially
suitable to identify hosts using a specific application or, e.g., users that are proba-
bly requesting or sharing illegal contents. The idea behind this approach is to run
a fake instance of the application one wants to detect and identify which hosts try
to connect or request services from it. By analysing and gathering the information
about the identified peers, it is possible to reconstruct the underlying P2P topology
and, indirectly, classify the traffic exchanged between those hosts as belonging to
the same protocol of the fake instance.

Classification in dark mechanisms are not so accurate as DPI methods because
they do not known, directly, what data is inside the packets. If well implemented and
supported in a reasonable assumption, it is only possible to make a (strong) suspi-
cion about their contents. Nevertheless, the behaviour-based methodologies can be
extremely useful when the packet payload is encrypted, or when the deep inspec-
tion of all the packets represents a rather expensive task, in terms of computational
requirements. Both approaches should be implemented cooperatively in order to
perform an accurate and efficient traffic analysis.

3 Peer-to-Peer Traffic Characterisation

The P2P architecture provides important features for service and content delivery
that can help to reduce its inherent costs and improve the performance of the net-
working systems. Although ISPs fear it and try to avoid it, the usage of P2P ap-
plications have been increasing each day. Therefore, it is important to design and
prepare computer networks to support and minimise the impact of P2P traffic. To
do so, it is necessary to understand its specific properties and its behaviour. Such
knowledge helps developing accurate methods for traffic classification, which are

The Nature of Peer-to-Peer Traffic 1241

used to control the network traffic and implement a more fair and efficient band-
width sharing policy. Moreover, basing the classification mechanisms in the deep
nature of P2P traffic will turn them more difficult to be avoided.

In the following sections, several behavioural characteristics, observed in the traf-
fic generated by P2P applications, are discussed. Most of them are consequence of
the P2P nature, others result from properties that are typical of particular P2P tools.

3.1 Generic Properties of Traffic from Peer-to-Peer Protocols

The P2P paradigm is mainly singled by the dual role of the network nodes, acting
both as client and server. This singularity and the way it is used by P2P tools are
responsible for several specific details reflected in the traffic behaviour. Actually,
when observing P2P traffic, one may notice the presence of nodes acting, at the
same time, as servers and as clients [13, 24]. The simplest way to observe such
behaviour is by identifying, for each active connection, which node has started it (the
one requesting the service) and which node has acknowledged it (the one providing
the service). A more efficient approach would be to analyse which port numbers
are being used by the active connections. One should expect that a node acting as a
server has several connections using the same port number, as it is likely providing
the same service to several clients. Using the same principle, a node acting as a
client should have several connections established using different port numbers, as
it is requesting services from various servers.

Several studies [13, 23, 24, 30] also showed that, frequently, P2P applications
use parallel connections for the same source-destination IP addresses pair, using
both TCP and User Datagram Protocol (UDP) protocols. UDP is a low-overhead
transport layer protocol, useful for spreading queries and status. TCP, by its turn,
due to its reliability, is used for content delivering.

As it was previously explained, P2P architecture brings users closer to each other,
being each of them able to provide and request services to and from the others. Con-
sequently, traffic generated by nodes running P2P applications is mostly dominated
by the existence of several active connections, most of the times, established with
distinct IP addresses. Moreover, they often create some sort of communities whose
members run the same P2P application, establishing several connections between
themselves [24]. The concept of network diameter appears in a few studies, which
conclude that connections established between peers form a network whose diame-
ter is larger when its nodes are running P2P applications [13]. The network diame-
ter is, in this context, defined as the maximum of the shortest distances (number of
hops) between all the nodes in the network.

The traffic from a node using P2P tools also presents specific properties regarding
the active connections. Usually, the number of distinct IP addresses to which the
node is connected to is equal to the number of distinct port numbers used for the
connections [22–24]. In some P2P networks, a distinct port number is used for each
connection established with other peer.

1242 J. Gomes, P. Inácio, M. Freire, M. Pereira and P. Monteiro

The real-time prerequisites of many P2P applications is also noticed in the traffic.
Although it is not an exclusive property of this class, P2P traffic usually presents a
high percentage of TCP packets marked with the PUSH tag.

In [24], the authors present non-payload or failed flows as a common (and side)
effect of P2P applications. They state that clients usually try to connect to other
nodes that have already disconnected from the network. Additionally, a few P2P ap-
plications encrypt the packet payload. Although it is not a truly behavioural pattern,
such fact also produce an effect in the traffic. Consequence of the encryption func-
tion, packet payload is extremely heterogeneous, which can be used as a pattern for
some P2P protocols [12, 15].

Many P2P protocols use HTTP connections during their operations. Although
such traffic is, for all it counts, HTTP traffic and therefore classified as so, its true
nature is the one of P2P traffic, thus presenting properties related with this paradigm.
The typical difference between HTTP traffic resulting from web activities and from
P2P applications is that web servers use several concurrent connections in order
to transfer different web pages elements (text, images, sounds, ect.), while content
distribution between peers consists mainly on consecutive connections [30].

3.2 Analysing Peer-to-Peer Traffic Behaviour

The traffic characteristics described in the previous section are present in traffic from
most P2P protocols. Yet, some of those properties, like the concurrent use of UDP
and TCP, can be changed by the applications with (almost) no performance lost. It
is likely that some of them will be changed with the evolution of the protocols and
with the adoption of P2P platforms for new services.

In [19, 20], we have analysed traffic from different P2P and non-P2P applica-
tions. Since the main purpose of the work was to identify the most deep nature
of P2P behaviour, the traffic was captured in the source at the initial phase of the
project, near the application user. They analysed traffic from the following applica-
tions or services: web browsing, HTTP download, live streaming, streaming down-
load, Secure File Transfer Protocol (sFTP), e-mail, eMule, BitTorrent, Direct Con-
nect ++ (DC++), MSN, Skype and Google Talk. The expression HTTP download
will be use to refer to the long download of a file, using the HTTP protocol.

Normally, P2P applications are not used to establish one connection and ex-
change one file with a single peer only. The multiple connections between peers
and variety of contents and services they exchange are patterns that influence the
traffic. Moreover, as consequence of their viral nature, most P2P services, e.g., file-
sharing systems, need to perform several control operations (e.g., search for con-
tents, spreading lists of available contents, requests, responses) which are respon-
sible for specific characteristics of the traffic. Moreover, some of the applications
based on P2P architecture have a strong real-time nature and their traffic is, most
of the times, considered as urgent. For instance, packets from VoIP traffic must be

The Nature of Peer-to-Peer Traffic 1243

processed and sent almost in the same moment they are generated, for the sake of
the quality of the voice service.

In the study describe in [19, 20], authors noticed that the aforementioned prop-
erties influence the packet sizes of the traffic generated by P2P applications. Some
studies have already considered the packet sizes, using their distribution to build a
traffic model or to define a range of values for a specific protocol. Nonetheless, in
this case, the authors state that it is the heterogeneity of the packet sizes values that
can reveal the use of P2P traffic, not its approximate distribution. In this context,
the size of one unique packet, individually, is completely useless, independently if
it is large or small. Figure 3 depicts the packet sizes for traffic generated by four
different applications: one traditional non-P2P service (HTTP download); one file-
sharing application (DC++); and two common applications used for a VoIP call (i.e.,
MSN and Skype).

Fig. 3 Representation of the evolution of the packet sizes, in a size versus time chart, for traces
containing traffic from HTTP download, DC++, MSN VoIP and Skype VoIP

As one can observe, the traffic generated by the HTTP download is, in terms
of packet sizes, extremely homogeneous, being almost completely characterised by
two types of packets: the small sized packets concerning acknowledge messages;
and the large sized packets, limited by the maximum size allowed by the lower pro-
tocols, which carry the data belonging to the file being downloaded. In the case of
DC++, the set of packet sizes is more heterogeneous, being constituted by packets
with several sizes comprehended between the maximum size and the size of the
fixed minimum value for that aspect. This evidence is due to the diversity of control

1244 J. Gomes, P. Inácio, M. Freire, M. Pereira and P. Monteiro

operations and to the multiple concurrent connections, which may be using distinct
routes with different packet size limits (i.e., different path Maximum Transmission
Unit). VoIP traffic is constituted by smaller packets but the distribution of their sizes
is extremely heterogeneous. This heterogeneous property is easily understood if one
takes into consideration it results from voice traffic, whose packets have to be cre-
ated and immediately sent. It is not possible to wait for the packet to have the largest
size allowed by the lower protocols. Variable bit rate codecs shape the human voice
into variable size packets.

The cases presented herein are illustrative examples of the conclusions the au-
thors have reached. The same analysis was made for all the traffic traces considered
and the results were consistent with such conclusions: traffic from P2P applications
is formed by packets whose sizes belong to a more heterogeneous set when com-
pared with the traffic from non-P2P applications. The packet size heterogeneity is a
pattern that results from the most deep nature of P2P traffic. In fact, such behaviour
is not easy to be modified without disturbing the normal functioning of the underly-
ing application and, especially, without decreasing its performance and QoS.

3.3 Entropy as a Measure of Heterogeneity

Before proceeding, it is of the opinion of the authors that it is important to explain
the concept of Entropy and of its interpretation in the scope of this chapter. Although
Entropy may be interpreted from different perspectives, in the scope of this work,
it is the definition of the information theory [35], which describes it as a measure
of the uncertainty of a given random variate, that will be used. Herein, its value is
seen as possible concretisation of the level of heterogeneity of the variable under
analysis. It is important to retain that, the entropy value increases as the domain of
occurrences of the variable (to which the referred statistic is applied to) gets more
dispersed. The formal description of Entropy is given by expression (1) and denoted
by H(n), where n represents the number of values in the observation pool, and p(xi)
denotes the probability of occurrence of a given value xi. It should be noticed that
the maximum value the entropy can attain is given by H(x) = ln(n).

H(X) =−
n

∑
i=1

p(xi) ln(p(xi)) (1)

3.4 Capturing the Nature of Peer-to-Peer Traffic

Saying that P2P traffic is heterogeneous, in what concerns the packet sizes, can be
excessively vague, or even meaningless, to be useful for network design or manage-
ment. It is thus necessary to define a method for quantifying such level of hetero-
geneity. From now on in this chapter, the terms heterogeneous and homogeneous,

The Nature of Peer-to-Peer Traffic 1245

when applied to computer networks traffic, will be used to refer the heterogeneity
or homogeneity of the packet sizes.

The authors suggest the use of entropy as a way to measure the level of het-
erogeneity of the traffic [19, 20]. The entropy value can then be used for P2P traf-
fic characterisation and network management. Nonetheless, measuring the entropy
for an increasing or an extremely large set of packets tends to produce a smooth
result, and not reflecting the small changes occurred along a given trace. The re-
sponsible for this problem is the Law of Large Numbers. Calculation of the en-
tropy in a real-time and point-by-point basis is computationally expensive (O(n2)
algorithm) and produces an evolution curve that converges to an expected value, as
the number of samples analysed increases, gradually losing the sensitivity to small
changes. Therefore, the entropy was calculated for a small set with a fixed num-
ber of packets. By implementing a sliding window mechanism that processes the
traffic trace sequentially and in a packet-by-packet manner, it is possible to obtain

Table 1 Average value of the entropy calculated for each one of traces, using a window size of
100 values and separating the traffic by the direction of the flows.

Downstream Upstream

Traffic Entropy average Traffic Entropy average

Skype VoIP 1 3.729 Skype VoIP 2 3.890
Skype VoIP 2 3.698 Skype VoIP 1 3.762
MSN VoIP 1 3.260 Google Talk VoIP 3.725

Google Talk VoIP 2.855 MSN VoIP 1 3.238
eMule download 2 2.498 Skype IM 2 2.667

DC++ download/upload 2.377 Skype IM 1 2.451
BitTorrent 2.273 MSN IM 1 2.261

Skype IM 2 2.153 MSN IM 2 2.221
eMule download 1 2.141 eMule upload 2 2.111

MSN IM 1 1.959 eMule upload 1 2.023
Skype IM 1 1.886 Google Talk IM 1.980

eMule upload 1 1.843 eMule download 2 1.889
Google Talk IM 1.810 MSN VoIP 2 1.854

MSN VoIP 2 1.740 sFTP download 1.484
MSN IM 2 1.612 BitTorrent 1.459

web browsing 1.427 eMule download 1 1.410
eMule upload 2 1.334 DC++ download/upload 1.369

Live Streaming 1 1.278 web browsing 1.287
sFTP download 1.004 Live Streaming 2 1.243

Live Streaming 3 0.772 Live Streaming 1 1.143
Live Streaming 2 0.639 sFTP upload 1.002

sFTP upload 0.552 HTTP download 2 0.752
HTTP download 4 0.352 HTTP download 4 0.578

Streaming download 0.282 Mail upload 0.511
HTTP download 3 0.175 HTTP download 3 0.252
HTTP download 2 0.073 Live Streaming 3 0.218

Mail download 0.050 Mail download 0.035
Mail upload 0.040 HTTP download 1 0.014

HTTP download 1 0.014 Streaming download 0.007

1246 J. Gomes, P. Inácio, M. Freire, M. Pereira and P. Monteiro

one entropy value for each window step in an efficient manner. In each step, the
oldest value in the window is pushed out; while the new one is inserted into the
window.

By applying this method to the traces containing the traffic from different classes,
it is possible to assess the heterogeneous (or homogeneous nature) of each one of
them [19, 20]. The authors noticed that the traffic from P2P traffic (as it is more
heterogeneous) presents higher entropy value when compared with the traffic gen-
erated by the non-P2P applications. Consider observing Fig. 4 to obtain a graphical
example of these words, and notice the evolution curve of the entropy value for three
illustrative applications: a non-P2P service (streaming download), a P2P file-sharing
tool (DC++) and a VoIP call using P2P system (MSN). The non-P2P application has
an entropy value extremely close to zero; in the case of the VoIP application, the en-
tropy values are very high in almost all the represented window steps; while in the
case of the file-sharing application, the entropy is high, though not so high as for
the VoIP traffic. Identical results were obtained for traffic from other applications
belonging to the same classes.

Fig. 4 Comparison of the entropy value, calculated for a window of 100 packets, between traffic
from streaming download, DC++ and MSN VoIP.

In order to provide this explanation with a generic perspective of the entropy
levels reached by each traffic class, the authors calculated the average of all the in-
termediate entropy values for each traffic trace and organised such information in
Table 1 [19, 20]. It is possible to see that applications implemented over P2P plat-
forms (the cells are highlighted in the table), are almost perfectly organised in the
top of the table, as they synthesise the most heterogeneous traffic. It is interesting
to notice that the VoIP applications appear in the first rows of the table, showing
the highly entropic (regarding the packet sizes) patterns by which this type of ap-
plications is characterised. Such remark is especially valid for the traces containing
Skype traffic, which present the highest value for the average.

The authors have also noticed that even when P2P traffic is mixed with traffic
from non-P2P applications, the level of heterogeneity of the size of its packets if
kept (though weaker), holding the entropy value sufficiently high to reveal the pres-
ence of P2P traffic. In Fig. 5, it is possible to observe that the presence of P2P traffic
increases the overall entropy value. Even when a high rate HTTP download is in-
jected in the trace, entropy remains sufficiently high to suspect of the presence of

The Nature of Peer-to-Peer Traffic 1247

P2P traffic. In the moment when all P2P applications stop running, the entropy value
decreases to near zero values. Analyses performed using different combinations of
traffic classes revealed precisely the same behaviour [19, 20]. The usage of P2P ap-
plications raises the overall entropy value of the respective traffic. When non-P2P
applications are run during simulation time, it is still possible to notice the presence
of P2P traffic, even when their traffic dominates the bandwidth. When only non-P2P
are being used, the entropy value decrease to near zero.

Fig. 5 Evolution of the entropy value for traffic from several applications, calculated using a win-
dow size of 100 packets

4 Inside a Network: Using Behavioural Characteristics
to Identify Peer-to-Peer Traffic

The importance that the responsible usage of P2P applications (and their traffic con-
trol) has for the health of computer networks, motivates the analysis of different
behavioural properties of P2P flows, and the development of methods for its clas-
sification. Nevertheless, behaviour based mechanisms should not be seen as an al-
ternative to DPI methods. The latter are characterised by the superior accuracy of
their results, when compared to the methods based in traffic behaviour. As it was
further explained in Section 2.2, each of both approaches has advantages in specific
contexts. In order to improve the effectiveness of the whole monitoring device of a
network, the cooperation between DPI mechanisms and methods for classification
in the dark should be maximised by identifying in which cases each of them should
be used.

The implementation of the monitoring system should, for that reason, consider
a few important issues regarding the use of DPI and behaviour based methods.
Depending on the network context, it is important to discuss if both mechanisms
should operate concurrently or sequentially and, in the latter case, if the DPI meth-
ods should be used before or after the classification in the dark mechanisms.

1248 J. Gomes, P. Inácio, M. Freire, M. Pereira and P. Monteiro

In a few cases, like the ones were the packet payload is encrypted, or the traffic is
generated by a new or unknown P2P protocol, for which no data signature is known
yet, DPI methods are completely useless. In such context, a strong suspicion about
the nature of the traffic can be extremely helpful for network management. There-
fore, the behavioural analysis may prove itself useful when the DPI classification is
not returning a satisfiable result (such case is represented in Fig. 6).

Fig. 6 Logical scheme of a
traffic classifier where be-
havioural methods are used
only in the cases where the
DPI mechanism is unable to
identify the traffic

Another problem associated with the DPI techniques is related with the strict
trade-off between efficiency and computational power, which ultimately results in
a weak scalability factor, and the consequent impossibility to inspect traffic in high
rate links, as it requires the comparison of the packet payload against a large signa-
tures database. Furthermore, in some cases, it is not possible to know in what part of
the payload such patterns appear a priori, nor if it is required to first reconstruct the
fragmented application level flow to find them. In this context, a suspicion about the
data carried in the packets may not disclose the exact category of the flow, but it can
be an essential input for further inspection mechanisms, e.g., giving a strong hint
about what kind of signatures or in what place inside the packet the latter should
look for (see Fig. 7).

Fig. 7 Logical scheme of a
traffic classifier using DPI and
behaviour based approaches.
In this case, the information
retrieved by the behavioural
methods is used to improve
the results and the perfor-
mance of the DPI mechanism

In some situations, it may also be useful to perform both analysis in parallel.
For instance, some protocols try to disguise their traffic by making it to look like
it belongs (or was generated) by another protocol. It is also common to find P2P

The Nature of Peer-to-Peer Traffic 1249

protocols that are based on (or built on top of) other application protocols, like
HTTP. In such case, it is possible that the traffic generated by some P2P applications
is classified as being e.g., HTTP traffic, effectively hiding their true nature to the
monitoring system. In this context, it would be interesting to perform both types of
analyses concurrently and use the two results to identify the true nature of the traffic,
as depicted by Fig. 8.

Fig. 8 Logical scheme of a
traffic classifier using DPI and
behaviour based approaches
in a concurrent manner. In
this case, the knowledge
concerning the traffic na-
ture provided by the two
methodologies is used si-
multaneously to classify the
traffic

5 Summary

The P2P architecture presents important advantages for computer networking, offer-
ing users the possibility to exchange contents easily and allowing content providers
to deliver their services without having to support the high costs of powerful cen-
tralised systems. However, the impact P2P applications have in computer networks
is not always welcomed by administrators and ISPs. As a consequence, the latter
have to consider the option to block or limit such traffic, forcing the developers
of P2P applications to respond by implementing techniques to avoid the detection
mechanisms.

This cat and mouse game ends up undermining mechanisms which were ad-
vantageous for both content providers and ISPs. Content caching, which helps to
increment the performance of P2P file sharing systems and reduce the costs sup-
ported by the ISPs [31], will be hardly useful if the packet payload is encrypted
or if the protocol is disguised. The proliferation of P2P applications in the last
few years show that they are not in the verge of disappearing and, as so, it be-
comes critical to foment the idea of coexistence and find some room for them in
the network. A few projects for collaboration between ISPs and P2P applications,
e.g., Proactive network Provider Participation for P2P (P4P) [36], are already being
developed.

For all these reasons, it is important to understand the nature of P2P traf-
fic, and gather the essential knowledge that enables one to design computer net-
works which are prepared to support the impact of P2P applications. It is equally

1250 J. Gomes, P. Inácio, M. Freire, M. Pereira and P. Monteiro

important to develop efficient monitoring systems capable of controlling such traffic
in real-time.

Acknowledgement

This work was supported by Fundação para a Ciência e a Tecnologia, Portugal,
through the grant contracts SFRH/BDE/15592/2006, SFRH/BDE/15643/2006 and
PTDC/EIA/73072/2006 TRAMANET: Traffic and Trust Management in Peer-to-
Peer Networks, Nokia Siemens Networks Portugal S.A., Portugal and University of
Beira Interior, Portugal.

References

1. BBC iPlayer. URL http://www.bbc.co.uk/iplayer/. Last access at August 20th,
2008

2. Dailymotion – Share Your Videos. URL http://www.dailymotion.com. Last access
at August 8th, 2008

3. Joost – Free online TV. URL http://www.joost.com. Last access at August 20th, 2008
4. Miro – free, open source internet tv and video player. URL http://www.getmiro.com.

Last access at August 20th, 2008
5. NetPDL Language Specification. URL http://www.nbee.org/doku.php?

id=netpdl:index. Last access at August 7th, 2008
6. Snort – the de facto standard for intrusion detection/prevention. URL http://www.

snort.org. Last access at November 30th, 2008
7. The NetBee Library. URL http://www.nbee.org/doku.php. Last access at August

7th, 2008
8. Wireshark: Go deep. URL http://www.wireshark.org. Last access at August 7th,

2008
9. YouTube – Broadcast Yourself. URL http://www.youtube.com. Last access at August

8th, 2008
10. Bernaille, L., Akodkenou, I., Soule, A., Salamatian, K.: Traffic Classification On The Fly.

ACM SIGCOMM Computer Communication Review 36(2), 23–26 (2006)
11. Blau, J.: Europe Looks for a Peer-to-Peer TV Alternative (2008). URL http://www.

spectrum.ieee.org/apr08/6119. Last access at June 26th, 2008
12. Bonfiglio, D., Mellia, M., Meo, M., Rossi, D., Tofanelli, P.: Revealing Skype Traffic: When

Randomness Plays with You. In: Proceedings of the ACM SIGCOMM 2007 Conference
on Applications, Technologies, Architectures, and Protocols for Computer Communications,
pp. 37–48. ACM Press, New York, NY, USA (2007)

13. Constantinou, F., Mavrommatis, P.: Identifying Known and Unknown Peer-to-Peer Traffic.
In: Proceedings of Fifth IEEE International Symposium on Network Computing and Applica-
tions, pp. 93–102 (2006)

14. Crawshaw, J.: Deep Packet Inspection: Taming the P2P Traffic Beast. Ligth Reading Insider
6(7) (2006)

15. Dhamankar, R., King, R.: Protocol Identification via Statistical Analysis (PISA). White Paper,
Tipping Point (2007)

The Nature of Peer-to-Peer Traffic 1251

16. Erman, J., Mahanti, A., Arlitt, M., Williamson, C.: Identifying and Discriminating Between
Web and Peer-to-Peer Traffic in the Network Core. In: Proceedings of the 16th International
Conference on World Wide Web, pp. 883–892. ACM Press New York, NY, USA (2007)

17. Finnish Communications Regulatory Authority: Decision of the Finnish Communi-
cations Regulatory Authority on Compliance with Law of the Sonera Puhekaista
Service (2003). URL http://www.ficora.fi/attachments/englanti/
1156489127354/Files/CurrentFile/SoneraPuhekaista.pdf. Last access at
August 2nd, 2008

18. Gerber, A., Houle, J., Nguyen, H., Roughan, M., Sen, S.: P2P The Gorilla in the Cable. In:
National Cable & Telecommunications Association (NCTA) 2003 National Show. Chicago,
IL (2003)

19. Gomes, J., Inácio, P., Freire, M., Pereira, M., Monteiro, P.: Capturing the Nature of Peer-to-
Peer Traffic Using Fast Entropy Analysis. Submitted for publication

20. Gomes, J., Inácio, P., Freire, M., Pereira, M., Monteiro, P.: Analysis of Peer-to-Peer Traffic
Using a Behavioural Method Based on Entropy. In: Proceedings of the IPCCC 2008, IEEE
International Performance Computing and Communications Conference (2008)

21. Johnson, M.E., McGuire, D., Willey, N.D.: The Evolution of the Peer-to-Peer File Sharing
Industry and the Security Risks for Users. In: Proceedings of the 41st Hawaii International
Conference on System Sciences, pp. 383–383. IEEE Press, Waikoloa, HI, USA (2008)

22. Karagiannis, T., Broido, A., Brownlee, N., Claffy, K., Faloutsos, M.: Is P2P Dying or Just Hid-
ing. In: Proceedings of the IEEE GLOBECOM ’04 Global Telecommunications Conference,
vol. 3, pp. 1532–1538 (2004)

23. Karagiannis, T., Broido, A., Faloutsos, M.: Transport Layer Identification of P2P Traffic. In:
Proceedings of the 4th ACM SIGCOMM Conference on Internet Measurement, pp. 121–134.
ACM Press New York, NY, USA, Taormina, Sicily, Italy (2004)

24. Karagiannis, T., Papagiannaki, K., Faloutsos, M.: BLINC: Multilevel Traffic Classification in
the Dark. In: Proceedings of the ACM SIGCOMM ’05 Conference on Applications, Tech-
nologies, Architectures, and Protocols for Computer Communications, vol. 35, pp. 229–240.
ACM Press New York, NY, USA, Philadelphia, Pennsylvania, USA (2005)

25. Karagiannis, T., Rodriguez, P., Papagiannaki, K.: Should Internet Service Providers Fear Peer-
assisted Content Distribution? In: Proceedings of the 5th ACM SIGCOMM Conference on
Internet Measurement, pp. 1–14. ACM, New York, NY, USA (2005)

26. Korpi, S.: Internet Telephony – Security Issues in Skype. Mobile Communities, Seminar on
Internetworking (2006). Telecommunications Software and Multimedia Laboratory, Helsinki
University of Technology

27. Lehtinen, J.: Design and Implementation of Mobile Peer-to-Peer Application. Master’s thesis,
Helsinki University of Technology (2006)

28. Madhukar, A., Williamson, C.: A Longitudinal Study of P2P Traffic Classification. In: Pro-
ceedings of 14th IEEE International Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems, pp. 179–188 (2006)

29. Moore, A., Papagiannaki, K.: Toward the Accurate Identification of Network Applications. In:
Proceedings of the 6th International Workshop in Passive and Active Network Measurement.
Springer, Boston, MA, USA (2005)

30. Perényi, M., Dang, T., Gefferth, A., Molnár, S.: Identification and Analysis of Peer-to-Peer
Traffic. Journal of Communications 1(7), 36–46 (2006)

31. Rodriguez, P., Tan, S.M., Gkantsidis, C.: On the Feasibility of Commercial, Legal P2P Content
Distribution. SIGCOMM Computer Communication Review 36(1), 75–78 (2006)

32. Sabbagh, D.: BBC iPlayer ‘risks overloading the internet’ (2008). URL
http://technology.timesonline.co.uk/tol/news/tech_and_web/
article3716781.ece. Last access at August 20th, 2008

33. Sen, S., Spatscheck, O., Wang, D.: Accurate, Scalable In-Network Identification of P2P Traffic
Using Application Signatures. In: Proceedings of the 13th Conference on World Wide Web,
pp. 512–521. ACM Press New York, NY, USA (2004)

1252 J. Gomes, P. Inácio, M. Freire, M. Pereira and P. Monteiro

34. Sen, S., Wang, J.: Analyzing Peer-to-Peer Traffic Across Large Networks. IEEE/ACM Trans-
actions on Networking 12(2), 219–232 (2004)

35. Shannon, C.E.: A Mathematical Theory of Communication. The Bell System Technical Jour-
nal 27(3), 379–423 (1948)

36. Xie, H., Yang, Y.R., Silberschatz, A.: Towards ISP-Compliant, Peer-Friendly P2P Design. In:
Proceedings of The IFIP International Federation for Information Processing Networking, pp.
375–384 (2008)

37. Yu, F.: High Speed Deep Packet Inspection with Hardware Support. Ph.D. thesis, University
of California, Berkeley (2006)

Characterization of P2P Systems

Daniel Stutzbach and Reza Rejaie

Abstract The combination of large scale and geographically distributed nature of
P2P system has led to their significant impact on the Internet. It is essential to char-
acterize deployed P2P system for at least three reasons: (1) Accurately assessing
their impact on the Internet, (2) identifying any performance bottleneck as well as
any opportunity for performance improvement, (3) understanding user-driven dy-
namics in P2P systems.

To characterize a P2P system, one needs to accurately capture snapshots of the
resulting P2P overlay. This is challenging because the overlay is often large and dy-
namic. While the overlay is discovered by a crawler, it is changing which leads to a
distorted view of the system. Capturing unbiased view of the traffic in the overlay is
equally challenging because it is difficult to show that the captured behavior repre-
sent the observed behavior by all peers.

In this chapter, we describe some of the fundamental problems in empirical char-
acterization of widely deployed P2P systems. We present several examples to illus-
trate the effect of ad-hoc measurement/data collection on the resulting analysis/char-
acterization. We then present two sampling techniques as a powerful approach to
capture unbiased view of peer properties in a scalable fashion.

1 Introduction

Understanding existing systems and devising new P2P techniques relies on having
access to representative models derived from empirical observations of existing sys-
tems. However, the large and dynamic nature of P2P systems makes capturing accu-
rate measurements challenging. Because there is no central repository, data must be

Daniel Stutzbach
Stutzbach Enterprises, Dallas, Texas, e-mail: daniel@stutzbachenterprises.com

Reza Rejaie
University of Oregon, Eugene, Oregon, e-mail: reza@cs.uoregon.edu

X. Shen et al. (eds.), Handbook of Peer-to-Peer Networking, 1253
DOI 10.1007/978-0-387-09751-0 45, © Springer Science+Business Media, LLC 2010

1254 Daniel Stutzbach and Reza Rejaie

gathered from the peers who appear and depart as users start and exit the P2P appli-
cation. Even a simple task such as counting the number of peers can be challenging
since each peer can only report its immediate overlay neighbors.

The first half of this chapter surveys techniques for measuring attributes of P2P
systems as well as characterizations derived from the application of those tech-
niques. The second half explores two measurement techniques in detail – crawl-
ing and sampling – and demonstrates the importance of validating measurement
methodology.

Systematically tackling the problem of characterizing P2P systems requires a
structured organization of the different components. At the most basic level, a P2P
system consists of a set of connected peers. We can view this as a graph with the
peers as vertices and the connections as edges. One fundamental way to divide the
problem space is into properties of the peers versus properties of the way peers are
connected. Another fundamental division is examining the way the system is versus
the way the system evolves. In some sense, any property may change with time and
could be viewed as system evolution. We use the term “static properties” to refer to
properties that can be measured at a particular moment in time and modeled with
a static model (e.g., peer degree), and the term “dynamic properties” to refer to
properties that are fundamentally dynamic in nature (e.g., session length).

Table 1 presents an overview of several interesting properties categorized by
whether they are static or dynamic, and whether they are peer properties or con-
nectivity properties.

2 Measurement Techniques

Empirical P2P studies employ one of five basic techniques, each offering a different
view with certain advantages and disadvantages:

• Passive Monitoring: Eavesdrop on P2P sessions passing through a router.
• Participate: Instrument P2P software and allow it to run in its usual manner.

Table 1 Groups of properties

Peer properties Connectivity properties

Static properties Available resources (e.g., files)
Geographic location

Degree distribution
Clustering coefficient
Shortest path lengths
Resiliency

Dynamic properties Session length
Uptime
Remaining uptime
Inter-arrival interval
Arrival rate

Stable core
Search efficiency
Search reliability

Characterization of P2P Systems 1255

Table 2 File sharing measurement studies, grouped by technique. The system under study is shown
in parenthesis. B=BitTorrent, D=eDonkey 2000, G=Gnutella, K=Kad, N=Napster, S=Skype,
O=Overnet, Z=Kazaa, *=Miscellaneous

Intercept Participate Crawl Sample Centralize

[37] (B,D,G,Z)
[14] (Z)
[23] (Z)
[24] (Z)
[41] (Z,G)
[43] (Z,G,*)
[20] (B,D,G,Z,N,*)

[17] (G)
[21] (G)
[22] (G)
[35] (G)
[44] (G)
[2] (G)
[10] (B)
[27] (Z)
[28] (Z)

[8] (G)
[3] (G)
[40] (G)
[46] (G,K,B)
[48] (G)

[7] (N,G)
[42] (N,G)
[4] (O)
[11] (D)
[13] (S)
[45] (K)

[18] (B)
[38] (B)
[15] (B)
[51] (*)

• Crawl: Walk the P2P network, capturing information from each peer.
• Sample: Select a subset of the peers in the network.
• Centralize: Rely on logs maintained by a central server.

Table 2 summarizes the peer-reviewed studies in each category and lists the par-
ticular systems they examine. Studies which intercept data have typically focused
on Kazaa, which was one of the most popular peer-to-peer systems. Saroiu et al.
[41] show that in 2002 Kazaa traffic was between one and two orders of magni-
tude larger than Gnutella traffic. However, others studies tend to focus on Gnutella,
which has several open source implementations available and open protocol spec-
ifications. Other popular file-sharing networks such eDonkey 2000, Overnet, and
Kad remain largely unstudied. Each of the different measurement techniques has
different strengths and weaknesses, explained in detail below.

2.1 Passive Monitoring

Monitoring peer-to-peer traffic at a gateway router provides useful information
about dynamic peer properties such as the types and sizes of files being transferred.
It also provides a limited amount of information about dynamic connectivity proper-
ties such as how long peers remain connected. However, passive monitoring suffers
from three fundamental limitations, described below.

First, because it looks at only a cross-section of network traffic, usage patterns
may not be representative of the overall user populations. For example, two of the
most detailed studies of this type [14, 41] were both conducted at the University of
Washington (UW). Because the University has exceptional bandwidth capacity and
includes an exceptional number of young people, their measurements may capture
different usage characteristics than, for example, a typical home broadband user.
This limitation may be somewhat overcome by comparing studies taken from dif-
ferent vantage points. One study [43] overcomes the single-viewpoint limitation by
capturing data at several routers within a Tier-1 ISP.

1256 Daniel Stutzbach and Reza Rejaie

The second limitation of passive monitoring is that it only provides information
about peers that are actively sending or receiving data during the measurement win-
dow. Monitoring traffic cannot reveal any information about peers which are up but
idle, and it is not possible to tell with certainty when the user has opened or closed
the application. These caveats aside, passive monitoring is quite useful for providing
insight in file sharing usage patterns.

The third limitation is the difficulty in classifying P2P traffic. Karagiannis et al.
[20] show that the most common method of identifying P2P traffic, by port number,
is increasingly inaccurate.

The passive monitoring technique is predominantly used to study bulk data
movement such as HTTP-like file transfers and streaming, where it is relatively
easy to identify a flow at its beginning and count the bytes transferred.

2.2 Participate

Instrumenting open-source clients to log information on disk for later analysis fa-
cilitates the study of dynamic connectivity properties, such as the length of time
connections remain open, bandwidth usage, and the frequency with which search
requests are received. However, there is no guarantee that observations made at one
vantage point are representative. Some studies employ multiple vantage points, but
the vantage points still typically share common characteristics (e.g., exceptionally
high bandwidth Internet connections) and still may not be representative.

2.3 Crawl

A crawler is a program which walks a peer-to-peer network, asking every known
peer for a list of its neighbors to iteratively explore the entire graph, similar to
the way a web-spider operates. Crawling is the only technique for capturing a full
snapshot of the topology, needed for graph analysis and trace-driven simulation.
However, accurately capturing the whole topology is tricky, particularly for large
networks that have a rapidly changing population of millions of peers. All crawlers
capture a distorted picture of the topology because the topology changes as the
crawler runs.

2.4 Sample

Several studies gather data by sampling a set of peers in order to study static peer
properties, such as link bandwidth and shared files. By sampling the set of peers

Characterization of P2P Systems 1257

at regular intervals, studies may also examine dynamic peer properties such as the
session length distribution. To locate the initial set of peers, researchers have used
techniques such as a partial crawl [4, 11, 13, 42], issuing search queries for common
search terms [7, 42], and instrumenting a participating peer [7]. One drawback of
sampling is that it is difficult to guarantee that the initial set of peers are represen-
tative. Additionally, when studying dynamic properties, sampling implicitly gath-
ers more data from peers who are present for a larger portion of the measurement
window.

2.5 Centralize

The final measurement technique is to use logs from a centralized source. Due to
the decentralized nature of peer-to-peer networks, there typically is no centralized
source. However, BitTorrent uses a centralized rendezvous point called a tracker that
records peer arrivals, peer departures, and limited information about their download
progress.

2.6 Summary

Measurement techniques for gathering data about the operation of peer-to-peer sys-
tems, summarized in Table 3, each have their advantages and disadvantages.

Table 3 Summary of existing measurement techniques

Technique Advantages Disadvantages

Passive monitoring Provides information about traffic May not be representative
Omits idle peers
Omits traffic on non-standard ports

Participate Provides information about dynamic
connectivity

May not be representative

Crawl Captures the entire topology
Unbiased

Doesn’t scale
May have significant distortion

Sample Captures peer properties
Unbiased techniques available

Haphazard sampling often unrepre-
sentative
Dynamic properties inherently biased
toward long-lived peers

Centralize Unbiased Only available if system has a central-
ized component

1258 Daniel Stutzbach and Reza Rejaie

3 What to Measure

The following subsections summarize other empirical studies of peer-to-peer sys-
tems, discuss their main findings, and identify important areas which remain un-
studied.

3.1 Static Peer Properties

Saroiu, Gummadi, and Gribble provide an extensive and informative study, primar-
ily of static peer properties [42]. While earlier work conceived of peers as equal par-
ticipants, their landmark study demonstrates that in practice not all peers contribute
equally to peer-to-peer systems. Using data collected from Gnutella and Napster in
May 2001, their observations show a heavy skew in the distributions of bottleneck
bandwidth, latency, availability, and the number of shared files for each host, with
each of these qualities varying by many orders of magnitude.

Additionally, they found correlations between several of the properties. Bottle-
neck bandwidth and the number of uploads have a positive correlation, while bottle-
neck bandwidth and the number of downloads have a negative correlation. In other
words, peers with high bandwidth tend to be uploading many files, while peers with
low bandwidth have to spend more time downloading. Interestingly, no significant
correlation exists between bottleneck bandwidth and the number of files stored on a
peer.

In addition to the sweeping work of Saroiu et al. [42], several studies focus on
examining the files shared by peers [2, 7, 11, 49]. A few results have consistently
appeared in these studies. First, peers vary dramatically in the number of files that
they share, with a relatively small percentage of peers offering the majority of avail-
able files. In addition, a large fraction of peers share no files at all (25% in [42],
two-thirds in [2, 11], 11–13% in [49]). Second, the popularity of stored files in file-
sharing systems is heavily skewed; a few files are enormously popular, while for
most files only a few peers have a copy. Fessant et al. [11] found that it may be
described by a Zipf distribution. However, Chu, Labonte, and Levine [7] found that
the most popular files were relatively equal in popularity, although less popular files
still had a Zipf-like distribution.

Studies also agree that the vast majority of files and bytes shared are in audio or
video files, leading to the distribution of file sizes exhibiting a multi-modal behavior.
Each studies shows that a plurality of files are audio files (48% in [11], 67% in [49],
76% in [7]). However, video files make up a disproportionately large portion of the
bytes stored by peers (67% in [11], 53% in [49], 21% in [7]).

Fessant et al. [11] took the additional step of examining correlations in the files
shared by peers. Their results show that users have noticeable interests, with 30%
of files having a correlation of at least 60% with at least one other file. Of peers
with at least 10 files in common, they found that 80% have at least one more file in
common. Likewise, of peers with at least 50 files in common, in their data nearly
100% have at least one more file in common.

Characterization of P2P Systems 1259

3.2 Dynamic Peer Properties

Most dynamic peer properties are tied to how long and how frequently peers are
active. Session length is the length of time a peer is continuously connected to a
given peer-to-peer network, from when it arrives until it departs. Uptime is the length
of time a peer that is still present has been connected. Remaining uptime is how
much longer until an active peer departs. Lifetime is the duration from the first time
a peer connects to a peer-to-peer network –ever– to the very last time it disconnects.
Availability is the percentage of time that a peer and its resources are connected to
the peer-to-peer network within some window. Downtime is the duration between
two successive sessions. Finally, an inter-arrival interval is the duration from the
arrival of one peer until the arrival of the next peer. The session length, uptime,
and remaining uptime are closely related, as shown in Fig. 1. The popularity of file
transfers is another dynamic peer property, which we examine separately.

Fig. 1 Illustration of the relationship between session length, uptime, and remaining uptime

Generally, the most important distribution for simulation and analysis is the
session-length distribution, as it fully determines the uptime and remaining up-
time distributions and strongly influences the availability. The median session length
specifies how much churn a protocol must cope with, and the shape of the distribu-
tion determines whether some peers are dramatically more stable than others.

Due to its importance, several studies examine the session length distribution.
Rhea, Geels, and Kubiatowicz [39] summarize these studies, as shown in Table 4
which is adapted from their paper and updated with our more recent study [46].

While the median differs dramatically, all the studies agree that the session
lengths are heavily skewed: many sessions are short, while some session are very
long. Several studies draw the conclusion that session lengths can be modeled
with a power-law (or Pareto) distribution [5, 13, 26] or exhibit heavy-tailed behav-
ior [13, 14, 43]. Chu, Labonte, and Levine [7] fit session lengths to a log-quadratic

1260 Daniel Stutzbach and Reza Rejaie

Table 4 Observed session lengths in various peer-to-peer file sharing systems. Adapted from [39]

Citation Systems observed Session time

[42] Gnutella, Napster 50% ≤ 60 min
[7] Gnutella, Napster 31% ≤ 10 min
[43] Kazaa 50% ≤ 1 min
[4] Overnet 50% ≤ 60 min
[14] Kazaa 50% ≤ 2.4 min
[46] Gnutella, Kad 50% ≤ 15 min–1 h
[46] BitTorrent 50% ≤ 2 min–30 min

distribution, which can be viewed as a second-order variation of the Pareto distribu-
tion. Only one of the earlier studies [5] provide an analysis and fit to support their
conclusion. However, Leonard, Rai, and Loguinov [25, pg. 8] suggest that the fit
given in [5] seems implausible and point out some possible methodological errors.
In our more recent study [46], we examine several common methodological prob-
lems that introduce bias into studies of peer churn and examine data from Gnutella,
Kad, and BitTorrent. The session lengths we observed were heavily skewed, but did
not agree with a power-law or Pareto distribution. However, they could be described
with a Weibull distribution.

In BitTorrent, the availability of high-quality tracker logs facilitates the study of
peer dynamics. Prior studies of BitTorrent [18, 38] show that session lengths are
heavily skewed. However, they do not attempt to create a model based on the data.
A surprising discovery shown by Izal et al. [18] is that many peers (81% in their
trace) depart before downloading the entire file, while peers who do complete the
download linger for more than six hours on average.

While most studies of peer dynamics focus on session length, Bhagwan, Savage,
and Voelker [4] provide a study of peer availability in Overnet during January 2003.
However, they find that the distribution of availability varies dramatically with the
size of the measurement window, due to the significant fraction of hosts who appear
briefly and only once.

3.2.1 Files Transfers

Another class of dynamic peer properties is related to the files that peers are actively
transferring, which in some sense is the derivative of the files being stored on each
peer (discussed above under Static Peer Properties). The properties of files being
transferred are most often studied using passive monitoring at gateway routers. Two
of the most detailed studies of files being transfered [14, 41] were both conducted
at the University of Washington (UW). The first study, [41], focuses on comparing
HTTP requests with P2P requests, demonstrating that P2P uses more than twice
as much bandwidth as the web on their network. Although they found a smaller
number of hosts are involved in the P2P traffic, each object is orders of magnitude
larger. Furthermore, they show that a majority of the P2P traffic came from a few

Characterization of P2P Systems 1261

large video files. Their second study, [14], more closely examines the popularity
and properties of different P2P objects. The popularity of different objects did not
match a Zipf distribution, in contrast to the Zipf distribution of popularity observed
for Web objects. The authors suggest this may be due to the fact that in P2P systems,
users typically download an object at most once, while Web users may return to a
website many times. Instead, they found that unpopular objects appear Zipf-like,
while popular objects are relatively equal in popularity, matching the results for
stored files seen in [7].

Leibowitz et al. [23, 24] provide measurements from an Israeli Internet Service
Provider (ISP), and compare their findings with the UW studies. Interestingly, they
find that while the UW is an overall provider of P2P content, the ISP they study is an
overall consumer of P2P content. Their studies give particular focus to the idea of
caching P2P content. In [23], they implement a transparent 300 GB cache yielding
a 67% bandwidth savings.

3.3 Static Connectivity Properties

In 2000, a company called “Clip2” developed a Gnutella crawler and published
their results on the web. Although not validated by peer-review, their analysis and
topology captures have been widely used in simulation studies of improvements for
Gnutella-like networks [1, 19, 29–31]. In [8], Clip2 presents analysis of snapshots
they captured between June and August of 2000. Using their crawler which took
around an hour to survey the entire topology, they gathered snapshots containing
between 1,000 and 8,000 peers.

Their work suggests that the Gnutella network has a power-law degree distribu-
tion, based on plotting the degree distribution of their snapshots on a log-log scale
and demonstrating a linear fit. Adamic et al. [1] repeat this analysis on similar data
provided by Clip2. However, neither study considers alternative models of the de-
gree distribution. Several later studies [9, 12, 19, 34, 50] rely on the power-law
model, simulating Gnutella using random power-law topologies. Lv et al. [33] show
that power-law networks exhibit poorer performance than other types of random
graphs.

Ripeanu, Foster, and Iamnitchi [40] implemented a crawler and use it to exam-
ine properties of the Gnutella overlay topology. Their crawler uses a client-server
architecture running on roughly 50 computers to crawl a 30,000 node network in a
few hours. Their crawls were conducted in November 2000–May 2001. The size of
the network grew from 2,063 to 48,195 peers over that time. They performed all-
pairs shortest-path computations and plotted the distribution of path lengths. 95%
of shortest-paths are 7 hops or less, with most shortest-paths being 4 or 5 hops long.
They repeat the analysis of [1, 8] by plotting the degree distribution in log-log scale.
In their November snapshot, the degree distribution appears linear on the log-log
plot, suggesting a power-law distribution. Their March 2001 snapshot is different.
Low-degree nodes are approximately equally common, though among high-degree
nodes the distribution still appears linear on the log-log plot.

1262 Daniel Stutzbach and Reza Rejaie

Given that their crawls take a few hours, and peer uptimes may be just a few
minutes [7, 14, 43], it is very possible that these topologies are highly inaccurate,
leading to a drastically distorted picture of the network. In [48], we created a new
crawler, Cruiser, which can crawl the Gnutella network in around 4 min. Later in this
chapter, we provide an overview of the design of cruisers and some of the techniques
we used to validate the accuracy of its snapshots. Our measurements of Gnutella
were not consistent with a power-law distribution; in fact, they showed that virtually
all peers had a degree under 35.

3.4 Dynamic Connectivity Properties

In [48], we explore how heavily skewed session lengths influence the topological
structure. We found that long-lived peers gradually find one another and form a
stable “core” for the peer-to-peer network. By remaining in the system for a long
time, these peers have more opportunity to find one another. Once found, these
connections remain until one of the peers leave.

When a user starts their P2P application, the application must discover other
peers to form connections with. This initial discovery process is called bootstrap-
ping. Karbhari et al. [21] provide a comparative study of the bootstrapping mecha-
nisms of several Gnutella implementations.

Sripanidkulchai presented one of the first studies of search terms in a P2P net-
work [44], demonstrating that queries follow a Zipf distribution, except for the most
popular queries which are of roughly equal popularity (similar to the distributions of
files stored and file transfers). The fact that popular queries are much more common
than unpopular queries suggests caching query results may be beneficial [35, 44].

Klemm et al. [22] provide a comprehensive analysis of queries, breaking down
the number of queries observed by time of day and geographical region. It includes
distributions for the number of sessions that generate queries, the time until the
first queries, the query inter-arrival time, and the length of the session. In short,
it provides a framework for generating a synthetic query workload as seen from a
single peer.

3.5 Summary

Peer-to-peer systems have been a popular topic for empirical studies. Existing stud-
ies cover properties of stored files, file transfers, and search terms in great detail.
Additionally, Saroiu, Gummadi, and Gribble [42] provide a comprehensive study
of static peer properties. However, these measurement studies have been rather ad-
hoc, gathering data in the most convenient manner without critically examining their
methodology for measurement bias. While an ad-hoc approach is often suitable for
first-order approximations (e.g., “file popularity is heavily skewed”), it is generally
not appropriate for making precise conclusions (e.g., “session-lengths are power-

Characterization of P2P Systems 1263

law”). One of the largest gaps in the existing work is the development and validation
of high-fidelity measurement tools for peer-to-peer networks. The remainder of this
chapter describes two tools for gathering highly accurate measurements.

4 Cruiser: A Fast P2P Crawler

The global state of a peer-to-peer system is distributed among all the peers. Ex-
ploring the graph and capturing the state of each peer captures the global state. A
crawler is a tool that captures global state in this way. Since the system changes
as the crawler explores, the picture is distorted, much like a photograph capturing
rapid motion. Therefore, crawl speed is important. The faster the crawler runs, the
less distortion. Crawlers have most often been used for capturing snapshots of the
overlay topology as a graph, needed for studying many static connectivity prop-
erties. Many studies [3, 8, 28, 40] take 30 to 120 min to crawl the network and
capture a snapshot of the graph. However, many peers are not even present for that
long [14, 39, 43]. This suggests existing crawlers are much too slow and may be
capturing very distorted snapshots. The accuracy of these snapshots most likely has
not been previously addressed because it is challenging to measure the distortion
without a perfect reference snapshot for comparison.

This section documents a fast crawler, called Cruiser, that can capture complete
topologies in just a few minutes, introduces techniques for assessing the accuracy
of snapshots, and shows that Cruiser may be used to capture accurate snapshots.
Additional details may be found in [48]. We focus on capturing snapshots of the
Gnutella topology, as Gnutella is one of the largest P2P systems and has been the
target of most prior P2P crawlers, allowing us to make meaningful comparisons.
Although we focus on Gnutella, Cruiser uses a plug-in architecture, allowing it to
crawl other P2P systems with the addition of an appropriate plug-in.

In order to crawl quickly, the design of Cruiser must overcome several chal-
lenges:

• It must make heavy use of parallelism to contact many peers simultaneously.
Managing so many connections in parallel can lead to CPU bottlenecks requiring
a distributed architecture.

• If the load is too great, Cruiser may lose data.1 Therefore, Cruiser must carefully
control the load by appropriately limiting the number of connections. Since each
connection uses a variable amount of resources, this limit must be dynamic.

• Cruiser cannot afford to wait the minutes for a TCP connection attempt to time-
out. Instead, the proper trade-off between timing out too quickly (which increases
distortion by losing data) and timing out too slowly (which increases distortion
by making the crawl slower) must be found empirically.

1 For example, connections may appear to time out if the CPU load is so great that received packets
spend too long in a queue before being processed.

1264 Daniel Stutzbach and Reza Rejaie

4.1 The Design of Cruiser

Our primary goal in the design of Cruiser is to minimize distortion in captured
snapshots by maximizing the speed at which Cruiser explores the overlay topology.
We employ several techniques and features to achieve this design goal, as described
below.

4.1.1 Two-Tier Networks

Cruiser leverages the two-tier structure of modern P2P networks by only crawling
ultrapeers. Since each leaf must be connected to an ultrapeer, this approach enables
us to capture all the nodes and links of the overlay by contacting a relatively small
fraction of all peers. This strategy leads to a major reduction (around 85%) in the
duration of a crawl without any loss of information.

4.1.2 Distributed Architecture

Cruiser employs a master-slave architecture in order to achieve a high degree of
concurrency and to effectively utilize available resources on multiple computers. A
master process coordinates multiple slave processes that act as independent crawlers
and crawl disjoint portions of the network in parallel. The slaves communicate with
the master using loose synchronization as follows. Each slave has an independent
queue of addresses to contact, which the master fills. Each slave drains its queue by
querying peers for their neighbors and reporting back with the data they’ve gathered.
The master extracts new addresses from the data and uses this to fill the queues. The
crawl terminates when all the queues are empty.

4.1.3 Asynchronous Communications

Each slave process crawls hundreds of peers in parallel using asynchronous com-
munications. Cruiser implements an adaptive load management mechanism to en-
sure that slave processes remain busy but do not become overwhelmed. This is
important for the steady progress of the crawl especially when different slave
nodes have heterogeneous processing capabilities. Toward this end, each slave
monitors its CPU load and adjusts its maximum number of parallels connec-
tions using an additive-increase multiplicative-decrease (AIMD) algorithm simi-
lar to TCP’s congestion control mechanism. In practice, each PC typically runs
with close to 1,000 parallel connections, contributing an additional speed-up of
nearly three orders of magnitude, compared to using synchronous communications
(as in [40]).

Characterization of P2P Systems 1265

4.1.4 Appropriate Timeouts

When peers are unresponsive, waiting for TCP to timeout and give up attempting to
connect takes a long time. On our systems, a full TCP timeout to an unresponsive
address takes more than 3 min. While this is suitable for many interactive and au-
tomated applications, one of our primary design goals it to make crawls as quick as
possible. We conducted an evaluation of the cost-versus-benefit tradeoff of different
timeout values for crawling. As a function of the timeout length, Fig. 2 shows the
duration of the crawl and the percentage of peers that were unreachable. We see that
while very low timeouts (less than 10 s) result in a dramatic increase in the number
of timeouts, there are diminishing returns for using longer timeout values, while the
crawl length (and thus distortion) continues to increase. In other words, if a peer has
not responded after 10 s, it is unlikely to ever respond. Therefore, we use a timeout
of 10 s, providing an additional speedup of more than a factor of two, compared to
using full TCP timeouts.

Timeouts
CrawlDuration

Timeout(seconds)

C
ra

w
lD

ur
at

io
n(

m
)

T
im

eo
ut

s(
%

)

12

10

8

6

4

2

0
6050403020100

100

80

60

40

20

0

Fig. 2 Effects of the timeout length on crawl duration and snapshot completeness

4.2 Quantifying Snapshot Accuracy

One obvious metric to evaluate the performance of Cruiser is the time it takes to
perform a crawl. However, the crawl duration doesn’t reveal how accurate the crawl
is; it only informs us if the crawl is more accurate than another crawl performed un-
der similar conditions. Snapshot accuracy can not be directly measured since there
is no reference snapshot for comparison. Therefore, we must indirectly quantify the
effect of crawling speed on snapshot accuracy.

1266 Daniel Stutzbach and Reza Rejaie

To examine the impact of crawling speed on the accuracy of captured snapshots,
we adjust the crawling speed (and thus the crawl duration) of Cruiser by changing
the number of parallel connections that each slave process can open. Using this tech-
nique, Cruiser can effectively emulate the behavior of previously reported crawlers
which have a lower degree of concurrency.

We introduce the following two metrics for evaluating a crawler. The first metric,
edge distortion, examines the edges in the captured snapshot. For each contacted
peer A, with neighbors NA, we examine each of its neighbors B ∈ NA to see if they
likewise reported A as their neighbor. If not, we have an inconsistency in the graph
caused by the fact that the edge changed sometime between crawling node A and
crawling node B. The edge distortion, then, is the fraction of edges that are incon-
sistent.

The second metric, node distortion, examines the peers present in two consec-
utive snapshots captured back-to-back. We denote the peers as the sets V1 and V2.
Comparing these two back-to-back snapshots provides insight into how distorted
our picture of the network is. If Cruiser were instantly fast and captured perfect
snapshots, V1 and V2 would be identical. The greater the change that occurs while
Cruiser runs, the greater the difference between V1 and V2. We define the node dis-
tortion as |V1ΔV2|

|V1|+|V2| , where V1ΔV2 is the symmetric difference of V1 and V2 (i.e., peers
in one set or the other, but not both). Note that when V1 = V2, the node distortion is
0%, and when V1 and V2 are completely disjoint the node distortion is 100%.

Figure 3 depicts peer and edge distortion as a function of crawl duration. This
figure demonstrates that the accuracy of snapshots decreases with the duration of the
crawl, because the increased distortion reflects changes in the topology that occur
while the crawler is running. Crawlers that take 1–2 h (comparable to those in earlier

Node Distortion (δ)

Edge Distortion

Crawl Duration (minutes)

D
is

to
rt

io
n

(%
)

120100806040200

100

80

60

40

20

0

Fig. 3 Effect of crawl speed on the accuracy of captured snapshots

Characterization of P2P Systems 1267

works) have a node distortion of 9–15% and an edge distortion of 31–48%, while
at full speed Cruiser exhibits a node distortion of only 4% and an edge distortion of
only 13%.

5 Sampling

While fast, Cruiser unavoidably takes O(|V |) time, which means it may still be too
slow to capture accurate snapshots of system with a very large population (V) or
when the per-peer state is time-consuming to collect. For such cases, we need a
mechanism to collect unbiased samples, which is the topic of the this chapter.

5.1 Sampling with Dynamics

We develop a formal and general model of a P2P system as follows. If we take
an instantaneous snapshot of the system at time t, we can view the overlay as a
graph G(V,E) with the peers as vertices and connections between the peers as edges.
Extending this notion, we incorporate the dynamic aspect by viewing the system as
an infinite set of time-indexed graphs, Gt = G(Vt ,Et). The most common approach
for sampling from this set of graphs is to define a measurement window, [t0, t0 +Δ],
and select peers uniformly at random from the set of peers who are present at any
time during the window: Vt0,t0+Δ =

⋃t0+Δ
t=t0 Vt . Thus, it does not distinguish between

occurrences of the same peer at different times.
This approach is appropriate if peer session lengths are exponentially distributed

(i.e., memoryless). However, existing measurement studies [18, 38, 42, 46] show
session lengths are heavily skewed, with many peers being present for just a short
time (a few minutes) while other peers remain in the system for a very long time
(i.e., longer than Δ). As a consequence, as Δ increases, the set Vt0,t0+Δ includes an
increasingly large fraction of short-lived peers.

A simple example may be illustrative. Suppose we wish to observe the number of
files shared by peers. In this example system, half the peers are up all the time and
have many files, while the other peers remain for around 1 min and are immediately
replaced by new short-lived peers who have few files. The technique used by most
studies would observe the system for a long time (Δ) and incorrectly conclude that
most of the peers in the system have very few files. Moreover, their results will
depend on how long they observe the system. The longer the measurement window,
the larger the fraction of observed peers with few files.

One fundamental problem of this approach is that it focuses on sampling peers
instead of peer properties. It selects each sampled vertex at most once. However,
the property at the vertex may change with time. Our goal should not be to select
a vertex vi ∈ ⋃t0+Δ

t=t0 Vt , but rather to sample the property at vi at a particular instant
t. Thus, we distinguish between occurrences of the same peer at different times:
samples vi,t and vi,t ′ gathered at distinct times t �= t ′ are viewed as distinct, even

1268 Daniel Stutzbach and Reza Rejaie

when they come from the same peer. The key difference is that it must be possible
to sample from the same peer more than once, at different points in time. Using the
formulation vi,t ∈Vt , t ∈ [t0, t0 +Δ], the sampling technique will not be biased by the
dynamics of peer behavior, because the sample set is decoupled from peer session
lengths. To our knowledge, no prior P2P measurement studies relying on sampling
make this distinction.

Returning to our simple example, our approach will correctly select long-lived
peers half the time and short-lived peers half the time. When the samples are exam-
ined, they will show that half of the peers in the system at any given moment have
many files while half of the peers have few files, which is exactly correct.

If the measurement window (Δ) is sufficiently small, such that the distribution of
the property under consideration does not change significantly during the measure-
ment window, then we may relax the constraint of choosing t uniformly at random
from [t0, t0 +Δ].

We still have the significant problem of selecting a peer uniformly at random
from those present at a particular time. We begin to address this problem in the next
section.

Table 5 Kolmogorov-Smirnov test statistic for techniques over static graphs. Values above 1.07 ·
10−4 lie in the rejection region at the 5% level

Erdös–Rényi Gnutella Watts–Strogatz Barabási–Albert
Breadth-First Search 4.54 ·10−4 2.73 ·10−3 4.73−3 2.77 ·10−3

Random Walk 3.18 ·10−4 1.57 ·10−3 7.64−5 2.84 ·10−3

Metropolis–Hastings 5.97 ·10−5 5.79 ·10−5 6.08−5 5.22 ·10−5

5.2 Sampling from Static Graphs

We now turn our attention to topological causes of bias. Towards this end, we mo-
mentarily set aside the temporal issues by assuming a static, unchanging graph.
The selection process begins with knowledge of one peer (vertex) and progressively
queries peers for a list of neighbors. The goal is to select peers uniformly at random.

Oracle, MRW
RW, BFS

Number of times sampled

H
is

to
gr

am
(#

of
pe

er
s)

150010005000

2500

2000

1500

1000

500

0

(a) Erdös–Rényi

RW
BFS

Number of times sampled
150010005000

(b) Gnutella

RW Oracle, MRW

BFS

Number of times sampled
150010005000

(c) Watts–Strogatz
(small world)

RW
BFS

Number of times sampled
150010005000

(d) Barabási–Albert
(power-law)

Fig. 4 Bias of different sampling techniques; after collecting k · |V | samples. The figures show how
many peers (y-axis) were selected x times

Characterization of P2P Systems 1269

In any graph-exploration problem, we have a set of visited peers (vertices) and a
front of unexplored neighboring peers. There are two ways in which algorithms
differ: (i) how to chose the next peer to explore, and (ii) which subset of the ex-
plored peers to select as samples. Prior studies use simple breadth-first or depth-first
approaches to explore the graph and select all explored peers. These approaches
suffer from several problems:

• The discovered peers are correlated by their neighbor relationship.
• Peers with higher degree are more likely to be selected.
• Because they never visit the same peer twice, they will introduce bias when used

in a dynamic setting as described in Section 5.1.

5.2.1 Random Walks

A better candidate solution is the random walk, which has been extensively studied
in the graph theory literature (for an excellent survey see [32]). We briefly sum-
marize the key terminology and results relevant to sampling. The transition matrix
P(x,y) describes the probability of transitioning to peer y if the walk is currently at
peer x:

P(x,y) =

⎧
⎨
⎩

1
degree(x) y is a neighbor of x,

0 otherwise

If the vector v describes the probability of currently being at each peer, then the
vector v′ = vP describes the probability after taking one additional step. Likewise,
vPr describes the probability after taking r steps. As long as the graph is connected
and not bipartite, the probability of being at any particular node, x, converges to a
stationary distribution:

π(x) = lim
r→∞

(vPr)(x) =
degree(x)

2 · |E|

In other words, if we select a peer as a sample every r steps, for sufficiently large r,
we have the following good properties:

• The information stored in the starting vector, v, is lost, through the repeated se-
lection of random neighbors. Therefore, there is no correlation between selected
peers. Alternately, we may start many walks in parallel. In either cases, after r
steps, the selection is independent of the origin.

• While the stationary distribution, π(x), is biased towards peers with high degree,
the bias is precisely known, allowing us to correct it.

• Random walks may visit the same peer twice, which lends itself better to a dy-
namic setting as described in Section 5.1.

In practice, r need not be exceptionally large. For graphs where the edges have a
strong random component (e.g., small-world graphs such as peer-to-peer networks),

1270 Daniel Stutzbach and Reza Rejaie

it is sufficient that the number of steps exceed the log of the population size, i.e.,
r ≥ O(log |V |).

5.2.2 Adjusting for Degree Bias

To correct the bias towards high degree peers, we make use of the Metropolis–
Hastings method for Markov Chains. Random walks on a graph are a special case
of Markov Chains. In a regular random walk, the transition matrix P(x,y) leads to
the stationary distribution π(x), as described above. We would like to choose a new
transition matrix, Q(x,y), to produce a different stationary distribution, μ(x). Specif-
ically, we desire μ(x) to be the uniform distribution so that all peers are equally
likely to be at the end of the walk. Metropolis–Hastings [6, 16, 36] provides us with
the desired Q(x,y):

Q(x,y) =

{
P(x,y)min

(
μ(y)P(y,x)
μ(x)P(x,y) ,1

)
if x �= y,

1−∑z�=x Q(x,z) if x = y

Equivalently, to take a step from peer x, select a neighbor y of x as normal

(i.e., with probability P(x,y)). Then, with probability min
(
μ(y)P(y,x)
μ(x)P(x,y) ,1

)
, accept the

move. Otherwise, return to x (i.e., with probability 1−∑z�=x Q(x,z)).
To collect uniform samples, we have μ(y)

μ(x) = 1, so the move-acceptance probabil-
ity becomes:

min

(
μ(y)P(y,x)
μ(x)P(x,y)

,1

)
= min

(
degree(x)
degree(y)

,1

)

Therefore, our algorithm for selecting the next step from some peer x is as follows:

• Select a neighbor y of x uniformly at random.
• Query y for a list of its neighbors, to determine its degree.
• Generate a random value, p, uniformly between 0 and 1.
• If p≤ degree(x)

degree(y) , y is the next step.
• Otherwise, remain at x as the next step.

We call this the Metropolized Random Walk (MRW). Qualitatively, the effect is to
suppress the rate of transition to peers of higher degree, resulting in selecting each
peer with equal probability.

5.2.3 Evaluation

Although [6] provides a proof of correctness for the Metropolis–Hastings method,
to ensure the correctness of our implementation we conduct evaluations through
simulation over static graphs. This additionally provides the opportunity to compare

Characterization of P2P Systems 1271

MRW with conventional techniques such as Breadth-First Search (BFS) or naive
random walks (RW) with no adjustments for degree bias.

To evaluate a technique, we use it to collect a large number of sample vertices
from a graph, then perform a goodness-of-fit test against the uniform distribution.
For Breadth-First Search, we simulate typical usage by running it to gather a batch of
1,000 peers. When one batch of samples is collected, the process is reset and begins
anew at a different starting point. To ensure robustness with respect to different
kinds of connectivity structures, we examine each technique over several types of
graphs as follows:

• Erdös–Rényi: The simplest variety of random graphs
• Watts–Strogatz: “Small world” graphs with high clustering and low path

lengths
• Barabási–Albert: Graphs with extreme degree distributions, also known as

power-law or scale-free graphs
• Gnutella: Snapshots of the Gnutella ultrapeer topology, captured in our earlier

work [48]

To make the results more comparable, the number of vertices (|V | = 161,680)
and edges (|E| = 1,946,596) in each graph are approximately the same.2 Table 5
presents the results of the goodness-of-fit tests after collecting 1000 · |V | samples,
showing that Metropolis–Hastings appears to generate uniform samples over each
type of graph, while the other techniques fail to do so by a wide margin.

Figure 4 explores the results visually, by plotting the number of times each peer
is selected. If we select k · |V | samples, the typical node should be selected k times,
with other nodes being selected close to k times approximately following a nor-
mal distribution with variance k.3 We used k = 1,000 samples. We also include an
“Oracle” technique, which selects peers uniformly at random using global infor-
mation. The Metropolis–Hastings results are virtually identical to the Oracle, while
the other techniques select many peers much more and much less than k times.
In the Gnutella, Watts–Strogatz, and Barabási–Albert graphs, Breadth-First Search
exhibits a few vertices that are selected a large number of times (> 10,000). The
(not-adjusted) Random Walk (RW) method has similarly selected a few vertices
an exceptionally large number of times in the Gnutella and Barabási–Albert mod-
els. The Oracle and MRW, by contrast, did not select any vertex more than around
1,300 times.

In summary, the Metropolis–Hastings method selects peers uniformly at random
from a static graph. The next section examines the additional complexities when
selecting from a dynamic graph, introduces appropriate modifications, and evaluates
the algorithm’s performance.

2 Erdös–Rényi graphs are generated based on some probability p that any edge may exist. We set
p = 2|E|

|V |·(|V |−1) so that there will be close to |E| edges, though the exact value may vary slightly.

The Watts–Strogatz model require that |E| be evenly divisible by |V |, so in that model we use
|E|= 1,940,160.
3 Based on the normal approximation of a binomial distribution with p = 1

|V | and n = k|V |.

1272 Daniel Stutzbach and Reza Rejaie

5.3 Empirical Results

In addition to the simulator version, we have implemented the MRWB algorithm
for sampling from real peer-to-peer networks into a tool called ion-sampler. The
following subsections briefly describe the implementation and usage of ion-sampler
and present empirical experiments to validate its accuracy.

5.3.1 Ion-Sampler

The ion-sampler tool uses a modular design that accepts plug-ins for new peer-
to-peer systems.4 A plug-in can be written for any peer-to-peer system that allows
querying a peer for a list of its neighbors. The ion-sampler tool hands IP-
address:port pairs to the plug-in, which later returns a list of neighbors or signals
that a timeout occurred. The ion-sampler tool is responsible for managing the
walks. It outputs the samples to standard output, where they may be easily read by
another tool that collects the actual measurements. For example, ion-sampler
could be used with existing measurement tools for measuring bandwidth to estimate
the distribution of access link bandwidth in a peer-to-peer system. Listing 1 shows
an example of using ion-sampler to sample peers from Gnutella.

5.3.2 Empirical Validation

The topology snapshots from Cruiser provide a point of reference for the degree
distribution to evaluate the accuracy of ion-sampler empirically. By capturing
every peer, Cruiser is immune to sampling difficulties. However, because the net-
work changes as Cruiser operates, its snapshots are slightly distorted. In particular,
peers arriving near the start of the crawl are likely to have found additional neigh-
bors by the time Cruiser contacts them. Therefore, we intuitively expect a slight
upward bias in Cruiser’s observed degree distribution. For this reason, we would
not expect a perfect match between Cruiser and sampling, but if the sampling is un-
biased we still expect them to be very close. We can view the CCDF version of the
degree distribution captured by Cruiser as a close upper-bound on the true degree
distribution.

Figure 5 presents a comparison of the degree distribution of reachable ultrapeers
in Gnutella, as seen by Cruiser and by the sampling tool (capturing approximately
1,000 samples with r = 25 hops). It also includes the results of a short crawl,5 a
sampling technique commonly used in earlier studies (e.g., [42]). We interleaved

4 In fact, it uses the same plug-in architecture as our earlier, heavy-weight tool, Cruiser, which
exhaustively crawls peer-to-peer systems to capture topology snapshots.
5 A “short crawl” is a general term for a progressive exploration of a portion of the graph, such
as by using a breadth-first or depth-first search. In this case, we randomly select the next peer to
explore.

Characterization of P2P Systems 1273

running these measurement tools to minimize the change in the system between
measurements of different tools, in order to make their results comparable.

Examining Fig. 5, we see that the full crawl and sampling distributions are quite
similar. The sampling tool finds slightly more peers with lower degree, compared to
the full crawl, in accordance with our expectations described above. We examined
several such pairs of crawling and sampling data and found the same pattern in each
pair. By comparison, the short crawl exhibits a substantial bias towards high degree
peers relative to both the full crawl and sampling.

5.3.3 Efficiency

Having demonstrated the validity of the MRWB technique, we now turn our at-
tention to its efficiency. Performing the walk requires n · r queries, where n is the
desired number of samples and r is the length of the walk in hops. If r is too low,

bash$./ion-sampler gnutella --hops 25 -n 10
10.8.65.171:6348
10.199.20.183:5260
10.8.45.103:34717
10.21.0.29:6346
10.32.170.200:6346
10.201.162.49:30274
10.222.183.129:47272
10.245.64.85:6348
10.79.198.44:36520
10.216.54.169:44380
bash$

Listing 1: Example usage of the ion-sampler tool. We specify that we want
to use the Gnutella plug-in, each walk should take 25 hops, and we would like 10
samples. The tool then prints out 10 IP-address:port pairs. We have changed the first
octet of each result to “10” for privacy reasons.

Sampling (971 peers)
Full Crawl (422,808 peers)

Short Crawl (1000 peers)

Degree

C
C

D
F

(%
)

4035302520151050

100

80

60

40

20

0

Fig. 5 Comparison of degree distributions observed from sampling versus exhaustively crawling
all peers

1274 Daniel Stutzbach and Reza Rejaie

significant bias may be introduced. If r is too high, it should not introduce bias, but
is less efficient. From graph theory, we expect to require r ≥ O(log |V |) for an ordi-
nary random walk. Based on our empirical experiments in [47], we conservatively
regard a choice of r = 25 as a safe walk length for Gnutella. Choosing r = 25, we
can collect 1,000 samples by querying 25,000 peers, over an order of magnitude
in savings compared with performing a full crawl which must contact more than
400,000.

6 Summary and Future Work

The first half of this chapter surveys techniques for measuring attributes of P2P sys-
tems as well as characterizations derived from the application of those techniques.
The second half explores two measurement techniques in detail – crawling and sam-
pling – and demonstrates the importance of validating measurement methodology.

In our ongoing work, we are exploring different techniques to improve the accu-
racy and efficiency of the crawling and sampling technique presented here (and ear-
lier presented in [47, 48]). Additionally, we are examining large-scale traffic moni-
toring over Distributed Hash Tables (DHTs).

References

1. Adamic, L.A., Lukose, R.M., Huberman, B., Puniyani, A.R.: Search in power-law networks.
Physical Review E 64(46135) (2001)

2. Adar, E., Huberman, B.A.: Free riding on Gnutella. First Monday 5(10) (2000)
3. Annexstein, F.S., Berman, K.A., Jovanovic, M.A.: Latency effects on reachability in large-

scale peer-to-peer networks. In: Symposium on Parallel Algorithms and Architectures, pp.
84–92. Crete, Greece (2001)

4. Bhagwan, R., Savage, S., Voelker, G.: Understanding availability. In: International Workshop
on Peer-to-Peer Systems (2003)

5. Bustamante, F.E., Qiao, Y.: Friendships that last: Peer lifespan and its role in P2P protocols.
In: International Workshop on Web Content Caching and Distribution (2003)

6. Chib, S., Greenberg, E.: Understanding the Metropolis–Hastings algorithm. The Americian
Statistician 49(4), 327–335 (1995)

7. Chu, J., Labonte, K., Levine, B.N.: Availability and locality measurements of peer-to-peer file
systems. In: ITCom: Scalability and Traffic Control in IP Networks II Conferences (2002)

8. Clip2.com, Inc.: Gnutella: To the bandwidth barrier and beyond (2000)
9. Crespo, A., Garcia-Molina, H.: Routing indices for peer-to-peer systems. In: International

Conference on Distributed Computing Systems (2002)
10. Erman, D., Ilie, D., Popescu, A., Nilsson, A.A.: Measurement and analysis of BitTorrent sig-

naling traffic. In: Nordic Teletraffic Seminar. Oslo, Norway (2004)

Characterization of P2P Systems 1275

11. Fessant, F.L., Handurukande, S., Kermarrec, A.M., Massoulie, L.: Clustering in peer-to-peer
file sharing workloads. In: International Workshop on Peer-to-Peer Systems (2004)

12. Gkantsidis, C., Mihail, M., Saberi, A.: Random walks in peer-to-peer networks. In: IEEE
INFOCOM (2004)

13. Guha, S., Daswani, N., Jain, R.: An experimental study of the Skype peer-to-peer VoIP system.
In: International Workshop on Peer-to-Peer Systems. Santa Barbara, CA, USA (2006)

14. Gummadi, K.P., Dunn, R.J., Saroiu, S., Gribble, S.D., Levy, H.M., Zahorjan, J.: Measurement,
modeling, and analysis of a peer-to-peer file-sharing workload. In: ACM Symposium on
Operating Systems Principles (2003)

15. Guo, L., Chen, S., Xiao, Z., Tan, E., Ding, X., Zhang, X.: Measurements, analysis, and mod-
eling of BitTorrent-like systems. In: Internet Measurement Conference. Berkeley, CA (2005)

16. Hastings, W.: Monte Carlo sampling methods using Markov chains and their applications.
Biometrika 57, 97–109 (1970)

17. He, Q., Ammar, M.: Congestion control and message loss in Gnutella networks. In: Multime-
dia Computing and Networking. Santa Clara, CA (2004)

18. Izal, M., Urvoy-Keller, G., Biersack, E.W., Felber, P.A., Hamra, A.A., Garces-Erice, L.: Dis-
secting BitTorrent: Five months in a torrent’s lifetime. In: Passive and Active Measurement
Workshop (2004)

19. Jiang, S., Zhang, X.: Floodtrail: An efficient file search technique in unstructured peer-to-peer
systems. In: Globecom. San Francisco, CA (2003)

20. Karagiannis, T., Broido, A., Brownlee, N., Claffy, K., Faloutsos, M.: Is P2P dying or just
hiding? In: Globecom. Dallas, TX (2004)

21. Karbhari, P., Ammar, M., Dhamdhere, A., Raj, H., Riley, G., Zegura, E.: Bootstrapping in
Gnutella: A measurement study. In: Passive and Active Measurement Workshop (2004)

22. Klemm, A., Lindemann, C., Vernon, M., Waldhorst, O.P.: Characterizing the query behavior
in peer-to-peer file sharing systems. In: Internet Measurement Conference. Taormina, Italy
(2004)

23. Leibowitz, N., Bergman, A., Ben-Shaul, R., Shavit, A.: Are file swapping networks cacheable?
Characterizing P2P traffic. In: International Web Caching Workshop (2002)

24. Leibowitz, N., Ripeanu, M., Wierzbicki, A.: Deconstructing the Kazaa network. In: IEEE
Workshop on Internet Applications (2003)

25. Leonard, D., Rai, V., Loguinov, D.: On lifetime-based node failure and stochastic resilience of
decentralized peer-to-peer networks. In: SIGMETRICS (2005)

26. Li, J., Stribling, J., Morris, R., Kaashoek, M.F.: Bandwidth-efficient management of DHT
routing tables. In: USENIX/ACM Symposium on Networked Systems Design and Implemen-
tation. Boston, MA (2005)

27. Liang, J., Kumar, R., Ross, K.W.: The Kazaa overlay: A measurement study. Computer Net-
works Journal (Elsevier) (2005)

28. Liang, J., Kumar, R., Xi, Y., Ross, K.W.: Pollution in P2P file sharing systems. In: IEEE
INFOCOM. Miami, FL (2005)

29. Liu, Y., Liu, X., Xiao, L., Ni, L.M., Zhang, X.: Location-aware topology matching in P2P
systems. In: IEEE INFOCOM (2004)

30. Liu, Y., Zhuang, Z., Xiao, L., Ni, L.M.: AOTO: Adaptive overlay topology optimization in
unstructured P2P systems. In: Globecom. San Francisco, CA (2003)

31. Liu, Y., Zhuang, Z., Xiao, L., Ni, L.M.: A distributed approach to solving overlay mismatching
problem. In: International Conference on Distributed Computing Systems (2004)

32. Lovász, L.: Random walks on graphs: A survey. Combinatorics: Paul Erdös is Eighty 2, 1–46
(1993)

33. Lv, Q., Cao, P., Cohen, E., Li, K., Shenker, S.: Search and replication in unstructured peer-to-
peer networks. In: International Conference on Supercomputing (2002)

34. Lv, Q., Ratnasamy, S., Shenker, S.: Can heterogeneity make Gnutella scalable? In: Interna-
tional Workshop on Peer-to-Peer Systems (2002)

35. Markatos, E.P.: Tracing a large-scale peer to peer system: an hour in the life of Gnutella. In:
CC Grid (2002)

1276 Daniel Stutzbach and Reza Rejaie

36. Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., Teller, E.: Equations of state cal-
culations by fast computing machines. Journal of Chemical Physics 21, 1087–1092 (1953)

37. Plissonneau, L., Costeux, J.L., Brown, P.: Analysis of peer-to-peer traffic on ADSL. In: Passive
and Active Measurement Workshop, pp. 69–82. Boston, MA (2005)

38. Pouwelse, J., Garbacki, P., Epema, D., Sips, H.: The BitTorrent P2P file-sharing system: Mea-
surements and analysis. In: International Workshop on Peer-to-Peer Systems. Ithaca, NY
(2005)

39. Rhea, S., Geels, D., Kubiatowicz, J.: Handling churn in a DHT. In: USENIX, pp. 127–140
(2004)

40. Ripeanu, M., Foster, I., Iamnitchi, A.: Mapping the Gnutella network: Properties of large-
scale peer-to-peer systems and implications for system design. IEEE Internet Computing 6(1)
(2002)

41. Saroiu, S., Gummadi, K.P., Dunn, R.J., Gribble, S.D., Levy, H.M.: An analysis of Internet
content delivery systems. In: Symposium on Operating Systems Design and Implementation,
pp. 315–327 (2002)

42. Saroiu, S., Gummadi, P.K., Gribble, S.D.: Measuring and analyzing the characteristics of Nap-
ster and Gnutella hosts. Multimedia Systems Journal 9(2), 170–184 (2003)

43. Sen, S., Wang, J.: Analyzing peer-to-peer traffic across large networks. IEEE/ACM Transac-
tions on Networking 12(2), 219–232 (2004)

44. Sripanidkulchai, K.: The popularity of Gnutella queries and its implications on scalability
(2001). URL http://www-2.cs.cmu.edu/˜kunwadee/research/p2p/paper.
html

45. Stutzbach, D., Rejaie, R.: Improving lookup performance over a widely-deployed DHT. In:
IEEE INFOCOM. Barcelona, Spain (2006)

46. Stutzbach, D., Rejaie, R.: Understanding churn in peer-to-peer networks. In: Internet Mea-
surement Conference. Rio de Janeiro, Brazil (2006)

47. Stutzbach, D., Rejaie, R., Duffield, N., Sen, S., Willinger, W.: On unbiased sampling for un-
structured peer-to-peer networks. IEEE/ACM Transactions on Networking (To appear)

48. Stutzbach, D., Rejaie, R., Sen, S.: Characterizing unstructured overlay topologies in modern
p2p file-sharing systems. IEEE/ACM Trans. Netw. 16(2) (2007)

49. Stutzbach, D., Zhao, S., Rejaie, R.: Characterizing files in the modern Gnutella network. Mul-
timedia Systems Journal 13(1) (2007)

50. Wang, C., Xiao, L., Liu, Y., Zheng, P.: Distributed caching and adaptive search in multilayer
P2P networks. In: International Conference on Distributed Computing Systems (2004)

51. Yang, M., Zhang, Z., Li, X., Dai, Y.: An empirical study of free-riding behavior in the Maze
P2P file-sharing system. In: International Workshop on Peer-to-Peer Systems. Ithaca, NY
(2005)

Improving Peer-to-Peer Transport Paths
for Content Distribution

Gerhard Hasslinger

Abstract Peer-to-peer networks have introduced a distributed communication
paradigm, which is useful for many communication services and still accounts for a
considerable portion of the Internet traffic. We discuss the efficiency of peer-to-peer
content distribution as compared to server based overlays, which support search
engines and many other popular web sites. Random source selection schemes of
peer-to-peer protocols lead to long transmission paths and unnecessary high traffic
load on inter-domain links. This chapter compares several recent proposals for a lo-
cal exchange of popular data in the Internet with different implications for network
resource efficiency, service provisioning and usage.

Key words: Peer-to-peer networks, Overlays, Content delivery, Application layer
traffic engineering

1 Introduction

Overlays of various type are used to bridge heterogeneous networks for seamless
end-to-end services. Current networking trends towards fixed/mobile convergence
make them even more relevant for integrating different technologies with Internet
access. A major advantage of overlays is their ability to provide new services or
extend existing services on top of and independent of an underlying infrastructure.

Peer-to-peer (P2P) networks establish overlays on terminal equipment of the
users, offering global services at a minimum of own network infrastructure for the
provider. Fast delivery of large volumes of content within globally scattered com-
munities is a main strength of the peer-to-peer principle, with scalability and adapt-

Gerhard Hasslinger
T-Systems, Deutsche-Telekom-Allee 7, D-64295 Darmstadt, Germany,
e-mail: gerhard.hasslinger@telekom.de

X. Shen et al. (eds.), Handbook of Peer-to-Peer Networking, 1277
DOI 10.1007/978-0-387-09751-0 46, © Springer Science+Business Media, LLC 2010

1278 Gerhard Hasslinger

ability for heterogeneous access [4, 27]. Peer-to-peer networks are highly efficient
for several purposes due to their ability

– to exploit vacant resources (data, storage, computation power, bandwidth) dis-
tributed over user equipment,

– to adapt to varying demands with scalability for huge communities, including
dynamic flash crowds,

– to embed support for search and replication of data for predefined demands in a
self-organizing way,

– to build and manage overlays without or at low cost for network and server in-
frastructure.

On the other hand, transmission paths for P2P data exchange often span around the
globe although very popular data is available at peers in the near of a destination.
In contrast to P2P networks, content delivery networks (CDN) form overlays based
on distributed server farms, which are known to do a good job in optimizing trans-
mission paths and corresponding delay by delivering data from a server close to
each requesting user [28]. Network providers include overlay traffic in the planning
and upgrading process of their platforms which often enable mechanisms for load
balancing. In this way, inefficient routing on higher layers can be partly reduced by
optimization on lower layers, but overlay traffic engineering on the application layer
offers additional optimization capabilities. On the other hand, smoothing effects of
P2P traffic are visible

– in short term traffic variability on the time scales from milliseconds up to sec-
onds, where the coefficient of variation is essentially lower for P2P traffic when
compared to other traffic types on backbone links [18],

– in daily traffic profiles, where the peak-to-mean ratio is usually below 1.5 for P2P
and close to 2 for web browsing and other services with direct human interaction
[15],

– in the source distribution over the network topology, where flash crowd data is
rapidly distributed and made available from all over the network, avoiding local
bottlenecks.

Nevertheless, overlays may lead to increased overhead and cross-layer inefficiency
by repeating similar and overlapping functions on higher layers or, in the worst
case, by employing functions jarring with each other on different layers. Therefore
overlays should be set up with implicit or explicit awareness of the underlying net-
work structure and protocols. Proposals for a better supply of the application layer
with information about the network topology include measurement based estima-
tion of Internet coordinates [11, 22] and the installation of an information service
or oracle collecting network layer information for support of higher layer protocols
[1, 5, 21, 29]. It remains a challenging design problem for future Internet architec-
tures to keep the layering structure simple and at the same time to keep the flexibility
to respond to new requirements and technical opportunities as the main motivation
for the emergence of overlays of various type.

After a discussion of the properties of P2P networking from the view of main
involved parties in Sections 2, 3 compares access to and efficient distribution of data

Improving Peer-to-Peer Transport Paths for Content Distribution 1279

via P2P and CDN overlays. Approaches for improving P2P data exchange based on
awareness of the network layer are addressed in Section 4 together with caching and
bandwidth control options, followed by concluding remarks.

2 P2P Networking on Broadband Internet Platforms

Today, well-known and most popular peer-to-peer applications are file sharing and
voice over IP (Skype) attracting millions of users, while a much wider spectrum of
Internet application can more or less benefit from P2P networking. P2P solutions for
online gaming, video streaming and IPTV also have a potential to extend to mass
market and in addition, P2P overlay support is useful for small communities and
enterprises. Although P2P protocol designers have developed highly efficient dis-
tributed data transfer and control schemes, there are still unsolved open issues for
all parties involved in P2P communication, including security concerns and uncon-
trolled distribution of partly illegal content in self-organizing communities.

On the other hand, business solutions based on P2P with controlled access and
digital rights management have also been set up. The BBC iPlayer is such a pub-
licly accessible P2P service for downloading television and radio programs of the
last seven days. as a step towards integration of Internet and television [3]. A corre-
sponding research project P2P-NEXT is currently investigating P2P approaches for
IPTV applications, which is funded by the European Union with major European
broadcasters involved. The objectives of the project give an optimistic view on the
applicability and future role of P2P for broadcasting, see <www.p2p-next.org>:

“P2P still has a somewhat dubious reputation as an illegal file sharing mechanism akin
to Napster, Kazaa, Glockster, etc. Nevertheless, today it is considered by many as an effi-
cient, reliable, and low cost mechanism for distributing any media file or live stream, and
it is extensively used. Broadcasters and content providers consider P2P as a future-proof,
universal, and ubiquitous two-way (interactive) distribution mechanism. Initially, P2P will
complement the existing distribution mechanisms such as satellite, cable and terrestrial net-
works, but ultimately it may supersede them. The P2P-Next Project extends the notion of a
conventional media distribution network. It introduces a concept of on-demand, person-
alised, and social network.”

From a general viewpoint, there are several parties involved in communication
services, who look from different sides on P2P networking:

2.1 Users

The end users always benefit from new service opportunities. P2P approaches be-
come popular when they are cheaper or give more comfortable access to resources
than other Internet services. The motivation to make own resources available to
others is limited and usually has to be supported by incentive mechanisms [10].

1280 Gerhard Hasslinger

Nevertheless, user generated content on the Internet recently gained popularity via
P2P or server platforms. YouTube <www.youtube.com> established a well known
service for video streaming with a considerable traffic volume generated by users
[7, 14].

2.2 P2P Service and Protocol Designers

P2P service and protocol designers can develop overlay services for global usage
on the application layer without own infrastructure. But they have to be aware of
the network and transport layer as well as the user behaviour to make a good fit of
their approach into the telecommunication landscape. Some popular P2P networks
(Guntella, eDonkey, BitTorrent, Skype etc.) seem to be initially launched by single
developers or small groups without much support neither from major players in
the telecommunications industry nor from universities. A framework for a simple
and scalable protocol design is essential for P2P protocol development, allowing to
launch and maintain services at minimum effort.

Progress has been made to overcome some problems of initial approaches e.g.
to improve the search based on flooding messages in the original Gnutella proto-
col, which produced an enormous messaging overhead and did not scale when the
population raised to millions. The success of the Skype network proved that voice
over IP is feasible without special enforcement for quality of service, which was a
surprising new experience. Skype was launched when the available bandwidth per
users on broadband access platforms had become essentially larger than required
for a single voice connection and it turned out that this kind of overprovisioning
is sufficient for voice services to achieve acceptable quality. For high quality video
applications the bandwidth on nowadays broadband IP networks is still insufficient,
which is a main reason why P2P video streaming is much more challenging and
up to now less successful. When performance demands for bandwidth or delay are
critical then P2P solutions have to be optimized and thus become more elaborate in
order to cope with other competitive approaches.

2.3 Content and Service Providers

Content providers may use P2P solutions as an alternative way of delivery, although
the problem of file sharing abuse is a major concern. Economical aspects of P2P net-
working are addressed e.g., in [27]. Content delivery networks (CDN) build overlays
on servers in the Internet architecture in order to support many popular web sites
with an increasing spectrum of Internet services. They enable short transmission
paths for enhanced quality of service, as discussed in more detail in Section 3.

Improving Peer-to-Peer Transport Paths for Content Distribution 1281

2.4 Network and Broadband Access Providers

The network and Internet service providers (ISPs) also have an ambivalent view on
P2P activity. P2P file sharing was and still is a main driver of bandwidth demand
throughout the deployment phase of broadband access in recent time. This demand
causes higher cost for upgrading the network capacities while also motivating a
non-negligible group of users to subscribe to increasing access speeds. Asymmetri-
cal digital subscriber lines (ADSL) are currently a prevalent deployment technology
for Internet access from the homes, with presently more than 15 million DSL sub-
scribers in Germany at rates in the range of 1–16 Mb/s. When the first 1–2 million
ADSL subscriber lines were deployed in Germany in 2002, a majority of the users
seemed to exploit their upstream bandwidth over long time periods probably for
P2P networking. Since then the broadband access population has increased 10fold
utilizing a much broader spectrum of applications, including file sharing as one of
many components, although still generating a considerable portion of the traffic. The
bandwidth consumption per user is now distributed over a wide range, see Fig. 1.
Nevertheless, the portion of subscribers who fully exploit their access speed is de-
creasing while the mean traffic volume per user is increasing at a moderate pace,
essentially lower than for the available access bandwidth.

Considering a current population of more than 15 million ADSL subscribers in
Germany being connected at a mean access bandwidth of at least 3 Mb/s, we have
well over 45 Tb/s of access bandwidth deployed in Germany to the homes in total.
On the other hand, the Higher Speed Study Group of the Ethernet Alliance [12] re-
cently started work on draft standards for 40 and 100 Gb/s Ethernet for the aggrega-
tion of future Internet platforms, such that 10 Gb/s lines will remain the maximum
Ether-net speed for the next years. The large discrepancy between the bandwidth
which is deployed in the access and in the aggregation reveals that only a minority
of the users exploit their access speed allowing for a high statistical multiplexing
gain traffic aggregation on broadband access platforms.

2.5 Current Shifts in Internet Usage and Traffic Profiles

Network dimensioning currently can rely on 80:20 rules, where a small fraction of
subscribers generates most of the traffic, while the mass of users runs less bandwidth
consuming services. Some typical statistics on the traffic contribution of most active
users are shown in Fig. 1 based on the byte volume counted per IP address in on-
line sessions on a downstream ADSL aggregation link over a day with about 100
000 different IP addresses visible in the measurement. IP addresses are assigned
dynamically to users and are expected to change once or a few times for an active
user over a day, such that the volume per user represents one or a sum of several
volumes per IP address. The statistics per IP address indicates an even more extreme
distribution than an 80:20 assumption, where in fact 90% of the traffic refers to less
than 5% of the IP addresses. Although the trend to broader multi purpose usage

1282 Gerhard Hasslinger

reduces the P2P traffic portion, ISPs and users still face the problem of inadequate
charging for the majority of traffic on the Internet [27]. Subscribers prefer flat rate
access without accounting for the traffic volume, which is offered with only minor
differentiation in access speeds. Volume based tariffs combined with a low monthly
fee and flat rate up to a volume limitation would be sufficient for most users, but
then they are often left without awareness or control of costs in excess of the limit
until a next monthly bill. Even if the costs for transport of high traffic volumes in
the backbone is only a part of the access provisioning costs, flat rate pricing seems
to privilege the heavy traffic producers on account of all other users.

In near future, a new wave of video and IPTV services is expected to be delivered
by broadcasters and content providers partly via P2P and partly via CDNs [9, 13,
24]. Broadcast and on demand video applications have the potential for another
essential increase in the traffic volume and for shifts in the usage statistics such that
the fraction of users generating negligible traffic will decrease and the fraction of
contributors of large volumes will increase.

3 Distribution and Access to Content on the Internet

Popular client-server based web sites usually are supported by content delivery net-
works (CDN). A study of transfer paths in Akamais CDN [28] shows how users are
redirected from the original web site by the underlying CDN to a close-by server
within a hierarchical server farm consisting of thousands of servers. The connection
is dynamically switched to another server if performance measurement and load

Fig. 1 Zipf law distributions for data volume and access frequencies of web sites

Improving Peer-to-Peer Transport Paths for Content Distribution 1283

conditions indicate better quality of service for the new path. Su et al. [28] confirm
that CDNs are efficient in shortening transmission paths and improving delays and
throughput as main quality of service characteristics.

3.1 CDN Versus P2P Content Distribution

As compared to CDN transfers from a server in the near, P2P downloads usually ex-
perience much longer paths and delays which also affect throughput and reliability.
For network providers, unnecessary long transfer paths impose higher load on peer-
ing and interconnection routes including expensive intercontinental links [5, 21].
Figure 2 illustrates the different behaviour of CDN and P2P networks, depicting a
usual topology of broadband access networks, where tree-shaped access regions are
attached to edge routers of the backbone at points of presence (PoPs).

Considering large provider networks serving millions of subscribers, it can be
expected that a majority of the data of a global file sharing network is already found
to be replicated on the same ISP platform and often already in the same access region
of a P2P downloader. The fact that the major portion of downloads is addressed to a
small set of the currently most popular files strengthens this effect.

Sometimes a tendency for P2P content to be exchanged locally arises within so-
cial groups. A separation of user communities and content due to different languages
is most obvious. When looking at downloads of German content to a German des-
tination via eDonkey, it is not surprising to find another 80:20 rule, such that about
80% of the sources are again located in Germany, whereas the opposite, i.e., less
than 20% of source locations in Germany are observed for downloads of English
content [26]. The assignment of peers to the same supernode in the eDonkey net-
work may also generate locality within the reach of a supernode, but which does not
correspond to national or ISP boundaries.

Traffic locality also has been investigated for data exchange between regions
within an ISP platform by Cho et al. [8] using measurement from several Japanese
service providers. Based on IP address analysis, they found user-to-user traffic to
be dominant, which may correspond to P2P or other applications running between
users. The traffic matrices between regions are determined and do not reveal signif-
icant local dependencies, i.e., traffic is exchanged between neighboring regions at
about the same rates as between distant regions.

The lack of regional locality in traffic matrices is also visible for Internet traffic
in Germany, in contrast to traffic on voice platforms, e.g., ISDN, with a considerable
portion of local calls. But even when voice networks migrate to voice over IP, voice
will contribute only a small fraction of the total IP traffic and thus locality in IP
traffic matrices is expected to stay at a low level.

1284 Gerhard Hasslinger

3.2 Zipf Laws and 80:20 Rules

The relevance of Zipf distributions and corresponding 80 : 20 rules for access to a
large set of items by a large population is observed in many case studies. According
to a Zipf law, the item that has rank R in the order of highest access frequency at-
tracts A(R) = C ·R−E accesses, with 0 < E < 1 and a constant C, which determines
the total number of accesses. As a consequence, a large portion of all accesses con-
centrates on a few most popular items. Zipf-like distributions for web sites have
been investigated by Breslau et al. [6] based on a set of measurements from half a
dozen different networks, yielding parameters in the range 0.64 < E < 0.85. Recent
studies of access to YouTube [7, 14] again show Zipf-like distributions although
with deviation for seldom accessed videos. M. Eubanks [13] reports similar results
for the popularity of content on America Free TV <americafree.tv> and for other
cases e.g., book selling. Thus, an essential portion of P2P data transfers could al-
ready be found and delivered within an ISP’s platform and even without crossing
the backbone.

4 Optimized Data Exchange in P2P Networks

The problem of replacing long transmission paths between peers around the globe
by local data exchange between peers close to each other is addressed in a number of
recent approaches. Information servers are proposed [1, 5, 29], which can be queried

Fig. 2 P2P and CDN overlays on broadband access platforms

Improving Peer-to-Peer Transport Paths for Content Distribution 1285

by applications in order to localize data sources in the near based on information
from network providers and other parties. Alternatives are coordinate systems to be
established for the sources of a distributed applications [11, 22] and caches. With
knowledge of the position of peers or servers, the data flows of an application can
be optimized, even regarding bottlenecks on transmission links [29]. Since some of
those proposals have to rely on a common and standardized concept, the Internet
Engineering Task Force (IETF) has started activity in this area.

4.1 Current IETF Discussion on Application Layer Traffic
Engineering

Presently, the Internet Engineering Task Force (IETF) is preparing a working group
on application layer traffic optimization (ALTO) [21], aiming at a standardized sup-
port to improve localized data exchange in P2P and other types of content distribu-
tion networks. On the IETF-72 meeting in August 2008 in Dublin, the ALTO BoF
(Birth of Feathers) attracted about 300 attendees. Although they could not agree to
immediately proceed to IETF working group status, a problem statement and a col-
lection of preliminary solution approaches have already been documented in about
half a dozen drafts as work in progress [21].

The basic problem to be addressed is how distributed applications can get in-
formation about the locations and distances between the involved hosts or peers. A
main focus is on a cooperation between network providers and other parties who are
able to provide location information for application protocols. Several projects and
studies are already investigating approaches for a globally accessible information
service that can be fed by parties with knowledge about network topologies within
the Internet [1, 5, 29]. Distributed applications can access the information server
through queries in order to optimize host or peer relationships for data exchange.
As a starting point, information services about locations are already online, e.g., the
Prefix WhoIs service <www.pwhois.org> or <www.closestnode.com>. Main pre-
conditions and aspects of a standardized extension of a location information service
are

– Which kind of metrics and information is useful to estimate distances and local
relationship between different hosts?

– Which parties are expected to provide such information based on which own
interest or incentives?

– How should an interface to the service be designed for access by applications?
– How can availability and scalability be achieved and failure cases be handled?
– What is the effect of the location information service for users and traffic pattern

in network provider platforms? How can it be measured and optimized?

Two basic methods are considered for traffic path optimization:

1286 Gerhard Hasslinger

– IP address mapping as done by the Prefix WhoIs service, for assigning the au-
tonomous system to an IP address as a crude classification or at a finer granularity
and

– Probing methods to measure delay, throughput or other performance parameters.
This approach is most sensitive and responsive to current network conditions,
but requires considerable effort and overhead. It may be too time consuming for
small data transfers. Probing can be implemented on the application layer in the
P2P protocol also without involving servers.

A coordinate system built on probing for delays between BitTorrent peers has
been studied and implemented in test versions of the Azareus client [22]. The prob-
ing is piggybacked on other messages between peers to reduce probe message over-
head. As a result, a two dimensional coordinate system is constructed with an addi-
tional height component to account for delays in the access. Much effort is needed
to maintain a coordinate system. The variability of delay measurement results over
time, changes in the routing and churn are among the main factors detracting from
the accuracy. The study [22] concludes that useful coordinates can be established on
application layer, but the effort to employ a coordinate system seems to be afford-
able only for large scale P2P networks.

A server system can combine information gathered from several sources to obtain
more precise information with less effort. When a P2P download is initiated, the P2P
protocol usually determines a list of possible sources offering the required content,
which is handed over to the client, who connects to several proposed sources until a
sufficient throughput is obtained in a multi source download process. While popular
P2P protocols currently choose the sources more or less at random, a server with
topology awareness can rank sources in the list due to distances from the requesting
peer. In the ranked list, the client can start choosing close-by sources, which may
also be preferable with regard to throughput and delay, when they still have enough
up-stream capacity available. The solution again involves some overhead and has
to be included into each P2P protocol, depending on servers to collect informa-
tion from network providers or other parties who contribute knowledge on Internet
topology and distances.

4.2 Experience from the P4P Project Including Traffic
Engineering

A testbed for application layer traffic optimization has already been set up by
the P4P project <codex.cs.yale.edu/avi/home-page/p4p-dir/p4p.html > and a P4P
working group hosted by the Distributed Computing Industry Association (DCIA)
<www.dcia.info>. Recent results of a field trial [29] claim that the mean path length
for P2P downloads could be reduced from 5.5 to 0.9 metrohops within the Verizon
intra-domain network. In general, the gain for intra-domain paths depends on the

Improving Peer-to-Peer Transport Paths for Content Distribution 1287

size and the structure of a provider platform, which often spans a smaller area with
less than 5 hops to cross the backbone.

On the other hand, more improvement is expected for inter-domain traffic paths,
which traverse the boundaries of network platforms partly on expensive intercon-
tinental links. Network providers would profit a lot from redirecting traffic paths
into their platform wherever possible. A classification of sources according to au-
tonomous systems (AS), which usually correspond to network regions under com-
mon administration, is helpful to support this approach. Since not all P2P traffic
can be bound within an AS, network providers could add policy information about
which neighboring ASes are preferable for connections to peers in their platform,
based on their knowledge of inter-AS connectivity and bottlenecks as well as the
expenses for utilizing inter-AS links.

A corresponding inter-domain scenario has also been investigated by the P4P
project [29], considering usual BitTorrent traffic pattern and volume according to
measurement in the Abilene network in 2007. In one scenario, the traffic on the
assumed inter-AS links is reduced to 2/3 by preferring sources based on low de-
lay, whereas a second server-based scenario including the P4P traffic optimization
method even yields less than 40% of the original P2P traffic load on inter-AS links.

The application layer traffic engineering approaches studied in the P4P project
include load balancing to avoid bottlenecks and to minimize costs associated with
traffic on network links. Nevertheless, this raises the question whether the network
providers or the applications should be responsible for traffic engineering in the fu-
ture Internet and what is the overall effect when this is done on the network and
on the application layer? Counterproductive scenarios may arise, e.g. when the ap-
plication layer optimization reorganizes the overlay network structure in order to
avoid a bottleneck link. As a consequence, the traffic matrix on the network layer
will observe a corresponding shift in traffic demands and the network provider may
no longer see bottlenecks and the need to upgrade them.

In practice, traffic engineering has to take link failures into account as well as a
link upgrading process for steadily increasing Internet traffic [24]. On the network
layer, load balancing solutions are available for that purpose [19], but it seems chal-
lenging to combine or even integrate them with similar application layer functions
under different administration.

4.3 Influence of Biased Source Selection on the Overlay Topology

The proposed biased source selection for exploiting local data exchange has an im-
pact on the overlay network topology. Random source selection leads to a strongly
connected global mesh network without hierarchical or regional structures. Ran-
domly built graphs develop towards scale-free networks with small world effects.
The global Internet structure is based on random and scale-free properties with a
diameter of only about 20 [2, 17].

1288 Gerhard Hasslinger

Biased local source selection strengthens a tendency to build a number of clus-
ters with strong internal connectivity and a loose coupling between those clusters.
With preference for connections between nodes in the same AS, clusters or subnet
structures can be expected within each AS. Thus improved locality may slow down
the distribution of content over network boundaries of ISPs. In the worst case, strict
local preference and a high churn in P2P networks may lead to separated subnets
for the same content.

Thus, sufficient inter-domain connectivity has to be sustained. An obvious ap-
proach is to mix biased local preference with randomness. Then the portion of ran-
dom selection has to keep the inter-domain traffic throughput at a smallest possible
level in a trade-off between avoiding a slow down of content propagation around the
globe. The portion depends on the size of the overlay and can be smaller in large
overlays, allowing for more efficient localization. Alternative approaches to main-
tain a structured and optimized overlay network for inter-domain connections have
to cope with the randomness and churn in P2P networks.

4.4 Caches

Web caches provide another opportunity to optimize traffic paths [15, 25]. In princi-
ple, caches are highly efficient for P2P data, again because of Zipf-like distributions
[6, 13, 14] for accesses to content. Therefore storing a small fraction of most pop-
ular content is sufficient to attract a high hit rate. Problems of outdated data as in
classical web caches are less relevant for most P2P content, which is uniquely iden-
tified by hash algorithms. Caches can be placed in aggregation nodes for broadband
access close to the subscriber lines yielding minimal transport path lengths.

On the other hand, the problem of supporting the distribution of copyright in-
fringing or other illegal content by caches is apparent. In principle, the content of
web caches always reflected content of the Internet, including problematic content
although in an agnostic way. Nevertheless, the problem now has attracted much
more attention and is pursued by various counteractions since file sharing is sus-
pected to be responsible for decreasing revenues for content providers in the music
and film industry. Filtering or classification of content in a cache is as difficult as fil-
tering web content requiring expensive deep packet inspection methods. Since users
distrust content inspection which can be seen in conflict with privacy laws of many
countries, ISPs should use filtering only on behalf of legal authorities rather than on
their own policies.

Since October 2004, the eDonkey/eMule P2P network offered an option to use
the web caches of network providers by disguising P2P downloads as usual HTTP
web browsing requests. When investigating the usage of this cache option in 2006,
only a small portion of 5–10% of the download volume was observed to be sup-
ported by caches, although cases of downloading from the cache achieved essen-

Improving Peer-to-Peer Transport Paths for Content Distribution 1289

tially, often 5-fold higher throughput [26]. Later protocol versions did not proceed
with cache support, see <wiki.emule-web.de/index.php/webcache>.

While file sharers obviously could benefit from cache downloads at higher
throughput, the alternative of biased source selection with local preference is more
favourable for network providers. The entire throughput of a P2P overlay is lim-
ited by the upstream capacities of the participating peers as a bottleneck especially
in ADSL access. For biased source selection, this bottleneck remains unchanged
even if it may be better exploited. But when caches are included, then the access
bandwidth of the caches becomes available for downloading in addition to the up-
stream bottle-neck. Although the bandwidth of a cache is under control of the ser-
vice provider, file sharing can utilize the cache as well as the P2P overlay to maxi-
mize the throughput. The network provider may experience P2P traffic load to per-
sist in the backbone and even to increase in the access due to cache support. From
the user perspective, caches in the access would be ideal to improve the throughput
and to shorten transport paths and corresponding delays.

In principle, network providers can offer the most efficient support for content
distribution using their own infrastructure including multicast/broadcast services. In
this way, a single provider can’t build architectures of global reach, but it is appro-
priate for offering regional services or IPTV within a country or lingual community.

4.5 Traffic Control for Bottlenecks

Finally, network providers can try to enforce locality by controlling and reducing
the traffic especially on expensive links on peering and transatlantic routes. For that
purpose, P2P traffic has to be classified and differentiated from other traffic. There
are more than a dozen vendors of application identification systems and experience
has been published for detection of main P2P protocols [5, 20]. Reducing P2P traffic
on the borders of an ISP network would again give preference for shorter intra-
domain download paths.

Nevertheless, P2P traffic classification is subject to non-negligible effort, as
demonstrated by more than 1000 behaviour patterns being included in an thorough
decision process for classification of BitTorrent [20]. The European Advanced Net-
working Test Center <www.eantc.com> recently invited manufacturers of P2P fil-
tering solutions to an independent test, but only two vendors agreed to publish their
test results [23].

Another problem of filtering can be seen in the fact that there is no clear reason
for ISPs to differentiate traffic belonging to the same best effort class, even if it may
result in better performance for all users. It would be much easier to differentiate
traffic based on QoS classification by the users themselves, such that streaming or
voice traffic is prioritized already in the user equipment [16]. But QoS marking
and differentiation is rarely applied end-to-end, although most routers in broadband
access networks support differentiated services.

1290 Gerhard Hasslinger

5 Conclusions

The capability to launch new Internet services on the application layer without di-
rectly involving network infrastructure is a basic precondition for the success of
peer-to-peer overlays. Nevertheless, advanced approaches for distribution of large
data vo-lumes have to avoid unnecessary traffic load on network platforms in or-
der to stay competitive to alternative ways of content distribution via server based
overlays.

Therefore most frequently accessed content has to be delivered from nearby
sources. Several recent approaches to improve traffic engineering based on locality
awareness for peers or servers in overlays are currently discussed for possible stan-
dardization at the IETF with their consequences from the view of content, network,
service providers and the users. Although it seems open which approaches will be
implemented and will play an important role in the future Internet, progress can
be expected towards more efficient localized transport on network platforms from
which the users can also benefit in terms of shorter delay and higher throughput.

References

1. V. Agrawal, A. Feldmann and C. Schneideler, Can ISPs and P2P users cooperate for improved
performance? ACM SIGCOMM Computer Communication Review 37 (2007) 31–40

2. R. Albert and A.-L. Barabasi, Statistical Mechanics of Complex Networks, Review of Modern
Physics 74, 47 (2002) 1–54

3. BBC iPlayer <www.bbc.co.uk/iplayer/> (since 2007)
4. E. Biersack et al., Overlay architectures for file distribution: Fundamental analysis for homo-

geneous and heterogeneous cases, Computer Networks 51 (2007) 901–917
5. R. Bindal et al., Improving traffic locality in BitTorrent via biased neighbor selection, ICDCS

(2006)
6. L. Breslau et al., Web caching and Zipf-like distributions: Evidence and implications, Proc.

IEEE Infocom (1999)
7. X. Cheng, C. Dale and J. Liu, Statistics and social network of YouTube videos, IEEE Proc.

International Workshop on Quality of Service (IWQoS), Twente, The Netherlands (2008)
249–258

8. K. Cho, K. Fukuda, H. Esaki and A. Kato, The impact and implications of the growth
in residential user-to-user traffic, ACM Sigcomm Conf., Pisa (2006) <www.acm.org/
sigs/sigcomm/sigcomm2006>

9. Cisco Systems, Global IP traffic forecast and methodology, White paper (2008)
<www.cisco.com>

10. B. Cohen, Incentives build robustness in BitTorrent,
<bitcon-jurer.org/BitTorrent/bittorrentecon.pdf> (2003)

11. F. Dabek, R. Cox, F. Kaashoek and R. Morris, Vivaldi: A decentralized net-
work coordinate system, ACM Sigcomm Conf., Portland, USA (2004) <confer-
ences.sigcomm.org/sigcomm/2004/>

12. Ethernet Alliance, Higher Speed Ethernet Study Group (2008)
<www.ethernetalliance.org>

13. M. Eubanks, The video tsunami: Internet television, IPTV and the com-
ing wave of video on the Internet, Pleanry talk, 71. IETF meeting (2008)
<www.ietf.org/proceedings/08mar/slides/plenaryt-3.pdf>

Improving Peer-to-Peer Transport Paths for Content Distribution 1291

14. P. Gill, YouTube workload characterization, Master Thesis, Univ. of Calgary, Canada (2008)
<pages.cpsc.ucalgary.ca/ psessini/papers/pgill thesis.pdf>

15. G. Hasslinger, ISP Platforms under a heavy peer-to-peer workload, Proc. Peer-to-Peer Systems
and Applications, Eds.: R. Steinmetz and K. Wehrle, Springer LNCS 3485 (2005) 369–382

16. G. Hasslinger, F. Guillemin, J. Ferreira and U. Halldorsson, The impact of peer-to-peer net-
working on network operators and Internet service providers, Eurescom study report P1553
(2005)
<www.eurescom.eu/public/projects/P1500-series/p1553>

17. G. Hasslinger and S. Kempken, Applying random walks in structured and self-organizing
networks: Evaluation by transient analysis, PIK – Special Issue on Self-Organizing Networks,
Saur Verlag, Vol. 31 (2008) 17–23

18. G. Hasslinger, J. Mende, R. Geib, T. Beckhaus and F. Hartleb: Measurement and characteris-
tics of traffic in broadband access networks, Proc. 20. Internat. Teletraffic Congress, Ottawa,
Canada, Springer, LNCS 4516 (2007) 998–1010

19. G. Hasslinger, S. Schnitter and M. Franzke, The Efficiency of Traffic Engineering with Regard
to Failure Resilience, Telecommunication Systems Vol. 29/2, Springer (2005) 109–130

20. Y. Hu, D. Chiu and J. Lui, Application identification based on network behavioral profiles,
Proc. 16. IEEE Workshop on Quality of Service (IWQoS’08) Twente / Enschede, The Neder-
lands (2008) 239–248

21. Internet Engineering Task Force (IETF), ALTO BoF: Application layer traffic optimization,
<www.ietf.org/proceedings/08jul/minutes/alto.txt> and <alto.tilab.com>

22. J. Ledlie, P. Gardner and M. Seltzer, Network coordinates in the wild, Proc. USENIX Conf.
(2007) 299–311

23. The Minnesota Internet traffic studies (MINTS)
<http://www.dtc.umn.edu/mints/references.html>
continuously updated until 2008

24. A. Odlyzko, Internet traffic growth: Sources and implications, Proc. SPIE Vol. 5247 (2003)
1–15

25. C. Rossenhövel, P2P filters ready for Internet prime time?
<www.internetevolution.com/document.asp?doc id=148803>

26. O. Saleh and M. Hefeeda, Modeling and caching of P2P traffic, Proc. IEEE Internat. Conf. on
Network Protocols (2006)

27. J. Schroeder-Bernhardi, Analysis of the communication and traffic in P2P networks including
web caches, Master Thesis, KOM-D-260, Univ. of Darmstadt, Germany (2006)

28. H.M. Sigurdsson, U.R. Halldorsson and G. Hasslinger: Potentials and Challenges of Peer-
to-Peer Based Content Distribution, Telematics and Informatics, Elsevier, Vol. 24 (2007)
348–365

29. A.-J. Su, D.R. Choffnes, A. Kuzmanovic and F.E. Bustamante, Drafting behind Akamai, Proc.
ACM SIGCOMM, Pisa, Italy (2006)

Part XII
Advanced P2P Computing and Networking

A Formal Architectural Model for Peer-to-Peer
Systems

Lu Yan

Abstract For complex software systems, a central design concern is system archi-
tecture. The formal approach to architectural specification and refinement provides
an effective way to ensure the correctness of those complex designs. In this chapter,
we apply formal methods in the development process of a typical peer-to-peer sys-
tem and demonstrate a stepwise paradigm for specifying, refining and implement-
ing such kind of systems. The architectural considerations, formal specification, and
possible refinement directions are discussed in details.

1 Introduction

Most current distributed systems follow the client-server paradigm in which a sin-
gle server stores information and distributes it to clients upon their requests. Peer-
to-peer systems, which consider that nodes are equal for sharing information, on
the other hand, follow a paradigm in which each node can store information of
its own and establish direct connections with another node to share information
[1]. In this way, the peer-to-peer systems offer attractive advantages like enhanced
load balancing, dynamic information repositories, redundancy and fault tolerance,
content-based addressing and improved searching over the traditional client-server
systems [2].

Because of the increasingly popularity of peer-to-peer applications (e.g., content
distribution [3], media streaming [4], resource sharing [5], social networking [6],
grid computing [7], etc.) and the advantages of the peer-to-peer paradigm, we are

Lu Yan
School of Computer Science, University of Hertfordshire, Hatfield, Hertfordshire AL10 9AB, UK,
e-mail: lu.yan@ieee.org

X. Shen et al. (eds.), Handbook of Peer-to-Peer Networking, 1295
DOI 10.1007/978-0-387-09751-0 47, © Springer Science+Business Media, LLC 2010

1296 Lu Yan

motivated to conduct a study of peer-to-peer systems and achieve a way to develop
such systems.

In this paper, we show how to design peer-to-peer systems within the action
systems framework by combining UML diagrams. We present our approach via
a case study of stepwise development of a Gnutella-like peer-to-peer system. We
start by briefly describing the action systems framework to the required extent in
Section 2. In Section 3 we give an initial specification of the Gnutella system. An
abstract action system specification is derived in Section 4. In Section 5 we analyze
and refine the system specification introduced in the previous section. We end in
Section 6 with concluding remarks and Section 7 with future research directions.

2 Action Systems

The action systems framework is a formal and rigorous approach to specifying dis-
tributed systems [8, 9]. The design and reasoning about action systems are carried
out with refinement calculus [10].

In this section we will introduce OO-action systems [11], an object-oriented ex-
tension of action systems which we select as a foundation to work on. An OO-action
system consists of a finite set of classes, each class specifying the behavior of objects
that are dynamically created and executed in parallel.

2.1 Actions

We will consider a fixed set Attr of attributes (variables) and assume that each at-
tribute is associated with a nonempty set of values. Also, we consider a set Act of
actions defined by the following grammar

A ::= abort|skip|x := v|x :∈V |b→ A|{b}|A;A|A�A.

Here x is a list of attributes, v a list of values, V a nonempty set of values, b a predi-
cate over attributes. Intuitively, abort is the action which always deadlocks, skip is
a stuttering action, x := v is a multiple assignment, x :∈ V is a random assignment,
b → A is a guard of an action, {b} is an assertion, A1;A2 is the sequential compo-
sition of the actions A1 and A2, and A1 � A2 is the nondeterministic choice between
the action A1 and A2.

The guard of an action is defined in a standard way using weakest precondi-
tions [12]

P2P architecture 1297

g(A) = ¬wp(A, false).

The action A is said to be enabled when the guard is true.

2.2 Classes and Objects

Let CName be a fixed set of class names and OName a set of valid names for objects.
We will also consider a fixed set of object variables OVar assumed to be disjoint
from Attr. The only valid values for object variables are the names for objects in
OName. The set of object actions OAct is defined by extending the grammar of
actions as follows

O ::= A|n := o|new(c)|n := new(c)
|p|n.m|self.m|super.m|O;O|O�O.

Here A ∈ Act, n is an object variable, o is either an object name or the constants self
or super (all three possibly resulting from the evaluation of an expression), c is a
class name, p a procedure name, and m is a method name. Intuitively, n := o stores
the object name o into the object variable n, new(c) creates a new object instance
of the class c, n := new(c) assigns the name of the newly created instance of the
class c to the object variable n, p is a procedure call, n.m is a call of the method
m of the object the name of which is stored in the object variable n, self.m is a call
of the method m declared in the same object, and super.m is a call of the method
m declared in the object that created the calling object. Note that method calls are
always prefixed by an object variable or by the constant self or super.

We define the guard gd(O) of an object action O to be the guard of the action in
Act obtained by substituting every atomic object action of O with the action skip,
where an atomic object action is

A,n := o,new(c),n := new(c), p,n.m,self.m,super.m.

The resulting statement is an action in Act and hence its guard is well defined.

A class is a pair < c,C >, where c ∈CName is the name of the class and C is
its body, that is, a statement of the form

C = |[attr y· := y0;x := x0
obj n
meth m1 = M1; · · · ;mh = Mh

proc p1 = P1; · · · ; pk = Pk

do O od
]|

1298 Lu Yan

A class body consists of an object action O and of four declaration sections. In the
attribute declaration the shared attributes in the list y, marked with an asterisk ·,
describe the variables to be shared among all active objects. Therefore they can
be used by instances of the class C and also by object instances of other classes.
Initially they get values y0. The local attributes in the list x describe variables that
are local to an object instance of the class, meaning that they can only be used by
the instance itself. The variables are initialized to the value x0.

The list n of object variables describes a special kind of variables local to an
object instance of the class. They contain names of objects and are used for calling
methods of other objects. We assume that the lists x,y and n are pairwise disjoint.

A method mi = Mi describes a procedure of an object instance of the class. They
can be called by actions of the objects themselves or by actions of another object
instance of possibly another class. A method consists of a method name m and an
object action M.

A procedure pi = Pi describes a procedure that is local to the object instances
of the class. It can be called only by actions of the object itself. Like a method, it
consists of a procedure name p and an object action forming the body P.

The class body is a description of the actions to be executed repeatedly when the
object instance of the class is activated. It can refer to attributes which are declared
to be shared in another class, and to the object variables and the local attributes
declared within the class itself. It can contain procedure calls only to procedures de-
clared in the class and method calls of the form n.m or super.m to methods declared
in other classes. Method calls self.m are allowed only if m is a method declared in
the same class. As for action systems, the execution of an object action is atomic.

2.3 OO-action System

An OO-action system OO consists of a finite set of classes

OO = {< c1,C1 >, · · · ,< cn,Cn >}

such that the shared attributes declared in each Ci are distinct and actions in each
Ci or bodies of methods and procedures declared in each Ci do not contain new
statements referring to class names not used by classes in OO. Local attributes,
object variables, methods, and procedures are not required to be distinct.

There are some classes in OO, marked with an asterisk ·. Execution starts by the
creation of one object instance of each of these classes. Each object, when created,
chooses enabled actions and executes them. Actions operating on disjoint sets of
local and shared attributes, and object variables can be executed in parallel. They
can also create other objects. Actions of different active objects can be executed in
parallel if they are operating on disjoint sets of shared attributes. Objects interact by
means of the shared attributes and by executing methods of other objects.

P2P architecture 1299

3 Initial Specification of the Gnutella System

Gnutella is a decentralized peer-to-peer file-sharing model which enables file shar-
ing without using servers [13]. Unlike a centralized server network, the Gnutella
network does not use a central server to keep track of all user files. To share files
using the Gnutella model, a user starts with a networked computer A with a Gnutella
servent, which works both as a server and a client. Computer A will connect to an-
other Gnutella-networked computer B and then announce that it is alive to computer
B. B will in turn announce to all its neighbours C, D, E, and F that A is alive. Those
computers will recursively continue this pattern and announce to their neighbours
that computer A is alive. Once computer A has announced that it is alive to the rest
of the members of the peer-to-peer network, it can then search the contents of the
shared directories of the peer-to-peer network.

Search requests are transmitted over the Gnutella network in a decentralized
manner. One computer sends a search request to its neighbours, which in turn pass
that request along to their neighbours, and so on. Figure 1 illustrates this model. The
search request from computer A will be transmitted to all members of the peer-to-
peer network, starting with computer B, then to C, D, E, F, which will in turn send
the request to their neighbours, and so forth. If one of the computers in the peer-to-
peer network, for example, computer F, has a match, it transmits the file information
(name, location, etc.) back through all the computers in the pathway towards A (via
computer B in this case). Computer A will then be able to open a direct connection
with computer F and will be able to download that file directly from computer F.

Servent
 A

Servent
 F

Servent
 E

Servent
 D

Servent
 B

Servent
 C

4. Search Response
 (includes Servent F info)

3. Search Response
 (includes Servent F info)

1. Search Query

2. Search Query 2. Search Query

2. Search Query2. Search Query

5. File Download

Fig. 1 Gnutella peer-to-peer model

1300 Lu Yan

4 Action System Specification of the Gnutella System

When taking a step back, it is seen that the Gnutella system enables at least the
following functionalities:

1. Servent can easily join and leave the peer-to-peer network.
2. Servent can publish its content to the shared directories of the peer-to-peer net-

work.
3. Servent can search for and download files from the shared directories of the peer-

to-peer network using keywords.

Based on the simple descriptions above, we can identify that servent should pro-
vide three basic services, connect service, lookup service and download service, as
shown in Fig. 2. From this diagram we divide the system into components and derive
a component-based structure of servent in Fig. 3.

Connect

Download

Lookup User

Net

Servent

Fig. 2 Use case diagram of servent

Download
Service

Connect
Service

Lookup
Service

User Interface

Network

Fig. 3 Structure diagram of servent

The statechart diagram Fig. 4 shows the joint behaviour of servent. Each state
is described by a set of attributes. We give unique preconditions for entering each
state. Table 1 shows preconditions and invariants for every state of the servent.

An interesting issue to notice is that downloads can be initiated in two ways,
i.e., either from a search result or by directly specifying target information. This

P2P architecture 1301

Offline Online

Searching

Downloading

No Match

Match

Finish

Set Keyword

Set TargetConnect

Fail

Fig. 4 Statechart diagram of servent

Table 1 Preconditions and invariants for states
State Precondition Invariant
Offline ¬connected ∧ keyword = φ keyword = φ ∧ target = φ

∧ target = φ
Online connected ∧ keyword = φ connected

∧ target = φ
Searching connected ∧ keyword �= φ connected ∧ target = φ

∧ target = φ
Downloading connected ∧ keyword = φ connected ∧ keyword = φ

∧ target �= φ

design is reasonable because we do not always need to search the peer-to-peer net-
work to get wanted files. In some cases, name and location information of files is
already available. For example, file exchanges between two friends, who have al-
ready known each other’s IP and shared contents. Take this into consideration, we
provide two ways to initiate downloads.

The first version of action system specification of servent can be derived directly
from Fig. 4 and Table 1.

{< GnutellaServent,GS >, · · ·}

where the class body in Table 2 consists of attribute declaration, initialisation and a
loop of actions which are chosen for execution in a non-deterministic fashion when
enabled. Each action is of the form g→ S where g is the guard and S is a statement to
be executed when the guard evaluates to true. Here connected is a boolean variable;
keyword is the search criteria; target is the location information of shared resources
in format filename@IP.

The next step is to apply the design in Fig. 3 to our initial specification, which
results in three more classes ConnectService, LookupService and DownloadService.
Now the system consists of a set of classes < c,C > where c is the name of the class
and C is its body. On the top level, we have components of servent

{< GnutellaServent,GS >·,< ConnectService,Cs >,
< LookupService,Ls >,< DownloadService,Ds >, · · ·}

1302 Lu Yan

Table 2 Initial specification of servent

GS = |[attr connected·;keyword·; target ·;state := Offline
do

state = Offline∧ connected →
state := Online

� state = Online∧ keyword �= φ →
state := Searching

� state = Online∧ target �= φ →
state := Downloading

� state = Searching∧ target = φ →
keyword := φ ;state := Online

� state = Searching∧ target �= φ →
keyword := φ ;state := Downloading

� state = Downloading→
target := φ ;state := Online

od
]|

The class < GnutellaServent,GS >, marked with an asterisk ·, is the root class. At
execution time one object of this class is initially created and this in turn creates
other objects by executing new statements.

Let us look at the actions in Table 2. We can refine them according to service
groups. For example, action

state = Offline∧ connected → state := Online

where Offline and Online are defined in Table 1, can be refined into action

¬connected → connected := c.Connect()

In this chapter, however, we skip refinement details here because we do not want
to go into details of semantics of action systems nor refinement rules of refinement
calculus [10].

The body of the refined specification of servent is described in Table 3. It mod-
els a servent that provides three basic services (ConnectService, LookupService and
DownloadService). When it connects itself to the peer-to-peer network, users can
search the network via SetKeyword method and then download files from the search
result. Or alternatively, users can directly give target information via SetTarget
method to download files.

5 Refining Gnutella Servent

Ultimately, we need to derive an implementable specification for each service in
the Guntella servent. Hence, every service component should be refined. We notice

P2P architecture 1303

Table 3 Refined specification of servent

GS = |[attr connected := false;keyword := φ ; target := φ
obj c : ConnectService; l : LookupService;

d : DownloadService
meth SetKeyword(k) = keyword := k;

SetTarget(t) = target := t
init c := new(ConnectService);

l := new(LookupService);
d := new(DownloadService)

do
¬connected → connected := c.Connect()
� connected∧ keyword �= φ →

target := l.Search(keyword);keyword := φ
� connected∧ target �= φ →

d.Download(target); target := φ
od

]|

ConnectService and LookupService share a common functionality that enables ap-
propriate message routing. It is reasonable to introduce a new component Router to
the system as depicted in Fig. 5. This component will be in charge of routing all the
incoming and outgoing messages of the servent. For DownloadService, we intro-
duce a new component FileRepository in Fig. 5. It will act as a resource exchanger
between servent and network.

Download
Service

Connect
Service

Network

Lookup
Service

User Interface

File
Repository

Router

Fig. 5 Schematic diagram of servent

5.1 Refining ConnectService

We start by considering ConnectService first. A Gnutella servent connects itself to
the peer-to-peer network by establishing a connection with another servent currently
on the network, and this kind of connection is passed around recursively. In order

1304 Lu Yan

to model the communication between servents, we define a set of descriptors and
inter-servent descriptor exchange rules as follows:

Ping Used to actively discover hosts on the network. A servent receiving a Ping
descriptor is expected to respond with one or more Pong descriptors.

Pong The response to a Ping. Includes the address of a connected Gnutella ser-
vent and information regarding the amount of data it is making available to the
network.

Furthermore, we need to define the format of Ping descriptor and Pong descrip-
tor. We use the message format in Table 4, where DescriptorID is a string uniquely
identifying the descriptors on the network. TTL stands for Time To Live, which is
the number of times the descriptor will be forwarded by servent before it is removed
from the network. The TTL is the only mechanism for expiring descriptors on the
network. Each servent will decrement the TTL before passing it on to another ser-
vent. When the TTL reaches 0, the descriptor will no longer be forwarded. The
information carried by the message is encoded in info, whose format depends on the
variable type.

Table 4 Message format

Msg = |[attr descriptorID;T T L; type; info
meth Transmit() = T T L > 0→ T T L := T T L−1
init t ∈ {Ping,Pong}→

Msg(t) = (descriptorID := unique ID ;
T T L := max T T L ; type := t; info := info)

]|

The peer-to-peer nature of the Gnutella network requires servents to route net-
work traffic appropriately. Intuitively, a servent will forward incoming Ping descrip-
tors to all its directly connected servents. Pong descriptors may only be sent along
the same path that carried the incoming Ping descriptor as shown in Fig. 6. This
ensures that only servents that routed the Ping descriptors will see the Pong descrip-
tor in response. A servent that receives a Pong descriptor with descriptorID = n,
but has not seen a Ping descriptor with descriptorID = n should remove the Pong
descriptor from the network.

The above routing rules can be illustrated in the statechart diagram Fig. 7. Using
the same techniques as in the previous section, we can translate the diagram into
action system specification and further refine it into Table 5.

The specification of Ping-Pong router models a router that can route Ping-Pong
traffic appropriately. When the router is initiating, it connects itself to the peer-to-
peer network by sending Ping descriptors to other peers. After initiation, it contin-
ues receiving incoming message and replying with apporiate outgoing message .
Here descriptorDB is a set storing descriptorID information; peers is a set stor-
ing its directly and indirectly connected servents information; and this IP is the IP

P2P architecture 1305

1. Ping

3. Ping 2. Pong

3. Ping

3. Ping

Fig. 6 Ping-pong routing

ReceivingInitiating

Updating DB Sending Pong Forwarding Ping

Forwarding PongAdding Peers Checking DB

Pong Expired

Received Ping

Ping − Pong Routing

Ping Expired

Received Pong

Fail

Fig. 7 Statechart diagram of Ping-pong routing rules

address of the responding servent. The sequence of a connect session is summarized
in Fig. 8.

In order to reuse the specification in Table 3, we will specify ConnectService
without making any changes in its interface. The specification is shown in Table 6.
When ConnectService is initiating, an instance of Router is created. Then it keeps
checking state variable connected in the router and passing the status to servent.

5.2 Refining LookupService

When we think about LookupService, we follow almost the same paradigm as Con-
nectService to specify this component. A Gnutella servent starts a search request by
broadcasting a Query message through the peer-to-peer network. Upon receiving a
search request, the servent checks if any local stored files match the query and sends

1306 Lu Yan

Table 5 Specification of Ping-pong router

Rc = |[attr connected := false;descriptorDB := φ ; peers := φ
obj receivedMsg : Msg;newMsg : Msg
meth ReceiveMsg() = receivedMsg := incoming message ;

SendPing() = (newMsg := new(Msg(Ping));
outgoing message := newMsg);

SendPong() = (newMsg := new(Msg(Pong));
newMsg.info.IP := this IP ;
outgoing message := newMsg);

ForwardMsg(m) = (m.T T L > 0→
m.Transmit(); outgoing message := m)

init SendPing()
do

|[peers �= φ → connected := true
� ¬connected → SendPing()]|
�
|[true→

ReceiveMsg();
if receivedMsg.type = Ping→

descriptorDB := descriptorDB∪
receivedMsg.descriptorID;
SendPong();
ForwardMsg(receivedMsg)

� receivedMsg.type = Pong→
peers := peers∪ receivedMsg.info.IP;
receivedMsg.descriptorID ∈ descriptorDB→

ForwardMsg(receivedMsg)
fi

]|
od

]|

User Interface Router File Repository NET

BroadcastPing()

Ping()

Pong(peer)

ConnectReply()

IncomingPing()

OutgoingPong(servent)

StartConnect()

Fig. 8 Sequence diagram of a connect session

P2P architecture 1307

Table 6 Specification of ConnectService

Cs = |[attr connected := false
obj r : Router
meth Connect() = (connected := r.connected)
init r := new(Router)

]|

a QueryHit message back. We use following descriptors and routing rules to model
the communication between servents:

Query The primary mechanism for searching the distributed network. A servent
receiving a Query descriptor will respond with a QueryHit if a match is found
against its local data set.

QueryHit The response to a Query. This descriptor provides the recipient with
enough information to acquire the data matching the corresponding Query.

The message format in Table 4 has to be revised to adopt the new descriptors. The
message type now includes Ping, Pong, Query and QueryHit, so a minor change is
made in Table 7.

Table 7 Refined message format

Msg = |[attr descriptorID;T T L; type; info
meth Transmit() = T T L > 0→ T T L := T T L−1
init t ∈ {Ping,Pong,Query,QueryHit}→

Msg(t) = (descriptorID := unique ID ;
T T L := max T T L ; type := t; info := info)

]|

The routing rules for Query – QueryHit traffic are similar to the rules for Ping-
Pong traffic. A servent will forward incoming Query descriptors to all its directly
connected servents. QueryHit descriptors may only be sent along the same path that
carried the incoming Query descriptor as shown in Fig. 9. This ensures that only
those servents that routed the query descriptors will see the QueryHit descriptor in
response. A servent that receives a QueryHit descriptor with descriptorID = n, but
has not seen a Query descriptor with descriptorID = n should remove the QueryHit
descriptor from the network.

Like the previous section, we first draw a statechart diagram for the Query –
QueryHit routing rules. Then we translate it into action system specification and
further refine it.

In Table 8 we have the body of Query – QueryHit router specification, which
models a router that is in charge of routing Query – QueryHit traffic appropriately.

1308 Lu Yan

1. Query

2. Query

3. Query4. Hit

5. Hit

6. Hit

Fig. 9 Query – QueryHit routing

Like a Ping-Pong router, it keeps receiving incoming message and replying with
apporiate outgoing message . Here descriptorDB is a set storing descriptorID in-
formation; myKeyword is a string storing search criteria; cKeyword is a string stor-
ing comparison criteria; filename is a string storing destination filename; target is
the shared resource location information in format filename@IP; and f is an object
of class FileRepository which enables local file search service via Has and Find
methods. Details of class FileRepository will be elaborated in the next section.

The Query – QueryHit router provides searching function via method SetKey-
word. Once a keyword is set, a Query descriptor carrying search criteria is gen-
erated and broadcasted in the peer-to-peer network via method SendQuery. In the
mean time, the router keeps receiving Query and QueryHit descriptors. For an in-
coming Query descriptor, a query request is passed to FileRepository. According to
the search result, a QueryHit descriptor is sent back in response via method Send-
QueryHit if a match is found, otherwise the Query descriptor is further forwarded
via method ForwardMsg. Upon receiving a QueryHit descriptor, it checks its key-
word field, and then sets target information to complete the search session. We sum-
marize the sequence of a search session in Fig. 10.

Now we specify LookupService with emphasis on specification reuse. The result
is shown in Table 9. When LookupService is initiated, an instance of Router is cre-
ated. It provides Search method via calling SetKeyword method in the router, and
then returning the search result to servent.

Until now we have two action systems, Rc modeling Ping-Pong routing rules
and Rl modeling Query – QueryHit routing rules. We notice the two action systems
actually model different aspects of a full router. Furthermore, we can compose the
two action systems together using prioritising composition [14] to derive the action
system specification of a full router

R = |[Rc�Rl]|

where on the higher level, we have components of the router

{< Router,R >,< PingPongRouter,Rc >,< QueryRouter,Rl >}

P2P architecture 1309

Table 8 Specification of Query – QueryHit router

Rl = |[attr descriptorDB := φ ;myKeyword := φ ;
cKeyword := φ ;filename := φ ; target := φ

obj receivedMsg : Msg;newMsg : Msg; f : FileRepository
meth SetKeyword(k) = myKeyword := k;

ReceiveMsg() = receivedMsg := incoming message ;
SendQuery() = (newMsg := new(Msg(Query));

newMsg.info.keyword := myKeyword;
cKeyword := myKeyword; target := φ ;
outgoing message := newMsg);

SendQueryHit() = (newMsg := new(Msg(QueryHit));
newMsg.info.keyword := receivedMsg.info.keyword;
newMsg.info.filename := filename;
newMsg.info.IP := this IP ;
outgoing message := newMsg);

ForwardMsg(m) = (m.T T L > 0→
m.Transmit(); outgoing message := m)

do
|[myKeyword �= φ → SendQuery();myKeyword = φ]|
�

|[true→
ReceiveMsg();
if receivedMsg.type = Query→

descriptorDB := descriptorDB∪
receivedMsg.descriptorID;
if f .Has(receivedMsg.info.keyword)→

filename := f .Find(receivedMsg.info.keyword);
SendQueryHit()

� ¬ f .Has(receivedMsg.info.keyword)→
ForwardMsg(receivedMsg)

fi
� receivedMsg.type = QueryHit →

if receivedMsg.info.keyword = cKeyword →
target := receivedMsg.info.filename@
receivedMsg.info.IP;cKeyword := φ

� receivedMsg.info.keyword �= cKeyword∧
receivedMsg.descriptorID ∈ descriptorDB→

ForwardMsg(receivedMsg)
fi

fi
]|

od
]|

Table 9 Specification of LookupService

Ls = |[attr target := φ
obj r : Router
meth Search(k) = (r.SetKeyword(k); target := r.target)
init r := new(Router)

]|

1310 Lu Yan

User Interface Router File Repository NET

Query(message)

StartSearch(criteria)

BroadcastQuery(message)
QueryHit(replymessage)

SearchReply()

IncomingQuery(keyword)

Lookup(keyword)

LookupReply(filename)

OutgoingQueryHit(target)

Fig. 10 Sequence diagram of a search session

5.3 Refining DownloadService

DownloadService is relatively simple compared to ConnectService and LookupSer-
vice. The primary function of this component is to enable a servent to download
files from other servents. Once a servent receives a QueryHit descriptor, it may ini-
tiate the direct download of one of the files described by the descriptor’s result set.
Or alternatively, users can initiate the download directly by giving complete target
information. Files are downloaded out-of-network, i.e., a direct connection between
the source and target servent is established in order to perform the data transfer. File
data is never transferred over the peer-to-peer network.

Additionally, this component provides the local file query function for other ser-
vents. It should be in charge of a local file database which provides data services like
add, delete, update, query and refresh etc. Moreover, it should take full control of
local files. Hence we introduce a new component FileRepository in Table 10, which
will satisfy the above requirements for DownloadService. First of all, we provide
SetTarget method to enable file downloads. To make things simple, we assume that
fileDB is simply a set of relations {key} → {file}. We use relation notations [15]
dom and ran for domain and range operations, and � as a domain restriction oper-
ator, defined by S � r = {x,y|x -→ y ∈ r∧ x ∈ S}. For incoming Query descriptors,
Has and Find methods are provided to enable local file searches.

Given target information, download action is enabled and servent initiates a
download. A download request is sent to the target servent, and then a file is down-
loaded via HTTP protocol. Afterwards, fileDB is refreshed in order to reflect the
change of adding new files to the repository. The sequence of a download session is
summarized in Fig. 11.

P2P architecture 1311

Table 10 Specification of file repository

F = |[attr fileDB := fileDB ;filename := φ ; target := φ
meth SetTarget(t) = (target := t);

Has(key) = ({key} ∈ dom(fileDB));
Find(key) = (filename := file∧{file} ∈ ran({key}�fileDB))

do
target �= φ →

HT T P(target);
target := φ ;
Refresh(fileDB)

od
]|

User Interface Router File Repository NET

StartDownload(target)

DownloadRequest(target)

DownloadReply()

DownloadResponse(file)

IncomingDownload(target)

OutgoingDownloadReply(file)

Fig. 11 Sequence diagram of a download session

The last step is to specify DownloadService. From the result in Table 11, we
can see that when DownloadService is initiating, an instance of FileRepository is
created. It enables Download by calling SetTarget method in FileRepository.

Table 11 Specification of DownloadService

Ds = |[obj f : FileRepository
meth Download(t) = f .SetKeyword(t)
init f := new(FileRepository)

]|

At this stage of the design, we finally have a complete set of classes which are
refinement results from the initial specification of servent as follows

1312 Lu Yan

{< GnutellaServent,GS >·,< ConnectService,Cs >,
< LookupService,Ls >,< DownloadService,Ds >,

< PingPongRouter,Rc >,< QueryRouter,Rl >,
< Router,R >,< FileRepository,F >,< Message,Msg >}

6 Concluding Remarks

Our experience shows that it is beneficial to combine informal methods like UML
and formal methods like action systems together in the development of peer-to-peer
systems. In the early stage, we try to catch the characteristic of the system using use
case diagrams and statechart diagrams. Then formal specification in action systems
framework is derived by further studying and elaborating details of these diagrams.
In the later stage, sequence diagrams are used to graphically clarify the structure of
the refined action system specification.

Peer-to-peer computing has emerged as one of the most innovation rich areas
in computer networking. Millions of users now participate in these systems and
the user bases are spreading like wild-fire. What is interesting about P2P is that
although it emerged out of user community but it is increasingly finding its base on
rich foundation of computing [16].

Various aspects of peer-to-peer systems have been studies in the past. However,
few issues were covered on the software architectural considerations of those sys-
tems, especially how to model, formalize, and develop software systems based on
the peer-to-peer paradigm. In this chapter, we present a detailed case study on the
foundation of peer-to-peer software engineering, which complements the existing
peer-to-peer research literature perfectly.

7 Future Directions

Unlike the traditional client-server model, a peer in a P2P network plays the role of
both client and server. It acts as a client when it consumes resources and services
from other peers and and as a server when it provides those to others.

The P2P network is an overlay network with an application-level routing scheme,
typically with a Distributed Hash Table (DHT). It is a high-level routing scheme
suitable for communication middleware and web services. Therefore, one possible
direction in the formal P2P architecture research is to design and verify those large
scale complex middleware and web services. The P2P paradigm would greatly im-
prove the system scalability with a better messaging and load-balancing solution.
The formal aspect of our approach would ease the simulation of those systems, so

P2P architecture 1313

that undesirable aggregated behaviors such as deadlock, livelock, node overload etc.
can be identified and prevented at the very early stage in the design process.

Another promising direction lies in the formal model itself. The specification of
the P2P architectural model presented in this chapter is part of the Model-Driven
Architecture (MDA) approach. The underpinned philosophy is a stepwise soft-
ware development process. First we define system functionality using a Platform-
Independent Model (PIM). Then PIM is translated into one or more Platform-
Specific Models (PSM) that computers can run. One of the main advantages of
MDA is to separate design from architecture. As the concepts and technologies
used to realize designs and the concepts and technologies used to realize architec-
tures change/evolve at their own pace, decoupling them allows developers choose
the best/most-fitting in both domains.

References

1. E. K. Lua, J. Crowcroft, M. Pias, R. Sharma, S. Lim: A survey and comparison of peer-to-peer
overlay network schemes. IEEE Communications Surveys & Tutorials. (2005) 7: 72–93.

2. S. Androutsellis-Theotokis, D. Spinellis: A survey of peer-to-peer content distribution tech-
nologies. ACM Computing Surveys. 36(4):335C371, December 2004.

3. C. Huang, J. Li, K. W. Ross: Peer-Assisted VoD: Making Internet Video Distribution Cheap.
Proceedings of the 6th International Workshop on Peer-to-Peer Systems (IPTPS’07), Wash-
ington, USA, Feb. 2007.

4. S. Guha, N. Daswani, R. Jain: An Experimental Study of the Skype Peer-to-Peer VoIP System.
Proceedings of the 5th International Workshop on Peer-to-Peer Systems (IPTPS’06), Santa
Barbara, CA, USA, Feb. 2006.

5. E. Anceaume, M. Gradinariu, A. Ravoaja: Incentives for P2P Fair Resource Sharing. Pro-
ceedings of the 5th IEEE International Conference on Peer-to-Peer Computing (P2P’05),
Konstanz, Germany, 2005.

6. J. Pouwelse, P. Garbacki, J. Wang, A. Bakker, J.Yang, A.Iosup, D.Epema, M.Reinders, M.
van Steen, H.Sips: Tribler: A Social-Based Peer-to-Peer System. Proceedings of the 5th In-
ternational Workshop on Peer-to-Peer Systems (IPTPS’06), Santa Barbara, CA, USA, Feb.
2006.

7. J. Cao, F. B. Liu, C.-Z. Xu: P2PGrid: integrating P2P networks into the Grid environment.
Concurrency and Computation: Practice and Experience. Volume 19, Issue 7, pp. 1023–1046,
2006.

8. R.J.R. Back and K. Sere: From Action Systems to Modular Systems. Software – Concepts and
Tools. (1996) 17: 26–39.

9. R.J.R. Back, A.J. Martin and K.Sere: Specifying the Caltech asynchronous microprocessor.
Science of Computer Programming. (1996) 26: 79–97.

10. R.J. Back and J. Wright: Refinement Calculus: A Systematic Introduction. Graduate Texts in
Computer Science, Springer-Verlag, 1998.

11. M. Bonsangue, J.N. Kok and K. Sere: An approach to object-orientation in action systems.
Proceedings of Mathematics of Program Construction (MPC’98), Marstrand, Sweden, June
1998.

12. E.W. Dijkstra: A Discipline of Programming. Prentice-Hall International, 1976.

1314 Lu Yan

13. S. Oeztunali, S. Rusitschka, A. Southall: Multilayer Gnutella ł P2P Resource Sharing with an
Efficient Flexible Multi-Keyword Search Facility. Proceedings of the 6th International Work-
shop on Peer-to-Peer Systems (IPTPS’07), Washington, USA, Feb. 2007.

14. E. Sekerinski and K. Sere: A Theory of Prioritising Composition. The Computer Journal,
Volume 39, Issue 8, pp. 701–712.

15. E. Sekerinski and K. Sere (Eds): Program Development by Refinement: Case Studies Using
the B Method. Springer-Verlag, 1999.

16. J. I. Khan, A. Wierzbicki (Ed.): Special Issue: Foundation of Peer-to-Peer Computing. Else-
vier Journal of Computer Communication, Volume 31, Issue 2, Feb. 2008.

P2P Approach for Web Services Publishing
and Discovery

Mohmammad Towhidul Islam, Mursalin Akon, and Xuemin (Sherman) Shen

Abstract Web service is an emerging paradigm for distributing business applica-
tions from different platforms to a wide variety of clients. The critical factor in
seamlessly accessing web services is to discover the appropriate service and the
related service providers. Unfortunately, current web service technologies use cen-
tralized directory to keep the service index, which is not scalable and at the same
time vulnerable to single point of failure. Peer to peer system is a popular decentral-
ized architecture which can be used for key look up service with scalability and self
organization. Thus there is an opportunity to intersect the P2P framework with web
services to provide the scalable solution. In this chapter, we discuss the key methods
to deploy web services using the peer-to-peer technology.

1 Introduction

Service oriented architecture (SOA) is a paradigm that creates a uniform interface
for distributed systems to use applications from different platforms, independent of
their implementation. SOA does not require an administrative supervisory to inte-
grate application interfaces and provide services to the client of this applications.
Due to this extra-ordinary advantage, this platform independent architecture has

Mohmammad Towhidul Islam
Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario, Canada,
e-mail: mtislam@uwaterloo.ca

Mursalin Akon
Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario, Canada,
e-mail: mmakon@uwaterloo.ca

Xuemin (Sherman) Shen
Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario, Canada,
e-mail: xshen@bbcr.uwaterloo.ca

X. Shen et al. (eds.), Handbook of Peer-to-Peer Networking, 1315
DOI 10.1007/978-0-387-09751-0 48, © Springer Science+Business Media, LLC 2010

1316 Mohmammad Towhidul Islam, Mursalin Akon, and Xuemin (Sherman) Shen

drawn a vast attention in both the research community and the industry for next
generation application development such as online scheduler, eHealthcare services.

Web services (WS), an important branch of SOA, becomes increasing popular
for its easy deployment, fault-tolerance and unsupervised maintenance [6]. Web
services are deployed with an implementation of SOAP/WSDL/UDDI on the top
of the existing application framework. The request and the response of the services
interact with SOAP (Simple Object Access Protocol) that carries XML (eXtensi-
ble Markup Language) data. The service provider describes their services using the
WSDL (Web Service Description Language) which is composed using XML. UDDI
(Universal Description, Discovery and Integration Protocol) provides directory ser-
vice that contains the details about services and the service providers. Convention-
ally, a centralized server keeps the directory information about the available web
services. A client is able to discover the required service from the directory. The
solution follows the client/server architecture. All serving providers publish their
services to a central authority and thus make the service available to all. However,
this method suffers from the problem of single point failure. In addition, this sys-
tem are not scalable. Because, there is a possibility that loads of clients are looking
for services from a single server. This will lead to a serious performance bottle-
neck [11]. As a result, there may be an ample amount of delay in getting the service
information while the service provider is sitting idle. Adding more servers to alle-
viate the problem is not an elegant solution. First, the solution is costly. Second, it
requires a constant monitoring to compute the required number of servers. There-
fore, it is necessary to find an alternate to provide fault tolerant, robust and scalable
solution to deploy the web services.

Peer to Peer (P2P) computing brings a new era in distributed computing. P2P
computing is largely used for sharing computer resources and services. Each func-
tional unit in the system is termed as a peer, which acts as both a resource provider
and a resource consumer. P2P network does not require any centralized directory or
index to keep track of the available resources. In the unstructured P2P network, if a
peer needs a specific resource, it will find the appropriate peer with the help of other
peer. In the case of structured P2P network, decentralized index of the resource helps
in this regard. A P2P network is a dynamic network because the network changes
continuously as peers join and leave the network.

While comparing the P2P with web services, there is similarity in the way they
function. In both systems, there are providers and the consumers of services. Pub-
lishing information of resources or services by providers and discovering required
resource or services by consumers are common in both paradigms. However, they
differ in the look up procedure. P2P depends on the decentralized discovery while
the current web services standard stands on centralized look up service. Although
there are some dissimilarity in service discovery, both of the architectures deal with
loosely coupled systems. Therefore, the framework of P2P can be exploited to fa-
cilitate of web services. P2P solutions the web services provide the remedy of the
single point failure and deal with scalability issue. In this chapter, we discuss the
methodologies to utilize the P2P architecture in web services.

P2P Approach for Web Services Publishing and Discovery 1317

2 Web Services

There are four primary tasks in web services: publish, discovery, request and re-
sponse. Publish is a process by which a service provider announces its service as
well as the service associated interfaces. Generally, a service provider announces its
service by entering service information into a specialized registry. The consumers of
the services discover the services by various ways. Discovery is a process of finding
an appropriate service that provides required functionality. Upon discovery, the con-
sumer requests the functionality by providing required input. The service responds
to the consumer with desired output. The aforementioned process reveals that a web
service architecture contains three primary actors: requester, provider and a registry.
In this chapter, our prime concern is the service registry which contains the listing
and information of the services.

2.1 Architecture of the Web Services

Web services are formed by a layered architecture. The architecture has an excellent
analogy with that’s if the OSI model. Like the OSI model, each layer understands
the corresponding layer of the participants. There are four fundamental elements or
layer for the web services: XML (eXtensible Markup Language), SOAP (Simple
Object Access Protocol), WSDL (Web Service Definition Language) and UDDI
(Universal Description, Discovery and Integration).

The lower layer is the eXtensible Mark-up Language (XML). The XML layer
works as information bearer. Through the XML, the actual services or the remote
function would be called. XML is well known for its self describing tags. Unlike
HTML, in XML, the creator of the file defines the tags according to the needs. Thus
the XML with the power of the self describing tags is chosen for describing the
web services. As a standard for data representation, XML is often used for data
interchange on the Web. One of the challenges in data interchange is the integration
of data from different parties. XML uses metadata such as DTD or XSD to describe
the structure of data. This metadata make it easier to solve data integration problem
in dissimilar platform. Thus XML is used as an excellent carrier for transferring
different raw data for web services among participating parties.

Simple Object Access Protocol (SOAP) defines the standard of data exchange
using XML document between a consumer and a service provider. The main goal of
SOAP is to provide the communication protocol in decentralized, distributed envi-
ronment of Internet where different operating systems and service applications co-
exist. A SOAP message contains three different parts. They are envelope, header and
body. The entire SOAP message is encoded in the envelope. The envelope defines
the encoding technique and namespaces. The header part is optional and contains
additional information. The body contains exact data to be exchanged.

WSDL is a XML based language which describes web service along with the
location of service providers and the service interfaces, i.e., the way of accessing

1318 Mohmammad Towhidul Islam, Mursalin Akon, and Xuemin (Sherman) Shen

Fig. 1 Schematic structure of UDDI

associated functionalities. The portType in WSDL defines the operation or the func-
tion that can be invoked by the consumer whereas the message describes the parame-
ters of the functions. The types define data types of the parameters in message. Thus,
clearly WSDL separates the functionality of the operation of a service provider from
its description. The separation of functionality from the description gives flexibility
of web services just like high level language such as Java.

UDDI provides dynamic binding between a service and a client and retrieve the
reference of the service by querying the registry. Discovery of a service and its
description is a very important part of web services. UDDI provides listing of the
available functions from different service providers as a directory. Once a service
provider is ready to publish its service using SOAP and WSDL, the service provider
lists the service using UDDI to be discovered by the clients. Generally, a server
hosts the directory listing. However, efficient discovery of service from millions
of services faces different problems such as scalability, robustness. Therefore, it
is necessary to find alternatives for directory listing of web services, either using
UDDI or not. In the following section, we will discuss the structure of the UDDI for
service registry.

2.2 UDDI Structure

UDDI contains four different types of information about a service. They are busi-
ness information, service information, binding information and technical informa-
tion. Figure 1 shows a schematic diagram of UDDI. The businessEntity provides
information about the organizations which publish the service. The businessService
describes the classification of service offered by the businessEntity. A particular

P2P Approach for Web Services Publishing and Discovery 1319

service may have different versions and implementations. The businessService ac-
cumulates all the versions using different entities for each of them. A businessEntity
may contain several businessServices. The bindingTemplate represents the techni-
cal information for the services. This entry is of particular interest of the problem
addressing here as this entry of the UDDI structure provides the address/location
of a service. In addition, the bindingTemplate also discusses the parameters/inputs
for the services and the types of each parameter. A businessService may contain
several bindingTemplate elements. The tModel or the technical model contains the
specification of the service. Unlike other UDDI components, the tModel is not or-
ganized in a hierarchy. Generally, tModel represents the WSDL service interface or
the interaction model. If needed, the semantics of he service is also represented in
tModel. The bindingTemplate often refers to an appropriate tModel to describe an
offered service. The maximum benefit of this decoupling is achieved, when several
business provides the same service, and hence several bindingTemplates refer to a
single tModel.

3 Peer-to-Peer Computing

Peer-to-Peer (P2P) computing is a milestone in distributed computing. In P2P
computing, every peer works both as a consumer and a provider of resource. This
structure makes the contrast with the client-server computing where a single server
provides resource or services to clients. P2P is a popular paradigm for exchanging
data among interested peer in decentralized manner. Initially, P2P gained its pop-
ularity for file sharing application. Two such early systems are Napster [16] and
Gnutella [22], both of which were constructed randomly and data can be located at
any peer inside the system. This type architecture is known as unstructured P2P sys-
tems. It is inefficient to search in unstructured P2P system. Structured P2P system
organizes the peers according to certain structure and also distributes data among
the peers using some criteria. The popular criterion for peer organization and data
placement is Distributed Hash Table (DHT) [21]. The structured P2P system pro-
vides more scalability and efficient searching of data over the unstructured P2P sys-
tems. On the other hand, unstructured P2P system is more robust and fault tolerant
than the structured P2P system in the case of dynamic insertion and deletion of peers
to and from the system.

4 Web Services and P2P

The Fig. 2 shows the structure of a centralized registry. Centralized UDDI service
provides an easy way to discover services from a registry database. However in
practice, most of the service providers set up their own private registry using avail-
able UDDI tools like Microsoft Active Directory, Novel eDirectory [8]. The trend of

1320 Mohmammad Towhidul Islam, Mursalin Akon, and Xuemin (Sherman) Shen

Fig. 2 Service registries using the central registries

Fig. 3 Service registries using the P2P network

setting up the private registry makes it difficult to find the required service quickly
and easily. Theoretically, it is possible to replicate private registries into a central
server and provide a centralized access to all. However, in that case, there should
be an agreement between the central registry authorities with all the private registry

P2P Approach for Web Services Publishing and Discovery 1321

owners. In addition, it is impractical to set up a large central registry server that repli-
cates all the private registries. To get rid of this problem, researchers were looking
for the distributed solution of UDDI registry. Since P2P networks have been shown
to be efficient decentralized solution for different problems, researchers have found
it convenient to connect the private registries with peer-to-peer technology. Figure 3
shows the architecture of peer-to-peer network based web services. In this system,
each organization shares the registry with other company through the P2P networks.
There is no need for a separate organization to maintain the centralized registry and
replicate the information. Early P2P systems require exact keyword matching for
resource discovery. On the other hand, web service discovery needs support for se-
mantic search along with keyword search. For example, a person is looking for a
meal where the ingredients should not contain egg. Using the semantic technique
he may easily search for such a service. Therefore, there are two different types of
intersection of P2P and web services are available in the literature. The first type
is P2P based web services which support keywords (including partial keyword) for
service discovery. The second type is semantic web services based on P2P systems
which allow semantics oriented service discovery. In rest of the chapter, we discuss
both these architectures.

5 A Framework for Web Services Using P2P

Forster et al. formulate the web services using the concept of WS peers and user
peers [7]. They replace the UDDI infrastructure with the two layers of P2P archi-
tecture. The first layer of the peers is termed as WS peer. The WS peer caters infor-
mation about the web services. The second layer contains the user peers which are
usually the consumer of the web services.

5.1 Registering a Peer

To join a P2P based web services, a peer has to get the initial information from other
existing peer of the network for bootstrapping purpose. A WS peer is connected to
other WS peers as a neighbor. A user peer may be connected to other user peers or
WS peers. However, each user must have at least one WS Peer in its neighborhood
list. This restriction assures that the query from user-peer-layer must reach to WS-
peer-layer. When the peers exchange information, each peer keeps the time stamp
of the relevant information. At the time of joining, each peer is given a set of ad-
dresses of user as well as WS peers. While active in the network, peers either query
for the web services or forward queries from other peers. In case of a successful
service discovery, a peer caches the address of the service along with the time stamp
of caching. It also caches the other related information of the service for future ref-
erence. When the cache is full with accumulated information web services, a well

1322 Mohmammad Towhidul Islam, Mursalin Akon, and Xuemin (Sherman) Shen

known cache replacement policies [20] is used. In addition to reactive information
collection by the user peers, the WS peers periodically broadcast the key name and
the description of their services to the neighbors. The neighbors cache the informa-
tion for the future use.

5.2 Publishing Information

Forster et al. [7] use the structure of the UDDI to publish the web services. A
provider uses the BusinessKey, ServiceKey and BindingKey of UDDI to describe
its web services. When the provider joins a P2P networks, it introduces files con-
taining UDDI to the P2P network. The service information should be unique to
identify a specific service of a service provider from a pool of services. It is easy
to implement this uniqueness with a central instance of service. However, in a de-
centralized environment such as P2P networks, the implementation of uniqueness
for a specific service may not be straight-forward. One of the common solutions for
ensuring the uniqueness is to use a hash function on the IP address of the provider.
As it is described before in Section 2.2, the tModel of UDDI is used to describe a
service. UDDI specifies that similar services should use the same tModel to pro-
vide a common interface. The unique tModelKey can also be generated by applying
a hash-function on the description of tModel. The uniqueness of tModelKey can
be achieved in the following way. When a service provider plans to cater a ser-
vice, it queries for the same service in the P2P networks. If the provider finds the
same service in the P2P networks, the service provider uses the existing tModel.
The bindingTemplate of the service provider has the reference to the remote file
of tModel. If there is no response for the query (i.e., the service does not exist in
the P2P networks), it creates a tModel and introduce in the P2P network in the
same way as described earlier. This method of publishing information in P2P net-
work does not require substantial changes to the UDDI standard except the creation
of unique identifier. Therefore, the service providers do not require any additional
effort to maintain complex registry and publish their services to the P2P network
with ease.

5.3 Finding the Service

In the aforesaid model for web services, a peer queries for services. When a query
reaches a WS peer, the peer searches the local files for the suitable service. If it
finds the service, it will respond back to the sender. Otherwise, it looks into its cache
for remote references. If remote reference is found, a response is sent back to the
requester who in turn contacts with the original source of the service. If the requester
fails to find the original source, it notifies the responder WS that the information is
stale. The responder removes service information from the local cache. Caching of

P2P Approach for Web Services Publishing and Discovery 1323

Fig. 4 A two dimensional keyword space. The data element Web Service is described with
Food:Asian

information makes the system to be able to apply complex query and thus make the
system efficient.

6 Keyword Based Service Discovery

Schmidt et al. present a P2P based dynamic, flexible and decentralized architecture
for web services [15]. The architecture includes a keyword based query engine is for
service discovery. The architecture uses Space Filling Curve [12] to map services to
peers. It preserves locality in index structure for efficiency. Keywords describing the
web services use index for locating the web services in different peers in P2P system
with DHT approach. The key innovations of their method are that their system sup-
port complex queries with partial keywords. The query cost is a bounded function
which is fairly small for any typical P2P network. The following three subsections
describe the architecture presented by Schmidt et al.

6.1 System Architecture

The main components of the architecture are the locality preserving mapping of
data elements. Figure 4 shows an example where data element is a point that rep-
resents web service. The keywords Food and Asian are the coordinates. The repre-
sentation of keywords in coordinates in known as index space. Each data element is
associated with a sequence of keywords. Two data elements are termed as local if
they either share common keywords or their keywords are lexicographically close.
Consider two services having the keywords (University, Waterloo) and (University,
Manchester). Then these data elements can be termed as local to each other.

1324 Mohmammad Towhidul Islam, Mursalin Akon, and Xuemin (Sherman) Shen

Fig. 5 A two dimensional space defined the query (ab,*)

The construction of the index space is crucial because it should support queries
for partial keyword and the wild cards. Therefore, Hillbert Space Filling Curve
(SFC) [12] is used. SFC transfers a multidimensional space of keywords to
1-dimensional index space while preserving locality and keeping digital causal-
ity [12]. Clusters are formed by similar documents sharing closely related keywords
in SFC.

The one-dimensional index space generated by SFC is mapped to physical or
logical peers of P2P networks. The mapping method is similar to the Chord [17].
Each peer gets an identifier randomly. Each data element gets an identifier from
the one-dimensional index space. A data element is mapped to the peers whose
identifier is equal or greater than to the identifier of the data element.

In this architecture, a peer joining requires O((log2)2N) massages where N is the
number of peers in the system. The cost of peer departure is similar to the cost of
peer join. Since this architecture is similar to Chord in terms of peer organization,
finding a service requires on average O(log2N) hop traversal.

6.2 Query Engine

The query engine is responsible to answer queries which may consist of combination
of keywords, partial keywords, or wildcards. The query engine maps a complex
query onto relevant clusters and then finds out the appropriate peer responsible for
the query. The process can be explained with an example. The shaded portion of
Fig. 5 represents a 2-dimensional space defined by the query (ab,*). The query (ab,*)
refers four data elements which may be contained in a single or multiple clusters as
defined by the SFC curves [12]. These clusters are mapped to one or more adjacent
peers according to the size of the clusters and the data points. The query for the
keyword(s) is directed to the matching clusters. The peers employ a service look up

P2P Approach for Web Services Publishing and Discovery 1325

protocol which finds the appropriate service for the query and return the result to
the requesting peer.

6.3 Load Balancing

Schmidt et al. observes that the keyword space is typically sparsely populated with
data elements. It may happen that some of the peers are overloaded with the data
elements whereas other peers are under loaded. This scenario creates a potential
problem in load balancing. To avoid this problem, a peer can get several random
identifiers at the bootstrapping process. It is already stated that this architecture uses
Chord for peer organization. Chord organizes peers in a ring. A joining peer has
to find its position inside the ring. A peer sends joining request to all its potential
successors in the ring for each generated identifier. Each of the successor peers sends
back the response with the amount of load in that peer. The new peer will join the
region which is heavily loaded. The cost of finding the best identifier is O(n · log2N).
However, load balancing at the bootstrapping may not be sufficient. Therefore, the
following run time load balancing techniques are also used.

There are two common runtime load balancing approaches. The first load balanc-
ing algorithm is simple. This technique periodically checks the load for each peer
and transfers the data elements of the loaded peer to the neighboring less loaded
peer(s). The cost of load balancing using this algorithm is O((log2)2N). Since this
algorithm is expensive, it is run rarely in the system. The second algorithm uses mul-
tiple virtual peers inside a physical peer. When a virtual peer is overloaded, it is split
into two or more virtual peers. Similarly, load is also split and distributed among the
split peers. If a physical peer is overloaded, its virtual peers are transferred to less
loaded peers. Thus the load is balanced in the entire system.

7 Semantic Web Service

For service discovery, the current standard of the web services support exact match-
ing of the service name. In another way, the publisher of the web service defines
the interface of the function or operation and how to invoke them using WSDL. The
consumer of the service finds their required service based on the information on
the UDDI registry. This process will bring emerging success if all interested parties
agree upon certain standard for naming and describing their service. Unfortunately,
there is no such standard available. The lack of the standardization generates the
problem of searching the required service efficiently. There could be a superficial
difference between the service provider and the service requester in interpreting
service functionality. There has to be an unambiguous and machine-interpretable
form of representation of the properties, capabilities and the interfaces of the ser-
vice to get rid of the aforementioned problem. The service providers produce the

1326 Mohmammad Towhidul Islam, Mursalin Akon, and Xuemin (Sherman) Shen

semantic model with the intended meaning and use of terms. The service providers
also provide the formal and informal definition of the entities. The semantic of the
services will be published in the UDDI registry. The service requester uses the terms
from the semantic model for service discovery. If there is a direct match of service
description between the service request and the service provider, only then the result
is returned. Otherwise, a composite query is formed to find the desired service.

7.1 Domain Ontology

The description of the semantic web services is usually published using the Ser-
vice Annotation Ontologies and the Domain Ontologies [3]. The service annotation
ontologies describe the functionality, execution flow, invocation details, etc. of the
web services using the terms that is defined in the respective domain ontologies. The
service annotation ontologies define the set of attributes for Input, Output, Precon-
dition and Effects (IOPE). The values of the IOPE usually come from the domain
ontologies. According to Web Ontology Language (OWL) [2], the service annota-
tion ontologies are divided in three logical parts. They are Service Profile, Service
Model and Service Grounding. Service Profile keeps information about the service
description with the providers contact information, a functional description of the
service and a list of additional parameter of the service. Service Model specifies the
service operation in detail. Service Grounding gives details of how to access the
service.

An unstructured text cannot fully represent the service annotation ontologies. For
example, the term ’window’ refers completely two different components when it is
used in home and operating system context. Therefore, there is a need for domain
ontologies which describe the service from the domain point of view. The domain
ontologies describe the terminology and term relationship related to a specific do-
main. For example, a car rental service provider describes his services using the car
domains. The car domain ontologies may contain the terminologies and the rela-
tionship of these terms related to car. If everybody follows the same domain ontolo-
gies for the car, it is easy to communicate between the service provider and service
consumer.

7.2 Semantic Web Service Discovery

Thaden et al. propose an architecture for web service registry based on DAML-S [1].
DAML-S is used as a service description language [18]. A DAML-S descrip-
tion contains four parts. They are resource, service profile, service model, service
grounding The resource offers the functionality of service. This service is described
in three parts. A service profile specifies the required services and provides an exter-
nal view of the required input. A service model provides the steps to complete the

P2P Approach for Web Services Publishing and Discovery 1327

service. Service grounding provides the implementation details. It is quite possible
to map a WSDL information into DAML-S format [1]. Thaden et al. describe their
services in DAML-S. They define their own ontology to describe different types of
services. The ontology generates a hierarchy to define the service relationship. For
example, assume the top of the hierarchy contains the image category under which
there are two categories known as rasterImage and vectorImage. Now if someone
makes a query for the vector image it will gives all the services related to the vec-
torImage. To search the service from DAML-S prototype, they develop a tool called
Edutella query exchange language (QEL) [9]. QEL is able to generate complex
queries for searching a service from the service descriptions. A peer simply sends
the required QEL query in the P2P network. The P2P network distributes a query to
all peers hosting registry information. Upon successful discovery of a service, the
system accumulates the search result and sends it back to the requester.

7.3 METEOR-S WSDI: A Semantic Web Services Tool

Verma et al. propose Web Service Discovery Infrastructure (WSDI) based on
METEOR-S project [19] for scalable semantic web services publish and discovery.
In this project they use a special ontology called Registry Ontology which maintains
relationship among different ontologies. A particular registry maintains ontology
for its domain only and all queries related to this domain is directed to this reg-
istry. In their methodology, semantic information about the services is attached in
the service description. Since, each of the domain ontology is connected with each
other; they can use the shared vocabularies to publish the information. Thus a ser-
vice description is made explicit and eliminates confusion about functionality. Each
service provider can also provide their own version of semantic matching algorithm.
To deal with the scalability issue and to handle increasing number of registries, P2P
network is chosen for the deployment of WSDI. In the next section we discuss the
architecture of the METERO-S WSDI (MWSDI).

7.3.1 Architecture of MWSDI

The MWSDI is divided into four layers. They are Data Layer, Communication
Layer, Operator Services Layer and Semantic Specification Layer. The data layer
consists of web service registries. The registries are kept in such a way that they can
be accessed through stand-alone fashion as a result of consistent to UDDI standard.
The semantic is published and discovered through the operator service layer.

The semantic specification layer is orthogonal to other layers. This layer creates
accessibility of the semantic metadata. The semantic is used in two levels: at the
level of registries and the level of individual web services. The Registry Ontology
manages the specific domain and maintains relationship among the registries. It also
keeps the properties of the registries which include the registry specification name,

1328 Mohmammad Towhidul Islam, Mursalin Akon, and Xuemin (Sherman) Shen

Fig. 6 Components of the communication layer of the METEOR-S WSDI

registry specification version, registry operator details, and quality of the service. A
domain specific ontologies supports private semantic publication and discovery of
web services. Therefore, individual registry operators create their ontologies from
particular domain concepts and terminologies. The MWSDI just maps the input and
output of domain ontologies and stores in UDDI data structure [10].

The communication layer establishes communication among different distributed
components of MWSDI. This layer utilizes a P2P network to maintain communi-
cation. The communication layer consists of four different types of peers: operator
peer, gateways peer, auxiliary peer, and client peer. Figure 6 shows the different
types of peers used in the communication layer. Each operator peer maintains a reg-
istry and provides the registry ontology to all other peers. The gateway peer works
as the entry point for others who want to join the MWSDI network. It updates the
registry ontology for a new peer and delivers this update to all other peers. The aux-
iliary peer handles the registry ontology and performs a crucial role in the MWSDI
architecture. The auxiliary peer is responsible to maintain high availability of the
registry ontology because it is critical for performance of the MWSDI. The client
peer is used only to utilize the capabilities of the MWSDI.

The operator service layer plays the key role for semantic publishing and dis-
covery of services. This layer acts as n interface between the registry and the users.
This layer provides value added services to the user. A user can download the do-
main specific ontologies using this service. The user chooses the relevant registry
using the client peer and discovers registry using templates. Different registry op-
erators provide different algorithms for service publishing and discovery. However,
the user of a service does not need to aware of the differences. The templates created
in earlier steps communicate the operator service layer. This operator service layer

P2P Approach for Web Services Publishing and Discovery 1329

Fig. 7 General architecture of the spider system

translates the template into the desired format for getting the relevant services. Thus
the entire complexity of semantic based web service discovery and publication is
kept hidden from the users. The non-UDDI registry provider uses the facility of the
operator service layer to publish their services. Keyword based UDDI query is also
supported from the operator service layer.

8 Spider: A Unified Web Service Discovery Tool

In [13], Sahin et al. propose a system known as SPIDER for web services publishing
and discovery. In their system, they identify three different ways of discovering
services from different service providers. They are keyword based, ontology based,
and behavior based search. A variation of keyword based search is discussed in
Section 6. The spider architecture is built on the top of Chord [17]. It uses super
peer based overlay on the top of the Chord network. Figure 7 shows the architecture
of the spider system. A super peer is responsible for a particular service category
and is chosen from a group of peers who provides similar services. The peer with
high availability, large computing capacity and ample amount of other resources is
selected as the super peer. Other peer on the same service category is termed as
client peers. Each client peer is connected to the system through a super peer. The
super peer processes the requests on behalf of the client peers.

8.1 Keyword Based Search

In keyword based search, a service is presented in WSDL and the keyword is
extracted from the WSDL. The SMART [14] tool can be used for this keyword

1330 Mohmammad Towhidul Islam, Mursalin Akon, and Xuemin (Sherman) Shen

extraction. Interested consumers of a service then locate the service provider by
searching list of services using keyword. Once the keywords for the service are
defined, the service offering peer sends a message to the system. The message con-
tains the keywords and necessary information to locate the service. The super peer
takes the keywords and uses a hash function to create map from keyword to service
location. When the system wants to locate a service for a given keyword, it com-
municates with the related super peer. The super peer in turn uses the same hashing
function to locate the corresponding service peer.

8.2 Ontology Based Search

Domain ontology based search is similar to category based searching as described in
Section 7.1. The system defines a list of category of services at the beginning based
on a standard such as NAICS [4]. Each peer in a network keeps a copy of the list.
A joining peer contacts with a nearby peer for the list. A service provider publishes
a service according to the related domain ontology. Like the keyword based search,
a super peer hashes the address of the service provider along with service category.
When querying for a particular service, the corresponding super peer consults its
ontology listing and returns all the matching peers providing the certain service.

8.3 Behavior Based Search

User can invoke a service by defining the behavior of a service. This creates a new
era in the web services discovery. The service behavior can be described as the pro-
cess flow language like BPEL [5]. Authors argue that if the behavior of service is
known, this information can be used to increase the accuracy of discovery process.
Consider an example, where a health care provider describes required interaction
between services and a user. One of its services periodically checks the pulse rate
of the user and keeps the data for future reference. Someone may want such specific
behavior from a service. A service provider peer uses a finite state automation 1

to describe the service. Finite state automation defines the execution path of the
service. Super peer hashes extracted information from the finite state automation
to generate the key. The super peer stores the behavior list along with necessary
information to facilitate service discovery. A user describes the behavior of a de-
sired service using BPEL. This behavior is transferred to an acceptable path by the
system. According to the path, the super peer returns the service information.

1 Finite state automation information can be extracted from the BPEL document of the service

P2P Approach for Web Services Publishing and Discovery 1331

9 Discussion on Open Issues

There are numerous approaches to deploy of web services using peer-to-peer net-
working. Most of the approaches in the literature focus on the method of discovery
of service using the P2P framework. However, quantitative analysis and comparison
are still missing. In case of semantic web service publishing and discovery, most of
the authors make the assumption that both service provider and the service requester
use the same domain ontologies and vocabularies. However, in distributed platform
like real life P2P, it is very difficult to exercise this. The diversity of service adver-
tisement and service request should be eliminated to ensure efficient match making
algorithms.

There is stability issue related to the P2P web services. Since P2P is vulnera-
ble to frequent join and leave of peers, the network infrastructure is not stable and
changes often. Most of the design for P2P web services ignores this fundamental
issue. Therefore, a fair comparison between web services in P2P and client server
architecture environment is yet to be sought.

10 Conclusion

In this chapter, we presented a comprehensive study on the web services using P2P
networks. The web services architecture is similar to a P2P framework in many
aspects. However, they have different philosophy to maintain service directory.
Maintaining the service directory in a server oriented approach holds back scal-
able deployment of web services. P2P provides an efficient decentralized solution
towards service indexing without modifying the framework of the web services. De-
ploying web services using P2P provides attractive alternatives to the current day’s
technology of web services and service oriented architecture. Researchers are ac-
tively looking into web services in mobile P2P networks. It is expected this will
create a window of opportunity for applications in extra-ordinary but simple P2P
networks.

References

1. Ankolekar, A., Burstein, M.H., Hobbs, J.R., Lassila, O., Martin, D.L., McIlraith, S.A.,
Narayanan, S., Paolucci, M., Payne, T.R., Sycara, K.P., Zeng, H.: Daml-s: Semantic markup
for web services. In: SWWS, pp. 411–430 (2001)

2. Antoniou, G., Antoniou, G., Harmelen, F.V., Harmelen, F.V.: Web ontology language: Owl.
In: Handbook on Ontologies in Information Systems, pp. 67–92. Springer-Verlag (2003)

3. Antoniou, G., van Harmelen, F.: A Semantic Web Primer. The MIT Press, Cambridge, Mas-
sachusetts (2004)

4. Canada, S.: North american industry classification system (naics) 2007 - canada (2007). URL
http://www.statcan.ca/english/Subjects/Standard/naics/2007/
naics07-menu.htm

1332 Mohmammad Towhidul Islam, Mursalin Akon, and Xuemin (Sherman) Shen

5. Curbera, F., Goland, Y., Klein, J., Leymann, F., Roller, D., Thatte, S., Weerawarana, S.:
Business process execution language for web services version 1.0. (2008). URL http://
dev2dev.bea.com/techtrack/BPEL4WS.jsp

6. Doulkeridis, C., Zafeiris, V., Nrvg, K., Vazirgiannis, M., Giakoumakis, E.A.: Context-based
caching and routing for p2p web service discovery. Distributed and Parallel Databases 21(1),
59–84 (2007)

7. Forster, F., de Meer, H.: Discovery of web services with a p2p network. In: Discovery of Web
Services with a P2P Network. Springer, Krakow, Poland (2004)

8. Moore, C.: Novell rolls out uddi server. http://www.infoworld.com/
9. Nejdl, W., Wolf, B., Qu, C., Decker, S., Sintek, M., Naeve, A., Nilsson, M., Palmér, M., Risch,

T.: EDUTELLA: a P2P networking infrastructure based on RDF. In: Proceedings of the 11th
international conference on World Wide Web, pp. 604–615. ACM New York, NY, USA (2002)

10. Paolucci, M., Kawamura, T., Payne, T.R., Sycara, K.: Importing the semantic web in uddi. In:
In Proceedings of E-Services and the Semantic Web Workshop, pp. 225–236 (2002)

11. Papazoglou, M.P., Krämer, B.J., Yang, J.: Leveraging web-services and peer-to-peer networks.
In: In Proc. of the 15th Int. Conf. on Advanced Information Systems Engineering (CAiSE
2003, pp. 485–501 (2003)

12. Sagan, H.: Space-filling Curves. Springer-Verlag (1994)
13. Sahin, O.D., Gerede, C.E., Agrawal, D., Abbadi, A.E., Ibarra, O.H., Su, J.: Spider: P2p-based

web service discovery. In: Proceedings of the Third International Conference Service-Oriented
Computing (ICSOC 2005), pp. 157–169. Springer (2005)

14. Salton, G.: The SMART Retrieval System – Experiments in Automatic Document Processing.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA (1971)

15. Schmidt, C., Parashar, M.: A peer-to-peer approach to web service discovery. World Wide
Web 7(2), 211–229 (2004)

16. Stern, R.H.: Napster: A walking copyright infringement? IEEE Micro 20(6), 4–5, 95 (2000)
17. Stoica, I., Morris, R., Karger, D., Kaashoek, F.F., Balakrishnan, H.: Chord: A scalable peer-to-

peer lookup service for internet applications. SIGCOMM Computer Communication Review
31(4), 149–160 (2001)

18. Thaden, U., Siberski, W., Nejdl, W.: A Semantic Web based Peer-to-Peer Service Registry
Network. Tech. rep. (2003)

19. Verma, K., Sivashanmugam, K., Sheth, A., Patil, A., Oundhakar, S., Miller, J.: Meteor-s wsdi:
A scalable p2p infrastructure of registries for semantic publication and discovery of web ser-
vices. Information Technology and Management 6(1), 17–39 (2005)

20. Wierzbicki, A., Leibowitz, N., Ripeanu, M., Wozniak, R.: Cache replacement policies revis-
ited: the case of P2P traffic. In: CCGRID, pp. 182–189. IEEE Computer Society (2004)

21. Zhu, Hu: Efficient, proximity-aware load balancing for DHT-based P2P systems. IEEETPDS:
IEEE Transactions on Parallel and Distributed Systems 16 (2005)

22. Zhu, Y.: Making search efficient on gnutella-like P2P systems. In: 19th IEEE International
Parallel & Distributed Processing Symposium (IPDPS 2005). Denver, Colorado, USA (2005)

Content-Based Publish/Subscribe Systems

Haiying Shen

Abstract The application and deployment of publish/subscribe systems have de-
veloped significantly over the past years. A publish/subscribe system is a powerful
paradigm for information dissemination from publishers (data/event producers) to
subscribers (data/event consumers) in large-scale distributed networks. Publish/sub-
scribe systems have been used in a variety of applications ranging from personalized
information dissemination to large-scale and critical monitoring. This chapter pro-
vides a survey on current content-based publish/subscribe systems. It first introduces
the publish/subscribe systems, then presents a survey of current systems based on
three classification criteria: subscription model, routing and topology. It details dif-
ferent publish/subscribe systems in the centralized category and distributed category
including multicast-based systems and Distributed hash table (DHT)-based systems.
Finally, it concludes the chapter with concluding remarks and open issues.

1 Introduction

In the past few years, with the tremendous development of Internet and rapid growth
of information, more and more Internet applications require information dissemina-
tion among a large number of widely scattered entities. In this environment, thou-
sands or even millions entities are distributed globally and their locations and behav-
iors may vary. The large-scale, dynamic and geographically spread features of the
environment requires a scalable, efficient and reliable technique for information dis-
semination. The rigid and static individual point-to-point and synchronous commu-
nications are not able to meet the requirements. Publish/subscribe (pub/sub) systems
has been receiving increasing attention for the loosely coupled form of interaction it
provides in large scale settings [65]. A pub/sub system [47] enables information

Haiying Shen
University of Arkansas, Fayetteville, AR, USA, e-mail: hshen@uark.edu

X. Shen et al. (eds.), Handbook of Peer-to-Peer Networking, 1333
DOI 10.1007/978-0-387-09751-0 49, © Springer Science+Business Media, LLC 2010

1334 Haiying Shen

dissemination from publishers (data/event producers) to subscribers (data/event
consumers) in large-scale distributed networks.

The first pub/sub system was the “news” subsystem in the Isis Toolkit and was
described in [19]. This pub/sub technology was invented by Frank Schmuck, who
probably should get the credit as the first person to ever invent a fully functional pub-
/sub solution [2]. Since then, significant research work has been devoted to devel-
oping efficient and scalable pub/sub systems. Pub/sub systems have been applied to
a wide range of group communication applications including software distribution,
Internet TV, audio or video-conferencing, virtual classroom, multi-party network
games, distributed cache update, distributed simulation and shared white-boards.
It can also be used in even larger size group communication applications, such as
broadcasting and content distribution. Such applications in our daily lives include
news and sports ticker services, real-time stock quotes and updates, market tracker,
and popular Internet radio sites [16].

A pub/sub system is composed of many nodes distributed over a communica-
tion network. In such a system, clients are autonomous entities that exchange in-
formation by publishing events and by subscribing to the classes of events they are
interested in. Clients are not required to communicate directly among themselves
but are rather decoupled: the interaction occurs through the nodes of the pub/sub
system that coordinate themselves in order to route information from publishers to
subscribers [6]. Figure 1 shows a high-level view of a pub/sub system. In the system,
publishers produce information and subscribers consume information. Specifically,
publishers publish information in the form of events and subscribers express their
interests in an event or a pattern of events in the form of subscription filters. A data
event specifies values of a set of attributes associated with the event. The subscrip-
tions can be very expressive and specify complex filtering criteria by using a set of
predicates over event attributes. When a pub/sub system receives an event published
by a publisher, it matches the event to the subscriptions and delivers the event to
the matched subscribers. A subscriber installs and removes a subscription from the
pub/sub system by executing the subscribing and unsubscribing operations respec-
tively.

Fig. 1 A high-level view of a pub/sub system

Content-Based Publish/Subscribe Systems 1335

Processes in pub/sub systems are clients of an underlying notification service and
can act both as producers and consumers of messages, called event notifications or
notifications for short. A notification is a message that describes an event. Notifi-
cations are injected into the event system via a publish() call rather than being
published towards a specific receiver. They are conveyed by the underlying noti-
fication service to those consumers which have registered a matching subscription
with subscribe(). Subscriptions describe the kind of notifications consumers
are interested in.

A variety of content-based pub/sub systems have been proposed. The pub/sub
systems can be classified into groups according to three criteria: subscription model,
routing and topology. Based on the expressive power of subscription models, pub-
/sub systems can be classified into three categories: topic-based, content-based and
type-based. According to routing solutions for the notification service, the pub/sub
systems can be categorized into filter-based approaches [8, 26, 27, 36, 73, 90] and
the multicast-based approaches [8, 73, 83, 104]. Based on the system topology, cur-
rent pub/sub systems can be classified into centralized [88] and distributed [25, 28,
29, 102]. The distributed systems can be further classified into broker-based and
Distributed Hash Table (DHT)-based systems. DHT systems are also called struc-
tured peer-to-peer (P2P) systems, which is one type of P2P systems.

Table 1 Classification of pub/sub systems

Classification criteria Categories

Topic-based
Subscription model Content-based

Type-based

Filter-based
Routing Multicast-based

Centralized
Topology Decentralized

Broker-based DHT-based

This chapter is dedicated to providing the reader with a complete understand-
ing of content-based pub/sub systems. Table 1 shows the classification of pub/sub
systems based on the three different classification criteria. We will introduce the
pub/sub systems based on the three classification methods.

The rest of this chapter is organized as follows. In Section 2, we present the pub-
/sub systems based on subscription models. In Section 3, we present the content-
based pub/sub systems based on routing models, and introduce multicast tech-
niques. Section 4 details different pub/sub systems according to system topology,
and discusses various challenges in modelling the systems. Meanwhile, we present
a number of examples for the content-based pub/sub systems discussing their goals,

1336 Haiying Shen

properties, strategies and classification. Finally in Section 5, we conclude this chap-
ter with discussion about a number of open issues for building pub/sub systems.

2 Subscription Models

Different ways for specifying the subscribers’ interest result in distinct variants of
the pub/sub systems. The subscription models that appeared in the literature are
characterized by their expressive power: highly expressive models offer subscribers
the possibility to precisely match their interest, i.e., to receive only the events they
are interested in [6]. In this section we briefly review the most popular pub/sub sub-
scription models: topic-based model, content-based model and type-based model.

2.1 Topic-Based Systems

In the topic-based pub/sub systems, each event belongs to a certain topic (also re-
ferred to as group, channel or subject). Subscribers express their interest in a partic-
ular subject and they receive all the events published within that particular subject.
Each topic corresponds to a logical channel ideally connecting each possible pub-
lisher to all interested subscribers. Network multicasting and diffusion trees can
be used to disseminate events to interested subscribers. The topic-based model has
been the solution adopted in all early pub/sub systems. Examples of systems that
fall under this category are TIB/RV [72], SCRIBE [39], Bayeux [116], CORBA
Notification Service [5], ISIS [18] and iBus [72] as well as commercial products
Tibco [98] and Vitria [4].

Topic-based pub/sub systems take only coarse-grained subscriptions. The main
drawback of the topic-based model is the very limited expressiveness it offers to
subscribers. Consequently, a subscriber has to receive all events pertinent to a sub-
ject though the subscriber might be interested in only a subset of the events. In
addition, topic-based systems provide limited choices of subscriptions. To address
problems related to low expressiveness of topics, as indicated in [6], a number of
solutions are exploited in pub/sub implementations. For example, the topic-based
model is often extended to provide hierarchical organization of the topic space, in-
stead of a simple flat structure such as in [13, 72]. A topic can be then defined as a
sub-topic of an existing topic. Events matching the sub-topic will be delivered to all
users subscribed to both the topic and sub-topic. Implementations also often include
convenience operators, such as wildcard characters, for subscribing to more than
one topic with a single subscription. Another method for enhancing expressiveness
of the topic-based model is the filtered-topic variant [3, 5], where a further filter-
ing phase is performed once the message is received based on the content of the
message. Messages that do not satisfy the filter are not delivered to the application.

Content-Based Publish/Subscribe Systems 1337

2.2 Content-Based Systems

In contrast to topic-based systems, content-based systems allow fine-grained
subscriptions by enabling restrictions on the event content. In the content-base pub-
/sub systems, notifications typically consist of a number of attribute/value pairs. A
subscription may include an arbitrary number of attribute names and filtering crite-
ria on their values. Only those events satisfying all the predicates are delivered to the
subscriber. Hence, content-based systems increase subscription selectivity by allow-
ing subscriptions have multiple dimensions [40]. Examples of content-based sys-
tems include Gryphon [1, 8, 73, 95], SIENA [26, 27], JEDI [36], LeSubscribe [80],
Hermes [77, 78], Elvin [88], Rebeca [48, 49, 70], and CPAS [9]. In content-based
pub/sub systems, the matching of subscriptions and publications is based on content
and no prior knowledge is needed. Subscriptions in content-based pub/sub systems
are more expressive. Subscribers express their interest by specifying conditions over
the content of events they are interested in. In other words, a subscription is a re-
quest formed by a set of constraints composed through disjunction or conjunction
operators. Possible constraints depend on the attribute type and the subscription lan-
guage. Most subscription languages comprise equality and comparison operators as
well as regular expressions. Therefore, these systems are more flexible and useful
since subscribers can specify their interests more accurately using a set of predi-
cates. The subscriber need not have to learn a set of topic names and their content
before subscribing. The main challenge in building such systems is to develop an ef-
ficient matching algorithm that scales to millions of publications and subscriptions.

The complexity of the subscription language affects the complexity of matching
operation. Therefore, it is not common to design subscription languages making
requests more complex than those in conjunctive form such as those in [20, 23]. The
work in [70] presents a complete specification of content-based subscription models.
In content-based pub/sub systems, events are distinguished by the properties of the
events instead of predefined criterion (i.e., topic name). Thus, the correspondence
between publishers and subscribers is on a per-event basis. The difference with a
filtered-topic model is that events that do not match a subscriber can be filtered out
in any point in the system rather than on the receiver. For these reasons, the higher
expressive power of content-based pub/sub comes at the cost of a higher overhead
for calculating the set of interested subscribers for each event [26, 45].

2.3 Type-Based Systems

In type-based systems such as Echo [41], XMessage [92] and the work in [43, 44, 46],
pub/sub variant events are objects belonging to a specific type, which can encapsu-
late attributes as well as methods. In a type-based subscription, the declaration of
a desired type is the main discriminating attribute. That is, type-based pub/sub sys-
tems occupy the middle-ground between coarse-grained topic-based systems and
fine-grained content-based systems. In terms of aforementioned models, a type-

1338 Haiying Shen

based pub/sub system is in the middle, by giving a coarse-grained structure on
events (like in topic-based) on which fine-grained constraints can be expressed over
attributes (like in content-based). For example, in XMessages [92], a publisher and
a subscriber can either interact directly with each other, exchanging events or use
an XMessage channel that allows multiple publishers and listeners to communicate
asynchronously. Publishers and subscribers initially use lookup table to get the ref-
erence of XMessage channel for building the connection. Then, they use SQL-like
query to filter messages from this channel based on the content of messages. Thus,
XMessage is type-based. Messages in XMessage may be defined as any XML con-
tent that needs to be transmitted between source and sink while events are also XML
strings but have the typed fields.

3 Filter-Based and Multicast-Based Pub/Sub Systems

A main aspect in a pub/sub system is event dispatching in which matched events
are routed to subscribers. According to routing solutions, the pub/sub systems can
be largely categorized into two classes [24]: the filter-based approaches [8, 26, 27,
36, 73, 90] and the multicast-based approaches [8, 73, 83, 104]. In the filter-based
approaches, routing decisions are made through successive content-based filtering at
all nodes along the path from source to destination. Every pub/sub server in the path
matches the event with remote subscriptions from other servers, and then forwards
it towards directions that lead to matching subscriptions. This approach can achieve
high efficiency, but at the cost of expensive subscription information management
and high processing load at pub/sub servers.

In the multicast-based approach, certain multicast groups are determined before
event transmission. For each event, one group is determined at the publisher, and the
event is then multicasted to that group. In this method, some nodes in the routing
path receive the events they are not interested in. The network efficiency of this
approach is often highly sensitive to the data types and the distributions of events
and subscriptions in the application.

Recently, much research effort has been devoted to the distributed pub/sub
systems. The architecture designs include SIENA [26, 27], Gryphon [8, 73, 95],
JEDI [36], Rebeca [48, 49, 70], Elvin [89], Ready [55], and Herald [22]. Most
of these systems adopt the filter-based routing approach. For example, in JEDI, a
hierarchical interconnection topology is proposed in which a server is only informed
of subscriptions from servers in its sub-tree. Events are always forwarded up the hi-
erarchy regardless of the interests in other parts of the network.

Pub/sub systems relying on multicast for event dispatching need content-based
matching to discover the events and subscriptions. Event dispatching in a pub/sub
system is similar to the traditional multicasting. The only difference is that the ad-
dresses of the message receivers are known in multicasting, while in pub/sub sys-
tems the receivers need to be determined by content-based matching. The matching
problem has been studied for various data types and event schemes [8, 10, 47, 93].

Content-Based Publish/Subscribe Systems 1339

Many pub/sub systems rely on multicast for notification service. That is, a publisher
forwards events to many subscribers who subscribe to the publisher.

Many overlay-based multicast systems are proposed in the recent years, such as
Narada [87], Bayeux [116], NICE [16] and Scribe [39]. Multicast protocols can
be classified into centralized-based and distributed-based. Examples of centralized
methods include HBM [84] and ALMI [74]. The distributed multicast implemen-
tations can be classified according to a number of criteria. We list the criteria and
classifications in the following.

Collaboration techniques. There are two multicast architectures: P2P architec-
tures and proxy (i.e., broker)-based architectures [35]. A P2P architecture pushes
the functionality to nodes participating in the multicast group so that each node
maintains the state of those groups that it is participating, while a proxy-based ar-
chitecture lets an organization that provides value and services deploy proxies at
strategic locations on the Internet. End node attaches itself to proxies near them,
and receive data using plain unicast, or any available multicast media.

Distribution. Two types of multicast according to information distribution are
tree-based and flooding [31] (including enhancement of flooding method such as
gossip and random walking). The flooding approach such as CAN-based multi-
cast [82] creates a separate overlay network per multicast group and leverages the
routing information already maintained by a group’s overlay to broadcast messages
within the overlay. The tree approach, such as Scribe [39] and Bayeux [116], uses
a single overlay and builds a spanning tree for each group, on which the multicast
messages for the group are propagated.

Overlay network construction. Currently proposed multicast protocols are either
built from scratch or based on an overlay network substrate such as Pastry [85],
CAN [81] or Tapestry [113]. Examples of the former category include Narada [35]
and NICE [16] and the latter include Scribe [39] based on Pastry, Bayuex [116]
based on Tapestry and CAN-based multicast [82] based on CAN. According to the
taxonomy of overlay multicast provided in [42], the former category can be fur-
ther classified into two classes. (1) Direct tree construction. Members choose their
parents from the members that they know. Protocols such as Yoid [51], BTP [59],
Overcast [61] TBCP [68], HMTP [109], NICE [16] and ZIGZAG [99] use this way
to construct trees. (2) First mesh construction, second tree construction. That is,
first efficient meshes are constructed, then trees are constructed out of the meshes
by certain routing algorithms. Such examples include Narada [35], Gossamer [32]
and Delaunay triangulation [63]. The overlay network substrate category can be
further classified into generalized hypercube such as Scribe [39] and Bayuex [116],
and Cartesian Hyperspace such as CAN-based multicast [82] according to overlay
network construction.

These proposals use two different techniques to design self-organizing multi-
cast in order to improve the scalability of multicast. (1) Neighbor mapping based
on members’ assigned addresses. For example, CAN-based multicast [82] assigns
logical addresses from cartesian coordinates on an n-dimensional torus. Delaunary
Triangulations [63] assigns points to a plane and determines neighbor mappings
corresponding to the Delaunay triangulation of the set of points. (2) Organizing

1340 Haiying Shen

members into hierarchies of clusters. Nice [16] and Kudos [60] are such instances.
Kudos constructs a two level hierarchy with a Narada like protocol at each level of
the hierarchy. Banerjee et al. [16] constructs a multi-level hierarchy, which does not
involve the use of a traditional routing protocol.

Building a broker-based network is the most common approach for designing a
distributed notification service. Each broker communicates with its neighbor using
for subscription and publication. A P2P overlay network for multicast is a logical
application level network that is built on top of a general network layer like IP
unicast. The nodes that are part of the overlay network can route messages between
each other through the overlay network. There is an overhead associated with using
a logical network for routing since the logical topology does not necessarily mirror
the physical topology. However, more sophisticated routing algorithms can be used
and deployed since routing is implemented at the application level.

4 Centralized and Distributed Pub/Sub Systems

Content-based pub/sub systems operate either in a centralized manner or a decen-
tralized manner. In a centralized pub/sub system, a centralized server stores all the
subscriptions, maps events to the subscriptions, and delivers events to the matched
subscribers. The main component of this architecture is the event dispatcher. This
component records all subscriptions in the system. When a certain event is pub-
lished, the event dispatcher matches it to all subscriptions in the system. When the
incoming event verifies a subscription, the event dispatcher sends a notification to
the corresponding subscriber.

Keeping a global image of subscriptions makes it easy for the sever to find
matched subscribers, avoiding unnecessary event delivery. However, the server can
easily be overloaded in a large-scale system with thousands or even millions of
clients. In addition, such systems suffer from the problem of single point of fail-
ure. Thus, centralized pub/sub systems cannot provide high scalability and reliabil-
ity, which prevents it from being applied to large-scale applications such as global
video-conferencing. A distributed pub/sub system [26, 101] is a promising alter-
native driven by a variety of large-scale communication applications. The main
difficulty in building distributed content-based systems is the design of an effi-
cient distributed matching algorithm. Distributed content-based systems can be fur-
ther classified into broker-based and DHT-based. Broker-based systems such as
SIENA [26] depend on a small number of trusted brokers connected by a high band-
width network [96]. The broker-based systems improve the scalability and reliability
of the centralized systems to a certain extend by distributing load among a number
of brokers. However, a failure of one broker may lead to a large number of state
transfer operations during recovery. Thus, the systems also may not provide very
high scalability and reliability in a large-scale environment.

To address the problems, more and more pub/sub systems resort to DHTs [81, 85,
94, 113] due to their high scalability, reliability, fault-tolerance and self-organizing.

Content-Based Publish/Subscribe Systems 1341

DHTs have successfully been used in a number of application domains, such as
distributed file systems [7, 37, 71, 86]. Most pub/sub systems, such as Scribe [39],
relying on DHTs are topic-based because of DHTs’ mapping policy between data
and nodes. Recently, much research has been conducted in building content-based
pub/sub systems on top of P2P systems [9, 77, 78, 96, 97, 106–108, 111, 114, 115].

4.1 Centralized Pub/Sub Systems

Traditional centralized systems [3, 7, 21, 33, 54, 57, 58, 64, 76, 88] use a central-
ized server that stores all the subscriptions in the system. The centralized server
maps events to the subscriptions, and delivers events to the matched subscribers
who are interested in the events. As indicated in [96], centralized systems have the
advantage of retaining a global image of the system at all times, enabling intelli-
gent optimizations during the matching process [11, 21, 47, 64, 76]. For example,
Fabret et al. [47] proposed data structures and application-specific caching policies
and query processing to support high rates of subscriptions and events in the system.
Specifically, they used the data structures including a set of indexes, a predicate bit
vector and a cluster vector to achieve efficient event matching that is based on clus-
tering and maximizes temporal and spatial locality. However, restrictions have to be
placed on subscriptions such that they must contain at least one equality predicate,
sacrificing flexibility and expressiveness of subscriptions. Major disadvantages of
centralized systems are the lack of scalability and fault-tolerance.

Elvin [50, 88] is a “pure” notification service in which producers send notifi-
cations to the service, which in turn sends them to consumers. The notifications
describe events using a set of named attributes of simple data types and con-
sumers subscribe to a “class” of events using a boolean subscription expression.
When a notification is received at the service from a producer, it is compared to
the consumers’ registered subscription expressions and forwarded to those whose
expressions it satisfies. Once producers are freed of the responsibility to direct no-
tifications, the determination of the significance of a state change becomes less
important: they can notify any potentially interesting information, and rely on
the notification service to discard notifications of no (current) interest to con-
sumers. While large volumes of unused notifications may be useful from a user’s
perspective, they consume network bandwidth. To overcome this problem, Elvin
includes a quenching mechanism which allows producers to discard unneeded no-
tifications without sending them to the server. In order to support organization-
wide notification, the implementation of the notification service must cater for
many client applications. A single Elvin server can effectively service thousands
of clients (producers or consumers) and evaluate hundreds of thousands of notifi-
cations per second on moderate hardware platforms. Further, additional servers can
be configured in a federation, sharing the load of notification delivery, providing
wide-area scalability and ensuring fault-tolerance in the face of individual server
failures.

1342 Haiying Shen

Hanson et al. [58] introduced an algorithm for finding the matching predicates
that is more efficient than the standard algorithm when the number of predicates
is large. The authors focus on equality and inequality predicates on totally ordered
domains. This algorithm is well-suited for database rule systems, where predicate-
testing speed is critical. A key component of the algorithm is the interval binary
search tree. It is designed to allow efficient retrieval of all intervals such as range
predicates that overlap a point, while allowing dynamic insertion and deletion of
intervals. Later on, Hanson et al. [57] proposed a way to develop a scalable trigger
system. It is achieved with a trigger cache to use main memory effectively, and a
memory-conserving selection predicate index based on the use of unique expres-
sion formats called expression signatures. A key observation is that if a very large
number of triggers are created, many will have the same structure, except for the
appearance of different constant values. When a trigger is created, tuples are added
to special relations created for expression signatures to hold the trigger’s constants.
These tables can be augmented with a database index or main-memory index struc-
ture to serve as a predicate index. The design presented also uses a number of types
of concurrency to achieve scalability, including token (tuple)-level, condition-level,
rule action-level, and data-level concurrency.

Farsite [7] is a serverless distributed file system that logically functions as a cen-
tralized file server but whose physical realization is dispersed among a network of
untrusted desktop workstations. Farsite is intended to provide both the benefits of a
central file server (a shared namespace, location transparent access, and reliable data
storage) and the benefits of local desktop file systems (low cost, privacy from nosy
sysadmins, and resistance to geographically localized faults). Farsite provides file
availability and reliability through randomized replicated storage; it ensures the se-
crecy of file contents with cryptographic techniques; it maintains the integrity of file
and directory data with a Byzantine-fault-tolerant protocol; it is designed to be scal-
able by using a distributed hint mechanism and delegation certificates for pathname
translations; and it achieves good performance by locally caching file data, lazily
propagating file updates, and varying the duration and granularity of content leases.
Pub/sub matching algorithms work in two phases. First, predicates are matched and
then matching subscriptions are derived. Based on Ashayer et al.’s [11] observation
that the domain types over which predicates are defined are often of fixed enumer-
able cardinality in practice, Adya et al. developed a table-based look-up scheme
for fast predicate evaluation that finds all matching predicates for each type with
one table lookup. They further proposed two DBMS-based matching algorithms
and compare the better one with a special purpose pub/sub matching algorithm im-
plementation. Their work showed that for application scenarios that require large
subscription workloads and process many events, a DBMS-based solution is not a
feasible alternative.

Petrovic et al. proposed S-ToPSS semantic pub/sub system that provides seman-
tic matching [76]. For instance, the system returns notifications about “vehicles”
or “automobiles” to a client who is interested in a “car” based on the semantics
of the terms. The authors described three approaches, each adding more exten-
sive semantic capability to the matching algorithms. The first approach allows a

Content-Based Publish/Subscribe Systems 1343

matching algorithm to match events and subscriptions that use semantically equiva-
lent attributes-synonyms. The second approach uses additional knowledge about the
relationships (beyond synonyms) between attributes and values to allow additional
matches. More precisely, it uses a concept hierarchy that provides two kinds of
relations: specialization and generalization. The third approach uses mapping func-
tions which allow definitions of arbitrary relationships between schema and attribute
values.

Liu et al. [64] pointed out that most existing pub/sub systems cannot capture un-
certainty inherent to the information in either subscriptions or publications. In many
situations, it is difficult to derive exact knowledge of subscriptions and publications.
Moreover, especially in selective information dissemination applications, it is often
more appropriate for a user to formulate his/her search requests or information offers
in less precise terms, rather than defining a sharp limit. To address these problems,
the authors proposed a new pub/sub model based on possibility theory and fuzzy set
theory to process uncertainties for both subscriptions and publications.

Burcea et al. [21] identified the factors that affect the performance of a distributed
pub/sub architecture supporting mobility; formalized mobility algorithms for dis-
tributed pub/sub systems and developed and evaluated optimizations that reduce the
costs associated with supporting mobility in pub/sub systems. They focused on the
“unicast” traffic generated to support mobile users, as opposed to the regular “mul-
ticast” traffic used for event dissemination to stationary clients.

4.2 Distributed Broker-Based Pub/Sub Systems

Content-based pub/sub allows fine-grained expressiveness of subscription, and thus
is a more attractive solution for content dissemination. However, the design for
content-based pub/sub systems is faced with two challenges that affect the perfor-
mance of a content-based pub/sub network directly. The first challenge is the match-
ing between subscriptions and events. Unlike the traditional multicast system where
the addresses of destinations are known, the communication in content-based pub/-
sub systems is based on the content of event publications and subscriptions. Thus, it
is important to match the subscribers’ subscriptions and publishers’ events to iden-
tify the addresses of destinations. After the destinations are determined, the events
need to be routed to the destinations. As indicated in [25], traditional group-based
muticast techniques [35] cannot be readily used to route event to all destinations.
This is because content-based subscriptions are usually highly diversified, and dif-
ferent events may satisfy the interests of widely varying sets of servers. In the worst
case, the number of such sets can be exponential to the network size (2n where n
is the number of servers), and it is impractical to build a multicast group for each
such set. The second challenge is how to efficiently route the matched events to the
destinations. Therefore, an architecture design should efficiently match an event to
subscriptions and meanwhile reduce the nodes participating in routing. In the last
few years, a variety of broker-based pub/sub systems have been proposed in order

1344 Haiying Shen

to provide efficient and scalable pub/sub services. Broker-based systems depend on
a small number of trusted brokers connected by a high bandwidth network. Brokers
form an application level overlay and each broker stores subset of all subscriptions
in the system. The overlay is managed by an administrator based on technical or
administrative constraints. Examples of the broker-based pub/sub systems include
SIENA [26–29], Gryphon [8, 73, 95], JEDI [36], Rebeca [48, 49, 70], Ready [55],
Herald [22], MEDYM [25], Kyra [24], EDN [103] and link matching [15]. In the
following, we present the details of the systems.

Kyra

To improve event routing efficiency, Cao and Singh [24] proposed Kyra routing
scheme that uses content clustering to create multiple pub/sub networks each of
which is responsible for a subset of the content space. The goal of Kyra is to
reduce the implementation cost of the filter-based approach while still maintain-
ing comparable network efficiency. Cao and Singh studied two major existing ap-
proaches for content-based pub/sub systems: filter-based approach, which performs
content-based filtering on intermediate routing servers to dynamically guide routing
decisions, and multicast-based approach, which delivers events through a few high-
quality multicast groups that are pre-constructed to approximately match user inter-
ests. These approaches have different trade-offs in the routing quality achieved, the
implementation cost and system load generated. The proposed Kyra carefully bal-
anced these trade-offs by combining the advantages of content-based filtering and
event space partitioning in the existing approaches to achieve better overall routing
efficiency. The main idea is to construct multiple smaller routing networks, so that
filter-based routing is implemented in each one with lower cost. Server load is re-
duced because each Kyra server is guaranteed to only participate in a small number
of routing networks. This is achieved through strategically “moving” subscriptions
between servers to improve content locality. Therefore, the effectiveness of Kyra
is independent of data characteristics of pub/sub applications. Detailed simulation
results show that Kyra significantly reduces the storage, processing and network
traffic loads on pub/sub servers, while achieving network efficiency close to that of
the filter-based approach. Kyra also balances routing load across the pub/sub service
network.

SIENA

SIENA [26, 27] builds a symmetric spanning tree and each pub/sub server can be a
publisher or subscriber. It selects the notifications that are of interest to clients and
then delivers those notifications to the clients via access points. Mainly, SIENA ad-
dresses a key design challenge of maximizing expressiveness in the selection mech-
anism without sacrificing scalability of the delivery mechanism. SIENA focuses on
the aspects that fundamentally affect scalability and expressiveness. In particular,

Content-Based Publish/Subscribe Systems 1345

SIENA has data model for notifications, the covering relations that formally define
the semantics of the data model, the distributed architectures, and the processing
strategies to exploit the covering relations for optimizing the routing of notifica-
tions. This work shows that the hierarchical architecture is suitable with low den-
sities of clients that subscribe (and unsubscribe) very frequently, whereas the P2P
architecture performs better when the total cost of communication is dominated by
notifications. In situations where there are high numbers of ignored notifications
(i.e., notifications for which there are no subscribers), the P2P architecture is also
superior to the hierarchical architecture.

Based on SIENA, Carzaniga et al. [29] proposed a forwarding algorithm in
content-based pub/sub networks. Forwarding in such a network amounts to evaluat-
ing the predicates stored in a router’s forwarding table in order to decide to which
neighbor router the message should be sent. The proposed algorithm is based on the
general structure proposed for Le Subscribe systems and takes advantage of their
fixed or limited number of output interfaces. A forwarding table is conceptually
a map from predicates to interfaces of neighbor nodes where a predicate is a dis-
junction of filters, each one being a conjunctions of elementary conditions over the
attributes of a message. The design of a forwarding algorithm involves the design
of a forwarding table and of its processing functions. The proposed forwarding al-
gorithm accelerates the decision making in situations where there are large numbers
of predicates and high volumes of messages.

Later on, Carzaniga et al. [28] further proposed a routing scheme that can propa-
gate predicates and necessary topological information in order to maintain loop-free
and possibly minimal forwarding paths for messages. The routing scheme uses a
combination of a traditional broadcast protocol and a content-based routing proto-
col. This scheme consists of a content-based layer superimposed over a traditional
broadcast layer. The broadcast layer handles each message as a broadcast message,
while the content-based layer prunes the broadcast distribution paths, limiting the
propagation of each message to only those nodes that advertised predicates matching
the message. To implement this two-layer scheme, a router runs two distinct routing
protocols: a broadcast routing protocol and a content-based routing protocol. The
first protocol processes topological information and maintains the forwarding state
necessary to send a message from each node to every other node. The second pro-
tocol processes predicates advertised by nodes, and maintains the forwarding state
that is necessary to decide, for each router interface, whether a message matches
the predicates advertised by any downstream node reachable through that interface.
This second protocol is based on a dual “push-pull” mechanism that guarantees ro-
bust and timely propagation of content-based routing information.

Gryphon

Gryphon [8, 73, 95] organizes a pub/sub network into a single-source tree and pro-
poses a link matching algorithm to forward events towards directions of match-
ing subscriptions. In Gryphon, the flow of streams of events is described via an

1346 Haiying Shen

information flow graph. The information flow graph specifies the selective deliv-
ery of events, the transformation of events, and the generation of derived events as a
function of states computed from event histories. For this, Gryphon derives from and
integrates the best features of distributed communications technology and database
technology. The Gryphon approach augments the pub/sub paradigm with the follow-
ing features: content-based subscription, in which events are selected by predicates
on their content rather than by pre-assigned subject categories; event transforma-
tions, which convert events by projecting and applying functions to data in events;
event stream interpretation, which allows sequences of events to be collapsed to a
state and/or expanded back to a new sequence of events; and reflection, which allows
system management through meta-events.

MEDYM

MEDYM [25] focuses on the problem of efficiently delivering events from the
servers where they are published to the servers with matching subscriptions. In
MEDYM, a matcher node matches an event to the subscriptions and obtains a desti-
nation list of the matched subscribers. Then, the event delivery message containing
the destination list is routed through a dynamically generated dissemination tree
with the help of topology knowledge. MEDYM does not rely on static overlay net-
works for event delivery. Instead, an event is matched against subscriptions early at
the publishing server to identify destinations with matching subscriptions, and then
sent to destination through a dynamically constructured multicast tree. This archi-
tecture achieves low computation cost in matching and high network efficiency in
routing. MEDYM is distinguished by its dynamic multicast scheme to support the
diversified routing need in pub/sub networks.

HYPER

HYPER [112] is a hybrid approach capable of minimizing both the matching and
forwarding overhead within the pub/sub network and the delay experienced by
clients receiving the content. It identifies a number of virtual groups by exploring
common subscription interests among clients, and messages for each virtual group
are only matched once at the group entry point. In addition, for each virtual group,
the content delivery tree embedded in the underlying pub/sub network can benefit
from short cutting forwarding-only paths.

EDN

EDN [103] partitions the content space subject to the restriction that the schema is
fixed. For equality test, the attribute IDs and values are hashed to generate a key
to locate the server managing it. For inequality tests, EDN uses an R-tree to decide

Content-Based Publish/Subscribe Systems 1347

offline how to assign subscriptions to processors, and requires each processor to
maintain a complete map of this assignment. This approach is limited to small-scale
systems with a fixed set of subscriptions, and it is also unclear whether it works
efficiently for high dimensional content space.

Rebeca

In Rebeca [49, 70], the notification service relies on a network of brokers, which
forward notifications according to filter-based routing tables. The topology of the
system is constrained to be an acyclic and connected graph for simplicity reasons.
The edges are point-to-point connections, forming an overlay network. This model
simplifies the implementation and reasoning about communication characteristics.
As indicated in [105], the major advantage of these systems is that the routing tables
can direct the flow of notifications to only interested nodes. Each broker maintains
a routing table which includes content-based filters. When routing, a notification
only goes down a link if it is matched by a corresponding filter. The simplest form
of routing is simple routing: active filters are simply added to the routing tables
with the link they originated from. However, this makes the routing table sizes grow
linearly with the number of subscriptions. Two methods can be used to address this
problem. The first improvement method is to check and combine filters that are
equal. In the second improvement method, if no cover can be found in a given set
of filters, merging can be used to create new filters that cover existing ones. Only
the resulting merged filter is forwarded to neighbor brokers, where it covers and
replaces the base filters.

Later, Fiege et al. [48] pointed out that many works on notification services and
many concrete systems such as Siena [26, 27] and JEDI [36] have informal seman-
tics. In addition, in these systems, subscriptions are selected out of all published no-
tifications without distinguishing producers. Any further distinctions are necessarily
hard-coded into the communicating components, mixing application structure and
component implementation and thereby defeating the very feature of event-based
systems of loose coupling. To provide methodological support building pub/sub sys-
tems, Fiege et al. presented Rebeca modular design and implementation of an event
system which supports scopes and event mappings, two new and powerful structur-
ing methods that facilitate engineering and coordination of components in pub/sub
systems. They give a formal specification of scopes and event-mappings within a
trace-based formalism adapted from temporal logic.

Link Matching

Banavar et al. [15] proposed a multicast protocol, called link matching, within a net-
work of brokers in a content-based pub/sub system, thereby showing that content-
based pub/sub can be deployed in large or geographically distributed settings. With
this protocol, each broker partially matches events against subscribers at each hop

1348 Haiying Shen

in the network of brokers to determine which brokers to send the message. Fur-
ther, each broker forwards messages to its subscribers based on their subscriptions.
Basically, the matching is based on sorting and organizing the subscriptions into
a parallel search tree data structure, in which each subscription corresponds to a
path from the root to a leaf. The matching operation is performed by following all
those paths from the root to the leaves that are satisfied by the event. This data
structure yields a scalable algorithm because it exploits the commonality between
subscriptions as shared prefixes of paths from root to leaf. There is no additional
information appended to the message headers in the method that match an event
again all subscriptions. Further, at most one copy of a message is sent on each link.
The disadvantages of the flooding approach are avoided as the message is only sent
to brokers and clients needing the message.

Subscription Summaries

Triantafillou and Economides [101, 102] contributed the notion of subscription
summaries, a mechanism appropriately compacting subscription information. They
developed the associated data structures and matching algorithms. The proposed
mechanism can handle event/subscription schemata that are rich in terms of their at-
tribute types and powerful in terms of the allowed operations on them. The summa-
rization structures of a broker’s subscriptions and accompanying algorithms which
operate on the summary structures match incoming events to the brokers with rele-
vant subscriptions and maintain the subscriptions in the face of updates. The authors
presented an algorithm to efficiently propagate subscription summaries to brokers.
They also proposed an algorithm for the efficient distributed processing of incoming
events, utilizing the propagated subscription summaries to route the events to bro-
kers with matched subscriptions. They showed that the proposed mechanism is scal-
able with the bandwidth required to propagate subscriptions increasing only slightly
even at huge-scales. The mechanism is significantly more efficient, up to orders of
magnitude, depending on the scale, with respect to the bandwidth requirements for
propagating subscriptions.

4.3 Distributed DHT-Based Pub/Sub Systems

DHT overlay networks [67, 69, 81, 85, 91, 94, 113] is a class of decentralized sys-
tems in the application level that partition ownership of a set of objects among par-
ticipating nodes, and can efficiently route messages to the unique owner of any
given object. Based on DHT overlay networks, a number of application level mul-
ticast systems have been proposed that can be used for topic-based pub/sub sys-
tems as well as content-based pub/sub systems. Examples of such systems include
Scribe [39] based on Pastry, Bayeux [116] based on Tapestry and CAN-based mul-
ticast [82] based on CAN. Many content-based pub/sub systems based on DHTs

Content-Based Publish/Subscribe Systems 1349

have been proposed [9, 14, 56, 77, 78, 96, 97, 100, 106–108, 111, 114, 115]. DHT-
based pub/sub systems inherit the distinguished features of DHT overlay networks
including scalability, efficiency, reliability, fault-tolerance, self-organizing from the
underlying DHT infrastructure.

4.3.1 Introduction of DHT Overlay Networks

A P2P system consists of peers that act as servers as well as clients in order to
make full use of resources. Because of dynamic connections and decentralization
characteristic, P2P systems have certain mechanisms to ensure efficient connection
and communication. Such mechanisms include those handling nodes join, leave and
failure, allocating files to the nodes, etc. In the system, no node is more important
than any other and the nodes can communicate with each other. Each node maintains
the location information of some other nodes. A node can send message to a chosen
node or broadcast the message to several other nodes. Based on overlay topology,
P2P systems can be classified into unstructured P2P systems and DHT systems (i.e.,
structured P2P systems). Unstructured P2P overlay networks such as Gnutella [53]
and Freenet [52] do not have strict control over the topologies, and they do not assign
responsibility for data to specific nodes. On the contrary, DHT overlay networks
have strictly controlled topologies and the data placement and lookup algorithms
are precise.

DHT overlay networks is a class of decentralized systems in the application level
that partition ownership of a set of objects among participating nodes, and can effi-
ciently route messages to the unique owner of any given object. The DHT overlay
networks include Chord [94], CAN [81], Tapestry [113], Pastry [85], Kademlia [69],
Symphony [67] and Cycloid [91]. In DHT overlay networks, each object is stored
at one or more nodes selected deterministically by a uniform hash function. Specifi-
cally, each object or node is assigned an ID (i.e., key) that is the hashed value of the
object or node IP address using consistent hash function [62]. An object is stored
in a node whose ID closest or immediately succeeds to the object’s ID, which is
called the object’s owner. Though these DHT systems have great differences in im-
plementation, they all support a hash-table interface of put(key,value) and
get(key) either directly or indirectly. put(key,value) stores an object in
its owner node, and get(key) retrieves the object. Queries for the object will be
routed incrementally to the node based on the P2P routing algorithm. Each node
maintains a routing table recording O(logN) neighbors in an overlay network with
N hosts. These structured systems are highly scalable as it make very large systems
feasible; lookups can be resolved in logN overlay routing hops. DHT overlay net-
works are widely used for data sharing application. Different from pub/sub systems,
content-delivery DHT overlay networks distribute data among nodes, and efficiently
forward a data request to the data owner. DHTs’ efficient data location enables ef-
ficient multicast communication. In addition, DHT overlay networks make pub/sub
systems resilient in a dynamic environment where nodes join and leave continu-
ously.

1350 Haiying Shen

Chord

Chord uses a one-dimensional circular key space. The node responsible for the key
is the node whose identifier most closely follows the key numerically; that node is
called the key’s successor. Each node in Chord maintains two sets of neighbors: a
successor list of k nodes that immediately follow it in the key space and a finger list
of O(logn) nodes spaced exponentially around the key space. The ith entry of the
finger list points to the node that is 2i away from the present node in the key space, or
to that node’s successor if that node is not alive. Therefore, the finger list is always
fully maintained without any null pointer. Routing correctness is achieved with these
two neighbor lists. A lookup(key) is, except at the last step, forwarded to the
node closest to, but not past, the key. The path length is O(logn) since every lookup
halves the remaining distance to the destination.

Pastry and Tapestry

Plaxton et al. [79] developed perhaps the first routing algorithm that could be scal-
ably used for P2P systems. Tapestry and Pastry use a variant of the algorithm. The
approach of routing based on address prefixes, which can be viewed as a generaliza-
tion of hypercube routing, is common to all theses schemes. The routing algorithm
works by correcting a single digit at a time in the left-to-right order. If node with ID
12345 receives a lookup query with key 12456, which matches the first two digits,
then the routing algorithm forwards the query to a node which matches the first three
digits (e.g., node 12467). To do this, a node needs to have, as neighbors, nodes that
match each prefix of its own identifier but differ in the next digit. For each prefix (or
dimension), there are many such neighbors (e.g., node 12467 and node 12478 in the
above case) since there is no restriction on the suffix, i.e., the rest bits right to the
current bit. This is the crucial difference from the traditional hypercube connection
pattern and provides the abundance in choosing neighbors and thus a high fault re-
silience to node absence or node failure. In addition to these neighbors, each node
in Pastry also contains a leaf set, which is the set of |L| numerically closest nodes
(half smaller, half larger) to the present node’s ID, and a neighborhood set which is
the set of |M| geographically closest nodes to the present node.

CAN

CAN chooses its keys from a d-dimensional toroidal space. Each node is identi-
fied by a binary string and is associated with a region of this key space, and its
neighbors are the nodes that own the contiguous regions. Routing consists of a se-
quence of redirections, each forwarding a lookup to a neighbor that is closer to the
key. CAN has a different performance profile than the other algorithms; nodes have

Content-Based Publish/Subscribe Systems 1351

O(d) neighbors and path-lengths are O(dN1/d) hops. Note that when d=logN, CAN
has O(logN) neighbors and O(logN) path length like the other algorithms.

4.3.2 Early DHT-Based Pub/Sub Systems

Most initially proposed DHT-based pub/sub systems such as Scribe [39] and
Bayeux [116] are essentially topic-based pub/sub systems. They do not directly sup-
port content-based pub/sub services. The systems employ rendezvous node model.
A subscription or an event is mapped to a rendezvous node using the DHT key allo-
cation policy. The rendezvous node disseminates events to subscribers using appli-
cation level multicast. Systems built on Chord and Pastry map each multicast group
number to a specific node and then have it act as a rendezvous node for that group.
Joining a group means to lookup the rendezvous node and have the nodes on the
lookup path record the route back to the new members. Systems built on CAN have
the rendezvous node act as an entry point to a distinct overlay network composed
only of the group members.

Scribe

Scribe is a scalable application level multicast infrastructure built on top of Pastry.
Scribe relies on Pastry to create and manage groups and to build efficient multi-
cast trees for the dissemination of messages to each group. In addition, Scribe pro-
vides best-effort reliability guarantees. Scribe is fully decentralized: all decisions
are based on local information, and each node has identical capabilities. Each node
can act as a multicast source, a root of a multicast tree, a group member, a node
within a multicast tree, and any sensible combination of the above. Any Scribe node
may create a group; other nodes can then join the group, or multicast messages to all
members of the group. Scribe provides best-effort delivery of multicast messages,
and specifies no particular delivery order. A node can create, send messages to, and
join many groups. Groups may have multiple sources of multicast messages and
many members. Scribe can support simultaneously a large numbers of groups with
a wide range of group sizes, and a high rate of membership turnover.

A node creates a group with groupId. The groupId can be the hash value of
the group’s textual name concatenated with its creator’s name. The rendezvous
point of a group is the owner of the groupId of the group. Scribe creates a mul-
ticast tree, rooted at the rendezvous point, to disseminate the multicast messages
in the group. The multicast tree is created using a scheme similar to reverse path
forwarding [38]. Specifically, a join message is routed by Pastry towards the
group’s rendezvous point. Each node along the route checks its list of groups to
see if it is currently a forwarder; if so, it accepts the node as a child, adding
it to the children table. Otherwise, it creates an entry for the group, and adds
the source node as a child in the associated children table. It then becomes a

1352 Haiying Shen

forwarder for the group by sending a join message to the next node along the
route from the joining node to the rendezvous point. The original message from
the source is then terminated. To enhance reliability, Scribe arranges each non-
leaf node in the tree periodically sends a heartbeat message to its children. Fur-
thermore, forwardHandler(msg) is invoked by Scribe before the node for-
wards a multicast message to make sure that parents can successfully forward the
message.

SplitStream

SplitStream [30] is an application level multicast system built from Scribe for high-
bandwidth data dissemination. Scribe works well only when the interior nodes are
highly available. It poses a problem for application level multicast in P2P coop-
erative environments where peers contribute resources in exchange for using the
service. SplitStream addresses this problem by striping the content across a forest
of interior-node-disjoint multicast trees that distributes the forwarding load among
all participating peers. For example, it is possible to construct efficient SplitStream
forests in which each peer contributes only as much forwarding bandwidth as it re-
ceives. Furthermore, with appropriate content encodings, SplitStream is highly re-
silient to failures because a node failure causes the loss of a single stripe on average.
To balance forwarding load over participating nodes with heterogeneous bandwidth
constraints, SplitStream splits content into k stripes each of which corresponds to a
Scribe multicast tree.

Bayeux

Bayeux [116] is another architecture for application layer multicast, where the end-
hosts are organized into a hierarchy as defined by the Tapestry overlay location
and routing system [113]. Similar to Scribe, Bayeux assigns a unique ID to each
topic by using the tuple that uniquely names a multicast session (i.e., topic), and
a secure one-way hashing function (such as SHA-1 [62]) to map it into a 160 bit
identifier. The owner of the ID becomes the rendezvous point for this topic and the
root node of the multicast tree. Clients that want to join a session must know the
unique tuple that identifies that session. They can then perform the same operations
to generate the file name, and query for it using Tapestry. For each topic, a multicast
tree that is rooted at the rendezvous point is created by combining the paths from
each subscriber to the rendezvous point. A level of the hierarchy is defined by a
set of hosts that share a common suffix in their host IDs. These searches result in
the session root node receiving a message from each interested listener, allowing
it to perform the required membership operations. The events associated with the
topic are disseminated along the corresponding multicast tree starting from the root.
Such a technique was proposed by Plaxton et al. [79] for locating and routing to
named objects in a network. Therefore, hosts in Bayeux maintain O(b logb N) state

Content-Based Publish/Subscribe Systems 1353

and end-to-end overlay paths have O(logb N) application level hops (b is a small
constant).

CAN-based Multicast

CAN defines a virtual d-dimensional Cartesian coordinate space, and each overlay
host owns a part of this space. Ratnasamy et al. [82] leveraged the scalable structure
of CAN to define an application layer multicast scheme, in which hosts maintain
O(d) state and the path lengths are O(dN1/d) application level hops, where N is the
number of hosts in the network. The CAN-based multicast scheme is capable of
scaling to large group size without restricting the service model to a single source.
Extending the CAN framework to support multicast comes at trivial additional cost,
and obviates the need for a multicast routing algorithm because of the structured
nature of CAN topologies. Given the deployment of a distributed infrastructure such
as a CAN, the CAN-based multicast scheme offers the dual advantages of simplicity
and scalability.

Reach

Reach [75] employs the rendezvous model, in which each node serves as a ren-
dezvous point for those subscriptions with suffix matching the node’s identifier. At
a high level, the rendezvous service is the means by which subscriptions are stored
in the network, and by which published messages are directed to “find” the sub-
scriptions they match. This rendezvous node is then an entry point into a “subset
tree” of nodes hosting other, more general subscriptions, and thus to which this
message should also be routed. This tree is implemented in such a way that it of-
fers join-and-leave flexibility and maximum efficiency as the nodes in the tree are
nearby neighbors in the overlay. Reach employs a semantic overlay network and
uses a Hamming-distance based routing scheme. Hamming-based encoding scheme
defines an identifier hierarchy in which, a parent identifier contains at least all the
attributes of a child identifier. This hierarchy is a fundamental concept in Reach and
is the basis for content-based multicasting.

HOMED

HOMED [34] maintains a semantic overlay where each node’s identifier is derived
from its subscriptions. HOMED is suitable for large-scale pub/sub. HOMED prefers
a mesh-like structure rather than a tree for a reliable and adaptive event dissemina-
tion tree. Moreover, it arranges a node to neighbor with the nodes whose interests are
similar to its interest in the overlay network so that only interested nodes participate
in disseminating an event. To ease construction and routing, HOMED organizes the
overlay network based on the interest digest of each node rather than the complex

1354 Haiying Shen

selection predicate. HOMED can be used not only for flexible topic or type-based
systems by nature, but also as a routing substrate for highly selective content-based
systems. In HOMED, an event is delivered along the path of a binomial tree. Also,
the subscribe/unsubscribe overhead is limited to O(logN).

4.3.3 DHT and Content Based Pub/Sub Systems

DHT systems are oblivious to the content of a file and use a uniform hash function
on files’ keys to distribute the files among the different peers. A file’s key is the file
name or the keyword that can distinguish the file. Therefore, on the one hand, DHTs
provide exact-matching service. On the other hand, equality predicates and range
predicates are expected when specifying subscriptions in pub/sub systems. Thus,
to use DHT substrates for content-based pub/sub systems, a mechanism is needed
that helps to distribute subscriptions and events among DHT nodes based on data
content.

To tackle this problem, the works in [14, 56, 100] regard a subscription as a
number of attributes and ranges. These works use each of the attributes and range
constraints as a key to map the subscription to a number of overlay nodes. The
single individual mapping for each attribute and value may lead to low scalability,
especially when a subscription has many attributes and value ranges. To resolve the
problem, some works [9, 77, 78, 96, 106–108, 111, 114, 115] use a scheme to derive
a key or a small number of keys from a subscription for the mapping, while other
works [97] combine the filter-based routing in broker-based model with the routing
in DHT model.

Chord-based Systems

Triantafillou et al. [100] introduced one of the first content-based approximations
where Chord DHT is employed as reliable routing infrastructure, so that they do
not build a specific pub/sub overlay. The system distributes subscriptions on the
Chord nodes based on the keys produced by hashing the attribute and its values.
To do so, they employ the rendezvous model, in which a subscription is stored in
a number of nodes based on the keys. If the subscription specifies a range over an
attribute, the subscription would be stored on a number of nodes by hashing the
attribute and each of its possible values within this range. Such systems suffer from
the lack of scalability on high-dimensional contexts where a subscription has many
attributes and values. The main drawback is that subscription installation and update
are expensive due to the large number of nodes and messages potentially involved.

Later, Baldoni et al. [14] proposed a similar approach but, in this case, they
used a particular mapping of events and subscriptions to keys from the DHT key
space, instead of per-attribute mappings. They introduced a general form mapping
that does not depend on the stored subscriptions which is called stateless map-
ping. It eliminates the need to propagate the knowledge about currently stored

Content-Based Publish/Subscribe Systems 1355

subscriptions. Specifically, the authors proposed three different methods for map-
ping pub/sub subscriptions and events to overlay keys: attribute-split, key space-
split and selective-attribute. Furthermore, in order to increase the efficiency of the
proposed solution, they proposed to enrich the existing overlay networks with one-
to-many primitives, as well as to extend the infrastructure with notification buffering
and range discretization capabilities.

Meghdoot

Meghdoot [56] is designed to adapt to highly skewed data sets, which is typical of
real applications. Built upon CAN, Meghdoot adapts content-based pub/sub systems
to DHT networks in order to provide scalable content delivery mechanisms while
maintaining the decoupling between the publishers and the subscribers. Meghdoot
stores subscriptions in a zone according to the coordinate determined by event at-
tribute values. To do this, Meghdoot extends the traditional 1D-dimensional CAN
to 2D-dimension CAN and relaxes the restrictions on subscriptions. A subscription
defines a rectangular region in the D-attribute content space bounded by the minimal
and maximal value specified. Unspecified attributes take the whole value range. The
hyperrectangle is projected to a point in a 2D-dimension CAN constructed from
the minimal and maximal values of the D-dimension rectangle. An event is then
mapped to a rectangle in the 2D space, and the mapping is performed in a manner
such that the rectangle covers all subscription points relevant to the event. This novel
approach reduces the subscription matching problem into a range query operation
in CAN. Considering skewed distributions of subscriptions and events in a real ap-
plication, Meghdoot addresses the load balancing issue by zone splitting and zone
replication. However, though it can support range subscriptions, it is still confined
to numerical attributes and also can not handle skewed distributions efficiently. In
addition, Meghdoot requires that the overlay dimension must be proportional to the
number of event attributes, which may lead to very high DHT key space.

Scribe-based System

Tam et al. [96] proposed a content-based pub/sub system built from Scribe. In the
approach, topics are automatically detected from the content of subscriptions and
publications through the use of a schema, which is a set of guidelines for selecting
topics. The schema is application-specific and can be provided by the application de-
signer after some statistical analysis. The schemas are similar to database schemas
used in RDBMS. This approach significantly increases the expressiveness of sub-
scriptions compared to purely topic-based systems. However, this scheme does not
fully provide the query semantics of a traditional content-based system. Queries
are not completely free-form but must adhere to a predefined template. The system
places some restrictions on subscriptions and thus sacrifices expressiveness in sub-
scriptions. Moreover, issues of fault-tolerance in subscription storage have yet to

1356 Haiying Shen

be explored in the system, although fault-tolerance in DHT routing and multicast
routing can be transparently handled by Pastry and Scribe, respectively.

Hermes

Hermes [77, 78] is an event-based middleware architecture that follows a type-
and attribute-based pub/sub model. Hermes uses Pastry DHT routing substrate
for installing content based filters close to the publishers. The Cambridge Event
Architecture (CEA) [12, 66] is an event-based middleware that supports proper
event typing. Hermes follows its approach by associating every event and subscrip-
tion with an event type that is type-checked at runtime. A scalable routing algorithm
using an overlay routing network is developed that avoids global broadcasts by cre-
ating rendezvous nodes. Fault-tolerance mechanisms that can cope with different
kinds of failures in the middleware are integrated with the routing algorithm, result-
ing in a scalable and robust system.

CPAS

Considering node cooperation and multi-attribute feature of subscription, Ahullò
et al. [9] proposed CPAS, which employs the rendezvous model in order to meet
both, events and subscriptions. The system defines a certain set of nodes from
the DHT as rendezvous nodes. The rendezvous nodes are responsible of matching
events against subscriptions and starting the notification process. Additionally, these
rendezvous nodes are selected deterministically, so that the node in DHT responsi-
ble for a given key then becomes the rendezvous node. Due to the DHT properties,
the chosen node will be globally agreed upon by all nodes. Thus, every node can
use the P2P routing substrate to send messages to this rendezvous node. The ren-
dezvous model enables the system to avoid the construction of a specific overlay
to disseminate events in a proper way. CAPS employs an order preserving hash
function (OPHF) to deterministically map conjunctive predicates from every sub-
scription into a set of keys and every event into a key, in order to deal naturally with
multi-dimensional domains, and multiple sources cooperating within the system.

Ferry

Ferry [114] provides a preliminary study of exploiting the embedded trees in DHTs
to deliver events. It is designed based on Chord and aims to host any and many
content-based pub/sub services. That is, any pub/sub service with a unique scheme
can run on top of Ferry, and multiple pub/sub services can coexist on top of Ferry.
For each pub/sub service, Ferry does not need to maintain or dynamically gener-
ate any dissemination tree. Instead, it exploits the embedded trees in the underlying
DHT to deliver events. Ferry can support a pub/sub scheme with a large number of

Content-Based Publish/Subscribe Systems 1357

event attributes. Specifically, a subscriber chooses an attribute from all attributes of
a subscription whose consistent hash value is equal to or most immediately precede
the subscriber’s ID. It then maps the subscription to a rendezvous node based on the
consistent hash value. Thus, a tree is formed by the underlying DHT links thereby
imposing no additional construction of maintenance cost. When a node wants to
publish an event, the event is first directed to the rendezvous node where the event is
matched to the subscriptions. Once those subscriptions matching the event are iden-
tified, the event is then delivered to the corresponding subscribers by using Ferry’s
event delivery algorithm. In the delivery algorithm, all the event delivery messages
to those subscribers who share common ancestor nodes on the tree are aggregated
into one single message along the path from the root node to their lowest common
ancestor node. To deal with skewed distribution of subscriptions and events, Ferry
uses one-hop subscription push and attribute partitioning to balance load. In the
one-hop subscription push algorithm, a rendezvous node pushes the subscriptions
corresponding to one of the nodes’ neighbors in its routing table to the neighbor.
In the attribute partitioning algorithm, a value range is partitioned into a number of
ranges.

Eferry and HyperSub

Eferry [108], HyperSub [107] and the work in [106] are enhanced systems based
on Ferry. The objective of Eferry [108] is to ensure an appropriate amount of
rendezvous point nodes in the system and load distribution among them. Eferry
achieves this goal with three methods: (1) a novel subscription installation algo-
rithm to choose certain rendezvous point nodes which are evenly distributed in the
ID space. (2) ID space partitioning and attributes grouping schemes designed to
flexibly adjust the amount of rendezvous point nodes as well as their load. (3) a
self-adaptive load balancing algorithm with dynamic ID space split-merge to make
sure that no node is unduly loaded. HyperSub [107] and the work in [106] use a
locality-preserving hashing mechanism to partition and map the content space to
nodes. Subscriptions and events are mapped to the corresponding nodes for ef-
ficiently matching. The systems have an efficient event delivery algorithm which
exploits the embedded trees in the underlying DHT to deliver events to the corre-
sponding subscribers. In addition, the systems have light-weighted load balancing
mechanisms to adjust the load among peers. The load balancing mechanism includes
space mapping rotation, content space transformation and dynamic subscriptions
migration algorithms.

PRESS

PRESS [115] distinguishes itself from Ferry by proposing a new architecture
that aims to preserve subscription locality in subscription management, minimize
event matching load, balance load across nodes, and offer efficient and scalable

1358 Haiying Shen

event delivery. The framework of PRESS is based on the three key mechanisms:
Subscription Organization Mechanism (SOM), Publication and Matching Mecha-
nism (EPMM) and Event Delivery Mechanism (EDM). SOM uses K-D tree tech-
niques [17] to organize subscriptions in a hierarchical tree manner, and stores the
subscriptions only on leaf nodes. SOM preserves locality of subscriptions, i.e., sim-
ilar/relevant subscriptions are stored on a (or a small number of adjacent) leaf
node(s). Each leaf node is responsible for roughly the same number of subscrip-
tions, ensuring load balance across leaf nodes. SOM layers the tree structure on top
of a DHT, by which each tree node is hosted by a DHT node and the tree inherits
fault-resilience and self-organizing properties of the underlying DHT. Subscription
installation is a process of tree navigation from the tree root to the corresponding
leaf node(s). The subscription installation may involve multiple overlay hops since
the tree spans the DHT overlay, thereby incurring high latency. In addition, every in-
stallation goes through the root, creating a potential bottleneck. Hence, PRESS uses
K-D tree-lookaside cache at client/subscriber side to alleviate the problems. EPMM
allows event publishers to publish an event along the K-D tree to the leaf node
that stores the subscriptions relevant to the event. The leaf node then matches the
event to the subscriptions and starts delivering the event to the matched subscribers.
Similar to subscription installation, event publication could incur high publication
latency and create a potential bottleneck on the tree root node. To alleviate the prob-
lems, the K-D tree-lookaside cache is employed at the client/publisher side. EDM
is virtually maintenance-free. It exploits embedded trees inherent in the underlying
DHT to deliver events, thereby eliminating the cost of multicast-tree construction
and maintenance. After a leaf node matches an event to the subscriptions stored
on it, the leaf node multicasts the event through the corresponding DHT links of
its DHT host node. The event is then disseminated along the embedded tree rooted
at the DHT node hosting the leaf node, and finally reaches each subscriber. EDM
aggregates messages along event dissemination paths, thus reducing the number of
event delivery messages and bandwidth consumption. Moreover, exploiting DHT
links for event delivery, EDM has three major advantages: (1) The underlying DHT
maintenance messages could be piggybacked onto the event delivery messages to
reduce the DHT maintenance cost. (2) Proximity neighbor selection in the underly-
ing DHT, as a means of improving routing performance, makes event dissemination
along the embedded tree proximity-aware, achieving efficient event delivery perfor-
mance. (3) The fault-tolerance and self-organizing nature of DHT overlays makes
event delivery along the DHT links resilient to node/link failures.

Brushwood-based System

The content-based pub/sub model has been adopted by many services to deliver
data between distributed users based on application-specific semantics. Two key
issues in such systems, the semantic expressiveness of content matching and the
scalability of the matching mechanism, are often found to be in conflict due
to the complexity associated with content matching. To address this problem,

Content-Based Publish/Subscribe Systems 1359

Zhang et al. [111] presented a content-based pub/sub architecture based on Brush-
wood P2P matching trees [110]. The authors indicated that the content-based sys-
tems have more complex subscription structures that impede the workload partition
than topic-based systems due to three reasons. The first reason is the high dimen-
sionality of the content space in which a setting involves a large number of attributes.
The second reason is type flexibility which means that attributes may have various
types that require different filtering tests. The third reason is skewed data distribu-
tion, which could create a load imbalance in the system that throttles the scalability.
The system achieves scalability by partitioning the responsibility of event match-
ing to self-organized peers while allowing customizable matching functionalities.
Specifically, the authors proposed a P2P architecture that achieves high scalability
and generality. The architecture addresses the expressiveness problem with a mod-
ular matching tree structure. This tree organizes the subscriptions into hierarchical
groups based on their similarity. It supports flexible schemas and multiple attribute
types in subscriptions and events, and allows customization of new attributes and
filtering types. This matching tree is distributed in a P2P system where each peer
processor manages a small fragment of the tree. They maintain the distributed tree
by peer-wise communications without global coordination. Events can enter the sys-
tem from any processor. A decentralized tree navigation algorithm is used to forward
the events to those tree fragments that may contain matching subscriptions. In ex-
periments, the proposed system demonstrates high scalability. Specifically, the dis-
tributed event matching only visits a small number of processors, processors main-
tain a small amount of state about peers, and the workload is well-balanced across
the processor set.

Combination of Rebeca and Chord

The system proposed in [97] is another content-based pub/sub system built on top of
a dynamic Chord P2P overlay network. Both filter updates (e.g., due to subscribing
and un-subscribing) and event routing use a broadcasting algorithm. The main ad-
vantage of the proposed system is the unique combination of the high expressiveness
of content-based filters in Rebeca and the scalability and fault tolerance of Chord
P2P system. It helps to remove the single bottleneck and point-of-failure of using
only one tree for notifications and filter updates. To avoid introducing routing cy-
cles within a more general redundant graph, the system selects for each notification
a spanning subtree of the entire graph. However, to balance the network congestion
and reduce single points of failure, the system uses a different tree for every broker.
That is, each broker is at the root of its own distinct tree for delivering a published
notification. This allows the system to use a generalization of the pub/sub routing
strategy. During routing, the system provides a test to assure forwarding is only
along those edges which are in the subtree. To provide the routing algorithm with
an understanding of how to select the edges for a subtree, the system incorporates
a topology component. Furthermore, the system has two components that maintain
the structure of the graph and the filters to enhance system robustness when brokers

1360 Haiying Shen

change and fail. Separating the components ensures that the network self-organizes
to maintain the optimal topology and can survive simultaneous failure of up to half
of its nodes. Because the system delivers via binomial trees, message delivery paths
are logarithmically bounded.

Table 2 illustrates a survey of current pub/sub systems based on the classifica-
tions.

Table 2 Survey of pub/sub systems.

Centralized systems Distributed systems
Broker-based DHT-based

Content-based Topic-based Content-based Topic-based Content-based

TIB/RV [72] TIB/RV [72] SIENA [26–29] Scribe [39] Meghdoot [56]
CORBA-NS [5] JEDI [36] Gryphon [8, 73, 95] Bayuex [116] Hermes [77, 78]
Narada [87] Rebeca [48, 49, 70] NICE [16] CPAS [9]
Elvin [50] Kyra [24] SplitStream [30] Ferry [114]
Farsite [7] MEDYM [25] Reach [75] Eferry [108]
S-ToPSS [76] Ready [55] HOMED [34] HyperSub [107]
JMS [3] Herald [22] PRESS [115]

EDN [103] Brushwood-based [111]

5 Summary and Challenges

In the last years, a growing attention has been paid to the pub/sub communication
paradigm as a means for disseminating events through distributed systems on wide-
area networks. This chapter has provided a detailed introduction of pub/sub systems,
and has examined all aspects of pub/sub systems including their goals, properties,
strategies and classification. To survey and compare different pub/sub systems, we
introduced three classification criteria: subscription model, routing and topology.
Based on the subscription model, the pub/sub systems can be classified into topic-
based, content-based and type-based. Based on routing, the pub/sub systems can be
classified into filter-based and multicast-based. Based on topology, the pub/sub sys-
tems can be classified into centralized-based and distributed-based, which is further
classified into broker-based and DHT-based. A comprehensive review of research
works of pub/sub systems focusing on distributed networks has been presented,
along with an in-depth discussion of their pros and cons.

We conclude this chapter with discussion about a number of open issues for
building pub/sub systems.

• Tradeoff between the accuracy and efficiency. Topic-based pub/sub systems
cannot provide high accuracy since a node may receive events it is not interested

Content-Based Publish/Subscribe Systems 1361

in. On the other hand, highly fined-grained content-based systems lead to high
cost for mapping between subscriptions and events as well as node communica-
tion. A mechanism that can combine the advantages of both types while over-
coming their drawbacks is expected.

• Proximity. Mismatch between logical proximity abstraction derived from over-
lay networks, and physical proximity information in reality is a major obstacle
for the deployment and performance optimization issues for pub/sub applica-
tions. Most current pub/sub systems fail to take into account the proximity to
reduce the node communication cost.

• Heterogeneity. With the increasing emergence of various end devices equipped
with networking capability, coupled with the diverse network technology devel-
opment, the heterogeneity of participating nodes of a practical pub/sub system
is pervasive. Their distinct properties, including computing ability, differ greatly
and deserve serious consideration for the construction of a real efficient widely-
deployed application. Most current pub/sub system considering load balance fail
to take into account the heterogeneity.

• Mobility. With the increasing popularity of wireless communication networks
and mobile handheld devices, it becomes an inevitable trend that the pub/sub
systems will be applied to the mobile wireless networks. Currently, there are few
works devoted to the development of a pub/sub system in a mobile environment.
One challenge is how to deal with node mobility.

References

1. Gryphon web site. http://www.research.ibm.com/gryphon/.
2. Publish/subscribe. http://en.wikipedia.org/wiki/Publish/subscribe.
3. Sun microsystems. Java Message Service API, Sun Microsystems. 2003.
4. Vitria. http://www.vitria.com/.
5. Object management group. corba notification service specification, version 1.0.1. omg doc-

ument formal/2002-08-04, 2002.
6. S. Scipioni, A. Corsaro, and L. Querzoni. Quality of service in publish/subscribe. Technical

report, Università di Roma La “Sapienza”, 2006.
7. A. Adya, W. J. Bolosky, M. Castro, G. Cermak, R. Chaiken, J. R. Douceus, J. Howell, J. R.

Lorch, M. Theimer, and R. P. Wattenhofer. FARSITE: Federated, avaiable, and reliable stor-
age for an incompletely trusted environment. In Proc. of the Fifth USENIX Symposium on
Operating Systems Design and Implementation, December 2002.

8. M. K. Aguilera, R. E. Strom, D. C. Sturman, M. Astley, and T. D. Chandra. Matching events
in a content-based subscription system. In Proc. of the Eighteenth ACM Symposium on
Principles of Distributed Computing, 1999.

9. J. P. Ahullò, P. G. Lòpez, and Antonio F. G. Skarmeta. Caps: Content-based publish/sub-
scribe services for peer-to-peer systems. In Proceedings of 2nd International Conference on
Distributed Event-Based Systems (DEBS), July 2008.

10. M. Altinel and M. Franklin. Efficient Filtering of XML Documents for Selective Dissemina-
tion of Information. VLDB Journal, pages 53–64, 2000.

11. G. Ashayer, H. K. Y. Leung, and H. A. Jacobsen. Predicate matching and subscription match-
ing in publish/subscribe systems. In Proc. of Workshop on Distributed Event-Based Systems
(DEBS), pages 539–546, 2002.

1362 Haiying Shen

12. J. Bacon, A. Hombrecher, C. Ma, K. Moody, and W. Yao. Event storage and federation
using odmg. In Proc. of the 9th Int. Workshop on Persistent Object Systems (POS9), pages
265–281, Sept. 2000.

13. S. Baehni, P. Th. Eugster, and R. Guerraoui. Data-aware multicast. In Proceedings of the
2004 International Conference on Dependable Systems and Networks (DSN), pages 233–
242, 2004.

14. R. Baldoni, C. Marchetti, A. Virgillito, and R. Vitenberg. Content-based publish-subscribe
over structured overlay networks. In Proc. ICDCS, pages 437–446, July 2005.

15. G. Banavar, T. Chandra, B. Mukherjee, J. Nagarajarao, R. E. Strom, and D. C. Sturman. An
efficient multicast protocol for content-based publish-subscribe systems. In Proceedings of
the 19th IEEE ICDCS, pages 262–272, June 1999.

16. S. Banerjee, B. Bhattacharjee, and C. Kommareddy. Scalable application layer multicast. In
Proc. of ACM SIGCOMM’02, pages 205–217, 2002.

17. J. L. Bentley. Multidimensional binary search trees used for associative searching. Commu-
nications of the ACM, 18(9):509–517, 1975.

18. K. P. Birman. The process group approach to reliable distributed computing. Communica-
tions of the ACM, 36(12):36–53, Dec 1993.

19. K. P. Birman and T. A. Joseph. Exploiting virtual synchrony in distributed systems.
Operating Systems Review, pages 123–138, 1987.

20. S. Bittner and A. Hinze. On the benefits of non-canonical filtering in publish/subscribe
systems. In Proceedings of the International Workshop on Distributed Event-Based Systems
(ICDCS/DEBS), 2005.

21. I. Burcea, V. Muthusamy, M. Petrovic, H. A. Jacobsen, and E. de Lara. Disconnected opera-
tions in publish/subscribe. Proc. of IEEE Mobile Data Management, 2004.

22. L. F. Cabrera, M. Jones, and M. Theimer. Herald: Achieving a global event notification
service. In Proc. of the 8th Workshop on Hot Topics in Operating Systems (HotOS-VIII),
May 2001.

23. A. Campailla, S. Chaki, E. M. Clarke, S. Jha, and H. Veith. Efficient filtering in publishsub-
scribe systems using binary decision diagrams. In Proceedings of The International Confer-
ence on Software Engineering, pages 443–452, 2001.

24. F. Cao and J. P. Singh. Efficient event routing in content-based publish/subscribe service
networks. In Proceedings of INFOCOM, volume 2, pages 929–940, March 2004.

25. F. Cao and J. P. Singh. MEDYM: match-early and dynamic multicast for content-based
publish-subscribe service networks. In Proceedings of the 4th international workshop on
distributed event-based systems, pages 370–376, 2005.

26. A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Achieving scalability and expressiveness
in an Internet-scale event notification service. In Proc. of ACM Symp. on Principles of Dis-
tributed Computing (PODC), pages 219–227, 2000.

27. A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design and Evaluation of a Wide-Area
Event Notification Service. ACM Transactions on Computer Systems, 19(3):332–383, 2001.

28. A. Carzaniga, M. J. Rutherford, and A. L. Wolf. A routing scheme for content-based net-
working. In Proceedings of IEEE INFOCOM, pages 918–928, March 2004.

29. A. Carzaniga and A. L. Wolf. Forwarding in a content-based network. In Proceedings of
ACM SIGCOMM, pages 163–174, 2003.

30. M. Castro, P. Druschel, A. Kermarrec, A. Nandi, A. Rowstron, and A. Singh. Splitstream:
High-bandwidth multicast in cooperative environments. In Proc. of the 19th ACM Symp. on
Operating Systems Principles (SOSP-19), October 2003.

31. M. Castro, M. B. Jones, A-M. Kermarrec, A. Rowstron, M. Theimer, H. Wang, and A. Wol-
man. An evaluation of scalable application-level multicast built using peer-to-peer overlays.
In Proc. of IEEE Conference on Computer Communications (INFOCOM’03), March 2003.

32. Y. Chawathe. Scattercast: An architecture for internet broadcast distribution as an infrastruc-
ture service. ph.d. thesis. Technical report, University of California, Berkeley, 2000.

33. J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. NiagaraCQ: A scalable continuous query system
for Internet databases. In Proceedings of the 2000 ACM SIGMOD, pages 379–390, 2000.

Content-Based Publish/Subscribe Systems 1363

34. Y Choi, K. Park, and D. Park. HOMED: a peer-to-peer overlay architecture for large-scale
content-based publish/subscribe systems. In Proceedings of the third international workshop
on distributed event-based systems (DEBS), pages 20–25, May 2004.

35. Y. Chu, S. Rao, and H. Zhang. A case for end system multicast. In Proceedings of ACM
SIGMETRICS’2000, January 2000.

36. G. Cugola, E. D. Nitto, and A. Fuggetta. The JEDI Event-based Infrastructure and its Appli-
cation to the Development of the OPSS WFMS. IEEE Transactions on Software Engineering,
2001.

37. F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stocia. Wide-area cooperative storage
with CFS. In Proc. of the 18th ACM Symp. on Operating Systems Principles (SOSP-18),
October 2001.

38. Y. K. Dalal and R. Metcalfe. Reverse path forwarding of broadcast packets. Communications
of the ACM, 21(12):1040–1048, Dec. 1978.

39. P. Druschel, M. Castro, A.-M. Kermarrec, and A. Rowstron. Scribe: A large-scale and de-
centralized application-level multicast infrastructure. In IEEE Journal on Selected Areas in
Communications, 2002.

40. V. S. W. Eide, F. Eliassen, O. Lysne, and O. Granmo. Extending content-based publish/-
subscribe systems with multicast support. Technical report, Simula Research Laboratory,
2003.

41. G. Eisenhauer. The ECho event delivery system. Technical Report GITCC-99-08, College
of Computing, Georgia Institute of Technology, June 1999. http://www.cc.gatech.edu/tech
reports.

42. A. El-Sayed, V. Roca, I. Rhone-Alpes, and L. Mathy. A survey of proposals for an alternative
group communication service. IEEE Network magazine., 2003.

43. P. T. Eugster and R. Guerraoui. Content-based publish/subscribe with strucutural reflection.
In Proc. of the 6th USENIX Conf. on Object-Oriented Technologies and Systems (COOTS01),
Jan 2001.

44. P. T. Eugster, R. Guerraoui, and J. Sventek. Type-based publish/subscribe. Technical report,
EPFL, Lausanne, Switzerland, June 2000.

45. P. Th. Eugster, P. Felber, R. Guerraoui, and S. B. Handurukande. Event Systems: How to
Have Your Cake and Eat It Too. In Proceedings of the International Workshop on Distributed
Event-Based Systems (DEBS), 2002.

46. P. Th. Eugster, R. Guerraoui, and Ch. H. Damm. On Objects and Events. In Proceedings
of the Conference on Object-Oriented Programming Systems, Languages and Applications,
2001.

47. F. Fabret, H. A. Jacobsen, F. Llirbat, J. Pereira, K. A. Ross, and D. Shasha. Filtering algo-
rithms and implementation for very fast publish/subscribe systems. In Proceedings of ACM
SIGMOD, volume 30, pages 115–126, 2001.

48. L. Fiege, G. Mühl, and F. Gärtner. Modular event-based systems. The Knowledge Engineer-
ing Review, 17(4):55–85.

49. L. Fiege, G. Mühl, and F. Gärtner. A Modular Approach to Building Event-Based Systems.
In Proceedings of the ACM Symposium on Applied Computing, 2002.

50. G. Fitzpatrick, T. Mansfield et al. Instrumenting and Augmenting the Workaday World with
a Generic Notification Service called Elvin. In Proc. of European Conference on Computer
Supported Cooperative Work (ECSCW), 1999.

51. P. Francis. Yoid: Your own internet distribution. Technical report, ACIRI, 2000.
http://www.aciri.org/yoid/.

52. The freenet home page. freenet.sourceforge.net, www.freenetproject.org.
53. Gnutella home page. http://www.gnutella.com.
54. J. Gough and G. Smith. Efficient recognition of events in a distributed system. In Proc. of

the 18th Australasian Computer Science Conference, 1995.
55. R. Gruber, B. Krishnamurthy, and E. Panagos. The architecture of the READY event notifi-

cation service. In Proceedings of the 19th Middleware Workshop, 1999.

1364 Haiying Shen

56. A. Gupta, O. D. Sahin, D. Agrawal, and A. E. Abbadi. Meghdoot: content-based publish/-
subscribe over P2P networks. In Proceedings of the 5th International middleware conference
of ACM/IFIP/USENIX, pages 370–376, Oct. 2005.

57. E. N. Hanson, C. Carnes, L. Huang, M. Konyala, L. Noronha S. Parthasarathy, J. B. Park, and
A. Vernon. Scalable trigger processing. In Proceedings of the 15th ICDE, pages 266–275,
1999.

58. E. N. Hanson, M. Chaabouni, C.-H. Kim, and Y.-W. Wang. A predicate matching algorithm
for database rule systems. In Proc. of SIGMOD, 1990.

59. D. A. Helder and S. Jamin. End-host multicast communication using switch-tree protocols.
In In Proceedings of the Workshop on Global and Peer-to-Peer Computing on Large Scale
Distributed Systems (GP2PC), 2002.

60. S. Jain, R. Mahajan, D. Wetherall, G. Borriello, and S. D. Gribble. Scalable self-organizing
overlays. technical report uw-cse 02-02-02. Technical report, University of Washington,
2002.

61. J. Jannotti, d. Gifford, K. Johnson, and M. Kaashoek. Overcast: Reliable multicasting with an
overlay network. In Proc. of the Fourth USENIX Symposium on Operating Systems Design
and Implementation, October 2000.

62. D. Karger, E. Lehman, T. Leighton, M. Levine, D. Lewin, and R. Panigrahy. Consis-
tent hashing and random trees: Distributed caching protocols for relieving hot spots on the
World Wide Web. Proceedings of the 29th Annual ACM Symposium on Theory of Comput-
ing(STOC), pages 654–663, May 1997.

63. J. Liebeherr and M. Nahas. Application-layer multicast with delaunay triangulations. In
Global Internet Symposium, IEEE Globecom 2001 Conference, 2001.

64. H. Liu and H. A. Jacobsen. Modeling uncertainties in publish/subscribe. In Proc. of Conf.
on Data Engineering, 2004.

65. Y. Liu and B. Plale. Survey of publish subscribe event systems. Technical report, Indiana
University, 2003.

66. C. Ma and J. Bacon. Cobea: A corba-based event architecture. In Proc. of the 4th USENIX
Conf. on O-O Tech. and Systems, pages 117–131, Apr. 1998.

67. G. S. Manku, M. Bawa, and P. Raghavan. Symphony: Distributed Hashing in a Small Wold.
In Proc. of the 4th USENIX Symposium on Internet Technologies and Systems (USITS’03),
2003.

68. L. Mathy, R. Canonico, and D. Hutchison. An overlay tree building control protocol. In 3rd
International Workshop Networked Group Communications, 2001.

69. P. Maymounkov and D. Mazires. Kademlia: A Peer-to-peer Information Systems Based
on the XOR Metric. In Proc. of the 1st International Workshop on Peer-to-Peer Systems
(IPTPS’02), 2002.

70. G. Muhl. Generic Constraints for Content-Based Publish/Subscribe. In Proceedings of the
6th International Conference on Cooperative Information Systems (CoopIS), 2001.

71. A. Muthitacharoen, R. Morris, T. M. Gil, and B. Chen. Ivy: A read/write peer-to-peer file
system. In Proc. of the Fifth USENIX Symposium on Operating Systems Design and Imple-
mentation, December 2002.

72. B. Oki, M. Pfluegel, A. Siegel, and D. Skeen. The information bus - an architecture for
extensive distributed systems. In Proceedings of the ACM Symposium on Operating Systems
Principles, December 1993.

73. L. Opyrchal, M. Astley, R. E. Strom J. Auerbach, G. Banavar, and D. C. Sturman. Exploiting
ip multicast in content-based publish- subscribe systems. In Proc. of Middleware, 2000.

74. D. Pendarakis, S. Shi, D. Verma, and M. Waldvogel. ALMI: An application level multicast
infrastructure. In Proc. of the 3rd USENIX Symposium on Internet Technologies and Systems
(USITS’01), March 2001.

75. G. Perng, C. Wang, and M. K. Reiter. Providing content-based services in a peer-to-peer
environment. In Proceedings of the third international workshop on distributed event-based
systems (DEBS), pages 74–79, May 2004.

Content-Based Publish/Subscribe Systems 1365

76. M. Petrovic, I. Burcea, and H. A. Jacobsen. S-ToPSS: Semantic Toronto publish/subscribe
system. In Proc. of Conf. on Very Large Data Bases, pages 1101–1104, 2003.

77. P. R. Pietzuch and J. Bacon. Peer-to-peer overlay broker networks in an event-based middle-
ware. In Proc. of Workshop on DEBS, 2003.

78. P. R. Pietzuch and J. M. Bacon. Hermes: A Distributed Event-Based Middleware Archi-
tecture. In Proceedings of 1st International Workshop on Distributed Event-Based Systems
(DEBS), pages 611–618, July 2002.

79. C. Plaxton, R. Rajaraman, and A. Richa. Accessing nearby copies of replicated objects in a
distributed environment. In Proc. of ACM SPAA, June 1997.

80. R. Preotiuc-Pietro, J. Pereira, F. Llirbat, F. Fabret, K. Ross, and D. Shasha. Publish/subscribe
on the web at extreme speed. In Proc. of ACM SIGMOD Conf. on Management of Data,
2000.

81. S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable content-
addressable network. In Proc. of ACM SIGCOMM’01, pages 329–350, 2001.

82. S. Ratnasamy, M. Handley, R. Karp, and S. Shenker. Application-level multicast using
content-addressable networks. In In Proceedings of NGC, 2001.

83. A. Riabov, Z. Liu, J. Wolf, P. Yu, and L. Zhang. Clustering Algorithms for content-based
publication-subscription systems. In Proc. of ICDCS, 2002.

84. V. Roca and A. El-Sayed. A host-based multicast(hbm) solution for group communications.
In 1st IEEE International Conference on Networking(ICN01), July 2001.

85. A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object location and routing for
large-scale peer-to-peer systems. In Proc. of the 18th IFIP/ACM International Conference
on Distributed Systems Platforms(Middleware), 2001.

86. A. Rowstron and P. Druschel. Storage management and caching in past, a large-scale per-
sistent peer-to-peer storage utility. In Proc. of the 18th ACM Symp. on Operating Systems
Principles (SOSP-18), October 2001.

87. A. Rowstron, P. Druschel, and M. Castro. Scribe: The design of a large-scale event notifica-
tion infrastructure. In Proc. of the 3th Int. Workshop on Networked Group Communications,
2001.

88. B. Segall and D. Arnold. Elvin has left the building: a publish/subscribe notification service
with quenching. In Proceedings of AUUG, pages 243–255, sep. 1997.

89. B. Segall, D. Arnold, J. Boot, M. Henderson, and T. Phelps. Content Based Routing with
Elvin4. In Proceedings of AUUG2K, June 2000.

90. R. Shah, R. Jain, and F. Anjum. Efficient Dissemination of Personalized Information Using
Content-Based Multicast. In Proceedings of IEEE Infocom, 2002.

91. H. Shen, G. Chen, and C. Xu. Cycloid: A scalable constant-degree p2p overlay network.
Journal of Performance Evaluation’s Special Issue on Peer-to-Peer Networks, (3):195–216,
2006.

92. A. Slominski, Y. Simmhan, A. L. Rossi, M. Farrellee, and D. Gannon. Xevents/xmessages:
Application events and messaging framework for grid. Technical report, Indiana University,
2001.

93. C. Snoeren, K. Conley, and D. K. Gifford. Mesh based content routing using XML. In Proc.
of SOSP, 2001.

94. I. Stoica, R. Morris, D. Liben-Nowell, M. F. Kaashoek, D. Karger, F. Dabek, and H. Balakr-
ishnan. Chord: A scalable peer-to-peer lookup protocol for Internet applications. IEEE/ACM
Trans. on Networking, August 2002.

95. R. Strom, G. Banavar, T. Ch, M. Kaplan, K. Miller, B. Mukherjee, D. Sturman, and M. Ward.
Gryphon: An information flow based approach to message brokering. In Proc. of the Inter-
national Symposium on Software Reliability Engineering, 1998.

96. D. Tam, R. Azimi, and H.-A. Jacobsen. Building content-based publish/subscribe systems
with distributed hash tables. In Proceedings of the international workshop on databases,
information systems and peer-to-peer computing, September 2003.

97. W. W. Terpstra, S. Behnel, L. Fiege, A. Zeidler, and A. P. Buchmann. A peer-to-peer ap-
proach to content-based publish/subscribe. In Proc. of Workshop on DEBS, 2005.

1366 Haiying Shen

98. Tibco software inc. tibco rendezvous faq, 2003. http://www.tibco.com/solutions/products/active
enterprise/rv/faq.jsp.

99. D. Tran, K. Hua, and T. Do. Zigzag: An efficient peer-to-peer scheme for media streaming.
In Proc. of IEEE Conference on Computer Communications (INFOCOM’03), 2003.

100. P. Triantafillou and I. Aekaterinidis. Content-based publish-subscribe over structured P2P
networks. In Proceedings of the third international workshop on distributed event-based
systems (DEBS), pages 104–109, May 2004.

101. P. Triantafillou and A. Economides. Subscription summaries for scalability and efficiency
in publish/subscribe. In Proc. of Workshop on Distributed Event-Based Systems, pages 619–
624, 2002.

102. P. Triantafillou and A. Economides. Subscription summarization: a new paradigm for effi-
cient publish/subscribe systems. In Proceedings of the 24th IEEE ICDCS, pages 562–571,
2004.

103. Y. Wang, L. Qiu, D. Achlioptas, G. Das, P. Larson, and H. J. Wang. Subscription partitioning
and routing in content-based publish/subscribe networks. In Proceedings 16th International
Symposium on DIStributed Computing (DISC), October 2002.

104. T. Wong, R. Katz, and S. McCanne. An evaluation of preference clustering in largescale
multicast applications. In Proc. of IEEE INFOCOM, March 2000.

105. X. Yang and Y. Zhu. A peer-to-peer approach to content-based publish/subscribe. In Pro-
ceedings of the 2nd international workshop on Distributed event-based systems table of con-
tents, pages 1–8, 2003.

106. X. Yang and Y. Zhu. A DHT-based Infrastructure for Content-based Publish/Subscribe Ser-
vices. In Proceedings of P2P, 2007.

107. X. Yang, Y. Zhu, and Y. Hu. A large-scale and decentralized infrastructure for content-based
publish/subscribe services. In Proceedings of the 36th International Conference on Parallel
Processing (ICPP), 2007.

108. X. Yang, Y. Zhu, and Y. Hu. Scalable content-based publish/subscribe services over struc-
tured peer-to-peer networks. In Proceedings of the 15th Euromicro International Conference
on Parallel, Distributed and Network-based Processing (PDP), 2007.

109. B. Zhang, S. Jamin, and L. Zhang. Host multicast: A framework for delivering multicast
to end users. In Proc. of IEEE Conference on Computer Communications (INFOCOM’02),
2002.

110. C. Zhang, A. Krishnamurthy, and O. Y. Wang. Brushwood: Distributed trees in peer-to-peer
systems. In Proceedings of the 4th International Workshop on Peer-to-Peer Systems (IPTPS),
pages 47–57, 2005.

111. C. Zhang, A. Krishnamurthy, O. Y. Wang, and J. P. Singh. Combining flexibility and scala-
bility in a peer-to-peer publish/subscribe system. In Proc. of Middleware, 2005.

112. R. Zhang and Y. C. Hu. HYPER: a hybrid approach to efficient content-based publish/-
subscribe. In Proceedings of international conference on distributed computing systems
(ICDCS), June 2005.

113. B. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry:an infrastructure for fault-tolerant wide-
area location and routing. Technical Report UCB/CSD-01-1141, Computer Science Division,
UC Berkeley, April 2001.

114. Y. Zhu and Y. Hu. Ferry: an P2P-based architecture for content-based publish/subscribe
services. IEEE Trans Parallel Distrib Syst, 18(5):672–685, 2007.

115. Y. Zhu and H. Shen. An efficient and scalable framework for content-based publish/subscribe
systems. Peer-to-Peer Networking and Applications, 1(1):3–17, March 2008.

116. S. Zhuang, B. Zhao, A. Joseph, R. Kotz, and J. Kubiatowicz. Bayeux: An architecture for
scalable and fault-tolerant wide-area data dissemination. In Proc. of the Eleventh Intl. Work-
shop on Network and Operating System Support for Digital Audio and Video (NOSSDAV),
2001.

Supporting Collaboration and Creativity
Through Mobile P2P Computing

Adam Wierzbicki, Anwitaman Datta, Łukasz Żaczek, and Krzysztof Rzadca

1 Introduction

Among many potential applications of mobile P2P systems, collaboration appli-
cations are among the most prominent. Examples of applications such as Groove
(although not intended for mobile networks), collaboration tools for disaster re-
covery (the WORKPAD project), and Skype’s collaboration extensions, all demon-
strate the potential of P2P collaborative applications. Yet, the development of
such applications for mobile P2P systems is still difficult because of the lack of
middleware.

The largest potential for mobile P2P applications today lies in the use of mo-
bile phone platforms, especially of phones for the 3G (UMTS) network, or general-
purpose platforms like Ultra-Mobile PCs (UMPCs). The recent increase in the ca-
pabilities of these devices has been dramatic. Today, it is possible to develop a va-
riety of applications for mobile phones or other devices that would share resources
of their users’, including information that is available to the particular users only.
However, in mobile P2P environments, not only is it impossible to used advanced

The work presented in this article is partially supported by A*Star SERC GRANT NO: 072 134
0055.

Adam Wierzbicki
Polish Japanese Institute of Information Technology, Warsaw, Poland,
e-mail: adamw@pjwstk.edu.pl

Anwitaman Datta
Nanyang Technological University, Nanyang Avenue, Singapore,
e-mail: anwitaman@ntu.edu.sg

Łukasz Żaczek
Polish Japanese Institute of Information Technology, Warsaw, Poland,
e-mail: lzaczek@pjwstk.edu.pl

Krzysztof Rzadca
NanyangTechnologicalUniversity, NanyangAvenue, Singapore,e-mail: krz@pjwstk.edu.pl

X. Shen et al. (eds.), Handbook of Peer-to-Peer Networking, 1367
DOI 10.1007/978-0-387-09751-0 50, © Springer Science+Business Media, LLC 2010

1368 Adam Wierzbicki, Anwitaman Datta et al.

middleware based on the Service Oriented Architecture, but it becomes difficult to
reuse the most developed platforms for P2P systems, such as JXTA or the Microsoft
P2P framework.

P2P applications for mobile devices can be developed today with the support of
the 3G network’s infrastructure. Such applications are not using a pure Peer-to-Peer
computing model, as they require specialized servers of the 3G infrastructure to per-
form user and resource location. Yet, the sharing of resources by such applications
can be done in a purely P2P manner. For 3G mobile phones, the use of SIP and the
IP Multimedia Subsystem (IMS) can enable the development of such hybrid P2P
applications. Petri Pöyhönen, Vice President of Nokia Networks, has chosen the
following words to describe the purpose of IMS: “we have no practical mechanism
to engage another application-rich terminal in a peer-to-peer session. (. . .) there
is immense value in sharing with peers. (. . .) We will be sharing real-time video
(see what I can see), an MP3-coded music stream, a whiteboard to present objects,
and we will be exchanging real-time data.” This quote indicates that like SIP, IMS
is seen as a middleware to develop P2P applications. Yet, a fully distributed P2P
application would be independent of the operator’s IMS infrastructure, and would
consequently be able to operate also in an environment where the UMTS network is
not available. The challenge therefore is not just in the support of P2P services in a
mobile environment, but rather to support them in a heterogeneous mobile and fixed
environment, enabling collaborative work for nomadic teams with or without infras-
tructure support, preferably without significant disruption of services or decrease of
service capabilities.

The developing P2PSIP standard is a candidate for supporting such P2P applica-
tions for mobile devices. Pure P2P applications that are used for collaboration can
be modeled using three layers: the application layer which implements application-
specific logic, the collaboration middleware layer that provides several supporting
functions for the application layer and may use P2PSIP, and the P2P overlay layer
that implements the most basic function required by the collaboration middleware
layer, including reliability and security functions.

Assuming such a layered decomposition, the question remains what are the cru-
cial services that should be included in a collaboration middleware that would sup-
port a wide range of collaborative applications? A second question could be: is the
decomposition between the collaboration middleware and P2P overlay layers? This
decomposition is, after all, purely logical, since all of the logic would be imple-
mented in the application layer of the OSI protocol stack. In this chapter, we shall
demonstrate that a vertical integration of the two layers could result in several ad-
vantages. These advantages are mostly due to the fact that the collaboration middle-
ware layer can supply the P2P overlay layer with important information: the implicit
social network created by mining the metadata and statistics produced by the col-
laboration applications (or by the function calls of the collaborative middleware).
Using social network information in routing and network management can not only
enhance the performance of routing in mobile P2P environments (particularly in De-
lay Tolerant Networks), but also allows to satisfy additional constraints on routing

Supporting Collaboration and Creativity Through Mobile P2P Computing 1369

(such as trust requirements). Other P2P overlay functions, such as publish-subscribe
operations, can also be supported by social network information.

The first contribution of this chapter lies in a systematic design of a middleware
for P2P collaborative application in a heterogeneous, mobile/fixed environment. We
show that the SIP protocol could be an important substrate in the implementation of
such a middleware, and analyze which middleware functions could be supported
by SIP (and which must be implemented separately). We give a comprehensive
overview of the emerging standard of P2PSIP. Another contribution bases on the
concept of vertical integration of the collaborative middleware and P2P overlay lay-
ers. We review related work that proposed solutions that were vertically integrated
to some extent; then, we describe a new concept of SocialCircle, a P2P overlay that
is much more closely integrated with the implicit social network provided by the
collaboration middleware layer. We give preliminary results of experiments with a
prototype of SocialCircle.

The chapter is organized as follows: the first section discusses the functionality
of the collaboration middleware, with an emphasis on the most challenging perfor-
mance and security problems that can require new research. This section also de-
scribes the information that can be provided by the collaboration middleware to the
underlying P2P overlay layer for cross-layer optimization. The section includes an
overview of related work on P2P middleware for mobile collaborative applications.

In the next section, we describe protocols and frameworks that can be used to
implement the desired collaboration middleware functions: SIP and P2PSIP. The
section discusses the current state-of-the-art in this area, identifying the most diffi-
cult research problems.

The last section concerns how the P2P overlay layer can use information pro-
vided by a vertically integrated collaboration middleware layer in order to optimize
its operation, and how the overlay can be specially designed to better support collab-
orative applications. This section gives an overview of some recent relevant devel-
opments the area, and indicating the way ahead and open research issues to realize
a P2P infrastructure tailor-made to support collaborative work in a mobile environ-
ment, and also using meta-information from the upper layers in order to make the
P2P infrastructure more resilient and efficient.

2 Applications for Collaboration and Creativity Support

Research and development on Computer Supported Collaborative Work (CSCW)
is an old area (there exist mature, commercial technologies such as LotusNotes
and Microsoft Outlook) that has recently accelerated due to the use of the Internet.
Wikipedia, SourceForge, CVS and SVN, iGoogle are examples of successful appli-
cations of Internet-based CSCW. Use of the P2P computing model in this area is yet
in its infancy. Still, applications such as Groove, Skype and many others show high
potential. In 2005, the first International Workshop on Collaborative Peer-to-Peer

1370 Adam Wierzbicki, Anwitaman Datta et al.

Information Systems (COPS 2005) has taken place in Linkoping, Sweden. Since
then, the workshop is held yearly.

Creativity support is a younger research area that has been developed mostly
by psychologists and management scientists. Computer science has been applied
to creativity support since the beginning of the XXI-st century. The first applica-
tions, like Oasen, Serious Creativity, Mindmanager, Maxthink, Axon, Groupsys-
tems&Groupintelligence, focus on using knowledge management for idea genera-
tion and recording, as well as on enhancing creativity through computer-supported
collaboration [17, 19, 33]. Many of these applications apply advanced visualiza-
tion and human-computer interaction technology, and do not have a collaborative
character, but focus on the individual creative process. On the other hand, creativ-
ity support is strongly connected to CSCW, since it requires support for debating,
brainstorming, and group decision making.

A step towards the development of Peer-to-peer groupware has been the technol-
ogy of Groove Networks [1]. It concentrates on providing support for collaboration
of a team on a project. Groove offers workspaces for aggregation of documents,
messages, and application-specific data, that are synchronized among all peers in a
workspace; Groove also offers chat sessions, notepads, a calendar, and a file archive.
Groove also has a comprehensive security model. Yet, Groove does not offer knowl-
edge management, semantic social networks and functions for creativity support;
also, while it uses the P2P computing model, it has not been designed for a mobile
environment. Groove users must have access to an infrastructure of “relay servers”,
which means that the system is not well suited to nomadic use.

There has not been much research on collaboration and creativity support on
mobile devices. Shark [32] supports management, synchronization and exchange of
knowledge in mobile user groups. Shark uses a semantic meta-data hierarchy for
routing of messages in its P2P overlay network. However, Shark does not posses
features that support creative processes; Shark is also not suitable for teamwork.
The reason why Shark does not have these capabilities is that it has been designed
for a low-bandwidth mobile ad-hoc network (Bluetooth).

Two interesting examples of creativity support software that could be ported to
the P2P model and, in the process, extended with collaboration capabilities, are
Freemind and JabRef. Freemind is an open-source application that enables visual
mindmapping. JabRef enables the management of bibliographic references using
the BibTex standard, as well as searches and automatic acquisition from popular
Web-based bibliographic databases such as CiteSeer or DBLP. Both FreeMind and
JabRef are really useful for support of the individual creative process; the applica-
tions are opensource (written in Java), and could be used on mobile devices (because
of low resource requirements). Yet, both applications would benefit from an exten-
sion that would enable collaborative work. FreeMind could enable co-authoring of
mindmaps, and JabRef could support sharing, searching and recommendation of ref-
erences. Both of these functions could be simply supported through a central server
(like the popular service of Bibsonomy), but supporting them in a heterogeneous,
fixed/mobile environment for nomadic teams of users requires the use of the P2P

Supporting Collaboration and Creativity Through Mobile P2P Computing 1371

computing model. The development of both extensions is underway in the mTeam
project [3].

We believe that the development of applications for collaboration and creativity
support on mobile P2P systems is still difficult because of the lack of middleware.
While recent advances in technology of mobile devices and wireless networks en-
able the use of such technology for collaboration and creativity support, little is
known about supporting such applications without centralized servers. For this rea-
son, development of P2P middleware capable of working on mobile devices is a
crucial technological and research challenge.

3 Collaboration Middleware Functionality

3.1 General-Purpose Mobile P2P Middleware

Several research and development projects have proposed general-purpose middle-
ware for developing arbitrary applications on mobile devices using the P2P model.
Most of these efforts aim to provide a common framework for the rapid development
of applications.

Mobile Chedar [5] is an extension to the Chedar framework that provides an
API to application developers. Mobile Chedar uses Bluetooth and J2ME, and uses
a superpeer model. A special gateway node (a PC with fixed Internet connectivity)
manages the other Mobile Chedar nodes and provides Internet access.

The oldest and best-known open-source P2P middleware is JXTA [25]. JXME [23]
is a lightweight implementation of JXTA for mobile devices using the J2ME plat-
form. JXME is aimed at devices that are too resource-constrained in order to support
the full JXTA protocol; rather, JXME relies on a relay proxy to provide full JXTA
functionality.

JMobiPeer [7] is a middleware for J2ME that offers interoperability with JXTA.
It provides support for discovery and group management.

Proem [24] aims to support collaborative applications, but is in fact a general-
purpose P2P middleware for mobile devices in an ad-hoc network. Proem is imple-
mented in Java Standard Edition, and can therefore be run only on powerful PDAs
or UMPCs.

MOBY [20] enables P2P exchange of services and data, dynamic service location
and client mapping to achieve higher performance and reliability. MOBY relies on
JINI (which is not compatible with J2ME).

While all of the general-purpose middleware discussed above can be used to sup-
port collaborative applications, these proposals do not address the specific problems
of collaboration and creativity support. Another drawback of the proposed generic
approaches is that most of them are tightly integrated with a specific P2P overlay
network. This makes it impossible to port the generic middleware to various types of

1372 Adam Wierzbicki, Anwitaman Datta et al.

overlay networks. Only JXTA supports, to some extent, different overlay variants,
although it mostly relies on a hybrid superpeer architecture.

In this part of the chapter, we shall describe functional requirements for a middle-
ware that would be dedicated to the support of collaborative work. We shall assume
that these functions are independent of the specific P2P overlay network, although
their operation could influence how the overlay works through vertical integration.
Later, we shall discuss how elements of this middleware could be implemented.

Fig. 1 Vertically integrated collaboration middleware

3.2 Overview of Middleware Functions

The purpose of developing middleware is the support of application development.
In the process of middleware design, it is therefore necessary to identify and de-
scribe functionality that should be useful for supported applications – in our case,
collaborative applications. We have based the functions presented below on a re-
view of the functionality of collaborative applications. It is usually hard to become
convinced that the chosen middleware functions are indeed comprehensive, until the
middleware has been used to create several applications. Therefore, a larger set of
functions must be chosen that can support a variety of applications. However, at the
design stage it is possible to reduce certain middleware functions to others, and to
choose the most generic versions of required functionality.

An important problem is that the chosen functions of a middleware should sat-
isfy several requirements of efficiency or security. For the purpose of vertically in-
tegrated middleware, it also becomes significant what information can be obtained
from middleware function execution for the purpose of optimizing lower layers and
how this information can be stored, updated, and communicated.

An abstract design of the collaborative middleware is presented on Fig. 1. The
interface between the P2P Overlay and the Collaboration Middleware layers should
be generic and will be discussed in the next sections. Functions of the Collaboration
Middleware include:

Supporting Collaboration and Creativity Through Mobile P2P Computing 1373

3.2.1 Session Management

This function enables the initiating, modifying, and ending of sessions of multiple
users. Session management requires discovery of the participants, and therefore the
use of the P2P overlay layer routing function. A session describes the communicated
media, including information about the encoding and transport method, between all
participants of the session (each participant can receive a different set of media
streams). Therefore, session establishment and modification requires signaling.

3.2.2 Conference Management

This function enables the establishing and updating of conference state. The state
can include the conference membership. Also, the conference state can include floor
control (allowing only one user to speak at a time), or another form of control (for
example, moderation). Conferences can have several modes of establishment: for
example, dial-out mode, where a single user invites all other conference participants,
or join-in mode, were new users join the conference whenever they want.

The conference management function requires use of the event management
function (an event is that a user has joined a conference). The conference itself uses
the P2P overlay layer multicasting function for the delivery of conference media.

The session and conference management functions can be the source of usage
statistics that can determine the level of acquaintance between persons to be used
in a social network. Each user could maintain these statistics about his own com-
munication, enabling the creation of an egocentric social network; on request, users
could share their egocentric networks with other, authorized or trusted users. In this
way, a global view of the social network could be constructed by trusted superpeers.

3.2.3 Data Synchronization

Data used by arbitrary other services, or by the application layer, will need to be
synchronized among a group of authorized devices (that can belong to a single or
multiple users). This synchronization can have several models – from a strong syn-
chronization (all changes are propagated to all devices, WYSIWIS – What You See
Is What I See), to a relaxed synchronization that allows different versions of the data
to exist at the same time on different devices (concurrent work). Two special cases
of data synchronization are: document synchronization and workspace synchroniza-
tion.

3.2.4 Data Sharing

Unlike in data synchronization were the data is intended to produce a single version
from all participants (in relaxed synchronization, data could have different versions,

1374 Adam Wierzbicki, Anwitaman Datta et al.

but the intention is to produce a single version in the end), some forms of data should
be shared only with some (authorized and interested) users and are not intended to
produce a single version. Furthermore, the data itself could be controlled by an
authorization policy that governs their distribution. Using this function, a user of a
collaborative application can make certain information available to other, interested
users who can copy and distribute this information without needing to synchronize
it with the original version.

3.2.5 Presence

State and profiles of users in the system should be made available to other, autho-
rized users. The user (or device) profile can include available services or resources.
Overall, the presence service would be responsible for the maintenance of all avail-
able context information about the user, including location information (if avail-
able). For example, consider a context that describes what kind of device is currently
in use by the participant; this kind of information would be part of the service pro-
file maintained by the presence service, and could be obtained automatically. The
presence service requires the use of the overlay layer publish-subscribe service.

Presence information can be the source of important statistics. Users who have
a high availability (are nearly always present) are good candidates for superpeers,
and can be considered more reliable for various other functions (network manage-
ment, storage). The availability statistics can be maintained by the peer who stores
presence information about another peer in the overlay and communicated to trusted
superpeers on demand.

3.2.6 Workspace Awareness

When users form a group that works in a shared workspace (or on one docu-
ment), other users must be aware (to the extent possible) of what the others are
doing, in order to enable coordination and planning of work (for example, who is
currently editing a certain document). This function is a specialized form of data
synchronization.

3.2.7 Group Management

Group management is the function of creating, modifying, deleting of groups of
users, including the possibility of establishing hierarchical groups. The group can
be working in a shared workspace. Groups can be of many kinds: they can be open
(anyone can join), closed (only the group owner can join new members).

3.2.8 Access Control

This function is crucial for the enforcement of authorization policies in a collabo-
rative environment that allows users to share information. The policies can be in-
tended to protect sensitive information, a user's privacy, or business policies. An

Supporting Collaboration and Creativity Through Mobile P2P Computing 1375

access control method for the collaborative application would have to support not
only the first access to shared information, but all subsequent sharing of the provided
information. Access control can be based on various models, but all of them require
the use of an authentication service that should be provided by the P2P overlay
layer.

3.2.9 Trust Management

The function of trust management is required in open environments, were the users
must depend on the actions of others and are uncertain about the outcome of such
interactions. The purpose of trust management is decision support in such circum-
stances. For example, consider dynamic teams that include participants who do not
know each other. In this case, participants can rely on information from trust man-
agement for making decisions that require dependence on unknown team members.
In return, after gaining knowledge about the new team members, participants will
give feedback to the trust management system that can be used to update trust or
distrust. Note that trust or distrust need to be maintained in a context that can, in the
simplest form, be represented by a value out of a finite set of contexts.

3.2.10 Event Management

This service allows the subscription to events, notification of subscribed users about
events, and publishing of events. It uses the P2P overlay layer publish-subscribe
service. In particular, the event management service should also include an ordering
of events (especially important for synchronization).

3.2.11 End-to-End Security Functions

While overlays may provide some hop-by-hop security functions, these may not be
sufficient for the purposes of the collaborative application. For that reason, end-to-
end confidentiality should be provided by the middleware. In addition, authentica-
tion between the communicating peers (session participants) is required.

3.3 Required P2P Overlay Functions

3.3.1 Routing

Routing of information to a destination (a key that can be a user or service identifier).

3.3.2 Publish-Subscribe

This service allows the subscription to an arbitrary topic, notification of subscribed
users about changes to the topic, and publishing changes to a topic.

1376 Adam Wierzbicki, Anwitaman Datta et al.

3.3.3 Multicast

A special case of the publish-subscribe service where a user subscribes to a group.
Notifications are any messages from the group, and publishing changes means send-
ing a message.

3.3.4 Overlay Adaptation Functions

These functions enable vertical integration by receiving data from the collaboration
middleware layer and adapting overlay structure using the received information.
Mostly, this means adapting the local view of the social network that is used to
support the P2P overlay network.

3.4 Research Issues Related to Middleware Function Design

The proposed middleware functions should satisfy strong requirements of perfor-
mance, scalability and security. Furthermore, in a mobile P2P environment their
design will have to differ from designs used in fixed P2P networks. These consid-
erations point to the conclusion that new research issues will need to be solved in
the middleware design and implementation. It is not the purpose of this chapter to
present solutions of the described problems, but merely to identify the most difficult
and important issues for future research.

The session management service, and therefore the routing service, should have
a low call setup latency. This is especially difficult in a mobile P2P environment.
Therefore, this requirement poses new research challenges; a special kind of routing
may be required for session setup messages. Another requirement is the reliability of
session management; how often would a session establishment fail because routing
failures due to churn?

The event management and presence service, and consequently the overlay
publish-subscribe service will be required to optimize the load on the notifier, net-
work traffic for notification, and delay of notification delivery. In addition, the re-
quirement of delay tolerance or reliability can be imposed on these services; for
example, if a peer departs from the network, it may need to receive all missed noti-
fications after it joins the network again.

In a mobile P2P environment, the data synchronization service would have to
operate in the concurrent work mode. A question arises how this service should
implement a distributed transaction that would produce a single version out of the
existing, concurrent versions. This may be achieved through a pre-commit stage (a
“code freeze”), but the duration of this pre-commit stage during high churn and long
peer disconnections may need to be high. Also, the data synchronization function
may need to implement work scheduling decisions that have been made by the team,
allowing only certain changes to be made by particular users.

Supporting Collaboration and Creativity Through Mobile P2P Computing 1377

The data sharing function bases on the information delivery mechanism of the
P2P network. The multicast or publish-subscribe service may be used for that pur-
pose. These services would have to satisfy efficiency and reliability requirements.
Also, the associated function of access control would have ensure that the data is
sharing in agreement with a specified policy. The fundamental problem here is that
when a user shares data with another, authorized user, the receiving user could share
the data with unauthorized users. How to control this second (and further) degree of
sharing is a difficult research problem.

The trust management service will need to use some expression of trust context,
which may be based on a semantic description of the problem that the collaboration
is trying to solve. Also, the kind of feedback information used by the trust manage-
ment system, and the algorithms used to calculate trust or distrust measures are the
subject of ongoing research. For example, the feedback information could be based
on edit history or on an explicit evaluation of team partners.

4 SIP and P2PSIP

The Session Initiation Protocol (SIP) and its extensions already implement a number
of the functions required by the collaboration middleware (although not all). More-
over, SIP is implemented and available to programmers on most modern mobile
phones, and SIP is specially treated by many firewalls and NATs. Since many P2P
protocols today are implemented on top of an application layer protocol (such as
HTTP), these observations can lead to the conclusion that the collaboration middle-
ware for mobile P2P environments should be implemented using SIP. The question
remains how, and to what extent, SIP can be used to implement all required middle-
ware services.

In this section, SIP is briefly introduced (with a focus on its relevant services).
In the next part of the section we discuss how the dependence on server infras-
tructure can be removed through the use of P2PSIP. Research and standardization
of this extension is continually advancing. Yet, for the purpose of a collaboration
middleware, all required middleware services would have to be implemented in a
distributed, P2P environment. This requires a new design effort, and raises issues of
security and performance.

4.1 The Session Initiation Protocol

The Session Initiation Protocol (SIP) [30] is an application-layer control (signaling)
protocol for creating, modifying and terminating sessions with one or more partic-
ipants. SIP sessions can be used for any kind of application data, and SIP does not
standardize or attempt to control session contents. Thus, the first required service
of the collaboration middleware that can be implemented using SIP is the Session
Management service.

1378 Adam Wierzbicki, Anwitaman Datta et al.

Fig. 2 SIP signaling using proxy and registrar servers

SIP introduces its own addressing of users (or services), with the intension of
achieving independence of the user's location in the network (IP address). More-
over, SIP session management services allow to search for users at several locations
during session initiation, and to specify redirection policies that can depend on the
user's current state and will redirect a session to another location.

SIP can use either TCP or UDP for message transport; due to the possibility of
using UDP, acknowledgement messages are required and a three-way handshake is
used during session initiation. SIP uses an infrastructure of servers for the resolution
of its addresses and for the control of the session. SIP servers can be of four kinds
(the proposed distinctions are logical, and server roles can be combined): registrar
servers, proxy server, redirect servers and location servers. Another type of SIP
server is a gateway proxy server. Proxy servers can be thought of as analogous to
local DNS servers that take over responsibility for SIP address resolution. Proxies
can also work as gateways to other networks or domains, and SIP signaling can
be forwarded by arbitrary chains of proxies. Proxy servers can also implement a
variety of services, such as lists of missed calls, call forwarding or screening. Proxy
servers may also implement call admission control and report usage. For the purpose
of some service, proxy servers may operate in a stateful model and maintain state
information for the duration of session initiation (not during the session).

The registrar server is analogous to an authoritative DNS server that contains the
definite information required for SIP address resolution. A SIP user must register
with a registrar server in order to be able to receive sessions.

Figure 2 shows the SIP signaling flow between two user agents, two proxy servers
and a registrar server. Note that the user agents exchange signaling messages only

Supporting Collaboration and Creativity Through Mobile P2P Computing 1379

1. INVITE
2. 100 Trying

5. ACK

3. 180 Ringing

4. 200 OK

6. Media
Alice@A.net Bob@B.net7. Bye

8. 200 OK

Fig. 3 SIP message flow for simple session

Table 1 SIP methods

Basic methods Extended methods

INVITE INFO
ACK NOTIFY
BYE PRACK
REGISTER PUBLISH
OPTIONS SUBSCRIBE

UPDATE
MESSAGE

with their local proxies. Note also that when the roles of a proxy server, registrar
server and location server are distinct, the proxy server does not signal the registrar
server directly using SIP; rather, both of them interact with the location server using
a non-standardized protocol. The signaling flow is simplified when proxy, registrar
and location servers are integrated.

The SIP protocol is a text-based protocol that resembles HTTP. It can use several
methods, which form two sets. Table 1 summarizes the basic and extended methods
of SIP. SIP messages use mandatory headers that resemble mail messages, and can
include a MIME body and Session Description Protocol (SDP) information [18]
(Fig. 4).

Figure 3 shows a basic SIP message flow during a simple session initiation. Note
that the response codes of message exchanges resemble HTTP. Figure 2 shows the
signaling message flow during a SIP registration procedure.

For the implementation of the Session Management service of the collaborative
middleware, SIP provides comprehensive negotiation functions that allow users to
agree on received media formats and transport, as well as updating session state
by adding or removing participants, or changing their session parameters. Such

1380 Adam Wierzbicki, Anwitaman Datta et al.

Fig. 4 SIP registration

Fig. 5 SIP presence service

functionality is essential for session management and using SIP seems the easiest
way to implement a comprehensive Session Management service.

SIP has been extended with several functions that allow to implement various
services of the collaboration middleware. To a limited extent, the Conference Con-
trol service can be implemented using SIP; however, SIP does not have features for
floor control in a conference. The Data Sharing service can also be partially imple-
mented, since SIP has an extension for file sharing (SIPPING) [15]. SIP has further
extensions that support challenge-response authentication based on a shared secret
(although a SIP proxy can also implement RADIUS authentication).

SIP provides the most comprehensive support for the Presence and Event No-
tification services [27]. Figure 5 shows the SIP message flow that implements a
presence services. Note that the implementation is based on a server and uses three
new SIP methods: SUBSCRIBE that allows an agent to indicate that it is interested
in receiving information about an event (in this case, the presence of another user),
PUBLISH that is used to inform the server about new information, and NOTIFY
that is used by the server to notify a client. The figure is simplified because it does
not show a notification message that automatically follows the response to the SUB-
SCRIBE message.

Presence in SIP can be extended to include information about changes in buddy
lists, by adding authorization policies that control who can receive presence

Supporting Collaboration and Creativity Through Mobile P2P Computing 1381

information (using the XCAP standard) [28]. Another extension concerns presence
data; using the Presence Information Data Format (PIDF) or the Rich Presence Ex-
tensions to PIDF (RPID) [31, 36] it is possible to express detailed status of users,
using information that could be automatically extracted from calendars. PIDF and
RPID are XML dialects. The SIP extensions for presence and instant messaging [11]
are developed by the SIMPLE IETF working group [29].

Fig. 6 The SIP event notification

Presence is a special case of SIP's event notification framework that is shown
on Fig. 6. SIP allows the subscription to arbitrary events, and the notification about
these events will be sent to all subscribed users. This design of the event notification
service can create severe performance and scalability problems.

4.2 P2PSIP

SIP can be considered today as a stable and mature technology that has seen wide
adoption in Internet-based application. Additionally, the choice of SIP as a signal-
ing protocol for IMS and its consequent implementation by 3G mobile phones has
further increased the importance of SIP as a signaling protocol. In the previous sec-
tions, we have shown how SIP can be used to implement several services of the
collaboration middleware. Additionally, IMS is a powerful middleware that facili-
tates easier development of many types of applications, although it is not specially
designed for collaboration services. On the other hand, applications developed us-
ing IMS will depend on the operator’s 3G network. In an environment that does not
have access to the 3G network, IMS applications cannot function.

1382 Adam Wierzbicki, Anwitaman Datta et al.

The developing P2PSIP standard aims to enable the use of SIP without the de-
pendence on a server infrastructure. The first step in this effort is to distribute the
SIP registrar servers using a P2P overlay. Following this, other SIP functions such
as publish-subscribe for event management and presence can also be distributed,
aiming to create a P2P framework that would support full SIP functionality (a kind
of P2P-IMS). The full set of requirements for a P2PSIP system would include [34]:

1. Zero configuration. The system should be able to automatically configure it-
self, e.g., detecting NAT and firewall settings, discovering neighboring peers and
performing initial registration.

2. Heterogeneous nodes: It should be able to adapt to available resources and dis-
tinguish between peers with different capacity and availability constraints. This
favors the distinction between nodes and super-nodes as in Kazaa.

3. Efficient lookup: The system should be able to execute a lookup of a SIP iden-
tifier efficiently, which can be achieved using a structured P2P network.

4. Advanced services: The system should support advanced telephony services
such as offline voice messaging, multi-party conferencing, call transfer and call
forwarding as well as advanced Internet services such as presence and instant
messaging. For the support of collaboration, the system should support all col-
laboration middleware functions described in the first section.

5. Interoperability: It should easily integrate with existing protocols and IP tele-
phony infrastructure.

The conceptual model of a P2PSIP system [8] consists of peers that are coupled
with SIP agents such as user agents, proxies, redirect or gateway servers. In other
words, it is possible to think of peers as executing a separate functionality but being
coupled with ordinary SIP entities. All peers should be able to participate in the P2P
overlay network using the P2PSIP peer protocol. However, there may exist SIP user
agents that wish to use the P2PSIP system, but are not coupled with a peer capable
of participating in the overlay. These peers can use the P2PSIP client protocol to
contact proxy peers that participate in the overlay. Finally, it is also possible for a
SIP agent that does not understand the P2PSIP protocols to communicate with the
P2PSIP system directly using SIP.

A high-level overview of the steps that a peer has to carry out in a P2PSIP system
is as follows:

1. In order to join an existing overlay, the peer needs to locate a P2PSIP peer that
already participates in the overlay, which is referred to as a bootstrap node. IP
addresses of bootstrap nodes can be obtained in many ways: from a cached list,
using multicast discovery, using manual configuration or public bootstrap nodes.

2. After bootstrapping, the peer should authenticate itself, traverse NAT and fire-
walls, and register itself in the overlay (or register as a P2PSIP client to some
P2PSIP proxy peer). Authentication methods or NAT traversal are not defined
yet.

3. After joining, the peer uses the P2PSIP peer protocol to search for other peers
or resources, share own resources or insert new resources in the system. Re-
sources can be SIP identifier-IP address mappings, context information, meta-

Supporting Collaboration and Creativity Through Mobile P2P Computing 1383

data, or files. There are several candidates for a P2PSIP peer protocol, all of
them are structured P2P overlay networks.

4. After P2PSIP peers discover other peers, they can initiate SIP sessions or send
other SIP messages independently of the P2PSIP peer protocol, but possibly us-
ing resources of the P2PSIP system such as proxy or gateway peers (also needed
for NAT traversal).

At a first glance, the task of distributing the functions of SIP registrar servers that
implement a simple directory function seems easy. Structured P2P overlays are ca-
pable of providing directory functions. Yet, there is to date no standard of a P2P
overlay. Also, P2P traffic often struggles to pass NATs and firewalls, often hiding
using another application layer protocol. These considerations raise the first ques-
tion concerning the design of P2PSIP. Should P2PSIP use a P2P overlay as an ex-
ternal component (requiring SIP clients to implement another protocol and raising
issues of choosing the best overlay and of firewall traversal), or can a P2P overlay
be designed to form part of SIP? In other words, can a P2P overlay be created and
maintained using the SIP protocol itself?

For these reasons, one of the first proposals of a P2PSIP system advocated the use
of the SIP protocol as a signaling protocol for overlay setup and management [8, 9].
This proposal specified the mechanism for user registration and location in a P2PSIP
overlay. The overlay was created using a modified SIP REGISTER message that
could be used to join the overlay and to update overlay neighbors. The proposed ap-
proach was implemented using Chord as the P2PSIP overlay. Special SIP identifiers
were used to identify peer nodes (a SIP identifier included a Chord node identifier
and could specify whether the nodes’ IP address was known).

4.2.1 P2PP

The other approach to developing a P2PSIP system requires the use of an additional
protocol for overlay management. A current proposal of the P2PSIP working group
advocates the development of a new standard for a general-purpose protocol for
P2P overlay network management that would also offer the basic services required
by P2PSIP [6]. This protocol, called simply the P2P Protocol (P2PP), is independent
of the overlay routing and allows the construction of arbitrary overlays (structured
or unstructured).

Figure 7 shows the reference architecture of P2PP [6]. The protocol provides an
API to the SIP user agent or other applications. The API consists of three sepa-
rate interfaces: the service interface provides functions to join or leave the overlay,
functions for routing table maintenance and updates. The data interface provides
functions to insert, lookup or delete an object by its key. The diagnostic interface
provides functions for gathering statistics, like response time or relay bandwidth of
a peer.

The P2PP protocol does not specify how the routing and network management
of the overlay works. In fact, it is possible for the overlay to be structured or un-
structured, and for the structured overlay to use any routing scheme. However, this

1384 Adam Wierzbicki, Anwitaman Datta et al.

Fig. 7 P2PP reference architecture

does not imply that P2PP specifies just the interface part of the overlay. The proto-
col specifies how peers maintain state. The P2PP node state contains the following
information:

• The P2P overlay routing algorithm (can be any)
• Overlay ID
• Hash algorithm (if any)
• Routing type (iterative or recursive)
• Routing table (table of other peers in overlay)
• Neighbor table (table of immediate neighbors)
• Both tables include for any peer: Peer ID, IP address, RTT, Uptime
• Number of neighbors (sum of routing and neighbor table sizes)
• Resource table (objects the peer is responsible for)
• Replicated resource table (replicated objects)

Overlay routing can be iterative or recursive, which needs to be decided at the time
of overlay creation. Peers can issue parallel iterative routing requests; then, one
copy of the request needs to be designated as primary. Requests use TTLs. The
protocol also supports request transactions, which can add reliability to requests if
UDP is used for transport. Reliability is provided as a hop-by-hop mechanism. An
interesting feature of P2PP is that it can combine the use of TCP and UDP within
one overlay. With recursive routing, TCP and UDP can be combined using hop-by-
hop reliability for UDP.

P2PP supports the use of security using hop-by-hop TLS or DTLS. An authen-
tication server can be used that issues certificates to users. The P2PP specification
describes adversary models and the protocol is protected against some routing and
storage threats, as well as replay attacks.

Supporting Collaboration and Creativity Through Mobile P2P Computing 1385

P2PP is a candidate for the generic interface between the Collaboration Mid-
dleware and P2P Overlay layers, described on Fig. 1. The reason for this choice
is that P2PP is by itself generic, allowing the implementation of arbitrary over-
lays while keeping the same protocol and service interfaces. However, P2PP does
not support all of the functions of the P2P Overlay layer, described in the previ-
ous section. In particular, P2PP does not support publish-subscribe or multicast. Of
course, the P2PP interfaces do not include overlay adaptation functions. Research
on an adaptation of P2PP to support all of the required functions is continuing in
the mTeam project [3]. The P2PP interface has already been extended to support
publish-subscribe and multicast – a proposal of revision of the standard is forth-
coming.

4.3 A Case Study: SharedMind

SharedMind is a collaborative version of FreeMind [2], the most popular open-
source mind mapping software. Our motivation is to enable the group to work on a
shared mind map. Each member of the group can interactively add, delete or mod-
ify nodes in the mind map. These modifications are seen almost in real time by
the whole group. If the network connection between groups’ members is broken,
the members can continue to work independently (or in subgroups, that have con-
nectivity). After the connection is restored, the files are merged. SharedMind is an
ongoing work that prototypes and tests the design assumptions of the collaborative
middleware.

The original FreeMind follows a standard, model-view-controller architecture.
The mind map is represented internally as a tree. Nodes of the tree correspond to
the nodes of the mind-map. The text of a node and its style information are stored
as properties of the node. The persistent version of the tree is stored as an xml
file. User’s modifications (such as adding a node, editing node’s description or its
attributes) are represented as “commands”. These commands are executed on the
model by the controller.

In our implementation, each member of the group has a local copy of the shared
data (the mind map edited by the group). The main issue in SharedMind is to provide
seamless data synchronization of changes made to local copies. Other functions de-
fined in Section 3.2, especially those related to the security and group management,
will be implemented by the middleware and do not require substantial modifica-
tions to the FreeMind code. We use P2PP as a generic interface to a P2P overlay.
All the members subscribe to a common publish-subscribe topic. Whenever one of
the members modify her local copy, a message containing the description of the
modification (an xml string containing the marshalled action) is published on (sent
to) this shared topic. The middleware propagates the modifications, by the standard
subscribe mechanism, to the other members of the group. A member, after having
received such a remote modification, unmarshalls it, checks for possible conflicts
and, in case there are no, applies it on her local copy.

1386 Adam Wierzbicki, Anwitaman Datta et al.

In this collaborative editing scenario, two main types of conflicts may occur.
Firstly, a remote modification may concern a node that is currently edited by the
local user. Secondly, modifications may be concurrent. In this case, local editing
has finished and the notification message is sent, but the message has not reached
the author of the remote modification, before she sent her message. Both types of
conflicts are easy to detect. The first one by a simple state variable that stores the
currently edited node. The second one, by using logical vector clocks for messages.
However, both conflicts have to be resolved by the user, on the level of the UI.

We also plan to support delay-tolerant editing, in which group members continue
to work on shared data, even if they do not have any network connection. Delay-
tolerant editing relies on presence (provided by the middleware), versioning and
checkpointing (specific to FreeMind’s data structures, thus implemented over Free-
Mind’s code). The group chooses a random number (using a bully selection algo-
rithm) that becomes the current version number of the data. The presence function of
the collaboration middleware periodically checks whether all the group’s members
are reachable. Group composition changes when a member disconnects, or when
a persistent network failure divides the group into subgroups. In such event, each
member locally reverts to the last common version of the shared data (at the mo-
ment of the last successful presence protocol invocation), and checkpoints this ver-
sion with the previously elected version number. Afterwards, a member re-applies
the modifications that followed and continues to work with the reachable part of
the group (electing the new version number). After the connection is restored, the
re-united group should produce a common version of the data from the modifica-
tions done in each subgroup. The presence mechanism notifies group’s members.
Then, each subgroup elects a member responsible for merging the data into a one,
common version (a merger). Mergers exchange lists of version numbers. Then, each
merger determines the last common version number (the last number that appears on
both lists). Each merger produces a list of modifications its subgroup made over the
common version, using the previously checkpointed revision. These lists of modifi-
cations are then send to the other merger. Next, mergers merge all the non-conficting
changes and resolve conflicts (on the level of the UI). Then, an elected merger ap-
plies changes that were made by other, non-merger group’s members during the
process of merging. This process may also involve possible conflict resolution. Fi-
nally, the elected merger’s data is considered as the common group’s data.

To conclude, the complete version of SharedMind will use most of the middle-
ware functions (Section 3.2). Security-related functions are mainly independent of
the original code, and thus do not require substantial modifications. Data synchro-
nization turns out to be most complex to implement, as the data structure is tightly
coupled with the original code. Currently, data is synchronized on the application
layer (and not by the middleware), using functions provided by the collaboration
middleware and the P2PP protocol, such as presence, publish-subscribe and event
management. In future, we plan to provide generic synchronizing data structures at
the middleware layer, such as a tree or a table (a collection of records). These data
structures will be extended by application developers to host application-specific
data.

Supporting Collaboration and Creativity Through Mobile P2P Computing 1387

4.4 Research Issues Related to SIP and P2PSIP

SIP and IMS are both client-server systems that have performance and scalability
problems. In particular, the presence and event management services of SIP are
prone to severe performance problems when they have many users. Another problem
is the intolerance of the service to network connection loss, and the general problem
of coping with event loss. In the publish-subscribe framework, event delivery is not
guaranteed in the case when the intended receiver is not available, and there is no
mechanism to obtain the lost events.

The P2PSIP protocol is currently in the early design stage and there is no agree-
ment on how it would operate. However, most of the challenging research problems
described in the section on collaboration middleware that concern the session man-
agement, presence and event management service would also apply to P2PSIP, since
this protocol should support the full functionality of SIP over a P2P overlay network.
Another challenging problem would be the transparent integration of P2PSIP with
Internet-based SIP infrastructures or IMS.

The performance of P2PSIP will depend on the operation of the underlying over-
lay. The overlay will also support all other functions of the collaboration middle-
ware. Therefore, a good overlay design is crucial for the support of collaboration
functions. Here, the opportunity for using information from the collaboration mid-
dleware layer to optimize overlay operation becomes important, as will be shown in
the next section.

5 Vertically Integrated Overlay

Structured overlays are touted to play the role of an application layer internet, po-
tentially bridging the gap among heterogeneous networks by providing a standard
API based interface for applications, and managing the underlying operations such
as routing, transparently. However, in mobile (either logical or physical) environ-
ments structured overlays are harder to realize and maintain. A simple approach –
called the layered design – is to assume that the networking layer takes care of any
and all intricacies arising from mobility, and thus just deploy an overlay on top,
treating the underlying layer as a black box. Such a layered design risks losing out
on cross-layer optimization opportunities, which affect performance, besides poten-
tially jeopardizing the feasibility of such a system to start with. Experiments in mo-
bile ad-hoc environments do confirm this intuition, demonstrating that a cross-layer
approach performs better, where the underlay’s routing mechanisms are integrated
with the overlay’s routing mechanisms. A good summary comparing layered and in-
tegrated overlay designs can be found in [21]. Recent efforts have pushed this idea
even further, using overlay like approach to infact perform the underlay’s routing
itself [10], simultaneously realizing a DHT by default.

In this part of the chapter we will first review some recent standalone ideas,
and then propose a speculative mechanism of how these apparently different ideas

1388 Adam Wierzbicki, Anwitaman Datta et al.

together potentially can help realizing a structured overlay in a highly dynamic en-
vironment as is witnessed in mobile environments. The standalone ideas have been
tested in isolation. While the proposed speculative mechanism is one of the best bets
given current understanding of overlay networks, it nevertheless currently lies in the
realms of future work.

We next provide a summarized survey of these stand alone mechanisms, fol-
lowed by our vision of how several of these can be combined together to provide
the basic routing and indexing infrastructure for the upper layer middleware. We
also will point out how information from the upper layer can be exploited to make
the underlying overlay more robust and reliable.

5.1 In the Realm of Ringless Routing

Structured overlays, e.g., Distributed Hash Tables (DHTs) provide essential index-
ing and resource discovering in distributed information systems. Typically, struc-
tured overlays are based on enhanced rings, meshes, hypercubes, etc., leveraging
on the topological properties of such geometric structures. The ring topology is ar-
guably the simplest and most popular structure used in various overlays. In a ring
based overlay network (like Chord [35]), nodes are assigned to distinct points over
a circular key-space, and the ring invariant is said to be hold if each node correctly
knows the currently online node which succeeds it (and the one which precedes it)
in the ring. The ring is both a blessing and a curse. On the one hand, an intact ring
is sufficient to guarantee correct routing. Hence, historically, all existing structured
overlays have de facto considered it necessary.

Traditionally DHTs implicitly assume that any pair of nodes can interact directly
with each other. Under such an assumption, the ring is relatively straightforward to
realize. However, in some networking environments, particularly mobile, wireless
and ad-hoc, assuming that a network layer routing mechanism provides such pair-
wise connectivity and then realizing the structured overlay on top of the network
is at least an inefficient approach since it ignores cross-layer optimization oppor-
tunities. Moreover, even on the internet infrastructure and over even a moderately
small and dedicated infrastructure like PlanetLab researchers have observed non-
transitive connections [14], which violates the all-pair connectivity assumption. To
make things worse, large scale networks are prone to failure of individual partici-
pants, and in peer-to-peer networks, peers often go offline and come back online,
leading to churn in the network. Each and all of these factors make it harder to
maintain the ring invariant, becoming a performance bottleneck in the best case,
and jeopardizing the functionality altogether in the worst. There are of-course many
self-stabilization mechanisms which try to ensure ring integrity, with varying de-
gree of success, but these do not fundamentally change the fact that traditional DHT
routing strategies require the ring integrity as a necessary condition, even while ac-
tually it is just a sufficient condition. Next, we describe some recent works which
try a different approach, investigating whether the routing strategy can be changed

Supporting Collaboration and Creativity Through Mobile P2P Computing 1389

so that the DHT works even when the ring invariant is not or can not be met. In
some sense, these approaches complement self-stabilization mechanisms, reduc-
ing the DHTs reliance on the ring-invariant on the one end, even while of-course
the performance of the system improves if and whenever the ring invariant is actu-
ally met.

5.2 Virtual Ring Routing

Virtual ring routing (VRR)[10] is a DHT style “overlay” layer approach used to
define the underlying network’s routing mechanism. It is implemented directly on
top of the link layer and provides both traditional point-to-point network routing and
DHT routing to the node responsible for a hash table key, without either flooding
the network or using location dependent addresses. While traditional DHTs take
for granted point-to-point communication between any pair of participating nodes,
VRR extends the idea, using only link layer connectivity. Essentially this means that
the VRR scheme relaxes the traditional DHT assumption of a completely connected
underlying graph.

Each node in VRR has an unique address and location independent fixed iden-
tifier, organized in a virtual ring, emulating Chord style network. Each node also
keeps a list of r/2 closest clockwise and counter-clockwise neighbors for the node
on the virtual ring. Such a set of neighbours is called the node’s virtual neighbour set
(vset). Typically, members in a node’s vset won’t be directly accessible to it through
the link layer. Thus each node also maintains a second set called the physical neigh-
bour set (pset), comprising nodes physically reachable to it through the link layer.
Quality of the link is taken into consideration in choosing members of pset, and is
updated regularly with changing conditions.

VRR sets up and proactively maintains routing paths called vset paths to each
member in its vset, and these paths are typically multi-hop using pset nodes. This
provides a routing table at each node, comprising of routes to its own vset nodes,
as well as vset paths that pass through it. This is enough to support point-to-point
communication between any two nodes in the system, since one can follow the
vset neighbors to reach the destination along the ring. In practice, VRR performs
significantly better, because a node can exploit the routing entries from other vset
paths that pass through it. Figure 8 shows an example virtual ring, and illustrates
how VRR works.

While proposed originally for network routing, where pset is determined by link
layer connectivity, the idea of a VRR is potentially applicable even for other kinds
of connections, including of-course hybrid physical networks, but also abstract ones
like social network graphs. For routing and indexing services for a collaboration
middleware, using such a social network to determine pset is particularly alluring,
given that social network links can inherently provide security and robustness, as
will be briefly explained later when we describe how ideas from VRR, Fuzzynet and

1390 Adam Wierzbicki, Anwitaman Datta et al.

Fig. 8 The actual pair-wise connectivity of peers is used to establish route to the virtual ring
predecessors and successors. For example, 8F6 has neighbors 8F0, 8E2, 90E and 910 in the virtual
ring, though it is has actual connections with some nodes which are located in other arbitrary points
on the virtual ring. As per the original VRR paper link state connections are used to determine pair-
wise connectivity, however any other kind of abstract connections like social acquaintance may
also be used instead. Now if 8FC wants to communicate with 7C0, it will choose to forward the
messages greedily towards 8E2, however on the way, this message will go through a node which
has direct connection to 7C0, and hence the message will be forwarded to its destination. This
figure is reproduction the virtual ring example provided in the original paper (Caesar et al., 2006)

social networks can all be put together to realize a new vertically integrated overlay
which we tentatively call SocialCircle.

5.2.1 Fuzzynet

Traditional DHT designs rely on the existence of a ring in order to deterministically
guarantee that any node can be reached from any other node by traversing the ring
sequentially. While the ring ensures connectivity among any pair of nodes, ensuring
the ring itself is challenging and expensive. In a system with large number of nodes
and under continuous churn, guaranteeing the ring invariance continuously is unre-
alistic. Thus, even though it is true that if the ring exists then it guarantees routing,

Supporting Collaboration and Creativity Through Mobile P2P Computing 1391

in practice since the ring invariance itself is often not met, routing failures are also
relatively frequent. Fuzzynet [16] is a recent approach which uses a probabilistic ap-
proach for both routing and data placement in the DHT, but manages to successfully
perform DHT operations even when the ring invariant is not met.

The essential idea in Fuzzynet is as follows. As in ring based DHTs, Fuzzynet
assigns nodes unique identifiers on a ring. However Fuzzynet drops the requirement
for every peer having a predefined deterministic responsibility range on the iden-
tifier space. Instead, it uses a probabilistic responsibility “fuzzy” approach, where
a data item will most likely be stored on a peer whose key in the identifier space
is close to the hash value of that data item (data key). Secondly, each peers need
to know some other peers in its neighborhood in the ring. This is however differ-
ent from knowing the precise successors or predecessors on the ring, but just some
nodes in the vicinity, and hence there is no need to actively maintain this informa-
tion. Data is replicated in Fuzzynet, by gossiping the data replicas in the vicinity of
the data position on the identifier space. Such dissemination of data replicas does
not significantly increase the overheads of Fuzzynet, since all the realistic systems
(which use the ring structure) employ replication for fault tolerance and persistence
anyway. An useful consequence of such data replication in Fuzzynet is the fact that
a simple greedy routing query will find one of the replicas w.h.p. given sufficient
network connectivity, even if the ring invariance is violated.

5.2.2 Lookup (Read) Operations on Fuzzynet

Lookup routing employs a greedy routing algorithm, where messages are forwarded
everytime minimizing the distance to the target. The routing terminates if a data
item D, which was looked-up is found. However, since there are no ring links and
no predefined responsibility ranges, a peer might end up in a situation where it does
not have any links which would lead the query closer to the target, nor does the
node hold the requested data locally. In such a case the lookup query terminates

(a) Greedy-Approach (b) Write-Burst

Fig. 9 Schematic example of the two phases for publish (write) in Fuzzynet: (a) Greedy-Approach
to reach in the vicinity where the data should be stored and (b) Write-Burst to disseminate the data
in that region in a fuzzy manner

1392 Adam Wierzbicki, Anwitaman Datta et al.

unsuccessfully. Nevertheless, analysis proves and experiments demonstrate and val-
idate that with realistic parameters (e.g., in the networks with O(log N) degree and
typical peer replication cost), data is found w.h.p. if it was published before.

5.2.3 Publish (Write) Operations on Fuzzynet

The high guarantees for Fuzzynet lookups lie in the exploitation of a particular
Small-World property, namely the clusterization property, during the data writing
phase. The write operation is performed in two stages and stores data D on r peers
(replicas) in the vicinity of the data key D(key). The first stage is similar to the
lookup (read) phase and uses greedy routing to find one of the peers which are close
enough to the data key D(key). Once the write operation reaches the vicinity of the
targeted key location, the data is seeded in the nearby peers by the self-avoiding
multicast (a controlled “Write-Burst”. The underlying idea is to use the clusteriza-
tion property of the network and to reach as many peers as possible in the D(key)
vicinity. The multicast has two parameters – f n fanout and depth. A peer contacts
its fn closest neighbors to D(key) and requests to store the data item D as well as to
continue the multicast process with reduced depth. The multicast avoids the peers
which have been visited (already store data D) and terminates when depth reaches
zero. Data D is seeded (stored) on all the peers reached by the multicast-burst. The
two phases of the write process are shown on Fig. 9.

Experimental results show Fuzzynet to provide routing success which is upto an
order of magnitude better than ring based routing (as in Chord). Fuzzynet’s abil-
ity to realize DHT’s indexing service and data retrieval without requiring the ring
invariant makes it particularly suitable for systems not only with high churn, but
also potentially in systems incurring mobility. Realizing the Fuzzynet rather than
ring based DHTs on top of a social network is again relatively simpler since so-
cial network links need not be sufficient to guarantee connections to establish and
maintain a DHT ring. Thus, we speculate that a hybrid approach using Fuzzynet and
VRR can potentially be a good underlay for supporting collaboration middlewares,
since they can explicitly take into account the nuances of social networks (implicitly
present in collaboration activities) and mobility. This motivates us to explore a new
DHT style overlay network which we will call Social Circle, the design of which
and associated research issues will be elaborated at the end of this chapter.

Before doing so, we will first take a brief detour to explore some other identity
related issues relevant in realizing a decentralized collaboration middleware.

5.3 Identity Crisis in a Large-Scale Decentralized World

In large-scale decentralized systems, there are two distinct identity related issues
that may arise. Firstly, because of node mobility and dynamic IP address assign-
ments, nodes’ physical/IP address change over time. Many peer-to-peer networks

Supporting Collaboration and Creativity Through Mobile P2P Computing 1393

and applications do not care about the specific peers, as long as they are connected
to some peers. However other applications can benefit or even need to relocate an
existing peer. For example, in a peer-to-peer storage system, if a peer goes offline
temporarily and returns back, it is useful to be able to access the content stored in it,
allowing for more efficient storage system redundancy maintenance algorithms. In
other situations, being able to locate back a specific peer may be even more crucial,
because of shared past interactions, and the trust and social relations established
among the peers. This is particularly important in supporting a collaboration mid-
dleware. A simple solution to this issue can be to use a logically centralized directory
service storing the up-to-date peer-to-address mappings. However, given that many
of the peer-to-peer networks themselves work as decentralized directory services,
one can also imagine using the peer-to-peer network itself as a self-referential self-
contained directory service to store meta-information about the participants, includ-
ing their current physical address. This basic idea has been proposed independently
(and varying in details) in several academic as well as deployed peer-to-peer net-
works, including P-Grid [4], Microsoft’s Peer Name Resolution Protocol (PNRP)
and Skype. A similar self-referential directory can of-course in turn also be used to
support presence, particularly in conjunction with a publish-subscribe mechanism!

Another aspect of identity in decentralized settings is that users can create bogus
identifiers. A major security threat in such systems is if a resource rich adversary
creates many bogus identifiers (Sybil attack [13]), then it can disrupt the functionali-
ties of the system (denial-of-service), as well as more actively hurt the other genuine
users. While this is a serious concern in general, in a social network context (which
is inherently present – explicitly or implicitly – among collaborating individuals),
this is easier to thwart, because social links are established based on either pre-
existing real life interactions or referrals, or even if the link is established virtually,
still it is sustained and rated based on real interactions among the players. Thus, so-
cial links can be a good mechanism to thwart multiple bogus identifiers. Notice that
a limited number of identifiers for the same individual is not a threat of the same
scale as a Sybil attack. Also, it really does not matter in many situations as to who is
the real person behind the virtual persona, but what matters more is how this persona
behaves. Trust and reputation based on the social network can thus further limit the
effect of spurious as well as misbehaving peers. For example, SybilGuard [38] is
one recently proposed approach which uses the social network to limit the effects of
Sybil attacks in a decentralized system.

5.4 DHT Based on a SocialCircle

The social network can be useful both to improve the performance of normal rout-
ing, and to provide new functionality. Imagine that a user wishes to find a new team
member with certain desired knowledge or experience. Ordinarily, the social net-
work would be used in such a case as a medium for a broadcast query. In this work,
we show how this function can be achieved much more efficiently.

1394 Adam Wierzbicki, Anwitaman Datta et al.

Previous attempts have used social network links to bolster DHTs [26], prefering
social links whenever possible, but nevertheless using the “normal” random DHT
links otherwise. Such an approach still relies on using the “untrusted” links most
of the time, but was perhaps as good as it gets under the older regime of DHT
designs, where a completely connected underlying graph and ring invariance were
considered necessary. Since then, VRR and Fuzzynet have respectively demonstrated
overlay designs which work even otherwise. A hybrid of these two overlays has the
potential to be a suitable substrate for collaboration middlewares in a decentralized
setting. Another attempt to use social networks for routing in mobile ad-hoc net-
works [12] used centrally located “bridge nodes” that exchanged information about
their egocentric social networks. However, in this approach, routing was still done
using a network-layer ad-hoc routing protocol that just benefited from the infor-
mation from the social network. In our approach, the social network itself is the
basis of routing decisions, eliminating the need to exchange summary information.
We would like to highlight that unlike the previous portion which was a summary of
current state of the art, the following material in this chapter is currently speculative,
and comprises mainly of open research issues.

5.4.1 VRR Adaptation for SocialCircle

Besides the pset and vset in VRR, we need another metalayer in SocialCircle, which
comprises of all the social network links of a node, and call this the node’s sset. In
a wired network, one can assume that the sset of SocialCircle is used the same way
as the pset in original VRR proposal. In a mobile or heterogeneous environment,
whenever sset nodes can not be reached efficiently and directly using network level
routing, the pset can be used for multi-hop routing in a manner similar to the original
VRR. The sset will define a multi-hop route to the next vset node. Corresponding
to each such point-to-point routes to vset members, a routing table entry will be
maintained at each node. And similar to VRR, SocialCircle will also use the routing
entries of other routing paths that go through a node to avoid navigating the virtual
ring sequentially.

SocialCircle is developed as part of the mTeam project[3]. We present results
of preliminary evaluation of the proposed system. The purpose of our experiment
was to examine the VRR functioning in social networks. We have made tests on
real social network graphs and randomly generated social network graphs. We have
measured average stretch, which is an average ratio between the number of hops
traversed by a message from a source to a destination and the length of the short-
est path between this source and destination in the social network [10]. Stretch is a
measure of how well the overlay network uses the underlying social network topol-
ogy. A broadcast query would be wasteful in terms of overall messages used, but
could discover a shortest path between the querying node and the intended receiver.
SocialCircle routing is much more efficient, but can increase the length of the end-
to-end path.

Supporting Collaboration and Creativity Through Mobile P2P Computing 1395

In the experiment we run VRR on a social graph. When the network gains a stable
state, each node starts sending messages to 3 random nodes. This scenario assures
that every node will be used and also ensures that even distant nodes will be on end-
to-end paths, which are usually longer than average network shortest paths. The
test results show the impact of increasing the number of nodes on average stretch
and a comparison of stretch for shortest paths of different length. Each test was
performed 3 times and average results were calculated. Random social networks
were generated with the same parameters, using the “Scale Free” algorithm in the
Pajek software (Pajek).

5.4.2 Average Stretch of SocialCircle

Figure 10 shows the average stretch for different network sizes. Stretch in Social-
Circle on random social networks increases with the number of nodes. However, it
does not exceed 1.7 up to 200 nodes, and stays below 1.5 for network sizes up to
170 nodes.

Fig. 10 Average stretch. Unconnected points show results for real social networks

Points connected with a line are test results on random social networks. The three
remaining points that are not connected with lines are results of tests on real social
networks. Results are quite similar at a small number of nodes (test on a sample
network of 34 nodes). For real social networks with a higher number of nodes,
stretch is much smaller than for random social networks.

To conclude, SocialCircle works well overall, with stretch below 70%; the ap-
proach works even better on real social network graphs, where stretch has been
calculated as: 21% for a 34 nodes network, 5% for 130 nodes and 12% for 168
nodes. The reasons for these differences are discussed below.

1396 Adam Wierzbicki, Anwitaman Datta et al.

5.4.3 Average Stretch Distribution

Figure 11a presents a distribution of average stretch for shortest paths of different
length, for two different network sizes: 100 and 200 nodes.

(a) average stretch (b) minimum distances

Fig. 11 Results of experiments. (a) presents average stretch per minimum distance. (b) presents
distribution of minimum distances on real and random graphs

In both examples, there stretch is equal to 1 for shortest paths of one or two hops.
These results prove that SocialCircle does not make mistakes for reaching close
nodes. Stretch begins to increase at 3 hops. In the 100 nodes network, stretch is
about 1.6, whereas for the 200 nodes network it is almost 2.1. For the 100 nodes
network, the highest stretch is at 4 hops. In the 200 nodes network, stretch is highest
at 3 and 4 hops.

For longer shortest paths, stretch is decreasing, and the differences between
both networks are constant. These results are quite similar to results obtained for
VRR [10].

5.4.4 Distribution of Minimum Distances

Figure 11b presents a distribution of minimum distances for a real and random social
network. In the real network, most paths are up to 4 hops distance, and shortest
paths of 2, 3 and 4 hops make up 94% of all paths. In the random social network,
the distribution of paths is shifted towards higher distances, mainly on 3 and 4 hops.
However, there are also relatively many shortest paths of 5 hops. This difference,
together with the results presented on Figure 9, explains why SocialCircle performs
better for real social networks. Since paths in real social networks are shorter, and
stretch of SocialCircle for shortest paths of 1 and 2 hops is equal to 1, the results
of SocialCircle routing on real social networks will be much better than for random
social networks.

The presented preliminary results of the evaluation of SocialCircle indicate that
for real social networks, the stretch of SocialCircle is likely to remain very low.
This means that SocialCircle is able to route queries quickly, which would be of a

Supporting Collaboration and Creativity Through Mobile P2P Computing 1397

special significance for session establishment and event notification in collaborative
applications.

5.5 The Outlook for Future Works

5.5.1 Fuzzynet Adaptation of SocialCircle

The SocialCircle can be made further robust by reusing the ideas from Fuzzynet.
Specifically, the vset need not comprise of precise predecessor/successors on the
virtual ring, but instead use just a random set of neighbors from the vicinity and a
fuzzy data placement based on gossiping over the vset. Such extensions are part of
our future work, and has not been done yet.

5.6 Good and Better Peers

Using cooperative applications in a heterogeneous environment of mobile and fixed
devices imposes a natural requirement for the diversification of peers. In fact, even
P2PSIP foresees that possibility, as some SIP user agents may connect to P2PSIP
peers using the P2PSIP client protocol. This solution is highly similar to a superpeer
architecture. Some mobile peer may become superpeers just because they have In-
ternet connectivity and are willing to share it with others. On the other hand, these
peers may not be capable of running all superpeer functions that could be handled
by a fixed node. For that reason, a three-tier hierarchy is a natural choice for the
stratification of the peers according to their capabilities.

On the other hand, the question remains “how should different kinds of peers
communicate?”. A typical solution is to let superpeers communicate using a struc-
tured overlay, and peers communicate only with superpeers. However, such an ar-
chitecture may be unsuitable in a mobile environment, where it is easy for a peer
to lose contact with his superpeer. A higher connectivity among ordinary peers may
be more desirable. In a different solution, all peers would use SocialCircle for com-
munication without superpeer services, or for superpeer discovery (at the first or
second tier). Third-tier superpeers receive service requests from their children in the
superpeer hierarchy and serve this requests using SocialCircle routing.

An issue that remains is to determine which peers are capable to serve as third-tier
superpeers. Based on information from the presence or trust management service,
the overlay can automatically choose best candidates for superpeers or for peers
needed for a special function (such as trusted routing). Note that this choice is not
simple, since the overlay contains information about the availability and trust of
individual peers, but does not contain an ordering of all peers. Obtaining all values
and ordering them is not scalable. To solve this problem, it is possible to apply
distributed sorting based on gossiping in the SocialCircle [22].

1398 Adam Wierzbicki, Anwitaman Datta et al.

Another method of selecting superpeers would be to choose peers from the centre
of community clusters in the social network. This method would have the advantage
of supporting efficient message delivery for services such as publish-subscribe, as
the superpeer could be used to receive publications and issue notifications to all
peers in the cluster. The clustering would ensure that few messages would have to
be sent to distant peers. To create community clusters and select appropriate super-
peers, distributed clustering (community detection) protocols based on gossiping
may be applicable [37].

6 Conclusions

Collaboration is one of the most promising applications of mobile network tech-
nology. The very nature of collaborative applications makes them suitable for a
Peer-to-peer model, since many of these applications rely on sharing of information
(expert knowledge, work results, new ideas) by people. Such sharing is inherently
peer-to-peer.

Yet, in order to enable sharing, collaborative applications must have a number of
functions that may require support of an infrastructure. The functional requirements
for most collaborative applications have been described in this chapter. The required
functions can be partially implemented using the Session Initiation Protocol and its
P2P extension, P2PSIP. The emerging standard of P2PSIP points out a direction of
enabling collaboration in mobile P2P environments. However, the full support of
collaborative P2P applications requires further research work in the area of overlay
design. In this chapter, we have explored a particular dimension of overlay design:
the use of additional social network information from the collaborative middleware
layer by a vertically integrated P2P overlay.

We outline how several currently stand-alone innovations can be put together
to realize a peer-to-peer overlay for mobile environments, and also identify the out-
standing research challenges to achieve the same. A common theme of the discussed
innovations is the use of information from the collaboration middleware for the opti-
mization of overlay operation. We have presented SocialCircle, with early results of
a speculative approach that integrates these research ideas by using only the social
network directly to create a structured overlay, which is incidentally also a first of
its kind in terms of realizing the idea, even though many researchers in the commu-
nity have speculated the need and possibility of such an approach [38], and devised
partial solutions [26]. Preliminary results indicate that SocialCircle is likely to route
messages very efficiently on real social networks, enabling efficient session estab-
lishment and event notification. These results prove the optimization potential of a
vertical integration. Research that will further validate SocialCircle is already under-
way, together with several projects worldwide that attempt to exploit the powerful
trends that bring ubiquitous, nomadic collaborative applications almost within our
reach.

Supporting Collaboration and Creativity Through Mobile P2P Computing 1399

Acknowledgements

Most of the SharedMind implementation was carried out by Sally Ang and Michał
Karwowski. The work on FuzzyNet [16] was carried out in collaboration with
Sarunas Girdzijauskas, Wojciech Galuba, Vasilios Darlagiannis and Karl Aberer.

References

1. Groove networks. http://www.groove.net/ (2004)
2. Freemind. http://freemind.sourceforge.net/ (2008)
3. mteam: A creative environment for mobile knowledge workers. Research project supported

by the Polish-Singaporean research program, http://mTeam.pjwstk.edu.pl/ (2008)
4. Aberer, K., Datta, A., Hauswirth, M.: Efficient, self-contained handling of identity in peer-to-

peer systems. IEEE Transactions on Knowledge and Data Engineering 16(7), 858–869 (2004).
DOI 10.1109/TKDE.2004.1318567

5. Auvinen, A., Vapa, M., Weber, M., Kotilainen, N., Vuori, J.: Chedar: Peer-to-peer middleware.
In: Proceedings of the 20th IEEE International Parallel & Distributed Processing Symposium
(IPDPS) (2006)

6. Baset, S., Schulzrinne, H., Matuszewski, M.: Peer-to-peer protocol (p2pp). Internet Draft,
draft-baset-p2psip-p2pp-01 (work in progress) (2007)

7. Bisignano, M., Di Modica, G., Tomarchio, O.: Jmobipeer: a middleware for mobile peer-to-
peer computing in manets. In: Proc. of the 25th IEEE Int’l Conf. on Distributed Computing
Systems Workshops (ICDCSW 2005), vol. 791 (2005)

8. Bryan, D., Jennings, C.: A p2p approach to sip registration and resource location. draft-bryan-
sipping-p2p-01 (work in progress) (2005)

9. Bryan, D., Lowekamp, B., Jennings, C.: Sosimple: A serverless, standards-based, p2p sip
communication system. In: Proceedings of the 2005 International Workshop on Advanced Ar-
chitectures and Algorithms for Internet Delivery and Applications (AAA-IDEA 2005) (2005)

10. Caesar, M., Castro, M., Nightingale, E., O’Shea, G., Rowstron, A.: Virtual ring routing: net-
work routing inspired by dhts. In: SIGCOMM, Proceedings, vol. 36, pp. 351–362. ACM New
York, NY, USA (2006)

11. Campbell, B., Rosenberg, J., Schulzrinne, H., Huitema, C., Gurle, D.: Session initiation pro-
tocol (sip) extension for instant messaging. IETF RFC 3428 (2002)

12. Daly, E., Haahr, M.: Social network analysis for routing in disconnected delay-tolerant manets.
In: MobiHoc, Proceedings, pp. 32–40. ACM Press New York, NY, USA (2007)

13. Douceur, J.: The sybil attack. In: Peer-To-Peer Systems: First International Workshop, IPTPS,
Revised Papers. Springer (2002)

14. Freedman, M., Lakshminarayanan, K., Rhea, S., Stoica, I.: Non-transitive connectivity and
dhts. In: WORLDS, Proceedings (2005)

15. Garcia-Martin, M., Matuszewski, M., Beijar, N., Lehtinen, J.: Sharing files with the session
initiation protocol (sip). Internet Draft, draft-garciasipping-file-sharing-framework-00 (work
in progress) (2007)

16. Girdzijauskas, S., Galuba, W., Darlagiannis, V., Datta, A., Aberer, K.: Fuzzynet: Zero-
maintenance ringless overlay. Tech. Rep. LSIR-REPORT-2008-006, EPFL (2008)

17. Greene, S.: Characteristics of applications that support creativity. Communications of the
ACM 45(10), 100–104 (2002)

18. Handley, M., Jacobson, V., Perkins, C.: Sdp: Session description protocol. IETF RFC 2327
(1998)

1400 Adam Wierzbicki, Anwitaman Datta et al.

19. Herbjornsen, S.: Software support for creativity. Tech. Rep. TDT 4735, System Engineer-
ing, Department of Computer and Information Science, Norwegian University of Science and
Technology (2003)

20. Horozov, T., Grama, A., Vasudevan, V., Landis, S.: Moby-a mobile peer-to-peer service and
data network. In: International Conference on Parallel Processing, Proceedings, pp. 437–444
(2002)

21. Hu, Y., Das, S., Pucha, H.: Peer-to-peer overlay abstractions in manets. In: J. Wu (ed.) Theo-
retical and Algorithmic Aspects of Sensor, Ad Hoc Wireless and Peer-to-Peer Networks, pp.
845–864. Auerbach Publications (2005)

22. Jelasity, M., Kermarrec, A.M.: Ordered slicing of very large-scale overlay networks. In:
Proc. Sixth IEEE International Conference on Peer-to-Peer Computing P2P 2006, pp. 117–
124 (2006). DOI 10.1109/P2P.2006.25

23. Kawulok, L., Zielinski, K., Jaeschke, M.: Trusted group membership service for jxme
(jxta4j2me). In: Proc. IEEE International Conference on Wireless And Mobile Comput-
ing, Networking And Communications (WiMob’2005), vol. 4, pp. 116–121 (2005). DOI
10.1109/WIMOB.2005.1512958

24. Kortuem, G.: Proem: a middleware platform for mobile peer-to-peer computing. ACM SIG-
MOBILE Mobile Computing and Communications Review 6(4), 62–64 (2002)

25. Maibaum, N., Mundt, T.: Jxta: a technology facilitating mobile peer-to-peer networks. In:
Proc. International Mobility and Wireless Access Workshop MobiWac 2002, pp. 7–13 (2002).
DOI 10.1109/MOBWAC.2002.1166946

26. Marti, S., Ganesan, P., Garcia-Molina, H.: Dht routing using social links. In: The 3rd Interna-
tional Workshop on Peer-to-Peer Systems. Springer (2004)

27. Roach, A.: Session initiation protocol (sip) – specific event notification. IETF RFC 3265
(2002)

28. Rosenberg, J.: The extensible markup language (xml) configuration access protocol (xcap).
IETF RFC 4825 (2007)

29. Rosenberg, J.: Simple made simple: An overview of the ietf specifications for instant mes-
saging and presence using the session initiation protocol (sip). IETF draft draft-ietf-simple-
simple-02 (work in progress) (2008)

30. Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A., Peterson, J., Sparks, R., Handley,
M., Schooler, E.: Sip: session initiation protocol. IETF RFC 3261 (2002)

31. Schulzrinne, H., Gurbani, V., Kyzivat, P.: Rpid: Rich presence extensions to the presence in-
formation data format (pidf). IETF RFC 4480 (2006)

32. Schwotzer, T., Geihs, K.: Shark-a System for Management, Synchronization and Exchange of
Knowledge in Mobile User Groups. Journal of Universal Computer Science 8(6), 644–651
(2002)

33. Shneiderman, B.: Creativity support tools. Communications of the ACM 45(10), 116–120
(2002)

34. Singh, K., Schulzrinne, H.: Peer-to-peer internet telephony using sip. In: NOSSDAV, Proceed-
ings, pp. 63–68. ACM New York, NY, USA (2005)

35. Stoica, I., Morris, R., Liben-Nowell, D., Karger, D., Kaashoek, M., Dabek, F., Balakrishnan,
H.: Chord: a scalable peer-to-peer lookup protocol for internet applications. Networking,
IEEE/ACM Transactions on 11(1), 17–32 (2003)

36. Sugano, H., Fujimoto, S., Klyne, G., Bateman, A., Carr, W., Peterson, J.: Presence information
data format (pidf). IETF RFC 3863 (2004)

37. Yoneki, E., Hui, P., Chan, S., Crowcroft, J.: A socio-aware overlay for publish/subscribe com-
munication in delay tolerant networks. In: MSWiM, Proceedings, pp. 225–234. ACM New
York, NY, USA (2007)

38. Yu, H., Kaminsky, M., Gibbons, P., Flaxman, A.: Sybilguard: defending against sybil attacks
via social networks. In: SIGCOMM, Proceedings, pp. 267–278. ACM New York, NY, USA
(2006)

Index

A
Accordion, 81
Activity, 94

theory, 92–96
Advertising, 1086
AntRep, 767
AP3, 793
Application Layer Multicast (ALM), 862, 868
Araneola, 332
Autonomy, 468
Availability, definition, 1259

B
Babelgum, 990, 991
Bandwidth trading, 663
Barabási–Albert, 1268, 1271
Bayesian estimation, 742
Bayeux, 883, 1352
Biased walk, 414
BIDIR-PIM, 918
Bimodal multicast, 842
Bit complexity, 937, 943
BitTorrent, 75, 123, 656, 668, 974, 989, 1015,

1209, 1255, 1260
related work, 1257

Bittorrent, 98–105, 974
Blind search, 82
Bootstrapping, 197, 230, 431

definition, 1262
Breadth first search, 539
Broadcast, 933
Broadcasting, 962–964, 978
Buffer map, 991

in New CoolStreaming, 996
Bulk operation, 942

bulk owner operation, 942
with feedback, 946

Bulk set, 942
Business modeling, 966

C
Caching, 1085
CAN, 82, 238–240, 1350–1351
CarTALK, 1109
Centralize, 1257
Characteristics, 7
Chord, 80, 230, 260, 878, 1350
Chuang-Sirbu, 866
Churn, 224
Churns, 1017
Classifications, 10
Client-server, 72

approach, 986
Clockwise direction, 935
Clustering coefficient, 150
Collusion, 779
Conjunctive query, 508
Consistency, 1143
Content

bottleneck phenomenon, 1016
delivery network (CDN), 1026
distribution, 202, 663
sharing, 429, 452

Context, 93, 94, 317
-aware, 416

Convergence, 963, 1176
CoolStreaming, 132, 991, 995, 1002, 1005
Cooperative file storage, 268
CoopNet, 649
CORC, 719
Coverage, 937
Crawl, 1256
Crawler, 1256, 1263, 1266

definition, 1263
related work, 1261

CREW, 843
Crowds, 792
Cruiser, xxxv, 1263–1267
CuboidTrust, 762

X. Shen et al. (eds.), Handbook of Peer-to-Peer Networking,
DOI 10.1007/978-0-387-09751-0, C© Springer Science+Business Media, LLC 2010

1401

1402 Index

Cycle, 955
Cycloid, 241
CYCLON, 148, 841

D
Data summarization, 573
DC-Net, 799
DCRC, 719
Decentralization, 469
Degree, 150, 183, 1264, 1266, 1269, 1270

distribution, 1261
Designated nodes, 937
DHT, 310
D1HT, 248
Diameter, 180, 182, 267
Direct-connect peer, 1004
Dissemination, 1087
Distance, 935
Distorted, 1262, 1266

definition, 1263
Distributed hash table, 224, 367, 1128
Distributed Pattern Matching, 428, 450
DKS, 878
Domain ontology, 1326
Download, 104, 105, 110
Downtime, definition, 1259
DPI, 1238
7DS, 1108
DTN, 1081
Dynamic connectivity properties, 1255

related work, 1262
Dynamic peer properties, 1255

related work, 1259–1261

E
Edge, 955

distortion, 1266, 1267
definition, 1266

EDN, 1346
eDonkey 2000, 1255
EigenTrust, 764
Erdös–Rényi, 1268, 1271
Exchange, 145
Expanding ring, 411

F
Failure detector, eventually perfect, 951
Fairness, 662
FastTrack, 122
File transfers, related work, 1260–1261
Finger table, 224
Fitting, 1259–1261
FleetNet, 1109
Freenet, 77, 794

Free riders, 1008, 1019, 1208, 1218
Friend-to-friend network, 817

G
Geolocalization, 1003
Global trust, 769
GNUnet, 788
Gnutella, 74, 76, 105, 107–110, 120, 1255,

1260, 1263
related work, 1255, 1258, 1260, 1261

Gnutella2, 78
GoCast, 333
Gossip, 832, 1133

-based broadcast, 833
Gradient topology network, 161
Graph, 955
Grassroots, 1109
Grid, 72
GridMedia, 990, 991
Gryphon, 1345

H
Herbivore, 799
Heterogeneity, 168
Hop, 1261
Hordes, 798
Human-Computer Interaction (HCI), 92
Hybrid architecture, for IP-TV, 989
Hybrid multicast, 912
HyParView, 845
HYPER, 1346
Hypercube, 545

I
iClouds, 1108
Incentive

mechanism, 632
patterns, 633
schemes, 633

Indexing, 538
Inexpensive Peer-to-Peer Subsystem (IPPS),

151–152
Information

explosion, 572
retrieval, 1088

Informed search, 83
Inter-arrival interval, 1262

definition, 1259
Internet indirection infrastructure, 272–274
Ion-sampler, 1272, 1273
I2P, 792
IP multicast, 986
IP-TV, 985–987

quality metrics, 997

Index 1403

ISP (Internet Service Provider), 976–978
infrastructure, 1019

Iterative deepening, 540

J
Join, 227
Joost, 990, 991
JXTA, 79

K
Kad, 1255, 1260

related work, 1255
Kademlia, 82, 234, 264
Kazaa, 74, 78, 122, 1255

related work, 1255, 1260
Kelips, 243
Keyword, 407
Kontiki, 969

L
Latency, 266
Layered architecture, 989
LDAP filter, 439
Leaf peers, 1264
Leave, 227
Leech, 1210
Legal issues, 48
Levels of motivations, 98, 105
Lifetime, definition, 1259
Light flooding, 412
Limited reputation, 725
Live video streaming, 987
Load, 1150

balancing, 289, 1153, 1325
Localiser, 331
Locality, 267

M
Malicious detector algorithm, 728
MANET, 137, 274, 1046
Market, 64
Maximum likelihood estimation, 743
Measurement(s)

client-side, 998
server-side, 1002
techniques, 1254–1257

Mediation, 93
MEDYM, 1346
Member peer, 992
Membership cache, 994
Merging, 298
Mesh-based architecture, 989,

991, 1015
Message

complexity, 937
gain, 207

Mixmaster, 788
MoB, 1108
Mobi-Dik, 1108
Modeling insights, 1009
MoGATU, 1108
MON, 844
Motivations, 98–101, 106, 107
MPP, 1060
Multi-attributes, 558
Multicast, 952, 1074
Multi-hop network, 1051
Multiple Description Coding (MDC), 1015
Multiple tree, 1015

architecture, 1015
Multi-tree overlay, 988

N
Napster, 75, 119, 1255

related work, 1258, 1260
Narada, 330, 843
Nash equilibrium, 668
NAT peer, 1005
NeEM, 842
NETPOPPS, 319
Network

coding, 1020
partition, 1131

Network Address Translation (NAT), 1237
NeuroGrid, 86
Node distortion, 1266

definition, 1266
Non-redundancy, 937

O
OMNeT++, 886
Onion routing, 789
Ordinary peer, 1012
Origin server, 991
ORION, 1059
Overlay

membership management, 994
merging, 1132
multicast, 934

Overnet, 1255, 1260
related work, 1260

OverSim, 884–886
Over-The-Top TV, 962–964

P
P2P application throughput, 998
P2P database, 602
P2P IP-TV, 985

1404 Index

P2P live video streaming, 985
P2P Randomized Overlays to Obviate

Flash-crowd Symptoms (PROOFS),
144–148

P2PSI, 1061
P2PSim, 885
P2PSIP, 1382
P4P, 978
P5, 795
Parent peer, 992
Pareto distribution, 1259, 1260
Partial read, 611
Partial view, 836
Participate, 1256
Partner peer, 992, 1011
Partnership cache, 994
Passive monitoring, xxxv, 1255–1256
Pastry, 81, 232, 262, 1142, 1350
Path length, 207
Peer sampling service, 835
PeerSim, 885
Peer software architecture, 993
PeerTrust, 769
PeopleNet, 1108
P-Grid, 236
PIM-SM, 918
PlanetSim, 885
Playback

continuity, 997, 1019
lag, 1019

Plexus, 456
Plumtree, 335, 855
Political aspect, 58
Power-law, 1259, 1261

graph, 1261
PPLive, 990, 1002
Preference-based system, 1166
Prefix flooding, 900
Pricing, 665
Private network, 814
Prosumers, in IP-TV, 990
Pseudo-reliable broadcast, 951
Publisher, 1334
Pull-based architecture, 989, 1016
Pure flooding, 409
Push-based architecture, 987, 1016

Q
Quality of Experience (QoE), 987, 997,

1018–1019
Quality of Service (QoS), 1018–1019
Query, 407, 1087

routing, 190

R
RANDI, 1116
Random graph, 1142
Random network coding, 1020, 1021, 1023
Random walk, 168, 413, 540
Reachable nodes, 937
Rebeca, 1347
Remaining uptime, 1259

definition, 1259
Remote monitoring, 1019
Remove, 805, 820
Replication, 125
Repository, 192
Reputation, 127

management, 697, 734
Resilience, 266
Retrieval, 129
Revenue models, 965, 981
Ring, 283
ROME, 80
Routing, 198, 226, 440, 501, 1087

stretch, 1055
80:20 Rule, 1284

S
Sample, 1256–1257
Sanctioning mechanism, 751
Scalability, 168
Scamp, 840
Scheduling, of video chunks, 993
Schema, 438
Scoop, 605
Scribe, 270, 844, 881, 1351
Search, 441

related work, 1262
strategies, 101, 103, 104, 108, 109

Searching, 474
Security, 127
Seed, 1210
Self-organization, 468
Self-organizing, 86
Self-stabilization, 1176
Semantic(s), 546

network, 190
overlay, 465
Web, 768

service, 1325
Server capacity, 1009
Service

discovery, 431, 445, 452
oriented architecture, 1315

Session
duration, CDF, 1005

Index 1405

length, 1254, 1259
definition, 1259

Session Initiation Protocol (SIP), 1377
SharedMind, 1385
Shared Resource Distributed Index (SRDI), 79
Shuffle, 145
SIENA, 1344
Simple broadcast, 939

with feedback, 941
Skype, 135, 1255
SOAP, 1316
Social network, 190
Sociological aspects, 52
SopCast, 990
Source-rewriting, 787
Source specific multicast, 901
Spider, 1329
SplitStream, 1352
Start-up delay, 997, 1005, 1019
Static connectivity properties, 1254

related work, 1261–1262
Static peer properties, 1254

related work, 1258
Storage, 129
StreamerOne, 999, 1002, 1006
Streaming engine, 993
Subscriber, 1334
Substreams, multiple, 988, 995, 1015
Successor, 935
Supernode, 1237
Super peer, 1012
Suspicious transaction, 728
Switching delay, 997
Sybil attack, 780
Synchronization buffer, 995

T
Tapestry, 235, 1350
Tarzan, 791
TCP, 993, 998
Television, 962–964, 978
TFRC, in P2P overlay, 993
Time complexity, 937
Timeout, 1263, 1265
Tit-for-tat, 662, 1208, 1222
Topology maintenance, 154
Tor, 790
Tracepath, 332
Tracker, 991, 1260

definition, 1257
Trade-based incentive, 641
Traffic characterisation, 1234
Tree, 286

-based architecture, 987, 989
Trust

-based incentive, 637
management, 690

Two-tier, 1264

U
UDDI, 432, 1316
UDP, 993, 998
Ulysses, 240
Unstructured, 118
UPnP peer, 1005
Uptime, 1254

definition, 1259
UUSee, 990

V
Value network, 967
Vertex, 955
Video-on-Demand (VoD), 1026
Viewer lifetime, 1005
VII (Vehicle Infrastructure Integration), 1109
Virtual organizations, 73, 191
Virtual server, 1153
VMesh, 271

W
Web services, 1316
Wireless mesh network, 137, 275
Wireless sensor network, 275
Workload, 179
WSDL, 1316

X
X -BOT, 339
XML, 427, 448
XPath, 439

Z
Zattoo, 971
Zipf distribution, 1261, 1262

file popularity, 1258
query popularity, 1262

Zipf law, 1284
ZP2P, 1061

	Handbook of Peer-to-Peer Networking (2010) (ATTiCA)
	Preface
	Acknowledgements
	Contents
	List of Contributors
	Part I Introduction to Peer-to-Peer Networking
	Peer-to-Peer Networking and Applications: Synopsis and Research Directions
	John F. Buford and Heather Yu
	1 Introduction
	1.1 Significance and Emergence
	1.2 Key Applications
	1.3 Definition and Properties of P2P Systems
	1.4 Business Models
	1.5 Technology Drivers
	1.6 Structure of the Chapter

	2 Overlay Basics
	2.1 Classification and Taxonomy
	2.2 Unstructured Overlays
	2.3 Structured Overlays
	2.4 Hierarchical and Federated Overlays
	2.5 Service Overlays
	2.6 Semantic Overlays
	2.7 Sensor Overlays
	2.8 Research Directions

	3 Overlay Dynamics, Heterogeneity and Mobility
	3.1 Churn and Overlay Maintenance
	3.2 Mobility in P2P Overlays
	3.3 Overlays for MANETs and Ad Hoc Networks
	3.4 Heterogeneity and Variable Hop Overlays
	3.5 Research Directions

	4 P2P Content Access and Delivery
	4.1 Content Search
	4.2 P2P Streaming and Multicasting
	4.3 Caching and Replication
	4.4 Summary of Design Issues
	4.5 Research Issues

	5 Security
	5.1 The P2P Security Concern
	5.2 Basic Classifications of P2P Network Security Threats
	5.3 Counter Measures
	5.4 Fairness, Trust and Privacy Issues
	5.5 More on P2P Security

	6 Summary
	References

	The Social Impact of P2P Systems
	Andrea Glorioso, Ugo Pagallo, and Giancarlo Ruffo
	1 Introduction
	2 Legal Issues
	3 Sociological Aspects
	4 Economic Trends
	5 Political Aspects
	6 Turning Forthcoming P2P Systems into Reality
	6.1 Overlay Level
	6.2 Accounting Level
	6.3 Market Level

	7 Conclusions
	References

	From Client-Server to P2P Networking
	Lu Liu and Nick Antonopoulos
	1 Introduction
	2 Network Architecture Evolution
	2.1 Client-Server Architecture
	2.2 Grid Architecture
	2.3 Peer-to-Peer Architecture

	3 Evolution of Peer-to-Peer Networks
	3.1 Centralised Peer-to-Peer Networks
	3.2 Decentralised Peer-to-Peer Networks
	3.3 Hybrid Peer-to-Peer Networks

	4 Peer-to-Peer Search Systems
	4.1 Structured P2P Systems
	4.2 Unstructured P2P Systems
	4.2.1 Blind Search
	4.2.2 Informed Search

	5 Future Trends
	5.1 Self-organising Systems
	5.2 Hybrid Systems

	6 Conclusions
	References

	Examining the Use of Peer-to-Peer Networks from an Activity Perspective
	Jorn De Boever and Dirk De Grooff
	1 Introduction
	2 Theoretical Framework: Activity Theory
	2.1 Activity Theory and Human-Computer Interaction
	2.2 Importance of Context
	2.3 Activity System

	3 Methods
	4 Understanding the Use of P2P Networks
	4.1 Process of Using Bittorrent Clients
	4.1.1 Different Levels of Motivations
	4.1.2 Bittorrent Peers' Behavior

	4.2 Process of Using Gnutella Clients
	4.2.1 Different Levels of Motivations
	4.2.2 Gnutella Peers' Behavior

	5 Discussion and Conclusion
	References

	Part II Unstructured P2P Overlay Architectures
	Unstructured Peer-to-Peer Network Architectures
	Xing Jin and S.-H. Gary Chan
	1 Introduction
	2 Design Considerations
	3 Unstructured P2P Networks for File Sharing
	3.1 A Centralized Approach: Napster
	3.2 A Distributed Approach: Gnutella
	3.3 A Hybrid Approach: FastTrack/Kazaa
	3.4 Other Approach: BitTorrent
	3.5 Comparison and Discussion

	4 Advanced Issues in File Sharing
	4.1 Content Replication
	4.2 Security and Reputation System
	4.2.1 Reputation Computing

	4.3 Reputation Storage and Retrieval

	5 Other Applications of Unstructured P2P Networks
	5.1 Media Streaming: CoolStreaming
	5.2 VoIP: Skype

	6 Mobile Unstructured P2P Networks
	6.1 Characteristics of Mobile Wireless Networks
	6.2 Approaches for Mobile Unstructured P2P Networks

	7 Conclusion
	References

	Exchanging Peers to Establish P2P Networks
	Mursalin Akon, Mohammad Towhidul Islam, Xuemin (Sherman) Shen, and Ajit Singh
	1 Introduction
	2 The PROOFS Network
	2.1 Evolution
	2.2 Components
	2.3 Protocols
	2.3.1 ConstructOverlay
	2.3.2 LocateObject

	2.4 Properties of the PROOFS Networks
	2.5 Results
	2.5.1 Connectivity
	2.5.2 Noncooperative Peers

	3 The CYCLON Network
	3.1 An Enhanced Exchange Operation
	3.2 Results
	3.2.1 Average Path Length
	3.2.2 Average Clustering Coefficient
	3.2.3 Degree Distribution

	4 The IPPS Network
	4.1 The Problem and the Goal
	4.2 System Model
	4.3 Topology Maintenance
	4.3.1 The Exchange Operation
	4.3.2 The Merge Operation
	4.3.3 Number of P2P Neighbors

	4.4 Results
	4.4.1 Computational and Memory Complexity
	4.4.2 Number of Link Level Hops per P2P hop
	4.4.3 Dual Cognizance
	4.4.4 Minimum Connectivity

	5 The Gradient Topology Network
	5.1 The Preliminaries
	5.2 Exchange Operation
	5.3 Search
	5.4 Results

	6 Concluding Remarks
	References

	Peer-to-Peer Topology Formation Using Random Walk
	Kin-Wah Kwong and Danny H.K. Tsang
	1 Introduction
	2 Literature Review
	3 Our Proposed Protocol
	3.1 P2P Network Model
	3.2 Joining Process
	3.3 Rebuilding Process

	4 Protocol Analysis
	4.1 Stabilizing Network Model
	4.2 Analysis of Mean Degree of P2P Network
	4.3 Analysis of Node Degree Evolution
	4.4 Simple Analysis of Peer's Workload
	4.5 Analysis of P2P Network Diameter

	5 Simulation
	5.1 Node Capacity Distributions
	5.2 P2P Network Diameter
	5.3 Node Degree Equilibrium

	6 Conclusion
	References

	Semantic Social Overlay Networks
	Alexander Löser, Steffen Staab, and Christoph Tempich
	1 Semantics and Communities in Peer-to-Peer Networks
	1.1 Query Routing Strategies in Social Networks
	1.2 Knowledge Sharing Strategies in Virtual Organizations

	2 System Architecture
	2.1 Building Blocks
	2.2 Query and Result Messages
	2.3 Similarity Function

	3 Overlay Construction, Index Creation and Maintenance
	3.1 Content Provider and Recommender Shortcuts
	3.2 Bootstrapping Shortcuts
	3.3 Default Network Shortcuts

	4 Routing in Semantic Social Overlay Networks
	4.1 Overview
	4.2 Selecting Best Matching Shortcuts

	5 Experimental Setup
	5.1 Content Distribution
	5.2 Query Distribution
	5.3 Peer-to-Peer Network Setup
	5.4 Simulator Setup and Simulation Statistics
	5.5 Evaluation Measures

	6 Evaluation and Optimization
	6.1 Performance Against State-of-the-Art Approaches
	6.2 Layer and Semantic Similarity Function Contribution
	6.3 Tradeoff Between Clustering and Recall
	6.4 Setting Optimal Index Size
	6.5 Setting Optimal Index Weight
	6.6 Performance for Conjunctive Queries

	7 Related Work
	8 Summary
	References

	Part III Structured P2P Overlay Architectures
	Overview of Structured Peer-to-Peer Overlay Algorithms
	Krishna Dhara, Yang Guo, Mario Kolberg, and Xiaotao Wu
	1 Overview
	2 Basic Features of Structured P2P Overlays/Networks
	2.1 Geometries
	2.2 Routing Algorithm
	2.3 Join/Leave Mechanisms
	2.4 Routing Table Maintenance
	2.5 Bootstrapping

	3 Logarithmic Degree Overlays
	3.1 Chord
	3.2 Pastry
	3.3 Kademlia
	3.4 Tapestry
	3.5 P-Grid

	4 Constant Degree Overlays
	4.1 CAN
	4.2 Ulysses
	4.3 Cycloid

	5 O(1)-Hop Overlays
	5.1 Kelips
	5.2 OneHop
	5.3 EpiChord
	5.4 D1HT

	6 Comparison and Analysis
	7 Conclusions
	7.1 Open Research Issues
	7.2 Summary

	References

	Distributed Hash Tables: Design and Applications
	C.-F. Michael Chan and S.-H. Gary Chan
	1 Introduction
	2 Performance Characteristics and Design Considerations
	2.1 Common Performance Characteristics
	2.2 Design Considerations

	3 DHT Schemes
	3.1 Chord
	3.2 Pastry
	3.3 Kademlia
	3.4 Other DHTs

	4 Design Fundamentals
	4.1 Static Resilience
	4.2 Path Latency
	4.3 Local Convergence
	4.4 Network Diameter and Node State Tradeoffs

	5 Applications
	5.1 Cooperative File Storage (CFS)
	5.2 Scribe
	5.3 VMesh
	5.4 Internet Indirection Infrastructure (i3)

	6 DHTs in Wireless Networks
	6.1 Characteristics of Wireless Networks
	6.2 Challenges of Using DHTs in Wireless Networks
	6.3 Search Approaches for Wireless Networks

	7 Conclusions
	References

	The Gamut of Bootstrapping Mechanisms for Structured Overlay Networks
	Anwitaman Datta
	1 Introduction
	2 A Taxonomy of Structured Overlay Topologies
	2.1 Ring
	2.1.1 Ring Self-Stabilization Highlights

	2.2 Tree
	2.2.1 The P-Grid Overlay

	3 Quasi-Sequential Construction of Overlays
	3.1 Load-Balancing Considerations

	4 Parallelized Construction of Overlays
	4.1 Sorting Peer-IDs as a Mechanism to Build a Ring
	4.1.1 Pairing and Merging Virtual Trees
	4.1.2 Gossip Based Mechanism

	4.2 Recursive Proportional Partitioning

	5 The Need and Challenges of Merging Two Similar StructuredOverlays
	5.1 Merger of Two Ring Based Networks
	5.1.1 Ring Loses Bearing During the Merge Process
	5.1.2 Managing Keys on the Merged Ring

	5.2 Merger of Two Structurally Replicated P-Grid Networks
	5.2.1 Managing Keys in the Merged Network

	6 Summary and Conclusion
	References

	Network-Aware DHT-Based P2P Systems
	Marguerite Fayçal and Ahmed Serhrouchni
	1 Motivations
	2 DHT-Based Architectures
	3 Requirements
	4 State of the Art
	5 Semantics for Resource Sharing
	5.1 A Context-Aware P2P System
	5.2 A Network Provider Oriented P2P System

	6 Prospects
	7 Conclusion
	References

	On Adding Structure to Unstructured Overlay Networks
	João Leitão, Nuno A. Carvalho, José Pereira, Rui Oliveira,and Luís Rodrigues
	1 Introduction
	2 Adding Structure to Unstructured Overlay Networks
	2.1 Existing Protocols
	2.1.1 Narada
	2.1.2 Localiser
	2.1.3 Araneola
	2.1.4 GoCast
	2.1.5 T-Man
	2.1.6 Plumtree

	2.2 Key Properties to Preserve
	2.3 Performance Metrics
	2.4 Methodologies

	3 Overlay Optimization
	3.1 Overview
	3.2 Architecture
	3.2.1 Oracles
	3.2.2 Rationale
	3.2.3 Unbiased Neighbors

	3.3 Algorithm
	3.4 Performance
	3.4.1 Experimental Setting
	3.4.2 Stable Environment
	3.4.3 Massive Failures

	4 Gossip Optimization
	4.1 Overview
	4.1.1 Background
	4.1.2 Approach

	4.2 Architecture
	4.2.1 Gossip Protocol Layer
	4.2.2 Payload Scheduler Layer

	4.3 Strategies and Oracles
	4.3.1 Strategies
	4.3.2 Oracles

	4.4 Performance
	4.4.1 Network Emulation
	4.4.2 Implementation and Configuration
	4.4.3 Traffic and Measurements
	4.4.4 Statistics
	4.4.5 Experimental Results

	5 Discussion and Future Directions
	References

	Mathematical Modeling of Routing in DHTs
	Peter Kersch and Robert Szabo
	1 Introduction
	1.1 DHTs Revisited

	2 Modeling DHT Routing
	2.1 Renewal Processes Revisited
	2.2 Assumptions and Notations
	2.2.1 Degree of Randomness
	2.2.2 Bidirectional Overlay Model
	2.2.3 Node ID Distribution

	3 Transformed View of Long-Range Connections
	3.1 Long-Range Connection Density
	3.2 Regular Power-Law Routing Overlays
	3.3 Probabilistic Power-Law Routing Overlays
	3.4 Distortions in the Transformed View

	4 Stochastic Analysis of Routing
	4.1 Analysis of Routing in the Transformed view
	4.1.1 Regular Power-Law Routing Overlays
	4.1.2 Probabilistic Power-Law Routing Overlays
	4.1.3 Deterministic Power-Law Routing Overlays
	4.1.4 Comparison of Per-Hop Routing Progress in the Transformed View

	4.2 Upper Bound on the Expected Number of Routing Hops

	5 Summary
	References

	Part IV Search and Query Processing
	Keyword Search in Unstructured Peer-to-Peer Networks
	Dingyi Han and Yong Yu
	1 Introduction
	1.1 Background
	1.2 Keyword Search Problem
	1.3 Evaluation Metrics

	2 Blind Routing
	2.1 Pure Flooding and Its Variations
	2.1.1 Pure Flooding
	2.1.2 Expanding Ring
	2.1.3 Light Flood

	2.2 Random Walk and Its Variations
	2.2.1 Uniformly Random Walk
	2.2.2 Max-Degree Biased Walk

	2.3 Comparison and Summary

	3 Routing Indices
	3.1 Content Oriented Routing
	3.1.1 Naive Routing Indices for Non-cyclic Topologies
	3.1.2 Naive Routing Indices for Cyclic Topologies
	3.1.3 Hop-Based Routing Indices
	3.1.4 Scalable Query Routing

	3.2 Query Oriented Routing
	3.2.1 Max-Feedback Biased Walk
	3.2.2 Adaptive Probabilistic Search
	3.2.3 Learning Based Query Routing

	3.3 Comparison and Summary

	4 Multi-Keyword Search
	5 Conclusion
	References

	Distributed Search and Pattern Matching
	Reaz Ahmed and Raouf Boutaba
	1 Introduction
	2 Large Scale Distributed Systems
	2.1 Content Sharing
	2.2 Service Discovery
	2.3 Distributed XML Databases

	3 Distributed Search Requirements
	4 Components of a Distributed Search System
	4.1 Query Semantics
	4.1.1 Schema
	4.1.2 Expressiveness

	4.2 Translation
	4.3 Routing

	5 Search Techniques in Content Sharing P2P Systems
	5.1 Structured Techniques
	5.2 Un-structured and Semi-structured Techniques
	5.3 Summary

	6 Search Techniques in P2P Service Discovery
	6.1 Summary

	7 Search Techniques in Distributed XML Databases
	7.1 Summary

	8 The DPM Abstraction
	8.1 Distributed Pattern Matching (DPM)
	8.2 Mapping to DPM Framework
	8.2.1 P2P Content Sharing
	8.2.2 Service Discovery
	8.2.3 Distributed XML Databases

	8.3 Known Solutions to the DPM Problem
	8.3.1 DPMS: Distributed Pattern Matching System
	8.3.2 Plexus
	8.3.3 Summary

	9 Conclusion
	References

	Distributed Semantic Overlay Networks
	Christos Doulkeridis, Akrivi Vlachou, Kjetil Nørvåg,and Michalis Vazirgiannis
	1 Introduction
	2 Semantic Overlay Networks
	2.1 Aims of SON Generation
	2.1.1 Intra-SON Similarity
	2.1.2 Inter-SON Similarity

	2.2 Requirements for SON Generation
	2.2.1 Unsupervised Algorithms
	2.2.2 Scalability
	2.2.3 Self-organization
	2.2.4 Autonomy
	2.2.5 Decentralization

	3 Distributed Creation of Semantic Overlay Networks
	3.1 The DESENT Approach to Decentralized and Distributed SON Creation

	4 Searching in Semantic Overlay Networks
	4.1 Traditional SON-Based Search
	4.2 Super-Peer Organization

	5 Applications of Semantic Overlay Networks
	5.1 P2P Web Search -- Document Retrieval
	5.1.1 SON Creation
	5.1.2 Keyword-Based Search

	5.2 P2P Image Retrieval
	5.2.1 Architecture
	5.2.2 Peer Organization
	5.2.3 Similarity Search

	6 Related Work
	6.1 Unstructured P2P
	6.1.1 Clustering
	6.1.2 Classification
	6.1.3 Gossip-Based

	6.2 Structured P2P
	6.2.1 Clustering
	6.2.2 Classification
	6.2.3 Gossip-Based

	6.3 Evaluation

	7 Summary and Future Trends
	References

	Self-adaptation and Self-organization for Search in Social-Like Peer-to-Peer Networks
	Lu Liu, Jie Xu, Duncan Russell, and Zongyang Luo
	1 Introduction
	2 Background
	3 AESLP: Adaptive and Efficient Social-Like Peer-to-Peer
	3.1 Knowledge Index Creation and Update
	3.2 Routing Algorithm for Simple Queries
	3.2.1 Query Processing
	3.2.2 Adaptive Forwarding
	3.2.3 Node Selection
	3.2.4 Query Routing Example

	3.3 Routing Algorithm for Multi-Topic Queries
	3.3.1 Routing Algorithm for Conjunctive Queries
	3.3.2 Routing Algorithm for Query Packs

	3.4 Adaptive Query

	4 Simulations Methodology
	4.1 Content Generation and Distribution
	4.2 Topology Initialisation and Evolution
	4.3 Network Churns
	4.4 Search Network

	5 Simulation Results
	5.1 Initial Simulations
	5.2 Performance Comparison to Relevant Methods
	5.3 Performance Comparison to Derived Methods
	5.4 Topology Evolution
	5.5 Effects of Parameters
	5.5.1 Size of Lists
	5.5.2 Request Structure
	5.5.3 Number of Receivers

	5.6 Query Packs

	6 Conclusions and Future Work
	References

	Data Sharing in P2P Systems
	Rabab Hayek, Guillaume Raschia, Patrick Valduriez,and Noureddine Mouaddib
	1 Introduction
	2 P2P Networks
	2.1 Unstructured
	2.1.1 Hybrid Decentralized
	2.1.2 Pure Decentralized
	2.1.3 Partially Decentralized

	2.2 Structured
	2.3 Unstructured vs. Structured: Competition orComplementarity?

	3 Data Indexing in P2P Systems
	3.1 Index Types
	3.1.1 Local Index
	3.1.2 Centralized Index
	3.1.3 Distributed Index

	3.2 Semantic-Free Index: DHT
	3.2.1 Tree
	3.2.2 Ring
	3.2.3 Hypercube

	3.3 Semantic Index
	3.3.1 Keyword Lookup
	3.3.2 Peer Information Retrieval
	3.3.3 Peer Data Management

	4 Schema Management in P2P Systems
	4.1 Pairwise Schema Mappings
	4.2 Mapping Based on Machine Learning Techniques
	4.3 Common Agreement Mapping
	4.4 Schema Mapping Using IR Techniques

	5 Querying in P2P Systems
	5.1 Partial Lookup
	5.1.1 Range Queries
	5.1.2 Join Queries
	5.1.3 Multi-Attributes Queries
	5.1.4 Fuzzy Queries

	5.2 Partial Answering
	5.2.1 Top-k Queries
	5.2.2 Skyline Queries

	5.3 What About Approximate Answering?

	References

	Managing Linguistic Data Summaries in Advanced P2P Applications
	Rabab Hayek, Guillaume Raschia, Patrick Valduriez,and Noureddine Mouaddib
	1 Introduction
	2 Summarization Process
	2.1 Data Summarization
	2.2 Input Data
	2.2.1 Data Model
	2.2.2 Background Knowledge

	2.3 Process Architecture
	2.3.1 Mapping Service
	2.3.2 Summarization Service
	2.3.3 Scalability Issues

	2.4 Distributed Summary Representation

	3 Summary Model for Hierarchical P2P Networks
	3.1 Problem Statement
	3.2 Model Architecture
	3.3 Summary Management
	3.3.1 Summary Construction
	3.3.2 Summary Maintenance
	3.3.3 Peer Dynamicity

	4 Query Processing
	4.1 Query Reformulation
	4.2 Query Evaluation
	4.2.1 Approximate Answering
	4.2.2 Peer Localization

	5 Performance Evaluation
	5.1 Cost Model
	5.1.1 Summary Update Cost
	5.1.2 Query Cost

	5.2 Simulation
	5.2.1 Simulation Setup
	5.2.2 Update Cost
	5.2.3 Query Cost

	6 Related Work
	7 Conclusion
	References

	Case Study: Scoop for Partial Read from P2P Database
	Farnoush Banaei-Kashani and Cyrus Shahabi
	1 Introduction
	1.1 Motivation and Problem Definition
	1.2 Related Work
	1.3 Scoop
	1.3.1 Overview
	1.3.2 Correctness and Efficiency
	1.3.3 Originality
	1.3.4 Experimental Results
	1.3.5 Summary of Contributions

	1.4 Roadmap

	2 Partial Read Operation
	2.1 Definitions
	2.1.1 Communication Graph
	2.1.2 Efficiency Measures for Sampling

	3 Scoop: Partial Read by Epidemic Dissemination
	3.1 SIR Epidemic Dissemination
	3.2 Percolation Model
	3.3 Tuning Scoop
	3.3.1 Definitions
	3.3.2 Analysis

	4 A Real-World Example of Scoop
	4.1 Network Topology
	4.2 Analysis
	4.3 Algorithm

	5 Variants of Scoop
	6 Experiments
	6.1 Methodology
	6.2 Results

	7 Conclusion and Future Work
	References

	Part V Incentive Mechanisms
	Incentive Mechanisms for Cooperation in Peer-to-Peer Networks
	Daniel A. G. Manzato and Nelson L. S. da Fonseca
	1 Introduction
	2 Characteristics and a Classification of Uncooperative Behaviors
	3 Comprehensive Study of Incentive Patterns
	3.1 Trust Based Incentive Patterns
	3.1.1 The Collective Pattern
	3.1.2 The Community Pattern

	3.2 Trade Based Incentive Patterns
	3.2.1 The Barter Trade Pattern
	3.2.2 The Bearer Notes Pattern and the Bearer Bills Pattern
	3.2.3 The Banking Pattern
	3.2.4 The Banknotes Pattern

	4 Selection of Incentive Schemes
	4.1 Incentive Mechanism for the CoopNet Network
	4.2 Altruism in Peer-to-Peer Media Streaming
	4.3 Multicast with Incentive in Peer-to-Peer Media Streaming
	4.4 Client Selection with Differentiated Service
	4.5 Incentives in BitTorrent
	4.6 Trading in Trust, Tokens and Stamps
	4.7 Mobility in Ad hoc Wireless Networks with Incentives

	5 Final Remarks
	References

	Bandwidth Trading as Incentive
	Kolja Eger and Ulrich Killat
	1 Introduction
	2 Trading Schemes for P2P Content Distribution
	2.1 P2P Network Model
	2.2 Resource Pricing
	2.3 Reciprocal Rate Control
	2.4 BitTorrent

	3 Nash Equilibrium
	4 Performance Evaluation
	4.1 Static networks
	4.2 Dynamic Networks

	5 Bandwidth Trading and Piece Selection
	5.1 Piece-Dependent Resource Pricing

	6 TCPeer: A TCP Variant for P2P CDNs
	7 Conclusion
	References

	Part VI Trust, Anonymity, and Privacy
	Reputation-Based Trust Management in Peer-to-Peer Systems: Taxonomy and Anatomy
	Loubna Mekouar, Youssef Iraqi, and Raouf Boutaba
	1 Introduction and Motivation
	2 Traditional Systems Versus Reputation-Based Systems
	3 Trust and Reputation
	3.1 Trust Definition
	3.2 Reputation Definition
	3.3 Trust Properties
	3.4 System Model
	3.4.1 Modeling the Network
	3.4.2 Modeling the Nodes
	3.4.3 Modeling the Reputation Management Infrastructure

	4 The Anatomy of Reputation Systems
	4.1 The Local Trust
	4.1.1 What Kind of Trust Information is Gathered?
	4.1.2 Where to Store Trust Information?
	4.1.3 Is the Local Trust Information Sufficient?

	4.2 The Reputation Query
	4.2.1 To Whom the Requester Peer Should Send a Reputation Query?
	4.2.2 How Many Peers Should the Requester Peer Contact?
	4.2.3 What Kind of Information is Sent to the Requester Peer?

	4.3 Reputation Computation
	4.3.1 How to Deal with Liar Recommender Peers?
	4.3.2 How to Deal with Fraudulent Recommender Peers?
	4.3.3 How to Compute the Reputation?

	4.4 The Use of Reputation
	4.4.1 How to Choose a Peer Based on the Reputation Value?
	4.4.2 How to Evaluate a Transaction After Downloading a Requested File?

	4.5 Credibility Assessment
	4.6 Incentives, Rewards and Punishment

	5 Design Requirements
	6 Centralized Reputation Systems
	6.1 e-Commerce Applications
	6.2 P2P Systems
	6.2.1 Reputation Management Using DCRC and CORC
	6.2.2 A Fine-Grained Reputation System for Reliable Service Selection: FineGrainedTrust

	7 Decentralized Reputation Systems
	7.1 The Distributed Trust Model: DistributedTrust
	7.2 The Binary Distributed Trust Model: BinaryTrust
	7.3 Reputation Management by Choosing Reputable Servents: P2PBasic and P2PEnhanced
	7.4 Reputation Management by the XRep Protocol: XRep
	7.5 Reputation Management Using EigenTrust
	7.6 Limited Reputation Sharing in P2P Systems: LimitedReputation
	7.7 Reputation Management Using Trust and Credibility Records: CredibilityRecords
	7.8 Reputation Management Using CCCI Methodology: MDNT
	7.9 Cooperative Peer Groups in Nice

	8 Partially Decentralized Reputation Systems
	8.1 BitTorrent
	8.2 The Inauthentic Detector Algorithm (IDA) and the Malicious Detector Algorithm (MDA)

	9 Conclusion
	References

	P2P Reputation Management Through Social Networking
	Zoran Despotovic
	1 Introduction
	2 P2P Reputation Systems
	2.1 P2P Systems Perspective
	2.2 Classification of Existing Solutions

	3 Probabilistic Signaling Reputation Mechanisms
	3.1 Discussion
	3.1.1 Performance Analysis
	3.1.2 Implementation Overhead

	4 Ad hoc Signaling Reputation Mechanisms
	4.1 A Synchronous Algorithm
	4.2 Discussion
	4.2.1 Performance Analysis
	4.2.2 Implementation Overhead

	4.3 Bio-inspired P2P Reputation Systems

	5 Sanctioning Reputation Mechanisms
	5.1 Modeling Reputation
	5.1.1 Perfect vs. Imperfect Monitoring
	5.1.2 Truthful Feedback Submission
	5.1.3 Evolutionary Settings
	5.1.4 Critiques of Game-Theoretic Modeling

	6 Identities: An Important Practical Problem
	7 Discussion and Conclusions
	References

	State of the Art in Trust and Reputation Models in P2P networks
	Félix Gómez Mármol and Gregorio Martínez Pérez
	1 Introduction
	2 Trust and Reputation Models
	3 Discussion
	3.1 Trust and Reputation Management -- What for?
	3.2 Trust and Reputation Models Steps
	3.3 Common Challenges and Solutions in Trust and Reputation Management Over P2P Networks
	3.3.1 Modeling Trust and Reputation
	3.3.2 Contextualized Trust and Reputation
	3.3.3 P2P Networks Dynamism
	3.3.4 Collusion
	3.3.5 Identity Management -- Sybil Attack

	3.4 Strengths and Weaknesses of the Described Models
	3.5 Real Scenarios

	4 Conclusions and Future Work
	References

	Anonymity in P2P Systems
	Pilar Manzanares-Lopez, Juan Pedro Muñoz-Gea,Josemaria Malgosa-Sanahuja, and Juan Carlos Sanchez-Aarnoutse
	1 Introduction
	2 Source-Rewriting Systems
	2.1 Mixes
	2.1.1 Mixmaster
	2.1.2 GNUnet

	2.2 Onion Routing
	2.2.1 Tor
	2.2.2 Tarzan
	2.2.3 I2P

	2.3 Crowds
	2.3.1 AP3

	2.4 Freenet

	3 Broadcast Systems
	3.1 P5
	3.2 Hordes

	4 DC-Net Systems
	4.1 Herbivore

	5 Analysis of Anonymity
	5.1 Mix
	5.2 Onion Routing
	5.3 Crowds
	5.4 Crowds with Limited Path Lengths

	6 Experimental Analysis of Anonymity
	7 Summary
	8 Future Research Directions
	References

	Private Peer-to-Peer Networks
	Michael Rogers and Saleem Bhatti
	1 Introduction
	2 Background
	2.1 Definitions
	2.2 Technical Challenges

	3 Survey of Deployed Systems
	3.1 Group-Based Networks
	3.2 Friend-to-Friend Networks
	3.3 Other Networks

	4 Architecture
	5 Related Research
	6 Conclusions
	References

	Part VII Broadcast and Multicast Services
	Gossip-Based Broadcast
	João Leitão, José Pereira, and Luís Rodrigues
	1 Introduction
	2 Gossip-Based Broadcast
	2.1 Parameters
	2.2 Strategies
	2.3 Peer Sampling Service
	2.4 Partial View
	2.5 Strategies to Maintain Partial Views
	2.6 Partial View Properties
	2.7 Performance Metrics
	2.8 An Overview of Existing Protocols
	2.8.1 Gossip-Based Membership Protocols
	2.8.2 Gossip-Based Broadcast Protocols
	2.8.3 Structured Application-Level Multicast

	3 The HyParView Protocol
	4 Achieving Resilient Broadcast
	5 Building Low Cost Spanning Trees
	6 Experimental Evaluation
	6.1 Experimental Setting
	6.2 HyParView and Eager Push Strategy
	6.3 Plumtree

	7 Discussion and Future Directions
	References

	Employing Multicast in P2P Overlay Networks
	Mario Kolberg
	1 Introduction
	1.1 IP Layer Multicast
	1.2 Application Layer Multicast (ALM)

	2 Using IP Multicasting for Parallel P2P Overlay operations
	2.1 Host Group Multicasting
	2.2 Multi-Destination Multicasting
	2.3 Chuang-Sirbu Scaling Law
	2.4 Strengths and Weaknesses

	3 Application Layer Multicast
	3.1 Mesh First Approaches (NARADA)
	3.2 Tree First Approaches
	3.3 Implicit Approaches
	3.4 Strengths and Weaknesses

	4 Conclusions
	References

	Multicast Services over Structured P2P Networks
	Pilar Manzanares-Lopez, Josemaria Malgosa-Sanahuja,Juan Pedro Muñoz-Gea, and Juan Carlos Sanchez-Aarnoutse
	1 From IP Multicast to ALM
	2 Flooding-Based Structured ALM
	2.1 CAN-Multicast
	2.2 DKS/Chord Multicast

	3 Tree-Based Structured ALM
	3.1 Scribe
	3.2 Bayeux

	4 OverSim: A Useful P2P Simulation Tool
	4.1 OMNeT++
	4.2 OverSim
	4.3 Chord-Multicast Implementation
	4.3.1 Simulator Structure
	4.3.2 Functionality

	4.4 Scribe Implementation
	4.4.1 Simulator Structure
	4.4.2 Functionality

	5 Performance Evaluation
	6 Summary
	7 Future Research Directions
	References

	Multicast Routing in Structured Overlays and Hybrid Networks
	Matthias Wählisch and Thomas C. Schmidt
	1 Introduction
	2 Overview of Structured Approaches to Group Communication
	2.1 Flooding of (Sub-)Overlays
	2.1.1 Multicast on CAN
	2.1.2 Prefix Flooding
	2.1.3 Distributed Tree Construction

	2.2 Source-Specific Distribution Trees
	2.3 Shared Distribution Trees
	2.4 Bi-directional Shared Distribution Trees

	3 Properties of Distribution Trees
	3.1 CAN Flooding: k-ary Trees with Node Chains
	3.2 Prefix-directed Forwarding: k-ary Trees with Node Redundancy
	3.3 Reverse Path Forwarding: Topology-Induced Trees

	4 Hybrid Multicast
	4.1 Inter-Domain Multicast Tunneling and Overlays
	4.2 Hybrid Shared Tree Architecture
	4.2.1 The Inter-Domain Multicast Gateway
	4.2.2 Connecting Small Size Domains
	4.2.3 Connecting Large Size Domains

	5 A Common API for Group Communication
	5.1 General Design Principles for Structured Overlay Networks -- The Dabek Model
	5.1.1 The Common Key-Based Routing API
	5.1.2 Limitations of the KBR API

	5.2 Towards a Structured P2P Group Communication API
	5.2.1 Current State of the Art
	5.2.2 Current Challenges

	5.3 Architectural Components
	5.3.1 Architectural Overview
	5.3.2 An API Proposal

	6 Discussions and Conclusions
	6.1 Future Research Directions

	References

	Multicast and Bulk Lookup in Structured Overlay Networks
	Ali Ghodsi
	1 Introduction
	1.1 Motivation

	2 Preliminaries
	2.1 Desirable Properties

	3 Broadcast
	3.1 Simple Broadcast
	3.2 Simple Broadcast with Feedback

	4 Bulk Operations
	4.1 Bulk Operations
	4.2 Bulk Operations with Feedbacks
	4.3 Bulk Owner Operations

	5 Fault-Tolerance
	5.1 Pseudo Reliable Broadcast

	6 Application: Efficient Overlay Multicast
	6.1 Basic Design
	6.2 Group Management
	6.3 IP Multicast Integration

	7 Related Work
	References

	Part VIII Multimedia Content Delivery
	Peer-to-Peer Content Distribution and Over-The-Top TV: An Analysis of Value Networks
	Jorn De Boever and Dirk De Grooff
	1 Over-The-Top TV and P2P Systems
	1.1 Evolutions of TV
	1.2 Over-The-Top TV

	2 Theoretical Framework
	2.1 P2P Systems and Business Modeling
	2.2 Business Modeling Theory
	2.3 Value Networks

	3 Case Studies
	3.1 Case 1: Kontiki
	3.2 Case 2: Zattoo
	3.3 Case 3: Bittorrent Clients

	4 The Role of ISPs
	5 Discussion and Conclusion
	References

	Live Video and IP-TV
	Maria Luisa Merani and Daniela Saladino
	1 Live Streaming and IP-TV
	2 A Taxonomy of P2P Video Broadcasting Systems
	3 Popular P2P Streaming Systems
	4 The Diffusion Process and a Reference System
	4.1 Mesh-Based Systems
	4.2 Scheduling
	4.3 Software Architecture and Overlay Membership
	4.4 New CoolStreaming

	5 Measurements and Quality Monitoring
	5.1 Network Edge Measurements
	5.2 System Measurements

	6 Modeling Insights
	6.1 First Modeling Efforts
	6.2 More Recent Contributions
	6.3 A Numerical Comparison Between Mesh and Multiple-Trees

	7 Open Issues and Promising Solutions
	7.1 QoS and QoE
	7.2 Network Awareness
	7.3 Network Coding for P2P Streaming

	8 Summary
	References

	Providing VoD Streaming Using P2P Networks
	Juan Pedro Muñoz-Gea, Josemaria Malgosa-Sanahuja,Pilar Manzanares-Lopez, and Juan Carlos Sanchez-Aarnoutse
	1 Introduction
	2 P2P VoD Services Overview
	3 Overlay Network Structure for P2P VoD
	3.1 Tree-Based Network Structure
	3.2 Mesh-Based Network Structure
	3.3 Hybrid Network Structure

	4 Forwarding Approaches
	4.1 Buffer-Forwarding
	4.2 Storage-Forwarding
	4.3 Hybrid-Forwarding
	4.4 Pre-Fetching

	5 Suppliers Search
	5.1 Searching in Buffer-Forwarding
	5.2 Searching in Storage-Forwarding

	6 Data Scheduling
	6.1 Scheduling in Buffer-Forwarding
	6.2 Scheduling in Storage-Forwarding

	7 Technical Challenges
	8 Summary
	9 Future Research Directions
	References

	Part IX Mobile P2P
	Peer-to-Peer Overlay in Mobile Ad-hoc Networks
	Marcel C. Castro, Andreas J. Kassler, Carla-Fabiana Chiasserini,Claudio Casetti, and Ibrahim Korpeoglu
	1 Introduction
	2 Overview on Peer-to-Peer and Ad-Hoc Networks
	2.1 Peer-to-Peer Overlay Networks
	2.2 Characteristics of Wireless Multi-hop and Mobility
	2.3 Traffic Routing in Multi-hop Networks
	2.3.1 Topology-Based Schemes
	2.3.2 Geographic-Based Routing
	2.3.3 Probabilistic Routing

	3 Challenges of Deploying P2P Services in Mobile Ad-hoc Networks
	4 Overview of P2P Solutions for Mobile Ad-hoc Networks
	4.1 Integration Principles Between P2P and MANETRouting Layer
	4.2 Unstructured P2P Networks for MANETs
	4.3 Structured P2P Networks for MANETs
	4.3.1 Transparent Layered DHT on Top of Broadcast Based Ad-hoc Routing Protocol
	4.3.2 Integrating DHT over the Network Layer

	4.4 Summary and Comparison of the Solutions

	5 P2P Application Scenarios for Mobile Ad-hoc Networks
	5.1 Decentralized Name Service
	5.2 Overlay-Based Multicast
	5.3 Multimedia Services

	6 Summary
	References

	Opportunistic Information Retrieval in Sparsely Connected Ad Hoc Networks
	Mooi-Choo Chuah and Jian-bin Han
	1 Introduction
	2 Related Work
	3 System Model
	4 Data/Index/Query Dissemination Schemes
	4.1 Data Caching
	4.2 Index Advertising
	4.3 Query Dissemination
	4.4 DTN Message Routing Scheme
	4.5 Three Information Retrieval Schemes

	5 Performance Evaluation
	5.1 Simulation Setup
	5.1.1 Node Movement Model
	5.1.2 Data Item Generation Model
	5.1.3 Query Model

	5.2 Simulation Results
	5.2.1 Impact of Node Density
	5.2.2 Impact of Mobility Model
	5.2.3 Impact of the Index/Data Replication Factors
	5.2.4 Non-uniform Access Pattern

	6 Discussion
	7 Concluding Remarks
	References

	The MOBI-DIK Approach to Searching in Mobile Ad Hoc Network Databases
	Yan Luo, Ouri Wolfson, and Bo Xu
	1 Introduction: MANET Databases
	2 Historical Background
	3 Scientific Fundamentals
	4 The MOBI-DIK Approach
	5 Key Applications
	6 Future Research Directions
	References

	Part X Fault Tolerance in P2P Networks
	Managing Network Partitions in Structured P2P Networks
	Tallat M. Shafaat, Ali Ghodsi, and Seif Haridi
	1 Introduction
	2 Preliminaries
	3 Detecting Network Partitions and Mergers
	4 Merging the Overlays
	4.1 Simple Ring Unification
	4.2 Gossip-Based Ring Unification

	5 Performance Evaluation
	6 Related Work
	6.1 Merging P-Grid Overlays
	6.1.1 P-Grid
	6.1.2 Merger

	6.2 Merging Pastry Overlays
	6.3 Overlay Construction from Random Graph
	6.4 Data Consistency

	7 Summary
	7.1 Open Questions

	References

	Load Balancing in Structured P2P Networks
	Yingwu Zhu
	1 Introduction
	1.1 Motivation
	1.2 Load Definition
	1.3 Goals

	2 Load Information Aggregation and Dissemination
	2.1 Tree Structure-Based Approach
	2.2 Gossip-Based Approach
	2.3 Summary

	3 Load Balancing
	3.1 Virtual Server-Based Approach
	3.2 Power of Two Choices
	3.3 Address-Space and Item Balancing
	3.4 Discussion

	4 Case Study: Efficient, Proximity-Aware Load Balancing [14]
	4.1 Overview
	4.2 LBI Aggregation and Dissemination
	4.3 Proximity-Aware VSA
	4.4 VST
	4.5 Discussion

	5 Future Research
	6 Summary
	References

	Acyclic Preference-Based Systems
	Fabien Mathieu
	1 Introduction
	1.1 Stable Marriage: A Brief Overview
	1.2 Going P2P
	1.3 Outline

	2 Acyclic Preference-Based Systems
	2.1 Notation and Definition
	2.1.1 Preference-Based Systems
	2.1.2 Configurations
	2.1.3 Initiatives
	2.1.4 Nodes and Edges' Stability

	2.2 Acyclicity: Main Convergence Theorem
	2.3 Acyclic Classes
	2.3.1 P2P-Relevant Cases
	2.3.2 Considered Preferences

	3 Self-Stabilization Speed
	3.1 Upper Bounds
	3.1.1 Convergence (Rounds)
	3.1.2 Convergence (Initiatives)
	3.1.3 b-Matching Generalization

	3.2 Expected Convergence Time
	3.2.1 Generic Upper Bound
	3.2.2 Node-Based Preferences
	3.2.3 Random Acyclic Preferences
	3.2.4 Other Acyclic Preferences

	3.3 Simulations
	3.3.1 Best-Mate Initiative
	3.3.2 Random and Hybrid Initiatives

	4 Stable Configuration Description
	4.1 Specific Notation
	4.2 Acyclic Formulas
	4.2.1 Generic Formula
	4.2.2 Mean-Field Approximation

	4.3 Node-Based Preferences
	4.3.1 Fluid Limit
	4.3.2 Constant Degree Scaling
	4.3.3 Convergence Theorem
	4.3.4 Validation

	4.4 Acyclic and Distance-Based Preferences
	4.4.1 Complete Rank Distribution
	4.4.2 Distance Distribution
	4.4.3 Acceptable Rank Distribution

	4.5 b-Matching Generalization
	4.5.1 Mean Field Formulas
	4.5.2 Fluid Limits

	4.6 Some Basic Applications
	4.6.1 Stratification Trade-off
	4.6.2 Small-World Effect and Preference Dimension

	5 Conclusion
	References

	Part XI Measurement and P2P Traffic Characteristics
	The Behavior of Free Riders in BitTorrent Networks
	Manaf Zghaibeh, Kostas G. Anagnostakis, and Fotios C. Harmantzis
	1 Introduction
	2 BitTorrent Background
	3 Previous Work
	4 Methodology
	4.1 First Measurement Study
	4.2 Second Measurement Study

	5 Results and Discussion
	5.1 First Measurement Study
	5.2 Second Measurement Study
	5.2.1 Free Riders: Who Are They?
	5.2.2 Who Exploits BitTorrent?
	5.2.3 Is the Tit-for-Tat Robust?
	5.2.4 The Population of Peers and the Optimistic Unchoke
	5.2.5 Modified Approach to BitTorrent

	6 Conclusions
	7 Future Work
	References

	The Nature of Peer-to-Peer Traffic
	João V. P. Gomes, Pedro R. M. Inácio, Mário M. Freire, Manuela Pereira, and Paulo P. Monteiro
	1 Introduction
	2 The Importance of Traffic Characterisation
	2.1 The Effect of Peer-to-Peer Traffic in Computer Networks
	2.1.1 Consumption of Resources
	2.1.2 Traffic Asymmetry
	2.1.3 Peer-to-Peer Inside Organisations
	2.1.4 Network Security

	2.2 Making Peer-to-Peer a Practicable Solution: Traffic Classification
	2.2.1 Deep Packet Inspection Methods
	2.2.2 Classification in the Dark

	3 Peer-to-Peer Traffic Characterisation
	3.1 Generic Properties of Traffic from Peer-to-Peer Protocols
	3.2 Analysing Peer-to-Peer Traffic Behaviour
	3.3 Entropy as a Measure of Heterogeneity
	3.4 Capturing the Nature of Peer-to-Peer Traffic

	4 Inside a Network: Using Behavioural Characteristics to Identify Peer-to-Peer Traffic
	5 Summary
	References

	Characterization of P2P Systems
	Daniel Stutzbach and Reza Rejaie
	1 Introduction
	2 Measurement Techniques
	2.1 Passive Monitoring
	2.2 Participate
	2.3 Crawl
	2.4 Sample
	2.5 Centralize
	2.6 Summary

	3 What to Measure
	3.1 Static Peer Properties
	3.2 Dynamic Peer Properties
	3.2.1 Files Transfers

	3.3 Static Connectivity Properties
	3.4 Dynamic Connectivity Properties
	3.5 Summary

	4 Cruiser: A Fast P2P Crawler
	4.1 The Design of Cruiser
	4.1.1 Two-Tier Networks
	4.1.2 Distributed Architecture
	4.1.3 Asynchronous Communications
	4.1.4 Appropriate Timeouts

	4.2 Quantifying Snapshot Accuracy

	5 Sampling
	5.1 Sampling with Dynamics
	5.2 Sampling from Static Graphs
	5.2.1 Random Walks
	5.2.2 Adjusting for Degree Bias
	5.2.3 Evaluation

	5.3 Empirical Results
	5.3.1 Ion-Sampler
	5.3.2 Empirical Validation
	5.3.3 Efficiency

	6 Summary and Future Work
	References

	Improving Peer-to-Peer Transport Paths for Content Distribution
	Gerhard Hasslinger
	1 Introduction
	2 P2P Networking on Broadband Internet Platforms
	2.1 Users
	2.2 P2P Service and Protocol Designers
	2.3 Content and Service Providers
	2.4 Network and Broadband Access Providers
	2.5 Current Shifts in Internet Usage and Traffic Profiles

	3 Distribution and Access to Content on the Internet
	3.1 CDN Versus P2P Content Distribution
	3.2 Zipf Laws and 80:20 Rules

	4 Optimized Data Exchange in P2P Networks
	4.1 Current IETF Discussion on Application Layer TrafficEngineering
	4.2 Experience from the P4P Project Including Traffic Engineering
	4.3 Influence of Biased Source Selection on the Overlay Topology
	4.4 Caches
	4.5 Traffic Control for Bottlenecks

	5 Conclusions
	References

	Part XII Advanced P2P Computing and Networking
	A Formal Architectural Model for Peer-to-Peer Systems
	Lu Yan
	1 Introduction
	2 Action Systems
	2.1 Actions
	2.2 Classes and Objects
	2.3 OO-action System

	3 Initial Specification of the Gnutella System
	4 Action System Specification of the Gnutella System
	5 Refining Gnutella Servent
	5.1 Refining ConnectService
	5.2 Refining LookupService
	5.3 Refining DownloadService

	6 Concluding Remarks
	7 Future Directions
	References

	P2P Approach for Web Services Publishing and Discovery
	Mohmammad Towhidul Islam, Mursalin Akon, and Xuemin (Sherman) Shen
	1 Introduction
	2 Web Services
	2.1 Architecture of the Web Services
	2.2 UDDI Structure

	3 Peer-to-Peer Computing
	4 Web Services and P2P
	5 A Framework for Web Services Using P2P
	5.1 Registering a Peer
	5.2 Publishing Information
	5.3 Finding the Service

	6 Keyword Based Service Discovery
	6.1 System Architecture
	6.2 Query Engine
	6.3 Load Balancing

	7 Semantic Web Service
	7.1 Domain Ontology
	7.2 Semantic Web Service Discovery
	7.3 METEOR-S WSDI: A Semantic Web Services Tool
	7.3.1 Architecture of MWSDI

	8 Spider: A Unified Web Service Discovery Tool
	8.1 Keyword Based Search
	8.2 Ontology Based Search
	8.3 Behavior Based Search

	9 Discussion on Open Issues
	10 Conclusion
	References

	Content-Based Publish/Subscribe Systems
	Haiying Shen
	1 Introduction
	2 Subscription Models
	2.1 Topic-Based Systems
	2.2 Content-Based Systems
	2.3 Type-Based Systems

	3 Filter-Based and Multicast-Based Pub/Sub Systems
	4 Centralized and Distributed Pub/Sub Systems
	4.1 Centralized Pub/Sub Systems
	4.2 Distributed Broker-Based Pub/Sub Systems
	4.3 Distributed DHT-Based Pub/Sub Systems
	4.3.1 Introduction of DHT Overlay Networks
	4.3.2 Early DHT-Based Pub/Sub Systems
	4.3.3 DHT and Content Based Pub/Sub Systems

	5 Summary and Challenges
	References

	Supporting Collaboration and Creativity Through Mobile P2P Computing
	Adam Wierzbicki, Anwitaman Datta, Łukasz Zaczek, and Krzysztof Rzadca
	1 Introduction
	2 Applications for Collaboration and Creativity Support
	3 Collaboration Middleware Functionality
	3.1 General-Purpose Mobile P2P Middleware
	3.2 Overview of Middleware Functions
	3.2.1 Session Management
	3.2.2 Conference Management
	3.2.3 Data Synchronization
	3.2.4 Data Sharing
	3.2.5 Presence
	3.2.6 Workspace Awareness
	3.2.7 Group Management
	3.2.8 Access Control
	3.2.9 Trust Management
	3.2.10 Event Management
	3.2.11 End-to-End Security Functions

	3.3 Required P2P Overlay Functions
	3.3.1 Routing
	3.3.2 Publish-Subscribe
	3.3.3 Multicast
	3.3.4 Overlay Adaptation Functions

	3.4 Research Issues Related to Middleware Function Design

	4 SIP and P2PSIP
	4.1 The Session Initiation Protocol
	4.2 P2PSIP
	4.2.1 P2PP

	4.3 A Case Study: SharedMind
	4.4 Research Issues Related to SIP and P2PSIP

	5 Vertically Integrated Overlay
	5.1 In the Realm of Ringless Routing
	5.2 Virtual Ring Routing
	5.2.1 Fuzzynet
	5.2.2 Lookup (Read) Operations on Fuzzynet
	5.2.3 Publish (Write) Operations on Fuzzynet

	5.3 Identity Crisis in a Large-Scale Decentralized World
	5.4 DHT Based on a SocialCircle
	5.4.1 VRR Adaptation for SocialCircle
	5.4.2 Average Stretch of SocialCircle
	5.4.3 Average Stretch Distribution
	5.4.4 Distribution of Minimum Distances

	5.5 The Outlook for Future Works
	5.5.1 Fuzzynet Adaptation of SocialCircle

	5.6 Good and Better Peers

	6 Conclusions
	References

	Index

