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Preface

There are two schools of thought: one, a particular topic be chosen and
taught at an advanced level; the other, topics be chosen and first taught
at the introductory level and then at the advanced level. Each has its
own advantages and disadvantages. In the first case, study becomes very
focused and a significant level of the course can be achieved. But at
the same time it leaves inter-related topics introduced together. Even
the choice of examples becomes very limited. Thus, for the first timers
a course on algebra requires to go through several books. Connecting
topics becomes a difficult task. Different assumptions and notations too
pose a big problem.

In the second approach, however, related topics are studied simultane-
ously. They are collected at one place. Though an advanced level cover-
age may not be taught at the first stage, a reasonably good introduction
and sound background can be prepared. For a student coming to study
a course on algebra for the first time, this book presents all the basic
materials in one place and gives an opportunity to begin understanding
the topics in a most easy and comfortable way. The presentation of the
text is lucid. A large number of examples are used to explain the con-
cepts. This also prepares the students to attempt exercises themselves.
The book contains a large number of exercises, together with answers of
varying difficulty. These help students build confidence. Difficult exer-
cises follow simple ones. Graphics are also introduced. We have tried to
make a complete textbook for a first course in Algebra. That is why it is
Algebra – I. Two more volumes, Algebra – II and Algebra – III, will take
the students to higher and sufficiently advanced levels, as is expected
from a three-year undergraduate degree programme of any university or
institute.

The entire text of Algebra – I is divided into six different units formed
of related topics. Each unit is divided into chapters and each chapter
into sections. All theorems, lemmas and examples are continuously num-
bered by a three-digit number. That is, x.y.z means that the result is
in Chapter x, Section y and within the section its serial number is z.
At the end of each section, an exercise set is given. It is also numbered
as a section. The answers to the exercises in a chapter are given at the
end of the chapter. Each chapter begins with learning objectives and is
concluded by a summary of the topics covered. An attempt has been
made to make this book a complete resource book of a first course in
Algebra.

We are grateful to a lot of people. It is not possible to include
the names of all of them here. We thank a large large number of stu-
dents who have helped us in bringing out this book in its present form.

XIII



XIV PREFACE

Bhavya Chauhan, Sweta Mishra, Neha Makhijani and Parvesh Lathwal
are some of them. We remain indebted to all those who have helped us
in any manner in bringing out this book.

Rajendra Kumar Sharma
Sudesh Kumari Shah
Asha Gauri Shankar
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Chapter 1

Sets and Relations

In our daily life we come across words such as set, collection, group, clear
etc... In this chapter we begin by giving a mathematical definition of the word
”set” and proceed to study various types of relations on them. To make concepts
easily comprehensible, lots of examples and diagrams, called Venn diagrams have
been given. So, first thing first.

1.1 Sets

Definition 1.1. (Set): A set is a well defined collection of objects.

The adjective ‘well defined’ means that given an object, it should be possible
to decide whether it belongs to the collection or not. There should not be any
ambiguity. The objects that belong to a set are called its members or elements.

Example 1.1. The following are examples of sets:
(i) Factors of 120.
(ii) Roots of the equation x2 − 3x+ 2 = 0.
(iii) Letters of the word Boole.
(iv) The rivers of India originating in the Himalayas.
(v) The students of Sri Venkateswara College taking admission in 2009.

Example 1.2. The following are not sets:
(i) The collection of all intelligent teachers of Delhi University.
(ii) The collection of all fat ladies in Shalimar Bagh, Delhi.
(iii) The collection of all rich people in Delhi.
(iv) The collection of all hardworking students of Lakshmibai College.
(v) The collection of 9 natural numbers.

This is because the adjectives intelligent, fat, rich and hardworking are not
well defined.These terms are all relative. The collection (v) is not a set as it is
not well defined. The natural number 7 may or may not belong to the collection.
If the statement is modified as ‘the collection of first nine natural numbers’, then
it is a set and 7 is a member of the set.

2
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Notation: Sets are usually denoted by capital letters and their members
by lower-case letters. The statement “a is an element of A” is written as a ∈ A
and is read as “a belongs to A”, where ∈ is the Greek letter epsilon.

Example 1.3. 3 ∈ Z, 5 ∈ N, -5 /∈ N.

Definition 1.2. (Universal Set): The set from which we pick the elements
to test whether the properties under consideration are satisfied or not, is called
the Universal Set. This set may change depending on the context.

For instance, if we consider the set of all students obtaining more than 85%
marks in mathematics, it is not clear from where do we have to pick these
students. They can be picked from any one of the following sets:
(i) All students of Sardar Patel School, Delhi who have appeared for

class V lll.
(ii) All students of Delhi University who appeared in the annual

examination of 2009.
(iii) All students of Lakshmibai College who appeared in first year

examination of 2009.

Depending upon which of the sets (i), (ii) or (iii) we choose, our set defined
above will change.

Sometimes the universal set is not mentioned, then it is understood from the
context. We shall denote it by U.

Example 1.4. Let A={x ∈ R | −4 ≤ x ≤ 4}.
B={x ∈ Z | −4 ≤ x ≤ 4}.
C={x ∈ N | −4 ≤ x ≤ 4}.

In the above examples the universal sets are R, Z and N respectively. Thus
the sets A, B, C are different though the condition is the same in all the three
cases, A is the interval [-4, 4], B={-4, -3, -2, -1, 0, 1, 2, 3, 4} and C={1, 2, 3,
4}.

Description of a set: There are two ways of describing a set:
(i) Tabular method or Listing method or Roster method.
(ii) Set builder method or Property method or Rule method.

In the Roster method, all the elements are listed.Two elements are sepa-
rated by a comma and the entire set of elements is enclosed by curly brackets
(or braces).The elements should not be repeated, i.e., no element should be
written more than once. Moreover, the order in which the elements are written
is immaterial.

Example 1.5. 1. S={1, 2, 3, 4, 5, 6}
is the set of the first 6 natural numbers.

2. The set of the letters of word ‘mathematics’ is T={m, a, t, h, e, i, c, s}.
Note that though the letter m occurs twice in the word, it is written only
once when writing the set. In fact, if we write the letters in alphabetic
order, then S can be written as

{a, c, e, h, i, m, s, t}.
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3. E={2, 4, 6, 8, ...} is the set of even natural numbers.

In the Set builder method the elements are described by means of a
property which is possessed by all the elements.

Example 1.6. 1. In the preceding example, the set S can be written as

S = {n ∈ N | n ≤ 6}.

2. If A is the set of all alphabets, then the set T can be written as
T={x ∈ A|x is a letter of the word ‘mathematics’}.

3. The set E can be written as
E={x ∈ N | x is an even natural number}.

We can describe it as
E ={x ∈ N | x is divisible by 2 }.

Now, we give some sets which are written in Roster form as well as Set builder
form.

Example 1.7.

S. No. Roster Form Set Builder Form
1 {-3, -2, -1, 0, 1, 2} {x ∈ Z| − 3 ≤ x ≤ 2}
2 {-2, -1, 0, 1, 2} {x ∈ Z| x2 ≤ 5}
3 {1, 2, 3} {x ∈ N| x3 ≤ 50}
4 {B, o, l, e} {x| x is a letter of the word Boole}

At times the Roster method is not good, for example in the set {cat, dog,
rabbit, ...} it is not clear what are the other elements of the set. But when the
same set is written in set builder form, namely, {x|x is a mammal}, it is clear
which elements have to be included in the set.

Definition 1.3. (Empty set): A set which does not have any element is called
the empty set (or null set or void set).
It is denoted by {} or φ. The latter symbol is read as phi.

Example 1.8. 1. The set of all alive persons in India born before 1800
2. {x ∈ Z | x2 < 0}
3. {x ∈ Z | x > 2 and x < 1}
are all null sets.

Definition 1.4. (Singleton): A set consisting of exactly one element is called
a singleton. It is written as {a}.

Example 1.9. 1. {φ} is a singleton whose only element is the null set φ.
2. {x ∈ Z | x ≥ 2 and x ≤ 2 }={2}.

Definition 1.5. (Equality of Sets): Two sets A and B are equal if and only
if they have the same elements.
We write A = B. If two sets A and B are not equal, we write A 6= B.

Example 1.10. 1. If A = {2, 3, 5, 7}, B = {x ∈ N| x is a prime number and
x <8},then A = B.
2. A = letters of the word wolf, B= letters of the word flow.

Then A = {w, o, l, f}, B = {f, l, o, w}, so that A = B.
3. If A = φ, B = {φ}, then A 6= B.
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Definition 1.6. (Finite Set): A set is said to be finite if it is either empty
or it is in one-to-one correspondence with {1, 2, . . . , n} for some n ∈ N. The
number of elements in a finite set A is denoted by o(A).
A set which is not finite is infinite.

Example 1.11. 1. The set A of the months in a year is a finite set with
o(A)=12.
2. B = {x ∈ Z | x is divisible by 2}, B is an infinite set.
3. The set of all natural numbers, integers, rationals, and reals are infinite sets.
4. The set of all persons living in India on Sep 1, 2009 is a finite set.

Definition 1.7. (Subset): If A and B are two sets such that every element of
A is an element of B, then A is called a subset of B, we write A⊆B. If A is a
subset of B and A 6= B, then we say that A is a proper subset of B and we write
A ⊂ B.
When A ⊆ B, we may also say that A is contained in B. We can write this a B
⊇ A and we say that B is a superset of A or B contains A.

Example 1.12. 1. Let A = {1, 2, 3, 4}, B = {1, 2, 3, 4, 5}.
Then A ⊆ B. Since 5 ∈ B and 5 /∈ A, ∴ A is a proper subset of B.

2. If A is the set of letters in the word ‘algebra’ and B is the set of letters in
the word ‘real’,

then A = {a, b, e, g, l, r}, B = {a, e, l, r}. Clearly B ⊂ A.

Theorem 1.1. For any set A,
(i) φ ⊆ A
(ii) A ⊆ A

Proof:

(i) Suppose on the contrary φ * A. Then there exists x ∈ φ such that x /∈ A.
This is absurd as φ does not contain any element. ∴ Our assumption is
wrong, so that, φ ⊆ A.

(ii) Since every element of A is an element of A, therefore A ⊆ A.

Theorem 1.2. If A and B are two sets, then A = B, if and only if A ⊆ B and
B ⊆ A.

Proof: Left to the reader.
The above theorem gives a practical way to prove the equality of two sets.

Definition 1.8. (Power Set): The set of all subsets of a given set A is called
the power set of A. It is denoted by P(A).
In symbols, P(A) = {B | B ⊆ A}.

Example 1.13. 1. If A = {1}, then P(A) = {{1}, φ}
o(P(A)) = 2

2. If A = {x, y}, then
P(A) = {φ, {x}, {y}, {x, y}}
o(P(A)) = 4= 22.

3. If A ={p, q, r}, then
P(A) = {φ, {p}, {q}, {r}, {p, q}, {p, r}, {q, r}, {p, q, r}}
o(P(A)) = 8 = 23.
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Can you guess the number of elements in P(A), when number of element in
A is given. It is interesting to note that the power set of the empty set is not
empty. In fact, P(φ) = {φ}.

Problem 1.1. If A is a finite set containing n element, then P(A) has 2n

elements.

Solution: Let o(A) = n.
For 0 ≤ r ≤ n, the number of subsets of A containing r elements is nCr. Thus
total number of subsets of A

= nC0 +n C1 + ...........+n Cn
= 2n.

Hence o(P(A)) = 2n.

It follows from the above result that the power set of an infinite set is infinite.

1.2 Exercise

1. Write the following sets in Roster Form:
(i) {x | x is a natural number, x = x2}
(ii) {x ∈ N | x is divisible by 5}
(iii) {x ∈ Z | x4 − 64 = 0}
(iv) {a ∈ Z | − 1 ≤ |a| ≤ 5}
(v) {x ∈ Z | − 6 ≤ x ≤ 8}

2. Write the following sets in Set Builder Form:
(i) A = {3, 6, 9, 12, 15, 18}
(ii) B ={1, 2}
(iii) C = {2, 5, 10, 17, 26, . . .}
(iv) D = {-3, -2, -1, 0, 1, 2, 3}
(v) E = {1, -1, -i, i}, where i2 = −1

3. List 3 elements of the following sets:
(i) {p | p is a four letter word ending with ice}
(ii) {x+ y

√
7 | x, y are rationals}

(iii) {x+ y | x, y ∈ R, x2 + y2 = 4}
(iv) {x+ y | x, y ∈ Z, x2 + y2 = 25}
(v) {x ∈ Q| (x2 − 1)(x2 − 2)(x3 + 3x2 + 2x) = 0}
(vi) {xy | x ∈ {0, 1, 2}, y ∈ {−1, 1}}

4. Let P = {2, 4, 6, 8, 10}, write a subset Q of P such that
(i) {2, 10}⊆ Q
(ii) φ ⊆ Q
(iii) {4, 6} ⊂ Q
(iv) Q ⊆ {4, 10}
(v) Q ⊂ {6, 8}
(vi) Q * {2, 4, 6}
(vii) {2, 4} ⊆ Q ⊆ {2, 4, 8}
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5. Let A = {p, q, r, s, t} write a subset of A such that
(i) q belongs to the set A
(ii) It contains 3 elements
(iii) It contains s and t
(iv) It does not contain r or s
(v) It contains none of p, q, r, s or t.

6. Write the power set of A and tell the number of element in it, where
(i) A = φ
(ii) A = {φ}
(iii) A = {w, x, y, z}

7. Let A = {p, q, r}. Indicate whether the following are true or false, with
justification.
(i) φ ∈ A
(ii) φ ⊆ A
(iii) p ⊆ A
(iv) p ∈ A
(v) A ∈ A
(vi) A ⊆ A
(vii) A ∈ P(A)
(viii) φ ∈ P(A)
(ix) {q, r} ⊆ A
(x) {q, r} ∈ A
(xi) {q, r} ⊂ P(A)
(xii) {q, r} ∈ P(A)

1.3 Algebra of Sets

We now discuss some ways in which two or more sets can be combined to
give a new set.

Definition 1.9. (Union of two sets): Let A and B be two sets. The set of
all elements which belong to A or B or both is called the union of A and B. It
is denoted by A ∪ B.
Symbolically A ∪ B ={x | x ∈ A or x ∈ B}.

Example 1.14. If A = {1, 2, 3, 4}, B = {3, 5, 7, 11}, then A ∪ B = {1, 2,
3, 4, 5, 7, 11}.
A ∪ φ =A, B ∪ {φ} = {3, 5, 7, 11, φ}.

Using Venn diagram, the shaded region represents A ∪B in different cases.
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^ _ r
^ _ r

A ∪B

^ _ r ^ _ r

A ∪B

_

r
^

_
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^

A ∪B = A

_

r

^

_

r

^

A ∪B = B

Definition 1.10. (Intersection of two sets): Let A and B be two sets. The
intersection of A and B is the set of all those elements which are in A as well
as in B. It is denoted by A ∩ B.
Symbolically A ∩ B ={x | x ∈ A and x ∈ B}.

Example 1.15. If A = {a, b, c, d, e}, B = {a, e, i, o, u},
then A ∩ B = {a, e}, A ∩ φ = φ.
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Using Venn diagram, the shaded region represents A ∩B in different cases.

^ _ r ^ _ r

A ∩B = φ

^ _ r ^ _ r

A ∩B

_

r
^

_

r
^

A ∩B = B

_

r

^

_

r

^

A ∩B = A

Definition 1.11. (Disjoint sets): Two sets A and B are said to be disjoint
if A ∩ B = φ.

Example 1.16. A = set of all vowels, B = set of all consonants.
Then A ∩ B = φ.
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The following results, though simple to prove, are important in set theory.

Theorem 1.3. If A, B and C are three subsets of the Universal set U, then

• A ⊆ A ∪ B, B ⊆ A ∪ B

• A ∪ B = B ∪ A

• A ∪ (B ∪ C) = (A ∪ B) ∪ C

• A ∪ A = A

• A ∪ U = U

• A ∪ φ = A

• A ∩ B ⊂ A, A ∩ B ⊂ B

• A ∩ B = B ∩ A

• A ∩ (B ∩ C) = (A ∩ B) ∩ C

• A ∩ A = A

• A ∩ U = A

• A ∩ φ =φ

Proof: Left to the reader.

Since the union of three sets is associative, therefore there is no need to use
parentheses, we can simply write A ∪B ∪ C. Similarly if we have n sets A1,
A2, ......An, we can write

A1 ∪ A2 ∪....... ∪ An as
⋃n
i= 1Ai.

Similarly, if Λ is some index set and for each λ ∈ Λ, there is defined a set
Aλ, then union of all these sets Aλ is written as

⋃
λ∈Λ Aλ. Similar notation

holds for intersection. Note that if union and intersection are used in the same
expression then it is essential to use parentheses. That is A ∩B ∪ C is not well
defined, as the two sets (A ∩ B) ∪ C and A ∩ (B ∪ C) are different. This is
shown by following example.

Example 1.17. Let A = {a, b, c, d, e}, B = {a, e, i}, C = {b, d, e, f, g}.
Then A ∩B = {a, e}, (A ∩B) ∪ C = {a, b, d, e, f, g}.
B ∪ C = {a, b, d, e, f, g, i}, A ∩ (B ∪ C) = {a, b, d, e}.
Hence (A ∩ B) ∪ C 6= A ∩ (B ∪ C).
In fact union (intersection) is distributive over intersection (union).

Theorem 1.4. If A, B, C are any three sets, then
A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C).
A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C).

Proof: Try yourself.

Definition 1.12. (Difference of two sets): Let A and B be two sets. The
difference of A and B in that order is the set of all elements of A which do not
belong to B. It is denoted by A ∼ B or A\B or A − B. It is also called the
complement of B in A.
Symbolically A\B = {x ∈ A | x /∈ B}.
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Using Venn diagram, A\ B is represented by the shaded region.

^ _ r ^ _ r

A\B = A

^ _ r ^ _ r

A\B

_

r
^

_

r
^

A\B

_

r

^

_

r

^

A\B = φ

From the definition it is obvious that
(i) ArA = φ
(ii) Ar B ⊆ A.
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Example 1.18. Let A = {a, b, c, d, e, f, g, h, i}, B = {a, c, e, g, i, o, u},
C = {p, q, r, s}. Then
ArB = {b, d, f, h}
ArA = {} = φ
BrA = {o, u}
ArC = {a, b, c, d, e, f, g, h, i} = A
CrA = {p, q, r, s} = C.

Definition 1.13. (Complement of a set): The complement of a set A is the
difference of U and A. It is the complement of A in U, the universal set. It is
denoted by A′, Ac, A or U rA.

We shall use Ac for the complement of A. In the Venn diagram, the shaded
region represents Ac.

r

^

^`

Example 1.19. Let U be the set of natural numbers
A = set of all multiples of 3
B = set of all prime numbers.
Then Ac = {x ∈ N | x is not a multiple of 3}.
Clearly 19 ∈ Ac, 30 /∈ Ac
Ac = {1, 2, 4, 5, 7, 8, 10, 11, . . . }
Bc = {x ∈ N | x is not a prime number}
Clearly 1 ∈ Bc (∵ 1 is not a prime), 2 /∈ Bc.

The following results hold for complementation.

Theorem 1.5. Let A and B be any two sets. Then
(i) (Ac)c =A
(ii) A ∪Ac = U
(iii) A ∩Ac = φ
(iv) φc = U
(v) Uc = φ
(vi) A \B = A ∩Bc
(vii) (A ∪B) \ C = (A \ C) ∪ (B \ C)
(viii) (A ∪B)c = Ac ∩Bc, De Morgan’s law
(ix) (A ∩B)c = Ac ∪Bc, De Morgan’s law
(x) (A \B) \ C =A ∩ (B ∪ C)c

Proof: We shall prove only (ix)
x ∈ (A ∪B)c ⇐⇒ x /∈ A ∪B

⇐⇒ x /∈ A and x /∈ B
⇐⇒ x ∈ Ac and x ∈ Bc
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⇐⇒ x ∈ Ac ∩Bc
Hence (A ∪B)c = Ac ∩Bc.

The following results are useful in solving problems as they give the number
of elements in the union, intersection and complements of finite sets in terms of
the number of elements of the sets.

Theorem 1.6. If A, B, C are finite subsets of a universal set U, then
(i) o(A∪B) = o(A) + o(B), if A and B are disjoint sets.
(ii) o(ArB) = o(A)− o(A∩B).
(iii) o(A∪B) = o(A) + o(B)− o(A∩ B).
(iv) o(A∪B ∪ C) = o(A) + o(B) + o(C)− o(A∩B)− o(B ∩ C)−

o(C ∩A) + o(A∩B ∩ C).
(v) o(Ac) = o(U)− o(A), if U is finite.

Proof:

(ii) Since A = (A \B) ∪ (A ∩B) and (A \B) ∩ (A ∩B) = φ.
∴ By (i)

o(A) = o(A \B) + o(A ∩B)
or o(A \B) = o(A)− o(A ∩B)

(iii) A ∪B = (A \B) ∪ (B \A) ∪ (A ∩B)
and the sets A \B, B \A and A ∩B are mutually pairwise disjoint.

Applying (ii) the result follows.

(iv)

o(A ∪B ∪ C) = o(A ∪B) + o(C)− o((A ∪B) ∩ C) using (iii)
= o(A) + o(B)− o(A ∩B) + o(C)− o((A ∩ C)
∪(B ∩ C))

= o(A) + o(B) + o(C)− o(A ∩B)− (o(A ∩ C)
−o(B ∩ C) + o((A ∩ C) ∩ (B ∩ C))) using (iii)

= o(A) + o(B) + o(C)− o(A ∩B)− o(A ∩ C)
−o(B ∩ C) + o(A ∩B ∩ C)

Hence proved.

(i) and (v) are left to the reader

Problem 1.2. If B is a finite set and A ⊆ B such that o(A) = o(B), then
A = B.

Solution: Let o(B) = n.
Let, if possible A 6= B.
Then B\ A 6= φ so that o(B\ A) ≥ 1.
Now,

o(B \A) = o(B)− o(A ∩B)

= o(B)− o(A) (∵ A ∩B = A, as A ⊆ B)

= 0
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which contradicts the fact that o(B \A) ≥ 1. Hence our assumption is wrong,
so that A = B.

The above result fails to hold if A and B are infinite.
Consider

A= set of even integers
B = set of integers

Then A ⊂ B, A and B are both infinite sets.

Definition 1.14. (Symmetric difference of two sets): Let A and B be two
sets. The symmetric difference of A and B is the set of elements which are in
A or B but not in both. It is denoted by A M B.
Symbolically, A M B = {x | x ∈ A ∪ B, x /∈ A ∩ B}.
Thus A M B = (A ∪ B)\(A ∩ B).

Using Venn diagram, the shaded region represents A M B.

^ _ r ^ _ r

A M B

^ _ r ^ _ r

A M B

_

r
^

_

r
^

A M B
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_

r

^

_

r

^

A M B

From the definition, we get
A M B = (A r B) ∪ (B r A)

Example 1.20. In N, let
A = {x | x is a multiple of 4}
B = {x | x is a multiple of 6}
Then A M B = {x | x is a multiple of 4 or 6, but not of both}

= {4, 6, 8, 16, 18, 20, 28, 30, ...}

Problem 1.3. If A, B and C are any sets, then
(i) A M B = B M A
(ii) (A M B)MC = A M (B MC)

Solution:
(i) A M B = (A ∪ B)r(A ∩ B)

= ( B∪ A)r(B ∩ A)
= B M A

(ii) Let A,B,C ∈ P(S)
(A∆B)∆C = ((A ∩B′) ∪ (B ∩A′))∆C
= [{(A ∩B′) ∪ (B ∩A′)} ∩ C ′] ∪ [C ∩ {(A ∩B′) ∪ (B ∩A′)}′]
= [((A ∩B′) ∩ C ′) ∪ ((B ∩A′) ∩ C ′)] ∪ [C ∩ {(A′ ∪B) ∩ (B′ ∪A)}]
= [(A ∩B′ ∩ C ′) ∪ (B ∩A′ ∩ C ′)] ∪ [C ∩ {(A′ ∪B) ∩ (B′ ∪A)}]
Now,
(A′ ∪B) ∩ (B′ ∪A) = {(A′ ∪B) ∩B′} ∪ {(A′ ∪B) ∩A}
= (A′ ∩B′) ∪ (B ∩B′) ∪ (A′ ∩A) ∪ (B ∩A)
= (A′ ∩B′) ∪ (B ∩A)
Hence (A∆B)∆C = (A∩B′ ∩C ′)∪ (B ∩A′ ∩C ′)∪ [C ∩ {(A′ ∩B′)∪ (B ∩A)}]
= (A ∩B′ ∩ C ′) ∪ (B ∩A′ ∩ C ′) ∪ (C ∩A′ ∩B′) ∪ (C ∩B ∩A)
Similarly A∆(B∆C) = (A∩B′∩C ′)∪ (B∩A′∩C ′)∪ (C∩A′∩B′)∪ (A∩B∩C)
Hence (A∆B)∆C = A∆(B∆C).

In view of the above result, we need not put any parenthesis while writing
the symmetric difference of 3 sets. Using Venn diagram, the shaded portion
shows A M B M C.
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_

r^

`

A M B M C

Thus the parentheses can be dropped while writing the symmetric difference of
n sets.
More generally, it can be proved that the symmetric difference of n sets A1, A2,
..., An, written as A1 M A2 M...M An, is the set of those elements which are
members of an odd number of the sets Ai, i=1, 2..., n.

Definition 1.15. (Cartesian product of sets): Let A and B be two sets.
Then the cartesian product of A and B is the set {(a, b) | a ∈ A, b ∈ B}. It is
written as A ×B. We read it as A cross B. If one of the sets A or B is the
null set then A × B is defined as the null set.

The elements of A × B are called ordered pairs. This is because the order
of the elements is important. Thus if a 6= b, (a, b) 6= (b, a).

If (a1, b1), (a2, b2) ∈ A × B, then
(a1, b1) = (a2, b2)

if and only if a1 = a2 and b1 = b2.
More generally, the Cartesian product of n sets A1, A2, ..., An is

A1 ×A2 × ...×An = {(a1, a2, ..., an)| ai ∈ Ai, 1 ≤ i ≤ n}.

Example 1.21. Let A = {a, e, i}, B = {p, q},
then A × B = {(a, p), (a, q), (e, p), (e, q), (i, p), (i, q)}
B × A = {(p, a), (p, e), (p, i), (q, a), (q, e), (q, i)}
B × B = {(p, p), (p, q), (q, p), (q, q)}
Thus, we see that

(i) A × B 6= B × A
(ii) number of elements in A × B = 6 = 3 × 2 = o(A) × o(B)
(iii) number of elements in B × A = 6 = 2 × 3 = o(B) × o(A)
(iv) number of elements in B × B = 4 = 2 × 2 = o(B) × o(B)

More generally, if A and B are finite sets with m and n elements respectively,
then number of elements in A × B = mn = o(A)× o(B).

Theorem 1.7. If A, B, C are three sets, then
A × (B ∪ C) = (A × B) ∪ (A × C)
A × (B ∩ C) = (A × B) ∩ (A × C)

Proof: Let (x, y) ∈ A× (B ∪ C).
∴ x ∈ A and y ∈ B ∪ C
⇒ x ∈ A and y ∈ B or y ∈ C
⇒ (x, y) ∈ A×B or (x, y) ∈ A× C
⇒ (x, y) ∈ (A×B) ∪ (A× C)
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Hence A× (B ∪ C) ⊆ (A×B) ∪ (A× C) . . . (1).
Let (a, b) ∈ (A×B) ∪ (A× C).
∴ (a, b) ∈ A×B or (a, b) ∈ A× C
⇒ a ∈ A, b ∈ B or a ∈ A, b ∈ C
⇒ a ∈ A, and b ∈ B ∪ C
⇒ (a, b) ∈ A× (B ∪ C)

Hence (A×B) ∪ (A× C) ⊆ A× (B ∪ C) . . . (2)
(1) and (2) ⇒ A× (B ∪ C) = (A×B) ∪ (A× C).

The proof of other part is left to the reader.

Problem 1.4. Let X, A and B be three sets such that X ∩ A = X ∩ B and X
∪ A = X ∪ B. Prove that A = B.

Solution: We show that A ⊆ B
Let x ∈ A
Two cases arise:

Case 1: x ∈ X
Then x ∈ A ∩ X = X ∩ B
⇒ x ∈ B

Case 2: x /∈ X
Then x ∈ A ⇒ x ∈ A ∪ X = B ∪ X
⇒ x ∈ B (∵ x /∈ X)

Hence in each case x ∈ A ⇒ x ∈ B. So that A ⊆ B.
Similarly B ⊆ A. Hence A = B.

Problem 1.5. For any sets A and B prove that A ∩ B = A if and only if
A ⊆ B

Solution: We first prove that A ∩ B = A ⇒ A ⊆ B.
Since A ∩B ⊆ B, ∴ A ⊆ B.

Conversely, we prove that A ⊆ B ⇒ A ∩ B = A.
By definition A ∩ B ⊆ A.
If x ∈ A then x ∈ B (∵ A ⊆ B).
Hence x ∈ A ∩ B, so that
A ⊂ A ∩ B.
Thus A ∩ B = A.

Problem 1.6. Prove or disprove the following:
(i) P(A ∩ B) = P(A) ∩ P(B)
(ii) P(A ∪ B) = P(A) ∪ P(B)
(iii) P(A r B) = P(A) r P(B)

Solution:

(i) X ∈ P(A ∩ B)
⇔ X ⊆ A ∩ B
⇔ X ⊆ A and X ⊆ B
⇔ X ∈ P(A) and X ∈ P(B)
⇔ X ∈ P(A) ∩ P(B)

Hence P(A ∩ B) = P(A) ∩ P(B), so the result is proved.

(ii) The result is not true.
Let A = {1, 2, 3}, B = {2, 3, 4}
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Then A ∪ B = {1, 2, 3, 4}, C = {1, 4} ∈ P(A ∪ B)
but C /∈ P(A) and C/∈ P(B)
so that C /∈ P(A) ∪ P(B).

∴ P(A ∪ B) 6= P(A) ∪ P(B).

(iii) The result is not true. Choose A and B as in (ii) above. Then A r B =
{1}. So P(A r B) = {φ, {1}}, {1, 2} ∈ P(A) r P(B) but {1, 2} /∈ P(A
r B).

Hence P(Ar B) 6= P(A) r P(B).

1.4 Exercise

1. Let A denote the set of letters of the word ‘mathematics’, B denote the
set of letters of the word ‘algebra’ and C denote the letters of the word
‘analysis’.
Find A ∩ C, A ∪ B, (A ∪ B)∩C, A M B, (BrC) rA, Ar(BrC), (A ∪
B ∪ C)c, C×(A ∩B).

2. If A = (-8, 2), B = (-1, 5), write A ∪ B, A ∩ B, A r B, (A ∪ B)c as an
interval.

3. Let X = {x ∈ N | x <8 }
Y = {x ∈ Z | |x+ 1|≤5}
Z = {x ∈ R | x5-3x3-4x=0}.

Find X ∩ Y, X ∪ Z, (X ∩ Y) × Z, (XrY)rZ, X M Z, (Y M Z).

4. If A = {1, 2, 4, 6} and B = {1, 2, 3},
find (A×B) ∪ (B × A), (A × B) ∩ (B × A), (A × B)r(B × A).

5. For any two sets A and B, prove that (ArB)∩(BrA) = φ.

6. Using (A ∪ B)c = Ac ∩ Bc, prove that (A ∩ B)c = Ac ∪ Bc.

7. Find the necessary and sufficient conditions for
(i) A ∪ B = A
(ii) A r B = A
(iii) A M B = A
(iv) A ∩ B = A ∪ B

8. Let A, B, X and Y be sets such that A ∪ B = X ∪ Y , A ∩ B = X ∩ Y
= φ. Show that X = φ if and only if B = (X ∩ A)∪(Y ∩ B).

9. If A, B, C are sets show that
(i) Ar(B ∪ C) = (ArB) ∩ (ArC)
(ii) Ar(B ∩ C) = (ArB) ∪ (ArC).

10. Prove or disprove the following statements
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(i) (A ∪ B)×C = (A ∪ C)×(B ∪ C)
(ii) (A ∩ B)×C = (A ∩ C)×(B ∩ C)
(iii) If A ⊆ C and B ⊆ D, then A × B ⊆ C×D
(iv) If A × B ⊆ C×D, then A ⊆ C and B ⊆ D
(v) (A × B)∪(C ×D) = (A ∪ C)×(B ∪D)
(vi) Ac × Bc = (A×B)c

(vii) (ArB)×C = (A× C)r(B × C)
(viii) (A ∪B)×C = (A× C)∪(B × C).
(ix) (A ∩B)×C = (A× C)∩(B × C).
(x) (A M B)×C = (A× C)M(B × C).

11. Let N denote the set of natural numbers, Z the set of integers, E the set
of even integers and P the set of all prime numbers. Express the following
statements in set theoretic notation.
(i) Not every natural number is prime.
(ii) 2 is an even number which is also prime.
(iii) 3 is an odd prime.
(iv) Every natural number is an integer but not vice versa.
(v) There exists an integer which is not a natural number.
(vi) Every prime is odd.

12. If A and B are two sets having m and n elements respectively, prove that
A×B has mn elements.

13. If L is a straight line and E is an ellipse in a plane, what are all the possible
values of o(L ∩ E) ?

14. If A = {n ∈ N: n is a multiple of 12}
B = {n ∈ N: n is a multiple of 18}

Find A ∪B, A ∩B, (A ∪B)r(B ∩A), A×B.

15. Let U = set of all quadrilaterals in a plane, P , R, T and S be the subsets
of U defined as follows:
P = set of all parallelograms
R = set of all rhombus
T = set of all rectangles
S = set of all squares
Find the relationships between P , R, T and S in terms of containment.

16. In a survey of 100 delegates attending a conference, the number of dele-
gates who knew one or more of the 3 languages Tamil, Punjabi, and Bangla
was as follows: Tamil 28, Punjabi 30, Bangla 42; Tamil and Bangla 10;
Tamil and Punjabi 8; Punjabi and Bangla 5. Only 3 people know all the
three languages.
(i) How many did not know any language at all?
(ii) How many knew only Bangla?

17. In a class 70% of the students like mango, 80% like bananas, 75% like
apples, 85% like grapes and x% like all the four fruits. Find the minimum
value that is possible for x.
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18. Rakesh and Geeta are husband and wife. Geeta has 7 married friends
and Rakesh has 5 married friends. They arrange a party and invite their
friends with their partners. If all the friends come to the party, what is
the maximum and minimum number of
(i) guests in the party.
(ii) common guests in the party.

19. For 3 sets A, B, C regions are labelled as below. The sets A, B, C are
described as below:
A: set of all women
B: set of lawyers
C: set of cricket lovers

^

_

`
O

P
Q R

S

T
N

Express the following regions in the terms of the sets A, B, C:
(i) region labelled 1
(ii) region labelled 2
(iii) region labelled 3
(iv) region labelled 5 or 7
(v) region labelled 1, 4 or 6

20. Describe the persons represented by the regions in Q.19.

1.5 Binary Relation

Given two sets A and B at times, we are interested in associating elements
of A with elements of B. The pairs of associated elements form a subset of
A×B. This motivates the following definition:

Definition 1.16. (Binary Relation): Let A and B be two sets. A binary
relation from A to B is a subset of A×B. A subset of A×A is called a binary
relation on A.

The empty set (called void or null relation) and the entire cartesian prod-
uct A×B (called universal relation) are always binary relations form A to B,
though they are not as interesting as certain non-empty proper subsets of A×B.
If R ⊆ A×B and if (a, b) ∈ R we say that ‘a is R related to b’ and we may
write aRb.

Example 1.22. Let A = set of all students of St. Xaviers school
B = {hockey, football, badminton, cricket, volley ball, table tennis, basket

ball}
R1 = {(a, b) ∈ A×B| student a plays game b}
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R2 = {(a, b) ∈ A×B| student a plays lawn tennis}
R3 = {(a, b) ∈ A×B| student a plays hockey or cricket}.

Then R1, R2, R3 are relation from A to B. Note that R2 = φ.

Example 1.23. R1 = {(a, b) ∈ Z ×N| b = a2}
={(1, 1), (-1, 1), (-2, 4), (2, 4), . . . }

R2 = {(a, b) ∈ Z ×N| b = |a|}
= {(-1, 1), (1, 1), (-2, 2), (2, 2), . . . }

are relations from Z to N.

Example 1.24. R3 = {(a, b) ∈ Z ×Z| b = a+1}
= {(1, 2), (-1, 0), . . . }. R4 = {(1,−1), (2, 3), (−29, 341)}. Then R3 and

R4 define a relation on Z.

Graph of a Relation
A relation can be represented graphically also and this helps us to understand it
better. If R is a relation from A to B, then to draw the graph of R we proceed
as follows:
Take two perpendicular lines OX and OY . Represent the elements of A by
points on OX and the elements of B by points on OY . Plot the members of R
as points in the XOY plane. This is the graph of R.

Example 1.25. Let A = {0, 1, 2, 3, 4}, B = {0, 2, 4, 6}.
Define R = {(a, b) | b > 2a}. Then R = {(0, 2), (0, 4), (0, 6), (1, 4), (1, 6),
(2, 6)}.
The graph of R is as shown by points marked ×.

Example 1.26. Let R1 be a relation defined on R as follows:
R1 = {(x, y) | 16x2+25y2 = 400}

The graphical representation of this relation is the set of points in the plane of

R2 satisfying 16x2+25y2 = 400 i.e. x2

52 + y2

42 = 1 which is an ellipse centered
at origin with major axis of length 10 along x-axis and minor axis of length 8
along y-axis .
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Example 1.27. Let A = {Rita, Gita, Anita, Mita}
B = {Red, Blue, Green, Yellow, Orange}
and R = {(Rita, Blue), (Gita, Green), (Gita, Orange), (Mita, Red)}.
The graph of R is:

Definition 1.17. (Inverse of a relation): Let A and B be two sets and a
relation R from A to B. The inverse of R is the set

{(b, a) ∈ B×A | (a, b) ∈R}
and is a relation from B to A, and is denoted by R−1.

Example 1.28. 1. Let A = {1, 2, 3, 4, 5}, B = {a, b, c, d}
R = {(1, a), (1, d), (3, b), (2, c)}
Then R−1 = {(a, 1), (d, 1), (b, 3), (c, 2)}

2. Consider the relation from Z to N defined by
S = {(a, b) ∈ Z × N | b = a2}

= {(1, 1), (-1, 1), (2, 4), (-2, 4), (3, 9), (-3, 9), . . .}
Then S−1 = {(b, a) ∈ N × Z | b = a2}

= {(1, 1), (1, -1), (4, 2), (4, -2), (9, 3), (9, -3), . . .}

It is important to note that every relation has an inverse. The graph of R−1

can be obtained from the graph of R by reflecting it in the line y = x.

Properties of Binary Relation on a Set
Some binary relations on a set have certain properties which make them

special. We shall study these properties.

Definition 1.18. A binary relation R on a set A is said to be reflexive if and
only if (a, a) ∈ R ∀ a ∈ A.
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Example 1.29. 1. R1 = {(x, y) ∈ R×R | x ≥ y} is a relation on R. Since x ≥
x ∀ x ∈ R, so that (x, x) ∈ R1 ∀ x ∈ R. Hence R1 is a reflexive relation.
The graph of the relation is as shown:

v =Z=u

[

[

[

u

v

It is the shaded region including the line y = x.

2. R2 = {(x, y) ∈ R×R | x > y}. Since 2 ≯ 2 ∴ (2, 2) /∈ R2

Hence R2 is not reflexive. The graph of the relation is as shown:

v =Z=u

It is the shaded region excluding the line y = x.

3. R3 = {(x, y) ∈ R2 | x2 + y2 > 0}
(x, x) ∈ R3 for all x 6= 0.
(0, 0) /∈ R3, so that R3 is not reflexive.
This shows that (x, x) ∈ R3 ∀ x ∈ R for the relation to be reflexive. If it
fails even for one x, the relation is not reflexive.

By looking at the graph of the relation can we say that it is reflexive? Before
doing this, let us define the diagonal of A×A.

Definition 1.19. Let A be any non-empty set. Then D = {(a, a) | a ∈ A} is
called the diagonal set of A×A.
Graphically, a relation R on a set A is reflexive if and only if the diagonal of
A×A is contained in R.

A relation R on a set A for which R = D is called the identity relation.
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Example 1.30. Let A = {1, 2, 3}
R = {(1, 1), (2, 2), (3, 3), (1, 2), (3, 2)}.
The graph of R is

Since the graph of R contains the diagonal, therefore R is reflexive.

Definition 1.20. A binary relation R on a set A is symmetric if and only (a,
b) ∈ R implies that (b, a) ∈ R.

Example 1.31. 1. R4 = {(x, y) ∈ R2 | xy = 1} is a relation on R. If (x, y)
∈ R4 then xy =1 so that yx = 1. ∴ (y, x) ∈ R4. Hence R4 is symmetric
relation.
The graph of this relation is

v =Z=u

It is symmetric about the line y = x.

2. R5 = {(x, y) ∈ Z2 | x2+y2 = 25} is a relation on Z.
If (x, y) ∈ R5 then x2+y2 = 25 so that y2+x2 = 25.
Hence (y, x) ∈ R5. Thus R5 is symmetric.
The graph of R5 is
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Observe that the graph is symmetrical about y = x.

3. R6 = {(x, y) ∈ Z2 | y = |x|}
Some points on R6 are (1, 1), (-1, 1), (-3, 3) etc. Observe that the 2nd
component is always positive. (-1, 1) ∈ R6 but (1, -1) /∈ R6. Hence R6 is
not symmetric. The graph of R6 is
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Though the graph looks symmetrical but still R6 is not symmetric, because
symmetry is about y-axis, and not the line y = x.

Just by looking at the graph of the relation can we say that the relation is
symmetric? Yes, of course. If the graph of the relation is symmetric about the
line y = x, then if (x, y) belongs to the graph, so will (y, x). Hence the relation
will be symmetric.
A relation R is symmetric if and only if R = R−1 i.e. R and R−1 have identical
graphs.

Definition 1.21. A binary relation R on a set A is transitive if and only if (a,
b), (b, c) ∈ R implies that (a, c) ∈ R.

Example 1.32. 1. Consider the relation R1 defined in Example 1.29. If (a,
b), (b, c) ∈ R1 then a ≥ b and b ≥ c so that a ≥ c. Hence (a, c) ∈ R1 so
that R1 is a transitive relation.

2. Consider the relation R6 defined in Example 1.31.
If (x, y), (y, z) ∈ R6 then y=|x| and z = |y|. Thus z = |x| so that (x, z)∈
R6. Thus R6 is a transitive relation.



26 CHAPTER 1. SETS AND RELATIONS

3. Consider the relation R4 defined in Example 1.31
(3, 1

3), ( 1
3 , 3) ∈ R4, but (3, 3) /∈ R4, so that R4 is not transitive.

Definition 1.22. A binary relation R on a set A is antisymmetric if and only
if both (a, b), (b, a) ∈ R implies that a = b.

Remark 1.1. As the name suggests antisymmetric is ‘against symmetric’, so
the graph will not be symmetric. It is not just the negation of symmetric.

In fact, no pair (a, b) ∈ R, with a 6= b is such that (b, a) ∈ R. So, not
symmetric does not imply antisymmetric and not antisymmetric does not imply
symmetric.

Example 1.33. 1. Consider the relation R4 defined in Example 1.31. (3, 1
3),

( 1
3 , 3) ∈ R4, but 3 6= 1

3 . Hence the relation R4 is not antisymmetric.

2. Consider the relation R1 defined in Example 1.29. Let (x, y), (y, x) ∈ R1.
Then x ≥ y and y ≥ x so that x = y. Hence R1 is an antisymmetric
relation.

3. Let A be any set and P(A) the power set of A. On P(A) define a relation as
follows:

R7 = {(X, Y) ∈ P(A)×P(A) | X ⊆ Y}
If (X, Y), (Y, X) ∈ R7 then X ⊆ Y and Y ⊆ X, so that X = Y. Hence
R7 is antisymmetric.

By looking at the graph of a relation can we conclude whether it is antisym-
metric or not? Yes.

The graph of an antisymmetric relation is such that no pair of points other
than on the main diagonal are symmetrically located about y = x. So it is
possible that some points are symmetrically located whereas some points are
not. Such a relation is neither symmetric nor antisymmetric. Further the graph
consisting of points on the main diagonal only is both symmetric and antisym-
metric.

In the following example, we verify the properties of relations.

Example 1.34. Let A = {1, 2, 3, 4, 5}
R1 = {(1, 1), (2, 2), (1, 2), (2, 1)}
R2 = {(4, 5), (5, 4), (1, 2), (2, 3), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5)}
R3 = {(1, 1), (5, 5), (2, 3), (4, 5)}
R4 = {(1, 2), (2, 1), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5)}
Then R1 is not reflexive as (3, 3) /∈R 1

R1 is symmetric as whenever (a, b) ∈ R1 ⇒ (b, a) ∈ R1. R1 is transitive as
(a, b), (b, c) ∈ R1 ⇒ (a, c) ∈ R1. R1 is not antisymmetric, as (1, 2), (2, 1) ∈
R1 but 1 6= 2.
Thus R1 is a symmetric and transitive relation but not reflexive and antisym-
metric.
Since (a, a) ∈ R2 ∀ a ∈ A. ∴ R2 is reflexive. R2 is not symmetric, as (1, 2)
∈ R2 (2, 1) /∈ R2, R2 is not transitive, as (1, 2), (2, 3) ∈ R2 but (1, 3) /∈ R2,
(4, 5), (5, 4) ∈ R2 but 4 6= 5 so R2 is not antisymmetric. Thus R2 is reflexive
only.
R3 is antisymmetric because no two points of the form (x, y) and (y, x) for x 6= y
belong to R3. It is not reflexive as (1, 1) /∈ R3, it is not symmetric as (2, 3) ∈
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R3 but (3, 2) /∈ R3. It is transitive. Thus R3 is an antisymmetric and transitive
relation. It is neither symmetric nor reflexive.
R4 is reflexive, symmetric and transitive. It is not antisymmetric as (1, 2), (2,
1) ∈ R4 but 1 6= 2.

Equivalence Relation
We have studied four different types of properties of binary relations and each
of them is totally independent of the other. But relations satisfying a certain
combination of these properties form an important class of relations studied in
Mathematics.

Definition 1.23. Let R be a binary relation on a set A. Then R is called a
partial order on A if it is reflexive, antisymmetric and transitive and the system
(A,R) is called a partially ordered set(Poset).
(Z,≥), (N,≤) are partially ordered sets.

Definition 1.24. Let R be a binary relation on a set A. Then R is called an
equivalence relation if it is reflexive, symmetric and transitive.

Example 1.35. Suppose A is the set of all points on the surface of the earth.
On A, define R = {(a, b) ∈ A×A | a and b have the same longitude}
Clearly (a, a) ∈ R ∀ a ∈ A, so that R is reflexive. Let (a, b) ∈ R then a, b have
the same longitude so that (b, a) ∈ R. Hence R is symmetric.
Let (a, b), (b, c) ∈ R. Then a, b have the same longitude and b, c have same
longitude. Thus a, c have the same longitude, so (a, c) ∈ R. Thus R is transi-
tive.
Since R is reflexive, symmetric and transitive therefore it is an equivalence re-
lation.

Sometimes we do not talk of a specific relation on A. We denote it by ∼.
We write a ∼ b. The symbol ∼ is read as ‘wiggle’. We read it as ‘a is related to
b’ or ‘a wiggle b’.

Example 1.36. On Z define a relation ∼ as follows a ∼ b if (a− b) is divisible
by 4. Clearly for any a ∈ Z, a− a=0 which is always divisible by 4.
∴ a ∼ a ∀ a ∈ Z so that R is reflexive.
Let a ∼ b. Then (a - b) is divisible by 4 so that (b - a) is also divisible by 4.
Hence a∼ b implies that b ∼ a.
∴ ∼ is symmetric.
Let a, b, c ∈ Z such that a ∼ b and b ∼ c, then (a - b) and (b - c) are both
divisible by 4. ∴ (a - b)+(b - c) = (a - c) is divisible by 4, hence a ∼ c, so that
∼ is transitive.
Thus ∼ is an equivalence relation on Z.

In the above example we observe the following:
0 ∼ 4k, 1 ∼ 1+4k, 2 ∼ 4k+2 and 3 ∼ 4k+3 for any k ∈ Z. Any n ∈ Z is either
of the form 4k, 4k+1, 4k+2, 4k+3 for some k ∈ Z.
Thus every integer is related to 0 or 1 or 2 or 3. Consider the sets
A0 = {........, -12, -8, -4, 0, 4, 8, 12, ........}
A1 = {........, -11, -7, -3, 1, 5, 9, 13, ........}
A2 = {........, -10, -6, -2, 2, 6, 10, 14, .......}
A3 = {........, -9, -5, -1, 3, 7, 11, 15, ........}
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Any two elements of A0 are related to each other and each of them is
related to 0. Similarly each element of A1 is related to 1, each element of A2 is
related to 2 and each element of A3 is related to 3. Every integer n belongs to
exactly one of the sets A0, A1, A2 or A3. That is

A0 ∪ A1 ∪ A2 ∪ A3 = Z
and any two Ai’s are disjoint, i = 0, 1, 2, 3.

Thus the set Z is divided into 4 mutually disjoint subsets such that any two
members of the same set are related and any two members from different sets
are not related.

This motivates us to see whether this is possible for every equivalence

relation.

Definition 1.25. (Equivalence class): Let A be any set and ∼ is an equiv-
alence relation on A. For any a ∈ A, the set {x ∈ A : a ∼ x}, of all elements
of A which are related to ‘a’ is called the equivalence class of ‘a’.

It is denoted by a or [a] or cl(a). We shall use the notation [a] for the
equivalence class of ‘a’.

Definition 1.26. (Quotient set): Given an equivalence relation ∼ on a set
A, the set of all equivalence classes is called the quotient set of A mod ∼. It
may be denoted by A/∼.

Thus in Example 1.36 the equivalence classes of 0, 1, 2, 3 are A0, A1, A2,
A3 respectively.
Thus [0] = A0, [1] = A1, [2] = A2, [3] = A3.
In fact [4] = A0 so that perhaps we may say that if x ∈ [0] then [x] = [0].
The quotient set of Z mod ∼ is {A0, A1, A2, A3}.
We now prove that any two elements which are related give rise to the same
equivalence class.

Theorem 1.8. Let ∼ be an equivalence relation on a set A. Let a ∈ A. Then
for any b ∈ A, b ∼ a if and only if [b] = [a].

Proof: [a] = {x ∈ A | a ∼ x}.
Let b ∈ A such that b ∼ a. We show that [a] = [b].
Let x ∈ [a]. Then a ∼ x. Now b ∼ a, a ∼ x ⇒ b ∼ x (∵ ∼ is transitive)
⇒ x ∈ [b]. Hence [a] ⊆ [b]. ...(1)
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If x ∈ [b], then b∼ x.
Now b ∼ a ⇒ a ∼ b (∵ ∼ is symmetric).
Since a ∼ b and b ∼ x , therefore a ∼ x by transitivity.
⇒ x ∈ [a]. ∴ [b] ⊆ [a] ...(2)
(1) and (2) ⇒ [a] = [b].
Conversely let [a] = [b].
b ∈ [b] (∵ b ∼ b) ⇒ b ∈ [a] ⇒ a ∼ b ⇒ b ∼ a (∵ ∼ is symmetric).

Theorem 1.9. Let ∼ be an equivalence relation on a set A and a, b ∈ A. Then
the equivalence classes [a] and [b] are either identical or disjoint.

Proof: In case [a] = [b], then proof is complete.
Suppose [a] 6= [b], we prove that [a] ∩ [b] = φ.
Let, if possible, x ∈ [a] ∩ [b]. Then x ∈ [a] and x ∈ [b]. ∴ a ∼ x and x ∼ b, so
that a ∼ b. Then [a] = [b] by Theorem 1.8, which contradicts our assumption.
Hence [a] ∩ [b] = φ.

The above theorem is generally stated as “two equivalence classes are either
identical or disjoint”. Thus, an equivalence relation gives rise to a partition of
the underlying set. Before proving this, we give a formal definition of a partition.

Definition 1.27. A partition of a set A is a collection of subsets {Aα : α ∈
Λ} such that
(i)

⋃
α∈Λ Aα = A

(ii) Aα ∩ Aβ = φ for α 6= β, α, β ∈ Λ.

If A is a finite set, then the partition will be finite. If A is an infinite set,
the partition may be finite or infinite.

Example 1.37. 1. Let E = set of even integers
and O = set of odd integers
Then {E, O} is a finite partition of Z.

2. Referring to Examples 1.36
the set {A0, A1, A2, A3} forms a partition of Z. Thus an infinite set Z
has a finite partition.

3. On Z, define A0 = {0}, for n > 0 An = {n,−n}. Then {An|n ∈ N ∪ {0}}
is an infinite partition of Z.

Theorem 1.10. Let A be any set. Every equivalence relation on A gives rise
to a partition of A. Conversely, corresponding to every partition of A, there is
defined an equivalence relation on A.

Proof: Let ∼ be an equivalence relation on A. Since each element of A belongs
to some equivalence class, namely [a], and any two equivalence classes are either
identical or disjoint, therefore {[a] : a ∈ A} forms a partition of A. Conversely
let {Aα: α ∈ Λ} be a partition of A, where Λ is some index set. Then A =⋃
α∈Λ Aα and Aα ∩ Aβ = φ for α 6= β, α, β ∈ Λ. We define a relation ∼ on A

as follows:
For a, b ∈ A, a ∼b if and only if a, b belong to the same set Aα, for some α ∈ Λ.
Let a, b, c ∈ A. Then

1. Since A =
⋃
α∈Λ Aα, there exists α ∈ Λ such that a ∈ Aα. Hence a ∼ a,

so that ∼ is reflexive.
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2. Let a ∼b. Then, there exists α ∈ Λ such that a, b ∈ Aα.
∴ b, a ∈ A α, so thatb ∼ a. Hence ∼ is symmetric.

3. Let a ∼b and b ∼c,
a ∼b ⇒ ∃ α ∈ Λ such that a, b ∈ Aα.
b ∼c ⇒ ∃ β ∈ Λ such that b, c ∈ Aβ .
If α 6= β then Aα ∩ Aβ = φ but b ∈ Aα ∩ Aβ , so that α = β i.e. Aα =
Aβ . Thus a,c∈ Aα. Hence a ∼ c. So ∼ is transitive.

From 1, 2, 3 it follows that ∼ is an equivalence relation on A.

Graph of an Equivalence Relation
Consider a set A consisting of 10 elements, say

A = {a1, a2, ............, a10}
Suppose R is an equivalence relation on A, whose equivalence classes are
C1 = [a1] = {a1, a2, a5}, C2 = [a3] = {a3, a4, a7, a9}, C3 = [a6] = {a6, a8},
C4 = [a10] = {a10}.

Then every element of Ci is related to each other, i = 1, 2, 3, 4 (by definition
of equivalence relation) and no two elements of Ci and Cj are related, for i 6= j.
∴ R = (C1 × C1) ∪ (C2 × C2) ∪ (C3 × C3) ∪ (C4 × C4)

= R1 ∪R2 ∪R3 ∪R4, where Ri = Ci × Ci, i = 1, 2, 3, 4.
Thus Ri is the universal relation on Ci. Also Ri ∩Rj = φ, i 6= j, i, j = 1, 2, 3, 4.
o(Ri) = o(Ci × Ci) = [o(Ci)]

2

o(R) =

4∑
i=1

o(Ri) =

4∑
i=1

[o(Ci)]
2 = 32 + 42 + 22 + 12 = 30.

In fact, R = {(a1, a1), (a1, a2), (a1, a5), (a2, a1), (a2, a2), (a2, a5), (a5, a1),
(a5, a2), (a5, a5), (a3, a3), (a3, a4), (a3, a7), (a3, a9), (a4, a3), (a4, a4), (a4,
a7), (a4, a9), (a7, a3), (a7, a4), (a7, a7), (a7, a9), (a9, a3), (a9, a4), (a9, a7),
(a9, a9), (a6, a6), (a6, a8), (a8, a6), (a8, a8), (a10, a10)}.
The graph of the R is shown in the Figure 1.
If we rearrange the elements of A on the axes so that the elements of an equiva-
lence class occur together then the graph of R appears as in Figure 2. Another
way of rearranging the elements is shown in the Figure 3.

Thus the graph of an equivalence relation can be rearranged as square blocks,
put diagonally.

Fig 1
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Thus, we can generalize the above result as follows:
Let A be a finite set having n elements and let R be an equivalence relation
on A. Let C1, C2, C3, ...., Ck be the equivalence classes of R and o(Ci) = ni,
1 ≤ i ≤ k. Then A =

⋃
k
i=1Ci.

Since any two elements of Ci are related and no two elements of Ci and Cj are
related for i 6= j, therefore if Ri is the universal relation, then
R =

⋃
k
i=1Ri, Ri ∩Rj = φ, i 6= j.

o(R) =
∑

k
i=1o(Ri) =

∑
k
i=1o(Ci)

2 = n2
i .

If the elements of A are written on the axes in the order of the elements of
C1, C2, C3, ..., Ck, then the graph of R can be put as ni × ni square blocks,
along the diagonal i = 1, 2, ..., k.

Problem 1.7. On R2, define a binary relation as follows:
R = {((a, b), (c, d)) ∈ R2 × R2 | a2 + b2 = c2 + d2}
Prove that R an equivalence relation. Find the equivalence classes of R.

Solution: Since a2 + b2 = a2 + b2, ∀(a, b) ∈ R2
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∴ ((a, b), (a, b)) ∈ R ∀(a, b) ∈ R2. Hence the relation R is reflexive.
Let ((a, b), (c, d)) ∈ R
∴ a2 + b2 = c2 + d2

⇒ c2 + d2 = a2 + b2

⇒ ((c, d), (a, b)) ∈ R
⇒ R is a symmetric relation.
Let ((a, b), (c, d)), ((c, d), (e, f)) ∈ R
∴ a2 + b2 = c2 + d2 and c2 + d2 = e2 + f2

Thus a2 + b2 = e2 + f2

so that ((a, b), (e, f)) ∈ R
Thus, R is transitive relation.
Hence, R is an equivalence relation.

Let us now find the equivalence classes of (a, b) ∈ R2. [(a, b)] = {(x, y) ∈
R2|(x, y) ∼ (a, b)} = {(x, y) ∈ R2|(x2 + y2 = a2 + b2}.
Thus [(a, b)] is a circle with center at the origin and passing through (a, b). Hence
the equivalence classes are the concentric circles with center at the origin.

Problem 1.8. Let A be a set having 5 elements.
(i) How many binary relations can be defined on A?
(ii) How many reflexive binary relations can be defined on A?
(iii) How many symmetric binary relations can be defined on A?
(iv) How many equivalence relations can be defined on A?

Solution: Since o(A) = 5 = n(say)
∴ o(A×A) = 52 = 25.
Let A = {a, b, c, d, e}, Then D = {(x, x) | x ∈ A}.

(i) Since a binary relation on A is precisely a subset of A×A and o(℘(A×A))
= 225

∴ There are 225 binary relations on A.

(ii) Since a reflexive relation on R always contains the diagonal D, and there
are 5(=n) elements in the diagonal.
∴ Number of subsets of A × A which always contains D = 225−5 =
220(=2n

2−n).

(iii) Let R be a symmetric binary relation on A. Then (a, b) ∈ R ⇒ (b, a) ∈ R,
for a 6= b. Also any number of elements of the form (x, x) for x ∈ A may
be in R. Thus we see that the choice of elements of R has to be made from
5 + 4 + 3 + 2 + 1 = 15 elements.
∴ Number of subsets of A × A which always contain (b, a) whenever it
contains (a, b) = 215. Number of symmetric relations on A = 215.

(iv) Since every partition of a set gives rise to an equivalence relation on the
set, therefore the equivalence relations on a set with 5 elements is equal
to the number of partitions of a set with 5 elements.
Let A = {a, b, c, d, e}.
Number of partitions of A into subsets of the form {a}, {b}, {c}, {d}, {e} =
number of ways in which 5 sets containing one element each can be chosen
=1.
Number of partitions of A into subsets of the form {a}, {b}, {c}, {d, e} =
number of ways in which a set containing 2 elements can be chosen =5C2 =
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10.
Number of partitions of A into subsets of the form {a}, {b}, {c, d, e} =
number of ways in which a set containing 3 elements can be chosen =5C3 =
10.
Number of partitions of A into subsets of the form {a}, {b, c, d, e} = num-
ber of ways in which a set containing 4 elements can be chosen =5C4 = 5.
Number of partitions of A into subsets of the form {a}, {b, c}, {d, e} =
number of ways in which a set containing 2 elements and another set con-
taining 2 of the remaining 3 elements can be chosen =5C2×3C2 = 10×3 =
30.
Number of partitions of A into subsets of the form {a, b}, {c, d, e} = num-
ber of ways in which a set containing 2 elements can be chosen =5C2 = 10.
Number of partitions of A into subsets of the form {a, b, c, d, e} = number
of ways in which a set containing 5 elements can be chosen =5C5 = 1.
Total number of partitions of A =1+10+10+5+30+10+1=67.
∴ Number of equivalence relations on A = number of partitions of A=67.

1.6 Exercise

1. Let C be the set of all children in Delhi in the age group 3 to 10 years and
S the set of all schools in Delhi. Define 3 binary relations from C to S.

2. If A and B are sets such that o(A) = 5 and o(B) = 3, then
(i) How many binary relations are there from A to B.
(ii) How many binary relations are there on A.
(iii) How many binary relations are there on B.

3. Draw the graphs of the following binary relations.
(i) A = {a, b, c, d, e}, B = {x, y, z}

R = {(a, x), (b, x), (c, x), (d, y), (e, z)}
(ii) A = {SVC, LBC, MC, JMC, DR, IP, HR, LSR, DB}

B = {B.Sc., BA, BBE, B.Com, MA, M.Com}
R = {(SVC, B.Sc), (SVC, MA), (LBC, B.Com), (MC, BA),
(LSR, BBE), (JMC, BA), (DR, M.Com)}

4. Write the relation whose graph is the following:
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5. Let R be a relation on the set of reals defined as follows:
R = {(x, y) ∈ R× R | y2 = 4x}
Draw the graph of this relation.

6. Find the inverses of the relations in Q3 and draw their graphs.

7. If R is a relation on a set A. Prove that
(i) R is reflexive ⇔ R−1 is reflexive.
(ii) R is symmetric ⇔ R−1 is symmetric.
(iii) R is transitive ⇔ R−1 is transitive.
(iv) R is antisymmetric ⇔ R−1 is antisymmetric.

8. Check whether the following relations are reflexive, symmetric, transitive
and antisymmetric.
(i) S is the set of all students of IIT, Delhi.

R1 = {(a, b) ∈ S × S | A and B study a common course}
(ii) W is the set of all words of the English language.

R2 = {(x, y) ∈ W × W | words x and y have no letter in common}
(iii) P is the set of all points on the earth.

R3 = {(p, q) ∈ P × P | p and q have the same latitude}
(iv) X is the set of all women in India.

R4 = {(a, b) ∈ X × X | a is mother of b}
(v) X is the set of all people living in India.

R5 = {(x, y) ∈ X × X | x and y have the same mother tongue}

9. On each of the sets defined in Q8, define a relation different from the one
already given.

10. Determine which of the following relations are reflexive, symmetric, tran-
sitive and antisymmetric.
(i) L is the set of all lines in a plane

R1 = {(l1, l2) ∈ L × L | l1 is perpendicular to l2}
R2 = {(l1, l2) ∈ L × L | l1 is parallel to l2}
R3 = {(l1, l2) ∈ L × L | l1 intersects l2 in one point}

(ii) On Q, the set of rationals, define
R4 = {(a, b) ∈ Q×Q | |a− b| < 1

2}
R5 = {(a, b) ∈ Q×Q | |a| = |b|}
R6 = {(ab , c

d ) ∈ Q×Q | ad = bc }
(iii) On N, the set of natural numbers, define

R7 = {(a, b) ∈ N× N | a divides b }
(iv) On Z, define

R8 = {(a, b) ∈ Z× Z | |a| = |b|}

11. For the relations defined in Q1, determine which of the properties: reflex-
ivity, symmetry, transitivity and antisymmetry do they possess?

12. Which of the relations in Q8 are equivalence relations. Determine the
equivalence classes of the equivalence relations.

13. Determine the set of equivalence classes of the equivalence relations in
Q10.
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14. Determine a binary relation on S = {1, 2, 3, 4, 5} with the help of a
graph, which satisfies the following properties:
(i) Symmetric and antisymmetric, not reflexive.
(ii) Symmetric and reflexive, not antisymmetric
(iii) Symmetric, reflexive and antisymmetric.
(iv) Reflexive and antisymmetric, but not symmetric.
(v) Neither reflexive, nor symmetric nor antisymmetric.

15. Draw the graph of the following relation on N. Also find the number of
elements in the relation.
A = {(a, b) ∈ N× N | a ≤ b ≤ 15}

16. Let A ⊆ N× N defined as:
(i) (1, 1) ∈ A, (a, b) ∈ A ⇒ (a, b+1) and (a+1, b+1)∈ A

Draw the graph of A.
(ii) If B = {(a, b) ∈ N× N | a ≥ b}, find A ∩ B

17. Construct examples of relations on S = {a, b, c, d, e} which satisfy the
following properties:
(i) Reflexive but neither symmetric nor transitive.
(ii) Symmetric but neither reflexive nor transitive
(iii) Transitive but neither reflexive nor symmetric.
(iv) Reflexive and symmetric but not transitive.
(v) Reflexive and transitive but not symmetric.
(vi) Symmetric and transitive but not reflexive.
(vii) Neither symmetric, nor reflexive, nor transitive.
(viii) Reflexive, symmetric and transitive.
(ix) Symmetric but not antisymmetric.

(x) Antisymmetric but not symmetric.
(xi) Antisymmetric and symmetric.
(xii) Neither antisymmetric nor symmetric.

18. What are the equivalence classes of
(i) The identity relation on {2, 4, 6, 8, 10, 12}
(ii) The universal relation on the set {1, 2, 3, ...., 12}?

19. Construct an equivalence relation on the set {1, 2, 3, ....10} having exactly
(i) 3 equivalence classes
(ii) 5 equivalence classes
(iii) 11 equivalence classes
(iv) 10 equivalence classes.

20. Given below are the graphs of a binary relation on a set. By looking at
the graph, can you tell whether the relation is an equivalence relation?
What are the equivalence classes.
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21. Let A = {a, b c, d, e, f}. Given the following partition of A, find the
equivalence relation corresponding to it.
(i) {{a, b d, e}, {c, f}}
(ii) {{a, d, f}, {b, c}, {e}}
How many elements will there be in the equivalence relation?

22. Let A = {1, 2, 3, 4, 5, 6, 7}. Given the equivalence classes of the equiva-
lence relation R on A, find the partition of A where R has the equivalence
classes given by
(i) [1] = {1, 3, 5, 7}; [2] = {2, 4, 6}
(ii) [1] = {1}, [2] = {2, 3, 5, 7}, [4] = {4, 6}
Also find the equivalence relation. How many elements does the equiva-
lence relation contain ?

23. Let A = {1, 2, 3, 4, 5}. On A can you define an equivalence relation
having exactly
(i) 5 elements
(ii) 7 elements
(iii) 8 elements
(iv) 17 elements
(v) 18 elements.
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1.7 Supplementary Exercises

1. State whether the following are true or false. Justify the false ones.
(i) The null set is a superset of every set.
(ii) Every set is a superset of the universal set.
(iii) If A = {a, b, c} then c ⊆ A.
(iv) If S = {1, 2, 3} then {1} ∈ S.
(v) φ ⊆ {φ, {φ}}
(vi) 5 ∈ {3a + 4b | a ∈ {-1, 0, 1, 2}, b ∈ {0, 1, 2, 3}}
(vii) If A has 3 elements, then P(P(A)) has 27 elements.
(viii) If A and B are unequal sets, then A ∩ B ( A ∪ B.
(ix) If A and B are sets then A M B 6= φ.
(x) If A and B are non-empty sets then A × B = B × A.
(xi) A ⊆ B ⇒ Ac ⊆ Bc.
(xii) (A × B)c = Ac × Bc.
(xiii) If a relation R on a set A is symmetric then it is not anti-

symmetric.
(xiv) Every relation on a set is reflexive.
(xv) If a relation R is symmetric, so is R−1.
(xvi) Every relation on a set A is either symmetric or antisym-

metric.
(xvii) If A = φ, then P(A) = A.

(xviii) The number of subsets of A which contain neither 1 nor 5,
where A = {1, 2, 3, 4, 5, 6}, are 26- 22.

(xix) The number of equivalence relations on a set with 3 elements
is 3.

2. If A = {a, b, φ}, B = {φ} list the elements of A ∪ B, A ∩ B, Ar B, A M
B and P(A).

3. If A = {a, b, c, {a, b}}, find
(i) Ar{a, b}
(ii) {a, b, c} r A
(iii) ({a, b, c}∪ {A}) r A
(iv) A r {A}
(v) P(A)

4. A1, A2, . . . , Ak are sets such that Ai ⊆ Ai+1, i= 1, 2, . . . , k-1. Find A1

∩ A2 ∩. . .∩Ak and A1 ∪ A2 ∪. . .∪Ak.

5. For any real number α, let
Aα = {a ∈ R | a ≤ α}

(i) write Aα as an interval.
(ii)

⋃
α∈R Aα.

(iii) Aα ∩ Acβ .

6. Let A = {n ∈ Z | n is even}, B = {n ∈ Z | n is odd},
C = {n ∈ Z | n is a multiple of 3},
D = {n ∈ Z | n is a multiple of 4}.
Find (i) A ∩ C, (ii) A ∪ C, (iii) C ∪ D, (iv) B ∩ D, (v) B ∩ C (vi) A ∩
B ∩ C ∩ D.

7. Prove that A ⊆ B if and only if (B ∩ X) ∪ A = B ∩(X ∪ A) for every
set X.
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8. Write the power set of the set A where
(i) A = φ
(ii) A = {φ}
(iii) A = {φ, {φ}}
(iv) A = P(A), where A is as in (iii)
(v) A = P(B), B = {x, y}.

9. Write 3 elements of the set
{(a, b) ∈ R× R | ab ∈ Q, a, b are distinct irrational numbers}.

10. If A is any set, when can we have
(i) o(P(A)) = o(A)
(ii) P(A) = A.

11. A and B are finite sets with o(A) = m and o(B) = n.
(i) How many binary relations can be defined from A to B?
(ii) How many binary relations can be defined on A?

12. How many reflexive binary relation can be defined on a set with n ele-
ments?

13. How many symmetric binary relation can be defined on a set with n ele-
ments ?

14. Prove or disprove the following, “Every symmetric and antisymmetric bi-
nary relation on a set A is reflexive.”

15. On the set A, the following relations are defined. Check whether they are
equivalence relations or not. If not, give reasons. If yes, find the equiva-
lence classes.
(i) A = Z. For a, b ∈ Z, a ∼ b if |a|=|b|.
(ii) A = Z. For a, b ∈ Z, a ∼ b if ab > 0.
(iii) A = R. For a, b ∈ R, a ∼ b if b = 2a + 3.
(iv) A = Q. For a

b , c
d ∈ Q, a

b ∼
c
d if a

b
and c

d are equivalent to a rational number with common
denominator.

(v) A = Z. For a, b ∈ Z, a ∼ b if 2a + 3b = 10.

16. On R2, the following relations are defined. Check whether they are equiv-
alence relations or not. If not, give reasons. If yes, find the equivalence
classes.
(i) (a, b) ∼ (c, d) iff both the points lie on the same curve

4x + 5y = k, for some k ∈ R.
(ii) (a, b) ∼ (c, d) iff both the points lie on the same curve

x2 + y2 = k2, for some k ∈ R.
(iii) (a, b) ∼ (c, d) iff both the points lie on the same curve

9x2 + 16y2 = k2, for some k ∈ R.
(iv) (a, b), (c, d) ∈ R2 such that b, d > 0: (a,b) ∼ (c, d) iff d

b = 2c−a.
(v) (a, b) ∼ (c, d) iff ad = bc.
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17.
(i) On R∗ define the relation ∼ as follows: a ∼ b

if a
b is a rational number. Is ∼ an equivalence relation?

If yes, find the equivalence classes.
(ii) On R define the relation ∼ as follows: a ∼ b if a-b∈ Z.

In case ∼ is an equivalence relation on R, find the equivalence
classes of ‘0’, 1

4 and
√

2, a where 0 ≤ a ≤ 1.
(iii) On R define the relation ∼ as follows: x ∼ y if y = mx + c.

For what value of m and c is the relation symmetric ?
(iv) On R define the relation ∼ as follows: x ∼ y if y = -x.

Is the relation an equivalence relation ? Justify. Is it antisymmetric?

18. If R1, R2 are two equivalence relations on a set A, then are the following
also equivalence relations on A
(i) R1 ∩R2 and (ii) R1 ∪R2 (iii) R−1

1 .

19. How many equivalence relations can be defined on a set with n elements,
where
(i) n = 3
(ii) n = 4

20. Graph the relations

(i) A = {(a, b) ∈ N× N|b ≤ a}.

(ii) Let A ⊂ N× N defined by
(a) (1, 1)∈ A
(b) (a, b) ∈ A ⇒ (a+1, b), (a+1, b+1)∈ A.

Draw the graph of A. If B = {(a, b) ∈ N× N|b < a}
C = {(a, b) ∈ N× N|b ≥ a}
Find A∩B, A∩C, B ∩ C, A∩B ∩C.

21. Let R = {(a, a), (b, c), (a, b)} be a relation on the set {a, b, c}. Add the
minimum number of element to R so that R becomes
(i) reflexive
(ii) symmetric
(iii) transitive
(iv) antisymmetric
(v) equivalence relation.

22. Complete the graph of the following relation to define the smallest relation
which is:
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(i) reflexive
(ii) symmetric
(iii) transitive
(iv) antisymmetric
(v) equivalence relation.

23. Draw the graph of the following relation on N. For a fixed n ∈ N, An =
{(a, b) ∈ N× N|a ≤ b ≤ n}. How many elements are there in An?

24. Find the flaw, if any, in the following argument:

(i) A is any set and R a symmetric and transitive relation defined on A.
(a, b) ∈ R ⇒ (b, a) ∈ R since R is symmetric.
Now (a, b), (b, a) ∈ R ⇒ (a, a) ∈ R, as R is transitive.
Thus (a, a) ∈ R so that R is reflexive.
Thus a symmetric and transitive relation is reflexive.

(ii) Let A be any set and R is symmetric and antisymmetric relation on
A.
(a, b) ∈ R ⇒ (b, a) ∈ R since R is symmetric.
(a, b), (b, a) ∈ R ⇒ a=b as R is antisymmetric.
Thus (a, a) ∈ R so that R is reflexive.
Thus a symmetric and antisymmetric relation is reflexive.

1.8 Answers to Exercises

Exercise - (5.2)

1.
(i) {1}
(ii) {5, 10, 15, . . .}
(iii) φ
(iv) {0,±1,±2,±3,±4,±5}
(v) {-6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8}

2.
(i) A = { n ∈ N | n is a multiple of 3, n< 21}
(ii) B = {x ∈ N | x ≤ 2}
(iii) C = {x2 + 1 | x ∈ N}
(iv) D ={x ∈ Z | |x| ≤ 3}
(v) E = {x ∈ C | x4-1 = 0}
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3. Other solutions are possible
(i) rice, mice, dice

(ii) 2 + 5
√

7, −2 + 5
√

7, 2− 5
√

7

(iii) 2, -2, 2
√

2
(iv) 1, -1, 7
(v) -2, 0, -1
(vi) -1, 1, 2

4. Other answers are also possible
(i) {2, 4, 10}
(ii) {2}
(iii) {4, 6, 8}
(iv) {4}
(v) {8}
(vi) {2, 4, 10}
(vii) {2, 4}

5. (i) {q, r}, (ii) {p, q, r}, (iii) {r, s, t}, (iv) {p, q}, (v) φ

6.
(i) {φ}
(ii) {φ, {φ}}
(iii) {φ, {w}, {x}, {y}, {z}, {w, x}, {x, y}, {y, z}, {z, w}, {w, y}, {x, z}

{w, x, y}, {w, x, z}, {x, y, z}, {y, z, w}, {w, x, y, z}}; 24 = 16

7. (i) F , (ii) T null set is a subset of every set,
(iii) F , p ∈ A (iv) T (v) F , A ⊆ A
(vi) T (vii) T (viii) T (ix) T (x) F, {q, r} ⊆ A (xi) F (xii) T

Exercise (5.4)

1. {a, s, i}, {m, a, t, h, e, i, c, s, l, g, b, r}, {a, l, s, i}, {m, t, h, i, c, s, l, g, b, r},
{g, e, b, r}, {m, a, t, h, i, c, s}, {d, f, j, k, o, p, q, u, v, w, x, z}, {(a, a),
(a, e), (n, a), (n, e), (l, a), (l, e), (y, a), (y, e), (s, a), (s, e), (i, a), (i, e)},

2. A ∪ B=(-8, 5), A ∩ B = (-1, 2), ArB = (-8, -1], (A ∪ B)c = ]−∞,−8]∪[5,
∞)

3. X ∩ Y = {1, 2, 3, 4}, X ∪ Z = {-2, 0, 1, 2, .., 7},
(X ∩ Y )×Z = {(1, -2), (1, 0), (1, 2), (2, -2), (2, 0), (2, 2), (3, -2), (3, 0),
(3, 2), (4, -2), (4, 0), (4, -2)},
(X r Y )rZ = {5, 6, 7},
X M Z = {-2, 0, 1, 3, 4, 5, 6, 7},
Y M Z= {-6, -5, -4, -3, -1, 1, 3, 4}

4. (A×B)∪(B×A) = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (4, 1), (4, 2),
(4, 3), (6, 1), (6, 2), (6, 3), (1, 4), (1, 6), (2, 4), (2, 6), (3, 1), (3, 2), (3,
4), (3, 6)}
(A×B)∩(B×A) = {(1, 1), (1, 2), (2, 1), (2, 2)}
(A×B)r(B×A) = {(1, 3), (2, 3), (4, 1), (4, 2), (4, 3), (6, 1), (6, 2), (6,
3)}

6. In the given relation, replacing A by Ac and B by Bc.
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7. (i) B⊆A, (ii) A ∩B = φ, (iii) B = φ, (iv) A = B

8. Hint: Suppose B = (X ∩A) ∪ (Y ∩B).
B = B ∩ (A ∪B) = B ∩ (X ∪ Y ) = (B ∩X) ∪ (B ∩ Y ).
∴ (X ∩A) ∪ (Y ∩B) = (B ∩X) ∪ (Y ∩B)
But X ∩A ⊂ A, Y ∩B ⊂ B and A ∩B = φ.
∴ X ∩A = X ∩B = φ. Now use X = X ∩ (A ∪B).

10. Only (i), (ii), (v) and (vi) are false.

11. (i) N *P , (ii) 2∈E∩P , (iii) 3∈ PrE, (iv) N ⊂ Z, (v) Z\N 6= φ, (vi) P ⊂
Ec

13. 0, 1 or 2

14. {x ∈ N|x is a multiple of 12 or 18}
{x ∈ N|x is a multiple of 36}
{x ∈ N|x is either a multiple of 12 or 18 but not of 36}
{(x, y)|x is a multiple of 12, y is a multiple of 18 }

15. S ⊂ R ⊂ P
S ⊂ T ⊂ P

16. (i) 20, (ii) 30

17. 10

18. (i) 24, 14 (ii) 10, 0

19.
(i) Ar(B ∪ C)
(ii) (A ∩ C)rB
(iii) A ∩B∩C
(iv) CrA
(v) (A ∪B)rC

20.
(i) women who are neither lawyers nor cricket lovers
(ii) women who love cricket but are not lawyers
(iii) women who are lawyers and love cricket
(iv) all men who love cricket
(v) women or lawyers who do not love cricket
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Exercise (1.6)
1.

(i) a ∼ b if a studies in school b.
(ii) a ∼ b if the distance of school b from the residence of a is less than

5 km.
(iii) a ∼ b if the school bus of school b comes with 1 km. of the

residence of child a.

2. (i) 215, (ii) 225, (iii) 29

3. (i)

(ii)

4. {(A, Blue), (C, Red), (A, Black), (B, Green), (D, Grey), (D, White), (E,
Yellow), (G, Green), (H, Grey), }

5.

v

ul
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6. (i)

(ii)

8.
(i) RS
(ii) S
(iii) RST
(iv) A
(v) RST

10.
(i) R1 : S, R2 : RST , R3 : S
(ii) R4 : RS, R5 : RST , R6 : RST
(iii) R7 : RTA,
(iv) R8 : RST

12. R3 and R5.

13. R2, R5, R6 and R8 are equivalence relations.
For R2: If lθ is a line through O making an angle θ with the X-axis, then
{[lθ] : 0 ≤ θ ≤ 2π}.
R5 : {[a]|a ∈ Q+ ∪ {0}}.
R6 : {[ab ]|a, b ∈ Z, b± 0, (a, b) = 1}U{[0]}.
R8 : {[a] a ∈ Z+ ∪ {0}}.
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15. 120 elements, graph is:

16.

1

1

2

2

3

3

4

4

5

5

6

6

X X X X X
X X X X
X X X

X X

X

(ii)A ∩B = {(a, a)|a ∈ N)}

18.
(i) {2}, {4}, {6}, {8}, {10}, {12}
(ii) {1, 2, 3, . . . , 12}

19. Other answers are possible
(i) a ∼ b if 3 divides (a− b).
(ii) The relation with the equivalence classes {c1, c2, c3, c4, c5}

where c1 = {1, 2, 3}, c2 = {4}, c3 = {5, 6, 7}, c4 = {8}, c5 = {9, 10}.
(iii) not possible.
(iv) identity relation.

20.
(i) Yes. Equivalence classes are {[a1], [a2], [a5]}

where [a1] = {a1, a4}, [a2] = {a2, a3, a6}, [a5] = {a5, a7}.
(ii) Not an equivalence relation.
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21.
(i) {(a, a), (a, b), (a, d), (a, e), (b, a), (b, b), (b, d), (b, e), (d, a),

(d, b), (d, d), (d, e), (e, a), (e, b), (e, d), (e, e), (c, c), (c, f),
(f, c), (f, f)}, 20.

(ii) {(a, a), (a, d), (a, f), (d, a), (d, d), (d, f), (f, a), (f, d), (f, f),
(b, b), (b, c), (c, b), (d, a), (c, c), (e, e)}, 14.

22.
(i) Partition is {C1, C2} where C1 = {1, 3, 5, 7}, C2 = {2, 4, 6}, 25.
(ii) {C1, C2, C3} where C1 = {1}, C2 = {2, 3, 5, 7}, C3 = {4, 6}, 21.

23. If an equivalence relation has n elements then n = m2
1 + m2

2 + . . . + m2
k,

where mi is the order of the i-th equivalence class.
(i) Yes, 5 = 12 + 12 + 12 + 12 + 12

(ii) Yes, 7 = 12 + 12 + 12 + 22

(iii) No
(iv) Yes, 17 = 42 + 12

(v) No

Supplementary Exercise

1.
(i) False
(ii) False
(iii) False, {c} ⊆ A
(iv) False, 1 ∈ S
(v) True
(vi) True
(vii) False
(viii) True
(ix) False, A4B 6= φ when A 6= B.
(x) False, A×B 6= B ×A when A 6= B.
(xi) False, Bc ⊆ Ac
(xii) False, (A×B)c ⊃ Ac ×Bc.
(xiii) False, it can be both
(xiv) False
(xv) True
(xvi) False
(xvii) False
(xviii) False, 24.
(xix) False, it is 5

2. A ∪ B = {a, b, φ}, A ∩ B = {φ}, Ar B = {a, b}, A M B = {a, b}
P(A) = {φ, {a}, {b}, {φ}, {a, b}, {a, φ}, {b, φ}, {a, b, φ}}

3.
(i) {c, {a, b}}
(ii) φ
(iii) {A}
(iv) A
(v) {φ, {a}, {b}, {c}, {{a, b}}, {a, b}, {a, c}, {b, c}, {a, {a, b}},

{b, {a, b}}, {c, {a, b}},{a, b, c}, {a, b, {a, b}}, {a, c, {a, b}},
{b, c, {a, b}}, A}
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4. A1, Ak

5.
(i) Aα= (-∞, α]
(ii) R
(iii) if β < α, (β, α]

if β ≥ α, φ

6.
(i) {n∈ Z | n is a multiple of 6}
(ii) {n∈ Z | n is a multiple of either 2 or 3 or both}
(iii) {n∈ Z | n is a multiple of either 3 or 4 or both}
(iv) φ
(v) {n∈ Z | n is an odd multiple of 3}
(vi) φ.

11. (i)2mn (ii)2m
2

12. 2n
2−n

13. 2n
(n+1)

2

14. F, If A = {a, b, c}, R = {(a, a), (b, b)}.

15.
(i) Yes, {{a,−a}|a ∈ Z}
(ii) No, Not reflexive
(iii) No

(iv) Yes, { [p]
q |p ∈ Z, q ∈ N, (p, q) = 1}

(v) No

16.
(i) Yes, {lines with equations 4x+ 5y = k|k ∈ R}
(ii) Yes, concentric circles with centre at the origin.
(iii) Yes, { ellipse with equation 9x2 + 16y2 = k2|k ∈ R}
(iv) Yes, {curves with equation y = k2x|k ∈ R+}
(v) Yes, { all lines through the origin, punctured at the

origin }∪{(0, 0)}

17.
(i) Yes, Q∗ {[r]|r is irrational} where [r] = {kr|k ∈ Q∗}.
(ii) Z, Z+ 1

4 , Z+
√

2, Z+ a.
(iii) m = −1, c can be take any value

m = 1, c = 0
(iv) Only symmetric.

18.
(i) Yes
(ii) No, R1 : a ≡ b mod4; R2 : a ≡ b mod3.

Then (1, 5), (5, 8), ∈ R1 ∪R2, but (1, 8), /∈ R1 ∪R2.
(iii) Yes

19.
(i) 5
(ii) 18
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20.
(i) diagonal and below the diagonal
(ii) diagonal and below the diagonal.

B, {(a, a)|a ∈ N}, φ, φ.

21.
(i) {(b, b), (c, c)}
(ii) {(c, b), (b, a)}
(iii) {(a, c)}
(iv) φ
(v) {(b, b), (c, c), (c, b), (b, a), (a, c), (c, a)}

22. (v)

K

K

K

K

K

K

K

K

K

K

K

K

23. n(n+1)
2

NM

NM

N

NR

b

NRe

f

å

N O å

O

24.
(i) (a, a) ∈ R only when there exists some b ∈ R such that

(a, b) ∈ R. Such an (a,b) may not exist.
(ii) (a, b) ∈ R may not exist.



Chapter 2

Binary Operations

We shall now extend the concept of addition and multiplication of numbers
to binary operations on other sets, like set of matrices, polynomials, functions,
etc. Properties of these binary operations will be studied. Finally, to illustrate
this, we shall discuss the symmetries of regular plane figures, for example, the
symmetries of an equilateral triangle, square rectangle etc...

2.1 Definition and Examples

The idea of binary operation may be illustrated by the usual operation
of addition in Z. For every ordered pair of integers (m,n), there is asso-
ciated an unique integer m + n. We may therefore think of addition as a
mapping from Z× Z into Z, where the image of (m,n) ∈ Z× Z is denoted
by m + n. Generalizing this concept we have the following
definition:

Definition 2.1. Let S be a non empty set. Any mapping ◦ : S×S → S is called
a binary operation on S. The image of (a, b) ∈ S × S under the operation ◦, is
denoted by a ◦ b.
Various symbols used for binary operations are +,×, ◦, ?, ∗,�, juxtaposition etc.

Remark 2.1. The adjective binary is used because our rule combines two ele-
ments at a time.

Example 2.1. The following are binary operations:

1. ◦ defined by m ◦ n = m on N

2. ? defined by m ? n = m+ n+ 1 on N

3. ∗ defined by m ∗ n = |m− n| on Z

49
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4. Let S be a non empty set and P(S) the power set of S. Define
(i) ∗ defined by A ∗B = A ∪B on P(S),
(ii) ◦ defined by A ◦B = A ∩B on P(S).

The following are not binary operations:
(i) ◦ defined by m ◦ n = m− n on N

∵ 1, 2 ∈ N but 1 ◦ 2 = 1− 2 = −1 /∈ N
(ii) ∗ defined by m ∗ n = m÷ n on N

∵ 1 ∗ 2 = 1÷ 2 = 1
2 /∈ N

(iii) � defined by a� b = a÷ b on Q
1� 0 = 1÷ 0 is not defined.

Example 2.2. : Let Q? be the set of non-zero rational numbers. Check whether
division (denoted by ÷) is a binary operation in Q?. Verify whether the following
statements hold for all a, b, c ∈ Q?.

(i) a÷ b = b÷ a
(ii) a÷ (b÷ c) = (a÷ b)÷ c

Solution: If a, b ∈ Q? then a = m
n , b = p

q , where m,n, p, q are non-zero

integers. Then a÷ b = m
n ÷

p
q = mq

np ∈ Q
? because mq, np are non-zero integers.

Hence ÷ is a mapping from Q? ×Q? into Q?.

(i) This statement is false. This is because if we take a = 1, b = 2 then a, b ∈ Q?
but a÷ b = 1÷ 2 = 1

2 , b÷ a = 2
1 = 2 since 1

2 6= 2, therefore a÷ b 6= b÷ a.

(ii) This statement is false. Take a = 1, b = 2, c = 3 then a ÷ (b ÷ c) =
1÷ (2÷ 3) = 1÷ 2

3 = 3
2 , (a÷ b)÷ c = (1÷ 2)÷ 3 = 1

2 ÷ 3 = 1
6 , therefore

a÷ (b÷ c) 6= (a÷ b)÷ c.

Example 2.3. Let R denote the set of real numbers and ∗ a binary operation
on R defined by a ∗ b = a+ b+ ab. Verify that for all a, b, c ∈ R

(i) a ∗ b = b ∗ a

(ii) a ∗ (b ∗ c) = (a ∗ b) ∗ c

Solution:

(i) a ∗ b = a+ b+ ab = b+ a+ ba = b ∗ a using the commutative property of
addition and multiplication in R.

(ii) a ∗ (b ∗ c) = a ∗ (b+ c+ bc) = a+ (b+ c+ bc) + a(b+ c+ bc) = a+ b+ c+
bc+ ab+ ac+ abc,
(a ∗ b) ∗ c = (a+ b+ ab) ∗ c = a+ b+ ab+ c+ (a+ b+ ab)c = a+ b+ c+
ab+ ac+ bc+ abc

Hence a ∗ (b ∗ c) = (a ∗ b) ∗ c.

The multiplication table (Cayley table)
If S is a finite set consisting of n elements, then a binary operation ? on S

can be described by means of a table consisting of n rows and n columns. The
rows and columns are headed by the elements of S. The entry at the intersection
of a row headed by an element x ∈ S and column headed by an element y ∈ S
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is x ? y. Such a table is called a binary operation table, multiplication table,
composition table or Cayley table.

We may define a binary operation by giving the multiplication table or else,
having defined the binary operation by some rule, we may write the multiplica-
tion table for it. This is illustrated in the following examples.

Example 2.4. 1. Let S={x, y, z}. Let ? be a binary operation on S defined
by the multiplication table

? x y z
x x y x
y y y z
z x z z

Reading the table, we find,

x?x = x, x?y = y, x?z = x, y ?x = y, y ?y = y, y ?z = z, z ?x = x, z ?y =
z, z ? z = z.

2. Let S = {1, -1, i, -i}, where i =
√
−1, with the usual multiplication as

the binary operation.
The composition table is given below

· 1 -1 i -i
1 1 -1 i -i
-1 -1 1 -i i
i i -i -1 1
-i -i i 1 -1

3. Let S = {1, 2, 3, 4, 5} and ◦ a binary operation on S defined by a ◦ b =
gcd(a, b). The multiplication table is given below

◦ 1 2 3 4 5
1 1 1 1 1 1
2 1 2 1 2 1
3 1 1 3 1 1
4 1 2 1 4 1
5 1 1 1 1 5

Properties of binary operations
A non-empty set equipped with one or more binary operations is called an

algebraic structure.
The algebraic structure consisting of a set S and binary operations ?, ◦ on S is
denoted by (S, ?, ◦). (N, +), (Z,+, ·), (Q, ·) are algebraic structures. According
to the properties of binary operations, the algebraic structures are grouped into
different classes. We shall now discuss different types of binary operations. In
algebra, we come across various mathematical systems which give rise to such
type of binary operations.

Definition 2.2. (Associative operation):
Let ? be a binary operation on a set S. Then ? is said to be associative if and
only if if (a ? b) ? c = a ? (b ? c) ∀ a, b, c ∈ S.
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Note that ? will not be associative if there exists even one triad x, y, z of
elements of S such that (x ? y) ? z 6= x ? (y ? z). In case ? is associative on S,
we say that the algebraic structure (S, ?) is associative or S is associative with
respect to ?.

Example 2.5. The addition and multiplication on any set of numbers are as-
sociative. Thus (N,+), (N, ·)(Z,+), (Z, ·), (Q,+), (R, ·), (R?, ·) are all associative
algebraic structures.
(P(S),∪), (P(S),∩) are associative algebraic structures.
(Q?,÷), (Z,−) are non-associative algebraic structures.
(R?, ∗) in example 2.3 is associative.
In example 2.4(1), (S, ?) is not associative as

(x ? y) ? z 6= x ? (y ? z).

Operation with Identity Element
Let S be a non-empty set and ? a binary operation on S. If there exists

some element e ∈ S such that x ? e = e ? x = x, ∀x ∈ S, then e is said to
be an identity element (neutral element)with respect to ? and (S, ?) is called
algebraic structure with identity element.

Example 2.6. 1. (Z,+) is an algebraic structure with identity element 0.

2. (N, ·) is an algebraic structure with identity element 1.

3. (P(S),∪) is an algebraic structure with identity element, the null set.

4. (N,+) is an algebraic structure without identity element as 0 /∈ N.

Theorem 2.1. (Uniqueness of identity element)
Let (S, ?) be an algebraic structure. If an identity element exists, it is unique.

Proof: Let, if possible there be two identity elements e1 and e2. Then
x ? e1 = e1 ? x = x ∀ x ∈ S . . . (i)

x ? e2 = e2 ? x = x ∀ x ∈ S . . . (ii)

In (i) taking x=e2, we get e1 ? e2 = e2

In (ii) taking x = e1, we get e1 ? e2 = e1

Hence e1 = e2.

Definition 2.3. (Invertible Elements):
Let (S, ?) be an algebraic structure with identity element e. An element

x ∈ S is said to be invertible with respect to ? if there exists some y ∈ S such
that x ? y = y ? x = e, and y is called an inverse of x.

Note that the inverse of identity element is itself. Also if y is an inverse of x
then x is an inverse of y.

Example 2.7. 1. In (N, ·), 1 is the identity element and no element other
than 1 has an inverse.
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2. In (Z,+), every element has an inverse. In fact if x ∈ Z, its inverse
is −x.

3. In (Z, ·), only 1 and -1 have inverses.

4. In (P(S),∩), the identity element is S, and S is the only invertible element,
its inverse being S.

5. In (R,+), every element has an inverse.

6. In (R, ·), every non-zero element has an inverse.

Theorem 2.2. In an associative algebraic structure with identity element, the
inverse of an element, if it exists, is unique.

Proof: Let (S, ?) be an associative algebraic structure with identity ele-
ment e. Let, if possible an element x ∈ S have two inverses y and z. Then,
x ? y = y ? x = e . . . (i)

x ? z = z ? x = e . . . (ii)
Since ? is associative, therefore
y ? (x ? z) = (y ? x) ? z, so that, by using (i) and (ii), we get y ? e = e ? z,

that is y = z.

Example 2.8. Let S = {1, 2, 3, 4}. Define a binary operation ? on S by the
table

? 1 2 3 4
1 1 2 3 4
2 2 1 1 1
3 3 1 1 4
4 4 2 3 4

Is ? associative? Does it have an identity element? If it does, find which ele-
ments are invertible.

Solution: ? is not associative, because 2 ? (3 ? 4) = 1, (2 ? 3) ? 4 = 4, so that
2 ? (3 ? 4) 6= (2 ? 3) ? 4. Clearly 1 is the identity element. From the table, 2 has
two inverses, namely 2 and 3. Inverse of 1 is 1. Also 2 ? 4 = 1 but 4 ? 2 = 2.
Hence 4 does not have an inverse. Thus 1, 2 and 3 are the invertible elements.

Remark 2.2. The above example shows that some elements may be invertible
whereas others may not be. Moreover, if the binary operation is not associative,
inverse of an element may not be unique.

Definition 2.4. (Commutative Operation):
Let S be a non-empty set and ? a binary operation on S. Then ? is said to

be commutative if and only if x ? y = y ? x ∀x, y ∈ S.

In case ? is commutative on S, we say that the algebraic structure (S, ?) is
commutative or S is commutative with respect to ?.

Example 2.9. (N,+), (Z, ·), (Q,+), (R, ·), (P(S),∪), (P(S),∩) are all commu-
tative algebraic structures.

(Z,−), (Q?,÷), where Q? is the set of non-zero rational numbers, are not
commutative algebraic structures.

Note that if the multiplication table is symmetric about the main diagonal
then the binary operation is commutative and vice versa.
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2.2 Exercise

1. Verify whether the following definitions of ? is a binary operations on the
given set.

(i) ? defined by a ? b = 2a+ 3b on N.

(ii) ? defined by a ? b = a− b on N.

(iii) ? defined by a ? b = |a− b| on N.

(iv) ? defined by a ? b = a− b on Z.

(v) ? defined by a ? b =
√
|a− b| on Z.

(i) Let S = {1, 2, 3}. Write the multiplication table for the following binary
operations on S.

(ii) ? defined by: (1, 1) → 2, (1, 2) → 3, (1, 3) → 1, (2, 1) → 1, (2, 2) →
2, (2, 3)→ 2, (3, 1)→ 1, (3, 2)→ 2, (3, 3)→ 3

(iii) ◦ defined by: (a, b)→ 1 ∀ a, b ∈ S
(a) (a, b)→ min(a, b) ∀ a, b ∈ S.

2. Does the following table define a binary operation ? on (i) S={1, 2, 3} (ii)
P={1, 2, 3, 4}?
Justify your answer.

? 1 2 3
1 1 3 4
2 2 1 3
3 1 3 2

3. Verify whether the following operations on S are commutative and asso-
ciative:

(i) S = {1, 2}, ◦ is defined by 1 ◦ 1 = 2, 1 ◦ 2 = 2, 2 ◦ 1 = 2, 2 ◦ 2 = 1

(ii) S = Z, ◦ is defined by a ◦ b = a+ b− ab
(iii) S = Z, ◦ is defined by a ◦ b = 2a+ 3b

(iv) S = R, ◦ is defined by a ◦ b = a

(v) S = R?, ◦ is defined by a◦b = a
b , where R? denotes the set of non-zero

real numbers.

(vi) S = Z, ◦ is defined by a ◦ b = a− b− ab.

4. How many different binary operations can be defined on a set S, if S has
(i) 2 elements (ii) 4 elements (iii) 8 elements (iv) n elements?

5. Give examples of the following types of binary operations:

(i) commutative but not associative

(ii) associative but not commutative

(iii) neither commutative nor associative.
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2.3 Introduction to Groups

Suppose that a square is removed from a piece of cardboard and fitted back
in the original space after moving it. Though it occupies the same space but
the position may be different in the sense that the vertices may occupy different
positions. Let us consider all the different possible movements of the square.
We would like to describe the relationship between the starting position and the
final position in the terms of motions.
Cut out a square from a piece of cardboard and name the vertices as P , Q, R,
S. Also mark the corners of the board from where it has been cut as P , Q,
R, S.

p o

m n p

o

m

n

oM

ppp

p o

m n

p o

m n

The final position of the square can be obtained from the original position by
the rotation of the square about the axis through the centre, perpendicular to
the plane, through an angle of 900 anticlockwise. Let the plane of the square
be horizontal. Consider the following possible motions

1. R0 =Rotation of 00 about vertical axis in the plane of the square (no
change in position)

p o

m n

o

n

p

m

o M

2. R1= Rotation of 1 right angle anticlockwise about the vertical axis per-
pendicular to the plane of the square

p o

m n

o n

p m

oN

3. R2 = Rotation of 2 right angles anticlockwise, about the vertical axis
perpendicular to the plane of the square.
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p o

m n

n m

o p

oO

4. R3= Rotation of 3 right angles anticlockwise, about the vertical axis per-
pendicular to the plane of the square.

p o

m n

m p

n o

oP

5. H = Rotation of 1800 anticlockwise about horizontal axis in the plane of
the square.

p o

m n

m n

p o

e

6. Rotation of 1800 anticlockwise about vertical axis in the plane of the
square.

p o

m n

o p

n m

s

7. Rotation of 1800 anticlockwise about the main diagonal.

p o

m n

p m

o n

a
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8. Rotation of 1800 anticlockwise about the other diagonal.

p o

m n pm

on

Two motions are equivalent if their net effect is the same. For example, a
rotation through one right angle clockwise is equivalent to a rotation through
three right angles anticlockwise. Moreover the effect of R1, followed by H is
equivalent to D, as is shown below:

p o

m n

oN

o n

p m

e

p m

o n

p o

m n

a

p m

o n

It can be verified that any motion of the square which makes it fit back into the
original space is equivalent to one of the above eight motions.

Let D8 = {Ro, R1, R2, R3, H, V,D,D
′}. On D8 define a binary operation as

follows:
For a, b ∈ D8 (ab)2 = a(b2) where a2 means the effect of ‘a’ on the square

ABCD. The composition table of D8 is as follows

· R0 R1 R2 R3 H V D D′

R0 R0 R1 R2 R3

... H V D D′

R1 R1 R2 R3 R0

... D′ D H V

R2 R2 R3 R0 R1

... V H D′ D

R3 R3 R0 R1 R2

... D D′ V H

. . . . . . . . . . . .
... . . . . . . . . . . . .

H H D V D′
... R0 R2 R1 R3

V V D′ H D
... R2 R0 R3 R1

D D V D′ H
... R3 R1 R0 R2

D′ D′ H D V
... R1 R3 R2 R0
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We observe that for a, b ∈ D8, ab ∈ D8. This property is called closure
property of D8.

Also note that if a ∈ D8 then aR0 = R0a = a.
Thus combining any element of D8 with R0 on either side yields back the

element. An element R0 with this property is called identity element (no effect
element). Also for each a ∈ D8, there is exactly one b ∈ D8 such that ab = ba =
R0. Such an element b is called inverse of a and vice versa. For example, R1, R3

are inverses of each other, whereas R0, R2, H, V,D,D
′ are their own inverses.

If a and b are inverses of each other then b “undoes” whatever a “does” in the
sense that a and b taken together in any order produce the “no effect” element,
that is, the identity element R0.

Observe that the eight motions describe above in Fig. 1 are mappings of
{P,Q,R, S} onto itself, and the operation is the composition of mappings. Since
the composition of mapping is associative, therefore, a(bc) = (ab)c for all a, b, c ∈
D8

From the table, observe that R1V = D and V R1 = D′, so that R1V 6= V R1.
Thus the binary composition is not commutative on D8.

2.4 Symmetries

Symmetries of Non-square Rectangle
We study the symmetries of a rectangle which is not a square. Consider a

rectangle ABCD with centre O. Take O as origin and line through O parallel to
AB and BC as X-axis and Y-axis respectively. Consider the following motions.

Ro= Rotation through 0◦, i.e. no motion at all.

a `

_^

a `

_^

oMa

^

R1= rotation through π anticlockwise about the line through O perpendicular
to the plane of rectangle.

a `

_^

_ ^

a`

oNaK̂ Kl
ll

l

H= Reflection in OX, or a rotation through 1800 about OX in space.

a `

_^

^ _

`a

e
a

^

u
u

v
v
l
l l

l
V= Reflection in OY, or a rotation through 1800 about OY in space.
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a `

_^

` a

^_

s
a

^

uu

vv

llll

These are the only different symmetries of a rectangle. We note that a
reflection about any diagonal is not a symmetric motion. It would be a good
idea to take a cutout of a rectangle and observe the motions, as was done in
the case of a square. The binary operation is the composition of motions. The
multiplication table is:

R0 R1 H V

R0 R0 R1

... H V

R1 R1 R0

... V H

. . . . . .
... . . . . . .

H H V
... R0 R1

V V H
... R1 R0

Let V4 = {R0, R1, H, V }. From the table we observe that V4 is closed with
respect to composition of motion. R0 is the identity element and each element
is its own inverse. Moreover, the table is symmetric about the main diagonal,
V4 is commutative.

Symmetries of an Equilateral Triangle
Let us now consider the set of symmetries of an equilateral triangle. Let

ABC be an equilateral triangle with centre O. Consider the following motions:
R0: Rotation about the centre through 00

R1: Rotation through 2
3π anticlockwise about the line through O perpendicular

to the plane of the triangle

^
^

_
_ `

`

`
`

^
^ _

_

l
ll

l
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R2: Rotation through 4
3π anticlockwise about the line through O perpendicular

to the plane of the triangle.

M1 : Reflection in the axis 1.

M2 : Reflection in the axis 2.

M3 : Reflection in the axis 3.

3

Let D6 = {R0, R1, R2,M1,M2,M3}. The operation considered is the com-
position of motions. The multiplication table is given as follows:
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R0 R1 R2 M1 M2 M3

R0 R0 R1 R2

... M1 M2 M3

R1 R1 R2 R0

... M3 M1 M2

R2 R2 R0 R1

... M2 M3 M1

. . . . . . . . .
... . . . . . . . . .

M1 M1 M2 M3

... R0 R1 R2

M2 M2 M3 M1

... R2 R0 R1

M3 M3 M1 M2

... R1 R2 R0

Observe that the 6 motions described above are mapping of {A,B,C} onto
itself and operation is the composition of mappings. Clearly D6 is closed. Also
associative law holds because the composition of mapping is associative.

R0 is the identity element. R1, R2 are the inverses of each other whereas all
other elements are their own inverses. From the table it is clear that R2M1 =
M3,M1R2 = M2, so that R2M1 6= M1R2. Thus the binary composition is not
commutative on D6.

Dihedral group
Let us now study the symmetries of a regular polygon of n sides (n-gon).

Consider a regular n-gon A1, A2, . . . , An. Take a copy of this n-gon and move it
in any manner. Now place it on the original n-gon so as to cover it completely.
A motion of this nature is called a symmetry of the n-gon.

^Q

^P

^O

^N

^å

If α = 2π
n let Rk denotes the anticlockwise rotation of the polygon about a line

through its centre and perpendicular to the plane of the polygon through an
angle kα, k=0, 1, 2, 3, . . . , n-1. These are the n rotations. There are also n
reflections, through the n lines of symmetry Li, i=1, 2, 3, . . . , n.

If n is odd, each line of symmetry passes through a vertex and the mid-point
of the opposite side. If n is even, there are two types of lines of symmetry, one
type passing through two opposite vertices (and these are n

2 in number) and the
other type are the perpendicular bisectors of two opposite sides (these are also
n
2 in number). Thus, in this case also, there are n lines of symmetry.

Let D2n be the set of all these rotations and reflections of the regular n-gon.
It has 2n elements. Let us define a binary operation on D2n. For A,B ∈ D2n,
by AB we mean the symmetry obtained by first applying B and then A to the
regular n-gon. There are only two types of symmetries, rotations and reflections.
Clearly rotation followed by a rotation is a rotation, reflection followed by a
reflection is rotation, and rotation followed by reflection (or vice versa) is a
reflection. Hence the closure property holds in D2n. Since we are viewing
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symmetries as functions on the vertices of the n-gon, AB is just the function
composition. Since composition of function is associative, the binary operation
is associative. The identity of D2n is the identity symmetry R0. The inverse of
the rotation Ri is the rotation Rn−i, i=1, 2, . . . , n and the inverse of R0 is R0.
The inverse of a reflection is itself.

Do it Yourself
Take a piece of cardboard and cut out a regular n-gon from it (you can take
a specific value of n, say 6). Paint one face red and the other blue. Take a
reflection of this hexagon about any axis. The result of reflection is that if the
red face was on the top, the blue face comes on the top. The net result of a
reflection is that not only the order of vertices is changed but the face is also
reversed. Now apply a rotation to the hexagon. The effect of this is that the
face remains of the same colour, only the order of the vertices is changed.

Problem 2.1. Describe all the symmetries of the figure given below:

Solution: Rotational symmetries
Rotations about O, the centre of the circle, through angles 0, π4 ,

2π
4 and 3π

4 are
the 4 rotational symmetries.

Reflectional symmetries
Reflections about the axis AE,BF,CG and DH are the 4 reflectional symme-
tries.

Hence there are 8 symmetries in all.

Problem 2.2. Describe the symmetries of the following:

(i) X X X X

(ii) an infinitely long strip of the alphabet X i.e. · · · X X X X X· · ·

Solution:

(i) Let O be the centre of the figure. X X · X X
Rotation about the axis through the point O perpendicular to the plane
through an angle 0◦ (i.e. no motion) and 180◦.
The reflections are:

(a) Reflection about an axis through O in the plane of the paper.

X X
... X X
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(b) Reflection about the horizontal line passing through O as shown.

· · ·X · · ·X O X · · ·X · · ·

(ii) The rotational symmetry is as in (i), where O is any point in the centre of
any two consecutive X’s.

· · ·X X X O X · · ·

The reflections are:

(a) Reflection about an axis midway between any two consecutive X’s in
the plane of the paper

· · ·X X
... X X · · ·

(b) Reflection about an axis through the centre of any X, in the plane of
the paper.

...
· · · X X X X · · ·

...

(c) Reflection about the horizontal line passing through the centres of all
the X’s as shown.

· · · · · ·X X X X · · · · · ·

2.5 Exercise

1. Describe all the symmetries of the following:
(i) circle.
(ii) isosceles triangle which is not equilateral.
(iii) scalene triangle.

2. Are the following motions of a rectangle (which is not a square) symme-
tries?

(i) reflection about a diagonal.
(ii) rotation about an axis through the centre perpendicular to the plane,

through one right angle.
(iii) rotation as above through 2 right angles.

3. Consider an infinitely long strip of equally spread alphabets. Describe the
symmetries of these strips.

(i) . . . O O O O O . . .
(ii) . . . M M M M M.. . .
(iii) . . . N N N N N . . .
(iv) . . . T T T T T . . .
(v) . . . D D D D D . . .
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4. List all the symmetries of the following:

(i)

(ii)

(iii)

(iv)
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(v)

(vi)

2.6 Solved Problems

Problem 2.3. How many binary operations can be defined on a set with five
elements

Solution:

Let S = {a, b, c, d, e}.
The Cayley table of S looks like
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� a b c d e
a ? ? ? ? ?
b ? ? ? ? ?
c ? ? ? ? ?
d ? ? ? ? ?
e ? ? ? ? ?

The Cayley table has 5× 5 = 25 entries. Each entry has 5 choices, namely
a, b, c, d, e. Moreover all the choices are independent of each other.
∴ Number of ways in which the table can be completed = 525. Since a binary

operation on S corresponds to one way of completing the table.
∴ Number of binary operations = number of ways in which the table can be

completed = 525.

Problem 2.4. How many commutative binary operations can be defined on a
set with five elements

Solution: Let S = {a, b, c, d, e}.

Number of binary operations on S = 525

� a b c d e
a ? ? ? ? ?
b ? ? ? ?
c ? ? ?
d ? ?
e ?

If the binary operation is commutative, then in the Cayley table, the entries
below the diagonal are reflection with respect to the diagonal of the entries
above the diagonal. The ? entries can be chosen arbitrarily from S. These
are 1+2+3+4+5=15 entries. Hence, the number of ways of choosing them
=5× 5× 5 . . . 15 times = 515.

There are 515 commutative binary operations.

Problem 2.5. How many binary operations having an identity element can be
defined on a set with 5 elements

Solution: Let S = {a, b, c, d, e}.
Number of binary operations on S = 525. If the binary operation has an

identity element, say b, then the Cayley table of S looks like

identity
↓

� a b c d e
a ? a ? ? ?

identity → b a b c d e
c ? c ? ? ?
d ? d ? ? ?
e ? e ? ? ?

Thus nine elements in the Cayley table have been fixed. The remaining
25− 9 = 16 elements, marked ? can be chosen arbitrarily from the elements of
S.
Thus, number of such binary operations = 5× 5× 5 . . . 16 times = 516.
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Problem 2.6. How many commutative binary operations having an identity
element can be defined on a set with 5 elements

Solution: Let S = {a, b, c, d, e}.
Without loss of generality, we can take ‘a’ to be the identity element. If the
operation is commutative also, then in the Cayley table only the entries marked
? have to be chosen. The Cayley table is:

� a b c d e
a a b c d e
b b ? ? ? ?
c c ? ? ?
d d ? ?
e e ?

Each entry can be chosen as any one from the elements of S.
Number of entries to be chosen = 1 + 2 + 3 + 4 = 10.
Number of choices for each entry = 5.
∴ Number of required binary operation = 510.

Problem 2.7. In D2n, explain geometrically why a rotation followed by a ro-
tation must be a rotation.

Solution: A rotation changes the order of the vertices, while the top face
remains the same. Thus a rotation followed by a rotation means the top face
will remain the same, only the order of vertices will change, so that it will be a
rotation.

Problem 2.8. In D2n explain geometrically why a reflection followed by a re-
flection must be a rotation.

Solution: Reflection means reversing the face of the regular n-gon. Thus a
reflection followed by a reflection means face reversed twice, that is, the same
face up. Only the order of the vertices may change. Thus it is a rotation.

Problem 2.9. In D2n, explain geometrically why a rotation and a reflection
taken together in either order must be a reflection.

Solution: Reflection means reversing the face of the regular n-gon, whereas
rotation keeps the top face same. Thus a reflection and rotation taken in any
order means reversal of the face and hence it is a reflection.

Problem 2.10. Associate the number +1 with a rotation and number -1 with
a reflection. Describe an analogy between multiplying these two numbers and
multiplying elements of D2n.

Solution: A rotation followed by a rotation gives a rotation. Also we have

(+1)(+1) = +1.

A reflection followed by a reflection means face reversed twice, that is same
face up. The net result is a rotation. Also (−1)(−1) = +1. A reflection followed
by a rotation (or otherwise) gives a reflection (by the above example), Hence
its like (−1)(+1) = −1 or (+1)(−1) = −1.
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2.7 Supplementary Exercises

1. State whether the following statements are true or false. Justify your an-
swer.
(i) A binary operation on a set S assigns at least one element of S

to each ordered pair of elements of S.
(ii) A binary operation on a set S assigns not more than one

elements of S to each ordered pair of elements of S.
(iii) A binary operation on a set S assigns exactly one element of S

to each ordered pair of elements of S.
(iv) Every binary operation on a set consisting of 2 elements is

commutative.
(v) If ? is a commutative binary operation on S, then

a ? (b ? c) = (c ? b) ? a ∀a, b, c ∈ S.
(vi) Let S be the set of all 2× 2 matrices over Z and ? the usual

matrix multiplication. Then
(a) ? is associative (b) ? is commutative (c) (S, ?) has identity
element (d) elements of S with non-zero determinant are invertible.

(vii) Addition on the set of odd integers is a binary operation.
(viii) On the set of even integers, ? defined by a ? b = a+b

2 is a binary
operation.

(ix) A rectangle has a symmetry about both the diagonals.
(x) A rectangle has a rotational symmetry through an angle of 900.

(xi) The symmetries of an equilateral triangle commute.
(xii) The symmetries of a rectangle commute.
(xiii) A regular pentagon has 10 symmetries.
(xiv) The English alphabet X has 2 symmetries.
(xv) Two mutually perpendicular lines has 6 symmetries.

2. . Which of the following are binary operations on N?
(i) m ? n = m− n
(ii) m ? n = m÷ n
(iii) m ? n = n
(iv) m ? n = m+ n+m2

(v) m ? n = 4m+ 5n
(vi) m ? n = m+ n− 1

(vii) m ? n = m+ n−mn
(viii) m ? n = mn− (m+ n)

(ix) m ? n =

{
m+ n−mn, if m = 1 or n = 1
mn−m− n, if m 6= 1 and n 6= 1

For the binary operations, check which of them are commutative, associa-
tive and have identity element.

3. Give an example of an infinite set S and a binary operation ? on S such
that
(i) exactly one element of (S, ?) has an inverse
(ii) exactly two elements of (S, ?) have inverses
(iii) every element of S, except one, has an inverse.

4. Write the Cayley table for all the binary operations which can be defined
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on S = {a, b}
(i) How many of them are commutative
(ii) How many have an identity element
(iii) How many are commutative and have an identity element

5. Write the Cayley table for 6 binary operations on S = {a, b, c}, which
(i) are commutative
(ii) have an identity element
(iii) are commutative and have an identity element.

6. Let S be a non-empty set and ? a binary operation on S. An element e ∈ S
is called left (right) identity with respect to ?.
if e ? a = a ∀a ∈ S, (a ? e = a ∀a ∈ S). Give example of a binary
operation ? on a set S which has
(i) left identity but not right identity
(ii) right identity but not left identity
(iii) right identity and left identity. Are they different?

Can you generalize your answer?

7. Give examples of a set and a binary operation ? on S such that
(i) (S, ?) has two distinct left identities
(ii) (S, ?) has two distinct, right identities
(iii) every element of S is a left identity
(iv) (S, ?) has some invertible element and some elements which

do not have an inverse.

8. How many binary operations can be defined on a finite set S with
(i) 2 elements
(ii) 3 elements
(iii) 4 elements
(iv) n elements?

9. How many commutative binary operations can be defined on a finite set
S with
(i) 2 elements
(ii) 3 elements
(iii) 4 elements
(iv) n elements?

10. How many binary operations having an identity element can be defined
on a finite set S with
(i) 2 elements
(ii) 3 elements
(iii) 4 elements
(iv) n elements?

11. How many commutative binary operations, having an identity element,
can be defined on a finite set S with
(i) 2 elements
(ii) 3 elements
(iii) 4 elements
(iv) n elements?
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12. Give two examples of figures for each of the following:
(i) having only rotational symmetry
(ii) having only reflection symmetry
(iii) having both rotational and reflection symmetry
(iv) having neither rotational nor reflection symmetry.

13. Describe all the symmetries of the following:
(i) parallelogram which is neither a rectangle nor a rhombus
(ii) rhombus which is not a square
(iii) ellipse which is not a circle
(iv) hyperbola
(v) right angled isosceles triangle
(vi) right angled triangle which is not isosceles

14. List all the symmetries of following figures:

i

ii

iii
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iv

v

15. Find the symmetries of the Indian 2-rupee coin shown below. Disregard
the printing and figure on the coin.
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2.8 Answers to Exercises

Exercise - 2.2

1. (i) Yes (ii) No (iii) No (iv) Yes (v) No.

2.

(i)

? 1 2 3
1 2 3 1
2 1 2 2
3 1 2 3

(ii)

◦ 1 2 3
1 1 1 1
2 1 1 1
3 1 1 1

(iii)

min 1 2 3
1 1 1 1
2 1 2 2
3 1 2 3

3. (i) No, ∵ 4 /∈ S (ii) No, ∵ 4 ∗ 1 is not defined.

4. i commutative, not associative

ii commutative, associative

iii not commutative, not associative

iv not commutative, associative

v not commutative, not associative

vi not commutative, not associative

5. (i) 24 (ii) 416 (iii) 864 (iv) nn
2

6. i On Z, define a ? b = |a− b|.
ii On the set of 2 × 2 matrices over Z, define A ? B = AB, the usual

multiplication of matrices.

iii On Z define, a ? b = a− b.
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Exercise - 2.5

1. (i) Reflection about every diameter. Rotation about an axis through the
centre perpendicular to the plane of the circle, through an angle α,
where α is any real number.

(ii) Identity motion, reflection in the median through the vertex.

(iii) Identity motion (i.e. no motion).

2. (i) No (ii) No (iii) Yes

3. (i) Reflection about an axis

(a) between any two 0’s in the plane of the paper.

. . . O O |O O O . . .

(b) through the centre of any O in the plane of the paper.

...
. . . O O O O O . . .

...

(c) through the centre of all the O’s

. . . O O O O O . . .

Rotation about the axis L through the mid point of the centres
of any two consecutive O’s through an angle (a) 0◦ (b) 180◦

Hence there are infinitely many symmetries

(ii) Reflection about an axis

(a) midway between any two consecutive M ’s.

. . .M M | M M . . .

(b) through the middle of any M.

...
. . . M M M M . . .

...

Rotation about the axis L through the midpoints of any two consec-
utive M ’s through an angle of 0◦ i.e. no motion.

(iii) Only the ’no motion’ rotation.

(iv) Similar to (ii).

(v) Reflection about the horizontal line bisecting the D’s

. . . D D D D . . .

The ’no motion’ rotation.
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4. (i)

^

c_

o
`

a

b

m

n

p

q

r
KK

K

Rotation about the axis throughO perpendicular to the plane through
an angle (a)0◦ (b) 90◦ (c) 180◦ and (d) 270◦.

(ii) 6 rotations about an axis throughO perpendicular to the plane through
angles 0◦, 60◦, 120◦, 180◦, 240◦, 300◦

Reflection about lines
(a) AD (b) BE (c) CF (d) PS (e) QT (f) RU .
Thus there are 12 symmetries in all

(iii) Only 6 rotations

(iv) 8 rotations about the centre, through angles k π4 , k = 0, 1, . . . , 7
8 reflections.

(v) 5 rotations and 5 reflections.

(vi) 6 rotations.

Supplementary Exercise

1.

(i) F. It assigns exactly one element

(ii) F. It assigns exactly one element

(iii) T

(iv) F, let S = {a, b}. Define ? by
? a b
a b a
b b b

(v) T

(vi) (a) T, (b) F, (c) T, (d) F, true when the determinant is ±1
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(vii) F, 3+5=8, 8 is not odd.

(viii) F, 6? 8=7 which is not even.

(ix) F

(x) F

(xi) F, ∵ R1M2 6= M2R1

(xii) T

(xiii) T

(xiv) F, it has 4 symmetries

(xv) F, it has 8 symmetries

2. (i) No (ii) No (iii) Yes (iv) Yes (v) Yes (vi) Yes (vii) No (viii) No (ix) No.

3. (i)(N, ·) (ii)(Z, ·) (iii)(Q, ·)

4.
· a b
a ? ?
b ? ?

Each ? has 2 choices a or b. Thus the number of possible tables=16.
(i) 23 (ii) 2 (iii) 2.

6. Let S = {a, b, c, d}

(i) Define x ∗ y = y, ∀ x, y ∈ S.
Then every element of S is a left identity. It does not have a right identity.

(ii) Define x� y = x ∀ x, y ∈ S.
Then every element of S is a right identity . There is no left identity.

(iii) Let S = set of all 2×2 matrices with integral entries. Consider (S, ·). Then(
1 0
0 1

)
is a right as well as left identity.

They are not different. If right and left identity both exist then they must
be the same.

7. For (i), (ii), (iii) see 6(i) and (ii).
(iv) M2×2(Z), the set of all 2×2 matrices over Z. All elements with deter-
minant ±1 are invertible.
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8. (i) 24 (ii) 39 (iii)416 (iv) nn
2

.

9. (i) 23 (ii) 36 (iii)410 (iv) nn(n+1)/2.

10. (i) 2 (ii) 34 (iii)49 (iv) n(n−1)2 .

11. (i) 2 (ii) 33 (iii)46 (iv) n
n(n−1)

2 .

12.

(i) 2 rotational symmetries, through 0◦ and 180◦.

(ii) 2 rotational and 2 reflections in diagonals.

(iii) 2 rotational and 2 reflections in the major and minor axes.

(iv) 2 rotational and 2 reflections in the transverse and conjugate axes.

(v) One rotational (through 0◦) and 1 reflection about the median through the
vertex.

(vi) One rotational (through 0◦)

13.

(i) 2 rotations

(ii) 2 rotations, 2 reflections

(iii) 2 rotations, 2 reflections (one each in the major and minor axis)

(iv) 2 rotations, 2 reflections (one each in the transverse and conjugate axes).

(v) One rotation (no motion), one reflection in the median through the vertex.

(vi) One rotation (no motion) only.

14.

(a) 3 rotations, 3 reflections

(b) 6 rotations, 6 reflections

(c) 2 rotations,

(d) 1 reflection

(e) 8 rotations through angles kπ
4 , 0 ≤ k ≤ 7

15. It is a regular 11-gon. So 11 rotations and 11 reflections.



Chapter 3

Functions

Function is a commonly used word in everyday life having different mean-
ings. But, in Mathematics, the concept of a function is very basic and is
of fundamental importance. Moreover, it has a very specific meaning. In
this chapter we define mathematically a function and their various types and
study their properties in detail. Operation on functions, conditions of invert-
ibility and computation of the inverse of an invertible function will also be
discussed.

3.1 Definition and Representation

Definition 3.1. Let A and B be two sets. A binary relation f from A to B is
called a function (or mapping) from A to B if each element of A is related to
exactly one element of B. In other words, f is a function from A to B if for
each element a ∈ A there exists exactly one element b ∈ B such that (a, b) ∈ f ,
b is called the image of a under f and we write b = f(a).

In the above definition, the set A is called the domain and the set B is called
the codomain (or target) of f . The set {b ∈ B | (a, b) ∈ f, for some a ∈ A} is
called the range of f . Thus, the range of f is the set of images of the elements
of A. If for any b ∈ B there exists an a ∈ A such that f(a) = b, then a is called
a preimage of b under f . An element b ∈ B can have more than one preimages
in A.

Example 3.1. Let X = {1, 2, 3, 4}, Y = {x, y, z} , f = {(1, z), (2, y), (3, x),
(4, y)}. X is the domain of f , Y is the codomain (or target) of f . Image of 1
under f is z. We write f(1) = z. Similarly f(2) = y, f(3) = x, f(4) = y.
Preimage of x is 3. f(2) = y and f(4) = y tells us that preimage of y is 2 as
well as 4. Thus y has two preimages.

Let g = {(1, z), (2, y), (3, x), (4, y), (2, z)}. Since 2 is the first member of two
elements of g, i.e g(2) = y and g(2) = z, therefore 2 has two images, y and z,
hence g is not a function.

Let h = {(1, z), (2, x), (3, y)}, Since 4 does not have any image, therefore h
is not a function.

77
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Notation: ‘f is a function from set A to a set B’ is written as f : A−→B or

A
f→B. If the image of a ∈ A under f is b we say that f maps a to b and we

write b = f(a). This is also written as f : a → b. The domain of a function f
will be denoted by D(f) and the range of a function f will be denoted by R(f).
Here D(f) = A and R(f) ⊆ B.

Example 3.2. Define f : Z→ Z by f(x) = x2 + 5. The domain and codomain
of f are both Z.
R(f) = {f(x)|x ∈ Z}

= {n ∈ Z| n− 5 is a perfect square}
Let us find the preimage of 105, Since 105 − 5 = 100 = 102, ∴ 10 is a

preimage of 105 and f(10) = 105.What is the preimage of 7? 7 − 5 = 2 6= x2

for any x ∈ Z, ∴ 7 does not have a preimage. So 7 /∈ R(f).

When we define a function, sometimes there is some ambiguity, i.e., an ele-
ment can have more than one images or the images do not lie in the codomain.
In such a situation we say that the function is not well defined. In fact, a func-
tion f : A→ B is well defined if
(i) f(a) is defined for each a ∈ A
(ii) f(a) ∈ B for all a ∈ A
(iii) There is no ambiguity in determining f(a).

This is illustrated in the following examples:

Example 3.3.
(i) Define f : Z→ Z by f(n) = −n for all n ∈ N.

Here f(m) is not defined, for m ∈ Z, m ≤ 0
so f is not a well-defined function.

(ii) Define g : N→ N by f(n) = n− 5 ∀ n ∈ N. Then f(1) = −4 /∈ N,
so that f is not a well defined function.

(iii) Define h : Q→ Z by h(ab ) = a. Here h( 1
2 ) = 1.

Since 1
2 = 2

4
∴ h( 2

4 ) = 2.
Thus, h( 1

2 ) is defined as 1 as well as 2 so that there is an ambiguity
in defining f( 1

2 ). Therefore, h is not a well-defined function.

Definition 3.2. (Equal functions): Two functions f and g are equal if they
have
(i) the same domain i.e D(f) = D(g)
(ii) the same codomain
(iii) f(x) = g(x) for all x ∈ D(f).

Arrow Diagram for Function

If A and B are finite sets of small orders, then a function from A to B can
be defined by an arrow diagram also. This enhances the understanding and is
very convenient. In Fig. 1, f is a function.
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Fig. 2

In Fig. 2, under g, 2 is mapped to y as well as z, so that g is not a function.

N
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Q

ñ

ó

ò

^ _

Fig. 3

In Fig. 3, under h, 4 does not have an image, so h is not a function. Observe
that in this diagrammatic representation for a function from each point of the
domain one and only one line should emerge. The arrow diagrams are specially
useful in giving counter examples for functions.

Representation of a Function
In general there are four ways to represent a function.

(i) Verbally (in words) y is the square of x
(ii) Numerically (table of values)
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x 1 2 3 4 5
y 1 4 9 16 25

Fig. 4(Tabular form of a function)

(iii) Algebraically (formula) y = x2

(iv) Visually (graph or arrow diagram).

Fig. 5(Graphical representation of a function)

As shown above, the same function has been represented in all the four ways.
If a single function can be represented in all four ways, it is often useful to go
from one representation to another to gain insight into the function. Certain
functions are described more naturally by one method than by another.

3.2 Images and Inverse Images

If f : A→ B is a function and C ⊆ A, then the set of images of elements of
C is called the image of C and is denoted by f(C).
Symbolically, f(C) = {f(x)|x ∈ C}
Clearly, f(C) ⊆ B. We may also write f(C) as:
f(C) = {y ∈ B | y = f(a) for some a ∈ C}.

f

Theorem 3.1. Let f : A→ B be a function. If A1, A2 are subsets of A, then
(i) f(A1 ∪A2) = f(A1) ∪ f(A2)
(ii) f(A1 ∩A2) ⊆ f(A1)∩ f(A2)
(iii) A1 ⊆ A2 ⇒ f(A1) ⊆ f(A2)



3.2. IMAGES AND INVERSE IMAGES 81

Proof: Left to the reader.

Remark 3.1. (i) Equality may not hold in (ii).

(ii) Define f : Z→ Z
by f(z) = z2, ∀z ∈ Z.
Let A1 = {1, 2, 3} and A2 = {−1,−2, 3, 4}.
f(A1 ∩A2) = {9}, f(A1) ∩ f(A2) = {1, 4, 9}
Thus, f(A1 ∩A2) 6= f(A1) ∩ f(A2).

(iii) If f : A→ B is a function and a ∈ A, then f(a) ∈ B, whereas f({a}) ⊆ B.
Thus, f(a) is not the same as f({a}).

Inverse Images

Given a function f from A to B,← we now explain what we mean by the
inverse image of an element of B. Let f : A → B be a function and let b ∈ B.
The set of all elements of A which are mapped to b is called the inverse image
of b under f and is denoted by f−1(b).
Symbolically, f−1(b) = {a ∈ A | f(a) = b}.

Example 3.4. Let A = {1, 2, 3, 4, 5}, B = {a, b, c, d}, f = {(1, a), (2, b), (3, a),
(4, b), (5, b)}. Thus, f(1) = f(3) = a, f(2) = f(4) = f(5) = b. f−1(a) = {1, 3},
f−1(b) = {2, 4, 5}, f−1(c) = f−1(d) = φ.

Inverse image of a set

Let f : A → B be a function and C ⊆ B,C 6= φ. The set of all elements of
A whose images belong to C is called the inverse image of C under f and is
denoted by f−1(C). Thus f−1(C) = {x ∈ A | f(x) ∈ C}.
We define f−1(φ) = φ.
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Clearly, f−1(B) = A. In fact, f−1(R(f)) = A.

Example 3.5. Consider the function in Example 3.4.
If C = {a, c}, then f−1(C) = {1, 3}.
If D = {b, c, d}, then f−1(D) = {2, 4, 5}.
If E = {a}, then f−1(E) = {1, 3}.
In fact, f−1({a}) = f−1(a).

Remark 3.2. If f is a function, then f−1(a) = f−1({a}).

Theorem 3.2. Let f : A→ B be a function and B1, B2 subsets of B. Then
(i) f−1(B1

⋃
B2) = f−1(B1)

⋃
f−1(B2)

(ii) f−1(B1

⋂
B2) = f−1(B1)

⋂
f−1(B2)

(iii) B1 ⊆ B2 ⇒ f−1(B1) ⊆ f−1(B2)
(iv) f(f−1(B1)) ⊆ B1, and equality may not hold
(v) If C ⊆ A then C ⊆ f−1(f(C))
(vi) f−1(B1\B2) = f−1(B1)\f−1(B2)
(vii) f−1(Bc1) = (f−1(B1))c.

Proof: We shall prove only (iv) and (v).

(iv) Let y ∈ f(f−1(B1)). Then y = f(x) for some x ∈ f−1(B1).
x ∈ f−1(B1) ⇒ f(x) ∈ B1 ⇒ y ∈ B1. f(f−1(B1)) ⊆ B1.
Let A = {1, 2, 3, 4}, B = {a, b, c, d}.

N

O

P

Q

^ _
Ñ
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Let B1 = {b, c}. Then f−1(B1) = {2}. f(f−1(B1)) = {b} 6= B1. Hence
proved.

(v) Let x ∈ C. Then f(x) ∈ f(C). So that x ∈ f−1(f(C)).

Hence C ⊆ f−1(f(C)). Consider the function f as in (iv). Let C =
{1, 2}.ThenC ⊆ A. f−1(f(C)) = f−1{a, b} = {1, 2, 3} 6= C.

3.3 Types of Functions

We now study functions with special properties.

Definition 3.3. Let f : A→ B be a function. Then

(i) f is said to be onto (or surjective) if R(f) = B, i.e for every b ∈ B there
exists some a ∈ A such that f(a) = b.

(ii) f is said to be one-one(or injective) if distinct elements of the domain have
distinct images, i.e if a, b ∈ A such that a 6= b then f(a) 6= f(b). If a
function is not one-one it is many-one.

(iii) f is bijective if it is both onto and one-one.

The condition for a function f : A → B to be onto is that for every b ∈
B, f(x) = b has a solution in A. Usually, the contrapositive of the condition for
one-one is used. That is, f is one-one if a, b ∈ A such that f(a) = f(b), then we
must have a = b. We illustrate the concept of onto and one-one by using arrow
diagram for functions.

Example 3.6. Let f1 be a function defined by

N
O

P
Q

ñ
ó
ò

^ _
ÑN

R
ì
î

Neither one-one nor onto function.

Then f1 is a function which is not onto, as no element of A is mapped to z,
i.e f1(a) = z does not have a solution in A.
f1 is not one-to-one as 1 6= 2 but f1(1) = f1(2) = x.
Thus f1 is neither one-one nor onto function.

Let f2 be a function defined by
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One-one and onto function

Then f2 is both one-to-one and onto.

Let f3 be a function defined by
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Onto but not one-one function

Then f3 is not one-to-one, because 1 6= 2 but f3(1) = x = f3(2). It is onto.

Let f4 be a function defined by
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One-one but not onto function

f4 is one-one, as distinct elements have distinct images. f4 is not onto as z ∈ B
does not have a preimage. R(f) = {x, y, u, v} 6= B.
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The above examples show that the property of being onto or one-one are
independent of each other. A function may be neither one-one nor onto as f1,
both one-one and onto as f2, onto but not one-one as f3 or only one-one but
not onto as f4.

Example 3.7. Define f : Z→ Z by f(x) = x+ 4 ∀ x ∈ Z. We show that f is
one-one.
Let x, y ∈ Z(domain) such that f(x) = f(y). Then x + 4 = y + 4, so that
x = y. Thus f is one-to-one.
Now, we show that f is onto.
Let y ∈ Z, the codomain. Suppose there exits x ∈ Z, the domain, such that
f(x) = y. Then x+ 4 = y so that x = y− 4. Thus for each y ∈ codomain, there
exists y − 4 ∈ Domain, such that f(y − 4) = y. Hence f is onto.

So f is both one-one and onto function.

Example 3.8. Define g : Z→ Z by g(x) = 2x+ 4. g is one-one (prove it!).
It is not onto, 7 ∈ Z the codomain. Suppose there is x ∈ Z, the domain such
that g(x) = 7. Then 2x+ 4 = 7.⇒ 2x = 3, which has no solution in Z. Hence
g is not onto.

Example 3.9. Define f : Z → Z by f(x) = x2. Then f is not onto for 7 ∈ Z
the codomain, suppose x ∈ Z such that f(x) = 7 ⇒ x2 = 7. But this equation
has no solution in Z. Thus f is not onto. Let B = {x2 | x ∈ Z}.
Define f : Z→ B by f(x) = x2. Let b ∈ B. Then b = x2 for some x ∈ Z. Thus
f(x) = x2 = b. or f(x) = b. So that f is onto.

The above example shows that by changing the codomain, an onto func-
tion may cease to be onto. Thus the property of being onto depends upon the
codomain. The property of being onto also depends on the domain as shown in
the Example 3.11.

Example 3.10. Define f1 : Q→ Z by f(x) = 2x+ 4.
f1 is onto. For, let y ∈ Z, suppose there exists x ∈ Z such that f1(x) = y ⇒
2x+4 = y.⇒ x = (y−4)/2. Thus for each y ∈ Z, there exists x = (y−4)/2 ∈ Q
such that f1(x) = y. Hence f1 is onto. We note that the function f : Z → Z
defined by f(x) = 2x + 4 is not onto. f and f1 have the same codomain, and
same rule, only their domains are different.

The following examples show that the property of a function being one-one
is dependent on the domain.

Example 3.11. Define f : R → R by f(x) = x2. f is not one-one, because
1,−1 ∈ R (the domain). But f(1) = 1 = f(−1). Define g : R+ ∪ {0} → R by
g(x) = x2. Let x1, x2 ∈ R+ ∪ {0} such that g(x1) = g(x2) then x2

1 = x2
2, so that

x1 = x2. Hence g is one-one. The only difference in the functions f and g is
in their domain.

Definition 3.4. (Restriction of a function):
Let f : B → C be a function and A ⊆ B. The function g : A → C defined by
g(x) = f(x) ∀ x ∈ A, is called the restriction of f to A. It is denoted by f |A.

Definition 3.5. (Extension of a function):
Let f : A → C be a function and B ⊇ A. A function g : B → C is called an
extension of f if g|A = f.
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Example 3.12. Let i2 = −1 and Z[i] = {a+ ib | a, b ∈ Z}. Define f : Z[i]→
Z by f(a+ ib) = a2 + b2 and Z ⊆ Z[i]. Define g : Z→ Z by g(x) = x2 ∀x ∈ Z.
For x ∈ Z, g(x) = x2 = x2 + 02 = f(x+ i0) = f(x). Hence g(x) = f(x) ∀x ∈ Z,
so that f |Z= g i.e g is a restriction of f to Z.

Example 3.13. Define a function f : Z → Q by f(a) =| a |. Z is a subset of

Q. On Q define g : Q → Q by g(ab ) = |a|
|b| . Then g(a) =| a | ∀ a ∈ Z. Thus

g(a) = f(a) ∀a ∈ Z, so that g is an extension of f .

Define h : Q→ Q by h(x) =

{
| x | if x ∈ Z,
0 otherwise

Then h(x) = f(x) for all x ∈ Z, so that h is also an extension of f . This
shows that the g and h are two extensions of the function f .Thus, extension of
a function need not be unique.

3.4 Real Valued Functions

While defining a function f(x), sometimes we want the variable x to take
real values and the value of the function f(x) should also be a real number.Thus
we have: “If a function f(x) is defined from a subset of R to a subset of R, then
we say that f(x) is a real valued function of a real variable.” For such functions,
the domain and range are both subsets of R . Thus, if f : R → R, then by
the domain of f , we mean{x ∈ R | f(x) is defined and real}. This is called the
natural domain of f . If the graph of a function y = f(x) is drawn, then any
line parallel to the Y-axis should intersect the graph in at most one point. If it
intersects it in 2 or more points then it is not a function. This is because there
are more than one value of the function for a given value in the domain. This
is called the vertical line test.

Example 3.14. Consider the semi-circle x2 +y2 = 1, x > 0, i.e y = ±
√

1− x2.

As shown, a line parallel to Y-axis meets the graph in two points, namely
(x, y) and (x,−y). Thus, y defined by above is not a function.The above test
is called the vertical line test. This test is very useful, because from the graph
we can determine whether it is a function or not.

Example 3.15. The graph of y2 = 4x is as shown.
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Does it define a function? Using the vertical line test we see that a line parallel
to Y-axis intersects the curve in two points A and B. So it does not represent
a function.

From the graph we can also determine whether a given function is one-to-one
or not. If a line parallel to X-axis intersects the graph in two or more points,
then it is not a one-to-one function.

Example 3.16. Consider y = x2. Is it a function? Is it one-to-one?

The graph is

Using the vertical line test we see that it is a function. Now using the hori-
zontal line test, we conclude that it is not a one-one function, as x2

1 = (−x1)2.

Example 3.17. Consider x2 + y2 = 1, y > 0

u

v

M
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Using the vertical line test we find that it is a function.Horizontal line test tells
us that the function is not one-to-one.

Example 3.18. Consider x2 + y2 = 1, x > 0, y > 0.The graph is

ENIMF

EMINF

The vertical and horizontal line test tell us that it is a one-to-one function. The
domain and range can also we obtained looking at the graph of the function.
The domain is the projection of the graph on the X-axis. The range is the
projection of the graph on the Y -axis. Here domain is [0, 1] and the range is
also [0, 1].

Example 3.19. Consider the function whose graph is

K

K
KK
K

KK
K K

Taking projection on the X-axis and Y -axis, we find that domain = R, range
= Z.

3.5 Some Functions on the Set of Real Numbers

We shall now define some commonly used functions on the set of real num-
bers.

(i) Identity function: The function from i : R→ R defined by
i(x) = x ∀x ∈ R, is called the identity function. It is a bijective function.
Its graph is :
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M
u

v

Graph of i(x) = x

(ii) Constant function: The function f : R→ R defined by
f(x) = c ∀x ∈ R, where c is some real number, is called a constant
function. It is neither one-one nor onto. Its graph is:

Å[ M
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ÑEñF

ñ
u

Graph of f(x) = c

(iii) Absolute value function: The absolute value function | | :R → R is
defined by

| x |=
{
x if x > 0
−x if x < 0

Clearly | x |> 0 ∀x ∈ R. Range = [0,∞), so the function is not onto.
Since | x |=| −x |, therefore the function is not one-to-one.
Hence the function is neither one-to-one nor onto. Its graph is:
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M ñ
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Graph of |x|

(iv) Floor function or greatest integer function
The floor function b c : R→ R is defined by
bxc = greatest integer less than or equal to x.
The range is Z, so the function is not onto. Since b2.3c = 2 = b2.5c, but
2.3 6= 2.5 Therefore the function is not one-to-one. Thus the function is
neither one-to-one nor onto. Observe that for any x ∈ R, x− 1 < bxc 6 x,
so that b1.8c = 1, b−2.3c = −3. The graph of the function is:
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Graph of floor function b c

Due to the shape of the function it is also called the step function.

(v) Ceiling function: The ceiling function d e : R→ R is defined as
dxe = least integer greater than or equal to x.
The range is Z, so the function is not onto. Since d2.3e = 3 = d2.5e but
2.3 6= 2.5,∴ the function is not one-to-one. Thus the function is neither
one-to-one nor onto.
d1.9e = 2, d−1.9e = −1
Observe that for any x ∈ R, x ≤ dxe < x + 1. The graph of the function
is :



3.5. SOME FUNCTIONS ON THE SET OF REAL NUMBERS 91

Graph of ceiling function

(vi) Grass function:The grass function f : R→ R is defined as
f(x) = x− bxc.
The graph of the function is:

K K K
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(vii) Signum function: The signum function sgn is defined by
sgn : R→ R

sgn(x) =

 0 if x = 0
1 if x > 0
−1 if x < 0

Clearly signum function is neither one-to-one nor onto.The range is {−1, 0, 1}.
The graph of the function is:
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Graph of signum function sgn(x).
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Problem 3.1. Define f : A→ B by f(x) = x2 +6x−20. In the following cases
check whether f is one-to-one and/ or onto.Give reasons.

(i) A = Z, B = {b ∈ Z|b > −29}.
(ii) A = R, B = {b ∈ R|b > −29}.

Solution: (i) Suppose b ∈ B. Then b ∈ Z and b > −29. Let, there exists
a ∈ A such that f(a) = b.
∴ a2 + 6a− 20 = b
⇒ (a+ 3)2 − 29 = b
⇒ (a+ 3)2 = b+ 29 ...(1)
This has a solution a ∈ Z, only when b+ 29 is a perfect square. Thus it has no
solution in Z for b = 0, so f is not onto. Let a1, a2 ∈ A such that f(a1) = f(a2)
the a2

1 + 6a1 − 20 = a2
2 + 6a2 − 20, so that (a1 + 3)2 = (a2 + 3)2

⇒ a1 + 3 = ±(a2 + 3)
⇒ a1 + 3 = a2 + 3 or a1 + 3 = −(a2 + 3)
⇒ a1 = a2 or a1 + a2 = −6.
Thus we do not always get a1 = a2. Let us choose a1, a2 such that a1 +a2 = −6.
Let a1 = −2, a2 = −4. Then f(a1) = −28, f(a2) = −28, so we get a1 6= a2 but
f(a1) = f(a2) so f is not one-one.
(ii) Let b ∈ B. ∴ b ∈ R such that b > −29. Then as in (i), equation(1) gives
(a + 3)2 = b + 29. This equation has a solution for all b + 29 > 0 and for all
a ∈ R.
∴ a+ 3 = ±

√
(b+ 29)

⇒ a = −3±
√

(b+ 29)

Take a1 = −3 +
√

(b+ 29). Then a1 ∈ R and f(a1) = b. Hence f is onto.
As in (i) f is not one-to-one.

Problem 3.2. Define f : R → R by f(x) = 1
2−cos 3x . Find the domain and

range of f so that f is a bijective function.

Solution: Since f is one-to-one, therefore let x1, x2 ∈ R. Then
f(x1) = f(x2)

⇔ 1

2− cos 3x1
=

1

2− cos 3x2

⇔ cos 3x1 = cos 3x2

⇔ 3x1 = 2kπ ± 3x2

⇔ 3(x1 ± x2) = 2kπ

⇔ x1 ± x2 =
2kπ

3
Thus choose an interval such that for x1, x2 in the interval, x1 6= x2 we have
x1 ± x2 6= 2π

3 .Thus we choose the interval as [0, π3 ].
∴ D(f) = [0, π3 ].
Let y ∈ R(f). Then there exists x ∈ D(f) such that f(x) = y, as f is onto.
∴ 1

2−cos 3x = y.
x ∈ [0, π3 ]
⇒ 3x ∈ [0, π]
⇒ −1 6 cos 3x 6 1
⇒ 1 > − cos 3x > −1
⇒ 3 > 2− cos 3x > 1

⇒ 1
3 6

1

2− cos 3x
6 1
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⇒ 1
3 6 y 6 1

⇒ y ∈ [ 1
3 , 1]

∴ R(f) = [1
3 , 1].

Problem 3.3. Suppose A and B are two finite sets and f : A → B be a
function. Then
(i) If o(A) > o(B) then f can not be one-to-one.
(ii) If o(A) < o(B) then f cannot be onto.

Solution: A and B are two finite sets. Let o(A) = n, o(B) = m. Let f : A→ B
be any function.

(i) Suppose o(A) > o(B), i.e n > m. If f is one-one then elements of A must
have distinct images. Thus R(f) must have o(A) elements.
Then n = o(A) = o(R(f)) 6 o(B) = m, which is a contradiction. Thus f
cannot be one-one.

(ii) o(A) < o(B), i.e n < m. Since f is a function, therefore R(f) can have at
most o(A) elements, i.e R(f) can have at most n elements. Also f is onto
⇒ R(f) = B
⇒ o(R(f)) = o(B) = m
⇒ R(f) has m elements
⇒ m 6 n
This is a contradiction to the fact that n < m.
Hence f cannot be onto.

Problem 3.4. Suppose A and B are two finite sets of the same order.Then any
function f : A → B is onto if and only if it is one-one. The result may fail to
hold if A and B are infinite sets.

Solution: Let o(A) = o(B) = n (say). Let f : A → B be any function.
Suppose f is onto.Then R(f) = B. If f is not one-one then at least two elements
of A are mapped to the same element of B.
∴ o(R(f)) < o(A) = o(B)⇒ o(R(f)) < o(B)
⇒ R(f) ⊂ B.
This contradicts the fact that R(f) = B. Hence f is one-to-one.

Now suppose that f is one-to-one. Then distinct elements of A are mapped
to distinct elements of B .
∴ o(R(f)) = o(A) = o(B).
Now R(f) ⊆ B and o(R(f)) = o(B)
∴ R(f) = B.
Hence f is onto.

The result fails to hold if A and B are infinite sets. Let f : Z→ Z be defined
by f(z) = 2z, ∀z ∈ Z. Then f is not onto, as 7 ∈ Z does not have a preimage.
Let z ∈ Z be such that f(z) = 7. Then 2z = 7 which does not have a solution
in Z. f is one to one, for if z1, z2 ∈ Z such that f(z1) = f(z2) then 2z1 = 2z2,
so that z1 = z2. Thus f is one-to-one but not onto.

Let g : Z→ N ∪ {0} be defined by
g(z) = |z| ∀z ∈ Z.
If n ∈ N ∪ {0}, then n ∈ Z such that g(n) = n.

Hence g is onto. g is not one-to-one, because 2,−2 ∈ Z, and
g(2) = |2| = 2
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g(−2) = | − 2| = 2
∴ 2 6= −2, but g(2) = g(−2).
Thus g is onto but not one-to-one.

Problem 3.5. Let A = {1, 2, 3}, B = {u, x, y, z}
(i) How many functions are there from A to B?
(ii) How many onto functions are there from A to B?
(iii) How many one-to-one functions are there from A to B? List 4 of them.
(iv) How many bijective functions are there from A to B?

Solution: o(A) = 3, o(B) = 4

(i) In a function each element of A is mapped to exactly one element of B.
∴ There are 4 choices for f(1), 4 choices for f(2) and 4 choices for f(3).
Total number of functions from A to B
= 4× 4× 4 = 43

= 64.

(ii) If f is an onto function from A to B, then R(f) has 4 elements. Since
o(A) = 3, therefore R(f) can have at most three elements, so f can not
be onto. Hence there is no onto function from A to B.

(iii) If f is a one-to-one function, then f(1) has 4 choices. Since f(2) 6= f(1),∴
f(2) has only 3 choices and consequently f(3) has only 2 choices. Hence
number of one-to-one functions from A to B
= 4× 3× 2
= 24

Four one-to-one functions are
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(iv) Since there are no onto functions, hence there are no bijective functions.

3.6 Exercise

1. How many functions can be defined from A to B, if o(A) = 9 and o(B) =
7?

2. Let f : R→ R be defined by

f(x) = cosbπ2cx+ cosb−π2cx

Find f(π2 ), f(−π), f(π), f(π4 ).



96 CHAPTER 3. FUNCTIONS

3. Let A = {1, 2, 3, 4} and B = {x, y, z} and f = {(1, x), (2, y), (3, x), (4, z)}
If A1 = {1, 2}, A2 = {2, 3, 4}
Find f(A1

⋂
A2), f(A1)

⋂
f(A2). What do you conclude?

4. Let f : R→ R defined by
f(x) = bxc.
Find
(i) f−1(1)

(ii) f−1(0.5), f−1(
√

2), f(
√

2), f(0.5), f(−e)
(iii) Is f one-to-one?
(iv) Is f onto?

5. Let f : R→ R be defined by
f(x) = |x|.
Find f−1(A) where
(i) A = {1}
(ii) A = {−1}
(iii) A = [−2, 3]

6. Let f : Z→ Z be defined by
f(n) =remainder obtained on divided n by 5
Find
(i) R(f)
(ii) f(A) where A is the set of all multiples of 3
(iii) f−1(0), f−1(1)
(iv) f−1(B) where B = {3, 7}

7. Find the range of the function f : R→ R defined by
f(x) = x−1

x2−3x+3 , x ∈ R

8. Find the domain and range of the function
f(x) = 1√

|x|−x

9. Find the domain of the function
f(x) = 1

x + 2sin−1 x + 1√
x−2

10. Find the domain and range of the following functions
(i) f : R→ R

f(x) = x
x2+1

(ii) f : R→ R
f(x) = 1

3−cos 4x

(iii) f : R→ R
f(x) = 1√

1−x2

11. Which of the following functions defined from A to B are one-to-one?
(i) A = B = R, f(x) = |x+ 1|
(ii) A = (0,∞), B = R

g(x) = x+ 1
x

(iii) A = [−∞,−4), B = R
h(x) = x2 + 4x− 5

(iv) A = B = R
k(x) = e−x
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12. Let f : R\{−1} → R\{−1} defined by
f(x) = 1−x

1+x .
Prove that f is onto and one-to-one.

13. Give an example of a function f : R→ R such that
(i) f is one-to-one but not onto.
(ii) f is onto but not one-to-one.
(iii) f is both one-to-one and onto.
(iv) f is neither one-to-one nor onto.

14. If A and B are sets such that o(A) = 8, o(B) = 10. Then
(i) How many functions can be defined from A to B?
(ii) How many one-to-one functions can be defined from A to B?
(iii) How many onto functions can be defined from A to B?

15. Prove that the following functions are bijective.
(i) f : (−∞,∞)→ (0,∞) f(x) = 2x

(ii) f : (0, 1]→ [1,∞)
f(x) = 1

x
(iii) f : (0, 1]→ [a,∞)

f(x) = 1
x − 1 + a

(iv) f : (0, 1)→ (−∞,∞)

f(x) =
x− 1

2

x(x−1)

(v) f : (−∞,∞)→ (a,∞)
f(x) = 2x + a

3.7 Inverse of a Function

Consider a function defined on the sets A and B, where A = {a, b, c, d} and
B = {p, q, r}. Define
f1 = {(a, p), (b, p), (c, q), (d, r)}. Then f1 is onto but not one-to-one.
Also f−1

1 = {(p, a), (p, b), (q, c), (r, d)}.
Since p has two images a and b, therefore f−1

1 is not a function from B to A.
This is because f1 is not one-one.
If we take A = {a, b, c, d}, B1 = {p, q, r, s, t}
and define f2 = {(a, p), (b, q), (c, r), (d, s)},
then f2 is one-to-one but not onto. Also f−1

2 = {(p, a), (q, b), (r, c), (s, d)}
The relation f−1

2 is not a function from B1 to A as t does not have any image
under f−1

2 . This is because f2 is not onto. Let us now consider
A = {a, b, c, d}, B2 = {p, q, r, s} and define
f3 = {(a, p), (b, q), (c, r).(d, s)}
Then f3 is a bijective function from A to B2. Now,
f−1

3 = {(p, a), (q, b), (r, c), (s, d)}
f−1

3 is also a function from B2 to A. In fact it is also bijective. The above
illustrations lead us to believe that every function may not have an inverse, and
that perhaps bijective functions have inverses.

Definition 3.6. (Inverse of a Function):
Let A and B be two sets and f : A→ B be a function. If there exists a function
g : B → A such that (b, a) ∈ g ⇔ (a, b) ∈ f , then g is called an inverse of f .We
denote g by f−1.
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If a function has an inverse we say that it is invertible.
If f−1 exists then f−1 = {(b, a) ∈ B × A | (a, b) ∈ f} and b = f(a) ⇔ a =
f−1(b).

We now show that (f−1)−1

= f .
Let f be a function defined from A to B.
Then f−1 = {(b, a) ∈ B×A|(a, b) ∈ f}. Now, (f−1)−1 = {(a, b) ∈ A×B|(b, a) ∈
f−1}
= {(a, b) ∈ A×B|(a, b) ∈ f}
= f
We would like to know that if f is a function, under what conditions does f−1

exist?
In the above examples we saw that f1 is onto, but not one-to-one and f−1

1

does not exist. f2 is not onto but it is one-to-one and f−1
2 does not exist. f3 is

onto and one-to-one and f−1
3 exists.

The above examples suggest the following:

Theorem 3.3. A function f : A→ B has an inverse f−1 : B → A if and only
if f is one-to-one and onto.

Proof: Suppose that f−1 exists. We shall prove that f is a bijective function.
Since f−1 : B → A is a function.
∴ f−1(b) = a⇔ f(a) = b

f is one-to-one.
Let a1, a2 ∈ A such that f(a1) = f(a2).Let f(a1) = f(a2) = b (say)
Then f(a1) = b⇒ f−1(b) = a1 and f(a2) = b⇒ f−1(b) = a2

Thus a1 = f−1(b) = a2, so that f is one-to-one.
f is onto.

Let b ∈ B. Then f−1(b) ∈ A (as (f−1 is a function ). Let f−1(b) = a ∈ A. Thus
f(a) = b, so that f is onto.

Conversely, let f be a bijective function. Let b ∈ B. Since f is onto, there
exists a ∈ A such that f(a) = b. Since f is one-to-one, the element a ∈ A is
unique. Hence for each b ∈ B, there exists a unique a ∈ A such that f−1(b) = a.
Hence f−1 is a function from B to A.

Example 3.20. Define f : R → R by f(x) = x + 2 ∀x ∈ R. Then f is a
bijective function. Hence f has an inverse. If f−1(x) = y, then f(y) = x
⇒ y + 2 = x
⇒ y = x− 2
∴ f−1(x) = x− 2

We now outline the steps involve in finding an inverse of a function if it
exists.
Steps involved in finding f−1

Given f : A→ B is a function
Step 1 Prove that f is a bijective function. Then f−1 exists.
Step 2 By step 1
f−1 : B → A
we are required to find f−1(b), for b ∈ B. If f−1(b) = a (1)
Then b = f(a)
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Solve for a in terms of b. The solution must be in A. Substitute the solution
obtained in (1). Thus we get the function f−1.

Example 3.21. Define f : R− → R+ by f(x) = x2. To find the inverse
function of f .

Step1 We prove that f is a bijective function. Let x ∈ R+. Then, −
√
x ∈ R−

such that

f(−
√
x) = (−

√
x)2 = x

Hence f is onto.

Let x, y ∈ R− such that f(x) = f(y). Then, x2 = y2

⇒ x = ±y
Since x, y ∈ R−
∴ x = −y is not possible so that x = y. ∴ f is one-to-one.
Thus f is a bijective function. ∴ f−1 exists and
f−1 : R+ → R−

Step2 We shall now find the rule for defining f−1.
Let x ∈ R+.
Then f−1(x) ∈ R−. Let f−1(x) = y.
Then x = f(y)
⇒ x = y2

⇒ y = ±
√
x

The solution of this equation in R− is y = −
√
x

∴ f−1(x) = −
√
x.

Example 3.22. Define f : R→ R+ by f(x) = x2. Then f is not one-to-one.
∵ 2,−2 ∈ R but f(2) = 4 = f(−2).Then 2 6= −2, but f(2) = f(−2). Hence f is
not bijective and so does not have an inverse.

Example 3.23. Define f : R− → R by f(x) = x2.
Then f(x) > 0 ∀x ∈ R−
−4 ∈ R (the codomain ) and there does not exist any x ∈ R− such that f(x) =
−4.
Hence f is not onto, so that f is not a bijective function .
∴ f−1 does not exist.

Theorem 3.4. Let f : A → B be any function.Then f is bijective ⇔ f−1 is
bijective.

Proof: Let f be bijective. Then f−1 exists and f−1 : B → A. Let b1, b2 ∈
B such that f−1(b1) = f−1(b2). If f−1(b1) = f−1(b2) = x, then f(x) =
b1 and f(x) = b2, so that b1 = b2. Hence f−1 is one-to-one.

Let a ∈ A and f(a) = b (as f is a function), so that f−1(b) = a. Thus f−1

is onto. This proves that f−1 is a bijective function.

Conversely, let f−1 be a bijective function. If g = f−1 , then g is a bijective
function so that g−1 exists and is bijective.

However, g−1 = (f−1)−1 = f , i.e f is a bijective function.
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3.8 Composition of Functions

Having defined functions, we would like to combine them by applying one
function after the other so as to get another function.Thus we have the following
definition.

Definition 3.7. If f : A → B and g : B → C are two functions, then the
composite of f by g is the function gof : A→ C defined by
(gof)(a) = g(f(a)) ∀a ∈ A.

^ _Ñ Ö `

~
ÑE~F ÖEÑE~FF

ÖçÑ

Example 3.24. Let A = {1, 2, 3, 4}, B = {x, y, z}, C = {p, q, r, s}, and

N
O

P

ñ
ó

ò

Ñ

f = {(1, x), (2, y), (3, z), (4, z)}
g = {(x, p), (y, q), (z, q)}
Then f : A→ B, g : B → C, so that
gof : A→ C such that (gof)(a) = g(f(a)), for a ∈ A.
Hence (gof)(1) = g(f(1)) = g(x) = p.
(gof)(2) = q
(gof)(3) = q
(gof)(4) = q.

Example 3.25. Define f : R∗ → R by f(x) = 1/x, and
g : R→ R by g(x) = x2

Then gof : R∗ → R
and (gof)(x) = g(f(x))
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= g(1/x)
= 1

x2

Here R(g) = [0,∞) * R∗ = D(f)
∴ fog is not defined.

Example 3.26. Define functions f and g as follows:
f : R∗ → R∗
f(x) = 1/x
g : R∗ → R∗
g(x) = x2 + 1
Then fog : R∗ → R∗
and (fog)(x) = f(g(x)) = f(x2 + 1) = 1

x2+1
Also gof : R∗ → R∗
and (gof)(x) = g(f(x)) = g(1/x) = 1

x2 + 1
Thus we see that
(fog)(1) = 1/2
(gof)(1) = 1 + 1 = 2
so that (fog)(1) 6= (gof)(1)
Hence fog 6= gof.

This shows that the composition of functions is not commutative. In fact, the
composition of functions is associative. Let A and B be two sets and f : A→ B
and g : B → A be two functions. If gof = iA, the identity function on A, then
g is called a left inverse of f. If fog = iB , then g is called a right inverse of f .
If g is a right inverse as well as a left inverse of f , then g is called an inverse of f .
Though, inverse of a function is unique but a right (left) inverse is not unique.
In fact a right (left) inverse may exist but inverse may not exist.The following
theorem gives the conditions for a function to have a left (right) inverse.

Theorem 3.5. Let A and B be two sets and f : A → B be a function. Then
(i) f is onto if and only if f has a right inverse.
(ii) f is one-to-one if and only if f has a left inverse.

Proof:

(i) Let f be onto. Then for each b ∈ B, there exists a ∈ A such that f(a) = b.
Also R(f) = B.
Define

g : B → A

by g(b) = a if f(a) = b. Since R(g) ⊆ A = D(f), therefore fog is defined,
and

fog : B → B

If b ∈ B, then
(fog)(b) = f(g(b))

= f(a), where g(b) = a if f(a) = b.
= b.

∴ (fog)(b) = b.

Hence fog = iB , so that g is a right inverse of f .

Conversely, let f have a right inverse h . Then

h : B → A
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such that foh = iB . We prove that f is onto. Let b ∈ B. Then
(foh)(b) = iB(b)
⇒ f(h(b)) = b.
⇒ f(a) = b, where a = h(b) ∈ A .
⇒ f is onto.

(ii) Let f be one-to-one. We prove that f has left inverse. If g : B → A is
a left inverse then gof must be defined, so that R(f) ⊆ D(g). We take
D(g) = R(f).

Since f is one-to-one, ∴ if a1, a2 ∈ A such that a1 6= a2 then f(a1) 6= f(a2).
So, for every b ∈ R(f), there exists unique a ∈ A such that f(a) = b.Define

g : R(f)→ A
g(b) = a, if f(a) = b.
Then gof : A→ A

(gof)(a) = g(f(a)) for a ∈ A
= g(b), where f(a) = b.
= a, by definition of g.

∴ (gof)(a) = a ∀a ∈ A.
So that gof = iA.

Conversely, let f have a left inverse say h . Let h : B → A. For hof to be
defined, we must have R(f) ⊆ B. Also

hof = iA.
Let a1, a2 ∈ A such that f(a1) = f(a2). Then
h(f(a1)) = h(f(a2))
(hof)(a1) = (hof)(a2)
⇒ iA(a1) = iA(a2).
⇒ a1 = a2

⇒ f is one- to- one.

Theorem 3.6. Let A and B be two sets and f : A→ B be a function. Then f
is bijective ⇔ there exists g : B → A such that fog = iB , gof = iA.

Proof: Let f be bijective. By Theorem 3.5, there exists a right inverse g of f
and a left inverse h of f . Thus

fog = iB , hof = iA

Since composition of functions is associative,
∴ ho(fog) = (hof)og
⇒ hoiB = iAog
⇒ h = g.

Thus there exists a function g : B → A such that fog = iB , gof = iA.
Conversely, let the conditions hold. By Theorem 3.5, f is onto and injective

so that f is bijective.

Theorem 3.7. Let f : A→ B be any function. Then, a function g : B → A is
an inverse of f if and only if fog = iB and gof = iA, where iA, iB are identity
functions on A and B respectively.
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Proof: Suppose g is an inverse of f. Then g = f−1. If a ∈ A, b ∈ B, then
f(a) = b
⇔ g(b) = a
We see that fog : B → B and gof : A→ A. For any b ∈ B
(fog)(b) = f(g(b))

= f(a)
= b

∴ (fog)(b) = b ∀b ∈ B
so that fog = iB . Similarly gof = iA. Hence proved.

Conversely, suppose that the conditions hold. To prove that g is an inverse of
f , we must prove that for a ∈ A, b ∈ B, f(a) = b⇔ g(b) = a. Let a ∈ A, b ∈ B
such that f(a) = b then g(f(a)) = g(b)
⇒ (gof)(a) = g(b)
⇒ iA(a) = g(b)
⇒ a = g(b)

Conversely let a ∈ A, b ∈ B such that g(b) = a.
Then f(g(b)) = f(a)
⇒ (fog)(b) = f(a)
⇒ iB(b) = f(a)
⇒ b = f(a)

Thus we have proved that
f(a) = b
⇔ g(b) = a
so that g is an inverse of f .

We shall now prove that if a function has an inverse, it must be unique.
Thus we will say the inverse of a function.

Theorem 3.8. Let f : A → B be a function. Then f is invertible ⇔ f is
bijective.

Proof: Let f be invertible. By Theorem 3.7, there exists a function g : B → A
such that gof = iA, fog = iB . By Theorem 3.6, f is bijective.

Conversely, let f be bijective. By Theorem 3.6, there exists a function
g : B → A, such that gof = iA, fog = iB . By Theorem 3.7, f has an inverse,
so that f is invertible.

Theorem 3.9. An invertible function has a unique inverse.

Proof: Let f be an invertible function from A to B and let g and h be two
inverses of f . g : B → A, h : B → A such that
Then fog = iB , gof = iA and foh = iB , hof = iA. If b ∈ B, then (foh) = iB
⇒ (foh)(b) = iB(b)
⇒ go(foh)(b) = (goiB)(b)
⇒ ((gof)oh))(b) = g(b)
⇒ (iAoh)(b) = g(b)
⇒ h(b) = g(b)
Since this holds for all b ∈ B.
∴ h = g.
Hence inverse of a function is unique.

Theorem 3.10. The composite of two bijective functions is bijective.
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Proof: Let f : A → B and g : B → C be two bijective functions. Then
gof : A→ C. We prove that gof is bijective.
Step1 To prove that gof is onto. Let c ∈ C. Since g is onto ∴ ∃ b ∈ B such
that g(b) = c.
Since f is onto ∴ ∃ a ∈ A such that f(a) = b
Now g(f(a)) = g(b) = c
⇒ (gof)(a) = c
⇒ gof is onto.
Step2 To prove that gof is one-to-one.
Let a1, a2 ∈ A such that
(gof)(a1) = (gof)(a2)
∴ g(f(a1)) = g(f(a2))
⇒ f(a1) = f(a2) ∵ g is one-to-one and f(a1), f(a2) ∈ B
⇒ a1 = a2 ∵ f is one-to-one
Hence gof is one-to-one.

Step3 Steps 1 and 2 prove that gof is a bijective function.

Theorem 3.11. If f and g are invertible functions, so is gof . Moreover
(gof)−1 = f−1og−1.

Proof: Let f : A→ B and g : B → C be invertible functions. Then
gof : A→ C
f, g are invertible functions.
⇒ f, g are bijective functions. . . (By Theorem 3.8)
⇒ f−1, g−1 exist and are bijective. . . (By Theorem 3.9)
Then f−1 : B → A and g−1 : C → B, so that
f−1og−1 : C → A.

^ _Ñ

Ñ

Now f, g are bijective functions.
⇒ gof is a bijective function.
⇒ (gof)−1 exists and is bijective function from C to A.
We see that f−1og−1 is also a mapping from C to A.
To prove that f−1og−1 = (gof)−1 we must prove that their action on every
element of C is same. Let c ∈ C. Then
f−1og−1(c) = f−1(g−1(c))
= f−1(b), where g−1(c) = b ∈ B
= a, where f−1(b) = a ∈ A
Now g−1(c) = b⇔ g(b) = c
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f−1(b) = a⇔ f(a) = b.
Thus g(f(a)) = g(b) = c
⇒ (gof)(a) = c
⇒ (gof)−1(c) = a
Thus (gof)−1(c) = (f−1og−1)(c) ∀c ∈ C
so that (gof)−1 = f−1og−1.

3.9 Solved Problems

Problem 3.6. Let A = {1, 2, 3}, B = {a, b}
Let f = {(1, a), (2, b), (3, a)}
and g = {(a, 1), (b, 2)}
Find gof and fog. Is g = f−1?

Solution: Since f is a mapping from A to B and g is a mapping from B
to A.
∴ fog and gof are defined and fog : B → B, gof : A → A. Now, (fog)(a) =
f(g(a)) = f(1) = a
(fog)(b) = f(g(b)) = f(2) = b
∴ fog = iB , the identity mapping on B.
(gof)(1) = g(f(1)) = 1
(gof)(2) = 2
(gof)(3) = 1
Thus gof 6= iA
Hence g 6= f−1. In fact f does not have an inverse as f : A→ B is not one-one.

Remark 3.3. If f : A→ B and g : B → A, then fog = iB is not sufficient to
ensure that f is invertible. We must also check that gof = iA. Also more than
one g can be found such that fog = iB and gof 6= iA.

So f has two right inverses, h and g. In the above question, let h =
{(a, 3), (b, 2)}. Then (foh) = iB but h 6= g.

Problem 3.7. Define f : Z→ N by f(x) =

{
2|x| if x < 0
2x+ 1 if x > 0

Show that f has an inverse and find f−1 and hence find f−1(3686), f−1(231).

Solution: To prove that f is one-to-one.
Let x, y ∈ Z such that f(x) = f(y). Three cases arise:
Case 1. x, y > 0
Then f(x) = f(y)
⇒ 2x+ 1 = 2y + 1
⇒ x = y
Case 2. x, y < 0
f(x) = f(y)
⇒ 2|x| = 2|y|
⇒ −x = −y
⇒ x = y
Case 3. One of them is > 0 and the other is < 0
Without any loss of generality we can take x > 0, y < 0
Then f(x) = f(y)
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⇒ 2x+ 1 = 2|y|
⇒ 2x+ 1 = −2y
⇒ 2(x+ y) = −1
⇒ x+ y = −1/2
which is not possible in Z.
Thus in all cases f(x) = f(y)
⇒ x = y
Hence f is one-to-one.
To show that f is onto.
Let y ∈ N. Then y is either odd or even. Suppose that y is odd.
∴ y = 2z + 1 for some z ∈ N ∪ {0}
f(z) = 2z + 1

= y, where z = (y − 1)/2
Let y be even.
∴ y = 2z for some z ∈ N
Then −z ∈ Z, −z < 0 and
f(−z) = 2| − z| = 2z = y
Combining the two we get
f(−y2 ) = y if y is even, and

f y−1
2 ) = y if y is odd

Thus f is onto.
To find f−1. Since f is a one-to-one and onto function, therefore f is invertible
so that f−1 exists and f−1 : N→ Z.
We now obtain a rule to define f−1.

For x ∈ N, let f−1(x) = y
Then x = f(y)

=

{
−2y if y < 0
2y + 1 if y > 0

Solving for y in terms of x, we get

∴ f−1(x) =

{ −x
2 if x is even
x−1

2 if x is odd

f−1(3686) = −3686
2 ∵ 3686 is even.

= −1843
f−1(231) = 231−1

2 ∵ 231 is odd.
= 115

Problem 3.8. Let A be a subset of R and suppose f : A → A is a function
with the property that
f−1(x) = 1

f(x) ∀x ∈ A. Show that

(i) 0 /∈ A.
(ii) f4 = iA, the identity function on A.

Solution:

(i) Suppose that 0 ∈ A. Since f is onto there exists some a ∈ A such that
f(a) = 0.
f−1(a) = 1

f(a) , which is not defined.

Hence our assumption is wrong, so that 0 /∈ A.

(ii) Let x ∈ A. Then
f−1(x) = 1

f(x)
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f(f−1(x)) = f( 1
f(x) )

i.e (fof−1)(x) = f( 1
f(x) )

i.e f( 1
f(x) ) = x

Applying f on both sides
f2( 1

f(x) ) = f(x), for all x ∈ A ...(1)

Let y ∈ A. since f is onto, means that there exists some z ∈ A such that
f(z) = y
Then f2( 1

f(z) ) = f(z) using (1)

i.e f2( 1
y ) = y ∀y ∈ A ... (2)

Now f4(x) = f2(f2(x))
= f2( 1

x ) using(2)
= x using (2)
∴ f4(x) = x ∀x ∈ A
Thus f4 is the identity mapping on A.

Problem 3.9. If f : A→ B and g : B → C, are functions, prove that
(i) If f is onto and gof is one-to-one then g is one-to-one.
(ii) If g is one-to-one and gof is onto, then f is onto.

Solution: Clearly gof : A→ C

(i) Let x1, x2 ∈ B such that
g(x1) = g(x2) (1)
Since f is onto
∴ there exist x

′

1, x
′

2 ∈ A such that
f(x

′

1) = x1 and f(x
′

2) = x2 (2)
(1) and (2) ⇒
g(f(x

′

1)) = g(f(x
′

2)
⇒ (gof)(x

′

1) = (gof)(x
′

2)
⇒ x

′

1 = x
′

2 ∵ gof is one-to-one
⇒ f(x

′

1) = f(x
′

2)
⇒ x1 = x2

Hence g is one-to-one.

(ii) Let b ∈ B. Then g(b) ∈ C. Since gof is onto C and g(b) ∈ C
∴ ∃ some a ∈ A such that (gof)(a) = g(b)
⇒ g(f(a)) = g(b)
⇒ f(a) = b since g is one-to-one
Thus f is onto.

Problem 3.10. If f and g are two functions such that gof is one-to-one then
prove that
(i) f must be one-to-one.
(ii) g may not be one-to-one.

Solution: Let f : A→ B, g : B → C be two functions. Then gof : A→ C.
Suppose that gof is a one-to-one function .

(i) Let a1, a2 ∈ A such that
f(a1) = f(a2) (1)
Now, f(a1), f(a2) ∈ B so that
g(f(a1)), g(f(a2)) ∈ C
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(1) ⇒ g(f(a1)) = g(f(a2))
⇒ (gof)(a1) = (gof)(a2)
⇒ a1 = a2 since gof is one-to-one
Thus f is one-to-one.

(ii) The functions f and g are defined by the arrow diagram.

N

O

ò

Ñ

Let gof is one-to-one, but g is not one-to-one.

Problem 3.11. A function is defined on the set of real numbers as follows:
f : R→ (1,∞), f(x) = 32x + 1
Does f−1 exist? If yes, find it.

Solution: To prove that f−1 exist, we shall prove that f is a bijective function.
To prove that f is one-to-one. Let x1, x2 ∈ R such that
f(x1) = f(x2)
Then 32x1 + 1 = 32x2 + 1

⇒ 32x1 = 32x2

⇒ 2x1 = 2x2

⇒ x1 = x2

Hence f is one-to-one.
To prove that f is onto
Let y ∈ (1,∞). In order to prove that f is onto, we need to solve

f(x) = y . . . (1)

for x ∈ R
Thus 32x + 1 = y
⇒ 32x = y − 1
Taking logrithm to the base 3, we get

x =
1

2
log3(y − 1) . . . (2)

Since y ∈ (1,∞) ∴ y > 1
i.e y − 1 > 0 so that log3(y − 1) is defined.
Hence x ∈ R.
Thus f is a bijective function, and therefore f−1exists.
From (1) and (2) it follows that

f−1(y) =
1

2
log3(y − 1), where y ∈ (1,∞)
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Thus f−1 : (1,∞)→ R defined by f−1(x) = 1
2 log3(x− 1).

3.10 Exercise

1. Define f : Z→ N by

f(x) =

{
2|x| x < 0,
2x+ 1 x > 0

Find fof .

2. Define functions on R as
f(x) = log( 1+x

1−x )

g(x) = 3x+x3

1+3x2

Find the natural domains of f and g. Show that (fog)(x) = 3f(x). Hence
deduce that fog and f have the same domain.

3. Let A = {1, 2, 3, 4, 5}, B = {1, 3, 5, 7, 9}
Define functions from A to B as follows:
(i) f = {(1, 9), (2, 7), (3, 5).(4, 3), (5, 1)}
(ii) g = {(1, 3), (2, 5), (3, 7), (4, 5), (5, 9)}
Find f−1 and g−1, in case they exist.

4. Let f : A→ B.Give example of the following:
(i) f has a right inverse but not a left inverse.
(ii) f has a left inverse but not a right inverse.
(iii) f has neither a right inverse nor a left inverse.
(iv) f has a right as well as a left inverse.

5. Define the following functions
f : [1, 3]→ R
by f(x) = 2x
g : R∗ → R∗
by g(x) = 1

x
h : R→ R
by h(x) = 1 + 3x
Find
(i) hogof .
(ii) R(hogof).

6. The functions f and g are defined as follows:
f : (1, 2)→ R
by f(x) = x− bxc
g : R∗ → R∗
by g(x) = 1

x

(i) Find gof .
(ii) Is gof bijective.
(iii) If answer to (ii) is yes, find (gof)−1.

7. If f and g are two functions such that gof is onto then prove that
(i) g must be onto.
(ii) f may not be onto.

8. Show that the composition of two onto functions is an onto function.
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9. Show that the composition of two one-to-one functions is a one-to-one
function.

10. Define f : R+ → R
by f(x) = 1− 1

x+1

g : R+ → R
by g(x) = 1

x
h : R+ → R
by h(x) = x+ 1
(i) Find range of f, g and h.
(ii) Show that gof, fog, hogof, and fogoh are all defined.
(iii) Show that f, g, gof are all invertible functions.
(iv) Verify that (gof)−1 = f−1og−1.

11. Define functions f, g, h as follows:
f : R∗ → R
by f(x) = 2x
g : R∗ → R∗
by g(x) = 1/x
h : R→ R
by h(x) = 1 + 3x
Find
(i) Range of hogof .
(ii) If (hogof)−1 exists, find it.

12. If f : (−∞, 0)→ R is defined by
f(x) = 1√

|x|−x

Find f−1

13. If f : [0, 3]→ R is defined as

f(x) =

{
1 + x 0 ≤ x ≤ 2,
3− x 2 < x 6 3

Find
(i) Range f .
(ii) fof .
(iii) Suitable inverse.

14. Show that the function f : [2,∞)→ [1,∞) defined by
f(x) = x2 − 4x+ 5 is a bijection. Find f−1.

15. Let f : [0, 1]→ [0, 1] be defined by

f(x) =

{
x if x is rational,
1− x if x is not rational

}
Show that
f(x) = f−1(x), ∀x ∈ [0, 1].

3.11 Cardinality of a Set

Two finite sets can be compared in size by counting the number of elements
they have. But how do we compare the size of two infinite sets? The set of
natural numbers, integers, rational numbers, real numbers and complex numbers
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are all infinite sets such that N ⊂ Z ⊂ Q ⊂ R ⊂ C. Does it mean that Z is
larger in size than N, Q is larger in size than Z and so on? We may also think
that since all are infinite sets, so they are of the same size. Certainly not!

We now discuss how the sizes of infinite sets can be compared .

Definition 3.8. (One-to-one correspondence):
Let A and B be two sets. If f : A→ B is a bijective function then we say that
there is a one-to-one correspondence between A and B. Equivalently, we say
that A and B are in one-to-one correspondence.

Example 3.27.

(i) A = {a, b, c, d....., z}
B = {1, 2, 3, 4........, 26}
Define f : A→ B
by f(a) = 1, f(b) = 2, f(c) = 3, ....f(z) = 26
Then a→ 1, b→ 2, ...., z → 26
is a one-to-one correspondence between A and B.

(ii) Define f : 2Z→ 4Z
by f(2z) = 4z ∀z ∈ Z
Then f is a bijective function so that 2Z and 4Z are in one-to-one corre-
spondence.

Definition 3.9. (Finite set):
A set is finite if it is
(i) either the null set, or
(ii) in one-to-one correspondence with the set {1, 2, 3, . . . , n} for

some natural number n .
If a set is not finite, then it is said to be infinite.

Definition 3.10. (Cardinality of a finite set):
If A is a finite, non empty set and it is in one-to-one correspondence with
{1, 2, 3, . . . , n}, we define the cardinality of A to be n.The cardinality of the null
set is defined to be zero. The cardinality of A is denoted by |A|.

Example 3.28.
(i) Let A = {n ∈ N | n 6 15}

Then |A| = 15.
(ii) B = {x ∈ Z | − 10 6 x < 5}

Then B = {−10,−9, . . . , 4}
|B| = 15.

(iii) Let C = set of all persons living on a moon of Jupiter
Then C = φ so that |C| = 0.

Definition 3.11. (Equipollent sets):
Two sets A and B are said to have the same cardinality or are equipollent if
and only if there exists a one-to-one correspondence between A and B. We write
|A| = |B|.

We write A ∼ B. It can be verified that equipollence relation on the family
of all sets is an equivalence relation.
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Example 3.29. (i) Let A = set of all alphabets of the English language.
B = {1, 2, ..., 26}
Then there is a one-to-one correspondence between A and B, so that |A| =
|B|=26 .

(ii) As seen in Example 3.27 there is one-to-one correspondence between 2Z and
4Z, hence |2Z| = |4Z|.

(iii) |N| = |N ∪ {0}|, because
f : N→ N ∪ {0}
f(n) = n− 1
is a bijective function, so that there is a one-to-one correspondence between
N and N

⋃
{0}. Therefore N and N ∪ {0} are equipollent and correspond-

ingly |N| = |N ∪ {0}|.

Remark 3.4. If A and B are two sets such that |A| = |B|, then there exists a
bijective mapping from A to B. This mapping need not be unique. If A and B
are infinite sets such that A  B it is quite possible that |A| = |B|.

Definition 3.12. Let A and B be two sets. If there exists a one-to-one mapping
from A to B then we say that |A| 6 |B|. If |A| 6 |B| and |A| 6= |B|, then
|A| < |B|.

If A and B are finite sets such that |A| 6 |B| and |B| 6 |A|, we conclude
immediately that |A| = |B| by the antisymmetry of ≤.
But when A and B are infinite sets such a property of antisymmetry also holds
between |A| and |B|.

This is the following theorem.

Theorem 3.12. (Schroder Bernstein) If A and B are two sets such that |A| 6
|B| and |B| 6 |A| then |A| = |B|.

Proof: Beyond the scope of the book.

3.12 Countable Sets

Definition 3.13. (Countably infinite set): A set A is said to be countably
infinite if there is a one-to-one correspondence between A and N, i.e |A| = |N|.

Definition 3.14. (Countable set): A set A is said to be countable if it is
either finite or countably infinite.

A set which is not countable is said to be uncountable. Traditionality, the
cardinality of N is denoted by the symbol ℵ0 (pronounced ’alpha naught’). Thus
the cardinality of a countably infinite set is ℵ0.

Let A be countably infinite set. If f is a bijective mapping from A to N.
Then elements of A can be listed as {a1, a2, ...}, where ak = f−1(k), for k ∈ N.

Example 3.30.
(i) Z, 2Z,Q+,Q are examples of countably infinite sets.
(ii) R+,R, (0, 1), (a, b) for a < b are examples of uncountable sets.

Proofs of the above examples are given later.
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Since equipollence is an equivalence relation, therefore, to prove that a set
A is countable, it is sufficient to prove that it is equipollent to some countable
set B, i.e there is a one-to-one correspondence between A and B. Similarly to
prove that a set X is uncountable it must be equipollent to some set Y , which
is known to be uncountable. These two facts will be used repeatedly.

Theorem 3.13. Every subset of a countable set is either finite or countable.

Proof: Let A be a countable set and B be a subset of A. Since A is countable,
therefore it can be listed as {a1, a2, ...}. . . . (1)
Two cases arise

Case 1. B is finite. Then B is countable by definition.
Case 2. B is infinite. Consider the listing of A as given in (1). From this

listing omit those elements of A which are not in B. The list which remains
gives a listing of the elements of B. Hence B is countable.

Theorem 3.14. Every infinite set has a countable subset.

Proof: Let A be an infinite set. Then A is nonempty, so choose a1 ∈ A. Let
A1 = A\{a1}. Since A is infinite, therefore A1 6= φ. Choose a2 ∈ A1 and let
A2 = A\{a1, a2}. Again, A2 6= φ . Choose a3 ∈ A2, and let A3 = A\{a1, a2, a3}.
Continuing in this way, we obtain a countable subset {a1, a2, a3, ...} of A.

Corollary 3.15. If A is any infinite set then ℵ0 6 |A|.

The next theorem gives a relation between the cardinalities of a set and its
power set.

Theorem 3.16. If A is any set, then |A| < |P(A)|

Proof: Define f : A→ P(A)
by f(a) = {a} ∀a ∈ A .
Then f is one-to-one, for if a, b ∈ A such that
f(a) = f(b)
then {a} = {b}
⇒ a = b
Hence |A| 6 |P(A)| ....(1)
We now prove that |A| 6= |P(A)|
On the contrary, suppose that
|A| = |P(A)|, so that there exists a bijective mapping g : A→ P(A)
Consider B = {a ∈ A | a /∈ g(a)}
Then B ⊆ A so that B ∈ P(A).
Since g is onto, therefore, there exists x ∈ A such that
g(x) = B ...(1)
Two cases arise:

Case 1. x ∈ B. Then x /∈ g(x) by definition of B
i.e x /∈ B using (1)
which is a contradiction to x ∈ B.

Case 2. x /∈ B
In this case x /∈ g(x) by(1)
Thus x ∈ A and x /∈ g(x)
∴ x ∈ B by definition of B which contradicts x /∈ B.
Hence, in either case we reach at a contradiction. So that there does not exist
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any bijective mapping g from A to P(A).
Thus |A| < |P(A)|
Corollary 3.17. P(N) is uncountable.
Taking A = N in the above theorem, we get |N| < |P(N)|
⇒ |P(N)| > ℵ0 ⇒ P(N) is uncountable.

We have proved that |N| < |P(N)| and P(N) is an uncountable set. It can
be shown that |P(N)| = |R|
It follows that R is uncountable as P(N) is uncountable. The cardinality of R
is denoted by c. Thus

|P(N)| = |R| = c
i.e 2ℵ0 = c

Thus we get
ℵ0 < c.
There is a conjecture: “There does not exist any set A such that ℵ0 < |A| < c.”

This is called Cantor’s continuum hypothesis. This hypothesis can be re-
stated as “Every uncountable set of real numbers has cardinality c”.

It is proved later that |(0, 1)| = |R|
Thus |(0, 1)| = c. Let I = (0, 1)
Then as above |P(I)| > |I| and |P(I| = 2c

Also 2c > c. Thus, given a cardinal number k we can always find a cardinal
number bigger than k, namely 2k. This is because if k = |A|, where A is some
set, then |P(A)| = 2k and 2k > k.

Thus ℵ0 < c < 2c < 22c

< ..., where c = 2ℵ0 and n < ℵ0 for all n ∈
N ℵ0 is the smallest cardinal number. The set of integers can be listed as
0, 1,−1, 2,−2, 3,−3, ... so that we can establish a one-to-one correspondence
between N and Z. This is done in a problem given later.

Theorem 3.18. The countable infinite union of countably infinite sets is
countable.

Proof: Let {An : n ∈ N} be a family of sets, where each An is a countably
infinite set. To prove thatA = ∪n∈NAn is countable. It is sufficient to give a
listing of the elements of A.
Let Ai = {ai1 , ai2 , ai3 , ...}
write the elements of the sets Ai as follows:
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Traverse this array as indicated by the arrows. Thus every element of A can be
labeled as b1, b2, .... Hence A is countable.

Problem 3.12. Show that Z is countable.

Solution: Define f : N→ Z

by f(n) =

{
n/2 if n is even
−(n− 1)/2 if n is odd

Thus f is a bijective function (Verify), so that N and Z have same cardinality.
Since N is countable, we conclude that Z is also countable.

Problem 3.13. Show that N× N and N have the same cardinality ℵ0.

Solution: N× N = {(m,n)|m,n ∈ N}

The elements of N× N can be listed as shown

ENINF ENIOF ENIPF ENIQF

EOINF EOIOF EOIPF EOIQF

EPINF= EPIOF EPIPF EPIQF

EQINF EQIOF EQIPFEQIQF

ERINF ERIOF ERIPF ERIQF

K KKKK

KKK

KKK

K

K K K

K KK

ENIRF

Listing of N× N

The order is indicated by the arrow. In case we want to define a mapping, we
define
f : N× N→ N
by f(a, b) = (a+b−2)(a+b−1)

2 + a
Thus |N× N| = ℵ0.

Problem 3.14. The set of all rational numbers is countable.

Solution:
Step1 We first prove that the set of all positive rational numbers Q+ is

countable. We arrange these numbers not in order of size, but according to
the size of the sum of the numerator and denominator. Begin with all positive
rational numbers, ab such that a+b = 2. There is only one such rational number,
namely 1

1 . Next list, with increasing numerator, all those numbers a
b for which

a + b = 3, i.e 1
2 and 2

1 . Now those for which a + b = 4, i.e 1
3 ,

2
2 ,

3
1 , come next

in the list. Next are those for which a+ b = 5, i.e 1
4 ,

2
3 ,

3
2 ,

4
1 = 4 and so on. We
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now list all these together which are from the beginning, omitting those already
listed. Thus we get the sequence 1, 1

2 , 2,
1
3 , 3,

1
4 ,

2
3 ,

3
2 , 4,

1
5 , . . . which contains each

positive rational number exactly once. Figure below gives a systematic repre-
sentation of this manner of listing. The first row contains all rational numbers
with numerator 1, second row all numbers with numerator 2 and so on. Traverse
this array as indicated by the arrows, leaving out the numbers which have been
encountered already.

List of positive rationals

Thus the set of all positive rational numbers can be labelled as a1, a2, a3, a4 . . .

Step2 We now prove that the set of all rational numbers is countable. All
the rational numbers can be listed as 0, a1,−a1, a2,−a2, . . . which proves that
Q is countable.

Problem 3.15. Prove that R and R+ have the same cardinality.

Solution: Define f : R→ R+ by f(x) = ex

It is easy to verify that f is a bijective mapping. Thus R and R+ have the same
cardinality.
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Problem 3.16. Show that if a, b ∈ R such that a < b, then (0, 1) and (a, b) are
equipollent.

Solution: Define f : (0, 1)→ (a, b) by f(x) = a+ (b− a)x
It can be easily seen that f is a bijective mapping. Thus (0, 1) and (a, b) are
equipollent.

Problem 3.17. Prove that (0, 1] and [a,∞) where a ∈ R have the same cardi-
nality.

Solution: Define f : (0, 1]→ [a,∞)
by f(x) = 1

x − 1 + a
Then verify that f is a bijective mapping, so that (0, 1] and [a,∞) have the
same cardinality.

Problem 3.18. Any two closed intervals have the same cardinality.

Solution: Let [a, b] and [c, d] be two intervals. Define f : [a, b]→ [c, d]
by f(x) = c+ d−c

b−a (x− a)
Then f is a bijective mapping (Verify). Hence [a, b] and [c, d] have the same
cardinality.
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Problem 3.19. Prove that (0, 1) is uncountable.

Solution: We prove the result by contradiction. Let, if possible (0, 1) be
countable. List all the numbers in (0, 1) as x1, x2, x3, .... Write each xi in the
decimal form. We also need to agree to write 0.499... as 0.5 etc, so that there
is no repetition. Thus we have
x1 = 0.x11x12x13x14...
x2 = 0.x21x22x23x24...
x3 = 0.x31x32x33x34...
x4 = 0.x41x42x43x44...
.
.
.
We will find a number y in (0, 1) different from the xi’s. To do this we proceed
as follows:
If x11 = 5, define y1 = 6
If x11 6= 5, define y1 = 5
Similarly, if x22 = 5, define y2 = 6
If x22 6= 5, define y2 = 5
In general, for i = 1, 2, 3...

define yi =

{
6 if xii = 5
5 if xii 6= 5

Let y = 0.y1y2y3.... Thus y differs from xi in the ith place, for all i = 1, 2, 3...
i.e y 6= xi for any i = 1, 2, 3...
Also y 6= 0, y 6= 0.99...
so that y ∈ (0, 1), which is a contradiction. Hence our assumption that (0, 1) is
countable, is wrong, so that (0, 1) is not countable.

Problem 3.20. Show that (0, 1) and R have same cardinality.

Solution: Define f : (0, 1)→ R by f(x) = x−1/2
x(x−1)

We prove that f is a bijective mapping.
Step 1. To prove that f is one-to-one.

Let x1, x2 ∈ (0, 1) such that f(x1) = f(x2)

Then x1−1/2
x1(x1−1) = x2−1/2

x2(x2−1)

Simplifying, we get
(x1 − x2)[(1− x1)(1− x2) + x1x2] = 0
Since 0 < x1, x2 < 1
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∴ (1− x1)(1− x2) + x1x2 > 0
so we must have x1 − x2 = 0, i.e x1 = x2. Hence f is one-to-one.

Step2. To prove that f is onto.
Let y ∈ R.To prove that f is onto, we have to find some x ∈ (0, 1) such that
f(x) = y. Clearly f( 1

2 ) = 0. Choose y 6= 0.Suppose f(x) = y.
We will prove that x ∈ (0, 1).
f(x) = y

⇒ y = x−1/2
x(x−1)

⇒ x2y − x(y + 1) + 1/2 = 0

⇒ x =
(y+1)±

√
(y2+1)

2y

Take x =
(y+1)−

√
y2+1

2y
When y > 0
Now (y + 1)2 = y2 + 1 + 2y
∴ (y + 1)2 > y2 + 1

⇒ y + 1 >
√
y2 + 1 ( taking the positive square root )

⇒ y + 1−
√

(y2 + 1) > 0

⇒ (y+1)−
√

(y2+1)

2y > 0, ∵ y > 0

Also
√
y2 + 1 > 1

∴ −
√

(y2 + 1) < −1

⇒ y −
√

(y2 + 1) < y − 1

⇒ 1 + y −
√

(y2 + 1) < y

⇒ 1+y−
√

(y2+1)

2y < 1
2

Thus 0 <
1+y−

√
(y2−1)

2y < 1
2

i.e 0 < x < 1
2 , so that x ∈ (0, 1

2 ) ⊆ (0, 1)
When y < 0, we can similarly prove that 1

2 < x < 1
Thus, there exists x ∈ (0, 1) such that f(x) = y
Hence f is onto.
Hence f is a bijective mapping so that (0, 1) and R have the same cardinality.

ÑEñF

ñM NLO

Graph of y = f(x)

Aliter: An elegant proof of the above result is given below.
The function f
f : (0, 1)→ (−π2 , π2 )
defined by f(x) = π(x− 1

2 ) is a bijective function.
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Also g : (−π2 , π2 )→ R
g(x) = tanx is a bijective function.
Therefore gof : (0, 1)→ R is a bijective function.
Hence |(0, 1)| = |R|.
The beauty of mathematics lies in not only proving the result, but proving it
elegantly. So, you can choose the proof you like.

Problem 3.21. The elements of Z × Z are shown in the figure.
Show that Z × Z is countable by indicating a systematic way of listing the ele-
ments. Also list the first 20 elements.

Solution: The arrow show how the elements are listed. First 20 elements are
(0, 0), (1, 1), (0, 1), (−1, 1), (−1, 0), (−1,−1), (0,−1), (1,−1), (1, 0), (2, 1), (2, 2),
(1, 2), (0, 2), (−1, 2), (−2,−2), (−2, 1), (−2, 0), (−2,−1), (−2,−2), (−1,−2).

Problem 3.22. Prove that (0, 1] is uncountable by proving |(0, 1]| = |(0, 1)|.

Solution: Let A = {1, 1
2 ,

1
3 ,

1
4 , ...}

= { 1
n : n ∈ N}

Then A is countable subset of (0, 1]. Define
f : (0, 1]→ (0, 1)
by f(1) = 1

2
f( 1

k ) = 1
k+1 , k > 2, k ∈ N

f(x) = x if x /∈ A
Then f is a bijective mapping so that |(0, 1]| = |(0, 1)|.Since (0, 1) is uncountable,
therefore (0, 1] is also uncountable.

Problem 3.23. Let S be an infinite set and x /∈ S. Then prove that S and
S
⋃
{x} have the same cardinality.

Solution: Since S is infinite, therefore it has a countable infinite set S1.
Let S2 = S\S1, so that S = S1 ∪ S2

S ∪ {x} = S1 ∪ S2 ∪ {x}
= (S1 ∪ {x}) ∪ S2

Since S1 is countably infinite, list its elements as
{s1, s2, s3, ...}
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Define f : S → S ∪ {x}
by f(s1) = x
f(sk+1) = sk, k > 1
f(s) = s, s /∈ S1

Then f is a bijective mapping. (Prove it!)
Hence |S| = |S ∪ {x}|.

Corollary 3.19. F is a finite set and S is any infinite set. Then |S| = |S∪F |.

3.13 Exercise

1. Find a one-to-one correspondence between the sets A and B where
(i) A = {5, 11, 31, 18}

B = {φ, {b, c}, {d, e}, {1, 2, x}}
(ii) A = [0,∞), B = (−∞, 0]
(iii) Z× Z and {a+ ib ∈ C|a, b ∈ Z}.

2. Prove that the following sets have the same cardinality
(i) 2N and 3N
(ii) N and N

⋃
{0}

(iii) Z and 2Z
(iv) 4Z and 31Z
(v) A×B and B ×A, where A and B are any two sets.
(vi) (A×B)× C and A× (B × C) where A,B,C are any 3 sets.

3. On the family of all sets J , define a relation ∼ as follows:
For A,B ∈ J , A ∼ B if and only if |A| = |B|.
Prove that ∼ is an equivalence relation on J .

4. Prove that the union of two countable sets is countable.

5. Prove that the set of all irrational numbers is uncountable.

6. Prove that the sets A and B have the same cardinality, where
(i) A = [5,∞), B = [3,∞)
(ii) A = [5,∞), B = [−3,∞)
(iii) A = (6,∞), B = (7,∞)
(iv) A = (−6,∞), B = (7,∞)
(v) A = (a,∞), B = (b,∞)
(vi) A = (a,∞), B = (−∞,−b).

7. Prove that (0, 1) and (0,∞) have the same cardinality.

8. Prove that (a, b), (c, d) have the same cardinality.

9. Show that the following sets have the same cardinality as R,
(i) [2, 8]
(ii) [a, b]
(iii) (a,∞)
(iv) (−∞,−5)
(v) (−∞, a).

10. Show that any two circles have the same number of points on their cir-
cumference. What is the cardinality of this set?
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11. Prove that the number of points on the circumference of a semicircle is
the same as those on R.

12. By listing the elements in a systematic way, prove that the following sets
are countable. Also list the first 10 elements.
(i) All the positive integral powers of 5.
(ii) All integral powers of 3.
(iii) {a, b, c} × N
(iv) N× Z
(v) Z × (N ∪ {0})
(vi) (N× N) ∪ ((−N)× (−N))

13. Determine whether the following sets are finite, countably infinite or un-
countable. Justify your answer.
(i) The set of all sentences in the English language that contain

five words and each word of length at most ten.
(ii) {(a, b) ∈ Q×Q|a+ b = 50}
(iii) {(a, b) ∈ R× R|a+ b = 50}
(iv) {(a, b) ∈ Z× Z|a+ b = 50}
(v) {(a, b) ∈ Q×Q|b =

√
4− a2}

(vi) {(a, b) ∈ R× R|b =
√

4− a2}
(vii) The set of all grains of bajra in a gunny bag.

3.14 Solved Problems

Problem 3.24. Show that the function f : R → R defined by f(x) = x√
(x2+2)

is one-to-one.Find range of f .Is it onto? Find a suitable inverse.

Solution: Let x1, x2 ∈ R such that f(x1) = f(x2).
Then x1√

(x2
1+1)

= x2√
(x2

2+2)

Squaring both sides, we get
x2
1

x2
1+2

=
x2
2

x2
2+2

⇒ x2
1 = x2

2

⇒ x1 = ±x2

Since f(x1) = f(x2), therefore x1, x2 both have the same sign, so that
x1 = x2.
To find range f
Let x ∈ R and f(x) = y
∴ x√

2+x2
= y. Thus x, y have the same sign.

Squaring we get

y2 = x2

2+x2 = 1− 2
2+x2

⇒ x2 = 2y2

1−y2

⇒ x =
√

2y√
1−y2

(∵ x, y have the same sign)

Thus x is real when y2 < 1
i.e |y| < 1
Hence range f = (−1, 1)
Thus f is not onto.
To find f−1
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Clearly f−1 is a function defined on (−1, 1).
If f−1(x) = y, then
f(y) = x
Solving for y in terms of x (as above) we get

y =
√

2x√
1−x2

,

Hence f−1(x) =
√

2x√
1−x2

, x ∈ (−1, 1).

Problem 3.25. Let f : R→ R be defined by f(x) = 2bxc − x.
(i) Prove that f is bijective.
(ii) Find a formula for f−1(x).
(iii) Draw the graph of f .Can you decide from the graph that f has an inverse?

Solution: If n is an integer, and n 6 x < (n+ 1), then bxc = n.
∴ f(x) = 2n− x, if n 6 x < (n+ 1).

f is onto
Let y ∈ R, the codomain. Then there exists n ∈ Z such that n 6 y < n+ 1
Two cases arise:

Case 1. y = n. Take x = y. Then x ∈ R and
f(x) = 2n− x
= n
= y

Case 2. n < y < n+ 1
In this case byc = n
Now n < y < n+ 1
⇒ n > 2n− y > n− 1
⇒ n+ 2 > 2n− y + 2 > n+ 1
Let x = 2n− y + 2, Then x ∈ R
bxc = n+ 1
f(x) = 2bxc − x
= 2(n+ 1)− (2n− y + 2)
= y
Also x = 2n− y + 2
= 2(byc+ 1)− y
Thus there exists x ∈ R such that f(x) = y.

Hence in both cases, we get for y ∈ R, there exists x ∈ R such that f(x) = y,
so that f is onto.
Now, show that f is one-to-one.
Let x1, x2 ∈ R such that

f(x1) = f(x2)

Let x1 = n1 + r1, where n1 is an integer and 0 6 r1 < 1.
x2 = n2 + r2, where n2 is an integer and 0 6 r2 < 1.

Then bx1c = n1, bx2c = n2

Now f(x1) = f(x2)
⇒ 2bx1c − x1 = 2bx2c − x2

⇒ 2n1 − (n1 + r1) = 2n2 − (n2 + r2)
⇒ n1 − r1 = n2 − r2

⇒ n1 − n2 = r1 − r2

But n1 − n2 ∈ Z and 0 6 |r1 − r2| < 1 so that above result holds when both



124 CHAPTER 3. FUNCTIONS

sides are zero.
i.e r1 − r2 = 0, n1 − n2 = 0
⇒ r1 = r2, n1 = n2

⇒ x1 = x2

Hence f is one-to-one.
(ii) Clearly,
f(x) = −x, 0 6 x < 1
f(x) = 2− x, 1 6 x < 2
f(x) = 4− x, 2 6 x < 3
f(x) = −2− x, −1 6 x < 0
f(x) = −4− x, −2 6 x < −1
etc.

Graph of f(x)

Problem 3.26. A is a set such that o(A) = 6.Find o(P(A)).

Solution: Let A = {a1, a2, a3, a4, a5, a6}. Let C =set of six digits numbers
with digits 0 or 1
We now define a mapping from P(A) to C and prove that the mapping is
bijective. If B ∈ P(A), i.e B ⊆ A, then to B assign the six digits number
b1b2b3b4b5b6 such that

bi =

{
0 if ai /∈ B
1 if ai ∈ B

Thus f : P(A)→ C such that f(B) = b1b2....b6 as defined above.
Clearly f(φ) = 000000
f(A) = 111111
Now we show that f is onto. Let c = d1d2d3d4d5d6 ∈ C.
The di’s are 0 or 1.

f−1(c) =

{
φ if di = 0 ∀i = 1, 2, 3...6
{ai ∈ A | di = 1, 1 6 i 6 6}

= K (say)
Clearly, K ∈ P(A) and f(K) = c. Hence f is onto.

Now we show that f is one-to-one. Let X,Y ∈ P(A) such that f(X) = f(Y ).
Then x1x2x3x4x5x6 = y1y2y3y4y5y6. so that xi = yi i = 1, 2, ...6, proving that
X = Y .
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Hence f is one-to-one.
Thus f is a bijective mapping so that f is one-to-one correspondence between
P(A) and C. But o(C) = 26. (since each digit can be chosen in 2 ways).
Hence o(P(A)) = 26.
The above method can be generalized to find the cardinality of the power set of
a finite set A.

3.15 Supplementary Exercise

1. State whether the following statements are true or false. Justify the false
ones

(i) Every relation is a function.
(ii) Every function is a relation.
(iii) The smallest equivalence relation on a set of n elements has

n elements.
(iv) The smallest equivalence relation on a set is the identity

relation.
(v) Reflexivity is redundant in the definition of an equivalence

relation R because if (a, b) ∈ R, then (b, a) ∈ R, by symmetry.
By transitivity (a, b), (b, a) ∈ R⇒ (a, a) ∈ R.

(vi) Every symmetric relation and anti-symmetric relation is
reflexive.

(vii) R = {(1, 2), (1, 3)} is a transitive relation on A = {1, 2, 3}.
(viii) A binary operation associates at least one element of A to

every of A×A.
(ix) If a binary operation ∗ is commutative than parenthesis are

not needed in a ∗ b ∗ c.
(x) A binary operation is always commutative and associative.
(xi) The number of bijective functions from A to A is nn, where

n = o(A)
(xii) Every function is invertible.
(xiii) If f : A→ B and g : B → A are functions such that gof = iA

then f is invertible and g = f−1.
(xiv) If A = {a, b, c}, B = {x, y} and f is a function from A to B,

then we can define two functions g1and g2 from B to A
such that fog1 = iB , fog2 = iB .

(xv) If f : A→ B and g : B → A are such that fog = iB ,
then it is always true that gof = iA.

(xvi) If f : A→ B is a bijection and g : B → A is inverse of f , then
gof = fog = identity function.

(xvii) The function f : R→ R defined by
f(x) = (x+ 1)(x− 2)(x+ 5) is a bijective function.

(xviii) The function f(x) = 4x+ 5 is a bijective function from Z
to itself.

(xix) If f : A→ B be any function, X ⊆ A then f−1(f(X)) = X.
(xx) If f : A→ B be any function and Y be any subset of B, then

f(f−1(Y )) = Y .
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(xxi) The floor function from R to Z is onto.
(xxii) If ∼ is not an equivalence relation on a set A then ∼ is neither

reflexive, nor symmetric nor transitive.
(xxiii) A countable set must be infinite.

(xxiv) If A and B have the same cardinality then their power sets
also have the same cardinality.

(xxv) If A is a proper subset of B, then |A| < |B|.
(xxvi) If A is a subset of B, then |B ∼ A| = |B| − |A|.
(xxvii) A subset of an infinite set may be finite.
(xxviii) Every superset of an countable set is uncountable.
(xxix) The set of irrational numbers is countable.
(xxx) The set of rational numbers is uncountable.
(xxxi) The power set of a countable set is countable.

2. Let A = {1, 2, 3, 4, 5}, B = {x, y, z, t}, C = {x, y, t}, D = {2, 4}. De-
fine a function f from A to B and g from B to A as follows: f =
{(2, x), (3, z), (4, t), (1, t), (5, x)}, g = {(x, 1), (y, 3), (z, 4), (t, 1)} Find
(i) fog,
(ii) gof (iii) (fog)of
(iv) f−1(C), (v) f(D) (vi) f−1(f(D))
(vii) f(f−1(C))
Also find R(f) and f−1R(f).

3. Let f : Z→ N be defined by f(x) =

{
|x|, if x < 0
2|x|, if x > 0

Is f an invertible function? If yes, find f−1.

4. If f and g are functions defined on R by f(x) = ax + b, g(x) = cx + d.
Prove that fog = gof if and only if f(d) = g(b).

5. Find the inverse of the function f : A→ A defined by f(x) = 1−x
1+x , where

A = R ∼ {−1}.

6. Can you construct an example of a function which has a right inverse and
a left inverse, but the two are not equal? Justify your answer.

7. Prove that the function f : R→ R defined by f(x) = x3 + 3ax2 + 3bx+ c
is a bijection if a2 < b.

8. Define f : R→ R by f(x) =

{
x if x is rational,
1− x if x is irrational

Prove that f is invertible and find f−1.

9. Let f : R → R be defined as f(x) = x + 1
x . Find suitable domain and

range of f , so that f has an inverse. Also find f−1.

10. Prove that the number of points on a sphere is the same as those on a
plane.

11. Prove that the number of points on the surface of any two spheres is the
same.
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12. If A is a set with n elements find |P(A)|.

13. Prove that any two open intervals have the same cardinality.

14. Prove by induction that a finite union of countably infinite sets is count-
ably infinite.

15. Prove that |Q+| = ℵ0.

16. Prove that the countable union of finite sets is countable.

17. Prove that the following mappings f are bijective mappings on the given
intervals:
(i) f : [a,∞)→ [b,∞) defined by

f(x) = x− a+ b
(ii) f : [a, b]→ [c, d] defined by

f(x) = b+ d−b
c−a (x− a)

(iii) f : (0, 1)→ (0,∞) defined by
f(x) = 1−x

x

18. For some c ∈ R, prove that (0, 1) and (c,∞) have the same cardinality.

3.16 Answers to Exercises

Exercise - 3.6

1. 79

2. f(π2 ) = −1
f(−π) = 0 = f(π)
f(π4 ) = 1√

2

3. {y}, {x, y}, f(A1 ∩A2) ⊆ f(A1) ∩ f(A2).They may not be equal.

4. (i) [1, 2)
(ii) φ, φ, 1, 0,−3
(iii) No, No

5. (i) {−1, 1}
(ii) φ
(iii) [−3, 3]

6. (i) {0, 1, 2, 3, 4}
(ii) {0, 1, 2, 3, 4}
(iii) All multiplies of 5, set of integers of the form 5k + 1, k ∈ Z
(iv) Set of integers of the form 5k + 3

7. [−1
3 , 1]

8. Hint
√
|x| − x is defined when |x| > x i.e when x 6 0

D(f) = (−∞, 0), R(f) = (0,∞)

9. φ
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10. (i) D(f) = R, R(f) = [−1
2 ,

1
2 ]

(ii) D(f) = R, R(f) = [1
4 ,

1
2 ]

(iii) D(f) =]− 1, 1[, R(f) = [1,∞)

11. (iii) and (iv)

14. (i) 108

(ii) 10P8

(iii) None

Exercise - 3.10

1. fof(x) =

{
2− 4x if x < 0,
4x+ 5 ifx > 0

2. (-1, 1)

3. (i) f−1 exists and is
f−1 = {(9, 1), (7, 2), (5, 3), (3, 4), (1, 5)}
(ii) g−1 does not exist as g is not bijective.

5. (i) (hogof)(x) = 1 + 3
2x

(ii) [ 3
2 ,

5
2 ]

6. (i) (gof)(x) = 1
x−bxc , x ∈ (1, 2)

(ii) Yes
(iii) (gof)−1(x) = x+1

x , x ∈ (1,∞)

10. (i) R(f) = (1,∞), R(g) = (0,∞), R(h) = (1,∞).
(ii) Since range of the first function is contained in the domain of second
function, ∴ all composition are defined.
(iii) Since f and g are bijective mappings, so f−1, g−1 and (gof)−1 exist.

11. (i) (−∞, 1) ∪ (1,∞)
(ii) (hogof)−1 = 3

2(x−1)

12. f−1(x) = −1
2x2 , x ∈ (0,∞)

13. (i) [0, 3]

(ii) (fof)(x) =

{
2 + x, 0 6 x 6 2,
4− x, 2 < x 6 3

(iii) f−1(x) =

{
3− x, 0 6 x < 1,
x− 1, 1 6 x 6 3

14. f−1(x) = 2 +
√
x− 1.
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Exercise - 3.13

6. (i) − (iv) are particular cases of this.
(v) f : A→ B

f(x) = x− a+ b
(vi) f : A→ B

f(x) = −x+ a+ b

7. Hint: x→ 1
x − 1

10. Hint: w.l.o.g. take circles to be concentric of radii r1, r2.

P ↔ Q

(r1cosΘ, r1sinΘ)↔ (r2cosΘ, r2sinΘ)
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11.

O—centre of a circle
P ↔ Q

12. (i) 51, 52, 53, 54, 55, ...
{5n : n ∈ N}

(ii) 30, 31, 3−1, 32, 3−2, ...
(iii) (a, 1), (b, 1), (c, 1), (a, 2), (b, 2), (c, 2), (a, 3), (b, 3), (c, 3), (a, 4)...

E~INF E~IOF E~IPF

EÄIOF EÄIPF

EÅIOFEÅINF EÅIPF

EÄINF

(iv) One route is shown and others are possible.
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(v)

(vi)

13. (i) countable.
(ii) countable.
(iii) uncountable.
(iv) countable.
(v) countable.
(vi) uncountable.
(vii) finite.

Answers to Supplementary Exercises

1.
(i) F
(ii) T
(iii) T
(iv) T
(v) F
(vi) F
(vii) T
(viii) F

˜



132 CHAPTER 3. FUNCTIONS

(xi) F
(xii) F
(xiii) F
(xiv) T
(xv) F
(xvi) F
(xvii) F
(xviii) F
(xix) F
(xx) F
(xxi) T
(xxii) F
(xxiii) F
(xxiv) T
(xxv) F
(xxvi) F
(xxvii) T
(xxviii) F
(xxix) F
(xxx) F
(xxxi) F

2. (i) {(x, t), (y, z), (z, t), (t, t)}
(ii) {(1, 1), (2, 1), (3, 4), (4, 1), (5, 1)}
(iii) {(1, t), (2, t), (3, t), (4, t), (5, t)}
(iv) {1, 2, 4, 5}
(v) {x, t}
(vi) {1, 2, 4, 5}
(vii) {x, t}
R(f) = {x, z, t}, f−1(R(f)) = {1, 2, 3, 4, 5}.

3. No, f is not one-to-one.

5. f−1 = f

6. No. Existence of right inverse ⇒ function is onto.
Existence of left inverse ⇒ function is one-to-one.
∴ function is bijective and therefore invertible.

7. Hint. ⇒ f is not one-to-one.
⇒ For x1 6= x2, f(x1) = f(x2).
⇒ f ′(k) = 0 for some k between x1 and x2. ⇒ x2 + 2ax + b = 0 has a
real root x = k. ⇒ no real root for a2 < b. ⇒ f is one-to-one.
f(x)→ −∞ as x→ −∞ and f(x)→ ∞ as x→ ∞.
Since f(x) is continuous, ∴ f(x) assumes all values between −∞ and ∞.
∴ f is onto. Hence f is bijective.

8. f−1 = f

9. D(f) = (−1, 1) ∼ {0}, R(f) = R ∼ (−2, 2)
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f(x) =


x+ sqrt(x2 − 4)

2
, if x ∈ (0, 1]

x− sqrt(x2 − 4)

2
, if x ∈ [−1, 0)

f−1(x) =


x+ sqrt(x2 − 4)

2
, if x ∈ [2,∞]

x− sqrt(x2 − 4)

2
, if x ∈ (−∞,−2]



Chapter 4

Number System

The natural members have been extended to integers, rational numbers,
real number etc... This chapter is devoted to the study of natural numbers and
integers. The principle of mathematical induction, well ordering principle and
their applications are given the greatest common divisor and the congruence
relation in integers have also been discussed.

4.1 Number Systems

To count objects we use the numbers 1, 2, 3, . . . in our daily life. These
numbers are called counting numbers. Mathematicians call them natural num-
bers. An axiomatic approach to study these numbers was given in 1899 by the
Italian mathematician Giuseppe Peano. He gave axioms for the study of natural
numbers called Peano’s Axioms. They are:
Axiom 1. There exists a natural number 1.
Axiom 2. There exists a one-to-one mapping

f : N → N
If n ∈ N, then f(n) is called the successor of n.

Axiom 3. The mapping f is not bijective. In fact 1 /∈ f(N).
Axiom 4. If K ⊆ N such that 1 ∈ K and n ∈ K ⇒ f(n) ∈ K, then K = N.

Axiom 1 gives us that N is a non-empty set.
Axiom 2 gives us that if m,n ∈ N such that f(m) = f(n) then m = n.
Axiom 3 tells us that 1 is not the successor of any natural number.
Axiom 4 gives us a test to determine when a subset K of N is identical with N.
It is also called the axiom of induction.

Starting with these axioms, we build the system of natural numbers and
define addition and multiplication in N. How we go about doing this, is not
the purpose of this book. Interested reader may refer to any book on number
systems.
Algebraic Properties of Natural Numbers

For all a, b, c ∈ N,

1. a+ (b+ c) = (a+ b) + c (Associative law of addition)

134
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2. a+ b = b+ a (Commutative law of addition)

3. a+ c = b+ c ⇒ a = b (Cancellation law of addition)

4. (ab)c = a(bc) (Associative law of multiplication)

5. ab = ba (Commutative law of multiplication)

6. ac = bc ⇒ a = b (Cancellation law of multiplication)

7. There exists a natural number 1 such that a.1 = 1.a = a (Existence of
identity for multiplication)

8. a(b+ c) = ab+ ac (Distributivity of multiplication over addition)

It can be shown that if m and n are any two natural numbers, then exactly one
of the following holds:

(i) m = n
(ii) m = n+ u for some u ∈ N
(iii) n = m+ v for some v ∈ N

This helps us in defining an order relation in N. We say that ‘m is greater
than n’ (denoted by m > n ) if m = n+ u for some u ∈ N. We can also define
other order relations in N in terms of the relation >.
Let m,n ∈ N. Then we define

(i) m is less than n(m < n) if n > m.
(ii) m is less than or equal to n(m ≤ n) if either m = n or m < n.
(iii) m is greater than or equal to n(m ≥ n) if either m = n or m > n.

Example 4.1. 4 > 2, ∵ 4 = 2 + 2
5 < 9, ∵ 9 > 5. In fact 9 = 5 + 4.

If K is a non empty subset of N, then l ∈ K is said to be a least element of
K if x ∈ K ⇒ x = l or x > l.

Order Properties of Natural Numbers
The relation ‘greater than’ i.e. > satisfies the following properties:

1. Law of trichotomy
For m,n ∈ N exactly one of the following holds:
m = n, m > n, n > m.

2. Transitivity
For m,n, p ∈ N
m > n and n > p ⇒ m > p.

3. Monotone property for addition
For m,n, p ∈ N
m > n⇒ m+ p > n+ p.

4. Monotone property for multiplication
For m,n, p ∈ N
m > n⇒ mp > np.

5. Well ordering principle(WOP)
Every non-empty subset of the set of the natural numbers has a least
element.
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The properties stated above can be formulated in terms of the relation < also.
To solve the equation x+11 = 15, in the set of natural numbers, we get x = 4.
But if we want to solve the equation x+15 = 11, we cannot find any solution in
the set of natural numbers. Thus, the set N lacks many properties. If m,n ∈ N,
then the equation x + m = n may or may not have a solution in N. Naturally
we would like a number system such that for every pair of elements m,n of this
system, the equation x + m = n has a solution in this system. Moreover, we
would like this number system to share all the properties of N, if possible. It
would be nice if this number system is an extension of N. Such a system is the
set of integers, denoted by Z.

Algebraic Properties of Integers

For all a, b, c ∈ Z,

1. a+ (b+ c) = (a+ b) + c (Associative law for addition)

2. a+ b = b+ a (Commutative law for addition)

3. There exists an element 0 ∈ Z such that
a+ 0 = a (Existence of zero element)

4. For each a ∈ Z, there exists −a ∈ Z such that
a+ (−a) = 0 (Existence of negative)

5. (ab)c = a(bc) (Associative law for multiplication)

6. ab = ba (Commutative law for multiplication)

7. There exists an element 1 ∈ Z such that
a1 = 1 (Existence of unity)

8. a+ c = b+ c ⇒ a = b (Cancellation law for addition)

9. ac = bc, c 6= 0 ⇒ a = b (Cancellation law for multiplication)

10. a(b+ c) = ab+ ac (Distributivity of multiplication over addition)

Order Properties of Integers

There exists a subset Z+ of Z, called the set of positive integers such that
(i) For each a ∈ Z, exactly one of the following holds

a ∈ Z+, a=0, -a ∈ Z+

(ii) a, b ∈ Z+ ⇒ a+b ∈ Z+, ab ∈ Z+

In Z we define a > b if a+ (−b) = a− b ∈ Z+.
In terms of the relation >, the above properties can be rewritten as:

(a) If a, b ∈ Z, then exactly one of the following holds:
a > b, a = b, b > a (Law of trichotomy)

(b) If a, b, c ∈ Z, such that
a > b, b > c ⇒ a > c (Transitivity)

(c) If a, b, c ∈ Z, such that a > b ⇒ a + c > b + c (Monotone
property for addition)

(d) If a, b, c ∈ Z such that a > b, c > 0 ⇒ ac > bc (Monotone
property for multiplication)
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The well ordering principle does not hold in Z. In this respect all the prop-
erties of N are not carried over to Z. In fact, a modified version of this principle
holds. It is “Well Ordering Principle for Integers”.
“Every non-empty subset of the set of non-negative integers has a least element.”

The principle of mathematical induction is important in every area of math-
ematics. It is one of the most basic method which is used to prove results. This
is a way which establishes the truth of a statement about all natural numbers
or sometimes about all sufficiently large natural numbers. A formal statement
of the principle of induction is as follows:

Theorem 4.1. (First principle of induction)(FPI) Let {P (n)|n ∈ N} be a set
of statements. If
(i) P (1) is true,
(ii) If k ∈ N, such that

if P (k) is true, then P (k + 1) is also true,
then P (n) is true for all natural numbers n.

Proof: Let K = {n ∈ N |P (n) is true}.
Step1 Since P (1) is true.
∴ 1 ∈ K. Hence K 6= φ.
Step2 Let k ∈ K.

Then P (k) is true
⇒ P (k + 1) is true by (ii)
⇒ k + 1 ∈ K.

Hence, by the axiom of induction K = N, i.e. P (n) is true for all n ∈ N.

The method of induction is one of the most powerful tools for proving the-
orems. A proof by induction is like climbing a staircase with infinite number of
steps. The first step has to be climbed, and having climbed any particular step,
we can climb the next step. Then the whole staircase can be climbed. This is
similar to the two steps which have been described in the proof of the above
theorem. While using induction we shall always use these two steps.

Example 4.2. The number of subsets of a set containing n elements is 2n. Let
P (S) denote the power set of S. Here the statement T (n) is:
If S is a set containing n elements then P (S) has 2n elements.

Step1 If S = {a}, then P (S) = {{a}, φ}.
Thus P (S) has 2 elements. Hence the result holds for n = 1, So T (1) is true.

Step2 Suppose that T (k) is true, i.e. if S is a set containing k elements, then
P (S) contains 2k elements.
Consider a set S with k + 1 elements.
Let S = {a1, a2, . . . , ak+1}
For each subset A of S, either
ak+1 ∈ A or ak+1 /∈ A. The collection of all those subsets of S which do not
contain ak+1 is P (B), where B = {a1, a2, . . . , ak}.
Since B contains k elements, by hypothesis P (B) contains 2k elements. Thus
the number of subsets of S not containing ak+1 is 2k.
Each subset A of S containing ak+1 can be obtained from a subset G of B by
adding ak+1 to G. Thus there are precisely 2k subsets of S each of which con-
tains ak+1.
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Thus the total number of subsets of S is 2k + 2k = 2k+1, so that T (k + 1) is
true.
Thus, by first principle of induction, T (n) is true for all n ∈ N.

The two conditions in the first principle of induction are equally important.
In case any one of them fails to hold, the result need not hold. This is shown
by the following examples.

Example 4.3. Let P (n) be the statement:
1 + 2 + · · ·+ n = n(n+ 1)/2 + 5 for each natural number n.
Is P (n) true for all n ∈ N?

Suppose k ∈ N such that P (k) is true

i.e. 1 + 2 + · · ·+ k = k(k+1)
2 + 5 (1)

Now

1 + 2 + · · ·+ k + (k + 1) =
k(k + 1)

2
+ 5 + (k + 1), ...using (1 )

=
(k + 1)(k + 2)

2
+ 5,

Hence P (k + 1) is true.
Does this mean that P (n) is true for all n ∈ N?
For n = 3, 1 + 2 + 3 = 6
whereas P (3), 1 + 2 + 3 = 11.

∴ P (3) is not true. This is because P (1) is not true, as P (1) gives 1 = 6
Thus, step 1 of the FPI fails to hold and so FPI can not be applied.

Example 4.4. For each n ∈ N, let P (n) be the statement:

1 + 2 + · · ·+ n = n

Clearly P (1) is true.
Suppose P (k) is true, for k ∈ N. Thus 1+2+ · · ·+k = k (1)

1 + 2 + · · ·+ k + (k + 1) = k + (k + 1), using (1 )

= 2k + 1

Hence P (k + 1) is not true. So FPI cannot be applied.

Sometimes it happens that the statement P (n) does not hold for a finitely
many of natural numbers. In such cases the FPI may be modified. The starting
point of the induction, instead of being 1, is some natural number m > 1. This
is precisely the second principle of induction.

Theorem 4.2. (Second principle of induction) Let P (n) be a statement for
each natural number n. suppose
(a) P (m) is true for some m ∈ N
(b) If k ∈ N such that k ≥ m and P (k) is true ⇒ P (k + 1) is true

then P(n) is true for all n ≥ m.
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Proof: Define A =

{
φ, if m=1
{1, 2, . . . ,m− 1} if m>1

T = {n ∈ N : n ≥ m and P (n) is true} is the truth set of P (n) and K = T ∪A
Step 1 Clearly 1 ∈ K.
Step 2 Let k ∈ K. Then there are three possibilities

(i) k∈ {1, 2, . . . ,m− 2}, (ii) k = m− 1, (iii) k > m− 1
We shall take these cases one by one.

Case 1. When (i) holds
k + 1 ∈ {2, 3, ...m− 1} ⊆ A
so that k + 1 ∈ K.

Case 2. When (ii) holds
k = m− 1 ⇒ k + 1 = m
Since P (m) is true, ∴ P (k + 1) is true.
So k + 1 ∈ T ⊆ K
Hence k + 1 ∈ K.

Case 3. When (iii) holds
k > m− 1 ⇒ k + 1 > m
Since k ≥ m and k ∈ K. Also k /∈ A, ∴ k ∈ T
so that P (k) is true. By (b) P (k + 1) is also true i.e. k + 1 ∈ T ⊆ K.
Hence in either of the three cases k + 1 ∈ K, so that by the axiom of induction
K = N.
Thus P (n) is true for all n ≥ m.

Observe that for m = 1, it is the first principle of induction. This can be
considered as a generalization of the first principle of induction, in the sense that
the starting point is not necessarily 1 but some other natural number m. This
can be compared to a child climbing a staircase with infinite number of steps,
and the child starts from some particular step(say mth) and not necessarily the
first step.

Theorem 4.3. (Third principle of induction) Let { P(n): n ∈ N } be a set of
statements, one for each natural number n. If
(a) P (1) is true, and
(b) If for each k ∈ N, P (m) is true ∀ m < k ⇒ P (k) is true,

then P (n) is true for all n ∈ N.

Proof: Let F = {p ∈ N : P (p) is false}
We assert that F =φ.
If F6= φ, Then F is a non empty subset of N and so by the well ordering principle,
F has a least element, say l. Thus if m < l, then m /∈ F. In other words P (m)
is true for all m < l. By hypothesis (b) P (l) is true which implies that l /∈ F .
This contradicts that l ∈ F .
Hence our assumption is wrong, so that F=φ.
∴ P (n) is true for all n ∈ N.

The FPI is nothing but a characterization of the WOP, as is proved in the
following theorem.

Theorem 4.4. The well ordering principle and the first principle of induction
are equivalent.
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Proof: Suppose that WOP holds. We shall prove FPI holds.
Let P(n) be a statement, one for each n ∈ N, and K = {n ∈ N : P (n) is true}
is such that

(i) 1 ∈ K
(ii) k ∈ K ⇒ k + 1 ∈ K.

We prove that P (n) is true, for all n ∈ N. For this we show that K = N .
Clearly K ⊆ N. Suppose that K 6= N, so that K is a proper subset of N. Let
F = N−K. Then F 6= φ. Also F ⊆ N. Thus F is a non-empty subset of N so
that by WOP, F has a least element say l. Thus l ∈ F .
Now 1 ∈ K ⇒ 1 /∈ F ⇒ l > 1⇒ l ≥ 2.
Thus l = m+ 1 for some m ∈ N,
Now m < m+ 1 = l i.e. m < l
∴ m /∈ F as l is the least element of F .
∴ m ∈ K ⇒ m+ 1 ∈ K
⇒ l ∈ K
⇒ l /∈ F which is a contradiction.
Hence our assumption is wrong.
∴ F = φ ⇒ K = N.
Hence proved.

Conversely, let the FPI holds. We prove that WOP holds. Let S be any
non-empty subset of the set of natural numbers.
Let K = {x ∈ N | x ≤ s,∀s ∈ S}.
Clearly K ⊆ N.
Since 1 ≤ s ∀ s ∈ S
∴ 1 ∈ K so that K 6= φ.
Let m ∈ S. Then m+ 1 � m so that m+ 1 /∈ K.
∴ K ⊆ N and K 6= N.
Thus K is a non-empty, proper subset of N so that ∃ l ∈ K such that l+ 1 /∈ K.
We assert that l is the least element of S.
Since l ∈ K
∴ l ≤ s ∀ s ∈ S.
If l /∈ S, then l < s ∀ s ∈ S.
so that l + 1 ≤ s ∀ s ∈ S
⇒ l + 1 ∈ K, which is a contradiction,
as l + 1 /∈ K.
Hence l ∈ S.
Thus l ∈ S is such that l ≤ s ∀ s ∈ S,
so that l is the least element of S. Thus S has a least element, is proved.
∴ WOP holds.

Divisibility
We now give a formal definition of divisibility, though you have been doing this
since childhood.

Definition 4.1. Let a, b ∈ Z. We say that ‘a divides b’ if there exists an element
c ∈ Z such that b = ac.
We write it as a | b and read it as ‘a divides b’.
When ‘a divides b’ we may also say that ‘a is a divisor of b’ or ‘ a is a factor
of b’ or ‘b is a multiple of a’. If ‘a does not divide b’ we write a - b.
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The following results about divisibility though trivial and obvious, will be
used over and over again. We list them here for the sake of completeness.

Theorem 4.5. Let a, b, c,m, n ∈ Z. Then
(i) a | a (Reflexive property)
(ii) if a | b and b | c ⇒ a | c (Transitive property)
(iii) if a | b and a | c ⇒ a | mb+ nc (Linear property)
(iv) if a | b ⇒ ac | bc (Multiplication property)
(v) if ac | bc, c 6= 0 ⇒ a | b (Cancellation property)
(vi) 1 | a (Property of unity)
(vii) a | 0 (Property of zero)
(viii) if 0 | a ⇒ a=0 (Zero divides only zero)
(ix) if a | b ⇒ a | |b|
(x) if a | b and a 6= 0 ⇒ (b/a) | b
(xi) if a | b and b 6= 0 ⇒ |a| ≤ |b|.
(xii) if a | b and b | a ⇒ |a| = |b|

Proof: Left to the reader.
For each a ∈ Z, the integers a, −a are such that each divides the other.

Moreover, because of (xii), these are the only two elements which divides each
other. So, a, −a are called associates.

Definition 4.2. (Prime Number): An integer p > 1 is said to be a prime
number if its only divisors are ±1, ±p.

A number p > 1 is said to be composite if it is not a prime number. The
number 1 is neither prime nor composite. It is called a unit. The set of integers
can be divided into 4 disjoint classes, namely

(i) primes and their associates
(ii) composites and their associates
(iii) units, i.e. 1 and −1
(iv) zero.

4.2 Division Algorithm

A fundamental property of the integers is the division algorithm which can
be proved by using the well ordering principle.

Theorem 4.6. If a, b ∈ Z, b 6= 0, then there exist unique q, r ∈ Z such that
a = bq + r, 0 6 r < |b|.

Proof: Two cases arise
Case 1. b > 0

Existence of q and r
Let A = {a− bx : x ∈ Z, a− bx > 0}.
We first prove that A 6= φ. Two cases arise:

Case (i). a > 0
Then a = a− b.0 > 0 also 0 ∈ Z
∴ a ∈ A. Hence A 6= φ.

Case (ii). a < 0
∴ −a > 0
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Also b > 0 ⇒ b ≥ 1
⇒ −ab ≥ −a
⇒ a− ab ≥ 0
⇒ a ∈ A
⇒ A 6= φ
Hence in both the cases A 6= φ.
Thus A is a non-empty subset of the set of non-negative integers so that by the
well ordering principle A must have a least element, say r.
∴ ∃ q ∈ Z such that
a− bq = r is the least element of A.
We assert that r < b. Let, if possible, r ≥ b. Then r = b+ c, for some c ∈ Z s.t.
0 6 c < r. Then

c = r − b
= (a− bq)− b
= a− (b+ 1)q

Since c > 0, ∴ c ∈ A. Also c < r, which contradicts the fact that r is the least
element of A. Hence our assumption is wrong, so that r < b.
Hence r < b = |b|.

Uniqueness
We have proved that a=bq+r, for some q, r ∈ Z, 0 6 r < b. . . (1)
Let, there exists q1, r1 ∈ Z such that
a = bq1 + r1, 0 6 r1 < b. . . (2)
Suppose q > q1. Then
(1)− (2) =⇒
0 = b(q − q1) + r − r1

⇒ b(q − q1) = r1 − r
But b(q − q1) > b ∵ q > q1

∴ r1 − r > b. . . (3)
But 0 ≤ r, r1 < b
So that r1 − r < b. . . (4)
Thus (3) contradicts (4).

Hence q > q1 is not possible, so q 6 q1.
Similarly we prove that q1 ≤ q so that q = q1.
Now bq + r = a = bq + r1

⇒ r = r1.
Hence the uniqueness of q and r is proved.

Case 2. b < 0
b < 0⇒ −b > 0
Applying case 1 to −b, there exists unique q, r ∈ Z
such that
a = (−b)q + r, 0 6 r < (−b)
∴ a = b(−q) + r, 0 6 r < |b|.
Hence in both cases, there exists unique q, r ∈ Z such that
a = bq + r,
0 6 r < |b|
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The integers q and r in the above theorem are called the quotient and re-
mainder respectively, when a is divided by b. Note that the remainder is always
non-negative.

Problem 4.1. Prove that the sum of the cubes of 3 consecutive positive integers
is divisible by 9.

Solution: The problem amounts to proving that n3 + (n + 1)3 + (n + 2)3 is
divisible by 9, for all n ∈ N.
Let P (n) : n3 + (n+ 1)3 + (n+ 2)3 is divisible by 9.
P (1) : 13 + 23 + 33 is divisible by 9.
i.e. 36 is divisible by 9, which is true.
For k ∈ N, let P(k) be true, i.e.
k3 + (k + 1)3 + (k + 2)3 is divisible by 9
i.e. k3 + (k + 1)3 + (k + 2)3 = 9m for some m ∈ N
Now

(k + 1)3 + (k + 2)3 + (k + 3)3 = (k + 1)3 + (k + 2)3 + k3 + 27 + 9k(k + 3)

= 9m+ 27 + 9k(k + 3)

= 9[m+ 3 + k(k + 3)]

Hence (k + 1)3 + (k + 2)3 + (k + 3)3 is divisible by 9.
∴ P (k + 1) is true.
By the principle of induction P(n) is true for all n ∈ N.

Problem 4.2. A rubber costs Rs 5 and a ball pen costs Rs 9. Show by using
induction that any amount, in exact rupees, exceeding Rs 31 can be spent in
buying rubbers and ball pens.

Solution: Let m be the number of rubbers and n be the number of pens.
Then for k rupees, the problem is equivalent to finding non-negative integral
solutions of

5m+ 9n = k, for k ≥ 32

When k = 32, m = 1, n = 3 is a solution.

Suppose that for k = t > 32 a solution exists. Thus for some non-negative
integers m1, n1 we have

t = 5m1 + 9n1

∴ t+ 1 = 5m1 + 9n1 + 1
= 9(n1 − 1) + 5(m1 + 2)
= 9n2 + 5m2 (say)

where m2 = m1 + 2, n2 = n1 − 1.
Thus, m2, n2 is a solution, provided n2 ≥ 0 i.e. n1 ≥ 1.
If n1 = 0, then t = 5m1 and
t+ 1 = 5m1 + 1

= 9× 4 + 5(m1 − 7)
Since t > 32, ∴ 5m1 > 32.

So for integral value of m1, the least value of m1 = 7.
∴ m1 − 7 ≥ 0. ∴ t+ 1 = 9× 4 + 5(m1 − 7), where m1 − 7 ≥ 0.
Hence there exists non-negative integral solution for k = t+ 1.
Thus by the first principle of induction the result follows.
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Problem 4.3. Use induction to prove that 52n − 25n is divisible by 7 for all
n ∈ N.

Solution: Let P (n) : 52n − 25n is divisible by 7.
52 − 25=25− 32 = −7 which is divisible by 7.
Hence P(1) is true.
For some k ≥ 1, let P (k) be true.
i.e. 52k − 25k is divisible by 7.
∴ 52k − 25k= 7m for some m∈ Z . . . (1)
Now

52(k+1) − 25(k+1) = 5252k − 2525k

= 25.52k − 32.25k

= 25(7m+ 25k)− 32.25k using (1)

= 25× 7m− 7× 25k

= 7(25m− 25k)

Thus 52(k+1) − 25(k+1) is divisible by 7, so that P (k + 1) is true.
Hence, by the principle of induction P (n) is true for all n ∈ N .

Problem 4.4. The fibonacci sequence < an > is given by a1 = a2 = 1, an =
an−2 + an−1, n ≥ 3. Using the principle of induction, prove that

(i) a1 + a4 + a7 + . . .+ a3(n+1) =
a3(n+1)

2

(ii) For n ≥ 2,

a2
n + 1 =

{
an−2an+2 if n is odd
an−1an+1 if n is even

Solution:

(i) For n = 1,
L.H.S=a1 + a4.

R.H.S = a6
2

= 1
2 (a5 + a4)

= 1
2 (a4 + a3 + a4)

= 1
2a3 + a4

= 1
2 (a1 + a2) + a4

= 1
2 (2a1) + a4

= a1 + a4

∴ L.H.S = R.H.S

So the results holds for n = 1.
Let the result hold for n = k, i.e. a1 + a4 + . . .+ a3(k+1) =

a3(k+1)

2
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Now
a1 + a4 + . . .+ a3(k+1) + a3(k+1)+1 = 1

2a3k+3 + a3k+4

= 1
2 (a3k+3 + 2a3k+4)

= 1
2 (a3k+3 + a3k+4 + a3k+4)

= 1
2 (a3k+5 + a3k+4)

= 1
2a3k+6

=
a3(k+1)+3

2

Hence the results holds for n = k + 1. Thus by the principle of induction
the result holds for all n ∈ N.

(ii) For k = 2,
a2

2 + 1 = a2a1 + a2
1 ∵ a1 = a2 = 1

= a1(a2 + a1)
= a1a3

So the results holds for k = 2.

For k = 3,
a2

3 + 1 = (a2 + a1)2 + a2 ∵ a2 = 1
= (a1 + a2)(a2 + a1) + a2

= 2a3 + a2

= a3 + a4 using a4 = a3 + a4

= a5

= a1a5

∴ a2
3 + 1 = a1a5

So that the result holds for k = 3.
Let the result hold for n = k.
We shall prove for n = k + 1. Two cases arise:

Case 1. k is odd.
Then k + 1 is even.
a2
k+1 + 1 = a2

k+1 + 1 + a2
k − a2

k

= a2
k + 1 + a2

k+1 − a2
k

= ak−2ak+2 + (ak+1 − ak)(ak+1 + ak)

using induction hypothesis
= ak−2ak+2 + ak−1ak+2

= (ak−2 + ak−1)ak+2

= akak+2

= a(k+1)−1a(k+1)+1

Hence the result holds for n = k + 1.

Case 2. k is even.
Then k + 1 is odd.
Also a2

k + 1 = ak−1ak+1. As in Case 1. it can be proved that
a2
k+1 + 1 = a(k+1)−2a(k+1)+2

So that the result holds for n = k + 1. Thus by the principle of induction
the result holds for all n ∈ N.

Problem 4.5. Using induction prove that

(5 +
√

13)n + (5−
√

13)n is divisible by 2n for all n ∈ N.
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Solution: Let a = 5 +
√

13, b = 5−
√

13, and for each n ∈ N,
P (n) : an + bn is divisible by 2n.

For n = 1, a+ b=10 which is divisible by 2 = 21.
Hence the result holds for n = 1.

Let the result hold for all natural numbers n ≤ m.
Now am+1 + bm+1 = (am + bm)(a+ b)− amb− abm

= 10(am + bm)− ab(am−1 + bm−1)
= 10(am + bm)− 12(am−1 + bm−1)

Now 2m divides (am + bm), so that 2m+1 divides 10(am + bm).
Also 2m−1 divides (am−1 + bm−1), so that 2m+1 divides 12(am−1 + bm−1).

Hence 2m+1 divides 10(am+bm)−12(am−1+bm−1) i.e. 2m+1 divides (am+1+
bm+1).
So that the result holds for n = m+ 1. Thus by the third principle of induction
the result holds for all n ∈ N.

Problem 4.6. Show that n! > 2n for n ∈ N , n ≥ 4.

Solution: 4! = 24, 24 = 16.
Since 24 > 16
∴ 4! > 24

Hence the result holds for n = 4.
Let the result hold for some k > 4, i.e. k! > 2k.
Now (k+1)!=(k+1)k!
Since k > 4
∴ k + 1 > 5 > 2
Now k! > 2k

k + 1 > 2
so that (k + 1)k! > 2k2
i.e. (k + 1)! > 2k+1.
Hence the result holds for n = k + 1.
Thus, by the principle of induction, the result holds for n > 4.

Problem 4.7. If every non-empty finite set of natural numbers has a least ele-
ment, prove that every non-empty subset of natural numbers has a least element.

Solution: Let S be a non-empty subset of natural numbers. Let n ∈ S, be
any element of S. Define T = {x ∈ S | 1 6 x 6 n}. Thus n ∈ T , so that T 6= φ.
Then T is a non-empty finite subset of N, so by the given condition, T has a
least element say t.
Then t ∈ S and t 6 n.
For any s ∈ S there are two possibilities: s > n or s 6 n.
If s > n then t 6 n < s, so that t < s.
If s 6 n then s ∈ T so that t 6 s as t is the least element of T.
In either case t 6 s ∀s ∈ S.
Hence t is the least element of S.

Problem 4.8. If a1, a2, . . . , an are n positive numbers, then prove that

(a1 + a2 + · · ·+ an)

n
> n
√

(a1a2 · · · an)

The equality sign holds if and only if

a1 = a2 = · · · = an.
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Solution: We shall use the principle of induction to prove the result.
Step1
We first prove the result for those integers n which are powers of 2, i.e. for
n = 2m.
Let a1, a2 > 0 be two numbers.
Then

(
√
a1 −

√
a2)2 > 0 (4.1)

∴ a1 + a2 − 2
√
a1a2 > 0

⇒ a1 + a2

2
>
√
a1a2

Also equality in (4.1) holds if and only if
√
a1 =

√
a2 i.e. a1 = a2.

Thus a1+a2
2 >

√
a1a2 and equality holds if and only if a1 = a2. Thus the results

hold when n = 2 i.e. when m = 1.
Let us assume that the result holds when m = k i.e. n = 2k.
Let n = 2k+1 and a1, a2, . . . , an be n positive numbers. Then

a1 + a2

2
>
√
a1a2

a3 + a4

2
>
√
a3a4

·
· (a)
·
·

an−1 + an
2

>
√
an−1an

These are 2k relations.
Adding the above inequalities, we get

(a1 + a2 + · · ·+ an)

2k
> (
√
a1a2 + · · ·+√an−1an) (4.2)

(
√
a1a2,

√
a3a4, . . .,

√
an−1an) are 2k numbers so that by the induction hypoth-

esis, we have

(
√
a1a2 + · · ·+√an−1an)

2k
> (
√
a1a2 · · · an−1an)1/2k

(4.3)

(a) and (4.2) ⇒

a1 + a2 + · · ·+ an
2k+1

> (
√
a1a2 · · · an−1an)1/2k

⇒ a1 + a2 + · · ·+ an
2k+1

> (a1a2 · · · an−1an)1/2k+1

⇒ a1 + a2 + · · ·+ an
n

> (a1a2 · · · an−1an)1/n (4.4)

Thus the result holds for n = 2k+1.
Also equality holds in (4.4) if and only if it holds in (4.3) and (4.2), i.e.if and
only if it holds in each of the inequalities (a). Thus we must have
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a1 = a2, a3 = a4, . . ., an−1 = an and
√
a1a2 =

√
a3a4 = . . . =

√
an−1an.

This is so if and only if a1 = a2 = · · · = an.
Thus, by the principle of induction, the result holds when n = 2m for any m ∈ N.
Step 2
We now prove the result for any integer n. Let a1, a2, . . . an be n positive num-
bers, n being any natural number. Then there exists m ∈ N such that 2m > n.
Let A = (a1 +a2 + · · ·+an)/n, G = (a1a2 · · · an)1/n. Applying step 1 to the 2m

numbers a1, a2, . . . an, A, A, . . . A (the number of A′s is 2m − n), we obtain

(a1 + a2 + · · ·+ an +A+A+ · · ·+A)

2m
> (a1a2 · · · anA · · ·A)1/2m

i.e. nA+ (2m − n)A

2m
> (GnA2m−n)1/2m

i.e. A2m

> GnA2m−n

i.e. An ≥ Gn

i.e. A ≥ G

i.e (a1 + a2 + · · · an)

n
≥ (a1a2 · · · an)1/n

The equality holds if and only if a1 = a2 = · · · = an = A.
Hence the result holds for all n ∈ N.

Remark 4.1. The above result is very important and it is called inequality of
means. It can be stated as
Arithmetic mean > Geometric mean.

4.3 Exercise

1. Use mathematical induction to prove the truth of the following assertions
for all n ∈ N:
(i) 3.52n+1 + 23n+1 is divisible by 17.
(ii) n(n+ 1)(n+ 2) is divisible by 6.
(iii) 10n + 3.4n+2 + 5 is divisible by 9.
(iv) 2n + 3n − 5n is divisible by 6.
(v) 8n − 3n is divisible by 5.
(vi) (2n)! is divisible by 2n.
(vii) 22n − 1 is divisible by 3.
(viii) 32n − 1 is divisible by 8.

2. Prove the following statements using the principle of induction, for all
n ∈ N .
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(i) 1 + 2 + · · ·+ n =
n(n+ 1)

2
.

(ii) 12 + 22 + · · ·+ n2 =
n(n+ 1)(2n+ 1)

6

(iii) 13 + 23 + · · ·+ n3 =
n2(n+ 1)2

4
(iv) 1 + 3 + 5 + · · ·+ (2n− 1) = n2

(v) 1 +
1

2
+

1

22
+ · · ·+ 1

2n
= (2− 1

2n
)

(vi) 1.2.3 + 2.3.4 + 3.4.5 + · · ·+ n(n+ 1)(n+ 2)

=
n(n+ 1)(n+ 2)(n+ 3)

4

(vii)
1

1.4
+

1

4.7
+ · · ·+ 1

(3n− 2)(3n+ 1)
=

n

3n+ 1

(viii) 12 + 32 + · · ·+ (2n− 1)2 =
n(2n− 1)(2n+ 1)

3
(ix) cos θ + cos 3θ + · · ·+ cos(2n− 1)θ = 1

2 sin 2nθcosecθ

3. The Fibonacci sequence < an > is given by a1 = a2 = 1, an = an−1+an−2,
n > 3. Using the principle of induction, prove the following
(i) a1 + a2 + · · ·+ an = an+2 − 1
(ii) a1 + a3 + · · ·+ a2n−1 = a2n

(iii) a2 + a4 + · · ·+ a2n = a2n−1 − 1
(iv) For any r ∈ N , ar + ar+1 + · · ·+ an = an+2 − ar+1

(v) a2 + a5 + · · ·+ a3n−1 =
(a3n+1 − 1)

2

(vi) a3 + a6 + · · ·+ a3n = (
a3n+2 − 1

2
)

(vii) a2
1 + a2

2 + · · ·+ a2
n = anan+1

(viii)
n∑
k=1

(−1)kak = (−1)nan−1 − 1

(ix) a2n + (−1)n = (an+2 + an)an−1

(x) a2n+1 − (−1)n = (an+2 + an)an.

4. Prove or disprove the following statements

(i)

n−1∑
k=0

(k + 1) =
1

2
n(n− 1)

(ii) 5n + n+ 1 is divisible by 7 for all n > 1
(iii) 3n > n3 for all n ∈ N .

5. If x ∈ R− {1,−1}, prove that

(1 + x2)(1 + x4) · · · (1 + x2n

) = 1−x2n+1

1−x2 using the principle of induction,
for n ∈ N.
Hence prove that

limx→1
1− x2n+1

1− x2
and limx→−1

1− x2n+1

1− x2
both exist and are equal to 2n.

6. Using induction prove that (3 +
√

5)n + (3−
√

5)n is divisible by 2n for all
n ∈ N.

7. If n is an odd positive integer, use induction to prove that n(n2 − 1) is
divisible by 24.
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8. Find the flaw in the following argument which shows that
3 + 5 + · · ·+ (2n− 1) = n2 for all n ∈ N.
Assume that

3 + 5 + · · ·+ (2k − 1) = k2 (4.5)

for some k ∈ N. Then
3 + 5 + · · ·+ (2k − 1) + (2k + 1) = k2 + 2k + 1 using()

=(k + 1)2

Hence the statement holds for n = k + 1. Thus, by the principle of
induction the statement holds for all n ∈ N.

9. Find the flaw in the following proof by induction of the statement
“All numbers in a set of n natural numbers are equal.”

Clearly the statement is true for n = 1. Suppose that the result holds
for n = k. Let {a1, a2, . . . , ak+1} be any set consisting of k + 1 natural
numbers. By hypothesis, all the members of the set {a1, a2, . . . ak} con-
sisting of k elements are equal, i.e. a1 = a2 = · · · = ak. Similarly, all
members of the set {a2, a3, . . . ak+1} consisting of k elements are equal,
i.e. a2 = a3 = · · · = ak+1.
Hence a1 = a2 = · · · = ak+1.
Thus result holds for n = k + 1.
By induction, the result holds for all natural numbers n.

10. A chocolate costs Rs 7 and a toffee costs Rs 3. Show by using the principle
of induction that any amount, in exact rupees exceeding Rs 11 can be spent
in buying chocolates and sweets.

4.4 Greatest Common Divisor

If a, b are two integers and d is an integer which divides a as well as b, then
d is said to be a common divisor of a and b. The greatest of all the common
divisors of a and b is said to be the greatest common divisor of a and b. For
example consider a = 24, b = 36.
Common divisors of a and b are ±1, ±2, ±3, ±4, ±6 and ±12. Moreover,
−6 < −4 < −3 < −2 < −1 < 2 < 3 < 4 < 6 < 12. Thus 12 is the greatest
common divisor of 24 and 36. Formally we have the following:

Definition 4.3. (Greatest common divisor):
Let a, b ∈ Z such that not both are zero. If d ∈ Z is the largest common divisor
of a and b, then we say that d is the greatest common divisor of a and b.
Symbolically, d ∈ Z is called the greatest common divisor of a and b if
(i) d|a and d|b.
(ii) if c ∈ Z such that c|a and c|b then c 6 d.

We write d as gcd(a, b) or (a, b).
Since 1 divides every integer,
∴ by definition of the greatest common divisor,
gcd(a, b) > 1
If a, b ∈ Z, not both zero, then gcd(a, b) is unique, for if d1, d2 are two gcd′s of
a and b, then d1 ≤ d2 as d1 is a common divisor and d2 is a gcd.
Similarly d2 ≤ d1 so that d1 = d2.
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Definition 4.4. (Relatively prime): Two integers are said to be relatively
prime if their greatest common divisor is 1.
Relatively prime integers are also called co-prime.

Theorem 4.7. Let d = gcd(a, b). If a = da′ and b = db′ for some a′, b′ ∈ Z,
then a′ and b′ are relatively prime.

Proof: Let gcd(a′, b′) = k ∴ k > 0
Then k | a′ and k | b′.
Let a′ = ka′′ and b′ = kb′′ for some a′′, b′′ ∈ Z
a = da′ = dka′′ ∴ dk|a
Similarly dk|b
By definition of gcd,

dk 6 d
⇒ k ≤ 1
Since k > 0 ∴ k=1.
Hence gcd(a′, b′) = 1

The following theorem gives a characterization of the gcd.

Theorem 4.8. Let a, b be integers, not both zero. Then the following statements
are equivalent:
(i) d = gcd(a, b).
(ii) d|a and d|b. If d′ ∈ Z such that d′|a and d′|b then d′|d.

Proof: (i) ⇒ (ii)
Let d = gcd(a, b)
Then d|a and d|b by definition of gcd.
Let d′ ∈ Z such that d′|a and d′|b.
d|a and d|b
⇒ a = da′, b = db′, gcd(a′, b′) = 1
for some a′, b′ ∈ Z.
Now d′|a, d′|b
⇒ a = d′m, b = d′n for some m, n ∈ Z
Thus da′ = d′m, db′ = d′n
∴ da′b′ = d′b′m. Also da′b′ = d′na′ . . . (1)
so that d′b′m = d′na′, ∴ b′m = na′

b′|mb′ ⇒ b′|na′ ⇒ b′|n ∵ gcd(a′, b′) = 1
∴ n = b′x for some x ∈ Z.
Substituting in (1),
da′b′ = d′b′xa′

⇒ d = d′x
⇒ d′|d.
(ii) ⇒(i) obvious, since d′|d⇒ d′ ≤ d.

Theorem 4.9. Let a, b ∈ Z, not both zero. Then gcd(a, b) exists and is unique.
Also, there exists integers m and n such that

am+ bn = gcd(a, b)

Proof: Existence
Let A = {ax+ by|x, y ∈ Z, ax+ by > 0}.
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Since aa +b0 ∈ A ∴ A 6= φ if a 6= 0 otherwise a.0 + b.b ∈ A.
Thus A is a non-empty subset of the set of positive integers, so by the well
ordering principle A has a least element, say d. By definition of A, ∃ m, n ∈ Z
such that

am+ bn = d (4.6)

We prove that d = gcd(a, b).
By division algorithm, applied to a and d, ∃ q, r ∈ Z such that
a = dq + r, 0 6 r < d.

r = a− dq
= a− (am+ bn)q

= a(1−mq) + b(−nq)

Also r > 0. If r 6= 0, then r > 0 and r = a(1-mq)+b(-nq) so that r ∈ A. But
r < d, which contradicts the fact that d is the smallest element of A. Hence
r = 0.
∴ a = dq so that d|a.
Similarly d|b.
Thus d is a common divisor of a and b. If d′ ∈ Z such that d′|a and d′|b,
then d′|(ma+ nb)
⇒ d′|d
⇒ d′ 6 d.
Hence d = gcd(a, b)
and am+ bn = gcd(a, b).

Uniqueness
It has already been proved that if gcd(a, b) exists, it is unique.
Theorem 4.9 tells us that two integers always have a unique greatest common
divisor. However, it does not give any method to determine it. We shall give
an algorithm to determine it.

Corollary 4.10. Given integers a, b and c, the equation ax+by = c has integral
solutions if and only if gcd(a, b)|c.

Proof: Let d = gcd(a, b)
Suppose the given equation has integral solution x0, y0. Then

ax0 + by0 = c

Also d|a and d|b.
∴ d|(ax0 + by0)⇒ d|c.

Conversely, let d|c.
∴ c = kd for some k ∈ Z.
Since d =gcd(a, b).
∴ By the above theorem there exists integers m and n such that

am+ bn = d
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Hence akm+ bkn = kd or ax0 + by0 = c
where x0 = km, y0 = kn. Clearly x0, y0 ∈ Z.

Thus the given equation has a solution.

Remark 4.2. The integers m and n obtained above need not be unique, for if

d = am+ bn

= am+ bn+ kab− kab, k ∈ Z
= a(m+ kb) + b(n− ka)

Giving different values to k, other values of m and n are obtained.

The gcd of any two integers have the following properties.

Theorem 4.11. If a, b, c ∈ Z, then

1. gcd(a, b) = gcd(b, a)

2. gcd(a, 0) = |a|

3. gcd(a, 1) = 1

4. gcd(a, b) = gcd(|a|, |b|)

5. gcd(a, gcd(b, c)) = gcd(gcd(a, b), c)

6. gcd(ac, bc) = |c|gcd(a, b)

Proof: Left to the reader.

Theorem 4.12. If p is a prime and a, b ∈ Z such that if p|ab, then p|a or p|b.

Proof: The result holds trivially when a = 0 or b = 0.
Suppose that a 6= 0 and b 6= 0. If p|a result is proved.
Suppose that p - a. We prove that p|b.
We assert that gcd(p, a) = 1.
Let d = gcd(p, a).
Then d|p and d|a
d|p, p is prime ⇒ d = 1, p
If d = p then d|a ⇒ p|a which contradicts the assumption that p - a.
Hence d=1.
Since gcd(p, a) = 1, therefore, by Theorem 4.9, there exists integers m and n
such that

am + pn=1
⇒ abm+ pnb = b (multiplying by b)
Now p|ab, p|p
⇒ p|(abm+ pnb)
⇒ p|b
Hence proved.
This result can be extended to product of n integers.
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Theorem 4.13. Let p be a prime and a1, a2, . . .an be integers such that
p|a1a2 · · · an. Then p|ai for some i = 1, 2, . . ., n.

Proof: Prove by using induction on n, using Theorem 4.12.

Theorem 4.14. If a, b, c ∈ Z such that a|bc and gcd(a, b) = 1, then a|c.

Proof: gcd(a, b) = 1
⇒ ∃ m, n ∈ Z such that

am+ bn = 1

Multiplying by c, we get
acm+ bcn = c

Now a|a, a|bc
⇒ a|(acm+ bcn)
⇒ a|c.

In Theorem 4.14, it is essential for gcd(a, b) = 1. For example, if a = 6,
b = 3, c = 4. Then a|bc, but a - c.
Note that gcd(a, b) = 3 6= 1.

Lemma 4.15. If a, b ∈ Z are not both zero, and q, r ∈ Z such that a = bq+ r,
then gcd(a, b) = gcd(b, r).

Proof: Let d1 = gcd(a, b), d2 = gcd(b, r)
d1 = gcd(a, b)
⇒ d1|a and d1|b
⇒ d1|(a− bq)
⇒ d1|r
Thus d1|r and d1|b.
⇒ d1 6 d2 . . . (1)
Now d2 = gcd(b, r)
⇒ d2|b and d2|r
⇒ d2|(bq + r)
⇒ d2|a
Thus d2|a and d2|r
⇒ d2 6 d1 . . . (2)
Using (1) and (2), we get
d1 = d2.

We now give an algorithm to determine the gcd of two integers.

Euclidean Algorithm
Let a and b be integers, not both zero.
Since gcd(a, b)=gcd(|a|, |b|), so, without any loss of generality, we may assume
a > 0 and b > 0.
By division algorithm, ∃ q1, r1 ∈ Z
such that
a = bq1 + r1, 0 ≤ r1 < b
and gcd(a, b) = gcd(b, r1), . . . (by the above lemma)
If r1 6= 0, then ∃ q2, r2 ∈ Z such that
b = q2r1 + r2, 0 6 r2 < r1
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and gcd(b, r1) = gcd(r1, r2)
If r2 6= 0, then ∃ q3, r3 ∈ Z such that
r1 = q3r2 + r3, 0 6 r3 < r2

and gcd(r1, r2) = gcd(r2, r3)
Continue this process. As r1 > r2 > r3 > · · ·
After a finite number of steps, the remainder rk+1 = 0 for some integer k ≥ 0.
Then rk−1 = qk+1rk + 0, and gcd(rk−1, rk) = rk.
Also gcd(a, b) = gcd(b, r1) = gcd(r1, r2) = gcd(r2, r3) = · · · = gcd(rk−1, rk) = rk
Thus gcd(a, b) = rk, the last non-zero remainder.

Example 4.5. Find the gcd of 595 and 205. Also find integers m and n such
that gcd(595, 205) = 595m+ 205n.

Solution:
Let a = 595, b = 205, Dividing a by b, we get

595 = 2× 205 + 185 (4.7)

Now divide 205 by 185(= r1 say)
205 = 1× 185 + 20 (4.8)

Now divide 185 by 20(= r2 say)
185 = 9× 20 + 5 (4.9)

Now divide 20 by 5(= r3 say)
20 = 4× 5 (4.10)

The gcd is the last nonzero remainder, namely r3

gcd (595, 205) = 5 = d (say)

Now, we express d as a linear combination of a and b. To do this, we can do back
substitution from (4.9), backwards to equation 4.7 and get the desired result.
But the calculations can be done in another way, in which the backward sub-
stitution is not required.

Write the given numbers a and b as a linear combination of a and b, as the
first two equations. At every step, the remainder ri is expressed as a linear
combination of a and b.

595 = 1a+ 0b . . . (1)

205 = 0a+ 1b . . . (2)

Apply operations on (1) and (2) such that L.H.S. is the remainder obtained on
dividing 595 by 205.

Thus (1) −2× (2) ⇒

185 = a− 2b . . . (3)

This process is repeated till the remainder obtained is zero.
Applying (2)-(3), we get

20 = −a+ 3b . . . (4)

(3) −9× (4) ⇒
5 = 10a− 29b . . . (5)
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(4) −4× (5) ⇒
0 = −41a+ 119b . . . (6)

The least non-zero remainder is the greatest common divisor. It is given by
equation (5). Thus
gcd=5 and 10a− 29b = 5 or ma+ nb = 5.
where m = 10, n = −29.

This expression for the gcd is not unique. If d = gcd(a, b) and m,n are
integers such that

d = ma+ nb . . . (∗)
Then d = ma+ nb+ kab− kab where k ∈ Z.

= a(m+ bk) + b(n− ka).
Thus m1 = m+ bk, n1 = n− ka, are also integers which satisfy

d = m1a+ n1b

For each integer k, we get values for m1 and n1. Hence there are infinitely many
values for m1 and n1.

Working Rule
To obtain gcd of two numbers ‘a’ and ‘b’ and to express the gcd in terms of

‘a’ and ‘b’.

Step 1 : Without any loss of generality we can assume a, b > 0 and a > b

Step 2 : Express a and b in terms of ‘a’ and ‘b’
i.e

a = 1 a+ 0 b (4.11)

b = 0 a+ 1 b (4.12)

choose q1 such that a − bq1 is the remainder obtained on dividing ‘a’ by ‘b ’.
Thus apply (4.11)− q1(4.12), to get

r1 = a− b q1 (4.13)

Clearly 0 ≤ r1 < b.
Choose q2 such that b− q2r1 is the remainder obtained on dividing b by r1.
then applying

(4.12)− q2(4.13) gives
r2 = b− q2r1 = −q2a+ b+ bq1q2

r2 = m2a+ n2b (say)

∴ r2 = m2a+ n2b. (4.14)

Thus the remainder at each step is expressed in terms of a and b. Continue
this process. The last non-zero remainder gives an expression of the gcd in terms
of a and b.

Step 3 : Adjust the signs of m and n so to get the actual signs of numbers.

Example 4.6. Find the gcd of 154 and 260.
Also express the gcd as a combination of 154 and 260. Is this expression unique?
If not, obtain two such expressions.
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Let a = 260, b = 154.
Now

a = 260 = 1 a+ 0 b (4.15)

b = 154 = 0 a+ 1 b (4.16)

Apply (4.15)− (4.16),

r1 = 106 = a− b (4.17)

Apply (4.16)− (4.17),

r2 = 48 = −a+ 2b (4.18)

Apply (4.17)− 2× (4.18),

r3 = 10 = 3a− 5b (4.19)

Apply (4.18)− 4× (4.19),

r4 = 8 = −13a− 22b (4.20)

Apply (4.19)− (4.20),

r5 = 2 = 16a− 27b (4.21)

Apply (4.20)− 4× (4.21),
r6 = 0 = −61a+ 130b

Since r6 = 0, therefore the last non-zero values of ri,namely r5 is the gcd. Thus
r5 = 2 = gcd(a, b) = 16a− 27b = 16× 260− 27× 154

∴ r5 = 16× 260 + (−27)× (−154)
So m = 16, n = −27. This expression of the gcd as a combination of the
numbers a and b is not unique.
In fact 2 = 16a− 27b+ ab− ab

= (16 + b)a+ (−27− a)b
Thus we have

2 = m1a+ n1b
2 = m2a+ n2b

where m1 = 16, n1 = −27
m2 = 16 + b = 170
n2 = (−27− a) = −287.

Problem 4.9.

(i) Find the gcd of 3719 and 8146.
Express the gcd in the form 3719 m+ 8146 n, for m,n ∈ Z.
Are the values of m and n unique?
If not, can you find 30 sets of values?

(ii) Also express the gcd of -3719 and 8416 as m(−3719)+n(8146), for m,n ∈ Z.
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Solution:

(i) Let b = 3719, a = 8146

a = 8146 = 1a+ 0b (4.22)

b = 3719 = 0a+ 1b (4.23)

Apply (4.22)− 2× (4.23)

r1 = 708 = a− 2b (4.24)

Apply (4.23)− 4× (4.24)

r2 = 179 = −5a+ 11b (4.25)

Apply (4.24)− 3× (4.25)

r3 = 171 = 16a− 35b (4.26)

Apply (4.25)−×(4.26)

r4 = 8 = −21a+ 46b (4.27)

Apply (4.26)− 21(4.27)

r5 = 3 = 457a− 1001b (4.28)

Apply (4.27)− 2× (4.28)

r6 = 2 = −935a+ 2048b (4.29)

Apply (4.28)− (4.29)

r7 = 1 = 1392a− 3049b (4.30)

Thus gcd(a, b) = 1, and ma+ nb = 1, where m = 1392, n = −3049.
Values of m and n are not unique.
1= ma+ nb

= ma+ nb+ kab− kab, for all k ∈ Z
= (m+ kb)a+ (n− ka)b
= mka+ nkb

where mk = m+ kb, nk = n− ka.
Giving different values to k, we get different values of mk and nk.

Thirty sets of values can be obtained by giving 30 values to k.

(ii) In (i) we have proved
1=ma+ nb

=m× 8146 + n× 3719
=m× 8146− n× (−3719)
=m× 8146 + (−n)× (−3719)
=m1 × 8146 + n1 × (−3719)

Here m1 = m = 1392, n1 = −n = 3049.
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4.5 Least Common Multiple

If a and b are integers and l is an integer which is multiple of a as well as
b then l is called a common multiple of a and b. The least of all the positive
multiples of a and b is called the least common multiple of a and b.
Consider a = 9, b = 15
Multiples of a are ±9,±18,±27,±36,±45, . . .
Multiples of b are ±15,±30,±45,±60,±75,±90, . . .
Common multiples of a and b are ±45,±90, . . .
The smallest of all the positive multiple of ‘a’and ‘b’ is 45.
Thus, the least common multiple of 9 and 15 is 45.

Formally, we have the following definition.

Definition 4.5. If a, b are non-zero integers, then a positive integer l is called
the least common multiple (lcm) of a and b if
(i) a|l and b|l
(ii) If m is a positive integer such that a|m and b|m then l ≤ m.
We write l = lcm(a, b).

Note that just like the gcd, lcm is always positive by definition.

Example 4.7.

(1) The least common multiple of 18 and 24 is 72.
(2) lcm(8,−12) = 24
(3) lcm(−15,−12) = 60
Since |ab| is a common multiple of a and b, therefore least common multiple

always exists and is less than or equal to |ab|.
The following theorem gives a characterization of the lcm .

Theorem 4.16. Let a, b be two integers then the following statements are equiv-
alent
(1) l = lcm(a, b)
(2) If l is a positive integer such that a|l and b|l. If l′ is any positive integer

such that a|l′ and b|l′ then l|l′.

Proof: Left as an exercise.

Theorem 4.17. The gcd of any two integers always divides their lcm.

Proof: Let a, b ∈ Z and let d = gcd(a, b) and l = lcm(a, b).
Then d|a and d|b. Also a|l and b|l.
Now d|a and a|l, so that d|l.
Hence proved.

The next theorem gives a relationship between the gcd and lcm of two numbers.

Theorem 4.18. If a, b ∈ Z, not both zero, then gcd(a, b)× lcm(a, b) = |ab|.

Proof: Let d = gcd(a, b), l = lcm(a, b).
Then d|a and d|b. Also by Theorem 4.9 there exist m,n ∈ Z such that

ma+ nb = d (4.31)
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l = lcm(a, b)⇒ l = ax, l = by (4.32)

for some integers x, y ∈ Z.
Multiplying (4.31) by l, we get

dl = mal + nbl
= maby + nbax using (4.32)
= ab(my + nx)

Hence

ab|dl (4.33)

Also d|a and d|b
⇒ a = dx1, b = dy1 (4.34)

for some x1, y1 ∈ Z. Thus

ab = d2x1y1 = (dx1y1)d (4.35)

Since ay1 = dx1y1 = bx1 . . . using (4.34).
Thus a|dx1y1 and b|dx1y1.
So, by definition of lcm l|dx1y1

Let dx1y1 = lk for some k ∈ Z
⇒ d2x1y1 = dlk
⇒ ab = dlk using (4.35).

⇒ dl|ab. (4.36)

(4.33) and (4.36) ⇒ dl = ±ab = |ab| ∵ l > 0, d > 0.

Euclid had proved that the number of primes is infinite. In order to prove this
result, we shall prove a lemma first.

Lemma 4.19. Given any natural number n > 1, there exists a prime p such
that p|n.

Proof: We shall prove this result by contradiction. Let, if possible, the result
does not hold.
Let S = {n ∈ N |n > 1 and n is not divisible by any prime }.
Then S 6= ∅ by assumption. By the Well Ordering Principle, S being a non-
empty subset of N, it has a least element, say s. Also s is not divisible by any
prime, Since s|s, therefore s can not be prime. Thus there exists some k ∈ N
such that 1 < k < s and k|s. Since s is the least element of S, therefore k must
be divisible by some prime p.
Now, p|k and k|s so that p|s which contradicts that s ∈ S.
Hence our assumption is wrong, so that there exists a prime p which divides
n.

Though the prime numbers are very special, but they are infinite in number.
This result, due to Euclid, will be proved by using the fundamental theorem of
arithmetic.

Theorem 4.20. (Euclids theorem)
There exists infinitely many primes.
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Proof: Let, if possible, there be only a finite number of primes, say m. Let
them be p1, p2, p3, . . . , pm.
Let n = p1p2p3 · · · pm + 1. Then n ∈ N and n > 1.
But the above lemma there is a prime p such that p|n.
But pi - n for any i = 1, 2, 3, . . .m. So that none of the primes divides n, which
is a contradiction to the fact that there is a prime dividing n.
Hence our assumption is wrong, so that the number of primes is infinite.

One of the basic result of numbers is that every positive integer greater than 1
can be expressed as a product of prime numbers in essentially one way.
This also brings out the importance of prime numbers as building blocks of the
system of integers from the point of view of factorization. Thus we have the
following theorem.

Theorem 4.21. (Fundamental theorem of arithmetic)
Every integer n ≥ 2 is either prime or is expressible as a product of finitely
many prime numbers. Moreover, such an expression is unique except for the
order of the factors.

Proof: Existence
Let S = {m ∈ Z | m > 1, m is not prime, m is not expressible as a product of
primes}.
If, S = ∅, then the proof is complete.
If S 6= ∅, then S is a non-empty subset of the set of natural numbers, so that
by the Well Ordering Principle, S has a least element, say s.
Since s ∈ S is not prime and s > 1, therefore it must have a divisor other than 1
and s. Let s1 be a positive divisor of s such that 1 < s1 < s. Then there exists
a positive integer s2 such that 1 < s2 < s and s = s1s2. Since s is the least
element of S, therefore s1 /∈ S and s2 /∈ S. Therefore, either s1, s2 are primes
or they can be expressed as a product of primes. In either case, s is expressible
as a product of primes.
This contradicts the fact that s ∈ S. Hence S = ∅.
This proves that every integer n > 1 is either prime or is a product of primes.

Uniqueness
We shall use induction on n.
If n = 2, then trivially, expression is unique.
Assume the uniqueness for all integers m such that 2 ≤ m < k.
Either k is prime, in which case result holds.
If k is not a prime, then let it have two expression as a product of primes, say

k = p1p2 · · · ps (1)
k = q1q2 · · · qt (2)

where pi, qj , 1 ≤ i ≤ s, 1 ≤ j ≤ t are all prime numbers. Also k is not prime
⇒ s ≥ 2 and t ≥ 2.
Then we shall prove that s = t and q′i.s are a rearrangement of the p′js.
(1) and (2)⇒ p1p2...ps = q1q2...qt (3)
Now p1 | (p1p2 · · · ps)
⇒ p1|q1q2 · · · qt
⇒ p1|qj for some j, 1 ≤ j ≤ t using Theorem 4.13
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⇒ p1 = qj ∵ qj is prime.
Since p1 6= 0, therefore by cancellation law in (3), we get
p2p3 · · · ps = q1 · · · qj−1qj+1 · · · qt = k1 (say) (4).
Since 1 < k1 < k, therefore by the induction hypothesis, the two expression of k1

in (4) are identical, except for the order of the prime factors. Hence s−1 = t−1
and q1, . . . qj−1, qj+1 . . . , qt is just a rearrangement of p1, p2, . . . , ps.
Thus s = t and q1, q2, · · · , qt is a rearrangement of p1, p2, . . . , ps. By the principle
of induction the result holds for all n ≥ 2.

Corollary 4.22. Let n ∈ Z such that |n| ≥ 2. Then n is either prime or is
expressible as a product of a unit and finitely many prime numbers. Moreover
such an expression is unique except as to the order in which the factors occur.

Proof: Two cases arise.

Case 1. n ≥ 2.
Result follows from the above theorem.

Case 2. n < 0, |n| ≥ 2.
Let n = −m, where m > 0
then |m| ≥ 2. Also n = (−1)m.
Applying the above theorem to m, we get the result, as (-1) is a unit.

Problem 4.10. If a, b, c ∈ Z such that a, b are relatively prime and a|c and
b|c, then ab|c.What happens when a and b are not relatively prime?

Solution: We know that gcd(a, b)lcm(a, b) = |ab|
⇒ lcm(a, b) = |ab| ∵ gcd(a, b) = 1.
Let l = lcm(a, b)
∴ l = |ab|
Since a|c and b|c
∴ l|c by definition of lcm.
⇒ |ab| |c
⇒ ab |c
Take a = 8, b = 12, c = 24.
Then a|c, b|c, but ab - c. Note that gcd(a, b) = 4.

4.6 Exercise

1. For any natural number n, in any set of n consecutive integers, one of the
integers is always divisible by n.

2. If a, b ∈ Z such that a | b then prove that gcd(a, b) = |a|.

3. For any two integers a and b prove that gcd (a, b) = gcd (|a|, |b|).

4. Given integers d, a, b, suppose there exists integers m and n such that

ma+ nb = d

then prove that

(i) gcd(a, b) divides d.
(ii) gcd(m,n) divides d.
(iii) gcd(a, n) divides d.
(iv) gcd(m, b) divides d.
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5. Let a, b,m, n ∈ Z such that am + bn = 1, then gcd(a, b) = gcd(m,n)
=gcd(a, n) = gcd(b,m) = 1

6. If a, b ∈ Z show that gcd(a, a+ b) = gcd(a, b).

7. If a, b are integers then gcd(gcd(a, b), a) = gcd(a, b).

8. Prove that any two consecutive integers are always relatively prime.

9. If a, b are relatively prime integers, then
(i) gcd(a, a+ b) = 1.
(ii) gcd(a+ b, a− b) = 1 (or) 2.
(iii) gcd(a+ b, a2 + b2) = 1 (or) 2.
(iv) gcd(an, b) = 1, n ∈ N.

10. If d, a, b ∈ Z and d is an odd integer such that d | (a + b) and d | (a − b)
then d | gcd(a, b).

11. Find the gcd of a and b and express it in the form ma+ nb for m,n ∈ Z.
(i) a = 143, b = 247
(ii) a = −143, b = 247
(iii) a = 314, b = 159
(iv) a = −314, b = −159
(v) a = 4144, b = 7696
(vi) a = 4144, b = −7696
(vii) a = 394, b = −562

12. Find the gcd of a and b. If d = gcd(a, b), find three solutions in integers of
d = ma+ nb.
(i) a = 243, b = 189
(ii) a = 741, b = 1079
(iii) a = 4453, b = 1314.

13. Find integers m and n such that

159m+ 314n = 7.

Are m and n unique? If not, find another pair also.

14. Find integers m and n such that

9m+ 11n = 4.

Show that m = 11k − 2, n = 2− 9k for some integers k.

15. Show that there do not exists any integers m and n such that

219m+ 153n = 5.

16. Let m,n ∈ Z. Prove that 10m + n is divisible by 7 if and only if m + 5n
is divisible by 7.

17. For any integer m, prove that

gcd(m,m+ 2) =

{
1 if m is odd
2 if m is even.
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18. For m ∈ Z, are the following pairs co-prime
(i) 7m+ 1, 6m+ 1
(ii) 5m+ 3, 3m+ 2
(iii) 9m+ 4, 11m+ 5
(iv) 7m+ 4, 5m+ 2.

4.7 Congruence Relation

Modular Arithmetic

If a 12-hour clock shows 10, then after 6 hours it should show 10 + 6 = 16.
But the time shown by it is 16 − 12 = 4. This is because multiples of 12 are
subtracted to get the actual time.

If it is a thursday on 16 July then after 30 days it is 15 August. since the
days of week repeat after every 7 days, and 30 = 7× 4 + 2, therefore on 15 Au-
gust, the day will be the one which is two days after thursday, that is, Saturday.
Similarly if your birthday falls on Saturday in 2009 then in 2010 it will be on
Sunday as 365 = 7× 52 + 1.

Let n > 1 be any integer and a ∈ Z. By division algorithm, there exists
unique q, r ∈ Z such that a = nq + r, 0 ≤ r < n.
If multiples of n redundant, we reduce a by multiples of n and we say that r = a
modulon. Thus, we define amodn as follows:

Definition 4.6. If n > 1 is any integer and a ∈ Z, we define amodn as the
remainder r obtained on dividing a by n and we write amodn = r. Clearly
0 ≤ r < n, so that amodn ≥ 0.

Example 4.8.

1. 54mod 8 = 6, because on dividing 54 by 8, the remainder is 6.

2. -54 mod 8 = 2, because on dividing −54 by 8, the remainder is 2. We
note that the remainder is positive.

3. 59mod 9 = 5, 77mod 9 = 5. Also observe that 77− 59 = 18 and 9 | 18.

4. a mod 5 = 0, whenever 5|a.

Remark 4.3. If a, b ∈ Z, then amodn = bmodn⇔ n|(a−b) Suppose amodn =
bmodn = r, then a = nq1 + r, b = nq2 + r for some q1, q2 ∈ Z. Therefore
a− b = n(q1 − q2)⇒ n | (a− b).
Conversely, let n | (a− b).
a = nq1 + r1, 0 ≤ r1 < n
b = nq2 + r2, 0 ≤ r2 < n
Hence a− b = n(q1 − q2) + r1 − r2.
Since n | (a− b) and n |n(q1 − q2), therefore n | (r1 − r2)⇒ n | |r1 − r2|
But 0 ≤ |r1 − r2| < n so that |r1 − r2| = 0 ⇒ r1 − r2 = 0 ⇒ r1 = r2, therefore
amodn = r1 = r2 = bmodn.
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Example 4.9.

1. Calculate 283mod 13, 729mod 13, (283mod13 + 729mod 13)
mod13, (283 + 729) mod 13.
Since 283 = 21× 13 + 10
∴ 283mod13 = 10.
Similarly 729mod 13 = 1
(283mod13 + 729mod13)mod13
= (10 + 1)mod13
= 11
(283 + 729)mod13
= 1012mod13
= 11

2. Calculate (283mod13)(729mod13)mod13 and (283× 729)mod13.
(283mod13)(729mod13)mod13
= (10× 1)mod13
= 10
(283× 729)mod 13 = (206307)mod 13 = 10.

In the above illustration, we observe that (283+729)mod13 = (283mod13 +
729mod13)mod13, and(283×729)mod13 = ((283mod 13)(729mod 13))mod 13.

In general, we have the following result.

Theorem 4.23. If n > 1 is the integer then for a, b ∈ Z,

1. (a+ b)modn = ((amodn) + (bmodn))modn

2. abmodn = ((amodn)(amodn))modn.

Proof: Let a mod n = r, b mod n = s.
Then there exists q1, q2 ∈ Z such that

a = nq1 + r

b = nq2 + s.

1. (a+ b) = n(q1 + q2) + r + s.
∴ (a+ b) mod n = (r + s) mod n = (a mod n+ b mod n) mod n.

2. ab = n(nq1q2 + q1s+ q2r) + rs.
∴ (ab) mod n = (rs) mod n = (a mod n)(b mod n) mod n.

This theorem helps us to simplify calculations in modulo n.

Problem 4.11. A college XYZ assigns its students roll numbers. The last
three digits of the roll number of a female student born in month m on date b is
69m+2b+1 and that of a male student is 69m + 2b. Find the date of birth and
sex corresponding to the numbers.
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(i) 194

(ii) 074

(iii) 683

Solution: We will express the numbers in the form 69m + 2b + 1 or 69m +
2b.

(i) 194 = 69 × 2 + 56 = 69 × 2 + 2 × 28
Hence m = 2, b = 28 and the person is male.

Therefore date of birth is 28th Feb and the student is male.

(ii) 074=69 × 1 + 5 = 69 × 1 + 2 × 2 + 1
Hence m = 1, b = 2 and the person is female.

Therefore date of birth is 2nd Jan and the student is female.

(iii) 683=69 × 9 + 62 = 69 × 9 + 2 × 31
Thus m = 9, b = 31 and the person is male.

It is incorrect, Since the date of birth is 31 September, which is not pos-
sible.

Definition 4.7. Let n > 1 be a fixed natural number. If a, b ∈ Z we say that a is
congruent to b modulo n if and only if n | (a− b). We write it as a ≡ b (modn).
We read it as ’a is congruent to bmodn′ and n is called the modulus of the
congruence.

Example 4.10.

1. 77 ≡ 59mod9,∵ 9 | (77− 59).

2. 125 ≡ 136mod11, as 11 | (125− 136).

Theorem 4.24. For a fixed integer m > 0, the relation a ≡ b (mod m) on Z
is an equivalence relation.

Proof: Left to the reader.

The above relation partitions Z into mutually disjoint equivalence classes.
The class to which an integer ‘a’ belongs is called the equivalence class of ‘a’
and is denoted by [a] or a or cl(a).
Thus [a] = {x ∈ Z | x ≡ a (mod m)}

= {a+ km | k ∈ Z}.

Example 4.11. Find the distinct equivalence classes of the relation congruence
modulo 6 on Z.
Clearly 1 ≡ 7 (mod 6), 1 ≡ 13 (mod 6), etc. . . .
∴ [1] = {1, 7, 13, 19, ......}

= {1 + 6k | k ∈ Z}
[2] = {2 + 6k | k ∈ Z}
[3] = {3 + 6k | k ∈ Z}
[4] = {4 + 6k | k ∈ Z}
[5] = {5 + 6k | k ∈ Z}
[6] = {6k | k ∈ Z} = [0]

Thus, the distinct equivalence classes are [0], [1], [2], [3], [4], [5].
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The following theorems gives some results regarding congruences, which are
very useful in manipulations.

Theorem 4.25. Let a ≡ b (modm)and x ∈ Z then

1. (a+ x) ≡ (b+ x) (mod m)

2. (a− x) ≡ (b− x) (mod m)

3. ax ≡ bx (mod m).

Proof:

1. a ≡ b(mod m)
⇒ m|(a− b)
⇒ m|((a+ x)− (b+ x)) ∀ x ∈ Z
⇒ (a+ x) ≡ (b+ x) (mod m).

2. and 3. can be proved similarly.

Theorem 4.26. Let a ≡ b (mod m) and c ≡ d (mod m). Then

1. (a+ c) ≡ (b+ d) (mod m)

2. (a− c) ≡ (b− d) (mod m)

3. ac ≡ bd (mod m)

4. (pa+ qc) ≡ (pb+ qd) (mod m), for all integers p and q.

5. an ≡ bn(mod m) for all n ∈ N

6. f(a) ≡ f(b) (mod m), for every polynomial f(x) with integer coefficients.

Proof:
The proofs of 1., 2., 4. are left to the reader.

3. Since a ≡ b (mod m) and c ≡ d (mod m)
∴ a = b+mx, c = d+my for some x, y ∈ Z.
ac = (b+mx)(d+my)

= bd+m(xd+ by +mxy)
∴ ac ≡ bd (mod m).

5. We prove the result by induction on n.
Since a ≡ b (modm) ∴ a1 ≡ b1 (mod m).

Hence the result is true for n = 1.
Let the result be true for n = k.
ie. ak ≡ bk (mod m)
also a ≡ b (mod m)

∴ By (3 ), we get
aka ≡ bkb (mod m)

i.e. ak+1 ≡ bk+1 (mod m)
Hence the result holds for n = k + 1.
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Thus, by the principle of induction, the result holds for all n ∈ N.

6. Let f(x) = p0 + p1x+ . . .+ pnx
n, pi ∈ Z, n ∈ N ∪ {0}.

Since a ≡ b (mod m)
∴ ak ≡ bk (mod m) for all k ∈ N by (5.).
⇒ pka

k ≡ pkbk (mod m), using Theorem 4.25
⇒ p1a+ . . .+ pna

n ≡ p1b+ . . .+ pnb
n (mod m), using (1.)

⇒ p0 +p1a+ . . .+pna
n ≡ p0 +p1b+ . . .+pnb

n (mod m), using Theorem
4.25

⇒ f(a) ≡ f(b) (mod m)
The following two theorems give the equivalent of cancellation laws in con-

gruence modulo m.

Theorem 4.27. If ac ≡ bc (mod m) and (c,m) = 1 then a ≡ b (mod m).

Proof: Since (c,m) = 1, therefore c 6= 0, for if c = 0, then (c,m) = m, but
m > 1

ca ≡ cb mod m
⇒ m | (ca− cb)
⇒ m | c(a− b)
⇒ m | (a− b) ∵ (c,m) = 1
⇒ a ≡ b (mod m)

The next theorem gives the cancellation law when (c,m) = d. In fact, the
above theorem becomes a special case, for d = 1.

Theorem 4.28. Let ac ≡ bc (mod m), and c 6= 0 (modm). If (c,m) = d and
m = m1d, then a ≡ b (mod m1).

Proof: d = (c,m) ⇒ d 6= 0 and d|c, d|m
⇒ c = c1d,m = m1d for some c1,m1 ∈ Z.
Such that(c1,m1) = 1

ac ≡ bc (mod m)
⇒ ac− bc = mt for some t ∈ Z
⇒ ac1d− bc1d = m1dt
⇒ (ac1 − bc1)d = m1td
⇒ ac1 − bc1 = m1t, as d 6= 0
⇒ ac1 ≡ bc1 (mod m1)
Since (c1,m1) = 1, therefore by the above theorem

a ≡ b (mod m1).
We now find solution of congruences.

Definition 4.8. An integer x0 is a solution of the linear congruence
ax ≡ b (mod m) if ax0 ≡ b (mod m).

Example 4.12. Consider the congruence

3x ≡ 2 (mod 5) (4.37)

x0 = 4 is a solution, because 3x0 − 2 = 10 = 2× 5
∴ 3x0 ≡ 2 (mod 5)
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Similarly x0 = 9, 14,−1,−6 are all solution of (4.37)
Observe that 9 = 4 + 5

14 = 4 + 2× 5
− 1 = 4 + (−1)5
− 6 = 4 + (−2)5

So 9, 14, -1, -6 ∈ [4].

Does it mean that every member of [4] is a solution of equation (4.37). This
is precisely the case, as is proved in the next theorem.

Theorem 4.29. If (a,m) = 1, then the linear congruence ax ≡ b (mod m) has
a solution. Moreover, if x0 is a solution then set of all solutions is [x0], the
equivalence class of x0.

Proof: Existence of a solution
(a,m) = 1

⇒ there exist r, s ∈ Z such that ar +ms = 1.

⇒ arb+msb = b, (multiplying by b).
⇒ arb− b = m(−sb)
⇒ ax0 − b = m(−sb), where x0 = rb ∈ Z
⇒ ax0 ≡ b (mod m).

Thus the given congruence has a solution, namely x0.

We now find the set of all solutions.
Now x0 is solution, then

ax0 ≡ b (mod m) (4.38)

Let y be any solution of ax ≡ b (mod m). Then

ay ≡ b (mod m) (4.39)

(4.38) and (4.39) ⇒ ax0 ≡ ay (mod m)
⇒ x0 ≡ y (mod m), ∵ (a,m) = 1
⇒ y ∈ [x0].

Let z ∈ [x0]
∴ z ≡ x0 (mod m)
⇒ az ≡ ax0 (mod m)
⇒ az ≡ b (mod m) Using (4.38).
⇒ z is a solution of (4.38). Thus the solution set is [x0].

Remark 4.4. Since any two solutions are congruent modulo m, therefore we say
that the solution is unique modulo m. In case there is no chance of confusion,
we simply say that a congruence has unique solution.

Corollary 4.30. The linear congruence ax ≡ b (mod p) where p is a prime
such that p - a has a unique solution modulo p.

Proof: p is a prime and p - a, ∴ (a, p) = 1.

The result now follows from Theorem 4.29.
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Example 4.13. Solve the linear congruence 4x ≡ 3 (mod 5).
Here a = 4, b = 3, m = 5
since (a,m) = 1, therefore the given congruence has a unique solution mod-
ulo 5.

Step1 Find r, s such that

ar +ms = 1 (4.40)

In this case s = 1, r = (−1). ∵ 4× (−1) + 5× 1 = 1
Multiplying (4.40) by b.
∴ arb+msb = b
⇒ a(rb)− b = m(−sb)
⇒ ax0 ≡ b (mod m), where x0 ≡ rb

Thus x0 is a solution and [x0] is the set of all solutions.
x0 = rb = (−1)3 = (−3) ≡ 2 (mod 5)

(We generally take the smallest positive value of the solution).
Thus x0 = 2 is the solution which is unique (mod 5) of the given linear congru-
ence.
Solution set is [2].
We have seen that the linear congruence ax ≡ b (mod m) always has a unique
solution, if (a,m) = 1.
If (a,m) = d 6= 1, then a solution may or may not exist.

Example 4.14. Find the solution of 18x ≡ 5 (mod 6), if it exists.
Suppose x0 is a solution of the given congruence. Then

18x0 ≡ 5 (mod 6).
∴ 18x0 − 5 = 6k for some k ∈ Z
⇒ 18x0 − 6k = 5
⇒ 3|5 ∵ 3|(18x0 − 6k).

which is not true.
Hence the given congruence does not have a solution.
Observe that in the above illustration (a,m) = (12, 15) = 3 6= 1.

The following theorem gives the condition under which a given congruence
always has a solution.

Theorem 4.31. The linear congruence ax ≡ b (mod m) has a solution if and
only if d|b, where d = (a,m). If a solution exists, it is a unique solution modulo
m1, where m = m1d. In fact, there are exactly d solutions xi, 0 ≤ xi < m, no
two of which are congruent modulo m.

Proof: Let d = (a,m). . . (1)
Suppose the given linear congruence has a solution x0.

Then ax0 ≡ b (modm)
So that m|(ax0 − b).

⇒ ax0 − b = mk, for some k ∈ Z
⇒ ax0 −mk = b . . . (2)

Now (1) ⇒ d|a and d|m
⇒ d|(ax0 −mk)
⇒ d|b using (2)
Thus d|b.
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Conversely, let d|b. ∴ b = dk, for some k ∈ Z. Also (1) gives that there
exists λ, µ ∈ Z such that

aλ+mµ = d
⇒ aλk +mµk = dk
⇒ ax0 +mµk = b where x0 = λk
⇒ m| (ax0 − b)
⇒ ax0 ≡ b (modm)
⇒ ax ≡ b (modm) has a solution
namely x = x0.

Hence ax ≡ b (modm) has a solution if and only if d|b.
Suppose ax ≡ b (modm) has two solutions x0 and x1. Then

ax0 ≡ b (modm)
and ax1 ≡ b (modm)

So that a(x0 − x1) ≡ 0 (modm)
∴ a(x0 − x1) = km, for some k ∈ Z. . . (3)

Since d = (a,m), ∴ By Theorem there exists a1,m1 ∈ Z such that
a = a1d, m = m1d, (a1,m1) = 1. ∴ (3) becomes

a1d(x0 − x1) = km1d
⇒ a1(x0 − x1) = km1 ∵ d 6= 0
⇒ m1| a1(x0 − x1)
⇒ m1| (x0 − x1) as (a1,m1) = 1.
⇒ x0 ≡ x1 (modm1)

Hence there exists a unique solution. Call it x0.
The solution set is [x0] = {x0 +m1t : t ∈ Z}.
When any integer t is divided by d, the remainders can be any one of 0, 1, . . . ,
d− 1.
Any element of the solution set is of the form.
x0 +m1(kd+ r), where r = 0, 1, . . . , d− 1
i.e. x0 +m1dk +m1r, where r = 0, 1, . . . , d− 1
i.e. (x0 +m1r) +m1dk, where r = 0, 1, . . . , d− 1
i.e. x0 +m1r, where r = 0, 1, . . . , d− 1; mod m
These are d solutions, no two of which are congruent mod m.

Hence the given congruence has d distinct solutions, no two of which are
congruent modulo m.

Example 4.15. Solve the linear congruence 24x ≡ 9 (mod 81).
Step 1

24x ≡ 9 (mod 81) (4.41)

⇔ 24x− 9 = 81k for some k ∈ Z
⇔ 8x− 3 = 27k

⇔ 8x ≡ 3 (mod 27) (4.42)

Thus x0 is a solution of (4.41) if and only if x0 is a solution of (4.42).
We now solve (4.42).
Step2
Here a = 8, b = 3, m = 27

(a,m) = 1.
Find r and s such that

ar +ms = 1 (4.43)
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In fact 8× (−10) + 27× 3 = 1, so that r = −10, s = 3.

Multiplying (4.43) by b,we get
arb+msb = b

⇒ arb− b = m(−sb)
⇒ ax0 − b = m(−sb), where x0 = rb.
⇒ ax0 ≡ b (mod m)
Thus x0 = −30 is a solution of (4.42), But x0 ≡ 24 (mod 27).
∴ 24 is the unique solution mod m of (4.42).
The solutions are 24 + 27t, t ∈ Z

Step 3
We now obtain all the solutions of (4.41).
Since (24, 81) = 3
∴ There are 3 non-congruent solutions modulo 81.
To obtain these solutions, we proceed as follows:
Any integer is of the form

3k, 3k + 1, 3k + 2
Thus, any solution of (4.41) is of the form

24 + 27(3k), 24 + 27(3k + 1), 24 + 27(3k + 2).

i.e. 24 + 81k, 51 + 81k, 78 + 81k.
Thus the solutions are

x ≡ 24 (mod 81)
x ≡ 51 (mod 81)
x ≡ 78 (mod 81).

To solve a linear congruence ax ≡ b (mod m)., first we check whether a so-
lution exists or not.

Existence of Solution
There are three cases arises:

Case 1.
(a,m) = 1.
In this case there is a unique solution modulo m.

Case 2.
(a,m) = d > 1.

If d - b then there is no solution.
Case 3.

(a,m) = d > 1 and d|b.
In this case there are d non-congruent solutions modulo m.

We now give the steps to find the solution in case 1 and case 3.
Steps involved for Case 1.

Step 1 Since (a,m) = 1
Find integers r and s such that ar +ms = 1.
Multiplying by b, we get

arb+msb = b
⇒ ax0 − b = m(−sb), where x0 = rb.
⇒ ax0 ≡ b (mod m).
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Thus x0 is a solution.
Step 2 The solution set is

{x0 + km; k ∈ Z} (4.44)

If x0 does not satisfy 0 ≤ x0 < m, then reduce it so that it satisfy the above
condition.
This can always be done by adding multiples of m to x0, and it will still remain
a solution, because of (4.44).

Steps involved for Case 2.
Step1 Since (a,m) = d

∴ a = da1, m = dm1, b = db1 and (a1,m1) = 1.

Then, ax ≡ b (mod m) (4.45)

⇔ a1x ≡ b1 (mod m1) (4.46)

Solve (4.46) as in Case 1.
Step 2 Obtain a solution of a1x ≡ b1 (mod m1).

where (a1,m1) = 1.
The steps have been outlined earlier. If x0 is a solution,
then the solution set is

{x0 + tm1 : t ∈ Z}.

Step 3 To obtained all the non-congruent modulo m solutions of (4.45).
Since (a,m) = d, therefore there are d non-congruent solutions of (4.45).

which are
x ≡ x0 (mod m)
x ≡ x0 +m1 (mod m)
x ≡ x0 + 2m1 (mod m)
.
.
.
.
x ≡ x0 + (d− 1)m1 (mod m).

Problem 4.12. Let m,n are fixed integers greater than 1, and a, b ∈ Z. If
a ≡ b modmn, then a ≡ b modm and a ≡ bmodn.
Is the converse true? if not, is it true under certain condition on m and n?
what are they?

Solution: a ≡ bmodmn
⇒ a− b = qmn for some q ∈ Z
⇒ m | (a− b) and n | (a− b)
⇒ a ≡ bmodm and a ≡ bmodn.
Conversely, If a ≡ bmodm and a ≡ bmodn, we need to prove that a ≡ bmodmn
Take a = 18, b = 14,m = 2, n = 4
then,

18 ≡ 14mod4
18 ≡ 14mod 2



174 CHAPTER 4. NUMBER SYSTEM

but, 18 � 14mod(2× 4)
18 � 14mod8

We shall find condition on m and n so that we get the result,
a ≡ bmodm⇒ m | (a− b)

⇒ a− b = mq1 for some q1 ∈ Z
Similarly a ≡ bmodn

⇒ a− b = nq2 for some q2 ∈ Z
Thus a− b = mq1 = nq2 (1)
If gcd(m,n) = 1, then
mq1 = nq2

⇒ m |nq2 and n |mq1

⇒ n | q1, since gcd(m,n) = 1
(1) ⇒ q1 = nk1, for some k1 ∈ Z
⇒ a− b = mnk1

⇒ mn | (a− b)
⇒ a ≡ bmodmn

Thus the converse holds when m and n are co-prime.

Problem 4.13. If ‘a’ is any integer then a3 ≡ 0, 1, or 8 (mod 9).

Solution: Any integer ‘a’ is of the form 3k, 3k + 1, 3k + 2.
Three cases arises:

Case 1. a = 3k
Then a3 = 27k3

∴ a3 ≡ 0 (mod 9).

Case 2. a = 3k + 1
∴ a3 = (3k + 1)3

= 9 (3k3 + 3k2 + k) + 1
Hence a3 ≡ 1 (mod 9).

Case 3. a = 3k + 2
∴ a3 = (3k + 2)3

= 9 (3k3 + 6k2 + 8k) + 8
Hence a3 ≡ 8 (mod 9). Thus if ‘a’ is any integer, then a3 ≡
0, 1, or 8 (mod 9).

Problem 4.14. Find the remainder when 1! + 2! + · · ·+ 200! is divided by 12.

Solution: Clearly 12 |n! for all n ≥ 4, therefore 12 | (4! + ........200!)
⇒ 4! + · · ·+ 200! = 12k for some k ∈ Z ⇒ 1! + 2! + 3! + 4! + · · · 200! =

12k + 1! + 2! + 3! = 12k + 9
⇒ 1! + 2! + · · · 200! ≡ 9mod12
Thus, the remainder obtained on dividing 1! + 2! + · · ·+ 200! by 12 is 9.

4.8 Exercise

1. Calculate
(i) 7 + 8 (mod11)
(ii) 2 + 3 + 4 + 5 (mod6)
(iii) 8.9 (mod10)
(iv) 4.5.6 (mod7).
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2. Find the least positive integer modulo n to which the following expressions
are congruent.
(i) 5.7.13.23.413, n = 11
(ii) 6 + 18 + 29 + 346, n = 13
(iii) 5.6 + 8.11 + 19.23, n = 9
(iv) 123.13.2 + 481.6− 239.11 + 17.11− 14.239, n = 15.

3. Evaluate
(i) (2517× 4328)mod14
(ii) (2610 + 3929)mod9
(iii) (1718)5mod13

(iv) (5621− 7398)mod12
(v) 220mod11
(vi) 1024mod9
(vii) 8126100mod7

4. Calculate a+ b, a.b, (a+ b)2, (a+ b)3modn, for
(i) a = 11528, b = 17332, n = 91.
(ii) a = −11528, b = −17332, n = 91.

5. Examine which of the following are true.

(i) −6 ≡ 18 (mod12)
(ii) 111 ≡ 12 (mod11)
(iii) 111 ≡ 11 (mod11)
(iv) −4 ≡ −4 (modn), n ∈ N
(v) 100 ≡ 10 (mod20)
(vi) 1625 ≡ 15 (mod25).

6. Write the congruence classes of integers modulo 12. To which class does
5876 belong? Does −5876 also belong to the same class?

7. What is the general form of an integer in [3] relative to the congruence
mod11.

8. Write 3 negative integers in [2] relative to the relation congruent mod9.

9. Write the multiplication table of equivalence classes modulo 5.

10. In ABC university each student is assigned an enrolment number. The
last three digits of the enrolment number of a male student born in month
m on date b is 71m + 2b + 1 and that of a female student is 71m + 2b.
Find the date of birth and sex corresponding to the numbers.

(i) 480

(ii) 911

(iii) 716

(iv) 717

(v) 172
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11. The last seven digits of the identification number of a employee gives the
date of birth. The four digits preceeding the last three digits is 4Y , where
Y is the year of birth. The last three digits of the identification number
of a female employee born in month m on date b is 67m + 2b + 1 and
that of a male employee is 71m + 2b. Find the date of birth and sex
corresponding to the numbers.

(i) 7792572

(ii) 7936703

12. Solve the following congruences if the solution exists. If no solution exists,
explain why.
(i) 3x ≡ 1 (mod7)
(ii) 8x ≡ 4 (mod6)
(iii) 8x ≡ 5 (mod6)
(iv) 27x ≡ 8 (mod9)
(v) 27x ≡ 15 (mod9)
(vi) 4x ≡ 1 (mod6)
(vii) 4x ≡ 2 (mod6)
(viii) 8x ≡ 4 (mod12)
(ix) 8x ≡ 3 (mod27)
(x) 12x ≡ 9 (mod15).

13. Find the solution of
(i) 2x ≡ 3 (mod9)
(ii) 4x ≡ 6 (mod9).
Do you see some relation between the solutions of (i) and (ii).

14. Find the solutions of
(i) 5x ≡ 1 (mod12)
(ii) 10x ≡ 2 (mod12)
(iii) 15x ≡ 3 (mod12).
Do you see any relation between their solution sets.

15. Construct linear congruences modulo 12 with
(i) One solution mod12
(ii) No solution
(iii) More than one solution (mod12).

16. Find the remainder when (2138)9 is divided by 31.

17. Find the remainder when
(i) (2)50 is divided by 7.
(ii) (41)65 is divided by 6.
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4.9 Supplementary Problems

1. State whether the following statements are true or false. Justify.
(i) Cancellation law for multiplication holds in the set of natural num-

bers.
(ii) The equation x + m = n has a solution in the set of natural

numbers, for all m,n ∈ N.
(iii) If a, b, c ∈ Z,then

ac = bc ⇒ a = b.
(iv) The first principle of induction is a special case of the second

principle of induction.
(v) The principle of induction is used to prove results about numbers

only.
(vi) The first principle of induction is equivalent to the Well ordering

principle.
(vii) The relation of divisibility is an equivalence relation on N.
(viii) A number p ∈ N is prime if the only divisors of p are ±1 and ±p.
(ix) A number which is not prime is a composite number.

(x) Division algorithm holds in the set of natural numbers.
(xi) If a ∈ Z, then gcd(a, 0) = a.
(xii) The least element of the set {ax+ by |x, y ∈ Z, ax+ by > 0} is the

gcd of a and b.
(xiii) If a, b, c ∈ Z, then gcd(ac, bc) = c gcd(a, b).
(xiv) If a, b, c ∈ Z, such that ac ≡ bc(mod m) for some integer m > 1,

then a ≡ b (mod m).
(xv) If a, b, c ∈ Z, such that a|c and b|c then ab|c.
(xvi) 25x ≡ 1 (mod49) has no solution.
(xvii) 2x ≡ 3 (mod6) has no solution.
(xviii) If a ∈ [b]modm is equivalent to saying [a] = [b].
(xix) If a, b, c ∈ Z, such that ab ≡ 1 (modm) then either a ≡ 1 (modm)

and b ≡ 1 (modm), or a ≡ −1 (modm) and b ≡ −1 (modm).
(xx) If a ∈ Z, such that a3 ≡ 1 (modm) then a ≡ 1 (modm).
(xxi) gcd (a,−a) = a, a ∈ Z.
(xxii) If two integers a, b are coprime then their lcm is ab.
(xxiii) Two consecutive integers are always coprime.

2. Prove that an integer is divisible by 4 if and only if the number formed by
the last two digits (digits in the ten’s and unit’s place) is divisible by 4.

3. Prove that an integer n is divisible by 9 if and only if the sum of the digits
of n is divisible by 9.

4. Show that
(i) (2)n > n2 for all n ≥ 5.
(ii) n! ≥ n3 for all n ≥ 6.

5. If n is any integer, then prove that 5n+ 3 and 7n+ 4 are coprime.

6. If p is a prime and a, b are integers such that ab ≡ 0 (modp), prove that
either a ≡ 0 (modp) or b ≡ 0 (modp). What can you say if p is not prime?

7. If a ≡ b (modn), prove that gcd(a, n) = gcd(b, n).
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8. If a, b ∈ Z, and k is an odd integer such that k | (a − b) and k | (a + b)
then prove that k | gcd(a, b).

9. If a, b are co-prime, prove that
(i) gcd(2a+ b, a+ 2b) = 1 or 3.
(ii) gcd(a+ b, a2 − ab+ b2) = 1 or 3.
(iii) gcd(am, bn) = 1, m, n ∈ N.

10. If ‘a’ is an odd integer prove that
a2 ≡ 1 (mod8)

11. Find the gcd of a and b. Also find integers m and n such that ma+ nb =
gcd(a, b), for the following pairs.
(i) a = 578, b = −442
(ii) a = −826, b = 1890
(iii) a = 741, b = 1079.

12. Let a be an odd integer. Show that
a2n ≡ 1(mod2n+2) for all n ∈ N using induction.

13. Solve the linear congruence

40x ≡ 15 (mod135)

14. Prove that
8410 ≡ 1 (mod11)

15. Solve the following linear congruences. Obtain all the non congruent
solutions.
(i) 258x + 18 ≡ 5 (mod7)
(ii) 222x + 7 ≡ 19 (mod18)
(iii) 12x ≡ 6 (mod16)
(iv) 18x + 24 ≡ 15 (mod33).

16. Suppose P (n) is a statement about the natural number n such that
(i) P (1) is true.
(ii) For any k ≥ 1, P (k) is true ⇒ P (2k) is true.
(iii) For any k ≥ 2, P (k) is true ⇒ P (k − 1) is true.

Prove that P (n) is true for all n ∈ N.

4.10 Answers to Exercises

Exercise - 4.7

11.
(i) 13, 13=7a− 4b
(ii) 13, 13=−7a− 4b
(iii) 1, 1=−40a+ 79b
(iv) 1, 1=40a− 79b
(v) 592, 592=2a− b
(vi) 592, 592=2a+ b
(vii) 2, 2=97a+ 68b
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12.
(i) 27, m = −3, n = 4; m = −3− kb, n = 4 + ka, for k = 1, 2
(ii) 13, m = −16, n = 11; m = −16− kb, n = 11 + ka, for k = 1, 2
(iii) 73, m = −5, n = 17; m = −5− kb, n = 17 + ka, for k = 1, 2.

13. m = 553, n = −280.
No, other pair is m = 867, n = −439.

14. m = −2, n = 2.

15. Hint : gcd(219, 153) = 3 and 3 - 5.

16. Hint : 7| (10m+n)⇔ 10m+n = 7q ⇔ m+5n = 7(5q−7m)⇔ 7 | (m+5n)

18.
(i) Yes
(ii) Yes
(iii) Yes
(iv) No

Exercise - 4.8

1. (i) 4 (ii) 2 (iii) 2 (iv) 1.

2. (i) 2 (ii) 9 (iii) 6 (iv) 11.

3. (i) 8 (ii) 5 (iii) 6 (iv) 11.

4.
(i) 13, 56, 78, 13
(ii) 78, 56, 78, 78

5. (i) T (ii) T (iii) F (iv) T (v) F (vi) F.

6. [k] = {k + 12t | t ∈ Z} for k = 0, 1, 2, . . . , 11.
5876=8 (mod 12)
∴ 5876 ∈ [8]. No.
−5876 ∈ [4].

7. 11k + 3, k ∈ Z.

8. −7, −16, −25.

9.
0 1 2 3 4

0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

10.
(i) F, 27th June
(ii) M, 29th Dec
(iii) F, 3rd Oct
(iv) M, 3rd Oct
(v) Incorrect
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11.
(i) M, 2 August, 1948
(ii) F, 16 October, 1984

12.
(i) 5(mod 7)
(ii) 2(mod 6), 5(mod 6)
(iii) No solution
(iv) No solution
(v) No solution
(vi) No solution
(vii) 2(mod 6), 5(mod 6)
(viii) 2(mod 12), 5(mod 12), 8(mod 12), 11(mod 12)
(ix) 24(mod 7)

(viii) 2(mod 15), 7(mod 15), 12(mod 15).

13.
(i) 6(mod 9)
(ii) 6(mod 9)

Both have the same solution.

14.
(i) 5(mod 12)
(ii) 5(mod 12), 11(mod 12)
(iii) 5(mod 12), 1(mod 12), 9(mod 12).

(i), (ii) and (iii) have a common solution.

15. Other answers are possible
(i) 5x ≡ 7(mod 12)
(ii) 2x ≡ 3(mod 12)
(iii) 10x ≡ 2(mod 12).

16. 30

17. (i) 4 (iii) 5.

Supplementary Exercises

1.
(i) T
(ii) F, x+ 5 = 1 does not have a solution.
(iii) F, not true for c = 0.
(iv) T
(v) F, any statement involving natural numbers.
(vi) T
(vii) F, it is not symmetric.
(viii) F, p, 1
(ix) F, it can be unity also.
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(x) F, No quotient exists when 3 is divided by 5.
(xi) F, gcd(a, 0) = |a|.
(xii) T
(xiii) F, gcd(ac, bc) = |c|gcd(a, b).
(xiv) F, 7 × 3 ≡ 5 × 3 mod 6, but 7 � 5 mod 6.
(xv) F, 8|24, 12|24 but 8× 12 - 24.
(xvi) F, x ≡ 2(mod 49) is a solution.
(xvii) T
(xviii) T
(xix) F, 2 × 3 ≡ 1(mod 5), but 2 � ±1(mod 5) and 3 � ±1(mod 5).
(xx) F, 53 ≡ 1(mod 31), but 5 � 1(mod 31).
(xxi) F, gcd(a,−a) = |a|.
(xxii) F, lcm is |ab|.
(xxi) T

6. Not true. 2 × 3 ≡ 0 mod 6, but 2 � 0 mod 6 and 3 � 0 mod 6.

9. Hint :
(a) d = gcd(a+ b, a2 − ab+ b2)

⇒ d|(a+ b), d|(a2 − ab+ b2)
⇒ d|((a+ b)2 − (a2 − ab+ b2)
⇒ d|(3ab)
Let gcd(d, a) = d′

∴ d′|d and d| ⇒ d′|b
d′ = 1 ∵ gcd(a, b) = 1.
Similarly gcd(d, b) = 1.
Hence d|3 ⇒ d=1, 3.

(b) Use induction to prove (am, b) = 1.

11.
(i) 34,m = −3, n = −4
(ii) 14,m = 16, n = 7
(iii) 13,m = −16, n = 11

13. 24, 51, 78, 105, 132 (mod 135)

14.
(i) 6mod 7
(ii) 2, 5, 8, 11, 14, 17 (mod 18)
(iii) No solution exists.
(ii) 5, 16, 27 (mod 33)
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Chapter 5

Group
Definition and Examples

In this chapter we shall study different algebraic structures with one binary
operation and the relationship amongst them. The simplest algebraic structure
is a groupoid. We begin with a few definitions.

5.1 Definition of Group

Definition 5.1. A non-empty set G equipped with a binary operation ∗ is called
a groupoid, that is, a ∗ b ∈ G ∀ a, b ∈ G. This is also referred to as: G is closed
with respect to ∗.

Definition 5.2. A non-empty set G equipped with a binary operation ∗ is called
a semigroup if ∗ is associative, i.e.

a ∗ (b ∗ c) = (a ∗ b) ∗ c ∀ a, b, c ∈ G. (5.1)

Definition 5.3. A non-empty set G equipped with a binary operation ∗ is called
a monoid if
(i) ∗ is associative, i.e.

a ∗ (b ∗ c) = (a ∗ b) ∗ c ∀ a, b, c ∈ G. (5.2)

(ii) ∗ has an identity element, i.e., there exists an element e ∈ G such that

a ∗ e = e ∗ a = a ∀ a ∈ G.

Definition 5.4. A non-empty set G equipped with a binary operation ∗ is called
a group if
(i) ∗ is associative, i.e.

a ∗ (b ∗ c) = (a ∗ b) ∗ c ∀ a, b, c ∈ G. (5.3)

(ii) ∗ has an identity element, that is, there exists an element e ∈ G such that

a ∗ e = e ∗ a = a ∀ a ∈ G.

184
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(iii) each element of G has an inverse with respect to ∗, that is, for every a ∈ G
there exists some b ∈ G such that

a ∗ b = b ∗ a = e.

‘b’ is called an inverse of ‘a’ and is denoted by a−1.

Each of these algebraic structures are denoted by (G, ∗). When the binary
operation ∗ is understood from the context, we simply say that G is an algebraic
structure, and if there is no confusion we prefer to write a ∗ b as ab.

From the above definitions it is clear that an associative groupoid is a semi-
group; a semi-group with an identity element is a monoid; and a monoid in
which every element has inverse is a group. This relationship is shown in the
following diagram.

d ç é= ê ì
ã å áE ç ç Ç
= á Ü= ï í
áåîÉ ë Fê É

= = j å á == = ç ç Ç
E É á ê ì = á Üë ã Ö ç é ï í
= = á É í í F= = Ç å á ó

= = = = É á ê ì= = = p ã Ö ç é
E ë ç á í î = ê ì ç ÇF~ ë Å ~ á É Ö ç é á

=dê ìé áÇ= ç ç

Definition 5.5. In a group (G, ∗), if the set G is finite, the number of elements
in G is called the order of G and is denoted by o(G) (or |G|). If G is not a finite
set, then the group G is said to be infinite or a group of infinite order.

A groupoid is the simplest algebraic structure. Certain important results
about groups also hold true in more general structures like semigroups and
monoids, and therefore these structures have been discussed here. These struc-
tures have not been studied in details as our principal interest is to study groups.

Definition 5.6. A group (G, ∗), or a semigroup (G, ∗), is said to be commutative
or Abelian group, if

a ∗ b = b ∗ a ∀ a, b ∈ G. (5.4)

Having given a formal definition of a group, we shall now build up a good
stock of examples. These examples will be used throughout to illustrate results
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for their better comprehension. The reader is advised to study them carefully
since the best way to feel the essence of a theorem is to see what happens in
specific cases. To develop a complete understanding of these examples, you may
supply the missing details.

Whenever we check whether a given set is a group with respect to a given
binary operation ∗, we shall proceed as follows:

Step 1 (Closure) Verify that ∗ is a binary operation on G, that is, a ∗ b ∈ G,
for all a, b ∈ G.

Step 2 (Associativity) Verify that ∗ is associative.

Step 3 (Existence of identity) Verify the existence of identity element e ∈ G
with respect to ∗.

Step 4 (Existence of inverse) Verify that every element of G has an inverse
in G, with respect to ∗.

In case it has to be seen whether the group is Abelian, we must do the
following additional step.

Step 5 (Commutativity) Verify that a ∗ b = b ∗ a, for all a, b ∈ G.
We observe that the associative law holds with respect to the usual addition

and multiplication in the set of complex numbers. Therefore associative law
holds for every subset thereof. Hence, for any set of numbers with respect to
the usual addition and multiplication, it is required to check only the existence
of identity and inverse. Moreover the commutative law holds with respect to
the usual addition and multiplication in the set of complex numbers, so that
this law holds for every subset thereof. Hence for any sets of numbers, if (S,+)
or (S, .) is a group, it will be an Abelian group.

Remark 5.1. If only Step 1 holds then (G, ∗) is a groupoid. If for a groupoid
Step 2 also holds then (G, ∗) is a semigroup. If for a semigroup, Step 3 holds
then (G, ∗) is a monoid. Finally a monoid for which Step 4 holds is a group.
For a groupoid (semigroup, monoid, group respectively) if Step 5 holds then it
is an Abelian groupoid(semigroup,monoid,group respectively).

Remark 5.2. In case of finite groups of small order, sometimes it is convenient
to prepare a multiplication table to verify the above steps. This table is known
as the Cayley table. It is prepared as follows:

Let G = {x1, x2 . . . , xn} be a set and let ∗ be an operation defined on G, then
the Cayley table of G with respect to ∗ is prepared as:

∗ x1 x2 . . . xn
x1 x1 ∗ x1 x1 ∗ x2 . . . x1 ∗ xn
x2 x2 ∗ x1 x2 ∗ x2 . . . x2 ∗ xn
. . . . . . .
. . . . . . .
. . . . . . .
xn xn ∗ x1 xn ∗ x2 . . . xn ∗ xn

Remark 5.3. If (G, ∗) is a group, then in the multiplication table in each row
and each column, every element of G appears exactly once. Note that this is
only a necessary condition, and not a sufficient condition for G to be a group.
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5.2 Exercise

Give examples to justify the statements, in Q1 to Q5.

1. The set of all odd integers is not a groupoid with respect to addition.

2. (Z,−) is a groupoid but not a semigroup.

3. (E, .) is a semigroup but not a monoid, where E is the set of even integers.

4. (N,+) is a semigroup but not a monoid.

5. (N, .) is a monoid but not a group.

6. What algebraic structure does (Q*,÷) possess?

7. On N, define m ∗ n = mn. What algebraic structure does (N, ∗) possess?

8. Let G = {a, b, c}. The binary operation ∗ on G is defined by the following
table:

∗ a b c
a a b c
b b b b
c c c c

Prove that (G, ∗) a monoid. Is it a group?

9. LetG = {a, b, c, d}. The binary operation ∗ onG is defined by the following
table:

∗ a b c d
a a b c d
b b c d a
c c d a a
d d b a c

Is (G, ∗) a group? If not, why?

5.3 Groups of Numbers

Example 5.1. The set of integers Z, the set of rational numbers Q, the set of
real numbers R and the set of complex numbers C are all groups under ordinary
addition. The identity element in each case is 0. The inverse of any element x
is −x. Since addition of numbers is commutative, therefore they all are Abelian
groups. Since Z, Q, R and C are infinite sets, these are infinite Abelian groups.

Each of the sets Z,Q,R and C is closed with respect to the usual multiplica-
tion of numbers. The associative law holds, the identity element exists and is 1.
Thus each of (Z, .), (Q, .), (R, .) and (C, .) is a monoid.

In (Z, .) none of the elements, except 1 and −1 are invertible. So (Z, .) is
not a group. In (Q, .) every non-zero element m

n has an inverse, namely n
m . But

0 does not have an inverse as there does not exist any q ∈ Q such that 0.q = 1.
Thus (Q, .) is not a group. For the similar reason, (R, .) and (C, .) are also not
groups. Since 0 is the only element which does not have an inverse, is it possible
that the set of non-zero numbers forms a group with respect to multiplication?
This is answered in the following example.
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Example 5.2. Let Q∗ denote the set of non-zero rational numbers. Then (Q∗, .)
is a group. Since the product of two non-zero rational numbers is a non-zero
rational numbers, Q∗ is closed with respect to multiplication. The identity ele-
ment is 1 and the inverse of m

n ∈ Q
∗ is n

m . Since multiplication is commutative,
therefore (Q∗, .) is an Abelian group. Moreover Q∗ is infinite. Thus (Q∗, .) is
an infinite Abelian group. Similarly, (R∗, .) and (C∗, .) are also infinite Abelian
groups.

Example 5.3. For any fixed integer m, let mZ={mz | z ∈ Z}. Clearly (mZ,+)
is closed. In fact, (mZ,+) is a group. For, the identity element is 0 and the
inverse of mz ∈ mZ is −mz. Since addition is commutative, therefore (mZ,+)
is an Abelian group. Further, mZ being an infinite set, it is an infinite Abelian
group.

Note that the set E of even integers is a group with respect to addition (taking
m = 2 in the above example, E = 2Z). What can we say about the set O of
odd integers? Is (O,+) a group? Since the sum of two odd integers is even,
therefore addition is not a binary operation on O. Thus (O,+) is not even a
groupoid. What about O∗ = O.

Example 5.4. Let Q+ denote the set of all positive rational numbers. Then
(Q+, .) is a group. Clearly Q+ is closed. The identity is 1 and the inverse of
m
n ∈ Q

+ is n
m . It is an infinite Abelian group. Similarly (R+, .) is an infinite

Abelian group.

Example 5.5. Let Z[
√

2] = {a+ b
√

2 | a, b ∈ Z}. Then (Z[
√

2],+) is a group.
For, Z[

√
2] is closed with respect to addition. Addition is associative in this set.

The identity element is 0 and the inverse of a + b
√

2 is −a − b
√

2. Similarly
Z[
√

3], Z[
√

5], Z[
√

6], . . . etc. are groups with respect to the usual addition.
(Z[
√

2], .) is a monoid, the identity element being 1.
However, (Z[

√
2], .) is not a group. Since 2 = 2 + 0

√
2 ∈ Z[

√
2], it does not have

an inverse in Z
√

2.

Example 5.6. Let Q[
√

2] = {a + b
√

2|a, b ∈ Q}. Then (Q[
√

2] r {0}, .) is a
group. The identity element is 1 and the inverse of a + b

√
2 is ( a

a2−2b2 ) +

( −b
a2−2b2 )

√
2. Since multiplication is commutative, (Q[

√
2]r{0}, .) is an Abelian

group. Similarly (Q[
√

3]r{0}, .), (R[
√

2]r{0}, .), (R[
√

3]r{0}, .) are all Abelian
groups with respect to the usual multiplication.

Example 5.7. Let Z[i] = {a + bi | a, b ∈ Z}. Then (Z[i],+) is a group. The
identity element is 0, as 0 = 0 + 0i ∈ Z[i] and the inverse of a + bi ∈ Z[i] is
(−a) + (−b)i ∈ Z[i]. It is an infinite Abelian group. Similarly (Q[i],+) is also
an infinite Abelian group.

Example 5.8. Let Q[i]∗ = Q[i] r {0}. Then Q[i]∗ is an Abelian group, the
identity element being 1 = 1 + 0i ∈ Q[i]∗. The inverse of a + bi ∈ Q[i]∗ is
a

a2+b2 + −b
a2+b2 i ∈ Q[i]∗.

Example 5.9. The nth roots of unity form a finite Abelian group of order n,
with respect to multiplication. They are given by

zk = cos 2kπ
n + isin 2kπ

n ,
k = 0, 1, . . . , n− 1.
Let α = cos 2π

n + isin 2π
n .
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Then α 6= 1, αm 6= 1 for 0 < m < n, and αn = 1.
Further, zk = αk, for k = 0, 1, 2, . . . , n − 1. Let G = {1, α, . . . , αn−1}. Then
o(G) = n.

Step 1 (Closure) If αr, αs ∈ G then 0 ≤ r, s ≤ n− 1, and

αrαs = αr+s =

{
αr+s if r + s < n
αr+s−n if r + s ≥ n.

Since r + s − n ≤ n − 2, hence αrαs ∈ G, the multiplication is a binary op-
eration on G.

Step2 (Associativity) Associativity in G follows from the associativity (with
respect to multiplication) of complex numbers.

Step3 (Existence of identity) The identity element of G is 1.
Step4 (Existence of inverse) Inverse of 1 ∈ G is 1. If αr ∈ G, 0 < r < n

then αn−r ∈ G and αrαn−r = αn−rαr = αn = 1. Thus the inverse of αr is
αn−r.

Hence every element of G has an inverse in G. Thus G is a group. Moreover,
it is Abelian as multiplication of complex numbers is commutative. Since G has
n distinct elements, it is a finite Abelian group of order n.

Note that the above example helps us in constructing a finite Abelian group
of any given order. This is the first example of a finite Abelian group. So far
we have not seen an example of a non Abelian group. This does not mean that
all the groups are Abelian. Later on, we shall have plenty of examples of such
groups.

Example 5.10. The set Rn = {(a1, a2, . . . , an) | a1, . . . , an ∈ R} is a group
under the componentwise addition, that is, (a1, a2, . . . , an) + (b1, b2, . . . , bn) =
(a1+b1, a2+b2, . . . , an+bn). Since addition is a binary operation on R, therefore
it is a binary operation on Rn. Associativity in R implies associativity in Rn.
The identity element is (0, 0, . . . , 0) and the inverse of (a1, a2, . . . , an) ∈ Rn is
(−a1,−a2, . . . ,−an) ∈ Rn.

5.4 Exercise

1. If G = {−1, 1}, show that G is a group with respect to multiplication.

2. If G = {1,−1, i,−i}, where i2 = −1, show that G is a group with respect
to multiplication.

3. Prove that the set R3 = {(a1, a2, a3) : a1, a2, a3 ∈ R} is a group under
componentwise addition, i.e. (a1, a2, a3) + (b1, b2, b3) = (a1 + b1, a2 +
b2, a3 + b3).

4. Let S = Rr {−1}. Define ∗ on S by a ∗ b = a+ b+ ab. Show that (S, ∗)
is a group.
(i) Find the inverses of 3 and 4.
(ii) Find a solution of the equation 4 ∗ x ∗ 3 = 5 in S. Is it unique?

5. If Q+ denotes the set of positive rational numbers, show that (Q+, ∗),
where a ∗ b = ab

2 for all a, b ∈ Q+ is a group. What is the identity
element? What is the inverse of an element q ∈ Q+?
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6. Show that the six 6th roots of unity form an Abelian group of order 6.

7. Give an example of a group of order (i) 53, (ii) 4021.

8. Show that (G, .) is a group, where G = {2n : n ∈ Z}.

9. Prove that the set of all rational numbers of the form 3m6n, where m and
n are integers, is a group under multiplication

10. If G is the group of all the 20 roots of unity, what are the pairs of inverses?
Can you give a general formula for them

11. Show that (G, ∗), where G = {0, 1, 2} and a ∗ b = |a − b| is not a group.
Which of the properties fail to hold?

5.5 Groups of Residues

Before discussing the groups of residues, we shall define a new type of addi-
tion and multiplication on Z.

Addition Modulo n
We now define a new type of addition called “addition modulo n” and written

as a⊕n b where a and b are integers and n > 1 is a positive integer. Define

a⊕n b = r, 0 ≤ r < n

where, r is the least non-negative remainder obtained on dividing a+b by n.
Clearly a⊕n b = (a+ b)(modn)
For example, 18⊕6 10 = 4 since 18 + 10 = 28 = 6 ∗ 4 + 4.
Similarly, −28⊕3 3 = 2, as −28 + 3 = −25 = −9 ∗ 3 + 2.

Multiplication Modulo n
Let n > 1 be a positive integer. Define multiplication modulo n, to be written

as �n, as follows:
If a, b are integers, then

a�n b = r,

0 ≤ r < n.

where r is the least non-negative remainder obtained on dividing ab by n.
Clearly a�n b = (ab)(modn)
For example, 9�7 6 = 5, because 9× 6 = 54 = 7× 7 + 5, and
−3�6 9 = 3, since (−3)× 9 = −27 = −5× 6 + 3.

Example 5.11. Let G = {0, 1, 2, 3, 4, 5}. ⊕6 is a binary operation on G.
Given below is the multiplication table for G:

⊕6 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 0 1
3 3 4 5 0 1 2
4 4 5 0 1 2 3
5 5 0 1 2 3 4
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Associativity holds because

(a⊕6 b)⊕6 c = a⊕6 (b⊕6 c) = (a+ b+ c)(mod6)

Here the identity element is 0. The pairs of inverses are: 1,5; 2,4; 0,0; 3,3.
Note that 0 and 3 are their own inverses. Thus (G,⊕6) is a group. It is a finite
group of order 6. It is also Abelian.

The group (G,⊕6) is denoted by (Z6,⊕6). (Z6,⊕6) is a finite Abelian group
of order 6.

Example 5.12. Let n > 1 be any integer. Let G = {0, 1, 2, . . . , n − 1}. We
prove that (G,⊕n) is a group.

Step 1 (Closure) For a, b ∈ G, since the remainder obtained on dividing a+b
by n is a non-negative integer less than n, so that a⊕n b ∈ G.

Step 2 (Associativity) Associativity of ⊕n follows from the corresponding
property for addition in integers.

Step 3 (Existence of identity) The identity element is ‘0’ because

a⊕n 0 = 0⊕n a = a ∀ a ∈ G.

Step 4 (Existence of inverse) For each m ∈ G,n − m ∈ G is such that
m⊕n (n−m) = (n−m)⊕n m = 0. Hence n−m is the inverse of m.

Thus (G,⊕n) is a group. This group is called additive group of integers
modulo n and denoted by (Zn,⊕n). It is a finite group of order n. Since ⊕n is
commutative, therefore (Zn,⊕n) is an Abelian group.

The above example helps us to construct a group of any given order.
Is (Z6,�6) a group? It can be verified that Z6 is closed with respect to

multiplication modulo 6. Construct the multiplication table. The identity ele-
ment is 1. Therefore (Z6,�6) is a monoid. The element 0 ∈ Z6 does not have
a multiplicative inverse. Hence (Z6,�6) is not group. What can we say about
(Z∗6,�6). Since 2, 3 ∈ Z∗6, but 2�6 3 = 0 /∈ Z∗6, thus Z∗6 is not even closed with
respect to �6. Thus (Z∗6,�6) is not even a groupoid. In fact, if n is a composite
number, n = m1m2 for some 0 < m1,m2 < n. and Z∗n = {1, 2, . . . , n− 1} then,
m1,m2 ∈ Z∗n but m1 �n m2 = 0 /∈ Z∗n. Therefore �n is not a binary operation
on Z∗n. What can we say when n is prime? The following examples suggest an
answer to this question.

Example 5.13. Let Z ∗7 = {1, 2, 3, 4, 5, 6}.
The multiplication table for Z ∗7 with respect to �7 is:

�7 1 2 3 4 5 6
1 1 2 3 4 5 6
2 2 4 6 1 3 5
3 3 6 2 5 1 4
4 4 1 5 2 6 3
5 5 3 1 6 4 2
6 6 5 4 3 2 1

Note that 1 is the identity element. Each element of Z ∗7 is invertible, the pair
of inverses are 1,1; 2,4; 3,5 and 6,6. Thus (Z ∗7 ,�7) is a group. It is a finite
group of order 6.
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Example 5.14. Let p be a fixed prime and let Z ∗p = {1, 2, . . . , p−1}. We prove
that (Z ∗p ,�p) is a group.

Step 1 �p is a binary operation on Z ∗p , for if a, b ∈ Z ∗p then by division
algorithm, there exist integers q and r, such that

ab = qp+ r, 0 ≤ r < p

If r = 0 then ab = qp⇒ p divides ab. Since p is prime, therefore p divides a or
p divides b. This is not possible since both a, b are positive integers less than p.
Hence r 6= 0. Thus 0 < r < p i.e. a�p b = r ∈ Z ∗p ,.

Step 2 Associativity of �p follows from the corresponding property for mul-
tiplication in natural numbers.

Step 3 The identity element is 1 because

1�p a = a�p 1 = a ∀ a ∈ Z ∗p .

Step 4 We now show that each element of Z ∗p is invertible. Let a ∈ Z ∗p . Then
1 ≤ a < p. Hence a and p are coprime, so that by Euclid’s Algorithm, there exist
integers m and n such that am + pn = 1. By division algorithm applied to p
and m, there exist integers q and r such that m = pq + r, 0 ≤ r < p. In case
r = 0, m = pq so that apq+pn = 1, that is p(aq+n) = 1. This is impossible, as
p > 1 and aq+n is an integer. Hence r 6= 0. i.e. 0 < r < p, giving r ∈ Z ∗p . Now

1 = am+ pn = a(pq + r) + pn = p(aq + n) + ar.

Thus a �p r = 1 so that r is the inverse of a. Thus (Z ∗p ,�p) is a group. This
group is called the multiplicative group of non-zero integers modulo p and is
denoted by (Z ∗p ,�p).

In fact, for any positive integer n > 1, the set Z ∗n = {1, 2, . . . , n − 1} is a
group under multiplication modulo n if and only if n is prime. When n is prime
(Z ∗n ,�n) is a group has been proved above.

Conversely, suppose (Z ∗n ,�n) is a group and n is not prime, then n = rs
for some integers r and s such that 1 ≤ r, s < n. Then r, s ∈ Z ∗n and r �n s =
0 /∈ Z ∗n . This contradicts the fact that Z ∗n is a group, hence n must be prime.

Example 5.15. Let U(15) = {n ∈ Z|(n, 15) = 1, 0 < n < 15}
Then (U(15),�15) is an Abelian group.

U(15) = {1, 2, 4, 7, 8, 11, 13, 14}.

The multiplication table is:

�15 1 2 4 7 8 11 13 14
1 1 2 4 7 8 11 13 14
2 2 4 8 14 1 7 11 13
4 4 8 1 13 2 14 7 11
7 7 14 13 4 11 2 1 8
8 8 1 2 11 4 13 14 7
11 11 7 14 2 13 1 8 4
13 13 11 7 1 14 8 4 2
14 14 13 11 8 7 4 2 1

From the table it is clear that �15 is a binary operation on U(15). The binary
operation �15 is associative. 1 is the identity element. The elements 1, 4, 11
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and 14 are their own inverses, whereas the inverses of 2, 7, 8, 13 are 8, 13, 2,
7 respectively. Also a�15 b = b�15 a for all a, b ∈ U(15). Thus (U(15),�15) is
an Abelian group of order 8.

Example 5.16. Let n > 1 be a fixed integer and let U(n) = {m ∈ N|m <
n, (m,n) = 1}. Then
(i) (U(n),�n) is a group.
(ii) For n > 2, there are at least two elements in U(n) satisfying x2 = 1. Clearly

1 ∈ U(n).

(i) Step 1 Let a, b ∈ U(n). We shall prove that a �n b ∈ U(n). Let a �n b = c.
Then there exists q ∈ Z such that ab = nq + c.
If c = 0, then n|ab. Since (n, a) = 1, therefore n|b, which is a contradiction,
because (n, b) = 1. Hence c 6= 0. We now prove that (c, n) = 1. If (c, n) 6= 1
then there exists a prime p such that p|(c, n), so that p|c and p|n. Hence
p|nq + c i.e. p|ab. Since p is prime, therefore p|a or p|b. Thus p|(a, n)
which contradicts the fact that a ∈ U(n). Hence (c, n) = 1 so that c =
a�n b ∈ U(n). Thus �n is a binary operation on U(n).

Step 2 Let a, b, c ∈ U(n). It can be easily proved that (a �n b) �n c =
remainder obtained on dividing (ab)c by n. Similarly a �n (b �n c) =
remainder obtained on dividing a(bc) by n. Since multiplication in Z is
associative, therefore (a�n b)�n c = a�n (b�n c). Hence �n is associative.

Step 3 1 ∈ U(n) and 1 �n a = a �n 1 = a ∀ a ∈ U(n). Hence 1 is the
identity element in U(n).

Step 4 Let a ∈ U(n). Then (a, n) = 1. By Euclid’s algorithm, there exist
integers x and y such that ax+ny = 1. Also by division algorithm applied
to n and x, there exist integers q and r such that x = qn + r, 0 ≤ r < n.
Hence aqn+ar+ny = 1 i.e. n(aq+y)+ar =1, so that a�nr = 1. Similarly
r �n a = 1. We claim that (r, n) = 1. Suppose (r, n) 6= 1. Then there
exists a prime p such that p|r and p|n so that p|(qn + r) i.e. p|x. Hence
p|(ax+ ny) i.e p|1 which is not possible as p > 1. Thus (r, n) = 1, hence
r ∈ U(n). Also a�n r = r �n a = 1. Thus r is the inverse of a.
We have proved that (U(n),�n) is a group.

(ii) Clearly 12 = 1. Now (n− 1) ∈ U and (n− 1)2 = n2 − 2n+ 1 = n(n− 2) + 1
Thus (n− 1)�n (n− 1) = 1.
Thus x =1 and x = n− 1 satisfy x2 = 1. Moreover, for n > 2, n− 1 6= 1.

5.6 Exercise

1. Prove that (Z∗5,�5) is an Abelian group.

2. Let 2Z∗5 = {2, 4, 6, 8}. Prove that (2Z∗5,�10) is a group.

3. Let S = {2, 4, 8}. Prove that (S,�14) is a group.

4. Let G = {1, 2, 3, 4, 5}. Is (G,�6) a group?

5. Show that U(10) is a group of order 4.

6. What is the order of the group
(i) U(20) (ii) U(30) (iii) U(40).
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7. In the group U(30) find the inverse of the elements 7, 11, 19 and 23.

8. When I was typing a list of nine integers which form a group under mul-
tiplication modulo 91, I missed out one element and typed only the eight
elements 1, 9, 16, 29, 53, 74, 79 and 81. Can you tell which integer was
left out?

5.7 Groups of Matrices

All the groups considered so far are Abelian. Does that lead us to believe that
every group is Abelian? Certainly not. The next example answers this question.

Example 5.17. Let GL(2,Q) be the set of all 2 × 2 non-singular matrices
over Q, the set of rational numbers. This is a group with respect to the usual
multiplication of matrices.

Step 1 (Closure) Let A,B ∈ GL(2,Q), then |A| 6= 0 and |B| 6= 0. Now AB
is a 2× 2 matrix over Q, and |AB| = |A||B| 6= 0. Hence AB ∈ GL(2,Q). Thus
multiplication of matrices is a binary operation on GL(2,Q).

Step 2 (Associativity) Associativity in GL(2,Q) follows from the associativity
of multiplication of matrices.

Step 3 (Existence of identity)I =

(
1 0
0 1

)
∈ GL(2,Q) is the identity ele-

ment.

Step4 (Existence of inverse) If A ∈ GL(2,Q), then A =

(
a b
c d

)
, for some

a, b, c, d ∈ Q, such that ad− bc 6= 0. Let k = ad− bc.

If B =

(
d
k

−b
k−c

k
a
k

)
, then |B| = ad−bc

k2 = 1
k 6= 0. Thus B ∈ GL(2,Q) such that

AB = BA = I. Hence B is inverse of A and so every element of GL(2,Q) is
invertible. We have proved that GL(2,Q) is a group. Clearly it is non Abelian,

for if A =

(
1 1
1 0

)
, B =

(
1 0
0 2

)
, then A,B ∈ GL(2,Q) and AB 6= BA.

Notation: GL(n,Q) denotes the set of all n×n non-singular matrices over Q,
and SL(n,Q) denotes the set of all n× n matrices over Q with determinant 1.

Clearly, SL(n,Q) ⊆ GL(n,Q). It can be proved that SL(n,Q) is also a group
with respect to multiplication of matrices. Moreover both are non-Abelian. These
groups provide a rich source of non-Abelian groups.

Example 5.18. Let M2(Z5) denote the set of all 2×2 matrices over Z5, integers
modulo 5. Then with respect to the usual addition of matrices, where the ele-
ments are reduced modulo 5, the set M2(Z5) is a group. For, clearly addition in
M2(Z5) is a binary operation. Also associative law holds, as it holds for addition

of matrices. The null matrix

(
0 0
0 0

)
is the identity element. If A ∈M2(Z5),

say A =

(
a b
c d

)
; a, b, c, d ∈ Z5 then B =

(
5− a 5− b
5− c 5− d

)
∈ M2(Z5) is

such that B is the additive inverse of A.
Since addition of natural numbers is commutative, therefore addition in M2(Z5)
is commutative. Hence M2(Z5) is an Abelian group. Moreover, it is a finite
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group. Each entry in a matrix has 5 choices, hence the number of elements in
the group is 54 = 625. Thus M2(Z5) is a finite Abelian group of order 625.

Notation: Mn(F ) denotes the set of all n× n matrices over F. If F is a finite

set of order m, then o(Mn(F )) = mn2

.

Example 5.19. Let G =

{(
a 0
2a 0

)
|a ∈ Q∗

}
. Then G is an Abelian group

with respect to the usual multiplication of matrices.

Step 1 (Closure) Let A,B ∈ G. Then A =

(
a 0
2a 0

)
, B =

(
b 0
2b 0

)
for

some a, b ∈ Q∗. Further, AB =

(
ab 0
2ab 0

)
∈ G. Hence multiplication is a

binary operation in G.
Step 2 (Associativity) Since multiplication of matrices is associative, there-

fore associative law holds in G.

Step 3 (Existence of identity) The matrix E =

(
1 0
2 0

)
∈ G is identity of

G, for, if A =

(
a 0
2a 0

)
∈ G, then EA = AE = A.

Step 4 (Existence of inverse) Let A ∈ G. Then A =

(
a 0
2a 0

)
for some

a ∈ Q∗. If B =

(
1
a 0
2
a 0

)
, then B ∈ G, such that AB = BA = E. Hence B

is an inverse of A, so that each element of G is invertible. Thus G is a group.
Clearly G is Abelian because AB = BA for all A,B ∈ G.

We make two observations from this example. Firstly, that groups of ma-
trices can be Abelian as well as non-Abelian. Secondly, if the determinant of
a matrix is zero, then also it can be invertible (with respect to some identity
element). Note that this is so because in this case, the identity element is not

the usual unit matrix I2. In fact I2 =

(
1 0
0 1

)
/∈ G.

Example 5.20. Let G =

{(
a a
a a

)
|a ∈ Q∗

}
. Then G is an Abelian group

with respect to multiplication of matrices.

Step 1 (Closure) If A,B ∈ G, then A =

(
a a
a a

)
, B =

(
b b
b b

)
for some

a, b ∈ Q∗. Then AB =

(
2ab 2ab
2ab 2ab

)
∈ G. Thus multiplication is a binary

operation on G.
Step 2 (Associativity) Multiplication in G is associative as multiplication of

matrices is associative.

Step 3 (Existence of identity) The matrix E =

(
1
2

1
2

1
2

1
2

)
∈ G is identity

element of G.

Step 4 (Existence of inverse) Let A ∈ G. Then A =

(
a a
a a

)
for some

a ∈ Q∗. Now B =

(
4
a

4
a

4
a

4
a

)
∈ G is such that AB = BA = E. Hence B is the

inverse of A.
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The above steps prove that G is a group. Moreover AB = BA holds for all
A,B ∈ G. Hence G is an Abelian group.

Note that every element of G is a singular matrix but still they are invertible
in G.

Example 5.21. Let G = GL(3,Z5) be the set of all 3×3 non-singular matrices
over Z5, integers modulo 5. Then G is a finite non-Abelian group with respect
to the usual multiplication of matrices where entries are added and multiplied
modulo 5.

Step 1 (Closure) If A,B ∈ G, then |A| 6= 0 and |B| 6= 0. In fact |A|, |B| ∈
Z5
∗. Since |A|, |B| ∈ Z5

∗, therefore |A|, |B| are not multiples of 5 so that |A||B|
is not a multiple of 5, that is,|AB| is not a multiple of 5 (as |AB| = |A||B|.)
Hence AB is non-singular, so that AB ∈ G.

Step 2 (Associativity) Since multiplication of matrices is associative, there-
fore associative law holds in G.

Step 3 (Existence of identity) The 3× 3 unit matrix I3 is non-singular and
is over Z5, so that I3 ∈ G. Also

I3A = AI3 = A for every A ∈ G.

Hence I3 is the identity element of G.

Step 4 (Existence of inverse) For any A ∈ G, |A| 6= 0. Since (Z5
∗,�5) is a

group so that |A| has a multiplicative inverse in Z5
∗, say b.

Now,

Aadj(A) = |A|I
⇒ bAadj(A) = b|A|I = I
⇒ Ab adj(A) = I
⇒ AB = I,

where B = b adj(A). Similarly adj(A)A = |A|I.
⇒ BA = I, Therefore A−1 = B ∈ G. Hence G is a group.

Step 5 G is non-Abelian, as A =

 1 2 1
0 1 2
0 1 1


and B =

 1 2 3
4 0 0
0 0 1

 are elements of G such that AB 6= BA.

Example 5.22. Let Q = {I, A,B,C,D,E, F,G}, where I =

(
1 0
0 1

)
,

A =

(
0 1
−1 0

)
, B =

(
−1 0
0 −1

)
, C =

(
0 −1
1 0

)
, D =

(
1 0
0 −1

)
,

E =

(
0 1
1 0

)
, F =

(
−1 0
0 1

)
, G =

(
0 −1
−1 0

)
under the usual multipli-

cation of matrices. Then Q is a non-Abelian group.
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The multiplication table of Q is:

· I A B C D E F G
I I A B C D E F G
A A B C I G D E F
B B C I A F G D E
C C I A B E F G D
D D E F G I A B C
E E F G D C I A B
F F G H E B C I A
G G D E F A B C I

Observe that I is the identity element. The elements I,B,D,E, F and G are
their own inverses whereas A,C are inverses of each other.

In a later chapter, when we discuss linear transformations we shall note
that these 8 matrices are the matrices of linear transformations of R2. They are
rotations about origin through 0◦, 90◦, 180◦ and 270◦, reflection in the x-axis,
y-axis, lines y = x and y = −x.

5.8 Exercise

1. Prove that (M2(R),+) is an Abelian group. IsM2(R) a group with respect
to multiplication? If not, what algebraic structure does (M2(R), .) have?
Is it commutative?

2. Let G be the set of all diagonal matrices over R∗. Prove that G is a group
with respect to multiplication of matrices.

3. Let G =

{(
a 0
0 0

)
: a ∈ F

}
where

(i) F = Q∗ (ii) F = R∗ (iii) F = C∗ (iv) F = Z∗5
Prove in each case that G is a group with respect to multiplication of
matrices.

4. Prove that G =

{(
1 0
0 1

)
,

(
1 0
0 −1

)
,

(
−1 0
0 1

)
,

(
−1 0
0 −1

)}
is a group with respect to matrix multiplication. Is it Abelian?

5. Test whether the following are groups or not. Which of them are Abelian?
(i) (GL(n,Q), .)
(ii) (M2(Z),+)
(iii) (Mn(R),+)

6. Prove that (M3(Z6),+) is a finite Abelian group. Compute its order.

7. Prove that (Mn(Zm),+) is a finite Abelian group. Compute its order.

5.9 Groups of Functions

Example 5.23. Let S be a non-empty set and let G be the set of all bijective
functions from S onto S. Then G is a non-Abelian group with respect to the
operation ◦ the composition of functions.
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Step 1 (Closure) If f, g ∈ G then f, g are bijective functions on S, so that
f ◦ g is also a bijective function on S. Hence f ◦ g ∈ G. Thus ◦ is a binary
operation.

Step 2 (Associativity) Since composition of functions is associative, therefore
◦ is associative.

Step 3 (Existence of identity) The identity function e on S i.e. e(x) =
x ∀ x ∈ S being a bijective function, e ∈ G. Moreover f ◦ e = e ◦ f = f ∀ f ∈ G.
Thus e is the identity element of G.

Step 4 (Existence of inverse) Let f ∈ G. Then f is a bijective function, so
that f−1 is also a bijective function on S. Thus f−1 ∈ G, and f ◦f−1 = f−1◦f =
e. Therefore, every element in G has an inverse.

Thus (G, ◦) is a group. However, it is not Abelian, for, consider S =
R, f(x) = x3, g(x) = 1 + x. Then (f ◦ g)(x) = (1 + x)3, (g ◦ f)(x) = 1 + x3

so that f ◦ g 6= g ◦ f. Thus (G, ◦) is not Abelian. These groups are called trans-
formation groups and are denoted by A(S).
If S is a finite set having n elements then A(S) is a finite group of order n!.

Example 5.24. Let Ta,b|R2 → R2, be defined by

Ta,b(x, y) = (x+ a, y + b) and let G = {Ta,b : a, b ∈ R}.

Then G is an Abelian group with respect to the composition of mappings as the
binary operation.

Step 1 (Closure) Let Ta,b, Tc,d ∈ G then for any (x, y) ∈ R2

(Ta,bTc,d)(x, y) = Ta,b(Tc,d(x, y)) = Ta,b(x+ c, y + d) = (x+ c+ a, y + d+ b)

= (x+ a+ c, y + b+ d) = T(a+c),(b+d)

∴ Ta,bTc,d = Ta+c, b+d ∈ G. Hence composition of mappings is a binary opera-
tion on G.

Step 2 (Associativity) Associativity holds because composition of mappings
is associative.

Step 3 (Existence of identity) The mapping T0,0 is the identity of G.

Step 4 (Existence of inverse) For Ta,b ∈ G,T−a,−b ∈ G is
such that Ta,bT−a,−b = T0,0 using Step 1.
Also T−a,−bTa,b = T0,0. Thus T−a,−b is the inverse of Ta,b.

Step 5 (Commutativity) Since addition of real numbers is commutative

Ta,bTc,d = Ta+c,b+d = Tc+a,d+b = Tc,dTa,b.

Steps 1–5 prove that G is an Abelian group.

Notation: The group G discussed in the above example is usually denoted by
T (R2). The elements of G are called translations.

Example 5.25. Let G be the set consisting of the six functions f1, f2, . . . , f6

defined on Rr{0, 1} by f1(x) = x, f2(x) = 1−x, f3(x) = 1
x , f4(x) = 1

1−x , f5(x) =
x−1
x , f6(x) = x

x−1 and let ◦ be the composition of functions. Then (G, ◦) is a
non-Abelian group.
Solution: Given G = {f1, f2, f3, f4, f5, f6}. We construct the composition table
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for G :
◦ f1 f2 f3 f4 f5 f6

f1 f1 f2 f3 f4 f5 f6

f2 f2 f1 f5 f6 f3 f4

f3 f3 f4 f1 f2 f6 f5

f4 f4 f3 f6 f5 f1 f2

f5 f5 f6 f2 f1 f4 f3

f6 f6 f5 f4 f3 f2 f1

Observe the following steps:
Step 1 (Closure) From the multiplication table it is clear that ◦ is a binary

operation.
Step 2 (Associativity) Since the composition of functions is associative, there-

fore ◦ is associative.
Step 3 (Existence of identity) The mapping f1 is the neutral element, because

f1 ◦ f = f ◦ f1 = f ∀ f ∈ G.

Hence f1 is the identity of G.
Step 4 (Existence of inverse) f4, f5 are inverses of each other, whereas others

are their own inverses. Thus (G, ◦) is a group.
Also we see from the table that f3 ◦ f4 6= f4 ◦ f3. Hence (G, ◦) is a non-Abelian
group.

We shall show later that every group of order up to 5 is Abelian. Thus the
smallest non-Abelian group is of order 6. The above group is an example of
such a group.

5.10 Exercise

1. Show that the set G = {f1, f2, f3, f4} where f1(x) = x, f2(x) = −x, f3(x)
= 1

x , f4(x) = −1
x for all x ∈ R r {0} is a group with respect to the

composition of mappings.

2. Let S = Rr {0, 1} and let fi, for i = 1, 2, . . . , 6 be functions on S defined
by f1(x) = x, f2(x) = 1− x, f3(x) = 1

x , f4(x) = 1
1−x , f5(x) = x−1

x , f6(x) =
x
x−1 . If ◦ is the operation ‘composite of functions’, determine which of the
following are groups? In case they are groups, are they Abelian?

(i) (G1, ◦) where G1 = {f1, f2}
(ii) (G2, ◦) where G2 = {f1, f3}
(iii) (G3, ◦) where G3 = {f1, f4}
(iv) (G4, ◦) where G4 = {f1, f5}
(v) (G5, ◦) where G5 = {f1, f6}
(vi) (G6, ◦) where G6 = {f2, f6}
(vii) (G7, ◦) where G7 = {f1, f4, f5}
(viii) (G8

, ◦) where G8 = {f1, f2, f3, f6}

5.11 Group of Subsets of a Set

Example 5.26. Let S be any set and P(S) be the power set of S. Define ∆ on
P(S) by
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For A,B ∈ P(S), A∆B = (A r B) ∪ (B r A). Then (P(S),∆) is an Abelian
group.

Step 1 (Closure) If A,B ∈ P(S) then ArB and BrA are both subsets of S
so that (ArB)∪ (BrA) is also a subset of S. Hence (ArB)∪ (BrA) ∈ P(S)
so that A∆B ∈ P(S).
Note that ArB = A ∩B′, so that A∆B = (A ∩B′) ∪ (B ∩A′)

Step 2 (Associativity)
Step 3 (Existence of identity)φ ∈ P(S). For, A ∈ P(S),

A∆φ = (A ∩ φ′) ∪ (φ ∩A′) = A ∪ φ = A

Similarly, φ∆A = A so that

A∆φ = φ∆A = A for all A ∈ P(S).

Hence φ is the identity element of P(S).
Step 4 (Existence of inverse) If A ∈ P(S), then

A∆A = (ArA) ∪ (ArA) = φ ∪ φ = φ

Thus A∆A = φ. Thus each element of P(S) is its own inverse.
Step 5 (Commutativity) If A,B ∈ P(S) then

A∆B = (ArB) ∪ (B rA) = (B rA) ∪ (ArB) = B∆A

Hence A∆B = B∆A. So that ∆ is commutative.
Thus (P(S),∆) is an Abelian group.

If S is an infinite set, then P(S) is also infinite. But if S is a finite set with
n elements then P(S) has 2n elements. Hence (P(S),∆) is a finite group and
its order is 2n, where n is the order of S.

5.12 Exercise

1. Let S be any set. Is (P(S),∩) a group? If not, why? Which algebraic
structure does (P(S),∩) have? Is it commutative?

2. Let S be any set and A be a subset of S. Define G = {B ⊆ S : B∩A = φ}.
Prove that (G,∆) is an Abelian group. When will G be a finite group?
What is G when A is the null set?

5.13 Groups of Symmetries

These groups have been studied in the previous unit. We shall mention them
here for the sake of completeness.

Example 5.27. The 8 symmetries of a square form a group with respect to
composition of motions.

It is called the dihedral group of order 8 and is denoted by D8. It is a non-
Abelian group.
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Example 5.28. The 6 symmetries of an equilateral triangle form a group with
respect to composition of motions.

It is called the dihedral group of order 6 and is denoted by D6. It is a non-
Abelian group.

Example 5.29. The 4 symmetries of a non-square rectangle form a group with
respect to composition of motions.

It is known as the Klein’s four group and is denoted by V4. It is an Abelian
group.

Example 5.30. The 2n symmetries of a regular n−gon form a group with
respect to composition of motions.

It is called dihedral group of order 2n and is denoted by D2n.
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5.14 Supplementary Exercise

1. State whether the following statements are true or false and justify your answer.

(i) The set of rational numbers is a group with respect to multiplication.
(ii) The set of integers is a semigroup with respect to subtraction.
(iii) In a group some elements may have more than one inverses.
(iv) There exists a non-Abelian group of order 6.
(v) Every group of order two is Abelian.
(vi) The identity element of (Z, ∗) where ∗ is defined by a ∗ b = a − b +

1 ∀ a, b ∈ Z is 1.
(vii) (Q∗, φ) is a monoid where φ is defined by aφb = |ab| ∀ a, b ∈ Q∗.
(viii) (N, .) is a monoid but not a group.
(ix) A group may have more than one identity elements.
(x) In a group (G, ∗) for a, b ∈ G the equation a ∗ x = b has a solution in

G.
(xi) In a group (G, ∗) for a, b ∈ G the equation (a∗x)+b = 0 has a solution

in G.
(xii) The null set can be considered to be a group.
(xiii) Every semigroup is a monoid.
(xiv) Every monoid is a semigroup.
(xv) If S is the null set, then (P(S),∪) is a group.
(xvi) (Z∗10,�10) is a group.

2. Give an example of a group in which every element is its own inverse.

3. Can you give an example of a non-Abelian group of order 4?

4. Give five examples of each of the following:
(i) Finite Abelian group.
(ii) Finite non-Abelian group.
(iii) Infinite Abelian group.
(iv) Infinite non-Abelian group.

5. Give an example of a group of order

(i) 81 (ii) 29 (iii) 516 (iv) pn
2

(v) pmn, where p is a prime and m,n are
natural numbers.

6. Let (G, ∗) be a finite group with even number of elements. Show that there exists
at least one a ∈ G, different from the identity element e such that a ∗ a = e.

7. Give a multiplication table for the binary operation on the set S = {e, a, b} of
three elements satisfying the properties of the existence of identity and existence
of inverse but not the associative law.

8. Let SL(2,Q) be the set of all 2× 2 matrices over Q with determinant 1. Prove
that SL(2,Q) is a group with respect to multiplication of matrices. Is it Abelian?

9. Let G be the set of all diagonal matrices over R∗. Prove that G is a group with
respect to multiplication of matrices. Is the group Abelian?

10. Let G = {±1,±i,±j,±k} where i2 = j2 = k2 = −1, ij = −ji = k,
jk = −kj = i, ki = −ik = j. Prove that G is a group. Is it Abelian? What is
the order of the group?
(This is called the Quaternion group and is denoted by Q8.)

11. Prove that every group of order 3 is Abelian.

12. Let G = {p, q, r, s, t}. If G is a group with respect to the binary operation ∗,
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then complete the following table, given that p is the identity element.

∗ p q r s t

p - - - - -
q - r - - p
r - s t p -
s - t - q r
t - - - - -

13. Complete the following table:

Set Binary Groupoid Semi- Monoid Group Commuta-
Operation group tive law

holds

N ∪ {0} Addition
√ √ √

×
√

Z Addition

Z Subtrac-
tion

Q Multipli-
cation

R∗ Multipli-
cation

R∗ Division

Z6 Multipli-
cation

modulo 6

Irrational Multipli-
numbers cation

Odd Addition
integers

U(8) Multipli-
cation

modulo 8

Odd Multipli-
integers cation

14. Let G be a group and let g ∈ G. Define

fg : G→ G by fg(x) = gxg−1 ∀ x ∈ G.

(i) Show that fg is a bijective function.
(ii) Define Inn(G) = {fg : g ∈ G}. Is Inn(G) a group with respect to

composite of mappings?
(iii) Is it Abelian?

15. Let S = {5, 15, 25, 35}. Show that (S,�40) is a group. What is the identity
element of this group? Can you see any relationship between S and U(8)?

16. Determine whether each of the following sets form a group under the indicated
operation on the elements of the set. In case they do not form a group, state
which property fails to hold.
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(i) S = { p
2n

: p ∈ Z, n ∈ N} under addition.
(ii) S = {x ∈ C : xn = 1, n ∈ N} under multiplication.
(iii) S = Set of all n× n matrices over Z under multiplication.
(iv) S = Set of all n × n matrices over Z with determinant ±1 under

multiplication.

(v) S = {a, b ∈ R+ : a ∗ b = ab} under multiplication.
(vi) S = {x ∈ R : 0 ≤ x < 1}. On S define ∗ as x ∗ y = x + y − [x + y],

where [ ] denotes the greatest integer function.
(vii) Let n be an arbitrary but fixed positive integer. Let S = set of all real

polynomials of degree ≤ n in x including the zero polynomial; under
addition.

(viii) Let n be an arbitrary but fixed positive integer. Let S = set of all
real polynomials of degree n in x including the zero polynomial; under
addition.

(ix) Let S = set of all non-zero real polynomials under multiplication.
(x) S = Set of all rotations of the plane R2 about the origin, with respect

to composition of mappings. That if s ∗ t = rotation t followed by the
rotation s.

(xi) S = set of all translations of the plane R2 parallel to a fixed line, with
respect to composition of mappings. That is, s ∗ t = translation t
followed by translation s.

17. Let G =

{(
1 a
0 1

)
: a ∈ Z

}
. Prove that G is a group with respect to the

usual multiplication of matrices? Is it Abelian?

18. Let S be any set. Prove that (P(S),∪) is an Abelian monoid. Is it a group?
Justify.

19. Let S = R r {0, 1} and let gi, i =1, 2, 3 be functions defined on S by
g1(x) = x, g2(x) = 1

1−x , g3(x) = x−1
x
, x ∈ S. If G = {g1, g2, g3}. Prove that

G is a group with respect to composition of mappings. What is the order of G?

20. Give three examples of groups of order 6.

21. The following are the “definitions” of a group given by students. Are they fully
correct? If not, correct them.

(a) A group is a set G such that
(i) the operation is associative.
(ii) there is an identity element {e} in G.
(iii) for any a ∈ G, there is an a′ (inverse for each element).

(b) A group is a set with a binary operation such that
(i) the operation is associative.
(ii) An inverse exists.
(iii) An identity element exists.

(c) A set (G, ∗) is called a group such that
(i) ∗ is associative.
(ii) there exists an element e such that a ∗ e = e ∗ a = e ∀ a
(iii) for every element a there exists an element a′ such that

a ∗ a′ = a′ ∗ a = e.

(d) A group G is a set of elements together with a binary operation ∗ such
that the following conditions are satisfied.
(i) ∗ is associative under addition
(ii) There exists e ∈ G such that e ∗ x = x ∗ e = x
(iii) There exists an element a′ (inverse) such that

a ∗ a′ = a′ ∗ a = e for every a ∈ G.
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(e) A set G is called a group over the binary operation ∗ if
(i) ∗ has an identity element.
(ii) for a ∈ G there exists a′ ∈ G such that a ∗ a′ = a′ ∗ a = e

∀ a ∈ G
(iii) ∗ is associative over G.

5.15 Answers to Exercises

Exercise - 5.2

1. Since 3, 5 are odd but 3 + 5 = 8 is not odd, so the closure property fails.

2. (2− 3)− 4 6= 2− (3− 4). Associativity does not hold.

3. Identity element does not exist.

4. Identity element does not exist.

5. 2 ∈ N does not have an inverse.

6. Groupoid.

7. Groupoid.

8. b ∈ G does not have an inverse.

9. (b ∗ c) ∗ d 6= b ∗ (c ∗ d). Moreover c has two inverses c and d.

Exercise - 5.4

4. 0 is the identity element. Inverse of a ∈ S is − a
1+a

.

(i) Inverse of 3 is − 3
4
, Inverse of 4 is − 4

5

(ii) x = − 7
10

, Yes.

5. 2; 4
q
.

7. nth roots of unity for
(i) n = 53, (ii) n =4021.

10. For w = cos 2π
20

+ i sin 2π
10

; wr; w20−r, 0 ≤ r ≤ 10 are the pairs of inverses.
For w = cos 2π

n
+ i sin 2π

n
, wr;wn−r are inverses of each other.

11. (2 ∗ 1) ∗ 1 6= 2 ∗ (1 ∗ 1), * is not associative. Identity element is 0. Each element
is its own inverse.

Exercise - 5.6

1. Construct multiplication table.

2. Construct multiplication table.

3. Construct multiplication table.

4. No, 2�63= 0 /∈ G.

5. Construct multiplication table.

6. (i)8 (ii)8 (iii)15.

7. 13, 11, 19, 17.

8. 22, Construct multiplication table.
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Exercise - 5.8

1. No, Monoid, No.
2. Yes
4. Yes
5. (i) Non-Abelian group

(ii) Abelian group
(iii) Abelian group

6. 69.
7. mn2

Exercise - 5.10

2. (i), (ii), (v) and (vii) are Abelian groups. Others are not even groups.

Exercise - 5.12

1. Inverse of only identity element S exists. Monoid. Yes.

2. S finite. P(S).

Supplementary Exercises

1.

(i) False, 0, has no inverse.
(ii) False, not associative.
(iii) False, inverse is unique.
(iv) True, D6.
(v) True,
(vi) False, since 1 ∗ 2 = 0 6= 2.
(vii) False, for ∵ if e is identity, (−2)φe = 2|e| 6= −2.
(viii) True.
(ix) False, identity is unique.
(x) True.
(xi) False, since (a ∗ x) + b is not defined in G.
(xii) False, A group is always a non-empty set.
(xiii) False. (N,+).
(xiv) True.
(xv) True, when S = φ,P(S) = {φ}.
(xv) False, 2,5 ∈ Z∗10,2�10 5 /∈ Z∗10, so not closed.

2. P(S)

3. Does not exist.

4. Look-up the examples in the text.

5. Other answers are also possible.

(i) (Z81,⊕81); 81 = 34 = 322(M2(Z3),+)
(ii) (M3(Z2),+)
(iii) (M4(Z5),+)
(iv) (Mn(Zp),+)
(v) (Mm×n(Zp),+).

6. Since inverses exist in pairs and e is its own inverse.
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7. Table is given by

e a b

e e a b
a a a e
b b e b

8. No.

9. Yes.

10. No. o(G) = 8.

12. The complete table is given below:

∗ p q r s t

p p q r s t
q q r s t p
r r s t p q
s s t p q r
t t p q r s

13. The complete table is given below:
Set Binary Groupoid Semi- Monoid Group Commuta-

Operation group tive law
holds

N ∪ {0} addition
√ √ √

×
√

Z Addition
√ √ √ √ √

Z Subtrac-
√

× × × ×
tion

Q Multipli-
√ √ √

×
√

cation

R∗ Multipli-
√ √ √ √ √

cation

R∗ Division
√

× × × ×
Z6 Multipli-

√ √ √
×

√

cation
modulo 6

Irrational Multipli- × × × × ×
numbers cation

Odd Addition × × × × ×
integers

U(8) Multipli-
√ √ √ √ √

cation
modulo 8

Odd Multipli-
√ √ √

×
√

integers cation

14. (ii) Yes. (iii) Abelian if G is Abelian.

15. 25 is the identity element.
U(8)={1,3,5,7}. Every element of S is an element of U(8) multiplied by 5.
Every element of the multiplication table is multiplied by 52 modulo 40.
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16.
(i) Yes.
(ii) Yes.
(iii) No. Existence of Inverse.
(iv) Yes.
(v) No. Associativity.
(vi) Yes. 0 is the identity element, 0−1 = 0 x−1 = 1− x, x 6= 0.
(vii) Yes.
(viii) No. Closure.
(ix) No. Existence of Inverse.
(x) Yes.
(xi) Yes.

17. Unity is I2.

(
1 a
0 1

)−1

=

(
1 −a
0 1

)
. No.

18. φ is the identity element. Only identity element is invertible.

19. Identity element is = g1. The elements g2, g3 are inverses of each other. Order of
the group is 3.

20. (Z6,⊕6), 6th roots of unity, D6 other examples are possible. First is Abelian,
while second is non-Abelian.

21. Look at the definition of a group carefully.



Chapter 6

Group
Properties and Characterization

We have studied a variety of examples of groups in the previous chapter. We
will now study some properties shared by all groups. It will be proved that in
a groupoid if an identity element exists, it is unique. In examples of groups it
was observed that every element had only one inverse. This was not by chance.
In fact, we shall prove that, in a group, every element has an unique inverse.

6.1 Properties of Groups

Before discussing the properties of groups, some notations, which will be
used throughout, will be in order.
Notation: For a group (G, ∗) it is tedious to keep on writing the operation *
throughout our calculations. Thus, except where necessary, juxtaposition will
be used for the binary operation and a ∗ b will be written as ab. In this case we
will say that (G, ·), or simply G, is a group. When dealing with special groups,
the given group operation will be used.

In view of the generalized associative law, the product of three or more
elements of a group will not be bracketed. For the sake of completeness, we
prove the uniqueness of identity element.

Theorem 6.1. (Uniqueness of identity) In a monoid G identity element is
unique.

Proof: Let e1, e2 be two identity elements in G. Then

e1a = ae1 = a ∀ a ∈ G ...(1)

e2a = ae2 = a ∀ a ∈ G ...(2)

In (1), taking a = e2, we get e1e2 = e2e1 = e2, and in (2), taking a = e1, we get
e2e1 = e1e2 = e1.
Hence e1 = e2, so that identity element is unique.

In view of the above result we may speak of the identity element in a group.
We denote it by e.

211
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Theorem 6.2. (Uniqueness of inverse) In a group G every element has a unique
inverse.

Proof: Let G be a group. Suppose an element a ∈ G has two inverses b and
c. Let e be the identity element in G. Then

ab = ba = e ...(1)

ac = ca = e ...(2)

Now,

ab = e
⇒ c(ab) = ce pre multiplying by c
⇒ (ca)b = c using associative law and property of identity
⇒ eb = c using (1)
⇒ b = c using property of identity.

Hence a ∈ G has a unique inverse. Since ‘a’ is an arbitrary element of G,
therefore every element of G has a unique inverse.

From Theorems 6.1 and 6.2 it follows that:
(i) in a monoid, the identity element is unique.
(ii) in a group, the identity element is unique and every element has a unique
inverse.

As a consequence of the above theorem, we can now speak of ‘the inverse’
of an element of a group. We denote the inverse of an element g ∈ G by g−1.
We now define the integral powers of an element of a group.

Definition 6.1. In a group G, for any g ∈ G and any non-negative integer m,
we define

1. g0 = e

2. gm = gg · · · g (m-times)

3. g−m = (g−1)m

In view of the above definition, we have the following theorem.

Theorem 6.3. In a group G, for any g ∈ G and for any integers m and n,

1. gm.gn = gm+n = gngm

2. (gm)n = gmn = (gn)m

3. (gn)−1 = (g−1)n

4. en = e

Proof: Left to the reader.

The above theorem tells us that the familiar laws of exponents for real num-
bers also hold true for all elements in a group. The laws fail to hold for expres-
sions involving two elements of the group, because, in general, (ab)n 6= anbn. In
fact, (ab)2 6= a2b2. This is shown by the following example.
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Example 6.1. Let G = GL(2,R), the group of 2×2 non-singular matrices over

the set of real numbers. Let A =

(
1 1
1 0

)
, B =

(
2 1
1 1

)
. Then A,B ∈ G.

It can be verified that (AB)2 =

(
13 8
8 5

)
, A2B2 =

(
34 21
21 13

)
. Hence, in

general, (AB)2 6= A2B2.

When dealing with a group whose binary operation is addition denoted by
+, the inverse of an element g is −g. When g is added n-times, it is written as
“ng”. This should not be confused with n ·g, as the group operation is addition,
not multiplication. Moreover n may not be an element of the group at all. Note
that we do not permit non-integral exponents. The following Table 6.1 shows
the notations used for multiplicative and additive groups, respectively.

Multiplicative Group Additive Group
a.b or ab for multiplication a+ b for addition
e or 1 for identity/unity 0 for identity/zero
a−1 for inverse of ‘a’ -a for inverse of ‘a’
an for nth power of a na for a added n-times
ab−1 for quotient a− b for difference

Table 6.1

Theorem 6.4. (Cancellations laws) In a group G left and right cancellation
laws hold, that is for a, b, c ∈ G

1. ba = ca ⇒ b = c (right cancellation law)

2. ab = ac⇒ b = c (left cancellation law).

Proof: Let a, b, c ∈ G be such that

ba = ca . . . (1)

Since a is invertible, therefore it has an inverse, say a′. Post multiplying (1) by
a′ we get

(ba)a′ = (ca)a′

Hence b(aa′) = c(aa′) using associativity.
This gives be = ce using property of inverse.
Thus b = c using property of identity.

Hence ba = ca ⇒ b = c, so the right cancellation law holds.
Similarly we can prove that the left cancellation law also holds.

As a consequence of the cancellation property, we find that in the multipli-
cation table for a finite group, each element of the group occurs exactly once in
each row and in each column. Thus the multiplication table is a Latin square.1

Theorem 6.5. If G is a group and a, b are any elements of G then

1. (a−1)−1 = a

1Let S = {a1, a2, . . . , an}. Then an n× n array is said to be a Latin square over S if each
of its rows and columns is a permutation of a1, a2, . . . , an.
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2. (ab)−1 = b−1a−1

3. (a1 . . . an)−1 = a−1
n . . . a−1

1 for every integer m.

Proof:

1. Let a−1 = c. By definition of inverse of an element ac = ca = e, the
identity element of G. Then ca = ac = e means that a = c−1 = (a−1)−1.
Hence (a−1)−1 = a.

2. Denote b−1a−1 by c. Proving the result amounts to showing that c is the
inverse of ab, that is, proving that (ab)c = c(ab) = e. Now

(ab)c = (ab)(b−1a−1)

= ((ab)b−1)a−1 using associativity

= (a(bb−1))a−1 using associativity

= (ae)a−1 using property of inverse

= aa−1 using property of identity

= e using property of inverse

Similarly it follows that c(ab) = e.
So (ab)c = c(ab) = e and hence (ab)−1 = c = b−1a−1.

3. Prove by induction on n.

Remark 6.1. Note that (ab)−1 = b−1a−1, but in general (ab)−2 6= b−2a−2.

For example, in the group GL(2,R), if A =

(
1 −2
−1 1

)
, B =

(
0 −1
−1 1

)
,

then A2 =

(
3 −4
−2 3

)
, B2 =

(
1 −1
−1 2

)
, so A−2 =

(
3 4
2 3

)
, B−2 =(

2 1
1 1

)
, B−2A−2 =

(
8 11
5 7

)
, AB =

(
2 −3
−1 2

)
,

(AB)2 =

(
7 −12
−4 7

)
, (AB)−2 =

(
7 12
4 7

)
.

Thus we see that (AB)−2 6= B−2A−2.

Theorem 6.6. In a group G, the equations ax = b and ya = b have unique
solutions in G for all a, b ∈ G.

Proof: Since G is a group, for each a ∈ G, a−1 ∈ G. Consider the equation
ax = b. Existence of the solution x ∈ G:
Since a, b ∈ G, therefore a−1b ∈ G.

Let c = a−1b. Then

ac = a(a−1b)

= (aa−1)b using associativity

= eb using property of inverse

= b using property of identity

Thus ac = b so that c ∈ G is a solution of ax = b in G.
Uniqueness of the solution: Suppose c1, c2 are two solutions of ax = b in G.
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Then ac1 = b, and ac2 = b. Thus ac1 = ac2. Using left cancellation law in G,
we get c1 = c2. Hence the solution is unique.
Similarly it can be proved that the equation ya = b also has a unique solution
y = ba−1 in G.

Example 6.2. Let G be the group of quaternions. That is G = {±1,±i,±j,±k},
where i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, kl = −lk = j. Verify
that:
The equation x2 = −1 has 6 solutions in G, namely x = ±i,±j,±k.
Similarly x4 = 1 has 8 solutions. In fact, every element of G is a solution.

6.2 Solved Problems

We shall now give some sufficient conditions for a group to be Abelian.

Problem 6.1. If G is a group, and a, b ∈ G are such that b = xax−1 for some
x ∈ G, then bn = xanx−1, for every integer n ∈ Z.

Solution: Three cases arise:
Case 1. If n is a positive integer. We prove the result by induction on n.

The result obviously holds for n = 1.
Let the result hold for n = k, i.e.

bk = xakx−1

Now

bk+1 = bkb

= (xakx−1)(xax−1)

= xak(x−1x)ax−1

= xakax−1

= xak+1x−1

Hence the result holds for n = k + 1. The induction is complete and thus, the
result holds for every positive integer n.

Case 2. If n is a negative integer, then n = −m, where m > 0.

∴ bn = b−m

= (bm)−1

= (xamx−1)−1

= xa−mx−1 using the law of inverse for a product

of elements.

= xanx−1

∴ bn = xanx−1

Case 3. If n = 0, then b0 = e and xa0x−1 = xex−1 = xx−1 = e. Hence
b0 = xa0x−1.
Combining all the three cases we get bn = xanx−1 for all n ∈ Z.
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Problem 6.2. Let G be a group such that if a, b, c ∈ G and ab = ca ⇒ b = c
then G is Abelian (this property is called the cross cancellation law).

Solution: Let a, b ∈ G. By the associative property a(ba) = (ab)a. The given
condition gives that ba = ab, so that G is Abelian.

Problem 6.3. If G is a group satisfying a2 = e ∀ a ∈ G, then G is Abelian.

Solution: Step1 Let a ∈ G. Then

a2 = e.
⇒ a−1(aa) = a−1e premultiplying by a−1

⇒ (a−1a)a = a−1 using associativity and property of identity
⇒ ea = a−1

⇒ a = a−1.

Hence every element is its own inverse.
Step 2 Let a, b ∈ G. Then ab ∈ G implies that a = a−1, b = b−1 and
ab = (ab)−1.
Now ab = (ab)−1 = b−1a−1, by property of inverses.
Hence ab = ba ∀ a, b ∈ G. ∴ G is Abelian.

Problem 6.4. If G is a group satisfying (ab)2 = a2b2 ∀ a, b ∈ G, then G is
Abelian.

Solution: Let a, b ∈ G. Then

(ab)2 = a2b2

=⇒ (ab)(ab) = aabb
=⇒ a(ba)b = a(ab)b using associativity
=⇒ ba = ab using cancellation laws

Hence G is Abelian.

Problem 6.5. Let G be a group and a, b be two elements of G satisfying (ab)i =
aibi for three consecutive integers i. Then ba = ab. If G has this property for
all a, b ∈ G, then G is Abelian.

Solution: Let n, n + 1 and n + 2 be three consecutive integers for which the
given condition holds. That is,

(ab)n = anbn (6.1)

(ab)n+1 = an+1bn+1 (6.2)

(ab)n+2 = an+2bn+2 (6.3)

Then

(ab)(ab)n+1 = an+2bn+2 using (17.16)
(ab)(an+1bn+1) = an+2bn+2 using (6.2)

=⇒ ban+1 = an+1b using cancellation laws

Thus

ban+1 = an+1b. (6.4)
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Similarly, (ab)(ab)n = an+1bn+1 using (6.2)
=⇒ (ab)(anbn) = an+1bn+1 using (17.18)
=⇒ ban = anb using cancellation laws
=⇒ ban+1 = anba post multiplying by a
=⇒ an+1b = anba using (17.17)
=⇒ ab = ba using cancellation laws.

Thus ab = ba. If the condition holds for all a, b ∈ G then we get ab = ba ∀ a, b ∈
G, so that G is Abelian.

Remark 6.2. If the above result holds just for two consecutive integers, then
G may not be Abelian. Give an example to prove this.

Problem 6.6. A group G is Abelian if and only if (ab)n = anbn for all a, b ∈ G
and for every positive integer n.

Solution: Let G be Abelian. Let a,b ∈ G. We prove the result by induction
on n. The result obviously holds true for n = 1. Let the result holds for n = k,
i.e.

(ab)k = akbk (6.5)

Now

(ab)k+1 = (ab)(ab) · · · (ab), (k + 1)− times

= a(ba)(ba) · · · (ba)b

= a(ba)kb

= a(ab)kb since G is Abelian

= a(akbk)b using (6.5)

= aakbkb

= ak+1bk+1

Hence the result holds for n = k+1. The induction is complete. Thus the result
holds for every positive integer n. Conversely, if (ab)n = anbn for all a, b ∈ G
and for all n ∈ N, then the consequence of n = 2 is that G is Abelian, as proved
in problem 6.4.

Remark 6.3. The above result does not hold for non-Abelian groups. For ex-
ample, let G = GL(2,R), the set of all 2×2 non-singular matrices over the set

of real numbers. If A =

(
0 1
1 1

)
, B =

(
2 1
1 1

)
, then A,B ∈ G are such

that (AB)2 6= A2B2.

Problem 6.7. Let G be a group and m,n be two relatively prime integers such
that ambm = bmam and anbn = bnan for all a, b ∈ G, then G is Abelian.

Solution: Since m,n are two relatively prime integers, therefore (by division
algorithm) there exist integers x, y such that

mx+ ny = 1. (6.6)

Step 1 We prove that

(ambn)mk = (bnam)mk and (ambn)nk = (bnam)nk for all integers k.
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Let r = mk. Two cases arise: k > 0 or k < 0, since for k = 0, both sides are
trivially equal to the identity e.
Case 1. If k > 0, then r > 0, so that

(ambn)r = (ambn)(ambn) · · · (ambn) (r − times)

= am(bnam)(bnam) · · · (bnam)bn

= am(bnam)r−1bn

= am(bnam)r(bnam)−1bn

= am(bnam)ra−mb−nbn

= am(bnam)ra−m

= am(bnam)mka−m

= am[(bnam)k]ma−m

= am(cma−m) where c = (bnam)k

= (amcm)a−m

= (cmam)a−m by the given condition

= cm

= [(bnam)k]m

= (bnam)mk

= (bnam)r

Hence, (ambn)r = (bnam)r. (6.7)

Case 2. If k < 0, then r < 0.
Let r = −r′ where r′ > 0. Observe that

(ambn)r = (ambn)−r
′

= [(ambn)r
′
]−1

= [(bnam)r
′
]−1 using case 1

= (bnam)−r
′

= (bnam)r

Thus we have proved that for every integer k,

(ambn)mk = (bnam)mk (6.8)

Similarly, (ambn)nk = (bnam)nk (6.9)

Step 2 We shall now prove that for all a, b ∈ G, am and bn commute, i.e.

ambn = bnam for all a, b ∈ G.

Observe that

(ambn) = (ambn)1

= (ambn)mx+ny using (6.6)

= (ambn)mx(ambn)ny using laws of exponents

= (bnam)mx(bnam)ny using (11.10) and (11.10)

= (bnam)mx+ny

= (bnam)1

= bnam
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Therefore,
ambn = bnam (6.10)

Step 3 Finally let a, b ∈ G. Then

ab = a1b1

= amx+nybmx+ny

= amxanybmxbny

= amxpnqmbny where p = ay, q = bx

= amxqmpnbny using (6.10)

= amxbmxanybny

= (ax)m(bx)m(ay)n(by)n

= (bx)m(ax)m(ay)n(by)n by the given property in G

= (bx)m(ax)m(by)n(ay)n by the given property in G

= (bx)m(by)n(ax)m(ay)n using (6.10)

= bmxbnyamxany

= bmx+nyamx+ny

= b1a1 using (6.6)

= ba

Hence ab = ba for all a, b ∈ G. Thus G is Abelian.

6.3 Exercise

1. Let G be a group and a, b ∈ G such that ab = ba. Then prove that
(i) a−1b−1 = b−1a−1.
(ii) a−1b = ba−1.
(iii) ab−1 = b−1a.

2. Prove that a group G is Abelian if and only if (ab)−1 = a−1b−1 for all
a, b ∈ G.

3. If G is a group and a1, a2, . . . , an ∈ G, prove that is

(a1a2 · · · an)−1 = a−1
n a−1

n−1 . . . a
−1
2 a−1

1 .

4. Let G be a group, and a, b, c ∈ G. Solve the following equations for x,
in G:

(i) a−1xa = c
(ii) axb = c.

5. Let G be a finite group having even number of elements. Show that there
is at least one element in G, other than identity which is its own inverse.

6. In a group G, prove that
(x−1ax)n = x−1anx for all a, x ∈ G,n ∈ Z.

7. Prove that in a group, the identity element is the only idempotent element.
(Recall that an element g ∈ G is said to be an idempotent if g2 = g.)
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8. Let G be a group and a, b be two elements of G such that (ab)n = anbn

for two consecutive integers n. Do a and b necessarily commute? Justify
your answer.

6.4 Characterization of Groups

The axioms used to define a group can actually be weakened considerably.
This will give a stronger version of the definition of a group. The following
theorems characterize groups with the weaker axioms. First we give some defi-
nitions.

Definition 6.2. Let G be a groupoid.
(i) An element er ∈ G is said to be a right identity if aer = a ∀ a ∈ G.
(ii) An element el ∈ G is said to be a left identity if ela = a ∀ a ∈ G.

Definition 6.3. Let G be a groupoid and let er ∈ G be a right identity of G.
Then

(i) an element a ∈ G has a right inverse with respect to right identity er. if
there exists b ∈ G such that ab = er.

(ii) an element a ∈ G has a left inverse with respect to right identity er. if there
exists c ∈ G such that ca = er.

Theorem 6.7. Let G be a semigroup. Then G is a group if and only if the
following conditions hold:
(i) There exists er ∈ G such that aer = a ∀ a ∈ G, i.e. a right identity

element er exists.
(ii) For each a ∈ G, there exists a′r ∈ G such that aa′r = er, i.e every

element of G has a right inverse with respect to right identities.

Proof: If G is a group then the conditions hold as identity element e is also
a right identity and inverse of an element is also a right inverse. Conversely, let
the conditions hold. We shall prove that G is a group.

Step 1 Let a ∈ G. By (ii) there exists a′ ∈ G such that aa′ = er. . . (1)

Since a′ ∈ G, therefore there exists a′′ ∈ G such that a′a′′ = er. . . (2)

Now

a′a = a′(aer)

= a′(a(a′a′′)) using (2)

= a′((aa′)a′′) using associativity

= a′(era
′′) using (1)

= (a′er)a
′′

= a′a′′ using condition (i)

= er using (2).

∴ a′a = er, so that we get aa′ = a′a = er . . . (3).
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Step 2 era = (aa′)a using (1)

= a(a′a)

= aer using (3)

= a using condition (i).

Thus aer = era = a for all a ∈ G. Hence er is the identity element of G. Let us
denote it by e.

Step 3 By (3) we get
aar = ara = e.

Hence ar is the inverse of a. Thus every element of G has an inverse.
Step 4 Steps 2 and 3 above show that the semigroup G has an identity

element and every element is invertible. Hence G is a group.
This is a very important result. It tells us that if a binary composition on

a set G is associative and there exists a right identity and every element has a
right inverse then G is a group. Thus even by assuming weaker conditions, we
are able to prove that the algebraic structure is a group. In this sense we can
say that this is a stronger version of the definition of a group. The word ‘right’
in the above theorem can be replaced by ‘left’, as the following theorem shows.

Remark 6.4. We used Theorem 6.7 here. In that theorem it is essential for
G to be a semigroup. If G is not a semigroup then it may not be a group even
if right identity and right inverses exist in it. This can be seen in the following
example.

Example 6.3. Let Q+ be the set of positive rational numbers. Then (Q+,÷)
is a groupoid, but not a semigroup, since 2÷ (3÷ 4) 6= (2÷ 3)÷ 4.
Further a ÷ 1 = a ∀ a ∈ Q+. Hence 1 is a right identity. Moreover a ÷ a = 1.
Hence a is a right inverse of a. Thus Q+ has a right identity and every element
of Q+ has a right inverse, but (Q+,÷) is not a group. Note that this is because
associative law does not hold in Q+, w.r.t the operation ÷.

Theorem 6.8. Let G be a semigroup. Then G is a group if and only if the
following conditions hold:
(i) There exists el ∈ G such that ela = a ∀ a ∈ G, i.e left identity element

el exists.
(ii) For each a ∈ G, there exists a′ ∈ G such that a′a = el, i.e every element

of G has a left inverse with respect to some left identity.

Remark 6.5. If a semigroup G has an one sided identity and the other sided
inverse, then it need not be a group. In other words, if a semigroup G has a
left identity and every element has a right inverse, then G need not be a group.
This can be seen from the following example.

Example 6.4. Let G = {a, b, c, d}. Define ◦ on G as: x◦y = y for all x, y ∈ G.
The multiplication table for G is

◦ a b c d
a a b c d
b a b c d
c a b c d
d a b c d
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If x, y, z ∈ G then
(x ◦ y) ◦ z = y ◦ z = z
x ◦ (y ◦ z) = x ◦ z = z
Thus (x ◦ y) ◦ z = x ◦ (y ◦ z), so that the operation is associative. Hence (G, ◦)
is a semigroup. We see that a ◦x = x for all x ∈ G. Thus a is left identity. For
any x ∈ G, from the table

x ◦ a = a.

Thus every element x ∈ G has a right inverse, namely, ‘a’. If G were a group,
then by Theorem 6.4, cancellation laws must hold in G. However from the table
b ◦ a = a and c ◦ a = a. Then b ◦ a = c ◦ a but b 6= c. Thus cancellation laws do
not hold in G and therefore G can not be a group.

Theorem 6.9. Let G be a semigroup. Then G is a group if and only if the
equations ax = b and ya = b are solvable in G for all a, b ∈ G.

Proof: Let G be a semigroup. First suppose that G is a group, then the
equations ax = b and ya = b are solvable in G for all a, b ∈ G, follows from
Theorem 6.6.
Conversely, suppose that for all a, b ∈ G the equations ax = b and ya = b are
solvable in G.

Step 1 (G has a right identity element). Let a ∈ G. Consider the equation
ax = a. This equation is solvable in G. Thus there exists e ∈ G such that
ae = a. We shall prove that e is a right identity for G. Let g ∈ G. Then
the equation ya = g has a solution in G, so that there exists h ∈ G such that
ha = g. Now ge = (ha)e = h(ae) = ha = g. Thus ge = g for all g ∈ G, so that
e is a right identity in G.

Step 2 (Every element has a right inverse in G.) Let a ∈ G. Then the
equation ax = e has a solution in G, say a′. Thus, we get aa′ = e, so that every
element in G has a right inverse in G.

Step 3 Steps 1 and 2 above show that G is a semigroup with a right identity
and that every element in G has a right inverse. Thus by Theorem 6.7, G is a
group.

Theorem 6.10. A finite semigroup is a group if and only if cancellation laws
hold.

Proof: Let G be a finite semigroup. If G is a group, then cancellation laws
hold in G by theorem 6.4. Conversely, suppose cancellation laws hold in G.
Since G is finite, let G = {a1, a2, . . . , an}.

Step 1 Let a ∈ G. Then aai ∈ G for all i = 1, 2, . . . , n. Let P = {aa1, aa2, . . . ,
aan}. Then P ⊆ G. We assert that all the elements of P are distinct, for if
aai = aaj for some i 6= j; then by left cancellation law ai = aj , which is a
contradiction. Hence P has exactly n elements. Now P ⊆ G. Since G is finite
and both P and G have the same number of elements, therefore P = G. Let
b ∈ G and since G = P , therefore b ∈ P so there exists ai ∈ G such that aai = b.
Hence for all a, b ∈ G, ax = b has a solution in G.

Step 2 As in Step 1, considering Q = {a1a, . . . , ana} we can prove that for
all a, b ∈ G, the equation ya = b has a solution in G.
The two steps using Theorem 6.9, prove that G is a group.
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Remark 6.6. In Theorem 6.10, none of the following conditions on G can be
dropped:
(i) finiteness of G.
(ii) associativity in G.

(i) (Z, ·) is an infinite semigroup in which cancellation laws hold but is not a
group.

(ii) (Q+,÷) is a groupoid in which cancellation laws hold but (Q+,÷) is not a
group.

In view of the above theorems, the task of verifying a given system for being
a group becomes bit easier. For example, for the non-commutative systems we
need not worry about finding both-sided identities and inverses (in the commuta-
tive systems, one-sided identities and inverses automatically become both-sided
identities and inverses).

6.5 Solved Problems

Problem 6.8. Let G be a semigroup such that there exists e ∈ G satisfying
eg = g ∀ g ∈ G. Also let for each pair of distinct elements a, b ∈ G, there exist
a solution of the equation ya = b in G. Prove that G is a group.

Solution: We have eg = g ∀ g ∈ G. Hence e is a left identity in G. Let a ∈ G.
Then ya = e has a solution (according to the given condition) in G, say b, so
that ba = e. Hence a has a left inverse. Thus G is a semigroup having a left
identity and each element having a left inverse. Hence G is a group.

Problem 6.9. Let G = {e, x, y, z}. A binary composition ◦ on G is defined by
the following table as:

◦ e x y z
e e x y z
x y z e x
y x y z e
z z e x y

Prove that cancellation laws hold in G. Is (G, ◦) a group?

Solution: In the given composition table, in any row or column no two
elements are repeated. This implies that cancellation laws hold in G. However,
G is not a group, as there is no identity element.

Remark 6.7. In the above example G, is a finite groupoid in which cancellation
laws hold, but it is not a group. This shows that for the conclusion of theorem
6.10 to hold true, the assumption of associativity of G cannot be dropped.

Problem 6.10. Let G be a finite group with identity e. Prove that
(a) the number of elements x of G such that x2 6= e is even.
(b) the number of non-identity elements that satisfy the equation x3 = e is

even.
(c) the number of non-identity elements that satisfy the equation x5 = e is

a multiple of 4.
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Solution:
(a) Let g ∈ G. If g2 = e then g = g−1. Thus, if g2 6= e, then the inverse h of
g, is such that h 6= g, and g2 6= e, h2 6= e. Thus such elements can be paired
{g, g−1} ∀ g 6= g−1. Hence the number of such elements is even.
(b) Consider g ∈ G, g 6= e such that g3 = e. We assert that g is such that:

(i) g2 6= e (ii) g 6= g2 (iii) (g2)3 = e. For,
(i) if g2 = e then g = e, which is a contradiction. Hence g2 6= e.
(ii) if g = g2 ⇒ g3 = e implies g = e, a contradiction. Hence g 6= g2.
(iii) Clearly g6 = (g2)3 = (g3)2 = e. Thus g, g2 are both non identity distinct

elements satisfying x3 = e. Such elements always occur in pairs, as {g, g2}
so they are even in number and result is proved.

(c) Consider g ∈ G, g 6= e such that g5 = e. We assert that
(i) each of g, g2, g3, g4 is different from identity.

g 6= e by assumption. g2 = e
⇒ g5 = e
⇒ g = (g2)3(g5)−1 = e.g3 = e
⇒ g5 = e
⇒ g = (g3)2(g5)−1 = e. g4 = e, g5 = e
⇒ g = (g4)−1 = e.

(ii) the elements g, g2, g3, g4 are all distinct.
Any two powers of g are equal implies g = e or g2 = e or g3 = e.

(iii) each of the elements g, g2, g3, g4 satisfy x5 = e.
The proof is similar to the proof of part (b).

Problem 6.11. In D2n, let r be a rotation by an angle 2π
n radians, in the

anticlockwise direction. Use a diagram to verify frf−1 = r−1, where f is any
reflection. Use this relation to write the following elements in the form ri or
rif , where 0 ≤ i < n.
(a) in D8, fr−2fr5

(b) in D10, r−3fr4fr−2

(c) in D12, fr5fr−2f .

Solution: Let us consider the reflection f about the line which is the perpen-
dicular bisector of one of the sides and rotation r in the anticlockwise direction
by an angle of 2π

n radians. Observe the following diagrams:
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A

A2
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A
A
�

�
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A
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A
A
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A
�

�
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?r?frf
−1
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�
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We find that frf−1 = r−1 .
Since f is any reflection, then f2 is the identity motion, that is, no mo-

tion at all. We shall say f2 = e, the identity of the group D2n. Hence
f−1 = f . Further, (frf−1)k = frkf−1 ∀ k ∈ Z. In particular in D2n,
rn = e⇒ (frf−1)n = e. We shall use these two facts for proving the properties.
(a) In D8, r4 = e. If g = fr−2fr5 then

g = (fr−2f−1)r5 = (frf−1)−2r5 = (r−1)−2r5 = r2r5 = r7 = r3.

(b) In D10, r5 = e. If h = r−3fr4fr−2 then

h = r−3fr4f−1r−2 = r−3(frf−1)4r−2 = r−3r−4r−2 = r−9 = r−9(mod5) = r.

(c) In D12, r6 = e. If x = fr5fr−2f then

x = fr5f−1r−2f = (frf−1)5r−2f = r−5r−2f = r−7f = r−1f = r5f.

Problem 6.12. Let G be a group and g ∈ G. Define fg : G −→ G by fg(x) =
gxg−1 for all x ∈ G. For g, h ∈ G prove that fgh = fgfh.

Solution: Let x ∈ G. Then

fgh(x) = (gh)x(gh)−1

= (gh)x(h−1g−1)

= ghxh−1g−1

= g(hxh−1)g−1

= fg(hxh
−1)

= fg(fh(x))

= (fgfh)(x)

Thus, fgh = fgfh.
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Problem 6.13. Let G be a semigroup such that for every a ∈ G, there exists a
unique b ∈ G, such that aba = a. Prove that G is a group.

Solution:
Step 1 There exists an idempotent in G.

Let a ∈ G. Then there exists a unique b ∈ G such that

aba = a
⇒ abab = ab on post−multiplying by b
⇒ (ab)(ab) = ab
⇒ (ab)2 = ab

Hence ab is an idempotent element. Let ab = e. Thus e2 = e.
Step 2 The idempotent is unique.

Claim: e of Step1 is the only idempotent element of G. Let f be another
idempotent in G. Then f2 = f . Hence there exists a unique g ∈ G such that

(ef)g(ef) = ef . . . (1)
⇒ ef(gef)g = efg on post−multiplying by g

and using associativity
⇒ ef(gefg)ef = (efg)ef on post−multiplying by ef

and using associativity
⇒ ef(gefg)ef = (ef)g(ef)
⇒ ef(gefg)ef = ef using (1).

By uniqueness of g, we get

gefg = g . . . (2)

Also

ef(ge)ef = efge2f

= efgef since e2 = e

= (ef)g(ef)

= ef using (1)

∴ ef(ge)ef = ef . Again by uniqueness of g, we get ge = g . . . (3)
Similarly, by proving ef(fg)ef = (ef)g(ef) = ef , we get fg = g . . . (4)

(3) and (2) ⇒ gfg = gefg = g . . . (5)
⇒ gg = g using (4)
⇒ g2 = g ...(6)
⇒ g is an idempotent.

Now g3 = g2g = gg = g2 = g using (6).
∴ g3 = g =⇒ ggg = g ...(7)
Post multiplying (6) by fg, we get

g2fg = gfg
⇒ g(g)fg = gfg
⇒ g(ge)fg = gfg (using (3)
⇒ g2efg = gfg
⇒ g(ef)g = gfg (using (6)
⇒ g(ef)g = g (using (5)
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By uniqueness of g in (7) we get

ef = g

Hence ef is an idempotent. Thus

(ef)(ef) = ef
⇒ (eff)(ef) = ef since f is an idempotent
⇒ (ef)f(ef) = ef . . . (8)

Similarly, using that g = ef is an idempotent we get

(ef)e(ef) = ef . . . (9)

Using (8) and (9) and the uniqueness of f , we get

f = e.

Hence G has exactly one idempotent element.
Step 3 If e = ab as in Step1, then e = ab = ba.

Let a ∈ G. Then there exists a unique b ∈ G such that aba = a. Pre-multiplying
by b we get

baba = ba
⇒ (ba)2 = ba

⇒ ba is an idempotent.

This gives us three idempotents namely e, ab and ba. Since G has a unique
idempotent e, we get ba = e = ab.

Step 4 We shall now prove that G has a left identity.
Let a ∈ G. Then there exists a unique b ∈ G such that aba = a. Since ab = e,
we get ea = a for all a ∈ G. Thus e is a left identity of G.

Step 5 Every element of G has a left inverse.

aba = a
⇒ b(aba) = ba pre multiplying by b
⇒ (bab)a = e using Step 3 that ba = e

⇒ bab is a left inverse of a.

Hence every element of G has a left inverse in G. We have proved that G is
semigroup having a left identity and every element of G has a left inverse. Hence
G is a group.

6.6 Exercise

1. Let G be a semigroup such that there exists e ∈ G satisfying ge = g ∀ g ∈
G. If for each pair of distinct elements a, b of G, there exists a solution of
ax = b in G then prove that G is a group.

2. Let G be a semigroup such for all a, b ∈ G, there exists a solution of the
equation ax = b in G. Is G a group? Justify.
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3. Let G be a semigroup such for all a, b ∈ G, there exists a solution of the
equation ya = b in G. Is G a group? Justify.

4. Let G =

{(
a b
a b

)
: a, b ∈ R, a+ b 6= 0

}
, then show that

(i) G is a semigroup under matrix multiplication.
(ii) G has a left identity.
(iii) Each element of G has a right inverse.
(iv) G is a group.

5. Let G = {e, a, b, c, d}. A binary composition ∗ on G is defined by the
following table:

∗ e a b c d
e e a b c d
a a b d e c
b b c e d a
c c d a b e
d d e c a b

Prove that the cancellation laws hold in G. Is (G, ∗) a group?

6. If a semigroup has a right identity, is it necessarily unique? Justify.

7. Let where ω 6= 1 is such that ω3 = 1. Show that

(i) G is a semigroup with respect to multiplication of matrices.
(ii) Cancellation laws hold in G.
(iii) G is a group.
Is G Abelian? Justify.

8. Let G be a group with identity e. Let p be a prime number. Prove that
the number of the non-identity elements satisfying xp = e is a multiple of
p− 1.

6.7 Supplementary Exercises

1. State whether following statements are true or false. Justify your answers.
(i) The empty set is a group.
(ii) A group has at least one identity element.
(iii) A group can have more than one identity element.
(iv) Every group has at least one idempotent.
(v) Every group has at most one idempotent.
(vi) Every group has exactly one idempotent.
(vii) In a group G, if a, b ∈ G are such that a2 = b2 then a = b or

a = −b.
(viii) If every element of a group G is its own inverse, then G is Abelian.
(ix ) If G is a group, then (ab)n = anbn for all a, b ∈ G .
(x ) In a group G, every linear equation ax + b = c; a, b, c ∈ G has a

solution.
(xi) In a group G, every linear equation ax = b; a, b ∈ G has a solution.
(xii) If every element ‘a’ of a group G satisfies x2 = e, then G is Abelian.
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(xiii) In a group G, every equation x2 = x, x ∈ G has exactly two
solutions 1 and 0.

(xiv) There exists a group in which cancellation laws do not hold.
(xv) In a group G, if (ab)2 = a2b2 ∀ a, b ∈ G then G is Abelian.
(xvi) In a group G, if (ab)n = anbn ∀ a, b ∈ G and some positive

integer n > 2, then G is Abelian.
(xvii) A semigroup G with a left identity in which every element of G

has a left inverse is a group.
(xviii) A semigroup G with a left identity in which every element of G

has a right inverse is a group.
(xix ) A semigroup G with an identity element (i.e monoid) in which

elements of G have a right inverse or a left inverse, is a group.

2. On the set R∗ of nonzero real numbers, define ◦ by a◦ b = |a|b. Show that
(i) ◦ is a binary operation on R∗.
(ii) ◦ has a left identity.
(iii) every element of R∗ has a right inverse.
(iv) is (R∗, ◦) a group?
Explain the significance of this question.

3. In a semigroup one sided identity is unique? Justify.

4. Let G be a group such that (ab)n = anbn for two consecutive integers n,
and for all a, b ∈ G. Is then G Abelian?

5. Give an example of an infinite semigroup in which cancellation laws hold,
but which is not a group.

6. Give an example of a finite groupoid which is not a group but in which
cancellation laws hold.

6.8 Answers to Exercises

Exercise - 6.3

4. (i) aca−1.
(ii) a−1cb−1.

5. Hint: There is an even number of elements which are not there own
inverses.

6. Hint: By induction prove that (x−1ax)n = x−1anx for all n ∈ Z+.
Then take inverses of both sides.

7. Hint: Use cancellation law.
8. Hint: No. Consider the group of Quaternions, and take a = i, b =

j, n = 4, 5.

Exercise - 6.6

1. e is the right identity. By solving ax = e, every element has a right inverse
in G.

2. No. Consider (G, ∗) with G having at least two elements ∗ is defined by
a ∗ b = b ∀ a, b ∈ G .
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3. No. Consider (G, ∗) with G having at least two elements a, b such that
a ∗ b = a ∀ a, b ∈ G.

4. (ii)

(
a 1− a
a 1− a

)
for a ∈ R is a left identity.

(iii)

( 1
a+b 0

1
a+b 0

)
is a right inverse of

(
a b
a b

)
.

(iv) No, left identity is not a right identity.

5. (G, ∗) is not a group as * is not associative as a(bc) 6= (ab)c.

6. No. G =

{(
x x
y y

)
: x, y ∈ R

}
is a semigroup under multiplication, in

which

(
x x

1− x 1− x

)
is a right identity for every x ∈ R.

7. Hint: G is not an Abelian group. Form the multiplication table.

8. Hint: x, x2, . . . , xp−1, xp = e are all distinct.

Supplementary Exercises

2.
(i) False
(ii) True
(iii) False
(iv) True
(v) False
(vi) True
(vii) False, since in U(10) we have 32 = 72. Also, in Klein’s 4 group,

G = {e, a, b, ab}, in which a2 = b2 = (ab)2 = e.
(viii) True
(ix) False
(x) False
(xi) True
(xii) True
(xiii) False
(xiv) False
(xv) True
(xvi) False, take G = D6, n = 6.
(xvii) True
(xviii) False
(xix) False
2. (iv) No.
The significance of this problem is that it shows that formally weaker axioms
for a group must either be all left axioms or all right axioms and not half and
half.
3. No, find a counter-example.
4. No, group of Quaternions, with n =4, 5.
5. (N, ·) is one such example.
6. See Exercise ?? , Q5.



Chapter 7

Subgroups

7.1 Criteria for Subgroups

While studying examples of groups we had groups contained within larger
groups. For example, Z the group of integers under addition is contained within
the larger group Q of rationals under addition, which in turn is contained within
the group R of reals under addition. The best way to study any algebraic
structure is to study its subsets, which themselves have the same structure.
Therefore, we study subsets of a group which are groups in their own right.
They are called subgroups. Thus we have the following definition.

Definition 7.1. Let G be a group. A subset H of G is called a subgroup of G
if H is a group under the operation of G restricted to H.

Notation: If H is a subgroup of a group G, then we shall write H 6 G.
Further, if H 6= G then we shall write H < G.

Since the operation of G has been restricted to H, therefore we shall denote
the operation for the group G and for the subgroup H by the same symbol.

It is possible that H has the structure of a group with respect to some
operation other than the operation on G restricted to H. For example, (Q+, ·)
and (R,+) are groups, Q+ ⊆ R but (Q+, ·) 
 (R,+). This is because the
operation · is not a restriction of + to Q+.

A natural question which comes to our mind is: Can a group and its subgroup
have different identity elements? The following theorem answers this question.

Theorem 7.1. If H is a subgroup of a group G then

(i) the identity element of H is the same as that of G.

(ii) for any a ∈ H, inverses of a in H is the same as the inverse of a in G.

Proof: Let e be the identity element of G.

∴ ae = ea = a ∀ a ∈ G (7.1)

(i) Let e′ be the identity of the subgroup H. Then

ae′ = e′a = a ∀ a ∈ H (7.2)

231
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Using 7.1, we get in particular

ae = ea = a ∀ a ∈ H (7.3)

7.2 and 7.3 ⇒ ae = ae′ ∀ a ∈ H.
Since H ⊆ G, therefore this is an equation in G. Using cancellation laws
in G, we get

e = e′.

(ii) Let a ∈ H.
Let a−1 be the inverse of a in G and b the inverse of a in H.
Then

aa−1 = a−1a = e (7.4)

and ab = ba = e (7.5)

7.4 and 7.5 ⇒ aa−1 = ab
⇒ a−1 = b using left cancellation law in G.

The above theorem tells us that the identity element of a group and its subgroup
are the same. Moreover, for any element a of H, its inverse in H is the same as
its inverse in G.

If e is the identity element of a group G, then trivially {e} and G are sub-
groups of G. They are called trivial subgroups of G. A subgroup of G other
than {e} and G is called a non-trivial (or proper) subgroup of G.

Example 7.1.

1. (Z,+) is a subgroup of (Q,+).

2. (Z,+) is a subgroup of (R,+).

3. (Q+, ·) is a subgroup of (R+, ·).

4. (Q+, ·) is not a subgroup of (R,+) though Q+ ⊆ R. This is because 2, 3 ∈
Q+, 2 ·3 = 6 but 2, 3 ∈ R and 2 + 3 = 5, Thus · is not the binary operation
on Q+ obtained from the binary operation + on R restricted to Q+.

5. V4, the Klein 4-group is a subgroup of the dihedral group D8.

6. (N, ·) is not a subgroup of (Q∗, ·), as (N, ·) is not a group in its own right.

7. (Z5,⊕5) is a group but it is not a subgroup of (Z,+), whereas (5Z,+) is
a subgroup of (Z,+).

We now give some tests to determine whether a subset is a subgroup or not.

Theorem 7.2. (Three steps test) A subset H of a group G is a subgroup of G
if and only if

(i) the identity element of G belongs to H.

(ii) ab ∈ H ∀ a, b ∈ H.

(iii) for every a ∈ H, a−1 ∈ H.
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Proof: If H is a subgroup of G, then H is a group with respect to the restricted
binary operation on H. Hence conditions (i) to (iii) hold.

Conversely, let H be a subset of G such that the conditions hold. Then
e ∈ H ⇒ H is nonempty. Thus for H to be a subgroup the only axiom to be
checked is the associativity axiom. Let a, b, c ∈ H. Since H ⊆ G, therefore
a, b, c ∈ G. By associative law in G, a(bc) = (ab)c. Hence associative law holds
in H, so that H is a group in its own right. Thus H is a subgroup of G.

Sometimes we need to check that a given subset of a group is not a subgroup.
How do we go about this? In view of the above theorem, a subset H of a group
G is not a subgroup if any one of the following is true:

(i) The identity e of G does not belong to H.

(ii) For some pair of elements a, b of H, ab /∈ H.

(iii) For some element a ∈ H, a−1 /∈ H.

The use of these conditions is illustrated by the following examples.

(i) (N,+) is not a subgroup of (Z,+) because the identity element 0 of Z does
not belong to N.

(ii) (Z6,⊕6) is a group, where Z6 = {0, 1, 2, 3, 4, 5}. Let H = {0, 1, 2}. Then
H ⊆ Z6. 1, 2 ∈ H but 1⊕6 2 = 3 /∈ H. Hence H is not a subgroup of G.

(iii) (Z+, ·) is not a subgroup of (Q+, ·) as 2 ∈ Z+ but 2−1 = 1
2 /∈ Z+.

The three steps test can be simplified to testing of only 2 conditions instead
of 3. This is given in the following theorem.

Theorem 7.3. (Two steps test) Let G be a group and H a non empty subset
of G. Then H is a subgroup of G if and only if

(i) ab ∈ H, for all a, b ∈ H.

(ii) For each a ∈ H, a−1 ∈ H.

Proof: If H is a subgroup of G, then conditions (i) and (ii) must hold by
definition of subgroup.

Conversely suppose H is a non-empty subset of G such that the conditions
hold. Since H is non empty, therefore there exits some a ∈ H. Then for a ∈ H,
by (ii) a−1 ∈ H. Now a, a−1 ∈ H so that by (i), aa−1 ∈ H, that is, e ∈ H.
Thus the identity element is in H. Hence, by Theorem 7.2, H is subgroup of
G.

This two step test can be further reduced to a one step test, Great, isn’t it?

Theorem 7.4. (One step test) Let G be a group. A non-empty subset H of G
is a subgroup of G if and only if a, b ∈ H ⇒ ab−1 ∈ H.

Proof: If H is a subgroup of G, then the condition holds by the definition of
a subgroup.

Conversely, let the condition hold. Since H is non-empty, therefore, there
exits an element a in H. By the given condition aa−1 ∈ H, that is, e ∈ H.

e, a ∈ H, so that ea−1 ∈ H, that is a−1 ∈ H. Let a, b ∈ H. Then b−1 ∈ H.
By the given condition a(b−1)−1 ∈ H, that is, ab ∈ H. Thus, by Theorem 7.3,
H is a subgroup of G.
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The following theorem gives a condition for a finite subset of a group to be
a subgroup.

Theorem 7.5. (Finite subgroup test) Let G be a group and H a finite non
empty subset of G. Then H is a subgroup of G if and only if H is closed under
the operation of G.

Proof: If H is a subgroup of G then clearly it is closed.
Conversely, let H be closed. To prove that H is a subgroup of G, it is

sufficient to prove that a−1 ∈ H, whenever a ∈ H. If a = e, then a−1 = e−1 =
e = a, so that a−1 ∈ H. If a 6= e, consider the sequence a, a2, a3, ... Closure
property of H implies that all powers of a are in H, since H is finite not all of
these elements can be distinct. Suppose ai = aj for some i, j such that i > j.
Then ai−j = e; and since a 6= e, therefore i− j > 1. Thus ai−j = ai−j−1 · a = e,
so that a−1 = ai−j−1. Since i − j − 1 ≥ 1, therefore, ai−j−1 ∈ H so that
a−1 ∈ H. Thus the proof is complete by Theorem 7.3.

Note: For additive groups in above tests we replace e by 0, ab by a+ b, a−1

by −a and ab−1 by a− b.

Theorem 7.6. The intersection of two subgroups of a group is a subgroup.

Proof: Let G be a group and H1, H2 be two subgroups of G. Let H =
H1 ∩ H2. Since H1, H2 are subgroups, therefore e ∈ H1 and e ∈ H2, so that
e ∈ H1 ∩ H2 = H. Hence e ∈ H. This proves that H is non-empty. Let
a, b ∈ H. Then a, b ∈ H1 and a, b ∈ H2. Since H1 and H2 are subgroups,
therefore ab−1 ∈ H1 and ab−1 ∈ H2, so that ab−1 ∈ H1 ∩H2 = H i.e ab−1 ∈ H.
Hence by the one step test, H is a subgroup of G.

Note that the above result does not hold for the union of two subgroups.
This is shown by the following example.

Example 7.2. The union of two subgroups need not be a subgroup. Consider
the group (Z,+). Then 2Z, 3Z are subgroups of Z. If H = 2Z ∪ 3Z, then H
is not a subgroup of Z, for 2 ∈ 2Z ⊆ H and 3 ∈ 3Z ⊆ H. Thus 2, 3 ∈ H but
2 + 3 = 5 /∈ H as 5 /∈ 2Z and 5 /∈ 3Z.

We would like to know under what condition is the union of two subgroups
a subgroup. This is answered in the next theorem.

Theorem 7.7. The union of two subgroups is a subgroup if and only if one of
them is contained in the other. That is, if H1, H2 are two subgroups of a group
G, then H1 ∪H2 is a subgroup of G if and only if H1 ⊆ H2 or H2 ⊆ H1.

Proof: Let H1, H2 be subgroups of a group G. Suppose H1 ⊆ H2, then
H1 ∪H2 = H2 which is a subgroup of G. Similarly if H2 ⊆ H1, then H1 ∪H2 =
H1 is a subgroup of G.

Conversely, let H = H1 ∪ H2 be a subgroup of G, we shall prove that
either H1 ⊆ H2 or H2 ⊆ H1. Assume the contrary, that is, H1 * H2 and
H2 * H1. Thus, there exists h1 ∈ H1, such that h1 /∈ H2 and h2 ∈ H2, such
that h2 /∈ H1. Now h1 ∈ H1 ⊆ H and h2 ∈ H2 ⊆ H, so that h1h2 ∈ H (as
H is a subgroup). Since H = H1 ∪ H2, therefore, h1h2 ∈ H1 ∪ H2, so that
h1h2 ∈ H1, or h1h2 ∈ H2. Suppose h1h2 ∈ H1. Then h−1

1 (h1h2) ∈ H1 (as H1

is a subgroup), that is h2 ∈ H1 which is a contradiction to our choice of h2.
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Similarly h1h2 ∈ H2 will also give a contradiction. Hence our assumption is
wrong, so that H1 ⊆ H2 or H2 ⊆ H1.

The following theorem characterizes all subgroups of (Z,+).

Theorem 7.8. For every integer n ≥ 0, nZ is a subgroup of Z. Moreover every
subgroup of Z is of the form mZ for some integer m ≥ 0.

Proof: nZ = {nz|z ∈ Z}. If n = 0, then nZ = {0}, which is a subgroup of Z.
If n > 0, then 0 = n0 ∈ nZ, so that nZ is non-empty. Let x, y ∈ nZ then

x = nz1 and y = nz2 for some z1, z2 ∈ Z. So x− y = nz1 − nz2 = n(z1 − z2) ∈
nZ(∵ z1 − z2 ∈ Z). Thus by the one step test nZ is a subgroup of Z.

Let H be any subgroup of Z. If H = {0} then H = mZ where m = 0. Let
H 6= {0}. Then H contains some non-zero integer t, since H is a subgroup of
Z ∴ −t ∈ H. Out of t,−t one of them must be positive. Thus H contains a
positive integer. Let m be the smallest positive integer in H. Clearly mZ ⊆ H.
Let h ∈ H. By division algorithm there exists q, r ∈ Z such that h = mq+r, 0 ≤
r < m. Then r = h−mq, r ∈ H. Now h,m ∈ H so that h−mq ∈ H, that is,
r ∈ H. If r 6= 0 then 0 < r < m which contradicts our choice of m. Thus r = 0,
so that h = mq ∈ mZ, i.e H ⊆ mZ. Thus we get H = mZ.

An important relation amongst the subgroups of Z is the following:
If mZ and nZ are two subgroups of Z then mZ 6 nZ if and only if n divides m.
This can be proved as follows:

mZ 6 nZ
mZ ⊆ nZ

⇔ m ∈ nZ⇔ m = nz for some z ∈ Z
⇔ n divides m.

Example 7.3. Find all the subgroups of Z

(i) containing 20Z.

(ii) contained in 20Z.

(i) 20Z ⊆ nZ
⇔ n | 20
⇔ n = 1, 2, 4, 5, 10, 20.
Thus subgroups of Z containing 20Z are Z, 2Z, 4Z, 5Z, 10Z, 20Z.

(ii) If nZ is a subgroup contained in 20Z, then
nZ ≤ 20Z
⇔ 20 divides n
⇔ n is a multiple of 20
⇔ n = 20k, k ∈ Z, k ≥ 0.
⇔ n = 0, 20, 40, 60 . . .
Thus (0), 20Z, 40Z, 60Z, ... are all subgroups of 20Z. Thus 20Z has in-
finitely many subgroups.

7.2 Solved Problems

Problem 7.1. If H is a subgroup of a group G and x ∈ G, then xHx−1 =
{xhx−1 : h ∈ H} is a subgroup of G.
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Solution: Clearly e = xex−1 ∈ xHx−1 so that xHx−1 is non-empty. Let
a, b ∈ xHx−1. Then a = xh1x

−1, b = xh2x
−1 for some h1, h2 ∈ H. Now ab =

(xh1x
−1)(xh2x

−1) = xh1h2x
−1 ∈ xHx−1 (∵ h1h2 ∈ H as H is a subgroup).

Thus ab ∈ xHx−1. Also a−1 = (xh1x
−1)−1 = (x−1)−1(h1)−1x−1 = xh−1

1 x−1 ∈
xHx−1(∵ h−1

1 ∈ H). Hence a ∈ H ⇒ a−1 ∈ H. Thus we have proved that H is
a subgroup of G.

Problem 7.2. If H =

{(
a b
0 1

)
| a 6= 0 a, b ∈ R

}
then prove that H is a sub-

group of GL(2,R).

Solution: Let A =

(
1 1
0 1

)
∈ H. Thus H is a non-empty subset of GL(2,R).

Let A,B ∈ H. Then A =

(
a1 b1
0 1

)
, B =

(
a2 b2
0 1

)
for some a1, a2, b1, b2 ∈

R, a1 6= 0, a2 6= 0. Now AB =

(
a1a2 a1b2 + b1

0 1

)
∈ H (∵ a1a2, a1b2 + b1 ∈

R, a1a2 6= 0). Thus H is closed.

If A =

(
a1 b1
0 1

)
∈ H,

then A−1 =

(
a−1

1 −b1a−1
1

0 1

)
and A−1 ∈ H. Thus H is a subgroup of GL(2,R).

Problem 7.3. Let H = {a+ ib ∈ C|a2 + b2 = 1}. Describe the elements of H
geometrically. Is H a subgroup of C∗ under multiplication? Justify.

Solution: Let z = a + ib ∈ H. Then |z| = distance of P (z) from origin
=
√
a2 + b2 = 1. Thus H represents all points on the circle of radius 1, centered

at the origin.

C∗, the set of non-zero complex numbers, is a multiplicative group with 1 as
the identity element and 1

3 as the multiplicative inverse of z. Thus H is the
set of all complex numbers of modulus 1. We shall now prove that H is a
subgroup of G. Clearly 1 + i0 ∈ H, so that H is non-empty. Let z1, z2 ∈ H.
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Then |z1| = 1, |z2| = 1. Now |z1z2| = |z1||z2| = 1. Hence z1z2 ∈ H. Also
| 1
z1
| = 1

|z1| = 1 so that 1
z1
∈ H. ∵ z−1

1 = 1
z1

so that z−1
1 ∈ H. Thus H is a

subgroup of C∗.

Problem 7.4. Let G be an Abelian group and let H = {x2|x ∈ G}. Then H is
a subgroup of G.

Solution: Step 1 Since e2 = e, therefore e ∈ H. Hence H is a non-empty set.
Step 2 Let a, b ∈ H. Then a = x2 and b = x2 for some x, y ∈ G. Now

ab = x2y2 = x(xy)y = x(yx)y (as G is an Abelian) = (xy)(xy) = (xy)2, and
xy ∈ G. Thus ab ∈ H.

Step 3 Let a ∈ H. Then a = x2 for some x ∈ G. Now a−1 = (x2)−1 =
(x−1)2. Since x ∈ G, therefore x−1 ∈ G, so that (x−1)2 ∈ H, that is, a−1 ∈ H.

By the three step test, H is a subgroup of G.

Problem 7.5. Show that a group of order 6 cannot have a subgroup of order 4.

Solution: Let G be a group of order 6. Let, if possible, H be a subgroup of
G of order 4. Let H = {e = h1, h2, h3, h4}, e being the identity element. Let
g ∈ G such that g /∈ H such an element g exists because o(G) = 6 and o(H) = 4.
Consider the set gH = {gh1, gh2, gh3, gh4}. gH has at most 4 elements. We
assert that all the elements of gH are distinct and different from elements of
H. For if, ghi = ghj , i 6= j (1 ≤ i, j ≤ 4) then hi = hj by cancellation law
in G which is a contradiction. Hence all the elements of gH are distinct so
that gH has exactly 4 elements. Also H ∩ gH = φ, for if h ∈ gH ∩ H, then
h ∈ H,h ∈ gH. ∴ h = hi for some hi and h = ghj for some hj ∈ H.
∴ ghj = hi so that g = hih

−1
j ∈ H which contradicts the fact that g /∈ H.

Element of H and G account for 8 elements in a group of order 6 and this is
not possible. Hence it is not possible for G to have a subgroup of order 4.

7.3 Exercise

1. Find the flaw in the following argument: “Condition (i) of Theorem 7.2 is
redundant since it can be derived from (ii) and (iii). For let a ∈ H. Then
by (iii) a−1 ∈ H. By (ii) aa−1 ∈ H i.e e ∈ H which gives (i).”

2. Determine which of the following subsets are subgroups of the group C of
complex numbers under addition.

(i) R
(ii) Q+

(iii) 7Z
(iv) S = {πn : n ∈ Z}
(v) πQ = {πx : x ∈ Q}
(vi) The set iR of pure imaginary numbers together with zero.

3. If H = {1,−1, i,−i} prove that H is a subgroup of the group of Quater-
nions.
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4. Consider M2(Z), the group of all 2× 2 matrices over Z, under addition.

H1 =
{(

a b
c d

)
∈ M2(Z) : a+ b+ c+ d = 0

}
.

H2 =

{(
a b
c d

)
∈ M2(Z) : a+ b+ c+ d = 1

}
.

Are H1, H2 subgroups of M2(Z)? Justify your answer.

5. Prove or disprove the following statements:
(i) every subgroup of a non-Abelian group is non-Abelian.
(ii) every subgroup of an infinite group is infinite.

6. If H is a subgroup of a group G and K is a subgroup of H, then prove
that K is a subgroup of G. (Note that this shows that the relation “is a
subgroup of” is transitive.)

7. Let H be a subgroup of R under addition. Let K = {3a : a ∈ H}. Prove
that K is a subgroup of R∗ under multiplication.

8. Let R∗ be the group of non-zeros real numbers under multiplication. If
H = {x ∈ R∗ : x2 is rational}, prove that H is a subgroup of R∗.

9. Let a, b,m be integer, m > 1 define a ≡ b mod m if m divides a− b. Let
H = {x ∈ U(20) : x = 1 mod 3}. Is H a subgroup of U(20)?

10. Let G = GL(2,R). Test whether the subsets define below are subgroups
of G.

(i) H1 = {A ∈ G : |A| is an integral power of 2}.

(ii) H2 =

{(
a 0
0 b

)
: a, b are nonzero integers

}
(iii) H3 = {A ∈ G : |A| is rational}
(iv) H4 = {A ∈ G : |A| is an integer}.

11. Let H = {a+ ib : a, b ∈ R, ab ≥ 0}. Is H a subgroup of C under addition?
Justify.

12. Let G be the group of functions from R to R∗ under multiplication. Set
H = {f ∈ G : f(1) = 1}. Prove that H is a subgroup of G.

13. Let G be an Abelian group and let n be a fixed positive integer. Let
Gn = {gn : g ∈ G}. Prove that Gn is a subgroup of G.

7.4 Centralizers, Normalizers and Centre

Given a group how do we go about finding its subgroups? we now give some
important families of subgroups of a group.

Centralizer of an Element
Although an element from a non-Abelian group need not necessarily com-

mute with every element of the group, there are always some elements with
which it will commute. For example, every element a commutes with all its
powers. This observation prompts the following definition.
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Definition 7.2. (Centralizer of an element):

Let G be a group and a ∈ G, be a fixed element of G. The centralizer of a
in G, denoted by CG(a), is the set of all elements in G which commute with a.
Symbolically, CG(a) = {g ∈ G|ag = ga}. If the group G is understood then we
simply write C(a).

Example 7.4. Consider the dihedral group D (say).
C(R0) = D8

C(R1) = {R0, R1, R2, R3}
C(R2) = D8

C(R3) = {R0, R1, R2, R3}
C(H) = {R0, H,R2, V }
C(V ) = {R0, H,R2, V }
C(D) = {R0, D,R2, D

′}
C(D′) = {R0, D,R2, D

′}.

Note that each of the centralizer is actually a subgroup of D8. Also two
different elements may have the same centralizer.

Example 7.5. Consider the group G = GL(2,R) under multiplication, and(
1 1
1 0

)
= A ∈ GL(2,R). Then C(A), the centralizer of A is{(

a b
c d

)
∈ G|c = b, d = a− b

}
.

If B =

(
0 1
1 0

)
then C(B) =

{(
a b
c d

)
∈ G|d = a, c = b

}
=

{(
a b
b a

)
|a2 − b2 6= 0; a, b ∈ R

}
Theorem 7.9. Let G be a group and a ∈ G. Then the centralizer C(a) of a is
a subgroup of G.

Proof: C(a) = {g ∈ G|ga = ag}. Since e ∈ G is such that ae = ea,
therefore e ∈ C(a). Let x, y ∈ C(a). Then xa = ax and ya = ay. Now
ya = ay ⇒ y−1yay−1 = y−1ayy−1 (pre and post multiplication by y−1 ), that
is ay−1 = y−1a.
Now (xy−1)a = x(y−1a) = x(ay−1) = (xa)y−1 = (ax)y−1 = a(xy−1).
Thus xy−1 ∈ C(a). Hence by the one step test C(a) is a subgroup of G.
The next theorem tells us that the centralizer of an element and its inverse are
the same set.

Theorem 7.10. If G be a group and a ∈ G, then C(a) = C(a−1).

Proof: We know that C(a) = {g ∈ G|ag = ga}. Let x ∈ C(a). Then
ax = xa. Pre- and post-multiplying by a−1, we get a−1axa−1 = a−1xaa−1 that
is xa−1 = a−1x. Hence x ∈ C(a−1), so that C(a) ⊆ C(a−1). Let y ∈ C(a−1)
then a−1y = ya−1. Pre- and post-multiplying by a, we get a(a−1y)a = aya−1a,
that is ya = ay. Hence y ∈ C(a). Thus C(a−1) ⊆ C(a), Thus, we have
C(a−1) = C(a).

Problem 7.6. If G is a group and a, x ∈ g, then C(x−1ax) = x−1C(a)x.



240 CHAPTER 7. SUBGROUPS

Solution: Let y ∈ C(x−1ax), then

(x−1ax)y = y(x−1ax)
⇒ y−1x−1axy = x−1ax Pre-multiplying by y−1

⇒ xy−1x−1ax = axy−1 Pre-multiplying by x
Post-multiplying by y−1

⇒ xy−1x−1a = axy−1x−1 Post-multiplying by x−1

⇒ xy−1x−1 ∈ C(a)
⇒ (xy−1x−1)−1 ∈ C(a) ∵ C(a) is a subgroup
⇒ xyx−1 ∈ C(a)
⇒ y ∈ x−1C(a)x

⇒ C(x−1ax) ⊆ x−1C(a)x (7.6)

Let z ∈ x−1C(a)x, so that z = x−1cx for some c ∈ C(a). Thus ca = ac. We
shall prove that z(x−1ax) = (x−1ax)z
Now

z(x−1ax) = (x−1cx)(x−1ax)

= x−1cax

= x−1acx ∵ ac = ca

= x−1axx−1cx

= (x−1ax)(x−1cx)

= (x−1ax)z

Thus z ∈ C(x−1ax) so that

x−1C(a)x ⊆ C(x−1ax) (7.7)

7.6 and 7.7 ⇒ C(x−1ax) = x−1C(a)x.

Centralizer of a Subset
The concept of the centralizer of an element can be extended to that of a

subset.

Definition 7.3. If A is a subset of a group G, then by the centralizer of A we
mean the set {x ∈ G|xa = ax ∀a ∈ A}. It is denoted by CG(A). when the
group G is understood, we simply denote it by C(A).

From the definition we have the following important result.

Theorem 7.11. If A is a subset of a group G, then C(A) = ∩a∈AC(a)

Proof:

y ∈ C(A)

⇔ ya = ay ∀ a ∈ A

⇔ y ∈ C(a) ∀ a ∈ A

⇔ y ∈ ∩a∈A C(a)

⇔ C(A) = ∩a∈A C(a)

Hence the result.
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Example 7.6. Let us find C(A), where A = {R1, H} and A ⊆ D8, the dihedral
group of order 8. We know that C(A) = ∩a∈A C(a)

∴ C(A) = C(R1) ∩ C(H)

= {R0, R2}.

Theorem 7.12. If A is a subset of a group G, then C(A) is a subgroup of G.

Proof: Clearly ea = ae ∀a ∈ A
∴ e ∈ C(A) so that C(A) is non-empty.
Let a, b ∈ C(A). Then

ax = xa ∀ x ∈ A (7.8)

and bx = xb ∀ x ∈ A (7.9)

Now, for all x ∈ A

(ab)x = a(bx) associativity

= a(xb) by (7.9)

= (ax)b associativity

= (xa)b by (7.8)

= x(ab) associativity

so that ab ∈ C(A). Hence C(A) is closed.
If a ∈ C(A) then ax = xa ∀ x ∈ A

⇒ a−1axa−1 = a−1xaa−1 Pre- and post-multiplying by a−1

⇒ xa−1 = a−1x

⇒ a−1 ∈ C(A)

∴ a ∈ C(A)⇒ a−1 ∈ C(A), so that C(A) is a subgroup of G.

Centre of a Group
In a group G, the identity element e of G occupies a very special position

in the sense that it commutes with every element of the group. There may be
other elements which commute with every element of the group. In case one
such element a exits, then all powers of a will also commute with every element
of G. For example all scalar matrices commute with every matrix. Thus if
we consider the group G = GL(2,R) under multiplication, then every non-zero
scalar matrix commutes with every element of G. This motivates the following
definition.

Definition 7.4. (Centre of a group): The centre of a group G is the set of
elements of G which commute with every element of G, that is, the set {a ∈
G|ax = xa ∀ x ∈ G}. It is denoted by Z(G).

From the definition it follows that

(i) In term of centralizer, Z(G) = C(G)

(ii) Z(G) ⊆ C(a) ∀ a ∈ G
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(iii) Z(G) = ∩a∈G C(a)

Example 7.7. Consider the group G = GL(2,R). Since a scalar matrix com-
mutes with every element of G, therefore every scalar matrix lies in the centre

of G. Thus

{(
a 0
0 a

)
|a ∈ R

}
⊆ Z(G).

Example 7.8. Consider the group G = (Z,+). Since G is Abelian, therefore
every element of G commutes with all other elements of G. Hence Z(G) = G.

Example 7.9. Let us find the centre of D8, the dihedral group of order 8.

Z(D8) = ∩a∈D8C(a)

= {R0, R2}

∴ Z(D8) = {R0, R2}.

Theorem 7.13. The centre of a group G is a subgroup of G.

Proof: Since Z(G) = C(G) and C(G) is a subgroup, therefore Z(G) is a
subgroup.

Remark 7.1.

1. The centre of a group is an Abelian subgroup. If G is any group, then
Z(G) = {g ∈ G : xg = gx ∀ x ∈ G}. Let g1, g2 ∈ Z(G). Since g1

commutes with every element of G, in particular it commutes with g2, so
that g1g2 = g2g1. Hence Z(G) is Abelian.

2. The centre of a group G is G⇔ G is Abelian.
Now, G is Abelian

⇔ ab = ba ∀ a, b ∈ G

⇔ b ∈ CG(a) ∀ a, b ∈ G

⇔ b ∈ ∩a∈G CG(a) ∀ b ∈ G

⇔ G = Z(G)

Problem 7.7. Find the centre Z(G) for G = D6 the dihedral group of order 6.

Solution:
D6 = {R0, R1, R2,M1,M2,M3}

Z(D6) = {x ∈ D6 : xd = dx for all d ∈ D6}

Now M3M2 = R2

M2M3 = R1

Thus
M2M3 6= M3M2

so that M2,M3 /∈ Z(D6)
M1R2 = M3

R2M1 = M2
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so that
M1, R2 /∈ Z(D6)

R1M3 = M2

M3R1 = M1

so that
M3, R1 /∈ Z(D6)

Hence M1,M2,M3, R1, R2 /∈ (Z(D6)). Also R0 ∈ Z(D6), being the identity
element. Hence Z(D6) = {R0}.

Problem 7.8. Prove that centre of GL(2,R) is the set of all scalar matrices.

Solution: Let A =

(
a b
c d

)
∈ Z(G). Then A commutes with every member of

G. In particular it must commute with X =

(
0 1
1 0

)
and Y =

(
1 1
1 0

)
, where

X,Y ∈ G.

AX = XA

⇒
(
a b
c d

) (
0 1
1 0

)
=

(
0 1
1 0

)(
a b
c d

)
⇒

(
b a
d c

)
=

(
c d
a b

)
⇒ b = c and a = d

Also AY = Y A

⇒ b = c = 0

Thus A =

(
a 0
0 a

)
, so that Z(G) ⊆

{(a 0
0 a

)
|a ∈ R

}
.

Also if a ∈ R,

(
a 0
0 a

)
∈ Z(G).

Thus Z(G) =
{(a 0

0 a

)
|a ∈ R

}
.

Hence the centre of GL(2,R) is the set of all scalar matrices.

Normalizer of a subset
Let G be a group and A a non-empty subset of G. For any x ∈ G,

xA = {xa : a ∈ A} ; Ax = {ax : a ∈ A}.

If xa = ax ∀ a ∈ A (7.10)

then obviously xA = Ax (7.11)

But the sets xA and Ax may be equal without the condition (7.10) being sat-
isfied. This leads us to the following definition.
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Definition 7.5. Let A be a subset of group G. For any x ∈ G, let xAx−1 =
{xax−1|a ∈ A}. The set {x ∈ G|xAx−1 = A} is called the normalizer of A in
G. It is denoted by NG(A) or simply N(A), when G is understood.

Remark 7.2. xAx−1 = A
⇔ xA = Ax

Thus the normalizer of a set A is that of all elements which commute with A.

Theorem 7.14. If H is a subgroup of a group G, then N(H) is a subgroup of
G.

Proof: Since eHe−1 = {ehe−1 : h ∈ H} = {h : h ∈ H} = H, therefore
e ∈ N(H). Hence N(H) is non-empty. Let x, y ∈ N(H). Then xHx−1 = H and
yHy−1 = H. Now (xy)H(xy)−1 = xyHy−1x−1 = x(yHy−1)x−1 = xHx−1 =
H, so that xy ∈ N(H). Let x ∈ N(H). Then xHx−1 = H. Pre- and post-
multiplying by x−1 and x respectively, we get x−1xHx−1x = x−1Hx, that is,
eHe = x−1H(x−1)−1. Hence x−1H(x−1)−1 = H, so that x−1 ∈ N(H). Thus,
N(H) is a subgroup of G.

7.5 Exercise

1. If a is an element of a group G, prove that (i) a−1 ∈ C(a) (ii) an ∈ C(a)
for all n ∈ Z.

2. For any element a of a group G, prove that x ∈ C(a)⇒ x ∈ C(an) for all
n ∈ Z.

3. Find CG(A) where G is the group of quaternions under multiplication and
A = {i}. Also find the centre of G.

4. If A and B are subsets of a group G, does C(A) = C(B) necessarily imply
A = B?

5. A and B are subsets of a group G. Prove that (i) C(A ∪ B) = C(A) ∪
C(B) (ii) C(A) ∪ C(B) ⊆ C(A ∩B).

6. Let G = GL(2,R). If A =

(
1 1
0 1

)
and B =

(
0 1
1 0

)
, find C(A) and

C(B).

7. Find the centre of D8, the dihedral group of order 8.

8. For any group G, prove that Z(G) = ∩a∈G C(a).

9. Let G be the group of all 2 × 2 diagonal matrices under multiplication.
Find the centre of G.

10. If A is a subset of a group G, prove that the centralizer of A is a subset
of the normalizer of A.

11. If A is a subset of a group G, prove that (i) the centre of G is a subset of
the centralizer of A. (ii) the centre of G is a subset of the normalizer
of A.

12. For any subset A of a group G, obtain a relationship between centre of G,
centralizer of A and the normalizer of A.
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7.6 Order of an Element

Consider the group U(20) under multiplication U(20) = {1, 3, 7, 9,
11, 13, 17, 19}. Then 1 is the identity element. Let us compute the powers
of elements of U(20).
Clearly 11 = 1

32 = 9, 33 = 7, 34 = 1, 35 = 3, 36 = 9 etc...
72 = 9, 73 = 3, 74 = 1;
92 = 1;
112 = 1;
132 = 9, 133 = 17, 134 = 1;
172 = 9, 173 = 13, 174 = 1;
192 = 1.

Thus we observe that some power of each element becomes the identity element.
Each of the elements 3, 7,13 and 17 have 4 distinct powers whereas each of the
elements 9, 11 and 19 have 2 distinct powers. The identity element 1 has only
one distinct power. The number of distinct powers of an element is of great
importance in the study of groups and it motivates us to define the following:

Definition 7.6. (Order of an element): Let G be a group and g ∈ G. If
there exists a positive integer n such that gn = e, then g is said to be of finite
order. If no such integer exists, then g is said to be of infinite order. If g is of
finite order, then the least positive integer n such that gn = e is called the order
of g.

If G is an additive group and g ∈ G, we replace gn by ng and e by o to find
the order of g.
Notation: The order of an element g is denoted by o(g) or |g|.

To find the order of an element g of a group, we compute the sequence of
powers of g, namely g, g2, g3, ... until we reach the identity element for the first
time. Suppose gn = e for the first time. Then n is the order of g. If the identity
never appears in the sequence, then g has infinite order. Note that the order of
the identity element is always 1. In fact identity is the only element of order 1.

Example 7.10.

1. As explained above, in U(20) o(3) = o(7) = o(13) = o(17) = 4. o(9) =
o(11) = o(19) = 2.

2. Consider the group (Z,+). If 0 6= a ∈ Z, then na 6= 0 for every positive
integer n. Hence the order of a is infinite.

3. Consider the group GL(2,R). If A =

(
1 0
0 −1

)
∈ GL(2,R), then A2 = I

so that o(A) = 2. If B =

(
0 −1
1 0

)
then B ∈ GL(2,R) and 4 is the

smallest positive integer such that B4 = I. Hence o(B) = 4.

Theorem 7.15. Let G be a group and a ∈ G. Then

(i) a and a−1 have the same order.

(ii) a and x−1ax have the same order for all x ∈ G.
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Proof: Let G be a group and a ∈ G. Then

(a−1)n = (an)−1 (7.12)

(i) Two cases arise

Case 1. o(a) is finite and o(a) = n. Then n is the smallest positive integer
such that

an = e (7.13)

If m is any positive integer

am = e

⇔ (am)−1 = e−1

⇔ (a−1)m = e (7.14)

⇔ o(a) = o(a−1) using (7.13)

Case 2. o(a) is infinite. Then am 6= e for any positive integer m. Using
(7.14) we get (a−1)m 6= e for every positive integer m, so that o(a−1) is
infinite.

(ii) Let x be any element of G and let b = x−1ax. Then bm = x−1amx for
every positive integer m (see problem 6.1). Thus bm = e ⇔ am = e so
that o(b) = o(a). Hence o(x−1ax) = o(a) for all x ∈ G.

The following theorem gives a criterion for two powers of an element of a group
to be equal in terms of its order.

Theorem 7.16. If G is a group and a ∈ G of order n, then

(i) ak = e⇔ n divides k.

(ii) ai = aj ⇔ n divides i− j.

Proof: o(a) = n ⇔ n is the smallest positive integer such that

an = e (7.15)

(i) Applying division algorithm to n and k, we can find integers q and r such
that k = nq + r, 0 ≤ r < n.
Now ak = anq+r = (an)qar ⇒ ak = ar using (7.15).

Thus ak = e ⇔ ar = e

⇔ r = 0 (since o(a) = n and 0 < r < n⇒ ar 6= 0)

Hence k = nq. Thus n divides k.

(ii) ai = aj ⇔ ai−j = e ⇔ n divides i− j using (i).

The next theorem gives an upper bound on the order of an element of a finite
group.

Theorem 7.17. In a finite group G each element is of finite order. In fact, the
order of an element is at most o(G).
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Proof: Let G be a finite group of order n, and let a ∈ G. Then a, a2, a3, a4, . . .
are all elements of G. Since G is finite, therefore all powers of a cannot be
distinct, so that for some integers r and s, ar = as. Without any loss of
generality we may assume r > s. Thus ar−s = e. Let k = r − s. Then
k ∈ Z+ such that ak = e, so that a has finite order ≤ k. If o(a) = m, then
a, a2, . . . , am−1, am(= e) are distinct elements of G and hence m ≤ o(G). This
gives that the order of any element of G is at most o(G).

Example 7.11. Consider the group (Z∗7,�7). Let us find the order of each
element of Z∗7.

22 = 4, 23 = 1 ⇒ o(2) = 3.
32 = 2, 33 = 6, 34 = 4, 35 = 5, 36 = 1 ⇒ o(3) = 6.
42 = 2, 43 = 1 ⇒ o(4) = 3.
52 = 4, 53 = 6, , 54 = 2, 55 = 3, 56 = 1 ⇒ o(5) = 6.
62 = 1 ⇒ o(6) = 2.

Thus o(6) = 2, o(2) = o(4) = 3, o(3) = o(5) = 6 and the identity 1 is of order
1.

Problem 7.9. If in a group G, x ∈ G such that o(x) = 6, find o(x2), o(x3), o(x4)
and o(x5).

Solution: Since o(x) = 6, therefore 6 is the smallest positive integer such that
x6 = e. Let us find the powers of x2. Now (x2)2 = x4 6= e, (x2)3 = x6 = e.
Hence o(x2) = 3.

Similarly (x3)2 = x6 = e so that o(x3) = 2; (x4)2 = x8 = x2 6= e, (x4)3 =
x12 = e ⇒ o(x4) = 3; (x5)2 = x10 6= e, (x5)3 = x15 = x3 6= e, (x5)4 = x20 =
x2 6= e, (x5)5 = x25 = x 6= e, (x5)6 = x30 = e ⇒ o(x5) = 6
Thus, we have obtained o(x2) = 3, o(x3) = 2, o(x4) = 3 and o(x5) = 6.

Practically we do not need to find all the powers of xk in order to find the
order of xk. Knowing the order of an element, can we find the order of any of
its power? This is answered in the following theorem.

Theorem 7.18. Let G be a group.

(a) If a is an element of G of finite order n, then

(i) o(am) = n
m , if m divides n.

(ii) o(am) = n, if m and n are coprime.

(iii) For any integer m such that 0 < m < n,

o(am) = lcm(m,n)
m = n

gcd(m,n) .

(b) If a is an element of infinite order then for all m ∈ Z \ {0} the element am

is also of infinite order.

Proof:

(a) o(a) = n⇒ n is the smallest positive integer such that

an = e (7.16)

(i) If m divides n, then n = mk, for some k ∈ Z+. Thus k = n
m . Now

(am)k = amk = an = e. If o(am) = p, then (am)p = e, so that
amp = e, By Theorem 7.16(i), n divides mp, i.e., mk divides mp so
that k divides p. Thus k is the smallest positive integer such that
(am)k = e. Hence o(am) = k = n

m .
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(ii) (am)n = amn = (an)m = em = e. Suppose that t is any positive
integer such that (am)t = e. Then amt = e. Using Theorem 7.16(i),
n divides mt. Now, n divides mt and m,n are coprime ⇒ n divides
t. Thus n is the smallest positive integer such that (am)n = e, so
that o(am) = n.

(iii) Let l = lcm(m,n). Then m and n both divide l so that l = mu, l = nv
for some integer u and v. Now (am)u = amu = al = anv = (an)v =
(e)v = e. Hence (am)u = e. Let k be a positive integer such that
(am)k = e. Then amk = e. By Theorem 7.16(i) n divides mk, i.e
mk is a multiple of n consequently mk is a multiple of l. Thus l
divides mk i.e mu divides mk. i.e u divides k. This gives that u is
the least positive integer such that (am)u = e, so that o(am) = u =
l
m = lcm(m,n)

m . Since mn = lcm(m,n)gcd(m,n).

Therefore lcm(m,n)
m = n

gcd(m,n) , so that o(am) = lcm(m,n)
m = n

gcd(m,n) .

(b) If a is of infinite order then

ak 6= e (7.17)

for any positive integer k. Let, if possible, am be of finite order, say t.
Then (am)t = e ⇒ amt = e which is a contradiction to (7.17). Hence our
assumption is wrong so that am is also of infinite order for every m ∈ Z∗.

Remark 7.3. In the above theorem (i) and (ii) are special case of (iii) when m
divides n then gcd(m,n) = m so (iii)⇒ (i) when m,n are coprime gcd(m,n) =
1 so (iii)⇒ (ii).

The above theorem is used often, so we give the equivalent version when the
group operation is addition.

Theorem 7.19. Let (G,+) be a group.

(a) If a ∈ G is of finite order n, then

(i) ma = 0 if and only if n divides m.

(ii) For l,m ∈ Z la = ma if and only if n divides l −m.

(iii) o(ma) = n
m , if m divides n.

(iv) o(ma) = n, if m and n are coprime.

(v) For any integer m such that 0 < m < n,

o(ma) = lcm(m,n)
m = n

gcd(m,n) .

(b) If a is an element of infinite order, then for all m ∈ Z \ {0},ma is also of
infinite order.

The use of the Theorem (7.18) is illustrated in the following examples.

Example 7.12. If G is a group and a ∈ G such that a12 = e, what can you say
about the order of a?
By the above theorem o(a) divides 12. Thus the possible order of a is 1, 2, 3, 4,
6 or 12.
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Example 7.13. Let G be a group and a ∈ G such that o(a) = 12. Let us find
the orders of a3, a5, a6, a7, a8, a9, a10 and a11.

Let n = o(a) ∴ n = 12 and a12 = e. Let m = 3. Since m divides n
∴ o(am) = n

m = 12
3 = 4. i.e, o(a3) = 4

Also 6 divides n ⇒ o(a6) = 12
6 = 2.

Since 5 is coprime to 12(= n),
∴ By (ii) of the above theorem o(a5) = n = 12. Similarly o(a7) = 12,

o(a11) = 12
Now o(a8) = 12

gcd(8,12) by (iii) of the theorem thus o(a8) = 12
4 = 3

∴ o(a8) = 3.
Similarly o(a9) = 4, o(a10) = 6. Thus aa11 = a11a = e ⇒ a11 = a−1.

But o(a−1) = o(a) so that o(a−1) = 12 i.e o(a11) = 12.

Example 7.14. In (Z30,⊕30), 30.1=0 and m.1 6= 0 for 1 ≤ m < 30.
So o(1) = 30. We find the order of a given element using Theorem 7.18.

o(ma) = o(a)
gcd(m,o(a)) = o(−ma). So for any m ∈ Z30

o(m) = o(1)
gcd(m,o(1)) = 30

gcd(m,30) = o(−m).

For instance o(2) = 30
gcd(2,30) = 30

2 = 15 = o(28).

Other elements of order 15 are k.2 where (k, o(2))=1. Thus k = 1, 2, 4, 7,
8, 11, 13, 14. Hence order of 2,4,8,14,16,22,26,28 is also 15.

Using Theorem 7.18 we can summarize the order of the elements of Z30 as
below:

Element Order
0 1
1, 7, 11, 13
29, 23,19, 17 30
2, 4, 8, 14
28, 26, 22, 16 15
3, 9, 27, 21 10
5, 25 6
6, 12, 24, 18 5
10, 20 3
15 2

7.7 Solved Problems

Problem 7.10. If G is a group and a ∈ G such that a24 = e, a12 6= e, a8 6= e
find the o(a).

Solution: Let o(a) = n. Since a24 = e, therefore n divides 24, by Theorem
7.16. Hence n = 1, 2, 3, 4, 6, 8, 12, 24, again by Theorem 7.16 Since a8 6= e,
therefore n 6= divisors of 8 i.e n 6= 1, 2, 4, 8. Similarly a12 6= e so that n 6=
1, 2, 3, 4, 6, 12. Thus the only possible value of n is 24 so that o(a) = 24.

Problem 7.11. Prove that an Abelian group with two elements of order 2 must
have a subgroup of order 4.

Solution: Let G be an Abelian group with two elements a, b of order 2. Then
a2 = e = b2 and a 6= e and b 6= e. Let H be a subgroup of G containing both
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a and b. Then H must contain ab and e. We assert that S = {e, a, b, ab} is a
subgroup of G of order 4. Clearly a 6= e, b 6= e. We prove that ab 6= e. For
ab = e ⇒ a2b = ae (pre-multiplying by a) ⇒ eb = a ⇒ b = a, a contradiction.
Similarly ab 6= a and ab 6= b, by using cancellation law. Thus S has 4 distinct
element. Since G is Abelian, so ab = ba. Multiplication table of S is

e a b ab
e e a b ab
a a e ab b
b b ab e a
ab ab b a e

Thus S is closed and every element of S has its inverse in S. Hence S is the
required subgroup of G of order 4.

Problem 7.12. Let G be a group and x, y ∈ G such that x 6= e, o(y) = 2, and
yxy−1 = x2. Find o(x).

Solution: Since o(y) = 2, ∴ y2 = e so that y = y−1. Also yxy−1 = x2 ⇒
yx = x2y. Now, x3 = x2x = x2ex = x2y2x = (x2y)yx = (yx)yx = (yx)(x2y) =
yx3y = yx3y−1 = (yxy−1)3 = (x2)3 = x6. Thus x3 = x6, so that x3 = e. Hence
o(x) = 1 or 3. Since x 6= e, therefore o(x) 6= 1, so that o(x) = 3.

Problem 7.13. Let G be an Abelian group and let T = {a ∈ G|o(a) is finite}.
Then T is a subgroup of G.

Solution: Clearly T is nonempty, as e ∈ T . Let a, b ∈ T . Let o(a) = m and
o(b) = n. Then am = e and bn = e. Now (ab)mn = amnbmn (as G is Abelian)
= (am)n(bn)m = e. Thus ab is of finite order so that ab ∈ T . If a ∈ T and
o(a) = m then since o(a) = o(a−1), therefore o(a−1) = m so that a−1 ∈ T .
Hence T is a subgroup of G.

The above subgroup T is a well known subgroup of G, called the Torsion
subgroup of G.

Remark 7.4. The above subset T fails to be a subgroup when G is non Abelian.
This is seen by the following example.

Example 7.15. Consider the group G = SL(2,R). Let A =

(
0 −1
1 0

)
, B =(

0 1
−1 −1

)
. Then A,B ∈ G and o(A) = 4, o(B) = 3. Then A,B ∈ T . Also

AB =

(
1 1
0 1

)
, (AB)n =

(
1 n
0 1

)
so that (AB)n 6= I for any n. Hence AB is

not of finite order so that AB /∈ T . Thus T is not a subgroup.

Problem 7.14. Find a group that contains elements a and b such that o(a) =
o(b) = 2 and

(i) o(ab) = 3

(ii) o(ab) = 4

(iii) o(ab) = 5
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Can you see any relationship between o(a), o(b), and o(ab)?

Solution:

(i) In D6 let a = M2, b = M1. Then ab = R1. Also M2
1 = R0 = M2

2 , so that
o(a) = o(b) = 2. R2

1 = R2, R3
1 = R0, so that o(R1) = 3. That is,

o(ab) = 3.

(ii) In D8 let a = H, b = D. Then ab = R1 o(a) = o(b) = 2. o(ab) = 4.

(iii) In D10, consider a = H3, b = H5 (where Hi denotes the reflection about the
line of symmetry through the ith vertex of the regular pentagon). Then
ab = H3H5 = R1. Now o(a) = 2, o(b) = 2, o(ab) = 5.

In general there is no relationship between the orders of a, b and ab. In fact
in D2n we can find elements a and b such that o(a) = o(b) = 2 and o(ab) = n.

Remark 7.5. The above situation arises only in non-Abelian groups. Can you
predict what happens in an Abelian group?

Problem 7.15. If G is a group and a ∈ G such that o(a) = 5, then prove that
C(a) = C(a3). Find an element a from some group such that o(a) = 6 and
C(a) 6= C(a3).

Solution: Since o(a) = 5, therefore a5 = e, so that a3 = a−2 clearly C(a) ⊆
C(a3) (see above remark). Let x ∈ C(a3). Then xa3 = a3x, so that xa−2 =
a−2x, that is

a2x = xa2 (7.18)

Now xa3 = a3x = a(a2x) = a(xa2) using (7.18). Thus xa3 = axa2, so that
xa = ax, i.e x ∈ C(a). Hence C(a3) ⊆ C(a), so that C(a) = C(a3).

Consider the group G = D12. o(R1) = 6. Let σ be the reflection about the
perpendicular bisector of the side joining the vertices 1 to 6 and the opposite
side. Then R3

1 = R3 σR3 = R3σ and σR1 6= R1σ, So σ ∈ C(R3) whereas
σ /∈ C(R1). Hence C(R1) 6= C(R3

1).

7.8 Exercise

1. Prove that the identity is the only element of order 1.

2. If a, b are two elements of a group G, prove that o(ab) = o(ba).
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3. Without actually computing the orders, explain why the two elements in
each of the following pairs of elements from (Z30, ⊕30), must have the
same order: {3, 27}, {12, 18}. Do the same for the following pairs of
elements from U(15) : {2, 8} and {7, 13}.

4. For each group in the following list, find the order of the group and the
order of each elements in the group. In each case how are the orders of
each of the elements related to the order of the group?

(i) (Z12,⊕12)

(ii) (U(20),�20)

(iii) Z∗3 × Z∗5 with respect to componentwise multiplication, where Z∗3 =
{1, 2}, Z∗5 = {1, 2, 3, 4}.

5. Let G be a group and x ∈ G. If x2 6= e and x6 = e, prove that x4 6= e and
x5 6= e. What can you say about the order of x?

6. If G is a group and x ∈ G such that o(x) = 9, find o(xk) for k = 2, 3, . . . , 8.

7. a is an element of the group G.

(i) If o(a5) = 12, what are the possibilities for o(a)?

(ii) If o(a4) = 12, what are the possibilities for o(a)?

8. For any positive integer n and any angle θ, show that in the group SL(2,R)(
cos θ − sin θ
sin θ cos θ

)n
=

(
cosnθ − sinnθ
sinnθ cosnθ

)
.

Use this formula to find the order of A =

(
cos 60◦ − sin 60◦

sin 60◦ cos 60◦

)
and

B =

(
cos(
√

2
◦
) − sin(

√
2
◦
)

sin(
√

2
◦
) cos(

√
2
◦
)

)
.

9. Consider the group SL(2,R) and A, B ∈ SL(2,R), where A =

(
0 −1
1 0

)
,

B =

(
0 1
−1 −1

)
. Find o(A), o(B) and o(AB). Does this answer surprise

you? Justify.

10. Consider

(
1 1
0 1

)
= A ∈ SL(2,R). what is the order of A? If we view A

as a member of SL(2,Zp) (where p is prime), what is the order of A?

11. If G is a group of finite order, prove that there exists a fixed positive
integer n such that an = e for all a ∈ G.
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7.9 Cyclic Subgroups

Consider the group (Z12,⊕12). If S = {0, 3} then S is not a subgroup of
Z12, because 3⊕12 3 = 6 /∈ S. Let us see how big a subgroup H of Z12 would it
have to be if it contained 3. H should contain the identity 0 and the inverse of
3, which is 9. Also it must contain 3⊕12 3 = 6. Thus, in addition to 3, 0, 6 and
9 should all belong to H. Given below is the multiplication table of {0, 3, 6, 9}:

⊕12 0 3 6 9
0 0 3 6 9
3 3 6 9 0
6 6 9 0 3
9 9 0 3 6

From the table we see that H = {0, 3, 6, 9} forms a subgroup of Z12. Hence
the smallest subgroup of Z12 containing 3 is H.

We now generalize this concept. Let G be a group and a ∈ G. Any subgroup
H of G containing a must contain aa, that is, a2; a2a that is a3 etc.... In general,
it must contain all positive, integral powers of a, that is, an for every positive
integer n. Also, a subgroup containing a must also contain a−1, and hence
by the above argument it must contain all powers of a−1, that is, a−m for all
positive integers m. In addition, it must contain aa−1 = e = a0, that is, the
identity element. Summarizing, we have shown that a subgroup of G containing
a must contain {an|n ∈ Z}. Thus we have the following result.

Theorem 7.20. Let G be a group and a ∈ G. Then H = {an|n ∈ Z} is a
subgroup of G and is the smallest subgroup of G which contains a. Moreover H
is Abelian.

Proof: Step 1 To prove that H is a subgroup of G we shall use the two step
test. Clearly a ∈ H, so that H is non-empty. Let ar, as ∈ H for some r, s ∈ Z.
Then aras = ar+s ∈ H, ∵ r + s ∈ Z. Thus, the product of two elements of H
is an element of H, so that H is closed under the group operation on G. Let
ar ∈ H, for some r ∈ Z, then −r ∈ Z, so that a−r ∈ H. Also ara−r = a0 = e,
so that (ar)−1 = a−r ∈ H. Hence H is a subgroup of G.

Step 2 We shall now prove that H is the smallest subgroup of G containing
a ∈ H. Let H1 be a subgroup of G such that a ∈ H1. Then every power of a
belongs to H1, as H1 is a group in its own right, i.e., an ∈ H1 for all n ∈ Z.
Hence H ⊆ H1. Thus H is the smallest subgroup of G containing a.

Step 3 Let x, y ∈ H then x = am, y = an for some m,n ∈ Z. This implies
that xy = aman = am+n = an+m = anam = yx. Thus H is Abelian.

In view of the above result we have the following definition of a subgroup
generated by an element of the group.

Definition 7.7. (Cyclic subgroup): Let G be a group and a ∈ G. Then
subgroup {an|n ∈ Z} of G is called the cyclic subgroup of G generated by a.

Cyclic subgroup generated by a is denoted by 〈a〉.

Remark 7.6. In view of the above definition and Theorem 7.20 we see that 〈a〉
is the smallest subgroup of G containing a. Thus 〈a〉 = {an|n ∈ Z}. In case of
additive notation 〈a〉 = {na|n ∈ Z}.
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Remark 7.7. From the definition it is clear that 〈a〉 = 〈a−1〉 as follows 〈a〉 =
{an|n ∈ Z} = {a−n|n ∈ Z} = {(a−1)n|n ∈ Z} = 〈a−1〉.

Example 7.16. Consider the group (Z4,⊕4). Thus Z4 = {0, 1, 2, 3}. If a ∈ Z4

then 〈a〉 = {na|n ∈ Z4}. Let us find the cyclic subgroups generated by the non
zero elements of Z4.
〈1〉 = {n⊕4 1| n ∈ Z} = {0, 1, 1⊕4 1, ...}

= {0, 1, 2, 3, 0, 1, ...} = {0, 1, 2, 3} using congruence modulo 4.
〈2〉 = {n⊕4 2| n ∈ Z} = {0, 2, 0, 2, ...} = {0, 2}
〈3〉 = {n⊕4 3| n ∈ Z} = {0, 3, 2, 1, 0, 3, 2, 1, ...} = {0, 1, 2, 3} = Z4.
Thus 〈1〉 = 〈3〉 = Z4.

Example 7.17. Consider the group (U(30),�30), where U(30) = {1, 7, 11, 13,
17, 19,
23, 29}. Then U(30) is a group of order 8. find the subgroup generated by 7.
〈a〉 = {an|n ∈ Z}
〈7〉 = {7n|n ∈ Z}

= {70, 71, 72, ..., 7−1, 7−2, ...}
= {1, 7, 72, ... , (7−1), (7−1)2, ...}
= {1, 7, 19, 13, ..., 13, (13)2, ...}
= {1, 7, 19, 13, ..., 13, 19, 7, 1, ...}
= {1, 7, 19, 13, ..., 13, 19, 7, 1, ...}
= {1, 7, 13, 19}.

Example 7.18. In (Z,+), find 〈5〉, the cyclic subgroup of Z generated by 5.
〈5〉 = {n · 5|n ∈ Z}

= {5n|n ∈ Z}
= all multiples of 5
= 5Z.

Remark 7.8. In (Z,+) the cyclic subgroup generated by n, i.e. 〈n〉 is nZ.

The following Theorem shows that if an element a of a group G is of finite
order n then 〈a〉 is a finite subgroup of G of order n.

Theorem 7.21. If G is any group and a ∈ G of order n then 〈a〉 is a subgroup
of order n. Moreover 〈a〉 = {e, a, a2, ..., an−1}.

Proof: Let a ∈ G be of order n. Then an = e. We know that 〈a〉 = {am|m ∈
Z}. Let S = {e, a, a2, ..., an−1}. Clearly S ⊆ 〈a〉. Let x ∈ 〈a〉. Then
x = am for some m ∈ Z. By division algorithm, there exists q, r ∈ Z such that
m = nq + r, 0 ≤ r < n.
Now am = anq+r, 0 ≤ r < n

= anqar

= (an)qar

= eqar

= ear

= ar ∈ S (∵ 0 ≤ r < n)
Hence x = am ∈ S so that 〈a〉 ⊆ S. Hence 〈a〉 = S. Clearly 〈a〉 is of order n, as
o(a) = n implies that all elements of S are distinct.

Remark 7.9. If G is an additive group and a ∈ G is of order m then 〈a〉 =
{na|0 ≤ n < m} = {0, a, 2a, ..., (m− 1)a}.



7.10. SOLVED PROBLEMS 255

Using the above theorem, we find all cyclic subgroups of some groups.

Example 7.19. Consider the group U(20). We find the order of each of its
elements and hence obtain the cyclic subgroups generated by them.
U(20) = {1, 3, 7, 9, 11, 13, 17, 19}.
32 = 9, 33 = 7, 34 = 1 ∴ o(3) = 4 and so 〈3〉 = {1, 3, 32, 33} =
{1, 3, 9, 7} = {1, 3, 7, 9}.
72 = 9, 73 = 3, 74 = 1 ∴ o(7) = 4 and so 〈7〉 = {1, 7, 72, 73} =
{1, 7, 9, 3} = {1, 3, 7, 9}.
92 = 1 ∴ o(9) = 2 and so 〈9〉 = {1, 9}.
Similarly o(11) = 2 and so 〈11〉 = {1, 11}.
o(13) = 4, and 〈13〉 = {1, 9, 13, i7}.
o(17) = 4, and 〈17〉 = {1, 9, 13, 17}.
o(19) = 2, and 〈19〉 = {1, 19}
Thus U(20) has 4 cyclic subgroups of order 4 and 3 cyclic subgroups of order 2.

Example 7.20. Find all cyclic subgroups of (Z10,⊕10).
Note that 〈a〉 = {na|n ∈ Z} = set of all integral multiples of a. Now Z10 =
{0, 1, 2, 3, ..., 9} is an additive group.
2 times 2 is 2⊕10 2 = 4, 3 times 2 is 2⊕10 2⊕10 2 = 6, 4 times 2 is 2⊕10 2⊕10

2 ⊕10 2 = 8, 5 times 2 is 2 ⊕10 2 ⊕10 2 ⊕10 2 ⊕10 2 = 0. Thus o(2) = 5 and
〈2〉 = {0, 2, 4, 6, 8}. Similarly o(3) = 10⇒ 〈3〉 has 10 elements⇒ 〈3〉 = Z10.
o(4) = 5, 〈4〉 = {4n(mod10)|0 ≤ n ≤ 4} = {0, 2, 4, 6, 8}
o(5) = 2, 〈5〉 = {5n(mod10)|n = 0, 1} = {0, 5}
o(6) = 5, 〈6〉 = {0, 2, 4, 6, 8}
o(7) = 10, 〈7〉 = Z10

o(8) = 5, 〈8〉 = {0, 2, 4, 6, 8}
o(9) = 10, 〈9〉 = Z10.

Example 7.21. In U(15) what are the orders of 〈2〉 and 〈11〉. Also write their
elements.
We know that 〈a〉 = {a, a2, a3, ..., an−1, an = e}, when o(a) = n. In
U(15), o(2) = 4 ∴ o(2) = 4 and 〈2〉 = {20 = 1, 2, 22, 23} = {1, 2, 4, 8}
and o(11) = 2 (∵ 112 ≡ 1mod15) and 〈11〉 = {1, 11}.

Example 7.22. We find the cyclic subgroup generated by A ∈ SL(2,R) where

A =

(
1 1
0 1

)
. We know that 〈A〉 = {An|n ∈ Z}. By induction it can be

proved that An =

(
1 n
0 1

)
for n ∈ N. Since An 6= I for any n ∈ N, so that

A is not of finite order. A−1 =

(
1 −1
0 1

)
, so that A−n =

(
1 −n
0 1

)
, so that

〈A〉 =
{(

1 n
0 1

)
|n ∈ Z

}
. Hence 〈A〉 is an infinite cyclic group.

7.10 Solved Problems

Problem 7.16. Let Q be the group of rational numbers under addition and let
Q∗ be the group of nonzero rational numbers under multiplication.

(i) In Q list the elements in 〈 12 〉.
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(ii) In Q∗ list the elements in 〈 12 〉.

(iii) Find the order of each element of Q.

(iv) Find the order of each element of Q∗.

Solution:

(i) In (Q,+) 〈 12 〉 = {n · 1
2 |n ∈ Z} = {...., − 1, − 1

2 , 0, 1
2 , 1, 3

2 , 2, ...}.

(ii) In (Q∗, ·), 〈 12 〉 = {( 1
2 )n : n ∈ Z} = {1, 1

2 , 2, 1
4 , 4, ...}.

(iii) 0 being the identity, order of 0 is 1. If a ∈ Q, a 6= 0 then there does not
exist any positive integer n, such that na = 0, so that o(a) is infinite.

(iv) o(1) = 1, 1 being the identity element in Q∗ . Also (−1)2 = 1 so that
o(−1) = 2. If a ∈ Q∗, a 6= ±1, an 6= 1 for any positive integer n. Hence a
is of infinite order. Thus -1 is of order 2 and all other elements different
from identity are of infinite order.

Problem 7.17. List the cyclic subgroups of U(30).

Solution: U(30) = {1, 7, 11, 13, 17, 19, 23, 29}
〈1〉 = {1}
〈7〉 = {7, 19, 13, 1} = {1, 7, 13, 19}
〈11〉 = {11, 1} = {1, 11}
〈13〉 = {13, 19, 7, 1} = {1, 7, 13, 19}
〈17〉 = {17, 19, 23, 1} = {1, , 17, 19, 23}
〈19〉 = {19, 1} = {1, 19}
〈23〉 = {23, 19, 17, 1} = {1, 17, 19, 23}
〈29〉 = {29, 1} = {1, 29}.

Thus the cyclic subgroups of U(30) are — 〈1〉, 〈11〉, 〈19〉, 〈29〉,
〈7〉 = 〈13〉, 〈17〉 = 〈23〉 as described above. There are 6 distinct cyclic
subgroups. Note that U(30) has 4 elements of order 4 but only 2 subgroups of
order 4.

Problem 7.18. Suppose G has exactly 8 element of order 3. How many sub-
group of order 3 does G have?

Solution: We assert that every subgroup H of order 3 contains exactly two
elements of order 3. For, let e 6= a ∈ H. If b = a2. Then b 6= e. Also
b2 = a4 = a 6= e. b3 = a6 = e. Thus o(b) = 3. Also 〈a〉 = {e, a, a2} = {e, a, b}.
Now 〈a〉 is a subgroup of order 3 containing exactly 2 elements of order 3. Since
〈a2〉 = {e, a, a2} ∴ 〈a〉 = 〈a2〉. Thus two distinct elements a and a2 of order 3
generate the same subgroup of order 3. Hence if there are 8 elements of order 3
then there are exactly 4 subgroups of order 3.

Problem 7.19. Find the smallest subgroup of Z containing both 8 and 12.

Solution: Let H and K be the smallest subgroups of Z containing 8, 12
respectively. Thus H = 〈8〉, K = 〈12〉. So H = {0, ±8, ±16, ±24, ±36, ...}
and K = {0, ± 12, ± 24, ± 36, ...}. Let L be the smallest subgroup of Z
containing both H and K. Thus L must contain 12−8 = 4. This is the smallest
positive element of L.

∴ 〈4〉 ⊆ L (7.19)
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Also 8 ∈ 〈4〉 ⇒ 〈8〉 ⊆ 〈4〉 and 12 ∈ 〈4〉 ⇒ 〈12〉 ⊆ 〈4〉 and consequently 〈4〉 is
a subgroup containing both H and K and so

L ⊆ 〈4〉 (7.20)

From (7.19) and (7.20) we get L = 〈4〉.

Problem 7.20. D8 has 7 cyclic subgroups. List them. Find a subgroup of D8

of order 4 which is not cyclic.

Solution: D8 = {R0, R1, R2, R3, H, V, D, D
′}

Clearly o(R0) = 1, o(R2) = o(H) = o(V ) = o(D) = o(D′) = 2 o(R1) =
o(R3) = 4, R2

1 = R2, R3
1 = R3, R

4
1 = R0

∴ 〈R1〉 = {R0, R1, R2, R3} similarly 〈R3〉 = {R0, R1, R2, R3}.
〈R2〉 = {R0, R2}
〈H〉 = {R0, H}
〈V 〉 = {R0, V }
〈D〉 = {R0, D}
〈D′〉 = {R0, D

′}
Also 〈R1〉 = 〈R3〉, 〈R0〉 = {R0}. Thus there are seven cyclic subgroups.
Also V4 = {R0, H, V, R2} is a non-cyclic subgroup of order 4. V4(Viergruppe)
is called Klein 4-group.

7.11 Exercise

1. List the elements of the subgroups 〈3〉 and 〈15〉 in (Z18,⊕18).

2. List the elements of 〈3〉 and 〈7〉 in U(20).

3. U(15) has six cyclic subgroups. List them.

4. In SL(2,R), find 〈A〉 where A =

(
1 −1
0 1

)
.

7.12 Lattice of Subgroups

We know that, in general, a group has subgroups, different from the trivial
subgroups. We will describe a diagram associated with a group representing the
relationship between its subgroups. This diagram, called the lattice of subgroups
of a group (or subgroup lattice) is a very good way of visualizing a group.
The structure of a group can certainly be seen in a better way than from the
multiplication table of the group. In a sense we can say that the subgroup lattice
gives a ‘family photo’ of the group.

The lattice of subgroups of a finite group G is constructed as follows:

1. Plot subgroups of G starting with 〈e〉 at the bottom and ending with G at
the top. Subgroup of larger order may be positioned higher on the page
than those of smaller order.

2. Draw a path upwards between subgroup using the following rule:

There will be a line segment upward from H to K if H < K and there
are no subgroups L such that H < L < K. Thus if H < K there is a
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path (possibly many path) upward from H to K passing through a chain
of intermediate subgroups. The initial positioning of the subgroups on
the page is somewhat arbitrary. With some adjustment we can produce a
simple diagram which is pleasing to the eye.

There is no unique way of drawing a diagram of a subgroup lattice . It
will be easy to draw a diagram of a subgroup lattice procedure outlined
below:

Working rule to draw a subgroup lattice:

Step 1 Find all the subgroups of the given finite group.

Step 2 Make all chains of subgroups starting from 〈e〉 and ending at G.

Step 3 Plot these chains with 〈e〉 at the bottommost position and G at the
topmost position.

Step 4 The common elements of the chain (i.e. those shared by 2 or more
chains) are written only once.

Step 5 We obtain the subgroup lattice of G. If needed minor positioning
adjustments may be done to get a beautiful look.

Example 7.23. We draw the subgroup lattice of (Z2,⊕2), Z2 = {0, 1}. It has
only two subgroups, namely 〈0〉 and Z2. Its subgroup lattice is

O

M

Example 7.24. We draw the subgroup lattice of (Z4,⊕4), Z4 = {0, 1, 2, 3}.
The subgroups of Z4 are H0 = {0}, H1 = {0, 2} = 〈2〉, Z4. The only chain is
H0 ⊆ H1 ⊆ Z4. The subgroup lattice is:

O

e

Example 7.25. We draw the subgroup lattice of (Z16,⊕16), Z16 = {0, 1, 2,
. . . , 15}. The subgroups of Z16 are H0 = 〈0〉, H2 = 〈2〉, H4 = 〈4〉, H8 = 〈8〉
and Z16 = 〈1〉. The only chain is 〈0〉 < 〈8〉 < 〈4〉 < 〈2〉 < 〈1〉.
The lattice of subgroups is:
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M

M

N

O

Q

U

Example 7.26. We draw the subgroup lattice of (pnZ,⊕pn) where p is a prime.
The subgroups of pnZ are 〈1〉, 〈p〉, 〈p2〉, ..., 〈pn−1〉, 〈pn〉 = 〈0〉. The only chain
is 〈0〉 < 〈pn−1〉 < ... < 〈p2〉 < 〈p〉 < 〈1〉 = pnZ. The subgroup lattice is:

〈1〉

〈p〉

...

〈Pn−1〉

〈0〉

Example 7.27. We draw the subgroup lattice of (Z18,⊕18) where Z18 = {0, 1,
2, ..., 17}. The subgroups of Z18 are obtained as follows:
Divisors of 18 are 1, 2, 3, 6, 9, 18. There is precisely one subgroup of each
order and it is generated by 〈0〉, 〈9〉, 〈6〉, 〈3〉, 〈2〉, 〈1〉 respectively. The chains
of subgroups are
〈0〉 < 〈6〉 < 〈2〉 < 〈1〉
〈0〉 < 〈6〉 < 〈3〉 < 〈1〉
〈0〉 < 〈9〉 < 〈3〉 < 〈1〉
Writing the chains vertically as follows:
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〈1〉 〈1〉 〈1〉

〈2〉 〈3〉 〈3〉

〈6〉 〈6〉 〈9〉

〈0〉 〈0〉 〈0〉
Writing the common elements, 〈0〉, 〈6〉, 〈3〉 and 〈1〉 only once we get the sub-
group lattice as shown.

OO
P

VS

M

N

Problem 7.21. Let S = {a, b, c, 1} with the following multiplication table:

1 a b c
1 1 a b c
a a 1 c b
b b c 1 a
c c b a 1

Draw the lattice diagram of S.
Solution: From the table we see that 1 is the identity element, and a2 = b2 =
c2 = 1. Thus subgroups of S are 〈1〉, 〈a〉, 〈b〉, 〈c〉, S. The chains are:

〈1〉 < 〈a〉 < S
〈1〉 < 〈b〉 < S
〈1〉 < 〈c〉 < S

The lattice diagram is
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p

~ Ä Å

N

Problem 7.22. Draw the subgroup lattice of (i) S3 (ii) D8.

Solution:

(i) S = {1, 2, 3}, S3 = {e, (1 2), (1 3), (2 3), (1 2 3), (1 3 2)}. Sub-
groups of S3 are: 〈(1 2)〉 = {e, (1 2)}, 〈(1 3)〉 = {e, (1 3)}, 〈(2 3)〉 =
{e, (2 3)}, 〈(1 2 3)〉 = {e, (1 2 3), (1 3 2)}

The chains are:
〈e〉 < 〈(1 2)〉 < S3

〈e〉 < 〈(1 3)〉 < S3

〈e〉 < 〈(2 3)〉 < S3

〈e〉 < 〈(1 2 3)〉 < S3

The lattice diagram is:

M

M

N

O

Q

U

pP

EN=PFEO=PF EN=O=PFEN=OF

É

(ii) D8 = {R0, R1, R2, R3, H, V, D, D
′} R0 is the identity element. The

subgroup of D8 are : 〈R0〉 <, 〈R1〉, 〈R2〉, 〈H〉, 〈R2〉, 〈H〉, 〈V 〉, 〈D〉, 〈D′〉
and see problem p75. Also chain are

〈R0〉 < 〈R2〉 < 〈R1〉 < D8

〈R0〉 < 〈H〉 < V4 < D8

〈R0〉 < 〈V 〉 < V4 < D8

〈R0〉 < 〈R2〉 < V4 < D8

〈R0〉 < 〈D〉 < K < D8

〈R0〉 < 〈D′〉 < K < D8

〈R0〉 < 〈R2〉 < K < D8
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writing the chains vertically,

aQ aQ aQaQaQ aQ aQ

oN sQ sQ sQ h h

oO

h

oO

oM

e s oO a a

oM oM oM oM oM oM

aQ aQ aQaQaQ aQ aQ

oN sQ sQ sQ h h

oO

h

oO

oM

e s oO a a

oM oM oM oM oM oM

The subgroup lattice is:

M

M

N

O

Q

U

pP

EN=PFEO=PF EN=O=PFEN=OF

É

aQ

oN

oO

oM

hsQ

ae

aQ

hsQ

s

aQ

oN

oO

oM

hsQ

ae

aQ

hsQ

s

7.13 Exercise

1. Draw the subgroup lattice of the following groups:
(i) Q8,the group of quaternions
(ii) (Z3,⊕3)
(iii) (Z9,⊕9)
(iv) (Z12,⊕12)
(v) D6, the dihedral group of order 6
(vi) (Z30,⊕30)
(vii) (U(12),�12)
(viii) (U(8),�8).
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7.14 Supplementary Exercises

1. State whether the following statements are true or false. Justify your an-
swer. Also correct the false statements.

(i) Every subset H of a group G is a subgroup under the binary
operation restricted to H.

(ii) Every group is a subgroup of itself.
(iii) Every set of numbers which is a group under addition is also a

group under multiplication.
(iv) There are groups in which cancellation laws do not hold.
(v) The identity element of a subgroup can be different from the

identity element of a group.
(vi) If H is a subgroup of G and a ∈ H then the inverses of a as

elements of H and G can be different.
(vii) The group of even integers, under addition is cyclic.
(viii) The cyclic group Z has a unique generator.
(ix) The set of all purely imaginary complex numbers is a subgroup

of the set of all non-zero complex numbers under multiplication.
(x) Every subgroup of an Abelian group is Abelian.
(xi) Every subgroup of a non Abelian group is non-Abelian.
(xii) Every element of a group generates a cyclic subgroup of the

group.
(xiii) Every non-Abelian group has at least one non-trivial Abelian

subgroup.
(xiv) If a and b are elements of finite order in a group G such that

ab = ba, then ab is also of finite order.
(xv) In a group G if a and b are elements of G which commute, such

that, o(a) = 3, o(b) = 4 then the order of ab is 12.
(xvi) In a group G if a and b are elements of G which commute, such

that o(a) = m, o(b) = n then o(ab) is mn.
(xvii) An element of a group of finite order may have infinite order.
(xviii) A subset H of a finite group G is a subgroup if H is closed.
(xix) The set of all complex numbers which lie on the circumference

of a circle centered at the origin and radius 2 is a subgroup of
multiplicative group C∗.

(xx) A group of order 8 cannot have a subgroup of order 6.
(xxi) The dihedral group Dn of symmetries of a regular polygon

of n sides has order n, for n ≥ 3.
(xxii) Every proper subgroup of the group of quaternions is Abelian.
(xxiii) Every dihedral group D2n for n ≥ 3, is non-Abelian.
(xxiv) Every dihedral group D2n, for n ≥ 3 has a cyclic subgroup of

order n.
(xxv) D8 has 4 cyclic subgroups of order 2 and one cyclic subgroup of

order 4.

2. Let G be a group and let S be the set of all subgroups of G. On S, define
a relation ∼ as follows: A ∼ B if A is a subgroup of B. Is this relation an
equivalence relation? Justify you answer.

3. Let G be a group and n be a fixed positive integer. Let Gn = {gn : g ∈ G}.
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Prove or disprove that Gn is a subgroup of G.

4. A and B are subsets of a group G. Prove that

(i) C(A ∪B) = C(A) ∩ C(B).

(ii) C(A) ∪ C(B) ⊆ C(A ∩B).

5. For any subset A of a group G, obtain a containment relationship between
the centre of G, centralizer of A and the normalizer of A.

6. Find the centre of the quaternion group Q8.

7. Find a cyclic subgroup of order 4 in U(40).

8. Find a non-cyclic subgroup of order 4 in U(40).

9. Let G be an Abelian group and p any prime number. Show that the set
of all elements of G whose orders are powers of p, is a subgroup of G.

10. Give an example of a group which is not cyclic, but its every proper
subgroup is cyclic.

11. Let G = GL(3,Q). Let H = {A ∈ G : |A| is an integral power of 3}. Show
that H is a subgroup of G.

12. List the elements of the subgroups 〈20〉 and 〈10〉 in (Z30,⊕30).

13. If a group has exactly 4 elements of order 4, then how many subgroups of
order 4 are there?

14. Find all cyclic subgroups of the group G. Is there a proper subgroup of G
which is not cyclic, where

(i) G = D6?

(ii) G = D8?

(iii) G = Q8?

15. Let G be a finite group with at least 2 elements. Show that G has an
element of prime order.

16. For any element a in a group G, prove that 〈a〉 is a subgroup of C(a).

17. In a group G, if a is the only element of order 2, then prove that a lies in
the center of G.

18. Prove that every non-Abelian group has at least two non-trivial Abelian
subgroups.

19. G is a group and a, b ∈ G such that ab = ba. Prove that 〈b〉 ⊆ C(a).

20. In a group, for any x ∈ G, prove that 〈x〉 6 NG(〈x〉). Further show that
equality need not hold.
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7.15 Answers to Exercises

Exercise - 7.3

1. If H = φ, no such a exists.

2. (i), (iii), (v), (vi) are Yes; (ii), (iv) are No.

4. H1 is a subgroup. H2 is not closed so not a subgroup.

5. (i) V4 is an Abelian subgroup of non-Abelian group D8. {±1, ± i} is a finite
subgroup of (C∗, .).

9. H is not a subgroup of U(20) ∵ 7 ∈ H but 7�20 7 = 9 /∈ H.

10. H1, H3 are subgroups.

H2 is not a subgroup as

{(
2 0
0 3

)}
does not have an inverse.

H4 is not a subgroup as

{(
2 1
0 3

)}
does not have an inverse.

11. H is not a subgroup as 2 + 3i,−3− 2i ∈ H but their sum −1 + i is not in
H.

Exercise - 7.5

3. {±1,±i}, Z(G) = {±1}

4. No, In the group of Quaternions Q8, if A = {i, j}, B = {i, k} then
C(A) = C(B) but A 6= B.

6. C(A) =

{(
a b
0 a

)
: a, b ∈ R

}
, C(B) =

{(
a b
b a

)
: a, b ∈ R

}
.

7. {R0, R2}

9. G

12. Z(G) ⊆ C(A) ⊆ N(A)

Exercise - 7.8

2. Hint: ab = b−1(ba)b.

3. The elements in the pair are inverses of each other.

5. o(x) = 3 or 6.

6. o(x2) = o(x4) = o(x5) = o(x7) = o(x8) = 9, o(x3) = o(x6) = 3.

7. Hint: if o(a) = n, then o(am) = n
gcd(m,n)

(i) o(a) = 12 or 60.

(ii) o(a) = 48.
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8. o(A) = 6 Bn =

(
cos(n

√
2) − sin(n

√
2)

sin(n
√

2) cos(n
√

2)

)
= I when n

√
2 = 360◦. But no

such n exists. Hence o(B) is infinite.

9. o(A) = 4, o(B) = 3, (AB)n =

(
1 n
0 1

)
so that AB is of infinite order. A,B

are of finite orders but AB is of infinite order.

10. An =

(
1 n
0 1

)
: In SL(2,R) o(A) is infinite. In SL(2,Zp), o(A) = p.

11. n = product of the orders of the elements of G.

Exercise - 7.11

1. 〈3〉 = {0, 3, 6, 9, 12, 15} = 〈15〉.

2. 〈3〉 = {1, 3, 9, 7} = 〈7〉.

3. 〈1〉; 〈4〉; 〈11〉; 〈14〉; 〈2〉 = 〈8〉; 〈7〉 = 〈13〉.

5. 〈A〉 =

{(
1 n
0 1

)
: n ∈ Z

}
.

Exercise - 7.13

(i)
=nU

=JN

=nU

á à â

=JN

==N

á à

=JN=JN

==N
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(ii)

òP

M

(iii)

wV

P

M

wV

P

M

(iv)

wNO

Q

O P

S

M
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(v)

6

R

(vi)

N

O P R

NRNM

M

S

(vii)

rENOF

R

N

T NN



7.15. ANSWERS TO EXERCISES 269

(viii)

U

3 7

Supplementary Exercise - 7.14

1.
(i) H should be a group.
(ii) T
(iii) F, (Z,+) is a group but (Z, ·) is not.
(iv) F, cancellation laws always hold in a group.
(v) F, they are same.
(vi) F, they are same.
(vii) T
(viii) F, it has 2 generators ±1.
(ix) F, i2 is not pure imaginary.
(x) T
(xi) F, subgroup of a non-Abelian group may be Abelian. Set of all

2×2 scalar matrices over R is an Abelian subgroup of non-Abelian
group GL(2,R).

(xii) T
(xiii) T
(xiv) T
(xv) T
(xvi) F, o(ab) = lcm of m and n.
(xvii) F, every element is of finite order.
(xviii) F, H should be non-empty.

(xix) F, |Z1| = 2, |Z2| = 2, then |Z1Z2| = 4 6= 2.
(xx) T
(xxi) T
(xxii) T
(xxiii) T
(xxiv) T
(xxv) F, 5 of order 2.

2. No, it is not symmetric. It is reflexive and transitive.

3. Gn is not a group, D6 is a group but D3
6 is not a subgroup of D6. If G is

Abelian Gn in a group.

5. Z(G) ⊆ C(A) ⊆ N(A)
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6. {1,−1}

7. 〈3〉

8. Hint: A non-cyclic subgroup of order 4 in U(40) must be of the form
{e, a, b, ab} such that o(a) = o(b) = 2. It is {1, 9, 11, 19}.

10. V4. Q8.

12. {0, 10, 20} = 〈20〉 = 〈10〉

13. Hint: If o(a) = 4, then o(a3) = 4 ∴ 〈a〉 = 〈a3〉. Number of subgroups of
order 4 = 1

2 (Number of elements of order 4) = 2.

14. (i) 〈R0〉, 〈R1〉, 〈M1〉, 〈M2〉, 〈M3〉. No proper subgroup is non-cyclic.
(ii)〈R0〉, 〈R1〉, 〈R2〉, 〈H〉, 〈V 〉, 〈D〉, 〈D′〉, V4 = {R0, H, V,R2},
K = {R0, D,D

′, R2} are non-cyclic subgroups of D8.
(iii)〈1〉, 〈−1〉, 〈i〉, 〈j〉, 〈k〉. No.

15. Hint: Let e 6= a ∈ G and o(a) = n. Then there exists a prime p which
divides n. Let m = n

p . Then o(am) = p.

17. Hint: o(xax−1) = o(a) ∀x ∈ G.

18. Hint: e 6= a ∈ G, 〈a〉 is Abelian, G non-Abelian ⇒ 〈a〉 6= G ∃ b ∈ G ∼
D ∼ 〈a〉. Then 〈b〉 is also Abelian.

20. G = Q8, x = i.



Chapter 8

Cyclic Groups

In the previous chapter we have defined a cyclic subgroup of a group.
Recall that if a is an element of a group G, then {an|n ∈ Z} is a subgroup of
G, called the cyclic subgroup of G generated by a and is written as 〈a〉. In this
chapter we shall study cyclic groups and their properties.

8.1 Definition and Examples

Definition 8.1. A group G is said to be cyclic if there exists some a ∈ G such
that 〈a〉, the subgroup generated by a is whole of G. The element a is called a
generator of G or G is said to be generated by a.
Thus G = 〈a〉 = {an|n ∈ Z}. If the binary operation is addition, then G = 〈a〉 =
{na|n ∈ Z}.

Remark 8.1. If G is a finite cyclic group of order n, generated by a, then
G = {a, a2, a3, a4, . . . , an−1, an = e}.

An immediate consequences of the definition.

Theorem 8.1. Every cyclic group is Abelian.

Proof: Follows from Theorem 7.20.

Example 8.1. Let G = {1,−1}, then G is a group with respect to multiplication.

Since (−1)n =

{
−1 if n is odd
1 if n is even

Therefore 〈−1〉 = {(−1)n|n ∈ Z} = {−1, 1} = G.
Hence G is a finite cyclic group of order 2.

Example 8.2. Consider the group (Z,+). We show that Z is an infinite cyclic
group. 〈1〉 = {n1|n ∈ Z} = Z. Since n1 6= 0 for any n ∈ Z, therefore 〈1〉 is
infinite. Since additive inverse of 1 is −1, therefore 〈−1〉 = 〈1〉. Hence Z =
〈1〉 = 〈−1〉. Thus Z is a cyclic group having at least two generators 1 and −1.
It is an infinite cyclic group.

271
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Let us recall. “If G is a group and a ∈ G such that o(a) = n, then 〈a〉 is a
finite subgroup of G of order n.” Thus we have the following theorem:

Theorem 8.2. Let G be a finite group of order n, then G = 〈a〉 for some a ∈ G
if and only if a is of order n. Further, if o(a) = n then G = 〈a〉.

Proof: Given o(G) = n. Let G be a cyclic group and G = 〈a〉 for some a ∈ G.
Then, o(G) = o(〈a〉) = o(a). Hence o(a) = n.

Conversely, suppose that o(a) = n, and H = 〈a〉. Then H is a cyclic subgroup
of G of order n. Also H ⊆ G, since G is finite and o(H) = o(G), we get H = G.
Hence G = 〈a〉, so that G is cyclic.

The above theorem tells us that in a finite group of order n, every element
of order n is a generator of the group. But this is not the case if the group is
not finite, i.e, in an infinite cyclic group, every element of infinite order may not
be its generator. This is shown by the following example.

Example 8.3. Consider the group (Z,+). Then Z = 〈1〉 = 〈−1〉. Thus Z is an
infinite cyclic group. Observe that 2 ∈ Z is of infinite order, as 2n 6= 0 for any
n ∈ N. Further,

〈2〉 = {2z : z ∈ Z}
= Set of even integers

6= Z

Thus 2 is not a generator of Z.

The condition of finiteness is also important in another sense. If G is an
infinite group and G has an element of infinite order, still G may fail to be
cyclic. This is shown in the following example.

Example 8.4. Consider the group (Q,+). Q is an infinite group. We assert
that it is not cyclic. Let if possible Q be cyclic and be generated by p

q , where

(p, q) = 1. Without any loss of generality, we can take p
q to be positive, such

that Q = 〈pq 〉 = {n(pq ) : n ∈ Z}. Now 3
2 (pq ) ∈ Q. 3

2 (pq ) 6= k (pq ) for any k ∈ Z.
Therefore 3

2 (pq ) /∈ 〈pq 〉. Hence Q is not a cyclic group.

We shall now give some examples of cyclic group.

Example 8.5. Consider the group (Z6,⊕6).
Here Z6 = {0, 1, 2, 3, 4, 5}. 1 ∈ Z6 is such that, o(1) = 6.

∴ 〈1〉 = {n.1(mod6)|n ∈ Z}
= {n1|n = 0, 1, 2, 3, 4, 5}
= {1, 2, 3, 4, 5, 0}
= Z6.

Thus Z6 is a cyclic group.

Example 8.6. Consider the group (Zn,⊕n).
Here Zn = {0, 1, 2, . . . , n− 1}. Since 1 + 1 + 1 + · · ·n times = 0, therefore order
of 1 in Zn = n. Hence Zn = 〈1〉, so that Zn is cyclic.
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Example 8.7. Group of cube roots of unity.
In particular, for n = 3, G = {1, ω, ω2} where ω = cos 2π

3 + i sin 2π
3 , is a cyclic

group generated by ω. In fact it is also generated by ω2, because ω−1 = ω2. Thus
G = 〈ω〉 = 〈ω2〉

Example 8.8. Group of 4th roots of unity. For n = 4, G = {±1,±i} and G =
〈i〉 = 〈−i〉 = {i, i2 = −1, i3 = −i, i4 = 1} = G.

Example 8.9. Group of nth roots of unity is a cyclic group.
If G = {cos 2kπ

n + i sin 2kπ
n |k = 0, 1, 2, 3, . . . , n − 1}, then G is a multiplication

group of nth roots of unity. We shall show that G is cyclic.
Let a = cos 2π

n + i sin 2π
n , then a ∈ G. Also, by De Moivre’s Theorem:

ak = (cos 2π
n + i sin 2π

n )k = cos 2kπ
n + i sin 2kπ

n , for k = 1, 2, . . . n− 1.
Thus G = {a, a2, a3, . . . , an−1, an = 1} = 〈a〉. Hence G is a cyclic group gener-
ated by a.

Example 8.10. Consider the group U(14) under multiplication modulo 14, then
U(14) = {1, 3, 5, 9, 11, 13}. Observe that
32 = 9, 33 = 13, 34 = 11, 35 = 5, 36 = 1.
Therefore order of 3 is 6. Since 6 =o(U(14)) we get U(14) = 〈3〉. Thus U(14)
is a cyclic group.

However, in general U(n) is not cyclic as can be seen from the following
example.

Example 8.11. Consider the group U(8) under multiplication modulo 8. We
know that
U(8) = {1, 3, 5, 7}. Thus o(U(8)) = 4.
If U(8) were to be a cyclic group, it would have an element of order 4. But none
of the elements is of order 4 as o(1) = 1, o(3) = o(5) = o(7) = 2. Thus U(8) is
not a cyclic group.

Example 8.12. Show that U(20) 6= 〈k〉 for any k in U(20) and hence deduce
that U(20) is not cyclic. We find that
U(20) = {1, 3, 7, 9, 11, 13, 17, 19}.
o(U(20)) = 8.
o(1) = 1, o(3) = 4, o(7) = 4, o(9) = 2, o(11) = 2, o(13) = 4, o(17) = 4, o(19) = 2.
Thus none of the elements of U(20) is of order 8. Hence U(20) is not a cyclic
group. Thus U(20) 6= 〈k〉 for any k ∈ U(20).

8.2 Description of Cyclic Groups

We now describe cyclic groups with regards to the number of elements it
has, i.e. whether it is finite or infinite. The following theorem gives a complete
description of cyclic groups, in terms of the order of the group or the order of
its generator.

Theorem 8.3. Let G be a cyclic group generated by a, then
(i) G is infinite if and only if a is of infinite order, then G = {an|n ∈ Z}
(ii) G is of finite order n if and only if o(a) = n, and

G = {a, a2, . . . , an−1, an = e}.
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Proof: Let G = 〈a〉. Then
(i) G is infinite ⇔ For every positive integer n, an 6= e⇔ a is of infinite order.
(ii) Follows from Theorem 7.21.

Remark 8.2. If G is a cyclic group of order n, and b is any element of G of
order n, then G = 〈b〉.

If a has infinite order, then multiplication in 〈a〉 works in the same way as
addition in Z, because ai.aj = ai+j for all i, j ∈ Z. If a has finite order n, then
the elements of 〈a〉 are multiplied by adding the powers of a modulo n, that is,
aiaj = ai⊕nj .
For these reasons, there are essentially two cyclic groups Z and Zn. What is
meant by this is that, although there may be different sets {an|n ∈ Z}, there is
only one way to operate on these sets, depending upon the order of a. Algebraists
do not really care what the elements of a set are; they care only about the way
the elements of the set can be combined.

Example 8.13. Consider the set G of rotations of a regular n-gon, then
G = {R0, R1, R2, . . . , Rn−1} where Rk is the rotation through an angle of 2kπ

n .

Then Rk = Rk1 so that G = {R1, R
2
1, . . . , R

n−1
1 , Rn1 = R0}. Hence G is a cyclic

group of order n. In fact, RkRl = Rm, where m = k ⊕n l. Essentially we can
say that G is nothing but the group (Zn,⊕n).

Example 8.14. If G is the cyclic group of nth roots of unity .Then G = 〈a〉,
where a = cos 2π

n +i sin 2π
n and aras = ar⊕ns Thus G is also essentially (Zn,⊕n).

Example 8.15. Let m be a fixed positive integer, then (mZ,+) is a group.
mZ = {mz|z ∈ Z} = 〈m〉. Hence it is a cyclic group. If x, y ∈ mZ, then
x = mi, y = mj for some i, j ∈ Z. We get x+ y = mi+mj = m(i+ j), so the
operation in mZ works in the same way as the operation in Z.

Example 8.16. Let H = 〈A〉 where A =

(
1 1
0 1

)
.

Then H = {A0, A±1, A±2, . . .} = {I, A±1, A±2, . . .}. Since An =

(
1 n
0 1

)
,

∴ H =

{(
1 n
0 1

)
|n ∈ Z

}
.

If M,N ∈ H, where M =

(
1 m
0 1

)
, N =

(
1 n
0 1

)
, then M = Am, N =

An and

MN =

(
1 m+ n
0 1

)
= Am+n.

Thus the multiplication operation in H is similar to addition in Z. Hence we
can say that H and Z behave in the same way in some sense.

Problem 8.1. Consider the set S = {4, 8, 12, 16}. Show that (S,�20) is a group
by constructing its multiplication table. What is the identity element? Is this
group cyclic?
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Solution: The multiplication table is

�20 4 8 12 16
4 16 12 8 4
8 12 4 16 8
12 8 16 4 12
16 4 8 12 16

The table shows that 16 is the identity element, and (S,�20) is a group.Observe
that 42 = 16, 82 = 4, 83 = 12, 84 = 16. Since 8 is an element of order 4 = o(S),
therefore S = 〈8〉, so that S is cyclic of order 4 and 8 is its generator.

Problem 8.2. Prove that U(2n) for n ≥ 3 is not cyclic.

Solution: Step 1

U(2n) = {k ∈ N |k is odd , k < 2n}
= {1, 3, 5, . . . , 2n − 1}

Therefore o(U(2n)) =
1

2
× 2n = 2n−1.

If U(2n) is cyclic, then it must contain an element of order 2n−1. Suppose
x ∈ U(2n) is an element of order 2n−1, then xk 6= 1 mod 2n for any k < 2n−1.

Step 2 We prove that for every odd integer a, a2n−2 ≡ 1 mod 2n for n ≥ 3.
This result will be proved by induction on n.
For n = 3, we need to prove that a2 ≡ 1 mod 8.
Since a is odd, say a = 2k − 1 for some k ∈ N, then

a2 − 1 = (2k − 1)2 − 1

= 4k(k − 1)

= 8
k(k − 1)

2
(8.1)

≡ 0 mod 8 (since
k(k − 1)

2
∈ Z ∀k ∈ N)

∴ a2 ≡ 1 (mod 8).

Thus the result holds true for n = 3.
Now let us assume that the result holds for n = k ≥ 3, that is a2k−2 ≡ 1 mod 2k.
Hence, observe that

a2k−2

− 1 = 2k m forsome m ∈ Z. (8.2)

a2(k+1)−2

− 1 = a2k−1

− 1

= (a2k−2

− 1)(a2k−2

+ 1)

= 2km(a2k−2

+ 1)

= 2km2l

Since a odd ⇒ a2k−2

+ 1 is even ⇒ a2k−2

+ 1 = 2l for some l ∈ Z.
Thus

a2(k+1)−2

− 1 = 2k+1lm

a2(k+1)−2

≡ 1 mod 2k+1.
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Hence the result holds for n = k + 1. By the principle of induction we have

a2n−2

≡ 1 mod 2n for n ≥ 3.

∴ o(a)|2n−2 ⇒ o(a) < 2n−1. U(2n) has no elements of order2n−1. Thus U(2n)
is not cyclic for any n ≥ 3.

8.3 Exercise

1. Prove that a non Abelian group cannot be cyclic.

2. Let S = {3, 6, 9, 12}. Show that (S,�15) is a group by constructing its
multiplication table. Is it cyclic? What are the generators?

3. Let S = {7, 35, 49, 77}. Show that (S,�84) is a group by constructing the
multiplication table. What is the identity element? Is the group cyclic?
If Yes, find its generators.

4. If a cyclic group has an element of infinite order, how many elements
(other than identity) of finite order does it have?

5. Show that the group of positive rational numbers under multiplication is
not cyclic.

6. Which of the groups U(n) for n = 7, 10, 13, 14, 15, 16 are cyclic?

7. Prove that{(
1 m
0 1

)
: m ∈ Z

}
is a cyclic group.

8. Prove that V4 = {e, a, b, ab} where a2 = b2 = e, ab = ba is not cyclic.

8.4 Generators of a Cyclic Group

It was observed in the previous section, that a cyclic group can be generated
by more than one of its elements. Can we find all the generators of a cyclic
group without finding the order of the elements? Moreover without finding the
generators as such, is it possible to know how many generators a given cyclic
group can have? This is precisely our object of study in this chapter.

Theorem 8.4. (Generators of an infinite cyclic group) An infinite cyclic group
generated by a has precisely two generators namely a and a−1.

Proof: Let G = 〈a〉 be an infinite cyclic group, then a is of infinite order by
Theorem 8.3. If G = 〈ak〉 for some k ∈ Z, then a ∈ G
⇒ a = (ak)m, for some m ∈ Z.
⇒ a = akm

⇒ km = 1
⇒ k = m = 1 or k = m = −1. (Since k,m ∈ Z)
Thus the only generators of G are a and a−1.
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If G is an additive infinite cyclic group, then the above theorem reads as:

Theorem 8.5. An infinite additive cyclic group generated by a has precisely
two generators a and −a.

Theorem 8.6. (Generators of a finite cyclic group) Let G be a cyclic group of
order n generated by a ∈ G, then ak ∈ G is a generator of G if and only if k
and n are coprime.

Proof: G = 〈a〉 and o(G) = n. Suppose that ak is a generator of G, then
G = 〈ak〉 ={(ak)0 = e, ak, (ak)2, · · · , (ak)n−1}. Since a ∈ G, a = (ak)m for some
m = 0, 1, 2, . . . , n − 1. But then a = akm implies that n divides km − 1, i.e.,
km− 1 = nq for some q ∈ Z or that km+ (−q)n = 1.
Hence k and n are coprime. We shall prove that 〈ak〉 = G. Since k and n are
coprime, therefore there exists integers m and t such that kt + mn = 1, then
a = a1 = akt+mn = akt(an)m = (akt)e = (ak)t. Thus a and so every power of a
can be expressed as a power of ak. Hence every element of G can be expressed
as a power of ak. Thus G = 〈ak〉.

Let us recall the definition of Euler φ function.

Definition 8.2. If n is a natural number, then we define φ(1) = 1, and for
n > 1,
φ(n)= number of positive integers less than n and coprime to n.

Thus we see
φ(2) = o({1}) = 1, φ(3) = o({1, 2}) = 2, φ(4) = o({1, 3}) = 2.
(i) φ(p) = p− 1, if p is prime.
(ii) o(U(n)) = φ(n), for n > 1.

Thus the above theorem can be restated as:
“The number of generators of a finite cyclic group 〈a〉 of order n is φ(n) and

the generators are ak, where k ∈ U(n).” The beauty of this result lies in the
fact that by knowing the order of a finite cyclic group, we can find the number
of generators.

Theorem 8.7. Let (G,+) be a cyclic group of order n generated by a ∈ G, then
ka ∈ G is a generator of G if and only if k and n are coprime.

This theorem helps us to find all the generators of Zn. Using the fact that
Zn is a cyclic group of order n, generated by 1 under addition modulo n, we get

Corollary 8.8. An integer k ∈ Zn is a generator of Zn if and only if gcd(k, n) =
1.

Remark 8.3. The generators of Zn are precisely the elements of U(n).

Example 8.17. What are all the generators of (Z8,⊕8). If k is a generator of
Z8, then gcd(k, 8) = 1. Thus the generators are 1, 3, 5 and 7.
Note that these precisely are all the elements of U(8). Similarly, the generators of
(Z20,⊕20) precisely are also all the elements of U(20) namely 1, 3,7,9,11,13,17,19.

Example 8.18. Let G be a cyclic group of order 12 generated by a. What are
all the generators of G? Here G = 〈a〉, o(G) = 12. Thus o(a) = 12. Now ak is
a generator of G iff (k, 12) = 1, 1 ≤ k < 12, therefore k = 1, 5, 7, 11. Hence the
generators of G are a, a5, a7, a11.
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Problem 8.3. Let S = {4, 8, 12, 16}. Prove that (S,�20) is a cyclic group and
find all its generators.

Solution: We know that (S,�20) is a cyclic group and S = 〈8〉 has been proved
in an earlier problem. We shall find all the generators of S. Since o(S) = 4, by
Theorem 8.6 8k is a generator of S, iff (k, 4) = 1. Hence k = 1, 3. Hence the
generators of S are 81, 83, i.e. 8, 12.

Problem 8.4. Consider the group (〈a〉,⊕12) with a = 2. Then 〈2〉 = {0, 2, 4, 6,
8, 10}, so that 〈2〉 is a group of order 6. What are all the generators of 〈2〉 ?

Solution: The other generators are ka where gcd(k, 6) = 1. Thus k = 5.
〈5a〉 = 〈10〉 = {0, 10, 8, 6, 4, 2} = {0, 2, 4, 6, 8, 10} = 〈2〉. Thus 2 and 10 are the
only generators of 〈2〉.

Problem 8.5. If G is a finite cyclic group with more than 1 element then G
must have an element of prime order.

Solution: Let G = 〈a〉 and let o(a) = n. Let p be a prime such that p divides
n, then n = pk for some positive integer k. Let x = ak. Then x ∈ G and xp = e.
o(x)|p ⇒ o(x) = 1 or p. But o(x) = 1 ⇒ ak = e. But ak 6= e for k < n.
∴ o(x) = p. Hence G has an element of order p.

Problem 8.6. Find the number of generators and all the generators of
(9Z24,⊕24).

Solution: Observe that 9Z24 = {0, 9, 18, 3, 12, 21, 6, 15} = {0, 3, 6, 9, 12, 15,
18, 21}. Thus (9Z24,⊕24) is a group of order 8, and o(9) = 8. Thus (9Z24 = 〈9〉.
The number of generators = o(U(8)) = φ(8) = o({1, 3, 5, 7}) = 4.
The generators are 9k (mod24)|k ∈ U(8) ie. 9, 27 (mod24), 45 (mod24),
63 (mod24) ie. 9, 3, 21, 15.

Problem 8.7. Show that U(14) is cyclic. Find all the generators.

Solution: U(14) = {1, 3, 5, 9, 11, 13}, o(U(14)) = 6
Verify that U(14) = 〈3〉. Thus U(14) is a cyclic group of order 6, with 3 as a
generator. The number of generators = φ(6) = o(U(6)) = O{1, 5} = 2. The
generators are 3k where k ∈ U(6) i.e. 31, 35 mod14, i.e. 3, 5.

8.5 Exercise

1. Find all the generators of Z.

2. Find all the generators of (Z10,⊕10).

3. If a is an element of infinite order of a group G, then how many generators
does 〈a〉 have? What are they?

4. Find the number of generators and all the generators of the following cyclic
groups.
(i) (4Z10,⊕10)
(ii) (2Z12,⊕12)
(iii) (6Z20,⊕20)
(iv) (3Z24,⊕24)
(v) (5Z35,⊕35)
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5. Find the number of generators and all the generators of the following cyclic
groups.
(i) U(5)
(ii) U(9)
(iii) U(10)
(iv) U(18)
(v) U(22)
(vi) U(25)

6. If G = 〈x〉 is a cyclic group of order n. Find the number of generators and
all the generators of G, when
(i) x = a, n = 8
(ii) x = b, n = 20

7. If G is a finite group of order > 1, then G has an element of prime order.

8. Prove that Zn has an even number of generators if n > 2.

9. Let G be a cyclic group of order 105. Find all generators of subgroups of
order
(i) 15 (ii) 21 (iii) 35.

10. On a circular track there are 20 stations numbered 1 to 20 on which trains
run in one direction only. All trains start from station number 20. There
are 3 types of trains.

Fast train: It stops at every alternate station ie. at 20, 2, 4, . . . . It stops for
4 minutes at every station and takes 8 minutes to travel from one stoppage
to another.

Express train: It stops at every third station ie. at 20, 3, 6, . . . . It stops
for 3 minutes at every station and takes 10 minutes to travel from one
stoppage to another.

Super fast train: It stops at every sixth station ie. at 20, 6, 12, . . . . It
stops for 2 minutes at every station and takes 15 minutes to travel from
one stoppage to another.

Now answers the following:

(i) Swati wants to go to station 17. She boards the express train from
station 20. Will she able to reach her destination? If yes, after how
long?

(ii) Keerti has to go to station 10 and she boards a super fast train from
station 20. After how long will she reach her destination?

(iii) Was it better for Swati to board the super fast train? Why or why
not?

(iv) Shruti boarded the super fast train from station 2 and has to go to
station 10. How long did it take for her?

(v) Would it have been better to catch the fast train for Shruti? If yes,
why?

11. Can you solve the above problem using the concept of cyclic groups?
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8.6 Subgroups of Cyclic Groups

While dealing with subgroups of a cyclic groups, the following natural ques-
tions arise:

(i) Are the subgroups of a cyclic group necessarily cyclic?
(ii) Does there exists a subgroup of a given order?
(iii) If the answer to (ii) is yes, how many subgroups of a given order are

there?
(iv) How many distinct subgroups are there?

We shall answer these questions one by one. The answer to (i) is in the affir-
mative as given in the following theorem.

Theorem 8.9. A subgroup of a cyclic group is cyclic.

Proof: Let G be a cyclic group, then G = 〈a〉 = {an|n ∈ Z} for some a ∈ G.
Let H be a subgroup of G. If G = {e} then H = {e} = 〈e〉. If G 6= {e}, then
G = 〈a〉 for some e 6= a ∈ G. Two cases arise:

Case 1. H = {e}. In this case H = 〈e〉, hence that H is cyclic.
Case 2. H 6= {e}, then an ∈ H for some 0 6= n ∈ Z. Since H is a subgroup,

∴ a−n ∈ H. Of n and −n, one of them is positive. Hence we have ak ∈ H
for some k ∈ N. Let m be the least positive integer such that am ∈ H. We
claim that H = 〈am〉. Clearly 〈am〉 ⊆ H as am ∈ H, and 〈am〉 is the smallest
subgroup of G containing am.

Conversely if b ∈ H, then b ∈ G and b = an for some n ∈ Z. By division
algorithm, there exist integers q, r ∈ Z such that n = mq + r, 0 ≤ r < m. Then
an = amq+r = (am)qar.

So ar = (an)(am)−q. Since an, am ∈ H and H is a subgroup, therefore
(an)(am)−q ∈ H. Hence, ar ∈ H. this is not possible for 0 < r < m since m
is the least positive integer such that am ∈ H. ∴ r = 0. Thus n = mq and
b = an = (am)q ∈ 〈am〉. Hence H ⊆ 〈am〉. Combining we get H = 〈am〉.

The above theorem not only tells us that every subgroups of a cyclic group is
cyclic but it also gives us a method to obtain a generator of that cyclic subgroup.

Corollary 8.10. The subgroups of the group of integers Z (w.r.t. addition) are
precisely the groups (nZ,+), where n ∈ Z+.

Proof: Z is a cyclic group under addition generated by 1. If H is a subgroup
of Z, then H is a cyclic subgroup of Z. If H = {0}, then it is of the form nZ,
where n = 0. If H 6= {0}, and let n be the least positive integer in H. Then
H is generated by n. For, if m ∈ H, then by Euclidean algorithm, there exist
integers q and r such that m = nq + r, 0 ≤ r < n.
If r > 0, then r = m− nq ∈ H, a contradiction.
Hence r = 0. But then m = nq ∈ 〈n〉 or that H ⊆ 〈n〉. Since n ∈ H we get
〈n〉 ⊆ H. Thus H = 〈n〉. Thus H = nZ. Moreover, the set nZ of all multiples of
n is a subgroup of Z. Hence the subgroups of Z are precisely nZ, for n ∈ Z+.

8.7 Subgroups of Infinite Cyclic Groups

Theorem 8.11. Every subgroup of an infinite cyclic group is infinite cyclic.
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Proof: Let G = 〈a〉 be an infinite cyclic group. Then a is of infinite order
. Further, let H be a subgroup of G. Since every subgroup of a cyclic group is
cyclic, we get H = 〈am〉, for some am ∈ H. Since, a is of infinite order, we get
am to be of infinite order and thus 〈am〉 is an infinite cyclic group. Hence H is
an infinite cyclic subgroup of G.

Theorem 8.12. If G = 〈a〉 is an infinite cyclic group, then
(i) 〈ai〉 ⊆ 〈aj〉 if and only if j divides i.
(ii) 〈ai〉 = 〈aj〉 if and only if j = ±i.

Proof: Since 〈a〉 is infinite cyclic, therefore o(a) is infinite.
(i) Let 〈ai〉 ⊆ 〈aj〉, then ai ∈ 〈ai〉 ⊆ 〈aj〉. Hence ai = (aj)k for some k ∈ Z, i.e,
ai = ajk. Since o(a) is infinite, so no two distinct powers of a are equal. Thus
i = jk which implies that j divides i.
Conversely, let j divide i. Then i = tj for some t ∈ Z. This gives that ai = atj =
(aj)t ∈ 〈aj〉.
Hence ai ∈ 〈aj〉, so that 〈ai〉 ⊆ 〈aj〉.
(ii) Suppose, 〈ai〉 = 〈aj〉. Then 〈ai〉 ⊆ 〈aj〉 and 〈aj〉 ⊆ 〈ai〉. By Part (i), we get
that j divides i and i divides j. But then j = ±i.

Conversely, let j = ±i. Then j divides i and i divides j. Again by part (i)
this implies that by 〈ai〉 ⊆ 〈aj〉 and 〈aj〉 ⊆ 〈ai〉. Hence 〈ai〉 = 〈aj〉.

Remark 8.4. From the Theorem 8.11, for the infinite group G = 〈a〉, it follows
that

i for every positive integer n, 〈an〉 is an infinite cyclic subgroup of G.

ii if m,n ∈ Z+,m 6= n then 〈am〉 6= 〈an〉.

iii if m ∈ Z+ then 〈am〉 ) 〈a2m〉 ) 〈a4m〉 ) 〈a8m〉 ⊇ . . .

Example 8.19. Suppose a is an element of infinite order, then what are all the
generators of 〈a3〉?
Since o(a) is infinite therefore o(a3) is also infinite. Hence the generators of
G = 〈a3〉 are a3 and (a3)−1 ie. a3 and a−3.

Example 8.20. (Z,+) is an infinite cyclic group then any subgroup H of Z is
of the form H = mZ for some m ∈ Z. That is H is generated by m or −m.

8.8 Subgroups of Finite Cyclic Groups

Before coming to the results of this section, let us find out all subgroups of
a finite cyclic group. For example, let G = 〈a〉 is cyclic group of order 20. Since
subgroup of a cyclic group is cyclic, therefore all the subgroups of G will be of
the form 〈ak〉 for some non negative integer k.
Observe the following: H0 = 〈e〉 = {e}

H1 = 〈a〉 = {e, a, . . . , a19} = 〈a−1〉 = 〈a19〉 = G
H2 = 〈a2〉 = {e, a2, a4 . . . , a18} = 〈(a2)−1〉 = 〈a18〉
H3 = 〈a3〉 = {e, a3, a6 . . . , (a3)19 = a17} = G = 〈(a3)−1〉 = 〈a17〉
H4 = 〈a4〉 = {e, a4, a8, a12, a16} = 〈(a4)−1〉 = 〈a16〉
H5 = 〈a5〉 = {e, a5, a10, a15} = 〈(a5)−1〉 = 〈a15〉
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H6 = 〈a6〉 = {e, a6, a12, a18, a4, a10, a16, a2, a8, a14} = {e, a2, a4, . . . , a18}
= 〈(a6)−1〉 = 〈a14〉

H7 = 〈a7〉 = {e, a7 . . . , (a7)19 = a13} = G = 〈(a7)−1〉 = 〈a13〉
H8 = 〈a8〉 = {e, a8, a16, a4, a12} = {e, a4, a8, a12, a16} = 〈(a8)−1〉 = 〈a12〉
H9 = 〈a9〉 = {e, a9, a18, . . . , (a9)19 = a11} = G = 〈(a9)−1〉 = 〈a11〉
H10 = 〈a10〉 = {e, a10} = 〈(a10)−1〉 = 〈a10〉.

Since subgroups of a cyclic group are cyclic, therefore these are the only
subgroups of G.
We observe that o(H0) = 1.
Also H1 = H3 = H7 = H9 = G and each is of order 20.
H2 = H6 and each is of order 10.
H4 = H8 and each is of order 5.
o(H5) = 4.
Note that the orders of the distinct subgroups are 1, 2, 4, 5, 10 and 20. There
is a unique subgroup of each of these orders. These orders are precisely the
divisors of 20. This leads us to believe that if G is a finite cyclic group of order
n, then for each divisor m of n, there exists a unique cyclic subgroup of order
m. Moreover, it is generated by a

n
m . The next theorem confirms this.

Theorem 8.13. Let G be a cyclic group of order n.
(i) If H is a subgroup of G, then o(H) divides o(G).
(ii) Conversely, if m is a divisor of n, then G has exactly one subgroup

of order m.

Proof: Let G = 〈a〉 and o(G) = n. ∴ o(a) = n and an = e.

(i) Let H be a subgroup of G. Since a subgroup of a cyclic group is cyclic. Let
H = 〈am〉 for some m, 0 ≤ m ≤ n−1. Then o(H) = o(am). Since (am)n =
amn = (an)m = e. Thus by Theorem 7.16 o(am) | n ie. o(H) | o(G).

(ii) Let m|n. Then n = mk for some k ∈ Z. Consider H = 〈an/m〉 = 〈ak〉.
Now (ak)t = akt 6= e for any t < m. This proves that o(ak) = m. Hence
H is a subgroup of order m. The subgroup H is unique. For, let T be
another subgroup of order m, then T is cyclic. Let T = 〈al〉, where l is
the least positive integer such that al ∈ T. By division algorithm, there
exist integers q and r such that n = lq + r, 0 ≤ r < l. Now e = an =
alq+r = alqar. Thus ar = a−lq = (al)−q ∈ T. The choice of l forces r to
be 0. So n = lq. Thus o(T ) = o(al) = n

l = q. But o(T ) = m, So q = m.
Hence l = n

q = n
m and therefore T = 〈a n

m 〉 = H.

Thus we have proved that if m|n, then there exists a unique subgroup of order
m generated by a

n
m .

The above theorem can be applied to obtain the subgroups of (Zn,⊕n).

Corollary 8.14. If m is a divisor of n, then there exists a unique subgroup of
Zn of order m, generated by n

m namely ( nm )Zn.

It will be proved that part (i) of the Theorem 8.13 proved above for cyclic
groups, also holds for finite groups. That is, if H is a subgroup of a finite group
G then o(H) divides o(G). This result is known as “Langranges theorem ” .
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8.9 Number of Generators

In the examples discussed so far, we have seen that some cyclic groups have
exactly one generator, whereas others have two or more generators. Is there a
way to find all the generators of a subgroup of a cyclic group? This is answered
by the following Theorems.

Theorem 8.15. Let G be a cyclic group of order n generated by a and let d | n.
If H is a subgroup of G of order d, then
(i) the number of generators of H is φ(d) = o(U(d)).
(ii) every generator of H is akm, k ∈ U(d) and m = n

d .

Proof: Given o(G) = n, and G = 〈a〉. Since d | n, so n = md for some m ∈ Z.
If H is a subgroup of G of order d, then H is cyclic of order d. Moreover,
H = 〈am〉. Further, am is of order d. Let b = am. Then H = 〈b〉 ,and H is of
order d.
Now, the number of generators of H = φ(o(H)) = φ(d) = o(U(d)). This proves
part (i).
Further, the generators of H are precisely bk = (am)k = amk, k ∈ U(d), and
m = n

d . This proves part (ii). Hence the theorem.

Remark 8.5. If G is a cyclic group of order n generated by a. If x ∈ G, then
x is an element of order d ⇔ x is a generator of a subgroup of order d in G.
Therefore, the number of elements of order d is φ(d). Moreover, these elements
are xkm, where k ∈ U(d) and m = n

d . Thus the above theorem gives us the
elements of order d and the number of such elements.

Example 8.21. List all the elements of order 10 in Z40. Here n = 40, d =
10, d | n.

The number of elements of order 10 is nothing but the number of generators
of a subgroup of order 10, which is φ(10). But φ(10) = 4. Let H = 〈b〉 be a
subgroup of order 10. The generators of H are b, 3b, 7b, 9b by Theorem 8.7.
One such element of order 10 in Z40 is 40

10 = 4. Therefore the generators are
4, 12, 28, 36.

Example 8.22. If G is a cyclic group of order 24 generated by a, find all the
generators of a subgroup H of order 8.
Here n = 24,m = 8, and d = n

m = 3. Then, by Theorem 8.15(ii) a3 is a
generator of H. Thus others generators of H are a3k, 1 ≤ k < 8, k ∈ U(8).
Therefore k = 1, 3, 5, 7. Hence all the generators of H are a3, a9, a15, and a21.

Example 8.23. Given that U(49) is a cyclic group having 42 elements, find the
number of generators without actually finding them.
Let G = U(49), o(G) = 42. By Theorem 8.6 the numbers of generators is φ(42).
But φ(42) = o(U(42)).

Now, U(42) = {1, 5, 11, 13, 17, 19, 23, 25, 29, 31, 37, 41}, therefore o(U(42)) =
12. Thus there are 12 generators of U(49). [In fact U(49) = 〈2〉 = 2k(mod49), k ∈
U(42) are different 12 generators of U(49).]

Theorem 8.16. If G = 〈a〉 is a finite cyclic group of order n, then
(i) 〈ar〉 = 〈an−r〉.
(ii) 〈ar〉 ⊆ 〈as〉 if and only if r is a multiple of smod n.
(iii) 〈ar〉 = 〈agcd(n,r)〉.
(iv) 〈ar〉 = 〈as〉 if and only if gcd (n, r) = gcd (n, s).



284 CHAPTER 8. CYCLIC GROUPS

Proof: Since a is of order n, therefore n is the smallest positive integer such
that an = e. Also, G = 〈a〉 and o(G) = n. Now

(i) Since ar and an−r are the inverses of each other therefore ar ∈ 〈an−r〉 and
an−r ∈ 〈ar〉. Hence 〈ar〉 ⊆ 〈an−r〉 and 〈an−r〉 ⊆ 〈ar〉. Thus 〈ar〉 = 〈an−r〉.

(ii) 〈ar〉 ⊆ 〈as〉
⇔ ar ∈ 〈ar〉 ⊆ 〈as〉
⇔ ar = (as)m for some m, 1 ≤ m ≤ n
⇔ ar = asm

⇔ ar−sm = e
⇔ r − sm is a multiple of n
⇔ r = smmodulo n
⇔ r is a multiple of smodulo n.

(iii) Let gcd(n, r) = d. Then 0 < d < n. Also d | r and d | n. Since d | r ⇒
〈ar〉 ⊆ 〈ad〉 by (ii). Since gcd(n, r) = d, by Euclidean Algorithm there
exists integers p, q such that np+ qr = d.
Now ad = anp+qr = anpaqr = (an)p(ar)q = e(ar)q = (ar)q. Therefore
ad ∈ 〈ar〉 so that 〈ad〉 ⊆ 〈ar〉. Hence we get 〈ar〉 = 〈ad〉 = 〈agcd(n,r)〉.

(iv) Let d′ = gcd(n, r) and d = gcd(n, s). Then, by Theorem, 7.18 o(〈ad′〉) =
n
d′

and o(〈ad〉) = n
d .

By part (iii) o(〈ar〉) = o(〈ad′〉) = n
d′ . Similarly, o(〈as〉) = n

d .
Now 〈ar〉 = 〈as〉 ⇔ o(〈ar〉) = o(〈as〉) ⇔ n

d′ = n
d ⇔ d = d′.

Given a finite cyclic group, the above theorem helps us to find

(i) all the generators of the unique subgroup of a given order.

(ii) the order of a given subgroup 〈ak〉 of 〈a〉. If o(a) = n then
o(〈ak〉) = n

gcd(n,k) for every positive integer k ≤ n.

Example 8.24. Let G be a cyclic group generated by a of order 15. Compute
the orders and generators of the subgroups 〈a3〉, 〈a6〉, 〈a8〉 and 〈a10〉.

Solution: Here n = o(G) = 15. Observe that
o(〈a3〉) = o(a3) = 15

gcd(3,15) = 15
3 = 5.

o(〈a6〉) = o(a6) = 15
gcd(6,15) = 15

3 = 5.

o(〈a8〉) = o(a8) = 15
gcd(8,15) = 15.

o(〈a10〉) = o(a10) = 15
gcd(10,15) = 15

5 = 3.

Example 8.25. In the cyclic group (Z24,⊕24), compute the orders of the sub-
groups 〈8〉, 〈5〉, and 〈9〉.
Here order of group is n = 24. For the element m = 8 ∈ Z24, we have
o(〈8〉) = o(8) = n

m = 24
8 = 3 = d (say) number of generators of subgroup

of order 3 = φ(3) = o(U(3)) = 2.
The generators are k8, k ∈ U(3).
Thus k = 1, 2. Therefore generators are 8, 16.
Hence 〈8〉 = 〈16〉. Now o(〈5〉) = o(5) = n

gcd(5,n) = 24
gcd(5,24) = 24.
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Therefore generators of 〈5〉 are 5k mod 24, k ∈ U(24).
Hence k = 1, 3, 7, 11, 13, 17, 19, 23 and generators of 〈5〉 are 5,15,11,7,17,13,23,
19. o(〈9〉) = o(9) = n

gcd(9,n) = 24
gcd(9,24) = 8. Therefore generators of 〈9〉 are

9k mod 24, k ∈ U(8) i.e. k = 1, 3, 5, 7.

Problem 8.8. How many subgroups does Z20 have? List all the generators for
each of these subgroups.

Solution: Z20 is a cyclic group of order 20, generated by 1. Thus n =
o(Z20) = 20, the possible divisors of 20 are 1, 2, 4, 5, 10, 20. Thus there exists
a subgroup Hi of order i, for i = 1, 2, 4, 5, 10, 20. Subgroup of order 1 is {0}. H1

= 〈o〉.
Subgroup of Order 2. Here d = 2, ∴ m = n

d = 10. Thus H2 will be
a subgroup generated by 10. H2 = 〈10〉. The other generators of H2 are 10k,
where (k, 2) = 1. The only possible value of k is 1. Hence H2 = 〈10〉 is the only
subgroup of Z20 of order 2.

Subgroup of Order 4. Here d = 4, ∴ m = n
d = 20

4 = 5. Hence H4 = 〈5〉.
The generators of H4 are 5k, k ∈ U(4) = {1, 3} i.e. 5, 15. Thus H4 = 〈5〉 = 〈15〉.

Subgroup of Order 5. Proceeding as above H5 = 〈4〉. All generators are
4k, k ∈ U(5) i.e. 4, 8, 12, 16.

Subgroup of Order 10. H10 = 〈2〉. All generators are 2k, k ∈ U(10) i.e.
2, 6, 14, 18.

Subgroup of Order 20. Proceeding as above H20 = 〈1〉. All generators
are k, k ∈ U(20) i.e. 1, 3, 7, 9, 11, 13, 17, 19.

Summarizing:

Name of subgroup Order of subgroup Generators
H1 1 0
H2 2 10
H4 4 5, 15
H5 5 4, 8, 12, 16
H10 10 2, 6, 14, 18
H20 20 1, 3, 7, 9, 11, 13, 17, 19

Problem 8.9. If G is a cyclic group of order 24, then find a generator for
〈a21〉 ∩ 〈a18〉.

Solution: o(G) = n = 24. Hence
〈a21〉 = 〈ak〉, where k = gcd(24, 21) = 3 and 〈a18〉 = 〈al〉, where l = gcd(24, 18) =
6. Thus 〈a21〉 = 〈a3〉, and 〈a18〉 = 〈a6〉. Further, 〈a21〉∩〈a18〉 = 〈a3〉∩〈a6〉= 〈a6〉,
since 〈a6〉 ⊆ 〈a3〉.

Problem 8.10. Suppose that a cyclic group G has exactly three subgroups: G,
{e} and a subgroup of order 7. What is o(G)?

Solution: Let o(G) = n. For every divisor d of n, the group G has a subgroup
of order d. But G has three subgroups of orders 1, 7 and n 6= 7. Since the only
3 divisors of n are 1, 7, n. Hence n = 72 = 49. Thus o(G) = 49.

Problem 8.11. Let x be an element of order 40 in a cyclic group G. List all
the elements of 〈x〉 of order 10.
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Solution: Given x ∈ G such that o(x) = 40. Let H = 〈x〉, then H is a
cyclic group of order 40. We have to find elements of H which are of order
10. Now, o(x4) = 10 if (x4)k is of order 10. So, (k, 10) = 1. Hence, k = 1, 3, 7, 9.
Thus x4, (x4)3, (x4)7, (x4)9 are of order 10, i.e. x4, x12, x28 and x36 are of order
10.

Problem 8.12. Determine the order of each element of D66. How many ele-
ments are there of given order.

Solution: D66 consists of 33 rotations and 33 reflections. Since a dihedral
group is not cyclic, D66 is not cyclic. It has a cyclic subgroup H of order 33
consisting of the 33 rotations. Each reflection is an element of order 2. Also
o(H) is odd, so it does not have any element of order 2.
Thus there are 33 elements of order 2. Further, the divisors of o(H) are 1, 3, 11, 33.
Hence,
Number of elements of order 1 = φ(1) = 1
Number of elements of order 3 = φ(3) = 2
Number of elements of order 11 = φ(11) = 10
Number of elements of order 33 = φ(33) = 20.
We can summarize as follows:

Order Numbers of elements
1 1
2 33
3 2
11 10
33 20

8.10 Exercise

1. Suppose G = 〈a〉 and o(a) = 20. How many subgroups does G have? List
all generators for each of these subgroups.

2. How many subgroups does (Z18,⊕18) have? List all generators for each of
these subgroups.

3. Let G = 〈a〉 and let o(a) = 28. List all the generators of a subgroup of
order 4.

4. If G is a group and a ∈ G is of infinite order, find all the generators of
〈a5〉.

5. List all elements of order 8 in Z80000. How do you know that your list is
complete?

6. Suppose G is a cyclic group of order n
(i) If 6 divides n, how many elements of order 6 does G have?
(ii) If 10 divides n, how many elements of order 10 does G have ?

If a is an element of order 10, what are others elements of order 10?

7. Let m and n be elements of the group Z. Find a generator for the group
〈m〉 ∩ 〈n〉.
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8. Let p be prime. If a group G has more than p− 1 elements of order p, can
G be a cyclic? Justify.

9. IfG is a cyclic group of order 15, find the orders of the subgroups 〈a9〉, 〈a12〉,
〈a5〉, 〈a4〉 and 〈a14〉.

10. Let a, b be elements of a group G. If o(a) = 10, o(b) = 21, show that
〈a〉 ∩ 〈b〉 = {e}.

11. Let a, b be elements of a group G. If o(a) = 24, o(b) = 10, what are the
possibilities for o(〈a〉 ∩ 〈b〉)?

8.11 Solved Problems

Problem 8.13. Find the smallest subgroup of Z containing 18, 30 and 40.

Solution: Subgroups of Z are of the form nZ = 〈n〉 = {na|a ∈ Z}.
Now, gcd(18, 30, 40) = 2. Since 18 = 2 × 9, 30 = 2 × 15, 40 = 2 × 20, we get
18, 30, 14 ∈ 〈2〉. Hence 〈2〉 is subgroup of Z containing 18, 30, 40.
If 18, 30, 40 ∈ 〈n〉, then n divides each of 18, 30 and 40 and therefore n divides
gcd(18, 30, 40) = 2. Thus n divides 2, so that 2 ∈ 〈n〉 i.e. 〈2〉 ⊆ 〈n〉. Thus 〈2〉 is
the smallest subgroup of Z containing 18, 30 and 40.

Remark 8.6. In Z, the smallest subgroup of Z containing a1, a2, a3, . . . , ak
is 〈d〉 where d = gcd(a1, a2, a3, . . . , ak). This subgroup is denoted by 〈a1, a2,
a3, . . . , ak〉.

Problem 8.14. Every group of order 3 is cyclic.

Solution: Let G be a group such that o(G) = 3. Let a ∈ G, a 6= e. Consider
H = 〈a〉 = {a, a2, . . .}. Two cases arise:

Case 1. a2 = e. Then H = {a, e} so that o(H) = 2. Thus there exists
b ∈ G such that b /∈ H. Now bH = {b, ba}. Then H ∩ bH = φ, so o(G) ≥ 4, a
contradiction.

Case 2. a2 6= e. If a3 6= e then e, a, a2, a3 are distinct elements of G and
so again a contradiction o(G) > 3. So that we must have a3 = e. Thus H =
{a, a2, e}, o(H) = 3. Now since H ⊆ G,G is finite and o(H) = o(G) therefore
H = G. Hence G is a cyclic group.

Problem 8.15. Prove that a group of order 4 is Abelian.

Solution: Let G be a group of order 4. If a ∈ G and o(a) = n > 4 then
e, a, a2, . . . , an−1 are n > 4 distinct elements of G, which is not possible in a
group of order 4. Hence order of every element of G is less than or equal to 4.
Three cases arise:

Case 1. G has an element of order 4, say a, then G = 〈a〉 = {a, a2, a3, a4 = e}
and therefore G is Abelian.

Case 2. G has no element of order 4 but G has an element of order 3, say
a, then a, a2, e are 3 distinct elements of G. Let b ∈ G be different from these 3
elements, then ab, a2b, b are all distinct elements of G which are different from
a, a2, e. Thus G has at least 6 distinct elements which is not possible in a group
of order 4. Hence G does not have an element of order 3.
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Case 3. Every non-identity element is of order 2. Let a, b ∈ G, a 6= e, b 6= e,
then o(a) = o(b) = 2.
Then e, a, b, ab are 4 distinct elements of G = {e, a, b, ab}. Similarly G = {e, a,
b, ba}. Hence ab = ba, so that G is Abelian
Hence every group of order 4 is Abelian.

Problem 8.16. Can a group of order 4 have an element of order 3? What
are the possible orders of an element of in group of order 4? Can you make a
conjecture about the relation between order of a group and order of its elements?

Solution: Let G be a group of order 4. Let if possible, G has an element say
a of order 3, then a3 = e. Let H = {e, a, a2}. Then H is a subgroup of G and
H = 〈a〉. Clearly H 6= G (Since o(H) = 3 while o(G) = 4).
Let b ∈ G rH, then bH = {b, ba, ba2}, and bH ∩H = φ, as bai = aj for some
0 ≤ i, j < 3 implies that b ∈ H, but b /∈ H. Also bH ⊆ G. Thus G has at
least 6 elements namely e, a, a2, ba, b, ba2 which is not possible as o(G) = 4.
This contradicts our assumption that G has an element of order 3. So that G
does not have any element of order 3. If G is a group of order 4, then e is an
element of order 1. G may have all non identity elements of order 2 or G may
have an element of order 4, as we may have G = 〈a〉. Thus the possible orders
of elements of G are 1, 2 or 4. These are all divisors of 4 = o(G).

We can conjecture:

Conjecture 8.1. In a finite group G, the order of each element of G divides
the order of G.

Problem 8.17. Let a and b be elements of a group G. If o(a) = m, o(b) = n
and m,n are coprime, prove that 〈a〉 ∩ 〈b〉 = {e}.

Solution: Let x ∈ 〈a〉 ∩ 〈b〉, then x ∈ 〈a〉 and x ∈ 〈b〉, so that x = ap and
x = bq for some positive integers p and q. Then o(x) = o(ap) = m

gcd(p,m) .

Thus o(x) divides m. Similarly o(x) = o(aq) = n
gcd(q,n) .

So that o(x) divides n. Hence o(x) divides gcd(m,n). But gcd(m,n) = 1. Thus
o(x) divides 1 so that o(x) = 1. Hence x = e, therefore 〈a〉 ∩ 〈b〉 = {e}.

Aliter: Let A = 〈a〉, B = 〈b〉, A ∩ B is a subgroup of A as well as B. Hence
o(A ∩B) | o(A) ⇒ o(A ∩B) | m
Similarly o(A ∩B) | n
Hence o(A ∩B) | (m,n) = 1
⇒ o(A ∩B) = 1
⇒ A ∩B = {e}.

Problem 8.18. Let G be an Abelian group of order pq, with (p, q) = 1. Assume
that there exist a, b ∈ G, such that o(a) = p, o(b) = q. Show that G is cyclic.

Solution: Since o(a) = p, o(b) = q, ∴ ap = e, bq = e, (ab)pq = apqbpq = e,
since G is an Abelian group ∴ o(ab) | pq.
Let o(ab) = k, so that (ab)k = e, therefore akbk = e (since G is Abelian)

⇒ bk = a−k

⇒ bk ∈ 〈a〉, since a−k ∈ 〈a〉
⇒ (bk)p = e, since o(〈a〉) = p
⇒ bkp = e
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⇒ q | pk
⇒ q | k since (p, q) = 1.

Similarly p | k.
Hence, pq | k. Since (p, q) = 1.
⇒ o(ab) = pq.
⇒ ab is an element of order pq in G.
Since order o(G) = pq, we get G = 〈ab〉. Hence G is cyclic.

Problem 8.19. Suppose that G is a group that has exactly one non-trivial
proper subgroup. Prove that G is cyclic and o(G) = p2, where p is prime.

Solution:
Step 1 We shall prove that G is cyclic. Let e 6= a ∈ G. Then 〈a〉 is a non-

trivial subgroup of G. If G = 〈a〉 then G is cyclic. If 〈a〉 6= G. Let b ∈ Gr 〈a〉,
then 〈b〉 ( G and 〈b〉 6= 〈a〉 as b /∈ 〈a〉. Thus G has at least two non-trivial
proper subgroups which is not possible. Hence G is cyclic.

Step 2 We shall prove that G is finite. Since G is cyclic, we can assume that
G = 〈a〉. If G is infinite, then 〈a2〉 is a subgroup of G such that a /∈ 〈a2〉 also 〈a3〉
is a subgroup of G such that a /∈ 〈a3〉 and a2 /∈ 〈a3〉. Thus G has at least two
non-trivial proper subgroups 〈a2〉 and 〈a3〉, which contradicts our hypothesis.
Hence our assumption is wrong. Hence G must be finite. Let o(G) = n.

Step 3 We shall now prove that there exists only one prime p such that p
divides n. Let if possible, there are two distinct primes p and q which divide
n. Since o(a) = n, ∴ o(a

n
p ) = p < n, and o(a

n
q ) = q < n, so that 〈a

n
p 〉 and

〈a
n
q 〉 are two proper non trivial subgroups of G. This contradicts our hypothesis.

Hence our assumption is wrong so there is exactly one prime p which divides n.
Thus o(G) = n = pk for some k.

Step 4 We shall prove that k = 2. If k = 1 then o(G) = p. Let H be
a proper nont-rivial subgroup of G, then H = 〈am〉 for some, m such that
0 < m < p. Now o(am) = p

gcd(p,m) = p. Thus H is a subgroup of order p which

contradicts the fact that H is a proper subgroup of G. Hence k 6= 1. If k ≥ 3,
then H1 = 〈ap〉 and H2 = 〈ap2〉 are two non trivial proper subgroups of G.
Again a contradiction. Hence k = 2 and o(G) = p2.

Problem 8.20. Let a and b be elements of a group G. If o(a) = 12, o(b) = 22
and 〈a〉 ∩ 〈b〉 6= {e}. Prove that a6 = b11.

Solution: Since intersection of two subgroups is a subgroup, ∴ H = 〈a〉 ∩ 〈b〉
is a subgroup of G. Moreover, being a subgroup of 〈a〉 as well as 〈b〉, it is cyclic.
Let H = 〈c〉. Since order of a subgroup of a group divides the order of the
group ∴ o(H)|o(〈a〉) and o(H)|o(〈b〉) i.e. o(〈c〉)|12 and o(〈c〉)|22. Since o(H) =
o(c), ∴ o(c) = 1 or 2. But o(c) = o(〈c〉) 6= 1. ∴ o(c) = 2. Thus c = a6,
since o(c) = 2 as c ∈ 〈a〉. Also c = b11, since O(c) = 2 and c ∈ 〈b〉. Hence
a6 = b11.

Problem 8.21. Prove that an infinite group must have an infinite number of
subgroups.

Solution: Let G be an infinite group . Two cases arise:
Case 1. G has an element of infinite order. Let a ∈ G be such an element.

If H = 〈a〉 then ak for each k > 0, will generate a distinct subgroup of G. Hence
G has an infinite number of subgroups.
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Case 2. Every element of G is of finite order. Let g1 ∈ G and H1 = 〈g1〉.
Then H1 is a finite subgroup of G. Hence H1 6= G. Let g2 ∈ GrH1, H2 = 〈g2〉.
Then H2 is a finite subgroup of G and H1 ∪H2 6= G. Let g3 ∈ G r (H1 ∪H2)
and H3 = 〈g3〉. We continue till G\H1∪H2∪ . . .∪Hk 6= φ, k = 1, 2, 3 . . .. Since
G is infinite and H1 ∪H2 ∪ · · · ∪Hk is finite, for every k, therefore the process
does not end. Hence G has an infinite number of subgroups.

Problem 8.22. Using the concept of cyclic groups, prove that if n is any positive
integer and d1, d2, d3, . . . , dk are all the distinct divisors of n, then

φ(d1) + φ(d2) + · · ·+ φ(dk) = n

where φ is the Euler φ function. Verify the result for n = 20.

Solution: Step 1 Consider the cyclic group Zn of order n i.e. Zn = {0, 1, . . . , n−
1}. On Zn define a relation ∼ as follows: For r, s ∈ Zn, r ∼ s⇔ 〈r〉 = 〈s〉. Then
∼ is an equivalence relation. Each equivalence class contains all the generators
of the subgroup associated with it. ∴ Number of equivalence classes = Number
of distinct subgroups of Zn.

Step 2 We know that in a cyclic group of order m, there exists a unique
subgroup of order k, for each divisor k of m, and vice versa. Therefore, number
of distinct subgroups of Zn is same as the number of distinct divisors of n. Let
H1, H2, . . . ,Hk be subgroups of Zn of orders d1, d2, . . . , dk respectively. Then
number of generators of Hi is φ(di), since every element of Zn belongs to one
and only one equivalence class. ∴ o(Zn) is the sum of the numbers of elements
in disjoint equivalence classes, i.e. the sum of the number of generators of the
distinct subgroups of Zn. Thus

φ(d1) + φ(d2) + φ(d3) + . . .+ φ(dk) = n.

Now, verification for n = 20.
The distinct divisors of 20 are 1, 2, 4, 5, 10, 20. Hence
φ(1) = 1, φ(2) = 1, φ(4) = 2, φ(5) = 4, φ(10) = 4, φ(20) = 8. We find that

φ(1) + φ(2) + φ(4) + φ(5) + φ(10) + φ(20) = 1 + 1 + 2 + 4 + 4 + 8

= 20

= n.

8.12 Supplementary Exercise

1. State whether the following statements are true or false.
(i) (Q,+) is a cyclic group.
(ii) (Z,+) is a cyclic group.
(iii) Every cyclic group is Abelian.
(iv) Every Abelian group is cyclic.
(v) Every element of a cyclic group generates the group.
(vi) Every group of order ≤ 4 is cyclic.
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(vii) Every group of order < 4 is cyclic.
(viii) Every cyclic group has a unique generator.
(ix) Let G be a group and a ∈ G such that a12 = e, then o(a) can be 5.
(x) There exists a cyclic group of every order.
(xi) Every subgroup of a cyclic group is cyclic.
(xii) If every subgroup of a group is cyclic then the group is cyclic.
(xiii) If every proper subgroup of a group is cyclic then the group

is cyclic.

(xiv) The number of subgroups of a cyclic group of order n is φ(n).
(xv) (R+, .) is a cyclic group.
(xvi) (R∗, .) is a non cyclic group.
(xvii) If G is a finite group of order n then G has a subgroup of order

m for every divisor m of n.

2. Give an example of a cyclic group of order 4.

3. Give an example of a non-cyclic group of order 4.

4. Give an example of a cyclic group of order 180.

5. If G is an Abelian group and contains a pair of subgroups of order 2, show
that G must contain a subgroup of order 4. Is this subgroup necessarily
cyclic?

6. If G is an Abelian group and contains cyclic subgroups of order 4 and 5.
What are the other sizes of cyclic subgroups G?

7. If G is an Abelian group and contains cyclic subgroup of order 4 and 6.
What are the sizes of other cyclic subgroups, G must contain?

8. Give an example of a group which is not cyclic but its every proper sub-
group is cyclic.

9. Give an example of a non-Abelian group where every proper subgroup is
Abelian.

10. Suppose G is a group with exactly 8 elements of order 10. How many cyclic
subgroups of order 10 does it have?

11. Find the smallest subgroup of Z containing
(i) 6 and 4.
(ii) 8 and 15.
(iii) 12, 15 and 18.
(iv) 4 and 16.
(v) m and n.

12. Given n1, n2, . . . , nk ∈ Z. Prove that there exists d ∈ Z, d > 0 such that
the smallest subgroup of Z containing n1, n2, . . . , nk is 〈d〉.

13. For each value of n = 5, 8, 9, 10, 14, 15, 16, 18, 20, 22, 25
(i) determine whether U(n) is a cyclic group or not.
(ii) in case it is cyclic find all the generators.

14. Suppose a, b are elements of a group G such that a has odd order and
aba−1 = b−1. Show that b2 = e.
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15. Let G be an infinite group and let x ∈ G is of infinite order.
(i) Is G = 〈x〉? Prove your assertion.
(ii) What happens when G is cyclic?

16. Prove that a group of order 5 must be cyclic.

17. Find all subgroups of Z45 giving a generator for each. Describe the con-
tainment between these subgroups . Also draw the subgroup lattice.

18. Draw the subgroup lattice of D10.

8.13 Answers to Exercises

Exercise - 8.3

1. Do it yourself.

2. Cyclic S = 〈3〉 = 〈12〉.

3. 49, is the identity element. Group is not cyclic.

4. None

5. Hint: Suppose it is cyclic. Let Q+ = 〈x〉 where x = p
q and (p, q) =

1. Since 2 ∈ Q+, therefore 2 = (pq )n for some n. Clearly n 6= 0, 1,−1. If
n > 1, then pn = 2qn so that 2 divides p. But then 2 also divides q. So 2
divides (p, q), a contradiction. Hence Q+ is not cyclic.

6. For n = 7, 10, 13, 14 the group U(n) is cyclic. Others are non cyclic.

7. Generated by

(
1 1
0 1

)
.

Exercise - 8.5

1. 1 and −1.

2. 1, 3, 7, 9

3. Two a and a−1

4. (i) 4; {4k mod10 : k ∈ U(5)}
(ii) 2; {2k mod12 : k ∈ U(6)}
(iii) 4; {6k mod20 : k ∈ U(10)}
(iv) 4; {3k mod24 : k ∈ U(8)}
(v) 6; {5k mod35 : k ∈ U(7)}

5. (i) 2 ; {2n mod5 : n ∈ U(4)} = {2, 3}
(ii) 2 ; {2n mod9 : n ∈ U(6)} = {2, 5}
(iii) 2 ; {3n mod10 : n ∈ U(4)} = {3, 7}
(iv) 2 ; {5n mod18 : n ∈ U(6)} = {5, 11}
(v) 4 ; {7n mod22 : n ∈ U(10)} = {7, 13, 17, 19}
(vi) 8 ; {2n mod25 : n ∈ U(20)} = {1, 3, 7, 9, 11, 13, 17, 19}.
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6.

(i) 4 ; {ak : k ∈ U(8)} = {a, a3, a5, a7}
(ii) 8 ; {bk : k ∈ U(20)} = {b, b3, b7, b9, b11, b13, b17, b19}

7. o(G) = n > 1. Let e 6= a ∈ G and H = 〈a〉. If o(H) = m then m > 1. If p
is a prime dividing m, then m = pk, k ∈ Z+, then o(ak) = p.

8. If a ∈ Zn is a generator, so is n− a. Also gcd(a, n) = 1. If a = n− a, then
2a = n. Therefore, if n odd a 6= n−a. If n even 2a = n⇒ gcd(a, n) 6= 1, a
contradiction. Therefore generators occur in pairs. Number of generators
is even.

9.

(i) If o(H) = 15 then H = 〈a7〉 (since 105÷ 15 = 7 ) H = 〈a7k〉
if k ∈ U(15), i.e. k = 1, 2, 4, 7, 8, 11, 13, 14.

(ii) o(K) = 21, then K = 〈a5k〉, k ∈ U(21)
(iii) o(L) = 35, then L = 〈a3k〉, k ∈ U(35)

10.

(i) 4 hours and 4 minutes.
(ii) 1 hours and 23 minutes.
(iii) No. She would never reached her destination.
(iv) 2 hours and 13 minutes.
(v) Yes. She would have reached her destination in 44 minutes.

11. Yes. S = {1, 2, 3, . . . , 20}. S is the cyclic group (Z20,⊕20) generated by 1.
The stoppage of the fast train is the cyclic subgroup generated by 2. The
stoppage of the express train is the cyclic subgroup generated by 3. The
stoppage of the super fast train is the cyclic subgroup generated by 6.

Exercise - 8.10

1. number of subgroups = number of divisors of 20 =6. Generators are
H1 = 〈e〉
H2 = 〈a10〉
H3 = 〈a5〉 = 〈a15〉
H4 = 〈a4k〉, k ∈ U(5)
H5 = 〈a2k〉, k ∈ U(10)
H6 = 〈ak〉, k ∈ U(20)

2. 6.
H1 = 〈0〉
H2 = 〈9〉
H3 = 〈6k〉, k ∈ U(3)
H4 = 〈3k〉, k ∈ U(6)
H5 = 〈2k〉, k ∈ U(9)
H6 = 〈k〉, k ∈ U(18)

3. 〈a7k〉, k ∈ U(4)

4. a5 and a−5
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5. An element of order 8 is 10000k, k ∈ U(8)

6. (i) U(6)
(ii) U(10); ak, k ∈ U(10)

7. lcm[m,n]

8. If G is infinite cyclic then G has no element of order p, hence not possible.
So G is finite. If it is cyclic, then an element a of order p gives rise to
a subgroup 〈a〉 of order p, which has exactly φ(p) = p − 1 = number
of elements of order p. Thus it is not possible to have more than p − 1
elements of order p.

9. 5, 5, 3, 15, 15.

10. 〈a〉 ∩ 〈b〉 ≤ 〈a〉, 〈a〉 ∩ 〈b〉 ≤ 〈b〉, ∴ o(〈a〉 ∩ 〈b〉) | o(〈a〉) and o(〈a〉 ∩
〈b〉) | o(〈b〉).

11. 1 or 2.

Supplementary Exercises

1. (i) False
(ii) True
(iii) True
(iv) False, An example is (Q+, .).
(v) False, In (Z,+), 2 is not a generator.
(vi) False, for example V4.
(vii) True
(viii) False, (Z,+) has 1,−1 as generators.
(ix) False
(x) True
(xi) True
(xii) True
(xiii) False, for example S3

(xiv) False, Every subgroup of a cyclic group is cyclic.
(xv) False, It has a non cyclic subgroup (Q+, .).
(xvi) True
(xvii) False

2. {1,−1, i,−i}, where i2 = −1

3. V4

4. 180th roots of unity.

5. If o(a) = o(b) = 2 then {e, a, b, ab} is a subgroup (since ab=ba) of order
4. It is not cyclic as there is no element of order 4.

6. G will contain an element of order 4× 5 = 20, ∴ G has cyclic subgroups
of all orders which are divisors of 20, i.e. 20, 10, 2 and 1.
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7. Show that o(ab) = 12. Sizes of other cyclic subgroups are 1, 2, 3 and 12.

8. D6

9. Do it yourself

10. Let a ∈ G be o(a) = 10. Then a3, a7, a9 are also of order 10. ∴ a cyclic
subgroup of order 10 has exactly 4 elements of order 10. Hence G has 2
cyclic subgroups of order 10.

11. (i) 〈2〉
(ii) Z
(iii) 〈3〉
(iv) 〈4〉
(v) 〈d〉, d = gcd(m,n)

12. 〈d〉, where d = gcd(n1, n2, . . . , nk).

13. U(n), for n = 8, 15, 16, 20 are non-cyclic, all others are cyclic.
U(5) = 〈2〉 = 〈3〉
U(9) = 〈2〉 = 〈5〉
U(10) = 〈3〉 = 〈7〉
U(14) = 〈3〉 = 〈5〉
U(18) = 〈5〉 = 〈11〉
U(22) = 〈7〉 = 〈13〉 = 〈17〉 = 〈19〉
U(25) = 〈2〉 = 〈3〉 = 〈8〉 = 〈12〉 = 〈13〉 = 〈17〉 = 〈22〉 = 〈23〉.

14. a2ba−2 = (b−1)−1 = b. Prove that a2nba−2n = b. Then o(a) = odd ⇒
o(a) = 2k + 1, .a2k+1 = e.
Now, a2kba−2k = b ⇒ a2k+1ba−2k−1 = aba−1

⇒ b = b−1

⇒ b2 = e

17. 〈1〉, 〈3〉, 〈5〉, 〈9〉, 〈15〉, 〈0〉 are subgroups of order 45,15,9,5,3 respectively.
〈0〉 ⊂ 〈9〉 ⊂ 〈3〉 ⊂ 〈1〉
〈0〉 ⊂ 〈15〉 ⊂ 〈3〉 ⊂ 〈1〉
〈0〉 ⊂ 〈15〉 ⊆ 〈5〉 ⊆ 〈1〉
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Chapter 9

Rings

9.1 Ring

Definition 9.1. A non-empty set R equipped with two binary operations + and
(usually called addition and multiplication) is called a ring if
(i) (R,+) is an Abelian group,
(ii) (R,.) is a semigroup,
(iii) . is right as well as left distributive over +, that is

a.(b+ c) = a.b+ a.c ∀a, b, c ∈ R
(a+ b).c = a.c+ b.c ∀a, b, c ∈ R

It is denoted by (R,+, ·).

When the operations are understood we simply say that R is a ring. More-
over we use juxtaposition instead of ·. Since (R,+) is an Abelian group, therefore
(i) the addditive identity is unique,
(ii) additive inverse of an element is unique,
(iii) cancellation laws hold for addition.
The additive identity of a ring is called the zero element and is denoted by 0.
This should not be confused with the integer 0.
If (R,+, .) is a ring then (R, .,+) need not be a ring as
(i) either (R, .) may not be an Abelian group or
(ii) + may not be distributive over ..
Hence the order of the binary operations is important.

Definition 9.2. (Commutative ring):
A ring (R,+,.) is said to be commutative if a.b = b.a,∀a, b,∈ R.

Definition 9.3. (Ring with unity):
A ring (R,+, .) is said to be a ring with unity if there exist an element e ∈ R
such that a.e = e.a = a, for all a ∈ R.
The element ’e’ is called the unity of R.

The unity is also called the identity or unit element of R. Generally it is
denoted by 1(not to be confused with the integer 1). The unity of a ring, if it
exists, is unique.

298
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If R is a ring and a ∈ R, n ∈ Z then na has its usual meaning as in additive
groups. Note that a

2 ,
a
3 etc... where a ∈ R, are not defined in a ring.

A ring having a finite number of elements is called a finite ring.
If we consider R = {a} and define + and. as follows : a+ a = a, a.a = a, then
R is a ring with a as the zero element. Such a ring is called the zero ring and
is denoted O.

9.2 Examples of Ring

Rings of Numbers

Example 9.1. The set of integers Z is a ring under the usual addition and
multiplication. It is a commutative ring with unity 1.
Similarly Q and C are commutative rings with unity 1, under the usual addition
and multiplication of numbers.

Example 9.2. 2Z, under the usual addition and multiplication is a commuta-
tive ring without unity.
For n ∈ N, n > 1, nZ is a commutative ring without unity.

Let Zo= set of odd integers. Then (Zo,+) is not even a group, so that Zo is
not a ring.

Example 9.3. Let Z[
√

2] = {a+ b
√

2|a, b ∈ Z}.
Under the usual addition and multiplication of numbers, Z[

√
2] is a ring. It is

a commutative ring and has unity 1.
Similarly Q[

√
2] is a commutative ring with unity 1.

Example 9.4. Let Z[i] = {a+ bi|a, b ∈ Z}.
Under the usual addition and multiplication of complex numbers Z[i] is a com-
mutative ring with unity 1+i0=1.
This ring is called the ring of Gaussian Integers.

Rings of Residues

Example 9.5. Let Z4 = {0, 1, 2, 3}.
The tables for (Z4,⊕4) and (Z4,�4) are given below

⊕4 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

�4 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1

(Z4,⊕4) is a group, as shown in chapter 5.
Clearly (Z4,�4) is a semigroup.
We know that in modular arithmetic
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(a+ b)mod4 = (a mod4 + b mod4)mod4....(1)
(ab)mod4 = ((a mod4)(b mod4))mod4....(2)
Let a, b, c ∈ Z4, then

a�4 (b⊕4 c) = (a�4 b)⊕4 (a�4 c).
because RHS = (a�4 b)⊕4 (a�4 c)
= ((a�4 b) + (a�4 c))mod4 using definition of ⊕4

= (ab mod4 + ac mod4)mod4 using definition of �4

= (ab+ ac)mod4 ...using (1)
= (a(b+ c))mod4
= ((a mod4 (b+ c) mod4))mod4 using (2)
= (a(b⊕4 c))mod4
= a�4 (b⊕4 c)
= LHS
Similarly (a⊕4 b)�4 = (a�4 c)⊕4 (b�4 c) can be shown.
Hence distributive laws hold.
Thus (Z4,⊕4,�4) is a ring. It is a commutative ring and 1 is the unit element.
Hence (Z4,⊕4,�4) is a finite commutative ring with unity.

Example 9.6. Let n > 1 be a fixed positive integer and let Zn = {0, 1, 2, 3 . . . , n−
1}.
Then (Zn,⊕n) is an Abelian group.
Also Zn is closed with respect to �n and associative law holds. Thus (Zn,�n)
is a semigroup.
Also in the above example (on replacing 4 by n) we can prove that for all
a, b, c ∈ Zn
a�n (b⊕n c) = (a�n b)⊕n (a�n c)
(a⊕n b)�n c = (a�n c)⊕n (b�n c).
Thus (Zn,⊕n,�n) is a ring. Moreover it is a commutative ring with unity 1.
Hence (Zn,⊕n,�n) is a finite commutative ring with unity.

Rings of Matrices

Example 9.7. Under the usual addition and multiplication of matrices, M2(Z)
is a ring with unity I2. It is noncommutative ring. Thus, M2(Z) is a non-
commutative ring with unity.
Similarly the set of all n× n matrices over Z (Q,R or C) are non-commutative
rings with unity, for every n ∈ N.

Example 9.8. M2(2Z) is a noncommutative ring without unity. The possible

unity is

(
1 0
0 1

)
,which does not belong to M2(2Z).

Example 9.9. M2(Z2) is a finite non-commutative ring with unity I2. This
ring has 24 elements.

Mn(Z2) is a finite non-commutative ring with unity, have 2n
2

elements.

Ring of polynomials

Example 9.10. The sets Z[x] of all polynomials in x with integral coefficients
under the usual addition and multiplication of polynomials, is a commutative
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ring with unity. The unity is the constant polynomial 1.
Similarly Q[x] and R[x] are commutative rings with unity.

Ring of Functions

Example 9.11. Let F be the set of all functions from R into R. On F define
addition and multiplication as follows:
For f, g ∈ F , Define
(f + g)(x) = f(x) + g(x) ∀x ∈ R
(fg)(x) = f(x)g(x) ∀x ∈ R.

F is closed with respect to addition and multiplication. Addition and multi-
plication of real valued functions is associative and commutative.
The zero function is the zero element for addition, and inverse of f is the func-
tion -f . Thus (F,+) is an Abelian group and (F, .) is a semigroup.
Since distributive law holds in numbers,therefore it holds in F also. Thus (F,+, .)
is a ring. It is a commutative ring. The constant function i which maps every
element of R to 1 is the unit element. Hence (F,+, .) is a commutative ring
with unity.

Example 9.12. Let C[0, 1] be the set of all real valued continuous functions de-
fined on [0, 1]. On C[0, 1] define addition and multiplication of functions point-
wise. As the sum and the product of two continuous functions is continuous,
therefore C[0, 1] is a commutative ring with unity.

Ring of Quaternions
Let D = {a+ bi+ cj + dk|a, b, c, d ∈ R} and i, j, k are such that
i2 = j2 = k2 = −1, ij = k = −ji, jk = i = −kj, ki = j = −ik.
Define addition componentwise, and multiplication by using the distributive
laws and the relations given above. It can be verified that D is a ring. It is
called the ring of real quaternions. It is a non-commutative ring with unity D.

Elementary Properties of Ring

Theorem 9.1. Let R be a ring and a, b ∈ R. Then
(i) 0a=a0=0, where 0 is the zero element of R.
(ii) a(-b) =(-a)b =-ab
(iii) (-a)(-b)=ab
(iv) if R has unity 1,then

(−1)a = −a, (−1)(−1) = 1

Proof:

(i) Let a ∈ R.Then
(0 + 0)a = 0a+ 0a By distributive law
⇒ 0a = 0a+ 0a; ∵ 0 + 0 = 0
⇒ 0a+ 0 = 0a+ 0a By definition of zero element
⇒ 0 = 0a Using cancellation law for addition
Hence 0a = 0, for all a ∈ R
Similarly a0 = 0 can be proved.
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(ii) Let a, b ∈ R
Since b+ (−b) = 0
∴ a(b+ (−b)) = a0
⇒ ab+ a(−b) = 0 Using distributive law and (i)
⇒ ab+ a(−b) = ab+ (−ab), By definition of additive inverse
⇒ a(−b) = −ab Using cancellation law for addition
Similarly (−a)b = −ab.

(iii) In (ii) replace a by -a
∴ (−a)(−b) = −(−a)b

= −(−ab) using (ii)
= ab

∴ (−a)(−b) = ab.

(iv) Suppose R has unity 1.
From (ii)
(−a)b = −ab
Take a = 1, b = a
∴ (−1)a = −1a
⇒ (−1)a = −a
In (iii) take a = 1 = b
∴ (−1)(−1) = 1.1 = 1
Hence (-1)(-1) =1.

Theorem 9.2. Let R be a ring and a, b ∈ R,m, n ∈ Z. Then
(i) 0a=0, 0 ∈ Z
(ii) (-n)a=-na
(iii) (ma)(nb)=(mn)(ab).

Proof: Parts (i) and (ii) follow from the fact that (R,+) is a group.

(iii) Four cases arise:
Case 1. m = 0 or n = 0
then (ma)(nb) = 0 Using (i)
(mn)(ab) = 0(ab) = 0
∴ (ma)(nb) = (mn)(ab)
Case 2. let m,n ∈ N. Then m > 0 and n > 0
(ma)(nb) = (a+ a+ a+ . . .m times)(nb)
= a(nb) + a(nb) + . . .m times using distributive law
=a(b+ b+ b . . . ntimes) + a(b+ b+ b . . . ntimes) + . . .m times
=(ab+ ab+ . . . ntimes) + (ab+ ab+ . . . ntimes) + . . .m times
=ab+ ab+ ab+ . . .mn times
=(mn)(ab)

Case 3. One of m,n is positive and the other is negative.
Suppose m < 0,n > 0.
Let m = −p, where p > 0
Then (ma)(nb) = ((−p)a)(nb)

= (−pa)(nb) Using theorem 9.1
= -((pa)(nb)) Using theorem 9.1
= -((pn)(ab)) By case 2
= (−pn)(ab) Using (ii)



9.3. CONSTRUCTING NEW RINGS 303

= ((−p)n)(ab)
= (mn)(ab)

∴ (ma)(nb) = (mn)(ab).
The result can be proved similarly if m > 0 and n < 0.

Case 4. m < 0,n < 0.
Let m = −m1, n = −n1, where m1, n1 > 0
(ma)(nb) = ((−m1)a)((−n1)b)
=(−(m1a))(−(n1b)), using (ii)
=(m1a)(n1b) using theorem 9.1
=(m1n1)(ab), using case 2
=((−m)(−n))ab
=(mn)ab.
Hence result is proved in all the cases.

9.3 Constructing New Rings

Having the knowledge of a basic ring (given in the examples) we can con-
struct many more rings according to our requirement by making a few variations.
How this can be done is explained below.
Let R be any ring. Then Mn(R), the set of all n × n matrices over R, is a
non-commutative ring such that if R has unity 1 then Mn(R) has unity In. If
R does not have unity then Mn(R) also does not have unity. Furthermore, if
R is a finite ring having m elements then Mn(R) is also a finite ring having

mn2

elements. Thus Mn(Z) is an infinite non-commutative ring with unity In
whereas M2(2Z) is a non-commutative ring without unity. Mn(Zm) is a finite

non-commutative ring with unity having mn2

elements.
M2(2Z8) is a finite non-commutative ring without unity.
This helps us to construct infinite or finite non-commutative rings with or with-
out unity.
Analogous to the ring Z[i], we construct the ring Zn[i] where
Zn[i] = {a+ib|a, b ∈ Zn}. The elements are added and multiplied as in complex
numbers except that the coefficients are reduced modulo n. This is called the
ring of Gaussian integers modulo n.
Consider Zn[x], the set of all polynomials in x with coefficients from Zn.The
elements are added and multiplied as in Z[x] except that the coefficients are
reduced modulo n.
If R1 and R2 are two rings we can use them to construct a new ring as follows:

Define R1 ×R2 = {(a, b)|a ∈ R1, b ∈ R2}
(a1, a2) + (b1, b2) = (a1 + b1, a2 + b2)
(a1, a2)(b1, b2) = (a1b1, a2b2)
Then R1 × R2 is a ring under these operations. It is called the direct sum of
R1 and R2, denoted by R1 ⊕ R2. The zero element of R1 ⊕ R2 is (0,0). If R1

and R2 are finite having n1, n2 elements respectively, then R1⊕R2 is also finite
having n1n2 elements. If both R1, R2 are commutative so is R1 ⊕ R2. If both
R1, R2 have unity e1 and e2 respectively then (e1, e2) is the unity of R1 ⊕R2.
We can similarly define the direct sum of n rings. It appears that all the prop-
erties of R1 and R2 are carried over to R1 ⊕ R2, but hold on, this is not the
case. Wait and watch.
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9.4 Special Elements of a Ring

Some of the elements of a ring have a special property, which makes them
stand out from the other elements. Knowledge of these elements helps us to
know the structure of the ring in a better way.

Definition 9.4. (Idempotent element):
Let R be a ring. An element a ∈ R is said to be an idempotent if a2 = a.

If a ∈ R is an idempotent then all the powers of a are identical. The zero
element and the unity if it exists are idempotents.

Definition 9.5. (Nilpotent element):
Let R be a ring. An element a ∈ R is said to be nilpotent if an = 0 for some
positive integer n.

The zero element is a nilpotent element.

Definition 9.6. (Unit):
Let R be a ring with unity 1. An element a ∈ R is said to be a unit in R if there
exists some b ∈ R such that ab=ba=1

Definition 9.7. (Boolean ring):
A ring in which every element is an idempotent is said to be a Boolean ring.
Such a ring will be shown to be commutative.

Remark 9.1. In groups, equations of the form ax = b have a solution for all
elements a and b of the group. But this is not the case in rings. For example in
the ring Z the equation 2x=3, has no solution. But in(Z5,⊕5,�5) the equation
2�5 x = 3. . . (1)
has a solution, viz. x=4. This is because 2 ∈ Z5 is a unit and its inverse is 3.
Premultiplying equation (1) by 2−1 = 3 we get
3�5 (2�5 x) = 3�5 3
or x=4.
Thus in a ring R the equations of the form ax=b, have a solution if a is a unit,
and the solution is x = a−1b.
Thus units of a ring help us to solve certain equations. In a ring an equations
of the form x2 = a2, does not imply that x = ±a in a ring.
For example, in (Z8,⊕8,�8), 72 = 32 but 7 6= ±3. Thus the usual identities
and rules valid in R do not hold good in any arbitrary ring.

Theorem 9.3. In a ring R with unity, the set of all units form a group under
multiplication.

Proof: Let 1 be the unity of R and S be the set of all units of R.
Since 1 ∈ R is a unit ∴ 1 ∈ S, so that S 6= φ.
Let a, b ∈ S. Then there exits c, d ∈ S
such that ac = ca = 1, bd = db = 1.
Now (ab)(dc) = a(bd)c = a1c = ac=1.
Similarly (dc)(ab) = 1 and so (ab)(dc) = (dc)(ab) = 1.
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Ring
Idempotent
Element

Nilpotent
Element

Units

1 Z 0, 1 0 ±1

2 Q 0, 1 0 Every non-zero element

3 R 0, 1 0 Every non-zero element

4 C 0, 1 0 Every non-zero element

5 2Z 0 0
Not applicable as 2Z

is without unity

6 Z4 0, 1 0, 2 1, 3

7 Z9 0, 1 0, 3, 6 1, 2, 4, 5, 7, 8

8 Z18 0, 1 0, 6 1, 5, 7, 11, 13, 17

9 Zn 0, 1
{0} ∪ {np |p

is a prime and p|n}
r ∈ Zn such that

(r, n) = 1

10 Z[x] 0, 1 0
Same as those of Z,

±1

Hence ab is a unit and. therefore, ab ∈ S.
Since (R, .) is a semi-group, therefore associative law holds in S.
Since 1 ∈ R is a unit, therefore 1 ∈ S and is the identity element of S.
Let a ∈ S. Then a is the unit so that there exists b ∈ R such that
ab = ba = 1.
Then b is a unit in R, so that b ∈ S. But a−1 = b, so that a−1 ∈ S.
Hence every element of S has an inverse.
Thus S is a group under multiplication.
The group of all units of R is denoted by U(R).

9.5 Solved Problems

Problem 9.1. Let (R,+,.) be a ring with unity 1.
Define ⊕ and � in R as follows:
a⊕ b = a+ b+ 1
a� b = a+ b+ ab, for all a, b ∈ R.
(i) Prove that R′ = (R,⊕,�) is a ring.
(ii) What is the zero element of R′ ?.
(iii) Does R′ has unity ?
(iv) If R is a commutative ring then prove that R′ is also commutative.
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Solution:

(i) Let a, b ∈ R. Then a+ b+ 1 ∈ R, so that a⊕ b ∈ R.
Since associative law for addition holds in R, therefore it holds for ⊕.
Let a ∈ R. Let 0R ∈ R such that
a⊕ 0R = 0R ⊕ a = a
∴ a+ 0R + 1 = a
so that 0R = −1.
Hence -1 is the zero element of R′.
Let a ∈ R, suppose that b ∈ R such that
a⊕ b = −1
∴ a+ b+ 1 = −1
so that b = −a− 2.
Thus additive inverse of a is −a− 2, so that each element has an inverse
in R′.
Let a, b ∈ R, then
a⊕ b = a+ b+ 1 = b+ a+ 1 = b⊕ a
Hence (R,⊕) is an Abelian group.
For a, b ∈ R, a+ b+ ab ∈ R, so that a� b ∈ R. ∴ R is closed with respect
to �.
Let a, b, c ∈ R,
then (a� b)� c
= (a+ b+ ab)� c
= a+ b+ ab+ c+ (a+ b+ ab)c
= a+ b+ ab+ c+ ac+ bc+ (ab)c
= a+ ab+ ac+ (b+ c+ bc) + a(bc)
= a+ a(b+ c+ bc) + b� c
= a+ a(b� c) + b� c
= a� (b� c)
Hence � is asociative.
That � is right and left distributive over ⊕ can be easily verified.
Hence R′ is a ring.

(ii) The zero element of R′ is -1 as proved in (i).

(iii) If 0 denotes the zero element of R, then
for any a ∈ R,
a� 0 = 0� a = a (verify!)
Hence 0 is the unity of the R′.

(iv) For a, b ∈ R
a� b = a+ b+ ab
= b+ a+ ba, using commutativity of R
= b� a
Hence R′ is commutative.

Problem 9.2. Let S be a non-empty set and P(S) the power set of S. For
A,B ∈ P(S). Define ′+′ and ′·′ on P(S) as:
A+B = A4B and A.B = A ∩B.
Prove that (P(S),4,∩) is a Boolean ring with unity.
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Solution: Clearly 4 and ∩ are binary operations on P(S). The null set φ is
the zero element of P(S) and the additive inverse of A is A. The other properties
are easy to verify.
Also A ∩ S = A = S ∩A ∀ A ∈ P(S)
Thus S is the identity element of P(S). Hence P(S) is a ring with unity.
For any A ∈ P(S) A.A = A ∩A = A, so that P(S) is a Boolean ring.

Remark: P(S) is a finite or infinite Boolean ring according as S is finite or
infinite.

Problem 9.3. Let R be a system satisfying all the axioms for a ring with the
possible exception of a + b = b + a. If there exists c ∈ R, such that ac = bc ⇒
a = b ∀ a, b ∈ R, prove that R is a ring.

Solution: To prove that R is a ring we have to prove that a + b = b +
a foralla, b ∈ R.
Let a, b ∈ R. Then (a+ b)(c+c) = a(c+c)+b(c+c), using right distributive
law

= ac+ ac+ bc+ bc
again (a+ b)(c+ c) = (a+ b)c+ (a+ b)c

= ac+ bc+ ac+ bc
Thus we get
ac+ ac+ bc+ bc = ac+ bc+ ac+ bc

⇒ ac+ bc = bc+ ac
⇒ (a+ b)c = (b+ a)c
⇒ a+ b = b+ a

Hence R is a ring.
The usual properties of integers do not hold in rings. This is shown in the
following problem.

Problem 9.4. Find integers a,b,c not having the following property in Zn.
(i) a2 = a⇒ a = 0 or a = 1.
(ii) ab = 0⇒ a = 0 or b = 0.
(iii) ab = ac, a 6= 0⇒ b = c.

Solution:

(i) Consider the ring Z6. Here 3 ∈ Z6, 3
2 = 3 and 3 6= 0, 1.

(ii) In Z6, 2�6 3 = 0, but 2 6= 0, 3 6= 0.

(iii) In Z6, 3�6 2 = 3�6 4 but 2 6= 4.

Problem 9.5. If a ring R has the property that ab = ca =⇒ b = c, when a 6= 0.
Prove that R is commutative.

Solution: Let a, b ∈ R.
If a = 0 then ab = 0 also ba = 0 ∴ ab = ba hold for all b ∈ R.
If a 6= 0, then a(ba) = (ab)a by associative law
By the given condition ba = ab.
Hence R is commutative.

Problem 9.6. Give an example of an infinite non-commutative ring without
unity.
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Solution: See Example 9.8.

Problem 9.7. Give an example of a finite non-commutative ring.

Solution: See example 9.9.

Problem 9.8. In (Zp,⊕p,�p), where p is prime prove that if a, b ∈ Zp such
that a�p b = 0, then a = 0 or b = 0.

Solution: Let a, b ∈ Zp such that
a�p b = 0 ⇒ (ab)modp = 0
⇒ ab is a multiple of p.
⇒ p|ab ⇒ p|a or p|b, as p is prime.
⇒ a is a multiple of p or b is a multiple of p.
⇒ a = 0 or b = 0, as a, b ∈ Zp = {0, 1, ..., p − 1} and so no other element is a
multiple of p.

Problem 9.9. Find all the units of M2(Z).

Solution: Let A =

(
a b
c d

)
∈M2(Z) be a unit.

Then |A| 6= 0 and

A−1 = 1
|A|

(
d −b
−c a

)
∈M2(Z)

if |A| = k, then
d

k
,
−b
k
,
−c
k
,
a

k
∈ Z

⇒ k|a, k|b, k|c and k|d. Let a = ka1, b = kb1, c = kc1, d = kd1.
k = |A| = ad− bc
⇒ k = k2(a1d1 − b1c1)
⇒ k2|k
⇒ k = ±1 as k ∈ Z.
Thus if A is a unit of M2(Z), then |A| = ±1.

On the other hand if |A| = ±1, then A−1 =

(
d −b
−c a

)
or −

(
d −b
−a a

)
.

So A−1 ∈M2(Z). Hence A ∈M2(Z) is a unit if and only if |A| = ±1.

Problem 9.10. If R1 and R2 are commutative rings with unity prove that
U(R1 ⊕R2) = U(R1)⊕ U(R2).

Solution: Let e1, e2 denote the unities of R1 and R2 respectively.
Let r1 ∈ R1 and r2 ∈ R2. Then
(r1, r2) ∈ R1 ⊕R2 is a unit
⇔ there exist t1 ∈ R1, t2 ∈ R2 such that
(r1, r2)(t1, t2) = (e1, e2)
⇔ (r1t1, r2t2) = (e1, e2)
⇔ r1t1 = e1, r2t2 = e2

⇔ r1 is a unit in R1 and r2 is a unit in R2.
Hence U(R1 ⊕R2)= U(R1)⊕ U(R2).

Problem 9.11. Prove that the units of Z[x] and Z are the same.

Solution: Let f(x) ∈ Z[x] be a unit.
Let f(x) = a0 + a1x . . .+ anx

n



9.6. EXERCISE 309

f(x) is a unit in Z[x]
⇔ there exists g(x) = b0 + b1x+ ....bmx

m ∈ Z[x]
such that f(x)g(x)=g(x)f(x) = 1...(1)
⇔ deg(f(x)g(x)) = deg1 = 0
⇔ degf(x) + degg(x) = 0
⇔ degf(x) = degg(x) = 0
⇔ f(x) and g(x) are the constant polynomials.
⇔ f(x) = a0 and g(x) = b0 for some a0, b0 ∈ Z.
⇔ a0 is a unit in Z.
⇔ f(x) is a unit inZ.

Problem 9.12. Let R be a ring with unity such that (ab)2 = a2b2, ∀ a, b ∈ R.
Prove that R is commutative. Prove that the result is not true when R does not
have unity.

Solution: Let 1 denote the unity of R.
Step 1 Let x, y ∈ R.

Then (x(y + 1))2 = x2(y + 1)2

∴ (xy + x)2 = x2(y2 + 2y + 1)
⇒ (xy)2 + xyx+ xxy + x2 = x2y2 + 2x2y + x2

⇒ xyx = x2y... (1)
Step 2 In (1) replace x by x+ 1

∴ (x+ 1)y(x+ 1) = (x+ 1)2y
so that (x+ 1)(yx+ y) = (x2 + 2x+ 1)y
⇒ xyx+ xy + yx+ y = x2y + 2xy + y
⇒ yx = xy using (1) and cancellation law for ′+′.
Thus xy = yx ∀x, y ∈ R.
Hence R is commutative.

Let R =

{(
a 0
b 0

)
|a, b ∈ R

}
. Then R is a non-commutative ring without

unity, such that (AB)2 = A2B2 for all A,B ∈ R.

9.6 Exercise

1. Prove that unity of a ring, if it exists, is unique.

2. Let R be a ring and a, b, c, d ∈ R. Express the following as the sum of the
products.
(i) (a+ b)(c+ d)
(ii) (a+ b)2

(iii) (a+ b)3

(iv) (a+ b)4

3. If R is a ring find an expression for (a + b)n in terms of powers of a and
b, where a, b ∈ R,n ∈ Z+. What happens if R is commutative?

4. Let R be a system satisfying all conditions for a ring with unity, with the
possible exception of a+ b = b+ a. Prove that R is a ring.

5. Let Z[
√

2] = {a + b
√

2|a, b ∈ Z}. Prove that R is a ring under the usual
addition and multiplication of real numbers.
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6. If R is a ring, is (R,.,+) also a ring ? Justify.

7. Prove that if a ring with unity has more than one elements, then zero and
unity are distinct.

8. Show that Z with binary composition # and ∗ defined as a #b = a+ b+
1, a ∗ b = a+ b− ab for all a, b ∈ Z is a commutative ring with unity.

9. Show that 2Z with binary compositions # and ∗ defined as a#b = a +
b, a ∗ b = ab

2 for all a, b ∈ Z is a commutative ring with unity.

10. Prove that if a ring has a unique left unity then it also has a right unity,
and therefore a unity.

11. Give an example of a ring R in which for a, b ∈ R, ax = b has more than
one solutions in R.

12. Prove that M2(2Z8), the set of all 2 × 2 matrices over (2Z8,⊕8,�8) is a
finite non-commutative ring having 44 elements.

13. Give an example of a Boolean ring having 4 elements.

14. Letp(x) = 2x3 − 3x2 + 4x− 5, q(x) = 7x3 + 33x− 4
Compute p(x) +q(x) and p(x)q(x) under the assumption that the coef-
ficient of the two given polynomial are taken from the specified ring R,
when
(i) R = Z (ii) R = Z2 (iii) R = Z3

15. Let S be any set. Is (℘(S),+, .) a ring, where +,. are defined as follows
for A,B ∈ ℘(S)
A+B = A ∪B, A�B = A ∩B.
Justify your answer.

16. Is S=

{(
0 a
b 0

)
, |a, b ∈ Z

}
a ring with respect to usual addition and

multiplication of matrices? Give reasons for your answer.

17. Let R ={a + bi + cj + dk|a, b, c, d ∈ Z} and i, j, k are such that i2 =
j2 = k2 = −1, ij = k = −ji, jk = i = −kj, ki = j = −ik. Define
a+bi+cj+dk = a′+b′i+c′j+d′k if and only if a = a′, b = b′, c = c′, d = d′.
Define addition componentwise and multiplication by distributive law us-
ing the above relations.
(i) Prove that R is a ring.
(ii) Is it commutative?
(iii) Does it have unity?
(This ring is called the ring of integral quaternions.)

18. Prove that a ring R is commutative if and only if (a+ b)(a− b) = a2− b2,
for all a, b ∈ R.

19. Prove that every Boolean ring is commutative. Is the converse is true?
Justify your answer.

20. Give an example of a non-commutative ring R such that (ab)2 = a2b2, ∀
a, b ∈ R
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21. In (Zp,⊕p,�p), where p is prime, prove that
(i) if a ∈ Zp and a2 = a then a = 0 or 1
(ii) if a, b, c ∈ Zp and a 6= 0

then ab=ac =⇒ b = c

22. Check whether the following rings have unity. If yes, find it.
(i) (S,⊕8,�8), where S={0, 2, 4, 6}
(ii) (S,⊕6,�6), where S={0, 2, 4}
(iii) (S,⊕10,�10), where S={0, , 2, 4, 6, 8}
(iv) (S,⊕12,�12), where S={0, 2, 4, 6, 8, 10}.

23. Give an example of a non-commutative ring having exactly k elements,
where
(i) k = 16
(ii) k = 81

(iii) k = nm
2

for m,n ∈ N.

24. In a commutative ring prove that the product of two idempotent elements
is an idempotent.

25. Find all the idempotent elements of the rings
(i) (Z6,⊕6,�6)
(ii) (Z12,⊕12,�12)
(iii) (Z20,⊕20,�20)

26. Prove that a non-zero idempotent cannot be nilpotent.

27. In a ring R, prove that the following conditions are equivalent.
(i) R has no non-zero nilpotent elements.
(ii) If a ∈ R is such that a2 = 0 then a = 0.

28. Prove that in a commutative ring R
(i) sum of two nilpotent elements is nilpotent.
(ii) If a is nilpotent then ar is nilpotent for all r ∈ R.
Show by an example that the result fails to hold if the ring is non-
commutative.

29. Describe all nilpotent elements of the following rings:
(i) Z4 (ii) Z8 (iii) Z10 (iv) Z12 (iv) Z16 (vi) Z20 (vii) Z36

30. If a ring does not have any non-zero nilpotent element, prove that every
idempotent element commutes with every element of R.

31. Find all the units of the following rings:
(i) Z (ii) Z5 (iii) Z6 (iv) Z15 (v) Z⊕Z (vi) Q⊕Q (vii) M2(Q) (viii) Q[

√
2].

32. Show that in a ring with unity, the sum of two units need not be a unit.

33. Find all the units of Z[i].

34. In a commutative ring R, let a ∈ R is a unit and b ∈ R is such that b2 = 0,
then prove that a + b is a unit. Show by an example that result fails to
hold when R is non-commutative.
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35. Determine
(i) U(Q[x]) (ii) U(R[x]).

36. If R is a ring in which for some n ∈ Z+. xn = x,∀x ∈ R, show that
xy = 0⇒ yx = 0.

37. Let R be the set of all real valued functions defined on R. Define suitable
operations on R so that it is a ring.

38. Let n > 1 be a fixed integer.
Let Zn[i] = {a+ bi : a, b ∈ Zn}.
Prove that Zn[i] under the usual addition and multiplication of complex
numbers, where real and imaginary parts are reduced modulo n, is a ring.
Is it commutative? Does it have unity?

9.7 Subrings

As discussed in groups, the best way to study any algebraic structure is to
study its subsets which themselves have the same structure with respect to the
binary operations restricted to the subsets. Thus we study subsets of a ring
which themselves are rings. Such subsets are called subrings.

Definition 9.8. (Subring):
Let (R,+,.) be a ring. A subset S of R is called a subring of R, if S is a ring
under the operations of R restricted to S.

Example 9.13. If R is any ring, then {0} and R are subrings of R. These are
called the trivial subrings of R.

Example 9.14.

1. (Z,+, · ) is a subring of (Q,+, · )

2. (Q,+, · ) is a subring of (R,+, · ).

3. (R,+, · ) is a subring of (C,+, · ).

4. (Z,+, · ) is a subring of (R,+, · ).

5. (2Z,+, ·) is a sub ring of (Z,+, ·).

Is (Z6,⊕6,�6) a subring of (Z8,⊕8,�8)?
Clearly Z6 ⊆ Z8 but the binary operations of Z8 restricted to Z6 are not those
of Z6. So Z6 is not a subring of Z8. In Z6 4+2=0 whereas 4 + 2 = 6 in Z8.

Criterion for a subset to be a subring

Theorem 9.4. Let R be a ring. A subset S of R is a subring of R if and only
if
(i) 0 ∈ S.
(ii) a,b ∈ S ⇒ a− b ∈ S.
(iii) a, b ∈ S ⇒ ab ∈ S.
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Proof: Let S be a subring R.
Then S is a ring in its own right, so that the conditions hold.
Conversely, let the conditions hold.
(i) ⇒ S 6= φ.
Then (ii) ⇒ (S,+) is a subgroup of (R,+). Since associative law holds with
respect to · in R and S ⊆ R, therefore associative law holds in S. This together
with (iii)⇒ (S, .) is a semigroup. Also distributive law will hold in S as it holds
in R.
Thus S itself is a ring and hence a subring of R.

Theorem 9.5. A non-empty subset S of a ring R is a subring if and only if
(i) a− b ∈ S, for all a, b ∈ S,
(ii) ab ∈ S, for all a, b ∈ S.

Proof: If S is a subring of R, then clearly the conditions hold. Conversely let
S be a non-empty subset of R for which conditions (i) and (ii) hold.
S 6= φ =⇒ ∃ a ∈ S
By (i) a− a ∈ S ie. 0 ∈ S.
By the above theorem S is a subring of R.

The above theorem gives to a very useful criterion to determine whether a
non-empty subset of a ring is a subring.

Example 9.15. Consider the ring M2(Z) of all 2× 2 matrices over Z.

Let S =

{(
a 0
0 b

)
|a, b ∈ Z

}
Clearly

(
0 0
0 0

)
∈ S, so that S is non-empty.

Let A,B ∈ S,

then A =

(
a 0
0 b

)
, B =

(
c 0
0 d

)
, for some a, b, c, d ∈ Z.

A−B =

(
a− c 0

0 b− d

)
∈ S

AB =

(
ac 0
0 bd

)
∈ S

Hence S is a subring of M2(Z).

Definition 9.9. (Centre of a ring):
Let R be a ring. The centre of R, is the set of all those element of R which
commute with every element of R. It is denoted by Z(R). Thus
Z(R) = {x ∈ R | xr = rx,∀r ∈ R}.

Theorem 9.6. The center of a ring R is a commutative subring of R.

Proof: Let R be any ring. Then the centre of R is
Z(R) = {x ∈ R | xr = rx,∀r ∈ R}
Since 0r = r0, ∀ r ∈ R
∴ 0 ∈ Z(R). Hence Z(R) 6= φ.
Let x, y ∈ Z(R). Then
xr = rx, ∀r ∈ R...(i)
and yr = ry, ∀r ∈ R...(ii)
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For any r ∈ R
(x− y)r = xr − yr
= rx− ry using (i) and (ii)
=r(x− y)
∴ x− y ∈ Z(R).
For any r ∈ R
(xy)r = x(yr) by associative law
= x(ry) using (ii)
= (xr)y
= (rx)y using (i)
= r(xy)
∴ (xy)r = r(xy) ∀ r ∈ R.
so that xy ∈ Z(R).
Hence Z(R) is a subring of R.
Let x, y ∈ Z(R).
Then x commutes with every element of R. In particular it commutes with y
∴ xy = yx.
Hence Z(R) is commutative subring of R.

Theorem 9.7. The intersection of two subrings is a subring.

Proof: Let R be a ring and S1, S2 two subrings of R. Let S = S1 ∩ S2.
Since 0 ∈ S1 and 0 ∈ S2

∴ 0 ∈ S1 ∩ S2 = S, so that S is non-empty.
Let a, b ∈ S. Then a, b ∈ S1 and a, b ∈ S2.
Since S1 and S2 are subrings.
∴ a− b, ab ∈ S1 and a− b, ab ∈ S2

Hence a− b, ab ∈ S1 ∩ S2 = S, so that S is a subring of R.
The union of two subrings need not be a subring as is seen by the following

example.

Example 9.16. Consider the ring Z. Then 3Z, 4Z are subrings of Z. Let
S = 3Z ∪ 4Z.
Now 3 ∈ 3Z ⊆ S, 4 ∈ 4Z ⊆ S.
∴ 3, 4 ∈ S but 3 + 4 = 7 /∈ S, as 7 /∈ 3Z and 7 /∈ 4Z.
Thus S is not closed under addition so that S is not a subring of R.

Theorem 9.8. Every subring of Z is of the form nZ for some n ∈ Z.

Proof: Let S be a subring of Z. Then (S,+) is a subgroup of (Z,+), so that
S = nZ for some n ∈ N .
Hence proved.

Corollary 9.9. Every subring of Zn is of the form kZn for some k ∈ Zn.

Problem 9.13. Z is a subring of Z[x].

Solution: Clearly Z ⊆ Z[x] as each element of Z can be regarded as constant
polynomial.
Since the zero polynomial namely 0, is an element of Z.
∴ Z 6= φ.
Let m,n ∈ Z. Then m− n,mn ∈ Z, so that Z is a subring of Z[x].
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A subring inherits some of the properties of the ring. The properties which
relate to the binary operations are inherited, whereas those which relate to the
existence of certain types of elements are not inherited.
This is given below.

Theorem 9.10. A subring of a commutative ring is commutative.

Proof: Let S be a subring of a commutative ring R. Let a, b ∈ S. Then
a, b ∈ R, so that ab = ba. So S is commutative.

A subring of a non-commutative ring need not be non-commutative as is
seen in the following example.

Example 9.17. Consider M2(Z) and let

S=

{(
a 0
0 b

)
|a, b ∈ Z

}
Then S is a commutative subring of M2(Z).

The existence of identity element in a ring and its subring are independent
of each other as is seen by the following examples.

Example 9.18. If a ring has unity its subring may not have unity. Consider
the ring Z with unity 1. 2Z is a subring of Z and it does not have unity.

A subring may have unity but the ring may not have unity as is seen in the
following example.

Example 9.19. Let R =

{(
a 0
b 0

)
|a, b ∈ Z

}
Then R is the ring without unity.

Let S =

{(
a 0
0 0

)
|a, b ∈ Z

}
Then S is a subring of R.

If E =

(
1 0
0 0

)
then EA=AE=A for all A ∈ S, so that E is the unity of S.

Thus S is a subring of R with unity.

Even if both the ring and its subring have unity, they may be different, as
is seen in the following example.

Example 9.20. Consider M2(Q), the ring of all 2× 2 matrices over Q.

Let S =

{(
a a
a a

)
|a ∈ Q

}
Then, S is a subring of M2(Q).

M2(Q) has identity, namely I=

(
1 0
0 1

)
.

If E =

(
e e
e e

)
is the identity of S

then

(
e e
e e

)(
a a
a a

)
=

(
a a
a a

)
so that 2ae=a ∀a ∈ Q.
Hence e = 1

2

Thus E=

(
1
2

1
2

1
2

1
2

)
∈ S is the identity of S.

Both S and M2(Q) have identity elements but they are different.
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Since a unit element depends upon the identity element, we would like to
know the relationship between the units of a ring and its subring. In fact we are
in for a surprise. Even if the ring and subring have the same identity element,
they may not have the same units.

Theorem 9.11. Let S be a subring of a ring R with the same identity element
as that of R. If an element of S is a unit in S then it is also a unit in R.

Proof: Let 1 be the identity element of both R and S. Let u ∈ S be a unit in
S. Then there exists v ∈ S such that uv = vu = 1 . . . (i)
Also u ∈ R and so by (i) u is a unit in R.

If S is a subring of R and both have the same identity element 1, then an
element r ∈ S may be a unit in R, but not in S. This is shown on the following
example.

Example 9.21. Z is a subring of Q. Both have the same identity 1. In Theorem
9.11, 2 ∈ Z is not a unit in Z, but it is a unit in Q.
Moreover, if 1S 6= 1R, a unit of S may be not a unit of R. For example:

Let R= M2(Q), S =

{(
a a
a a

)
|a ∈ Q

}
.

then 1R =

(
1 0
0 1

)
, 1S =

(
1
2

1
2

1
2

1
2

)
Every non-zero element of S is an unit in S, since

(
a a
a a

)( 1
4a

1
4a

1
4a

1
4a

)
= 1s

whereas

(
a a
a a

)
is not a unit in R as this is a singular matrix.

9.8 Exercise

1. Verify whether S is a subring of the ring R. If not, state which condition
fails to hold

(i) R = (Z,+, .), S = N

(ii) R = (M2×2(Z),+, .), S= set of all 2× 2 non-singular matrices.

(iii) R as in (ii), S =

{(
a a
a a

)
|a ∈ Z

}
(iv) R = (M2(C),+, .) S=

{(
a b

−b a

)
|a, b ∈ C

}
(v) Let F be the set of all real valued continuous functions defined on [0,1]

under pointwise addition and multiplication. R= (F,+,.)
S={f ∈ F |f( 1

2 ) = 0}

(vi) R as in (v)
S= {f ∈ F |f( 1

2 ) = 1}
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2. Which of the following are subrings of Q.
(i) {pq ∈ Q| q is odd }
(ii) {pq ∈ Q| q is even }
(iii) {pq ∈ Q| p is odd }
(iv) {pq ∈ Q| p is even }
(v) {pq ∈ Q|

p
q = ( rs )2 for some r

s ∈ Q}.

3. Let R be the ring of all real valued functions defined on R, under pointwise
addition and multiplication. Determine whether the following subsets of
R are subrings.
(i) S1 =set of all continuous functions.
(ii) S2 = set of all polynomial functions.
(iii) S3 = set of all functions which are zero at finitely many point

together with the zero function.
(iv) S4 = set of all functions which are zero at infinite number of points.
(v) S5 ={f ∈ R|f(x) = 0 if x is rational }
In the above question find all relations of containment within those Si
which are subrings.

4. Let S=

{(
a b
0 0

)
|a, b ∈ Z

}
Prove that
(i) S is a subring of M2(Z).
(ii) S has a left unity but no right unity.
(iii) S has an infinite number of distinct left unit elements.

5. Let R be a ring and S1, S2, S3 subrings of R. If S3 ⊆ S1 ∪ S2 show that
S3 ( S1 or S3 ( S2.

6. Prove that mZ is a subring of nZ if and only if n divide m.

7. Let a be a element of ring R and let S={x ∈ R|ax = 0}. Show that S is a
subring of R.
(S is called the right annihilator of a).

8. Let R be a ring with unity 1R. If S is a subring of a ring R such that
1R ∈ S,then prove that S has unity 1R.

9. Let ’a’ be an element of a ring R with unity 1 such that a2 = 1. If S
= {ara|r ∈ R}, prove that S is a subring of R. Does 1 ∈ S ?Is it the unity
of S?

10. Determine the smallest subring of Q containing a where
(i) a = 1

3

(ii) a = 2
5

11. Prove that the set of all nilpotent elements of a commutative ring form a
subring.

Prove that S=

{(
n 0
2n 0

)
|n ∈ Z

}
is a commutative subring of M2(Z)

with unity. Are the unities M2(Z) and S same?

12. Give an example of a subset S of a ring R such that S is a group under
addition but S is not a subring of R.
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13. Prove that the property of being a subring is transitive.

14. Find n such that 9Z ∩ 12Z = nZ.

9.9 Integral Domains and Fields

Rings were introduced to put the algebraic properties of integers into an
abstract setting. But many of the properties of integers, like commutativity with
respect to multiplication, existence of multiplicative identity and the product of
two non-zero integers being non-zero, were not taken into consideration. Now
we introduce other algebraic structures which have these properties.

Definition 9.10. (Zero Divisor):
Let R be a ring. A non-zero element a ∈ R is said to be
(i) a left divisor of zero if there exists a non-zero element b ∈ R such

that ab = 0.
(ii) a right divisor of zero if there exists a non-zero element c ∈ R such

that ca = 0.
(iii) a divisor of zero, if it is either a left divisor or a right divisor of zero.
If R is a commutative ring then every left divisor of zero is a right divisor of
zero and vice versa.

Definition 9.11. (Ring without zero divisors): A ring R is called a ring
without zero divisors, if R has no zero divisors.

Definition 9.12. (Integral domain):
A commutative ring with unity is said to be an integral domain if it is without
zero divisors.

Example 9.22. (Z,+, .) is an integral domain.

Example 9.23. (Z5,⊕5,�5) is an integral domain.

Example 9.24. 2Z is a ring without zero divisor but it does not have unity.
So it is not an integral domain.

Example 9.25. (Z6,⊕6,�6) is not an integral domain as it is with zero divisor,
since 2,3 are non-zero element of Z6 but 2�6 3 = 0.

Definition 9.13. (Division ring):
A ring with unity is called a division ring (or a skew field) if every non-zero
element has a multiplicative inverse.

Example 9.26. (Q,+, .) is a division ring.

Definition 9.14. (Field):
A commutative ring with unity is called a field if every non-zero element has a
multiplicative inverse.

Example 9.27. (Q,+, ·) is a field.
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Example 9.28. (Z5,⊕5,�5) is a field.

From the definition it is clear that a commutative division ring is a field.
From the definition it follows that:
1. A subring of a ring without zero divisors is also without zero divisors.
2. A subring of a integral domain need not to be an integral domain.
3. A subring of a division ring may not be a division ring.
4. A subring of a field may not be a field.

9.10 Examples

Example 9.29.

1. The ring Z is an integral domain. Since 2 does not have a multiplicative
inverse, therefore Z is not a field.

2. The ring Q is an integral domain. Also every non-zero element has an
inverse. Therefore it is a field.

3. The ring R of real numbers and the ring C of complex numbers are fields.

Example 9.30. The ring 2Z of even integers is a commutative ring without
zero divisors.
Similarly 2Z, 4Z etc. are all commutative rings without zero divisors.
If n ∈ N,n > 1 then nZ does not have unity. It is a commutative ring without
zero divisors. Thus these are not integral domains.

Example 9.31. Z[
√

2] = {a+ b
√

2|a, b ∈ Z}
Z[
√

2] is a commutative ring, with unity 1.
It is without zero divisors as Z[

√
2] ⊆ R and R is without zero divisors thus

Z[
√

2] is without zero divisors, so that it is an integral domain. Since 2 ∈ Z[
√

2]
does not have an inverse, therefore Z[

√
2] is not a division ring.

Example 9.32. Q[
√

2] = {a+ b
√

2|a, b ∈ Q}.
Since Q[

√
2] is a subring of R, therefore it is commutative ring without zero

divisors.
Also 1 = 1 + 0

√
2 ∈ Q[

√
2], thus Q[

√
2] has unity.

If 0 6= x = a+ b
√

2 ∈ Q[
√

2], then
a

a2−2b2 + −b
a2−2b2

√
2 is the inverse of x (explain why a2 − 2b2 6= 0 ).

Thus, every non-zero element of Q[
√

2] is invertible. Hence Q[
√

2] is a field.

Example 9.33. Consider Z[i] = {a + bi|a, b ∈ Z} that Z[i] is a commutative
ring with unity is seen before. It is without zero divisor follows from the fact
that it is a subring of C. Thus Z[i] is a integral domain. Z[i] is not a field as
2 ∈ Z[i] does not have an inverse in Z[i].
Thus Z[i] is an integral domain which is not a field.

Example 9.34. Q[i] = {a+ ib|a, b ∈ Q}.
Q[i], being a subring of C it is a commutative ring without zero divisors. Also
1 ∈ Q[i] is the unity of the Q[i]. If 0 6= x = a+ ib ∈ Q[i] then a

a2+b2 + i −ba2+b2 is
the inverse of x. Hence Q[i] is a field.
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Examples from rings of residues

Example 9.35. Consider (Z4,⊕4,�4). It a commutative ring with unity.
Also 2 �4 2 = 0, so that Z4 is with zero divisors. Hence it is not an integral
domain.
It is also not a field as 2 ∈ Z4 does not have an inverse. Consequently Z4 is
neither a division ring nor a field.

Example 9.36. Consider (Z5,⊕5,�5).
Z5 is a commutative ring with unity and without zero divisors. Let a, b ∈ Z5

such that a�5 b = 0.
Then ab is a multiple of 5 ie. 5|ab
⇒ 5|a or 5|b as 5 is a prime.
⇒ a = 0 or b = 0 ∵ 0 ≤ a, b < 5.
Thus Z5 is without zero divisors, so that Z5 is an integral domain.
Also every non-zero element is invertible, so that (Z5,⊕5,�5) is a field.

Example 9.37. If p is prime (Zp,⊕p,�p) is an integral domain.
As seen earlier (Zn,⊕n,�n) is commutative ring with unity. We prove that it
is without zero divisors:
Let a, b ∈ Zp such that a�p b = 0.
Then ab is a multiple of p.
⇒ p|ab
⇒ p|a or p|b as p ia prime
⇒ a = 0 or b = 0 ∵ a, b ∈ Zp.
Hence a�p b = 0 =⇒ a = 0 or b = 0.
∴ Zp is without zero divisors, hence is an integral domain.

Example 9.38. Consider (4Z12,⊕12,�12).
Then 4Z12 = {0, 4, 8}. The multiplication tables are:

⊕12 0 4 8
0 0 4 8
4 4 8 0
8 8 0 4

�12 0 4 8
0 0 0 0
4 0 4 8
8 0 8 4

Being a subring of (Z12,⊕12,�12), 4Z12 is a commutative ring. Also from the
table it is clear that 4 is the identity element and 4−1 = 4, 8−1 = 8, so that
every non-zero element has an inverse.
Thus (4Z12,⊕12,�12) is a field. Moreover, product of two non-zero elements is
non-zero, therefore it is also an integral domain.

Examples from Matrices

Example 9.39. Let M=

{(
a b

−b a

)
|a, b ∈ C

}
then M is a subring of M2×2(C). It has unity

(
1 0
0 1

)
.

M is non-commutative, as

A =

(
0 1
−1 0

)
, B =

(
i 0
0 −i

)
∈M and AB 6= BA.

We now prove that every non-zero element of M is invertible
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Let 0 6= A =

(
a b

−b a

)
∈M , if B = 1

|a|2+|b|2

(
a −b
b a

)
Then AB =BA =I, so that A−1 = B.
This shows that M is a division ring. Since M is not commutative.
∴ M is not a field.

Example 9.40. Consider M=

{(
a a
a a

)
|a, b ∈ R

}
It is verified that M is a commutative subring of M2(R),

E=

(
1
2

1
2

1
2

1
2

)
is the unity of M.

If 0 6= A ∈M , then A=

(
a a
a a

)
for some 0 6= a ∈ R, and

B =

(
1
4a

1
4a

1
4a

1
4a

)
is the inverse of A. Thus M is a field.

Example 9.41. Let F be the set of all n× n scalar matrices with real entries.
It can be easily verified that F is a field.

Example from Quaternions

Example 9.42. Consider the ring D of real quaternions. D is a non-commutative
ring with unity.
We now show that every non-zero element of D is invertible.
Let x ∈ D, then 0 6= x = α0 + α1i+ α2j + α3k,
for some α0, α1, α2, α3 ∈ R not all zero.
If y = 1

β (α0 − α1i− α2j − α3k), where β = α2
0 + α2

1 + α2
2 + α2

3 6= 0
then xy = 1.
Hence every non-zero element of D is invertible, so that D is a division ring.
Since D is a non-commutative. ∴ D is not a field.

Theorem 9.12. A commutative ring R with unity is an integral domain if and
only if cancellation law holds in R.

Proof: Let R be a commutative ring with unity.
Suppose that R is an integral domain. We prove that cancellation law holds in
R.
Let a, b, c ∈ R, a 6= 0 such that
ab = ac.
Then a(b− c) = 0... (i)
Since R is an integral domain. It is without zero divisors,
so that (i) ⇒ a = 0 or b− c = 0
Since a 6= 0 ∴ b− c = 0⇒ b = c.
Hence ab = ac and a 6= 0 ⇒ b = c. Thus left cancellation law holds in R.
Commutativity in R implies that right cancellation law also holds.
Conversely, let cancellation laws hold in R.
Let a, b ∈ R such that ab = 0. If a = 0, result is proved. Let a 6= 0 then
ab = 0 = a0. By cancellation law, ab = 0 ⇒ a = 0 or b = 0, so that R is an
integral domain.

Theorem 9.13. In a field cancellation laws hold.
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Proof: Let R be a field and a, b, c ∈ R, a 6= 0 such that
ab = ac. Since a 6= 0, a−1 exists.
Pre-multiplying by a−1, we get
a−1(ab) = a−1(ac)
⇒ (a−1a)b = (a−1a)c
⇒ 1b = 1c
⇒ b = c

Thus ab = ac, a 6= 0 ⇒ b = c. So that left cancellation law holds. Right
cancellation law follows similarly.

Corollary 9.14. A field is without zero divisors.

Proof: See proof of Theorem 9.12.

Corollary 9.15. Every field is an integral domain.

Proof: Follow from corollary 9.14.
The converse of the above corollary is not true as is seen by the following

example.

Example 9.43. An integral domain may not be a field.
Z is an integral domain. Since 2 does not have an inverse, therefore Z is not a
field.

Theorem 9.16. A finite commutative ring without zero divisors is a field.

Proof: Let R = {a1, a2, ..., an} be a finite commutative ring without zero
divisors. We prove that
(i) R has unity.
(ii) every nonzero element has a multiplicative inverse.

Step 1 let 0 6= a ∈ R, and aR = {aa1, aa2, ..., aan}.
Clearly aR ⊆ R.
All the elements of aR are distinct,
for if aai = aaj
then a(ai − aj) = 0
so that ai − aj = 0 as a 6= 0 and R is without zero divisors.
∴ ai = aj a contradiction. Hence aR has n elements.
Since aR ⊆ R and aR and R are finite sets having the same number of elements,
so that aR = R.
Now a ∈ R = aR,
∴ there exists ai0 ∈ R
such that aaio = a.
We assert that ai0 is the identity element of R.
Let x ∈ R. Then x = aak for some ak ∈ R.

xai0 = (aak)ai0
= a(akai0)
= a(ai0ak)
= (aai0)ak
= (aak)
= x

∴ xai0 = x,

for all x ∈ R.
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As R is commutative ∴ xai0 = ai0x = x ∀ x ∈ R.
∴ ai0 is the identity of R. We denote it by e.

Step 2 Let 0 6= a ∈ R.
Considering aR as in step 1, we get
R = aR. Now e ∈ R = aR.
∴ there exists some ai ∈ R such that
e = aai
∴ aai = aia = e.
Hence ai is the multiplicative inverse of a. Thus every non-zero element of R
has a multiplicative inverse. Therefore R is a field.

Corollary 9.17. A finite integral domain is a field.

Using the above theorem we have the following result.

Corollary 9.18. A finite ring without zero divisors is a division ring.

Theorem 9.19. Zn is a field if and only if n is prime.

Proof: Let n be prime. Then Zn is a finite integral domain. By Corollary
9.17, Zn is a field. Conversely, let Zn be a field then Zn is an integral domain.
If n is composite then n = m1m2, where 0 < m1,m2 < n, so that m1,m2 ∈ Zn
such that m1 �n m2 = 0, thus Zn is with zero divisors, which contradicts the
fact that Zn is an integral domain. Thus n is prime.

Remark 9.2. An independent proof of the result that if p is prime then
(Zp,⊕p,�p) is a field is given below:

Example 9.44. (Zp,⊕p,�p), where p is prime is a field.
It has been seen before that (Zp,⊕p,�p) is a commutative ring with unity.
We prove that every non-zero element of Zp has an inverse.
Let 0 6= a ∈ Zp. Then 1 ≤ a < p, so that (a, p) = 1, as p is prime.
Hence by Euclid’s algorithm there exists m,n ∈ Z such that
am+ pn = 1 ⇒ am ≡ 1 (modp) or that am(modp) = 1.
Let m(modp) = r.
Then r ∈ Zp
Now am(modp) = 1
⇒ a(modp) �p m(modp) = 1
⇒ a �p r = 1
⇒ r ∈ Zp is the inverse of a.

The relationship between the different types of rings is given in the following
diagram.



324 CHAPTER 9. RINGS

Problem 9.14. Let R be the ring of all real valued functions defined on [0,1]
under pointwise addition and pointwise multiplication.
(i) Find all units of R.
(ii) Find all the zero divisors of R.

Solution: R has unity, namely the function e defined by
e(x) = 1 ∀x ∈ [0,1].
(i) Let f ∈ R be a unit. Then there exists g ∈ R such that fg = e.
=⇒ (fg)(x) = e(x) ∀x ∈ [0, 1]
=⇒ f(x)g(x) = 1 ∀x ∈ [0, 1]
=⇒ for all x ∈ [0, 1], f(x) 6= 0
and g(x) = 1

f(x) .

Thus if f is a unit, then f(x) 6= 0 ∀x ∈ [0, 1].
On the other hand, let f ∈ R be such that f(x) 6= 0 ∀x ∈ [0, 1]. Define
g(x) = 1

f(x) ∀x ∈ [0, 1]. Then fg = gf = e , so that f is a unit.

∴ U(R) = {f ∈ R|f(x) 6= 0 ∀x ∈ [0, 1]}.
(ii) Let f ∈ R be a zero divisor.
Then f is not a unit, so that f(a) = 0 for some a ∈ [0, 1].

Define g such that g(x) =

{
0 when f(x) 6= 0
1 when f(x) = 0

Then g(a) = 1, so that g 6= 0.
For any x ∈ [0, 1]
(fg)(x) = f(x)g(x) = 0.

Thus the set of zero divisors = {0 6= f ∈ R|f(a) = 0 for some a ∈ [0, 1]}.

Remark 9.3. The above problem shows that every non-zero element of R is
either a unit or a zero divisor.
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Zero
Divisors

Units

Can we generalize the above result to any ring? Certainly not!
This is not the case if R is the set of all continuous real valued functions on [0,1].
In fact there are non-zero functions which are neither units nor zero divisors.

Problem 9.15. Let R be the ring of all real valued continuous functions defined
on [0,1] under pointwise addition and pointwise multiplication.
(i) Find units of R.
(ii) Find 5 zero divisors of R.
(iii) Find 5 elements of R which are not zero divisors.

Solution:

(i) U(R) = {f ∈ R|f(x) 6= 0 ∀x ∈ [0, 1]}.
Proof is similar to (i) of the above problem.

(ii) Let 0 < a < 1
Define f as follows:

f(x) =

{
0 if x ∈ [0, a]

2x if x ∈ (a, 1]

Then f ∈ R. Now define

g(x) =

{
3x if x ∈ [0, a]
0 if x ∈ (a, 1]

Then g ∈ R and
(fg)(x) = f(x) g(x)
= 0 ∀x ∈ [0, 1]
∴ fg = 0, f 6= 0, g 6= 0.
Thus f is a zero divisor for every a, such that 0 < a < 1.
Taking a = 1

2 ,
1
3 ,

1
4 ,

1
5 ,

2
3 we get 5 zero divisors in R.

(iii) Let 0 < a < 1.
Define a function f as follows:
f(x) = |x− a|, x ∈ [0, 1]
Then 0 6= f ∈ R and f(a) = 0.
Suppose f is a zero divisor. Then there exists 0 6= g ∈ R, such that fg = 0
so that f(x)g(x) = 0 ∀x ∈ [0, 1]
Since f(x) 6= 0, when x 6= a, therefore g(x)=0 for x 6= a.
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Since g is a continuous, we must have that g(a)=0. But then g = 0,
which is a contradiction.
Hence f is not a zero divisor.
Taking a = 1

2 ,
1
3 ,

1
4 ,

1
5 ,

2
3 , we get the five element of R which are not zero-

divisors.

Remark 9.4. Our method of construction of the functions show that
(i) We can find infinitely many zero divisors in R.
(ii) A continuous function which is zero only at finitely (or countably) many
points cannot be a zero divisor.

Example 9.45. We know that when n is prime (Zn,⊕n,�n) is a field. If n is
composite we find a subring of Zn which is a field.
Let p be a prime such that p divides n, but p2 does not divide n. Let n = pm
then (p,m)=1 .
(mZn,⊕n,�n) is a subring of (Zn,⊕n,�n) having p elements.
mZn = {0,m, 2m, .....(p− 1)m} = {am | 0 ≤ a ≤ p− 1}. Let us find the unity
of mZn.
Let, if possible, am ∈ mZn be the unity, then
am�n bm = bm, ∀ bm ∈ mZn.
∴ (am)(bm)− bm is a multiple of n
i.e. bm(am− 1) = kn = kmp
i.e. b(am-1) = kp
i.e. p|b(am− 1)
i.e. p|(am− 1) ∵ p is a prime and (p,b) =1
i.e. am ≡ 1(mod p)
Thus the unity of mZn is am, if am ≡ 1(mod p).

9.11 Exercise

1. Let R be a field. Is every subring of R a field? Justify.

2. Let R be a ring which is not a field. Can a subring of R be a field ? Justify.

3. List all the zero divisors and units of
(i) Z12 (ii) Z8 (iii) Z20

Do you see any relation between the set of units and the set of zero divisors
of a ring?

4. Let R be an integral domain. Is every subring of R an integral domain ?
Justify.

5. Let R be a ring which is not an integral domain. Can a subring of R be
an integral domain? Justify.

6. In a ring with unity and without zero divisors, prove that the only idem-
potents are zero and unity.

7. In a ring with unity prove that
(i) a unit can not be a zero divisor.
(ii) a zero divisor can not be a unit.
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8. Prove that the direct sum of two integral domains need not be an integral
domain.

9. Give an example of a division ring R which is not a field. Find a subring
of R which is not a division ring.

10. Let R be a ring with unity. Prove that
(i) if u has a right inverse then u is not a right zero divisor.
(ii) if u has more than one right inverse then u is a left zero divisor.

11. Let R be the ring of all real valued functions defined on [a,b] under point-
wise addition and pointwise multiplication.
(i) Find all units of R.
(ii) Find all the zero divisor of R.

12. Let r be a nilpotent element of a commutative ring R. Prove that
(i) r is either zero or a zero divisor.
(ii) if R has unity 1,then 1 + r and 1− r are units.

13. Let R be the set of all sequences of integers (a1, a2, a3...) where all except
finitely many ai are zero. Prove that
(i) R is a ring.
(ii) R is a commutative.
(iii) R does not have unity.

9.12 Solved Problems

Problem 9.16. R is a ring with unity e. If every non-zero element of R has a
unique right inverse, prove that R is a division ring.

Solution: Let 0 6= x ∈ R. Suppose there exists a unique right inverse y of x,
i.e. xy = e.
Now x(y + yx− e) = xy + xyx− xe

= e+ ex− x
= e+ x− x = e

∴ y + yx− e is also a right inverse of x. By uniqueness of the right inverse,
we have y + yx− e = y =⇒ yx− e = 0 =⇒ yx = e
Hence y is also a left inverse of x, so that inverse of x is unique, namely y.
Thus each non zero element has an inverse.
∴ R is a division ring.

Problem 9.17. Let R be a ring such that x3 = x, for all x ∈ R. Then R is a
commutative ring.

Solution: We have x3 = x ∀ x ∈ R...(1)
Step 1 Let x, y ∈ R, then x2y − x2yx2 ∈ R.

Also (x2y − x2yx2)2 = (x2y − x2yx2)(x2y − x2yx2)
= 0 on using distributive law and (1)

∴ (x2y − x2yx2)3 = 0
⇒ x2y − x2yx2 = 0 using(1)
⇒ x2y = x2yx2

Similiarly yx2 = x2yx2

Thus x2y = yx2...(2).
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Step 2 For x ∈ R, x2 − x ∈ R, so that
(x2 − x)3 = x2 − x by (1)
On simplifying, we get
3x2 = 3x...(3)
Also (x2 − x)2 = 2x2 − 2x using (1)
= x− x2 using (3)
∴ (x2 − x)2 = x− x2...(4)

Step 3 Let x, y ∈ R
Then (x2 − x)2y = y(x2 − x)2 by (2)
so that (x2 − x)y = y(x2 − x) by (4)
Hence xy = yx.
Thus R is commutative.

Problem 9.18. Let S be any set and P(S) the power of S. Describe the units
and zero divisors of P(S),4,∩).Under what conditions is P(S) a field?

Solution: The unity of the ring P(S) is S and zero element is φ.
To find units:
If A ∈ P(S) is a unit, then for some B ∈ P(S)
A ∩B = S,
so that A=B=S.
Hence S is the only unit in P(S).
To find zero divisors:
If A ∈ P(S) is a zero divisor, then for some B ∈ P(S), we must have
A ∩B = φ.
since A ∩ (S \ A) = φ ∀A ∈ P(S), therefore every element of P(S) other than
φ and S is a zero divisor.
P(S) is a field if every element other than φ is a unit. Hence S should not have
any proper subsets. This is possible when S = {a}.
∴ P(S) is a field when S is a singleton.

9.13 Supplementary Exercises

1. Indicate whether the following statement are true or false, with proper
justification. Also correct the false statements.

(i) Every field is a integral domain.

(ii) Every unit in a ring is not a zero divisor.

(iii) The product of two units is a unit.

(iv) The sum of two units is a unit.

(v) Every non-zero element in R2 is a unit.

(vi) R2 is an integral domain.

(vii) In e[0, 1], the ring of all real valued continuous function under point-
wise addition and multiplication, f(x)=x, the identity function is the
unit element of the ring.

(viii)

{(
x x
x x

)
, |x ∈ Q

}
under usual addition and multiplication is a

field.
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(ix) Every ring with unity has at least two units.

(x) A subring of a field is a subfield.

(xi) A subring of an integral domain is an integral domain.

(xii) Every element of a ring has a multiplicative inverse.

(xiii) In a ring R, for a ∈ R, 2x = a always has a solution in R.

(xiv) In a ring R, if x2 = a2 then x = ±a.

(xv) (a+ b)2 = a2 + b2 + 2ab, holds in a ring R.

(xvi) The sum of two nilpotent elements is nilpotent.

(xvii) A non-zero nilpotent can be an idempotent.

(xviii) Subring of a ring with unity is a ring with unity.

(xix) Subring of a non-commutative ring is always non-commutative.

(xx) nZ has zero divisors if n is not prime

(xxi) x2 + 2x+ 4 = 0 has solution in Z6.

(xxii) No subring of Q is a field.

(xxiii) The sum of two subrings is a subring.

(xxiv) The union of two subring is a subring.

(xxv) The intersection of two subring is a subring.

(xxvi) 24Z ⊆ 48Z.

(xxvii) Subring of a non-commutative ring is always non-commutative.

(xxviii) Every subring of a ring with zero divisors is a ring with zero divisors.

(xxix) A subring of a ring without unity, cannot have unity.

(xxx) If R is a ring with unity and S is a subring of R with unity, then the
unities of R and S are the same.

(xxxi) If R is a ring with unity 1R and S is a subring of R with unity 1S
then 1R ∗ 1S = 1R

(xxxii) If A is a non-zero subring of R, then A2 is always non-zero.

(xxxiii) The number of solutions of x2 + 6x+ 9 = 0 in Z12 is 2.

(xxxiv) The number of solution of x2 + 12x+ 9 = 0 in Z8 is 2.

(xxxv) Every Boolean ring is commutative.

(xxxvi) If 0 and 1 are the additive and multiplicative identities of a non-zero
ring, then 0 6= 1.

(xxxvii) Every ring with unity has at least two units.

(xxxviii) Every ring with unity has at most two units.

(xxxix) Every non-zero divisor in a ring with unity is a units.

(xxxx) In a ring with unity, the set of units and the set of zero divisor are
disjoint.

(xxxxi) An ideal of a subring need not to be an ideal of the ring.

(xxxxii) In a ring with unity every idempotent is a unit.

(xxxxiii) There exists ring in which every non-zero element is a unit.
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2. State which of the following sets under the indicated operations of addition
and multiplication are defined and give a ring structure.

(i) (N,+, ·).
(ii) (R,+, ·).

(iii)

{(
a b
c d

)
: a, b, c, d ∈ Q

}
under the usual addition and multipli-

cation of matrices.

(iv)

{(
0 a
b 0

)
| a, b ∈ Z

}
under the usual multiplication.

(v) ℘(S) the power set of S, a non empty set, w.r.t A+B = A ∩B.

(vi) {a+ib : a, b ∈ Z} under the usual addition and multiplication of com-
plex number,where real part and imaginary part are added reduced
and reduced modulo n.

3. Let n be a natural number which is not a perfect square prove that

(i) Z[
√
n] = {a+ b

√
n|a, b ∈ Z} is a commutative ring with unity which is

not a field.

(ii) Q[
√
n] = {a+ b

√
n|a, b ∈ Q} is a field.

4. Give an example of an infinite Boolean ring.

5. Let (G, ∗) be an Abelian group with identity element e.
On G define · by
a · b = e ∀a, b ∈ G.
Prove that (G, ∗, .) is a ring. Is it commutative? Does it have unity?

6. Prove that a ring having a unique right unity has a unity.

7. Let R be a ring and n is an even positive integer such that
an = a, for all a ∈ R. Prove that a = −a for all a ∈ R.

8. If R is a ring with unity e. Prove that {S = ne|n ∈ Z} is a subring of R.

9. If m,n ∈ Z+ and l is the least common multiple of m and n, Prove that
mZ ∩ nZ = lZ.

10. In (Zn,⊕n,�n) prove that every non-zero element is either a unit or a
zero divisor.

11. If R is a ring then can we say that any non-zero element is either a unit
or a zero divisor ? Justify your answer.

12. List the units and zero divisors of Z⊕Q.

13. Find two element a and b of a ring R, such that a and b are zero divisors
and a+ b 6= 0 is a not-zero divisor.

14. If m and n are relatively prime integers greater than 1, show that Zmn con-
tains at least two idempotent elements other than zero and unity. Hence
find the idempotents of Z30 and Z12.
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15. For what positive integer n does the ring Zn have no idempotent element
other than zero and unity?

16. Give an example of a ring having element x and y such that xy=0 but
yx 6= 0.

17. Find the units of the M2(Z).

18. Prove that
(i)U(Z30) = U(30)
(ii)U(Zn) = U(n).

19. In a ring R, if a ∈ R is a unit and b ∈ R is such that bn = 0, then prove
that a + b is a unit.

20. Find the units of Z[x].

21. Consider the algebraic structure (R,+,.) such that
(i) ( R,+) is a group.
(ii) (R∗, .) is a group.
(iii) · is right as well as left distributive over +.
Prove that R is a division ring.

22. Prove that {a+ b
√

2 + c
√

3 + d
√

6|a, b, c, d ∈ Q} is a field.

23. Prove that {a+ bα+ cα2|a, b, c ∈ Q}, where α = 3
√

2 is a field.

24. Give an example of a Boolean ring with (i) 8 element (ii) 16 element.

25. Prove that the only Boolean ring which is an integral domain is Z2.

26. Let R be the ring of integral quaternions.
If r = a+bi+cj+dk ∈ R, then r = a−bi−cj−dk, is called the conjugate
of r. Define
N : R −→ Z
by N(a+ bi+ cj + dk) = a2 + b2 + c2 + d2

Prove that
(i) N(r) = rr,∀r ∈ R.
(ii) N(rs) = N(r)N(s).
(iii) r is a unit if and only if N(r) = 1.
(iv) the only units of R are ±1,±i,±j,±k.

27. Find the centre of
(i) ring of integral quaternions.
(ii) ring of real quaternions.

28. For a fixed a ∈ R, define
C(a) = {r ∈ R|ra = ar}. Prove that
(i) C(a) is a subring of R containing a.
(ii) Centre of R =∩C(a) .
(iii) If R is a division ring, then C(a) is a division ring.

29. Find the units of Q⊕Q.

30. Let R1, R2 be rings containing non-zero elements. Prove that R1⊕R2 has
unity if and only if R1 unity and R2 both have unity.
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9.14 Answers to Exercise

Exercise - 9.6

10. Hint let e be a left unity.
then (x+e-xe) is a left unity, ∀x ∈ R.

13. I,

(
1 0
0 0

)
,

(
0 0
0 1

)
,

(
0 0
0 0

)
,

22. Hint: Make multiplication table for �n
(i) No (ii) Yes, 4 (iii) Yes, 6 (iv) No.

23.
(i) M2(Z2)
(ii) M2(Z3)
(iii) Mm(Zn)

25. Hint: (m,n) = 1⇒ ∃λ, µ ∈ Z such that
λm+ µn = 1,
then λm(mod mn) and µn(mod mn) are idempotents in Zmn.
(i) 3,4 (ii) 4,9 (iii) 5,16.

28. Hint: In M2(Z2), A =

(
0 1
0 0

)
, B =

(
0 0
1 0

)
A2 = B2 = 0 but A+B is not nilpotent.

Take C =

(
1 1
1 0

)
∈ M2(Z2), then AC =

(
1 0
0 0

)
which is not

nilpotent.

29. (i) 0, 2 (ii) 0, 2, 4, 6 (iii) 0 (iv) 0, 6 (v) 0, 2, 4, 6, 8, 10, 12, 14 (vi) 0, 10
(vii) 6, 12, 18, 24 30.

30. Hint if e is an idempotent than (ex− exe)2 = 0∀x ∈ R
∴ ex− exe = 0. similarly xe− exe = 0.

31. (i) ±1.
(ii) 1,2,3,4
(iii) 1,5
(iv) 1,2,4,7,8,11,13,14
(v) (1,1), (-1,1), (1,-1), (-1,-1)
(vi) {(a, b)| a, b ∈ Q∗}
(vii) all non-singular matrices

(viii) ([
√

2])∗.

33. Hint: a+ ib ∈ Z[i] is a unit if
|a+ bi| = 1
units are ±1,±i.

34. Hint: If c ∈ R is such that ac =ca =1

then (a + b)(c − c2b) = 1. Take R=M2(Z), A =

(
2 1
1 1

)
, B =(

0 1
0 0

)
.
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35. Hint: Proceed as done for U(Z[x]).

36. Hint: (ba)n = b(ab)n−1a.

Exercise - 9.8

3. S4 is not a subring. S2 ⊂ S1, S5 ⊂ S4.

5. Hint: If S3 * S1, S3 * S2 let
x ∈ S3 such that x /∈ S1, y ∈ S3, y /∈ S2, x ∈ S, x /∈ S1 =⇒ x ∈ S2.
Similarly y ∈ S1.x, y ∈ S3 =⇒ x− y ∈ S3.

10. (i) {f( 1
3 )|f(x) ∈ Z[x], f(0) = 0}

(ii) {f( 2
5 )|f(x) ∈ Z[x], f(0) = 0}

Exercise - 9.11

11. (i) {f : f(x) 6= 0 for any x ∈ [a, b]}
(ii) {f : f(x) = 0 for some x ∈ [a, b]}

Supplementary Exercises

1. (i) True
(ii) True
(iii) True
(iv) False
(v) False
(vi) False
(vii) False

(viii) True, unity is

(
1
2

1
2

1
2

1
2

)
, inverse of

(
x x
x x

)
is

(
1

4x
1

4x
1

4x
1

4x

)
.

(ix) False, Z2.
(x) False, Z is a subring of the field Q, but not a subfield.
(xi) True
(xii) False
(xiii) False, 2x = 5 in Z has no solution.
(xiv) False
(xv) False
(xvi) False
(xvii) False
(xviii) False
(xix) False
(xx) False
(xxi) x=2
(xxii) True

(xxiii) False, A=

{(
a b
0 0

)
, |a, b ∈ Z

}
, B=

{(
a 0
b 0

)
, |a, b ∈ Z

}
are subring of M2(Z), but A+B is not a subring.
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(xxiv) False
(xxv) True
(xxvi) False

(xxvii) False, M2(Z) is non-comm. But S=

{(
n 0
2n 0

)
, |n ∈ Z

}
is

commutative subring.
(xxviii) False

(xxix) False, R=

{(
a 0
0 0

)
, |a, b ∈ Z

}
is a subring of R without

unity

(
1 0
0 0

)
(xxx) False, M2(Q) is a ring without unity.(

1 0
0 1

)
S=

{(
x x
x x

)
, |x ∈ Z

}
is a subring of M2(Q)

with unity

(
1
2

1
2

1
2

1
2

)
.

(xxxi) False, 1R ∗ 1S = 1S
(xxxii) False in Z4 A= {0, 2}.A2 = {0}.
(xxxiii) True
(xxxiv) False it has 3 solutions. Given equationn can be written

as x2 − 6x+ 9 = 0 ∴ (x− 3)2 = 0.
(xxxv) True
(xxxvi) True
(xxxvii) False, Z2

(xxxviii) False, Z8,Z5

(xxxix) False
(xxxx) True
(xxxxi) True
(xxxxii) False, True only for e = 1.
(xxxxiii) True

4. (℘(S),4,∩) where S is an infinite set.

7. Hint: use (−a)n = an as n is even.

12. Units: (±1, q) where 0 6= q ∈ Q
Zero divisor : (0, q)(n, 0) q 6= 0, n 6= 0

13. Hint: In Z6, a = 2, b = 3.

14. 6, 25 in Z3 and 4,9 in Z12.

15. n is prime.

19. Hint: If c ∈ R is such that ac = ca = 1, (a + b)(c − c2b + c3b2 + . . . +
(−1)n−1cnbn−1) = 1

20. Hint: Z,Z[x] have the same units.

21. Hint: Expand (a+b)(1+1) in two way and equate.
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24. (i) subring of M3(Z2) consisting of diagonal matrices.
(ii) subring of M4(Z2) consisting of diagonal matrices.

25. Hint: Let a ∈ R then a2 = a =⇒ a(a− 1) = 0 =⇒ a = 1, 0 =⇒ R = {0, 1}.

27. (i) Z, (ii) R.

29. Q∗ ×Q∗



This page is intentionally left blank.



UNIT - 4

337



Chapter 10

System of Linear Equations

An equation of the type ax = b, where a and b are real constants and x is an
unknown, is called a linear equation in x. If x1, x2 . . . , xn are unknowns (called
variables) then a relation of the type

a1x1 + a2x2 + . . .+ anxn = b (10.1)

where a1, . . . , an and b are given real constants is called a linear equation in
x1, . . . , xn. The constants a1, . . . , an are called the coefficients of the variables
x1, . . . , xn respectively. By a solution of equation (10.1) is meant a set of values
of x1, . . . , xn which satisfy it.

Example 10.1.

1. 3x−0.2y = 5 is a linear equation in two variables x and y. x = 1, y = −10
is a solution. More solutions also exist.

2.
√

3x − 4y + 3z = −12 is a linear equation in three variables x, y, z. x =
0, y = 3, z = 0 is one solution. Another solution is x = −4

√
3, y = z = 0.

3. 2x2 + y = 5 is not a linear equation, because the term x2 is present.

4. xy + 4x = 2 is also not a linear equation because the term xy is present.

A system of m linear equations, in n unknowns x1, x2 . . . , xn (or simply a
linear system), is a set of m linear equations each in the same n unknowns. It
can be conveniently denoted by

a11x1 + a12x2 + . . .+ a1nxn = b1

a21x1 + a22x2 + . . .+ a2nxn = b2
...

...
...

am1x1 + am2x2 + . . .+ amnxn = bm (10.2)

the two subscripts i and j in aij are used as follows. The first subscript i indi-
cates that we are dealing with the ith equation, while the second subscript j is

338
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associated with the jth variable xj . Thus the ith equation is

ai1x1 + ai2x2 + . . .+ ainxn = bi

in (10.2), for i = 1, . . . ,m; j = 1, . . . , n; aij , bi are known as constants. Gener-
ally they are real numbers.
A solution to a linear system (10.2) is a sequence of n numbers s1, s2, . . . . . . , sn
which has the property that each equation in (10.2) is satisfied when x1 = s1,
x2 = s2, . . . , xn = sn are substituted in (10.2). The solution is written as an
ordered n-tuple (s1, s2, . . . , sn). The set of all solutions is called the solution set
of the linear system. A linear system is said to be consistent if it has a solution,
otherwise it is said to be inconsistent. Two linear systems, having the same
solution set are called equivalent systems, i.e., each solution of a first system is
a solution of the second system and vice versa.
If b1 = b2 = . . . = bm = 0, then the system is said to be homogenous and
non-homogenous otherwise.

Example 10.2.

1. 3x− 2y = 1, 5x+ 6y = 11 is a linear system of equations in the variables
x and y. x = 1, y = 1 is a solution of both the equations and is therefore
a solution of the system of equation. The given system of equation is
consistent. Hence the solution set is {(1, 1)}.

2. 3x + 4y = 5, 6x + 8y = 81 has no solution. Hence it is an inconsistent
system. The solution set is the empty set.

3. x−y+3z = 6, x+3y−3z = −4, 5x+3y+3z = 10 is a system of equations in
the three variables x, y, z. (2, -1, 1) is a solution of this linear system, so
that system of equation is consistent. (5, -4, -1) is also a solution. Thus
the given system has more than one solutions. In fact, if k is any real
number {( 7

2 −
3
2k,

−5
2 + 3

2k, k) : k is a real number} is always a solution.
Thus the solution set is
{( 7

2 −
3
2k,

−5
2 + 3

2k, k) : k is a real number)}.

The set of all solutions of

a1x1 + a2x2 + . . .+ anxn = b

with at least one ai non zero, is called a hyperplane in Rn.
When n = 2, it is a line in R2 and when n = 3, it is a plane in R3.

Geometrical Interpretation
The graph of a linear equation ax + by = c in two variables x and y is a line.
For every solution x = x1, y = y1 of this equation, the point (x1, y1) lies on the
line and vice versa. Thus a single linear equation in two variables has infinitely
many solutions.
Let us now consider two linear equations,

a1x+ b1y = c1

a2x+ b2y = c2

A solution of this system is the set of values x and y which satisfy both the
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equations, i.e., it lies on both the lines represented by these equations. Thus, it
is the point of intersection of these two lines, if it exists.
There are three possibilities

(i) The two lines meet at a point, so that there is exactly one solution.

(ii) The two lines are parallel, i.e., they never meet. Hence there is no solution.

(iii) The two lines becomes identical. This amounts to saying that they meet
at every point. Hence there are infinitely many solutions.

Thus a solution set of a system is intersection of the graphs of each equation of
this system.

10.1 Matrix Notation

Consider the linear system

a11x1 + a12x2 + . . .+ a1nxn = b1

a21x1 + a22x2 + . . .+ a2nxn = b2
...

... =
...

am1x1 + am2x2 + . . .+ amnxn = bm

of m equations in the n unknowns x1, x2, ...xn. The above system can be written
as AX = b, where

A =


a11 a12 . . . a1n

a21 a22 . . . a2n

...
... . . .

...
am1 am2 . . . amn

, b =


b1
b2
...
bm

, X =


x1

x2

...
xn


A is called the coefficient matrix of the system.

If b = 0, then the system is said to be homogenous. If the right hand side of
the system is attached to A as the (n+ 1)th column, then the matrix

a11 a12 . . . a1n

... b1

a21 a22 . . . a2n

... b2
...

... . . .
...

...
...

am1 am2 . . . amn
... bm

 is called the augmented matrix of the sys-

tem and is denoted by
(
A

... b

)
. Within an augmented matrix, the hori-

zontal and vertical subarrays

(
ai1 ai2 . . . ain

... bi

)
and


a1j

a2j

...
amj

 are the ith-row(which represents

the ith equation) and the jth column(which are the coefficients of the jth vari-
able xj) of the augmented matrix respectively. Clearly, there is a one-to-one

CHAPTER 10.
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correspondence between the columns of the coefficient matrix and the variables

of the system. The last column
(
b1 b2 . . . bm

)t
of the augmented matrix

represents homogeneity of the system and so no variables corresponds to it.

Example 10.3. Consider a system of equations

x1 + 2x2 + 3x3 − x4 = 5

2x1 − x2 + x3 + x4 = −2

x1 + 3x2 − 4x3 + 5x4 = 6

These are 3 equations in 4 unknowns x1, x2, x3, x4.

If A =

 1 2 3 −1
2 −1 1 1
1 3 −4 5


then A is the coefficient matrix (or matrix of coefficients) of the given system.
The matrix A with an extra column, which is the right hand side, is the aug-
mented matrix of the given system. Thus

(
A

... b

)
=


1 2 3 −1

... 5

2 −1 1 1
... −2

1 3 −4 5
... 6


10.2 Solving a Linear System

In this chapter, we make a systematic study of the theoretical aspects of the
solution of the linear equations and give some computational procedures. The
basic approach adopted in solving a given system is to find an equivalent system
which is easier to solve. This is illustrated in the following example (you have
already done this in middle school). The corresponding augmented matrix of
the system will be given along side.

Example 10.4. Consider the system of equations
x1 − x2 + x3 = 6, 2x1 + 3x2 + 4x3 = 8, 5x1 − 2x2 + 6x3 = 27
This system will be solved by the process of elimination. The corresponding aug-
mented matrix will be written alongside.
The system is :

x1 − x2 + x3 = 6 . . . (1)
2x1 + 3x2 + 4x3 = 8 . . . (2)
5x1 − 2x2 + 6x3 = 27 . . . (3)

 1 −1 1 6
2 3 4 8
5 −2 6 27

 = A

Eliminate x1 from equations (2) and (3), using equation (1). For this we apply

(2)− 2× (1) : 5x2 + 2x3 = −4
(3)− 5× (1) : 3x2 + x3 = −3
Thus we get the equivalent system of equations

x1 − x2 + x3 = 6 . . . (4)
5x2 + 2x3 = -4 . . . (5)
3x2 + x3 = -3 . . . (6)

 1 −1 1 6
0 5 2 −4
0 3 1 −3

 = B
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Eliminate x2 from equation (6) using equation (5). For this we apply
(6)− 3

5 × (5): −1
5 x3 = −3

5
Thus we get the equivalent system of equations

x1 − x2 + x3 = 6 . . . (7)
5x2 + 2x3 = -4 . . . (8)

−1
5 x3 = −3

5 . . . (9)

 1 −1 1 6
0 5 2 −4
0 0 −1

5
−3
5

 = C

Solving equation (9) for x3, equation (8) for x2 and equation (7) for x1, we
get, x3 = 3, x2 = −2, x1 = 1
Note that the augmented matrix of this system is a triangular matrix.
Observe that on A, if we apply the operations
Row 2 −→ Row 2+(-2) Row 1
Row 3 −→ Row 3+(-5) Row 1,
we get the matrix B. On B if we apply,
Row 3 −→ Row 3 + −3

5 Row 2, we get the matrix C.
The system of equations corresponding to matrix C are the equations (7), (8)
and (9).
This example illustrates that operations on equations in a linear system corre-
spond to operations on the corresponding rows of the augmented matrix. Such
operations are called elementary row operations. There are 3 types of elementary
row operations.

10.3 Elementary Row Operations (ERO)

E1 (Interchange) Interchange of two rows. It is denoted by Ri ←→ Rj when
the ith and jth rows are interchanged.

E2 (Scaling) Multiply each element of a row by a non-zero constant. It is
denoted by Ri −→ cRi when the elements of the ith row are multiplied
by c 6= 0.

E3 (Replacement) Replace the elements of the row by the sum of itself and a
multiple of another row. It is denoted by Ri −→ Ri + k Rj when the ith
row is replaced by the sum of the ith row and k times the jth row.

Note that in operation E1 two rows of a matrix are affected whereas in op-
erations E2 and E3 only one row is affected. Row operations can be applied
to any matrix, not merely to those which arise as the augmented matrix of the
linear system.
Two matrices A and B are said to be row equivalent if one can be obtained from
the other by a sequence of elementary row operations. Symbolically we write
A ∼ B.
Elementary row operations are reversible. If B is the matrix obtained from A
by Ri ←→ Rj then A can be obtained from B by Ri −→ Rj .
If D is the matrix obtained from C by Ri −→ cRi, c 6= 0, then C can be obtained
from D by Ri ←→ c−1Ri.
If F is the matrix obtained from E by Ri −→ Ri+k Rj , then E can be obtained
from F by Ri −→ Ri + (−k) Rj .
At the moment we are interested in row operations on the augmented matrix
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of a system of linear equations. If a linear system is changed into a new one
by applying elementary row operations. Then by considering each type of ele-
mentary row operations it can be seen that any solution of the original system
remains a solution of the new system. Conversely, since the original system
can be produced via row operations on the new system, each solution of the
new system is also a solution of the original system. Thus, “If the augmented
matrices of two linear systems are row equivalent, then the two systems have
the same solution set.”

Example 10.5. Let A =

 2 5 6
1 3 −4
7 2 8


Apply R1 ←→ R2 on A.

Then A ∼

 1 3 −4
2 5 6
7 2 8

 = B(say)

Apply R3 −→ (−1)R3 on B

Then B ∼

 1 3 −4
2 5 6
−7 −2 −8

 = C(say).

Then B ∼ C. Thus A ∼ C

Apply R3 −→ R3 + 2 R2 on C

Then C ∼

 1 3 −4
2 5 6
−3 8 4

 = D(say)

We shall now explain the steps involved in solving the given system of equa-
tions using augmented matrix. Consider a system of four linear equations in
four unknowns in order to explain the procedure explicitly.

a11x1 + a12x2 + a13x3 + a14x4 = b1

a21x1 + a22x2 + a23x3 + a24x4 = b2

a31x1 + a32x2 + a33x3 + a34x4 = b3

a41x1 + a42x2 + a43x3 + a44x4 = b4

Form the augmented matrix

(
A

... b

)
=


a11 a12 a13 a14

... b1

a21 a22 a23 a24

... b2

a31 a32 a33 a34

... b3

a41 a42 a43 a44

... b4


Step 1 Make the elements in the first column below a11, zero.
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(a) If a11 6= 0 proceed to (b). If a11 = 0 and ai1 6= 0 for some i = 2, 3, 4, then
apply R1 ←→ Ri . If ai1 = 0, i = 1, 2, 3, 4, then go to step 2.

(b) By applying Ri −→ Ri + −ai1
a11

R1, i = 2, 3, 4, we get the matrix

(
A

... b

)
∼


b11 b12 b13 b14

... c1

0 b22 b23 b24

... c2

0 b32 b33 b34

... c3

0 b42 b43 b44

... c4

 =
(
B

... c

)

Step 2 Make the elements in second columns below b22, zero.

Consider the matrix
(
B

... c

)
. Using the element b22 (in a similar way as

a11), make the elements below b22 zero, as in step 1. Then

(
B

... c

)
∼


b11 b12 b13 b14

... c1

0 c22 c23 c24

... d2

0 c32 c33 c34

... d3

0 c42 c43 c44

... d4

 =
(
C

... d

)

Step 3 Continue this process till
(
A

... b

)
is equivalent to a triangular

matrix. Thus

(
A

... b

)
∼


d11 d12 d13 d14

... p1

0 d22 d23 d24

... p2

0 0 d33 d34

... p3

0 0 0 d44

... p4


Hence the given system of equations is equivalent to

d11x1 + d11x2 + d11x3 + d11x4 = p1

d22x2 + d23x3 + d24x4 = p2

d33x3 + d34x4 = p3

d44x4 = p4

Solve these equations for x4, x3, x2, x1 respectively.

10.4 Solved Problems

Problem 10.1. Solve the linear system with the augmented matrix

(i)


1 −2 3

... 4

2 −1 −3
... 5

3 0 1
... 2

3 −3 0
... 7


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(ii)


1 2 3 1

... 8

1 3 0 1
... 7

1 0 2 1
... 3


Solution:

(i)
(
A

... b

)
=


1 −2 3

... 4

2 −1 −3
... 5

3 0 1
... 2

3 −3 0
... 7


Applying R2 −→ R2 − 2R1, R3 −→ R3 − 3R1, R4 −→ R4 − 3R1

(
A

... b

)
∼


1 −2 3

... 4

0 3 −9
... −3

0 6 −8
... −10

0 3 −9
... −5


Applying R3 −→ R3 − 2R2, R4 −→ R4 −R2

(
A

... b

)
∼


1 −2 3

... 4

0 3 −9
... −3

0 0 10
... −4

0 0 0
... −2


Thus the system of equations is

x1 − 2x2 + 3x3 = 4

3x2 − 9x3 = −3

10x3 = −4

0x3 = −2

the last equation gives 0 = −2 which is not possible. Hence the system is
inconsistent.

(ii)
(
A

... b

)
=


1 2 3 1

... 8

1 3 0 1
... 7

1 0 2 1
... 3


Applying R2 −→ R2 −R1, R3 −→ R3 −R1
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(
A

... b

)
∼


1 2 3 1

... 8

0 1 −3 0
... −1

0 −2 −1 0
... −5


Applying R3 −→ R3 + 2R2

(
A

... b

)
∼


1 2 3 1

... 8

0 1 −3 0
... −1

0 0 −7 0
... −7


Thus the system of equations is,

x1 + 2x2 + 3x3 + x4 = 8

x2 − 3x3 = −1

−7x3 = −7

∴ x3 = 1, x2 = 2
x1 + 2x2 + 3x1 + x4 = 8
or x1 + x4 = 1
If x4 = k then x1 = 1− k
Hence the solution is
x1 = 1 − k, x2 = 2, x3 = 1, x4 = k, where k is any real number.Thus the
given system is consistent and has infinitely many solutions.

Problem 10.2. Let the following matrix be the augmented matrix of a system
of equations. 

1 −4 7
... g

0 3 −5
... h

−2 5 −9
... k


Determine a relation between g, h and k so that the system is

(i) consistent,

(ii) inconsistent.

Solution: Let A =


1 −4 7

... g

0 3 −5
... h

−2 5 −9
... k


Step 1 Apply R3 −→ R3 + 2R1 to A. Then

A ∼


1 −4 7

... g

0 3 −5
... h

0 −3 5
... k + 2g


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Step 2 R3 −→ R3 +R2

A ∼


1 −4 7

... g

0 3 −5
... h

0 0 0
... h+ k + 2g


The last equation will be

0x3 = h+ k + 2g

(i) If the system is consistent then we must have h+ k + 2g = 0

(ii) If the system is inconsistent then h+ k + 2g 6= 0

Problem 10.3. Determine if the following system of equations is consistent

x1 − 3x2 + 4x3 = −4

3x1 − 7x2 + 7x3 = −8

−4x1 + 6x2 − 2x3 = 7

If it is, find the solution.

Solution: The augmented matrix of the system is:

(
A

... b

)
=


1 −3 4

... −4

3 −7 7
... −8

−4 6 −2
... 7


Step 1 Applying R2 −→ R2 + (−3)R1, R3 −→ R3 + 4R1,

(
A

... b

) 
1 −3 4

... −4

0 2 −5
... 4

0 −6 14
... −9


Step 2 Applying R3 −→ R3 + 3R2,

(
A

... b

) 
1 −3 4

... −4

0 2 −5
... 4

0 0 −1
... 3


The augmented matrix is equivalent to a triangular matrix. The given system
of equations is equivalent to

x1 − 3x2 + 4x3 = −4

2x2 − 5x3 = 4

−x3 = 3

Solving, we get x3 = −3, x2 = −11
2 , x1 = −17

2 .
Hence the given system has a solution, so that it is consistent. Solution is unique
and is (−17

3 , −11
2 ,−3).
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Problem 10.4. Solve the following system of equations

x1 + 3x2 − 2x3 = 3

2x1 + 6x2 − 2x3 + 4x4 = 18

x2 + x3 + 3x4 = 10

Solution: The augmented matrix of the system is:

(
A

... b

)
=


1 3 −2 0

... 3

2 6 −2 4
... 18

0 1 1 3
... 10


Applying R2 −→ R2 − 2R1

(
A

... b

) 
1 3 −2 0

... 3

0 0 2 4
... 12

0 1 1 3
... 10


Applying R2 ←→ R3 (In order to make the element in the (2, 2)th position
non-zero)

(
A

... b

) 
1 3 −2 0

... 3

0 1 1 3
... 10

0 0 2 4
... 12


Thus the system of equations is

x1 + 3x2 − 2x3 = 3

x2 + x3 + 3x4 = 10

2x3 + 4x4 = 12

By back substitution, we get

x3 = 6− 2x4,

x2 = 4− x4,

x1 = 3− x4

Hence the given system is consistent and has infinitely many solutions, given by

x1 = 3− k
x2 = 4− k
x3 = 6− 2k

x4 = k

where k is any real number.

Problem 10.5. Determine whether the following system of equations is consis-
tent

3x1 + x2 − 4x3 = 7

x1 − 2x2 + 3x3 = 6

5x1 − 3x2 + 2x3 = 5

If it is, find the solution.
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Solution: The augmented matrix of the system is:

(
A

... b

)
=


3 1 −4

... 7

1 −2 3
... 6

5 −3 2
... 5


Step 1 For ease of calculations we interchange the first and second rows.

Applying R1 ←→ R2

(
A

... b

)
∼


1 −2 3

... 6

3 1 −4
... 7

5 −3 2
... 5


Applying R2 −→ R2 + (−3)R1

R3 −→ R3 + (−5)R1

(
A

... b

)
∼


1 −2 3

... 6

0 7 −13
... −11

0 7 −13
... −25


Step 2 Applying R3 −→ R3 −R2

(
A

... b

)
∼


1 −2 3

... 6

0 7 −13
... −25

0 0 0
... 0


The augmented matrix is equivalent to a triangular matrix. The given system
of equations is equivalent to

x1 − 2x2 + 3x3 = 6

7x2 − 13x3 = −25

0x3 = 0

The last equation is satisfied for any value of x3. Solving for x2 and x1 in terms
of x3 we get,

x2 =
13

7
x3 −

25

7

x1 =
5

7
x3 −

8

7

Thus the given system is consistent and the solution is (5
7k−

8
7 ,

13
7 −

25
7 , k) where

k is any real number. Hence there are infinitely many solutions.

Problem 10.6. Determine if the following system of equation is consistent

x2 + 4x3 = −5

x1 + 3x2 + 5x3 = −2

3x1 + 7x2 + 7x3 = 6

If it is, find the solution.
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Solution: The augmented matrix of the system is:

(
A

... b

)
∼


0 1 4

... −5

1 3 5
... −2

3 7 7
... 6


Step 1 Since the element in the (1, 1)th position is zero, we shall make it

non-zero by applying R2 ←→ R1

Thus
(
A

... b

)
∼


1 3 5

... −2

0 1 4
... −5

3 7 7
... 6



∼


1 3 5

... −2

0 1 4
... −5

0 −2 −8
... 12

 Applying R3 −→ R3 + (−3)R1

∼


1 3 5

... −2

0 1 4
... −5

0 0 0
... 2

 Applying R2 −→ R2 + 2R1

The augmented matrix is equivalent to a triangular matrix. The given system
of equations is equivalent to

x1 + 3x2 + 5x3 = −2

x2 + 4x3 = −5

0x3 = 2

The third equation is not satisfied for any value of x3. Hence the given system
does not have a solution and is inconsistent.

Problem 10.7. Determine the value(s) of h such that the matrix is the aug-
mented matrix of a consistent linear system

(i)

(
1 h −3
−2 4 6

)
(ii)

(
2 −3 h
−6 9 5

)
Solution:

(i) Let A =

(
1 h −3
−2 4 6

)
A ∼

(
1 h −3
0 4 + 2h 0

)
Applying R2 −→ R2 + 2R1

The system of equations is

x1 + hx2 = −3

(2h+ 4)x2 = 0

The system is consistent for every value of h.
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(ii) A =

(
2 −3 h
−6 9 5

)
A ∼

(
2 −3 h
0 0 5 + 3h

)
Applying R2 −→ R2 + 3R1

The system of equations is

2x1 − 3x2 = h

0x2 = 5 + 3h

Thus 5 + 3h = 0 so that h = −5
3 .

Hence the given system is consistent when h = −5
3 .

Problem 10.8. Find an equation relating a, b and c so that the linear system

2x+ 2y + 3z = a

3x− y + 5z = b

x− 3y + 2z = c

is consistent for any values of a, b and c that satisfy that equation.

Solution: The augmented matrix of the system is:

(
A

... b

)
=


2 2 3

... a

3 −1 5
... b

1 −3 2
... c



∼


1 −3 2

... c

3 −1 5
... b

2 2 3
... a

 Applying R1 ←→ R3

∼


1 −3 2

... c

0 8 −1
... b− 3c

0 8 −1
... a− 2c

 Applying R2 −→ R2−3R1, R3 −→ R3−2R1

∼


1 −3 2

... c

0 8 −1
... b− 3c

0 0 0
... a− b+ c

 Applying R3 −→ R3 −R2

Thus the corresponding system of equations is

x− 3y + 2z = c

8y − z = b− 3c

0z = a− b+ c

The 3rd equation is consistent if a− b+ c = 0
Hence the given system is consistent if a− b+ c = 0.
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Problem 10.9. Find the values of k for which the resulting linear system has

(i) No solution

(ii) unique solution, and

(iii) infinitely many solutions.

x+ y + z = 2

x+ 2y + z = 3

x+ y + (k2 − 5)z = k

Solution: The augmented matrix of the system is:

(
A

... b

)
=


1 1 1

... 2

1 2 1
... 3

1 1 k2 − 5
... k



∼


1 1 1

... 2

0 1 0
... 1

0 0 k2 − 6
... k − 2

 Applying R2 −→ R2−R1, R3 −→ R3−R1

Thus the system of equations is

x+ y + z = 2 (1)

y = 1 (2)

(k2 − 6)z = k − 2 (3)

Two cases arise:
Case 1 k2 − 6 6= 0. Then,

z =
k − 2

k2 − 6
.

Case 2 k2 = 6.
The system has no solution. Since for these values of k, equation(3) is absurd as
its left hand side is zero, while the right hand side is non-zero. Thus the system
has

(i) no solution when k = ±
√

6

(ii) unique solution when k 6= ±
√

6

(iii) infinitely many solutions, is not possible.

Problem 10.10. Construct three different augmented matrices for linear sys-
tem whose solution set is x1 = −2, x2 = 1, x3 = 0.

Solution: The system of equations
x1 = −2
x2 = 1
x3 = 0

is one system, having the given solution set. Its augmented matrix is
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(
A

... b

)
=


1 0 0

... −2

0 1 0
... 1

0 0 1
... 0


Any system of equations whose augmented matrix is equivalent to

(
A

... b

)
will have the same solution set. Thus the required augmented matrices will be

obtained by applying ERO to
(
A

... b

)
. Applying R1 −→ R1 + 2R2

(
A

... b

)
∼


1 2 0

... 0

0 1 0
... 1

0 0 1
... 0

 =
(
B

... d

)
(say)

Applying R3 −→ R3 +R1 + 3R2

(
A

... b

)
∼


1 2 0

... 0

0 1 0
... 1

1 5 1
... 3

 =
(
C

... e

)
(say)

Thus
(
A

... b

)
,
(
B

... d

)
,
(
C

... e

)
are the required three dif-

ferent augmented matrices.

10.5 Exercise

1. Find the matrices obtained by performing operations on A, where

A =

 2 0 4 2
3 −2 5 6
−1 3 1 1


(i) Interchange the 1st and 3rd row.

(ii) Multiply the 2nd row by -3.

(iii) Adding -3 times third row to the first row.

(iv) Adding -1 times first row and the third row to the second row.

2. Find ERO that transforms the first matrix into the second and then find
the reverse row operation that transforms second into first matrix.

(i)

 1 2 −1 3
4 1 6 8
−2 0 1 −4

 ,

 −2 0 1 −4
4 1 6 8
1 2 −1 3



(ii)


−1 1 0 −1
2 −2 3 −4
5 −7 6 −8
0 1 −4 3

 ,


−1 1 0 −1
2 −2 3 −4
−10 14 −12 16

0 1 −4 3


(iii)

 1 3 9
3 −6 7
0 −2 6

 ,

 1 3 9
3 −6 7
0 1 −3


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(iv)

 2 4 6 −2
3 1 4 6
−2 0 1 −1

 ,

 2 4 6 −2
3 1 4 6
−1 2 4 −2


(v)

 1 3 4
2 −1 0
3 4 −1

 ,

 1 3 4
0 −7 −8
3 4 −1


3. Find three matrices which are row equivalent to the matrix 4 3 −1 5

−4 2 −11 0
2 −3 0 −5


4. The augmented matrix of a linear system has been reduced by row op-

erations to the form shown. In each case, continue the appropriate row
operation and describe the solutions of the original system.

(i)

(
1 0 −3 −2
0 −3 10 7

)

(ii)

 −1 3 1
0 17 17
3 −4 2


(iii)

 1 2 3 6
0 1 2 9
0 0 0 5


(iv)

 0 0 1 2
2 3 0 −2
−1 −3 6 −5


5. Solve the linear system associated with the given augmented matrix

(i)


1 1 1

... 0

1 1 0
... 3

0 1 1
... 1



(ii)


1 2 3

... 0

1 1 1
... 0

5 7 9
... 0



(iii)


1 2 3

... 0

1 1 1
... 0

1 1 2
... 0

1 3 3
... 0


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(iv)



1 2 1
... 7

2 0 1
... 4

1 0 2
... 5

1 2 3
... 11

2 1 4
... 12



(v)


1 1 3 −3

... 0

0 2 1 −3
... 3

1 0 2 −1
... −1



(vi)


4 2 −1

... 5

3 3 6
... 1

5 1 −8
... 8



(vii)


1 2 −3

... 4

2 −3 5
... 6

4 −13 21
... 26


6. Solve the following system of equations.

(i) 2x2 + 3x3 − 4x4 = 1

2x3 + 3x4 = 4

2x1 + 2x2 − 5x3 + 2x4 = 4

2x1 − 6x3 + 9x4 = 7

(ii) x+ 2y + 3z = 9

2x− y + z = 8

3x− z = 3

(iii) x+ y + 2z − 5w = 3

2x+ 5y − z − 9w = −3

2x+ y − z + 3w = −11

x− 3y + 2z + 7w = −5

(iv) x+ y + z + w = 4

x+ y + z − w = 2

x− y + z − w = 0
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(v) x1 + 6x2 + 3x3 + 8x4 = 0

2x1 + 4x2 + 6x3 − x4 = 0

3x1 + 10x2 + 9x3 + 7x4 = 0

4x1 + 16x2 + 12x3 + 15x4 = 0

(vi) x1 − 3x2 + 2x3 = 0

7x1 − 21x2 + 14x3 = 0

−3x1 + 9x2 − 6x3 = 0

(vii) 2x+ 4y − 5z = 0

x− 5y + 8z = 4

3x+ 13y − 18z = 4

7. Find the values of k for which the resulting linear system has

(a) No solution

(b) Unique solution

(c) Infinitely many solutions

(i)
x+ y = 3

x+ (k2 − 8)y = k

(ii)
x+ y − z = 2

x+ 2y + z = 3

x+ y + (k2 − 5)z = k

(iii)
x+ y + z = 2

2x+ 3y + 2z = 5

2x+ 3y + (k2 − 1)z = k + 1

8. Construct 4 different augmented matrices for linear systems whose solution
set is

(i) x1 = 4, x2 = −5

(ii) x1 = −3, x2 = 2, x3 = −1

9. If a system Ax = b of linear equations over R has two distinct solutions u
and v then show that there exists infinitely many solutions.

10. Show that the equations 2x + 4y = 3, x + 2y = 4 are consistent over the
field Z5 but inconsistent over R.

11. Show that the equations 2x+ 4y = 1, 4x+ 3y = 2 have a unique solution
in R. Do they have a unique solution over Z5? If yes, prove it. If no, find
all solutions.
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10.6 Row Reduction and Echelon Forms

In this section we shall refine the method studied above into a row reduc-
tion algorithm which will enable us to answer the fundamental existence and
uniqueness question of the solution of a system of linear equation. The general
systematic procedures for finding the solutions will be explained by a example.

Example 10.6. Solve the system of linear equations

2y + 4z = 2

x+ 2y + 2z = 3

3x+ 4y + 6z = −1

We can work with the augmented matrix only. However, to compare the oper-
ations on the system of linear equations with those on the augmented matrix,
we work on the system and the augmented matrix in parallel. The augmented
matrix of the system is 

0 2 4
... 2

1 2 2
... 3

3 4 6
... −1


Step 1 Since the coefficient of x in the first equation is zero, while that in the
second equation is non-zero, we interchange these two equations. Thus, we get

x+ 2y + 2z = 3

2y + 4z = 2

3x+ 4y + 6z = −1
1 2 2

... 3

0 2 4
... 2

3 4 6
... −1


Step 2 Using the 1st equation, we eliminate x from the 3rd equation. To do this
we add (-3)times the first equation to the equation.

x+ 2y + 2z = 3

2y + 4z = 2

−2y = −10
1 2 2

... 3

0 2 4
... 2

0 −2 0
... −10


Thus x is eliminated from the 2nd and 3rd equations. The coefficient of x in the
1st equation(row) is called the first pivot. In this case it is 1. The second and
third equations have two unknowns y and z. Leave the first equation(row) alone,
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and the same elimination procedure is applied to the second and third equations
(rows). The pivot to eliminate y from the third equation is the coefficient(in this
case 2)of y in the second equation(row).

Step 3 Add the second equation(row) to the third equation(row):

1©x+ 2y + 2z = 3 (10.3)

2©y + 4z = 2 (10.4)

4©z = −8 (10.5)
1 2 2

... 3

0 2 4
... 2

0 0 4
... −8


The elimination process(steps 1 to 3) done above is called forward elimination.
The process is called Gaussian elimination.

Step 4 Normalize the non-zero rows by dividing them with their pivots.
Thus the pivots become 1, and we get

x+ 2y + 2z = 3

y + 2z = 1

z = −2
1 2 2

... 3

0 1 2
... 1

0 0 1
... −2


Step 5 The last equation gives z = −2. Substituting z = −2 into the second

equation gives y = 5. Putting the values of y and z in the first equation we get
x = −3. This process is called back substitution.
This computation is shown below, that is, eliminating numbers above the leading
1s. Adding -2 times the third equation(row) to the second and the first equa-
tions(rows),

x+ 2y = 7

y = 5

z = −2
1 2 0

... 7

0 1 0
... 5

0 0 1
... −2


Adding -2 times the second equation(row) to the first equation(row)

x = −3

y = 5

z = −2
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
1 0 0

... −3

0 1 0
... 5

0 0 1
... −2


The whole process to obtain the solution is called Gauss Jordan elimination
method.

Thus by applying a finite sequence of elementary row operations, the aug-
mented matrix of the system of linear equations can be transformed into tri-
angular form, which is row equivalent to the original augmented matrix. By
applying back substitution, the solution of this system and therefore of the
original system is obtained. The triangular form of the matrix can be further
simplified by applying row operations, into a simpler matrix from which it is
easy to decide whether the system is consistent or not, and if it is consistent,
the solution(or solutions) is obtained. No back substitution is needed.
We shall now illustrate the procedure to reduce a given matrix to the simpler
forms described above. Before doing this we shall introduce some terminology.

Definition 10.1. Let A be a m × n matrix with r non-zero rows, 0 ≤ r ≤ m.
Then A is in echelon form(or row echelon form) if it has the following properties

1. The first r rows of A are non-zero(and the last m − r rows are rows of
zeros)

2. Suppose the first non-zero element in the ith row occurs in the pith posi-
tion, for i = 1, 2, ..., r; then
p1 < p2 < ... < pr

aipi is called the leading entry of the ith row.

Example 10.7. Consider the following matrices

A =


1 0 0 2

0 4 0 3

0 0 1 0
0 0 0 0



B =


11 0 0 2

0 1 0 3

0 0 1 0

0 0 0 14



C =


1 0 0 2
0 0 0 0
0 0 11 0

0 0 0 1
0 0 0 0


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D =

 1 0 0 2

0 0 0 1

0 0 31 0



E =


0 1 0 0 −2 4

0 0 1 0 4 8

0 0 0 0 1 7
0 0 0 0 0 0
0 0 0 0 0 0



F =


0 0 4 ↓ 3 5 7 2

0 0 0→ 0→ 21 ↓ −2 8

0 0 0 0 0→ 13 ↓ −6

0 0 0 0 0 0→ 1
0 0 0 0 0 0 0

.

The leading entries of the non-zero rows are indicated in boxes. Consider the
matrix A, which is a 4× 4 matrix. Here r = 3. The zero row is at the bottom.
p1 = 1, p2 = 2, p3 = 3 so that p1 < p2 < p3 is satisfied. Thus A is in row
echelon form.
Consider the matrix B, which is a 4 × 4 matrix. There are no rows of zeros.
p1 = 1, p2 = 2, p3 = 3, p4 = 4 so that p1 < p2 < p3 < p4 is satisfied. Thus B
is in row echelon form.
Consider the matrix C, which is a 5×4 matrix. Here r = 3. There are two rows
of zero rows. Thus condition 1 is not satisfied. Hence C is not in row echelon
form.
D is a 3 × 4 matrix in which condition 1 is satisfied. p1 = 1, p2 = 4, p3 = 3.
Thus p2 ≮ p3 so that condition 2 is not satisfied. Thus D is not in row echelon
form.
E is a 5×6 matrix. Here r = 3. Condition 1 is satisfied. p1 = 2, p2 = 3, p3 = 5.
Thus p1 < p2 < p3 so condition 2 is satisfied so that E is in row echelon form.
F is a 5× 7 matrix. Here r = 4. Condition1 is satisfied. p1 = 3, p2 = 5, p3 =
6, p4 = 7. Thus p1 < p2 < p3 < p4 so that condition 2 is satisfied. Hence F is
in echelon form.

Remark 10.1.

1. The matrices C and D, which are not in row echelon form, can be trans-
formed to this form by applying suitable row operations. Try yourself.

2. Note that we start with the leading entry in the upper left corner and move
down by one step (so that we come to the next non-zero row) and move
forward along that row to catch the leading entry of that row.Continue this
process till the leading entry of the last non-zero row is reached. If this
movement gives a staircase pattern then it is in row echelon form.

Example 10.8.


4 ↓ 0 10 3

0→ 2 ↓ 3 4

0 0→ 1 0
0 0 0 0

, staircase pattern
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
0 1 ↓ 0 0 3 0

0 0→ 11 ↓ 0 6 0

0 0 0→ 0→ 4 10
0 0 0 0 0 0
0 0 0 0 0 0

, staircase pattern


1 ↓ 0 0 2

0→ 0→ 0→ 9
0 0 7 0
0 0 0 0

, in the third row ‘7’ cannot be caught

by forward movement(backward movement is not allowed).
0 1 ↓ 2 3 4
0 0→ 0→ 0→ 0
0 0 5 0 0
0 0 0 10 0
0 0 0 0 0

, in the 2nd row there is no non-zero

element and thus it is not possible to reach the non-zero element 5 of the 3rd row
as we go down from a non-zero element only. Staircase pattern is not obtained
in these cases. Note that the matrices are not in echelon form.

The columns containing the leading entries look like

�
0
0
0
...
0


,



∗
�
0
0
...
0


,



∗
∗
�
0
...
0


etc. . .

respectively, where � denotes the leading entry and ∗ can be any number
including zero.

Definition 10.2. A m× n matrix A is said to be in reduced echelon form if

1. A is in echelon form.

2. The leading entry in each row is 1 (this is called the leading 1).

3. Each leading 1 is the only non-zero entry in its column.

Example 10.9. Consider the matrix

A =


1 0 10 9

0 1 2 0
0 0 0 0
0 0 0 0



B =


0 1 −2 0 0 0 −3 1 0 15

0 0 0 1 0 0 −2 2 0 14

0 0 0 0 1 0 −1 3 0 12

0 0 0 0 0 1 −4 4 0 11

0 0 0 0 0 0 0 0 1 13

,
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A is a 4 × 4 matrix with 2 non-zero rows so that r = 2. The zero rows are
at the bottom. p1 = 1, p2 = 2 so that p1 < p2 . Thus A is a row echelon form.
a1p1 = a11 = 1; a2p2 = a22 = 1. Thus leading entries are 1, so condition 2 is
satisfied. Also in the 1st column and 2nd column, the leading 1 is only non-zero
entry. Hence condition 3 is satisfied so that A is in reduced row echelon form.
B is a 5× 10 matrix, with r = 5. p1 = 2, p2 = 4, p3 = 5, p4 = 6, p5 = 9 so that
p1 < p2 < p3 < p4 < p5 . Thus C is in row echelon form.
a1p1 = a12 = 1; a2p2 = a24 = 1; a3p3 = a35 = 1; a4p4 = a46 = 1; a5p5 = a59 = 1.
Thus leading entries are 1, so condition 2 is satisfied. Also each leading 1 is the
only non-zero entry in that column. Hence condition 3 is satisfied so that B is
in reduced row echelon form.

C =


0 1 −1

3 0 2
5

0 0 0 0 1
0 0 0 0 0
0 0 0 0 0


C is a 4 × 5 matrix, with two non-zero rows, so that r = 2. p1 = 2, p2 = 5
so that p1 < p2. Thus B is a row echelon form.
a1p1 = a12 = 1; a2p2 = a25 = 1. Thus leading entries are 1. In the 2nd column
the leading entry is the only non-zero entry in that column but in 5th column the
leading entry is not the only non-zero entry. Hence C is not in reduced echelon
form.

Remark 10.2. If a m×n matrix A has r non-zero rows in the reduced echelon
form, then the number of leading 1′s is r. The columns containing the leading
1′s form the 1st r columns of the m ×m unit matrix in order. That is, these
are,


1
0
0
...
0

 ,


0
1
0
...
0

 ,



0
0
1
0
...
0


, . . . ,



0
0
...
0
1
0
...
0


ith position, . . . ,



0
0
...
0
0
0
...
1


mth position of

Im

If A =


0 1 2

3 0 0

0 0 0 0 1
0 0 0 0 0
0 0 0 0 0


A is in reduced echelon form. The leading 1′s of the 1st and 2nd row are in

boxes. The corresponding columns are


1
0
0
0

 ,


0
1
0
0

, which are the 1st two

columns of I4.

Example 10.10. The following matrices are in echelon form. The leading
entries (denoted by �) may have any non-zero value; the starred entries (∗)
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may have any value including zero.

A =


�
0
0
0
0

*
�
0
0
0

*
*
0
0
0

*
*
�
0
0

 ;

B =


0
0
0
0

�
0
0
0

*
0
0
0

*
�
0
0

*
*
0
0

*
*
�
0

*
*
*
�

*
*
*
*


The columns containing the leading entries are enclosed within a box.
The following matrices are in reduced echelon form. The leading entries are

1 and there are zeros below and above each leading 1.

C =


1
0
0
0
0

0
1
0
0
0

*
*
0
0
0

0
0
1
0
0

 ;

D =


0
0
0
0

1
0
0
0

*
0
0
0

0
1
0
0

*
*
0
0

0
0
1
0

0
0
0
1

*
*
*
*


The columns containing the leading 1′s are shaded. In C they are the 1st three
columns of I5. In D they are the four columns of I4.

Any non-zero matrix may be row reduced (i.e. transformed by E-row operations)
to echelon form by using different sequences of row operations.

Theorem 10.1. Every m×n matrix is row equivalent to a matrix in row echelon
form.

In fact, the row echelon form is not unique as will be shown later. The row
echelon form may be further reduced by a sequence of E-row operations to a
form which is unique. This is called the reduced row echelon form.

Theorem 10.2. Every matrix is row equivalent to one and only one reduced
echelon matrix.

If a matrix A is row equivalent to an echelon matrix U , we call U an echelon
form (or row echelon form) of A, if U is in reduced echelon form, we call U the
reduced echelon form of A.

When row operations on a matrix produce an echelon form; further row
operations to obtain the reduced echelon form do not change the position of the
leading entries. Since the reduced echelon form is unique, the leading entries are
always in the same position in any echelon form obtained from a given matrix.
These leading entries correspond to leading 1′s in the reduced echelon form.

Definition 10.3. A pivot position in a matrix A is a location in A, that
corresponds to a leading 1 in the reduced echelon form of A. A pivot column
is a column of A that contains a pivot position.
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Note that the pivot position in a matrix are the same as the position of the
leading entries in its echelon form. The columns containing these leading entries
are the pivot columns. Thus to locate the pivot columns it is sufficient to reduce
the matrix to its echelon form.

Note For a m× n matrix we make the following observations:

1. The number of pivots is always less than or equal to min(m,n).

2. Each row and each column can have at most one pivot element.

3. For the matrix to be in echelon form, the elements above the pivot element
can be any number (denoted by ∗), zero or non-zero, whereas those below
it must be 0, the elements to the right of a pivot can be ∗, whereas
those to the left of it must be 0’s. If � indicates a pivot element, then
diagrammatically this can be represented as:

∗′s
↑

0′s← �→ ∗′s
↓
0′s

4. When a matrix is in echelon form, the movement from one point to another
is described as follows:
We can move only downwards from a pivot by one step. Horizontally, we
may move only to the right and it can be any number of steps.

We shall now give a systematic procedure to transform a non-zero matrix to
row echelon form.

Example 10.11. Transform the following matrix to row echelon form

A =


0 0 2 3 −4 1
0 0 0 2 3 4
0 2 2 −5 2 4
0 2 0 −6 9 7

 ,

We shall explain the procedure adopted to transform A to row echelon form
in a stepwise manner.

Step 1 Counting from left to right, find the first non-zero column (i.e. a
column having atleast one non-zero entry). This column is called the pivotal
column. For A the second column is the pivotal column

A =


0
0
0
0

0
0
2
2

2
0
2
0

3
2
-5
-6

-4
3
2
9

1
4
4
7


Step 2 Counting from top to bottom in the pivotal column, identify the first

non-zero entry. The element is called the pivot. We encircle it in A
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A =


0 0 2 3 −4 1
0 0 0 2 3 4
0 2 2 −5 2 4
0 2 0 −6 9 7

 ,

Step 3 Bring the pivot element to the first row. This may require an inter-
change of rows. In our case we need to apply R1 ←→ R3 .Thus

A ∼


0 2 2 −5 2 4
0 0 0 2 3 4
0 0 2 3 −4 1
0 2 0 −6 9 7

 = A1

Step 4 In the pivotal column, below the pivot, zero. This is done by adding a
suitable multiples of the first row to the subsequent rows. In our case, we apply.
Thus R4 −→ R4 + (−1)R1 to A1

A ∼


0 2 2 −5 2 4
0 0 0 2 3 4
0 0 2 3 −4 1
0 0 −2 −1 7 3

 = A2(say)

Step 5 Identify B as the (m − 1) × n submatrix of A2 obtained by hiding the
first row of A2. Repeat steps 1 to 4 on B. Be careful not to erase the first row
of A2.
In this case

0 2 2 -5 2 4

B =

 0 0 0 2 3 4
0 0 2 3 −4 1
0 0 −2 −1 7 3


Apply R1 ←→ R2 to B

0 2 2 -5 2 4

B1 =

 0 0 2 3 −4 1
0 0 0 2 3 4
0 0 −2 −1 7 3


Apply R3 −→ R3 +R1 to B1

0 2 2 -5 2 4

B2 =

 0 0 2 3 −4 1
0 0 0 2 3 4
0 0 0 2 3 4


Step 6 In the light of continuing the process we now hide the top two rows
of the above matrix (take the full matrix and not just B2). This amounts to
hiding an additional top row of B2.

0 2 2 -5 2 4
0 0 2 3 -4 1
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C =

(
0 0 0 2 3 4
0 0 0 2 3 4

)
On C, apply R4 −→ R4 + (−1)R3

0 2 2 -5 2 4
0 0 2 3 -4 1

C1 =

(
0 0 0 2 3 4
0 0 0 0 0 0

)
Step 7 Now hide the top 3 rows of the above matrix, taking the full matrix.
This amounts to hiding an additional top row of C1. Thus

0 2 2 -5 2 4
0 0 2 3 -4 1
0 0 0 2 3 4

D =
(

0 0 0 0 0 0
)

Since D has no pivotal column so the process is completed. Thus

A ∼


0 2 2 −5 2 4
0 0 2 3 −4 1
0 0 0 2 3 4
0 0 0 0 0 0

 = E

and the matrix E is in echelon form.
The pivot columns are columns 2, 3 and 4 of E. The general form of E is

0 � ∗ ∗ ∗ ∗
0 0 � ∗ ∗ ∗
0 0 0 � ∗ ∗
0 0 0 0 0 0


The columns 2, 3 and 4 of A are the pivot columns and the pivot positions of A
are the positions corresponding to the leading entries of E.

A =


0 0 2 3 −4 1

0 0 0 2 3 4

0 2 −2 -5 2 4
0 2 0 −6 9 7


A pivot(as illustrated above) is a non-zero number in a pivot position which
is used to create zeros using row operations. In the above example, the pivots
are 2, 2 and 2. Note that these numbers are not the same as the actual elements
of A in the highlighted pivot positions as shown. In fact if a different sequence
of row operations is used, we will get a different set of pivots.

Remark 10.3. Row echelon form of a matrix is not unique. For instance, if
we apply the operations R1 −→ R1 +R2 to E, (in the above example) then

A ∼


0 2 4 −2 −2 5
0 0 2 3 −4 1
0 0 0 2 3 4
0 0 0 0 0 0

 = F (say)

F is also in row echelon form. Thus E and F are both in echelon form and are
equivalent to the matrix A.
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Example 10.12. Reduce the matrix in the above illustration to reduced echelon
form.
Going through steps 1-7 as in the above illustration, we first reduce the given
matrix to row echelon form. Thus

A ∼


0 2 2 −5 2 4

0 0 2 3 −4 1

0 0 0 2 3 4
0 0 0 0 0 0

 = E

The pivots have been encircled.
Step 8 Starting with the rightmost pivot and working upward and to the left,
create zeros above each pivot. If a pivot is not 1, make it 1 by a sealing opera-
tion.
The rightmost pivot in row 3 is 2. Make it 1 by applying R3 −→ 1

2R3 to E. Thus

A ∼


0 2 2 −5 2 4

0 0 2 3 −4 1

0 0 0 1 3
2 2

0 0 0 0 0 0


Create zeros in the column 4 by applying R1 −→ R1 + 5R3, R2 −→ R2 − 3R3.

A ∼


0 2 2 0 19

2 14
0 0 2 0 −17

2 −5

0 0 0 1 3
2 2

0 0 0 0 0 0


The next pivot is in row 2 and is 2. Scale this row to make pivot as1. Ap-
plying R2 −→ 1

2R2, we get

A ∼


0 2 2 0 19

2 14

0 0 1 0 −17
4

−5
2

0 0 0 1 3
2 2

0 0 0 0 0 0


Create zeros in the 3rd column above the pivot element R1 −→ R1 − 2R2.Thus

A ∼


0 2 0 0 18 33

2

0 0 1 0 −17
4

−5
2

0 0 0 1 3
2 2

0 0 0 0 0 0


The next pivot(which is the last pivot) is in row 1 and it is 2. Scale this row to
make the pivot as 1. Apply R1 −→ 1

2R1.Thus

A ∼


0 1 0 0 9 33

4

0 0 1 0 −17
4

−5
2

0 0 0 1 3
2 2

0 0 0 0 0 0

 = G

Now G is in reduced echelon form. Hence A is transformed to a matrix in
reduced echelon form.
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Problem 10.11. Find a matrix in row echelon form that is row equivalent to
the given matrix.Give 2 possible answers.

A =


2 −1 0 1 4
1 −2 1 4 −3
5 −4 1 6 5
−7 8 −3 −1

4 1



Solution:

Step 1 Counting from left, the 1st non-zero column is the pivot column.The
pivot position is at the top. For ease of calculation apply R1 ←→ R2 (so that
the pivot becomes 1)

A ∼


1 −2 1 4 −3
2 −1 0 1 4
5 −4 1 6 5
−7 8 −3 −14 1

 = A1(say)

Apply R2 −→ R2 − 2R1, R3 −→ R3 − 5R1, R4 −→ R4 + 7R1

to make all the entries below the pivot in the pivotal column zero. Then

A ∼


1 −2 1 4 −3

0 3 −2 −7 10
0 6 −4 −14 20
0 −6 4 14 −20

 = A2(say)

Step 2 Ignoring the 1st row of A2, the 2nd column is the pivotal column
and the element in the (2, 2)th position is the pivot. It is circled in A2. To
make all the entries, below the pivotal column zero, apply, R3 −→ R3 − 2R2,
R4 −→ R4 + 2R2. Thus

A ∼


1 −2 1 4 −3
0 3 −2 −7 10
0 0 0 0 0
0 0 0 0 0

 = A3(say)

Step 3 In A3 the last two rows are rows of zeros. Thus A has been reduced
to row echelon form. To get another row echelon form, apply a row operation
on A3 so that the work done above (i.e., that of making zeros) is not destroyed.

A ∼


1 −2 1 4 −3
0 6 −4 −14 20
0 0 0 0 0
0 0 0 0 0

 = A4(say)

A3, A4 are in row echelon form and they are row equivalent to A. These are
two possible answers.

Problem 10.12. Find the matrix in reduced row echelon form that is row equiv-
alent positions to the given matrix (encircle the pivot positions in the final ma-
trix) and in the original matrix and in the original matrix. Also list the pivot
columns.
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1 −2 0 2
2 −3 −1 5
1 3 2 5
1 1 0 2
2 −6 −2 1


Solution:

Problem 10.13. Determine whether the given matrices are in reduced echelon
form, row echelon form or neither.

(i) A =


1 1 0 4 0 2
0 3 0 6 0 3
0 0 0 −5 0 4
0 0 0 0 0 7



(ii) B =


2 0 0 0
0 3 0 0
0 0 0 0
0 0 1 0


(iii) C =

 1 2 0
0 0 1
0 0 0



(iv) D =


0 1 0 0 0 0
0 0 0 4 0 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0



(v) E =


0 1 12 2 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0


(vi) F =

 1 0 0 0
6 0 0 0
0 0 0 0


Solution:

(i) A is a 4 × 6 matrix and it has no rows of zeros. The leading entries of
non-zero rows are circled.

A =


1 ↓ 1 0 4 0 2

0→ 3 ↓ 0 6 0 3

0 0→ 0→ −5 ↓ 0 4

0 0 0 0→ 0→ 7


The route from one leading entry to the other is shown by arrows. Since
it forms a staircase, therefore it is in echelon form.
Since all the leading entries are not one (the leading entry of 2nd row is
3) therefore it is not in reduced echelon form.
Thus A is in echelon form only.
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(ii) B is a 4 × 4 matrix. It has a row of zeros, which is not the bottom most
row. Hence it is not in echelon form.

(iii) C is a 3 × 3 matrix. It has a row of zeros, which is the bottommost row.

The leading entries are circled.

 1 ↓ 2 0

0→ 0→ 1
0 0 0


The route from one leading entry to the other is shown by arrows. Since
it forms a staircase, therefore it is in echelon form. Moreover the leading

entries are 1 and the pivot columns are

 1
0
0

 and

 0
1
0

, i.e. all the

elements above and below the leading entry are zero. Thus it is in reduced
echelon form also. Hence C is both in echelon as well as reduced echelon
form.

(iv) D is a 5 × 6 matrix with 2 rows of zeros.These rows of zeros are in the
bottommost position. Thus there are 3 pivot columns.The leading entries
are circled.

0 1 ↓ 0 0 0 0

0 0→ 0→ 4 ↓ 0 0

0 0 0 0→ 0→ 1
0 0 0 0 0 0
0 0 0 0 0 0


The route from one leading entry to the other, shown by arrows, forms a
staircase. Hence, it is in echelon form.Since all the leading entries are not
1 (the 2nd leading entry is 4), therefore it is not in reduced echelon form.

Thus D is in echelon form

(v) E is a 4 × 5 matrix with 2 rows of zeros, which are the bottommost rows.
The leading entries are circled.

0 1 ↓ 12 2 0

0 0→ 0→ 1 0
0 0 0 0 0
0 0 0 0 0


The route from one leading entry to the other is shown by arrows. Since
it forms a staircase, therefore it is in echelon form. The leading entries
are 1 and the pivot columns are

1
0
0
0

 and


2
1
0
0

.

The second pivot column is not


0
1
0
0


Hence it is not in the reduced echelon form.
Hence E is in the echelon form.

(vi) F is a 3× 4 matrix with one row of which is in the bottommost positions.
The leading entries are circled.
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 1 0 0 0
6 0 0 0
0 0 0 0


The elements below the first leading entry are not all zero, so that it is not
in echelon form. Thus F is neither in echelon form nor in reduced echelon
form.

Problem 10.14. Describe the possible echelon forms of a non-zero 2×3 matrix.

Solution: We shall use � to indicate a leading non-zero entry and ∗ to indi-
cate an entry which can take any value, including zero. For a 2×3 matrix there
can be atmost 2 pivot columns.
Two cases arise:
Case 1 There is only one pivot column.This pivot column can be the 1st column
or the 2nd columns or the 3rd column.This can be classified as follows:

Pivot column Echelon form

1st

(
� ∗ ∗
0 0 0

)

2nd

(
0 � ∗
0 0 0

)

3rd

(
0 0 �
0 0 0

)
Case 2 There are two pivot columns.This can be classified as follows:

Pivot column Echelon form

1st and 2nd

(
� ∗ ∗
0 � ∗

)

1st and 3rd

(
� ∗ ∗
0 0 �

)

2nd and 3rd

(
0 � ∗
0 0 �

)

10.7 Exercise

1. Determine whether the given matrix is in reduced echelon form, row ech-
elon form, or neither.

(i) A1 =

 1 0 0 0 −3
0 0 1 0 4
0 0 0 1 2


(ii) A2 =

 0 1 0 0 15
0 0 1 0 −14
0 0 0 −1 13


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(iii) A3 =


1 0 0 0 −2
0 0 1 0 0
0 0 0 1 −3
0 0 0 0 0



(iv) A4 =


0 1 0 0 2
0 0 0 0 −10
0 0 0 1 41
0 0 0 0 0
0 0 0 0 1



(v) A5 =


1 2 3 1
0 1 2 3
0 0 1 −4
0 0 0 0



(vi) A6 =


1 0 0 0
0 1 0 0
0 0 0 −1
0 0 0 0



(vii) A7 =


0 0 0 0 0
0 0 1 2 −3
0 0 0 1 0
0 0 0 0 0


(viii) A8 =

 0 1 0 0 5
0 0 1 0 4
0 1 0 −2 3



(ix) A9 =


0 1 0 0 12
0 0 1 1 −11
0 0 0 1 7
0 0 0 0 0



(x) A10 =


1 0 0 0 −6 3
0 1 0 0 2 5
0 0 0 1 1 −3
0 0 0 0 0 0
0 0 0 0 0 0



(xi) A11 =


1 −1 0 0 1
0 1 1 0 −1
0 0 0 1 −2
0 0 0 0 0


2. Find a matrix in row echelon form that is equivalent to the given matrix.

Give two possible answers in each.

(i) B1 =


1 −3 2 1 2
3 −9 10 2 9
2 −6 4 2 4
2 −6 8 1 7


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(ii) B2 =


1 2 3 4 5
2 3 4 5 1
3 4 5 1 2
4 5 1 2 3
5 1 2 3 4



(iii) B3 =


0 −1 2 3
2 3 4 5
1 3 −1 2
3 2 4 1



(iv) B4 =


1 2 −3 1
−1 0 3 4
0 1 2 −1
2 3 0 −3



(v) B5 =

 2 1 0 0 1
3 0 3 0 2
5 7 −9 2 3



(vi) B6 =


0 2 4 3 0
0 5 10 15/2 0
0 1 2 3/2 4
0 2 4 3 2



10.8 Vector Equations

Suppose a Hyundai showroom stocks five different models of cars: Santro,
Ascent, Verna, i10 and i20. Each month the number of cars of each model in
stock are recorded. If in the month of January 2009, there are 10 cars of Santro,
6 of Ascent, 4 of Verna, 7 of i10 and 8 of i20, then we can represent these stock

quantities by a column:


10
6
4
7
8

 or a row:
(

10 6 4 7 8
)

Such an ordered set of numbers, which is distinguished not only by the
elements it contains, but also by the order in which they appear, is called a
vector. If it is represented by a 1 × 5 matrix it is called a row vector, if it is
represented as a 5 × 1 matrix it is called a column vector. Since it contains 5
entries it is also called a 5-vector. Each entry is called a component. Clearly

the vector
(

10 6 4 7 8
)

and the column vector


10
6
4
7
8

 contain exactly

the same information — the numbers and their order are the same, only the
way they are written is different.
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10.9 Vectors in R2

A matrix with only one column is called a column vector. They are denoted

by boldface letters. If u =

(
2
0

)
, v =

(
−1
4

)
, w =

(
w1

w2

)
, where w1, w2

are any real numbers, then u, v, w are vectors with two entries. The set of all
vectors with two real entries is denoted by R2. The R stands for the set of real
numbers that appear as entries in the vectors, and the exponent 2 indicates that
there are two entries in each vector. These entries are also called the components
of the vector.

Definition 10.4. Two vectors in R2 are equal if and only if their corresponding

entries are equal. If u =

(
u1

u2

)
and v =

(
v1

v2

)
then u = v, iff u1 = v1 and

u2 = v2.

Definition 10.5. If u ∈ R2, u =

(
u1

u2

)
and c is any real number, then cu =(

cu1

cu2

)
. The number c is called a scalar and cu is called the scalar multiple

of u by c.

Definition 10.6. If u and v ∈ R2, u =

(
u1

u2

)
, v =

(
v1

v2

)
then the sum of

the vectors u and v denoted by u+v, is

(
u1 + v1

u2 + v2

)
.

Thus to obtain the sum of two vectors we add their corresponding compo-
nents.

Example 10.13. 1. If u =

(
2
3

)
and v =

(
1 + 1
2 + 1

)
, is u = v ?

Yes, because correosponding components are equal.

2. Find k such that

(
−1
2

)
=

(
k + 2

2

)
.

The two vectors being equal we must have -1 = k+2 so that k =−3.

3. If u =

(
1
2

)
, v =

(
−2
3

)
find 2u, (-3)v, (-1)v , 2u + (-3)v.

2u = 2

(
1
2

)
=

(
2× 1
2× 2

)
=

(
2
4

)
, (-3)v = (-3)

(
−2
3

)
=

(
6
−9

)
.

(-1)v = (-1)

(
−2
3

)
=

(
2
−3

)
2u+(-3)v =

(
2
4

)
+

(
6
−9

)
=

(
8
−5

)
.

10.10 Geometric Descriptions of R2

We consider a rectangular coordinate system X’OX, Y’OY in the plane.

With each element

(
a
b

)
of R2, we associate the point P(a, b) in the plane.
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The point (a, b) gives rise to the directed line segment
−−→
OP , O being the initial

point and P being the terminal point.

mE~IÄFnEÅIÇF

v

ul

Conversely, if Q(c, d) is any point in the plane then

(
c
d

)
∈ R2. Also with the

directed line segment
−−→
OQ ( with O as the initial point ) we associate the vector(

c
d

)
in R2. Thus every vector

(
x1

x2

)
in R2 can be represented by a point

P (x1, x2) in the plane and also by a directed line segment with O as the initial
point, P (x1, x2) as termination point.

Example 10.14.

1. Represent u =

(
2
3

)
, v =

(
−4
4

)
, w =

(
−3
−5

)
, p =

(
−2
0

)
by

directed line segments.

ì
î

ï

EOIPF

EJQIQF

EJPIJRF

é
EJOIMF

2. If u =

(
−2
3

)
, represent 3u, 1

2u, (-1)u, (-2)u geometrically.

Verify that (-1)u = -u and (-2)u = 2(-u).
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ì

Jì

JOì

Pì

‹ =ì

Remark 10.4. In general, the length of the arrow for cu is |c| times the length
of the arrow for u. If c is positive, the direction of cu is same as that of u,
whereas if c is negative the direction of cu is opposite to the direction of u.

The sum of two vectors has a useful geometric representation. The following
rule can be verified by analytic geometry.

Parallelogram Rule for Addition

If u and v ∈ R2 are represented by
−→
OA and

−−→
OB then u + v corresponds to the

diagonal
−−→
OC of the parallelogram with adjacent sides OA and OB.

^

_

`

l

î

ìHîì

Parallelogram Rule

Example 10.15. If u =

(
2
4

)
, v =

(
−2
4

)
, represent u + v, u - v geomet-

rically.

EMIUF

EOIQF

EQIMF

EJOIQF

EOIJQF

î

Jî

ìH
î

ì

ìJî

Vectors in R3
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Vectors in R3 are 3×1 matrices, vectors with 3 entries. Geometrically, they
are represented by points in a three-dimensional coordinate space and by arrows
from the origin.

10.11 Vectors in Rn

If n is a positive integer, Rn denotes the collection of all ordered n-tuples of

real numbers, usually written as n×1 matrices, such as u =


u1

u2

.
..
un

.

u1, u2, ..., un are called components of the vector u. A vector all of whose
components are zero is called the zero vector. It is denoted by 0 . ( The number
of components in 0 will be clear from the context.)

Equality of vectors, scalar multiplication of a vector and addition of vectors
is defined as in R2 but we will give a formal definition again.

Definition 10.7. Let u and v ∈ Rn where u =


u1

u2

.

.
un

 and v =


v1

v2

.

.
vn

.

Then u = v iff u1 = v1, u2 = v2, .., un = vn. Thus the two vectors are equal
iff their corresponding components are equal.

Definition 10.8. If u ∈ Rn and c is any real number, then cu =


cu1

cu2

.

.
cun

.

cu is called the scalar multiple of u by c.
To obtain cu, each component of u is multiplied by c.

Definition 10.9. Let u and u ∈ Rn where u =


u1

u2

.

.
un

 and v =


v1

v2

.

.
vn

.

Then u + v =


u1 + v1

u2 + v2

.

.
un + vn

, is the sum of the vectors u and v.

Thus the sum of two vectors is obtained by adding their corresponding com-
ponents.

These operations on vectors have the following properties, which can be ver-
ified directly from the corresponding properties for real numbers.

Algebraic Properties of Rn
For all u, v, w in Rn and all scalars c and d.
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1. u + v = v+ u

2. (u + v) + w = u + (v + w)

3. u + 0 = 0 + u = u

4. u + (-u)= 0 = (-u) + u

5. c(u + v) = cu + cv

6. (c+d)u = cu + du

7. c(du) = (cd) = d(cu)

8. 1u = u

where -u denotes (-1)u. For simplicity of notation, we used ‘vector subtraction’
and write u-v instead of u+(-1)v.

Points in Rn

Let us first consider R3. Let u =

 x1

x2

x3

 be any vector in R3. Then the

point P(x1, x2, x3) is the head of the vector u. On the other hand, for any point

Q(x′1, x′2, x′3) there corresponds the vector
−−→
OQ =

 x′1
x′2
x′3

.

This correspondence can be extended to Rn. For every point P (x1, x2, ...

xn) in Rn, there is an associated vector
−−→
OP in Rn, and conversely. Because of

this correspondence the point P associated with the vector u is denoted by by
P (u).

ì

mEñNIñOIñPF

nEñN O P

u N

u

u O

P

Lines in Rn
Let u be any vector. For any scalar t, tu is a vector along u. As t varies the

points tu lie along the line containing u. Thus, x = tu, t ∈ R represents a line
containing the vector u. When we add a fixed vector a to any vector tu on this
line corresponding to the point P (tu) we get a point Q(a + tu) in such a way

that
−−→
PQ = a. Thus all the points a + tu, t ∈ R lie on a line parallel to u and
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passing through a. Thus x = a+ tu, t ∈ R represents a line through the point
P (a) and parallel to u.

l
ì

~

E~HíìF
n

E F
m íìZ~ í

ñ
H ì

ñ ìZí

Planes in Rn
Let u, v be any two non-collinear vectors. For any scalars α, β, the vector

αu + βv is the diagonal of the parallelogram whose adjacent sides are αu, βv.
Therefore, αu + βv is a vector in the plane containing the vectors u and v for
all scalars α and β. Thus

x = αu + βv, α, β ∈ R
represents a plane containing vectors u and v. When we add a fixed vector a to
αu+βv, the point P associated with αu+βv is shifted to Q in such a way that−−→
PQ = a. Thus all points a + αu + βv with α, β ∈ R lie on the plane parallel
to the plane x = αu+βv, α, β ∈ R and containing the point A(a).

x = a+ α u + βv, α, β ∈ R represents a plane through the point A(a) and
parallel to the plane x = αu + βv, α, β ∈ R.

Linear Combination of Vectors

Definition 10.10. If u1, u2, ... ,uk ∈ Rn and c1, c2, ...,ck are scalars then
the vector c1u1 + c2u2 + .... +ckuk is called a linear combination of u1, u2, ...
,uk. The scalars c1, c2, ...,ck are called weights in the linear combination.

Example 10.16.

1. If v1, v2 ∈ Rn then
√

5v1 - 3v2, -2v1 + 3
2v2, 2

3v2 = (0v1 + 2
3v2 ), 0 = (

0v1 + 0v2) are linear combinations of v1, v2.

2. If u, v ∈ R3, u =

 2
−1
3

, v =

 0
4
−5

 then -2u + 3v = -2

 2
−1
3


+ 3

 0
4
−5

 =

 −4
2
−6

 +

 0
12
−15

 =

 −4
14
−21


Also, 0 = 0u + 0v. Thus 0 is a linear combination of u and v. Note that
0 is always a linear combination of any set of vectors as all the weights
can be taken to be zero.



380

Example 10.17. Express

 5
3
4

 as a linear combination of

 1
1
2

and

 1
2
5

.

Let u1 =

 1
1
2

, u2 =

 1
2
5

, b =

 5
3
4

.

In order to express b as a linear combination of u1 and u2, we need to find
x1 and x2 such that x1u1 + x2u2 = b ....(1).

Thus x1

 1
1
2

 + x2

 1
2
5

 =

 5
3
4


ie.

 x1 + x2

x1 + 2x2

2x1 + 5x2

 =

 5
3
4


The two vectors are equal if and only if the corresponding components are

equal. Hence

x1 + x2 = 5
x1 + 2x2 = 3
2x1 + 5x2 = 4

We shall solve this system by reducing the augmented matrix to reduced echelon
form:(
A

...b

)
=

 1 1 5
1 2 3
2 5 4



Applying R2 →R2- R1 and R3 →R3- 2R1 ∼


1 1

... 5

0 1
... −2

0 3
... −6



Applying R3 →R3- 3R2 ∼


1 1

... 5

0 1
... −2

0 0
... 0

 R1 →R1- R2 ∼


1 0

... 7

0 1
... −2

0 0
... 0


Thus the solution is

x1 = 7, x2 = −2
Hence b is a linear combination of u1 and u2.
In fact

7

 1
1
2

 - 2

 1
2
5

 =

 5
3
4


Note that in the above illustration, the original vectors u1, u2, b form the

columns of the augmented matrix which is to be reduced to the reduced echelon
form.  1 1 5

1 2 3
2 5 4


↑ ↑ ↑
u1 u2 b
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Example 10.18. Is

 2
−5
3

 a linear combination of

 1
−3
2

,

 2
−4
−1

, and 1
−5
7

?

Let u1 =

 1
−3
2

, u2 =

 2
−4
−1

, u3 =

 1
−5
7

, b =

 2
−5
3


We need to find weights x1, x2, x3 (if possible) such that

x1 u1 + x2 u2 + x3 u3 = b

In view of the above discussion, the weights x1, x2 and x3 are the solution

of the linear system whose augmented matrix is
(
u1 u2 u3

... b

)

=


1 2 1

... 2

−3 −4 −5
... −5

2 −1 7
... 3

 which is equivalent to


1 2 1

... 2

0 2 −2
... 1

0 −5 5
... −1

 by R2 →R2+ 3R1 and R3 →R3- 2R1

which is equivalent to


1 2 1

... 2

0 2 −2
... 1

0 0 0
... 3/2

 by R3 →R3+ 5/2R2

This leads to an inconsistent system as there is a pivot element in the aug-
mented column. Thus b is not a linear combination of u1, u2 and u3.

One of the main areas of study in linear algebra is to study the set of all
vectors which can be expressed as a linear combination of a given set of vectors,
say {u1, u2, ..., un} , where each ui ∈ Rm.

Definition 10.11. If u1, u2, ... ,un ∈ Rm, then the set of all linear com-
binations of u1, u2, ..., un is denoted by span {u1, u2, ..., un}. Thus span
{u1, u2, ..., un} = {c1u1 + c2u2 + ...+ cnun : ci ∈ R, i = 1, 2, ..., n} .

The span of the null set is {0}.

Note that span {u1, u2, ..., un} contains every scalar multiple of ui for
i=1,2,...,n (for example cu2 = 0u1 + cu2 + ... + 0un). In particular 0 = 0u1 +
0u2 + ..0un so that 0 ∈ span{u1, u2, ..., un}.

Note: If S = {u1, u2, ..., un}, then spanS = span{u1, u2, ..., un}.

Definition 10.12. Let u1, u2, ..., un,b ∈ Rm. An equation of the form x1u1 +
x2u2 + ...+ xnun = b ...(1)

where xi ∈ R, i = 1(1)n are unknowns is called a vector equation.
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By a solution of this equation is meant a set of values of the unknowns xi,
which satisfy the equation. Thus x1 = c1, x2 = c2, ..., xn = cn is a solution of
(1) if c1u1 + c2u2 + ...cnun = b.

We shall now study the conditions for a vector to lie the span of a given set
of vectors. In this regard, we have the following results.

Theorem 10.3. If b, ui ∈ Rm, i=1(1)n, then the following statements are
equivalent:

(1) b ∈ span {u1, u2, ..., un}.
(2) b is a linear combination of u1, u2 ..., un.
(3) The vector equation x1u1 + x2u2 + ...+ xnun = b has a solution.

Proof: (1) ⇒ (2) Let b ∈ span {u1, u2....un}. Then there exist weights
c1, c2, ..., cn such that c1u1+c2u2+...+cnun = b. Hence b is a linear combination
of u1, u2,...,un.

(2)⇒ (3) Let (2) hold. Then there exist c1, c2, ..., cn such that c1u1 + c2u2 +
... + cnun = b. Thus x1 = c1, x2 = c2, ..., xn = cn is a solution of the vector
equation x1u1 + x2u2 + ...+ xnun = b.

Hence (3) is true.
(3) ⇒ (1) Suppose (3) holds. Let x1 = c1, x2 = c2, ..., xn = cn be a

solution of the vector equation. Then c1u1 + c2u2 + ... + cnun = b so that
b ∈ span {u1, u2, ..., un}.

Hence (1) holds. Thus (1) ⇒ (2) ⇒ (3) ⇒ (1), so that the statements are
equivalent.

Theorem 10.4. If b, ui ∈ Rm, i=1,2,...,n, then the following statements are
equivalent:

(1) The vector equation x1u1 + x2u2 + ...+ xnun = b has a solution.
(2) The linear system corresponding to the augmented matrix

[ u1 u2 ... un
... b ] has a solution.

Proof: Let u1, u2, ..., un, b ∈ Rm, and ui =


a1i

a2i

...
ami

 for i = 1(1)n ; bi =


b1
b2
...
bm


Then x1u1 + x2u2 + ...xnun = b ...(1)

⇔ x1


a11

a21

...
am1

+ x2


a12

a22

...
am2

+ · · ·+ xn


a1n

a2n

...
amn

 =


b1
b2
...
bm



⇔


x1a11 + x2a12 + · · ·+ xna1n

x1a21 + x2a22 + · · ·+ xna2n

...
x1am1 + x2am2 + · · ·+ xnamn

 =


b1
b2
...
bm


⇔
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x1a11 + x2a12 + · · ·+ xna1n = b1
x1a21 + x2a22 + · · ·+ xna2n = b2
...
x1am1 + x2am2 + · · ·+ xnamn = bm
The augmented matrix of this system is

a11 a12 · · · a1n | b1
a21 a22 · · · a2n | b2
...

...
...

... |
...

am1 am2 · · · amn | bn


The columns of this matrix are u1, u2, ..., un, b in order. Hence the vector

equation (1) is equivalent to the linear equation (2).
Hence x1 = c1, x2 = c2, ..., xn = cn is a solution of (1) if and only if it is a

solution of (2).
The above two theorems can be combined and restated as follows:

Theorem 10.5. If b, ui ∈ Rm, i=1,2,...,n, then the following statements are
equivalent:

(1) b ∈ span {u1, u2, ..., un}.
(2) The vector equation x1u1 + x2u2 + ...+ xnun = b has a solution.
(3) The linear system corresponding to the augmented matrix

[ u1 u2 ... un
... b ] has a solution.

We are now interested in finding the span of a given set of vectors. Thus, if
u1, u2, ..., un ∈ Rm, the following questions arise:

1) Do u1, u2, ...,un span Rm?
2) If the answer to (1) is in the negative, then what is span{u1, u2, ..., un}?
To answer these questions we have the following theorems:

Theorem 10.6. If u1, u2, ... ,un ∈ Rm, the following statements are equivalent:
1. u1, u2, ..., un span Rm
2. Every b ∈ Rm is a linear combination of u1, u2, ...,un.
3. For every b ∈ Rm, the vector equation x1u1 +x2u2 + ...+xnun = b has

a solution.
4. For every b ∈ Rm, the linear system corresponding to the augmented

matrix [ u1 u2 ... un
... b ] has a solution.

5. The matrix [ u1 u2 ... un ] has a pivot position in every row.

Proof: (1)⇒ (2)⇒ (3)⇒ (4) are obvious from the definitions.
(4)⇒ (5)
Let A = [ u1 u2 ... un ].
Suppose (4) holds. Thus the augmented column b does not have a pivot

position. Hence every position lies in A. For any b ∈ Rm, let
(
U

... c

)
be

the reduced echelon form of
(
A

... b

)
. Then U have a row of zeroes, for if it

does then we can always choose a b ∈ Rm such that the matrix
(
U

... c

)
has

a row of the form
(

0 0 · · · 0
... 1

)
, i.e. augmented column has a pivot

position, which is a contradiction. Thus every row of A has a pivot position.
(5)⇒ (1)
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Let A = [ u1 u2 ... un ].
Suppose (5) holds. Let, if possible, assume that (1) does not hold. Then,

there exists b ∈ Rm such that b /∈ span {u1, u2, · · · , un}
ie. b is not a linear combination of u1, u2, ..., un.
Thus the vector equation x1u1+x2u2+...+xnun = b has no solution, so that

the system with augmented matrix [ u1 u2 ... un
... b ] (=

(
A

... b

)
) has

no solution.
Hence b has a pivot position. Let

(
U

... c

)
be the reduced echelon

form of
(
A

... b

)
. Then U has row of the form

(
0 0 · · · 0

... 1

)
,

so that U has a row of zeroes. Hence A does not have a pivot position in the
corresponding row. This contradicts (5). Hence our assumption is wrong so
that (1) holds.

Thus
(5)⇒ (1)
Thus all statements are equivalent.

Example 10.19. Does b ∈ span {u1, u2}, where u1 =

 1
−2
−1

, u2 =

 1
−4
3

,

b =

 0
2
−4

. If yes, express b as in terms of u1 and u2.

Using theorem (10.5).
b ∈ span {u1, u2}
⇔ The vector equation x1u1 + x2u2 = b has a solution.

⇔ The linear system corresponding to the augmented matrix [u1 u2

... b ]

has a solution.

Now, [ u1 u2

... b ] =


1 1

... 0

−2 −4
... 2

−1 3
... −4



∼


1 1

... 0

0 −2
... 2

0 4
... −4

 by R2 → R2 + 2R1 and R3 → R3 +R1

∼


1 1

... 0

0 −2
... 2

0 0
... 0

 by R3 → R3 + 2R2

∼


1 1

... 0

0 1
... −1

0 0
... 0

 by R2 → −1/2R2

The corresponding system of equations is x1 + x2 = 0, x2 = −1. Hence the
solution is x1 = 1, x2 = -1, so that u1 − u2 = b.

Hence b = u1 − u2.
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Example 10.20. Is b a linear combination of u1 and u2, where u1 =

 3
2
1

,

u2 =

 2
1
0

, b =

 4
3
1

. If yes, find the combination.

Using Theorem 10.5.

b a linear combination of u1 and u2

⇔ The vector equation x1u1 + x2u2 = b has a solution.

⇔ The linear system corresponding to the augmented matrix [u1 u2

... b ]

has a solution.

Now, [ u1 u2

... b ] =


3 2

... 4

2 1
... 3

1 0
... 1



∼


1 0

... 1

2 1
... 3

3 2
... 4

 by R1 ↔ R3

∼


1 0

... 1

0 1
... 1

0 2
... 1

 by R2 → R2 − 2R1 and R3 → R3 − 3R1

∼


1 0

... 1

0 1
... 1

0 0
... −1

 by R3 → R3 − 2R2

The corresponding linear system is

x1 + 0x2 = 1, 0x1 + x2 = 1, 0x1 + 0x2 = −1.

The last equation gives 0=-1, which is not true.

Hence the linear system does not have a solution, so that b is not a linear
combination of u1 and u2.

Example 10.21. Does the following set of vectors {u1, u2, u3, u4} span R3,

where u1 =

 1
2
−1

, u2 =

 6
3
0

, u3 =

 4
−1
2

 and u4 =

 2
−5
4


Using Theorem 10.6, {u1, u2, u3, u4} span R3 iff the matrix

(
u1 u2 u3 u4

)
has a pivot position in every row. We shall reduce this matrix to echelon form.

A =
(
u1 u2 u3 u4

)
=

 1 6 4 2
2 3 −1 −5
−1 0 2 4


∼

 1 6 4 2
0 −9 −9 −9
−1 6 6 6

 by applying R2 → R2 − 2R1 and R3 → R3 +R1
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∼

 1© 6 4 2
0 -9© −9 −9
0 0 0 0

 by R3 → R3 + 2/3R2

= U (say)

The pivots in U have been encircled. The pivot positions in A are the (1,
1)th and (2, 2)th positions. Thus the third row of A does not have any pivot
position in every row. Thus the given vectors do not span R3.

Example 10.22. Find the span of the given vectors in the above example.

Let b ∈ R3. Then b ∈ span{u1, u2, u3, u4} iff
(
u1 u2 u3 u4

...b

)
is

the augmented matrix of a consistent linear system. We shall reduce this matrix

to echelon form

(
A

...b

)
=
(
u1 u2 u3 u4

...b

)
Proceeding as in the above example

∼


1 6 4 2

...b1

0 −9 −9 −9
...b2 − 2b1

0 0 0 0
...− 1/3b1 + 2/3b2 + b3


=

(
U

...b

)
(say)

For the system to be consistent, we must have

−1/3b1 + 2/3b2 + b3 = 0

ie b1 = 2b2 + 3b3

ie Span{u1, u2, u3, u4}=


 b1

b2
b3

 ∈ R3
... b1 = 2b2 + 3b3

.

Problem 10.15. Construct a 4×4 matrix A, with non-zero entries and a vector
b ∈ R4 such that b is not in the set spanned by the columns of A.

Solution: The given problem is equivalent to finding a system of equations,

with augmented matrix

(
A

...b

)
, which has no solution. If the echelon form of

the matrix

(
A

...b

)
is

(
U

...c

)
, then the column c must contain a pivot. There are

many possible matrices

(
U

...c

)
. One such is

1© 0 0 0
... 1

0 1© 1 0
... 1

0 0 0 1©
... 1

0 0 0 0
... 1


The pivots have been encircled. To get the matrix A with non zero entries

we can apply row operations on

(
U

...c

)
.

Apply R4 → R4 +R2 +R1 +R3
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(
U

...c

)
∼


1 0 0 0

... 1

0 1 1 0
... 1

0 0 0 1
... 1

1 1 1 1
... 4



∼


1 0 0 0

... 1

0 1 1 0
... 1

1 1 1 1
... 3

1 1 1 1
... 4

 Applying R3 → R3 +R2 +R1

∼


1 0 0 0

... 1

2 3 3 2
... 8

1 1 1 1
... 3

1 1 1 1
... 4

 Applying R2 → R2 +R3 +R4

∼


3 3 3 2

... 9

2 3 3 2
... 8

1 1 1 1
... 3

1 1 1 1
... 4

 Applying R1 → R1 +R2

Thus A =


3 3 3 2
2 3 3 2
1 1 1 1
1 1 1 1



and b =


9
8
3
4

.

Problem 10.16. Let u1 =


1
1
2
4

, u2 =


2
−1
−5
2

, u3 =


1
−1
−4
0

. Find the

value of h so that b =


2
1
1
h

 lies in span{u1, u2, u3}

Solution: b ∈ span{u1, u2, u3}

⇔ The linear system corresponding to the augmented matrix
(
u1 u2 u3

...b

)
has a solution.
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Now
(
u1 u2 u3

...b

)
=


1 2 1

... 2

1 −1 −1
... 1

2 −5 −4
... 1

4 2 0
... h



∼


1 2 1

... 2

0 −3 −2
... −1

0 −9 −6
... −3

0 −6 −4
... −8 + h


by applying R2 → R2 −R1, R3 → R3 − 2R1 and R4 → R4 − 4R1

∼


1 2 1

... 2

0 −3 −2
... −1

0 0 0
... 0

0 0 0
... −6 + h

 by R3 → R3 − 3R2 and R4 → R4 − 2R2

The corresponding system is:
x1 + 2x2 + x3 = 2, −3x2 − 2x3 = -1, 0 = 0, 0 = -6 + h
The last equation gives h=6. Thus the system has solution when h=6 i.e.

b ∈ span{u1, u2, u3} when h = 6.

10.12 Exercise

1. If u =

(
−1
3

)
, v =

(
2
−1

)
then

(i) Compute u+ v, 2u− v,−2u+ 1/2v

(ii) Display the vectors computed in (i) using arrows on a x-y plane

2. A boat is traveling east across a river at the rate of 6kms/hour while the
river’s current is flowing south at a rate of 2km/hour.

(i) Find the resultant velocity of the boat.

(ii) If the speed of the boat is halved, then what is the resultant velocity
of the boat?

3. Using the figure write the following vectors as a linear combination of u and
v

(i) a, b, c, d

(ii) z, y, z

(iii) Is every vector in R2 a linear combination of u and v?

(iv) Display the vectors 2u− 3v,−3u− 4u

4. Write the system of equations that is equivalent to the given vector equation
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(i) x1

 2
−1
3

+ x2

 −1.5
6
0

 =

 4
−3
−2.5


(ii) x1

 −1
2
3

+ x2

 2
−3
1

+ x3

 −1
0
−4

 =

 0
0
0



(iii) x1


−1
2
0
3

+ x2


0
−1
4
−6

+ x3


−1
1
5
0

 =


0
1
2
3


5. Write the vector equation corresponding to the given system of linear equa-

tions

(i) 2x+ 3y − 4z = −1

x+ 11z = 10

14y + 8z = −23

(ii) −x+ y − 3z = 12

2y + 5z = 6

−3x+ 4y = −1

3y − 4z = −1

(iii) 2y + 3z − 4w = 0

3x− 2z = 11

2y − 13z + 14w = 18

6. Is b a linear combination of the given vectors? If yes, express b as a linear
combination of the vectors.

1. u1 =

(
−1
−1

)
, u2 =

(
0
−1

)
, b =

(
4
5

)
2. u1 =

(
1
2

)
, u2 =

(
2
3

)
, u3 =

(
3
4

)
, b =

(
5
6

)
3. u1 =

(
−1
−1

)
, u2 =

(
0
−1

)
, u3 =

(
−1
0

)
, u4 =

(
1
2

)
, b =(

2
3

)
4. u1 =

(
1
−1

)
, b =

(
1
2

)
7. Is b a linear combination of the given vectors ? If yes, express b as a linear

combination of the vectors

(i) u1 =

 1
1
−1

 , u2 =

 2
−3
5

 , b =

 0
1
4


(ii) u1 =

 1
3
2

 , u2 =

 1
−7
−8

 , b =

 2
1
−1


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(iii) u1 =

 1
1
1

 , u2 =

 1
2
3

 , u3 =

 2
−1
1

 , b =

 1
−2
5


(iv) u1 =

 1
0
0

 , u2 =

 1
1
0

 , u3 =

 1
1
1

 , u4 =

 0
1
−1

 , b = 1
2
3


8. Is b a linear combination of the given vectors ? If yes, express b as a linear

combination of the vectors

(i) u1 =


0
1
0
0

 , u2 =


1
0
1
0

 , u3 =


0
1
0
1

 , b =


1
1
1
1



(ii) u1 =


2
2
2
1

 , u2 =


−1
4
3
−1

 , b =


5
0
1
3



(iii) u1 =


1
−1
0
1

 , u2 =


1
1
1
2

 , u3 =


1
0
1
0

 ,

u4 =


6
1
4
8

 , u4 =


−1
2
0
1

 , b =


10
1
6
14



(iv) u1 =


1
1
1
1

 , u2 =


2
3
2
2

 , u2 =


3
5
4
3

 , b =


4
6
4
5



9. List 3 vectors in span{u1, u2} where u1 =

 1
−2
3

 , u2 =

 −1
0
1



10. List 4 vectors in span{u1, u2, u3} where u1 =


5
3
−1
−1

, u2 =


−4
0
1
3

,

u3 =


−4
−2
1
1



11. Given u1, u2, u3 where u1 =

 2
−1
3

, u2 =

 −2
3
−1

, u1 =

 10
−11

3

.
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Answer the following:

(i) Does u3 lie in span{u1, u2}
(ii) Does u1 lie in span{u2, u3}
(iii) Does u2 lie in span{u1, u3}

12. Give the geometrical of the following vectors

(i) span{u1}, where u1 =

(
1
2

)
(ii) Span{u1, u2}, where u1 =

(
−1
1

)
, u1 =

(
3
−3

)

Span{u1, u2}, where u1 =

 −1
−1
1

, u1 =

 1
0
−1


(iii) {u1, u2, u3}, where u1 =

 1
1
1

, u2 =

 −1
0
−1

, u3 =

 3
−4
5


13. Let A =

(
u1 u2 u3

)
where u1 =

 3
8
−3

, u2 =

 1
−2
5

, u3 = 2
3
1

 and let b =

 1
5
−3

, W = span{u1, u2, u3}

(i) Does b belong to {u1, u2, u3}? How many vectors are there in
{u1, u2, u3}?

(ii) Does b belong to W? How many vectors are there in W?

(iii) Show that u2 belongs to W

(iv) Does u2 belong to span{u1, u2} ?

14. Determine if b lies in the span of the columns of A, where

(i) A =

 1 −1 3
−2 1 −10
3 −3 10

 , b ∈

 2
−5
9


(ii) A =

 1 0 0 −2
2 0 1 3
3 −1 2 4

 , b ∈

 4
−5
6


(iii) A =

 3 2
−2 −2
4 9

 , b ∈

 1
2
3


15. Let u1 =

(
−1
3

)
, u2 =

(
1
3

)
. If u1 =

(
−1
3

)
, b =

(
h
k

)
, for what

values of h and k does b ∈ span {u1, u2}?

16. Construct a 3×3 matrix A, with non-zero entries and a vector b ∈ R3, such
that b is not in the set spanned by the columns of A.
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17. Construct a 4×3 matrix A, with non zero entries, and a vector b ∈ R3, such
that b is not in the set spanned by the columns of A.

18. Which of the following sets of vectors span Rn?

(i) {u1, u2} where u1 =

(
1
2

)
, u2 =

(
−1
1

)
(ii) {u1, u2, u3} where u1 =

(
1
3

)
, u2 =

(
−1
1

)
, u2 =

(
0
2

)
(iii) {u1, u2, u3} where u1 =

(
0
0

)
, u2 =

(
2
−3

)
, u2 =

(
0
2

)
(iv) {u1, u2} where u1 =

(
2
4

)
, u2 =

(
−1
2

)
19. Which of the following sets of vectors span R3?

(i) {u1, u2} where u1 =

 1
−1
2

 , u2 =

 0
1
1


(ii) {u1, u2, u3} where u1 =

 2
2
3

 , u2 =

 −1
−2
1

 , u3 =

 0
1
0


(iii) {u1, u2, u3, u4} where u1 =

 1
0
0

 , u2 =

 0
1
0

 , u3 =

 0
0
1

 ,

u4 =

 1
1
1


20. Which of the following set of vectors span R4?

(i) {u1, u2, u3, u4} where u1 =


0
0
1
1

 , u2 =


1
2
−1
1

 , u3 =


0
0
1
1

 ,

u4 =


2
1
2
1



(ii) {u1, u2, u3, u4, u5} where u1 =


6
4
−2
4

 , u2 =


1
0
0
1

 ,

u3 =


3
2
−1
2

 , u4 =


5
6
−3
2

 , u5 =


0
4
−2
−1


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(iii) {u1, u2, u3} where u1 =


1
2
1
0

 , u2 =


1
−1
−1
0

 , u3 =


0
0
0
1



(iv) {u1, u2, u3, u4} where u1 =


1
0
0
1

 , u2 =


0
1
0
0

 , u3 =


1
1
1
1

 ,

u4 =


1
1
1
0


21. Do the points in the plane corresponding to

(
−1
3

)
and

(
−3
1

)
lie on a

line through the origin?

22. Are the following statements true or false. If false, correct them.

(i) 1/3u1 is a linear combination of u1 and u2.

10.13 Solutions of Linear Systems

We shall now discuss the existence and uniqueness of the solutions of a sys-
tem of linear equations. To do this we consider the following example.

Example 10.23. Solve the linear system

x1 + x2 + 2x3 − 5x4 = 3

2x1 + 5x2 − x3 − 9x4 = −3

2x1 + x2 − x3 + 3x4 = −11

x1 − 3x2 + 2x3 + 7x4 = −5

Solution: To solve this system, we shall transform the augmented matrix of
the system to reduced echelon form.

Step 1 The augmented matrix is

(A|b) =


1 1 2 -5 3
2 5 -1 -9 -3
2 1 -1 3 -11
1 -3 2 7 -5


Step 2 Apply R2 → R2 − 2R1, R3 → R3 − 2R1, R4 → R4 − R1 to [A|b].

Then

(A|b) ∼


1 1 2 -5 3
0 3 -5 1 -9
0 -1 -5 13 -17
0 -4 0 12 -8

 = B(say)
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Step 3 To B apply R2 ↔ R3. This is done to make the pivot element -1 as
this will simplify the calculations

(A|b) ∼


1 1 2 -5 3
0 -1 -5 13 -17
0 3 -5 1 -9
0 -4 0 12 -8


Apply R3 → R3 + 3R2, R4 → R4 − 4R2

(A|b) ∼


1 1 2 -5 3
0 -1 -5 13 -17
0 0 -20 40 -60
0 0 20 -40 60

 = C(say)

Step 4 On C apply R4 → R4 +R3

(A|b) ∼


1 1 2 -5 3
0 -1 -5 13 -17
0 0 -20 40 -60
0 0 0 0 0

 = D(say)

The augmented matrix has been reduced to row-echelon form. We have bold-
faced the pivot elements.

Step 5 Now we shall reduce the augmented matrix to reduced echelon form.
We will start with the right-most pivot element.
Scale row-3 of D by applying R3 → −1

20 R3

(A|b) ∼


1 1 2 -5 3
0 -1 -5 13 -17
0 0 1 -2 3
0 0 0 0 0


Apply R2 → R2 + 5R3, R1 → R1 − 2R3. This is done to make the elements
above the pivot 3rd, as zeros.

(A|b) ∼


1 1 0 -1 -3
0 -1 0 3 -2
0 0 1 -2 3
0 0 0 0 0

 = E(say)

Scale row-2 of E (to make the 2nd pivot 1), by applying R2 → (−1)R2

(A|b) ∼


1 1 0 -1 -3
0 1 0 -3 2
0 0 1 -2 3
0 0 0 0 0


Apply R1 → R1 −R2 (This is done to make the elements above the pivot-2nd,
as zeros)

(A|b) ∼


1 0 0 2 -5
0 1 0 -3 2
0 0 1 -2 3
0 0 0 0 0

 = F (say)
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The augmented matrix has been transformed to reduced echelon form.
Step 6 The linear system represented by F is

x1 + 2x4 = −5

x2 − 3x4 = 2

x3 − 2x4 = 3

0 = 0

Solving each equation for the unknown that corresponds to the leading entry in
each row of F, we obtain

x1 = −5− 2x4

x2 = 2 + 3x4

x3 = 3 + 2x4

The value of x4 is not determined, and so it can take any arbitrary value. If we
let x4 = k, any real number, then a solution to the given linear system is

x1 = −5− 2k

x2 = 2 + 3k

x3 = 3 + 2k

x4 = k

Since k can be assigned any real number, the given system has infinitely many
solutions.

The variables which can take arbitrary values are called free variables and
the others are called the basic variables. In the above example, x4 is a free
variable whereas x1, x2, x3 are the basic variables.

Definition 10.13. Among the variables in a system, the ones corresponding
to the columns containing leading 1’s (in the reduced echelon form of the aug-
mented matrix) are called basic variables, and the ones corresponding to the
other columns, if there are any, are called the free variables.

Clearly the sum of the number of basic variables and the number of free
variables is equal to the total number of unknowns: the number of columns. In
general, a consistent system has infinitely many solutions if it has atleast one
free variable, and has a unique solution if it has no free variable. In fact, if a
consistent system has a free variable (which always happens when the number
of equations is less than that of unknowns), then by assigning arbitrary value
to the free variable, one always obtain infinitely many solutions.

The basic variables can always be expressed in terms of the free variables, if
any. When this is done, the solution, thus written, is called the general solution
as it gives an explicit description of all solutions.

In the above example, the general solution is

x1 = −5− 2x4

x2 = 2 + 3x4

x3 = 3 + 2x4
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x4 is free. Each different choice of x4 determines a (different) solution of the
system, and every solution of the system is determined by a choice of x4.

Given a system of linear equations, is it possible to know the number of free
variables without actually solving the system?

The answer is “yes”.
In fact, if the row echelon form of the augmented matrix is U , then the vari-

ables corresponding to the columns of the leading entries are the basic variables
and the remaining variables are of the free variables. For instance, if the row
echelon form of the augmented matrix of a system is

� * 0 * * * * *
0 � 0 * * * * *
0 0 0 � * * * *
0 0 0 0 0 � * *
0 0 0 0 0 0 0 0


then the basic variables are x1, x2, x4 and x6 and the free variables are x3, x5

and x6.

Example 10.24. Find the general solution of

x1 + 2x2 + 3x3 = 9

2x1 − x2 + x3 = 8

3x1 − x3 = 3

Solution: Step 1 The augmented matrix is

(A|b) =

 1 2 3 9
2 -1 1 8
3 0 -1 3


Step 2 The augmented matrix is row equivalent to

(A|b) =

 1© 0 0 2
0 1© 0 -1
0 0 1© 3


which is in the reduced echelon form (verify).
The leading 1’s are encircled.

Step 3 The corresponding system of equations is

x1 = 2

x2 = −1

x3 = 3

Thus there are no free variables and the system has a unique solution given by
(x1, x2, x3)=(2, -1, 3).

Example 10.25. Solve the linear system:

x1 + 2x2 − 3x4 + x5 = 2

x1 + 2x2 + x3 − 3x4 + x5 + 2x6 = 3

x1 + 2x2 − 3x4 + 2x5 + x6 = 4

3x1 + 6x2 + x3 − 9x4 + 4x5 + 3x6 = 9
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Solution: Step 1 The augmented matrix is

(A|b) =


1 2 0 -3 1 0 2
1 2 1 -3 1 2 3
1 2 0 -3 2 1 4
3 6 1 -9 4 3 9


Step 2 The reduced row echelon form of the augmented matrix is

(A|b) ∼


1 2 0 -3 0 -1 0
0 0 1 0 0 2 1
0 0 0 0 1 1 2
0 0 0 0 0 0 0


The leading 1’s are bold-faced. The variables corresponding to the pivot columns
namely are x1, x3, x5 are the basic variables and the remaining variables i.e.
x2, x4 and x6 are the free variables.

Step 3 The corresponding system is

x1 + 2x2 − 3x4 − x6 = 0

x3 + 2x6 = 1

x5 + x6 = 2

The solution is

x1 = −2x2 + 3x4 + x6

x2 is free.

x3 = 1− 2x6

x4 is free.

x5 = 2− x6

x6 is free.

This system has three free variables.

10.14 Parametric Description of Solution Sets

Whenever a system is consistent and has free variables, the solution set can
be described in terms of parameter(s). For instance, in above Example 10.23,
the solution is

x1 = −5− 2x4

x2 = 2 + 3x4

x3 = 3 + 2x4

x4 is free.
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This is the parametric description of the solution, where x4 is the parameter.
The solution is in terms of one parameter.

In Example 10.25, the free variables x2, x4 and x6 act as the parameters.
Here the solution set is in terms of three parameters.

The solution set of a linear system can have many parametric representa-
tions. For instance, in Example 10.23, the given linear system is reduced to the
equivalent system

x1 + 2x4 = −5 · · · (1)

x2 − 3x4 = 2 · · · (2)

x3 − 2x4 = 3 · · · (3)

(1) + (3) ⇒ x1 + x3 = −2
2 × (2) - 3 × (3) ⇒ 2x2 − 3x3 = −5
⇒ x2 − 3

2x3 = − 5
2

Thus the equations (1), (2), (3) are equivalent to:

x1 + x3 = −2

x2 −
3

2
x3 = −5

2
x3 − 2x4 = 3

Solving in terms of x3, we get

x1 = −2− x3

x2 = −5

2
+

3

2
x3

x4 = −3

2
+

1

2
x3

and x3 is a parameter. If x3 is assigned an arbitrary real number k, then the
solution we get is (x1, x2, x3, x4) = (−2− k,− 5

2 + 3
2k, k,−

3
2 + 1

2k) where k is a
parameter.
Similarly, we may choose x1(or x2) as a parameter.

However, to be consistent, we make the convention of always using the free
variables as the parameters for describing a solution set. Whenever, a system
is inconsistent, the solution set is empty. In this case, the solution set has no
parametric representation.

Example 10.26. Consider problem 10.4

(A|b) ∼

 1 3 -2 0 3
2 6 -2 4 18
0 1 1 3 10

 ∼
 1 3 -2 0 3

0 1 1 3 10
0 0 2 4 12


as done before.
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This is the triangular form. We shall apply row operations to reduce [A|b]
to reduced echelon form.
Applying R3 → 1

2R3

(A|b) ∼

 1 3 -2 0 3
0 1 1 3 10
0 0 1 2 6


Applying R1 → R1 − 2R3, R2 → R2 −R1

(A|b) ∼

 1 3 0 4 15
0 1 0 1 4
0 0 1 2 6


Applying R1 → R1 − 3R2

(A|b) ∼

 1 0 0 1 3
0 1 0 1 4
0 0 1 2 6


This is the reduced row-echelon form. The corresponding system of equation is

x1 + x4 = 3

x2 + x4 = 4

x3 + 2x4 = 6

Thus, by back substitution,

x1 = 3− x4

x2 = 4− x4

x3 = 6− 2x4

Since, there is no condition on x4, the variables x1, x2, x3 can be uniquely ob-
tained if x4 is assigned any real value. Thus, the solution is (x1, x2, x3, x4) =
(3− k, 4− k, 6− 2k, k) where k is any real number.

10.15 Existence and Uniqueness of Solutions

The basic question is: Given a system of linear equations, does it have a
solution and if it does, is it unique? Before answering this we shall take up a
few examples.

Example 10.27. Determine the existence and uniqueness of the solutions of
the system

x1 + 2x2 + 3x3 + 4x4 = 5

x1 + 3x2 + 5x3 + 7x4 = 11

x1 − x3 − 2x4 = −6

Also, obtain the solution, if it exists.
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Solution: Step 1 The augmented matrix of the system is

(A|b) =

 1 2 3 4 5
1 3 5 7 11
1 0 -1 -2 -6


Step 2 The echelon form of the matrix is

C =

 1 0 -1 -2 0
0 1 2 3 0
0 0 0 0 1


Step 3 The equivalent system is

x1 − x3 − 2x4 = 0

x2 + 2x3 + 3x4 = 0

0 = 1

The last equation is inconsistent, so that the given system is inconsistent.
So the solution set is empty.

Remark 10.5. If an equivalent system gives rise to an inconsistent equation,
then the given system is inconsistent.

Example 10.28. Determine the existence and uniqueness of the solutions of
the system

x1 + 2x2 + 3x3 = 9

2x1 − x2 + x3 = 8

3x1 − x3 = 3

Also, obtain the solution, if it exists.

Solution:
Step 1 The augmented matrix of the system is

(A|b) =

 1 2 3 9
2 -1 1 8
3 0 -1 3


Step 2 The row echelon form of the matrix is

(B) =

 1 2 3 9
0 1 1 2
0 0 1 3


Verify it yourself.

Step 3 : The equivalent system is

x1 + 2x2 + 3x3 = 9

x2 + x3 = 2

x3 = 3

Using back-substitution, the solution is x1 = 2, x2 = −1, x3 = 3 which is unique.
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Remark 10.6. Observe that in the matrix B there is no row of the form [0 0
0 | b], with b 6= 0, so that the system is consistent. Moreover, each column is a
pivot column. This gives that the solution is unique.

Example 10.29. Determine the existence and uniqueness of the solutions of
the system

x2 + 2x3 + 4x4 = −1

x1 + 3x2 − x3 = 5

2x1 + 4x3 + x4 = 3

Also, obtain the solution, if it exists.

Solution:
Step 1 The augmented matrix of the system is

(A|b) =

 0 1 2 4 -1
1 3 -1 0 5
2 0 4 1 3


Step 2 The row echelon form of the matrix (A|b) is

E =

 1 3 -1 0 5
0 1 2 4 -1
0 0 18 25 -13


Step 3 The matrix E does not have any row of the form [0 0 0 0 | b] with

b 6= 0 so that there will not be an inconsistent equation. Thus, the system is
consistent. Moreover, there are 4 variables, since, there are 3 leading entries.
Therefore, there are 3 basic variables and one free variable. Hence, the system
has infinitely many solutions. The equivalent system is

x1 + 3x2 − x3 = 5

x2 + 2x3 + 4x4 = −1

18x3 + 25x4 = −13

Solving in terms of x4 (free variable).

x1 =
1

18
(53 + 41x4)

x2 =
1

9
(4− 11x4)

x3 =
1

18
(−13− 25x4)

Thus, the solution is (x1, x2, x3, x4) = ( 1
18 (53+41k), 1

9 (4−11k),− 1
18 (13+25k), k)

where k is any real number.
Summarizing the observations from the above examples we note that the

echelon form [C|d] of the augmented matrix [A|b] enables us to draw conclusions
about the existence and uniqueness of the solutions of the given system.
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• If the echelon form contains a row of the form [ 0 0 . . . 0 | e ], with e
non-zero, then, the system is inconsistent.

• If the system is consistent and the number of leading entries is equal to the
number of variables (i.e. each column of the matrix C is a pivot column),
then, each variable is a basic variable and there are no free variables. In
this case the system has a unique solution.

• If the system is consistent and the number of leading entries is less than
the number of variables, then, there is atleast one free variable. In this
case, the system has infinitely many solutions.

These remarks justify the following theorem.

Theorem 10.7. A linear system of equations is consistent if and only if the
right-most column of the augmented matrix is not a pivot column, that is, if and
only if an echelon form of the augmented matrix has no row of the form [0 0 0
. . . 0 | b] with b non-zero.

If a linear system is consistent, then, the solution set contains either

1. A unique solution, when there are no free variables, or

2. Infinitely many solutions, when there is atleast one free variable.

Steps to find the existence and uniqueness of the solution of a linear system:

(i) Write the augmented matrix [A|b].

(ii) Reduce it to echelon form say [C|d].

(iii) If the augmented column d is a pivot column, then, the system is incon-
sistent, else consistent.

(iv) If the system is consistent and every column is a pivot column then the
solution is unique. If some column is not a pivot column, then, the system
has infinitely many solutions.

Steps to find the solution of a linear system:

(i) Write the augmented matrix [A|b].

(ii) Reduce it to echelon form say [C|d].

(iii) Decide whether the system is consistent, if it is, go to the next step else
stop.

(iv) Further reduce the echelon form to obtain the reduced echelon form.

(v) Write the system of equations corresponding to the matrix obtained in the
above step.

(vi) Obtain the values of the basic variables in terms of the free variables (if
any).
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10.16 Homogenous System

In a linear system with augmented matrix [A|b], if b=0, the system is said to
be homogenous, and non-homogenous otherwise. A homogenous system always
has X = 0 as a solution. Thus, such a system is always consistent. The solution
X = 0 is called a trivial solution (or zero solution).

We would like to know whether a homogenous system has a solution other
than the trivial solution, i.e., one in which atleast one of the variables is non-
zero. Such a solution is called a non-trivial (or non-zero) solution. The following
theorem tells us when a homogenous system has non-trivial solutions.

Theorem 10.8. The homogenous system with augmented matrix [A|O] has
non-trivial solution if and only if the number of pivot columns of the coefficient
matrix is less than the number of variables. Using theorem 10.7 we conclude that

1. If the number of equations is less than the number of variables, then, the
system has non-trivial solution.

2. If every column of the coefficient matrix is a pivot column, then, the system
has a unique solution namely the trivial solution.

Example 10.30. Solve the homogenous system

2x+ y − 2z = 0

−x+ 3y − z = 0

x+ 2y + 3z = 0

Solution: Step 1 The augmented matrix of the system is

(A|b) =

 2 1 -2 0
-1 3 -1 0
1 2 3 0


Step 2 The reduced row echelon form of the matrix is

(A|b) ∼

 1 0 0 0
0 1 0 0
0 0 1 0


Step 3 The equivalent system is

x = 0

y = 0

z = 0

Thus, the given system has a unique solution x = y = z = 0.

Example 10.31. Solve the homogenous system

w + x+ y + z = 0

w + x = 0

x+ 2y + z = 0
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Solution: Step 1 The augmented matrix of the system is

(A|b) =

 1 1 1 1 0
1 1 0 0 0
0 1 2 1 0


Step 2 The reduced row echelon form of the matrix is

(A|b) ∼

 1 0 0 1 0
0 1 0 -1 0
0 0 1 1 0


Step 3 The equivalent system is

w + z = 0

x− z = 0

y + z = 0

Thus, the given system has a solution

w = −z
x = z
y = −z

z is free.

Problem 10.17. Solve the system

w + x+ y + z = 4

−w + x+ y + z = 2

−w + x− y + z = 0

−w + x− y − z = −2

Solution: Step 1 The augmented matrix of the system is

(A|b) =


1 1 1 1 4
-1 1 1 1 2
-1 1 -1 1 0
-1 1 -1 -1 -2


Step 2 Transforming the above matrix to row echelon form by applying the

elementary row transformations we get

(A|b) ∼


1 1 1 1 4
0 1 1 1 3
0 0 -1 0 -1
0 0 0 1 1


Step 3 Transforming the above matrix to reduced row echelon form, we have
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(A|b) ∼


1 0 0 0 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1


The system corresponding to the above matrix is

w = 1
x = 1
y = 1
z = 1

Thus, the system is consistent and has a unique solution.
It is w = x = y = z = 1.

The following example shows that the consistency of a system depends on
the augmented column and not on the coefficient matrix.

Example 10.32. Solve the linear systems AX=b and AX=c
where

A =


0 0 0 1
2 4 8 6
1 2 4 5
3 5 11 8
4 6 14 0



b =


-1
10
3
15
28

 c =


2
6
7
8

-10


Solution: In this case, we have to solve two linear systems but the coefficient
matrix of both the systems is the same. Only the right hand sides are different.
Thus, we will consider the matrix [A | b | c]. So that, we will get the reduction
of augmented matrices of both the systems in one go.

Step 1

[A|b|c] =


0 0 0 1 -1 2
2 4 8 6 10 6
1 2 4 5 3 7
3 5 11 8 15 8
4 6 14 0 28 -10


Step 2 Apply R1 ↔ R3 so that the (1, 1)th element becomes non-zero.

[A|b|c] ∼


1© 2 4 5 3 7
2 4 8 6 10 6
0 0 0 1 -1 2
3 5 11 8 15 8
4 6 14 0 28 -10


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In order to make the elements of the 1 st column below the pivot element(encircled)
zero, apply R2 → R2 − 2R1, R4 → R4 − 3R1, R5 → R5 − 4R1

[A|b|c] ∼


1 2 4 5 3 7
0 0 0 -4 4 -8
0 0 0 1 -1 2
0 -1 -1 -7 6 -13
0 -2 -2 -20 16 -38


Step 3 In order to bring the pivot to the (2, 2)th position, apply R2 ↔ R4

∴ [A|b|c] ∼


1 2 4 5 3 7
0 -1© -1 -7 0 -13
0 0 0 1 -1 2
0 0 0 -4 4 -8
0 -2 -2 -20 16 -38


To make the elements below the 2nd column below the pivot element(encircled)
zero apply R5 → R5 − 2R2

[A|b|c] ∼


1 2 4 5 3 7
0 -1© -1 -7 0 -13
0 0 0 1 -1 2
0 0 0 -4 4 -8
0 0 0 -6 16 -12


Step 4 Apply R4 → − 1

4R4, R5 → 1
2R5

[A|b|c] ∼


1 2 4 5 3 7
0 -1 -1 -7 0 -13
0 0 0 1© -1 2
0 0 0 1 -1 2
0 0 0 -3 8 -6


Apply R4 → R4 −R3, R5 → R5 + 3R3

[A|b|c] ∼


1 2 4 5 3 7
0 -1 -1 -7 0 -13
0 0 0 1 -1 2
0 0 0 0 0 0
0 0 0 0 5 0


Step 5 To bring the row of zeros to the bottom-most position, apply R4 ↔ R5

[A|b|c] ∼


1© 2 4 5 3 7
0 -1© -1 -7 0 -13
0 0 0 1© -1 2
0 0 0 0 5 0
0 0 0 0 0 0


Step 6 We shall now transform the coefficient matrix to reduced echelon

form.
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Apply R2 → R2 + 7R3, R1 → R1 − 5R3

[A|b|c] ∼


1© 2 4 0 8 -3
0 -1© -1 0 -7 1
0 0 0 1© -1 2
0 0 0 0 5 0
0 0 0 0 0 0


Apply R1 → R1 + 2R2,

[A|b|c] ∼


1© 0 2 0 -6 -1
0 -1© -1 0 -7 1
0 0 0 1© -1 2
0 0 0 0 5 0
0 0 0 0 0 0


Apply R2 = (−1)R2

[A|b|c] ∼


1 0 2 0 -6 -1
0 1 1 0 7 -1
0 0 0 1 -1 2
0 0 0 0 5 0
0 0 0 0 0 0


Step 7 Thus we get that,

[A|b] ∼


1 0 2 0 -6
0 1 1 0 7
0 0 0 1 -1
0 0 0 0 5
0 0 0 0 0

 = A1(say)

[A|c] ∼


1 0 2 0 -1
0 1 1 0 -1
0 0 0 1 2
0 0 0 0 0
0 0 0 0 0

 = A2(say)

A1 is the reduced echelon form of [A|b]. Since, A1 has a row of the form [0 0 0
0 | 5], hence, the system AX = b is inconsistent. The reduced echelon form of
[A|c] is A2 and the corresponding system is

x1 + 2x3 = −1

x2 + x3 = −1

x4 = 2

Hence, the solution is

x1 = −1− 2x3

x2 = −1− x3

x3 is free

x4 = 2

Thus, AX=c is consistent having infinitely many solutions.
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Problem 10.18. Suppose that each matrix represents the augmented matrix for
a system of linear equations. In each case, determine if the system is consistent.
In case it is consistent, determine if the solution is unique. Here � represents
a pivot position and * any entry, including zero.

(i)

A =

 � 0 * *
0 0 � *
0 0 0 0


(ii)

B =

 � * * *
0 � * *
0 0 0 �


(iii)

C =

 � * * *
0 � * *
0 0 � 0


(iv)

D =


0 � 0 * * *
0 0 0 � * *
0 0 0 0 � *
0 0 0 0 0 *


Solution:

(i) Since, the last column (augmented column) is not a pivot column, therefore,
the system is consistent. Number of variables = 3, Number of pivots =
2. Thus, there is one free variable and the system has infinitely many
solutions.

(ii) Since, the augmented column is a pivot column, therefore, the system is
inconsistent.

(iii) Since, the last column is not a pivot column, therefore, the system is con-
sistent.
Number of variables = 3
Number of pivots = 3
Hence, the system has a unique solution.

(iv) The last row is of the form [0 0 0 0 0 | *]. Two cases arise:

Case 1: ‘*’ has the value 0. Then, the last row is [0 0 0 0 0 | 0] and the
system is consistent. In this case, there are three pivots so that there are
5−3 = 2 free variables. Hence, there are infinitely many solutions.

Case 2: ‘*’ has a non-zero value. Thus, the last column will be a pivot
column so that the system is inconsistent.

Example 10.33. Consider a system of equations whose augmented matrix is
4 × 6. Discuss the consistency and uniqueness of the solution when in the row
echelon form of the augmented matrix.
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(i) There are four pivot columns in the coefficient matrix.

(ii) The sixth column is a pivot column.

(iii) The coefficient matrix has a pivot position in every row.

Solution: Since the augmented matrix is a 4 × 6 matrix, therefore,
Number of equations = 4
Number of variables = 5

(i) With four pivots there should be a pivot in the last row (i.e. 4th row) of the
coefficient matrix. Since, these pivots must occur in the coefficient matrix,
therefore, it cannot be in the augmented column. Thus, the echelon form
cannot have a row of the form [0 0 0 0 0 | b], with b non-zero. Hence, the
system is consistent. But, number of basic variables = number of pivot
columns = 4.
Hence, there is one free variable, so that there are infinitely many solutions.

(ii) In this case, the last non-zero row will be [0 0 0 0 0 | b] with b non-zero
which gives inconsistency. Hence, the system will be inconsistent in this
case.

(iii) When there is a pivot in each of the 4 rows of the coefficient matrix, there
are four pivots. So that there will be four pivot columns in the coefficient
matrix. So the consistency follows by (i).

Example 10.34. Consider a system of four equations in four variables. Discuss
the consistency and uniqueness of the solution when in the row echelon form of
the augmented matrix:

1. The coefficient matrix has a pivot in every column.

2. The coefficient matrix has pivot in every row.

3. The augmented matrix has pivot in augmented column.

4. The augmented matrix has four pivot columns.

5. The augmented matrix has three pivot columns.

6. The coefficient matrix has three pivot columns.

Solution: In this case the coefficient matrix is a 4 × 4 matrix and the aug-
mented matrix is a 4 × 5 matrix.

1. In this case, Number of pivot columns = 4. Thus, every column of the
coefficient matrix is a pivot column, and there will be a pivot in the last
row of the coefficient matrix. Therefore, the echelon form cannot have a
row of the form [0 0 0 0 | b], with b 6= 0 and every variable is a basic
variable. Hence the system is consistent and has a unique solution.

2. In this case also, the number of pivots = 4. By same argument as in (i),
the system is consistent and has a unique solution.

3. If there is a pivot in the augmented column then there is a row of the [0 0
0 0 | b], with b 6= 0 which gives inconsistency. Hence, the system will be
inconsistent in this case.
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4. Since, there are four pivot columns in the augmented matrix, two cases
arise:

(a) Case 1: Augmented column is not a pivot column. Thus, every pivot
column occurs in coefficient matrix which is same as part (1).

(b) Case 2: Augmented column is a pivot column, which is same as (3).

5. Here also, two cases arise:

(a) Case 1: Augmented column is not a pivot column. Thus, there are
three pivot columns in the coefficient matrix. The last row will be of
the form [0 0 0 0 | 0], giving three basic variables and one free variable.
Hence, the system is consistent having infinitely many solutions.

(b) Case 2: Augmented column is a pivot column. This is same as part
(iii).

6. This is the same as case-a of (5).

Example 10.35. Consider a system of m equations in n variables. Discuss the
consistency and uniqueness of the solution when

1. The system is under determined, i.e., m < n.

2. The system is over determined, i.e., m > n.

Solution: The augmented matrix is a m × (n+1) matrix and it will be
transformed to row echelon form to discuss the consistency.

1. m < n: Thus, there can be at most m pivots, so that the number of pivot
columns is less than the number of columns in the coefficient matrix. Two
cases arise:

(a) Case 1: Augmented column is a pivot column. As discussed, earlier,
such a system is inconsistent.

(b) Case 2: Augmented column is not a pivot column. Hence, the system
is consistent. Thus, the number of pivot columns = m < n = number
of variables. Since, number of basic variables = number of pivot
columns, therefore, the number of basic variables is less than the
number of variables. Consequently, there is at least one free variable,
so that there are infinitely many solutions.

2. m > n: Three cases arise:

(a) Case 1: The augmented column is a pivot column. Such a system is
inconsistent.

(b) Case 2: Augmented column is not a pivot column, and number of
pivot columns is n. Thus, the number of basic variables is equal to
the number of variables so that there are no free variables. Hence,
there is a unique solution.

3. Case 3: Augmented column is not a pivot column, and number of pivot
columns is less than n. In this case, the number of basic variables is less
than the number of variables so that there are free variables. Hence, the
system has infinitely many solutions.
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Example 10.36. Discuss the nature of the solution of the following system for
different values of k. Obtain the solution, if it exists

kx+ y + z = 1

x+ ky + z = k

x+ y + kz = k2

Solution: The augmented matrix is

Step 1

A|b =

 k 1 1 1
1 k 1 k
1 1 k k2


Step 2 Apply R1 ↔ R3

A|b ∼

 1 1 k k2

1 k 1 k
k 1 1 1


Apply R2 → R2 −R1, R3 → R3 − kR1

A|b ∼

 1 1 k k2

0 k-1 1-k k-k2

0 1-k 1-k2 1-k3


Step 3 R3 → R3 +R2

A|b ∼

 1 1 k k2

0 k-1 1-k k-k2

0 0 2-k-k2 1+k-k2-k3

 = A1(say)

The augmented matrix is reduced to echelon form.

Step 4 Three cases arise:

Case 1: Third row has a pivot and it is in the fourth column. Then (k −
1)(k + 2) = 0 and (k − 1)(k + 1)2 6= 0. This is possible for k = −2. In this case
the system is inconsistent.

Case 2: Third row has a pivot and it is in the third column. Then, (k −
1)(k + 2) 6= 0. This is possible for k 6= −2, 1. In this case every column has a
pivot, so the system is consistent and has a unique solution. Thus,

[A|b] ∼

 1 1 k k2

0 k-1 1-k k-k2

0 0 2-k-k2 1+k-k2-k3


Apply R2 → 1

k−1R2, R3 → −1
k−1R3 (in order to simplify the calculations)

[A|b] ∼

 1 1 k k2

0 1 -1 -k
0 0 k+2 (k + 1)2


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The corresponding system is

x+ y + kz = k2

y − z = −k
(k + 2)z = (k + 1)2

By back-substitution, we get x = −k+1
k+2 , y = 1

k+2 , z = (k+1)2

k+2 .

Case 3: Third row does not have a pivot.

Thus, (k− 1)(k+ 2)=0 and (k− 1)(k+ 1)(k+ 1) = 0. This is possible when
k = 1. In this case

[A|b] ∼

 1 1 1 1
0 0 0 0
0 0 0 0


Thus, the system is consistent and has infinitely many solutions. The corre-
sponding equations are

x+ y + z = 1

⇒ x = 1− y − z

y, z are free.

Summarizing, we get, the system is inconsistent if k=-2. The system has
infinitely many solutions if k=1, and the solution is

x+ y + z = 1

⇒ x = 1− y − z

y, z are free.
The system has a unique solution when k 6= 1,−2. In this case, the solution is

x = −k+1
k+2 , y = 1

k+2 , z = (k+1)2

k+2 .

Example 10.37. Find the real values of λ for which the following system has
non-zero solution and also find the solution.

x+ 2y + 3z = λx

3x+ y + 2z = λy

2x+ 3y + z = λz

Solution: The given system is

(1− λ)x+ 2y + 3z = 0

3x+ (1− λ)y + 2z = 0

2x+ 3y + (1− λ)z = 0

Step 1 The augmented system is

[A|b] =

 1-λ 2 3 0
3 1-λ 2 0
2 3 1-λ 0


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Step 2 Apply R1 → R1 +R2 +R3

[A|b] ∼

 6-λ 6-λ 6-λ 0
3 1-λ 2 0
2 3 1-λ 0


If 6− λ 6= 0 then apply R1 → 1

6−λR1

[A|b] ∼

 1 1 1 0
3 1-λ 2 0
2 3 1-λ 0


Apply R2 → R2 − 3R1, R3 → R3 − 2R1

[A|b] ∼

 1 1 1 0
0 -2-λ -1 0
0 1 -1-λ 0


Step 3 Apply R2 ↔ R3

[A|b] ∼

 1 1 1 0
0 1 -1-λ 0
0 -2-λ -1 0


Apply R3 → R3 + (2 + λ)R2

[A|b] ∼

 1 1 1 0
0 1 -1-λ 0
0 0 -(λ2 + 3λ+ 3) 0


Step 4 The matrix [A|b] is reduced to echelon form. The corresponding

system is

x+ y + z = 0

y − (1 + λ)z = 0

−(λ2 + 3λ+ 3)z = 0

For any real value of λ, λ2 + 3λ+ 3 6= 0.
By back-substitution, we get x = y = z = 0

Step 5 If λ = 6, then from Step2, we get

[A|b] ∼

 0 0 0 0
3 -5 2 0
2 3 -5 0


Apply R3 → R3−R2 (this is done to simplify the calculations). Apply R1 ↔ R3.
Apply R2 → R2 + 3R1. Apply R2 → 1

19R2.

[A|b] ∼

 -1 8 -7 0
0 1 -1 0
0 0 0 0


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The corresponding system is

−x+ 8y − 7z = 0

y − z = 0

0 = 0

By back substitution we get,
x=z, y=z
z is free.
Summarizing, we get,
If λ 6= 6 the system has only the trivial solution. If λ = 6 the solution is x = z,
y = z, z is free.

Example 10.38. Discuss the existence and uniqueness of the solution of the
system

x+ y + z = 1

αx+ βy + γz = ε

α2x+ β2y + γ2z = ε2

Solution:
Step 1 The augmented matrix of the system is

[A|b] ∼

 1 1 1 1
α β γ ε
α2 β2 γ2 ε2


Step 2 Apply R2 → R2 − αR1, R3 → R3 − α2R1

[A|b] ∼

 1 1 1 1
0 β − α γ − α ε− α
0 β2 − α2 γ2 − α2 ε2 − α2


Step 3

Case 1: Taking β − α 6= 0, i.e., α 6= β, apply R2 → 1
β−αR2, R3 → 1

β−αR3

[A|b] =

 1 1 1 1
0 1 γ−α

β−α
ε−α
β−α

0 β + α γ2−α2

β−α
ε2−α2

β−α


Apply R3 → R3 − (α+ β)R2

[A|b] ∼

 1 1 1 1
0 1 γ−α

β−α
ε−α
β−α

0 0 (γ−α)(γ−β)
β−α

(ε−α)(ε−β)
β−α


Apply R3 → (β − α)R3

[A|b] ∼

 1 1 1 1
0 1 γ−α

β−α
ε−α
β−α

0 0 (γ − α)(γ − β) (ε− α)(ε− β)

 = A1(say)

The matrix has been reduced to row echelon form.

SYSTEM OF LINEAR EQUATIONSCHAPTER 10.



10.16. HOMOGENOUS SYSTEM 415

Step 4 We now have the following possibilities regarding α, β, γ.

1. If γ 6= α and γ 6= β. Thus, α, β, γ are all distinct. Thus, (γ−α)(γ−β) 6= 0
so that the given system has a unique solution, as A1 has last row of the
form [0 0 p | q], with p 6= 0.

2. If (γ − α)(γ − β) = 0. Then, γ = α or γ = β. In this case, the system
is consistent if (ε − β)(ε − α) = 0, i.e., ε = α or ε = β. In this case, A1

has a row of the form [0 0 0 | 0] so that the system has infinitely many
solutions. Thus, if γ = α or β, then, the system is consistent and has
infinitely many solutions if ε = α or β.

3. In case, (γ − α)(γ − β) = 0, i.e., γ = α or γ = β and (ε − α)(ε − β) 6= 0
then the last row is of the form [0 0 0 | r] with r 6= 0, so that the system
is inconsistent.

Step 5 We have discussed the following cases:

1. α, β, γ are all distinct.

2. α 6= β and γ is one of α or β. By symmetry, this covers the cases when
only two of α, β, γ are distinct.

We have yet to discuss the case when α, β, γ are all equal.

[A|b] ∼

 1 1 1 1
0 0 0 ε− α
0 0 0 ε2 − α2


Thus, the system is inconsistent if ε 6= α and consistent if ε = α. When

ε = α,

[A|b] ∼

 1 1 1 1
0 0 0 0
0 0 0 0


so that the system has infinitely many solutions.

Summarizing, we get that the given system is

• Inconsistent when:

1. α = β = γ 6= ε, i.e., α, β, γ are all equal but ε is different from them,
or

2. when α 6= β, γ is one of α or β and ε 6= α, β, i.e., two of α, β, γ are
distinct and ε is different from the two distinct values.

• Unique solution when
α 6= β 6= γ, i.e., α, β, γ are all distinct and ε can take any value.

• Infinitely many solutions

1. when α 6= β, γ is either α or β and ε take the value α or β, i.e., two
of α, β, γ are distinct and ε is equal to one of the two distinct values.

2. or when α = β = γ = ε, i.e., α, β, γ, ε are all equal.



416

10.17 Exercise

1. Let

A =

 1 2 1
-1 1 2
2 1 -2


In each of the following parts, determine whether X is a solution to the
linear system AX = b.

(i) X = [−1 2 − 3]t, b = [0 0 0]t

(ii) X = [0 0 0]t, b = [0 0 0]t

(iii) X = [−1 1 2]t, b = [3 6 − 5]t

(iv) X = [1 2 − 3]t, b = [2 − 5 − 2]t

2. Find the general solution of the systems whose augmented matrices are
given:

(i) (
1 -1 1 -1
1 -2 7 -6

)
(ii)  -6 -9 12 -15

-1 -1.5 2 -2.5
2 3 -4 5


(iii) 

0 0 0 0 1 0
1 2 -5 -6 0 -5
0 1 -6 -3 1 2
1 3 -11 -9 1 -3


(iv)  2 1 1 2

1 1 1 1
1 1 -2 3


(v) 

2 1 1 -2 1
3 -1 1 -6 -2
1 1 -1 -1 -1
6 0 1 -9 -2
5 -1 2 -8 3


(vi)  3 1 1 -1 1

1 1 2 3 13
1 -2 1 1 8


3. Determine the existence and uniqueness of the solution of the following

linear systems:
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(i) 2x1 + x2 + 3x3 = 1

4x1 − x3 = 5

3x1 + x2 + x3 = 4

(ii) 2x1 + x2 + x3 = 3

x1 + 2x2 − 4x3 = 3

x2 − 3x3 = 1

−x1 − 2x3 = 1

(iii) x1 + 2x2 − x3 + x4 = 1

2x1 + x2 + 4x3 + x4 = 1

x1 + x2 − x3 − x4 = 1

(iv) 2x1 − 2x2 + 4x4 = 2

−x1 + 3x3 + x4 = 6

6x1 − 6x2 + x3 + 8x4 = 3

4. Solve the following system of linear equations by reducing the augmented
matrix is row echelon form:

(i) 6w − 6x+ y + 8z = 12

−w − x− 2z = −1

w − 3y − z = −6

w + 2x− 7y − 16z = −7

(ii) 2x− y − 3z = 5

3y + z = −5

x− 2y + 3z = 4

3x− 3y = 7

(iii) w + x+ y + z = 3

−3w − 17x+ y + 2z = 1

4w − 17x+ 8y − 5z = 1

−5x− 2y + z = 1

(iv) 2y − z = 1

4x− 10y + 3z = 5

3x− 3y = 6

(v) 2x+ y + z = 1

x+ 2y − 4z = −1

y − 3z = −1

−x− 2z = −1
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5. Solve the following systems of linear equations by reducing the augmented
matrix to reduced row echelon form.

(i) 3x1 − 7x2 + 8x3 − 5x4 + 8x5 = 9

3x2 − 6x3 + 6x4 + 4x5 = −5

3x1 − 9x2 + 12x3 − 9x4 + 6x5 = 15

(ii) 3x1 + 4x2 + x3 = 0

2x1 + 5x2 + 3x3 = 0

−x1 + x2 + 2x3 = 0

(iii) −x1 + 3x3 + x4 = 6

2x1 − 2x2 + 4x4 = 2

6x1 − 6x2 + x3 + 8x4 = 12

x1 + 2x2 − 7x3 − 16x4 = 7

(iv) 2x1 + x2 + x3 + x4 = 1

x1 + 2x2 + x3 + x4 = 2

x1 + x2 + 2x3 + x4 = 3

x1 + x2 + x3 + 2x4 = 4

(v) x1 + x2 + x3 = 12

x1 + 2x2 + 4x3 = 15

x1 + 3x2 + 9x3 = 16

6. Find the general solution of the systems whose augmented matrices are
given. Give the solution in parametric form.

(i)  2 1 -1 1 3
1 2 3 -1 0
-1 1 0 -1 2


(ii)  0 -1 3 0 1

2 3 2 2 10
3 5 5 3 18


(iii) 

0 1 0 0 -4 1
1 -2 0 -1 -4 -1
1 -3 0 0 9 2
1 -3 0 -1 0 -2


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7. Show that the system

5x+ 2y + 7z = 4

3x+ 26y + 2z = 9

7x+ 2y + 10z = 5

is consistent and also find the solution.

8. Solve the following system if consistent:

5x1 + 3x2 + 14x3 = 4

x2 + 2x3 = 0

2x1 + x2 + 6x3 = 2

9. Solve the following equations:

(i)
x1 + 3x2 + 2x3 = 0

2x1 − x2 + 3x3 = 0

3x1 − 5x2 + 4x3 = 0

x1 + 17x2 + 4x3 = 0

(ii) x1 − x2 + x3 = 0

3x1 − x2 + 4x3 = 0

7x1 − 3x2 − 9x3 = 0

4x1 − 2x2 + 5x3 = 0

10. If

A =

 1 0 5
1 1 1
0 1 -4


Find the general solution of the system:

(i) (2I3 −A)X = 0

(ii) (−4I3 −A)X = 0

11. Which of the following systems of linear equations possess trivial or non-
trivial solutions?

(i)
x1 − 2x2 + x3 − x4 = 0

x1 + x2 − 2x3 + 3x4 = 0

4x1 + x2 − 5x3 + 8x4 = 0

5x1 − 7x2 + 2x3 − x4 = 0
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(ii) x1 + 2x2 + 3x3 + 4x4 = 0

8x1 + 5x2 + x3 + 4x4 = 0

5x1 + 6x2 + 8x3 + x4 = 0

8x1 + 3x2 + 7x3 + 2x4 = 0

12. Find the condition on a, b, c so that the following system is consistent:

(i) x+ 2y − 3z = a

2x+ 3y + 3z = b

5x+ 9y − 6z = c

(ii) x+ 2y + 6z = a

2x− 3y − 2z = b

3x− y + 4z = c

(iii) 4x+ 2y + z = a

2x− y + 3z = b

x+ 3y − 2z = c

13. For the system of linear equations:

8x1 + x2 = b1

x3 + 3x4 = b2

8x1 + x2 + 4x3 + 8x4 = b3

16x1 + 2x2 + x3 + 2x4 = b4

Find the condition on b1, b2, b3 and b4 so that the system is consistent.
When it is, find a general solution.

14. Given the echelon form of the augmented matrix of a linear system, discuss
the nature of the solution:

(i) 
� * * * *
0 0 � * *
0 0 0 � *
0 0 0 0 �


(ii) 

0 � * * *
0 0 0 � *
0 0 0 0 *
0 0 0 0 0
0 0 0 0 0


(iii)  � * * *

0 � * *
0 0 � *


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(iv)  � 0 * *
0 0 � *
0 0 0 �


(v) 

� * * * *
0 0 � * *
0 0 0 � *
0 0 0 0 �


(vi) 

0 � * *
0 0 � *
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


15. Suppose the augmented matrix of a linear system is a 3×6 matrix. Is the

system consistent in the following cases? Justify your answer.

(i) The coefficient matrix has 3 pivot columns.

(ii) The 6th column is a pivot column.

(iii) The augmented matrix has 3 pivot columns.

(iv) The coefficient matrix has a pivot in every row.

(v) The augmented matrix has a pivot in every row.

16. Suppose the coefficient matrix of a linear system of four equations in four
variables has a pivot in each column. Explain why the system has a unique
solution.

17. Suppose the coefficient matrix of a linear is a 4×4 matrix. What would you
have to know about the pivot columns in the augmented matrix in order
to know that the linear system is consistent and has a unique solution.

18. Give an example of a matrix in echelon form whose corresponding linear
system is:

(i) inconsistent under determined system with 4 variables.

(ii) inconsistent over determined system with 3 variables.

(iii) consistent under determined system with 3 variables.

(iv) consistent over determined system with 2 variables.

19. For what value of k does the following system of equations have a solution.

x+ y + z = 1

x+ 2y + 4z = k

1x+ 4y + 10z = k2

Find the solution in each case.
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20. Discuss the existence and uniqueness of the solutions of the following sys-
tem of equations, for all values of k.

2x+ 3ky + (3k + 4)z = 0

x+ (k + 4)y + (4k + 2)z = 0

x+ 2(k + 1)y + (3k + 4)z = 0

21. Discuss the existence and uniqueness of the system of equations:

x+ y + z = 1

ax+ by + cz = k

a2x+ b2y + c2z = k2

Also obtain the solution, if it exists:

(a) a, b, c are all distinct.

(b) a 6= b, a = c.

(c) a = b = c.

10.18 Solution Sets of Linear Systems

So far we have learnt to obtain the solution of a given system of linear
equations. Obtaining the solution set of a linear system is an important ob-
ject of study in linear algebra and it will appear later in several different con-
texts. We shall now find the general solution of a given homogeneous and
non-homogeneous system and express it using the vector notation. A geometric
description of the general solution will also be given.

10.18.1 Homogeneous System

Let us recall that the homogeneous linear system is written as AX = 0 in
matrix equation form.

In matrix form, Theorem 1 Section 10.7 is restated as follows:

Theorem 10.9. The homogeneous equation AX = 0 has non-trivial solution if
and only if the solution has at least one free variable.

Example 10.39. Describe all the solutions of the homogeneous system 2x1 −
3x2 + 4x3 = 0 . . . (i). Give the geometrical interpretation also.

Solution: A single linear equation can be treated as a simple system of
equations. There is no need for matrix notation. Any of the three variables
can be treated as a basic variable. Choosing x1 as a basic variable, we get
x1 = 3

2x2 − 2x3.
The general solution is

X =

x1

x2

x3

 =

1.5x2 − 2x3

x2

x3


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x2

1.5
1
0

+ x3

−2
0
1

 = x2u+ x3v

with x2, x3 as free variables,

u =

1.5
1
0

 , v =

−2
0
1


Thus, every solution of (i) is a linear combination of the vectors u and v. Hence,
the solution set is span {u, v}. Since, u is not a scalar multiple of v, therefore,
u and v are non-collinear. Hence, span {u, v} is a plane through the origin
containing u and v.
X = x2u + x3v where x2, x3 are parameters is the parametric form of the
solution.

Example 10.40. Determine if the following homogeneous system has a non-
trivial solution. Also describe the solution set.

2x1 + 7x2 − x3 = 0

2x1 − 5x2 + 8x3 = 0

4x1 + 2x2 + 7x3 = 0

Solution: Here

A =

2 7 −1
2 −5 8
4 2 7


is the matrix of coefficients. We reduce [A|0] to echelon form.

[A|0] =

 2 7 -1 0
2 -5 8 0
4 2 7 0


Apply R2 → R2 −R1, R3 → R3 − 2R1

∼

 2 7 -1 0
0 -12 9 0
0 -12 9 0


ApplyR3 → R3 −R2

∼

 2 7 -1 0
0 -12 9 0
0 0 0 0


The pivots are bold-faced.

Number of variables = 3
Number of basic variables = Number of pivots = 2
Hence, number of free variables = 3 − 2 = 1. Since, there is one free variable,
therefore, the system has non-trivial solutions. To find the solution we obtain
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the reduced echelon form of the augmented matrix.
Apply R2 → 1

3R2

[A|0] ∼

 2 7 -1 0
0 -4 3 0
0 0 0 0


Apply R1 → R1 + 7

4R2

∼

 2 0 17
4 0

0 -4 3 0
0 0 0 0


Apply R1 → 1

2R1, R2 → − 1
4R2

∼

 1 0 17
8 0

0 1 −3
4 0

0 0 0 0


The equivalent system is

x1 +
17

8
x3 = 0

x2 −
3

4
x3 = 0

Thus,

x1 = −17

8
x3

x2 =
3

4
x3

x3 is free.

In the vector form, the general solution is

X =

x1

x2

x3

 =

− 17
8 x3

3
4x3

x3

 = x3

− 17
8

3
4
1

 = x3u

where u =

−17/8

3/4

1

 and x3 is a parameter.

This is the parametric vector form of the solution. Here, x3 is factored out of
the expression for the general solution vector. Thus, every solution of AX = 0
is a scalar multiple of u. The trivial solution is obtained by choosing x3 = 0. In
order to avoid fractions, we can write

X = x3
1

8

−17
6
8

 = kv

where k = x3
1

8
, v =

−17
6
8

. As x3 is arbitrary, so k is also arbitrary.
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Geometrically, the solution set is a line through origin in R3.
In the above two examples, we observe that general solution of a homo-

geneous system is a linear combination of a certain set of p vectors, which
themselves are solutions of the given system. Moreover, p is the number of free
variables.

10.18.2 Non-homogeneous System

Before studying the general vector form of the solution of a non-homogeneous
linear system, we will consider an example. In order to compare the relation be-
tween the solutions of a non-homogeneous system AX = b and the corresponding
homogeneous system AX = 0, we consider the system AX = b for which the
corresponding homogeneous system AX = 0 is that of Example 10.40.

Example 10.41. We describe the general solution of

2x1 + 7x2 − x3 = −7

2x1 − 5x2 + 8x3 = 23

4x1 + 2x2 + 7x3 = 16

Solution: The reduced echelon form of the augmented matrix of the system
is  1 0 17

8
21
4

0 1 -3
4 - 5

2

0 0 0 0


The general solution is:

x1 = −17

8
x3 +

21

4

x2 =
3

4
x3 −

5

2
x3 is free.

There is one free variable x3. In vector form, the general solution is written as

X =

x1

x2

x3

 =


21
4 −

17
8 x3

−5
2 + 3

4x3

x3



X =


21
4
−5
2

0

+

−
17
8 x3

3
4x3

x3


Hence, X = a+ x3u, where

a =


21
4
−5
2

0

 , u =

−
17
8

3
4

1


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Thus X = a+ ku, where x3 = k is a parameter which can take any real value.
∴ the solution set of AX = b is {a+ ku | k ∈ R}.

Note that

1. X = ku is the general solution of the corresponding homogeneous system
AX = 0.

2. X = a is a particular solution of AX = b (This is the solution correspond-
ing to k = 0).

3. The general solution of AX = b is obtained by adding a particular solution
of AX = b to the general solution of AX = 0.

Geometrically, X = a+ ku where k ∈ R represents a line through the point ′a′

and parallel to X = ku.
The following are the steps involved in writing the solution set of a consistent
system AX = b in parametric vector form.

Step 1 Reduce the augmented matrix [A|b] to reduced echelon form.
Step 2 Express the basic variable in terms of the free variables(if any).
Step 3 Write a typical solution X as a vector whose entries depend on the

free variables.
Step 4 Express X as a linear combination of vectors (with numeric entries)

using the free variables as parameters.

The relation between the solution set of AX = 0 as shown in the above
illustration generalizes to any consistent equation AX = b. The solution set
may be larger than a line when there are more than one free variables. The
following theorem gives us the precise statement.

Theorem 10.10. Suppose the equation AX = b is consistent for some given b,
and let a be a solution. Then the solution set of AX = b is the solution set of
all vectors of the form w = a+uh where uh is any solution of the homogeneous
system AX = 0.

Proof: Given that a is the solution of AX = b. Then Aa = b. Let uh be a
solution of AX = 0. Then, Auh = 0. Define w = a+uh. Now, Aw = A(a+uh)
= Aa + Auh = b + 0 = b. Thus, Aw = b, so that w is a solution of AX = b.

On the other hand, let w be any solution of AX = b. Then, AX = b. Using
Aa = b, we get, Aw - Aa = 0, so that A(w - a) = 0. Hence, w - a is a solution
of AX = 0. Thus, w - a = uh, for some solution uh of AX = 0. Hence, w = a
+ uh.

Example 10.42. Describe the solution set in parametric vector form of the
system AX = b, where

A =

 1 −3 2
7 −21 14
−3 9 −6

 , b =

 4
28
−12


Also give the geometrical interpretation.

Solution: Step 1 The augmented matrix is

[A|b] =

 1 -3 2 4
7 -21 14 28
-3 9 -6 -12


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and

[A|b] ∼

 1 -3 2 4
0 0 0 0
0 0 0 0


which is the reduced echelon form.

Step 2 The solution is: x1 = 4 + 3x2 − 2x3 x2, x3 are free.
Step 3 The solution in vector form is

X =

x1

x2

x2

 =

4 + 3x2 − 2x3

x2

x3



X =

4
0
0

+

3x2

x2

0

+

−2x3

0
x3


=

4
0
0

+

3
1
0

x2 +

−2
0
1

x3

= a+ k1u1 + k2u2 where,

a =

4
0
0

 , u1 =

3
1
0

 , u2 =

−2
0
1

 , x2 = k1, x3 = k2

k1, k2 are parameters which can take any real value.
Thus, the solution set of AX = b is {a+ k1u1 + k2u2 | k1, k2 ∈ R}.

X = a + k1u1 + k2u2 where k1, k2 ∈ R represents a plane passing through a
and containing the vectors u1 and u2.

Example 10.43. Describe the solution set in parametric vector form of AX=0,
where

A =

 1 −3 2
7 −21 14
−3 9 −6


Also give the geometrical interpretation.

Solution: The matrix A is the same as in the previous illustration. Repeating
steps 1 and 2 on [A|0] we get the solution as

X =

x1

x2

x3

 =

3x2 − 2x3

x2

x3

 = k1u1 + u2k2

where

u1 =

3
1
0

 , u2 =

−2
0
1

 , x2 = k1, x3 = k2

k1, k2 are parameters which can take any real values.
Thus, X = k1u1 + k2u2, k1, k2 ∈ R describes the solution set of AX = 0 in
parametric vector form.
This represents a plane through the origin and containing the vectors u1 and
u2.
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Example 10.44. Describe the solution set in parametric vector form of Exam-
ple 10.24 of Section 10.13. Also give the geometrical interpretation.

Solution: The solution set is x1 = 2, x2 = −1, x3 = 3. In vector form, the
solution can be written as

X =

x1

x2

x3

 =

 2
−1
3

 = a(say)

Since, there is no free variable, the solution contains no parameters. Geometri-
cally, the solutions is a point ’a’ in R3.

Example 10.45. Describe the solution set in parametric vector form of Exam-
ple 10.23 of Section 10.13. Also give the geometrical interpretation.

Solution: The solution set is

x1 = −5− 2x4

x2 = 2 + 3x4

x3 = 3 + 2x4

x4 is free.
In vector form, it can be written as

X =


x1

x2

x3

x4

 =


−5− 2x4

2 + 3x4

3 + 2x4

x4



X =


−5
2
3
0

+ x4


−2
3
2
1

 = a+ uk

where

a =


−5
2
3
0

 , u =


−2
3
2
1


x4 = k is a parameter which can take any real value.
Thus, X = a+ ku, k ∈ R describes the solution set in parametric vector form.
This represents a straight line passing through the point a and parallel to u in
R4.

Example 10.46. Describe the solution set in parametric vector form of Exam-
ple 10.25 of Section 10.13.

Solution: The solution set is

x1 = −2x2 + 3x4 + x6

x3 = 1− 2x6

x5 = 2− x6
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x2, x4, x6 are free.
In vector form, the solution set can be written as

X =


x1

x2

x3

x4

x5

x6

 =


−2x2 + 3x4 + x6

x2

1− 2x6

x4

2− x6

x6

 =


0
0
1
0
2
0

+


−2x2

x2

0
0
0
0

+


3x4

0
0
x4

0
0

+


x6

0
−2x6

0
−x6

x6


= a+ x2u1 + x4u2 + x6u3,

where u1 =


−2
1
0
0
0
0

 , u2 =


3
0
0
1
0
0

 , u3 =


1
0
−2
0
−1
1


∴ X = a + k1u1 + k2u2 + k3u3, where k1 = x2, k2 = x4, k3 = x6. k1, k2, k3 are
parameters and can take any real value.

Example 10.47. Describe the general solution of AX = b where

A =


1 1 1 1
1 1 1 -1
1 -1 1 -1
1 2 1 0

 , b =


4
2
0
4

 , X =


x1

x2

x3

x4


in vector form, and give the geometrical interpretation.

Solution: Reduce the augmented matrix [A|b] to echelon form.

A =


1 1 1 1 4
1 1 1 -1 2
1 -1 1 -1 0
1 2 1 0 4

 ∼


1 1 1 1 4
0 0 0 -2 -2
0 -2 0 -2 -4
0 1 0 -1 0

 ∼


1 1 1 1 4
0 1 0 -1 0
0 -2 0 -2 -4
0 0 0 -2 -2



∼


1 1 1 1 4
0 1 0 -1 0
0 0 0 -4 -4
0 0 0 -2 -2

 ∼


1 1 1 1 4
0 1 0 -1 0
0 0 0 -4 -4
0 0 0 0 0


There are three pivot columns and the pivot elements have been bold faced.
Now, we reduce it to reduced echelon form.

[A|b] ∼


1 1 1 1 4
0 1 0 -1 0
0 0 0 1 1
0 0 0 0 0

∼


1 1 1 0 3
0 1 0 0 1
0 0 0 1 1
0 0 0 0 0

∼


1 0 1 0 2
0 1 0 0 1
0 0 0 1 1
0 0 0 0 0


The equivalent system is x1 + x3 = 2

x2 = 1

x4 = 1
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Thus, the solution is x1 = −x3 + 2

x2 = 1

x4 = 1

x3 is free, so that there is one free variable. In vector form, the general solution
is written as

X =


x1

x2

x3

x4

 =


2− x3

1
x3

1

 =


2
1
0
1

+ x3


−1
0
1
0


= u+ kv

where, u =


2
1
0
1

 , v =


−1
0
1
0


and x3 = k is a parameter which can take any real value.
Thus, X = u + kv, k ∈ R describes the solution set of AX = b in parametric
vector form.

10.19 Exercise

For the following questions of Exercise 10.17, write the solution sets in the
parametric vector form and interpret them geometrically:

1. Q-4

2. Q-5

3. Q-6

4. Q-7

5. Q-8

6. Q-9

10.20 Answers to Exercises

Exercise - 10.5

1. (i)

 −1 3 1 1
3 −2 5 6
2 0 4 2


(ii)

 −2 0 4 2
−9 6 −15 −18
−1 3 1 1


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(iii)

 5 −9 1 −1
3 −2 5 −6
−1 3 1 1


(iv)

 2 0 4 2
0 −1 2 5
−1 3 1 1


2. (i) R1 ←→ R3

(ii) R3 −→ −2R3

(iii) R3 −→ −1
2 R3

(iv) R3 −→ R3 + 1
2R1

(v) R2 −→ R2 − 2R1

3. The application of any row operation gives a matrix which is row equiva-
lent to the given matrix. Thus 3 possible answers are:

(i) Apply R2 ←→ R3 4 3 −1 5
2 −3 0 −5
−4 2 −11 0


(ii) Apply R2 −→ R2 +R1 4 3 −1 5

0 5 −12 5
2 −3 0 −5


(iii) Apply R3 −→ 1

2R3

 4 3 −1 5
−4 2 0 −5
1 −3

2 0 −5
2


4. (i) (3k − 2, 10k−7

3 , k) where k is any real number

(ii) (2, 1) is the solution

(iii) No solution

(iv) Unique solution (-19, 12, 2)

5. (i) x = −1, y = 4, z = −3

(iii) x = 0, y = 0, z = 0

(vii) Inconsistent

6. (i) ( 19
2 − 9k, −5

2 + 17
4 k, 2−

3
2k, k) where k is any real number.

(ii) (2, -1.3)

(iii) (−5− 2k, 2 + 3k, 3 + 2k, k) where k is any real number.

(iv) x = k, y = 1, z = 2− k,w = k

(v) (−3k1 + 19
4 k2,

−17
8 k2, k1, k2), where k1, k2 are arbitrary constants.

(vi) (3k2 − 2k1, k2, k1), where k1, k2 are arbitrary constants.

(vii) No solution exists

7. (i)(a) k = ±2
√

2
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(b) k 6= ±2
√

2

(c) None

(ii)(a) k = −2

(b) k 6= ±2

(c) k = 2

(iii)(a) k = ±
√

3

(b) k 6= ±
√

3

(c) None

8. (i)

 2 3 −7

1 −1 9

 ;

 3 2 2

1 −1 9

 ;

 1 0 4

0 1 −5



(ii)

 1 0 0 −3

0 1 0 2

0 0 1 −1

 ;

 1 1 1 −2

0 2 0 4

0 2 3 1


9. λu+ (1− λ)v, where λ ∈ R is a solution

10. Hint:
x = 3, y = 3 is a solution in Z5. There is no solution in R. Other solutions
are x = 0, y = 2;x = 1, y = 4;x = 2, y = 1;x = 4, y = 0.

11. x = 1
2 , y = 0 is a solution in R. Solutions in Z5 are : x = 0, y = 4;x =

1, y = 1;x = 2, y = 3;x = 3, y = 0;x = 4, y = 2.
Note that in Z5 the two equations reduce to a single equation 2X+4Y = 1,
as 8 ∼= 3mod5.

Exercise - 10.7

2. Possible answers are:

(i)


1 −3 2 1 2
0 0 4 −1 3
0 0 0 0 0
0 0 0 0 0

,


1 −3 6 0 5
0 0 4 −1 3
0 0 0 0 0
0 0 0 0 0



(iii)


1 3 −1 2
0 1 −2 −3
0 0 7 26
0 0 0 1

,


1 3 −1 2
0 −1 2 3
0 0 7 26
0 0 0 1



(iv)


1 2 −3 1
0 1 2 −1
0 0 4 −7
0 0 0 1

,


1 2 −3 1
0 1 2 −1
0 0 4 −6
0 0 0 1



(v)

 3 0 3 0 2
0 3 −6 0 −1
0 0 0 1 2

,

 −3 0 −3 0 −2
0 3 −6 0 −1
0 0 0 1 2


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(vi)


0 2 4 3 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0

,


0 2 4 3 1
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0


Exercise - 10.12

1. (i) u+ v =

(
1
2

)
, 2u− v =

(
−4
7

)
,−2u+ 1/2v =

(
3
−6.5

)
2. (i) (6, -2) where X direction is along east and Y direction is along north

(ii) (3, -2)

4. (i) 2x1 − 1.5x2 = 4

−x1 + 6x2 = −3

3x1 = −2.5

(ii) −x1 + 2x2 − x3 = 0

2x1 − 3x2 = 0

3x1 + x2 − 4x3 = 0

(iii) x1 − x3 = 0

−2x1 − x2 + x3 = 0

4x2 + 5x3 = 0

3x1 +−6x2 = 0

5. (i) xu1 + yu2 + zu3 = b where u1 =

 2
−1
0

 , u2 =

 3
0
14

 ,

u3 =

 −4
11
8

 , b =

 −1
10
23



(ii) xu1 + yu2 + zu3 = b where u1 =


−1
0
−3
0

 , u2 =


1
2
4
3

 ,

u3 =


−3
5
0
−4

 , b =


12
6
0
−1


(iii) xu1 + yu2 + zu3 + wu4 = b where

u1 =

 0
3
0

 , u2 =

 2
0
2

 , u3 =

 3
−2
−13

 ,

u4 =

 −4
0
14

 , b =

 0
11
18


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6. (i) Yes b = −4u1 − u2

(ii) Infinitely many ways are possible. Two possible ways are:

b = −2u1 + u2 + u3 + u4

b = −2u1 − u2 + 0u3 + 0u4

(iii) Infinitely many ways are possible. Two possible ways are:

b = −3u1 + 4u2 + 0u3

b = −4u1 + 6u2 − u3

(iv) NO

7. (i) No

(ii) Yes b = 3/2u1 − 1/2u2

(iii) Yes b = −6u1 + 3u2 + 2u3

(iv) Yes. Infinitely many ways are possible. Two possible ways are

b = −u1 − u2 + 3u3 + 0u4 b = 0u1 − 3u2 + 4u3 + u4

8. (i) Yes b = 0u1 + u2 + u3

(ii) Yes b = 2u1 − u2

(iii) Yes. Infinitely m, any ways possible. Two possible ways are:

b = 4u1 + 5u2 + u3 + 0u4 + 0u5

b = 3u1 + u2 + u3 + u4 + u5

(iv) No

9. u1 + u2 =

 0
−2
4

, u1 − u2 =

 2
−2
2

, 2u1 + u2 =

 1
−4
7


Many more answers are possible.

10. u1 + u2 + u3 =


−3
2
1
3

, u1 + u2 − u3 =


5
4
−1
1

, u1 − u2 =


9
3
−2
−4

,

-u1 − u2 − u3 =


3
−2
−1
−3


Many more are possible

11. (i) Yes

(ii) Yes

(iii) Yes

13. (i) No, 3 vectors

(ii) No. Infinitely many.

(iii) u2 = 0u1 + 1u2 + 0u3 so u2 ∈W
(iv) Yes. u3 = 1/2u1 + 1/2u2

SYSTEM OF LINEAR EQUATIONSCHAPTER 10.
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14. (i) Yes

(ii) Yes

(iii) No

15. For all values of h and k

16. The echelon form of
(
A

...b

)
is

1 0 0
...1

0 1 0
...2

0 0 0
...1


Apply row operations to get a matrix A with non zero entries.

17. The echelon form of
(
A

...b

)
is

1 0 2
...1

0 1 2
...1

0 0 0
...1

0 0 0
...0


Apply row operations to get a matrix A with non zero entries

18. (i) and (ii)

19. (ii) and (iii)

20. (i) and (iv)

21. No

Exercise - 10.17

1. (i) No

(ii) Yes

(iii) Yes

(iv) No

2. (i)

x1 = 4 + 5x2

x2 = 5 + 6x3

x3 is free.

(ii) x1 = −5
2 −

3
2x2 + 2x3 x2, x3 are free.



436

(iii)

x1 = −9− 7x3

x2 = 1 + 6x3 + 2x4

x5 = 0

x3, x4 are free.

(iv)
x1 = 1

x2 =
2

3

x3 =
−2

3

(v) No solution.

(vi)

(vii) x1 = x4 − 2

x2 = −1

x3 = −2x4 + 8

x4 is free.

3. (i) Unique solution (1, 2, -1).

(ii) Inconsistent.

(iii) Infinitely many solutions.

(iv) Inconsistent.

4. (i) w = −1

x = −4

y = 2

z = −1

(ii) Inconsistent.

(iii) w = 2

x = 0

y = 1

z = 3

(iv)
x =

1

2
z +

5

2

y =
1

2
z +

1

2

SYSTEM OF LINEAR EQUATIONSCHAPTER 10.
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z is free.

(v) x = 1− 2z

y = 3z − 1

z is free.

5. (i)

x1 = 2x3 − 3x4 − 24

x2 = 2x3 − 2x4 − 7

x5 = 4

x3, x4 are free.

(ii)

x1 = x3

x2 = −x3

x3 is free.

(iii) No solution.

(iv) Unique solution (-1, 0, 1, 2)

(v) Unique solution (7, 6, -1)

6. (i) (− 1
12k −

7
12 ,

23
12 + 5

12k,−
5
4 + 1

4k, k) where k is a parameter.

(ii) (1− k, 2, 1, k) where k is a parameter.

(iii) (5 + 3k1, 1 + 4k1, k2, 4− 9k1, k1) where k1, k2 are parameters.

7. (x = 1
11 (7− 16z), y = 1

11 (z + 3))
z is free.

8. Inconsistent.

9. (i)
x1 = 11x2

x3 = −7x2

x2 is free.

(ii) x1 = x2 = x3 = 0

10. (i) (5k, 6k, k)t where k is any real number.

(ii) (−k, 0, k)t where k is any real number.

11. (i) Non-trivial.

(ii) Trivial.

12. (i) 3a + b - c = 0.

(ii) a + b - c = 0.

(iii) For any a, b, c.
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13. Consistent if and only if (7b1 + 2b3 − 8b4 = 0).
General solution is:

x1 =
1

8
b1 − x2

x3 =
1

8
(6b3 − 16b2 − 6b1)

x5 =
1

8
(−2b3 + 8b2 + 2b1)

14. Do yourself

15. (i) Consistent, as there is no row of the form [0 0 0 0 0|b], with b 6= 0.

(ii) Inconsistent, as there is no row of the form [0 0 0 0 0|b], with b 6= 0.

(iii) Consistent if 6th column is not a pivot column, inconsistent if 6th
column is a pivot column.

(iv) Consistent as there is no row of the form [0 0 0 0 0|b]
(v) Consistent if the pivot is not in the 6th column. Inconsistent if the

pivot is in the 6th column.

16. Do yourself

17. Consistent if the augmented column is not a pivot column. Unique solution
when the coefficient matrix has a pivot in every row.

18. Here represents a pivot and * any real number.

(i)  r * * * *
0 0 r * *
0 0 0 0 r


(ii) 

r * * *
0 0 r *
0 0 0 r
0 0 0 0
0 0 0 0


(iii) (

r * * *
0 0 r *

)
(iv) 

r * *
0 r 0
0 0 0
0 0 0


Other solutions are also possible.
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19. The echelon form of the augmented matrix 1 1 1 1
0 1 3 k-1
0 0 0 k2 − 3k + 2


is inconsistent if k 6= 1, 2.
is consistent if k = 1, 2.
k = 1 solution is x = 2z + 1, y = −3z, z is free. k = 2 solution is
x = 2z, y = 1− 3z, z is free.

20. Echelon form is  2 3k 3k+4 0
0 3 2k+1 0
0 0 k2 − 4 0


Unique trivial solution if k 6= ±2.
Infinitely many non-trivial solutions if k = ±2.

21. Echelon form is

(i) Unique solution for all values of d. It is

x = (d−b)(d−c)
(a−b)(a−c) , y = (d−a)(d−c)

(b−a)(b−c) , z = (d−b)(d−a)
(b−c)(a−c) .

(ii) Inconsistent when d 6= aorb.
consistent and infinitely many solutions when d=a or d=b. Solution
is:
If c = a, solution is x = b−d

b−a − z, y = d−a
b−a , z is free. If c = b, solution

is x = b−d
b−a , y = d−a

b−a − z, z is free.

(iii) Inconsistent when d 6= a.
Consistent and infinitely many solutions when d = a. The solution
is x = 1 −y −z, y is free, z is free.

Exercise - 10.19

1. (i) X = [w x y z]t = [−1 − 4 2 − 1]t, a point in R4

(ii) Null set

(iii) X= [2 0 1 3]t

(iv) X = [x y z]t = [ 5
2

1
2 0]t + z[1 1 2]t, z ∈ R, a line in R3 through the

point [ 5
2 ,

1
2 , 0]t and parallel to the vector [1 1 2]t

(v) X = [x y z]t = [−1 − 1 0]t + z[−2 3 1]t, z ∈ R, a line in R3 through
the point [−1 − 1 0]t and parallel to the vector [−2 3 1]t.

2. (i) X = [x1 x2 x3 x4 x5]t = [−24 − 7 2 0 0 4]t + x3[2 2 1 0 0] +
x4[−3 − 2 0 1 0] a plane in R5 through the point [−24 − 7 0 0 4]t

and containing vectors [2 2 1 0 0]t, [-3 -2 0 1 0]t

(ii) X = [x1 x2 x3]t = x3[1 − 1 1]t, x3 is a parameter, a line in R3

through origin, parallel to vector [1 − 1 1].

(iii) Null set
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(iv) X = [−1 0 1 2]t, a point in R4

(v) X = [7 6 − 1]t, a point in R3

3. (i) X = [x1 x2 x3 x4]t = [−7
12

23
12 −

5
4 0]t + x4[−1

12
5
12

1
4 1]t, x4 ∈ R it

represents a line through point [−7
12

23
12 −

5
40]t and parallel to vector

[−1
12

5
12

1
4 1]t

(ii) X = [x1 x2 x3 x4]t = [1 2 1 0]t + x4[−1 0 0 1]t, x4 is a parameter.

(iii) X = [x1 x2 x3 x4 x5]t = [51040]t + x3[0 0 1 0 0]t+
x5[3 4 0 −9 1]t, x3, x5 are parametric; It represents a plane in R5 pass-
ing through point [5 1 0 4 0]t and containing two vectors [0 0 1 0 0]t,
[3 4 0 − 9 1]t.

4. X = [x y z]t = [ 7
11

3
11 0]t + z[−16

11
1
11 1], z is a parameter. It represents a

line in R3 through the point [ 7
11

3
11 0]t and parallel to vector [−16

11
1
11 1]

5. Null set

6. (i) X = [x1 x2 x3]t = x2[11 1 − 7]t, x2 is a parameter, a line in R3

passing through origin and parallel to vector [11 1 − 7]t.

(ii) X = [0 0 0]t a point, viz origin in R3.
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Chapter 11

Matrices

In this chapter we shall study matrices in detail. Apart from studying el-
ementary operations on matrices, namely addition and multiplication, to find
the product and inverse of large order matrices, the technique of partition-
ing is explained. Properties of special types of matrices have been discussed.
We end with a study of eigen values and eigen vectors of square
matrices.

11.1 Matrix of Numbers

We begin by defining a matrix of numbers as follows:

Definition 11.1. A m × n matrix A is a rectangular array of mn numbers
arranged in m horizontal rows and n vertical columns:

a11 a12 . a1j . a1n

a21 a22 . a2j . a2n

. . . . . .
ai1 ai2 . aij . ain
. . . . . .

am1 am2 . amj . amn


Notation Matrices are generally denoted by capital letters.

We write A = (aij)m×n. The (i, j)th element of A is also denoted by [A]ij
Note
1. The ith row is

(
ai1 ai2 . . . ain

)

2. The jth column is


a1j

a2j

.

.

.
amj


3. aij denotes the element at the intersection of the ith row and jth column.
For instance a23 is the element in the 2nd row and 3rd column.

441
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4. The diagonal elements are those for which the row suffix is equal to the
column suffix ,that is, a11, a22, . . . .., ann.

Example 11.1.

1. A =

(
−1 2 3
0 −2 1

)
is a 2 × 3 matrix. It has 6 elements. The (1, 2)th

element is 2. The diagonal elements are a11 = −1, a22 = −2.

2. B =

(
−1 2 5
10 3

)
is not a matrix as there is no (2, 2)th element.

Types of matrices
Matrices can be classified into various types.
On the basis of size

1. Square matrix
If the number of rows and columns of a matrix are equal, then the matrix
is called a square matrix.
A n × n square matrix is also called a n-rowed square matrix or a square
matrix of order n.

For example,

(
2 −1
1 0

)
,

 −1 0 1
2 3 4
5 −1 6

 are square matrices of orders

2 and 3 respectively.

2. Row matrix
A matrix having only one row is called a row matrix or row vector.
For example,

(
−3 2

)
,
(

0 −1 4
)

are 1 × 2 and 1 × 3 row matrices
respectively.

3. Column matrix
A matrix having only one column is called a column matrix or a column
vector.

For example,

(
−3
4

)
,

 1
−2
3

 are 2 × 1 and 3 × 1 column matrices

respectively.

On the Basis of Elements

4. Diagonal matrix
A square matrix having non-diagonal elements zero is called a diagonal
matrix. 2 0 0

0 3 0
0 0 −1

 ,

 −1 0 0
0 0 0
0 0 1

 are diagonal matrices. 1 0 0
2 3 0
0 0 −1

 is not a diagonal matrix as the (2, 1)th element is non-zero.

5. Scalar matrix
A diagonal matrix having all the diagonal elements equal is called a scalar
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matrix.

 4 0 0
0 4 0
0 0 4

 is a scalar matrix.

 3 0 0
0 4 0
0 0 3

 is not a scalar

matrix as (1, 1)th element = 3 6= 4 = (2, 2)th element.

6. Identity matrix (or unit matrix)
A scalar matrix having each diagonal entry 1 is called an identity matrix
or unit matrix.(

1 0
0 1

)
is a unit matrix of order 2. A n×n unit matrix is denoted by In.

7. Zero matrix (or Null matrix)
A m × n matrix having all elements zero is called a zero matrix or null

matrix.

(
0 0 0
0 0 0

)
is a 2×3 null matrix. A m×n null matrix is written

as Om×n or simply O.

8. Upper triangular matrix
A m×n matrix is called an upper triangular matrix if all the entries below
the diagonal are zero.

For example,

 1 2 3 4
0 −2 0 1
0 0 3 4

 and


1 2 0
0 −1 3
0 0 4
0 0 0


9. Lower triangular matrix

A m × n matrix is called a lower triangular matrix if all the entries above
the diagonal are zero.

For example,

 1 0 0 0
2 3 0 0
−1 3 4 0

 and


1 0 0
2 3 0
3 4 −1
−1 1 1


10. Triangular matrix

A matrix which is either upper triangular or lower triangular is called a
triangular matrix.

11.2 Operations on Matrices

Definition 11.2. (Comparable matrices):
Let A be a m×n matrix and B a p×q matrix. A and B are said to be comparable
matrices if m = p and n = q, that is, they have the same number of rows and
the same number of columns.

Definition 11.3. (Equality of matrices):
Let A = (aij)m×n and B = (bij)p×q be two matrices. Then A = B if
(i) m = p and n = q
(ii) aij = bij, for all i = 1, . . . ,m; j = 1, . . . , n
condition (i) says that A and B are comparable matrices, whereas condition (ii),
says that the corresponding elements are equal.
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Example 11.2. 1. Let A =

(
1 2 3
−1 4 6

)
, B =

(
1 2 3
−1 4 6

)
. A and B

are each 2 × 3 matrices and therefore they are comparable. Also their corre-
sponding elements are equal, so that A = B.

2. Let A =

(
1 4
3 −6

)
, B =

(
1 4 3 −6

)
. A is a 2 × 2 matrix whereas

B is a 1× 4 matrix. Thus they are not comparable matrices so that A 6= B.

3. Let A =

(
−1 0
3 2

)
, B =

(
−1 0
3 −2

)
. A and B are comparable matrices

as each is a 2×2 matrix. But (2, 2)th element of A = 2 6= −2 = (2, 2)th element
of B.
∴ Corresponding elements of A and B are not equal, so that A 6= B.

11.2.1 Matrix Addition

Let us now see how we can add two matrices.

Definition 11.4. (Sum of two matrices):
Let A = (aij)m×n, B = (bij)m×n be two comparable matrices. Their sum is the
matrix C = (cij)m×n, where cij = aij + bij, i = 1, . . . ,m; j = 1, . . . n. We write
C = A+B.

Thus only comparable matrices can be added and their sum is a matrix
of the same order, whose elements are obtained by adding the corresponding
elements.

Example 11.3. 1. Let A =

(
1 −1 2
−2 3 −3

)
, B =

(
−4 1 3
−3 2 −1

)
. Since

A and B are both 3× 3 matrices, ∴ their sum A+B is a 3× 3 matrix given by

A+B =

(
−3 0 5
−5 5 −4

)
Let A =

 1 2
3 4
5 6

 , B =

(
1 2 3
4 5 6

)
. Since A is a 3× 2 matrix and B is a

2× 3 matrix, therefore they are not comparable matrices. Hence they cannot be
added.

The following theorem gives the properties of matrix addition.

Theorem 11.1. Let A, B and C be m× n matrices. Then
(i) A+ (B + C) = (A+B) + C (Associativity)
(ii) A+B = B +A (Commutativity)
(iii) If O is the m× n null matrix, then A+O = O +A = A
(iv) If A is any matrix, then there exists a matrix B such that

A+B = B +A = O. B is called an additive inverse of A.

Proof: Let A = (aij)m×n, B = (bij)m×n and C = (cij)m×n.

(i) Since A, B, C are m× n matrices
∴ A+B, B +C are also m× n matrices. Consequently (A+B) +C and
A+ (B + C) are m× n matrices and therefore comparable.
We now show that their corresponding elements are equal.
For i = 1, . . . ,m; j = 1, . . . , n;
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[(A+B) + C]ij = [A+B]ij + [C]ij
= (aij + bij) + cij
= aij + (bij + cij)
= [A]ij + [B + C]ij
= [A+ (B + C)]ij

Hence (A+B) + C = A+ (B + C)

(ii) Clearly A + B, B + A are comparable matrices each being of type m × n.
For i = 1, . . . ,m; j = 1, . . . , n
[A+B]ij = aij + bij

= bij + aij
= [B +A]ij

Hence A+B = B +A.

(iii) Since A+O is a m×n matrix, therefore A+O and A are comparable. For
i = 1, . . . ,m; j = 1, . . . , n
aij = aij + 0
∴ (i, j)th element of A = (i, j)th element of A+O.
Hence A = A+O
Using (ii), A+O = O +A = A .

(iv) Let A = (aij)m×n be the given matrix. Define B = (bij)m×n, such that
bij = −aij .
Then A+B and the null matrix O are both m× n matrices.
Also [A+B]ij = aij + bij

= aij + (−aij)
= 0
= (i, j)th element of O

∴ A+B = O
Using (ii) we get A+B = B +A = O.

The additive inverseB ofA is usually denoted by−A. Thus−A = (−aij)m×n.
The null matrix plays the role of the number O.

Now we give another type of operation on a matrix namely multiplication
of a matrix by a scalar.

Definition 11.5. (Scalar multiplication):
Let A = (aij)m×n and k be any complex number. Then, the matrix kA =
(kaij)m×n is called the scalar multiple of A by k.

Example 11.4. Let A =

(
1 2 −3
2 −1 4

)
, then 2A =

(
2 4 −6
4 −2 8

)
,

−A =

(
−1 −2 3
−2 1 −4

)
The following theorem gives the properties of scalar multiplication.

Theorem 11.2. Let A and B be m×n matrices and k, l any complex numbers.
Then
(i) k(A+B) = kA+ kB
(ii) (k + l)A = kA+ lA
(iii) (kl)A = k(lA)
(iv) 1A = A
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Proof: Let A = (aij)m×n, B = (bij)m×n. Then A + B, kA, kB are m × n
matrices so that k(A+B) and kA+kB are also m×n matrices. For i = 1, . . . ,m;
j = 1, . . . , n
[k(A+B)]ij = k(i, j)th element of (A+B)

= k(aij + bij)
= kaij + kbij
= [kA]ij + [kB]ij
= [kA+ kB]ij

Hence k(A+B) = kA+ kB.
Proof of the other parts are left to the reader.

11.2.2 Matrix Multiplication

As we have seen that only matrices of the same order are added and the
sum is a matrix of the same order. But when multiplying two matrices, their
orders can be different and the order of the product can also be different from
the order of either of the factors.
To multiply two matrices, we proceed as follows:

Definition 11.6. (Product of vectors):

Let A =
(
a1 a2 . . . an

)
be a 1×n row vector, and B =


b1
b2
.
.
.
bn

 be a

n×1 column vector. The product AB is a 1×1 matrix (or just a number) defined

by AB =
(
a1 a2 . . . an

)


b1
b2
.
.
.
bn

 =
(
a1b1 + a2b2 + . . .+ anbn

)

=
( ∑n

i=1 aibi
)

The number of elements in A is equal to the number of elements in B so that
component-wise multiplication is possible.

Definition 11.7. Let A = (aij)m×n and B =


b1
b2
.
.
.
bn

 be a n×1 column vector.

Write A =
(
C1 C2 . . . Cn

)
, where Cj is the jth column of A.

Then, define AB =
(
C1 C2 . . . Cn

)


b1
b2
.
.
.
bn


= C1b1 + C2b2 + . . .+ Cnbn.
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Definition 11.8. Let A = (aij)m×n and B =


b1
b2
.
.
.
bn

 be a n×1 column vector.

Write A =


R1

R2

.

.

.
Rm

, where Ri is the ith row of A.

Define, AB =


R1

R2

.

.

.
Rm

B =


R1B
R2B
.
.
.

RmB

.

Definition 11.9. Let A = (aij) =


R1

R2

.

.

.
Rm

 be a m × n matrix with rows

R1, R2, . . . .Rm and B = (bij) =
(
C1 C2 . . . Cp

)
be a n × p matrix

with columns C1, C2, . . . ., Cp.
The product AB is a m× p matrix given by

AB =
(
AC1 AC2 . . . ACp

)
=


R1C1 R1C2 . . . R1Cp
R2C1 R2C2 . . . R2Cp
. . . . . .

RmC1 RmC2 . . . RmCp


[AB]ij = RiCj
= ai1b1j + ai2b2j + ...+ ainbnj
=
∑n
k=1 aikbkj.

In the product AB, A is called the prefactor and B is called the postfactor.
Two matrices can be multiplied only when the number of columns of the pre-
factor = number of rows of the post-factor.

a11 a12 . . . a1n

...
...

...
ai1 ai2 . . . ain
...

...
...

am1 am2 . . . amn




b11 . . . b1j . . . b1p
b21 . . . b2j . . . b2p
...

...
...

bn1 . . . bnj . . . bnp


(i, j)th element of AB i.e.
To obtain the [AB]ij , multiply the ith row of the pre-factor A by the jth column
of the post-factor B.
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Example 11.5. If A =

 1 2 −1
−2 3 1
2 0 4

, B =

 1 −1 0 1
0 2 1 3
3 4 −1 0

 find AB.

If we write A =

 a1

a2

a3

 = (aij)3×3, B =
(
b1 b2 b3 b4

)
= (bij)3×4

then AB =

 a1

a2

a3

( b1 b2 b3 b4
)

=

 a1b1 a1b2 a1b3 a1b4
a2b1 a2b2 a2b3 a2b4
a3b1 a3b2 a3b3 a3b4

 where aibj = ai1b1j + ai2b2j + ai3b3j

=

 −2 −1 3 7
1 12 2 7
14 14 −4 2


If A is a 2 × 3 matrix and B is a 3 × 4 matrix, then AB is defined and is a
2× 4 matrix but the product BA is not even defined as the number of columns
in B = 4 6= 3 = number of rows in A.

If C is a 3×2 matrix then AC is a 2×2 matrix whereas CA is a 3×3 matrix,
so that AC and CA cannot be equal. But if A and B are both square matrices
of the same order say n, then AB and BA are both square matrices of order n.
Will they be equal? The answer is no, as is shown by the following example.

Example 11.6. Let A =

(
1 0
1 0

)
, B =

(
0 0
0 1

)
Then AB =

(
0 0
0 0

)
, BA =

(
0 0
1 0

)
so that AB 6= BA

Thus matrix multiplication is not commutative. In this way matrices behave
differently from numbers. In the above example we also see that A 6= O, B 6= O
but AB = O i. e. the product of two non-zero matrices can be the zero matrix.
This is a unique property of matrices which is not possessed by numbers.

Theorem 11.3. Let A,B,C be matrices of suitable sizes for which the matrix
operations below can be defined, and let k be any complex number. Then
(i) (AB)C = A(BC) (Associative law)
(ii) A(B + C) = AB +AC, (A+B)C = AC +BC (Distributive law)
(iii) InA = AIn = A (Identity)
(iv) k(AB) = (kA)B = A(kB).

Proof:

(i) Let A = (aij)m×n, B = (bij)n×p, C = (cij)p×r
Then AB is a m×p matrix and (AB)C is a m×r matrix. A(BC) is also a
m× r matrix so that (AB)C and A(BC) are comparable matrices. Also,
[AB]ij =

∑n
k=1 aikbkj . . . (1)

[BC]ij =
∑p
s=1 biscsj . . . (2)

[(AB)C]ij =
∑p
l=1[AB]ilClj

=
∑p
l=1(

∑n
k=1 aikbkl)clj using (1)

=
∑p
l=1

∑n
k=1 aikbklclj . . . (3)
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[A(BC)]ij =
∑n
k=1 aik[BC]kj

=
∑n
k=1 aik

∑p
s=1 bkscsj using(2)

=
∑n
k=1

∑p
s=1 aikbkscsj

=
∑p
s=1

∑n
k=1 aikbkscsj . . . (4)

From (3) and (4) we get [(AB)C]ij = [A(BC)]ij
So that (AB)C = A(BC)

(ii) Let A = (aij)m×n, B = (bij)n×p, C = (cij)n×p so that B +C exists. It is a
n× p matrix.
∴ A(B + C) is a m × p matrix. Also AB + AC is a m × p matrix. Thus
A(B + C) and AB +AC are comparable matrices.
[A(B + C)]ij =

∑n
k=1 aik[B + C]kj

=
∑n
k=1 aik(bkj + ckj)

=
∑n
k=1(aikbkj + aikckj)

=
∑n
k=1 aikbkj +

∑n
k=1 aikckj

= [AB]ij + [AC]ij
= [AB +AC]ij

Hence A(B + C) = AB +AC
Similarly, it can be proved that (A+B)C = AC +BC

The proofs of the other parts can be shown by direct computation of each entry
on both sides of the equalities, and are left to the reader.

The unit matrix In plays the same role as the number 1 does in the set of
numbers.

Definition 11.10. (Transpose of a matrix):
Let A = (aij) be a m × n matrix. The n × m matrix B = (bij) defined such
that bij = aji, that is (i, j)th element of B = (j, i)th element of A, is called the
transpose of A. It is denoted by AT or A′ or At. We shall use At.

Example 11.7. If A =

 2 1 3 4
−5 0 1 2
2 −3 −4 0

, then At =


2 −5 2
1 0 −3
3 1 −4
4 2 0


Theorem 11.4. If A and B are matrices of suitable sizes, then
(i) (At)t = A
(ii) (A+B)t = At +Bt

(iii) (kA)t = kAt, where k is a complex number
(iv) (AB)t = BtAt (Reversal law for transpose).

Proof: The proofs of (i) to (iii) are simple. We shall prove (iv).

(iv) Let A = (aij)m×n and B = (bij)n×p. Then AB is a m × p matrix so that
(AB)t is a p×m matrix. At, Bt are n×m and p×n matrices respectively,
so that BtAt is a p ×m matrix. Hence (AB)t and BtAt are comparable
matrices. We now prove that their corresponding elements are equal.
If AB = (cij)m×p, then cij =

∑n
k=1 aikbkj , for i = 1, . . . , p; j = 1, . . . ,m

(i, j)th element of BtAt

=
∑n
k=1((i, k)th elements of Bt)((k, j)th element of At)

=
∑n
k=1 bkiajk

=
∑n
k=1 ajkbki
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= (j, i)th element of AB
= (i, j)th element of (AB)t

Thus the corresponding elements of BtAt and (AB)t are equal, so that
(AB)t = BtAt.

Definition 11.11. (Conjugate of a matrix):
Let A be an m×n matrix. The m×n matrix B obtained by taking the complex
conjugate of each element of A is called the conjugate of A. It is denoted by A.
Symbolically, if A = (aij)m×n, then A = (aij)m×n. If a matrix has real entries
then A = A.

Example 11.8. If A =

(
2 + 3i −4i

0 5

)
,

then A =

(
2 + 3i −4i

0 5

)
=

(
2− 3i 4i

0 5

)
.

Theorem 11.5. Let A and B be matrices of suitable sizes. Then

(i) (A) = A

(ii) (A+B) = A+B

(iii) kA = k A, where k is a complex number
(iv) AB = A B

(v) (A)t = At.

Proof left to the reader.

Definition 11.12. (Tranjugate of a matrix):
Let A be a m×n matrix. The n×m matrix B obtained by taking the conjugate
of the transpose of A is called the transposed conjugate or tranjugate of A. It is
denoted by Aθ. Symbolically, if A = (aij)m×n, then Aθ = (aji)n×m = (At).

Example 11.9. Let A =

(
1 + 2i 3i 4
−5i −6 −1 + i

)
, At =

 1 + 2i −5i
3i −6
4 −1 + i

,

Aθ = (At) =

 1− 2i 5i
−3i −6

4 −1− i

.

Theorem 11.6. Let A and B be matrices of suitable sizes. Then
(i) (Aθ)θ = A
(ii) (A+B)θ = Aθ +Bθ

(iii) (kA)θ = kAθ, where k is a complex number
(iv) (AB)θ = BθAθ.

Proof:

(i) Aθ = (At) = (A)t

(Aθ)t = ((A)t)t = A

(Aθ)θ = (Aθ)t = (A) = A
∴ (Aθ)θ = A.

(ii) Let A and B be matrices of the same order.
(A+B)θ = (A+B)t

= At +Bt

= At +Bt

= Aθ +Bθ.
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(iii) (kA)θ = (kA)t

= kAt

= k(At)
= kAθ

∴ (kA)θ = kAθ.

(iv) Let A and B be matrices such that AB exists. Then
(AB)θ = (AB)t

= BtAt using reversal law for transposes
= Bt At

= BθAθ

∴ (AB)θ = BθAθ.

Definition 11.13. (Trace of a matrix):
Let A be a square matrix of order n. The sum of the diagonal elements of A
is called the trace of A. It is denoted by trA. Hence if A = (aij)m×n, then
tr(A) = a11 + a22 + · · ·+ ann.

Theorem 11.7. If A and B are square matrices of order n, and λ is a scalar,
then
(i) tr(A+B) = tr(A) + tr(B)
(ii) tr(kA) = k tr(A)
(iii) tr(AB) = tr(BA).

Proof: Let A = (aij)n×n and B = (bij)n×n. Then tr(A) =
∑n
i=1 aii, tr(B) =∑n

i=1 bii

(i) A+B = (aij + bij)n×n
∴ tr(A+B) =

∑n
i=1(aii + bii)

=
∑n
i=1 aii +

∑n
i=1 bii

= tr(A) + tr(B).

(ii) kA = (kaij)n×n
∴ tr(kA) =

∑n
i=1 kaii

= k
∑n
i=1 aii

= k tr(A).

(iii) If AB = (cij)n×n and BA = (dij)n×n then cij =
∑n
k=1 aikbkj and dij =∑n

k=1 bikakj
tr(AB) =

∑n
i=1 cii

=
∑n
i=1(

∑n
k=1 aikbki)

=
∑n
i=1

∑n
k=1 bkiaik

=
∑n
k=1

∑n
i=1 bkiaik, interchanging the order of summation.

=
∑n
k=1 dkk

= tr(BA).

11.3 Partitioning of Matrices

Matrices of large orders often arise in practical problems and it is required
to find the inverse of these matrices. It is convenient to partition such matrices
to find the inverse in order to speed up the calculation.
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A partition of a matrix is done by drawing lines parallel to rows and columns.
For example,

If A =



1 2 −1 3 4 5
2 1 8 3 4 0
−1 0 2 1 −1 3
4 8 9 5 6 2
1 1 0 1 2 0
0 −1 1 −2 −3 4
4 8 9 5 1 3


then partition of A can be

A =



1 2 −1 3 4 5
2 1 8 3 4 0
−1 0 2 1 −1 3
4 8 9 5 6 2
1 1 0 1 2 0
0 −1 1 −2 −3 4
4 8 9 5 1 3


.

Thus the matrix A can be written as:

A =

 A11 A12

A21 A22

A31 A32

 where A11, A12, A21, A22, A31 and A32 are sub-

matrices of A of order 2× 2, 2× 4, 3× 2, 3× 4, 2× 2, 2× 4 respectively.

Example 11.10. Given a 7×8 matrix A, partition it in the form

(
A11 A12

A21 A22

)
so that A11 is a 3× 2 matrix. What are the sizes of A12 A21 and A22?
Since A11 is a 3× 2 matrix, ∴ A12 is a 3× (8− 2) i.e. 3× 6 matrix. A21 is a
(7− 3)× 2 i.e. 4× 2 matrix. A22 is a (7− 3)× (8− 2) i.e. 4× 6 matrix.

Addition and Scalar Multiplication of Partitioned Matrices

Suppose A and B are two matrices conformable to addition. A and B are

partitioned as A =

(
A11 A12

A21 A22

)
, B =

(
B11 B12

B21 B22

)
so that for each sub-

matrix Aij, i = 1, 2; j = 1, 2 the corresponding submatrix Bij is of the same
order. This will be so provided A and B are partitioned in precisely the same
way.

Then A+B =

(
A11 +B11 A12 +B12

A21 +B21 A22 +B22

)
.

This also provides a partition of A + B. Scalar multiplication of a partitioned
matrix is obtained by taking the scalar multiple of each block.

Thus kA =

(
kA11 kA12

kA21 kA22

)
.

Example 11.11. Let A =

 1 2 −1 3 4
2 3 0 1 −2
4 −6 5 8 1

, B =

 −1 4 5 3 2
0 1 −1 1 3
−3 8 0 −7 4


A and B are of the same order, so they can be added. Partitioning A and

B in the same way, let A =

(
A11 A12

A21 A22

)
, where A11 =

(
1 2 −1
2 3 0

)
,

A12 =

(
3 4
1 −2

)
, A21 =

(
4 −6 5

)
, A22 =

(
8 1

)
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and B =

(
B11 B12

B21 B22

)
, where B11 =

(
−1 4 5
0 1 −1

)
, B12 =

(
3 2
1 3

)
,

B21 =
(
−3 8 0

)
, B22 =

(
−7 4

)
Then A+B =

(
A11 +B11 A12 +B12

A21 +B21 A22 +B22

)
=

 0 6 4 6 6
2 4 −1 2 1
1 2 5 1 5


Also 2A =

(
2A11 2A12

2A21 2A22

)
=

 2 4 −2 6 8
4 6 0 2 −4
8 −12 10 16 2

.

Example 11.12. Let A =

 1 2 3 4
5 −1 0 2
−1 −2 −3 −4

,

B =

 −1 2 −3 4
−4 2 3 −1
0 3 2 5


be matrices each of order 3×4. Being of the same order, they can be added. Sup-
pose A and B are partitioned as shown by the lines. Since they are partitioned
in the same way, their sum is obtained by adding the corresponding submatrices.

Thus A+B =

 0 4 0 8
1 1 3 1
−1 1 −1 1

.

−4A =

 −4 −8 −12 −16
−20 4 0 −8

4 8 12 16

.

11.3.1 Multiplication of Partitioned Matrices

The multiplication of partitioned matrices can be done in the usual way as
if the block entries are scalars. To obtain AB, the partition of A and B have to
be done in such a way that the column partition of A matches the row partition
of B.

Example 11.13. Let A =

 1 2 −1 0 1 3
2 1 4 1 1 −1
1 3 −1 2 1 1

, B =


1 −1 4 1
−1 0 1 3
2 1 0 1
1 2 1 0
0 1 −1 0
1 1 2 1


A partition of A and B is shown by lines

A =

 1 2 −1 0 1 3
2 1 4 1 1 −1
1 3 −1 2 1 1

 =

(
A11 A12

A21 A22

)

B =


1 −1 4 1
−1 0 1 3
2 1 0 1
1 2 1 0
0 1 −1 0
1 1 2 1

 =

(
B11 B12

B21 B22

)
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Then AB =

(
A11 A12

A21 A22

)(
B11 B12

B21 B22

)
=

(
A11B11 +A12B21 A11B12 +A12B22

A21B11 +A22B21 A21B21 +A22B22

)

=

 0 2 11 9
9 4 7 8
−1 4 10 10


Considering another partition of A and B, namely

A =

 1 2 −1 0 1 3
2 1 4 1 1 −1
1 3 −1 2 1 1

 =

(
A′11 A′12 A′13

A′21 A′22 A′23

)

B =


1 −1 4 1
−1 0 1 3
2 1 0 1
1 2 1 0
0 1 −1 0
1 1 2 1

 =

 B′11 B′12

B′21 B′22

B′31 B′32



∴ AB =

(
A′11B

′
11 +A′12B

′
21 +A′13B

′
31 A′11B

′
12 +A′12B

′
22 +A′13B

′
32

A′21B
′
11 +A′22B

′
21 +A′23B

′
31 A′21B

′
12 +A′22B

′
22 +A′23B

′
32

)
=

 0 2 11 9
9 4 7 8
−1 4 10 10

.

Thus, by considering different partitions of A and B, different partitions of
AB will be obtained. However, the matrix AB remains the same.

In the above example corresponding to a partition of A, the matrix B is par-
titioned, so that the various products are defined. We now explain this in detail.

Let A be a m×n matrix and B a n× p matrix over the same field F . Let A
be partitioned in any manner. Corresponding to this partition of A, partition
B is as follows:
To each partition line of A parallel to the columns, associate a partition line of
B parallel to its rows such that the number of rows of B between two adjacent
partition lines is the same as the number of columns of A between the corre-
sponding adjacent partition lines.
Two matrices A and B which are conformable for multiplication and partitioned
in the manner described above are said to be conformably partitioned for mul-
tiplication. With such partitionings, it is possible to multiply the two matrices
in the usual manner, as if the submatrices are elements. We have the following
theorem.

Theorem 11.8. Let A and B be two matrices which are conformable for mul-
tiplicaton. Suppose A and B are conformably partitioned as A = (Aij)u×v,
B = (Bjk)v×w. If the product C = AB is partitioned according to the row
partition of A and the column partition of B, so that C = (Cik)u×w then
Cik =

∑v
j=1AijBjk

Proof: We will prove the result for the case u = v = w = 2 only.
Let A = (aij)m×n and B = (bij)n×p are two matrices. Suppose A and B are
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conformably partitioned as follows:

A =

(
A11 A12

A21 A22

)
, B =

(
B11 B12

B21 B22

)
If A11 is a s× t matrix then A12, A21 and A22 are s× (n− t), (m− s)× t and
(m− s)× (n− t) matrices respectively.
Since the partitions of A and B are conformable for multiplication.
∴ Number of rows of B11 = number of columns of A11 = t.
Let number of columns of B11 = k then B11, B12, B21, B22 are t×k, t× (p−k),
(n − t) × k, (n − t) × (p − k) matrices respectively. (i, j)th element of AB =∑n
l=1 ailblj

=
∑t
l=1 ailblj +

∑n
l=t+1 ailblj

The range of l from 1 to n has been split into 2 ranges, one from 1 to t and the
other from t+1 to n. Hence each row of A as well as each column of B has been

broken up into two parts. Thus we write A =

(
A11 A12

A21 A22

)
=
(
E1 E2

)
(say), where E1 =

(
A11

A21

)
, E2 =

(
A12

A22

)
Thus E1 is a m× t matrix and E2 a m× (n− t) matrix

and B =

(
F1

F2

)
, where F1 =

(
B11 B12

)
, F2 =

(
B21 B22

)
F1 is a t× p,

matrix and F2 is a(n− t)× p matrix.
Then from the definition of multiplication

AB =
(
E1 E2

)( F1

F2

)
∴ AB = E1F1 + E2F2

E1F1 =

(
A11

A21

)(
B11 B12

)
=

(
A11B11 A11B12

A21B11 A21B12

)
E2F2 =

(
A12

A22

)(
B21 B22

)
=

(
A12B21 A12B22

A22B21 A22B22

)
Hence AB = E1F1 + E2F2.

11.4 Special Types of Matrices

In many practical problems we come across matrices having special forms.
We now study these special types of matrices.

Symmetric and Skew Symmetric Matrices

Definition 11.14. A square matrix A = (aij)n×n is said to be symmetric if
aij = aji, for all i, j = 1, 2, . . . , n.

Definition 11.15. A square matrix A = (aij)n×n is said to be skew symmetric
if aij = −aji, for all i, j = 1, 2, . . . , n.

Example 11.14.

1. Let A =

 1 2 3
2 −5 4
3 4 0

, B =

 0 2 −8
−2 0 4
8 −4 0


In A, aij = aji, ∀i, j = 1, 2, 3
∴ A is a symmetric matrix. In B, aij = −aji, ∀i, j = 1, 2, 3
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∴ B is a skew symmetric matrix.

2. Let C =

(
0 0
0 0

)
. Then C is a symmetric as well as a skew symmetric

matrix.

3. Let D =

 0 1 0
−1 0 −3
0 3 2

. Since d33 6= −d33

∴ D is not a skew symmetric matrix.

Theorem 11.9. Let A be an n-rowed square matrix. Then
(i) A is symmetric if and only if At = A.
(ii) A is skew symmetric if and only if At = −A.

Proof: Let A = (aij)n×n. Then At is also a n× n matrix.

(i) A is symmetric
⇔ aji = aij , for all i, j = 1, . . . , n
⇔ (i, j)th element of At = (i, j)th element of A for all i, j = 1, 2, . . . , n
⇔ At = A.

(ii) A is skew symmetric
⇔ aji = −aij , for all i, j = 1, 2, . . . , n
⇔ (i, j)th element of At = −(i, j)th element of A, for all i, j = 1, 2, . . . , n
⇔ (i, j)th element of At = (i, j)th element of (−A), for all i, j = 1, 2, . . . , n
⇔ At = −A.

Remark 11.1. If A = (aij)n×n is a skew symmetric matrix, then aji = −aij
for all i, j = 1, 2, · · · , n. In particular, aii = −aii, for all i, j = 1, 2, · · · , n
⇒ 2aii = 0, for all i, j = 1, 2, · · · , n
⇒ aii = 0, for all i = 1, 2, · · · , n
⇒ diagonal elements are zero.
Thus the diagonal elements of a skew symmetric matrix are zero. But the con-
verse of this result is not true, that is, a matrix having diagonal elements zero
need not be a skew symmetric.

Theorem 11.10. Every square matrix can be uniquely expressed as the sum of
a symmetric and a skew symmetric matrix.

Proof: Let A be a square matrix
Existence
Let P = 1

2 (A+At), Q = 1
2 (A−At)

Then P t = [ 1
2 (A+At)]t

= 1
2 (A+At)t, using (kA)t = kAt

= 1
2 (At + (At)t), using (A+B)t = At +Bt

= 1
2 (At +A)

= P ∴ P t = P , so that P is symmetric.
Qt = [ 1

2 (A−At)]t
= 1

2 (A−At)t
= 1

2 (At −A)
= − 1

2 (A−At)
= −Q

∴ Qt = −Q, so that Q is a skew symmetric matrix.
Also A = P +Q.
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Thus A is expressible as the sum of a symmetric and skew symmetric matrix.

Uniqueness
Let A = X + Y . . . (1)
where X is a symmetric matrix and Y a skew symmetric matrix.
Then At = (X + Y )t

or At = Xt + Y t . . . .(2)
Thus (1) and (2) gives X = 1

2 (A+At) Y = 1
2 (A−At)

This gives unique values of X and Y so that the expression in (1) is unique.

Hermitian and Skew Hermitian Matrices

Definition 11.16. Let A = (aij)n×n. Then A is said to be Hermitian if aij =
aji, for all i, j = 1, 2, . . . , n.

Definition 11.17. Let A = (aij)n×n. Then A is said to be skew Hermitian if
aij = −aji, for all i, j = 1, 2, . . . , n.

Example 11.15. Let A =

(
2 −i
i −2

)
= (apq)2×2.

Then apq = aqp, p, q = 1, 2 so that A is a Hermitian matrix.

Let B =

(
0 2 + 3i

−2 + 3i i

)
Then bpq = −bqp, for p, q = 1, 2

so that B is a skew Hermitian matrix.

The following theorem gives a characterization of Hermitian and skew Her-
mitian matrices which is simpler to use.

Theorem 11.11. Let A be a square matrix. Then
(i) A is Hermitian if and only if Aθ = A
(ii) A is skew Hermitian if and only if Aθ = −A.

Proof: Left to the reader.

Remark 11.2. The diagonal elements of a skew Hermitian matrix are zero or
pure imaginary. For if A = (apq), is a skew Hermitian matrix then apq = −aqp,
for all p, q = 1, 2, · · · , n.
In particular app = −app, for all p = 1, 2, · · · , n.
∴ app + app = 0
⇒ 2Re app = 0
⇒ Re app = 0, for all p = 1, 2, · · · , n
∴ app = iy for some real number y
⇒ app = 0 or a pure imaginary number.

Theorem 11.12. A square matrix A is Hermitian if and only if A can be
uniquely expressed as B + iC where B is a real symmetric matrix and C is a
real skew symmetric matrix.

Proof: Let A be a Hermitian matrix. Then A = Aθ . . . (1)
Also A = (A)t

so that At = A. . . (2)
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Existence
Let P = 1

2 (A + A), Q = 1
2i (A − A). Then P and Q are matrices with real

entries. Also
P t = ( 1

2 (A+A))t

= 1
2 (At + (A)t)

= 1
2 (A+A), using (1) and (2)

= P .
Thus P is a symmetric matrix.
Qt = ( 1

2i (A−A))t

= 1
2i (A

t − (A)t)

= 1
2i (A−A), using (1) and (2)

= − 1
2i (A−A)

= −Q
∴ Qt = −Q, so that Q is a skew symmetric matrix.
Also P + iQ = A
Thus A is expressed as P + iQ, where P , Q are real matrices, P is symmetric
and Q is skew symmetric.

Uniqueness
Let A = X + iY . . . ..(3)
where X is a real symmetric matrix and Y is a real skew symmetric matrix.
Then X = X and Y = Y .
Taking conjugate in (3) we get A = X + iY
A = X − iY
or A = X − iY . . . (4)
(3) and (4) ⇒ X = 1

2 (A+A), Y = 1
2i (A−A).

Thus, the values of X and Y are expressed in terms of A and A and are therefore
unique.
Hence the expression is unique.

Conversely, let A be uniquely expressible as A = B + iC. . . ...(5)
where B is a real symmetric matrix and C a real skew symmetric matrix.
Then B = Bt, C = −Ct . . . (6)
(5) ⇒ Aθ = Bθ + (iC)θ

= Bt − iCt, ∵ B, C are real
= B + iC
= A using (5)
Hence A is Hermitian.

Theorem 11.13. Every square matrix can be expressed uniquely as P + iQ
where P and Q are Hermitian matrices.

Proof: Let A be a square matrix.

Existence
Let P = 1

2 (A+Aθ) . . . (1)
Q = 1

2i (A−A
θ) . . . (2)

Then P + iQ = A.
P θ = ( 1

2 (A+Aθ))θ

= 1
2 (A+Aθ)θ, ∵ (kA)θ = kAθ

= 1
2 (Aθ + (Aθ)θ), ∵ (A+B)θ = Aθ +Bθ
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= 1
2 (Aθ +A), ∵ (Aθ)θ = A

= P
∴ P is a Hermitian matrix.
Similarly Qθ = Q so that Q is a Hermitian matrix.
Thus A = P + iQ where P , Q given by (1) and (2) respectively are Hermitian
matrices.

Uniqueness
Let A = X + iY . . . (3)
where X, Y are Hermitian matrices. Then Xθ = X and Y θ = Y . . . (4)
Aθ = (X + iY )θ

= Xθ + (iY )θ

= Xθ − iY θ
= X − iY using (4)

∴ Aθ = X − iY . . . (5)
(3) and (5) ⇒ X = 1

2 (A+Aθ) . . . (6)
Y = 1

2i (A−A
θ) . . . (7)

Hence the matrices X and Y are unique and are given by (6) and (7).

Corollary 11.14. Every square matrix can be expressed uniquely as sum of a
Hermitian and skew Hermitian matrix.

Problem 11.1. Prove that if A is a square matrix then A is Hermitian ⇔ iA
is skew Hermitian.

Solution: Let A be a Hermitian matrix.
Then A = Aθ . . . (1)

(iA)θ = iAθ (∵ (kA)θ = kAθ)
= −iAθ
= −iA using (1)

Hence (iA)θ = −iA so that iA is skew Hermitian.
Conversely, let iA be a skew Hermitian matrix.
Then (iA) = −(iA)θ

⇒ iA = −iAθ
⇒ iA = iAθ

⇒ A = Aθ

⇒ A is a Hermitian.

Problem 11.2. If A and B are Hermitian matrices such that A2 + B2 = 0,
show that A = B = 0.

Solution: Let A = (aij)n×n, B = (bij)n×n be Hermitian matrices. Then
A = Aθ and B = Bθ.
Let Aθ = (cij)n×n, then cij = aji
(i, j)th element of A2

= (i, j)th element of AAθ

=
∑n
k=1 aikckj

=
∑n
k=1 aikajk

∴ (i, i)th element of A2 =
∑n
k=1 aikaik

=
∑n
k=1 |aik|2

(i, i)th element of (A2 +B2)
= (i, i)th element of A2 + (i, i)th element of B2



460 CHAPTER 11. MATRICES

=
∑n
k=1 |aik|2 +

∑n
k=1 |bik|2

Now, A2 +B2 = 0
⇒ (i, i)th element of (A2 +B2) = 0, ∀ i = 1, 2, . . . , n
⇒
∑n
k=1 |aik|2 +

∑n
k=1 |bik|2 = 0, ∀ i = 1, 2, . . . , n.

Since a sum of non-negative quantities is zero if and only if each term is zero,
∴ |aik|2 = 0 = |bik|2, ∀ i, k = 1, 2, . . . , n
i.e. aik = bik = 0, ∀ i, k = 1, 2, . . . , n
i.e. A = B = 0.

11.5 Exercise

1. Let A =

(
1 + i 1− 3i
−2 −1 + i

)
, B =

(
2i 1− 2i
0 −3 + i

)
, C =

(
2− i
i

)
.

Compute the following and express the entries in the form a+ ib
(i) A+B
(ii) (4 + i)A
(iii) AB
(iv) BC
(v) A− 2iI2
(vi) Aθ

(vii) BθC
(viii) (A+B)C
(ix) CtA
(x) BθAθ.

2. If A =

(
−2 2
2 −2

)
, compute all matrices B with complex entries such

that B2 = A.

3. For f(x) = 2x2 − 3x+ 5, compute f(A) for each of the following:

(i) A =

(
−2 0
0 −2

)
(ii) A =

(
1 0
0 2

)
(iii) A =

(
0 i
i 0

)
(iv) A =

(
1 −2
0 1

)

4. If A is a 2×2 matrix, the sum of whose diagonal elements is 0 and |A| = 1,
then show that f(A) = O2, where f(x) = x2 + 1.

5. Find all 2 × 2 scalar matrices A which satisfy the relation f(A) = 0, for
f(x) = x2 + 1.

6. Determine the nature(symmetric, skew-symmetric, Hermitian or skew Her-
mitian) of the following matrices



11.5. EXERCISE 461

(i)

 1 + i 2 i
2 0 4− i
i 4− i 5i


(ii)

 2i −4 + i 2 + 3i
4 + i 0 5i
−2 + 3i 5i −2i


(iii)

 4 2i 1 + i
2i 5i −3i

1 + i −3i 6


(iv)

 0 0 0
0 0 0
0 0 0


(v)

 0 0 0
0 −3 0
0 0 0


(vi)

 2 1 + i −2 + i
1− i 3 6i
−2− i −6i 4


(vii)

 0 −2 + i 4
2− i 0 6i
−4 −6i 0


(viii)

 0 2 −3
−2 0 0
3 0 0

.

7. Let D1, D2 be diagonal matrices and A be a matrix such that A2 = I. If
P = AD1A and Q = AD2A. Prove that P and Q commute.

8. Prove that if A is a skew Hermitian matrix, then iA and−iA are Hermitian
matrices.

9. If A =

 2 + i 3 −4
5 + i 2 6 + 3i

3i −1 + 4i 6i

, express A as

(i) sum of a symmetric and a skew symmetric matrix.
(ii) sum of a Hermitian and a skew Hermitian matrix.
(iii) P + iQ, where P , Q are Hermitian matrices.

10. Express A in the form P + iQ, where P is a real symmetric matrix and Q
is a real skew symmetric matrix,where

(i) A =

 1 2− 3i 4i+ 3
2 + 3i 0 4− 5i
3− 4i 4 + 5i 2


(ii) A =

 2 5 + 6i −1 + 2i
5− 6i 3 3− 4i
−1− 2i 3 + 4i i

.
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11. How many independent elements are there in the following matrices?
(i) a m× n matrix
(ii) a n× n matrix
(iii) a matrix of order n with trace zero
(iv) a diagonal matrix of order n
(v) a scalar matrix of order n
(vi) a symmetric matrix of order n
(vii) a skew symmetric matrix of order n
(viii) a Hermitian matrix of order n
(ix) a skew Hermitian matrix of order n

12. If A is a symmetric (skew symmetric) matrix, show that for any matrix
B, BtAB is symmetric (skew symmetric).

13. Prove that every skew symmetric matrix of odd order is singular.

14. Prove that if A and B are symmetric (Hermitian) matrices then AB is
symmetric (Hermitian) if and only if AB = BA.

15. Prove that all the positive integral powers of a symmetric (Hermitian)
matrix is symmetric (Hermitian).

16. If A is a Hermitian matrix, prove that AAθ and AθA are also Hermitian.

17. If A is a Hermitian matrix such that A2 = 0, show that A = 0.

18. Show that every Hermitian matrix is normal. Is the converse true?

19. Given a 9× 12 matrix, partition it in the form

(
A11 A12

A21 A22

)
where A11

is (i) 4× 5 (ii) 7× 6 (iii) 3× 4 (iv) 6× 9.
State the orders of the matrices A12, A21 and A22 in each case.

20. If a m × n matrix A is partitioned as

(
P Q
R S

)
, prove that At =(

P t Rt

Qt St

)
.

21. Find AB using partitioning of matrices, where

A =


1 0 2 −1 3
−1 2 1 3 5
4 6 3 2 1
2 1 3 4 0
1 0 0 1 1

, B =


0 1 2 1 2 1
1 3 −1 2 0 1
2 3 1 −1 0 1
−1 0 1 0 1 2
4 5 0 1 2 3


Also find AB by (i) direct multiplication
(ii) by considering another partition of A and B.

22. Find AB using partitioning of matrices, where

A =


1 −1 0 2 1 0
0 1 2 −1 3 0
−1 0 1 −2 0 3
1 1 2 −1 1 2

 and B =


1 −1 1 0
0 1 −2 2
−1 0 1 1
2 1 −1 −1
−2 −1 0 0
3 2 1 1

.
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23. If A and B are skew symmetric matrices, prove that
(i) AB +BA is symmetric.
(ii) AB −BA is skew symmetric.

24. If A and B are symmetric matrices prove that
(i) AB +BA is symmetric
(ii) AB −BA is skew symmetric.

25. If A and B are skew Hermitian matrices, prove that AB is skew Hermitian
if and only if AB = −BA.

26. If A and B are symmetric matrices, prove that AB is symmetric if and
only if AB = BA.

11.6 Inverse of a Matrix

So far we have added and multiplied matrices. However, division is not de-
fined for arbitrary matrices. We now study the matrix analogue of the reciprocal
of a number.

Definition 11.18. Let A be a m× n matrix. Then
(i) an n×m matrix B is called a left inverse of A if BA = In.
(ii) an n×m matrix C is called a right inverse of A if AC = Im.

Example 11.16. Let A =

(
1 2 1
−2 0 1

)
, B =

 1 −3
−1 4
2 −5


Then AB = I2

BA =

 7 2 −2
−9 −2 3
12 4 −3

 6= I3

Hence B is a right inverse of A but not a left inverse of A. Also A is a left
inverse of B but not a right inverse of B.

Since matrix multiplication is not commutative, a matrix may have one sided
inverse only. But if a square matrix has a right and a left inverse then they must
be equal, as is proved in the following theorem.

Theorem 11.15. If a square matrix A has a right inverse B and a left inverse
C then B = C.

Proof: Since B is a right inverse
∴ AB = In . . . (1)
Since C is a left inverse
∴ CA = In . . . (2)
Since matrix multiplication is associative

∴ C(AB) = (CA)B
using (1) and (2)

CIn = InB
or C = B.
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If a square matrix A has both left and right inverses, then any two left
inverses must be equal to the right inverse B, and hence to each other. Thus
left inverse is unique.

Similarly right inverse is unique. So there exist only one left and right
inverses and they must be equal to each other. But a non-square matrix can
have only one sided inverse, and it may not be unique as is shown by the
following example.

Example 11.17. Let A =

(
1 0 0
0 0 1

)
,if x, y ∈ R, then B =

 1 0
x y
0 1

 are

such that AB = I2.

Thus A has infinitely many right inverses.

Definition 11.19. A n × n square matrix A is said to be invertible if there
exists a n×n square matrix B such that AB = BA = In. B is called an inverse
of A. If a matrix does not have an inverse it is said to be non-invertible.

By the definition, A has a right and left inverse B. Since right and left
inverses are unique, therefore it follows that inverse of a matrix is unique so
that we can talk of ‘the inverse’ instead of ‘an inverse’. The inverse of matrix
A is denoted by A−1.

Not every square matrix is invertible. In fact the null matrix is not invertible.
Also a square matrix having a row (or column) of zeros does not have an inverse.

11.7 Adjoint of a Matrix

Definition 11.20. (Minor):
Let A be any m × n matrix.The determinant of any p-rowed square submatrix
of A obtained by deleting m-p rows and n-p columns is called a p-rowed minor
of A.

Definition 11.21. If A = (aij)n×n is an n-rowed matrix.The minor of aij
is the determinant of the submatrix obtained by deleting the ith row and jth
column.
The minor of aij is denoted by Mij.

Definition 11.22. (Cofactor):
Let A = (aij)n×n. The cofactor of an element aij of A is (−1)i+j times the
determinant of the sub-matrix of A obtained by deleting the ith row and the jth
column. It is denoted by Aij.
Thus Aij = (−1)i+jMij.

Definition 11.23. (Adjoint of a Matrix)
Let A = (aij)n×n. The matrix B = (bij), where bij =cofactor of aji, is called
the adjoint of A and is denoted by adjA.

To obtain the adjoint of a matrix A, take the transpose At of the matrix A
and then replace each element of At by its cofactor.
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Example 11.18. Find the adjoint of the matrix

 1 2 3
1 3 5
1 5 12

 .

Let A =

 1 2 3
1 3 5
1 5 12

. Then At =

 1 1 1
2 3 5
3 5 12


The cofactors of the elements of the 1st row of At are 11,−9, 1.
Cofactors of the elements of the 2nd row of At are −7, 9,−2.
Cofactors of the elements of the 3rd row of At are 2,−3, 1.

Hence adjA =

 11 −9 1
−7 9 −2
2 −3 1

.

The following theorem gives a relation between a matrix A and its adjoint.

Theorem 11.16. If A is an n-rowed square matrix, then

A(adjA) = (adjA)A = |A|I

Proof: Since A and adjA are both n-rowed square matrices, therefore A(adjA)
and (adjA)A are both n-rowed square matrices. Let A = (aij)n×n and adjA =
(bij)n×n where bij = Aij .
We know that

∑n
j=1 aijAij = |A|,

∑n
j=1 aijAkj = 0, ifk 6= i

Now,(i, j)th element of A(adjA)

=
∑n
k=1 aikbkj

=
∑n
k=1 aikAjk

=

{
0, if j 6= i;
|A|, if j = i.

∴ A(adjA) = |A|In
Similarly (adjA)A = |A|In
Hence A(adjA) = (adjA)A = |A|In.

Corollary 11.17. If A is a matrix, such that |A| 6= 0, then A is invertible and
A−1 = 1

|A| (adjA). Since A is non-singular, |A| 6= 0. Thus

A(
1

|A|
adjA) =

1

|A|
A(adjA) =

1

|A|
|A|In = In.

so that A−1 exists and A−1 = 1
|A|adjA.

Remark 11.3. From the theorem, it follows that |adjA| = |A|n−1, if |A| 6= 0.
It has been proved later that |A| = 0 ⇔ |adjA| = 0, so that we can always

say that |adjA| = |A|n−1.

Definition 11.24. (Singular matrix):
A square matrix A is said to be singular if |A| = 0, and non-singular if |A| 6= 0.

Theorem 11.18. (Existence of the Inverse):
A necessary and sufficient condition for a square matrix A to be invertible is
that it should be non-singular.



466 CHAPTER 11. MATRICES

Proof: Let A be invertible. Then there exists a matrix B such that

AB = BA = In
∴ |AB| = |In|
⇒ |A||B| = 1
⇒ |A| 6= 0
⇒ A is non-singular.

Conversely, let A be non-singular. By corollary 11.17, A is invertible.

11.8 Negative Integral Powers of a Non-singular
Matrix

Let A be a non-singular matrix. If p is any positive integer, then we define
(A−p) = (Ap)−1.

Theorem 11.19. If A is any n-rowed non-singular matrix, then (A−k) =
(A−1)k, for all k ∈ N.

Proof: By definition, if k ∈ N

A−k = (Ak)−1

= (A.A . . . k times)−1

= A−1A−1 . . . k times
= (A−1)k

∴ A−k = (Ak)−1 = (A−1)k.

Theorem 11.20. Let A,B be invertible matrices. Then
(i) (A−1)−1 = A
(ii) (kA)−1 = k−1A−1, 0 6= k ∈ C
(iii) (AB)−1 = B−1A−1

(iv) (At)−1 = (A−1)t

(v) (Aθ)−1 = (A−1)θ.

Proof:

(i) Since A is invertible, therefore there exists a matrix B = A−1 such that
AB = BA = I

Then B−1 = A by definition of inverse ie.(A−1)−1 = A.

(ii) Let C = k−1A−1. Then,

(kA)C = (kA)(k−1A−1) = kk−1AA−1 = I.
Similarly C(kA) = I.
Thus (kA)C = C(kA) = I

⇒ (kA)−1 = C = k−1A−1.

(iii) Let C = B−1A−1. Then,

(AB)C = (AB)(B−1A−1)
= A(B(B−1A−1))
= A(BB−1A−1)
= A(IA−1) = AA−1 = I.

Similarly C(AB) = I, so that
(AB)C = C(AB) = I.

Hence (AB)−1 = C = B−1A−1.
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(iv) We know that

AA−1 = A−1A = I

Taking transpose, we get

(AA−1)t = (A−1A)t = It

⇒ (A−1)tAt = At(A−1)t = I, using (AB)t = BtAt

⇒ (At)−1 = (A−1)t.

(v) Similar to (iv) but take transposed conjugate instead of transpose.

11.9 Inverse of Partitioned Matrices

If the partitioned matrices are of special types, then it is easy to find their
inverses. However the inverse of any invertible matrix can be obtained by par-
titioning.

Definition 11.25. A matrix having the blocks below(above) the main diagonal
blocks, as blocks of zero is called a block upper triangular (lower triangular)
matrix.

Such a matrix is of the form

(
A11 A12

O A22

) (
A11 O
A21 A22

)
.

Definition 11.26. A partitioned matrix having zero blocks off the main diagonal
blocks is called a block diagonal matrix.

Example 11.19. A =


1 2 3 4 1
2 1 5 8 −1
0 0 4 8 0
0 0 2 3 2

 =

(
A11 A12

O A22

)
is a block

upper triangular matrix.

B =

 2 1 0 0 0
2 3 5 0 0
1 5 8 2 3

 =

(
B11 O
B12 B22

)
is a block lower triangular

matrix.

C =

 2 1 0 0 0
5 4 0 0 0
0 0 2 1 8

 =

(
C11 O
O C22

)
is a block diagonal matrix.

It is important to observe that every partition of A may not give it the form
of a block upper triangular matrix. For instance, partitioning A as

1 2 3 4 1
2 1 5 8 −1
0 0 4 8 0
0 0 2 3 2

 does not make it a block upper triangular matrix.

It is easy to find the inverse of block upper (lower) triangular and block
diagonal matrices.
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Theorem 11.21. If A =

(
A11 A12

O A22

)
is a block upper triangular matrix

such that A11 and A22 are square matrices of orders p and q respectively, then
A is invertible if and only if A11 and A22 are invertible and

A−1 =

(
A−1

11 −A−1
11 A12A

−1
22

O A−1
22

)
.

Proof: Let A be invertible and let B =

(
B11 B12

B21 B22

)
be the inverse of A.

Then AB = I . . . (1)

⇒
(
A11 A12

O A22

)(
B11 B12

B21 B22

)
=

(
Ip O
O Iq

)
⇒
(
A11B11 +A12B21 A11B12 +A12B22

A22B21 A22B22

)
=

(
Ip O
O Iq

)
⇒ A11B11 +A12B21 = Ip . . . (2)
A11B12 +A12B22 = 0 . . . (3)
A22B21 = 0 . . . (4)
A22B22 = Iq . . . (5)

(5) ⇒ A22 has a right inverse B22. Since A22 is a square matrix, ∴ B22 is
the inverse of A22 by 11.15
∴ A−1

22 = B22 . . . (6)
Pre-multiplying (4) by A−1

22 , we get
IB21 = A−1

22 0
or B21 = 0 . . . (7)
Thus (2) and (7) ⇒ A11B11 = Ip
Thus B11 is a right inverse of the square matrix A11, so that A−1

11 = B11.
∴ (3) gives A11B12 +A12A

−1
22 = 0

⇒ B12 = −A−1
11 A12A

−1
22

Hence A−1 =

(
A−1

11 −A−1
11 A12A

−1
22

O A−1
22

)
.

Conversely let A11 and A22 be invertible matrices.

Let B =

(
A−1

11 −A−1
11 A12A

−1
22

O A−1
22

)
Then AB =

(
A11 A12

O A22

)(
A−1

11 −A−1
11 A12A

−1
22

O A−1
22

)
=

(
A11A

−1
11 −A11A

−1
11 A12A

−1
22 +A12A

−1
22

O A22A
−1
22

)
=

(
Ip −A12A

−1
22 +A12A

−1
22

O Iq

)
= I

Similarly BA = I.
Hence AB = BA = I.
So that A is invertible ad B is the inverse of A.

Example 11.20. Find the inverse of

 1 2 1
−1 2 1
0 0 3


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Solution: Let A =

 1 2 1
−1 2 1
0 0 3

 =

(
A11 A12

O A22

)
Where A11 =

(
1 2
−1 2

)
, A12 =

(
1
1

)
, A22 =

(
3
)

Since |A11| 6= 0 and |A22| 6= 0 , therefore A11 and A22 are non-singular and
therefore invertible. Also

A−1 =

(
A−1

11 −A−1
11 A12A

−1
22

O A−1
22

)
Now A−1

11 = 1
4

(
2 −2
1 1

)
, A−1

22 =
(

1
3

)
= 1

3

(
1
)

A−1
11 A12A

−1
22 = 1

4 ×
1
3

(
2 −2
1 1

)(
1
1

)(
1
)

= 1
12

(
2 −2
1 1

)(
1
1

)
= 1

12

(
0
2

)
= 1

6

(
0
1

)
∴ A−1 =

 2
4

−2
4 0

1
4

1
4

−1
6

0 0 1
3

 = 1
12

 6 −6 0
3 3 −2
0 0 4


Theorem 11.22. If A =

(
A11 0
A12 A22

)
is a block lower triangular matrix

such that A11 and A22 are square matrices, then A is invertible if and only if

A11 and A22 are invertible and A−1 =

(
A−1

11 0
−A−1

22 A12A
−1
11 A−1

22

)
Proof: Similar to the proof of Theorem 11.21

Corollary 11.23. If A =

(
A11 0
0 A22

)
is a block diagonal matrix such that

A11 and A22 are square matrices, then A is invertible if and only if A11 and

A22 are invertible and A−1 =

(
A−1

11 0
0 A−1

22

)
Theorem 11.24. If A =

(
A11 A12

A21 O

)
is a matrix such that A12 and A21 are

square matrices, then A is invertible if and only if A12 and A21 are invertible,

and A−1 =

(
O A−1

21

A−1
12 −A−1

12 A11A
−1
21

)
Proof: Similar to the proof of Theorem 11.21.

Corollary 11.25. If A =

(
0 A12

A21 0

)
, such that A12 and A21 are square

matrices then A is invertible if and only if A12 and A21 are invertible and

A−1 =

(
0 A−1

21

A−1
12 0

)
.

Theorem 11.26. If A =

(
0 A12

A21 A22

)
is a matrix such that A12 and A21 are

square matrices, then A is invertible if and only if A12 and A21 are invertible,

and A−1 =

(
−A−1

21 A22A
−1
12 A−1

21

A−1
12 0

)
Proof: Similar to the proof of Theorem 11.21.
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11.10 Solved Problems

Problem 11.3. Prove that A is non-singular if and only if adjA is non-singular.

Solution: We know that for any matrix A, A(adjA) = (adjA)A = |A|I . . . (1)

Let A be non-singular. Then |A| 6= 0
A(adjA) = |A|I
⇒ |AadjA| = |A|n, where A is a n× n matrix
⇒ |A||adjA| = |A|n
⇒ |adjA| = |A|n−1

⇒ |adjA| 6= 0
⇒ adjA is non singular.

Conversely, let (adjA) be non-singular.
Then there exists a matrix B such that
(adjA)B = B(adjA) = I
(adjA)B = I
⇒ A(adjA)B = AI(premultiplying by A)
⇒ |A|IB = A using(1)
⇒ |A|B = A.
If |A| = 0 then A = 0
⇒ adjA = 0
⇒ |adjA| = 0, a contradiction.

∴ |A| 6= 0 so that A in non-singular.

Problem 11.4. If A is any square matrix then adjAt = (adjA)t.

Solution: Let A = (aij)n×n. Then adjA = (Aij)n×n, where Aij is the cofactor
of aij .
Since adjAt and (adjA)t are n×n matrices, therefore they are comparable. For
i, j = 1, 2, . . . , n (i, j)th element of (adjA)t

= (j, i)th element of adjA
= cofactor of aij in A
= cofactor of aji in At

= (i, j)th element of (adjAt)
Thus, the corresponding elements of (adjA)t and adjAt are equal,
so that (adjA)t = adjAt.

Problem 11.5. If A and B are square matrices of the same order,
then adj(AB) = (adjB)(adjA).

Solution: We know that
AB(adjAB) = (adjAB)(AB) = |AB|I . . . (1)
Now, (AB)(adjB)(adjA) = A(BadjB)adjA

= A(|B|I)adjA
= |B|A(adjA)
= |B||A|I
= |A||B|I
= |AB|I

Similarly, (adjB)(adjA)(AB) = |AB|I
Hence, AB(adjBadjA) = (adjB)(adjA)AB = |AB|I . . . (2)
Comparing (1) and (2), we get (adjAB) = (adjB)(adjA).
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Problem 11.6. Find a right inverse of the matrix

(
1 −1 1
−1 2 0

)
. Is it

unique? Can you find all the right inverses?

Solution: Let A =

(
1 −1 1
−1 2 0

)
.

If B =
(
c1 c2

)
is a right inverse A then AB = I2 =

(
e1 e2

)
say

⇒ Ac1 = e1 and Ac2 = e2

To find B, we need to solve AX = e1, and AX = e2(
A e1 e2

)
=

(
1 −1 1 1 0
−1 2 0 0 1

)
Using E-row operations, we get

(
A e1 e2

)
∼
(

1 0 2 2 1
0 1 1 1 1

)

∴

(
1 0 2
0 1 1

)
X =

(
2
1

)
, where X =

 x
y
z


∴ x+ 2z = 2

y + z = 1
Solution is x = 2− 2k
y = 1− k
z = k, where k is any real number.

∴ c1 = X =

 2− 2k
1− k
k


Also

(
1 0 2
0 1 1

)
X =

(
1
1

)
gives c2 =

 1− 2k1

1− k1

k1

, where k1 is any real number.

Hence B =
(
c1 c2

)
=

 2− 2k 1− 2k1

1− k 1− k1

k k1


Taking k = 0, k1 = 1, we get B1 =

 2 −1
1 0
0 1


B1 is a particular right inverse of A. Right inverse is not unique. In fact any

matrix of the form

 2− 2k 1− 2k1

1− k 1− k1

k k1

 where k and k1 are any real numbers

is a right inverse.

Problem 11.7. Find the inverse of


1 0 0 0
0 1 0 0
0 1 1 0
0 0 0 1

 using partitioning of

matrices.
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Solution: Let X =


1 1 0 0
0 1 0 0
0 1 1 0
0 0 0 1


=

(
A 0
0 C

)
where A = [1], C =

 1 0 0
1 1 0
0 0 1


Then, X−1 =

(
A−1 0

0 C−1

)
since, C =

 1 0 0
1 1 0
0 0 1

 =

(
A1 0
0 C1

)

∴ C−1 =

(
A−1

1 0
0 C−1

1

) 1 0 0
−1 1 0
0 0 1

 so that X−1 =


1 0 0 0
0 1 0 0
0 −1 1 0
0 0 0 1



Problem 11.8. Find the inverse of the matrix


1 0 1 1 −1
−1 1 0 1 1
0 0 1 1 −1
0 0 0 1 1
0 0 0 1 −1

 using

partitioning of matrices. Do the partition in two different ways.

Solution: Let P =


1 0 1 1 −1
−1 1 0 1 1
0 0 1 1 −1
0 0 0 1 1
0 0 0 1 −1


1st way of partitioning
Partition P so that on the diagonals there are 3× 3 and 2× 2 matrices

∴ P =

(
A B
0 C

)
Where A =

 1 0 1
−1 1 0
0 0 1

, B =

 1 −1
1 1
1 −1

, C =

(
1 1
1 −1

)
Then P−1 =

(
A−1 −A−1BC−1

0 C−1

)
Now C being a 2× 2 matrix C−1 = −1

2

(
−1 −1
−1 1

)
= 1

2

(
1 1
1 −1

)
To find A−1 we again use partitioning.

Let A =

 1 0 1
−1 1 0
0 0 1

 =

(
A1 B1

0 C1

)
(say)

∴ A−1 =

(
A−1

1 −A−1
1 B1C

−1
1

0 C−1
1

)
A−1

1 =

(
1 0
1 1

)
,C−1

1 = [1],A−1
1 B1C

−1
1 =

(
1
1

)
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∴ A−1 =

 1 0 −1
1 1 −1
0 0 1


A−1BC−1 = 1

2

 1 0 −1
1 1 −1
0 0 1

  1 −1
1 1
1 −1

( 1 1
1 −1

)
=

 0 0
1 0
0 1



∴ P−1 =


1 0 −1 0 0
1 1 −1 −1 0
0 0 1 0 −1
0 0 0 1

2
1
2

0 0 0 1
2

−1
2


2nd way of partitioning

Partition P so that on the main diagonal there are 2× 2 and 3× 3 matrices

respectively. Then P =

(
X Y
O W

)
,

where X =

(
1 0
−1 1

)
, Y =

(
1 1 −1
0 1 1

)
,W =

 1 1 −1
0 1 1
0 1 −1

.

Then P−1 =

(
X−1 −X−1YW−1

O W−1

)
. To obtain W−1 we can partition it

as W =

 1 1 −1
0 1 1
0 1 −1

 Then we obtain P−1 =


1 0 −1 0 0
1 1 −1 −1 0
0 0 1 0 −1
0 0 0 1

2
1
2

0 0 0 1
2

−1
2


which is the same as before.

11.11 Exercise

1. Find a right inverse of the matrix

(
1 0 2
0 1 3

)

2. Find a left inverse of the matrix

 2 −1
1 0
0 1

. Is it unique? Can you find

all the left inverses?

3. Let A be a matrix such that there exists a non-zero matrix B satisfying
AB = 0. Prove that A does not have a left inverse.

4. Prove that if a matrix A has two distinct right inverses, then there exists
a non-zero matrix B such that AB = 0.

5. Let A be a matrix such that there exists a non-zero matrix C satisfying
CA = 0. Prove that A does not have a right inverse.

6. Prove that a matrix A has a right inverse if and only if At has a left
inverse.

7. Prove that a singular matrix does not have an inverse.
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8. If A is a non-singular matrix, prove that
(i) (adjA)−1 = adjA−1.
(ii) adj(adjA) = |A|n−2A.

9. If A is a skew symmetric matrix of order n, then adjA is symmetric or
skew symmetric according as n is odd or even.

10. For the following matrices verify A(adjA) = (adjA)A = |A|In

(i)

 1 2 3
2 3 2
3 3 4



(ii)

 1 2 3
0 5 0
2 3 6



(iii)

 0 1 1
1 2 0
3 −1 4



(iv)

 1 −2 3
2 3 −1
−3 1 2


11. Prove that

(i) the adjoint of a diagonal matrix is a diagonal matrix.
(ii) the adjoint of a scalar matrix is a scalar matrix.
(iii) the adjoint of a triangular matrix is a triangular matrix
(iv) the adjoint of a symmetric matrix is a symmetric matrix.
(v) the adjoint of a Hermitian matrix is also Hermitian.

12. If A is any square matrix, prove that (adj kA) = kn−1(adjA).

13. Prove that A is invertible if and only if adjA is invertible.

14. Find the inverse of the following matrices

(i)

 1 2 3
1 3 5
1 5 12


(ii)

 1 −1 1
4 1 0
8 1 1



(iii)


1 0 0 0
1 −1 0 0
1 −2 1 0
1 −3 3 −1



(iv)

 0 1 −1
4 −3 4
3 −3 4



(v)

 1 x 0
0 1 x
0 0 1



(vi)

 1 0 0
y 1 0
0 y 1



15. If A =

 1 0 1
2 1 3
4 6 2

, find A−2. Also verify that (A2)−1 = (A−1)2.
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16. If A =

(
1 2
2 −1

)
, find A−3. Also verify that (A3)−1 = (A−1)3.

17. Prove the following:
(i) The inverse of a diagonal matrix is diagonal matrix.
(ii) The inverse of a scalar matrix is a scalar matrix.
(iii The inverse of a symmetric matrix is a symmetric matrix.

(iv) The inverse of a skew Hermitian matrix is a skew Hermitian matrix.
(v) The inverse of a triangular matrix is triangular.

18. Obtain by partitioning, the inverse of following matrices

(i)

 2 3 3
2 4 5
0 0 6


(ii)

 1 α 0
0 1 0
0 β 1


19. Show that the inverse of the matrix

(
A 0
B C

)
is

(
A−1 0

−C−1BA−1 C−1

)
where A and C are non-singular matrices.

20. If A and B are invertible matrices, prove that(
A 0
0 B

)−1

=

(
A−1 0

0 B−1

)
21. If B and C are invertible matrices, prove that

(i)

(
A B
C 0

)−1

=

(
0 C−1

B−1 −B−1AC−1

)

(ii)

(
0 B
C A

)−1

=

(
−C−1AB−1 C−1

B−1 0

)
22. Find the inverse of the following matrices, using partitioning of matrices.

Also verify your answer.

(i)


2 1 0 0
1 2 0 0
0 0 1 2
0 0 −1 −2



(ii)


0 0 1 2
0 0 2 1
2 1 0 0
−1 −2 0 0



(iii)


1 1 2 1
1 2 1 0
0 0 0 1
0 0 1 0


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(iv)


1 1 0 0
−1 1 0 0
1 0 2 0
0 0 1 1



(v)


1 1 1 0
−1 −1 −1 1
−1 1 0 0
0 1 0 0



(vi)


1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0


23. Using partitioning of matrices, obtain the inverse of the matrix

1 1 1 0 0
−1 1 0 0 0
0 0 1 0 0
1 1 1 1 −1
1 1 1 1 1



11.12 Orthogonal and Unitary Matrices

It is known that multiplication by a m × n matrix defines a mapping from
Cn to Cm. In this section we study those matrices which give rise to length
preserving mappings.

Definition 11.27. (Dot product): If X and Y are two vectors in Cn, X =
(x1, . . . , xn)t, Y = (y1, . . . , yn)t, then XθY = x1y1 + x2y2 + . . .+ xnyn is called
the dot product of X by Y , and is denoted by X.Y . If X,Y ∈ Rn, then XθY =
XtY = x1y1 + . . .+ xnyn.

Definition 11.28. (Orthogonal vectors): Two vectors X and Y in Cn are
said to be orthogonal if XθY = 0. If X,Y ∈ Rn then X and Y are orthogonal
if x1y1 + x2y2 + . . . xnyn = 0.

Definition 11.29. (Norm or length of a vector):
For any vector X ∈ Cn, the positive square root of XθX is called the norm of
X and is denoted by ‖X‖. Thus if X = (x1, x2...xn)t ,
then ‖X‖2 = XθX
= |x1|2 + ...+ |xn|2
so that ‖X‖ =

√
(|x1|2 + ...+ |xn|n). Clearly ‖X‖ is a non-negative real number

and ‖X‖ = 0⇐⇒ X = 0. If X ∈ Rn, then ‖X‖ =
√
x2

1 + x2
2 + ...+ x2

n.

Definition 11.30. (Normal vector):
A vector X for which ‖X‖ = 1 is called a normal vector.

Definition 11.31. (Angle between two vectors):
If X and Y are two vectors in Rn. X = (x1, x2, . . . xn)t , Y = (y1, y2, . . . yn)t

then the angle θ between X and Y is defined by cosθ = X.Y
‖X‖‖Y ‖
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Definition 11.32. (Orthogonal vectors):
A set of vectors X1, X2, ..., Xk in Cn is said to be an orthogonal set of vectors
if Xθ

iXj = 0 for i 6= j; i, j = 1, 2, ..., k.

Definition 11.33. (Orthonormal vectors):
A set of vectors X1, X2, ..., Xk in Cn is said to be an orthonormal set of vectors
if

(i) ‖Xi‖=1, i = 1, 2, . . . k

(ii) Xθ
iXj = 0, i 6= j, i, j = 1, 2, . . . k.

In particular X,Y ∈ Rn are orthogonal if X.Y = 0. A set of vectors
X1, X2, . . . , Xn ∈ Rn is said to be orthonormal if

(i) Xi.Xi = 1 for all i = 1, 2, . . . , k

(ii) Xi.Xj = 0 for i 6= j; i, j = 1, 2, . . . , k.

Theorem 11.27. Let A be a m × n matrix whose columns are orthonormal,
and X,Y ∈ Rn. Then
(i) ‖AX‖ = ‖X‖
(ii) (AX.AY ) = (X.Y )
(iii) (AX.AY ) = 0 if and only if X.Y = 0
(iv) angle between AX and AY is the same as the angle between X and Y .

Proof: Let A = [c1, c2, . . . , cn], ci ∈ Rm. Then

ci.cj =

{
0, if i 6= j;
1, if i = j .

}
. . . . (1)

as the columns form an orthonormal set. AtA =


ct1
ct2
.
.
.
ctn


(
c1 c2 . . . cn

)

=


ct1c1 ct1c2 . . . ct1cn
ct2c2 ct2c2 . . . ct2cn

∗ ∗ ∗ ∗ ∗
ctnc1 ctnc2 . . . ctncn

 = In using(1)

∴ AtA = I . . . (2)

(i) ‖AX‖2 = (AX)t(AX)
= XtAtAX
= XtIX , using (2)
= XtX
= ‖X‖2

∴ ‖AX‖2 = ‖X‖2
⇒ ‖AX‖ = ‖X‖ , as norm function is non-negative.

(ii) AX.AY = (AX)t(AY )
= XtAtAY
= XtY . . . Using(2)
= X.Y

∴ AX.AY = X.Y
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(iii) Follows from (ii).

(iv) If θ is the angle between AX and AY , then
cosθ = AX.AY

‖AX‖‖AY ‖ = X.Y
‖X‖‖Y ‖ using (i) and (ii)

= cosine of angle between X and Y
∴ angle between X and Y is also θ.

11.13 Length Preserving Mapping

Let A be an n-rowed square matrix and X ∈ Cn. Then Y = AX ∈ Cn.
Thus multiplication by A defines a mapping from Cn to Cn. We are interested
in knowing the condition on A so that lengths are preserved. This is shown in
the following theorem.

Theorem 11.28. A necessary and sufficient condition for a mapping Y = AX
to preserve lengths is that AθA = I

Proof:
Y = AX

⇒ Y θ = XθAθ

∴ Y θY = XθAθAX
⇒ Y θY = Xθ(AθA)X

The condition is necessary.
Suppose the length is preserved, i.e. XθX = Y θY .

Then (1) ⇒ XθX = XθAθAX
⇒ Xθ(AθA− I)X = 0, for all X ∈ Cn
⇒ XθBX = 0, where B = AθA− I.
Let B = (bij)n×n, X = (x1, ...., xn)t

Then
∑n
i,j=1 xibijxj = 0

⇒
∑n
j=1

∑n
i=1 bijxixj = 0. . . (2)

Taking X = ei = (0, 0, . . . 1, 0, . . . 0) here 1 is in ith position
for i = 1, 2, . . . , n; (2) gives
bii = 0 (3)
Taking X = ek + el, for k, l = 1, 2, . . . , n; k 6= l
(2) ⇒ bkl + blk = 0 . . . (4)
Taking X = ek − el, for k, l = 1, 2, . . . , n; k 6= l
(2) ⇒ bkl − blk = 0. . . (5)
(4) and (5) ⇒ bkl = 0, where k, l = 1, 2, ..., n; k 6= l
This, together with (3) ⇒ B = 0
Hence AθA = I.

Condition is sufficient.
Let AθA = I
Substituting in (1), we get Y θY = XθX
so that length is preserved.

The mapping which preserves length is called a unitary mapping and the
matrix associated with it is called a unitary matrix. Thus we have the following
definition.

Definition 11.34. (Unitary Matrix):
A matrix P is said to be unitary if P θP = I.
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Clearly P θP = I
⇒ |P | 6= 0
⇒ P is non-singular
⇒ P is invertible
P θP = I ⇒ P−1 = P θ

Thus, the inverse of a unitary matrix P is P θ.

Definition 11.35. (Orthogonal matrix):
A real unitary matrix is called an orthogonal matrix, i.e., a real matrix A is
orthogonal if AtA = I. If A is an orthogonal matrix, then A is invertible and
A−1 = At.

Theorem 11.29. The columns of a unitary matrix form an orthonormal set.

Proof: Let P = [C1C2 . . . Cn] be a unitary matrix, where C1, C2, . . . Cn are
the columns of P .
∴ P θP = I

⇒



C
t

1

C
t

2

.

.

.

C
t

n


(
C1 C2 . . . Cn

)
= I

⇒


C
t

1C1 C
t

1C2 . . . C
t

1Cn

C
t

2C1 C
t

2C2 . . . C
t

2Cn
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

C
t

nC1 C
t

nC2 . . . C
t

nCn

 = I

⇒ C
t

iCj =

{
0, if i 6= j;
1, if i = j.

}
.

Hence C1, C2, ....., Cn is an orthonormal set.

Corollary 11.30. The row vectors of a unitary matrix form an orthonormal
set.

Corollary 11.31. The column vectors of an orthogonal matrix form an or-
thonormal set.

Corollary 11.32. The row vectors of an orthogonal matrix form an orthonor-
mal set.

Problem 11.9. The matrix

 i 0 0
0 1√

2
i√
2

0 −i√
2

−1√
2

 is a unitary matrix. Moreover,

the columns of this matrix forms an orthonormal set of vectors.

Solution: Let A =

 i 0 0
0 1√

2
i√
2

0 −i√
2

−1√
2

, so that Aθ =

 −i 0 0
0 1√

2
i√
2

0 −i√
2

−1√
2


Then AAθ = I3, so that A is a unitary matrix. If A =

(
C1 C1 C3

)
, then

S = {C1, C2, C3} is such that
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‖C1‖2 = | − i|2 + 02 + 02 = 1
∴ ‖C1‖ = 1
Similarly ‖C2‖ = ‖C3‖ = 1.
Also Cθ1C2 = 0. Similarly, Cθ2C3 = 0, Cθ1C3 = 0 can be checked. In fact

(−i 0 0)

 0
1√
2
−i√

2

= 0

Hence S forms an orthonormal set i.e., the columns of A form an orthonormal
set.

Problem 11.10. The matrix

 p q r
0 q −2r
−p q r

, where p = 1√
2

, q = 1√
3

,

r = 1√
6

is orthogonal. Moreover the columns form an orthonormal set.

Solution: Here A =

 p q r
0 q −2r
−p q r


AAt =

 p q r
0 q −2r
−p q r

 p 0 −p
q q q
r −2r r


=

 p2 + q2 + r2 q2 − 2r2 −p2 + q2 + r2

q2 − 2r2 q2 + 4r2 q2 − 2r2

−p2 + q2 + r2 q2 − 2r2 p2 + q2 + r2


=

 1 0 0
0 1 0
0 0 1

 = I

∴ AAt = I so that A is an orthogonal matrix.
If we write A =

(
C1 C2 C3

)
Then ‖C1‖2 = p2 + p2 = 1 ∵ ‖C1‖ = 1
‖C2‖2 = 3q2 = 1 ∵ ‖C2‖ = 1
‖C3‖2 = 6r2 = 1 ∵ ‖C3‖ = 1
Ct1.C2 = pq + 0(q)− pq = 0
Similarly CtiCj = 0, for i 6= j ; i, j = 1, 2, 3
Hence the set {C1, C2, C3}, consisting of the column vectors of A forms an
orthonormal set.

Problem 11.11. If A is skew Hermitian then (I − A)(I + A)−1 is unitary,
assuming that I +A is non-singular.

Solution: Since A is skew Hermitian, ∴ Aθ = −A . . . (1)
Let B = (I −A)(I +A)−1

Then Bθ = ((I −A)(I +A)−1)θ

= ((I +A)−1)θ(I −A)θ, ∵ (AB)θ = BθAθ

= ((I +A)θ))−1(Iθ −Aθ), ∵ (A−1)θ = (Aθ)−1, (X − Y )θ = Xθ − Y θ
= (I +Aθ)−1(I −Aθ)
= (I −A)−1(I +A) , using(1)
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BθB = (I −A)−1(I +A)(I −A)(I +A)−1

= (I −A)−1(I −A2)(I +A)−1

= (I −A)−1(I −A)(I +A)(I +A)−1

= II
= I

∴ BθB = I so that B is unitary.

11.14 Exercise

1. Show that the matrix 1√
6

 √2 −1 −
√

3√
2 2 0√
2 −1

√
3

 is an orthogonal matrix.

2. Show that the matrix A is an orthogonal matrix, where

(i) A =

(
sin θ cos θ
cos θ − sin θ

)

(ii) A =

(
1√
2

−1√
2

1√
2

1√
2

)

(iii) A =

 1 0 0
0 1√

2
− 1√

2

0 1√
2

1√
2



(iv) A =


1 0 0 0
0 1 0 0
0 0 sin θ cos θ
0 0 cos θ − sin θ


3. For what values of x are the vectors u =

(
1, 1, −2

)t
and v =(

x, −1, 2
)t

orthogonal?

4. For what values of x and y is the set {u, v} an orthonormal set, where

u =
(

1√
2
, 0, 1√

2

)
and v =

(
x, 1√

2
, −y

)
?

5. Let X1 = 1√
2

(
1, −1, 0

)t
, X2 = 1√

3

(
1, 1, 1

)t
. Find a vector X3

so that the matrix A =
(
X1 X2 X3

)
is an orthogonal matrix.

6. Let X1 = 1√
2

(
1, 1, 0, 0

)t
, X2 = 1√

3

(
1, −1, 1, 0

)t
, X3 =

1√
42

(
−1, 1, 2, 6

)t
. Find a vector X4 such that the matrix A =(

X1 X2 X3 X4

)
is an orthogonal matrix.

7. Show that the matrix

(
x y
−y x

)
is unitary if and only if a2+b2+c2+d2 =

1 where x = a+ ib, y = −c+ id.

8. Show that every unitary matrix is normal. Is the converse true?
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9. Prove that
(i) the tranjugate of a unitary matrix is unitary.
(ii) the inverse of a unitary matrix is unitary.
(iii) the product of two unitary matrices is a unitary matrix.

10. Prove that
(i) the transpose of an orthogonal matrix is orthogonal.
(ii) the inverse of an orthogonal matrix is orthogonal.
(iii) the product of two orthogonal matrices is orthogonal.

11. Let P =

 1√
2

2
3

1√
2

−2
3

0 1
3

, X =

(
−
√

2
3

)
. Verify that

(i) columns of P are orthogonal.
(ii) P tP = I2
(iii) ‖PX‖ = ‖X‖.

12. Prove that the matrix A =

 x1 x2 x3

x3 x1 x2

x2 x3 x1

 is orthogonal if and only if

x1, x2, x3 are the roots of the equation x3 +x2 + p = 0 or x3−x2 + q = 0,
where p and q are any real numbers. What happens to A when q = 0.

13. Let A be any 3-rowed orthogonal matrix. Prove that the mapping of
R3 → R3 defined by X → AX preserves the angle between any two
vectors in R3.

14. If A is a skew symmetric matrix then show that (I − A)(I + A)−1 is an
orthogonal matrix (assuming that I +A is singular).

15. If A, B, C are the vertices of a right-angled triangle in R2, show that
the transformation X → PX transforms triangle ABC to a right-angled

triangle, where P =

(
cosθ sinθ
−sinθ cosθ

)
.

16. If Ak is a k × k orthogonal matrix, prove that

Ak+1 =


1 0 . . . 0
0
.
. Ak
.
0

 is an orthogonal matrix. (This provides a

way to obtain higher order orthogonal matrices, from a given orthogonal
matrix).

17. If Ak is a k × k unitary matrix, then Ak+1 and Bk+1 are also unitary

matrices, where Ak+1 =



i 0 . . . 0
0

.

. Ak

.
0


and Bk+1 =



1 0 . . . 0
0

.

. Ak

.
0


.
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18. If X,Y ∈ Rn, define the distance between X and Y as ‖X − Y ‖ i.e.,
dist(X,Y ) = ‖X − Y ‖. Prove that
(i) dist(X,Y ) = ‖X‖2 + ‖Y ‖2 − 2X.Y

= ‖X‖2 + ‖Y ‖2 − 2‖X‖‖Y ‖cosθ
(ii) Deduce form (a) that ifA is an orthogonal matrix then dist(AX,AY ) =
dist(X,Y ).

11.15 Eigenvalues and Eigenvectors

Given a square matrix A, X → AX defines a mapping on Cn. For this
mapping, some vectors are special, as these vectors are mapped to a collinear
vector, i.e. X → αX for some scalar α. these vector play very important role
in linear algebra so we study them in this chapter.

Definition 11.36. If A is a square matrix over C, then a non zero vector
X ∈ Cn is said to be an eigenvector of A, if there exists λεC such that AX = λX
λ is called an eigenvalue (or characteristic root or latent root) of A correspond-
ing to the eigenvector (or characteristic vector or latent vector) X.

If AX = λX, then A(kX) = λ(kX), so that an eigenvector corresponding
to an eigenvalue is not unique.
Also, corresponding to two different eigenvalues, there can not be the same
eigenvector, for if A is a matrix with distinct eigenvalues λ1, λ2and X is an
eigenvector, associated with λ1 as well as λ2, then

AX = λ1X
AX = λ2X

∴ (λ1 − λ2)X = 0
⇒ X = 0
as λ1 6= λ2

which is not possible as X is an eigenvector.
The question that now arises is: given a square matrix A, how do we go about
finding an eigenvalue and a corresponding eigenvector.

Determination of eigenvalues and eigenvectors
Suppose A is a square matrix and λ an eigenvalue of A then there exists a non-
zero vector X such that
AX = λX
⇒ (A− λI)X = 0
since X 6= 0, therefore A − λI is singular, so that |A − λI| = 0 since A is an
n× n matrix
∴ |A−xI| = 0 is a polynomial of degree n in x, and is satisfied by x = λ. Hence
any eigenvalue of A satisfies the nth degree equation
|A− xI| = 0
Thus an n×n matrix has n eigenvalues. They may be real or complex, distinct
or repeated. |A−xI| is called the characteristic polynomial of A. The equation
|A − xI| = 0 is called the characteristic equation of A and its roots are called
the characteristic roots (or eigenvalues or latent roots) of A. A characteristic
(or eigen)vector X 6= 0 associated with a characteristic root λ is a non-zero
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solution of (A − λI)X = 0. The set of all vectors X satisfying (A − λI)X = 0
is called the eigenspace of A associated with the eigenvalue λ. This eigenspace
may contain one or more linearly independent vectors X.
Let A be an n-rowed square matrix with characteristic polynomial
f(x) = anx

n + an−1x
n−1 + an−2x

n−2 . . .+ a0

∴ |A− xI| = anx
n + an−1x

n−1 + an−2x
n−2 . . .+ a0

putting x = 0, we get
|A| = a0

The characteristic equation of A is
anx

n + an−1x
n−1 + an−2x

n−2 . . . a0 = 0, where an = (−1)n

Since this is an equation of degree n in x, ∴ it has n roots. Product of
roots= a0/an = (−1)na0

∴ Product of the characteristic roots = (−1)n|A|

Example 11.21. Find the eigenvalues and the corresponding eigenvectors of
the matrix 2 1 0

9 2 1
0 0 2

. Also, normalize the eigenvectors.

Solution: Let A =

 2 1 0
9 2 1
0 0 2


The characteristic equation of A is |A− xI| = 0
2− x 1 0

9 2− x 1
0 0 2− x

⇒ (2− x)[(2− x)2 − 9] = 0

⇒ (x− 2)(x− 5)(x+ 1) = 0
⇒ x = 2, 5,−1.
Hence the eigenvalues of A are 2, 5, -1.

Let us now find the eigenvectors corresponding to the different eigenvalues.
If X=(x1, x2, x3) is an eigenvector corresponding to eigenvalue λ, then
(A− λI)X = 0

⇒

 2− λ 1 0
9 2− λ 1
0 0 2− λ

X = 0 . . . (1)

Let λ = 2. Equation (1) gives 0 1 0
9 0 1
0 0 0

X = 0

⇒ x2 = 0
9x1 + x3 = 0
⇒ x1 = −1

9 k
x3 = k where k is any real number.
Taking k = 9, X1(−1, 0, 9)t is an eigenvector corresponding to λ = 2. ||X1|| =√

82
∴ Y1 = 1√

82
(−1 0 9) is such that ||Y1|| = 1. Y1 is the normalised eigen vector

associated with λ = 2.
Let λ = 5, Equation (1) gives
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9 −3 1
0 0 −3

X = 0

⇒ −3x1 + x2 = 0
9x1 − 3x2 + x3 = 0

−3x3 = 0
Thus x1 = 1

3k
x2 = k
x3 = 0

where k is any real number.

Take k = 3
∴ X2 = (1 3 0 )t is an eigenvector corresponding to λ = 5, ||X2|| =

√
10

Y2 = 1√
10

(1 3 0)t is such that ||Y2|| = 1

Let λ = −1, Equation (1) gives 3 1 0
9 3 1
0 0 3

X = 0

3x1 + x2 = 0
9x1 + 3x2 + x3 = 0
3x3 = 0
Hence x1 = −1

3 k
x2 = k
x3 = 0,where k is any real number.
Take k = 3. Then, X3 = (−1 3 0)t is an eigenvector corresponding to λ = −1
and ||X3|| =

√
10.

Y3 = 1√
10

(−1 3 0 )t is such that ||Y3|| = 1

The eigenvalues are 2,5 and -1 and the corresponding normalised eigenvectors
are 1√

82
(−1, 0, 9)t, 1√

10
(1 3, 0)t and 1√

10
(−1, 3, 0)t

Theorem 11.33. If A is an an n × n matrix then A and At have the same
characterstic roots.

Proof: Let λ be any complex number then (A− λI)t = (At − λI)

So that |A− λI| = |(A− λI)t|
= |At − λI|

Hence |A− λI| = 0
⇔ |At − λI| = 0

Hence A and At have the same characteristic equation and therefore the same
characteristic roots.

Theorem 11.34. The characteristic roots of a triangular matrix are the diag-
onal elements.

Proof: Let A be a triangular matrix. If A is upper triangular, then
A = (aij)n×n where aij = 0 if i > j
Let λ be any complex number

|A− λI| =
a11-λ a12 a1n

0 a22 − λ a2n

0 0 ann − λ
= (a11 − λ)(a22 − λ) . . . (ann − λ).
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The characteristic roots are the roots of the equation
|A− λI| = 0
⇒ λ = a11, a22, . . . ann.
Hence the characteristic roots of A are the diagonal elements of A. If A is a
lower triangular matrix, it can be similarly proved that its characteristic roots
are the diagonal elements.

Corollary 11.35. The characteristic roots of a diagonal matrix are the diagonal
elements.

Corollary 11.36. The characteristic roots of a n-rowed scalar matrix is a di-
agonal element, with multiplicity n.

Theorem 11.37. The characteristic roots of Aθ are the conjugates of the char-
acteristic roots of A, and conversely.

Proof: Let λ any complex number

(A− λI) = A− λI, as I = I

∴ (A− λI)θ = (A− λI)t

= (A− λI)t

= (A
t
)− λIt

Now = Aθ − λI
|(A− λI)θ| = |Aθ − λI| . . . (1)

Also |(A− λI)θ| = |(A− λI)t|
= |A− λI|
= |(A− λI)| . . . (2)

Thus (1) and (2)⇒ |Aθ − λI| = |A− λI|
Hence |A− λI| = 0

⇔ |Aθ − λI| = 0

So that λ is a characteristic root of A if and only if λ is a characteristic root of
Aθ.

Theorem 11.38. The characteristic roots of kA are k times the characteristic
roots of A, where k is any complex number.

Proof: If λ is any complex number,
then (kA− kλI) = k(A− λI)
∴ |kA− kλI| = |k(A− λI)|

= kn|A− λI|
Thus |A− λI| = 0
⇔ |kA− kλI| = 0

So that if λ is a characteristic root of A, then kλ is a characteristic root of
kA.

Theorem 11.39. If λ is a characteristic root of A then λp is a characteristic
root of Ap.

Proof: Let λ be a characteristic root of A, and X is a corresponding charac-
teristic vector. Then
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AX = λX (1)
We prove that AnX = λnX, for all n ∈ N by induction on n.
The result clearly holds for n = 1. Let the result hold for n = k
i.e. AkX = λkX
pre-multiplying by A,we get AAkX = A(λkX)
⇒ Ak+1X = λk(AX)

= λk(λX)
= λk+1X

∴ Ak+1X = λk+1X
so that the result holds for n = k + 1. Hence, by the principle of induction the
result holds for all n ∈ N
∴ ApX = λpX

So that λp is a characteristic root ofAp.

Theorem 11.40. The characteristic roots of a Hermitian matrix are real.

Proof: Let A be a Hermitian matrix.
∴ A = Aθ . . . (1)
Let λ be a characteristic root of A and X a corresponding characterstic vector.
Then
AX = λX . . . (2)
pre-multiplying by Xθ,we get
XθAX = λXθX . . . (3)
Taking transposed conjugate on both sides of (3), we get
(XθAX)θ = (λXθX)θ

⇒ (X)θAθ(Xθ)θ = λ(XθX)θ

⇒ XθAX = λXθX using (1) and (Xθ)θ = X
⇒ λXθX = λXθX using (2)
⇒ (λ− λ)XθX = 0
Since X 6= 0 ∴ XθX 6= 0, so that
λ− λ = 0
⇒ λ = λ
⇒ λ is real.

Corollary 11.41. The characteristic roots of a real symmetric matrix are real.

Proof: Since a real symmetric matrix is Hermitian, result follows by the above
theorem.

Corollary 11.42. The characteristic roots of a skew Hermitian matrix are
either zero or pure imaginary.

Proof: Let A be a skew Hermitian matrix and λ a characteristic root of A.
Then iA is a Hermitian matrix, and iλ is a characteristic root of iA. By the
above theorem, iλ is real so that λ must be zero or purely imaginary.

Corollary 11.43. The characteristic roots of a real skew symmetric matrix are
either zero or pure imaginary.

Theorem 11.44. The characteristic roots of a unitary matrix are of unit mod-
ulus.
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Proof: Let A be a unitary matrix. Then AAθ = AθA = I . . . (1)
Let λ be a characteristic root of A and X a characteristic vector corresponding
to λ. Then
AX = λX . . . (2)
Taking transposed conjugate in (2) we get
XθAθ = λXθ

∴ XθAθAX = λXθλX
⇒ XθX = λλXθX
⇒ XθX(1− |λ|2) = 0
Since X 6= 0 ∴ XθX 6= 0, so that
1− |λ|2 = 0
⇒ |λ| = 1

Corollary 11.45. The characteristic roots of an orthogonal matrix are of unit
modulus.

Theorem 11.46. The characteristic vectors corresponding to distinct charac-
teristic roots of a matrix are linearly independent.

Proof: Let A be an n-rowed square matrix and λ1, λ2, λ3, . . . , λk are distinct
characteristic roots of A. Let X1, X2, . . . , Xk be the corresponding characteristic
vectors. Then

AXi = λiXi . . . . . . (1) for i = 1, 2, 3 . . . k.
For j 6= i,
(A− λiI)Xj = AXj − λiIXj

= λjXj − λiXj , using(1)
= (λj − λi)Xj

∴ (A− λiI)Xj = (λj − λi)Xj . . . (2)
Consider a linear relation of the type
c1X1 + c2X2 + c3X3 + . . . ckXk = 0 . . . (3)
where ci’s are scalars. Pre multiplying (3) by (A− λ2I),
we get (A− λ2I)(c1X1 + c2X2 + c3X3 + . . . ckXk) = 0
⇒ c1(A− λ2I)X1 + c2(A− λ2I)X2 + . . . ck(A− λ2I)Xk = 0
⇒ c1(λ1 − λ2)X1 + c3(λ3 − λ2)X3 + . . .+ ck(λk − λ2)Xk = 0
Note that in this relation the vector X2 is missing. Proceeding in a similar way,
and pre-multiplying by (A − λ3I), (A − λ4I), . . . , (A − λkI) in succession we
eliminate X3, X4, . . . , Xk in turn, and arrive at
c1(λ1 − λ2)(λ1 − λ3) . . . (λ1 − λk)X1 = 0
since λi’s are distinct and X1 6= 0
∴ c1 = 0
In a similar way we can, by pre-multiplying (3) by (A−λ1I), (A−λ3I), . . . , (A−
λkI), and eliminating in turn X1, X3, . . . Xk, we obtain
c2(λ2 − λ1)(λ2 − λ3) . . . (λ2 − λk)X2 = 0
giving c2 = 0.
Proceeding in this way, we get
c3 = c4 = . . . ck = 0. Hence X1, X2, . . . , Xk are linearly independent.

Theorem 11.47. The characteristic vectors corresponding to two distinct char-
acteristic roots of a Hermitian matrix are orthogonal.

Proof: Let A be a Hermitian matrix. Then A = Aθ . . . (1)
Let λ, µ be two distinct characteristic roots of A and X, Y the corresponding
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characteristic vectors, Since A is Hermitian, therefore λ, µ are real. Then AX =
λX . . . (2)
AY = λY . . . (3)
Pre-multiplying (2) by Y θ we get
Y θAX = λY θX . . . (4)
Taking transposed conjugate of (3), we get
Y θAθ = µY θ

⇒ Y θA = µY θ using (1) and µ is real.
Post-multiplying by X, we get Y θAX = µY θX
⇒ λY θX = µY θX using (4)
⇒ (λ− µ)Y θX = 0
⇒ Y θX = 0, as λ 6= µ
⇒ X and Y are orthogonal.

Corollary 11.48. The characteristic vectors corresponding to distinct charac-
teristic roots of a real symmetric matrix are orthogonal.

Theorem 11.49. If λ1, λ2, . . . λn are eigen values of an n-rowed matrix A, and
X1, X2, . . . Xn are the corresponding linearly independent eigenvectors,then

P−1AP =


λ1 0

.
.
.

0 λn

, where P = [X1, X2 . . . , Xn]

Proof: Since Xi is an eigenvector associated with the eigenvalue λi. ∴ AXi =
λiXi, i = 1, 2 . . . , n
AP = A[X1, X2, . . . Xn]

= [AX1, AX2, . . . , AXn]
= [λ1X1, λ2X2, . . . , λnXn]

= [X1, X2, . . . , Xn]


λ1 0

.
.
.

0 λn

 = P


λ1 0

.
.
.

0 λn


Since the columns of P are linearly independent,therefore P−1 exists, so that

P−1AP =


λ1 0

.
.
.

0 λn


Definition 11.37. (Similar Matrices): Let A be a square matrix. A square
matrix B is said to be similar to A if there exists an invertible matrix P such
that B = P−1AP . The matrices A,B and P are assumed to be over the same
field. We write B ∼ A.

The relation of similarity is an equivalence relation. Many properties of A
are carried over to B. For instance,
• They have the same determinant.
• They have the same characteristic equations.
• They have the same rank.
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• They have the same nullity.
•B is invertible if and only if A is invertible.

Thus, if a given matrix A is similar to a simpler matrix, say a diagonal
matrix D, then those properties of A which are invariant under similarity can
be studied for D rather than for A. In fact, if A = P−1DP , for some diagonal
matrix then An = P−1DnP . Since it is easy to calculate Dn, so the calculation
of An is also simplified.

Definition 11.38. (Diagonalizable Matrix): A matrix is said to be diago-
nalizable if it is similar to a diagonal matrix.

Theorem 11.49 can be restated as follows:

Theorem 11.50. If an n-rowed square matrix has n linearly independent eigen-
vectors, then it is similar to a diagonal matrix.

It is important to note that n linearly independent eigenvectors may not
always exist. If all the eigenvalues are distinct, linearly independent eigenvectors
always exist, but when some of the eigenvalues are repeated, then n linearly
independent eigenvectors may not always exist. A detailed discussion of this
is not our aim here. An interested reader we refer to Algebra II by the same
authors.

11.16 Cayley Hamilton Theorem and Its Appli-
cations

A very important and useful result regarding characteristic equation is the
Cayley Hamilton Theorem. It is used to find inverse of a matrix and helps us in
expressing a matrix polynomial of any degree in terms of a matrix polynomial
of degree less than n, where n is the order of the matrix.

Theorem 11.51. (Cayley Hamilton theorem): Every square matrix sat-
isfies its characteristic equation. Equivalently, if A is a square matrix, and
|A − λI| = a0 + a1λ + . . . + anλ

n = 0 is the characteristic equation of A, then
a0I + a1A+ . . .+ anA

n = 0

Proof: The elements of A − λI are at most of degree one in λ, So that
the elements of adj(A − λI) are at most of degree (n − 1) in λ. If Bk is the
matrix whose (i, j)th element is the coefficient of λk in the (i, j)th element of
adj(A−λI) then, adj(A−λI) can be written as B0+B1λ+. . .+Bn−1λ

n−1 where
B0, B1, . . . , Bn−1 are matrices of order n, and these elements depend upon the
elements of A. Since
(A− λI)adj(A− λI) = |A− λI|
(A− λI)(B0 +B1λ+ . . .+Bn−1λ

n−1) = (a0 + a1λ+ . . . anλ
n)I.

Equating coefficients of λ0, λ1λ2, . . . , λn we get:
AB0 = a0I
AB1 − IB0 = a1I
. . .
ABn−1 − IBn−2 = an−1I
−IBn−1 = anI



11.16. CAYLEY HAMILTON THEOREM AND ITS APPLICATIONS 491

Pre-multiplying the above equation by I, A,A2, A3, A4, . . . , An respectively and
adding we get,
0 = a0I + a1A+ . . .+ anA

n (as the terms on the left hand side cancel in pairs).
Thus λ = A satisfies the characteristic equation
a0 + a1λ+ . . .+ anλ

n = 0.
Sometimes we state Cayley Hamilton theorem as:
Every Square matrix satisfies its characteristic equation.

Example 11.22. Verify that A =

 2 −1 1
−1 2 −1
1 −1 2

 satisfies its characteris-

tic equation, and hence obtain A−1.

Solution: The characteristic equation of A is |A− λI| = 0
2− λ -1 1

-1 2− λ −1 . . . (1)
1 -1 2− λ

= 0

⇒ λ3 + 6λ2 + 9λ− 4 = 0
To verify that A satisfies (1),we have to verify that
A3 − 6A2 + 9A− 4I = 0 . . . (2)

A2 =

 6 −5 5
−5 6 6
5 −5 6

,

A3 =

 22 −21 21
−21 22 −21
21 −21 22


On substituting the values of I, A,A2 and A3, it can be seen that (2) is satisfied.
To find A−1

Pre-multiplying (2) by A−1,we get
A2 − 6A+ 9I − 4A−1 = 0
⇒ 4A−1 = A2 − 6A+ 9I

∴ 4A−1 =

 3 1 −1
1 3 1
−1 1 3


so that A−1 = 1

4

 3 1 −1
1 3 1
−1 1 3


Example 11.23. Find A3 and A5 using Cayley Hamilton theorem, where A =(

1 2
4 3

)
.

Solution: The characteristic equation of A is |A− xI| = 0.
1− x 2

4 3− x
⇒ x2 − 4x− 5 = 0 . . . (1)
By Cayley Hamilton theorem,
A2 − 4A− 5I = 0 . . . (2)
∴ A2 = 4A+ 5I . . . (3)
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Pre-multiplying (3) by A, we get
A3 = 4A2 + 5A

= 4(4A+ 5I) + 5A using (3)
= 21A+ 20I

=

(
41 42
84 83

)
To obtain A5 multiply (3) by A3

⇒ A5 = 4A4 + 5A3

= 521A+ 520I (on using (3) repeatedly)

=

(
1041 1042
2084 2083

)
Another way of obtaining this expression for A5 as a linear polynomial in A is
to divide x5 by x2 − 4x− 5
Thus x5 = (x3 + 4x2 + 21x+ 104)(x2 +−4x− 5) + 521x+ 520
so that A5 = (A3 + 4A2 + 21A+ 104I)(A2 − 4A− 5I) + 521A+ 520I

= 521A+ 520I, using (2)

=

(
1041 1042
2084 2083

)
Let A be a n× n matrix with characteristic equation

anx
n + an−1x

n−1 + . . .+ a0 = 0 . . . (1)
By Cayley Hamilton theorem, A satisfies the matrix equation
anx

n + an−1x
n−1 + . . .+ a0I = 0

so that
anA

n + an−1A
n−1 + . . .+ a0I = 0 . . . (2)

We know that|A| = a0, so that A−1 exists if a0 6= 0.
Pre-multiplying (2) by A−1, we get,
anA

n−1 + an−1A
n−2 + . . .+ a0A

−1 = 0
⇒ A−1 = −1

a0
(anA

n−1 + an−1A
n−2 + . . .+ a1I)

Thus A−1 has been expressed as a polynomial in A of degree n− 1, and can be
evaluated easily.

Suppose we want to evaluate a polynomial in A, namely
g(A) = b0A

m + b1A
m−1 + . . .+ bmI

If
f(x) = 0 . . . (1)

is the characteristic equation of A, then by Cayley Hamilton theorem,
f(A) = 0 . . . (2)

Applying division algorithm to f(x) and g(x), there exist polynomials q(x) and
r(x) such that
g(x) = f(x)q(x) + r(x), where r(x) = 0 or deg(r(x)) < n. Replacing x by A,
we get g(A) = f(A)q(A) + r(A)
⇒ g(A) = r(A), using(2)
Thus g(A) is expressible as a polynomial in A of degree at most n-1.This helps
us to evaluate g(A), when g(x) is a polynomial of any degree.

Example 11.24. If A =

 2 −1 1
−1 2 −1
1 −1 2

, find

(1) A−1, if it exists.
(2) A7 − 7A6 + 15A5 − 12A4 −A3 + 8A2 − 15A− 4I
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Solution: Characteristic equation A is
|A− xI| = 0

⇒
2-x -1 1
-1 2-x -1
1 -1 2-x

= 0

⇒ x3 − 6x2 + 9x− 4 = 0
letf(x) = x3 − 6x2 + 9x− 4
By Cayley Hamilton Theorem,
A3 − 6A2 + 9A− 4I = 0
⇒ f(A) = 0 . . . (2)
In (1) constant term is non-zero, so that A−1 exists. Pre-multiplying (2) by
A−1 and transposing, we get
4A−1 = A2 − 6A+ 9I

=

 3 1 −1
1 3 1
−1 1 3


A−1 = 1

4

 3 1 −1
1 3 1
−1 1 3


(2) Let g(x) = x7 − 7x6 + 15x5 − 12x4 − x3 + 8x2 + 15x− 4.
Applying division algorithm to f(x) and g(x) there exists q(x) and r(x) such
that
g(x) = f(x)q(x) + r(x) (3) where q(x) = x4 − x3 + x+ 1
r(x) = 5x2 + 10x
In (3), replacing x by A the relation still holds.
∴ g(A) = f(A)q(A) + r(A)
= r(A) , using (2)
= 5A2 + 10A

= 5

 6 −5 −5
−5 6 −5
5 −5 6

+ 10

 2 −1 1
−1 2 −1
1 −1 2


=

 50 −35 35
−35 50 −35
35 −35 50


11.17 Solved Problems

Problem 11.12. Find the eigenvalues and the corresponding eigenvectors of

the matrix

 2 1 2
0 2 3
0 0 5



Solution: Let A =

 2 1 2
0 2 3
0 0 5


Characteristic equation of A is |A− xI| = 0

⇒
2-x 1 2
0 2-x 3
0 0 5-x

= 0

⇒ (2− x)2(5− x) = 0
⇒ x = 2, 2, 5.
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Thus the eigenvalues are λ1 = 5, λ2 = 2, λ3 = 2.
We now obtain the eigenvectors corresponding to each eigenvalue, noting that
two of the eigenvalues are the same. If X = (x1, x2, x3)t is an eigenvector
corresponding to the eigenvalue λ, then (A− λI)X = 0

⇒

 2− λ 1 2
0 2− λ 3
0 0 5− λ

X = 0

Substituting λ = 5 in (1), we get

 −3 1 2
0 −3 3
0 0 0

X = 0

⇒ −3x1 + x2 + 2x3 = 0
− 3x2 + 3x3 = 0

⇒ x1 = k
x2 = k
x3 = k where k is any real number.

Thus X1 = (1, 1, 1)t is an eigenvector corresponding to λ1 = 5.
Now, λ2 = 2 = λ3

So, substituting λ = 2 in (1), we get 0 1 2
0 0 3
0 0 3

X = 0

⇒ x2 + 2x3 = 0
3x3 = 0

∴ x1 = k, x2 = 0, x3 = 0
Taking k = 1.

∴ X2 = (1, 0, 0)t is an eigenvector corresponding to the repeated eigen-
values 2.

Note that in above example, though 2 is a repeated eigenvalue, there is
only one eigenvector corresponding to it. There are only 2 linearly independent
eigenvectors, X1 and X2.

Problem 11.13. Find the eigenvalues and eigenvectors of the matrix 2 0 1
0 3 0
1 0 2

.

Solution: Let A =

 2 0 1
0 3 0
1 0 2


The characteristic equation of A is |A− xI| = 0

⇒
2− x 0 1

0 3− x 0
1 0 2− x

= 0

⇒ (3− x)[(2− x)2 − 1] = 0
⇒ (3− x)(3− x)(x− 1) = 0
⇒ x = 1, 3, 3.
Thus, the eigenvalues are λ1 = 1, λ2 = λ3 = 3.
If X = (x1, x2 , x3)t is an eigenvector corresponding to the eigenvalue λ, then
(A− λI) = 0
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⇒

 2− λ 0 1
0 3− λ 0
1 0 2− λ

X = 0 . . . (1)

For λ1 = 1, Equation (1) gives

 1 0 1
0 2 0
1 0 1

X = 0

⇒ x1 + x3 = 0
2x2 = 0

x1 + x3 = 0
∴ x1 = −k, x2 = 0, x3 = k
where k is any real number. ∴ X = k(−1, 0, 1)t is an eigenvector corre-
sponding to λ1 = 1.
For λ2 = λ3 = 3, Equation (1) gives −1 0 1

0 0 0
1 0 −1

X = 0

−x1 + x3 = 0
0 = 0

x1 − x3 = 0
∴ x1 = x3 = k1(say). Also x2 is arbitrary so that X = (k1, k2 k1)t is an
eigenvector. Taking k1 = 1, k2 = 0, we get X1 = (1, 0, 1)t as an eigenvector.
Taking k1 = 0, k2 = 1, we get X2 = (0, 1, 0). Also X1, X2 are linearly
independent, thus corresponding to λ2 = 3 we get two linearly independent
eigenvectors X1, X2.

Problem 11.14. Show that the square matrices A and P−1AP have the same
eigenvalues, where P is an arbitrary non-singular matrix.

Solution: Let λ be any complex number.

Then (P−1AP − λI) = (P−1AP − λP−1P ) = P−1(A− λI)P
∴ |P−1AP − λI| = |P−1(A− λI)P |

= |P−1||A− λI||P |
= |P |−1|A− λI||P |
= |A− λI|. Thus |A− λI| = 0

⇔ |P−1AP − λI| = 0
so that A and P−1AP have the same characteristic equation, and ∴ the same
characteristic roots.

Problem 11.15. If λ is a characteristic root of a non-singular matrix A, then
|A|
λ is a characteristic root of adjA.

Solution: Since A is non-singular, ∴ 0 is not a characteristic root of A. Let λ
be a characteristic root of A. Then λ 6= 0. Also, there exists a non-zero vector
X such that
AX = λX
Then (adjA)AX = (adjA)(λX)
⇒ |A|IX = λ(adjA)X ∵ (adjA)A = I

⇒ |A|
λ X = (adjA)X(∵ λ 6= 0)

⇒ (adjA)X = |A|
λ X

⇒ |A|
λ is a characteristic root of (adjA)
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Problem 11.16. If A is a square matrix of order n, prove that the trace of A
is the sum of eigenvalues of A.

Proof: Let A = (aij)n×n. The characteristic equation of A is |A− xI| = 0

⇒

a11 − x a12 . . . a1n

a21 a22 − x . . . a2n

. . . . . . . . . . . .

. . . . . . . . . . . .
an1 an2 . . . ann − x

=0 . . . (1)

Expanding (1) along the Ist row,the co factors of a12, . . . , a1n are of degree at
most n − 2 in x and the cofactor of a11 − x is of degree n − 1 in x. Thus, in
the expansion of (1) the term of xn−1 is obtained only from (a11 − x)(a22 −
x) . . . (ann − x).
Thus coefficient of xn−1 = (−1)n−1(a11 + a22 + . . .+ ann)

= (−1)n−1traceA
coefficient of xn = (−1)n. Sum of the eigenvalues= Sum of the roots of the

characteristic equation of A =−Coefficient of xn−1

Coefficient of xn

= − (−1)n−1traceA
(−1)n

= traceA

Problem 11.17. Let A and B be n-rowed matrices. If I − AB is invertible,
then I −BA is invertible and (I −BA)−1 = I +B(I −AB)−1A

Solution: Since I − AB is invertible, therefore there exists a matrix C such
that (I −AB)C = C(I −AB) = I . . . (1)
Now (I −AB)C = I
⇒ C − (AB)C = I
⇒ I + (AB)C = C
⇒ BIA+B(AB)CA = BCA
⇒ BA = BCA−BABCA
⇒ −BA+BCA−BABCA = 0
⇒ −BA(I +BCA) + I +BCA = I . . . (2)
⇒ (I −BA)(I +BCA) = I
Similarly (2)⇒ (I +BCA)(I −BA) = I
Thus (I +BCA)(I −BA) = (I −BA)(I +BCA) = I
Hence I −BA is invertible and (I −BA)−1 = I +BCA
= I +B(I −AB)−1A

Remark 11.4. From this we can say that |I − AB| = 0 ⇔ |I − BA| = 0.
Consequently we have the following problem

Problem 11.18. If A and B are n-rowed matrices then AB and BA have the
same characteristic roots.

Solution: Let λ be a characteristic root of AB. Two cases arise.
Case 1. λ = 0

Then |AB| = 0
⇔ |A||B| = 0
⇔ |B||A| = 0
⇔ |BA| = 0
Thus 0 is a characteristic root of AB ⇔ 0 is a characteristic root of BA.
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Case 2. λ 6= 0
|AB − λI| = 0

⇔ | 1λAB − I| = 0
⇔ |( 1

λA)B − I| = 0
⇔ |B( 1

λA)− I| = 0
⇔ | 1λBA− I| = 0
⇔ |BA− λI| = 0
Thus λ is a characteristic root of AB ⇔ λ is a characteristic root of BA.

Cases 1 and 2 prove that AB and BA have the same characteristic roots.

Problem 11.19. Let A be a 2 × 2 real symmetric matrix. Prove that A is
similar to a diagonal matrix.

Solution: Since A is symmetric, let

A =

(
a b
b d

)
characteristic equation of A is |A− xI| = 0
a− x b
b d− x = 0

⇒ (a− x)(d− x)− b2 = 0
x2 − (a+ d)x+ ad− b2 = 0
Discriminant = (a+ d)2 − 4(ad− b2)

= (a− d)2 + 4b2

≥ 0
Hence roots are real. Roots are equal when a− d = 0 and b = 0

∴ A =

(
a 0
0 d

)
=

(
a 0
0 a

)
So that A itself is a diagonal matrix. Let the roots be distinct, say λ1, λ2 Let
X1, X2 be corresponding eigenvectors. Then X1, X2 are linearly independent so
that P = [X1 X2] is an invertible matrix.
AX1 = λ1X1, AX2 = λ2X2

Now AP = A[X1 AX2] = [AX1 AX2]
= [λ1X1 λ2X2]

= [X1 X2]

(
λ1 0
0 λ2

)
= PD, where D =

(
λ1 0
0 λ2

)
AP = PD
⇒ P−1AP = D
⇒ A is a similar to a diagonal matrix.

Problem 11.20. Show that if the two characteristic roots of a Hermitian matrix
of order 2 are equal, then the matrix must be a scalar multiple of the unit matrix.

Solution: Let A =

(
a b

b c

)
be a given 2× 2 Hermitian matrix.

The characteristic equation of A is
a− x b

b c− x = 0

⇒ (a− x)(c− x)− bb = 0
⇒ x2 − (a+ c)x+ ac− bb = 0 . . . (1)
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Since the characteristic roots are equal
∴ Disc. of (1) = 0
⇒ (a+ c)2 − 4(ac− bb) = 0
⇒ (a− c)2 + 4bb = 0
Since the sum of two non-negative terms is zero, ∴ each term = 0 so that
(a− c)2 = 0 and bb = 0
⇒ a = c, b = 0

∴ A =

(
a 0
0 a

)
= a

(
1 0
0 1

)
Hence proved.

Problem 11.21. Prove that the coefficient in the characteristic equation of a
real skew symmetric matrix are non-negative.

Solution: Let A be a real skew symmetric matrix whose characteristic equa-
tion is
a0x

n + a1x
n−1 + . . .+ an = 0 . . . (1)

Since the characteristic roots of a real symmetric matrix are either zero or pure
imaginary, therefore 0 is the only real root of (1).
If 0 is a root of (1) of multiplicity k, then xk is a factor of (1). Then (1) can be
rewritten as
xk(a0x

n−k + a1x
n−k−1 + . . .+ an−k) = 0.

Therefore an−k+1 = an−k+2 = . . . = an = 0
a0x

n−k + a1x
n−k−1 + . . .+ an−k = 0, has no real roots

Therefore by Descartes Rule of Sign, there is no change of sign, so that
a0, a1, . . . , an−k all have the same sign. Hence they all can be taken to be
positive.

Thus the coefficients of (1) are positive or zero i.e. they are non-negative.

Problem 11.22. For a skew symmetric matrix of order n, show that

(i) if λ is a characteristic root of A, so is −λ.

(ii) every non-zero characteristic root of A2, occurs with even multiplicity.

(iii) |A2 − xI| is a perfect square, if n is even, and |A2 − xI| = x[f(x)]2 if n is
odd.

Solution: Since A is a skew symmetric
∴ At = −A.
|A− xI| = | −At − xI|

= | − (At + xI)|
= (−1)n|At + xI|
= (−1)n|(At + xI)t| ∵ |Bt| = |B|
= (−1)n|A+ xI|

∴ |A− xI| = (−1)n|A+ xI| . . . (1)

(i) If λ is a characteristic root of A,then|A− λI| = 0
⇒ |A+ λI| = 0, using(1)
⇒ −λ is a characteristic root of A.

(ii) Let λ be a non-zero characteristic root of A. By (i), −λ is also a character-
istic root of A. Since λ,−λ are both characteristic roots of A, therefore
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λ2, (−λ)2 are characteristic roots of A2 occurring twice. Hence multiplicity
of λ2 as a characteristic root of A2 = 2 (multiplicity of λ as a characteristic
root of A)
Thus every non-zero root of A2 occurs with even multiplicity.

(iii) Suppose n is even. Let n = 2k, for some k. Since the non-zero roots occur
in pairs, by(i), if zero is a root it must have even multiplicity. Let the
roots be λ1, λ2, . . . , λk,−λ1,−λ2 . . . , λk then the roots of A2 are
λ2

1, λ
2
1, λ

2
2, λ

2
2, . . . , λ

2
k, λ

2
k

|A2 − xI| = (x− λ1
2)2(x− λ2

2)2 . . . (x− λk2)2

= [(x− λ2
1)(x− λ2

2) . . . (x− λ2
k)]2

Suppose n is odd. Then n = 2k + 1. By (i), the non-zero roots occur
in pairs and the number of roots is even, ∴ 0 must be a root with odd
multiplicity 2m+ 1 (say). Hence the roots are
0, λ1, . . . , λl,−λ1, . . . ,−λl so that |A− xI| = x(x− λ2

1)2 . . . (x− λ2
l )

2

= x[(x− λ2
1) . . . (x− λ2

l )]
2

x(f(x))2

Problem 11.23. Let A be a 2×2 matrix with complex entries such that A2 = 0.

Prove that either A = 0 or A is similar to

(
0 0
1 0

)
.

Solution: Let A =

(
a b
c d

)
such that A2 = 0. Then |A2| = 0⇒ |A| = 0⇒

ad − bc = 0. If λ1, λ2 are the characteristic roots of A, the characteristic roots
of A2 are λ2

1, λ
2
2.

Since A2 = 0
∴ λ2

1 = λ2
2 = 0

⇒ λ1 = λ2 = 0
⇒ 0 is the only characteristic root of A. The characteristic equation of A is
|A− xI| = 0
⇒ x2 − (a+ d)x+ ad− bc = 0
⇒ x2 − (a+ d)x = 0 . . . (1)
By Cayley Hamilton theorem, A satisfies (1) so that A2 − (a+ d)A = 0
⇒ (a+ d)A = 0 ∵ A2 = 0
⇒ (a+ d) = 0 or A = 0
If A = 0 result is proved. Let us now take a+ d=0
∴ d = −a, so that

A =

(
a b
c −a

)
. We now find a characteristic vector X associated with the

characteristic value 0. If X = (x1 x2) is such a vector then AX = 0X

⇒
(
a b
c −a

) (
x1

x2

)
=

(
0
0

)
.

x1 = a, x2 = c satisfies this (as a2 + bc = −ad+ bc = 0)

∴ X =

(
a
c

)
6= 0 is a characteristic vector. If c = 0 then a2 + bc = 0⇒ a = 0

so that X = 0, a contradiction. So c 6= 0. If Y = (1, 0)t, then X,Y are linearly

independent vectors. If P =

(
1 a
0 c

)
, then P−1AP =

(
0 0
1 0

)
so that A is

similar to

(
0 0
1 0

)
.
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11.18 Exercise

1. If A is a non-singular matrix, prove that the characteristic roots of A−1

are the reciprocals of the characteristic roots of A.

2. Prove that 0 is a characteristic root of A if and only if A is a singular
matrix.

3. If λ is a characteristic roots of A, prove that λ− k is a characteristic root
of A− kI.

4. Give an independent proof of the following:
(i) The characteristic roots of a skew Hermitian matrix are zero or

pure imaginary.
(ii) The characteristic roots of a real symmetric matrix are real.
(iii) The characteristic roots of a real skew symmetric matrix are zero

or pure imaginary.

5. Let A be a 2×2 symmetric matrix with real entries. Prove that A is either
a scalar matrix or similar to a diagonal matrix.

6. Find the characteristic equation of the matrix A =

 6 −3 −2
4 −1 −1
10 −5 −3

.

Also find A−1, if it exists.

7. Find the eigenvalues and the corresponding eigenvectors of the matrix −9 4 4
−8 3 4
−16 8 7


8. If the characteristic equation of a non-singular matrix A of order 3 is
x3− px2 + qx− r = 0, then prove that the characteristic equation of adjA
is x3 − qx2 + prx− r2 = 0

9. Find the eigenvalues and eigenvectors of the matrix

 7 4 −1
4 7 −1
4 −4 4



10. Find the eigenvalues and eigenvectors of the matrix

 2 0 1
2 3 1
1 0 2


11. For any non-singular matrix P , prove that A and P−1AP have the same

trace.

12. In Q.9, is the matrix diagonalizable? If yes, find a matrix P such that
P−1AP is diagonal.
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11.19 Supplementary Exercises

1. State whether the following the statements are true or false.

(i)
1 2
3 4

is a 2× 2 matrix.

(ii) If A =

(
2 4 6
1 2 3

)
,then det A = 0

(iii) The null matrix of order 3 is a diagonal matrix.
(iv) Every null matrix is a scalar matrix .
(v) The product of two triangular matrices is a triangular matrix.
(vi) If A = (aij) and B = (bij), then A+B = (aij + bij).
(vii) If A and B are matrices such that AB andBA are both defined,

then AB = BA
(viii) If α is any real number and A is a 3 × 10 matrix, then α 0 0

0 α 0
0 0 α

A = αA

(ix) Aei is the ith row of A, where ei is the ith column of the unit
matrix.

(x) There exists a non-zero matrix A such that AX = 0, for all
column vectors X.

(xi) If A is a non-zero diagonal matrix, then trace A = |A|.
(xii) Every matrix can expressed as the sum of a symmetric and skew

symmetric matrix.
(xiv) Every square matrix can be expressed as P + iQ,where P and Q

are Hermitian matrices.
(xv) A square matrix A is skew Hermitian matrix if iA is Hermitian.
(xvi) If a matrix has a right inverse B and a left inverse C, then B = C
(xvii) If A is any square matrix, then An is defined for every integer n.
(xviii) If A is an orthogonal matrix, then the vector X and AX are

orthogonal to each other.
(xix) If P is a unitary matrix, then APAθ is also a unitary matrix.
(xx) The column of a normal matrix are of unit length.
(xxi) A scalar λ is called an eigenvalue of a square matrix A if there

exists a vector X such that AX = λX.
(xxii) For any square matrix A, two distinct eigenvalues can have the

same eigenvector.
(xxiii) For any square matrix A, X is an eigenvector of A if AX and X

are collinear.
(xxiv) An n-rowed square matrix has exactly n eigenvalue.
(xxv) An n-rowed square matrix always has n linearly independent

eigenvectors.
(xxvi) A square matrix may not have any eigenvector.
(xxvii) Every matrix satisfies its characteristic equation.
(xxviii) The number of eigenvectors of a square matrix over complex

numbers is infinite.
(xxix) For any square matrix A, the matrices A and Aθ have same

characteristic roots.
(xxx) Every square matrix is similar to a diagonal matrix.
(xxxi) If the constant term in the characteristic equation of a matrix A

is zero, then A is a singular matrix.
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2. Give example of a 2× 2 matrix over R which has no eigen vector.

3. If A and B are matrices of suitable sizes, prove that tr(AB −BA) = 0.

4. If A is a skew symmetric matrix, prove that An is symmetric or skew
symmetric according n is even or odd.

5. If A is a square matrix and A = P + iQ where P and Q are Hermitian
matrices, prove that A is normal if and only if P and Q commute.

6. Prove that the characteristic roots of a real skew symmetric matrix are
either zero or pure imaginary.

7. Prove that the characteristic roots of a real symmetric matrix are real.

8. Prove that the characteristic vectors corresponding to the two character-
istic roots of a skew Hermitian matrix are orthogonal.

9. If λ is a characteristic root of a unitary matrix, then prove that 1
λ

is also
a characteristic root.

10. If A is Hermitian (skew Hermitian), show that for any matrix B, BθAB,
is a Hermitian (skew hermitian).

11. A square matrix A is said to be an idempotent i.e. A2 = A. Show that
the matrices 1 −1 1

1 −1 1
1 −1 1

 and

 1 −2 1
−1 2 −1
−2 4 −2

 are idempotents.

12. Find all 2-rowed idempotent matrices.

13. A square matrix A is said to be nilpotent if An = 0 for some positive
integer n. Show that the matrices

 0 0 0
1 0 0
0 1 0

 and


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 are nilpotent.

14. Prove that a nilpotent matrix is singular.

15. Prove that a non-zero idempotent matrix cannot be nilpotent.

16. Prove that the only matrix which is both idempotent and nilpotent is the
zero matrix.

17. If A

 2 0 1
0 3 0
1 0 2

 , P =

 1 1 0

0 0
√

2
−1 1 0

, show that

(i) P tAP =

 1 0 0
0 3 0
0 0 3


P−1 = P t
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18. Find the flaw in the following argument
Let A and B be two n-rowed square matrices. We know that
(AB)−1 = B−1A−1

⇒ adj(AB)
|AB| = adjB

|B|
adjA
|A| ,∵ A

−1 = adjA
|A|

⇒ adj(AB) = (adjB)(adjA) ∵ |AB| = |A||B|

19. Prove that every square matrix can be expressed uniquely as the sum of
a Hermitian and skew hermitian matrix.

20. Find the inverse of the matrix using partitioning of matrices.
0 1 −1 0
0 1 1 0
1 0 0 0
0 0 0 1


21. Find the inverse of the matrix

1 0 1 1
0 −1 1 0
0 0 −1 0
0 0 0 1

 using partitioning of matrices. Partition its in two

different ways. Do you get different inverse?

22. Using partitioning of matrices, prove that the inverse of the matrix

X =

 A B C
0 D 0
0 E F

 is

 A−1−A−1 (B − CF−1E)D−1 −A−1CF−1

0 D−1 0
0 −F−1ED−1 F−1


where A,D,F are invertible matrices and all the matrices A,B,C,D,E, F
are of suitable sizes for the products to be defined.

23. If A is a singular matrix, prove that the columns of adjA are the solutions
of AX = 0.

24. If A is a singular matrix, prove that the columns of A are the solutions of
(adjA)X = 0.

25. If A and B commute, prove that PAP t and PBP t also commute for any
orthogonal matrix P.

26. If A and B commute and U is a unitary matrix, then prove that UAUθ

and UBUθ also commute.

27. If A and B are skew symmetric matrices, prove that AB is skew symmetric
if and only if AB = −BA.

28. Prove that the product of two Hermitian matrices is Hermitian if and only
if they commute.
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11.20 Answers to Exercises

Exercise - 11.5

1. (i)

(
1 + 3i 2− 5i
−2 −4 + 2i

)
(ii)

(
3 + 5i 7− 11i
−8− 2i −5 + 3i

)
(iii)

(
−2 + 2i 3 + 9i
−4i 0

)
(iv)

(
4 + 5i
−1− 3i

)
(v)

(
1− i 1− 3i
−2 −1− i

)
(vi)

(
1− i −2
1 + 3i −1− i

)
(vii)

(
−2− 4i

5

)
(viii)

(
−6− 5i
−2− 2i

)
(ix)

(
3− i −2− 8i

)
(x)

(
−2− 2i 4i
3− 9i 0

)
2. ±

(
i −i
−i i

)
3. (i)

(
19 0
0 19

)
(ii)

(
4 0
0 7

)
(iii)

(
3 −3i
−3i 3

)
(iv)

(
4 −2
0 4

)
5. ±iI2

6. (i) symmetric
(ii) skew Hermitian
(iii) symmetric
(iv) all
(v) symmetric, Hermitian
(vi) Hermitian
(vii) skew symmetric
(viii) skew symmetric, skew Hermitian.

9. (i) P = 1
2

 4 + 2i 8 + i −4 + 3i
8 + i 4 5 + 7i
−4 + 3i 5 + 7i 12i

,

Q = 1
2

 0 −2− i −4− 3i
2 + i 0 7− i
4 + 3i −7 + i 0





11.20. ANSWERS TO EXERCISES 505

(ii) A = 1
2

 4 8− i −4− 3i
8 + i 4 5− i
−4 + 3i 5 + i 0

,

Q = 1
2

 2i −2 + i −4 + 3i
2 + i 0 7 + 7i
4 + 3i −7 + 7i 12i


(iii) P = 1

2

 4 8− i −4− 3i
8 + i 4 5− i
−4 + 3i 5 + i 0

,

Q = 1
2

 2 1 + 2i 3 + 4i
1− 2i 0 7− 7i
3− 4i 7 + 7i 12



10. (i) P =

 1 2 3
2 0 4
3 4 2

,

Q =

 0 −3 4
3 0 −5
−4 5 0


(ii) Not possible, as A is not Hermitian.

11. (i) mn
(ii) n2

(iii) n2 − 1

(iv) n
(v) 1
(vi) 1

2n(n+ 1)
(vii) 1

2n(n− 1)
(viii) 1

2n(n+ 1), with diagonal entries real
(ix) 1

2n(n+ 1), with diagonal entries 0 or pure imaginary.

13. Hint |At| = | −A| = (−1)n|A|/

19. (i) 4× 7, 5× 5, 5× 7
(ii) 7× 6, 2× 6, 2× 6
(iii) 3× 8, 6× 4, 6× 8
(iv) 6× 3, 3× 9, 3× 3

Exercise - 11.11

1.

 1 0
0 1
0 0



2.

(
1 −1 1
−1 2 0

)
, No,

(
k1 1− 2k1 k1

k2 − 1 2− 2k2 k2

)
, k1, k2 ∈ R
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14. (i) 1
15

 −11 9 −1
7 −9 2
−2 3 −1


(ii)

 1 2 −1
−4 −7 4
−4 −9 5


(iii)


1 0 0 0
1 −1 0 0
1 −2 1 0
1 −3 3 −1


(iv)

 0 1 −1
4 −3 4
3 −3 4


(v)

 1 −x x2

0 1 −x
0 0 1


(vi)

 1 0 0
−y 1 0
y2 −y 1


18. (i) 1

12

 24 −18 3
−12 12 4

0 0 2


(ii)

 1 −α 0
0 1 0
0 −β 1


22. (i) 1

3


2 −1 0 0
−1 2 0 0
0 0 −1 −2
0 0 2 1


(ii) 1

3


0 0 2 1
0 0 −1 −2
−1 2 0 0
2 −1 0 0


(iii)


2 −1 −2 1
−1 1 1 −1
0 0 0 1
0 0 1 −2



(iv) 1
4


2 −2 0 0
2 2 0 0
−1 1 2 0
−1 1 −2 4


(v)


0 0 1 −1
0 0 0 −1
1 0 −1 2
1 1 0 0


(vi)


1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0



23.


1
2

−1
2

−1
2 0 0

1
2

1
2

−1
2 0 0

0 0 1 0 0
−1 0 0 1

2
1
2

0 0 0 −1
2

1
2



Exercise - 11.14

3. 5

4. x = ± 1
2 , y = ∓ 1

2
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5. 1√
6

(
1 1 −2

)t
6. 1√

7

(
1 −1 −2 1

)t
12. q = 0 ⇒ A = I

Exercise - 11.18

5. Hint: A =

(
a b
b d

)
Characteristic roots are real if (a − d)2 + 4b2 ≥ 0,

roots are equal if a = d and b = 0. ∴ A =

(
a 0
0 a

)
if roots are α, β then A ∼

(
α 0
0 β

)
6. x3 − 2x2 + x− 2 = 0; 2,±i −1 1

2
1
2

1 1 −1
−5 0 3


7. -1,-1,3.

 1
1
1

,

 1
0
2

,

 1
0
4

 are the corresponding eigenvectors.

8. Hint: If λ is a characteristic root of A then |A|λ is a characteristic root of
adjA. Also |A| = λ1λ2λ3 = −r.

9. λ = 3, 3, 12 when λ = 3, X =

 1
0
4

 k+

 0
1
4

 k1; k, k1εR, X 6= 0, when

λ = 12, X =

 −1
−1
−1

 k, kεR∗

10. λ = 1, 3, 3

Forλ = 1, X =

 −2
1
2

 k; kεR∗, and for λ = 3, X =

 0
1
0

 k; kεR∗.

Supplementary Exercises

1. (i) F, it is determinant of a 2× 2 matrix.
(ii) F, determinant is defined only for square matrices.
(iii) T
(iv) F, if it is a square matrix.

(v) F,

(
1 0
1 1

)(
1 −1
0 1

)
=

(
1 −1
1 0

)
(vi) F, A,B should be of same order.
(vii) F
(viii) T
(ix) F, ith column.
(x) F, using (ix)



508 CHAPTER 11. MATRICES

(xi) F, A =

(
2 0
0 0

)
, |A| = 0, trA = 2

(xii) F, matrix should be square.
(xiii) F, zero or pure imaginary.
(xiv) T
(xv) T
(xvi) F
(xvii) F
(xviii) F
(xix) T
(xx) F, unitary matrix.
(xxi) F
(xxii) F
(xxiii) T
(xxiv) F
(xxv) F
(xxvi) T
(xxvii) F
(xxviii) T
(xxix) F
(xxx) F
(xxxi) T

12.

(
a b
c 1− a

)
18. Flaw: The Ist step is incorrect. A and B should be non-singular matrices.

20. 1
2


0 0 2 0
1 1 0 0
−1 1 0 0
0 0 0 2



21.


1 0 1 1
0 −1 −1 0
0 0 −1 0
0 0 0 1


24. Hint: |A| = 0⇒ AadjA = 0

If AdjA = [c1 c2 . . . cn] then Aci = 0, i = 1, 2, . . . n.



Chapter 12

Matrices and Linear
Transformations

In this chapter we are going to study a special kind of function that arises
very naturally in the study of linear algebra and has many applications in other
fields such as physics and engineering.
These functions are called linear transformations. We shall show that there is
a close relationship between matrices and linear transformations. In fact every
m× n matrix gives rise to a linear transformation and vice versa.

12.1 Introduction to Linear Transformations

This section is devoted mostly to the basic definitions and facts associated
with this special kind of function. In this section we are going look at functions
from Rn into Rm.
In other words, we are going look at functions that take elements/points/ vec-
tors from Rn and associate them with elements/points/vectors from Rm. These
kinds of functions are called transformations.
The three examples of transformations of R2 are:

K

qìêå

Rotation

509
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K

cäáé>

Reflection

K

päáÇÉ>

Translation

K

oÉëáòÉ>

Resizing

The other important transformation is resizing(also called dilation, contraction,
compression, enlargement or even expansion). The shape becomes bigger or
smaller.

Definition 12.1. (Transformation)
A transformation T : Rn → Rm is a rule that assigns to each vector X in Rn a
unique vector, denoted by T (X), in Rm.
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Rn is called the domain and Rm the co-domain of T .
T (X) is called image of X under T .
The subset {T (X) : X ∈ Rn} of Rmis called the range of T .
If for a Y ∈ Rm, there is some X ∈ Rn such that T (X) = Y then X is called
the pre-range of Y under T .

Transformations are described either by giving the rule explicitly or in terms
of matrix multiplication, for example, if T is a transformation from R2 to R3

then we can write
T : R2 → R3, defined by

T

(
x
y

)
=

 x+ y
x− y
y

 (Rule method)

or T

(
x
y

)
=

 1 1
1 −1
0 1

 (
x
y

)
(Matrix multiplication method)

Domain of T is R2, co-domain is R3. The image of any vector

(
x
y

)
is vector x+ y

x− y
y

. A pre-image of v =

 −1
3
−2

 is u =

(
1
−2

)
as T (u) = v

Examples of Transformations
Some transformation of R2 to R2 can be defined as follows:

Reflection through y axis: T

(
x
y

)
=

(
−x
y

)
Reflection through x axis: T

(
x
y

)
=

(
x
−y

)
Scaling by a factor k: T

(
x
y

)
=

(
kx
ky

)
Projection on x axis: T

(
x
y

)
=

(
x
0

)
It is easily seen that reflections and scaling are injective transformations which
are also onto R2, whereas, projection is neither injective nor onto.

T : R2 → R defined by T

(
x
y

)
= x is a projection of R2 onto R which is not

injective.

T : R→ R2 defined by T
(
x
)

=

(
x
1

)
is injective but not onto.

Example 12.1. Let T : R2 → R3 be defined by

T

(
x1

x2

)
=

 |x1|
x2

x1 + x2


(i) If u =

(
1
1

)
, v =

(
−1
−1

)
. Is T (u+ v) = T (u) + T (v)?
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(ii) What are the pre-images of

 −2
3
1

 and

 1
−4
−5

 ?

(iii) Is T onto?

(iv) Is T injective?

Solution:

(i) u+ v =

(
0
0

)
T (u) =

 1
1
2

, T (v) =

 1
−1
−2


T (u+ v) =

 0
0
0

, T (u) + T (v) =

 2
0
0


∴ T (u+ v) 6= T (u) + T (v).

(ii) Let X =

(
x1

x2

)
∈ R2 such that

T (X) =

 −2
3
1

 ∴

 |x1|
x2

x1 + x2

 =

 −2
3
1


Since |x1| > 0, ∴ we can’t have |x1| = −2

Hence no such X exists. Thus

 −2
3
1

 doesn’t have a pre-image.

Let X ∈ R3 such that

T (X) =

 1
−4
−3

.

Hence

 |x1|
x2

x1 + x2

 =

 1
−4
−3


This gives |x1| = 1
⇒ x1 = ±1. Last two equations give x1 = −1. Hence

x1 = −1, x2 = −4 ∴ T

(
−1
−4

)
=

 1
−4
−5



(iii) T is not a onto because

 −2
3
1

does not have a pre-image.

(iv) Let X =

(
x1

x2

)
, Y =

(
y1

y2

)
∈ R2 such that T (X) = T (Y ),

then

 |x1|
x2

x1 + x2

 =

 |y1|
y2

y1 + y2


thus |x1| = |y1|, x2 = y2, x1 + x2 = y1 + y2.
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Last two equations give x1 = y1 and x2 = y2.
Thus X = Y , so that T is injective.

12.2 Exercise

1. Let T : R3 −→ R2 be a mapping
(i) What is the domain of T ?
(ii) What is the co-domain of T ?
(iii) RangeT is a subset of R3 or R2 ?

2. Let T : R3→R2 be a transformation defined by T

 x1

x2

x3

 =

(
x1 + x2

x2 + x3

)

Find the image under T of u, v and u+ v, for u=

 1
−1
2

, v =

 0
2
3


Is T (u + v) = T (u) + T (v)?

3. T is a transformation from R2 to R2 defined by

T

(
x1

x2

)
=

(
x1

x2 + 2

)
Find the images under T of u, v and u + v, where u =

(
1
1

)
, v =

(
2
3

)
. Is T (u) + T (v) = T (u+ v) ?
Also find the pre-image of 0.

4. T is a transformation from R2 to R2 defined by T

(
x1

x2

)
=

(
x2

1

x2
2

)
(i) Find T ( u ) for u =

(
4
1

)
.

(ii) Is T ( u ) = T ( − u), for u in (i).
(iii) Is there an element in the co-domain which is not in the range of T .
(iv) Is T onto?
(v) Is T injective?

12.3 Matrix Transformations

In this section we discuss transformations which arise by matrix multiplica-
tion. Let A be any m× n matrix and X be a vector in Rn, then AX is a m× 1
matrix which belongs to Rm.
Thus for every X ∈ Rn there is defined a vector AX in Rm which gives rise to
a transformation
X −→ AX from Rn into Rm.
This leads to the following definition.

Definition 12.2. (Matrix transformation)
If A is a m× n matrix, then for the transformation X −→ AX to be defined,
X must be a vector in Rn and then AX is a vector in Rm.
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Therefore m × n matrix always determines a transformation from Rn into
Rm.

Definition 12.3. (Zero transformation)
If A is the m×n null matrix, then T : Rn −→ Rm determine by A is called the
zero transformation. It maps every element of Rn to the zero element of Rm.

Definition 12.4. (Identity transformation)
If A is the n × n identity matrix, then the transformation from Rn −→ Rn
determined by A is called identity transformation.
It maps every element of Rn to itself.

Example 12.2. Let A =

 1 −2
3 0
4 −1

. The matrix transformation determined

by A is T : R2 −→ R3

where T

(
x
y

)
=

 1 −2
3 0
4 −1

 (
x
y

)
=

 x− 2y
3x

4x− y


Similarly a 2 × 3 matrix will define a transformation from R3 into R2.

Properties of matrix multiplication give that
(i) A(u+ v)=Au + Av and A(ku) = k Au, where k is a real number.
(ii) Ae1 = c1, Ae2 = c2, . . . , Aen = cn where e1 , e2, . . . , en are the

columns of the identity matrix In and c1, c2, . . . , cn are the columns
of A.

12.4 Surjective and Injective Matrix Transfor-
mations

Now we study under what conditions a given matrix transformation is surjec-
tive and injective. Consider the matrix transformation T determined by m× n
matrix A.
The following questions arise:
(i) Given b in Rm, does b lie in the range of T?
(ii) Is T onto?
(iii) Is T injective?
(iv) Given b in range T , does there exist a unique x such that T (x) = b.
We answer these questions one by one.

(i) Given b in Rm

b lies in the Range T
⇔ There exists some x in Rn such that T (x) = b
⇔ Ax = b has a solution.
⇔ Augmented column of [A : b] does not have a pivot position.

(ii) T is onto
⇔ Range T = Rm

⇔ For all b in Rm there exists some x in Rn such that T (x) = b
⇔ Ax = b has a solution for all b in Rm

⇔ every row of A has a pivot position.
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(iii) T is injective
⇔ Given x1, x2 in Rn such that T (x1) = T (x2), then x1 = x2.
⇔ Ax1 = Ax2 implies that x1 = x2.
⇔ A(x1 − x2) = 0 implies that x1 − x2 = 0
⇔ Ax = 0 implies that x = 0
⇔ 0 is the only solution of Ax = 0
⇔ Every column of A has a pivot position.

(iv) There exists a unique x in Rn such that T (x) = b
⇔ Ax = b has a unique solution.
⇔ In the augmented matrix [A : b] every column of A has pivot position
and augmented column does not have pivot position.

The above discussion can be summarized as follows:

Property Meaning in Meaning in Test on A
of T terms of T terms of A
b lies in There exists x There exists x Augmented column of
range T in Rn such that in Rn such [A : b] doesn’t have a

T (x) = b that Ax = b pivot.
T is onto For every b in Ax = b has a Every row of a has a

(surjective) Rm there exists solution for pivot position
x in Rn such every b in Rm

that Tx = b
T is injective Given x1, x2 in 0 is the only Every column of A

Rn such that solution of has pivot position
T (x1) = T (x2) Ax = 0
then x1 = x2

b has unique There exists a Ax = b has a In [A : b], every
pre-image unique x in Rn unique solution column of A has a
under T such that T (x) = b pivot position but aug

column doesn’t have
a pivot position.

Example 12.3. Let A =

(
1 2 −1
3 0 1

)
, u =

 −1
0
1

, b =

(
1
−1

)
,

c =

(
3
1

)
Let T be the matrix transformation determined by A
(i) Find T (u).
(ii) Find a vector x such that T (x) = b.
(iii) Can you find more than one x in part (ii)?
(iv) Does c lie in the range of T?

Solution: The transformation determined by a 2× 3 matrix A is from R3 to
R2.

For any x =

 x1

x2

x3

 in R3
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T (x) = T

 x1

x2

x3

 = Ax =

(
1 2 −1
3 0 1

) x1

x2

x3

=

(
x1 + 2x2 − x3

3x1 + x3

)

(i) T (u) = T

 −1
0
1

 =

(
−1 + 0− 1
−3 + 1

)
=

(
−2
−2

)
(ii) Finding x in R3 such that T (x) = b

Solving Ax = b,

Augmented matrix [A : b] =

(
1 2 −1 1
3 0 1 −1

)
∼
(

1 0 1
3 − 1

3
0 1 − 2

3
2
3

)
Solution is x1 = − 1

3k −
1
3

x2 = 2
3k + 2

3
x3 = k, where k is any real number.
Taking a particular value of k = 0 (say) x1 = − 1

3 , x2 = 2
3 , x3 = 0

Therefore x =

 − 1
3

2
3
0

 ia a required vector.

(iii) The general solution in (ii) is

X =

 x1

x2

x3

 =

 −k3 − 1
3

2k3 + 2
3

k

 = k
3

 −1
2
3

 +

 − 1
3

2
3
0

. For every

value of k we get a solution.
Thus there are infinitely many solutions in (ii).

(iv) c will lie in Range T
⇔there exists x in R3 such that T (x) = c,
⇔ Ax = c has a solution.
⇔ Augmented matrix [A : c] doesn’t have a pivot in the augmented col-
umn.

[A : c] ∼
(

1 2 −1 3
3 0 1 1

)
∼

(
1 0 1

3
1
3

0 1 − 2
3

4
3

)
Pivots lie in 1st

and 2nd columns and not in the augmented column. Therefore Ax = c
has a solution and so c lies in the range of T .

Problem 12.1. Define T : R3 → R3 by TX = AX, where

A =

 1 0 −2
−2 1 6
3 −2 −5


If b =

 −1
7
−3

, find X ∈ R3 whose image under T is b. Is X unique?

Solution: Step 1 Suppose X ∈ R3 be such that TX = b. Hence AX = b.
Thus finding X amounts to solving the linear system AX = b.
To do this we shall reduce the augmented matrix to echelon form.

Step 2 [A : b] =

 1 0 −2 −1
−2 1 6 7
3 −2 −5 −3

 ∼

 1 0 −2 −1
0 1 2 5
0 −2 1 0


Applying R2 → R2 + 2R1
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R3 → R3 − 3R1

∼

 1 0 −2 −1
0 1 2 5
0 0 5 10

Applying R3 → R3 + 2R2

To obtain the solution we reduced it to reduced echelon form.

[A : b] ∼

 1 0 −2 −1
0 1 2 5
0 0 1 2

Applying R3 → 1
5R3

∼

 1 0 0 3
0 1 0 1
0 0 1 2

R2 → R2 − 2R3, R1 → R1 + 2R3

Hence solution is
x1 = 3
x2 = 1
x3 = 2

Step 3 Thus X =

 3
1
2

 is such that

T (X) = AX = b
Since there is only one value of X, therefore X is unique.

Problem 12.2. Define T by T (X) = A(X), where A =

(
1 −5 −7
−3 7 5

)
(i) Is T onto?

(ii) Find X such that T (X) = b, where b =

(
−2
−2

)
.

(iii) Is X obtained in (ii)unique? If not, find all X such that T (X) = b.

Solution: Clearly T : R3 → R2

(i) T will be onto if given any b ∈ R2, ∃X ∈ R3 such that T (X) = b
i.e. if AX = b has a solution for every b ∈ R2

Let b =

(
b1
b2

)
Then [A : b] =

(
1 −5 −7 b1
−3 7 5 b2

)
the row reduced echelon form is

[A : b] ∼
(

1 0 3 −(7b1 + 5b2)/8
0 1 2 −(3b1 + b2)/8

)
Since every row of A has a pivot,
therefore there is a solution for all b ∈ R2.
Hence T is onto.

(ii) For the given b, we get from (i)

[A : b] ∼
(

1 0 3 3
0 1 2 1

)
The equations are
x1 + 3x3 = 3
x2 + 2x3 = 1
The solution is
x1 = 3− 3k
x2 = 1− 2k
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x3 = k,
where k is any real number.
Taking k = 0,

X =

 3
1
0

 is such that

T (X) =

(
−2
−2

)
(iii) From (ii) we get

X =

 x1

x2

x3

 =

 3− 3k
1− 2k
k

 =

 3
1
0

 − k

 3
2
−1

 = u− kv (say)

Thus the X obtained in (ii) is not unique.

In fact T (u− kv) = b =

(
−2
−2

)
for all real numbers k.

Problem 12.3. Let T be a linear operator on R3 defined by TX = AX, where

A =

 1 0 1
1 1 2
2 1 3


Does b lies in range of T , where b =

 3
2
1

?

Solution: b will lie in the range of T if there exists some X ∈ R3 such that
T (X) = b
i.e. if AX = b has a solution.

The row reduced echelon form of [A:b] is

 1 0 1 3
0 1 1 −1
0 0 0 1


Since there is a pivot in the augmented column, therefore the system AX = b
is inconsistent, that is, it does not have a solution.
Hence b does not lie in the range of T .

Problem 12.4. Find all X ∈ R4 which are mapped to zero by the transforma-
tion X → AX, for

A =


1 2 −3 1
−1 3 −3 −2
2 0 1 5
3 1 −2 5


Solution: If X is mapped to 0, then we have to find the solution of AX = 0.

The row reduced echelon form of [A : 0] is


1 0 0 2 0
0 1 0 1 0
0 0 1 1 0
0 0 0 0 0


Thus the equivalent system of equations is
x1 + 2x4 = 0
x2 + x4 = 0
x3 + x4 = 0
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∴ x1 = −2x4, x2 = −x4, x3 = −x4, x4 is free.

Hence X =


−2x4

−x4

−x4

x4

 = −x4


2
1
1
−1


Thus, all multiples of


2
1
1
−1

 are mapped to 0.

Problem 12.5. Let T be the transformation defined on R3by T (X) = AX

where A =

 1 −3 −8
3 1 −4
2 5 6

. If b =

 −10
0
13

, find

(i) some vector X such that T (X) = b.
(ii) all vectors X such that T (X) = b.

Solution:

(i) Finding a vector X such that T (X) = b is equivalent to solving AX = b.

Step 1 We shall obtain the reduced echelon form of the augmented matrix
[A : b].

Then [A : b] ∼

 1 0 −2 −1
0 1 2 3
0 0 0 0


Step 2 The corresponding equations are
x1 − 2x3 = −1
x2 + 2x3 = 3

0 = 0

Step 3 Taking x3 = 0, we get
x1 = −1, x2 = 3

Thus X0 =

 −1
3
0

 is a vector such that

T (X0) = b

(ii) To find all vectors X such that T (X) = b
We proceed up to Step 2 of (i).
Taking x3 = k any real number, we get from Step 2,
x1 = −1 + 2k
x2 = 3− 2k
x3 = k

Thus X =

 x1

x2

x3

 =

 −1
3
0

+k

 2
−2
1


= X0 + kX1 where X1 =

 2
−2
1


and X0 is the same as in Step 3.
Thus X = X0 + kX1, k ∈ R
such that T (X) = b.
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Note: It is important to note that X1 is a solution of AX = 0 and X0 is
one solution of AX = b
X = X0 + kX1 is the general solution of AX = b.

Problem 12.6. For the transformation in the above problem find all vectors X
such that T (X) = 0

Solution: T (X) = 0
⇔ AX = 0
As in the previous problem,

[A : 0] ∼

 1 0 −2 0
0 1 2 0
0 0 0 0


The corresponding equations are
x1 − 2x3 = 0
x2 + 2x3 = 0

0x3 = 0
x1 = 2k, x2 = −2k, x3 = k, where k ∈ R

∴ X =

 x1

x2

x3

 =

 2
−2
1

 k = X1k (say)

General solution of T (X) = 0 is X = kX1, k ∈ R

Problem 12.7. Let A be an m× n matrix.
Define T : Rn → Rm by T (X) = AX.
Then
(i) The columns of A are images of the columns of In.
(ii) If the ith row of A is zero, then the ith coordinate of T (X) is zero.

Solution: Let A = [c1 c2...cn]

(i) Let ei, 1 6 i 6 n, be the columns of the n× n unit matrix.
Then for 1 6 i 6 n, T (ei) = Aei
= [c1 c2...cn]ei

= [c1 c2...cn]



0
...
0

1(ith position)
0
0
0


= [c10 + c20 + ...+ ci1 + . . .+ cn0]
= ci
Hence T (ei) = ci, 1 6 i 6 n

(ii) Let A = (aij)m×n
ith coordinate of TX = ith coordinate of AX

AX =


R1

R2

...
Rm

X =


R1X
R2X

...
RmX


= ai1x1 + ai2x2 + ...+ ainxn
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Thus if ith row of A is zero,
then ith coordinate of TX = ith coordinate of AX
= ai1x1 + ai2x2 + ...+ ainxn=0.
Thus ith row of A is zero,
then ith coordinate of TX = 0.

12.5 Exercise

1. Let T : R5 → R3 be defined by T (x) = Ax. The matrix A, u and v are

defined as A =

 1 −1 2 3 0
4 0 2 1 −2
2 3 1 3 2

, u =


2
4
3
1
3

, v =


3
1
4
0
1


(a) Compute

(i) T (u), T (v) and T (u) + T (v)

(ii) u+ v and T (u+ v)
What do you observe about the relationship between T (u) + T (v)
and T (u+ v)? Give and prove your statement(for any m× n matrix
A and any vectors u, v in Rn) using matrix algebra.

(b) Compute 3T (u) and T (3u). What do you deduce? Give and prove
your statement(for any m × n matrix A any vector u in Rn, any
scalar c) using matrix algebra.

2. Suppose that T : R2 → R4 is defined via multiplication by a matrix A.
What is the size of the matrix A?

3. Let A be a 3 × 4 matrix. What must be p and q so that
T : Rp → Rq is defined by
T (X) = AX?

4. Let A be a 4 × 3 matrix and T be defined by T : R3 → R4 by T (X) = AX.
Without actually verifying, can you tell whether T is a linear transforma-
tion or not.

5. Let T be a matrix transformation defined from R2 to R4.
If T ((1, 0)) = (2, 1,−2, 0) and T ((0, 1)) = (−1,−5, 2, 1), Use matrix alge-
bra to find
(i) T ((2, 0))
(ii) T ((1, 1))
(iii) T ((3,−1))

6. Let T be the matrix transformation determined by 3 × 2 matrix A such

that T (e1) =

 −3
6
0

, T (e2) =

 2
3
1


(i) Find the matrix A.

(ii) Find T (u), where u =

(
−6
5

)
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7. Let A =

(
1 −1
0 2

)
and T : R2 → R2 be the transformation determined

by A.
(i) What is the image of the line x = a+ tb, t ∈ R, under T ,

where a =

(
1
−2

)
, b =

(
−1
4

)
(ii) Verify that the image of the point a+b on the line lies on the image

of the line.

8. Plot the line and the image of the line in Q(7).

9. Let T be a matrix transformation defined by T (x) = Ax. Find a vector x
whose image under T is b and determine whether x is unique or not.

(i) A =

 −1 2 0
1 1 1
2 −1 1

, b =

 1
3
2


(ii) A =

(
−3 7 5
−5 9 3

)
, b =

(
−2
−6

)
(iii) A =

 1 1
0 1
1 −2

, b =

 2
1
−1


(iv) A =


1 3 9 2
1 0 3 −4
0 1 2 3
−2 3 0 5

, b =


3
3
−1
3


10. Let u and v be vectors in Rn. Show that the set P of all points in the

parallelogram determined by u and v has the form au + bv, for 0 6 a 6
1, 0 6 b 6 1. Let T : Rn → Rm be a linear transformation. Show that the
image of point in P under the transformation T lies in the parallelogram
determined by T (u) and T (v).

11. Let T be a transformation defined by T (X) = AX.
Find a vector X whose image under T is b, and determine whether X is
unique or not.

(i) A =

 −1 2 0
1 1 1
2 −1 1

, b =

 1
3
2


(ii) A =

(
−3 7 5
−5 9 3

)
, b =

(
−2
−6

)
(iii) A =

 1 1
0 1
1 −2

, b =

 2
1
−1


(iv) A =


1 3 9 2
1 0 3 −4
0 1 2 3
−2 3 0 5

, b =


3
3
−1
3


12. Let T be a transformation defined by T (X) = AX.

Does c lie in the range of T? If yes, find all vectors X whose image is c.
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(i) A as in Q11 c =

 1
2
−1


(ii) A as in Q13 c =

(
4
4

)
(iii) A as in Q14 c =

 3
1
1


(iv) A as in Q15 c =


3
6
−2
−6


13. Find all vectors X that are mapped in to the zero vector by the transfor-

mation X 7→ AX, for the given matrix A.

(i) A =

(
2 −3 4
1 0 −3

)
(ii) A =

 3 −4
5 2
−1 3


(iii) A =


1 −2 1 −1
1 1 −2 3
4 1 −5 8
5 −7 2 −1


(iv) A =


1 1 −3 2
2 −1 2 −3
3 −2 1 −4
−4 1 −3 1


14. Let T be the transformation defined by matrix A. Determine whether

(a) T is onto. (b) T is injective.

(i) A =

 2 −3 1
1 2 −3
4 −1 −2

 onto, injective.

(ii) A =

 4 5 6
5 6 −7
7 8 9

 not onto, not injective.

(iii) A =

 2 1 3 −5
0 7 3 −7
−3 −4 2 0

 onto, not injective.

(iv) A =


1 6 3 8
2 4 6 −1
3 10 9 7
4 16 12 15

 not onto, not injective.

(v) A =


1 −1 1
−3 1 −4
7 −3 −9
4 −2 −5

 not onto, injective.

15. A transformation T is defined by X 7→ AX
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If the echelon form of A is given, determine whether the mapping is onto
and/or injective.

(i)


� ∗ ∗ ∗
0 � ∗ ∗
0 0 � ∗
0 0 0 �



(ii)


� ∗ ∗ ∗
0 � ∗ ∗
0 0 � ∗
0 0 0 �
0 0 0 0


(iii)

 � ∗ ∗
0 � ∗
0 0 0


(iv)


0 � ∗ ∗ ∗
0 0 � ∗ ∗
0 0 0 � ∗
0 0 0 0 �


(v)

 0 � ∗ ∗ ∗
0 0 0 � ∗
0 0 0 0 0


16. Find all X ∈ R4 which are mapped to zero, by the transformation X 7→

AX for the given matrix A,

(i)

 0 1 −4 3
1 −2 −1 1
1 −4 7 −5


(ii)


−1 6 9 7
1 −3 −3 −1
−1 2 1 4
0 7 14 6



(iii)


1 −1 3 1
1 −1 0 1
−1 1 13 −1
−1 3 2 −10
3 −3 13 3


(iv)

(
1 2 −1 0
−3 0 1 2

)

12.6 Linear Transformation

If T is a matrix transformation determined by a matrix A, then
T (u+ v) = A(u+ v) = Au+ Av = T (u) + T (v) and T (cu) = A(cu) = cA(u) =
cT (u) for all u, v in Rn and c in R.
These properties of T lead us to a special class of transformations, called linear
transformation, which we shall study in this section.

Definition 12.5. (Linear transformation):
A transformation T : Rn → Rm is called a linear transformation if
(i) T (u+ v) = T (u) + T (v) for all u, v ∈ Rn. (T preserves vector addition)
(ii) T (cu) = cT (u) for all u ∈ Rn, c ∈ R. (T preserves scalar multiplication)
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Definition 12.6. (Linear transformation):
A linear transformation of Rn into itself is called a linear operator.

Linear transformations form a very important class of transformations in
linear algebra. These transformations are called linear as they preserve linearity,
that is to say, that under a non-zero linear transformation, lines are mapped
onto lines and planes are mapped onto planes. This will be proved later.
As an important consequence of the definition of a linear transformation we
have the following result.

Theorem 12.1. Let T : Rn → Rm be a linear transformation. Then
(i) T (0) = 0
(ii) T (αu+ βv) = αT (u) + βT (v)
(iii) T (u− v) = T (u)− T (v)
(iv) T (−v) = −T (v)
(v) T (α1u1 + . . .+ αnun) = α1T (u1) + . . .+ αnT (un).

Proof:

(i) Let u ∈ Rn. Then
T (0) = T (0u) = 0T (u) ∵ T is a linear transformation.

= 0
Hence T (0) = 0.

(ii) Let u, v ∈ Rn, α, β ∈ R. Then
T (αu+ βv) = T (αu) + T (βv)

= αT (u) + βT (v)
Hence T (αu+ βv) = αT (u) + βT (v).

(iii) In particular, for α = 1, β = −1 we get T (u− v) = T (u)− T (v). Thus T
preserves subtraction.

(iv) For α = 0, β = −1 in (ii) we get T (−1v) = −1 T (v) i.e. T (−v) = −T (v).

(v) Repeated application of (ii) of the above theorem gives T (α1u1 +α2u2 +...+
αkuk) = α1T (u1) + ...+ αkT (uk) for u1, ..., uk ∈ Rn, α1, ..., αk ∈ R.

Remark 12.1. A direct consequence of the theorem is:
If T : Rn → Rm is a mapping such that T (0Rn) 6= 0Rm , then T is not a linear
transformation.

How to prove non-linearity?
When we want to disprove linearity of a given transformation that is, to prove
that a transformation is not linear, we need to find only one counter-example.
That is, if we can find just one case in which the transformation does not
preserve addition, scalar multiplication, or the zero vector, we can conclude
that the transformation is not linear.
Mathematically a transformation T is not linear if
(i) There exist some vectors u and v such that T (u+ v) 6= T (u) + T (v) or
(ii) There exists a vector u and a scalar c such that T (cu) 6= cT (u) or
(iii) T (0) 6= 0.

Example 12.4. Let T : R3 → R2 be defined by T (x, y, z) = (x+ y, x− z)
If (x1, y1, z1), (x2, y2, z2) ∈ R3, α ∈ R then T ((x1, y1, z1) + (x2, y2, z2)) =
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T ((x1 + x2, y1 + y2, z1 + z2))
= (x1 + x2 + y1 + y2, x1 + x2 − z1 − z2)
= (x1 + y1, x1 − z1) + (x2 + y2, x2 − z2)
= T (x1, y1, z1) + T (x2, y2, z2)

T (α(x1, y1, z1)) = T ((αx1, αy1, αz1))
= (αx1 + αy1, αx1 − αz1)
= α(x1 + y1, x1 − z1)
= αT ((x1, y1, z1))

Hence T is a linear transformation.

Example 12.5. Define T : R2 → R2 by T (x, y) = (x2, 2y)
Here T (0, 0) = (0, 0).
Thus 0 ∈ R2 is mapped to 0.
But (1, 2), (2, 1) ∈ R2

T ((1, 2) + (2, 1)) = T ((3, 3)) = (9, 6)
T ((1, 2)) + T ((2, 1)) = (1, 4) + (4, 2) = (5, 6)
Hence T ((1, 2) + (2, 1)) 6= T ((1, 2)) + T ((2, 1)), so that T is not a linear trans-
formation.

Example 12.6. Let T : R3 → R2 be defined by T (x, y, z) = (x+ 1, y − x)
In this case T (0, 0, 0) = (1, 0) 6= (0, 0)
Hence we can conclude that T is not a linear transformation.

Example 12.7. Consider the transformation

T

(
x
y

)
=

(
x3

y2

)
We suspect it is not linear (components in the image vector T (X) must homo-
geneous of degree 1, i.e. all terms must be only first degree in components of
vector X). To prove it is not linear, take the vector

v =

(
2
2

)
then

T (2v) =

(
64
16

)
, 2T (v) =

(
16
8

)
Thus T (2v) 6= 2T (v), so T is not linear.
Note that in above example T (0) = 0, but T is not linear. Thus T (0) = 0 is
only necessary condition for linearity but not sufficient.
If a linear transformation T is defined on a set S of vectors, then T can be
extended to the linear span of S. In particular e1, e2, ..., en denote the column of
the identity matrix and we are given T (e1), T (e2), ..., T (en), then T (X) can be
found for any vector X in Rn. This is because X can be expressed as a linear
combination of the columns e1, e2, ..., en.
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Example 12.8. Given T : R3 → R4 such that T (ei) = fi, i = 1, 2, 3,

where f1 =


−1
1
0
4

 , f2 =


2
−3
3
0

 , f3 =


0
2
1
−3

. Find T

 3
−2
4

 and

T

 x
y
z

. 3
−2
4

=3e1 + (−2)e2 + 4e3

T

 3
−2
4

=T (3e1+(−2)e2+4e3) = 3T (e1)+(−2)T (e2)+4T (e3)....(T is linear)

= 3f1 + (−2)f2 + 4f3 = 3


−1
1
0
4

+(-2)


2
−3
3
0

+4


0
2
1
−3


=


−7
17
−2
0


T

 x
y
z

=T (xe1 + ye2 + ze3) = xT (e1) + yT (e2) + zT (e3) = xf1 + yf2 + zf3

= x


−1
1
0
4

+ y


2
−3
3
0

+ z


0
2
1
−3

=


−x+ 2y

x− 3y + 2z
3y + z
4x− 3z


This shows that a linear transformation on Rn is completely determined by

the images of the columns of the identity matrix In.

Geometrical Properties of Linear Transformation
Remark 12.2. In view of the fact that a linear transformation preserves addi-
tion and scalar multiplication, we see the effect of a in-zero linear transformation
on some geometrical figures in R2

(i) A linear transformation maps a line onto a line.
(ii) A linear transformation maps a line segment to a line segment.
(iii) A linear transformation maps a parallelogram to a parallelogram.
Proof:

(i) Let L be any line in Rn and T (L) be its image under T .
Equation of L is of the form x = a+ tb, t is a parameter for some vectors
a and b in Rn. Let P be any point on T (L). Then P is the image of some
point Q on L. If points P and Q are tips of vectors x′ and x respectively
then x′ = T (x). Now x = a+tb,∴ x′ = T (x) = T (a+tb) = T (a)+tT (b) =
a′ + tb′ where a′ = T (a) and b′ = T (b). Hence equation of T (L) is of the
form x = a′ + tb′ where t is a parameter. Which is the equation of a line.
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(ii) Let AB be a segment of a line whose equation is x = a+tb, t is a parameter.
Let vector OA = a + t1b and OB = a + t2b. Then segment AB is the
set of points a + tb where t1 6 t 6 t2. Image of AB under T is the set
of points T (a + tb) = T (a) + tT (b) where t1 6 t 6 t2 which is the line
segment joining points T (a) + t1T (b) and T (a) + t2T (b).

(iii) Let ABCD be a parallelogram with a and b as adjacent sides. Let P be any
point inside the parallelogram then AP is the diagonal of the parallelogram

ALPM for some points L and M respectively. Then
−→
AP =

−→
AL +

−−→
AM .

Since L lies on AB(= a),
−→
AL = ka for some 0 6 k 6 1. Similarly

−−→
AM = mb for some 0 6 m 6 1. This gives that

−→
AP = ka+mb.

Problem 12.8. Check whether the following mappings are linear transforma-
tions
(i) T1 : R3 → R3, where T1(x, y, z) = (0, x+ y, y − z)
(ii) T2 : R2 → R2, where T2(x, y) = (x2, x+ y)
(iii) T3 : R2 → R2, where T3(x, y) = (x+ 1, y)

Solution:

(i) Let (x1, y1, z1), (x2, y2, z2) ∈ R3, α ∈ R
Then T1((x1, y1, z1) + (x2, y2, z2)) = T1((x1 + x2, y1 + y2, z1 + z2))

= (0, x1 + x2 + y1 + y2, y1 + y2 − z1 − z2)
= (0, x1 + y1, y1 − z1) + (0, x2 + y2, y2 − z2)
= T1((x1, y1, z1)) + T1((x2, y2, z2))

T1(α(x1, y1, z1)) = T1((αx1, αy1, αz1))
= (0, αx1 + αy1, αy1 − αz1) = α(0, x1 + y1, y1 − z1)
= α T1((x1, y1, z1))

Hence T1 is a linear transformation.

(ii) (1, 2), (3, 4) ∈ R2(Choose (x1, y1), (x2, y2) such that (x1 + x2)2 6= x2
1 + x2

2).
T2((1, 2) + (3, 4)) = T2((4, 6)) = (16, 10)
T2((1, 2)) + T ((3, 4)) = (1, 3) + (9, 7) = (10, 10)
Thus T2((1, 2) + T2((3, 4)) 6= T2((1, 2)) + T2((3, 4))
Hence T2 is not a linear transformation.

(iii) T3((0, 0)) = (1, 0) 6= (0, 0). ∴ T (0, 0) 6= 0, so that T3 is not a linear
transformation.

12.7 Exercise

1. Examine whether the following mappings T : R3 → R2 are linear trans-
formation.
(i) T ((x y z)t) = (x y)t

(ii) T ((x y z)t) = (x+ 1 y − x)t

(iii) T ((x y z)t) = (x+ y 0)t

(iv) T ((x y z)t) = (x+ y 2x− z)t
(v) T ((x y z)t) = (xy2 z − x)t

(vi) T ((x y z)t) = (x+ z y + z)t

2. Examine whether the following mappings T : R3 → R3 are linear trans-
formations. Also give the geometrical interpretation of those which are
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linear transformations.
(i) T ((x y z)t) = k(x y z)t, k is a fixed constant > 1
(ii) T ((x y z)t) = k(x y z)t, k is a fixed constant < 1.
(iii) T ((x y z)t) = (x 0 0)
(iv) T ((x y z)t) = (0 y z)
(v) T ((x y z)t) = (−x − y − z)
(vi) T ((x y z)t) = (x y − z)
(vii) T ((x y z)t) = (−x − y z)
(viii) T ((x y z)t) = (x y2 z)

3. Verify whether the mappings defined in Q3, 4, 5 of exercise are linear
transformations or not.

4. Let T : R2 → R3 be a linear transformation. Let u =

(
1
2

)
, v =(

−1
4

)
, T (u) =

 1
−1
0

 , T (v) =

 2
0
−3

. Find T (3u+ 4v), T (u−

2v), T (0).

5. Does there exist a linear transformation T such that T

(
1
−2

)
=

(
2
0

)
,

T

(
−2
4

)
=

(
4
0

)
? Justify your answer.

6. Does there exist a linear transformation T such that T

(
1
2

)
=

(
2
0

)
,

T

(
2
1

)
=

(
0
1

)
and T

(
−1
1

)
=

(
−2
1

)
?. Justify your answer.

7. A linear transformation T : R3 → R2 is such that T (e1) = u1, T (e2) =

u2, T (e3) = u3, where e1 =

 1
0
0

 , e2 =

 0
1
0

 , e3 =

 0
0
1

 ;

u1 =

(
1
0

)
, u2 =

(
2
−1

)
, u3 =

(
4
3

)
. Obtain (i) T (0) (ii) T (v),

where v =

 3
−4
5

 , (iii) T (X) for any X ∈ R3

8. Let T : R3 → R2 be a linear transformation such that T ((1, 0, 0)t) =
(2,−1)t, T ((0, 1, 0)t) = (3, 1)t, T ((0, 0, 1)t) = (−1, 2)t, find T ((−3, 4, 2)t)
and T ((x, y, z)t).

9. Let T : R2 → R2 be a linear transformation such that T ((1, 0)t) =
(2, 1)t, T ((1, 1)t) = (0, 1)t find T ((0, 1)t) and T ((x, y)t).

10. Let T : R3 → R2 be a linear transformation such that T ((1, 1, 0)t) =
(2,−1), T ((0, 1, 1)t) = (3, 2), T ((0, 0, 1)t) = (1,−1), find

(i) T ((1, 3,−2)t)

(ii) T ((x, y, z))t.
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12.8 The Matrix of a Linear Transformation

We shall now see that any linear transformation is indeed a matrix transfor-
mation. Describing a linear transformation T means having a formula for T (X).
In fact, if T : Rn → Rm is a linear transformation and we know the effect of
T on the columns e1, e2, ..., en of In, then we will prove that T is completely
determined. Moreover, we will prove that with every T , we can associate a
matrix A such that T is actually the matrix transformation X → AX. Let us
illustrate this by an example, before proceeding to the proof.

Example 12.9. Let T : R3 → R2 be a linear transformation such that T (e1) =(
a1

a2

)
, T (e2) =

(
b1
b2

)
, T (e3) =

(
c1
c2

)
, where e1, e2, e3 are the columns

of I3 and a1, a2, b1, b2, c1, c2 are any real numbers. Can we find T (X) for any
X ∈ R3? The answer is yes. We shall express any X ∈ R3 in terms of e1, e2, e3.

If X =

 x1

x2

x3

 =

 x1

0
0

+

 0
x2

0

+

 0
0
x3

 = x1e1+x2e2+x3e3 . . . (1)

then T (X) = T (x1e1 + x2e2 + x3e3)
= x1T (e1) + x2T (e2) + x3T (e3) . . . (2)

= x1

(
a1

a2

)
+ x2

(
b1
b2

)
+ x3

(
c1
c2

)
=

(
x1a1 + x2b1 + x3c1
x1a2 + x2b2 + x3c2

)
. . . (3)

This shows that a knowledge of T (e1), T (e2), and T (e3) is sufficient to obtain
T (X) for any X ∈ R3.
In fact, (3) can be written as

T (X) =

(
a1 b1 c1
a2 b2 c2

) x1

x2

x3

 = [T (e1) T (e2) T (e3)]X

T (X) = AX (say).
Thus A is a matrix associated with the linear transformation T . This shows
that T is the matrix transformation X 7→ AX. Note that the columns of A are
T (e1), T (e2), T (e3).
Two linear transformations T1 and T2 defined from Rn to Rm are same (or
equal) if T1(X) = T2(X) for all X ∈ Rn. Thus T1 and T2 will be equal when
their corresponding matrices are the same.

We shall now consider a general linear transformation T from Rn to Rm.

Theorem 12.2. Let T : Rn → Rm be a given linear transformation. Then
there exists a unique matrix A such that T (X) = AX for all X ∈ Rn.

Proof: Existence
Since T is given, therefore T (e1), ..., T (en) are known, where e1, e2, ..., en are
the columns of In, the n× n unit matrix. Since T (ej) ∈ Rm, let
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T (ej) =


a1j

a2j

.

.

.
amj

, for j = 1, 2, ..., n

Let X ∈ Rn. Then

X =


x1

.

.

.
xn

 =


x1

0
.
.
0

+


0
x2

.

.
0

+ ...+


0
0
.
.
xn


= x1e1 + x2e2 + ...+ xnen

T (X) = T (x1e1 + x2e2 + ...+ xnen)
= x1T (e1) + x2T (e2) + ...+ xnT (en) ∵ T is linear.

= [T (e1)...T (en)]


x1

.

.

.
xn

 =


a11 a12 . . . a1n

a21 a22 . . . a2n

. . . . . .

. . . . . .

. . . . . .
am1 am2 . . . amn




x1

x2

.

.

.
xn


=AX where A = (aij)m×n
Thus T (X) = AX for am×nmatrixA, whose columns are T (e1), T (e2), ..., T (en).

Uniqueness
If A,B are two m× n matrices such that T (X) = A(X) also AX = BX for all
X ∈ Rn. Then comparing the images of e1, e2, . . . , en we get Aei = Bei ∀ i, 1 ≤
i ≤ n.
⇒ ith column of A = ith column of B ∀ i, 1 ≤ i ≤ n.
⇒ A = B.

The matrix A obtained above is called the standard matrix for the linear
transformation T . Thus we also get that every linear transformation is a matrix
transformation and vice versa.
It is important to note that if T is not a linear transformation then A =
[T (e1) T (e2) ... T (en)] will not implement T , that is, X 7→ AX is not T .
Working rules: To obtain the standard matrix for a given linear transformation
T from Rn to Rm.

Step 1 Obtain T (e1) T (e2)...T (en) the images of the columns of In, as column
vectors of Rm.

Step 2 Let A = [T (e1) T (e2)...T (en)] be the matrix whose columns are
T (e1) T (e2) . . . T (en) respectively. Then A is the required m× n matrix.

Example 12.10. Find the standard matrix for the linear transformation T :

R3 → R4 defined by T (

 x
y
z

) =


2x+ y
x− y + z
−3x+ 2z
y − 13z


Step 1 Here T (e1) = T (

 1
0
0

) =


2
1
−3
0


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T (e2) = T (

 0
1
0

) =


1
−1
0
1


T (e3) = T (

 0
0
1

) =


0
1
2
−13


Step 2 A = [T (e)1 T (e)2 T (e)3]

=


2 1 0
1 −1 1
−3 0 2
0 1 −13


is the required matrix. It is 4× 3 matrix.

Example 12.11. T : R2 → R2 defined by T

(
x1

x2

)
=

(
x1x2

x2

)
T (e1) = T

(
1
0

)
=

(
0
0

)
, T (e2) = T

(
0
1

)
=

(
0
1

)
.

If A = [T (e1) T (e2)] =

(
0 0
0 1

)
.

Then AX =

(
0 0
0 1

)(
x1

x2

)
=

(
0
x2

)
6= T (X).

Thus [T (e1) T (e2)] does not implement T .

12.9 Exercises

1. Find a matrix that implement the following transformations and hence
prove that they are linear. Note that x1, x2, ... are not vectors but are
entries in vectors.
(i) T (x1, x2, x3) = (x1 + x2 − x3,−x1 + 2x2 + 3x3)
(ii) T (x1, x2) = (2x1, 3x2, 2x1 − 3x2)
(iii) T (x1, x2, x3, x4) = (x1 − 2x2 + x3, x2 − 3x3 + x4)

2. Let T : R2 → R2 be the linear transformation such that T (e1) and T (e2)
are the vectors shown in the figure. Using the figure sketch the vector
T (−1, 2).
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3. Find the standard matrix representing the following linear transforma-
tions.

(i) T : R2 → R2 defined by T (

(
x
y

)
) =

(
x− y
x+ y

)
(ii) T : R2 → R2 defined by T (u) = 2u, u ∈ R2

(iii) T : R3 → R2 defined by T ((x y z)t) = (2x− 3y − 4y)t

(iv) T : R4 → R4 defined by T ((x y z w)t)
= (x− y x− w x− z x+ y + z)t

4. If the standard matrix of a linear transformation is

 1 −2 3 −1
0 1 2 4
−1 −3 2 0

,

find T (


1
−1
2
−3

)

5. Let T : R3 → R3 be defined by T ((x y z)t) = (x+ y y − z z + x)t. Find
the standard matrix of T .

6. Find the matrix of the linear transformation of R2 defined by

T (

(
x
y

)
) =

(
y
x

)
Plot (x y)t and its image under T for
(i) x = 2, y = 3
(ii) x = −5, y = 6
(iii) x = 8, y = −4
(iv) x = −3, y = −5
Give the geometrical interpretation of T .

7. If the standard matrix of a linear transformation is

(
−1 2 3
5 0 5

)
, find

the linear transformation T .

8. Let T : R2 → R2 be defined such that T ((1 2)t) = (1 0 0)t

T ((2 3)t) = (0 1 0)t

Find
(i) T ((1 0)t)
(ii) T ((0 1)t)
(iii) Standard matrix for T
(iv) T ((x y)t)

9. Let T : R2 → R2 be a transformation defined by T (x1, x2) = (x1 + 1, x2).
If A = [T (e1), T (e2)], show that A does not implement T . Give reasons.

10. Fill in the entries in the matrix assuming that the equation holds for all
values of the variables.
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(i)

 − − − −
− − − −
− − − −




x1

x2

x3

x4

 =

 2x1 − x3 + x4

−x1 + x2 − 3x4

x2 − 3x3 + 4x4


(ii)

 − −
− −
− −

( x1

x2

)
=

 2x1 − 3x2

−x1 + 2x2

x1 + x2


(iii)

 − − −
− − −
− − −

 x1

x2

x3

 =

 x2 − x3

x3 − x1

x1 − x2



12.10 Geometric Transformations of R2 and R3

We now study some basic transformations of R2 namely scaling, projection,
reflection, shearing and rotation.
Translation is a transformation which is not linear so it cannot be described by
a matrix.

Scaling
Scaling is a transformation which increases or decreases the length of a vector.
Let T : R2 → R2 or T : R3 → R3 be defined by
T (X) = kX, where k ∈ R.
For every value of k, T is a linear operator(verify!). k is called the scaling factor.
(1) If 0 < k < 1, then T is called contraction and if k > 1, T is called a dilation.
Contraction shrinks the vector whereas dilation expands(or dilates) the vector.

ì

ì

‹ =

hZ |‹

ì

ì

âZO

O

Contraction Dilation

Similarly if we define T : R3 → R3 by
T (X) = kX, for all X ∈ R3, where k is fixed real number, then T is linear
operator, and k is called scaling factor.
(2) If 0 < k < 1, then T is called contraction and if k > 1, T is called a dilation.

For T : R2 → R2

Matrix of scaling (Dilation/Contraction)
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e1 =

(
1
0

)
, T (e1) =

(
k
0

)
e2 =

(
0
1

)
, T (e2) =

(
0
k

)
Matrix of T = [T (e1) T (e2)]

=

(
k 0
0 k

)
For T : R3 → R3 : X → kX

T

 1
0
1

 =

 k
0
0

, T

 0
1
0

 =

 0
k
0

, T

 0
0
1

 =

 0
0
k


The matrix of T=

 k 0 0
0 k k
0 0 k


Example 12.12. Given points, A(3, 6), B(0, 2), C(6, 1) of 4ABC find its
image under
(i) contraction by a factor of 1

3 .
(ii) dilation by a factor of 3.
Let T : R2 → R2 defined by T (X) = 1

3X

Point A =

(
3
6

)
, T (A) = T

(
3
6

)
= 1

3

(
3
6

)
=

(
1
2

)
= A′(say)

B =

(
0
2

)
, T (B) = T

(
0
2

)
= 1

3

(
0
2

)
=

(
0

2/3

)
= B′(say)

C =

(
6
1

)
, T (C) =

(
2

1/3

)
= C ′(say)

Then A′B′C ′ is the image of ABC under contraction.

^

`

_
^

M

EPISF

ESINF
ENIOF

EMIOF

Point A is (3, 6)t.

T (A) = 3(3, 6)t =

(
9
18

)
= A′(say)

Point B is (0, 2)t.
T (B) = (0, 6)t = B′(say)
Point C is (6, 1)t.
T (C) = (18, 3)t = C ′(say).
Thus A′B′C ′ is the image of ABC under dilation.



536 CHAPTER 12. MATRICES AND LINEAR TRANSFORMATIONS

^

`

_
^

M

EPISF

ENUIPF

ESINF

O

EVINUF

ESIMF

Projection
Let us take the projection of vectors in R2 to vectors on the x-axis. Let’s call
this transformation T .
Then T : R2 → R2 such that

T

(
x1

x2

)
=

(
x1

0

)
Clearly this is linear.

Scalar multiplication is preserved
We wish to show that for all vectors X and all scalars λ, T (λX) = λT (X).

Let X=

(
x1

x2

)
Then λX =

(
λx1

λx2

)
Now T (λX) = T

(
λx1

λx2

)
=

(
λx1

0

)
= λ

(
x1

0

)
= λ T (X)

This is the same vector as above, so under the transformation T , scalar multi-
plication is preserved.

Addition is preserved
We wish to show for all vectors X and Y , T (X + Y ) = T (X) + T (Y ).

Let X =

(
x1

x2

)
and Y =

(
y1

y2

)
Now T (X + Y ) = T (

(
x1

x2

)
+

(
y1

y2

)
)= T

(
x1 + y1

x2 + y2

)
=

(
x1 + y1

0

)
T

(
x1

y1

)
+ T

(
y1

y2

)
=

(
x1

0

)
+

(
y1

0

)
=

(
x1 + y1

0

)
So we have that the transformation T preserves addition.
We have shown T preserve addition and scalar multiplication. So T must be
linear.
This mapping is called projection of R2 on to x-axis.
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Since Te1 = T

(
1
0

)
=

(
1
0

)
, T e2 = T

(
0
1

)
=

(
0
0

)
∴ the matrix of T is

(
1 0
0 0

)
. This is the matrix of projection on to X-axis.

Similarly T1 : R2 → R2 defined by

T1

(
x1

y1

)
=

(
0
y1

)
is the projection of R2 on the Y-axis.

The matrix of T1 is

(
0 0
0 1

)
. This is the matrix of projection on to Y-axis.

In R3 the mappings T1 : R3 → R3 defined by

(i) T1

 x
y
z

 =

 x
y
0

 is the projection on the XY-plane.

(ii) T2

 x
y
z

 =

 x
0
z

 is the projection on the XZ-plane.

(iii) T3

 x
y
z

 =

 0
y
z

 is the projection on the YZ-plane.

Similarly we can define projection on the X-axis, Y-axis and Z-axis.

EOIPIQF

EOIPIMF

Projection on the XY -plane

Reflection

Let T : R2 → R2 be defined by T (

(
x
y

)
) =

(
x
−y

)
Then T is a linear operator called the reflection of R2 with respect to the X-axis.

Since T (e1) = T (

(
1
0

)
) =

(
1
0

)
T (e2) = T (

(
0
1

)
) =

(
0
−1

)
∴ Matrix of T is

(
1 0
0 −1

)
. This is the matrix of reflection in the X-axis.
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^

`

_

^

M

ABC gives triangle.
A→ A′, B → B′, C → C ′

A′B′C ′ reflection in X − axis.

Similarly T2 : R2 → R2 defined by

T2(

(
x
y

)
) =

(
−x
y

)
is the reflection of R2 with respect to the Y-axis. The

matrix of reflection in y-axis is

(
−1 0
0 1

)
.

T3 : R2 → R2 defined by T3(

(
x
y

)
) =

(
−x
−y

)
is the reflection of R2 w.r.t the origin. The matrix of reflection through the

origin is

(
−1 0
0 −1

)
.

Rotation
Let T : R2 → R2 be the transformation that rotates each vector in R2 about
origin through an angle ϕ counterclockwise. Then T is a linear transformation.

Let u =
−−→
OP =

(
x1

x2

)
be any vector in R2, under rotation about ϕ, suppose

−−→
OP maps to

−−→
OP ′ =

(
x′1
x′2

)

N

ê mE I FN O

N =I= O

M

O

N==========O

ظش

Suppose OP = r and
−−→
OP makes an angle θ with x1 − axis, we see from

figure that



12.10. GEOMETRIC TRANSFORMATIONS OF R2 AND R3 539

x1 = rcosθ x2 = rsinθ . . . (1)
x′1 = rcos(θ + ϕ) x′2 = rsin(θ + ϕ) . . . (2)

Using the formula for sine and cosine of sum of angles, equations (2) become
x′1 = rcosθcosϕ− rsinθsinϕ
x′2 = rsinθcosϕ+ rcosθsinϕ . . . (3)

Using (1), equations (3) can be written as
x′1 = x1cosϕ− x2sinϕ
x′2 = x2cosϕ+ x1sinϕ

Thus T

(
x1

x2

)
=

(
x′1
x′2

)
=

(
x1cosϕ− x2sinϕ
x1sinϕ+ x2cosϕ

)
=

(
cosϕ −sinϕ
sinϕ cosϕ

)
(
x1

x2

)
= A

(
x1

x2

)
= Au, where A =

(
cosϕ −sinϕ
sinϕ cosϕ

)
This proves that T is a matrix transformation. Since every matrix transforma-
tion is linear therefore T is linear.

We see from above that the matrix of rotation about origin through an angle
ϕ is (

cosϕ −sinϕ
sinϕ cosϕ

)
.

Shear Transformation
Consider a rectangle ABCD. Keeping AB fixed, if it is pushed parallel to AB,
then it takes the shape ABC ′D′ (see figure).

^ _

m [

Such a transformation is called a shear. Note that every point is not moved by
the same distance. The point P is moved to P ′, D is moved to D′. The distance
moved by a point is proportional to its distance from the fixed line. How far a
point is pushed is determined by its shearing factor. Thus we have the following
definition.

Definition 12.7. (Shear along a line):
A transformation in which all points along a given line L remain fixed, while
other points are shifted parallel to L by a distance proportional to their perpen-
dicular distance from L.
The distance a point P moves due to shear divided by the perpendicular distance
of P from the invariant line is constant, and is called the shearing factor.

^ _

m [
[

ش

ABCD is a square.
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PP ′

AP = QQ′

AQ = DD′

AD = shearing factor.

Shear transformations can also be generalized to three dimensional, in which
planes are translated instead of lines. We shall restrict ourselves to two dimen-
sional only.

It is important to note that a shear transformation is invertible. Moreover on
applying a shear transformation to a plane figure, the area of the figure remains
unchanged.

Example 12.13. Consider a rectangle ABCD. We would like to shear it along
AC. Keeping AC fixed, every point is moved parallel to AC. Thus B is moved
to B′ and D to D′. A and C remain fixed. AB′CD′ is sheared figure.

^ _

`a

Example 12.14. Consider a rectangle ABCD. We would like to shear it along
a line L which is parallel to BC, as shown.

^ _

`
a

^

m

n

A′B′C ′D′ is the sheared figure. How do we obtain it? Produce AB and CD
to meet L in P and Q respectively. Then shear PADQ along PQ. The corre-
sponding figure is PA′D′Q. If A′P intersects BC in B and D′Q intersects BC
produced in C ′, then B has moved to B′, C to C ′, D to D′ and A to A′. Thus
ABCD has been sheared to A′B′C ′D′.

Mathematically, shear can be defined as follows:

Definition 12.8. A shear in the x1 − direction(or horizontal shear) is the lin-
ear operator T defined by

T (X) = T (

(
x1

x2

)
) =

(
x1 + kx2

x2

)
where k is scalar. k is called the shear factor. The point P (x1, x2) is moved
parallel to the x1 − axis to Q(x1 + kx2, x2).
The x1−coordinate is increased by an amount kx2, where as the x2−coordinate
remains unchanged. See figure
Thus every point on the x1 − axis is fixed.
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N

mE I FN O nE Hâ FN O

M

O

â
O

T (

(
1
0

)
) =

(
1
0

)
T (

(
0
1

)
) =

(
k
1

)
∴ Matrix of T=

(
1 k
0 1

)
Since

(
1 k
0 1

)(
x1

x2

)
=

(
x1 + kx2

x2

)
= T

(
x1

x2

)
Therefore T is also a matrix transformation and is consequently a linear trans-
formation.

Definition 12.9. A shear in the x2−direction(or a vertical shear) in the linear
operator T defined by

T (X) = T (

(
x1

x2

)
) =

(
x1

x2 + kx1

)
where k is scalar.
As above, the x1 − coordinate is fixed whereas the x2 − coordinate is increased
by kx1. Every point on the x2 − axis is fixed.

The standard matrix of T =

(
1 0
k 1

)
and T is linear transformation fol-

lows as for horizontal shear.

Summarizing we have,

Type of Transfor- Standard Figure Remarks
shear mation matrix

Horizontal

(
x1
x2

)
→

(
1 k
0 1

)
x1 coordinate

(
x1 + kx2

x2

)

NM

O

âYM
changes.
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Type of Transfor- Standard Figure Remarks
shear mation matrix

NM

O

â YM x2 coordinate

is unchanged
e1 → e1,

e2 → e2 + ke1

Vertical

(
x1
x2

)
→

(
1 0
k 1

)

NM

h[=M
O

x1 coordinate

(
x1

x2 + kx1

)
unchanged.

NM

O

âYM

x2 coordinate

changes.
e1 → e1 + ke2,

e2 → e2

Example 12.15. A shear in the x1− direction is defined by

T (X) = T (

(
x1

x2

)
) =

(
x1 + kx2

x2

)
, where k is scalar.

(i) Determine the standard matrix of T .
(ii) If this shear is applied on a rectangle with vertices (0, 0), (2, 0), (2, 1) and (0, 1),
sketch the image of the rectangle for k = 3,−3.

T (e1) = T (

(
1
0

)
) =

(
1
0

)
= e1

T (e2) = T (

(
0
1

)
) =

(
k
1

)
= ke1 + e2

∴ Standard matrix of T = [T (e1) T (e2)](
1 k
0 1

)
We find the images of the points under T .

T (

(
0
0

)
) =

(
0
0

)
T (

(
2
0

)
) =

(
2
0

)
T (

(
2
1

)
) =

(
2 + k

1

)
=

(
2 + k

1

)
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T (

(
0
1

)
) =

(
k
1

)
=

(
k
1

)
when k = 3(

0
1

)
→
(

3
1

)
,

(
2
1

)
→
(

5
1

)
points on x1 − axis remain unchanged.

NM

O

â ZPx=zO
N x=zP

N
R

N

O
M

x=z

x=z

x=zM
N

when k = −3(
2
1

)
→
(
−1
1

)
,

(
0
1

)
→
(
−3
1

)
points on x1 − axis are unchanged.

NM

O

âZJP

x=z

x=z

x=z= x=zx=zM

M

N

O

NN
OJP JN

N

Example 12.16. Let T : R2 → R2 be the linear transformation, T (e1) = e1 −
2e2, T (e2) = e2. What is the standard matrix of T? What is this transformation
called?

T (e1) =

(
1
0

)
− 2

(
0
1

)
=

(
1
−2

)
, T (e2) =

(
0
−1

)
The standard matrix of T is [T (e1) T (e2)], i.e.,

(
1 0
−2 −1

)
.

This transformation is called a vertical shear.

Example 12.17. We shall now sketch the image of the unit square under hor-
izontal and vertical shears.
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Horizontal shears

NM

O

h [M

ENIMF

EâINF

N
M

O

â YM

ENIMF

EhINF

Vertical shears

N
M

O h [=M

ENIâF

NM

O

hYM

ENIâF

Matrices of Geometric Linear Transformation in R2

Given a geometric linear transformation on R2, we see how to write the
standard matrix of this transformation. For this, it is required to find the effect
of the transformation on the columns e1 and e2 of I2.

Transformation Geometrical Algebraic Standard
effect on effect on matrix
e1 and e2 e1 and e2

Reflection through

(
1
0

)
→

(
1
0

) (
1 0
0 −1

)

x1 − axis

x=z

x=z

M

M

N

JN

ENIMF

(
0
1

)
→

(
0
−1

)
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Transformation Geometrical Algebraic Standard
effect on effect on matrix
e1 and e2 e1 and e2

Reflection through

(
1
0

)
→

(
−1
0

) (
−1 0
0 1

)

x2 axis

x=z

x=z

M

M

N

JN
ñN

ñO

x=zN
M (

0
1

)
→

(
0
1

)
Reflection through

(
1
0

)
→

(
0
1

) (
0 1
1 0

)

x2 = x1

ñN

ñO

ñOZñN

(
0
1

)
→

(
1
0

)
Reflection through

(
1
0

)
→

(
0
−1

) (
0 −1
−1 0

)

x2 = −x1

x=z

x=z

M

M

N

JN

ñNñOZJ

x=zN
M

x=zM
JN

(
0
1

)
→

(
−1
0

)
Reflection through

(
1
0

)
→

(
−1
0

) (
−1 0
0 −1

)

origin

x=z

x=z

M

M

N

JN
ñN

ñO

x=zN
M

x=zM
JN

(
0
1

)
→

(
0
−1

)
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Transformation Geometrical Algebraic Standard
effect on effect on matrix
e1 and e2 e1 and e2

Projection onto

(
1
0

)
→

(
1
0

) (
1 0
0 0

)

x1 axis

x=zM
N

ñN

ñO

x=zN
M

M (
0
1

)
→

(
0
0

)
Projection onto

(
1
0

)
→

(
0
0

) (
0 0
0 1

)

x2 − axis

x=zM
N

ñN

ñO

x=zN
M

M (
0
1

)
→

(
0
1

)
Horizontal scaling

(
1
0

)
→

(
k
0

) (
k 0
0 1

)

x=zM
N

ñN

ñO

x=z N
M

M x=zâ
M

MYâYN

(
0
1

)
→

(
0
1

)

x=zM
N

ñN

ñO

x=zN
M

M x=zâ
M

â[N
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Transformation Geometrical Algebraic Standard
effect on effect on matrix
e1 and e2 e1 and e2

Vertical scaling

(
1
0

)
→

(
1
0

) (
1 0
0 k

)

x=zM
N

ñN

ñO

x=zN
M

M

x=zâ
M

`çåíê~Åíáçå

MYâYN

(
0
1

)
→

(
0
k

)
Horizontal shear

(
1
0

)
→

(
1
0

) (
1 k
0 1

)

x=zNN

ñN

ñO

x=zN
M

M

x=z âM

h[M

(
0
1

)
→

(
k
1

)

x=zNN

ñN

ñO

x=zN
M

M

x=zâ M
âYM

Vertical shear

(
1
0

)
→

(
1
k

) (
1 0
k 1

)

x=zN
N

ñN

ñO

x=zN
M

M

x=z â
M

â[M

(
0
1

)
→

(
0
1

)
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Transformation Geometrical Algebraic Standard
effect on effect on matrix
e1 and e2 e1 and e2

x=zN

N

ñN

ñO

x=zN
M

M

x=zâ

M
âYM

Problem 12.9. A linear transformation T : R2 → R2 first reflects points
through the vertical axis(x2 axis) and then reflects points through the line x2 =
x1. Find the standard matrix of T . Also prove that T is a rotation about the

origin. What is the angle of rotation? Plot the image of

(
−2
1

)
under T .

Solution: Let T1 be the reflection through x2−axis and T2 reflection through
the line x2 = x1.
Then T = T2T1

The standard matrix of T is [T (e1) T (e2)] = A (say).
First we see the effect of T1, T2 on e1 and e2.
T1(e1) = −e1, T1(e2) = e2

T2(e1) = e2, T2(e2) = e1

∴ T (e1) = T2T1(e1) = T2(T1(e1)) = T2(−e1) = −e2

T (e2) = T2T1(e2) = T2(e2) = e1

∴ A = [−e2 e1] =

(
0 1
−1 0

)
The matrix of rotation through an angle θ in the anticlockwise direction is(
cosθ −sinθ
sinθ cosθ

)
Now A =

(
cos(−π/2) −sin(−π/2)
sin(−π/2) cos(−π/2)

)
Thus T represents a rotation through −π/2 in the anticlockwise direction that
is through an angle π/2 clockwise.
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The point P

(
−2
1

)
lies in the second quadrant. The image of P under T1 is

Q(2, 1) and under T2 is R(1, 2). Thus image of P (-2, 1) under T2T1 i.e. T is
R(1, 2). This can also be obtained as(

−2
1

)
→
(

0 1
−1 0

)(
−2
1

)
=

(
1
2

)
.

Problem 12.10. Let A = [a1a2] be the standard matrix of the linear transfor-
mation T : R2 → R2, where a1, a2 are shown in the figure. Using the figure,

draw the image of

(
2
−1

)
under T .

Solution: Since A = [T (e1) T (e2)], therefore a1 = T (e1) and a2 = T (e2).

If u =

(
2
−1

)
, then u = 2e1 − e2.

T (u) = T (2e1 − e2) = 2T (e1)− T (e2), T is linear.
= 2a1 − a2.

How T (u) is obtained is shown in the figure.

Geometrical Interpretation of Some Transformation
We now show that some matrix transformations can be interpreted geometri-
cally.
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1. Let A =

(
1 0
0 0

)
, A determines a linear transformation of R2 which

maps

X =

(
x1

x2

)
, to AX =

(
x1

0

)
This is the projection of X on the x1-axis.
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2. The matrix transformation determined by B =

(
0 0
0 1

)
defines the pro-

jection of R2 on the x2-axis.
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3. Let A =

(
k 0
0 k

)
, where k is any fixed real number. Let T be the

transformation determined by A.

If X =

(
x1

x2

)
, then T (X) = AX =

(
kx1

kx2

)
= k

(
x1

x2

)
= kX.

Thus each vector X is mapped to kX. This is called scaling. If k > 1, T
is a dilation.
If 0 < k < 1, T is a contraction.
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4. The matrix A =

(
1 0
0 −1

)
defines a transformation T of R2. If

X = [x1 x2]t, T (X) = AX =

(
x1

−x2

)
. T defines a reflection through

the x1-axis.

5. The matrix transformation determined by A =

(
−1 0
0 1

)
defines a re-

flection in the x2-axis.

6. The matrix transformation T is determined by A =

(
0 1
1 0

)
maps the

point X =

(
x1

x2

)
to T (X) = AX =

(
x2

x1

)
. This gives a reflection in

the line y = x.

7. The matrix transformation T is determined by A =

(
−1 0
0 −1

)
defines

a reflection about the origin. The image of point X =

(
x1

x2

)
is

(
x2

x1

)
.
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8. The matrix transformation T is determined by A =

(
cos45 −sin45
sin45 cos45

)
maps the point X =

(
x1

x2

)
to T (X) = AX =

(
1√
2 (x1 − x2)

1√
2 (x1 + x2)

)
T (X) can be obtained from X by rotating X about the origin through an
angle of 45o anticlockwise.
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In general, the matrix transformation T determined by

A =

(
cosθ −sinθ
sinθ cosθ

)
defines a rotation about the origin through an

angle θ in the anticlockwise direction.

12.11 Exercises

1. For the following linear transformations, find the standard matrix of T .

(i) T : R2 → R3, T (e1) =

 2
−3
1

 , T (e2) =

 −1
4
0


(ii) T : R2 → R2, T (e1) = e1, T (e2) = −3e1 + e2. What is T called?

(iii) T : R2 → R2 rotates points about the origin through 3π/4 radians
counterclockwise.

(iv) T : R2 → R2 first rotate points through −3π/4 radians clockwise and
then reflects points through the horizontal axis.

(v) T : R2 → R2 first performs a horizontal shear that transforms e2 to
2e1 + e2 and then reflects points through the line x2 = −x1.
If T1 is the transformation which performs the above two transfor-
mations in the reverse order, that is, first reflection then shearing. Is
T1 = T?

(vi) T : R2 → R2 first reflects points through the vertical axis(x2-axis) and
then rotates points through π/2 radians in anticlockwise direction.
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2. If T1, T2 are two linear transformations, find the standard matrix of
T2T1(i.e. T1 followed by T2). Moreover, verify that standard matrix of
(T2T1)=(standard matrix of T2)(standard matrix of T1). Is T2T1 = T1T2?
(i) T1 is reflection in the X1-axis. T2 is rotation through an angle θ

about 0.
(ii) Ti is rotation about the origin through an angle φi, i = 1, 2

3. Let T be a linear transformation from R2 to R2. Find the standard matrix
of T when
(i) T rotates points about the origin through 5π/6 radians counter-

clockwise.
(ii) T rotates points about the origin through π/3 radians clockwise.

4. Let T : R2 → R2 be a linear transformation defined by T (u) = Au, where

A =

(
cosφ◦ −sinφ◦
sinφ◦ cosφ◦

)
, φ = 30o

(i) If T1(u) = A2u, describe the matrix action of T1 on u as a matrix
of rotation.

(ii) T2(u) = A−1u, describe the matrix action of T2 on u as a matrix
of rotation.

(iii) What is the smallest positive value of k for which T3(u) = Aku = u?

5. A shear in the x2 direction is defined by T (X) = T (

(
x1

x2

)
)

=

(
x1

x2 + kx1

)
, where k is a scalar.

If this shear is applied on a rectangle with vertices (1, 1), (1, 4), (3, 1) and
(3, 4). Sketch the image of the rectangle for k = 3 and k = −2.

6. Let O : Rn → Rn be the zero linear transformation defined by O(u) = O
for every u ∈ Rn. Find the standard matrix of O.

7. Let I : Rn → Rn be the identity linear transformation defined by I(u) = u
for every u ∈ Rn. Find the standard matrix of I.

8. Find the standard matrix representing a clockwise rotation of R2 about
origin through π/6 radians.

12.12 Supplementary Problems

Problem 12.11. Define T : Rn → Rm by
T (X) = AX + b

where A is a m× n matrix, b ∈ Rm. Show that T is linear if and only if b = 0.

Solution: Let T be a linear transformation.
Then T (0) = 0 so that A0 + b = 0
⇒ b = 0
Conversely, let b = 0 so that T (X) = AX
This is the matrix transformation which is linear.

Note: The transformation defined above is called an affine transformation.
These transformations are important in computer graphics.
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Problem 12.12. Show that the line through the vectors a and b in Rn may be
written in the parametric form x = (1− t)a+ tb.

Solution: Let A(a) and B(b) be the two points and P (x) any point on AB.
Then
→AP= t→AB for some tεR
∴ x− a = t(b− a), so that x = (1− t)a+ tb

Problem 12.13. The line segment from a to b is the set of the form (1−t)a+tb
for 0 ≤ t ≤ 1. Show that a linear transformation T maps this line segment onto
a line segment or onto a single point.

Solution: The line segment →AP= {(1 − t)a + tb/0 ≤ t ≤ 1}. Since T is a
linear transformation, therefore
T (→AB) = {(1− t)T (a) + tT (b)/0 ≤ t ≤ 1} line segment joining T (a) and T (b).
If T = 0 = then it is a single point namely 0.

Problem 12.14. Let T : Rn → Rm be a linear transformation. Let v1, v2, ..., vk
∈ Rn be such that T (v1), ..., T (vk) are known. Then T is completely determined
on Span {v1, v2, ..., vk}. In particular if {v1, v2, ..., vk} spans Rn then T is com-
pletely determined.

Solution: Let T (v1) = u1, T (v2) = u2, ..., T (vk) = uk. Then u1, u2, ..., uk ∈
Rm.
If X ∈ span{v1, v2, ..., vk} then there exist weights c1, c2, ..., ck such that X =
c1v1 + ...+ ckvk.
T (X) = T (c1v1 + ...+ ckvk) = c1T (v1) + ...+ ckT (vk), as T is a linear transfor-
mation.

= c1u1 + ...+ ckuk.
Hence T (X) is known for all X ∈ Span{v1, ..., vk}. If Span{v1, ..., vk} = Rn
then T is determined on Rn.

Problem 12.15. Let P be the quadrilateral with vertices A(1, 3), B(−2, 1),
C(−1,−3) and D(4,−1).
Find the coordinates of the vertices of the image of the quadrilateral P under
the transformation T . Also sketch the quadrilateral P and its image under T .
(i) Horizontal shear T defined by

T (

(
x1

x2

)
) =

(
x1 − 3x2

x2

)
(ii) T is clockwise rotation through π/6 radians.

Solution:

(i) T =

(
1
3

)
=

(
−8
3

)
Thus A is mapped to A′(−8, 3) under T . Similarly B is mapped to
B′(−5, 1), C is mapped to C ′(8,−3) and D is mapped to D′(7,−1) under
T .
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(ii) The matrix of T is

(
cos(−π/6) −sin(−π/6)
sin(−π/6) cos(−π/6)

)
=

( √
3

2
1
2

− 1
2

√
3

2

)
Therefore, T (X) =

(
cos(π/6) −sin(−π/6)
sin(−π/6) cos(−π/6)

)
X

=

( √
3

2
1
2

− 1
2

√
3

2

)
X =

(
0.87 0.5
−0.5 0.87

)
X

T (

(
1
3

)
)=

(
0.87 0.5
−0.5 0.87

) (
1
3

)
=

(
2.37
1.91

)
≈
(

2.4
1.9

)
Thus A(1, 3) is mapped to A′(2.4, 1.9) under T . Similarly B(−2,−1) is
mapped to B′(−1.23, 1.87), C(−1,−3) is mapped to C ′(−2.37,−1.91) and
D(4,−1) is mapped to D′(2.96,−2.87) under T .

12.13 Supplementary Exercise

1. Indicate whether the following statements are true or false. Justify the
false ones.

(i) If T : R3 → R2 is a mapping then R3 is the domain and R2 is the
range of T .

(ii) T : R2 → R2 defined by

T (

(
x1

x2

)
) =

(
|x1|
x2

)
is not a linear transformation.

(iii) T : R2 → R2 defined by

T (

(
x1

x2

)
) =

(
x1

0

)
is onto but not injective.

(iv) If A is a 5 × 3 matrix then X 7→ AX defines a mapping from R5 to
R3.

(v)

(
1 0
0 −1

)
is the matrix of reflection through x2-axis.

(vi)

(
0 1
−1 0

)
is the matrix of rotation about origin through an angle

π/2 radians clockwise.
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(vii)

(
0 3
3 0

)
is the matrix of dilation.

(viii) A reflection through x2-axis followed by a rotation about origin
through π/2 radians counter-clockwise is rotation about origin
through 3π/2 radians counter-clockwise.

(ix) A reflection through x1-axis followed by a reflection through x2-axis
is rotation about origin through π radian clockwise.

(x) The composition of two linear transformations is a linear transforma-
tion.

(xi) A linear transformation T from R2 to R3 can be onto.

(xii) A linear transformation T : R3 → R2 can be injective.

(xiii) Every linear transformation T : Rn → Rn is always onto and injec-
tive.

(xiv) The standard matrix of a linear transformation from R2 to R2 that
reflects points through x1-axis, or x2-axis or the origin has the form(
a 0
0 b

)
, where a, b can take values ±1.

(xv) Let T : Rn → Rm be a linear transformation. For T to be injective,
T (X) = b must have a unique solution, for every b ∈ Rm.

2. If T is a linear transformation from R5 to R6 defined by T (X) = AX then
what is the order of A?

3. Consider the following transformation
T (x1, x2, x3) = (x1 + x2 − x3, x2 + x3 − x1, x3 + x1 − x2, x1 + x2 + x3)
(i) Prove that T is linear.
(ii) Find a matrix that implements T and hence prove that it is linear.

4. Let T be the matrix transformation defined by T (X) = AX. Find a vector
X, if it exists, such that T (X) = b.

A =


1 −2 1
3 −4 5
0 1 1
−3 5 4

, b =


1
9
3
−6


5. Is the vector (1, 2, 3) a linear combination of the vectors (1,−1,−3), (1, 5, 1)

and (1, 2,−1)?

6. Let T : R3 → R3 be a linear transformation such that
T (1,−1,−3) = (2, 3,−4)
T (1, 5, 1) = (4, 5,−6)
T (1, 2,−1) = (6, 2,−3)
Find T (1, 2, 3).

7. Let T : R3 → R4 such that

T (v1) =


1
1
1
1

 , T (v2) =


1
1
1
0

 , T (v3) =


1
1
0
0

,
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where v1 =

 1
1
1

 , v1 =

 1
1
0

 , v1 =

 1
0
0


Determine T , that is, find T (X) for any X ∈ R3.

8. If X ∈ R3, X =

 a
b
c

, express X in terms of v1, v2, v3.

In fact X = cv1 + (b− c)v2 + (a− b)v3

T (X) =


a
a
b
c

.

9. Let T : Rn → Rm be a linear transformation. If v1, ..., vk ∈ Rn such that
T (vi) = 0 for all i = 1, ..., k then T (X) = 0 for all X ∈ span{v1, ..., vk}.

10. Let T : R4 → R3 be a linear transformation defined by T (X) = AX,
where

A =

 1 1 0 0
0 0 1 1
1 0 1 0


(i) Show that T is onto.

(ii) Find a vector X such that T (X) = b, where b =

 −1
2
−3


(iii) Is the vector X obtained in (ii) unique? If not, obtain all X such

that T (X) = b.
(iv) What is the range of T?

11. Given an echelon form of the standard matrix for a linear transformation
T .
(i) T : R2 → R3, T is injective.
(ii) T : R3 → R3, T is onto and injective.
(iii) T : R3 → R2, T is not onto.
(iv) T : R4 → R5, T is injective.
(v) T : R4 → R3, T is onto.
(vi) T : R4 → R4, T is neither injective nor onto.

12. Let T : Rn → Rm be a linear transformation. What is the relationship
which must hold between m and n for T to be
(i) onto.
(ii) injective.
(iii) onto and injective.

13. Given an example of a linear transformation T , for the following:
(i) T : R3 → R2 such that T is not onto.
(ii) T : R2 → R3 such that T is not injective.
(iii) T : R3 → R3 such that T is neither onto nor injective.

14. Let T be a matrix transformation defined by T (X) = AX. Find all vectors
X, if they exists, such that T (X) = b.
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15. Let T be a matrix transformation defined by T (X) = AX. Find all vectors
X which are mapped to zero.

16. Check whether the matrix transformation determined by the given matrix
A is (a) onto, (b) injective.

(i) A =


1 3 2
2 −1 3
3 −5 4
1 17 4

 not injective, not onto.

(ii) A =

 1 2 3
2 3 4
7 13 9

 1− 1, onto.

(iii) A =

 1 3 4 7
2 4 5 8
3 1 2 3

 not 1-1, onto.

(iv) A =


1 2 3 4
8 5 1 4
5 6 8 1
8 3 7 2

 1− 1, onto.

17. Let T be a linear operator on Rn. Then T is onto Rn if and only if T is
injective.
Interpret the linear transformation determined by the matrix A geomet-
rically.

(i) A =

(
0 1
0 0

)
(ii) A =

(
0 0
1 0

)
18. Let P be the triangle with vertices A(1, 1), B(−2,−3) and C(2,−1). Find

the coordinates of the vertices of the image of the triangle P under the
transformation T . Also sketch the triangle P and its image under T .
(i) Vertical shear T with shear factor 2. Also verify that the area of

the triangle remains unchanged under T .
(ii) T is the counterclockwise rotation through π/3 radians.

19. Plot the image of the parabola x2 = x2
1 when it is rotated counterclockwise

through π/3 radians.

20. A linear transformation T : R2 → R2 first reflects points through the x2-
axis and then reflects points through x1-axis. Show that T can also be
described as a linear transformation that rotate points about the origin.

What is the angle of rotation? Plot the image of

(
−1
3

)
under T .

21. Define f : R→ R by
f(x) = ax+ b.

Prove that f is a linear transformation if and only if b = 0.
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12.14 Answers to Exercises

Exercise - 12.11

3.

(i)

(
−
√

3
2 − 1

2
1
2 −

√
3

2

)

(ii)

(
1
2 −

√
3

2√
3

2
1
2

)
4.

(i) A2 =

(
cos2φ −sin2φ
sin2φ cos2φ

)
. T1(u) = A2u is a rotation through 2φ.

(ii) T2 is rotation through φ in the clockwise direction.
(iii) Ak is rotation through kφ. Thus kφ = 360o gives k = 12.

Supplementary Exercises

1.
(i) F. R3 is domain and R2 is co-domain.
(ii) T
(iii) F. Neither onto nor injective.
(iv) F. Defines a mapping from R3 to R5.
(v) F. Reflection through x1-axis.
(vi) T

(vii) F.

(
3 0
0 3

)
is the matrix of dilation. or

(
3 0
0 3

)
is the matrix

of dilation followed by reflection through y = x.
(viii) F.It is reflection about y = −x
(ix) T
(x) T
(xi) F. The matrix of T is a 3 × 2 which can have at most 2 pivots

(one in each column). So each row can not have a pivot.
(xii) F. Matrix of T is 2× 3 which cannot have a pivot.
(xiii) F. Zero transformation is neither onto nor injective.
(xiv) T
(xv) F. Either no solution or a unique solution.

4.

 7
3
0


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10.

(ii) X =


−5
4
2
0


(iii) No. X =


−5 + k
4− k
2− k
k


(iv) Range T = R3

11. One of the possible answers is given:

(i)

 � F
0 �
0 0


(ii)

 � F F
0 � F
0 0 �


(iii)

(
0 � F
0 0 0

)

(iv)


� F F F
0 � F F
0 0 � F
0 0 0 �
0 0 0 0


(v)

 � F F F
0 � F F
0 0 � F


(vi)


� F F F
0 � F F
0 0 � F
0 0 0 0


12.

(i) m ≤ n
(ii) m ≥ n
(iii) m = n

13. T : X → AX, where A is

(i)

(
1 1 1
0 0 0

)
(ii)

 1 2
0 0
0 0


(iii)

 1 2 3
0 1 4
0 0 0


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16.

(i) X =

 −11
−1
7

 k :TX = 0

(iii) X =


1
3
−6
2

 k, k ∈ R

17. One possible answer is:
(i) Projection on x2-axis followed by reflection in the line x2 = x1.
(ii) Projection on x1-axis followed by reflection in the line x2 = x1.

19. Hint: Take a few points (say 4 or 5) on the parabola, find their images.
Join them.
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Chapter 13

Vector Space

13.1 Definition and Examples

There are objects in mathematics which can be added together as well as
multiplied by numbers also, like polynomials, matrices, real valued functions etc.
In these systems, the operations of addition and multiplication by numbers have
properties which are the same as those of Rn as given in chapter. The elements
of Rn are called vectors and the real numbers are called scalars. For this reason,
an algebraic structure which has Rn, like properties is called a vector space. In
this chapter, we define and study vector spaces. A good intuitive model for a
vector space is provided by R2 and R3.

Definition 13.1. (Vector space): Let V be a non-empty set and F a field.
Let a binary operation + be defined on V , and let scalar multiplication αv be
defined for every α ∈ F and v ∈ V . Then, V is said to be a vector space over
F if the following axioms hold:
A1 u+ v ∈ V for all u, v ∈ V
A2 (u+ v) + w = u+ (v + w), for all u, v, w ∈ V
A3 u+ v = v + u, for all u, v ∈ V
A4 There is a zero vector 0v in V such that u+ 0v = u, for all u ∈ V
A5 For each u ∈ V , there exists v ∈ V such that u+ v = 0v
M1 αu ∈ V , for all α ∈ F, u ∈ V
M2 α(u+ v) = αu+ αv, for all α ∈ F, u, v ∈ V
M3 (α+ β)u = αu+ βu, for all α, β ∈ F, u ∈ V
M4 (αβ)(u) = α(βu), for all α, β ∈ F, u ∈ V
M5 1u = u, for all u ∈ V

The elements of V are called vectors and the elements of F are called scalars.
A vector space is also called a linear space.

Remark 13.1. Properties A1 to A5 are equivalent to saying that (V,+) is an
Abelian group. Consequently, identity element and additive inverse of an every
element is unique. The additive identity element e of V is called the null vector
(or zero vector) and is denoted by 0v. The additive inverse of an element v ∈ V
is denoted by −v.

564
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Remark 13.2. The zero of the field F is also denoted by the same symbol
“0”. It will clear from the context when “0” denotes the zero vector or the zero
(scalar) of the field F .

Notation
The vector space V over a field F , is denoted by V (F ) or VF . If F is

understood from the context, then we simply say that V is a vector space.
Elementary Properties

The following theorem gives us some very simple, yet useful properties of a
vector space.

Theorem 13.1. Let V be a vector space over a field F. Then the following
properties hold.
(i) Scalar multiplication with the zero vector gives the zero vector, i.e α0 =

0, for all α ∈ F
(ii) Multiplication by the zero scalar yields the zero vector, i.e 0v =

0, for all v ∈ V
(iii) If α ∈ F and v ∈ V such that αv = 0, then either α = 0 or v = 0
(iv) (−α)v = α(−v) = −αv, for all α ∈ F, v ∈ V
(v) (−1)v = −v, for all v ∈ V
(vi) For 0 6= v ∈ V, α, β ∈ F such that α 6= β, then αv 6= βv

Proof: (i) Let α ∈ F

Then α0 = α(0 + 0)
⇒ α0 = α0 + α0 by M2
⇒ α0 + 0 = α0 + α0 by A4
⇒ 0 = α0 by cancellation property for addition in V
∴ α0 = 0

(ii) Let v ∈ V . Then
0v = (0 + 0)v

⇒ 0v = 0v + 0v using M3
⇒ 0 + 0v = 0v + 0v using A4
⇒ 0 = 0v by cancellation property of addition in V
Hence 0v = 0 for all v ∈ V
(iii) Let α ∈ F, v ∈ V such that

αv = 0
If α = 0 then proof is complete.
If α 6= 0 then α−1 ∈ F , so that
α−1(αv) = α−10

⇒ (α−1α)v = 0 using M4 and (i)
⇒ 1v = 0
⇒ v = 0 using M5
Hence proved.
(iv) Let α ∈ F, v ∈ V
(−α)v + αv = (−α+ α)v, using M3

= 0v = 0 using (ii)
∴ (−α)v = −αv, similarly α(−v) = −αv
(v) In (iv) take α = 1
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(vi) Let v ∈ V, α, β ∈ F and α 6= β. Suppose that αv = βv. Then
αv − βv = 0⇒ (α− β)v = 0 since v 6= 0 ⇒ α− β = 0 using (iii)
⇒ α = β, which contradicts our hypothesis that α 6= β.
Hence our assumption is wrong, so that αv 6= βv.

Remark 13.3. In this chapter we shall study vector spaces over R and C only.
V will always be taken as a vector spaces over R unless specified otherwise, in
which case it will be over C.

Notation

An element of Rn has been written as


x1

x2

...
xn

, xi ∈ R. Interchangeably, we

write it as
(
x1, x2, . . . , xn

)
.

If V = {0} and we define
0 + 0 = 0
α0 = 0, ∀α ∈ R
Then V is called a vector space over R. It is called the zero vector space.
If a vector space is such that V 6= {0}, then it is called a non-zero vector space.
If V is a non-zero vector space over the field R, then can V have only a finite
number of elements?
The answer is in the negative, ∵ if 0 6= v ∈ V and α, β ∈ R, α 6= β then αv 6= βv.
Thus if S = {αv | α ∈ R}, then S is infinite and S ⊆ V , so that S has infinitely
many elements.

In fact, if V 6= {0} is a vector space over a field F , then V has infinite
number of elements if F is infinite.

Example 13.1. The set of all real numbers R is a vector space over itself. The
addition and scalar multiplication is defined as follows: (1) x1 + x2 (2) αx for
every x1, x2, x ∈ R treated as vectors and for every α ∈ R treated as a scalar.

Example 13.2. C with respect to the usual addition and multiplication is a
vector space over the field C. The zero vector is the complex number 0 and the
negative of the vector x is the complex number −x.

Example 13.3. C is a vector space over R, with respect to the operations defined
as follows:
If v1, v2,∈ C, α ∈ R, and v1 = a1 + ib1, v2 = a2 + ib2, then
v1 + v2 = (a1 + a2) + i(b1 + b2), αv1 = (αa1) + i(αb1)

Example 13.4. R with usual addition and multiplication forms a vector space
over the field Q of rational numbers.

Example 13.5. R2 is a vector space over R with addition and scalar multipli-
cation defined as follows:
For (x1, y1), (x2, y2) ∈ R2, α ∈ R,
(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2), α(x1, y1) = (αx1, αy1)

Example 13.6. Let n ≥ 1 be a fixed integer. Rn, the set of all n tuples of
real numbers, is a vector space over R with component-wise addition and scalar
multiplication.
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Example 13.7. Let n ≥ 1 be a fixed integer. Then Cn is a vector space over
R, with component-wise addition and scalar multiplication.

Example 13.8. Let V = {(x1, x2, 0)|x1, x2 ∈ R}. Then V is a vector space
over R with respect to component-wise addition and scalar multiplication in V .
In fact, V represents x1x2 plane.

Example 13.9. Let V = Q[
√

2] = {a + b
√

2|a, b ∈ Q}. Then V is a vector
space over Q with usual addition of real numbers and scalar multiplication.

Example 13.10. M2(R) is a vector space over R with respect to matrix addition
and scalar multiplication of matrices.

Example 13.11. M3(C) is a vector space over C with respect to matrix addition
and scalar multiplication of matrices.

Example 13.12. Let P2 be the set of all polynomials of degree ≤ 2 over R.
For f = a0 +a1x+a2x

2, g = b0 +b1x+b2x
2 ∈ P2, where ai, bi ∈ R, i = 0, 1, 2:

Define f+g = (a0+b0)+(a1+b1)x+(a2+b2)x2 and αf = (αa0)+αa1x+αa2x
2.

It is easy to check that P2 is a vector space over R.

V ceases to be a vector space if (i) even one of the axioms fails to hold, or
(ii) any one of the properties of a vector space fails to hold. Note that whether
a given set V is a vector space over a field or not depends very much on the
operations defined on V , i.e. vector addition and the scalar multiplication. This
is shown by the following examples.

Example 13.13. Consider V = R3 , define
(x1, x2, x3) + (y1, y2, y3) = (x1 + y1, x2 + y2, x3 + y3)
α(x1, x2, x3) = (αx1, x2, x3) for all α ∈ R
Then for x, y ∈ V, α ∈ R, x+ y ∈ V, αx ∈ V
So the composition are well defined. Let (1, 1, 1) ∈ V .
Then 0(1, 1, 1) = (0, 1, 1), so that 0v = 0 is not satisfied for all v ∈ V
Hence V is not a vector space over R.

Example 13.14. Let V = R2. Define addition and scalar multiplication in V
as follows:
For x, y ∈ R2, α ∈ R, x = (x1, x2), y = (y1, y2)
x+ y = (0, x2 + y2)
αx = (αx1, αx2)
Suppose (e1, e2) ∈ V is the zero vector of V. Then for any (x1, x2) ∈ V

(x1, x2) + (e1, e2) = (x1, x2)

⇒ (0, x2 + e2) = (x1, x2)

which is not possible when x1 6= 0. Hence V does not have a zero element, so
that V is not a vector space over R under the given operations.

Example 13.15. Let V = R2. Define

(x1, x2) + (y1, y2) = (x1 + x2, y1 + y2)

α(x1, x2) = (αx1, 0)

Observe that v = (2, 3) ∈ V is such that 1v 6= v Therefore V is not a vector
space over R.
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Problem 13.1. Verify that Rn is a vector space over R, with component-wise
addition and scalar multiplication.

Solution:

1. Let u, v ∈ Rn, so that
u = (u1, u2, . . . , un), v = (v1, v2, . . . , vn) for ui, vi ∈ R, 1 ≤ i ≤ n.
Then u+ v = (u1 + v1, u2 + v2, . . . , un + vn) ∈ Rn
∵ ui + vi ∈ R, 1 ≤ i ≤ n. Thus u+ v ∈ Rn

2. Let u, v, w ∈ Rn. Then u = (u1, u2, . . . , un), v = (v1, v2, . . . , vn), w =
(w1, w2, . . . , wn), where ui, vi, wi ∈ R, 1 ≤ i ≤ n.
Then

(u+ v) + w = (u1 + v1, u2 + v2, . . . , un + vn) + (w1, w2, . . . , wn)

= ((u1 + v1) + w1, (u2 + v2) + w2, . . . , (un + vn) + wn)

= (u1 + (v1 + w1), u2 + (v2 + w2), . . . , un + (vn + wn))

(using Associative law for addition in R)

= (u1, u2, . . . , un) + (v1 + w1, v2 + w2, . . . , vn + wn)

= u+ ((v1, v2, . . . , vn) + (w1, w2, . . . , wn))

= u+ (v + w)

Hence (u+ v) + w = u+ (v + w), ∀ u, v, w ∈ Rn.

3. Let u, v ∈ Rn. Then
u = (u1, u2, . . . , un), v = (v1, v2, . . . , vn) where ui, vi ∈ R, 1 ≤ i ≤ n

∴ u+ v = (u1 + v1, u2 + v2, . . . , un + vn)

= (v1 + u1, v2 + u2, . . . , vn + un) (using Commutative law

for addition in R)

= (v1, v2, . . . , vn) + (u1, u2, . . . , un)

= v + u

Hence u+ v = v + u, ∀ u, v ∈ Rn

4. 0 = (0, 0, . . . , 0) ∈ Rn such that
u+ 0 = u, ∀ u ∈ Rn

5. Let u ∈ Rn. Then u = (u1, u2, . . . , un), ui ∈ R.
Let v = (−u1,−u2, . . . ,−un). Then v ∈ Rn and u+ v = 0.
Thus v is the negative of u.

6. Let u = (u1, u2, . . . , un) ∈ Rn, α ∈ R. Then αu = (αu1, αu2, . . . , αun) ∈
Rn.

7. Let u, v ∈ Rn, α ∈ R
Then u = (u1, u2, . . . , un), v = (v1, v2, . . . , vn)
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α(u+ v) = α(u1 + v1, u2 + v2, . . . , un + vn)

= (α(u1 + v1), α(u2 + v2), . . . , α(un + vn))

= (αu1 + αv1, αu2 + αv2, . . . , αun + αvn)

= (αu1, αu2, . . . , αun) + (αv1, αv2, . . . , αvn)

= αu+ αv

Hence α(u+ v) = αu+ αv, ∀ u, v ∈ Rn, α ∈ R.

8. Let u = (u1, u2, . . . , un) ∈ Rn, α, β ∈ R

Then (α+ β)u = ((α+ β)u1, (α+ β)u2, . . . , (α+ β)un)

= (αu1 + βu1, αu2 + βu2, . . . , αun + βun)

= (αu1, αu2, . . . , αun) + (βu1, βu2, . . . , βun)

= α(u1, u2, . . . , un) + β(u1, u2, . . . , un)

= αu+ βu

∴ (α+ β)u = αu+ βu, ∀ u ∈ Rn, α, β ∈ R.

9. Let u = (u1, u2, . . . , un) ∈ Rn, α, β ∈ R. Then

(αβ)u = ((αβ)u1, (αβ)u2, . . . , (αβ)un)

= (α(βu1), α(βu2), . . . , α(βun)) (using Associative law for

multiplication inR)

= α(βu1, βu2, . . . , βun)

= α(β(u1, u2, . . . , un))

= α(βu)

∴ (αβ)u = α(βu), ∀ u ∈ Rn, α, β ∈ R.

10. Let u = (u1, u2, . . . , un) ∈ Rn. Then 1 ∈ R and

1u = (1u1, 1u2, . . . , 1un)

= (u1, u2, . . . , un)

= u

Thus, it follows from the above that Rn is a vector space over R.

Problem 13.2. Let S be a non-empty set and V be the set of all functions from
S to R. Define the sum of two functions f and g to be the function (f + g) by
the rule

(f + g)(x) = f(x) + g(x), ∀x ∈ S

Also, for f ∈ S, α ∈ R, define the scalar multiplication of f by α, by the rule

(αf)(x) = αf(x), ∀ x ∈ S

Verify that V is a vector space over R with respect to addition and scalar mul-
tiplication defined above.
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Solution:

1. If f, g ∈ V , then f + g, as defined above, is also a function from S to R so
that f + g ∈ V .

2. Let f, g, h ∈ V . For x ∈ S

((f + g) + h)(x) = (f + g)(x) + h(x)

= (f(x) + g(x)) + h(x)

= f(x) + (g(x) + h(x) (using Associative law for

addition in R)

= f(x) + (g + h)(x)

= (f + (g + h))(x)

∴ (f + g) + h = f + (g + h)

3. Let f, g ∈ V . For x ∈ S

(f + g)(x) = f(x) + g(x)

= g(x) + f(x)

= (g + f)(x)

Hence f + g = g + f .

4. If e is the zero function on S, defined by e(x) = 0 ∀ x ∈ S, then e ∈ V .
Also for any f ∈ V , and x ∈ S

(f + e)(x) = f(x) + e(x)

= f(x) + 0

= f(x)

∴ f + e = f
Thus e is the zero element of V.

5. Let f ∈ V . Define the function g on S by g(x) = −f(x), ∀x ∈ S then
g ∈ V . For each x ∈ S

(f + g)(x) = f(x) + g(x)

= f(x)− f(x)

= 0

= e(x)

∴ f + g = e
Thus g is the inverse of f in V.

6. If f ∈ V and α ∈ R, then αf , is a well defined function on S, so that
αf ∈ V .

7. Let f ∈ V, α, β ∈ R. For each x ∈ S

((αβ)f)(x) = (αβ)f(x)

= α(βf(x))

= α((βf)(x))

= (α(βf))(x)

∴ (αβ)f = α(βf)
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8. Let f ∈ V, α, β ∈ R. For each x ∈ S

((α+ β)(f))(x) = (α+ β)f(x)

= αf(x) + βf(x) (using Distributive law in R)

= (αf)(x) + (βf)(x)

= (αf + βf)(x)

∴ (α+ β)f = αf + βf

9. Let f, g ∈ V, α ∈ R. For each x ∈ S

(α(f + g))(x) = α((f + g)(x))

= α(f(x) + g(x))

= αf(x) + αg(x)

= (αf)(x) + (αg)(x)

∴ α(f + g) = αf + αg

10. Let f ∈ V, 1 ∈ R such that

(1f)(x) = 1f(x)

= f(x)

∴ 1f = f

Thus V is a vector space over R.

Problem 13.3. Let V = R+, the set of all positive real numbers. Define
addition and scalar multiplication on V as follows:
For x, y ∈ V, α ∈ R, define

x+ y = xy

αx = xα.

Show that V is a vector space over R.

Solution: Clearly sum is well defined. Also if x ∈ V, α ∈ R, then xα ≥ 0
so that xα ∈ V . The zero vector is 1, and the negative of x ∈ V is 1

x ∈ V . If
α, β ∈ V , then

(α+ β)x = xα+β

= xαxβ

= xα + xβ

= αx+ βx

∴ (α+ β)x = αx+ βx
Similarly the other axioms can be verified, so that V is a vector space over R.
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Problem 13.4. Let X be a non-empty set and V be the power set of X. Show
that V is a vector space over the field F = (Z2,⊕2,�2) where Z2 = {0, 1}, with
respect to the operations defined as follows:
For A,B ∈ V, α ∈ F ,
A+B = A∆B

αA =

{
A, if α = 1;
φ, if α = 0.

Solution: It has been proved in Example 5.26 that (V,+) is a group. Clearly
αA ∈ V, ∀ A ∈ V, α ∈ F .

(i) Let A,B ∈ V, α ∈ F . Then

α(A+B) = α(A∆B)

=

{
A∆B, if α = 1;
φ, if α = 0.

}
If α = 1 then αA+ αB = A+B = A∆B
If α = 0 then αA+ αB = φ+ φ = φ∆φ = φ

∴ αA+ αB =

{
A∆B, if α = 1;
φ, if α = 0.

}
Hence α(A+B) = αA+ αB

(ii) Let A,B ∈ V, α ∈ F

Then α+ β =

{
1, if either α = 1, or β = 1,but not both;
0, otherwise.

}
There are four cases which are shown below.

α β (α+ β)A αA+ βA
0 0 0A = φ 0A+ 0B = φ∆φ = φ
1 0 1A = A 1A+ 0A = A+ φ = A∆φ = A
0 1 1A = A 0A+ 1A = φ+A = φ∆A = A
1 1 0A = φ 1A+ 1A = A+A = A∆A = φ

Hence (α+ β)A = αA+ βA.

(iii) Let A ∈ V, α, β ∈ F
The different cases are shown below:

α β (αβ)A βA α(βA)
0 0 0A = φ 0A = φ 0φ = φ
1 0 0A = φ 0A = φ 1φ = φ
0 1 0A = φ 1A = A 0A = φ
1 1 1A = A 1A = A 1A = A

Thus in all cases
(αβ)A = α(βA)

(iv) Let A ∈ V . Then 1A = A by definition of scalar multiplication.
Thus 1A = A, ∀ A ∈ V

Hence V is a vector space over F.
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13.2 Exercise

1. Verify that the vector spaces in Example 13.1 and Example 13.12 satisfy
the axioms of a vector space.

2. Show that V = Mm×n(R) is a vector space over R under matrix addition
and scalar multiplication of matrices.

3. If A is a fixed m×n matrix over R then prove that the set of all solutions
of AX = 0 in Rn is a vector space over R, under the usual addition and
scalar multiplication of matrices.

4. Let V = R+. Is V a vector space over R with respect to usual addition in
V and scalar multiplication defined by
αx = xα, for x ∈ V, α ∈ R.

5. Are the following true or false? Justify your answer.
(i) Q is a vector space over R.
(ii) R is a vector space over C.
(iii) Q is a vector space over Q.
(iv) R is a vector space over Q.
(v) C is a vector space over Q.

6. In each of the following justify why V is not a vector space over R.

(i) V = R3 with the operations defined as follows: For v1, v2 ∈ V, α ∈ R
If v1 = (x1, y1, z1), v2 = (x2, y2, z2)
v1 + v2 = (x2, y1 + y2, z2)
αv1 = (αx1, αy1, αz1)

(ii) V = R3, usual componentwise addition
For v = (x, y, z) ∈ R3, α ∈ R
αv = (x, 1, z) · · · . . .

(iii) V = R2, v1, v2 ∈ V, α ∈ R
v1 = (x1, y1), v2 = (x2, y2)
v1 + v2 = (x1 + x2 + 1, y1 + y2)
α(x1, y1) = (αx1, αy1)

(iv) V = R+, with vector addition and scalar multiplication defined by
αx = eαx, for α ∈ R, x ∈ V

(v) V = R+, with usual addition and scalar multiplication defined as
For x ∈ V, α ∈ R, αx = |α|x.

7. Let V be a vector space over C. Define another system over C as follows:
V1 = V and addition in V1 is same as in V, scalar multiplication in V1 is
defined as:
For v ∈ V, α ∈ C, αV = (Re α)v. Is V1 a vector space over C?

8. Let V be a vector space over R. If v ∈ V and α ∈ R such that αv = v
then show that either α = 1 or v = 0.

9. Let V = Q[
√

5] = {a+ b
√

5|a, b ∈ Q}. Prove that V is a vector space over
Q with respect to usual addition of real numbers, and scalar multiplication
defined by usual multiplication.
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10. Show that the set of all real valued functions on [0, 1] is a vector space over
R with respect to pointwise addition and scalar multiplication of functions.

11. Show that the set of all real valued continuous functions on [0, 1] is a vector
space over R with respect to pointwise addition and scalar multiplication
of functions.

12. Let S denote the set of all real valued functions defined on Z. Prove that
S is a vector space over R under the operations defined by the following:
For f, g ∈ S, α ∈ R
(f + g)(x) = f(x) + g(x), ∀ x ∈ Z
(αf)(x) = αf(x), ∀ x ∈ Z
(such functions are called discrete or digital signals).

13. Let V = R. For any u, v ∈ V, α ∈ R, define
u⊕ v = u+ v + 1
α� u = αu+ α− 1
Prove that V is a vector space over R under these two operations.

13.3 Subspaces

Similar to the concept of subgroup and subrings, here also, subspaces mean
vector spaces within vector spaces. If V is a vector space over a field F and W
is a non-empty subset of V such that W is a vector space over F in its own right
then W is called a subspace of V over F . Thus, we have the following definition

Definition 13.2. (Subspace): Let V be a vector space over a field F and W
be a non-empty subset of V. Then W is called a subspace of V if W is a vector
space over F, with respect to the operations of addition and scalar multiplication
in V restricted to W .

For W to be a subspace of V , it is sufficient to check only 3 conditions. The
rest are satisfied automatically. In this regard, we have the following theorem.

Theorem 13.2. Let V be a vector space over a field F and W a subset of V.
Then W is a subspace of V if and only if
(i) 0 ∈W
(ii) w1 + w2 ∈W for all w1, w2 ∈W
(iii) αw ∈W for all α ∈ F,w ∈W .

Proof: The conditions are necessary
Suppose W is a subspace of V , then W is a vector space over F , so that 0 ∈W .
Hence (i) holds. The conditions (ii) and (iii) must be satisfied since a vector
space is closed under vector addition and scalar multiplication.
The conditions are sufficient
Let the conditions hold.
Since W ⊆ V , ∴ the properties A2 to A4 and M2 to M5 hold in W as they
hold in V .

We only need to show the existence of additive inverse in W. For w1, w2 ∈
W and α ∈ F, w1 + w2, αw1 ∈ W. ∴ For α = −1, w1 ∈ W we get (−1)w1 ∈
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W ⇒ −w1 ∈ W . Hence all the axioms hold in W so that W is a vector space
in its own right. Thus W is a subspace of V .

By virtue of this theorem, for a subset W of V to be a subspace of V , it is
sufficient to check only these three conditions.

Example 13.16. 1. Consider the vector space V (F ). Let W = {0}. Then
(i) 0 ∈W
(ii) 0 + 0 = 0 ∈W
(iii) if α ∈ F, then, α0 = 0 ∈W
Thus W is a subspace of V .

2. Let V = R2. Then V (R) is a vector space. Let
W = {(x, 0)|x ∈ R}, then W is a subspace of V . Since
(i) (0, 0) ∈W
(ii) If (x1, 0), (x2, 0) ∈W then (x1, 0) + (x2, 0) = (x1 + x2, 0) ∈W
(iii) For α ∈ R, w = (x1, 0) ∈W, αw = (αx1, 0) ∈W .

3. Let V = R2. Then V (R) is a vector space. Let W = {(x, y) ∈ R2|y = 2x}.
(i) Since 0 = 2.0
∴ (0, 0) ∈W
(ii) If w1 = (x1, y1) and w2 = (x2, y2) belongs to W , then y1 = 2x1, y2 =
2x2

∴ y1 + y2 = 2(x1 + x2) so that (x1 + x2, y1 + y2) ∈W
(iii) Let w ∈W,α ∈ R, and w = (x, y)
∴ y = 2x ⇒ αy = 2αx
⇒ (αx, αy) ∈W
But α(x, y) = (αx, αy) ∈W
Hence W is a subspace of V .

If V (F ) is a vector space, then {0} and V are subspaces of V . These are
called the trivial subspaces of V . Any subspace of V other than {0} and V is
called a non-trivial subspace of V .

To prove that a subset W is not a subspace of a vector space V (F ), it is
sufficient to show that any one of the three conditions of Theorem 13.2 fails to
hold.

Example 13.17. Consider the vector space V (R), where V = R2. Let

(i) W1 = {(x, y) ∈ V |2x+ 3y = 4}. Then 2(0) + 3(0) = 0 6= 4 ∴ (0, 0) does not
satisfy 2x+ 3y = 4, so that (0, 0) /∈W1. Hence W1 is not a subspace of V .

(ii) W2 = {(x, y) ∈ V |x2 = y2}. Clearly 0 = (0, 0) ∈ W2. Take w1 =
(1,−1), w2 = (−2,−2). Then w1, w2 ∈W2 and w1 + w2 = (−1,−3) /∈W.
Hence W2 is not a subspace of V .

(iii) Let W3 = {(x, y) ∈ V |2x+ 3y ≥ 0}
Clearly (0, 0) ∈W3 . If w ∈W3, then −1w /∈W3

Therefore W is not closed under scalar multiplication. Hence W3 is not a
subspace of V.

To check whether a given subset of a vector space V is a subspace, the three
conditions in Theorem 13.2 can be reduced to other equivalent conditions.
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Theorem 13.3. Let V (F ) be a vector space and W a subset of V. Then the
following are equivalent:

1. W is a subspace of V

2. W 6= φ and
(i) u+ v ∈W, ∀ u, v ∈W (ii) αu ∈W, ∀ u ∈W,α ∈ F

3. W 6= φ and
αu+ βv ∈W, ∀ α, β ∈ F, u, v ∈W

4. W 6= φ and
αu+ v ∈W ∀ u, v ∈W,α ∈ F

Proof: Left to the reader.
We now give methods to create new subspaces from given subspaces.

Theorem 13.4. The intersection of two subspaces is a subspace.

Proof: Let V (F ) be a vector space and W1,W2 be two subspaces of V . Let
W = W1 ∩W2. Since 0 ∈W1, 0 ∈W2, ∴ 0 ∈W1 ∩W2 = W so that W 6= φ
Let u, v ∈W,α ∈ F , then u, v ∈W1, u, v ∈W2 . Since W1,W2 are subspaces of
V
∴ αu+ v ∈W1 and αu+ v ∈W2 so that αu+ v ∈W1 ∩W2 = W
Hence W is a subspace of V.

The union of two subspaces may fail to be a subspace. This is shown by the
following example.

Example 13.18. Consider the vector space V (R), where V = R2. Let W1 =
{(x, y) ∈ R2|x = y}, W2 = {(x, y) ∈ R2|y = −x}. Then W1,W2 are subspaces of
V. w1 = (2, 2) ∈W1, w2 = (−2, 2) ∈W2. Thus w1, w2 ∈W1∪W2, but w1 +w2 =
(0, 4) /∈W1 ∪W2. Hence W1 ∪W2 is not a subspace of V.

Remark 13.4.

1. The only subspaces of R are {0} and R.

2. The only non-trivial subspaces of R2 are of the form {(x, y) ∈ R2|y =
ax} for some a ∈ R. Geometrically, these are lines passing through the
origin.

3. The only non-trivial subspace of R3 is the form
{(x, y, z) ∈ R3|ax+ by + cz = 0} for some a,b,c ∈ R
or {(x, y, z) ∈ R3|xa = y

b = z
c} for some a,b,c ∈ R

Geometrically, these are planes or lines in spaces. The proof is given in
chapter 14.

It is important to note that the subspaces of R,R2,R3 have a very specific
form. This will help the reader to verify whether a given subset of R2 or R3 is
a subspace or not.

Definition 13.3. (Sum of two subspaces): Let V be a vector space over a
field F, and W1,W2 be two subspaces of V. Then W = {w1 +w2|w1 ∈W1, w2 ∈
W2} is called the sum of the subspaces W1 and W2 and is denoted by W1 +W2.
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Theorem 13.5. If V is a vector space over F , and W1,W2 are two subspaces
of V , then W1 +W2 is a subspace of V , containing W1 and W2. Moreover it is
the smallest subspace of V containing both W1 and W2.

Proof: Let W = W1 +W2. If u, v ∈W,α ∈ F .
Then u = u1 + u2, v = v1 + v2, where u1, v1 ∈W1, u2, v2 ∈W2

Then

αu+ v = α(u1 + u2) + (v1 + v2)

= (αu1 + v1) + (αu2 + v2)

Since W1,W2 are subspaces of V ,
∴ (αu1 + v1) ∈W1, (αu2 + v2) ∈W2

⇒ (αu1 + v1) + (αu2 + v2) ∈W
⇒ αu+ v ∈W
⇒ W is a subspace of V .
Now, if w1 ∈W1, then w1 = w1 + 0 ∈W1 +W2(∵ 0 ∈W2)
⇒ w1 ∈W
⇒W1 ⊆W . Similarly W2 ⊆W .
Let T be a subspace of V containing W1 and W2.
Let u ∈W = W1 +W2, ∴ u = w1 + w2 for some w1 ∈W1, w2 ∈W2.
Since W1 ⊆ T and W2 ⊆ T ∴ w1, w2 ∈ T so that w1 + w2 ∈ T
⇒ u ∈ T ⇒ W1 + W2 ⊆ T. Hence W ⊆ T , so that W is the smallest subspace
of V containing both W1 and W2.

V = R3, is a vector space over R. Let
W1 = {(x, y, 0)|x, y ∈ R}, W2 = {(0, y, z)|y, z ∈ R}. Then W1 and W2 are
subspaces of V. If v ∈ V , then

v = (x, y, z) for some x, y, z ∈ R
= (x, 1, 0) + (0, y − 1, z)

= w1 + w2 (say)

Clearly w1 ∈ W and w2 ∈ W2 . Thus every element of V is expressible as
the sum of an element of W1 and an element of W2. We now show that this
representation is not unique. Consider v = (2, 4, 3) ∈ V then

v = (2, 4, 3) = (2, 2, 0) + (0, 2, 3)

= w1 + w2, where w1 ∈W1, w2 ∈W2

Also v = (2, 4, 3) = (2, 1, 0) + (0, 3, 3)

= w
′

1 + w
′

2, where w
′

1 ∈W1 and w
′

2 ∈W2

Thus v is expressed as the sum of an element of W1 and an element of W2

in two different ways.
We are interested in knowing the conditions on W1 and W2 so that the

representation of an element of V as the sum of an element of W1 and an
element of W2 is unique. The following theorem answers this question.

Theorem 13.6. Let V be a vector space over a field F and W1 and W2 be two
subspaces of V over F , such that V = W1 +W2 and W1∩W2 = {0}. Then every
vector v ∈ V is expressible uniquely as w1 +w2, for some w1 ∈W1, w2 ∈W2.



578 CHAPTER 13. VECTOR SPACE

Proof: From the definition it is clear that if v ∈ V , then there exist vectors
w1 ∈W1, w2 ∈W2 such that v = w1 + w2.

Uniqueness
For some v ∈ V , suppose there are two expressions of v as the sum of an element
of W1 and an element of W2, i.e.
v = w1 + w2 and also
v = w

′

1 + w
′

2 for some w1, w
′

1 ∈W1, w2, w
′

2 ∈W2. Then
w1 + w2 = w

′

1 + w
′

2

⇒ w1 − w
′

1 = w
′

2 − w2 = x (say)
Since w1 − w

′

1 ∈W1, w
′

2 − w2 ∈W2

∴ x ∈W1 ∩W2 = {0}
⇒ x = 0
⇒ w1 − w

′

1 = 0 = w
′

2 − w2

⇒ w1 = w
′

1 and w2 = w
′

2

⇒ expression for v as an element of W1 +W2 is unique.

Definition 13.4. A vector space V (F ) is said to be the direct sum of two
subspaces W1 and W2, if
(i) V = W1 +W2

(ii) every element of V is expressed uniquely as the sum of an element of
W1 and an element of W2.

We write V = W1 ⊕W2.

Theorem 13.7. If V (F ) is a vector space and W1,W2 are two subspaces of V
then V = W1 ⊕W2 ⇔ V = W1 +W2 and W1 ∩W2 = {0}

Proof: Follows from Theorem 13.6.

Problem 13.5. Is W = {(x, y, z) ∈ V |y = −4x, z = 5x} a subspace of V (R)?
where V = R3.

Solution:

(i) Clearly (0, 0, 0) ∈W , so that W 6= φ

(ii) Let u, v ∈W,α ∈ R
Then u = (u1, u2, u3) and v = (v1, v2, v3) for some ui, vi ∈ R, 1 ≤ i ≤ 3
such that u2 = −4u1, u3 = 5u1,
v2 = −4v1, v3 = 5v1. Observe that u2 + v2 = −4(u1 + v1), u3 + v3 =
5(u1 + v1) so that (u1 + v1, u2 + v2, u3 + v3) ∈W, i.e u+ v ∈W .

(iii) For any α ∈ R, αu2 = −4αu1, αu3 = 5αu1

⇒ (αu1, αu2, αu3) ∈W
⇒ αu ∈W

Hence W is closed under addition and scalar multiplication. Thus W is a
subspace of V .

Problem 13.6. Let V = M3(R) be the vector space of all 3 × 3 matrices over
R. Is W = {A ∈ V | |A| 6= 0} a subspace of V ?

Solution: 0 /∈W . Hence W is not a subspace of V .
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Problem 13.7. Let V be the vector space of all real valued functions on R. If
(i) W1 = {f ∈ V | f is a solution of y′′ + 3y

′ − 5y = 0}
(ii) W2 = {f ∈ V | f is increasing}
then, determine if they are subspaces of V (R)?

Solution:

(i) Clearly the zero element of V , namely the zero function belongs to W1 .
Hence W1 is non-empty.
Let f, g ∈W1, α, β ∈ R. Then

f
′′

+ 3f
′
− 5f = 0 (13.1)

g
′′

+ 3g
′
− 5g = 0 (13.2)

Now, (αf + βg)
′′

= αf
′′

+ βg
′′

(αf + βg)
′

= αf
′
+ βg

′

(αf + βg)
′′

+ 3(αf + βg)
′
− 5(αf + βg)

= α(f
′′

+ 3f
′
− 5f) + β(g

′′
+ 3g

′
− 5g)

= 0 (using (13.1) and (13.2)

∴ αf + βg ∈W1, so that W1 is a subspace of V .

(ii) Consider the function f defined on R by
f(x) = 2x,
Then f is an increasing function. ∴ f ∈ W2. Consequently −f is not an
increasing function so that −f /∈W . Hence W is not a subspace of V.

Problem 13.8. For the vector space V (R), where V = Mn(R). Is the set of all
n× n non-singular matrices a subspace of V ?

Solution: Let W = set of all n × n non-singular matrices. Since the sum
of two non-singular matrices may not be non-singular, this leads us to believe
that W is not a subspace of V . Consider

A =


1 0 . . . 0
1 1 . . . 0
...

...
...

1 1 . . . 1

, B =


−1 0 . . . 0
1 −1 . . . 0
...

...
...

1 1 . . . −1


Thus |A| = 1 6= 0, |B| 6= (−1)n 6= 0 ∴ A,B ∈W

But A+B =


0 . . . ©

2
. . .

...
. . .

2 . . . 2 0

, and |A+B| = 0

so that A+B /∈W . Hence W is not a subspace of V .

Problem 13.9. Let V be a vector space over a field, and W1,W2 be two sub-
spaces of V . Then W1 ∪W2 is a subspace of V if and only if either W1 ⊆ W2

or W2 ⊆W1.
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Solution: The condition is necessary.
Let W = W1∪W2. Suppose that W is a subspace of V. Let, if possible, W1 *W2

and W2 * W1. Then ∃ w1 ∈ W1 such that w1 /∈ W2 and w2 ∈ W2 and such
that w2 /∈W1.
Thus w1, w2 ∈W1 ∪W2

⇒ w1 + w2 ∈W1 ∪W2(∵ W1 ∪W2 is a subspace)
⇒ w1 + w2 ∈W1 or w1 + w2 ∈W2.
If w1 + w2 ∈ W1, then (w1 + w2) − w1 ∈ W1, i.e. w2 ∈ W1, a contradiction to
the fact that w2 /∈W1. Similarly w1 + w2 ∈W2 leads to a contradiction.
Hence our assumption is wrong so that we must have W1 ⊆W2 or W2 ⊆W1.

The condition is sufficient.
Conversely, let W1 ⊆W2 or W2 ⊆W1 . If W1 ⊆W2, then W1∪W2 = W2 which
is a subspace of V. Similarly if W2 ⊆W1

⇒W1 ∪W2 = W1, which is a subspace of V.
Hence the condition is sufficient.

Problem 13.10. Consider the vector space V (R), where V=set of all functions
from R into R.
Let W1 be the set of all even functions and W2 be the set of all odd functions.
Prove that
(i) W1,W2 are subspaces of V
(ii) V = W1 +W2

(iii) W1 ∩W2 = {0}
(iv) V = W1 ⊕W2.

Solution:

(i) Let f, g ∈W1, α ∈ R
Then f(−x) = f(x), ∀x ∈ R (1)
and g(−x) = g(x),∀x ∈ R (2)

Then (αf + g)(−x) = (αf)(−x) + g(−x)

= αf(−x) + g(−x)

= αf(x) + g(x) using (1) and (2)

= (αf + g)(x)

∴ αf + g ∈W1, so that W1 is a subspace if V .
Similarly W2 is a subspace of V .

(ii) Let f ∈ V . Define functions g and h as follows:
g(x) = 1

2 (f(x) + f(−x)),∀ x ∈ R
h(x) = 1

2 (f(x)− f(−x)),∀ x ∈ R

Then g(−x) =
1

2
(f(−x) + f(x))

= g(x)

∴ g ∈W1.

Similarly h(−x) = −h(x)
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∴ h ∈W2.
Also

f(x) =
1

2
(f(x) + f(−x)) +

1

2
(f(x)− f(−x))

= g(x) + h(x)

Thus f is expressible as the sum of an element of W1 and an element of
W2.

(iii) f ∈W1 ∩W2

⇔ f ∈W1, and f ∈W2

⇔ f(−x) = f(x), ∀ x ∈ R and f(−x) = −f(x),∀ x ∈ R
⇔ f(x) = −f(x),∀ x ∈ R
⇔ f(x) = 0, ∀ x ∈ R
⇔ f is the zero function.

Hence W1 ∩W2 = {0}.

(iv) Follows from (i) to (iii).

13.4 Exercise

1. V (R) is a vector space, where V = R3. Verify whether W is a subspace of
V , where
(i) W = {(x1, x2, 0) ∈ V | x1, x2 ∈ R}
(ii) W = {(x, x, x) ∈ V | x ∈ R}
(iii) W = {(x, y, z) ∈ V |x+ y + z = 0}
(iv) W = {(x, y, z) ∈ V |x+ y + z = 1}
(v) W = {(x, y, z) ∈ V |x2 + y2 + z2 = 9}.

2. V (R) is a vector space, where V = R2. Verify whether W is a subspace of
V , where
(i) W = {(x, y) ∈ V |x2 + y2 = 1}
(ii) W = {(x, y) ∈ V |3x− 4y = 0}
(iii) W = {(x, y) ∈ V |x

2

9 + y2

16 = 1}
(iv) W = {(x, y) ∈ V |xy = 0}
(v) W = {(0, y) ∈ V |y ∈ R}
(vi) W = {(x, y) ∈ V |x ≤ y}.

3. Determine, whether the following subsets of R3 are subspaces or not. Give
reasons for your answer.
(i) W = {(x, y, z) ∈ R3|x+ 2y + 3z = 1}
(ii) W = {(x, y, z) ∈ R3|z = 1}
(iii) W = {(x, y, z) ∈ R3|y = 2x, z = −x}
(iv) W = {(x, 2x, 3x) ∈ R3|x ∈ R}
(v) W = {(x, y, z) ∈ R3|x2 + y2 + z2 ≤ 1}
(vi) {(x+ y, x− y, x) ∈ R3|x, y ∈ R}
(vii) {(x+ 2y, x+ 1, y) ∈ R3|x, y ∈ R}
(viii) {(x, 5, y) ∈ R3|x, y ∈ R}.
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4. Determine, whether W is a subspace of R2 or not. Give reasons for your
answer.
(i) W = {(x, y) ∈ V |xy ≥ 0}
(ii) W = {(x, y) ∈ V |x = |y|}
(iii) W = {(x, y) ∈ V |y = 2x+ 1}
(iv) W = {(x, y) ∈ V |y = x2}

(v) W=

{(
x
y

)
| A
(
x
y

)
=

(
0
0

)}
for a fixed 2×2 matrix over R.

5. V (R) is a vector space where V = {a0 + a1x+ a2x
2|a0, a1, a2 ∈ R}.

Determine whether W is a subspace of V. Justify your answer.
(i) W = {a0 + a1x|a0, a1 ∈ R}
(ii) W = {a0 + a1x+ a2x

2|a0 + a1 + a2 = 0}
(iii) W = {a0 + a1x+ a2x

2|a0 = 0}
(iv) W = {a0 + x2|a0 ∈ R}
(v) W = {ax2|a ∈ R}
(vi) W = {p(x) ∈ V |p(0) = 5}
(vii) Let α ∈ R be fixed. W = {p(x) ∈ V |p(α) = 0}.

6. Let V =M2×2(R) be the vector space of 2×2 matrices over R. Determine
whether or not the following subsets of V are subspaces of V.
(i) W = {A ∈ V | |A| = 0}
(ii) W = {A ∈ V | |A| = 1}
(iii) W = {A ∈ V | |A| 6= 0}
(iv) W = {A ∈ V | A is a diagonal matrix}

(v) W = {
(
a 0
0 0

)
∈ V |a ∈ R}

(vi) W = {
(
a b
c d

)
∈ V |a+ d = b+ c}.

7. Let V be the space of all real valued functions on [0, 1]. Check whether
W is a subspace of V . Justify your answer.
(i) W = {f ∈ V |f is continuous}
(ii) W = {f ∈ V |f is differentiable}
(iii) W = {f ∈ V |f(1/2) = 2}
(iv) W = {f ∈ V |f is a solution of y

′′
+ y = 0}

(v) W = {f ∈ V |f(0) = f(1)}
(vi) W = {f ∈ V |Range f of finite}
(vii) W = {f ∈ V |f is non decreasing}.

8. V (R) is a vector space, where V = C. Verify whether W is a subspace of
V. Justify your answer.
(i) W = {v ∈ V |Re v = 0}
(ii) W = {v ∈ V |Im v = 0}
(iii) Let k be a fixed real number . W = {a+ ib ∈ V |b = ka}
(iv) W = {v ∈ V | |v| = 1}
(v) W = {v ∈ V |Re v ≥ 0}.

9. V (C) is a vector space, where V = Cn. Do the following sets form a
subspace of V ? Justify your answer .
(i) W = {(x1, x2...., xn) ∈ Cn|x1 ∈ R}
(ii) W = {(x1, x2...., xn) ∈ Cn||x1| = 1}.
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10. Let A be a non-empty set and V = P(A). Then V (Z2) is a vector space
as defined in Problem 13.4. Verify that {φ,A} is a subspace of V.

11. Consider the vector space V (R) where V=Mn(R). Let W1= set of all
symmetric matrices of V and W2= set of all skew symmetric matrices of
V. Prove that V = W1 ⊕W2.

12. Let V = Cn then V (C) is a vector space. Let W = {(x1, x2, ..., xn) ∈
Cn|xi ∈ R}. Is W a subspace of V ? If not, can you modify the vector
space V (C), so that W becomes a subspace.

13.5 Linear Span of a Subset

In Chapter 12 we have defined a linear combination of vectors in Rn. We
would now like to extend this concept to a general vector space.

Definition 13.5. (Linear combination): Let V(F) be a vector space and
S = {v1, v2, . . . , vn} be a finite subset of V. Then the vector

α1v1 + α2v2 + . . .+ αnvn, αi ∈ F, 1 ≤ i ≤ n

is called a linear combination of the elements of S. The above expression is also
written as

∑n
i=1 αivi.

Definition 13.6. (Linear span): Let V (F ) be a vector space and S a non-
empty subset of V. Then linear span of S is the set of all linear combinations of
finitely many elements of S. The linear span of null set is {0}.

It is denoted by Span(S) (or L(S) or [S]). We shall use Span(S).

Remark 13.5.

1. If S is a finite set then Span(S) is the set of all linear combination of
elements of S.

2. The linear span of a set S is also called the span of S.

Theorem 13.8. Let V (F ) be a vector space and S a finite subset of V. Then
Span(S) is the smallest subspace of V containing S.

Proof: Two cases arise:

Case 1. S = φ. Then by definition Span(S) = {0}, which is a subspace of
V. If W be a subspace of V containing S.
Then Span(S) = {0} ⊆W
∴ Span(S) is the smallest subspace of V containing S.

Case 2. S 6= φ, let S = {v1, v2 . . . , vn}. Then Span(S) = {
∑n
i=1 αivi|αi ∈

F, 1 ≤ i ≤ n}.
Let s ∈ S, then s = 1s, 1 ∈ F so that s ∈ Span(S), ∴ Span(S) 6= ∅. Hence
S ⊆ Span(S).
Let s1, s2 ∈ Span(S) and α ∈ F . Then s1 =

∑n
i=1 αivi, s2 =

∑n
i=1 βivi for
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some αi, βi ∈ F, 1 ≤ i ≤ n.

αs1 + s2 = α

n∑
i=1

αivi +

n∑
i=1

βivi

=

n∑
i=1

(ααi + βi)vi ∈ Span(S) as ααi + βi ∈ F ∀ i

∴ Span(S) is a subspace of V.
Let W be a subspace of V containing S. Let u ∈ Span(S), so that ∃ α1, . . . , αn ∈
F such that u =

∑n
i=1 αivi.

Now vi ∈W,αi ∈ F, 1 ≤ i ≤ n, and W is a subspace.
∴
∑n
i=1 αivi ∈W .

Hence u ∈W, so that Span(S) ⊂W .

Theorem 13.9. Let V (F ) be a vector space and S an infinite subset of V. Then
Span(S) is the smallest subspace of V containing S.

Proof: If s ∈ S then s = 1s, so that s ∈ Span(S). Therefore S ⊆ Span(S).
Let s1, s2 ∈ Span(S). Then
s1 =

∑n
i=1 αiui, s2 =

∑m
j=1 βjvj , where ui, vj ∈ S, αi, βj ∈ F, 1 ≤ i ≤ n, 1 ≤

j ≤ m. If α ∈ F , then αs1 + s2 =
∑n
i=1 ααiui +

∑m
j=1 βjvj .

Hence αs1 + s2 is a linear combination of finitely many elements of S.
∴ Span(S) is a subspace of V .
Let W be a subspace of V containing S. Clearly S ⊆W . Let s ∈ Span(S)
Then there exist finitely many vectors u1, u2, . . . , un of S and αi ∈ F, 1 ≤ i ≤ n
such that s =

∑n
i=1 αiui. Since ui ∈ W and αi ∈ F, 1 ≤ i ≤ n,∴

∑n
i=1 αiui ∈

W (as W is a subspace) so that s ∈W i.e, Span(S) ⊂W .
Thus Span(S) is the smallest subspace of V containing S.

Remark 13.6. In view of the above theorem Span(S) is also called the subspace
of V generated by S, or spanned by S.

Definition 13.7. (Finitely generated): A subspace W of a vector space V (F )
is said to be finitely generated if there exist a finite subset S of W such that
W = Span(S).

Theorem 13.10. Let V(F) be a vector space. If S is a subset of V, then

1. Span(Span(S)) = Span(S).

2. If S is a subspace of V , then Span(S) = S

Proof: Follows immediately from Theorem 13.9.

Example 13.19.

1. Let V = R2. Take v = (0, 0)
Span({v}) = {αv|α ∈ F} = {α(0, 0)|α ∈ R} = {(0, 0)}
Thus the span of the zero vector is a zero space.

2. Let V = R2. Take v = (1, 2).
Span({v}) = {αv|α ∈ F} = {α(1, 2)|α ∈ R} = {(α, 2α)|α ∈ R}
which represents the line passing through origin and the point (1, 2), Hence
we can say that the Span({v}) is the line containing all scalar multiples

of the vector
−→
OA =

(
1
2

)
.
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3. Let V = R2. Take v1 = (1, 2), v2 = (2, 3)
Span({v1, v2}) = {α1v1+α2v2|α1, α2 ∈ R} = {(α1+2α2, 2α1+3α2)|α1, α2

∈ R}.
This is whole of R2 because every vector in R2 can be expressed in the form
αv1 + βv2. For, (x1, x2) ∈ V, (x1, x2) = (2x2 − x1)v1 + (x1 − x2)v2 ⇒
V ⊆ span({v1, v2}) ⊆ V ⇒ V = span({v1, v2}).

4. Let V = R3, W = {(α+ β, α− β, α)|α, β ∈ R}. Then

(α+ β, α− β, α) = (α, α, α) + (β,−β, 0)

= α(1, 1, 1) + β(1,−1, 0)

Therefore W = {(α + β, α − β, α)|α, β ∈ R} is the linear span of v1, v2,
where v1 = (1, 1, 1), v2 = (1,−1, 0). Hence W is a subspace of R3.

Example 13.20. Consider V(F), where V = C, F = C. Let S = {1}.
Span(S) = {α1|α ∈ C} = {α|α ∈ C} = C.
Now take F = R. Then V is a vector space over R.
Span(S) = {α1|α ∈ R} = {α|α ∈ R} = R.
Thus Span(S) depends upon the field over which the vector space is considered.
What is Span(S) when F = Q ?

The next theorem give us some basic properties of the span of a set.

Theorem 13.11. Let V (F) be a vector space, and S1, S2 two subsets of V .
(i) If S1 ⊆ S2 then Span(S1) ⊆ Span(S2)
(ii) Span(S1) ∪ Span(S2) ⊆ Span(S1 ∪ S2)
(iii) Span(S1 ∩ S2) ⊆ Span(S1) ∩ Span(S2)
(iv) Span(S1 ∪ S2) = Span(S1) + Span(S2)

Proof: Proof left to the reader.

Example 13.21. Consider the vector space V (R), where V = P3. Let S1 =
{1, x}, S2 = {1, 1 + x}

Span(S1) = {α1 + βx|α, β ∈ R}
= {α+ βx|α, β ∈ R}

Now 1 = 1 + 0.x ∈ Span(S1), 1 + x = 1 + 1.x ∈ Span(S1),
∴ S2 ⊆ Span(S1), so that

Span(S2) ⊆ Span(Span(S1)) = Span(S1) (13.3)

Span(S2) = {α′1 + β
′
(1 + x)|α′ , β′ ∈ R}

1 = 1.1 + 0(1 + x) ∈ Span(S2), x = (−1).1 + 1(1 + x) ∈ Span(S2)
∴ S1 ⊆ Span(S2), so that as in (13.3)

Span(S1) ⊆ Span(S2) (13.4)

From (13.3) and (13.4), Span(S1) = Span(S2).

Note that S1 6= S2, thus two different sets may have the same span. This
important observation will be used later.
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13.6 Column Space

Definition 13.8. Let A = [C1 C2 . . . Cn] be a m × n matrix. The set of all
linear combinations of the columns of A is called the column space of A and is
written as Col A. Thus

ColA = Span{C1, C2, . . . , Cn}

Theorem 13.12. The column space of a m× n matrix A is a subspace of Rm.

Proof: Let A = [C1 C2 . . . Cn],where Ci ∈ Rm
ColA = Span({C1, C2, . . . , Cn}). Since Span(S) is a subspace, therefore Col A
is a subspace of Rm.

Another description of Col A
If A is a m × n matrix, with columns C1, C2, . . . , Cn then a typical element of

Col A is α1C1 +α2C2 + . . .+αnCn = [C1 C2 . . . Cn]


α1

α2

...
αn

 = Au, where u =


α1

α2

...
αn

 ∈ Rn. Thus

ColA = {Au|u ∈ Rn}
= {b ∈ Rm|AX = b for some X ∈ Rn}
= {b ∈ Rm|AX = b has a solution}

In particular, if AX = b has a solution for every b ∈ Rm, then ColA = Rm.
⇔ every row of A has a pivot.

Example 13.22. 1. If A =

 2 −1
3 0
4 1

 = [C1 C2].

Then ColA = {α1C1 + α2C2, α1, α2 ∈ R}

=


 2α1 − α2

3α1

4α1 + α2

 , α1, α2 ∈ R


2. If A =

(
−6 12
−3 6

)
, w =

(
2
1

)
. Does w ∈ ColA?

Here A = [v1 v2], where v1 =

(
−6
−3

)
, v2 =

(
12
6

)
w ∈ ColA if w = α1v1+α2v2 for some α1, α2 ∈ R, i.e. [v1 v2]

(
α1

α2

)
= w

i.e. AX = w (1) has a solution (α1, α2)t

Here [A | w] ∼
(
−6 12 2
0 0 0

)
. Since the augmented column is not a

pivot column, ∴ (1) has a solution. Hence w ∈ ColA.

Definition 13.9. Let A be a m×n matrix. The set of all solutions of AX = 0
is called the null space of A and is written as Nul A. Thus, Nul A = {X ∈
Rn|AX = 0}.
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Theorem 13.13. The null space of a m× n matrix A is a subspace of Rn.

Proof: Since A.0 = 0, ∴ 0 ∈ Nul A so that Nul A 6= φ. Let X1, X2 ∈
Rn, α ∈ R. Then AX1 = 0 AX2 = 0.

A(αX1 +X2) = αAX1 +AX2

= α0 + 0

= 0

Hence Nul A is a subspace of Rn.

Example 13.23. Let A =

 2 0
−1 1
0 3

. Find Nul A. Does

(
0
3

)
∈ Nul A?

Solution: Nul A = {X ∈ R2|AX = 0.}

Now X =

(
x1

x2

)
∈ NulA

⇔

 2 0
−1 1
0 3

( x1

x2

)
=

 0
0
0


∴ 2x1 = 0
− x1 + x2 = 0
3x2 = 0
⇒ x1 = 0, x2 = 0.

Hence X =

(
x1

x2

)
=

(
0
0

)
. Thus Nul A = {0}.Obviously

(
0
3

)
/∈ NulA.

Problem 13.11. In the vector space V (R), V = R3, find two generating sets
for W = {(α, α+ β,−α+ 4β)| α, β ∈ R}.

Solution: If w ∈W , then

w = (α, α+ β,−α+ 4β) for some α, β ∈ R
= α(1, 1,−1) + β(0, 1, 4)

Thus if, u1 = (1, 1,−1), u2 = (0, 1, 4), then {u1, u2} spans W . To find another
spanning set we need to only change the parameters , α and β .
Let α = α, γ = α+ β. Then if w ∈W , we write w in terms of α and γ.

w = (α, γ,−α+ 4(γ − α))

= (α, γ, 4γ − 5α)

= α(1, 0,−5) + γ(0, 1, 4)

Hence if v1 = (1, 0,−5), v2 = (0, 1, 4) then Span({v1, v2}) = W .

Problem 13.12. In the vector space R3(R), consider

W =


 x

y
z

 | x+ 2y + 3z = 0

.

Give three different sets of vectors S = {u, v} such that W = Span(S).
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Solution: Let w ∈W . Then for some x, y, z ∈ R

w =

 x
y
z

 such that x+ 2y + 3z = 0 (1)

=

 x
y

−x+2y
3

 using (1)

= x

 1
0
−1/3

+ y

 0
1
−2/3


= xu+ zv, where u =

 1
0
−1/3

 , v =

 0
1
−2/3


Thus W = Span(S), where S = {u, v}.
If

w =

 x
y
z


=

 x
−x+3z

2
z

 = x

 1
−1/2

0

+ z

 0
−3/2

1


= xu1 + zv1, where u1 =

 1
−1/2

0

 , v1 =

 0
−3/2

1


and W = Span(S), where S = {u1, v1}. Similarly if we substitute for x in terms
of y and z, we get

w =

 −2
1
0

 y +

 −3
0
1

 z

= u2y + v2z

where u2 =

 −2
1
0

 , v2 =

 −3
0
1

. Hence W = Span(S), where S =

{u2, v2}.

Problem 13.13. Prove that W is a subspace of R4(R),

where W =




a
b
c
d

 | a− 2b = 4c, 2a = c+ 3d

.

Solution: If we can find a subset S such that W = Span(S) then W will be a
subspace, since span(S) is always a subspace. Now a− 2b = 4c, 2a = c+ 3d⇔
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b = 1
2 (a− 4c), d = 1

3 (2a− c)
a
b
c
d

 =


a

1
2a− 2c

c
2
3a−

1
3c

 =


1

1/2
0

2/3

 a+


0
−2
1
−1/3

 c

= u1a+ u2c (say)

Thus
W = {u1a+ u2c} | a, c ∈ R

= Span({u1, u2})

Hence W is a subspace of R4(R).

Problem 13.14. Does (2, − 5, 3)t lie in the subspace spanned by {(1, −
3, 2)t, (2, − 4, − 1)t, (1, − 5, 7)t}?

Solution: Let v1 = (1, − 3, 2)t, v2 = (2, − 4, − 1)t, v3 = (1, − 5, 7)t, u =
(2, − 5, 3)t

u ∈ Span({v1, v2, v3})⇔ ∃ α1, α2, α3 ∈ R such that α1v1 + α2v2 + α3v3 = u

⇔ [v1 v2 v3]

 α1

α2

α3

 = u

⇔

 1 2 1
−3 −4 −5
2 −1 7

X =

 2
−5
3

 , where X = (α1 α2 α3)t

⇔ X is the solution of AX = u, where A = [v1 v2 v3]

But [A|u] ∼

 1 2 1 2

0 1 −1 1
2

0 0 0 3
10


Since the augmented column has a pivot. ∴ AX = u does not have a solution.
So u /∈ Span({v1, v2, v3}).

Problem 13.15. Let W =



−2l + 3n
l +m+ n
2m− n
n

 |l,m, n ∈ R


Find a matrix A whose column space is W.

Solution:
−2l + 3n
l +m+ n
2m− n
n

 =


−2l
l
0
0

+


0
m
2m
0

+


3n
n
−n
n



= l


−2
1
0
0

+m


0
1
2
0

+ n


3
1
−1
1


= lu1 +mu2 + nu3 (say)
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∴
W = {lu1 +mu2 + nu3|l,m, n ∈ R}

= Span({u1, u2, u3})

Thus if A = [u1 u2 u3] then the columns of A span W , i.e. Col A = W .

Problem 13.16. Find the Null space of A, for A =

(
1 3 5 0
0 1 4 −2

)
Solution: The null space of A is the solution set of AX = 0.
Reduce [A|0] to reduced echelon form

[A|0] =

(
1 3 5 0 0
0 1 4 −2 0

)
∼

(
1 0 −7 6 0
0 1 4 −2 0

)
Solution is given by

x1 − 7x3 + 6x4 = 0, x2 + 4x3 − 2x4 = 0

We get

x1 = 7x3 − 6x4, x2 = −4x3 + 2x4, x3 = x3, x4 = x4

∴ X =


x1

x2

x3

x4

 =


7
−4
1
0

x3 +


−6
2
0
1

x4.

Hence NulA = Span





7
−4
1
0

 ,


−6
2
0
1





Problem 13.17. If A =

 1 4 2
2 5 1
3 6 0

 , b =

 2
−1
1

, does b ∈ NulA?

Solution: b∈ NulA⇔ Ab = 0

Now Ab =

 1 4 2
2 5 1
3 6 0

 2
−1
1

 =

 0
0
0

 ∴ b ∈ NulA.

Problem 13.18. Describe Nul A by finding a spanning set for it, where

A =

(
1 2 1 2
1 4 9 −2

)
Solution: NulA = {X ∈ R4|AX = 0}. Thus Nul A is the solution set of

AX = 0 (1)
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Augmented matrix of (1) is (
1 2 1 2 0
1 4 9 −2 0

)
∼

(
1 0 −7 6 0
0 1 4 −2 0

)
Solution of (1) is x1 = 7x3 − 6x4, x2 = −4x3 + 2x4. x3, x4 are free
variables.

∴ X =


x1

x2

x3

x4

 =


7
−4
1
0

x3 +


−6
2
0
1

x4. Thus, Nul A is spanned by


7
−4
1
0

 ,


−6
2
0
1


Problem 13.19. If A and B are sets such that Span(A) ⊆ Span(B) then can
we say that A ⊆ B? Justify your answer.

Problem 13.20. If A and B are the subsets of a vector space V , then

Span(A ∪B) = Span(A) + Span(B)

Problem 13.21. Let A = {1, 2, 3, 4, 5} and V = P(A), the power set of A.
Then V is a vector space over F = (Z2,⊕2,�2) where Z2 = {0, 1}. Find the
subspace generated by S, where

(i) S = {{1,5},{2,3,4}}

(ii) S = {{1,2}.{2,3},{4,5}}

13.7 Exercise

1. Let V (F ) be a vector space W , a subspace of V and S ⊆ W . Prove that
Span(S) is a subspace of W .

2. Consider the vector space R over Q.
a) Find Span(S), where

(i) S = {
√

2}
(ii) S = {2}
(iii) S = {1,

√
2}

(iv) S = {1,
√

2,
√

3}
(v) S = { 2

3 , 5
6 }

b) Can you find a finite subset S of R such that Span(S)=R?

3. Consider the vector space C(R). Find Span(S) where
(i) S = {2}
(ii) S = {-1}
(iii) S = {i}
(iv) S = {1+i}
(v) S = {1,i}.
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4. Consider V (R), where V = R4. Let u =


2
0
3
1

 , v =


2
3
0
1

 , w =


2
1
2
1

. Show that


x1

x2

x3

x4

 ∈ Span({u, v, w}),

if x1 = 2x4, x3 = −x2 + 3x4.

5. Consider V (R), where V = R[x]. Prove that
Span({1, x, x2}) = Span({1, 1+x, 1+x2}) = Span({1+x, x+x2, 1+x2}).

6. Consider the vector space C(R). Show that Span{ 1+i
√

3
2 , 1−i

√
3

2 } =

Span{1,
√

3}. Hence, write any element in Span{ 1+i
√

3
2 , 1−i

√
3

2 } in the
simplest form.

7. Let V be a vector space over F . If u, v ∈ V , prove that Span({u, v}) =
Span({u+ v, u− v}).

8. In the vector space V (R), V = R2, find two different generating sets for
W = {(2α+ 3β, α− β)|α, β ∈ R}.

9. Consider the vector space of all 2× 2 matrices over R.

LetW =

{(
0 b
a 0

)
|a, b ∈ R

}
. Find a subset S ofW such that Span(S) =

W. Hence deduce that W is a subspace of V.

10. Let W =

{(
a+ b 0
a− b c

)
|a, b, c ∈ R

}
. Find a subset S of W such that

W = Span(S). Hence deduce that W is a subspace of V (R), where V =
M2(R).

11. Let W = {a+ (a+ b)x+ (2a− b)x2|a, b ∈ R}. Prove that W is a subspace
of P2 by showing that W is the Span of some subset of P2.

12. Let W be the space of all 3 × 3 scalar matrices over R. Find a set S of
matrices such that W = Span(S).

13. Let W be the space of all 4× 4 diagonal matrices over R. Find a smallest
generating set for W.

14. Let W be the space of all 3 × 3 scalar matrices over R. Find a set S of
matrices such that W = Span(S).

15. Let W = {A ∈M2(R)|tr(A) = 0}. Find a smallest generating set for W.

16. Describe Span{v1, v2, v3} in R5(R), where v1 = (1, 2, 0, 3, 0),
v2 = (0, 0, 1, 4, 0), v3 = (0, 0, 0, 0, 1). Also show that it contains
(−3,−6, 1,−5, 2) but not (2, 4, 6, 7, 8).

17. Describe Span{v1, v2, v3} in R4, where v1 = (2,−1, 3, 2), v2 = (−1, 1, 1, 3),
v3 = (1, 1, 9,−5)



13.8. SOLVED PROBLEMS 593

18. In P2(R), let p1(x) = x2 + x+ 1, p2(x) = x2 + 1, p3(x) = x. Which of the
following polynomials are linear combinations of p1(x), p2(x), p3(x)?
(i) x2 + 2x+ 1
(ii) 2x2 − 3x+ 3
(iii) x2 + 2x+ 2
(iv) 3x2 + 2x+ 3.

19. Find subsets A and B of a vector space V such that
(i) Span(A ∪B) 6= Span(A) ∪ Span(B)
(ii) Span(A ∩B) 6= Span(A) ∩ Span(B)
(iii) Can you always find a set S such that Span(A) ∪ Span(B) =

Span(S)

20. Let W =


 a− b

b− c
c− a

 |a, b, c ∈ R
. Find a subset of W which spans W.

Hence show that W is a subspace of R3.

21. Let W =




a
b
c

a+ b+ c

 |a, b, c ∈ R
. Give a set of vectors u, v, w in

W such that W = Span({u, v, w}).

22. Let W =




2a+ b
a− b
b
a

 |a, b ∈ R
 is a subspace of R4 by showing that

W = Span(S) for some subset S of W.

23. If A =

 −8 −2 −9
6 4 8
4 0 4

, u =

 2
1
−2

, does u ∈ ColA?

24. Find Nul A, where A =

(
1 −2 −4 0
2 0 −1 −3

)
.

25. Express (1, − 2, 5) as a linear combination of (1 1 1), (1 2 3), and
(2 − 1 1).

13.8 Solved Problems

Problem 13.22. Let V = R3. For v1, v2 ∈ V, α ∈ R, with v1 = (x1, x2, x3),
v2 = (y1, y2, y3) define

v1 ⊕ v2 = (x1 + y1 + 1, x2 + y2, x3 + y3)

α� v1 = (αx1 + α− 1, αx2, αx3)

Prove that V is a vector space over R under the given operations.
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Solution: Clearly v1 + v2, αv1 ∈ V for all v1, v2 ∈ V, α ∈ R. Associative and
commutative laws can be verified easily. Also e = (−1, 0, 0) ∈ V is such that
for any v = (x1, x2 x3) ∈ V .

e⊕ v = (x1 − 1 + 1, x2 + 0 , x3 + 0)

= (x1, x2, x3) = v

Thus e is the zero element of V .
Also the negative of (x1, x2, x3) ∈ V is (−x1 − 2, − x2, − x3) ∈ V.
Let u, v ∈ V, α, β ∈ R and let u = (x1, x2 x3), v = (y1, y2 y3).

(i) α� (u⊕ v) = α� (x1 + y1 + 1, x2 + y2, x3 + y3)

= (α(x1 + y1 + 1) + α− 1, α(x2 + y2), α(x3 + y3))

= (αx1 + αy1 + 2α− 1, αx2 + αy2, αx3 + αy3)

α� u⊕ α� v = (αx1 + α− 1, αx2, αx3)⊕ (αy1 + α− 1, αy2, αy3)

= (αx1 + α− 1 + αy1 + α− 1 + 1, αx2 + αy2, αx3 + αy3)

= (αx1 + αy1 + 2α− 1, αx2 + αy2, αx3 + αy3)

Hence α� (u⊕ v) = α� u⊕ α� v

(ii) α� u⊕ β � u = (αx1 + α− 1, αx2, αx3) + (βx1 + β − 1, βx2, βx3)

= (αx1+α− 1+βx1 + β − 1+1, αx2 + βx2, αx3 + βx3)

= ((α+ β)x1 + α+ β − 1, (α+ β)x2, (α+ β)x3)

= (α+ β)� u.

Hence
(α+ β)� u = α� u⊕ β � u

(iii) (αβ)� u = (αβx1 + αβ − 1, αβx2, αβx3)

α� (β � u) = α� (βx1 + β − 1, βx2, βx3)

= (α(βx1 + β − 1) + α− 1, α(βx2), α(βx3))

= (αβx1 + αβ − 1, αβx2, αβx3)

∴ (αβ)� u = α� (β � u)

(iv) 1u = (1x1 + 1− 1, 1x2, x3)

= (x1, x2, x3) = u

Hence V is a vector space over R.

Problem 13.23. Prove that the only non-trivial subspaces of R3 are the planes
and lines through the origin.

Solution: Let W be a subspace of R3. If W = {0} then it is trivial subspace,
if W 6= {0}, let w1 6= 0 ∈W .
Consider W1 = {αw1|α ∈ R} = Span({w1}). Then W1 is a subspace of R3.
Also W1 is a line through the origin containing w1. If W1 = W , then W is a
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line through the origin. If W1 6= W , then there exist a vector w2 ∈W such that
w2 /∈W1. Clearly w1, w2 are not collinear.
Let

W2 = Span({w1, w2})
= {αw1 + βw2|α, β ∈ R}

W2 is a plane determined by the vectors w1 and w2. Since 0 = 0w1 + 0w2,∴W2

passes through the origin. If W2 = W , proof is complete. If W2 6= W , then there
exist w3 ∈ W such that w3 /∈ W2. Clearly w1, w2, w3 are non coplanar vectors.
Then Span ({w1, w2, w3}) = R3 because any vector in R3 can be expressed
uniquely as a linear combinations of 3 non-coplanar vectors. This is the trivial
subspace. Thus, the only non-trivial subspaces are lines or planes through the
origin.

Problem 13.24. Prove that R is a subspace of C(R). Does there lie a subspace
W of C(R) such that R ⊂W ⊂ C?

Solution: Clearly R 6= φ. Let u, v ∈ R, α ∈ R. Then αu + v is also a real
number i.e. αu + v ∈ R. Hence R is a subspace of C(R). Let if possible W be
a subspace of C(R) such that

R ⊂W ⊂ C

Then, there exist w ∈W\R. Let w = a+ ib, where a, b ∈ R. Since w /∈ R ∴ b 6=
0.
a ∈ R ⇒ a ∈W ⇒ −a ∈W. Then(−a) + (a+ ib) ∈W ⇒ ib ∈W. Also 0 6=
b ∈ R ⇒ b−1 ∈ R ⊂W , therefore (ib)b−1 ∈W (∵ W is subspace), i.e i ∈W .
Let x, y ∈ R, then x+ iy ∈W so that C ⊂W . Thus we get W = C.

13.9 Exercise

1. State whether the following statements are true or false.
(i) R is a vector space over Q.
(ii) R is a vector space over C.
(iii) The set of all polynomials of degree 6, with real coefficients with

respect to pointwise addition and scalar multiplication is a vector
space over R.

(iv) The set of all 4× 4 matrices over R is a vector space over Q with
respect to matrix addition and scalar multiplication.

(v) The set of all 3×3 complex Hermitian matrices over R is a vector
space over Q with respect to matrix addition and scalar multipli-
cation.

(vi) The set of all 2 × 2 complex skew Hermitian matrices over R is
a vector space over Q with respect to matrix addition and scalar
multiplication.

(vii) The set of all matrices of the form

(
a b
−b a

)
, a, b ∈ C is a

vector space over R with respect to matrix addition and scalar
multiplication.
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(viii) The set of all orthogonal matrices is a subspace of the vector space
of all 3× 3 real matrices over R.

(ix) W = {(x, y, z)|x, y, z ∈ Z} is a subspace of R3(R).
(x) If S and T are non-empty subsets of a vector space V , then

Span(S ∪ T ) = Span(S) ∪ Span(T ).

2. Prove the following:
(i) The set of all m×n matrices over C is a vector space over C with

respect to matrix addition and scalar multiplication.
(ii) The set of all m × n diagonal matrices over R is a vector space

over R with respect to matrix addition and scalar multiplication.
(iii) The set of all m×n matrices over C is a vector space over R with

respect to matrix addition and scalar multiplication.
(iv) The set of all polynomials over C is a vector space over C with

respect to usual addition and scalar multiplication of polynomials
(v) The set of all polynomials over R which vanish at 1 is a vector

space over R.

(vi) The set of all matrices of the form

(
a b
−b a

)
, a, b ∈ C is a

vector space over C

3. Prove that the set in Q2(vi) is a subspace of the vector space of all 2× 2
matrices over C.

4. Prove that the set in Q2(v) is a subspace of the vector space of all poly-
nomials over R.

5. Let V be the set of all complex valued functions on the real line, such that
f(−x) = f(x), for all x ∈ R.
Show that V is a vector space over R, with respect to the operations
defined by

(f + g)(x) = f(x) + g(x), ∀ x ∈ R (αf)(x) = αf(x), ∀ x ∈ R

Give an example of a function in V which is not real valued.

6. Prove or disprove the following:

(i) The set of all n × n skew Hermitian matrices with complex entries
is a vector space over C with respect to matrix addition and scalar
multiplication.

(ii) R2 is a vector space over R with respect to operations defined as
follows:
For u, v ∈ R2, α ∈ R, u = (x1, y1), v = (x2, y2)

u⊕ v = (x1 + y1 + 1, x2 + y2)αu = (αx1 + α− 1, x2)

(iii) V = R2 is a vector space over R with respect to usual addition and
scalar multiplication defined as follows:

(x, y) = v ∈ R2, α ∈ R αv = (0, 0)
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(iv) V = R is a vector space over R with respect to usual addition and
scalar multiplication defined as follows:
For u, v ∈ V, α ∈ R

u+ v = 2u− v αu = usual multiplication of real numbers

Then V is a vector space over R.

7. Let V = C. Is V is a vector space over C with respect to the usual addition
in C, and scalar multiplication defined as follows:
For v ∈ V, α ∈ C, αv = (Im α)v

8. Let V be a vector space over C. Then prove that V is also a vector space
over R.

9. Let V be a vector space over C. Define another system over C as follows:

V1 = V

Addition in V1 is the same as the addition in V . Scalar multiplication in
V1 is defined as follows:
For v ∈ V1, α ∈ C αv = αv.
Is V1 a vector space over C?.

10. Let V1 = C(C) and V2 = C(R). Find a Span (A) in V1 and Span(A) in
V2, where
(i) A={1}
(ii) A={i}
(iii) {1 + 2i}
(iv) {-1}.

11. Prove that the only subspaces of R are R and the zero subspace.

12. Prove that the only subspaces of R2 are R2 or the zero subspace, or consists
of all scalar multiples if some fixed vector of R2.

13. Describe the subspace of R3.

14. If V (R) is the vector space of all real valued functions on R. Then, prove
that

V = W0 ⊕We

where W0 = subspace of all odd functions , We = subspace of all even
functions.

15. Consider the vector space V (R) where V = R[x], the set of all polynomials
in x over R. Is W a subspace of V, where
(i) W = {p(x) ∈ V |p(x) = p(−x)}
(ii) W = {p(x) ∈ V |p(α) = 0}for some α ∈ [0, 1]

(iii) W = {p(x) ∈ V |′o′ is a root of p(x) + p
′
(x) = 0}.
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16. Let W be a subspace of a vector space V (F ). If u, v ∈ V are such that
αu+ βv ∈W for some non-zero scalars α, β , then show that either both
u, and v belong to W or neither of them belongs to W . Give an example
to show that u ∈W, v /∈W but αu+βv ∈W, 0 6= α, β ∈ F is not possible.

17. Give 3 subspaces of the vector space V over R, where
(i) V=space of all polynomials over R.
(ii) V=Cn.
(iii) V=set of all 3× 4 matrices over R.

18. Let V = R2. For any u, v ∈ V, α ∈ R, where u = (x1, x2), v = (y1, y2),
define

u+ v = (x1 + y1 + 1, x2 + y2 + 1)αu = (αx1 + α− 1, αx2 + α− 1)

Prove that V is a vector space over R.

19. Consider the vector space C over C. Let W = Span{1 + i}. Do 1, i ∈W?
What happens when C is regarded as a vector space over R?

20. V (R) is the vector space, where V is the set of all n × n matrices over
R. Verify whether the following subsets of V are subspaces or not. Give
justification for your answer.
(i) W= set of all upper triangular matrices.
(ii) W= set of all symmetric matrices.
(iii) W= set of all skew symmetric matrices.
(iv) Set of all orthogonal matrices .
(v) Set of all matrices whose trace is zero.

21. V (R) is a vector space, where V = Pn, the set of all polynomials over R
of degree at most n. Is W a subspace of V, where
(i) W = {

∑n
i=0 aix

i ∈ V |a0 + a1 + . . .+ an = 0}.
(ii) If α is any real number, and W = {p(x) ∈ V |p(α) = 0)}.
(iii) If α is any real number, and W = {p(x) ∈ V |p(0) = α)}.

Let n ≥ 1 be a fixed integer. Prove that Pm is a subspace of Pn(R) for all
0 ≤ m ≤ n.

22. Let V be the set of all real valued functions on R. Then prove that V (R) is
a vector space with respect to the usual addition and scalar multiplication
of functions. Determine, whether W is a subspace of V , where
(i) W = {f ∈ V |f is a increasing}.
ii W = {f ∈ V |f is an even function}.

(iii) W = {f ∈ V |f is an odd function}.

23. For a ∈ R, define
fa : R→ R by fa(x) = x+ a, x ∈ R
Let V = {fa|a ∈ R}. On V , define addition and scalar multiplication as
follows: For fa, fb ∈ V, α ∈ R,
fa + fb = fa+b, αfa = fαa
Prove that V is a vector space over R.
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24. Let V be a vector space over a field F , and let S = {v1, v2, . . . , vm}.
If v1 is a linear combination of v2, . . . , vm, then Span({v2, . . . , vm}) =
Span{(v1, v2, . . . , vm)}.

13.10 Answers to Exercises

Exercise - 13.2

5.
(i) False; 1 ∈ Q,

√
2 ∈ R but 1

√
2 =
√

2 /∈ Q
(ii) False
(iii) True
(iv) True
(v) True

6.
(i) (V,+) is not a group.
(ii) 1v = v is not satisfied for all v ∈ V .
(iii) (V,+) is not a group.
(iv) (α+ β)x = αx+ βx does not hold
(v) (α+ β)x = αx+ βx does not hold

7. No, ∵ (αβ)v = α(βv) is not satisfied.

Exercise - 13.4

1. (i) Yes (ii) Yes (iii) Yes (iv) No (v) No

2. (i) No (ii) Yes (iii) No (iv) No (v) Yes (vi) No

3. (i) No (ii) No (iii) Yes (iv) Yes (v) No (vi) Yes (vii) No (viii) No

4. (i) No (ii) No (iii) No (iv) No (v) Yes

5. (i) Yes (ii) Yes (iii) Yes (iv) No (v) Yes (vi) No (vii) Yes

6. (i) No (ii) No (iii) No (iv) Yes (v) Yes (vi) Yes

7. (i) Yes (ii) Yes (iii) No (iv) Yes (v) Yes (vi) Yes (vii) No

8. (i) Yes (ii) Yes (iii) Yes (iv) No (v) No

9. (i) No (ii) No

12. No. Consider V (R).

Exercise - 13.7

5. Hint: If S = {1, x, x2}, T = {1, 1 + x, 1 + x2}, prove that S ⊆ Span(T) and
T ⊆ Span(S).

8.

{(
2
1

)
,

(
3
−1

)}
;{(

5
0

)
,

(
−1
3

)}
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19. Consider R3 over R. e1 = (1, 0, 0), e2 = (0, 1, 0).

(i) A = {e1}, B = {e2}. Span A = X-axis, Span B = Y-axis
Span(A ∪B) = XY-plane.

(ii) A = {e1, e2}, B = {u, v}, u = (1, 0, 1) v = (1, 0,−1)
Span A= xy-plane, Span B= xz-plane.

(iii) Not always. As in (i) Span A ∪ Span B = X − axis ∪ Y−
axis, which is not a subspace. But Span (S) is always a subspace.

23. Yes

u = − 1
2

 −8
6
4

 +

 −2
4
0


Other solutions are also possible.

24. Nul A Span(u1, u2), where u1 = (2 − 7 4 0)t, u2 = (6 3 0 4)t

25. (1 − 2 5)t = −6(1 1 1)t + 3(1 2 3)t + 2(2 − 1 1)t

Exercise - 13.9

5. f : R −→ C
f(x) = x+ ix2

then f ∈ V, f is not real valued.

7. No. 1v 6= v

10. (i) C, R
(ii) C, {αi : α ∈ R}
(iii) C, {α+ 2iα|α ∈ R}
(iv) C, R



Chapter 14

Basis and Dimension

In the previous chapters we have seen that given a vector space V for example
Rn, we can find a subset S of V such that S spans V . In this chapter we are
interested in finding a subset S of V which spans V and no proper subset of S
can span V . Such a set is called a minimal spanning set. We will show that S is
such a set if no element of S is a linear combinations of the remaining elements.

14.1 Linearly Dependent Sets

In the vector space R3 over R, consider

v1 = (1, 1, 0) , v2 = (1, 0, 1), v3 = (2, 1, 1), v4 = (0, 1, 1)

Let S = {v1, v2, v3, v4}. Then S spans R3. We see that v3 = v1 + v2, i.e.

v3 = v1 + v2 + 0.v4 (14.1)

Hence v3 is a linear combination of v1,v2 and v4, so that any linear combination
of v1, v2, v3, v4 is also a linear combination of v1, v2, v4. Thus, we can say that
v3 is not required to span R3. Hence Span(S) = Span(S\{v3}), so that a proper
subset of S spans R3. Observe that in (Eq. 14.1) since the coefficient of v4 is
zero, therefore v4 can not be expressed as a linear combination v1,v2 and v3 so
that v4 cannot be removed. In fact v1 is a linear combination of v2, v3, v4 as
v1 = −v2 + v3 + 0.v3 so that v1 can also be removed from S instead of v3 ie.

Span(S) = Span(S\{v1})
Similarly Span(S) = Span(S\{v2}).

This leads us to the following definition.

Definition 14.1. (Linearly dependent vectors): Let V (F ) be a vector space.
Vectors v1, v2, . . . , vn of V are said to be linearly dependent over F if there exist
scalars α1, α2, . . . , αn ∈ F, not all zero such that

α1v1 + α2v2 + · · ·+ αnvn = 0

If v1, v2, . . . , vn are not linearly dependent over F , they are said to be linearly
independent over F .

601
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That is for any α1, α2, . . . , αn ∈ F ,

α1v1 + α2v2 + · · ·+ αnvn = 0
=⇒ α1 = α2 = . . . = αn = 0.

A finite set S of vectors is linearly dependent (linearly independent) over
F according as the elements of S are linearly dependent (linearly independent)
over F . An infinite set S of vectors is said to be

(i) linearly independent over F if every finite subset of S is linearly inde-
pendent over F.

(ii) linearly dependent over F if some finite non empty subset of S is linearly
dependent over F .

Consequently the null set is not linearly dependent, as it does not contain
any element. Thus the null set is linearly independent.

Remark 14.1. When F is understood from the context, we simply say S is a
linearly independent or dependent set.

Example 14.1. In R3(R), consider v1 = (1, 2, 3), v2 = (0, 1, 2), v3 = (2, 3, 1).
To check whether v1, v2, v3 are linearly dependent over R , we solve

α1v1 + α2v2 + α3v3 = 0, where αi ∈ R (14.2)

(α1 + 2α3, 2α1 + α2 + 3α3, 3α1 + 2α2 + α3) = 0

so that

α1 + 2α3 = 0

2α1 + α2 + 3α3 = 0

3α1 + 2α2 + α3 = 0

Solving for α1, α2, α3, we get, α1 = α2 = α3 = 0. Since the only solution of
(14.2) is the zero solution, therefore v1, v2, v3 are linearly independent over R.

Example 14.2. In V (R), where V = P3(x), consider the vectors

v1 = 5− 2x+ 3x2 + 10x3

v2 = 7− 5x+ 4x2 + 20x3

v3 = 4− 2x+ 4x2 + 7x3

v4 = 10 + 7x− 11x2 + 13x3

Let αi ∈ R, i = 1, 2, 3, 4, such that

α1v1 + α2v2 + α3v3 + α4v4 = 0 (14.3)

Then
(5α1 + 7α2 + 4α3 + 10α4) + (−2α1 − 5α2 − 2α3 + 7α4)x+ (3α1 + 4α2 + 4α3 −
11α4)x2 + (10α1 + 20α2 + 7α3 + 13α4)x3 = 0
so that

5α1 + 7α2 + 4α3 + 10α4 = 0

−2α1 − 5α2 − 2α3 + 7α4 = 0

3α1 + 4α2 + 4α3 − 11α4 = 0

10α1 + 20α2 + 7α3 + 13α4 = 0
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On solving we get α1 = 15, α2 = −3, α3 = −11, α4 = −1.
Since there is a non-zero solution of (Eq. 14.3), the vectors v1, v2, v3, v4 are
linearly dependent over R.

Example 14.3. In V (R), where V = R[x], let S = {1, x, x2, . . .}. Consider
any finite subset of S, namely {xi1 , xi2 , . . . , xin}, where ik ∈ N ∪ {0}, are all
distinct. Let αj ∈ R 1 ≤ j ≤ n such that

α1x
i1 + α2x

i2 + · · ·+ αnx
in = 0

Then α1 = α2 = . . . = αn = 0, so that S is linearly independent. As every finite
subset of S is linearly independent, ∴ S is linearly independent.

Example 14.4. Let S = {1,
√

2} = {v1, v2} (say). Then S is linearly dependent
over R as 2,−

√
2 ∈ R such that

2v1 −
√

2v2 = 0

We now prove that S is linearly independent over Q. Let α1, α2 ∈ Q such that

α1v1 + α2v2 = 0

Then

α1 +
√

2α2 = 0 = 0 +
√

2 0
=⇒ α1 = α2 = 0

Thus S is linearly independent over Q. This shows that a set of vectors may
be linearly independent over one field but may be linearly dependent over an-
other field. Hence the field over which linear independence is being checked is
important.

Example 14.5. In V (R), V = M2(R), consider the set S of all scalar matrices.
Then S is an infinite linearly dependent set.

For let A1, A2 ∈ S, where A1 =

(
1 0
0 1

)
, A2 =

(
2 0
0 2

)
and S1 = {A1, A2}.

Then S1 is a finite subset of S and 2A1 − A2 = 0 so that S1 is a linearly
dependent set. Thus S has a finite linearly dependent subset, therefore S is
linearly dependent.

The next theorem gives some important facts regarding linearly indepen-
dent/dependent set of vectors.

Theorem 14.1. In any vector space V (F ) the following holds:
(i) The zero vector is linearly dependent.
(ii) Any non-zero vector is linearly independent.
(iii) Every superset of a linearly dependent set is linearly dependent.
(iv) Every subset of a linearly independent set is linearly independent.
(v) Any set containing the zero vector is linearly dependent.

Proof:

(i) If 0 6= α in F and 0 ∈ V , then

α0 = 0 (14.4)

So that {0} is linearly dependent set.
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(ii) Let 0 6= ν ∈ V . Let S = {ν}. If α ∈ F such that

αν = 0 (14.5)

then α = 0 or ν = 0 by Theorem (1.1). Since ν 6= 0 therefore α = 0.
Hence {ν} is a linearly independent set.

(iii) Let S be a linearly dependent set and T be superset of S.
Then S has a finite linearly dependent subset, say U .
Hence U ⊆ S ⊆ T, so that U is a finite linearly dependent subset of T.
Thus T is a linearly dependent set.

(iv) Let S be a linearly independent set and T a subset of S. Let, if possible
T be a linearly dependent set. By (iii) S is linearly dependent, which is
a contradiction. Hence our assumption is wrong so that T is a linearly
independent set.

(v) Let S be a set containing the zero vector. Then {0} ⊆ S. By (i) {0} is a
linearly dependent set. By (iii) S is a linearly dependent set.

Let S be any set. If the elements of S are labeled as {s1, s2, s3 . . .}, then S is
called an indexed set.

The following theorem proves that if the elements of a linearly dependent set
S are ordered, then some element of S can be expressed as a linear combination
of the preceding ones.

Theorem 14.2. An indexed set of non-zero vectors {v1, v2, . . . , vm},m ≥ 2
is linearly dependent if and only if some vj , j ≥ 2 is linear combination of
v1, v2, . . . , vj−1.

Proof: Let {v1, v2, . . . , vm}, m ≥ 2 be an indexed set of non zero vectors.

Condition is necessary.
Let{v1, v2, . . . , vm} be linearly dependent. Then there exist scalars α1, α2, . . . ,
αm, not all zero such that

α1v1 + α2v2 + · · ·+ αmvm = 0 (14.6)

Let j be the largest suffix such that αj 6= 0. If j = 1 then

α1v1 = 0
⇒ v1 = 0 as α1 6= 0

a contradiction to the fact that v1 6= 0. Thus j ≥ 2.
(14.6) gives

α1v1 + α2v2 + · · ·+ αjvj = 0
⇒ αjvj = −(α1v1 + α2v2 + · · ·+ αj−1vj−1)
⇒ vj = −α−1

j (α1v1 + α2v2 + · · ·+ αj−1vj−1)

Thus vj is a linear combination of {v1, v2, . . . , vj−1} for some j ≥ 2.
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Condition is sufficient.
Let the condition hold. Then there exist scalars α1, α2, . . . , αj−1 such that

vj = α1v1 + α2v2 + · · ·+ αj−1vj−1

∴ α1v1 + · · ·+ αj−1vj−1 + (−1)vj + 0vj+1 + · · ·+ 0vm = 0
⇒ α1v1 + α2v2 + · · ·+ αmvm = 0
Since αj = −1 6= 0,∴ v1, v2, · · · , vm are linearly dependent.

Corollary 14.3. A subset S of non-zero vectors of V is linearly dependent if
and only if Span(S) = Span(S\{v}), for some v ∈ S .

Proof: Let S be linearly dependent. Then some finite subset S1 of S is linearly
dependent.

Let S1 = {v1, v2, . . . , vm} be indexed. Since S1 is linearly dependent, there-
fore S1 has at least two elements so that m ≥ 2. By the above theorem, there
exists some j ≥ 2 such that vj is a linear combination of v1, v2, . . . , vj−1 . Hence
vj is a linear combination of a finite number of elements of S , so that

Span(S) = Span(S\{vj})

Conversely, suppose there exists v ∈ S such that Span(S) = Span(S\{v})

v ∈ S ⇒ v ∈ Span(S)
⇒ v ∈ Span(S\{v})

=⇒ v is linear combination of a finite number of elements of Span(S\{v}), say
v1, v2, . . . , vk
⇒ ∃ scalars α1, α2, . . . , αk such that

v = α1v1 + α2v2 + · · ·+ αkvk

⇒ α1v1 + α2v2 + · · ·+ αkvk + (−1)v = 0
⇒ S1 = {v1, v2, . . . , vk, v} is linearly dependent.
⇒ S is linearly dependent, as S has a finite linearly dependent subset S1.

Remark 14.2. If a vector v is such that Span(S) = Span(S\{v}) then v is
called a redundant vector in S.

Example 14.6. 1. In R4 consider S = {u1, u2, u3, u4} where u1 = (1, 1, 1, 1),
u2 = (1, 0, 1, 0), u3 = (−1, 1,−1, 1), u4 = (0, 0, 1, 1). It can be easily seen that

u1 − 2u2 − u3 + 0u4 = 0 (14.7)

so that S is a linearly dependent set. The last non-zero coefficient in (14.7) is
that of u3. Thus (14.7) can be written as

u1 − 2u2 − u3 = 0
⇒ u3 = u1 − 2u2

⇒ u3 is a linear combination of u1, u2.
Hence Span(S) = Span(S\{u3}).

If S is any set, then we are looking for some subset S1 of S such that Span(S) =
Span(S1) and S1 contains no redundant vectors. This is done by weeding out
all redundant vectors from S.
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Theorem 14.4. If v1, v2, . . . , vn are non-zero vectors in a vector space V and
S = {v1, v2, . . . , vn}, then

Span(S) = Span(S\{vi})

if and only if vi is a linear combination of v1, v2, . . . , vi−1, vi+1, . . . , vn.

Proof: Condition is necessary
vi ∈ S ⇒ vi ∈ Span(S) = Span(S\{vi}) ⇒ vi is a linear combination of
v1, v2, . . . , vi−1, vi+1, . . . , vn.

Condition is sufficient
Let vi be a linear combination of v1, v2, . . . , vi−1, vi+1, . . . , vn. Let v ∈ Span(S).
∴ v is a linear combination of v1, v2, . . . , vn. But vi is a linear combination of
v1, v2, . . . , vi−1, vi+1, . . . , vn. Hence v is a linear combination of v1, v2, . . . , vi−1,
vi+1, . . . , vn. So that

Span(S) ⊆ Span(S\{vi}) (14.8)

Since S\{vi} ⊆ S

∴ Span(S\{vi}) ⊆ Span(S) (14.9)

From (14.8) and (14.9)

Span(S) = Span(S\{vi}).

The following table summarizes the problems of vector space studied in this
section, for the vector space Rm, their equivalent problem in system of linear
equations and its solution in terms of the echelon form of a suitable matrix.

If v1, v2, . . . , vn ∈ Rm, let S = {v1, v2, . . . , vn} and A = [v1, v2, . . . , vn]

Problem in Vector Equivalent problem in Solution

Space Rm System of linear equations

1. S is linearly independent AX = 0 has only trivial Every column of A

solution is pivot column
or |A| 6= 0

if A is a square matrix.

2. S is linearly dependent AX = 0 has non-trivial A has non-pivot

solutions columns
or |A| = 0

if A is a square matrix.

3. b ∈ Span(S) AX = b has a solution In [A : b], the

augmented column
does not have a pivot.

4. if b ∈ Span(S), find To find solution of In [A : b], the
α′is ∈ F, 1 ≤ i ≤ n AX = b augmented column

such that is not a pivot

b = α1v1 + α2v2+ column.
· · ·+ αnvn A solution of Ax = b

is (α1, α2, . . . , αn)t.

5. Span(S) = Rm AX = b has a solution Every row of A

for every b ∈ Rm has a pivot.

6. T is a smallest T is the set
subset of S such that of pivot

Span(T ) = Span(S) columns of A.
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14.2 Solved Problems

Problem 14.1. Show that the vectors (3, 0, 0, 0), (3,−1, 1, 0), (5,−1, 1, 3),
(6, 0, 1, 3) are linearly independent over R.

Solution:
Let v1 = (3, 0, 0, 0), v2 = (3,−1, 1, 0), v3 = (5,−1, 1, 3), v4 = (6, 0, 1, 3). v1, v2,
v3, v4 are linearly independent if and only if for αi ∈ R, 1 ≤ i ≤ 4, the vector
equation

α1v1 + α2v2 + α3v3 + α4v4 = 0 (14.10)

has only the trivial solution. The corresponding augmented matrix is

[A
... 0] = [ v1 v2 v3 v4

... 0 ]

=


3 3 5 6

... 0

0 −1 −1 0
... 0

0 1 1 1
... 0

0 0 3 3
... 0



∼


3 3 5 6

... 0

0 −1 −1 0
... 0

0 0 0 1
... 0

0 0 3 3
... 0

 applying R3 → R3 +R2

∼


3 3 5 6

... 0

0 -1 −1 0
... 0

0 0 3 3
... 0

0 0 0 1
... 0

 applying R3 ↔ R4

Since every column has a pivot, ∴ the corresponding vector equation has a
unique solution, namely the trivial solution.
∴ v1, v2, v3, v4 are linearly independent over R.

Problem 14.2. In V (R), where V = P3(x), let

v1 = 1 + x+ x3

v2 = 1 + x2 − x3

v3 = x+ x2 + x3

v4 = 1 + 2x+ 3x2

Prove that v1, v2, v3, v4 are linearly independent.
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Solution:
Let αi ∈ R such that

α1v1 + α2v2 + α3v3 + α4v4 = 0

Then

(α1 + α2 + α4) + (α1 + α3 + 2α4)x+ (α2 + α3 + 3α4)x2 + (α1 − α2 + α3)x3 = 0

so that, α1 + α2 + α4 = 0

α1 + 2α4 + α3 = 0

α2 + α3 + α4 = 0

α1 − α2 + α3 = 0

Solving, we get α1 = α2 = α3 = α4 = 0

Hence the vectors v1, v2, v3, v4 are linearly independent.

Problem 14.3. Check the vectors e2x sinx, e2x cosx for linear independence
over R.

Solution:
Let v1 = e2x sinx, v2 = e2x cosx and α1, α2 ∈ R such that

α1v1 + α2v2 = 0 (14.11)

ie.

α1e
2x sinx+ α2e

2x cosx = 0
=⇒ e2x(α1 sinx+ α2 cosx) = 0

=⇒ α1 sinx+ α2 cosx = 0 ∵ e2x 6= 0 (14.12)

Differentiating with respect to x, we get

α1 cosx− α2 sinx = 0 (14.13)

We are required to solve (14.12) and (14.13) for α1 and α2.
Since ∣∣∣∣sinx cosx

cosx − sinx

∣∣∣∣ 6= 0

∴ (14.12) and (14.13) have a unique solution, namely the zero solution.
∴ α1 = α2 = 0.
Hence v1, v2 are linearly independent.

Problem 14.4. For what values of a is the set

{(1, 1, 1 + a), (2, 2 + a, 2 + a), (3 + a, 3 + a, 3 + a)}

linearly independent?
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Solution:
Let v1 = (1, 1, 1 + a)t, v2 = (2, 2 + a, 2 + a)t, v3 = (3 + a, 3 + a, 3 + a)t. Let
α1, α2, α3 ∈ R such that

α1v1 + α2v2 + α3v3 = 0 (14.14)

We know that 3 vectors in R3 are linearly independent if and only if

|[ v1 v2 v3 ]| 6= 0

|[ v1 v2 v3 ]| =

∣∣∣∣∣∣
1 2 3 + a
1 2 + a 3 + a

1 + a 2 + a 3 + a

∣∣∣∣∣∣
=

∣∣∣∣∣∣
1 0 a
1 a a

1 + a −a −2a

∣∣∣∣∣∣ [C2 → C2 − 2C1, C3 → C3 − 3C1]

=

∣∣∣∣∣∣
1 0 a
0 a 0

1 + a −a −2a

∣∣∣∣∣∣ [R2 → R2 −R1]

=

∣∣∣∣∣∣
1 0 a
0 a 0

3 + a −a −0

∣∣∣∣∣∣ [R3 → R3 + 2R1]

= −a2(3 + a) = 0, if a = 0 or a = −3.

Thus if a 6= 0,−3, then v1, v2, v3 are linearly independent.

Remark 14.3. This method of showing that a system of vectors is linearly inde-
pendent is used when the number of vectors is same as the number of components
of the vector.

Problem 14.5. Check for the linear independence the polynomials i + x +
x2,−(1 + i)− 2x+ 2ix2, x− x2 over
(a) C
(b) R

Solution:
Let p1 = i+ x+ x2, p2 = −(1 + i)− 2x+ 2ix2, p3 = x− x2

(a) Let α1, α2, α3 ∈ C such that

α1p1 + α2p2 + α3p3 = 0

Then

(iα1 − (1 + i)α2) + (α1 − 2α2 + α3)x+ (α1 + 2iα2 − α3)x2 = 0

so that

iα1 − (1 + i)α2 = 0
α1 − 2α2 + α3 = 0
α1 + 2iα2 − α3 = 0
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The corresponding coefficient matrix is

A =

i −(1 + i) 0
1 −2 1
1 2i −1



∼

i −(1 + i) 0
0 −(1 + i) 1
0 (1 + i) −1

 (applying R2 → R2 + iR1, R3 → R3 + iR1)

∼

i −(1 + i) 0
0 −(1 + i) 1
0 0 0

 (applying R3 → R3 +R2)

Since the third column is not a pivot column so a non-zero solution exists. Thus
the system is equivalent to

iα1 − (1 + i)α2 = 0
−(1 + i)α2 + α3 = 0

Hence

α1 = (1− i)α2

α3 = (1 + i)α2

Hence the vectors p1, p2, p3 are linearly dependent over C. Taking α2 = 1, we
get

α1 = (1− i), α3 = (1 + i)

Thus (1− i)p1 + p2 + (1 + i)p3 = 0.
(ii) Since α1, α2, α3 ∈ C and not in R,
∴ α1p1 + α2p2 + α3p3 = 0

has no solution in R. Therefore p1, p2, p3 are linearly independent over R.

Problem 14.6. Let S = {(1, 2), (2, 1), (1, 0), (5, 3)}. Find a smallest subset T
of S such that Span(S)=Span(T).

Solution: Let v1 = (1, 2), v2 = (2, 1), v3 = (1, 0), v4 = (5, 3).
Then S = {v1, v2, v3, v4}.
We remove all those vectors one by one from S which are linearly dependent on
the remaining ones.
Step 1 First we check S for linear independence. Let α1, α2, α3, α4 ∈ R such
that

α1v1 + α2v2 + α3v3 + α4v4 = 0 (14.15)

The coefficient matrix of vector equation (14.15) is

A =

(
1 2 1 5
2 1 0 3

)
∼

(
1 2 1 5
0 -3 −2 −7

)
(applying R2 → R2 − 2R1).

The first and second columns of A are the pivot columns. Hence T = {v1, v2}
is the smallest subset S such that Span(S) = Span(T ).
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Problem 14.7. Let S = {v1, v2, v3, v4} where v1 =


−6
4
−9
4

 ,

v2 =


8
−3
7
−3

 , v3 =


−9
5
−8
3

 , v4 =


4
7
−8
3

 , b =


2
1
−2
1

.

Does b ∈ Span(S)? If yes, express b as a linear combination of elements of S.

Solution:

Let A = [v1 v2 v3 v4], X =


x1

x2

x3

x4


Step 1 b ∈ Span(S) if the matrix equation

AX = b (14.16)

has a solution.

i.e. In [ A
... b ], the augmented column does not have pivot.

Step 2 Reducing [ A
... b ] to echelon form. We get

[ A
... b ] ∼


-1 1 0 2

... −1

0 1 5 15
... 1

0 0 1 2
... 0

0 0 0 0
... 0

 = [ B
... c ] (say)

The pivots are in bold. Since the augmented column does not have a pivot,
therefore (14.16) has a solution. Hence b ∈ Span(S).
Step 3 To express b as a linear combination of elements of S we find a solution

of Eq. 14.16. For this obtain the reduced echelon form of [ A
... b ]. Thus

[ A
... b ] ∼


1 0 0 −2

... 1

0 1 0 5
... 1

0 0 1 2
... 0

0 0 0 0
... 0


Hence a solution of AX = b is given by

x1 − 2x4 = 1
x2 + 5x4 = 1
x3 + 2x4 = 0

0 = 0

This gives x4 to be a free variable. Taking x4 = 0, a solution is x1 = x2 =
1, x3 = 0.
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∴ b = x1v1 + x2v2 + x3v3 + x4v4

b = v1 + v2 + 0v3 + 0v4.

Problem 14.8. Let S =




0
0
1
1

 ,


−1
1
1
2

 ,


1
1
0
0

 ,


2
1
2
1

 ,


1
−1
0
−1


.

Show that Span(S) = R4.

Solution:

Let v1 =


0
0
1
1

 , v2 =


−1
1
1
2

 , v3 =


1
1
0
0

 , v4 =


2
1
2
1

 , v5 =


1
−1
0
−1


and A = [v1 v2 v3 v4 v5] X = (x1, x2, x3, x4)t.
Span(S) = R4 if AX = b has a solution for every b ∈ R4. For this every row of
A must have a pivot. Reducing A to echelon form we get

A ∼


1 1 0 2 0
0 1 1 1 −1
0 0 2 3 0
0 0 0 1 0


The pivots are in bold. Since every row has a pivot
∴ Span(S) = R4.

Problem 14.9. Let S = {(1,−1, 0, 2)t, (3,−1, 2, 1)t, (1, 0, 0, 1)t}. Find the con-
dition so that (a, b, c, d)t ∈ Span(S).

Solution:
Let v1 = (1,−1, 0, 2)t, v2 = (3,−1, 2, 1)t, v3 = (1, 0, 0, 1)t, u = (a, b, c, d)t and
A = [v1 v2 v3].
u ∈ Span(S) if AX = u has a solution.

i.e., in [A
...u], the augmented column is not a pivot column.

Reducing [A
...u] to echelon form, we get

[ A
... u ] ∼


1 3 1

... a

0 2 1
... a+ b

0 0 1
... a+ b− c

0 0 0
... 10a− 4b− 3c− 2d


The augmented column is not a pivot column if

10a− 4b− 3c− 2d = 0

This is the required condition.
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14.3 Exercise

1. Find which of the following sets of vectors are linearly independent over
R :
(i) {(1, 3,−3), (1, 4,−3), (2, 1,−1), (2, 0,−1)}.
(ii) {(1, 3, 1, 0), (−2,−6, 2, 1), (4, 2, 8, 3), (2, 4, 6,−3)}.
(iii) {(1, 1, 1, 1), (1, 2, 1, 2), (2, 1, 2, 1), (1, 2, 3, 4)}.
(iv) {(2, 0, 3), (2, 1, 3), (0,−4, 0)}.

2. Determine whether the given set S is linearly independent or dependent
over the given field.
(i) S = {1 + i, 2 + 3i} over C.
(ii) S as in (i) over R.
(iii) S = {1 + x2, 2x, 1 + x+ x2} over R.
(iv) S = {(0, 0, 4, 2), (2, 0, 2, 0), (5, 2,−11,−6), (−1, 3, 11, 9)} over R.
(v) S = {sinx, cosx} over R.
(vi) S = {ex sinx, ex cosx} over R.
(vii) If A = {1, 2, 3}, then S = {{1}, {2}, {1, 2}} over Z2,where S ⊆

P (A).
(viii) S = {3i+ (1 + i)x2, 1 + ix+ x2, 2i+ x+ x2} over R.
(ix) S as in (viii) over C.

3. For the following set S, does there exist a proper subset T of S such that
Span(T ) = Span(S)? Find a smallest such T .
(i) S = {(0, 1, 2), (1, 2, 3), (2, 1, 4), (−1,−1, 2)} in R3(R).
(ii) S = {1 + x + 3x3, 1 + x2 + 2x3,−2 − 2x − 6x3, x,−x2 + x3} in

P3(R).
(iii) S = {sinx, cosx} in the space of all real valued continuous func-

tions.

(iv) S = {2 +
√

3, 2−
√

3,−2 +
√

3,−2−
√

3} in R(Q).

(v) S = {1 +
√

2, 1−
√

2, 1 + i
√

3, 1− i
√

3} in C(Q).
(vi) S = {(2, 3), (1, 1), (0, 1), (1, 2)} in R2(R).
(vii) S = {(1, 2, 3, 4), (1, 2, 1, 2), (1, 1, 1, 1), (2, 1, 2, 1)} in R4(R).

4. Give 3 examples of linearly dependent subsets S of V (F ) in each of the
following cases:
(i) R2(R), S contains 2 elements.
(ii) R3(R), S contains 2 elements.
(iii) R3(R), S contains 3 elements.
(iv) R4(R), S contains 3 elements.
(v) V (R), where V = M2(R), S contains 4 elements.
(vi) V (C), where V = M2(C), S contains 4 elements.

5. Give 3 examples of linearly independent subsets S of V (F ), in each of the
following cases:
(i) V = R2, F = R, S contains 2 elements.
(ii) V = R3, F = R, S contains 3 elements.
(iii) V = P3(R), F = R, S contains 4 elements.
(iv) V = M2(R), F = R, S contains 4 elements.
(v) V = C[0, 1], F = R, S contains 2 elements.
(vi) V = P(1, 2, 3), F = Z2, S contains 3 elements.
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6. v1 = (1, 2, 1, 0)t, v2 = (1, 1,−1, 0)t, v3 = (1, 1, 0, 0)t, v4 = (2, 3, 0, 0)t.
Prove that (x1, x2, x3, x4)t ∈ R4 is a linear combination of v1, v2, v3, v4

if and only if x4 = 0.

7. u = (1, 3, 2)t, v = (−2, 4, 3)t. Find the condition that (x, y, z)t lies in
Span({u, v}). Interpret the problem geometrically.

8. Which of the following polynomials are linear combinations of {p1, p2, p3, }
where p1 = x2 + x+ 1, p2 = x2 + 1, p3 = x?
(i) x2 + 2x+ 1.
(ii) 2x2 − 3x+ 3.
(iii) x2 + 2x+ 2.
(iv) 3x2 + 3x+ 2.

9. Prove that 1, 1 + x, (1 + x)2 span P2(R).

10. (i) Do x3 + 2x+ 1, x2 − x+ 2, x3 + 2,−x3 + x2 − 5x+ 2 span P3?
(ii) Does S = {2− t, 1− 2t, 2− 4t,−1 + t− t2, 1 + 2t+ t2} span P2?

11. If u1, u2, u3 are linearly independent vectors, then prove that
u1 + u2, u2 + u3, u3 + u1 are also linearly independent. What can you say
about u1 − u2, u2 + u3, u3 + u1?

12. Prove the following:
(i) The union of two linearly dependent sets is linearly dependent.
(ii) The intersection of two linearly independent sets is linearly inde-

pendent.
(iii) The intersection of a linearly independent set and a linearly de-

pendent set is linearly independent.
(iv) The union of a linearly independent set and a linearly dependent

set is linearly dependent.

13. If v1, v2, ........, vn are linearly independent vectors of a vector space V (F )
and u = v1 + v2 + ........+ vn, then prove that the vectors
u− v1, u− v2, ........, u− vn are linearly independent.

14. Test whether the vector v = (−1,−1, 7)t belongs to the Span(S), where
S = {(1, 2, 6)t, (−3, 1,−7)t, (1,−4, 8)t} . If v ∈ Span(S), express v as a
linear combination of elements of S.

15. The set B = {v1, v2, v3} where, v1 = (−1, 1, 0), v2 = (1, 2,−1), v3 =
(0, 1, 0) and v = (−1, 8,−2). Show that v ∈ Span(B). Also express v
as a linear combination of elements of B.

16. Given that B = {p1, p2, p3} where, p1 = 2x2 +x, p2 = x2 + 3, p3 = x spans
P2. Let p = 8x2− 4x+ 6 and q = 7x2−x+ 9. Express p and q as a linear
combinations of elements of B.

17. Let S =

{
A =

(
1 1
0 0

)
, B =

(
0 0
1 0

)
, C =

(
0 0
0 1

)
, D =

(
1 0
0 0

)}
Show that
(i) S is linearly independent.
(ii) S spans M2(R)

Also express P =

(
1 2
−2 1

)
, as a linear combination of elements of S.
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18. Show that the vectors {v1, v2, v3} are linearly dependent, where
v1 = (0, 2,−4)t, v2 = (1,−2,−1)t, v3 = (1,−4, 3)t. Also express one of
them in terms of the other.

14.4 Basis of Vector Space

We study the structure of a vector space V by determining a smallest subset
of V that describes V completely. In this section we shall find this smallest
subset of V .

Definition 14.2. (Basis): A subset S of a vector space V is said to be a basis
for V if
(i) S spans V .
(ii) S is linearly independent.

Remark 14.4.

(i) If a subset of S forms a basis for a vector space V , then the vectors in
S must be distinct and non-zero, otherwise S will be linearly dependent.

(ii) S may be finite or infinite.

Examples

1. Let e1 = (1, 0), e2 = (0, 1). Then S = {e1, e2} forms a basis for R2(R).

2. Let e1=(1, 0, . . . , 0), e2=(0, 1, . . . , 0) . . . , en=(0, 0, . . . , 1). Then S = {e1,
e2, . . . , en} forms a basis for Rn(R). S is called the standard basis for Rn.

3. S = {1, x, x2, . . . , xn} is a basis for Pn, the set of all polynomials of degree
n or less, over R. S is called a standard basis for Pn.

4. S = {sinx, cosx} forms a basis of the vector space of all solutions of the

equation d2y
dx2 + y = 0.

5. {1, x, x2, . . .} is a basis of R[x] the space of all polynomials over R. This
is the standard basis for R[x].

6. Let E11 =

(
1 0
0 0

)
, E12 =

(
0 1
0 0

)
, E21 =

(
0 0
1 0

)
, E22 =

(
0 0
0 1

)
.

Then B = {E11, E12, E21, E22} is a standard basis for M2(R).

The following questions come to our mind.

1. Does a basis always exists?

2. In case a basis exists, is it unique?

These questions will be answered later in this chapter.
The following theorem leads to a characterization of a basis.

Theorem 14.5. If B = {v1, v2, . . . , vn} is a basis for a vector space V (F ), then
every vector in V is expressible uniquely as a linear combination of elements
of B.

Proof: Since B is a basis of V , therefore B spans V . Thus every vector in V
can be written as a linear combination of elements of B.
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Let v ∈ V be expressible as a linear combination of elements of B in two
different ways. Hence there exists, αi, βi ∈ F, 1 ≤ i ≤ n such that

v = α1v1 + α2v2 + · · ·+ αnvn (14.17)

v = β1v1 + β2v2 + · · ·+ βnvn (14.18)

Subtracting (14.18) from (14.17) we get,

0 = (α1 − β1)v1 + (α2 − β2)v2 + · · ·+ (αn − βn)vn

Since v1, v2, . . . , vn are linearly independent
∴ αi − βi = 0, 1 ≤ i ≤ n
i.e. αi = βi, 1 ≤ i ≤ n
Hence the expressions (14.17) and (14.18) are identical. Thus v is expressible
uniquely as a linear combination of elements of B.
The converse of the above theorem is also true.

Theorem 14.6. If B is a subset of a vector space V (F ) such that every element
of V is expressible uniquely as a linear combination of B, then B is basis of V .

Proof: Since every vector v of V can be expressed as a linear combination of
elements of B, therefore B spans V.

We now prove that B is linearly independent. Let S be any finite subset of
B. Let S = {v1, v2, . . . , vn}.
Let α1α2 . . . αn ∈ F such that

α1v1 + α2v2 + · · ·+ αnvn = 0 (14.19)

Also 0v1 + 0v2 + · · ·+ 0vn = 0 (14.20)

Thus 0 ∈ V has two expressions as a linear combination of elements of B, namely
(14.19) and (14.20). By uniqueness of the expression, we must have

α1 = 0, α2 = 0, . . . , αn = 0

Thus S is linearly independent. However S is any finite subset of B, therefore
every finite subset of B is linearly independent. This proves that
B is linearly independent. Hence B is a basis of V .
The above two theorems can be combined to give a characterization of a basis.

Theorem 14.7. A subset B of a vector space V (F ) is a basis of V if and
only if every element of V can be expressed uniquely as a linear combination of
elements of B.

Examples

1. Consider the vector space R3. Let v1 = (1, 0, 1), v2 = (0, 1, 1),
v3 = (1, 1, 2), v = (1, 2, 3) ∈ R3, and

v = v1 + 2v2 + 0v3

Also v = 0v1 + v2 + v3

Thus v has two different representations as a linear combination of el-
ements of B = {v1, v2, v3}. Thus B is not a basis of R3, by Theorem
14.7.
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2. Let B = {v1, v2} where v1 = (1, 0, 0), v2 = (0, 1, 0), and v = (1, 2, 3) ∈ R3.
Then v can not be expressed as a linear combination of elements of B.
This is because, if α, β ∈ R

αv1 + βv2 = (α, β, 0)

so that the 3rd component is always zero. Thus B is not basis of R3(R).

The above theorem is very important as it gives us a very simple way to
determine whether a given set is a basis or not. The following form of the above
theorem is also useful: If B is a subset of V , then B is not a basis if any one of
the following holds:
(i) Some vector v ∈ V is not a linear combination of elements of B.
(ii) Some vector v ∈ V can be represented as a linear combination of ele-

ments of B in two different ways.

14.5 Coordinates Relative to an Ordered Basis

An ordered basis for a vector space V is an ordered set of linearly-independent
vectors which spans V .

Example 14.7. Let e1 = (1, 0)t, e2 = (0, 1)t. Then B1 = {e1, e2}, B2 = {e2, e1}
are two different ordered basis for R2.

If V = V (R) is vector space and B = {v1, v2, . . . , vn} is an ordered basis of
V , then for each v ∈ V , there exist unique α1, α2, . . . , αn ∈ R such that

v = α1v1 + α2v2 + · · ·+ αnvn

Hence with each vector v ∈ V , we can associate a vector (α1, α2, . . . , αn)t

in Rn. Conversely, with each (c1, c2, . . . , cn)t ∈ Rn, we associate the vector
v = c1v1 + c2v2 + · · ·+ cnvn of V . This leads to the following definition.

Definition 14.3. (coordinates of a vector relative to an ordered basis):
Let B = {u1, u2, . . . , un} be an ordered basis of a vector space V . Let v ∈ V .

v = α1u1 + α2u2 + . . .+ αnun, αi ∈ F,

then the column vector (α1, α2, . . . , αn)t is called the coordinate vector of
v relative to the ordered basis B. It is denoted by [v]B. The entries of the
coordinate vector are called the coordinates of v relative to the basis B.

Example 14.8. Let v = (2,−3)t. Then if B1,B2 are as defined in Example
14.7,

[v]B1
=

(
2
−3

)
, [v]B2

=

(
−3
2

)

Example 14.9. If v1 =

(
1
0

)
, v2 =

(
1
1

)
, v =

(
2
−3

)
. B = {v1, v2}.

Let

v = c1v1 + c2v2 (14.21)
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The vector Equation (14.21)

⇐⇒
(

1 1
0 1

)(
c1
c2

)
=

(
2
−3

)
⇐⇒

(
1 0
0 1

)(
c1
c2

)
=

(
5
−3

)
⇐⇒

(
c1
c2

)
=

(
5
−3

)
Hence [v]B =

(
5
−3

)
.

It is easily verified that for any ordered basis B of a vector space V , for any
u, v ∈ V

[u+ v]B = [u]B + [v]B
[αu]B = α[u]B.

and consequently
[α1v1 + α2v2 + · · ·+ αnvn]B = α1[v1]B + α2[v2]B + · · ·+ αn[vn]B.

Hence the linear dependence relation of v1, v2, . . . , vk is equivalent to the
linear dependence relation of the vectors [v1]B, [v2]B, . . . , [vk]B of Rn.

If S = {v1, v2, . . . , vk}, when studying the linear independence, linear depen-
dence or span of the set S, we study the same property for the corresponding
subset {[v1]B, [v2]B, . . . , [vk]B} of Rn.

The following theorem shows that we can extract a basis from any spanning
set by weeding out the redundant vectors(in the sense of spanning).

Theorem 14.8. Let S = {v1, v2, . . . , vn} be a set of non-zero vectors in a vector
space V such that span(S) = V . Then, some subset T of S is a basis of V .

Proof: We are looking for a linearly independent subset T of S such that
Span(T ) = Span(S). Two cases arises :

Case 1 S is linearly independent. In this case T = S, is a basis of V .
Case 2 S is not linearly independent. Then some vector vj is a linear

combination of the preceding vectors, by Theorem 14.2, Section 14.1.
Let S1 = Span(S\{vj}) then Span(S1) = Span(S) by Corollary 14.3.

If S1 is linearly independent, then S1 is the desired subset of S, which is a
basis of V , otherwise we weed out some vector vk from S1 in the same manner
as above.
Let S2 = S1\{vk}, 1 ≤ k ≤ n, k 6= j. Then

Span(S2) = Span(S1) = Span(S).

We continue this process. The process of weeding out a redundant vector can
not continue for more than (n-1) steps, as after (n-1) steps we will be left with
a single non-zero vector, which is always linearly independent.

Thus after k steps, for some k,1 ≤ k ≤ n−1, we have a linearly independent
subset Sk of S such that

Span(Sk) = Span(S).
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The above theorem can also be stated as “every finitely generated vector
space has a basis”. Moreover, the number of elements in a basis is at most
equal to the number of elements in the spanning set.

Theorem 14.9. If A is a given matrix and B is row equivalent to A, then
the linear dependence relation, if any, between the columns of A is same as the
linear dependence relation amongst the columns of B.

Proof:

Since B is row equivalent to A, therefore the solution set of AX = 0 is same
as that of BX = 0. Let A = [c1c2 . . . cn], B = [b1 b2 · · · bn].
For any α1, α2, . . . , αn ∈ R

α1c1 + α2c2 + · · ·+ αncn = 0

⇐⇒ [c1 c2 . . . . cn]



α1

α2

...

...
αn

 = 0

⇐⇒ Au = 0, where u =



α1

α2

...

...
αn


⇐⇒ Bu = 0
⇐⇒ α1b1 + α2b2+, · · · ,+αnbn = 0
Thus α1c1 + α2c2 + · · ·+ αncn = 0
⇐⇒ α1b1 + α2b2 + · · ·+ αnbn = 0
Thus the linear dependence relationship,(if any) between columns of A is the
same as the linear dependence relationship between the columns of B.

Theorem 14.10. Let A be a m×n matrix. Then the pivot columns of A forms
a basis for col A.

Proof: Let A = [c1 c2 . . . cn]. Let B be the reduced echelon form of A, and
suppose that the number of pivot columns is k. Then k ≤ n. Moreover the
(k+ 1)th, . . . , nth rows are zero rows. Observe that the jth pivot column of B is

0
...
0
1
...
...
0


← jthposition

Clearly, the k pivot columns of B are linearly independent. Any non-pivot
column of B is of the form
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b =



α1

α2

...
αk
0
...
0


.

Then

b = α1



1
0
...
...
0

+ α2


0
1
0
...
0

+ · · ·+ αk



0
...
1
0
...
0


.

Hence b is a linear combination of the pivot columns of B.
Thus every non-pivot column of B is a linear combination of the pivot columns
of B, so the pivot columns of B are the only linearly independent columns of
B.

Hence the pivot columns of A form a basis of Col A.

For extracting a basis for Rm, from a given set {v1, v2, . . . , vm} of vectors of
Rm, the following steps can be performed.
Step 1 Let A = [v1 v2 . . . vm].
Step 2 Reduce A to echelon form and find the pivot columns.
Step 3 If every row of A has a pivot then the pivot columns form a basis for
Rm. If every row of A does not have a pivot then v1 . . . vm do not span Rm and
we can not extract a basis from these vectors.

Example 14.10. Let vi ∈ R4, 1 ≤ i ≤ 6 and A = [v1 v2 v3 v4 v5 v6]
Let the echelon form of the matrix be

� F F F F F
0 0 � F F F
0 0 0 � F F
0 0 0 0 � F


Then the 1st, 3rd, 4th and 5th columns have pivots. Also every row has a pivot.
Thus {v1, v3, v4, v5} is a basis of R4.

Example 14.11. Let vi ∈ R4, 1 ≤ i ≤ 4 and A = [v1 v2 v3 v4]
Suppose the echelon form of A is

� F F F
0 � F F
0 0 � F
0 0 0 0


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Then the 1st three columns are the pivot columns. Every row does not have a
pivot. Thus {v1, v2, v3} is not basis of R4. It is only a linearly independent
subset of R4.

Let V (F ) be a vector space of dimension. Given a subset S = {v1, v2, . . . ,
vn} of V to find a basis B′ of Span(S) under certain conditions. Let B be the
standard basis for V .
Condition I To find a subset of S which forms a basis for span(S)
Let A = [ [v1]B [v2]B . . . [vn]B ]. Then the vectors corresponding to the pivot
columns of A gives B′.
Condition II Given a linearly independent set of vectors u1, u2, · · · , uk of
span(S), to find a basis containing u1, u2, . . . , uk. Consider

A = ( [u1]B [u2]B . . . [uk]B [v1]B [v2]B . . . [vn]B )

Then the vectors corresponding to the pivot columns of A gives B′. Since the
vectors u′is are linearly independent therefore the first k columns of A will be
amongst the pivot columns of A. Hence {u1, u2, . . . , uk} ⊆ B′.
Condition III The basis B′ should not contain any element from S.

We can proceed in two ways.
Step 1 Find a basis B = {w1, w2, . . . , wt} of Span(S) as in Condition I.

Let u = w1 +w2 + · · ·+wt ∈ Span(S). Show that {u−w1, u−w2, . . . , u−wt}
is a required basis of span(S). Note that it does not work for t = 1, 2.

Step 2 Let A = [ [v1]B [v2]B . . . [vn]B ]. Reduce At to echelon form. If any
row of the echelon form is same as that of A, then we can change it applying
some row transformations. The non-zero rows of the echelon form of At written
as column vectors is a basis for Span(S).

Given below is a summary of the results of this section. Let v1, v2, . . . , vn ∈
Rm, S = {v1, v2, . . . , vn} and A = [v1 v2 . . . vn].

Problem in Vector Space Equivalent problem in Solution

system of linear equations

1. Is S a basis of Rm? Does AX = 0 has a unique Yes, if every column of A
solution? is a pivot column.

2. To extract a basis Pivot columns of A
from S form a basis.

3. Let B = {u1, u2, . . . , uk} B′ is the standard basis. If reduced echelon

be an ordered basis Let wi = [ui]B′ , 1 ≤ i ≤ k, form of [B
.
..b] is [I

.

..c].
of a vector space V . b = [v]B′ and Then c = [v]B.

If v ∈ V , find [v]B B = [w1 w2 . . . , wk].

The solution of
BX = b is [v]B.

Problem 14.10. Show that B = {v1, v2, v3} is a basis of R3, where

v1 =

 2
2
2

 , v2 =

 0
1
−1

 , v3 =

 2
1
−3

.

Find the coordinates of (0,−1, 7) relative to B.

Solution: Let A = (v1 v2 v3).
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Step 1 We reduce A to echelon form as follows

A =

2 0 2
2 1 1
2 −1 −3



∼

2 0 2
0 1 −1
0 −1 −5

 (applying R2 → R2 −R1, R3 → R3 −R1)

∼

2 0 2
0 1 −1
0 0 -6

 (applying R3 → R3 +R2)

=B
Since every column of B has a pivot, therefore each column of A is a pivot
column. Thus v1, v2, v3 is a basis for Col A.

Step 2 Since every row of A has a pivot therefore AX = b has a solution for
every b ∈ R3

⇒ b ∈ Col A.
Hence Col A = R3

Step 3 By Step 1 and Step 2 {v1, v2, v3} is a basis of R3.

Problem 14.11. Let S = {v1, v2, v3}, where v1 =

 1
−1
2

 , v2 =

 −1
2
−4

 ,

v3 =

 −1
−1
2

. Find a subset of S which forms a basis of Span(S).

Solution: Let A = [v1 v2 v3].
We reduce A to echelon form.

A =

 1 −1 −1
−1 2 −1
2 −4 2



∼

1 −1 −1
0 1 −2
0 −2 4

 (applying R2 → R2 +R1, R3 → R3 − 2R1)

∼

1 −1 −1
0 1 −2
0 0 0

 (applying R3 → R3 + 2R2)

∼

1 0 −3
0 1 −2
0 0 0

 (applying R1 → R1 +R2)

The 1st and 2nd columns are the pivot columns, therefore the corresponding
vectors v1 and v2 are linearly independent and forms a basis for Col A.
∴ But Col A = Span(S). ∴ a basis of Span(S) is {v1, v2}.
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Problem 14.12. In the above problem, find a basis of Span(S) containing v3.

Solution: In this case we keep v3 in the first position, consider the vector
equation. Let B = [v3 v1 v2].
Applying row operation we get

B ∼

1 0 −1/2
0 1 −3/2
0 0 0


The 1st and 2nd columns are the pivot columns, therefore the corresponding
vectors v3 and v1 are linearly independent and form a basis for Col B. But
Col B = Span(S)
∴ {v3, v1} is a basis for Span(S).

Problem 14.13. Find a basis for Col A which are not from the columns of A,
where

A =


−2 −2 0 −6
−1 0 −2 −1
1 1 0 3
2 1 1 5


Solution: Since we are applying row operations we write the columns of A as
the rows of At, so that Col A = Row At. To find a basis for Col A, we find a
basis for Row At. Reducing At to reduced echelon form,

At ∼


1 0 1 0
0 1 0 −1/2
0 0 0 0
0 0 0 0


A basis for row At is {(1, 0, 1, 0), (0, 1, 0,−1/2)}.
Hence a basis for Col A is {(1, 0, 1, 0)t, (0, 1, 0,−1/2)t}
Problem 14.14. Let S = {(0, 1, 2)t, (−1,−1, 2)t, (2, 1, 4)t, (1, 2, 3)t}. Find two
different bases of Span(S), one from the set S and the other not having any
element from S.

Solution:

Let A =

0 −1 2 1
1 −1 1 2
2 2 4 3


Reducing A to echelon form, we have

A ∼

1 −1 1 2
0 -1 2 1
0 0 10 3

 = B(say)

The 1st,2nd and 3rd columns of A are the pivot columns.
Thus {(0, 1, 2)t, (−1,−1, 2)t, (2, 1, 4)t} is a basis for Span(S) from the set S.

Let us now find a basis whose elements are not from S. reducing At to
reduced echelon form, we get

At ∼


1 0 0
0 1 0
0 0 1
0 0 0

 = B(say)
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The rows of B having the pivot elements, written as column vectors, gives a
basis for Span(S). It is {(1, 0, 0)t, (0, 1, 0)t, (0, 0, 1)t}.

Problem 14.15. Prove that 1, 1 − x, 2 − 4x + x2, 6 − 18x + 9x2 − x3 forms a
basis for P3. Find the coordinates of 3x2 − 8x+ 7 relative to this basis.

Solution: Let S = {p1, p2, p3, p4}, where p1 = 1, p2 = 1 − x, p3 = 2 − 4x +
x2, p4 = 6− 18x+ 9x2 − x3 and p = 3x2 − 8x+ 7.
The standard basis for P3 is {1, x, x2, x3} = B. Then
u1 = [p1]B = (1, 0, 0, 0)t, u2 = [p2]B = (1,−1, 0, 0)t, u3 = [p3]B = (2,−4, 1, 0)t,
u4 = [p4]B = (6,−18, 9,−1)t, u = [p]B = (7,−8, 3, 0)t.
Let A = [u1, u2, u3, u4].

We have to
(i) Prove that the columns of A are linearly independent.
(ii) Find the solution of

x1u1 + x2u2 + x3u3 + x4u4 = u

i.e. of AX = u, where X = (x1, x2, x3, x4)t.

Reduce the augmented matrix [A
...u] to echelon form.

[A
...u] =


1 1 2 6

... 7

0 -1 −4 −18
... −8

0 0 1 9
... 3

0 0 0 -1
... 0


which is already in echelon form. The pivots are in bold. Since every column
of A is a pivot column, therefore, the columns of A are linearly independent.
Since every row has a pivot element, ∴ the columns of A span P3. Hence S is a
basis for P3, o(S) = 4 = dim P3.

Reduce [A
...u] to reduced echelon form to obtain the required linear combi-

nation.

[A
...u] ∼


1 0 0 0

... 5

0 1 0 0
... −4

0 0 1 0
... 3

0 0 0 1
... 0


Hence solution is x1 = 5, x2 = −4, x3 = 3, x4 = 0.
∴ p = 5p1 − 4p2 + 3p3 + 0p4 = 5p1 − 4p2 + 3p3.

[p]B = (5,−4, 3, 0)t

Problem 14.16. For what values of α, β do the vectors v1, v2 form a basis,
for span ({v1, v2}), where v1 = (1, 1, 1)t, v2 = (1, α, β)t.

Solution: Let S = {v1, v2} and A = (v1 v2)

A =

1 1
1 α
1 β


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S is basis if every column of A is a pivot column.

A ∼

1 1
0 α− 1
0 β − 1

 = B(say)

In B, 2nd column is a pivot column if α− 1 6= 0, β − 1 may take any value.
Thus α 6= 1, β can take any value. Thus A has two pivot columns if α 6= 1, β
can take any value.

14.6 Exercise

1. Show that B = {v1, v2, v3} forms a basis for R3, where
(i) v1 = (1, 2, 0), v2 = (1, 0, 1), v3 = (0, 1, 1).
(ii) v1 = (−1, 2, 0), v2 = (3,−5, 2), v3 = (4,−7, 3).
(iii) v1 = (1,−3, 2), v2 = (2, 4, 1), v3 = (1, 1, 1).

2. Let B = {v1, v2, v3}, where v1 = (1,−3), v2 = (2,−8), v3 = (−3, 7).
(i) Show that B spans R2.
(ii) Express (1, 1) as a linear combination of elements of B in two

different ways.
(iii) Is B a basis for R2 ? Justify your answer.

3. Let S = {(1, 2), (2, 4), (4, 5)}. Show that S generates R2. Find all subsets
of S which generate R2.

4. Given a basis B = {(1, 0, 0), (0, 1, 0), (0, 1, 1)} for R3, replace a suitable
element of B by the vector (1, 2, 2) to get another basis for R3.

5. Find two bases for C4(C) such that the only vectors common to both the
bases are (1, 1, 0, 0)t and (0, 0, 1, 1)t.

6. Let v1 = (4,−3, 7)t, v2 = (1, 9,−2)t, v3 = (7, 11, 6)t and let W =
Span{v1, v2, v3}. Find three bases for W .

7. Let v1 = (7, 4,−9,−5)t, v2 = (4,−7, 2, 5)t, v3 = (1,−5, 3, 4)t. Find a basis
for W = Span{v1, v2, v3} such that in each element the number of 0s
preceding the first non-zero entry is different.

8. Let B = {v1, v2, v3}, where v1 = (1,−3, 2), v2 = (2, 4, 1), v3 = (1, 1, 1).
(i) Prove that B is a basis of R3.
(ii) Find the coordinates of v1, v2, v3 relative to B.
(iii) Find the coordinates of the vectors (1, 0, 0), (0, 1, 0), (0, 0, 1) rela-

tive to B.

9. Show that the set B = {v1, v2, v3} forms a basis for R3. Also find the
coordinates of v relative to the ordered basis B.
(i) v1 = (1, 0, 1), v2 = (2, 0, 3), v3 = (2, 1, 3), v = (−1, 1,−2).
(ii) v1 = (1, 1, 0), v2 = (1, 0, 1), v3 = (1, 2, 3), v = (1,−5,−10).
(iii) v1 = (1, 0, 1), v2 = (1, 1, 0), v3 = (1, 2, 3), v = (1,−5,−10).
(iv) v1 = (1, 5, 3), v2 = (1, 0,−1), v3 = (1, 0, 0), v = (2, 5, 5).

10. Let v1 = (−1, 2, 0), v2 = (3,−5, 2), v3 = (4,−7, 3). If B = {v1, v2, v3} is an
ordered basis for V , find [u]B, where u = (0, 1,−5).
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11. Let v1 = (−1, 2, 0), v2 = (3,−5, 2), v3 = (4,−7, 3). If B = {v1, v2, v3} is an
ordered basis for V , find [u]B, where
(i) u = (1, 0, 0).
(ii) u = (0, 1, 0).
(iii) u = (0, 0, 1).

12. What are the coordinates of v1, v2, v3 relative to the ordered basis
(i) {v1, v2, v3}.
(ii) {v2, v1, v3}.
(iii) {v1 + v2, v2 + v3, v3 + v1}.
(iv) {v3, v3 + v2, v3 + v2 + v1}.

13. Given a basis {v1, v2, v3} for R3, where v1 = (1, 2, 0), v2 = (0, 1, 1), v3 =
(1, 0, 1), find [u]B, where u = (1, 2, 3) and a ordered basis is given by
(i) {v1, v2, v3}.
(ii) {v2, v1, v3}.
(iii) {v1, v3, v2}.
(iv) {v3, v2, v1}.

14. Find a basis for each of the following vector spaces:
(i) C(R).
(ii) C2(C).
(iii) C2(R).
(iv) The vector space of all 2× 2 complex diagonal matrices, over R.
(v) The vector space of all 2× 2 complex diagonal matrices, over C.
(vi) C(C).

(vii) V (Q) where V = {a+ b
√

2 | a, b ∈ Q}.

15. Does the set S = {3, x2−x+3, 3x3 +x2−x+5, 3x3 +x2 +6} form a basis
for P3(R). Give another basis for P3(R). What is the number of elements
in each of the two bases?

16. In P2(R), obtain a [p]B, where B = {1, 1+x, (1+x)2} and p = 2+3x−x2.

17. Let p1(x) = 2 +x2, p2(x) = 1 + 2x, p3(x) = 1 +x+x2. Consider the bases
B = {p1, p2, p3} for P2.
(i) Find [p]B, where p(x) = 3− x+ 4x2

(ii) If [p]B is (4,−5, 1)t, find p(x).

18. In the vector space C3(C), find [u]B, where u = (3 + 4i, 6i, 3 + 7i)t and
B = {(1, 0, 0), (1, 1, 1), (1, 1, 0)}.

19. W1 and W2 are two subspaces of R4 with basis B1 = {e1, e2} and B2 =
{e2, e3, e4} respectively.
(i) What is the form of any element of W1 ∩W2? Give a basis for

W1 ∩W2.
(ii) What is the form of any element of W1 +W2? Give a basis for

W1 +W2.
(iii) What are dimW1, dimW2, dim(W1 +W2) and dim(W1 ∩W2)?

What relationship do you see amongst them?
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20. Show that {A1, A2, A3, A4}, where

A1 =

(
1 1
0 0

)
, A2 =

(
0 0
1 1

)
, A3 =

(
1 0
0 1

)
, A4 =

(
0 1
1 1

)
forms a basis for the vector space V (R), where V = M2(R).

21. Find all values of a for which (a2, 0, 1), (0, a, 2), (1, 0, 1) is a basis for R3.

22. Show that if {v1, v2, . . . , vn} is a basis for a vector space V and 0 6= α ∈ F ,
then {αv1, v2, . . . , vn} is also a basis for V .

23. Show that if B = {v1, v2, . . . , vn} is a basis for a vector space V , then show
that S = {w1, w2, . . . , wn}, where wi = vi + vi+1+, · · · ,+vn, 1 ≤ i ≤ n is
also a basis for V .

14.7 Dimension

In the previous section, we have seen that a finitely generated vector space
can have more than one basis. There is one thing common about the different
bases. It is the number of elements in each of them. This leads us to believe
that different bases have the same number of elements. That this is true, will
be proved subsequently.

Definition 14.4. (Finite dimensional vector space): A vector space V(F)
is said to be finite dimensional if it can be generated by a finite subset of V.

One of the main results of vector spaces is “In a finite dimensional vector
space, any two bases have the same number of elements”.

Before proving this, we prove a few results.

Theorem 14.11. If a vector space V(F) has a basis consisting of n vectors,
then any set S consisting of m vectors with m > n, must be linearly dependent.

Proof: Let B be a basis for V consisting of n vectors. Let S = {u1, u2, . . . , um}
be a subset of V where m > n. Let wi = [ui]B , 1 ≤ i ≤ m are m vectors of Rn.

If A = [w1 w2 . . . wm], be the matrix whose columns are w1, w2, . . . , wm.
Then A is n × m matrix, so A can have at most n pivots (as A has n rows).
Thus, A can have at most n pivot columns so that the m columns of A must be
linearly dependent.
∴ There exist scalars α1, α2, . . . , αm not all zero such that

α1w1 + α2w2 + . . .+ αmwm = 0

But, [α1u1 + . . .+ αmum]B =α1[u1]B + . . . αm[um]B =α1w1 + . . .+ αmwm
Hence, [α1u1 + . . .+ αmum]B = 0 so that α1u1 + . . .+ αmum = 0 Since αis

are not all zero, therefore u1, u2, . . . , um are linearly dependent.

Corollary 14.12. If a vector space V (F ) has a basis consisting of n vectors,
and S is a linearly independent set containing m elements, then m ≤ n.

Definition 14.5. In a vector space V (F ), if S is a linearly independent subset
of V and every superset of S is linearly dependent, then S is called a maximal
linearly independent subset of V .
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Corollary 14.13. If B is a basis for V , then B is a maximal linearly indepen-
dent subset of V .

Thus, we have that the number of linearly independent elements in a vector
space is not more than the number of elements in a basis.

Theorem 14.14. In a finite dimensional vector space, any two bases have the
same number of elements.

Proof: Let V(F) be a finite dimensional vector space. Therefore V has a
finite basis. Let B and B′ be two bases of V containing m and n elements,
respectively.

Since B is a basis and B′ is a linearly independent set, therefore by the above
corollary

n ≤ m. . . (1)

Similarly, interchanging the roles of B and B′ in the above argument we get

m ≤ n . . . (2)

(1) and (2) ⇒ n = m. Hence proved.
We are now in a position to assign a proper name to the number of elements

in a finite dimensional vector space.

Definition 14.6. (Dimension):
In a finite dimensional vector space V (F ), the number of elements in a basis
is called the dimension of V and is denoted by dimFV or simply dimV . The
dimension of the zero space is defined to be zero.

If V is not finite dimensional, then V is said to be infinite dimensional, and
we write dimV =∞

Example 14.12. Consider R3(R) v1 = (1, 0, 0), v2 = (0, 1, 0), v3 = (0, 0, 1)
Then {v1, v2, v3} is a basis of R3. ∴ dimR3 = 3

Example 14.13. A basis of C(R) is {1, i}

∴ dimRC = 2

Example 14.14. A basis of C(C) is {1}

∴ dimCC = 1

Example 14.15. A basis of Pn(R) is {1, x, . . . , xn}

∴ dimRPn = n+ 1

Example 14.16. A basis of all 2× 3 matrices with real entries (M2×3) over R
is(

1 0 0
0 0 0

)
,

(
0 1 0
0 0 0

)
,

(
0 0 1
0 0 0

)(
0 0 0
1 0 0

)(
0 0 0
0 1 0

)(
0 0 0
0 0 1

)
Hence, dimRM2×3 = 6.
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Theorem 14.15. Let V (F ) be a finite dimensional vector space. Then, every
linearly independent subset of V can be extended to form a basis of V.

Proof: Let dimV = n and let S = {v1, v2, . . . , vk} be a linearly indepen-
dent subset of V . If Span(S) = V , then S is the required basis of V . If
Span(S) 6= V , then there exists u1 ∈ V such that u1 /∈ Span(S). Let
S1 = S ∪ {u1} = {v1, v2, . . . , vk, u1}. Then S1 is a linearly independent sub-
set of V , because no vector of S1 can be expressed as a linear combination of
the preceding ones. If Span(S1) = V , then S1 is the required basis of V . Else,
choose u2 ∈ V, u2 /∈ Span(S1). After n−k steps, we reach at a set Sk containing
n linearly independent elements. We assert that Span(Sk) = V . On the con-
trary, supposed Span(Sk) 6= V . Then there exists uk+1 ∈ V, uk+1 /∈ Span(Sk)
Now, Sk+1 = Sk ∪ {uk+1} is a linearly independent set containing n + 1 ele-
ments. This contradicts Corollary 14.12. Hence our assumption is wrong, so
that Span(Sk) = V . Hence Sk is the required basis.

Theorem 14.16. If W is a subspace of a finite dimensional vector space V (F ),
then W is also finite dimensional, and

dimFW ≤ dimFV

Proof: Let dimFV = n. Let W be a subspace of V . Since dimV = n, ∴
any set of n + 1 vectors in V are linearly dependent. In particular, any set
of n + 1 vectors in W are linearly dependent. Thus, we can find a largest set
of linearly independent vectors in W , say w1, w2, . . . , wm. Then m ≤ n. Let
S = {w1, w2, . . . , wm}. If w ∈W then S1 = S ∪{w} is a linearly dependent set.
Thus, there exist scalars α1, α2, . . . , αm, α not all zero such that

α1w1 + α2w2 + . . .+ αmwm + αw = 0

If α = 0, by the linear independence of S, we get α1 = α2 = . . . = αm = 0,
which is a contradiction. Hence, α 6= 0 and

w = −α−1(α1w1 + α2w2 + . . .+ αmwm)

Thus, Span(S) = W . Thus, W is finite dimensional over F .

dimFW = m ≤ n = dimFV

i.e. dimFW ≤ dimFV

A set B of vectors in a vector space V is a basis for V if

1. B spans V , and

2. B is linearly independent.

If the number of vectors in the set is same as the dimension of V then we need
to check only one of the two conditions. This is proved in the following theorem.

Theorem 14.17. Let V (F ) be an n dimensional vector space. Then

1. Any set of n linearly independent vectors of V is a basis.

2. Any set of n vectors in V which spans V is a basis.
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Proof:

1. Let S = {v1, v2, . . . , vn} be a set of n linearly independent vectors.
By theorem 14.15 S can be extended to a basis of V , say S′. Then
o(S′) =dim V = n. Now S ⊂ S′, S′ is finite and o(S) = o(S′), ∴ S = S′.
Hence, S is a basis for V .

2. Let T = {u1, u2, . . . , un} be a set of n vectors such that Span(T ) = V .
Then, T has a subset S which is a basis for V . Since dim V = n, therefore
S has n elements. Now, S ⊆ T and o(S)=o(T ). ∴ S = T . Hence T is a
basis for V .

Example 14.17. Extend S =




1
0
0
0

 ,


0
2
−1
1


 to a basis of R4.

Let u1 =


1
0
0
0

 , u2 =


0
2
−1
1

.

Clearly, S = {u1, u2} is a linearly independent set.
Span S = {αu1 + βu2|α, β ∈ R} = {(α, 2β,−β, β)|α, β ∈ R}.
Choosing α = 1, β = 0, we see that (1, 0, 0, 0) ∈ Span(S)
Observe that u3 = (1, 0, 0, 1) /∈ Span(S).
Let S1 = S ∪ {u3}. Then S1 is a linearly independent set. Span(S1) = {αu1 +
βu2 + γu3|α, β, γ ∈ R} = {(α+ γ, 2β,−β, β + γ)|α, β, γ ∈ R} For α = β = γ =
1, (2, 2,−1, 2) ∈ Span(S1) ∴ u4 = (2, 2, 0, 2) /∈ Span(S1)
Let S2 = S1 ∪ {u4}.
Then S2 is a linearly independent set.

Let A =
[
u1 u2 u3 u4

]
=


1 0 1 2
0 2 0 2
0 −1 0 0
0 1 1 2


Reducing A to Echelon form, A ∼


1 0 1 2
0 1 0 0
0 0 1 2
0 0 0 1


Since every column of A has a pivot, therefore

1. The 4 columns of A are linearly independent.

2. The columns of A span R4.

Thus, B = {u1, u2, u3, u4} is a basis of R4.

An alternative method of extending a given linearly independent subset S
of a vector space V , to a basis is the following:

1. Let B be a basis of V . You can take the standard basis.

2. S ∪B spans V .

3. Extract a basis from S ∪B, by retaining the set S.
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Example 14.18 illustrates this procedure.

Example 14.18. Let v1 =


−2
1
1
0

 , v2 =


−1
2
0
1

. Extend {v1, v2} to a basis

of V by finding a subset of {v1, v2, e1, e2, e3, e4} containing v1, v2 which forms a
basis of V .
Let S = {v1, v2}. Let T = {v1, v2, e1, e2, e3, e4} We shall find a subset B of T
such that

1. S ⊆ B.

2. B is a basis of V .

To do this, proceed as follows:

Let A =
(
v1 v2 e1 e2 e3 e4

)
=


−2 −1 1 0 0 0
1 2 0 1 0 0
1 0 0 0 1 0
0 1 0 0 0 1


∼


1 2 0 1 0 0
0 1 0 0 0 1
0 0 1 2 0 −3
0 0 0 −1 1 2

 = B (say)

B is an echelon form of A. The first 4 columns of B are the pivot columns,
so that the first 4 columns of A are the pivot columns of A. Since the pivot
columns are linearly independent, ∴ v1, v2, e1, e2 are linearly independent. Since
dimV = 4, therefore {v1, v2, e1, e2} forms a basis for V .

Note
While writing the matrix A, the elements of the given linearly independent set
must be written first. This way, they will remain in the required basis.

Theorem 14.18. If A is any m×n matrix, and r = number of basic variables
in the equation AX = 0 then

1. dim(ColA) = number of basic variables.

2. dim(NulA) = number of free variables.

3. dim(ColA) + dim(NulA) = n.

Proof: Let A = [v1 v2 . . . vn], where vi ∈ Rm, 1 ≤ i ≤ n.

1. We know that, number of basic variables + number of free variables =
total number of variables. Since there are r basic variables, therefore,
there are r pivot columns in A. The pivot columns of A form a basis of
ColA.

∴ dim ColA = r

2. Without any loss of generality, we can assume that the first r columns are
the pivot columns as it amounts to renaming the variables only. Then,
the Echelon form of A is
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B =



1 0 0 . . . 0 b1 r+1 b1 r+2 . . . b1 n

0 1 0 . . . 0 b2 r+1 b2 r+2 . . . b2 n

0 0 1 . . . 0
...

... . . .
...

...
...

... . . . 1 br r+1 br r+2 . . . br n
0 0 0 . . . 0 0 0 . . . 0
...

...
... . . .

...
...

... . . .
...

0 0 0 . . . 0 0 0 . . . 0


Any solution of AX = 0 is the same as that of BX = 0, so that NulA =
NulB.
Any solution of BX = 0 is

x1

x2

...
xr
xr+1

xr+2

...
xn


= xr+1



−b1 r+1

−b2 r+1

...
−br r+1

1
0
...
0


+xr+2



−b1 r+2

−b2 r+2

...
−br r+2

0
1
...
0


+. . .+xn



−b1 n

−b2 n

...
−br n

0
...
0
1


= xr+1ur+1 + xr+2ur+2 + . . .+ xnun(say)

Thus, S = {ur+1, . . . , un} spans NulB and ∴ NulA. If αr+1ur+1 + . . .+
αnun = 0, for α′is in F then on comparing the last n− r components, we
get

αr+1 = . . . = αn = 0

∴ ur+1, . . . , un are linearly independent. Hence, S is a basis of NulA.

∴ dimNulA = n− r = number of free variable

3. Since r + (n − r) = n ∴ dim ColA + dim NulA = total number of
variables
= number of columns of A
= n

Example 14.19. Let A =


1 1 −3 7 9 −9
1 2 −4 10 13 −12
1 −1 −1 1 1 −3
1 −3 1 −5 −7 3
1 −2 0 0 −5 −4

. The echelon

form of A is B =


1 1 −3 7 9 −9
0 1 −1 3 4 −3
0 0 0 1 0 0
0 0 0 0 1 2
0 0 0 0 0 0


Number of basic variables = 4.
Number of free variables = 2
Let us find a basis for ColA and its dimension. The 1st, 2nd, 4th and 5th
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columns are the pivot columns of A. Thus, a basis of ColA is


1
1
1
1
1

 ,


1
2
−1
−3
−2

 ,


7
10
1
−5
0

 ,


9
13
1
−7
−5




dimColA = 4
dimNulA = number of free variables

= 2
∴ dimColA+ dimNulA = 4 + 2 = 6 = number of columns of A.
Let us now find a basis of NulA = {X ∈ R6|AX = 0}.

If X =


x1

x2

x3

x4

x5

 ∈ NulA, then AX = 0 ⇐⇒ BX = 0

⇐⇒ x1 + x2 − 3x3 + 7x4 + 9x5 − 9x6 = 0
x2 − x3 + 3x4 + 4x5 − 3x6 = 0

x4 = 0
x5 + 2x6 = 0

Taking x3, x6 as the free variables,
we get x1 = 2x3 + 16x6

x2 = x3 + 11x6

x4 = 0
x5 = −2x6

∴

X =


x1

x2

x3

x4

x5

x6

 = x3


2
1
1
0
0
0

+ x6


16
11
0
0
−2
1

 . . . (1)

Let u1 =


2
1
1
0
0
0

 , u2 =


16
11
0
0
−2
1

. Then X ∈ NulA iff X = x3u1 + x6u2

where x3, x6 are arbitrary. Thus X ∈ Span{u1, u2} Since u1, u2 are linearly
independent, we get that {u1, u2} is a basis for NulA.

This solution is the same as in (1). Basis of NulA is {u1, u2}.

Note that if we find the solution by using the reduced echelon form of A
instead of echelon form, then the calculations are simplified. So, it is advisable
to use the reduced echelon form if a basis for NulA is needed. Calculations
using both the forms have been done.
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Steps to find a basis of Col A, dim(ColA), NulA, dim(NulA)
Let A be a given matrix.

Step 1 Reduce A to Echelon form. Find the pivot columns, number of free
variables and number of basic variables.

Step 2 A basis for Col A are the pivot columns of A.
dim(ColA)= number of pivot columns = number of basic variables
Step 3 dim(NulA) can be found without finding a basis for NulA.
dim(NulA) = number of free variables.

To find a basis for NulA, reduce A to reduced echelon form. Express a
solution of AX = 0 in terms of the free variables. Give values to the free
variables as follows: One free variable is assigned the value 1, all others are
assigned the value zero. The vectors obtained in this manner form a basis for
NulA.

14.8 Rank of a Matrix

Given a system of linear equations, some of the equations are linear combi-
nation of others. Thus, there are only a certain number of essentially different
equations and the others are linear combination of them. Also, there are some
variables which are basic variables. We will study the relationship between the
number of essentially different equations and the number of basic variables.

Theorem 14.19. Two row equivalent matrices have the same row space.

Proof: Let A and B be two row equivalent matrices. Let A =


R1

R2

...
Rm



and B =


R′1
R′2
...
R′m

. Since B is obtained from A by applying row operations,

therefore the rows of B are linear combinations of rows of A. Hence R′j ∈
Span(R1, . . . , Rm), 1 ≤ j ≤ m, so that Span(R′1, . . . , R

′
m) ⊂ Span(R1, . . . , Rm)

∴ RowB ⊆ RowA . . . (1)

Since A can be obtained from B by applying row operations, so interchanging
the roles of A and B, we get

RowA ⊆ RowB . . . (2)

From (1) and (2), we get
RowA = RowB

Hence, proved.

Corollary 14.20. If B is an echelon form of A, then the non-zero rows of B
form a basis for RowA.
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Proof: Since A and B are row equivalent,

∴ RowA = RowB . . . (1)

B is in echelon form, therefore the non-zero rows of B span RowB. Since B
is in echelon form, therefore the leading non-zero elements of the rows are in
different columns. Hence, the non-zero rows are linearly independent. Thus,
the non-zero rows of B form a basis for RowB. By (1), we get that the non-zero
rows of B form a basis for RowA.

Definition 14.7. (Row rank): The dimension of RowA is called the row rank
of the matrix A.

Definition 14.8. (Column rank): The dimension of ColA is called the col-
umn rank of the matrix A.

Theorem 14.21. The column rank and row rank of a matrix are equal.

Proof: Let A be an m× n matrix. Let column rank of A = r. Then r is the
number of pivot columns of A(By Theorem 14.10). Let B be an echelon form
of A. Since no two pivots in B lies in the same row or in the same column,
Number of pivots of B = Number of pivot columns of A, and Number of pivots
of B = Number of non-zero rows of B.
So, Number of pivot columns of A = Number of non-zero rows of B.
This gives that Column rank of A = Row rank of A (By Theorem 14.18)

In view of the above theorem, the common number (column rank of A or
the row rank of A) associated with a given matrix is called its rank.

Definition 14.9. (Rank of a matrix): The rank of a matrix is the dimension
of the column space of A (or the row space of A).

Remark 14.5. 1. Let B be an echelon form of a given matrix A. Then a
basis for RowA is the non-zero rows of B. It is important to note that
the pivot columns of B do not form a basis for ColA. Actually, the pivot
columns of A form a basis for ColA.

2. Observe that if A is an m × n matrix then RowA is a subspace of Rm,
ColA is a subspace of Rn. In general m 6= n. Thus, RowA and ColA are
subspaces of different vector spaces but they are of the same dimension.

Example 14.20. Let A =


2 −3 6 2 5
−2 3 −3 −3 −4
4 −6 9 5 9
−2 3 3 −4 1

 Then, an echelon

form of A is

B =


2 −3 6 2 5
0 0 3 −1 1
0 0 0 1 3
0 0 0 0 0

 The pivots have been encircled. Let us find bases

for ColA and RowA.
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Basis for ColA
The basis for ColA are the pivot columns of A. These are the 1st, 3rd and 4th
columns of A.
So a basis for Col A




2
−2
4
−2

 ,


6
−3
9
3

 ,


2
−3
5
−4




Column rank of A = dimColA = 3

Basis for RowA
A basis for RowA are the non-zero rows of B. It is { (2 -3 6 2 5), (0 0 3 -
1 1), (0 0 0 1 3)}
row rank of A = dimRowA

= 3
Thus, column rank of A = row rank of A = 3.

Hence Rank A = 3

Definition 14.10. (Nullity A): If A is any matrix, then the dimension of
NulA is called the nullity of A.

Theorem 14.22. (Rank nullity theorem): If A is any matrix, then
Rank A+Nullity A = number of columns of A.

Proof: Let A be an m × n matrix. Then by Theorem 14.18 dimColA +
dimNulA = n
i.e. RankA+NullityA = number of columns of A.

Steps to find RankA, basis for RowA and dim RowA.

Step 1 Reduce A to Echelon Form. Call it B.

Step 2 The non-zero rows of B form a basis for RowA.
dim RowA = number of non-zero rows of B.

Step 3 RankA = dim rowA
= number of non-zero rows of B.

Given below is a summary of the results of this section.

Let S = {v1, . . . , vk} be a linearly independent set of a vector space V . Let
B = {u1, . . . , un} be some basis of V .
Let B = [v1 . . . vk u1 . . . un] and A is any m× n matrix.
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S. No. Problem in vector spaces Method of solving
1 Extend S to a basis of V Pivot columns of B
2 dimColA Number of pivot columns of A
3 Basis for ColA Pivot columns of A
4 dimNulA Number of non-pivot

columns of A
5 Basis for NulA Express general solution of AX = 0

as a linear combination of vectors
with free variables as coefficients.
These vectors form a basis for NulA

6 dimRowA Number of non-zero rows
in an echelon form of A

7 Basis for RowA Non-zero rows in an echelon
form of A

8 RankA Number of pivot columns of A
9 NullityA Number of non-pivot

columns of A

Problem 14.17. Let S = {u1, u2, u3} and W = span(S), where u1 = (7,−4,
−2, 9)t, u2 = (−4, 5,−1,−7)t, u3 = (−9, 4, 4,−7)t. Find dim W . Does b ∈ W ,
where b = (−9, 7, 4, 8)t. If yes, express b in terms of u1, u2, u3.

Solution: Let A = [u1 u2 u3]
W = SpanS = {AX|X ∈ R3}, b ∈W if there exists some X ∈ R3

such that AX = b . . . (1)
i.e. if the equation AX = b has a solution. We reduce [A|b] to echelon form.

[A|b] =


7 −4 −9

... −9

−4 5 4
... 7

−2 −1 4
... 4

9 −7 −7
... 8



∼


−2 −1 4

... 4

0 1© 0
... 3

0 0 2
... 11

0 0 0
... 0


= [A|B] (say)

Since every column of B has a pivot element, therefore u1, u2, u3 are linearly
independent. Hence, dimW = dim Col A = 3. Since augmented column
does not have a pivot, ∴ (1) has a solution. Thus b is a linear combination of
u1, u2, u3 i.e. b ∈ W . To find the linear combination, we find the solution of
(1). For this, reduce [A|b] to reduced echelon form. Then

[A|b] ∼


1 0 0 15/2
0 1 0 3
0 0 1 11/2
0 0 0 0


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Thus, solution is

x1 = 15/2, x2 = 3, x3 = 11/2

Hence b = 15
2 u1 + 3u2 + 11

2 u3

Problem 14.18. Let W be the subspace of R4 generated by S = {v1, v2, v3}

where v1 =


1
1
0
0

 , v2 =


0
1
−1
0

 , v3 =


2
3
−1
0


1. Find a subset T of S which forms a basis of W .

2. Extend T to form a basis of R4

Solution:

1. Let A = [v1 v2 v3]
We reduce A to Echelon form.

1 0 2
1 1 3
0 −1 −1
0 0 0


Applying row operations, we get

A ∼


1© 0 2
0 1© 1
0 0 0
0 0 0


The columns of A corresponding to the first two pivot columns, namely
v1, v2 are linearly independent.
Thus, T = {v1 v2} is a basis of W .

2. We extend T to form a basis of R4.
Span(T ) = {αv1 +βv2|α, β ∈ R} = {(α, α+β, −β, 0)|α, β ∈ R} Observe

that u1 =


0
0
0
1

 ∈ Span T .

Let B′ = T
⋃
{u1} = {v1, v2, u1} . Then B′ is a set linearly independent

vectors. Span(B′) = {αv1 + βv2 + γv3|α, β, γ ∈ R}
= {(α+ γ, α+ β + 2γ,−β − γ, γ)|α, β, γ ∈ R}.

Further it is easy to see that u2 =


0
0
0
1

 /∈ Span(B′), and that v1, v2, u1, u2

are linearly independent vectors in R4. Hence {v1, v2, u1, u2} is a basis of
R4. Thus T is extended to form a basis of R4.
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Problem 14.19. Find linearly independent rows of matrix A given by

A =


1 1 0 3
−2 0 −2 −4
4 4 0 12
1 0 1 2



Solution: Let A =


1 1 0 3
−2 0 −2 −4
4 4 0 12
1 0 1 2

.

The linearly independent rows of A are the linearly independent columns of At.
To find these columns, we reduce At to Echelon form.

At ∼


1 0 1 0
0 1 0 −1

2
0 0 0 0
0 0 0 0


The first two columns of At are linearly independent, so that the 1st two rows
of A are linearly independent.

Problem 14.20. If A is an m× n matrix, prove that RankAt = Rank A.

Solution: Rank At = Column Rank At = Row Rank A = column rank A =
Rank A
Hence, Rank At = Rank A

Problem 14.21. Verify the Rank Nullity theorem for the matrix

A =


3 2 10 1 3
2 −2 0 0 4
0 1 2 1 1
0 1 2 2 3
3 0 6 0 3


Solution: Step 1 Transform A to reduced echelon form.

A ∼


1 0 2 0 1
0 1 2 0 −1
0 0 0 1 2
0 0 0 0 0
0 0 0 0 0

= B (say)

The pivots have been encircled. Number of free variables = 2.
Step 2 Rank A =number of non-zero rows of B = 3. Nullity A = dimNul

A = number of free variable= number of non-pivot columns of B = 2. ∴
Rank A+Nullity A = 3 + 2 = 5 = number of columns in A. Hence verified.

Problem 14.22. Find two different bases of R3, which contain the vectors
(1, 1, 0), (1,−1, 2).

Solution: Let v1 = (1, 1, 0), v2 = (1,−1, 2). It can be easily seen that {v1, v2}
is linearly independent over R. Let S = {v1, v2}, Span(S) = {αv1 + βv2|α, β ∈
R} = {(α+ β, α− β, 2β)|α, β ∈ R}. Taking α = β = 1, we get

α+ β = 2, α− β = 0, 2β = 2
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Thus, (2, 0, 1), (2, 0, 0) /∈ Span(S). So that S1 = S∪{2, 0, 1)}, S2 = S∪{(2, 0, 0)}
are linearly independent sets. Hence, S1, S2 are two bases of R3 containing v1, v2.

14.9 Exercise

1. Let S = {(0, 0, 0, 3), (1, 1, 0, 0), (0, 1,−1, 0)}. Find a basis for R4 contain-
ing maximum possible elements of S.

2. Let S = {(1, 2,−1, 0), (1, 1, 0, 3), (0,−1, 1, 3)}. Find a basis for R4 con-
taining maximum possible elements of S.

3. Can the set S = {(1, 0, 0, 0), (0, 1, 0, 0), (1,−1, 0, 0)} be extended to form
a basis for R4?

4. Extend the set S to form 2 different bases of R3 where

S = {(0, 0, 1), (0, 1, 1)}

5. Prove that P5 cannot be spanned by any set containing five elements of
P5.

6. Find the dimension of the subspace spanned by the vectors (3, 1, 1, 5)t,
(4,−2,−4,−1)t, (−6, 3, 4, 1)t and (1,−2,−1,−2)t.

7. Extend the subset S to form a basis of V by adding appropriate elements
of the standard basis.

(a) S = {(1, 3, 2, 1)t, (2,−1,−2,−1)t, (−1, 2, 3, 1)t};V = R4.

(b) S = {1+x+x2 +x3, 1+2x+3x2 +4x3, 1+3x+6x2 +10x3};V = P3.

(c) S = {(1, 2, 3)t, (0, 2, 5)t};V = R3.

8. Find the dimensions of the following subspaces of M2X3(C) over C:

(i) W1 =

{(
a b c
d 0 0

)
: a = b+ c, c = b+ d

}
.

(ii) W2 =

{(
a b c
d e 0

)
: a+ c = d+ e

}
.

(iii) W3 =

{(
a b c
d e f

)
: a+ b = d+ e, c = f

}
.

9. Let W1 = {(x1, x2, 0, 0)t|x1, x2 ∈ R}, and W2 = {(0, x2, x3, x4)t

|x2, x3, x4 ∈ R} be subspaces of R3. Find dim(W1 ∩W2), dim(W1 +W2).

10. Prove or disprove that “Every subspace of an infinite dimensional vector
space infinite dimensional”?

11. Give an example of an infinite dimensional subspace of an infinite dimen-
sional vector space.

12. Let W =


 x

y
z

 : 2x+ y + z = 0, x− y − z = 0

. Find a basis for W .
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13. If W = Span {(3, 8,−3)t, (1,−2, 5)t, (2, 3, 1)t}, find dimW . Is W = R3? If
not,

(a) give an element of R3 which is not in W .

(b) extend this basis of W to a basis of R3.

14. Find a basis for the subspace

W =

 2a+ 3b
a
b

 : a, b ∈ R

Hence, find dimW .

15. Find a basis for the subspace

W =

 a− b+ 2c
2a+ 3b+ 4c

b

 : a, b, c ∈ R.

Hence, find dimW .

16. Do the vectors p1, p2, p3, p4 span P3, where p1 = 1 + 4x, p2 = −1 + x +
3x2 + x3, p3 = 2 + x2, p4 = −3 + 2x+ 4x2 + 2x3

17. The echelon form of a matrix A is given. Find dim ColA, dim NulA, dim
RowA and Rank A.

(i)

 � ∗ ∗ 0
0 0 � ∗
0 0 0 �



(ii)


� ∗ ∗
0 0 �
0 0 0
0 0 0



(iii)


� ∗ ∗ ∗
0 � ∗ ∗
0 0 � ∗
0 0 0 �



(iv)


� ∗ ∗
0 � ∗
0 0 �
0 0 0


(v)

 0 ∗
0 0
0 0


18. The echelon form of a matrix A is given. Find dim ColA, dim NulA, dim

RowA and Rank A.

(i)


2 3 4 −5 0
0 0 −3 6 0
0 0 0 −1 2
0 0 0 0 0


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(ii)


0 2 0 5 0 −2
0 0 0 −3 −1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



(iii)


5 1 0 −9 2
0 2 6 0 3
0 0 −3 2 0
0 0 0 4 1
0 0 0 0 1



(iv)


0 1 2 3
0 0 3 4
0 0 0 2
0 0 0 0
0 0 0 0
0 0 0 0


(v)

 1 −1 0 0 2 1
0 0 1 0 0 −1
0 0 0 1 1 1


19. In the above problem, find a basis for Row A, Nul A and Col A.

20. For the following matrices find a basis for Row A,Col A and Nul A.

(i)

 0 2 1
3 1 4
2 4 6


(ii)

 0 1 2 4 −1
1 3 −1 0 5
2 0 4 1 3


(iii)

(
1 −1 2 0
1 0 1 1

)

(iv)


1 1 2 0
2 2 4 0
1 2 3 1
2 1 3 −1
1 2 3 −1



(v)


1 0 1 2 0
2 1 −1 5 3
−2 0 0 −4 2
1 2 −1 4 2


(vi)

 1 2 5 −2 7
2 3 −2 4 1
5 1 0 2 1


21. If A is an m × n matrix, then prove that ColA = Rm if and only if the

number of linearly independent columns of A is m.
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22. If A is an m× n matrix, prove that

(i) A,At have the same rank.

(ii) dimColA+ dimNulAt = Number of rows in A.

23. Consider the linear system of equations AX = 0. Then, which of the
following are true:

(i) dimRowA = Number of free variables.

(ii) dimColA = Number of basic variables.

(iii) dimNulA = Number of free variables.

24. Let A be an m× n matrix. Then prove or disprove the following:

(i) RowA,NulA are subspaces of Rn

(ii) ColA and NulA are subspaces of Rm

(iii) RowA = ColA

(iv) dimRowA = dimColA

25. Let A and B be row equivalent matrices. Which of the following state-
ments are true? Correct all the false ones.

(i) ColA = ColB

(ii) RowA = RowB

(iii) A basis for ColA is also a basis for ColB

(iv) A basis for RowA is also a basis for RowB

26. Can a finite dimensional vector space be generated by an infinite subset?
Justify your answer.

27. Give an example in each of the following ones:

(i) A vector space over C of dimension 1.

(ii) A vector space which is not finite dimensional.

(iii) A subspace of dimension 5 in P5.

(iv) A subspace of dimension 2 in R3.

28. Can R4 have a linearly independent subset containing 5 elements. Justify
your answer.

29. Verify the Rank Nullity theorem for the following matrices:

(i)


0 0 2 3 4
4 2 −11 11 11
0 2 5 −1 5
2 0 −6 9 7



(ii)


1 3 2 0 0 1
2 1 −5 1 2 0
3 2 5 1 −2 1
5 8 9 1 −2 2
9 9 4 2 0 2


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(iii)


0 2 5 −1 5
0 2 7 2 9
4 2 −9 14 15
2 2 −1 8 12


30. Find a basis for RowA (a) consisting of vectors that are not the rows of

A, and (b) consisting of vectors that are rows of A, where A is given by

(i) A =


1 6 3 8
2 4 6 −1
3 10 9 7
4 16 12 15

.

(ii) A =

 1 3 4 7
2 4 5 8
3 1 2 3



(iii) A =


3 4 −6 1
1 −2 3 −2
1 −4 4 −1
5 −1 1 −2

.

31. Compute the row rank and the column rank of A by giving a basis for
Row A and Col A.

(i) A =

 2 −1 −8 −4 0
3 1 −5 −2 1
4 7 4 4 4

.

(ii) A =

 −2 −1 −3 −1
1 2 3 −1
0 1 1 −1

.

(iii) A =


3 4 −1 −6
2 3 2 −3
2 1 −14 −9
1 3 13 3

.

32. Show that if dimV = n, then no set of n− 1 vectors in V can span V .

14.10 Solved Problems

Problem 14.23. If W is a subspace of an n-dimensional vector space V such
that dimW = dimV , prove that W = V .

Solution: dimV = n. ∴ dimW = n
Let B be a basis of W . Then spanB = W . . . (1)

Then B is a linearly independent subset of W . Since W ⊂ V , ∴ B is linearly
independent of V . Also, B has n elements and dimV = n. ∴ B is a basis for V .
∴ Span B = V
Hence, V = W , using (1).

Problem 14.24. Prove that R[x] is an infinite dimensional vector space.
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Solution: Let, if possible, R[x] be finite dimensional, say of dimension n. Now
Pn+1 is a subspace of R[x] and dimPn+1 = n+ 2
Since n+ 2 > n, ∴ dimPn+1 > dimR[x] . . . (1)

But, dimPn+1 ≤ dimR[x], as Pn+1 is a subspace of R[x]. This contradicts
(1). Hence, our assumption is wrong. So, R[x] is an infinite dimensional vector
space.

Problem 14.25. Prove that RQ is not a finite dimensional vector space.

Solution: Let, if possible, R be a finite dimensional vector space over Q. Let
B = {v1, v2, . . . vn} be an ordered basis of R. For any v ∈ R,

v = α1v1 + . . .+ αnvn, αi ∈ Q, i = 1(1)n

so that
[v]B = (α1α2 . . . αn)t

Hence, [v]B ∈ Qn.
Q is countable ⇒ Qn is countable ⇒ {[v]B : v ∈ R is countable} ⇒ R is
countable. This contradicts the fact that R is an uncountable set. Hence our
assumption is wrong. So, R is not finite dimensional over Q. Hence R is infinite
dimensional over Q.

Problem 14.26. If {v1, v2, . . . , vn} is a linearly independent subset of Rn and
A is any singular matrix, then prove that Av1, Av2, . . . Avn is linearly dependent.

Solution: Let B = {v1, v2, . . . , vn}. Since B is a linearly independent subset
of Rn, and dimRn = n. ∴ B is a basis for Rn. A is singular. ∴ there exists a
non-zero vector u ∈ Rn such that Au = 0 . . . (1).
Since B is a basis of Rn ∴ u = β1v1 + β2v2 + . . . βnvn . . . (2).
Since u 6= 0, ∴ at least one of the β′is is non-zero. From (1) and (2), A(β1v1 +
β2v2 + . . .+ βnvn) = 0 ⇒ β1Av1 + β2Av2 + . . .+ βnAvn = 0. ∵ β′is are not all
zero, ∴ {Av1, Av2, . . . , Avn} is linearly dependent.

14.11 Supplementary Exercises

1. State whether the following are true or false. Justify the false ones.

(i) φ is a linearly independent set.

(ii) P(A), the set of all subsets of A is a vector space.

(iii) φ is a linearly independent set.

(iv) {0} is a linearly independent set.

(v) {0} has no basis.

(vi) If V is spanned by a set containing n elements, and T is a set con-
taining m elements, with m > n, then T must be linearly dependent.

(vii) If dimV = n and B is a basis for V with m elements, them m must
be less than n.

(viii) The union of two linearly independent sets is linearly independent.

(ix) The intersection of two linearly independent sets is linearly depen-
dent.
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(x) If V is spanned by a subset having m elements, then dimV ≤ m
(xi) If V = span(S), then every basis of V must be a subset of S.

(xii) If V is spanned by an infinite number of vectors then V is infinite
dimensional.

(xiii) If dimV = n, then for every m, 1 ≤ m ≤ n, V has a subspace of
dimension m.

(xiv) If V = span(S) then some subset of S is a basis of V .

(xv) If W is a subspace of V and B is a basis of W , then every basis of
V contains B.

(xvi) If V = span(S), then S is a basis of V .

(xvii) If V = span(S), and T is a linearly independent subset of S, then
T is a basis of V .

(xviii) If V has a linearly independent subset containing m elements then
dimV ≤ m.

(xix) If A is a 3× 5 matrix then the possible dimensions of ColA are 4 or
5.

(xx) If A is a 5× 3 matrix then dimRowA is at most 3.

(xxi) If A is a 5× 6 matrix then maximum possible dimNulA is 1.

(xxii) For a 5× 6 matrix, the maximum possible value of Rank A is 6.

(xxiii) If A is a non-zero matrix, it is possible that A has no pivot columns.

(xxiv) If A is a 5× 6 matrix having 4 pivot columns, then dimNulA = 1

(xxv) If A is a 5× 6 matrix and dimNulA = 2, then dimColA = 3.

(xxvi) If A is a 2× 3 matrix then A can have 3 pivot columns.

2. Find the dimension and a basis of the subspaces of R4 spanned by the
vectors v1, v2, v3, v4, v5 given by:

(a) v1 = (−1, 0, 3,−2)t, v2 = (0, 1, 2,−3)t, v3 = (3, 4,−1,−6)t,
v4 = (−1, 3, 8,−7)t, v5 = (2, 1,−6, 9)t

(b) v1 = (1, 2, 1, 3)t, v2 = (2, 4, 2, 6)t, v3 = (5, 5, 0, 5)t, v4 = (11, 15, 4, 19)t,
v5 = (−3, 2, 5,−2)t

(c) v1 = (−6, 4,−9, 4)t, v2 = (8,−3, 7,−3)t, v3 = (−9, 5,−8, 3)t, v4 =
(4, 7,−8, 3)t, v5 = (2, 1,−2, 1)t

3. Give an example of a linearly dependent set of vectors in C2.

4. Show that u = (1 + i, 2i)t, v = (1, 1 + i)t ∈ C2 are linearly dependent over
C are linearly independent over R.

5. Find a basis for the subspace of P3 consisting of all vectors of the form
ax3 + bx2 + cx+ d where a = b and c = d.

6. Find a basis for P3 that includes the polynomials p1 = 1 + x, p2 = x− x2.

7. Consider the subset of the vector space of all real-valued functions

S = cos2t, sin2t, cos2t

Find a basis for the subspace W = span(S). What is dimW?
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8. Find a basis for the given plane 2x− 5y + 7z = 0.

9. In the vector space M2X2(R),

let β =

(
1 −1
0 0

)
,

(
0 1
1 0

)
,

(
1 0
0 −1

)
,

(
1 0
−1 0

)
and v =

(
1 3
−2 2

)
. Find the coordinate vector [v]β .

10. In the vector space P2, find the coordinates of P = 4t2− 2t+ 3 relative to
basis β = t2 − t+ 1, t+ 1, t2 + 1.

11. Find the rank and nullity of the matrices given below:

(i)


1 2 1 3
2 1 −4 −5
7 8 −5 −1
10 14 −2 8



(ii)


1 −2 7 0
1 −1 4 0
3 2 −3 5
2 1 −1 3


12. Prove that the polynomials 1, 2x,−2 + 4x2,−12x + 8x3 forms a basis of

P3. Also, find the coordinates of 7− 12t− 8t2 + 12t3 relative to this basis.

13. Let S = {u, v, w} be a subset of R3. If every proper subset of S is linearly
independent, then is S linearly independent. Justify your answer. Also,
interpret your answer geometrically.

14. Give an example of subspaces W1,W2 of a finite dimensional vector space
V such that V = W1 ⊕W2.

15. Let V be a finite dimensional vector space and W1 a subspace of V . Prove
that there exists a subspace W2 of V such that V = W1 ⊕W2.

16. If A is an m× n matrix, then prove that ColA = Rm if and only if A has
m linearly independent rows.

17. Find a basis for the following subspace W of a vector space V (R). Also,
find dim W.

(i) V = R3,W = {(x1, x2, x3)|x1 + 2x2 + 3x3 = 0, 2x1 − x2 = 0}
(ii) V = Rn,W = {(x1, x2, . . . , xn)|x1 + x2 + . . .+ xn = 0}
(iii) V = Pn,W = {a0 + a1x+ . . . anx

n|a0 + a1 + . . .+ an = 0}

18. Let W be the subspace of R4 generated by S = {(1,−2, 5,−3), (2, 3, 1,−4),
(3, 8,−3,−5)}.

(i) Find a subset T of S which forms a basis of W .

(ii) Extend T to form a basis of R4.

19. Give an example of a non-zero subspace of a vector space V such that it
contains no element of a basis of V .
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20. If W = {f ∈ C(R)|f(1/2) = 0}, then prove that W is not finitely gener-
ated.

21. V is a finite dimensional vector space and W is a subspace of V of dimen-
sion m. If v ∈ V ∼W and W1 = W ∪ v, then find dimspan(W1).

22. If W1,W2 are two subspaces of a finite dimensional vector space V , then
prove that

dimW1 + dimW2 = dim(W1 +W2) + dim(W1 ∩W2)

23. If vi ∈ Rm, V = Span{v1, v2, . . . , vn} and A = [v1 v2 . . . vn], then prove or
disprove the following:

(a) A basis for ColA is a basis for V .

(b) dimV = RankA.

(c) A basis for RowA is also a basis for V .

(d) dimRowA = dimV .

24. Consider the system of linear equations AX = b where A is an m × n
matrix. Comment on the following statements:

(a) If all the rows of A are linearly independent then AX = b has a
solution for every b ∈ Rm.

(b) If AX = b has a solution for every b ∈ Rm, then there are no free
variables.

(c) If all the columns of A are linearly independent then AX = b has a
solution for every b ∈ Rm.

(d) ColA = Rm is equivalent to saying that AX = b has a solution for
every b ∈ Rm.

25. Prove that R is a vector space over Q. Is R finite dimensional over Q?

26. Give examples of two non-zero 3× 3 matrices A and B such that

(a) Rank(A+B) = Rank(A) +Rank(B).

(b) AB 6= 0 and Rank(AB) < min(Rank(A), Rank(B)).

27. Give an example of two non-zero 2 × 3 matrices of A and B such that
A+B 6= 0 and Rank(A+B) < Rank(A) +Rank(B).

28. (a) Use coordinate vectors to test the linear independence of the following
sets in Pn, for suitable n.

(i) 3− t+ 4t2, 2− 5t2, 8− 2t+ 7t2

(ii) 2 + t2, 1 + 2t, 1 + t+ t2

(iii) 1 + t, 2 + t2, t+ 2t2 + t3, t− t2

(b) Use coordinate vectors to express 1 + 2t− 6t2 + 2t3 as a linear com-
bination of polynomials in (iii)

29. Suppose S = {v1, v2, . . . , vm} is a linearly independent set in Rn and A is a
singular matrix. Is {Av1, Av2, . . . Avn} also linearly independent. Justify
your answer.
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14.12 Answers to Exercises

Exercise - 14.3

1. (ii).

2. (ii), (v), (vi), (viii) are linearly independent. Others are linearly depen-
dent.

3.
(i) {(1, 2, 3), (2, 1, 4), (−1,−1, 2)}.
(ii) {1 + x+ 3x3, 1 + x2 + 2x3,−x2 + x3}.
(iii) Does not exists.

(iv) {2 +
√

3, 2−
√

3} or {2 +
√

3,−2 +
√

3} etc.
(v) Does not exist.
(vi) T consists of any 2 vectors from S.
(vii) Any one of the last three vectors can be removed.

7. x−7y+10z = 0. Find the condition that points (1, 3, 2), (−2, 4, 3), (x, y, z)
are coplanar.

10. (i) No (ii) Yes.

11. Linearly dependent.

14. v = v1 + v2 + v3.

15. v = 3v1 + 2v2 + v3.

16. p = 3p1 + 2p2 − 7p3, q = 2p1 + 3p2 − 3p3.

17. P = 2A− 2B + C −D.

18) v2 = v1 + v3.

Exercise - 14.6

2. (iii) No.

4. Take v1 = (1, 2, 2), v2 = (1, 0, 0), v3 = (0, 1, 0), v4 = (0, 1, 1). Then

[v1 v2 v3 v4] ∼

1 0 0 0
0 1 0 0
0 0 1 1


Thus {v1, v2, v3} or {v1, v2, v4} is a basis.

5. B1 = {(1, 1, 0, 0)t, (0, 0, 1, 1)t, (1, 0, 0, 0)t, (0, 0, 1, 0)t}
B2 = {(1, 1, 0, 0)t, (0, 0, 1, 1)t, (0, 1, 0, 0)t, (0, 0, 0, 1)t}.

6. {v1, v2}, {v2, v3}, {v1, v3}

7. B = {(1,−5, 3, 4)t, (0, 39,−20,−33)t, (0, 0, 1, 0)t}.

8. (ii) (1, 0, 0), (0, 1, 0), (0, 1, 0)
(iii) ( 3

2 ,
5
2 ,
−11

2 )t, (−1
2 ,
−1
2 ,

3
2 )t (−1,−2, 5)t
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9. (i) (1,−2, 1).
(ii) (3, 2,−4).
(iii) (2, 3,−4).
(iv) (1,−2, 3).

10. (−4, 8,−7).

11. (i) (1, 6,−4).
(ii) (1, 3,−2).
(iii) (1,−1, 1).

12. (i) (1, 0, 0), (0, 1, 0), (0, 0, 1).
(ii) (0, 1, 0), (1, 0, 0), (0, 0, 1).
(iii) (1/2,−1/2, 1/2), (1/2, 1/2,−1/2), (−1/2, 1/2, 1/2).
(iv) (0, -1,1),(-1,1,0),(1,0,0)

13. (i) (0, 2, 1)t.

(ii) (2, 0, 1)t.
(iii) (0, 1, 2)t.
(iv) (1, 2, 0)t.

14. (i) {1, i}.
(ii) {(1, 0), (0, 1)}.
(iii) {(1, 0), (0, 1), (i, 0), (0, i)}.

(v)

{(
1 0
0 0

)
,

(
0 0
0 1

)
,

(
i 0
0 0

)
,

(
0 0
0 i

)}
(v)

{(
1 0
0 0

)
,

(
0 0
0 1

)}
(vi) {1}
(vii) {1,

√
2}.

15. Yes

16. Hint: v1 = 1, v2 = 1 + x, v3 = 1 + x)2. If A = [[v1]B, [v2]B, [v3]B]],b = [p]r,
where r is the standard basis for P2. If solution of AX = b is [−2, 5,−1]t,
then p = −2v1 + 5v2 − v3.

17. (i) [p]B = (1,−2, 3)t.
(ii) p(x) = 4− 9x+ 5x2.

18. (i) [u]B = (3− 2i, 3 + 7i,−3− i)t.

19. (i) {αe2|α ∈ R}, {e2}.
(ii) {α1e1 + α2e2 + α3e3 + α4e4 αi ∈ R 1 ≤ i ≤ 4}, e1, e2, e3, e4.
(iii) 2, 3, 4, 1. dim(W1 +W2) = dimW1 + dimW2 − dim(W1 ∩W2).

21. a 6= 0, 1,−1
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Supplementary Exercises

1. (i) True
(ii) False
(iii) True
(iv) False
(v) False
(vi) True
(vii) False
(viii) True
(ix) False
(x) True
(xi) False
(xii) False
(xiii) True
(xiv) True
(xv) False
(xvi) False
(xvii) False
(xviii) False
(xix) False
(xx) False

(xxi) False
(xxii) False
(xxiii) False
(xxiv) False
(xxv) False
(xxvi) False

8. Hint: We need basis for W =


 x

y
z

 |2x− 5y + 7z = 0


9.


−1
2
−2
4



10. [p]β =

 1
−1
3


11. (a) Rank = 2, Nullity = 2.

(b) Rank = 3, Nullity = 1.

13. No. u = (1, 1, 1); v = (1, 0, 1);w = (0, 1, 0). As u− v −w = 0, S is linearly
dependent

14. Consider V = R2,W1 = span((1, 0, )),W2 = span((0, 1)). Then V =
W1 ⊕W2.
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15. Let B1 be a basis for W1. Extend it to form a basis B for V . Then B ∼ B1

is a basis for a subspace W2 such that V = W1 ⊕W2.

17. One possible answer is as follows:

(a) (3, 6,−5), dimW = 1

(b) (1, 0, . . . ,−1), (0, 1, . . . ,−1), . . . , (0, . . . , 1,−1), dimW = n− 1

(c) 1− x, 1− x2, . . . , 1− xn, dimW = n

19. V = R2,W = span[(1, 1)t]; e1, e2 /∈W ).

20. Hint: Let Wn = p(x) ∈ Pn(x)|p(1/2) = 0. A basis for Wn is (x − 1
2 ),

(x − 1
2 )2, . . . (x − 1

2 )n. Then Wn is a subspace of V and dimWn = n. If
dimV = m, then dimWm+1 = m+ 1 < dimV is a contradiction.

21. m+ 1

23. (a) True
(b) True
(c) False
(d) True.

24. (a) True.
(b) False. For a 3X5 matrix, there are 2 free variables.
(c) False. For a 3X2 matrix, only 2 pivots. So one row does not

have a pivot.
(d) True.

25. No

26. (a) A =

 1 0 0
0 0 0
0 0 0

 ;B =

 0 0 0
0 1 0
0 0 0


Rank(A) = Rank(B) = 1, Rank(A+B) = 2

(b) A =

 1 0 0
0 1 0
0 0 0

 ;B =

 0 0 0
0 1 0
0 0 1


Rank(A) = Rank(B) = 2, Rank(AB) = 1

27.

A =

(
1 1 0
0 0 0

)
, B =

(
0 −1 0
0 0 0

)



Chapter 15

Linear Transformation

In chapter 12 we discussed the linear transformations of R2 and R3. We now
extend this concept for a general vector space.

15.1 Definitions and Examples

Definition 15.1. Let V and W be vector spaces over the same field F . A
mapping

T : V →W

is called a linear transformation from V into W if it preserves vector addition
and scalar multiplication, i.e.

T (u+ v) = T (u) + T (v)

T (αu) = αT (u),∀ u, v ∈ V, α ∈ F

Example 15.1. Let V (F ) and W (F ) be vector spaces. Then T : V → W
defined by T (v) = OW ∀ v ∈ V where OW is the zero of W , is a linear trans-
formation. It is called zero transformation as each element is mapped to zero.
The transformation I : V → V defined by I(v) = v ∀ v ∈ V is also a linear
transformation. It is called identity transformation. These two are the trivial
transformations on any vector space.

Example 15.2. Let M2×3(C) be the space of all 2 × 3 matrices with complex
entries. Define

f : M2×3(C)→M3×2(C) by f(A) = At

Let A,B ∈M2×3(C), α ∈ C

Then f(A+B) = (A+B)t

= At +Bt

= f(A) + f(B)

f(αA) = (αA)t

= αAt

= αf(A)

653
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Hence f is a linear transformation.

Example 15.3. Let V = C(R). Define

T : C(R)→ C(R) by T (a+ ib) = a− ib

Then T is a linear transformation, because if u, v ∈ C, u = a+ib, v = c+id, then

T (u+ v) = T ((a+ c) + i(b+ d))
= a+ c− i(b+ d)
= a− ib+ c− id
= T (u) + T (v)

For α ∈ R, T (αu) = T (αa+ iαb)
= αa− iαb
= α(a− ib)
= αT (u)

Hence T is a linear transformation.

Example 15.4. Let V be the set of all differentiable functions from R into R.
Then V is a vector space over R. Define

T : V → V

by T (f(x)) =
∫ x

0
f(t)dt. Then T is a linear transformation, as linearity of

integration is one of its fundamental properties.

Example 15.5. Let C[x] be the set of all polynomial in x whose coefficients are
complex numbers. Define

T : C[x]→ C[x]

by T (ax2 + bx+ c) = (a+ b+ c)x
Let p1(x), p2(x) ∈ C[x] and α ∈ C. Let

p1(x) = a1x
2 + b1x+ c1

p2(x) = a2x
2 + b2x+ c2

T (p1(x) + p2(x)) = T ((a1 + a2)x2 + (b1 + b2)x+ (c1 + c2))
= (a1 + a2 + b1 + b2 + c1 + c2)x
= (a1 + b1 + c1)x+ (a2 + b2 + c2)x
= T (p1(x)) + T (p2(x))

T (αp1(x)) = T (αa1x
2 + αb1x+ αc1)

= (αa1 + αb1 + αc1)x
= α(a1 + b1 + c1)x
= αT (p1(x))

Hence T is a linear transformation.

Example 15.6. Consider the vector space C over C.
Define T : C→ C by T (α+ iβ) = α− iβ. Take u = 1 + i ∈ C, i ∈ C

T (iu) = T (i− 1) = −i− 1

iT (u) = i(1− i) = i+ 1 = 1 + i

Hence T (iu) 6= iT (u) so that T is not a linear transformation.
The following properties are immediate consequences of the definition.
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Theorem 15.1. Let T : V →W be a linear transformation. Then

(i) T (0V ) = 0W

(ii) T (−u) = −T (u), ∀ u ∈ V

Proof: Since T is a linear transformation, ∴ T (αu) = αT (u),∀u ∈ V, α ∈ F .

(i) Let α = 0, u ∈ V
Then T (0u) = 0T (u)
⇒ T (OV ) = 0W .

(ii) Let u ∈ V, take α = −1. As T is a linear transformation.
∴ T (−u) = (−1)T (u)
⇒ T (−u) = −T (u).

Remark 15.1. If T (0) 6= 0 then we can say that T is not a linear transforma-
tion.

Theorem 15.2. A linear transformation T : V −→ W is one-to-one if and
only if T (v) = 0 =⇒ v = 0.

Proof: Suppose that T is one-to-one. Let v ∈ V be such that
T (v) = 0
Since T(0) = 0 by theorem 15.1
∴ T (v) = T (0)
since T is one-to-one
∴ v = 0.
Hence the condition holds.
Conversely, let the condition holds. Let v1, v2 ∈ V such that T (v1) = T (v2)
then T (v1)− T (v2) = 0
=⇒ T (v1) + T (−v2) = 0
=⇒ T (v1 + (−v2)) = 0
=⇒ T (v1 − v2) = 0
=⇒ v1 − v2 = 0 (using the given condition)
=⇒ v1 = v2

Hence T is one-to-one.

We now give an equivalent condition for a mapping to be a linear transfor-
mation.

Theorem 15.3. Let V and W be vector spaces over the same field F . A
mapping

T : V →W

is a linear transformation if and only if T (αu+βv) = αT (u)+βT (v) ∀ α, β ∈
F, u, v ∈ V

Proof: Let T be a linear transformation. Let u, v ∈ V, α, β ∈ F

T (αu+ βv) = T (αu) + T (βv)

= αT (u) + βT (v)
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Hence the given condition holds. Conversely, let the given condition holds, i.e.
T (αu+ βv) = αT (u) + βT (v), ∀ u, v ∈ V, α, β ∈ F ....(1)
Let u, v ∈ V, α ∈ F

T (u+ v) = T (1.u+ 1.v)

= 1.T (u) + 1.T (v) using(1)

= T (u) + T (v)

T (αu) = T (αu+ 0v)

= αT (u) + 0T (v) using(1)

= αT (u) + 0w

= αT (u)

Hence T is a linear transformation.
In fact, we have another equivalent condition for a linear transformation.

Theorem 15.4. Let V and W be vector spaces over the same field F . A
mapping T : V →W is a linear transformation if and only if, ∀ u, v ∈ V, α ∈ F

T (αu+ v) = αT (u) + T (v)

Proof: Left to the reader.

Theorem 15.5. Let V be a finite dimensional vector space over a field F
and let B = {v1, v2, v3, ..., vn} be an ordered basis for V. Let W be a vec-
tor space over the same field F and {w1, w2, w3, ..., wn} be any vectors in W .
Then there is precisely one linear transformation T from V into W such that
Tvi = wi, ∀i, 1 ≤ i ≤ n.

Proof: Existence
To prove that there exists some such linear transformation, we proceed as fol-
lows:
Let v ∈ V . Since B is an ordered basis for V , ∴ there exists unique α1, α2, ..., αn ∈
F, such that

v = α1v1 + α2v2 + ...+ αnvn

Then
α1w1 + α2w2 + ...+ αnwn ∈W

We define
T (v) = α1w1 + α2w2 + ...+ αnwn

Then T is a well-defined rule which associates to each v ∈ V a vector T (v) ∈W.
Clearly, T (vi) = wi, i = 1, 2, ..., n. We prove that T is a linear transformation.
Let u1, u2 ∈ V, α, β ∈ F. Then,

u1 = α1v1 + α2v2 + ...+ αnvn for some α1, α2, ..., αn ∈ F
u2 = β1v1 + β2v2 + ...+ βnvn for some β1, β2, ..., βn ∈ F

αu1 + βu2 = α (α1v1 + α2v2 + ...+ αnvn) + β (β1v1 + β2v2 + ...+ βnvn)

= (αα1 + ββ1) v1 + (αα2 + ββ2) v2 + ...+ (ααn + ββn) vn
∴ T (αu1 + βu2) = (αα1 + ββ1)w1 + (αα2 + ββ2)w2 + ...+ (ααn + ββn)wn

= α (α1w1 + α2w2 + ...+ αnwn) + β (β1w1 + β2w2 + ...+ βnwn)

= αT (u1) + βT (u2)
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Hence T is a linear transformation.

Uniqueness
Let T1 be a linear transformation from V into W such that

T1(vi) = wi ,∀i, 1 ≤ i ≤ n

We must prove that T1(v) = T (v) for all v ∈ V .
Let v ∈ V . Then there exists α1, α2, ..., αn ∈ F such that

v = α1v1 + α2v2 + ...+ αnvn
T1 (v) = T1 (α1v1 + α2v2 + ...+ αnvn)

= α1T1v1 + α2T1v2 + ...+ αnT1vn ∵ T1 is a linear transformation
= α1w1 + α2w2 + ...+ αnwn
= T (v)

Hence T1 (v) = T (v) ∀v ∈ V , so that T1 = T .
This proves that T is unique.

The above theorem tells us that there are many linear transformations from
a finite dimensional vector space to another vector space. Moreover, it also
gives us a way to find these linear transformations. If a mapping is defined on
an ordered basis, then it can be extended linearly to the whole space.

Example 15.7. Let V = R3 and W = R (x). Then V and W are vector spaces
over R. B = {e1, e2, e3} is an ordered basis for V, where e1 = (1, 0, 0)

t
, e2 =

(0, 1, 0)
t
, e3 = (0, 0, 1)

t

Define T1 : V →W , by

T1 (e1) = 1

T1 (e2) = x

T1 (e3) = x2

Then by Theorem 15.5, T1 can be extended to R3 such that T1 is a linear trans-
formation.
Then T1(a, b, c) = a+ bx+ cx2.
Consider x, x3, x5 ∈W . Define T2 : V →W , by

T2 (e1) = x

T2 (e2) = x3

T2 (e3) = x5

Then T2 can be extended to R3 such that T2 is a linear transformation, Then
T2(a, b, c) = ax+ bx3 + cx5.

We can thus define many more linear transformations on V .
Theorem 15.6 proves that there is a one-to-one correspondence between an n-
dimensional vector space V and Rn.

Theorem 15.6. (coordinate transformation) Let V (R) be an n-dimensional
vector space and B be an ordered basis for V . Let T : V → Rn be defined by

T (v) = (v)B

Show that T is a one-to-one linear transformation of V onto Rn.
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Proof: Let B = {v1, v2, ..., vn} be an ordered basis for V . For any v ∈ V , there
exists unique scalars α1, α2, . . . , αn ∈ R such that v = α1v1 +α2v2 + ...+αnvn.

Then [v]B =


α1

α2

...
αn

 ∈ Rn.

Let T : V → Rn be defined by T (v) = [v]B

Step 1 T is a linear transformation.
Let u, v ∈ V, α ∈ R. Then

[u]B = (α1, ..., αn)
t

[v]B = (β1, ..., βn)
t

Then αu+ v = α (α1v1 + ...+ αnvn)

+ (β1v1 + ...+ βnvn)

= (αα1 + β1) v1 + (αα2 + β2) v2 + ...+ (ααn + βn) vn

∴ [αu+ v]B = (αα1 + β1, αα2 + β2, ..., ααn + βn)
t

= (αα1, ..., ααn)
t

+ (β1, ..., βn)
t

= α (α1, ..., αn)
t

+ (β1, ..., βn)
t

= α [u]B + [v]B
∴ [αu+ v]B = α [u]B + [v]B

Now T (αu+ v) = [αu+ v]B
= α [u]B + [v]B
= αTu+ Tv

Hence T is a linear transformation.

Step 2 T is one-to-one.
Let v = α1v1 + ...+ αnvn ∈ V such that Tv = 0. Then [v]B = 0

⇒ (α1, · · · , αn)t = 0 = (0, 0, ..., 0)t

⇒ αi = 0, ∀i = 1, 2, ..., n
⇒ v = 0

Hence Tv = 0 ⇒ v = 0, so that T is one-to-one.

Step 3 T is onto.
Let x = (α1, α2, ..., αn)

t ∈ Rn. Define v = α1v1 + α2v2 + ... + αnvn. Then
v ∈ V and T (v) = [v)B = x. Thus for every x ∈ Rn, there exists some v ∈ V
such that Tv = x. Hence T is onto.

Step 4 Steps 1–3 prove that T is a one-to-one linear transformation from V
onto Rn.
This transformation T : V −→ Rn is called coordinate transformation of a
vector space V.

Problem 15.1. Let T : V (F )→ W (F ) be a linear transformation. Prove that
T is one-to-one if and only if T maps every linearly independent set of vectors
of V to a linearly independent set of vectors in W .
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Solution: Let T be one-to-one and let S = {v1, v2, ..., vk} be a linearly inde-
pendent subset of V . Consider S1 be the image of S under T.
Then S1 = {Tv1, T v2, ..., T vk}
Let α1, α2, ..., αk ∈ F, such that

α1Tv1 + α2Tv2 + · · ·+ αkTvk = 0 (15.1)

Since T is a linear transformation ∴ (15.1)

⇒ T (α1v1 + α2v2 + · · ·+ αkvk) = 0 = T (0).
⇒ α1v1 + α2v2 + · · ·+ αkvk = 0 as T is one-to-one

α1 = α2 = ... = αk = 0 as S is linearly independent
Hence S1 is linearly independent.

Thus T maps every linearly independent set to a linearly-independent set.
Conversely, let the condition hold. Let, if possible, T not be one-to-one.

Then there exist v1, v2 ∈ V such that v1 6= v2 but T (v1) = T (v2). Consider
w = v1 − v2.
Then w 6= 0 but T (w) = 0. Thus {w} is a linearly-independent set but {T (w)} =
{0} is a linearly dependent set which contradicts the hypothesis. Thus our
assumption is wrong, so that T is one-to-one.

Corollary 15.7. Let V and W be finite dimensional vector spaces such that
dim V = dim W . Let T : V → W be a linear transformation. Then T is
one-one if and only if T maps a basis of V onto a basis of W .

Proof: Let dim V = dim W = n (say)
Let T be one-to-one and let B = {v1, v2, ..., vn} be a basis of V .
Let B′ = {Tv1, T v2, ..., T vn}. Then, by Problem 15.1, B′ is a linearly-independent
set. Since B′ contains n linearly independent elements and n = dim W , ∴ B′ is
a basis of W . Hence a basis of V is mapped to a basis of W .

Conversely, suppose that a basis is mapped to a basis. Let, if possible, T
be not one-to-one. Thus, there exists 0 6= v ∈ V such that Tv = 0. Now
{v} is a linearly-independent subset of V , so it can be extended to a basis for
V , say {v1, v2, ..., vn}. By the given hypothesis {Tv, Tv2, ..., T vn} is a basis for
W , i.e. {0, T v2, ..., T vn} is a basis for W . This is a contradiction, as a linearly-
independent set cannot contain the zero vector. Hence our assumption is wrong,
so that T is one-to-one.

Problem 15.2. Define T : C(R)→ C(R) by T (z) = Im z
Is T a linear transformation.

Solution: Let z1, z2 ∈ C, α ∈ R. Then,

T (αz1 + z2) = Im(αz1 + z2)

= Im(αz1) + Im(z2)

= αIm(z1) + Im(z2) ∵ α ∈ R
= αT (z1) + T (z2)

Hence T is a linear transformation.

Problem 15.3. Define T : C(C)→ C(C) by T (z) = Im z
Is T a linear transformation?
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Solution: Intuitively, we feel that Im(iz) 6= iIm(z) ∀z ∈ C.
Thus we take an example to prove this.
Let v = i ∈ C, α = i ∈ C. Then,

T (αv) = T (−1) = 0

αT (v) = i Im v = i(1) = i

∴ T (αv) 6= αT (v)

Hence T is not a linear transformation.

Remark 15.2. The above problems shows that whether a mapping is a linear
transformation depends also upon the field over which the vector space is taken.

Problem 15.4. Let V = M2(C). Define T : V (C)→ C by

T

((
a b
c d

))
= a+ b+ c+ d− 1

Is T a linear transformation?

Solution:

T

((
0 0
0 0

))
= 0 + 0 + 0 + 0− 1

= −1

6= 0

Since T (0) 6= 0
∴ T is not a linear transformation.

Problem 15.5. Is there a linear transformation T : R2 → R2

such that

T ((2, 1)) = (0, 3)

T ((1, 2)) = (3, 0)

T ((1, 1)) = (1, 2)

Solution: Suppose T is a linear transformation, such that
v1 = (2, 1), v2 = (1, 2), v3 = (1, 1), and T (v1) = (0, 3), T (v2) = (3, 0), T (v3) =
(1, 2)

v1 + v2 = (3, 3), 3v3 = (3, 3)
T (v1 + v2) = T (v1) + T (v2)

= (0, 3) + (3, 0)
∴ T ((3, 3)) = (3, 3)
Also T (3v3) = 3T (v3)

= 3(1, 2)
∴ T ((3, 3)) = (3, 6)

∴ Our assumption is wrong, so that no such linear transformation exists.
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Problem 15.6. Let P1 be the vector space of polynomials in t of degree 1 over
the field of real numbers R.

T : P1 → P1

such that

T (1 + t) = t

T (1− t) = 1

Find T ((2− 3t)).

Solution: It can be easily seen that 2− 3t = − 1
2 (1 + t) + 5

2 (1− t)
Since T is a linear transformation

∴ T ((2− 3t)) = −1

2
T (1 + t) +

5

2
T (1− t)

= −1

2
t+

5

2

=
5− t

2

Aliter: We illustrate another way of solving the problem. B = {1, t} is a basis
of P1. We first find T (1) and T (t). Then T (p) for p ∈ P1 can be obtained.
Now

1 = 1
2 (1 + t) + 1

2 (1− t)
∴ T (1) = 1

2T ((1 + t)) + 1
2T ((1− t))

= t+1
2

t = 1
2 (1 + t)− 1

2 (1− t)
∴ T (t) = t−1

2

Now T (2− 3t) = 2T (1)− 3T (t) =
5− t

2
.

Problem 15.7. Find a linear transformation T1 : R2 → R3

such that T1(1, 2)t = (1, 2, 3)t

T1(3, 4)t = (4, 5, 6)t

Solution: Let B =
{

(1, 2)t, (3, 4)t
}

= {v1, v2} (say).

Step 1 Express e1, e2 where e1 =

(
1
0

)
and e2 =

(
0
1

)
as a linear combina-

tion of v1 and v2. If α1v1 + α2v2 = e1and β1v1 + β2v2 = e2

where α1, α2, β1, β2 ∈ R

then X1 =

(
α1

α2

)
, X2 =

(
β1

β2

)
are the solution of AX = e1 and AX = e2

respectively, where A = [v1 v2]. Then

[A
... e1

... e2] =

 1 3
... 1

... 0

2 4
... 0

... 1

 ∼

 1 0
... −2

... 3
2

0 1
... 1

... −1
2

 by ap-

plying E-row operations.
Thus e1 = −2v1 + v2, e2 = 3

2v1 − 1
2v2.
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Step 2 Let us first find T1(e1), T1(e2), where e1 = (1 0)t, e2 = (0 1)t.

e1 = −2v1 + v2

e2 =
3

2
v1 −

1

2
v2

∴ T1e1 = (2, 1, 0)t

T1e2 =
1

2
(−1, 1, 3)t

If v = (x1 x2)t ∈ R2 then

v = x1e1 + x2e2

T1v = x1T1e1 + x2T1e2

= (2x1 −
1

2
x2 , x1 +

1

2
x2 ,

3

2
x2)t

15.2 Exercise

1. Are the mappings T : C(R)→ C(R) linear transformations?
(i) T (z) = Re(z)
(ii) T (z) = |Re(z)|
(iii) T (z) = z
(iv) T (z) = |z|

2. Are the mappings
T : C(C)→ C(C)

linear transformations?
(i) T (z) = Re(z)
(ii) T (z) = z
(iii) T (z) = 2z

3. Let V = M2(C). Prove that T : V (C)→ (C), defined by T (A) = trace A,
is a linear transformation

4. Let V = M2(R). Is T : V (R) → R defined by T (A) = det A a linear
transformation? Justify your answer.

5. Let T : P2(R) → P1(R) be defined below. Test whether T is a linear
transformation.
(i) T (at2 + bt+ c) = at+ b
(ii) T (at2 + bt+ c) = at+ b+ 1
(iii) T (at2 + bt+ c) = ct+ b
(iv) T (at2 + bt+ c) = (b+ c)t+ a

6. Let V = M2(C) be a vector space over C. T : V → V be defined below.
Test whether T is a linear transformation.

(i) T

(
a b
c d

)
=

(
a− b 0

0 c− d

)
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(ii) T

(
a b
c d

)
=

(
a Re b

Im b −d

)
(iii) T

(
a b
c d

)
=

(
a+ i b+ i
c− i d− i

)
(iv) T

(
a b
c d

)
=

(
a+ ib 0
c+ id 0

)
7. Prove that the mapping T : e[0, 1]→ R defined by

T (f) =

∫ 1

0

f(t)dt

is a linear transformation.

8. Let V = M2(R) and B ∈ V be fixed. Define T : V (R)→ V (R) by

T (A) = BA−AB

Prove that T is a linear transformation.

9. Let V = Mn(C). Define T : V (C)→ V (C) by

T (A) = Aθ

Is T is a linear transformation?

10. Let V (F ) be a vector space and b ∈ V . Define T : V → V by

T (v) = v + b.

Find b such that T is a linear transformation.

11. Let V = M2×3(C). Define T : V (C)→ V (C) by

T (A) =

(
1 i
0 −i

)
A.

Prove that T is a linear transformation. Also find T (B) where

B =

(
1 2 1
3 4 −1

)
.

12. If T : R2 → R2 is a linear transformation such that T (1, 2) = (1,−2),
T (−1, 2) = (2, 0). Find T ((1, 0)), T ((0, 1)), T ((1,−2)).

13. If T : R2 → R2 is a linear transformation such that

T (1, 0) = (a, b)

T (0, 1) = (c, d)

find T ((x1, x2)).
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14. Does there exist a linear transformation T : P1 → P1 such that

T (1− t) = 1, T (1 + t) = t?

If yes, find it.

15. Find a linear transformation T : R2 → R2 such that T (1, 2) = (3, 0),
T (−1, 2) = (0, 1).

16. Does there exist a linear transformation T : R2 → R2 such that T (1, 2) =
(3, 4), T (−1, 2) = (5, 0), T (1,−2) = (0, 0)?

17. Give examples of 2009 linear transformations from R2 into R3. How many
linear transformations can be defined?

18. Prove that the image of a subspace W of a vector space V under a linear
transformation T : V −→W is a subspace of W .

19. Let T : V → W be a linear transformation. If U = Span {v1, v2, ..., vm} ,
prove that T (U) = Span {T (v1), T (v2), ..., T (vm)} .

20. Let T : R3 → R3 be defined by T ((x y z)) = ((x+ y y + z z + x))
If U = Span((1 2 3), (2 3 0))). Find a basis for T (U).

21. Let T : V →W be a linear transformation.

(i) If {v1, v2, ..., vm} is a linearly independent subset of vectors in V , then
can we say {T (v1), T (v2), ..., T (vm)} is always linearly independent?
Justify your answer.

(ii) If {T (v1), T (v2), ..., T (vm)} is a linearly-independent subset of W ,
then is {v1, v2, ..., vm} always linearly independent in V ? Prove or
disprove.

22. Let {v1, v2, . . . , v10} be a basis of V and
W = span{v1, v2, . . . , v5}. Let T : V → V be a linear transformation such
that

T (vi) = v, i = 1, 2, . . . , 5

for some fixed element v of V . Prove that T (W ) = Span({v}).

15.3 Range and Kernel

Definition 15.2. (Range): Let T : V → W be a linear transformation. The
range of T is defined as the set of images of elements of V ,We shall denote the
range of T by Rng(T ). Thus

Rng(T ) = {T (v) | v ∈ V }

Let us find the range of linear transformations defined in examples 15.1 to
15.5
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Example 15.8. In Example 15.1, for the zero transformation O

Rng(O) = {O(v) | v ∈ V }
= {0}

For the identity transformation

Rng(I) = {I(v) | v ∈ V }
= {v | v ∈ V }
= V

Example 15.9. Considering Example 15.2,

Rng(f) = {f(A) | A ∈M2×3(C)}
=
{
At | A ∈M2×3(C)

}
= M3×2(C)

Example 15.10. Considering Example 15.3,

Rng(f) = {T (a+ ib) | a, b ∈ R}
= {a− ib | a, b ∈ R}
= C

Example 15.11. Considering as in Example 15.4,

Rng(T ) = {T (f)| f ∈ V }
= V

∵ Rng(T ) ⊆ V . Conversely, let f ∈ V . If d
dxf(x) = g(x), then

T (g(x)) =

∫ x

0

g(t)dt

= f(x)

This implies that f ∈ Rng(T ). Hence V ⊆ Rng(T ) ⊆ V .
Thus Rng(T ) = V .

Example 15.12. Considering Example 15.5,

Rng(T ) =
{
T (ax2 + bx+ c) | a, b, c ∈ C

}
= {(a+ b+ c)x | a, b, c ∈ C}
= {kx | k ∈ C}

Theorem 15.8. Let T : V → W be a linear transformation. Then Rng(T ) is
a subspace of W .

Proof: Rng(T ) = {T (v) | v ∈ V } . Since T (0V ) = 0W ∴ 0W ∈ Rng(T ).
Hence Rng(T ) 6= φ.
Let u, v ∈ Rng(T ), α ∈ F, then there exists u1, v1 ∈ V such that T (u1) =
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u, T (v1) = v.
Now

αu+ v = αT (u1) + T (v1)

= T (αu1 + v1) ∵ T is a linear transformation

∈ Rng(T )

∴ αu+ v ∈ Rng(T ).Hence Rng(T ) is a subspace of W .

Definition 15.3. (Rank): The rank of a linear transformation T is the di-
mension of Rng T . It is denoted by Rank T .

Definition 15.4. (Kernel)Let T : V → W be a linear transformation. The
kernel of T is defined as the set of all elements of V which are mapped to the
zero element of W . It is denoted by Ker(T ) or N(T ). Thus

Ker(T ) = {v ∈ V | T (v) = 0W }

Let us find the kernel of the linear transformations defined in Examples 15.1
to 15.5,

Example 15.13. In Example 15.1, for the zero transformation,

Ker(T ) = {v ∈ V | Tv = 0W }
= V

For the identity transformation

Ker(I) = {v ∈ V | I(v) = 0V }
= {v ∈ V | v = 0V }
= {0}

Example 15.14. Consider Example 15.2

Ker(f) = {A ∈M2×3(C) | f(A) = 0}
=
{
A ∈M2×3(C) | At = 0

}
= {O2×3}

Example 15.15. Consider Example 15.3

Ker(f) = {a+ ib ∈ C | T (a+ ib) = 0}
= {a+ ib ∈ C | a− ib = 0}
= {0}

Example 15.16. In Example 15.4,

Ker(T1) = {f | T1(f) = 0}

T1f = 0⇐⇒
∫ x

0

f(x)dx = 0

⇐⇒ f(x) = 0

∴ Ker(T1) = 0
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Example 15.17. In Example 15.5,

Ker(T ) =
{
ax2 + bx+ c ∈ P2(C)| T (ax2 + bx+ c) = 0

}
=
{
ax2 + bx+ c ∈ P2(C)| (a+ b+ c)x = 0

}
=
{
ax2 + bx+ c ∈ P2(C)| a+ b+ c = 0

}
Theorem 15.9. Let T : V → W be a linear transformation. Then the kernel
of T is a subspace of V .

Proof: Ker T = {v ∈ V | T (v) = 0} . ∵ T (0) = 0,∴ 0 ∈ Ker T. Hence
Ker T 6= φ. Let u, v ∈ Ker T, α ∈ F. Then T (u) = T (v) = 0.

T (αu+ v) = αT (u) + T (v)
= α0 + 0
= 0

Hence αu+ v ∈ Ker(T ). Thus Ker(T ) is a subspace of V .

Definition 15.5. (Nullity): The nullity of a linear transformation T is the
dimension of Ker(T ). It is denoted by Nullity T .

Theorem 15.10 gives a condition for a linear transformation to be one-to-one.

Theorem 15.10. Let T : V →W be a linear transformation. Then the follow-
ing conditions are equivalent:
(i) T is one-to-one
(ii) Ker T = {0} .

Proof: (i)⇒ (ii)
Let T be one-to-one. Since T (0) = 0 ∈ Ker T. ∴ 0 ∈ Ker(T )⇒ {0} ⊆ Ker T
Let v ∈ Ker T . ∴ Tv = 0 ⇒ Tv = T0 ⇒ v = 0 ∵ T is one-to-one.
Hence Ker(T ) ⊆ {0}. ∴ Ker T = {0} .
(ii)⇒ (i)
Let v1, v2 ∈ V be such that Tv1 = Tv2 ∴ T (v1 − v2) = 0
⇒ v1 − v2 ∈ Ker T = {0}
⇒ v1 − v2 = 0
⇒ v1 = v2

⇒ T is one-to-one

Problem 15.8. Let A be a m× n matrix and T : Rn → Rm a linear transfor-
mation defined by T (v) = Av. Prove that
(i) Ker T = Null(A).
(ii) Rng T = Col(A).

Solution:

(i)

Ker T = {v ∈ Rn | Tv = 0}
= {v ∈ Rn | Av = 0}
= Null(A)
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(ii) Let C1, C2, ...Cn be the columns of A.
Rng T = {Tv | v ∈ Rn}
= {Av | v ∈ Rn}

= {
(
C1 C2 · · · Cn

)

α1

α2

...
αn

 |α1, α2, . . . , αn ∈ R}

= {
(
α1C1 + α2C2 + · · ·+ αnCn

)
|α1, α2, . . . , αn ∈ R}

= Span of {C1, C2, . . . , Cn}
= Col(A).

Problem 15.9. Let T : C(R)→ C(R) defined by

T (z) = Re(z)

be a linear transformation.
Let v1 = 2 + 3i, v2 = 2i, v3 = −4, v4 = 0
(i) Do v1, v2, v3, v4 ∈ Ker T?
(ii) Find Ker T .
(iii) Do v1, v2, v3, v4 ∈ Rng T?
(iv) Find Rng T .

Solution:

(i)
T (v1) = Re(v1) = 2 6= 0 ∴ v1 /∈ Ker T
T (v2) = Re(v2) = 0 ∴ v2 ∈ Ker T
T (v3) = Re(−4) = −4 6= 0 ∴ v3 /∈ Ker T
T (v4) = 0 ∴ v4 ∈ Ker T

Hence v2, v4 ∈ Ker T .

(ii)
Ker T = {v ∈ V | Tv = 0}

= {v ∈ V | Re(v) = 0} = {x+ iy ∈ C|x = 0}
= {iy | y ∈ R} .

∴ KerT = {iy | y ∈ R}.

(iii) v ∈ Rng(T ) if ∃ w ∈ V such that
T (w) = v
i.e. Re(w) = v ⇒ v is real
∴ v1 /∈ Rng T, v2 /∈ Rng T
∵ T (−4) = −4 = v3

∴ v3 ∈ Rng T
T (0) = 0, ∴ v4 ∈ Rng T
Hence v3, v4 ∈ Rng T .
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(iv) As shown in (iii), u ∈ Rng(T )⇒ u is real, i.e v ∈ R
Let v ∈ R. Then
Re(v) = v
⇒ T (v) = v
⇒ v ∈ Rng(T ). Hence R = Rng(T ).

Problem 15.10. Let T : P2(R)→ P3(R) be a linear transformation defined by

T (ax2 + bx+ c) = (a− b)x3 + (b− c)x2 + (c− a)x+ (c− a), where a, b, c ∈ R

Find
(i) Ker T .
(ii) A basis for Ker T .
(iii) Rng T .
(iv) A basis for Rng T .

Solution:

(i) Let f = ax2 + bx+ c ∈ P2. Then f ∈ Ker T

⇔ T (f) = 0
⇔ (a− b)x3 + (b− c)x2 + (c− a)x+ (c− a) = 0
⇔ a− b = 0, b− c = 0, c− a = 0
⇔ a = b = c

∴ Ker T =
{
ax2 + ax+ a | a ∈ R

}
=
{
a(x2 + x+ 1) | a ∈ R

}
.

(ii) From (i) , we get Ker T = span
{
x2 + x+ 1

}
. Thus basis for Ker T is{

x2 + x+ 1
}

.

(iii) Let g ∈ Rng T = Span{T (1), T (x), T (x2)}.
Let g = px3 +qx2 +rx+s. Then there exists f ∈ P2(R) such that Tf = g.
Let f = ax2 + bx + c. Then (a − b)x3 + (b − c)x2 + (c − a)x + (c − a) =
px3 + qx2 + rx+ s

∴ a− b = p

b− c = q

c− a = r

c− a = s.

Thus the equations

a− b = p

b− c = q

−a + c = r

−a + c = s

must have a solution.
Then the augmented matrix is

1 −1 0 p
0 1 −1 q
−1 0 1 r
−1 0 1 s

 =
(
A d

)
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Reducing to echelon form

(
A d

)
∼


1 −1 0 p
0 1 1 q
0 0 0 p+ q + r
0 0 0 r − s


For the system of equation to be consistent, the augmented column must
not be a pivot column. So, we must have

r − s = 0

p+ q + r = 0

i.e. s = r, p+ q + r = 0

Thus Rng T =
{
px3 + qx2 − (p+ q)x− (p+ q)|p, q ∈ R

}
(iv) As in (iii), any element in Rng T is of the form

px3 + qx2 − (p+ q)x− (p+ q); p, q ∈ R

i.e. p(x3 − x− 1) + q(x2 − x− 1); p, q ∈ R
∴ Rng T = Span

({
x3 − x− 1, x2 − x− 1

})
It is easy to verify that x3 − x− 1, x2 − x− 1 are linearly independent.
∴
{
x3 − x− 1, x2 − x− 1

}
is a basis for Rng T .

Problem 15.11. Let V = M2(R) and let T : V (R) → V (R) be a linear trans-

formation defined by T (A) = A.

(
1 1
1 1

)
−
(

1 1
1 1

)
A

Find
(i) Ker T .
(ii) Basis for Ker T .
(iii) Rng T .
(iv) Basis for Rng T .

Solution: Let A =

(
a b
c d

)
∈ V (R), then

T (A) = A

(
1 1
1 1

)
−
(

1 1
1 1

)
A

=

(
(b− c) a− d
−(a− d) −(b− c)

)
(i) Let (

a b
c d

)
= A ∈ Ker T

⇒ T (A) = 0

⇒
(

(b− c) a− d
−(a− d) −(b− c)

)
= 0

⇒ b− c = 0, a− d = 0
⇒ b = c, a = d
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∴ Ker T =

{(
a b
b a

)
| a, b ∈ R

}

(ii) From (i), any element A of Ker T is

(
a b
b a

)
, a, b,∈ R

i.e. a

(
1 0
0 1

)
+ b

(
0 1
1 0

)
Hence Ker T = Span

{(
1 0
0 1

)
,

(
0 1
1 0

)}
Span {A1, A2} (say). Also A1, A2 are linearly independent. ∴ Basis for

Ker T is

{(
1 0
0 1

)
,

(
0 1
1 0

)}
(iii) To find Rng T

If B =

(
p q
r s

)
∈ Rng T, then there exists

(
a b
c d

)
= A ∈ V such that

T (A) = B. ∴

(
b− c a− d
−(a− d) −(b− c)

)
=

(
p q
r s

)
Thus the equations

b− c = p

a− d = q

−(a− d) = r

−(b− c) = s

must have a solution for a, b, c, d

Thus


0 1 −1 0
1 0 0 −1
−1 0 0 1
0 −1 1 0



a
b
c
d

 =


p
q
r
s


must have a solution.
The echelon form of the augmented matrix is

1 0 0 −1 q
0 1 −1 0 p
0 0 0 0 r + q
0 0 0 0 p+ s


For a solution to exist, the augmented column must not be a pivot column,

∴ p+ s = 0

r + q = 0

∴ s = −p , r = −q. Rng T =

{(
p q
−q −p

)
| p, q ∈ R

}

(iv) Any element in Rng T is of the form

(
p q
−q −p

)
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i.e. p

(
1 0
0 −1

)
+ q

(
0 1
−1 0

)
. Hence

Rng T = Span

{(
1 0
0 −1

)
,

(
0 1
−1 0

)}
= Span {B1, B2} (say)

Clearly B1, B2 are linearly independent. ∴ {B1, B2} is a basis for Rng T .

Problem 15.12. Let V = M2(C) be a vector space over R. Let T : V → V be

a linear transformation defined by T

((
a b
c d

))
=

(
a Re b

Im c −d

)
.

Find
(i) Ker T .
(ii) Basis for Ker T .
(iii) Rng T .
(iv) Basis for Rng T .
(v) Nullity T .
(vi) Rank T .

Solution:

(i) Let A =

(
a b
c d

)
. Then T (A) =

(
a Re b

Im c −d

)
A ∈ Ker T
⇔ T (A) = 0

⇔
(

a Re b

Im c −d

)
= 0

⇔ a = 0, Re(b) = 0, Im(c) = 0,−d = 0
⇔ a = d = 0 , b = ix, c = y for some x, y ∈ R

⇔ A =

(
0 ix
y 0

)
, x, y ∈ R

Ker T =

{(
0 ix
y 0

)
| x, y ∈ R

}

(ii) Any element of Ker T is of the form

(
0 ix
y 0

)
, where x, y ∈ R

= x

(
0 i
0 0

)
+ y

(
0 0
1 0

)
, x, y ∈ R

Ker T = Span

{(
0 i
0 0

)
,

(
0 0
1 0

)}
Also,

(
0 i
0 0

)
,

(
0 0
1 0

)
are linearly independent over R. ∴ A basis for

Ker T is{(
0 i
0 0

)
,

(
0 0
1 0

)}
.

(iii) If B =

(
x y
z w

)
∈ Rng T ,

then there exists A =

(
a b
c d

)
∈ V such that T (A) = B
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∴

(
a Re b

Im c −d

)
=

(
x y
z w

)
⇒ a = x, Re(b) = y, Im(c) = z,−d = w
⇒ a = x, d = −w, y is real, z is real.
Thus we must have x,w can be any complex numbers, whereas y, z are
real.

∴ Rng T =

{(
x y
z w

)
| x,w ∈ C, y, z ∈ R

}
.

(iv) From (iii) any element in the Rng T is(
x y
z w

)
, x, w ∈ C , y, z ∈ R

=

(
a+ ib y
z c+ id

)
, a, b, c, d, y, z ∈ R

a

(
1 0
0 0

)
+ b

(
i 0
0 0

)
+ y

(
0 1
0 0

)
+ z

(
0 0
1 0

)
+ c

(
0 0
0 1

)
+ d

(
0 0
0 i

)
Thus Rng T =

Span

{(
1 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
,

(
0 0
0 1

)
,

(
i 0
0 0

)
,

(
0 0
0 i

)}
Span {v1, v2, v3, v4, v5, v6} (say)
Also if αi ∈ R , 1 ≤ i ≤ 6 such that
α1v1 + α2v2 + α3v3 + α4v4 + α5v5 + α6v6 = 0

⇒
(
α1 + iα5 α2

α3 α4 + iα6

)
= 0

α1 + iα5 = α2 = α3 = α4 + iα6 = 0
αi = 0 ,∀i, 1 ≤ i ≤ 6
Hence, {v1, v2, . . . , v6} is linearly independent.
∴ {v1, v2, . . . , v6} is a basis for Rng T .

(v) From (ii), basis for Ker T has 2 elements.
∴ dim Ker T = 2
Nullity T = dim Ker T = 2
Nullity T = 2

(vi) From (iv) a basis for Rng T has 6 elements
∴ dim Rng T = 6
Rank T = dim Rng T = 6.

15.4 Exercise

1. For the following linear transformations, find Ker T and Rng T.
(i) T : C(R)→ C(R) defined by T (z) = z̄
(ii) T : C(R)→ C(R) defined by T (z) = 2z
(iii) T : P2(R)→ P1(R) defined by T (at2 + bt+ c) = ct+ b

2. Find Ker T and Rng T for Q7 Exercise 15.2.

3. Let V = M2(C). Let T : V (C)→ C be a linear transformation defined by
T (A) = traceA
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(i) Do

(
1 + 2i −4 + i
3− i 1− 2i

)
,

(
1 + i 1− i
−1 + i −1− i

)
∈ Ker T

(ii) Does 2 + 3i,−2 + 3i ∈ Rng T
(iii) Is T one-to-one?
(iv) Is T onto?
Justify your answer.

4. Find Ker T,Rng T for Q8 Exercise 15.2

5. Let T : R2 → R2 be a linear transformation defined by T (x1, x2) = (x1, 0).
(i) Find Ker T .
(ii) Find a basis for Ker T .
(iii) Find Rng T.
(iv) Find a basis for Rng T.

6. Let T : P2(R) → P1(R) be a linear transformation defined by T (αx2 +
βx+ γ) = (α− β)t+ (γ − α)
(i) Does 1 + x+ x2 ∈ Ker T?
(ii) Does 3x+ 8 ∈ Rng T?
(iii) Describe Ker T.
(iv) Describe Rng T.

7. Let T : P2(R) → P2(R) be a linear transformation defined by T (αx2 +
βx+ γ) = (α+ β)x2 + (α+ β + γ)
(i) Does 2x2 − x− 1 ∈ Ker T?
(ii) Does 2x2 − 2x ∈ Ker T.
(iii) Find a basis for Ker T.
(iv) Find a basis for Rng T.

8. Let T : R3 → R2 be a linear transformation defined by T ((x1, x2, x3)) =
(x1 + x2, x2 + x3). Find
(i) Ker T.
(ii) Basis for Ker T.
(iii) Rng T.
(iv) Basis for Rng T.

9. Let V(R) be the space of all differentiable functions from R into R.Let
T : V (R)→ V (R) be a linear transformation defined by

T (f(x)) =
d

dx
(f(x))

(i) Does 2x+ 3 ∈ Ker T?
(ii) Does 2x+ 3 ∈ Rng T?
(iii) Find Ker T .
(iv) Find Rng T .

10. Let V = M2(R). Let T : V (R)→ V (R) be a linear transformation defined

by T (A) = BA−AB, where B=

(
1 1
0 1

)
. Find a basis for

(i) Ker T.
(ii) Rng T.



15.4. EXERCISE 675

11. Let T : R4 → R4 be a linear transformation defined by

T (X) = AX, where A =


1 2 3 −1
1 1 −1 1
2 3 2 0
1 1 −1 1


Find
(i) Ker T .
(ii) Rng T .

12. Let T : Rn → Rm be a linear transformation defined by T (v) = Av, where
A = m× n. Prove that
(i) Ker T = Null(A).
(ii) Rng T = Col(A).

13. Let T : R4 → R2 be a linear transformation defined by

T ((x1, x2, x3, x4)t) =

(
x1 − x2 + 2x3

x1 + x3 + x4

)
Find
(i) Nullity T.
(ii) Rank T.
(iii) Verify that Nullity T +Rank T = 4.

14. Let T : (R3)→ (R3) be a linear transformation defined by

T

x1

x2

x3

 =

x1 + x2 − x3

x1 + x2

x2 + x3


Find
(i) Basis for Ker T.
(ii) Nullity T.
(iii) Basis for Rng T.
(iv) Rank T

15. Let T : C(R)→ C(R) be a mapping defined by

T (r(cos θ + i sin θ)) = r(cos(θ + α) + i sin(θ + α))

(i) Prove that T is a linear transformation where α is a fixed real number.
(ii) Is T onto?
(iii) Is T injective?
(iv) Interpret the transformation geometrically.

16. If B = {v1, v2, ..., vn} is a basis for V and T : V → W is a linear trans-
formation such that T (vi) = 0, ∀i = 1, 2, ..., n, then prove that T must be
the zero transformation.
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15.5 Answers to Exercises

Exercise - 15.2

1. (i) Yes
(ii) No
(iii) Yes
(iv) No

2. (i) No
(ii) No
(iii) Yes

3. Yes

4. No

5. (i) Yes
(ii) No
(iii) Yes
(iv) Yes

6. (i) Yes
(ii) No
(iii) No
(iv) Yes

7. Yes

9. No

10. b = 0

12.
(
− 1

2 − 1
)
,
(

3
4 −

1
2

)
, (−2 0)

13. (x1a+ x2c, x1b+ x2d)

14. Yes ; T (αt+ β) = α+β
2 t− α−β

2

15. T (x1, x2) = (3
2x1 + 3

4x2,− 1
2x1 + 1

4x2)

16. No

17. T (x1, x2) = (αx1, αx2, 0), 1 ≤ α ≤ 2009. Infinitely many.

20. {(3,5,4), (5,3,2)}

21.
(i) No. Zero transformation
(ii) Prove it.

23. Hint: Define T : V → W T (v) = 0, ∀ v ∈ V Take 0 6= v ∈ V . Then v is
l.i. but T (v) is l.d.



15.5. ANSWERS TO EXERCISES 677

Exercise - 15.4

1. (i) {0}, C
(ii) {0}, C
(iii) {at2 | a ∈ R}, P1(R)

2. Zero function, R.

3. (i) No, Yes
(ii) Yes, Yes
(iii) No
(iv) Yes

5. (i) (0, x2)
t

: x2 ∈ R ;
{

(0, 1)
t
}

(ii)
{

(x1, 0)
t

: x1 ∈ R
}

(iii)
{

(1, 0)
t
}

6. (i) Yes
(ii) Yes
(iii) Span

{
1 + t+ t2

}
(iv) P1(R)

7. (i) No
(ii) Yes
(iii) x2 − x
(iv) {x2, 1}

8. (i) {(x1,−x1, x1) | x1 ∈ R}
(ii) {(1,−1, 1)}
(iii) R2

(iv) {(1, 0), (0, 1)}

9. (i) No
(ii) Yes
(iii) Constant functions
(iv) V (R).



Chapter 16

Change of Basis

16.1 Coordinate Mapping

Let V be an n dimensional vector space and B = {v1, v2, ..., vn} be an ordered
basis. Then, every v ∈ V can be uniquely expressed as a linear combination of
elements of B, so that there exists unique elements α1, α2, ...αn ∈ F such that
v = α1v1 + α2v2 + ...αnvn.

Unless otherwise stated, V will denote a vector space over a field F .
This defines a mapping T : V → Rn which maps v → (α1, α2, ..., αn)t. It

is easy to verify that T is a one-to-one linear transformation of V onto Rn. This
mapping is called the coordinate mapping and we denote it by [ ]B, we write
[v]B = (α1, α2, ..., αn)t.

Example 16.1. Consider V = P3, over R. Then dimV = 4, B = {1, x, x2, x3}

is an ordered basis for V . Let p = 2 − 3x2 + 4x3. Then [p]B =


2
0
−3
4

. If

q = a0 + a1x+ a2x
2 + a3x

3, then [q]B =


a0

a1

a2

a3

. B′ = {x3, x2, x, 1} is another

ordered basis for V , and [p]B′ =


4
−3
0
2

 also [q]B′ =


a3

a2

a1

a0

 .

This illustration shows that the mapping heavily depends upon the ordered basis
taken.

Example 16.2. Let V = M2×2(C) and B = {E11, E12, E21, E22}, where E11 =(
1 0
0 0

)
, E12 =

(
0 1
0 0

)
, E21 =

(
0 0
1 0

)
, E22 =

(
0 0
0 1

)
. If

A =

(
−2 3
−4 16

)
, then A = −2E11 +3E12−4E21 +16E22. If B =

(
b1 b2
b3 b4

)
,

then B = b1E11 + b2E12 + b3E21 + b4E22.

678
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Example 16.3. Let B1 = {v1, v2, v3} be a basis for R3 , where v1 =

 3
−1
−2

 ,

v2 =

 0
1
3

 , v3 =

 0
0
2

. If v =

 2
−1
3

, compute [v]B1
.

To find [v]B1 , we need to compute the scalars α1, α2, α3 such that v = α1v1 +
α2v2 + α3v3. Thus we need to solve the system whose augmented matrix is(
v1 v2 v3 : v

)
. i.e.

 3 0 0 : 2
−1 1 0 : −1
−2 3 2 : 3


Transforming it to the reduced echelon form, we get

 1 0 0 : 2/3
0 1 0 : −1/3
0 0 1 : 8/3


so that α1 = 2/3, α2 = −1/3, α3 = 8/3 hence [v]B1

= 1/3

 2
−1
8

 .

16.2 Change of Basis

Let B and B′ be two different ordered basis of V , then [v]B, [v]B′ are the
coordinate vectors of v ∈ V relative to B, B′ respectively. The question is: Is
there a relationship between [v]B and [v]B′? That is to say that if [v]B is known,
can we find [v]B′ and vice versa?

Theorem 16.1. Let V be an n dimensional vector space with two ordered basis
B1 and B2, then there exist a unique matrix P such that for any v ∈ V
[v]B2 = P [v]B1 .

Proof: Let B1 = {v1, v2, v3, ..., vn} be an ordered basis of V . Let v ∈ V and
if [v]B1 = (α1, α2, ..., αn)t then
v = α1v1 + α2v2 + ...+ αnvn
∴ [v]B2

= [α1v1 + α2v2 + ...+ αnvn]B2

= α1[v1]B2
+ α2[v2]B2

+ ...+ αn[vn]B2

(
[v1]B2

[v2]B2
... [vn]B2

)


α1

α2

.

.

.
αn


= P [v]B1

, where jth column of P is [vj ]B2

Hence [v]B2
= P [v]B1

The coordinate vector with respect to basis B2 is obtained by multiplying P by
the coordinate vector with respect to the basis B1. P is called the transition
matrix from B1 to B2.

Uniqueness
Let Q be any other matrix such [v]B2

= Q[v]B1
.

Take v = v1 then [v1]B1
= (1 0 0...0)t.
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∴ [v1]B2
= Q[v1]B1

= Q


1
0
.
.
.
0


= First column of Q.
similarly we get, [vi]B2 = ith column of Q, i = 1, 2, ...n.
∴ Q =

(
[v1]B2

[v2]B2
... [vn]B2

)
= P .

Hence P is unique. Thus, we have the following definition.

Definition 16.1. (Transition Matrix): Let V be an n dimensional vector
space and B1, B2 two ordered basis for V . Then, there exists a unique n × n
matrix P whose jth column is the coordinate vector of the jth element of B1

relative to B2, such that, for every v ∈ V [v]B2
= P [v]B1

, P is called the
transition matrix from B1-basis to B2- basis. It is also written as PB2← B1 .

The relation is also shown in the following diagram

x====zسOسN
x===z

x===zس
س

N

ãì áé ~í å Äóäí äáÅáç =
=====m= ===

ã
íáé

ä~
íá

ó

ìä
áÅ

çå
=Ä

==
==

==
==

====
m

س =Oس == N=

f x===zس

By definition, the columns of the transition matrix P are the coordinate
vectors of a basis and are therefore linearly independent. Thus P is non-singular.

Example 16.4. Let B1 = {v1, v2, v3} and B2 = {w1, w2, w3} be two basis
for R3, where v1 = (0, 3, −1)t, v2 = (−2, 0, 1)t, v3 = (−1, 0, 1)t, w1 =
(3, 1, 2)t, w2 = (5, 0, 1)t, w3 = (4, 1, 1)t. Let v = (−3, 3, 1)t.
(i) Compute the transition matrix PB2← B1

.
(ii) Verify that [v]B2

= P [v]B1
.

Solution: (i) To compute PB2← B1
, find α1, α2, α3 such that

α1w2 + α2w2 + α3w3 = v1

Thus we need to solve the linear system with augmented matrix(
w1 w2 w3 : v1

)
.

Similarly we need to find β1, β2, β3 and γ1, γ2, γ3 such that
β1w1 + β2w2 + β3w3 = v2

γ1w1 + γ2w2 + γ3w3 = v3.
This gives two linear system whose augmented matrices are(
w1 w2 w3 : v2

)
and

(
w1 w2 w3 : v3

)
.

Since the coefficient matrix of all the 3 system is the same, namely(
w1 w2 w3

)
, we can transform the three augmented matrices to reduced

echelon form simultaneously by transforming the matrix(
w1 w2 w3 : v1 : v2 : v3

)
to reduced echelon matrix. Thus we

transform the matrix
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A =

 3 5 4 : 0 −2 −1
1 0 1 : 3 0 0
2 1 1 : −1 1 1

 ...(1)

into reduced echelon form. The transformed matrix is 1 0 0 : −8/6 7/6 1
0 1 0 : −16/6 −1/6 0
0 0 1 : 26/6 −7/6 −1

 ...(2)

Hence the transformed matrix from B1-basis to B2-basis is

PB2← B1 =

 −8/6 7/6 1
−16/6 −1/6 0
26/6 −7/6 −1


= 1/6

 −8 7 6
−16 −1 0
26 −7 −6


(ii) To find [v]B1

, we write
v = α1v1 + α2v2 + α3v3

So we solve the linear system with the augmented matrix(
v1 v2 v3 : v

)
...(3)

i.e.

 0 −2 −1 : −3
3 0 0 : 3
−1 1 1 : 1


Reducing it to the reduced echelon form, we get 1 0 0 : 1

0 1 0 : 1
0 0 1 : 1

 ...(4)

∴ v = 1v1 + 1v2 + 1v3

Hence [v]B1
=

 1
1
1


We know that
[v]B2

= PB2←B1
[v]B1

= 1/6

 −8 7 6
−16 −1 0
26 −7 −6

 1
1
1


= 1/6

 5
−17
13


=

 5/6
−17/6
13/6


Let us now find [v]B2 directly.
If v = α1w1 + α2w2 + α3w3

then the associated augmented system is(
w1 w2 w3 : v

)
On reducing to the reduced row echelon form we get 1 0 0 : 5/6

0 1 0 : −17/6
0 0 1 : 13/6


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[v]B2
=

 5/6
−17/6
13/6


which is the same as obtained by the formula.
Hence verified. Observe that in the above problem equation (1) is(
w1 w2 w3 : v1 v2 v3

)
This matrix is transformed to reduced new echelon form to get(
I : PB2←B1

)
which is equation (2).

To get [v]B1
, we write equation (3) as(

B1 : v
)

This is transformed to(
I : [v]B1

)
by applying row operations. [v]B2 is obtained by the formula
[v]B2 = PB2←B1 [v]B1 .

Corollary 16.2. In particular, if B2 is the standard basis B and B1 = {v1, v2,
v3} is any basis, then for any v ∈ V ,
[v]B = P [v]B1

where the jth column of P is [vj ]B
i.e. P is the matrix whose columns are the coordinate vectors of elements of B1

relative to the standard basis. We write P as PB1
.

Corollary 16.3. If PB is the transition matrix from any B− basis to the stan-
dard basis. Then the transition matrix from standard basis to the B− basis is
PB
−1.

Proof: PB is the transition matrix from basis B to the standard basis.
∴ for any v ∈ V

[v] = PB[v]B
⇒ PB

−1[v] = [v]B
⇒ [v]B = PB

−1[v]

Corollary 16.4. If B1, B2 be any two bases of a vector space V and PB1
, PB2

be the transition matrices from bases B1, B2 respectively to the standard basis
of V . Then the transition matrix from basis B1 to B2 is PB2

−1PB1 .

Proof: Let PB1
, PB2

be the transition matrices from bases B1, B2 to the
standard basis respectively. Then for any vector v ∈ V
[v] = PB1

[v]B1

and [v] = PB2 [v]B2 .
This gives
PB1

[v]B1
= PB2

[v]B2

By uniqueness of the transition matrix from B1 to B2 we get
PB2←B1

= PB2

−1PB1
.

Example 16.5. Consider the same bases B1, B2 for R3 as in the previous
illustration. Find PB1 , PB2 also verify that PB2←B1 = PB2

−1PB1 .

Solution: Let B be the standard basis for R3. Then PB1
= PB←B1

=

 0 −2 −1
3 0 0
−1 1 1

 ∵ the columns of P are the coordinate vectors of elements

of B2 relative to B. Similarly
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PB2
=

 3 5 4
1 0 1
2 1 1


By Corollary 16.4., PB2←B1 = PB2

−1PB1

To find P−1
B2

we proceed as follows:

A =
(
PB2

: I
)

By applying E − operations, reduce the above matrix to the echelon form

A =

 3 5 4 : 1 0 0
1 0 1 : 0 1 0
2 1 1 : 0 0 1

 ∼
 1 0 0 : −1/6 −1/6 5/6

0 1 0 : 1/6 −5/6 1/6
0 0 1 : 1/6 7/6 −5/6


∴ PB2

−1 = 1/6

 −1 −1 5
1 −5 1
1 7 −5


∴ PB2

−1PB1
= 1/6

 −1 −1 5
1 −5 1
1 7 −5

 0 −2 −1
3 0 0
−1 1 1


= 1/6

 −8 7 6
−16 −1 0
26 −7 −6

 = PB2←B1

Hence verified.

16.3 Procedure to Compute Transition Matrix
PB2←B1

from Basis B1 to Basis B2

Step 1 Let B1 = {v1, v2, ... , vn},B2 = {w1, w2, ... , wn} be the two bases
and B the standard basis. Let B1 =

(
[v1]B [v2]B . . . [vn]B

)
, B2 =(

[w1]B [w2]B . . . [wn]B
)

Step 2 Write A =
(
B2 : B1

)
(I)

By applying elementary row operations, obtain the row reduced echelon form
of A. Thus (I) becomes(
I : B

)
where B is the transition matrix from basis B1 to B2.

Example 16.6. Find the transition matrix from the standard basis B to the
given basis B1 = {t2 − t+ 1, t+ 1, t2 + 1}. Hence find [v]B1

, where v = t+ 4.
The standard basis is B = {e1, e2, e3} where e1 = 1, e2 = t, e3 = t2.

Solution: B1 = {v1, v2 v3}, where v1 = 1− t+ t2, v2 = 1 + t, v3 = 1 + t2

We first find PB1←B.

Step 1 A =
(
B1 : B

)
=
(
v1 v2 v3 : e1 e2 e3

)
= 1 1 1 : 1 0 0

−1 1 0 : 0 1 0
1 0 1 : 0 0 1


Step 2 Reduced row echelon form of A is
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0 1 0 : 1 0 −1
0 0 1 : −1 1 2


Thus PB1←B =

 1 −1 −1
1 0 −1
−1 1 2

.

We know that

[v]B1
= PB1←B[v]B =

 1 −1 −1
1 0 −1
−1 1 2

 4
1
0

 =

 3
4
−3


∴ [v]B1

=

 3
4
−1


We shall now prove that the inverse of the transition matrix PB2←B1

is PB1←B2
,

i.e. the transition matrix from the basis B2 to basis B1.

Theorem 16.5. Let B1, B2 be two ordered basis of n dimensional vector space
V . Let PB2←B1

be the transition matrix from B1 − basis to B2 − basis. Then
(PB2←B1

)−1 is the transition matrix from the basis B2 to basis B1.

Proof: Let v ∈ V, then [v]B2 = PB2←B1 [v]B1 . since PB2←B1 is invertible.
∴ [v]B1 = (PB2←B1)−1[v]B2

So it follows that the transition matrix from basis B2 to basis B1 is (PB2←B1
)−1.

Summarizing, we have that if B1, B2 are two bases of a vector space V with
standard basis B and v ∈ V , then [v]B2

= PB2←B1
[v]B1

[v]B = PB2 [v]B2

[v]B = PB1 [v]B1 ,
⇒ P−1

B1
PB2

= (PB2←B1
)−1

PB1←B2
= (PB2←B1

)−1 ...(by Corollary 16.4)
These relationships can be represented diagrammatically by

x====zسO
Nس

x===z

x===zس

س
N س

==
=O

==
multiplication by ã ì íáé

äÅ~
íáç

åÄ
ó

ä
á

=

==
==

==
==

==
==

m

س Oس === N=[
m

Example 16.7. Find the vector v determined by the coordinate vector relative
to the basis B = {v1, v2, , v3} where v1 = (0, 1, 1)t, v2 = (1, 1, 0)t, v3 =
(1, − 1, 0)t and [v]B = (2, 1, − 3)t.

If v ∈ V , then [v] = PB[v]B
where the columns of PB are the coordinate vectors of B relative to the standard
basis, i.e.

PB =

 0 1 1
1 1 −1
1 0 0


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∴ [v] =

 0 1 1
1 1 −1
1 0 0

 2
1
−3

 =

 −2
6
2

 .

Example 16.8. Let B = {v1, v2, , v3} be a basis of P2, v1 = 3−x−2x2, v2 =
x+ 3x2, v3 = 2x2 if v = 2− x+ 3x2, compute [v]B.

Given vector v and a basis B, we have the relation [v] = PB[v]B where

PB =
(
v1 v2 v3

)
=

 3 0 0
−1 1 0
−2 3 2


∴ [v]B = (PB)−1[v] to compute (PB)−1 we reduce the matrix

(
PB : [v]

)
into

reduced echelon form(
PB : [v]

)
=

 3 0 0 : 2
−1 1 0 : −1
−2 3 2 : 3

 ∼
 1 0 0 : 2/3

0 1 0 : −1/3
0 0 1 : 8/3


∴ [v]B = (PB)−1[v] =

 2/3
−1/3
8/3

 .

Example 16.9. Let P =

 2 2 1
1 −1 2
1 1 1

 be the transition matrix from B1 –

basis to B2 – basis. If B2 = {w1, w2, , w3} where w1 = (2, 0, 1)t, w2 =
(1, 2, 0)t, w3 = (1, 1, 1)t find the basis B1.

Solution: Let B1 = {u1, u2, u3} be the required ordered basis. The columns
of the transition matrix are
[u1]B2

, [u2]B2
, [u3]B2

∴ 2w1 + w2 + w3 = u1

2w1 − w2 + w3 = u2

w1 + 2w2 + w3 = u3

Substituting for w1, w2, , w3, we get u1 =

 6
3
3

 , u2 =

 4
−1
3

 ,

u3 =

 5
5
2

.

Aliter: We know that
PB2←B1

= (PB2
)−1PB1

Here PB2 =

 2 1 1
0 2 1
1 0 1

 and PB2←B1 =

 2 2 1
1 −1 2
1 1 1

 .

∴ PB1 = PB2PB2←B1 =

 2 1 1
0 2 1
1 0 1

 2 2 1
1 −1 2
1 1 1

 =

 6 4 5
3 −1 5
3 3 2

 .

Hence B1 =


 6

3
3

 ,

 4
−1
3

 ,

 5
5
2

 .
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Example 16.10. Let P =

 2 2 1
1 −1 2
1 1 1

 be the transition matrix from B1 –

basis to B2 – basis. If B1 = {u1, u2, , u3} where u1 = (6, 3, 3)t, u2 =
(4, − 1, 3)t, u3 = (5, 5, 2)t, find the basis B2.

Solution: We know that the transition matrix from B2–basis to B1–basis

=(PB2←B1)−1 = P−1 =

 3/2 1/2 −5/2
−1/2 −1/2 3/2
−1 0 2

 = PB1←B2 (say)

If B2 = {w1, w2, w3}, then the columns of PB1←B2
are [w1]B1

, [w2]B1
, [w3]B1

.
Thus (3/2)u1 − (1/2)u2 − u3 = w1

(1/2)u1 − (1/2)u2 + (0)u3 = w2

(−5/2)u1 + (3/2)u2 + 2u3 = w3

Substituting for u1, u2, u3 we get

w1 =

 2
0
1

 , w2 =

 1
2
0

 , w3 =

 1
1
1

.

Aliter: We know that
PB2←B1

= (PB2
)−1PB1

We are given PB2←B1
and PB1

. So we write
PB2

= PB1
(PB2←B1

)−1

We first find (PB2←B1)−1. We reduce the augmented matrix
(
PB2←B1

: I
)

into the reduced echelon form. The last three columns of the reduced echelon
form of

(
PB2←B1

: I
)

form (PB2←B1
)−1.(

PB2←B1
: I

)
=

 2 2 1 : 1 0 0
1 −1 2 : 0 1 0
1 1 1 : 0 0 1


∼

 1 0 0 : 3/2 1/2 −5/2
0 1 0 : −1/2 −1/2 3/2
0 0 1 : −1 0 2


Thus (PB2←B1

)−1 =

 3/2 1/2 −5/2
−1/2 −1/2 3/2
−1 0 2


So PB2

=

 6 4 5
3 −1 5
3 3 2

 3/2 1/2 −5/2
−1/2 −1/2 3/2
−1 0 2

 =

 2 1 1
0 2 1
1 0 1


Hence B2 =


 2

0
1

 ,

 1
2
0

 ,

 1
1
1


Example 16.11. Let V be an n-dimensional vector space and B1, B2, B3

be 3 ordered basis for V . Give a relation between the transition matrices
PB2←B1

, PB3←B2
, PB3←B1

.
Let A = PB2←B1 , B = PB3←B2 , C = PB3←B1 and let v ∈ V . Then

[v]B2
= A[v]B1

. . . (1)
[v]B3

= B[v]B2
. . . (2)

[v]B3
= C[v]B1

. . . (3)
(1) and (2) imply that
[v]B3 = BA[v]B1 . . . (4)
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Comparing (3) and (4) we get BA = C

Example 16.12. Let V be an n-dimensional vector space and B = {v1, v2, ....

vn} be any basis of V and [v] =


α1

α2

.

.

.
αn

 be the coordinates of v relative to the

standard basis. Then there is a unique matrix PB such that [v] = PB[v]B

Let [v]B =


β1

β1

.

.

.
βn


Then v = β1v1 + β2v2 + ... + βnvn
⇒ [v] = [β1v1 + β2v2 + ... + βnvn] = β1[v1] + β2[v2] + ... + βn[vn]

=
(

[v1] [v2] . . . [vn]
)


β1

β1

.

.

.
βn


= PB[v]B

where PB is the matrix whose jth column is the coordinate vector of vj relative
to the standard basis.
Uniqueness
Let Q be any matrix such that [v] = Q[v]B.
Taking v = vj

[vj ] = Q[vj ]B = Q



0
0
.
.
.

1 (jth row)
.
.
.
0
0


= jth column of Q

since [vj ] is the jth column of PB, ∴ jth column of Q is the same as the jth
column of PB for all j = 1, 2, ... n.
Hence Q = PB.

16.4 Exercise

1. Find the vector X determined by the coordinate vector relative to the
given basis B = {b1, b2}
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(i) b1 =

(
1
1

)
, b2 =

(
0
1

)
, [X]B =

(
1
−2

)
(ii) b1 =

(
1
0

)
, b2 =

(
1
1

)
, [X]B =

(
1
−2

)
(iii) B is standard basis and [X]B =

(
1
−2

)
(iv) b1 =

(
2
3

)
, b2 =

(
4
5

)
, [X]B =

(
−4
7

)
(v) b1 =

(
4
5

)
, b2 =

(
2
3

)
, [x]B =

(
−4
7

)
2. Find the coordinates of p = x3 − 3x2 + 1 relative to the ordered basis

(i) B1 = {1, x, x2, x3}
(ii) B2 = {x3, x2, x, 1}

(iii) B3 = {x2, x3, 1, x}

3. Let E11 =

(
1 0
0 0

)
, E12 =

(
0 1
0 0

)
, E21 =

(
0 0
1 0

)
, E22 =(

0 0
0 1

)
Find the coordinates ofA1 =

(
1 −1
2 0

)
andA2 =

(
2 −3
−6 5

)
relative to the ordered basis

(i) B1 = {E11, E12, E21, E22}
(ii) B2 = {E11, E21, E12, E22}

4. Let B = {v1, v2, v3, v4} is a basis of P3, where v1 = 1 + x, v2 =
2 + x2, v3 = x+ 2x2 − x3, v4 = x− x2. If w = 1 + 2x− 6x2 + 2x3, then

(i) find the matrix PB such that [v] = PB[v]B, for all v ∈ V .

(ii) find [w]B directly.

(iii) verify the relation (a) for w.

5. Let B = {v1, v2} is an ordered basis of R2, where v1 = (1, 2)t, v2 =
(−1, 2)t.

(i) Find v ∈ R2 such that [v]B = (1, − 1)t.

(ii) If v = (1, − 1)t, find [v]B.

(iii) Find transition matrix from B to the standard basis.

(iv) Find the transition matrix from the standard basis to B.

6. Let V be the vector space of all polynomials of degree ≤ 2. Let p1 =
1, p2 = 1 +x, p3 = (1 +x)2 and B = {p1, p2, p3}, obtain the coordinates
of p = 2 + 3x− x2 relative to B.

7. Let B = {(1, 1)t, (0, 1)t} be a basis for R2.

(i) Find v when [v]B = (1, − 2)t.

(ii) If w = (1, − 2)t, find [w]B.
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8. If PB =

(
1 2
−3 −5

)
is the change of coordinates matrix from B to the

standard basis, find the basis B in R2.

9. If P =

(
1 2
−3 −5

)
is the change of coordinate matrix from the standard

basis to some basis B, find B in R2.

10. If B1, B2 are two bases for R2, where B1 = {(1, 2)t, (2, 5)t}, B2 =
{(4, 5)t, (3, 4)t} . If v = (1, 1)t, then

(i) find [v]B1
.

(ii) find [v]B2
.

(iii) change of coordinate matrix from B1 to B2.

(iv) change of coordinate matrix from B2 to B1.

(v) verify (b) using (a) and (c).

(vi) verify (a) using (b) and (d).

11. Let B be the standard basis for R3. If B1 = {v1, v2, v3}, where v1 =
(1, 1, 0)t, v2 = (1, − 1, 0)t, v3 = (0, 1, 1)t, is another basis for R3,
then

(i) write the transition matrix PB←B1 .

(ii) write the transition matrix PB1←B.

(iii) verify that product of the matrices in (a) and (b) is the identity
matrix I.

12. Let B1 = {v1, v2} and B2 = {w1, w2} be two bases for R2, where v1 =
(1, 0)t, v2 = (1, − 3)t, w1 = (1, − 1)t, w2 = (1, 1)t.

(i) Compute PB1←B2 .

(ii) Verify [v]B1
= PB1←B2

[v]B2
for v = (5, 1)t.

(iii) Compute PB2←B1
directly and verify that PB2←B1

= P−1
B1←B2

.

13. Let V = P2, consider three bases for V , namely B1 = {1 + x + x2, 1 +
x, 1}, B2 = {1 + x2, 1, x}, B3 = {1, 1 + x2, x}, for p = (1 + x)2. Find

(i) [p]B1
.

(ii) [p]B2
.

(iii) [p]B3 .

(iv) The transition matrix of B3 relative to B2.

(v) The transition matrix of B1 relative to B2.

(vi) The transition matrix of B3 relative to B1.

14. Let B1 = {v1 v2}, B2 = {w1, w2} be two bases for R2, where w1 =
(1, 0)t, w2 = (1, − 1)t. If the transition matrix from B1 to B2 is(

2 3
−1 2

)
, find B1.
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15. Let B1 = {v1, v2}, B2 = {w1, w2} be two bases for P1.

(i) If v1 = 1 + 2t, v2 = t and the transition matrix from B1 to B2 is(
2 1
1 1

)
.

Determine B2.

(ii) If w1 = t − 1, w2 = t + 1 and the transition matrix from B2 to B1

is

(
1 2
2 3

)
.

Determine B1.

16. If W is the subspace of C3(C) spanned by B = {v1, v2}, where v1 =
(1, 0, i)t, (1 + i, 1, − 1)t, find [v]B for

(i) v = (1, 1, 0)t.

(ii) v = (1, i, 1 + i)t.

17. Find [v]B, for v = (10, 5, 10)t, B = {(1, 0, −1)t, (1, 2, 1)t, (0, −3, 2)t}
by finding the transition matrix from the standard basis to B.

18. Let B1 =

{(
1 1
0 0

)
,

(
0 0
1 0

)
,

(
0 0
0 1

)
,

(
1 0
0 0

)}
and B2 =

{(
1 0
0 0

)
,

(
0 1
1 0

)
,

(
0 2
0 1

)
,

(
0 0
1 1

)}
be the ordered bases for M2×2, let M =

(
1 2
−2 1

)
.

Find

(i) the coordinate vector of M with respect to basis to B1.

(ii) the coordinate vector of M with respect to basis to B2, using the
transition matrix.

19. Let B1 = {v1, v2, v3, v4} and B2 = {w1, w2, w3, w4} be two bases for R4,
where v1 = (0, 0, 1, − 1)t, v2 = (0, 0, 1, 1)t, v3 = (0, 1, 1, 0)t, v4 =
(1, 0, − 1, 0)t, w1 = (0, 1, 0, 0)t, w2 = (0, 0, − 1, 1)t, w3 =
(0, − 1, 0, 2)t, w4 = (1, 1, 0, 0)t, let B be the standard basis, then find
the following transition matrices

(i) from B2 to B1.

(ii) from B1 to B2.

(iii) from B1 to B.

(iv) from B to B2.

(v) verify (b), using (c) and (d). What is the relation between the ma-
trices in (a) and (b)?

20. Let V = P3 and B1, B2 be two ordered bases for V , where B1 = {1, x+
x2, 2x+ x3, x2 + x3}, B2 = {1 + x, x2, x3, 1}.

(i) Find the transition matrix from basis B2 to B1.

(ii) If v = 1 + x+ x2 + x3, find [v]B1 , [v]B2 .
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16.5 Matrix of a Linear Transformation

Earlier we showed that every linear transformation from Rn to Rm can be
represented by an m×n matrix, i.e. given a linear transformation T : Rn → Rm
we can find a m× n matrix A such that T (v) = Av for all v ∈ Rn. In that case
we had taken both the basis for Rn and for Rm to be the standard bases. We
now generalize this result for a linear transformation from an arbitrary finite
dimensional vector space to another finite dimensional vector space. Moreover
the bases considered need not necessarily be the standard bases. Let us first
consider an example.

Example 16.13. Let T : R2 → R3 be defined by T

(
x
y

)
=

 x+ y
x− y
y

.

Let B = {e1, e2} be the standard basis for R2 and B1 = {w1, w2, w3} where
w1 = (1, 0, 1)t, w2 = (0, 1, 1)t, w3 = (1, 1, 1)t is a basis for R3

Let v ∈ R2, v =

(
x
y

)
, then T (v) =

 x+ y
x− y
y

 = x

 1
1
0

 + y

 1
−1
0

.

Find the coordinates of T (v) relative to the basis B1. Since the coordinate map-
ping is a linear transformation, therefore to find [T (v)]B1

, it is sufficient to find
the coordinates of (1, 1, 0)t and (1, − 1, 0)t relative to the basis B1. To do
this, we proceed as follows:

A =

 1 0 1 : 1 1
0 1 1 : 1 −1
1 1 1 : 0 0


Transform A to reduced row echelon form, then

A ∼

 1 0 0 : −1 1
0 1 0 : −1 −1
0 0 1 : 2 0


Thus [T (v)]B1 =

 −1 1
−1 −1
2 0

( x
y

)
= P [v]B where P =

 −1 1
−1 −1
2 0


This shows that there exists a 3× 2 matrix P , such that [T (v)]B1

= P [v]B.
This matrix P depends on the bases B and B1 of R2 and R3 respectively. As
will be seen later, if the bases are changed P will change.
We now state and prove the general result.

Theorem 16.6. Let V and W be two n and m dimensional vector spaces over
the field F and T : V → W be a linear transformation of V into W . Let
B1 = {v1, v2, ... , vn} and B2 = {w1, w2, ... , wn} be ordered bases for
V and W respectively, then there exist a unique m × n matrix A such that
[T (v)]B1 = A[v]B1 , for all v ∈ V
Proof: Let [vi]B1

denote the coordinate vector of vi, 1 ≤ i ≤ n. Let v ∈ V ,
then there exist scalars α1, α2, . . . , αn ∈ F such that v = α1v1 +α2v2 + ... +
αnvn
then [v]B1 = (α1, α2, ... , αn)t

∵ T is a linear transformation
∴ T (v) = T (α1v1 + α2v2 + ... + αnvn) = α1T (v1) + α2Y (v2) + ... + αnT (vn)
for 1 ≤ i ≤ n, T (vi) ∈ W , so that T (vi) can be expressed as a linear com-
bination of the basis B2. So, there exists r1i, r2i, ..., rmi ∈ F such that
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T (vi) = r1iw1 + r2iw2 + ...+ rmiwm

∴ [T (vj)]B2
=


r1j

r2j

.

.

.
rmj


Let A = (rij)m×n =

(
[T (v1)]B2

[T (v2)]B2
. . . [T (vn)]B2

)
We show that A is the desired matrix,

A[v]B1
= A


α1

α2

.

.

.
αn

 =
(

[T (v1)]B2 [T (v2)]B2 . . . [T (vn)]B2

)


α1

α2

.

.

.
αn


= α1[T (v1)]B2 + α2[T (v2)]B2 + ... + αn[T (vn)]B2 = [α1T (v1) + α2T (v2) + ... +
αnT (vn)]B2

{as coordinate mapping is a linear transformation}
= [T (v)]B2

∴ [T (v)]B2
= A[v]B1

This proves the existence of a matrix A.

Uniqueness:
Let B = (bij)m×n be a matrix such that [T (v)]B2

= B[v]B1
, for all v ∈ V

for each i = 1, 2, ..., n.

[T (vi)]B2 = B[vi]B1 = B



0
.
.
.
0

1(ith coordinate)
0
.
.
.
0


= ith column ofB, but [T (vi)]B2 =

ith column of A. Hence for each i = 1, 2, ..., n the ith column of A and B are
identical.
∴ A = B.

The matrix A is called the matrix of the linear transformation T relative to
the basis B1 and B2. The jth column of A is the coordinate vector of the T (vj)
relative to the basis B2, where vj is the jth element of the ordered basis B1.
Thus, we have the following definition.

Definition 16.2. Let V (F ) and W (F ) be two vector spaces with dimensions
n and m respectively, and B1 = {v1, v2, ..., vn},B2 = {w1, w2, ..., wm} be
ordered basis for V and W respectively. Let T : V →W be a linear transforma-
tion.
For 1 ≤ j ≤ n, if
T (vj) =

∑m
j=1 αijwi
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Then A = (αij)m×n is called the matrix of T relative to the basis B1 and B2.
It is denoted by [T ]B1B2

. Observe that the jth column of A is the jth coordinate
vector [T (vj)]B2

. If both B1 and B2 are taken as the standard basis then [T ]B1B2

is called the standard matrix of T . If T is a linear operation on a n-dimensional
vector space V and B is an ordered basis for V , then [T ]BB is the matrix of T
relative to the basis B. It is denoted by [T ]B.

Example 16.14. Consider the linear transformation in Example 16.13. Let
B′ = {v1, v2} where v1 = (1, − 1)t, v2 = (1, 2)t be a basis for R2. Consider
some basis B1 for R3. We want to find the matrix of T relative to B′ and B1.
T (v1) = (0, 2, 1)t

T (v2) = (3, − 1, 2)t

To find [T (v1)]B3
and [T (v2)]B, we reduce the matrix

P =
(
w1 w2 w3 T (v1) T (v2)

)
to the reduced echelon form

P =

 1 0 1 : 0 3
0 1 1 : 2 −1
1 1 1 : −1 2

 ∼
 1 0 0 : −3 3

0 1 0 : −1 −1
0 0 1 : 3 0


Hence

[T (v1)]B1
=

 −3
−1
0


[T (v2)]B1

=

 3
−1
0


Matrix of T relative to B′ and B1 = [T ]B′B1

=
(

[T (v1)]B1 [T (v2)]B1

)
= −3 3

−1 −1
3 0


Comparing with Example 16.13 we see that by changing the basis, the matrix of
the linear transformation has also changed.

16.6 Working Rule to Obtain [T ]B1B2

Let V (F ) and W (F ) be two vector spaces over F of dimension n and m
respectively. Let B1 = {v1, v2, ..., vn} and B2 = {w1, w2, ..., wm} be ordered
bases for V and W respectively. Let T be a linear transformation of V into W .
To find [T ]B1B2 :

Step 1: For 1 ≤ i ≤ n, find [T (vi)], the coordinate vector of T (vi), relative
to the standard basis.
For 1 ≤ i ≤ n, find [wi].

Step 2: Let P =
(

[w1] [w2] . . . [wm] : [T (v1)] [T (v2)] . . . [T (vn)]
)

Transform P to reduced echelon form so that
P ∼

(
I : B

)
Then B = [T ]B1B2

.



694 CHAPTER 16. CHANGE OF BASIS

Example 16.15. Let T : P1 → P2 be defined by T (a + bx) = a + bx + ax2,
let B1 = {1, x} and B2 = {1 + x, 1 − x, x2} be ordered basis for P1 and P2

respectively. Find [T ]B1B2
.

Let B1 = {v1, v2}, where v1 = 1, v2 = x and B2 = {w1, w2, w3}, where
w1 = 1 + x, w2 = 1− x, w3 = x2.
We have

T (v1) = 1 + x2

T (v2) = x
To find [T (v1)]B2

, [T (v2)]B2
we reduce the matrix

P =
(

[w1] [w2] [w3] : [T (v1)] [T (v2)]
)

to row reduced echelon form

P =

 1 1 0 : 1 0
1 −1 0 : 0 1
0 0 1 : 1 0

 ∼
 1 0 0 : 1/2 1/2

0 1 0 : 1/2 −1/2
0 0 1 : 1 0


Hence [T ]B1B2 =

(
[T (v1)]B2

[T (v2)]B2

)
=

 1/2 1/2
1/2 −1/2
1 0


The following theorem gives a relation between the matrix of a linear trans-

formation in two different bases.

Theorem 16.7. (Change of basis) Let V be an n-dimensional vector space and
B1, B2 be two bases for V . If T is a linear transformation on V , then
[T ]B2

= P−1[T ]B1
P where P = PB1←B2

.

Proof: Let v ∈ V , and P = PB1←B2
then [T (v)]B1

= P [t(v)]B2
.

Since P is invertible
∴ [T (v)]B2 = (P )−1[T (v)]B1 = (P )−1[T ]B1 [v]B1 ...by definition of [T ]B1

= (P )−1[T ]B1
P [v]B2

...by definition of P .
Also [Tv]B2

= [T ]B2
[v]B2

by uniqueness of [T ]B2
we get

[T ]B2
= (P )−1[T ]B1

P
A diagrammatic representation of the above theorem is given here:

q q
x===zسN

^ qx======zسN
Nس

x===z

N

O
_

m
JNm

x===zسO
x======zq Oس

Let [T ]B1
= A, [T ]B2

= B
Figure(1) commutes, so A[v]B1

= [Tv]B2

Figure(2) commutes, so B[T ]B2 = [Tv]B2 = P−1AP [v]B2

∴ B = P−1AP

Example 16.16. Let T : R2 → R2 be defined by T (

(
x1

x2

)
) =

(
−x2

x1

)
and

B1 = {
(

1
−1

)
,

(
0
1

)
}, B2 = {

(
1
1

)
,

(
1
2

)
}
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be the ordered basis for R2. Let P be the transition matrix from B2 to B1. Find
[T ]B1

, [T ]B2

and verify that [T ]B2
= P−1[T ]B1

P

Solution: To find [T ]B1
, let v1 = (1 − 1)t, v2 = (0 1)t

then T (v1) =

(
1
1

)
, T (v2) =

(
−1
0

)
reduce the matrix(

[v1][v2]:[T (v1)]T (v2)
)

=

(
1 0:1−1
−11:1 0

)
= M(say)

to reduced echelon form. Then M ∼
(

1 0 : 1 −1
0 1 : 2 −1

)
so that [T ]B1

=

(
1 −1
2 −1

)
To find [T ]B2

let w1 =

(
1
1

)
, w2 =

(
1
2

)
then T (w1) =

(
−1
1

)
, T (w2) =

(
−2
1

)
Reduce the matrix

(
[w1] [w2] : [T (w1)] [T (w2)]

)
=

(
1 1 : −1 −2
1 2 : 1 1

)
=

N(say) to reduced echelon form so that [T ]B2 =

(
−3 −5
2 3

)
.

To find the transition matrix P from B2-basis to B1-basis, the matrix(
1 0 : 1 1
−1 1 : 1 2

)
= Q(say) is reduced to the reduced echelon form. Then

Q ∼
(

1 0 : 1 1
0 1 : 2 3

)
so that P =

(
1 1
2 3

)
. Then

P−1 =

(
3 −1
−2 1

)
and P−1[T ]B1

P =

(
−3 −5
2 3

)
= [T ]B2

Hence verified.

Example 16.17. Let T : P2 → P4 be defined by T (a+bt+ct2) = t2(a+bt+ct2).
If B1 = {1, t, t2}, B2 = {1, t, t2, t3, t4} are bases for P2 and P4 respectively.
Find [T ]B1B2 .

Solution: First we find the images of the elements of B1.
T (1) = t2, T (t) = t3, T (t2) = t4, so

[T (1)]B2 =


0
0
1
0
0

 , [T (t)]B2 =


0
0
0
1‘
0

 , [T (t2)]B2 =


0
0
0
0
1



Hence [T ]B1B2
=
(

[T (1)]B2 [T (t)]B2 [T (t2)]B2

)
=


0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

.

Example 16.18. Let T : R3 → R3 be defined by T (

 x
y
z

) =

 x+ y
y

x− z


Let B1 = {v1, v2, v3}, B2 = {w1, w2, w3} be two bases for R3, where
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v1 = (1, 1, 1)t, v2 = (1, 2, 3)t, v3 = (0, 1, 0)t, w1 = (1, 2, 2)t, w2 =
(2, 1, 3)t, w3 = (1, 1, 0)t.
Find [T ]B1

, [T ]B2
also verify that [T ]B2

= P−1[T ]B1
P , where P is the transition

matrix from B2-basis to B1-basis.

We have T (v1) = (2, 1, 0)t, T (v2) = (3, 2,−2)t, T (v3) = (1, 1, 0)t to obtain
[T ]B1

we reduce the matrix(
[v1] [v2] [v3] [T (v1)] [T (v2)] [T (v3)]

)
=

 1 1 0 : 2 3 1
1 2 1 : 1 2 1
1 3 0 : 0 −2 0

 =

L(say) to reduced echelon form. Then

L ∼

 1 0 0 : 3 7 3/2
0 1 0 : −1 −3 −1/2
0 0 1 : 0 1 1/2


Thus [T ]B1

=

 3 7 3/2
−1 −3 −1/2
0 1 1/2


To obtain [T ]B2

T (w1) =

 3
2
−1

 , T (w2) =

 3
1
−1

 , T (w3) =

 2
1
1


To obtain [T ]B2 reduce the matrix(

[w1] [w2] [w3] : [T (w1)] [T (w2)] [T (w3)]
)

i.e.

 1 2 1 : 3 3 2
2 1 1 : 2 1 1
2 3 0 : −1 −1 1

 = M(say)

to reduced echelon form. Then

M ∼

 1 0 0 : −4/5 −7/5 −2/5
0 1 0 : 1/5 3/5 3/5
0 0 1 : 17/5 16/5 6/5


∴ [T ]B2 =

 −4/5 −7/5 −2/5
1/5 3/5 3/5
17/5 16/5 6/5

 = 1/5

 −4 −7 −2
1 3 3
17 16 6


The transition matrix can be calculated. We get

P = PB1←B2
= 1/2

 1 3 3
1 1 −1
1 −3 1


Then P−1 = 1/5

 1 6 3
1 1 −2
2 −3 1


The following theorem expresses [T ]B1B2

in terms of the standard matrix of
T and the transition matrices.

Theorem 16.8. Let V(F) and W(F) be n and m dimensional vector spaces
respectively, and T : V → W be a linear transformation, and B1, B2 are stan-
dard bases for V and W respectively. Let A be the matrix of T relative to the
standard bases for V and W . Then
[T ]B1B2

= P−1
B2
APB1
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Proof: Let v ∈ V then
[T (v)]B2

= [T ]B1B2
[v]B1

. . . (1)
[v] = PB1

[v]B1
. . . (2)

[T (v)] = PB2 [T (v)]B2 . . . (3)
[T (v)] = A[v] . . . (4)
(3)⇒ [T (v)]B2

= P−1
B2

[T (v)] = P−1
B2
A[v] . . . (using (4))

= P−1
B2
APB1

[v]B1
. . . (using (2))

∴ [T (v)]B2 = P−1
B2
APB1 [v]B1 . . . (5)

By the uniqueness of [T ]B1B2
, (1) and (5) gives

[T ]B1B2
= P−1

B2
APB1

.
A diagrammatic representation of the above theorem is given below:

q q
x===zسN

^ qx======z

NسOس

x===z

xqz
m

JNm

x===zب N
x======zq Oس

Nسس O

Example 16.19. Let T : R2 → R2 be defined by

T (

(
x1

x2

)
) =

(
x1 − 2x2

x1 + 2x2

)
Let B1 = {v1, v2} and B2 = {w1, w2} be two bases of R2,

where v1 =

(
1
−1

)
, v2 =

(
1
1

)
, w1 =

(
1
0

)
, w2 =

(
1
−3

)
.

We have PB1
=
(

[v1] [v2]
)

=

(
1 1
−1 1

)
PB2

=
(

[w1] [w2]
)

=

(
1 1
0 −3

)
A =

(
T (e1) T (e2)

)
=

(
1 −2
1 2

)
P−1
B2
APB1

= 1/3

(
3 1
0 −1

)(
1 −2
1 2

)(
1 1
−1 1

)
= 1/3

(
8 0
1 −3

)
. . . (1) Let us now calculate [T ]B1B2

.

M =
(

[w1] [w2] : [T (v1)] [T (v2)]
)

=

(
1 1 : 3 −1
0 −3 : −1 3

)
Then M is reduced to the row reduced echelon form

M ∼
(

1 0 : 8/3 0
0 1 : 1/3 −1

)
so that [T ]B1B2

=

(
8/3 0
1/3 −1

)
= P−1

B2
APB1

. . . from (1)

Hence verified.



698 CHAPTER 16. CHANGE OF BASIS

Example 16.20. Let T : R4 → R3 be the linear transformation whose matrix

relative to the basis B, B′ is

 1 2 1 −1
−1 0 3 0
0 1 1 4


where B is the standard basis and B′ = {v1, v2, v3} with v1 =

 −1
−1
−1

 , v2 = −1
0
−1

 , v3 =

 0
−1
−1


Find T (e1), T (e2), T (e3) and T (e4) relative to the standard basis.

Solution: We have [T ]BB′ =

 1 2 1 −1
−1 0 3 0
0 1 1 4


The columns of the above matrix are [T (ei)]B′ , where e′is are the vectors of the
standard basis of R4. Thus

[T (e1)]B′ =

 1
−1
0

 , [T (e2)]B′ =

 2
0
1

 , [T (e3)]B′ =

 1
3
−1

 , [T (e4)]B′ = −1
0
4


∴ T (e1) = 1v1 − 1v2 + 0v3 = v1 − v2 = (0,−1, 0)t

∴ T (e1) relative to the standard basis is

 0
−1
0


i.e. [T (e1)] =

 0
−1
0


Similarly T (e2) = 2v1 − v3 = (−2, − 1, − 1)t

∴ [T (e2)] =

 −2
−1
−1


T (e3) = v1 + 3v2 − v3 = (−4, 0, − 3)t

∴ [T (e3)] =

 −4
0
−3


T (e4) = −v2 + 4v3 = (1, − 3, − 3)t

∴ [T (e4)] =

 1
−3
−3

.

Example 16.21. Let T : R3 → R3 be a linear transformation determined by
the matrix

A =

 2 −1 0
1 2 1
0 2 1


Let B = {v1, v2, v3} be a basis for R3 where v1 = (1, 2, 0)t, v2 = (0, 1,−1)t, v3 =
(0, 0, 2)t. Find the matrix of T relative to the basis B.
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Solution: We know that [T ]B =
(

[T (v1)]B [T (v2)]B [T (v3)]B
)

We reduce the matrix M =
(
v1 v2 v3 : [T (v1)] [T (v2)] [T (v3)]

)
to the reduced echelon form. The linear transformation determined by A is
T : R3 → R3 such that Tv = Av

∴ T (v1) =

 2 −1 0
1 2 1
0 2 1

 1
2
0

 =

 0
5
4


T (v2) =

 2 −1 0
1 2 1
0 2 1

 0
1
−1

 =

 −1
1
1


T (v3) =

 2 −1 0
1 2 1
0 2 1

 0
0
1

 =

 0
1
1


M =

 1 0 0 : 0 −1 0
2 1 0 : 5 1 1
0 −1 1 : 4 1 1

 ∼
 1 0 0 : 0 −1 0

0 1 0 : 5 3 1
0 0 1 : 9 4 2


Hence [T ]B =

 0 −1 0
5 3 1
9 4 2

.

Example 16.22. Let T : R2 → R2 be a linear transformation defined by

T (

(
x1

x2

)
) =

(
x1 + 3x2

x1 − 3x2

)
, let B1 be the standard basis for R2 and B2 =

{v1, v2}, where v1 = (1, 1)t, v2 = (1, − 1)t. Find [T ]B1B2 , compute

T (

(
1
−1

)
) using the matrix [T ]B1B2 and verify the result by direct computation.

Solution: Let B1 = {e1, e2}. Then T (e1) =

(
1
1

)
, T (e2) =

(
3
−3

)
.

Let A =
(

[v1] [v2] : [T (e1)] [T (e2)]
)

The matrix A is reduced to the reduced echelon form

A =

(
1 1 : 1 3
1 −1 : 1 −3

)
∼
(

1 0 : 1 0
0 1 : 0 3

)
Then [T ]B1B2

=

(
1 0
0 3

)
.

Let v = (1,−1)t. We know that [T (v)]B2
= [T ]B1B2

[v]B1
=

(
1 0
0 3

)(
1
−1

)
=(

1
−3

)
.

∴ T (v) = 1v1 − 3v2 =

(
1
1

)
− 3

(
1
−1

)
∴ T (v) =

(
−2
4

)
By direct computation

T (v) = T (

(
1
−1

)
) =

(
1− 3
1 + 3

)
=

(
−2
4

)
Hence verified.

Example 16.23. Let T : P1 → P1 be a linear transformation and B1 =
{v1, v2},
B2 = {w1, w2} be two bases for P1, where v1 = 1−x, v2 = x, w1 = 1+2x, w2 =
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1−x if [T ]B1
=

(
1 2
−1 1

)
, obtain [T ]B2

. Also obtain [T ]B2
from the standard

matrix of T .

Solution: We know that [T ]B2
= P−1[T ]B1

P , where P = PB1←B2

First we find P . To do this transform the matrix A =
(

[v1] [v2] : [w1] [w2]
)

to the reduced echelon form.

A =

(
1 0 : 1 1
−1 1 : 2 −1

)
∼
(

1 0 : 1 1
0 1 : 3 0

)
Thus P = PB1←B2 =

(
1 1
3 0

)
∴ [T ]B2 = P−1[T ]B1P = −1/3

(
0 −1
−3 1

)(
1 2
−1 1

)(
1 1
3 0

)
=

1/3

(
2 −1
19 4

)
Let us obtain the [T ]B2

from the standard matrix of T . Let B denote the stan-
dard basis for P1. To obtain the standard matrix [T ]B of T , we proceed as
follows:
[T ]B = Q−1[T ]B1

Q, where Q = PB1←B

But Q = P−1
B←B1

=

(
1 0
−1 1

)−1

=

(
1 0
1 1

)
∴ [T ]B =

(
1 0
−1 1

)(
1 2
−1 1

)(
1 0
1 1

)
=

(
3 2
−3 −1

)
We now find [T ]B2 , using [T ]B1 by [T ]B2 = R−1[T ]BR, where R = PB←B2 = PB2

∴ R =

(
1 1
2 −1

)
, so that R−1 = 1/3

(
1 1
2 −1

)
Hence [T ]B2

= 1/3

(
1 1
2 −1

)(
3 2
−3 −1

)(
1 0
1 1

)
= 1/3

(
2 1
19 4

)
This is the same as the one obtained before.

Example 16.24. Let T : P2 → P1 be defined by T (a + bx + cx2) = (a +
b + c) + (a + 2b + 3c)x, let B1 = {v1, v2, v3}, B2 = {w1, w2}, where
v1 = x2, v2 = −1 + x, v3 = 1 + x, w1 = 1 + x, w2 = x be the basis for P2

and P1 respectively. Find the matrix of T relative to B1 and B2. Also compute
T (1 + 2x+ 3x2) using the matrix [T ]B1B2

and directly.

Solution: We know that [T ]B1B2 =
(

[T (v1)]B2
[T (v2)]B2

[T (v3)]B2

)
Thus we have to find [T (vi)]B2 , i = 1, 2, 3.
T (v1) = T (x2) = 1 + 3x

⇒ [T (v1)] =

(
1
3

)
T (v2) = T (−1 + x) = −1 + 1 + (−1 + 2)x = x

⇒ [T (v2)] =

(
0
1

)
T (v3) = T (1 + x) = 1 + 1 + (1 + 2)x = 2 + 3x

⇒ [T (v3)] =

(
2
3

)
To find [T (v1)]B2

, [T (v2)]B2
, [T (v3)]B2

we reduce the matrix
A =

(
[w1] [w2] : [T (v1)] [T (v2)] [T (v3)]

)
to the reduced echelon form

A =

(
1 0 : 1 0 2
1 1 : 3 1 3

)
∼
(

1 0 : 1 0 2
0 1 : 2 1 1

)
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Hence [T ]B1B2
=

(
1 0 2
2 1 1

)
Since [T (v)]B2

= [T ]B1B2
[v]B1

∴ [T (1 + 2x+ 3x2)]B2
=

(
1 0 2
2 1 1

)(
1 + 2x+ 3x2

)
B1

To find
(

1 + 2x+ 3x2
)
B1

, we form the matrix B =
(

[v1] [v2] [v3] : [v]
)

and obtain its row reduced echelon form. Now

B =

 0 −1 1 : 1
0 1 1 : 2
1 0 0 : 3

 ∼
 1 0 0 : 3

0 1 0 : 1
2

0 0 1 : 3
2


∴ [v]B1

=

 3
1
2
3
2


∴ [v]B2

=

(
1 0 2
2 1 1

) 3
1
2
3
2

 =

(
6
8

)
Hence T (1 + 2x+ 3x2) = 6w1 + 8w2 = 6(1 + x) + 8x = 6 + 14x
Directly T (1 + 2x+ 3x2) = (1 + 2 + 3) + (1 + 4 + 9)x = 6 + 14x
Hence the matrix [T ]B1B2

is verified.

Example 16.25. Let T : R3 → R2 be a linear transformation and B1 = {(1, 1,
0)t, (0, 1, 1)t, (1, 0, 1)t},B2 = {(1, 2)t, (2, 1)t} be ordered basis of R3

and R2 respectively. If matrix of T relative to B1, B2 is

(
0 1 1

3
0 −1 1

3

)
.

Determine T .

Solution: Let P, Q be the transition matrices of B1, B2 to the standard basis,
then

P = PB1 =

 1 0 1
1 1 0
0 1 1


Q = PB2

=

(
1 2
2 1

)
If A is the standard matrix of T , then
Q−1AP = TB1B2

⇒ A = Q

(
0 1 1

3

0 −1 1
3

)
P−1 =

(
1 2
2 1

)(
0 1 1

3

1 −1 1
3

) 1 0 1
1 1 0
0 1 1

−1

To find P−1 transform
(
P : I

)
to
(
I : R

)
Then P−1 = R thus

(
P : I

)
=

 1 0 1 : 1 0 0
1 1 0 : 0 1 0
0 1 1 : 0 0 1


∼

 1 0 0 : 1
2

1
2 − 1

2

0 1 0 : − 1
2

1
2

1
2

0 0 1 : 1
2 − 1

2
1
2


Thus P−1 = 1

2

 1 1 −1
−1 1 1
1 −1 1


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So A = 1
2

(
0 −1 1
0 1 1

) 1 1 −1
−1 1 1
1 −1 1

 = 1
2

(
2 −2 0
0 0 2

)
=

(
1 −1 0
0 0 1

)

⇒ T (

 x1

x2

x3

) =

(
1 −1 0
0 0 1

) x1

x2

x3

 =

(
x1 − x2

x3

)
This defines T .

Example 16.26. Let V be a n-dimensional vector space and B1, B2 two bases
for V . If I is the identity operator on V . Then prove that [I]B1B2 = PB2←B1 .

Solution: Let B1 = {v1, v2, ..., vn}, B2 = {w1, w2, ..., wn}. Then
[I]B1B2

=
(

[T (v1)]B2 [T (v2)]B2 . . . [T (vn)]B2

)
=
(

[v1]B2
[v2]B2

. . . [vn]B2

)
= PB2←B1

... (by the definiton of tran-
sition matrix )
Hence [I]B1B2

= PB2←B1
.

Remark 16.1. The preceding problem shows that the matrix of the identity
operator need not be the identity matrix.

16.7 Exercise

1. Let B1 = {v1, v2} and B2 = {w1, w2} be the bases for vector spaces V
and W respectively. Let T : V →W be a linear transformation such that
T (v1) = 2w1 − 3w2

T (v2) = −w1 + 4w2

Find the matrix of T relative to the basis B1 and B2.

2. Let T : R2 → R3 be defined by

T

(
x1

x2

)
Let B = {e1, e2}, B′ = {(1, 2), (1, 1)}.
Find [T ]B, [T ]B′ , [T ]BB′ , [T ]B′B.

3. Let D : P2 → P2 be the differentiation operator. Let B be the standard
basis {1, x, x2} and B′ = {1, 1 + x, (1 + x)2}
Find [D]B, [D]B′ , [D]B,B.

4. Let T : R3 → R4 be the linear transformation whose matrix relative to
the standard basis is

1 −1 1
2 1 0
0 1 −1
1 0 1


Find T (e1), T (e2), T (e3) where {e1, e2, e3} is the standard basis for
R3.

5. Let T : R3 → R3 be the linear operator whose matrix relative to the basis
B, B′ is 1 1 1

0 2 1
1 3 1


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where B is the standard basis and B′ = {v1, v2, v3} with v1 = (1, 0, 1)t,
v2 = (0, 1, 1)t, v3 = (1, 1, 1)t.
Find T (e1), T (e2), T (e3) relative to the standard basis of R3.

6. Let A =

 1 1 −2
1 2 5
2 1 3

 and let T : R3 → R3 be a linear operator defined

by T (x) = Ax. If B = {e1, e2, e3} is the standard ordered basis of R3

and B′ = {e2, e3, e1}.

(i) Find [T ]B′ .

(ii) Find [T ]B′B.

(iii) Find [T ]BB′ .

7. Let T : R2 → R2 be a linear operator whose matrix relative to B′ =

{v1, v2}, v1 =

(
1
−1

)
, v2 =

(
0
1

)
is

(
1 −1
2 0

)
Find the matrix of T relative to the standard basis.

8. Let T : R2 → R2 be given by

T

(
x1

x2

)
=

(
−x2

x1

)
Find the matrix of T relative to basis B, B′ where

B = {
(

1
−1

)
,

(
0
1

)
}, B′ = {

(
1
1

)
,

(
1
2

)
}.

9. Let T : R2 → R2 be the linear operator defined by

T

(
x
y

)
=

(
ax+ by
cx+ dy

)
. Let B1 = {v1, v2}, B2 = {w1, w2}, where

v1 =

(
1
0

)
, v2 =

(
0
1

)
, w1 =

(
0
1

)
, w2 =

(
1
0

)
Find the matrix of T relative to

(i) B1.

(ii) B2.

(iii) B1 and B2.

(iv) B2 and B1.

10. Let T : R2 →M2×2(R) be defined by

T (

(
a
b

)
) =

(
a+ b a− b
2a− b a+ 2b

)
Find the matrix of T relative to the standard ordered basis.

11. Let T : P1 → P3 be defined by T (a+ bt) = at2 + bt3

Let B1 = {x, x+ 1} be basis for P1 and B2 = {x+ 1, x2− 1, x3} be basis
for P3. Find the matrix of T relative to the B1 and B2

12. Let T : M2×2(C)→M2×2(C) be defined by T (A) = At.

Let B1 = {
(

1 1
0 0

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
,

(
1 0
0 1

)
} and B2 be

the standard basis {E11, E12, E21, E22}. Find the matrix of T relative
to B1 and B2
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13. Let T : R2 → R2 be defined T

(
1
1

)
=

(
1
−1

)
, T

(
1
−1

)
=

(
2
1

)
(i) Find the matrix of T relative to the ordered basis

B =

{(
1
1

)
,

(
1
−1

)}
(ii) Find T

(
a
b

)
14. Let P1 → P2 be the transformation defined by T (p(x)) = (x−1)p(x), for

all p(x) ∈ P1

(i) Show that T is a linear transformation.

(ii) Find [T ]B1B2 , where B1 and B2 are the standard ordered bases for P1

and P2 respectively, namely {1, x} and {1, x, x2} respectively.

15. Let P1 → P1 be a linear operator whose matrix relative to basis B =

{1, − x, x} is

(
1 2
−2 3

)
(i) Find the matrix of T relative to the standard basis {1, x}.
(ii) Find T (2− 3x).

16. Let T : M2×2(R)→ R3 be defined by T

(
a b
c d

)
=

 a+ d
b+ c

a+ b+ c+ d


(i) Prove that T is a linear transformation.

(ii) Find the matrix of T relative to the standard basis for M2×2(R),
namely {E11, E12, E21, E22}.

17. Let t : C(R) → C(R) be defined by T (x + iy) = x − iy. Let B1 =
{1 + i, 1− i}, B2 = {1, 1 + i}. Find the matrix of T relative to

(i) B1 and B2.

(ii) B2 and B1.

(iii) B1.

(iv) B2.

18. Let T : M2×2(R)→M2×2(R) be defined by T (A) = AB−BA, where B =(
1 2
−1 0

)
. Let B1 =

{(
0 1
0 0

)
,

(
0 1
1 0

)
,

(
0 0
0 1

)
,

(
1 0
0 1

)}
and B2 =

{(
1 0
0 0

)
,

(
1 1
0 0

)
,

(
1 1
1 0

)
,

(
1 1
1 1

)}
. Find the ma-

trix of T relative to bases B1, B2

19. Let T : R2 → R2 be a linear operator and B =

{(
1
1

)
,

(
−1
1

)}
be

an ordered basis of R2. If the matrix of T relative to B is

(
1 0
0 −1

)
.
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Determine T . What is special about the vectors v1 =

(
1
1

)
, v2 =(

−1
1

)
.

20. Let T : R2 → R4 be defined by T

(
x1

x2

)
=


x1

x2

0
0

. Let B1 =

{(
1
0

)
,

(
0
1

)}
,B1
′ =

{(
1
0

)
,

(
1
1

)}
and B2 be the standard

ordered basis and B2
′ =




1
0
0
0

 ,


0
1
0
−1

 ,


0
0
1
0

 ,


0
0
1
1


 be

another basis for R4.

(i) Find the matrix [T ]B1
B2.

(ii) Find the matrix [T ]B1
′B2
′ .

(iii) Find T

(
−3
3

)
using the definition of T and using the matrix ob-

tained in part (a) and (b).

21. Let T : P1 → P1 be a linear transformation. Suppose that the matrix of T

relative to basis B1 = {v1, v2} is

(
2 −3
−1 4

)
, where v1 = 1+2x, v+2 =

1− x.

(i) Find [T (v1)]B1
and [T (v2)]B1

.

(ii) Find T (v1), T (v2).

(iii) Find T (6 + 9x).

22. Let B = {v1, v2} and B′ = {w1, w2} be two ordered basis for R2, where

v1 =

(
1
−1

)
, v2 =

(
0
1

)
, w1 =

(
1
2

)
, w2 =

(
1
−1

)
. Let T :

R2 → R2 be a linear operator such that [T ]B =

(
1 2
−1 1

)
.

(i) Find [T ]B′ from [T ]B.

(ii) Find matrix of T relative to standard bases of R2.

(iii) Obtain [T ]B′ from the standard matrix of T .

16.8 Supplementary Exercises

1. State whether the following are true or false. Justify the false ones:

(i) The coordinate vector of 3x3−3x2 +2 is relative to the ordered basis

{1, x, x2, x3} is


4
−3
0
2

 .
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(ii) The coordinate mapping from a n-dimensional V to Rn is a linear
transformation.

(iii) The coordinates of

(
1 2
−1 3

)
relative to the basis {E22, E21, E12,

E11} is


1
2
−1
3

, where Eij is the 2× 2, matrix with (i, j)th entry

1 and all others 0.

(iv) The transition matrix can be a singular matrix.

(v) If V is a finite dimensional vector space and B is any basis then for
all v ∈ V , [V ]B is well defined.

(vi) If B1 and B2 are two ordered bases of an n-dimensional vector space
V , the the matrix PB2←B1 is the matrix of identity transformation
from V with basis B1 to V with basis B2.

(vii) If B1 = {v1, v2, v3} and B2 = {w1, w2, w3} are two ordered bases
for R3, then the last three columns of the reduced echelon form of
the matrix [v1 v2 v3 w1 w2 w3] is PB2←B1

.

(viii) If B1 = {v1, v2, v3} and B2 = {w1, w2, w3} are two ordered bases
for R3 and the matrix [v1 v2 v3 w1 w2 w3] is reduced to [A I] then
the matrix A is PB2←B1

.

(ix) The matrix PB denotes the transition matrix from the standard basis
to basis B.

(x) The matrix PB←B is PB.

(xi) If B1, B2 and B3 are three ordered bases of an n-dimensional vector
space V , and A = PB2

← B1 and B = PB3
← B2 then PB3←B1

= AB.

(xii) If B1, B2, B3 are three ordered bases of a finite dimensional vector
space V , and A = PB2←B1

, B = PB3←B2
, C = PB1←B3

, then ABC =
I.

(xiii) If T is a linear transformation from a m-dimensional vector space
to a n-dimensional vector space, then the matrix of T is a m × n
matrix.

(xiv) If B1, B2 are ordered bases of vector spaces V (F ) and W (F ) respec-
tively, where V and W are m- and n-dimensional vector spaces over
F and T : V →W is a linear transformation, and A = [T ]B1B2

, then
multiplication by A defines a mapping from V to W .

(xv) The matrix of a linear operator is always non-singular.

(xvi) The matrix of the identity operator of a finite dimensional vector
space is always the identity matrix.

(xvii) If T is a linear operator on a finite dimensional vector space V , and
B1, B2 are two ordered bases for V , the [T ]B1 = P−1[T ]B2P , where
P = PB1←B2

.

(xviii) If T is a linear operator on a finite dimensional vector space V and
B1, B2 are two ordered bases for V , then [T ]B1B2

[T ]B2B1
= I.
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(xix) If B1, B2 are two ordered bases of a finite dimensional vector space
V , the the matrix of the zero transformation on V relative to B1, B2

is always the null matrix.

(xx) Let T be a linear operator on R2 and B = {v1, v2} be an ordered

basis. If [T ]B =

(
a b
c d

)
, then [T ]B′ = [T ]B

t
, where B′ = {v2, v1}.

2. Let B = {v1, v2, v3, v4} be a basis for R4, where

v1 =


1
1
0
0

 , v2 =


2
0
1
0

 , v3 =


0
1
2
−1

 , v4 =


0
1
−1
0

.

Let v =


1
2
−6
2

 , find

(i) PB, transition matrix from B to the standard basis.

(ii) [v]B directly.

(iii) verify the relation [u] = PB[u]B for the v.

3. Let T : R3 →M2×2(R) be defined by T

 x1

x2

x3


=

(
−x1 + x3 2x1 − 3x2

3x1 + 4x2 2x2 − x3

)
. Find the matrix of T relative to the stan-

dard basis.

4. If

(
1 2
−3 −5

)
is change of coordinates matrix from a basis B to the

standard basis, find B in P1.

5. If

(
1 2
−3 −5

)
is the change of coordinates matrix from the standard

basis {1, x} to some basis B, find B in P1.

6. Let B be the standard basis for R3 and B1, B2 two other bases given by

B1 = {v1, v2, v3} and B2 = {w1, w2, w3}, where v1 =

 1
1
1

 , v2 = 1
2
3

 , v3 =

 0
1
0

 , w1 =

 1
2
2

 , w2 =

 2
1
3

 , w3 =

 1
1
0

 .

Find the transition matrix of

(i) B1 relative to B.
(ii) B2 relative to B.
(iii) B relative to B1.

(iv) B relative to B2.

(v) B1 relative to B2.
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(vi) B2 relative to B1.

(vii) Find [v]B2
, if [v]B1

=

 1
−1
2


(viii) Find [v]B1 , if [v]B2 =

 1
−1
2


7. Let B1 = {v1, v2, v3} and B2 = {w1, w2, w3} be two bases for R3,

where v1 =

 1
0
1

 , v2 =

 1
1
0

 , v3 =

 0
0
1

 , w1 =

 3
2
0

 , w2 = 2
1
0

 , w3 =

 3
1
3

. Find the transition matrix from

(i) B2 to B1.

(ii) B1 to B2.

(iii) Standard basis to B1.

(iv) Standard basis to B2.

(v) B1 to standard basis.

(vi) B2 to standard basis.

8. Let B1 = {x2 + 1, x − 2x2, x + 3x2} and B2 = {2 + x, 3x2 + 1, x} be
bases for P2. Let p1 = 6x2 − 4x+ 8 and p2 = 9x2 − x+ 7.

(i) Find the coordinate vectors of p1 and p2 with respect to basis B2.

(ii) Find the transition matrix PB1←B2
from B2 − basis to B1 − basis.

(iii) Find the coordinate vectors of p1 and p2 with respect to B1 − basis
using PB1←B2

(iv) Obtain (c) by direct calculation.

(v) PB2←B1 , the transition matrix from B1 − basis to B2 − basis
(vi) Obtain (a) using PB2←B1

9. Let B1 =

{(
1 0
0 0

)
,

(
0 1
1 0

)
,

(
0 2
0 1

)
,

(
0 0
1 1

)}
and

B2 =

{(
1 1
0 0

)
,

(
0 0
1 0

)
,

(
0 0
0 1

)
,

(
1 0
0 0

)}
be two ordered

bases for M2×2(R). Let M =

(
1 1
1 1

)
. Find

(i) coordinate vector of M with respect to basis B2.

(ii) PB1←B2 , the transition matrix from B2 − basis to B1 − basis.
(iii) coordinate vector of M with respect to basis B1 using transition

matrix.

(iv) Transition matrix PB2←B1
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(v) What is the relation between the matrices obtained in (b) and (d).

10. Let B = {1+x+x2, x+x2, x2} be basis for P2. By finding the transition
matrix from B to the standard basis for P2, find the polynomial p whose

coordinate vector relative to B is

 3
−2
−5

 .

11. Let T : P1 → P2 be defined by T (a+ bx) = (a+ b) + (a− b)x+ bx2 and let
B1 = {1, x}, B2 = {1, x, x2} be the standard ordered bases for P1 and P2

respectively. Let B3 = {1−x, 1+2x} and B4 = {1+x2, x+x2, 1+x+x2}
be a basis for P1 and P2 respectively.

(i) [T ]B1B2

(ii) [T ]B1B4

(iii) [T ]B3B4

12. Let B1 = {v1, v2, v3}, B2 = {w1, w2} be bases for vector spaces V and
W respectively. Let T : v → W be a linear transformation such that
T (v1) = 2w1 − 3w2, T (v2) = 3w1, T (v3) = 4w2. Find [T ]B1B2

13. Let B = {v1, v2, v3} be an ordered basis of a vector space V . Define
T : V → V by T (v1) = v2, t(v2) = v3, T (v3) = 0

(i) Find [T ]B, [T 2]B, [T 3]B

(ii) Deduce from (i) that T 2 6= 0, T 3 = 0.

14. Let T : P2 → P4 be a transformation defined by T (p(x)) = (x2 + 5x −
1)P (x)

(i) Show that T is a linear transformation.

(ii) Find the matrix of T relative to the standard bases for P2 and P4.

15. Let T : P2 → P2 be a linear transformation whose matrix relative to the

basis B = {1, (x+ 1), (x+ 1)2} is

 1 −1 1
0 2 1
2 3 1


Find the image of (x2 + 2) under T .

16. Let T : P2 → R3 be defined by T (p(x)) =

 p(1)
p(−1)
p(2)


(i) Show that T is a linear transformation.

(ii) Find the matrix of T relative to the standard bases {1, x, x2} and
{e1, e2, e3} of P2 and R3 respectively.

17. If a basis B consists of the eigen vectors of a linear operator prove that
[T ]B is a diagonal matrix.

18. Let A be the matrix of the linear operator T , relative to an ordered basis
B = {v1, v2, ...vn}



710 CHAPTER 16. CHANGE OF BASIS

(i) If B1 = {v2, v1, v3, ...vn}, can [T ]B1
be obtained from [T ]B? If yes,

how.

(ii) If B2 is the basis obtained from B by interchanging the ith and jth
vectors in the basis B, what is the relation between [T ]B2 and [T ]B?

19. Let B = {e1, e2, e3} be the standard basis for R3 and B′ be a basis for
a vector space V and T : R3 → V be a linear transformation such that

T

 x1

x2

x3

 = (x2 − x1)v1 + (x1 + x3)v2 + 2x1v3 + 3x3v4

(i) Find T (e1), T (e2), T (e3).

(ii) Find [T (e1)]B′ , [T (e2)]B′ , [T (e3)]B′ .

(iii) Find the matrix of T relative to B, B′.

20. Let V be a n-dimensional vector space and I be the identity operator on
V . If B is the standard basis for V and B1 any other basis for V , find

(i) [T ]B1B1
.

(ii) [T ]BB.

(iii) [T ]B1B.

(iv) [T ]BB1 .

21. Let T : R3 → P3 be defined by T

 x1

x2

x3

 = (5x1 − 2x2) + (x1 − 3x2)x+

(2x1 − x2 + x3)x2 + 4x3x
3.

(i) Prove that T is a linear transformation.

(ii) Find [T ]B1B2
, where B1 = {e1, e2, e3} and B2 = {1, x, x2, x3} are

the standard bases for R3 and P3 respectively.

22. Let D : P3 → P3 be the differentiation operator. Let B = {1, x, x2, x3}
be the standard ordered basis for P3 and B′ = {1, 1+x, (1+x)2, (1+x)3}
be the another ordered basis for P3. Find [D]B and [D]B′ .

23. Let T : R3 → R3 be defined by T

 x1

x2

x3

 =

 3x1 + x3

−2x1 + x2

−x1 + 2x2 + 4x3

.

Let B be the standard basis for R3 and B′ = {v1, v2, v3}, where v1 = 1
0
1

 , v2 =

 −1
2
1

 , v3 =

 2
1
1

. Find

(i) [T ]B.

(ii) [T ]B′ .

(iii) Give a rule to define T−1.

24. Let B = {v1, v2, ...vn} be a basis of a vector space V . Let T be the linear
transformation on V such that
T (vi) = vi+1, i = 1, 2, 3, ... (n− 1)
T (vn) = 0.
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Find

(i) [T ]B.

(ii) [Tn]B.

(iii) Is Tn = 0? Justify.

25. Let v1 and v2 be the eigenvectors of matrix A =

(
1 2
2 1

)
. Find the

matrix of the transformation T : R2 → R2 determined by the matrix A.

16.9 Answers to Exercises

Exercise - 16.4

1. (i)

(
1
−1

)
(ii)

(
−1
−2

)
(iii)

(
1
−2

)
(iv)

(
20
23

)
(v)

(
−2
1

)
2. (i)

(
1 0 −3 1

)t
(ii)

(
1 −3 0 1

)t
(iii)

(
−3 1 1 0

)t
3. (i)

(
1 −1 2 0

)t
,
(

2 −3 −6 5
)t

(ii)
(

1 2 −1 0
)t
,
(

2 −6 −3 5
)t

4. (i)


1 2 0 0
1 0 1 1
0 1 2 −1
0 0 −1 0


(ii)

(
3 −1 −2 1

)t
5. (i)

(
2 0

)t
(ii)

(
1
4 −−3

4

)t
(iii)

(
1 −1
2 2

)
(iv)

(
1
2

1
4

− 1
2

1
4

)
6.
(
−2 5 −1

)t
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7. (i)
(

1 −1
)t

(ii)
(

1 −3
)t

8. {(1 3)t, (2 − 5)t}

9. {(−5 3)t, (−2 1)t} Hint: elements of B are columns of P−1

10. (i)
(

3 −1
)t

(ii)
(

1 −1
)t

(iii)

(
−2 −7
3 10

)
(iv)

(
10 7
−3 −2

)

11. (i) 1
2

 1 1 1
1 −1 1
0 0 1


(ii)

 1 1 0
1 −1 1
0 0 1


12. (i) 1

3

(
2 4
1 −1

)
(ii) 1

2

(
1 4
1 −2

)
13. v1 = (1 1)t, v2 = (5 − 2)t

14. (i) {(−1 3)t, (−1 2)t}
(ii) {(5 − 1)t, (−3 1)t}

15. (i) (−i 1)t

(ii) (2− i i)t

16. (3 7 3)t

17. (i) (2 − 2 1 − 1)t

(ii) (1 − 4
3

5
3 − 2

3 )t, PB2←B1
=


1 0 0 1
1
3

2
3 − 2

3 0
1
3 − 1

3
1
3 0

− 1
3

1
3

2
3 0



18. (i)


− 1

2 −1 − 1
2 0

− 1
2 0 3

2 0
1 0 −1 1
0 0 0 1



(ii) C = 1
2


0 2 3 −3
−2 −2 −2 2
0 2 1 1
0 0 0 2


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(iii) A =


0 0 0 1
0 0 1 0
1 1 1 −1
−1 1 0 0



(iv) B =


−1 1 1

2
1
2

0 0 −1 0
0 0 1

2
1
2

1 0 0 0


(v) Hint: BA = C

19. (i) 1
3


3 0 0 3
1 2 −2 0
1 −1 1 0
−1 1 2 0


(ii) (1 1

3
1
3

1
3

2
3 )t, (1 1 1 0)t

Exercise - 16.7

1.

(
2 −1
−3 4

)

7.

(
1 −2
1 2

)

8.

(
1 −2
0 1

)

9. (i)

(
a b
c d

)
(ii)

(
d c
b a

)
(iii)

(
c d
a b

)
(iv)

(
b a
d c

)

10.


1 1
1 −1
2 −1
1 2



11.


0 1
0 −1
0 1
1 1



12.


1 0 0 1
0 0 1 0
1 1 0 0
0 0 0 1


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13. (i)

(
0 3

2
1 1

2

)
(ii)

(
(3a− b)/2
−b

)

14.

 −1 0
1 −1
0 1


15. (i)

(
3 2
−2 1

)
(ii) −7x

16.

 1 0 0 1
0 1 1 0
1 1 1 1


17. (i)

(
2 0
−1 1

)
(ii)

(
1
2 0
1
2 1

)
(iii)

(
0 1
1 0

)
(iv)

(
1 2
0 −1

)

18.


0 −2 2 0
−1 −2 −1 0
−1 −2 −1 0
1 8 0 0


19. T

(
x
y

)
=

(
y
x

)
.

v1, v2 are eigenvectors of T and 1, − 1 are corresponding eigenvalues.

20. (i)


1 0
0 1
0 0
0 0



(ii)


1 1
0 1
0 −1
0 1



(iii)


−3
3
0
0


21. (i)

(
2
−1

)
,

(
−3
4

)
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(ii) 1 + 5x, 1− 10x

(iii) 6 + 15x

22. (i) 1
3

(
2 −1
19 4

)

(ii)

(
3 2
−3 −1

)

Supplementary Exercises-16.8

1. (i) F, B must be ordered basis.

(ii) F, (2 0 − 3 4)t

(iii) T

(iv) F, (3 − 1 2 1)t

(v) F, always non-singular.

(vi) T

(vii) F, PB1←B2

(viii) T

(ix) F, from B − basis to standard basis.

(x) F

(xi) F, PB1←B3
= BA

(xii) F, CBA = I

(xiii) F,n×m

(xiv) F, mapping from Rn to Tm

(xv) F, matrix of the zero operator is the null matrix which is singular.

(xvi) F

(xvii) F, P = PB2←B1

(xviii) F, [T ]B1B2
can be singular.

(xix) T

(xx) F,

(
b a
d c

)
= [T ]B′
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2. (i)


1 2 0 0
1 0 1 1
0 1 2 −1
0 0 −1 0


(ii) (3 − 1 − 2 1)t

3.


−1 0 1
2 −3 0
3 4 0
0 2 −1


4. {1 + 3x, 2− 5x}

5. {−5 + 3x, − 2 + x}

6. (v) 1
5

 1 6 3
1 1 −2
2 −3 1


(vi) 1

2

 1 3 3
1 1 −1
1 −3 1


(vii) 1

5 (1 − 4 7)t

(viii) (2 − 1 3)t

7. (i)

 1 1 2
2 1 1
−1 −1 1



8. (i) [p1]B2
=

 3
2
−7

 , [p2]B2
=

 2
3
−3


(ii)

 2 1 0
1 − 2

5
3
5

0 2
5

2
5


(iii) [p1]B1

=

 8
−2
−2

 , [p2]B1
=

 7
−1
0


(iv) Same as (c)

(v)

 1
3

1
3 − 1

2
1
3 − 2

3 1
− 1

3
2
3

3
2


(vi) Same as (a)

9. (i) (1 1 1 0)t

(ii)


1 0 0 1
1
3

2
3 − 2

3 0
1
3 − 1

3
1
3 0

− 1
3

1
3

2
3 0


(iii) (1 1

3
1
3

2
3 )t
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(iv)


0 1 2 0
0 1 0 1
0 0 1 1
1 −1 −2 0


(v) Inverse of each other.

10. 3 + x− 4x2

11. (i)

 1 1
1 −1
0 1


(ii)

 −1 1
−1 −1
2 0


(iii)

 −3 −3
−1 −1
3 0


12.

(
2 3 0
−3 0 4

)
13.

14.


1 0 0
5 1 0
1 5 1
0 1 5
0 0 1


15. x2 + x+ 6

16. (i) Yes. By interchanging the 1st and 2nd column of A.

(ii) [T ]B2
is obtained by interchanging the ith and jth columns of [T ]B

17. (i) −v1 + v2 + 2v3, v1, v2 + 3v4

(ii)


−1
1
2
0

 ,


1
0
0
0

 ,


0
1
0
1



(iii)


−1 1 0
1 0 1
2 0 0
0 0 3


18. (i) I (ii) I (iii) PB1 (iv) PB1

−1

19. Hint: use [D]B′ = P−1[D]BP

[D]B =


0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

 = [D]B′
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20. (i)

 3 0 1
−2 1 1
−1 2 4


(ii) Hint: [T−1]B = [T ]B

−1

21. (ii) On×n
(iii) Yes. The null matrix is the matrix of transformation of the zero
transformation.



Chapter 17

Eigenvectors and
Eigenvalues

Let us consider a transformation of R2, say projection on the x-axis. Under
this transformation, every vector along x-axis remains invariant. Similarly un-
der the reflection in the y-axis, every vector along the y-axis remains invariant.
Under dilation every non-zero vector is stretched by a factor. Thus, a trans-
formation may move some vectors parallel to themselves, that is, v → αv for
some scalar α. Such vectors are called eigen vectors and are important for a
transformation, and in this chapter we will learn to find them.

17.1 Eigenvectors and Eigenspace

Let T : R2 → R2 defined by T

(
x1

x2

)
=

(
3 −2
1 0

)(
x1

x2

)
be a linear transformation. If v = (2, 1)t, then Tv =

(
4
2

)
= 2v. Thus

0 6= v ∈ R2 is such that Tv = 2v, i.e. Tv is a multiple of v. We now define such
vectors.

Definition 17.1. (Eigenvector and Eigenvalue):
Let T: Rn → Rn be a linear operator.

(i) A non-zero vector v in Rn is called an eigenvector of T if

Tv = λv

for some λ ∈ R. The scalar λ is called the eigenvalue of T, associated with
v.

(ii) A scalar λ is an eigenvalue of T if there exists some non-zero v ∈ V such
that Tv = λv.The vector v is an eigenvector associated with the eigenvalue
λ.
Eigenvalues are also called latent roots, characteristic roots or characteris-
tic values. The eigenvectors are also called latent vectors or characteristic
vectors. In the above example, since

719
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Tv = 2v
2 is an eigenvalue of T associated with the eigenvector v.
Let A be a n× n matrix. Then

T : Rn → Rn defined by
TX = AX

is a linear operator on Rn.
Thus, if v ∈ Rn, then

Tv = λv ⇐⇒ Av = λv

Definition 17.2. (Eigenvector and Eigenvalues of a matrix):
Let A be a n× n matrix.

(i) A non-zero vector v ∈ Rn is called an eigenvector of A if there exists a
scalar λ such that

Av = λv
λ is called an eigenvalue of A. v is called an eigenvector corresponding to
the eigenvalue λ.

(ii) A scalar λ is called an eigenvalue of A if there exists a non-zero vector
v ∈ V such that Av = λv i.e. if (A − λI)v = 0 has a non zero solution.
Equivalently |A− λI| = 0. The vector v is an eigenvector associated with
the eigenvalue λ.
Since the eigenvector and eigenvalues of a linear operator are the same as
those of the corresponding matrix, and vice versa, therefore it is sufficient
to study them for a matrix only. We postpone the method of finding the
eigenvalues. We verify whether a given scalar is a eigenvalue and a given
vector is an eigenvector.

Example 17.1. Let A =

 1 2 −1
1 0 1
4 −4 5

. Verify that

(i)
(
−1, 1, 2

)t
is an eigenvector of A. Find the corresponding eigenvalue.

(ii) 2 is an eigenvalue of A.
v ∈ R3is an eigenvector if

Av = λv for some scalar λ.

Av=

 1 2 −1
1 0 1
4 −4 5

 −1
1
2


=

 −1
1
2

 = v

∴ Av = 1v

∴ v is an eigenvector of A and the corresponding eigenvalue is 1.
(ii) 2 is an eigenvalue of A if there exists a non-zero vector v such that
A v = 2 v

=⇒ (A− 2I)v = 0 has a non-zero solution. (17.1)
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A− 2I =

 −1 2 −1
1 −2 1
4 −4 3

 Reducing it to echelon

form

A− 2I ∼

 -1 2 −1
0 4 −1
0 0 0


Thus there are only 2 pivot columns. Since every column of A−2I is not a pivot
column, therefore (17.1) has a non trivial solution. Hence 2 is an eigenvalue of
A.
All solutions are

v =

 −3x2 − 4x3

x2

x3


=

 −3
1
0

x2 +

 −4
0
1

x3

Thus, the set of all eigenvectors corresponding to the eigenvalue 2 is −3
1
0

x2 +

 −4
0
1

x3

∣∣∣∣x2, x3 ∈ R, x2, x3 not both zero


The above example shows that there may be more than one eigenvector

corresponding to a given eigenvalue. In fact, we have a general result.

Theorem 17.1. Let A be a n-rowed square matrix. For each eigenvalue λ of
A, the set of all eigenvectors corresponding to λ together with the zero vector is
a subspace of Rn.

Proof: Let Wλ = { 0 6= v ∈ Rn | Av = λ v } ∪ { 0 }
= {v ∈ Rn|Av = λv }
∵ 0 ∈Wλ ∴Wλ 6= φ
Let v1 , v2 ∈Wλ , α ∈ R
∴ Av1 = λv1

Av2 = λv2

Then

A(αv1 + v2) = αAv1 +Av2

= α(λv1 + λv2)

= λ(αv1 + v2)

∴ A(αv1 + v2) = λ(αv1 + v2)

so that (αv1 + v2) ∈Wλ

Hence Wλ is a subspace of Rn.
This theorem gives us the following definition.

Definition 17.3. (Eigenspace): If λ is an eigenvalue of a matrix A, then the
set of all eigenvectors of A corresponding to λ together with the zero vector is
called the eigenspace of λ.



722 CHAPTER 17. EIGENVECTORS AND EIGENVALUES

We denote the eigenspace associated with λ by Wλ. Thus v ∈Wλ

⇐⇒ Av = λv
⇐⇒ (A− λI)v = 0
⇐⇒ v is a solution of (A− λI)X = 0
Hence the eigenspace of λ is the solution space of (A−λI)X = 0 and dim Wλ =
number of linearly independent solutions of (A− λI)X = 0
= nullity (A− λI)
Thus dim Wλ = nullity (A− λI).

We have proved the following result.

Theorem 17.2. Let λ be an eigenvalue of a matrix A. The dimension of the
eigenspace associated with λ is the nullity of A− λI.

Example 17.2. Consider the linear operator T on R3, which is the projection
on the X1X2 plane.

The matrix of T is

 1 0 0
0 1 0
0 0 0

 = A (say).

Check that 1 is an eigenvalue of A. The corresponding eigenspace is

W1 = span

 1
0
0

 ,

 0
1
0

 
ie. W1 is the X1X2 plane.
We see that under the projection map every vector in the X1X2 plane is mapped
to itself, and so must be a eigenvector.This is precisely what has been calculated
above.

Definition 17.4. (Invariant subspace): Let T be a linear operator on Rn.
A subspace W of Rn is said to be invariant under T if Tv ∈W for all v ∈W .

Theorem 17.3. If λ is an eigenvalue of a linear operator T , then the eigenspace
Wλ is invariant under T .

Proof: Let v ∈Wλ

Then Tv = λv
=⇒ Tv ∈Wλ ∵ λv ∈Wλ

Hence Wλ is invariant under T.

Theorem 17.4. The eigenvectors corresponding to distinct eigenvalues are lin-
early independent.

Proof: Let λ1, λ2, . . . , λm be distinct eigenvalues of a n × n matrix A and
v1, v2, . . . , vm be the corresponding eigenvectors.
Since vi is an eigenvector corresponding to the eigenvalue λi, therefore Avi =
λivi, and vi 6= 0, i = 1, 2, . . . ,m. If possible, let {v1, v2, . . . , vm}
be linearly dependent. ∵ v1 6= 0,∴ some vectors vi is linear combination of the
preceding vectors.
Let k be the least index such that vk+1 is the linear combination of the preceding
vi’s. Consequently {v1, v2, . . . , vk} is linearly independent. Hence there are
scalars α1, α2, α3, . . . , αk such that

vk+1 = α1v1 + α2v2 + ...+ αkvk (17.2)
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Multiplying both sides by A, we get

Avk+1 = α1Av1 + α2Av2 + ...+ αkAvk

=⇒ λk+1vk+1 = α1λ1v1 + α2λ2v2 + ...+ αkλkvk (17.3)

(17.2)× λk+1 − (17.3)

=⇒ 0 = α1(λk+1 − λ1)v1 + ...+ αk(λk+1 − λk)vk

=⇒ αi(λk+1− λi) = 0, i = 1, 2, ..., k as
(
v1, v2, ..., vk

)
is linearly independent.

=⇒ αi = 0, i = 1, 2, ..., k as λ′is are distict

=⇒ vk+1 = 0 using (17.2)

which contradicts the fact that vk+1 6= 0

Hence our assumption is wrong, so that v1, v2, ..., vm are linearly indepen-
dent.

17.2 Solved Problems

Problem 17.1. If A =

 −8 −9 −12
2 1 4
2 3 2

, find the eigenspace of A associ-

ated with eigenvalue -2. Also find a basis for the eigen space.

Solution: If v is as eigenvector of A associated with the eigenvalue -2
then

Av = −2v

=⇒ (A+ 2I)v = 0 (17.4)

Reducing to echelon form

A+ 2I ∼

 2 3 4
0 0 0
0 0 0

, so system (17.4) gives

v =

 − 3
2k2 − 2k1

k2

k1

 , where k1, k2 ∈ R

=

 − 3
2

1
0

 k2 +

 −2
0
1

 k1, k1, k2 ∈ R

The eigenspace associated with -2 is


 − 3

2
1
0

 k2 +

 −2
0
1

 k1, |k1, k2 ∈ R


(− 3

2 , 1, 0)t, (−2, 0, 1)t form a basis for the eigenspace.

Problem 17.2. Prove that a matrix A is a scalar matrix if and only if every
non-zero vector is an eigenvector of A.
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Solution: Let A =


d 0 0 0
0 d 0 0
. . . .
0 0 0 d

 be a scalar matrix.

Let X= (x1, x2, ....xn)t be any non-zero vector. Then

AX= (dx1, dx2, .....dxn)t =d(x1, x2, ....., xn)t

∴ AX = dX so that X is an eigenvector of A.

Conversely, let every non-zero vector be an eigenvector. If e1, e2, ....en are the
columns of the n×n unit matrix, then each ei being non-zero, is an eigenvector.
Let λi be the eigenvalue corresponding to the eigenvector ei. Thus

Aei = λiei , i=1,2,....n.

so that

A(e1 + . . .+ en) = λ1e1 + λ2e2 + ......λnen (17.5)

Since, e1 + e2 + .....en is a non-zero vector, therefore it is an eigenvector. Thus
there exists µ such that

A(e1 + e2 + ......en) = µ(e1 + e2 + ......en)

Using (17.5), we get

λ1e1 + λ2e2 + ......λnen = µ(e1 + e2 + ......en)

⇒ (λ1 − µ)e1 + ........+ (λn − µ)en = 0

⇒ λ1 − µ = ......... = λn − µ = 0, as the e′is are linearly independent.

∴ λ1 = ......... = λn = µ

Hence, Aei = µei, 1 ≤ i ≤ n

so that A =


µ 0 0 0
0 µ 0 0
. . . .
0 0 0 µ



17.3 Exercise

1. For the following matrices A determine whether v is an eigenvector of A.
If yes, find the corresponding eigenvalue.

(i) A=

 2 2 3
1 2 1
2 −2 1

, v =

 1
0
−1


(ii) A=

 2 2 3
1 2 1
2 −2 1

, v =

 −2
−3
2


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(iii) A=

 2 2 3
1 2 1
2 −2 1

, v =

 8
−5
2


2. For the following matrices A determine whether the given scalar λ is an

eigenvalue of A.

(i) A=

 3 −2 2
0 3 0
0 −2 5

, λ = 3

(ii) A=

 0 0 1
0 1 0
1 0 0

, λ = −1

(iii) A=


4 3 0 0
2 3 0 0
0 0 2 0
0 0 5 2

, λ = 2

3. Find a basis for the eigen space corresponding to the listed eigenvalue.

(i) A=

 2 2 1
1 3 1
1 2 2

 , λ = 1

(ii) A=

 6 −2 2
−2 3 −1
2 −1 3

 , λ = 2

(iii) A=

 2 1 0
1 2 1
0 1 2

 , λ = 2

4. Let T : R2 → R2 be the linear operator defined below. Find eigenvalues
of T and the associated eigen spaces without calculations.

(i) Projection on x1 axis.

(ii) Reflection in x2 axis.

(iii) Reflection in origin.

(iv) Rotation about origin.

(v) Reflection in the line x1 = x2.

5. Justify the following statements:

(i) A square A matrix is singular if and only if 0 is an eigenvalue of A.

(ii) A steady state vector of a stochastic matrix is an eigenvector.
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6. If A is any square matrix such that A2 = 0. Show that ’0’ is the only
eigenvalue of A.

7. If A is a square matrix, such that each column of A adds up to the same
number say λ. show that λ is a characteristic value of A.

8. If A is a diagonal matrix with distinct entries then prove that each diag-
onal entry is (i) an eigenvalue, (ii) the eigenspace corresponding to each
eigenvalue is of dimension 1.

9. If A is a square matrix such that the sum of the elements of each row of
A is k, prove that k is a characteristic root of A.

17.4 Characteristic Equation

The eigenvectors of a matrix A are the non-zero solutions of (A−λI)X = 0,
where λ is an eigenvalue, ∴ the question arises, “How do we find the eigenvalues
of a matrix?”

A scalar λ is an eigenvalue of a n-rowed square matrix A

⇐⇒ there exists some non-zero vector v, such that Av = λv

⇐⇒ (A− λI))v = 0

⇐⇒ (A− λI)X = 0 has a non-zero solution.

⇐⇒ column rank (A− λI) < n

⇐⇒ row rank (A− λI) < n, since column rank and row rank are equal.

⇐⇒ A− λI is row equivalent to a matrix with a row of zeros.

⇐⇒ |A−λI| = 0, since | A |= ± | B |, if A and B are row equivalent matrices.

∵ |A− λI| is a polynomial of degree n, in λ (the coefficient of λn is (−1)n) ∴ λ
is a zero of a polynomial of degree n, namely |A− λI|

Hence, the eigenvalues of a matrix A are the roots of the equation |A−λI| = 0

Thus any n× n matrix has n eigenvalues in C.

Definition 17.5. Let A be a n-rowed square matrix over R. Then,

(i) | A− λI | is called the characteristic polynomial of A.

(ii) The equation | A− λI |= 0 is called the characteristic equation of A.

(iii) The roots of the characteristic equation are called the characteristic roots
or eigenvalues or latent roots of A.
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Since, the matrix is considered over R, therefore the eigenvalues must also
belong to R, so we restrict ourselves to real eigenvalues only, though complex
eigenvalues are also possible. The study of complex eigenvalues is beyond the
scope of this book.

Problem 17.3. Let us find the characteristic polynomial, characteristic equa-
tion and characteristic roots of the matrix A, where

A =

 1 2 −1
1 0 1
4 −4 5


Solution: Characteristic polynomial of A is

|A− λI| =

∣∣∣∣∣∣
1− λ 2 −1

1 −λ 1
4 −4 5− λ

∣∣∣∣∣∣ = −λ3 + 6λ2 − 11λ+ 6

Characteristic equation of A is

|A− λI| = 0 i.e. λ3 + 6λ2 − 11λ+ 6 = 0 (17.6)

Characteristic roots of A are the roots of (17.6). They are
λ = 1, 2, 3.

Example 17.3. Let A =

(
0 1
−1 0

)
Characteristic equation of A is

|A− λI| = 0

=⇒
∣∣∣∣ 0 1
−1 0

∣∣∣∣ = 0

=⇒ λ2 + 1 = 0
λ = ±i

Since there are no real roots, hence there are no eigenvalues of A.
The characteristic roots of a matrix in special form can be easily found.

Theorem 17.5. The characteristic roots of a triangular matrix are its diagonal
elements.

Proof: Let A be an upper triangular matrix. Then

A =


a11 a12 . . . a1n

0 a22 . . . a2n

0 0 a33 . . a3n

. . . . . .

. . . . . .
0 0 0 . . ann


Characteristic equation of A is

|A− λI| = 0

=⇒

∣∣∣∣∣∣∣∣∣∣∣∣

a11 − λ a12 . . . a1n

0 a22 − λ . . . a2n

0 0 a33 − λ . . a3n

. . . . . .

. . . . . .
0 0 0 . . ann − λ

∣∣∣∣∣∣∣∣∣∣∣∣
= 0
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=⇒ (a11 − λ)(a22 − λ)...(ann − λ) = 0
=⇒ λ = a11, a22, ..., ann
Hence characteristic roots of an upper triangular matrix are its diagonal ele-
ments.
Similarly, if A is a lower triangular matrix, then characteristic roots are the
diagonal elements. Hence the characteristic roots of a triangular matrix are its
diagonal elements.

Corollary 17.6. The characteristic roots of a diagonal matrix are its diagonal
elements.

Corollary 17.7. The characteristic roots of a scalar matrix are its diagonal
elements.

The following theorem gives relationship of the eigenvalues and eigenvectors
of A and some of its related matrix.

Theorem 17.8. Let A be an n-rowed square matrix. Then

(i) A and At have the same characteristic roots.

(ii) If k is any scalar, then characteristic roots of kA are k times the charac-
teristic roots of A. Also the corresponding eigenvectors are the same.

(iii) For any positive integer p the characteristic roots of Ap are the pth

power of the characteristic roots of A. Moreover the corresponding eigen-
vectors are the same.

Proof: Left to the readers.

Theorem 17.9. Similar matrices have the same characteristic roots.

Proof: Let A and B be similar matrices. Then there exists an invertible
matrix P such that

B = P−1AP
Then

|B − λI| = |p−1AP − λI|
= |P−1AP − λI|
= |P−1AP − P−1PλI|
= |P−1AP − P−1λIP |
= |P−1(A− λI)P |
= |P−1||A− λI||P | ∵ det (AB) = (det A) (det B)

= |P−1||P ||A− λI| ∵ det (P−1) = (det P )−1

= |A− λI|
∴ |B − λI| = |A− λI|
so that |B − λI| = 0

⇐⇒ |A− λI| = 0

Thus B and A have the same characteristic equation and therefore the same
characteristic roots.
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Theorem 17.10. If A is any square matrices then

(i) Sum of the characteristic roots = trace A.

(ii) Product of characteristic roots = |A|.

Proof: Let A = (aij)n×m . Then

|(A− λI)| =

∣∣∣∣∣∣∣∣
a11 − λ a12 . . . a1n

. . . . . .

. . . . . .
an1 . . . . ann− λ

∣∣∣∣∣∣∣∣
= (−1)nλn + a1λ

n−1 + . . .+ an (17.7)

Characteristic equation of A is

|(A− λI)| = 0

⇒ (−1)nλn + a1λ
n−1 + . . .+ an = 0 (17.8)

If λ1, λ2, . . . , λn are the characteristic roots of A, then

λ1 + λ2 + . . .+ λn = (−1)n−1a1 (17.9)

λ1λ2 . . . λn = (−1)nan = an (17.10)

a1 is the coefficient of λn−1 in (17.7).
In the expansion of |(A − λI)|, λn−1 occurs only in the term (a11 − λ)(a22 −
λ) . . . (ann − λ) and its coefficient is (−1)n−1(a11 + a22 + . . .+ ann).

∴ a1 = (−1)n−1(a11 + a22 + . . .+ ann) = (−1)n−1 trace A (17.11)

(17.10) and (17.11) ⇒ λ1λ2 . . . λn = |A| Also putting λ = 0 in (17.7), we get

|A| = an (17.12)

(17.9) and (17.11) ⇒ λ1 + λ2 + . . .+ λn = trace A

Problem 17.4. Find the eigenvalues and the corresponding eigenvector of the

linear operator T on R3 whose matrix is

 2 2 3
1 2 1
2 −2 1



Solution: Let A =

 2 2 3
1 2 1
2 −2 1


The characteristic equation of A is | A - λ I | = 0

=⇒

∣∣∣∣∣∣
2− λ 2 3

1 2− λ 1
2 −2 1− λ

∣∣∣∣∣∣ = 0

=⇒ λ3 − 5λ2 + 2λ+ 8 = 0
=⇒ (λ− 2)(λ+ 1)(λ− 4) = 0
=⇒ λ = 2,−1, 4
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Thus there are 3 distinct eigenvalues. We find the eigenvectors corresponding
to them. If v is an eigenvector corresponding to the eigenvalue λ then

(A− λI)v = 0

Thus v is a solution of

(A− λI)X = 0

(17.13)

i.e.

 2− λ 2 3
1 2− λ 1
2 −2 1− λ

X = 0 (17.14)

Characteristic vector corresponding to λ = -1.

Putting λ = −1 in (17.14) we get 3 2 3
1 3 1
2 −2 2

X = 0 (17.15)

Reducing the coefficient matrix to echelon form, we get 3 2 3
1 3 1
2 −2 2

 ∼
 1 3 1

0 1 0
0 0 0


∵ there are only 2 pivot columns, ∴ (17.15) has non-trivial solutions, given by
x1 = −k.
x2 = 0
x3 = k.

where k is any real number.

∴ X =

 x1

x2

x3

 =

 −k0
k

 = k

 −1
0
1


∴ Eigenvectors corresponding to λ = −1 are

k
 −1

0
1

 |k ∈ R∗


An eigenvector corresponding to λ = 1 is

 −1
0
1

 , obtained by taking k = 1.

Characteristic vector corresponding to λ = 2.

Putting λ = 2 in (17.14)

=⇒

 0 2 3
1 0 1
2 −2 −1

X = 0 (17.16)

The echelon form of the coefficient matrix is 1 0 1
0 2 3
0 0 0


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By the same argument as before (17.16) has non-trivial solutions given by

x1 = −k
x2 = − 3

2k
x3 = k

where k is any real number. General solution is x1

x2

x3

 = k

 −1
3
2
1

 = k′

 −2
3
2

 , k′ ∈ R

∴ Eigenvectors corresponding to λ = 2 are

k
 −2

3
2

 |k ∈ R∗


An eigenvector corresponding to λ = 2 is

 −2
3
2

 , obtained by taking k = 1.

Characteristic vector corresponding to λ = 4.

Putting λ = 4 in (17.14)

=⇒

 −2 2 3
1 −2 1
2 −2 −3

X = 0 (17.17)

The echelon form of the coefficient matrix is 1 −2 1
0 -2 5
0 0 0


By the same argument as before (17.17) has non-trivial solutions given by

x1 = 8k
x2 = 5k
x3 = 2k

General solution is

X =

 x1

x2

x3

 = k

 8
5
2


∴ Eigenvectors corresponding to λ = 4 arek

 8
5
2

 |k ∈ R∗


An eigenvector corresponding to λ = 4 is

 8
5
2

 , obtained by taking k = 1.
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Thus the eigenvector corresponding to λ = -1 , 2 , 4 are

−1
0
1

 ,

−2
3
2

 ,

 8
5
2


respectively.
We know that the eigenvectors corresponding to distinct eigenvalue are linearly
independent. In the above problem, if
λ1 = −1, λ2 = 2, λ3 = 4 and

v1 =

 −1
0
1

 , v2 =

 −2
3
2

 , v3 =

 8
5
2


Let P =

(
v1 v2 v3

)
, D =

 λ1 0 0
0 λ2 0
0 0 λ3


Then AP =

 1 −4 32
0 6 20
−1 4 8


PD =

 1 −4 32
0 6 20
−1 4 8


so that AP = PD.
∵ the columns of P are linearly independent, ∴ P is invertible. Hence AP =
PD
=⇒ P−1AP = D
This will help us in solving many problems, as D is a diagonal matrix.

Problem 17.5. Let V = P3, the vector space of all polynomials of degree less
than or equal to 3.

Let D:P3 −→ P3 be defined by D(f(x)) = df(x)
dx

Find the matrix A of D relative to the standard basis.
Find the eigenvalues and the associated eigenspace of A.

Solution: A basis of P3 is {1 , x , x2 , x3 }= {v1, v2, v3, v4} (say)

Dv1 = 0 =
(

0 0 0 0
)t

Dv2 = 0 =
(

1 0 0 0
)t

Dv3 = 0 =
(

0 2 0 0
)t

Dv4 = 0 =
(

0 0 3 0
)t

Hence A =


0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

 is the matrix of D relative to the standard basis.

Eigenvalues of A
The eigenvalues of A are the roots of the equation |A− λI|= 0

=⇒


−λ 1 0 0
0 −λ 2 0
0 0 −λ 3
0 0 0 −λ

 = 0

=⇒ λ4 = 0
=⇒ λ = 0, 0, 0, 0
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The eigenspace corresponding to the eigenvalue λ = 0 is the solution set of
(A - 0 I)X = 0
=⇒ AX = 0
A is in echelon form, it is

0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0


If X =

(
x1 x2 x3 x4

)t
then the above system gives

x2 = x3 = x4 = 0
x1 is arbitrary.

Hence eigenspace corresponding to λ = 0 is

x1


1
0
0
0

 |x1 ∈ R


and a basis of the eigenspace is




1
0
0
0




Problem 17.6. If A is any non-singular matrix and if λ is an eigenvalue of
A, then
(i) 1

λ is an eigenvalue of A−1.

(ii) |A|
λ is an eigenvalue of adjA.

Solution: Since A is non-singular
∴ |A| 6= 0, and so every eigenvalue of A is non-zero. Let λ be an eigenvalue of
A.
∴ λ 6= 0 .
Let 0 6= X be eigen vector corresponding to the eigenvalue λ. Then

AX = λX (17.18)

(i) Premultiplying (17.18) by A−1,
A−1AX = λA−1X =⇒ A−1X = 1

λX
=⇒ 1

λ is a characteristic root of A−1

(ii) Premultiplying (17.18) by adjA, we get
(adjA)AX = λ adj(A)X
=⇒ |A| IX = λ(adjA)X

=⇒ (adjA)X = |A|
λ X

=⇒ |A|
λ is a characteristic root of adjA.

Problem 17.7. In a town the usage of land in the year 2005 was 30% residen-
tial, 20% commercial and 50% industrial. If xm, ym, zm denotes the percentage
of residental, commercial and industrial usage respectively after m years, and
Xm+1 = PXm

where Xm =
(
xm ym zm

)t
, and

P =

 0.8 0.1 0.0
0.1 0.7 0.1
0.1 0.2 0.9


Find the land used in town after 40 years.
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Solution: Here the initial vector

X0 =

 0.3
0.2
0.5


We first find the eigenvalues and the eigenvectors of the matrix P.
Characteristic equation of P is

|P − λI| = 0
=⇒ λ3 − 2.4 λ2 + 1.88λ − 0.480 = 0
=⇒ (λ − 0.6) (λ− 0.8) (λ− 1.0) = 0
=⇒ λ = 0.6 , 0.8 , 1.
Let λ1 = 0.6, , λ2 = 0.8 , λ3 = 1.
If v is a characteristic vector corresponding to λ, then we have to solve

(A - λI)v = 0

For λ = λ1 = 0.6, we get v1 =

 1
−2
1


For λ = λ2 = 0.8, we get v2 =

 1
0
−1


For λ = λ3 = 1, we get v3 =

 1
2
5


∵ the eigen vectors v1, v2, v3 correspond to distinct eigenvalues, ∴ they must be
linearly independent.
We express the initial vector X0 in terms of v1, v2, v3. We can see that
X0 = c1v1 + c2v2 + c3v3 1 1 1
−2 0 2
1 −1 5

 c1
c2
c3

 =

 0.3
0.2
0.5


Solving, we get,
c1 = 0.025, c2 = 0.15, c3 = 0.125

X1 = PX0 = P (c1v1 + c2v2 + c3v3)

= c1Pv1 + c2Pv2 + c3Pv3

= c1λ1v1 + c2λ2v2 + c3λ3v3

X2 = PX1 = P (c1λ1v1 + c2λ2v2 + c3λ3v3)

= c1λ1Pv1 + c2λ2Pv2 + c3λ3Pv3

= c1λ
2
1v1 + c2λ

2
2v2 + c3λ

2
3v3

In general Xk = c1λ
k
1v1 + c2λ

k
2v2 + c3λ

k
3v3

Land usage after 40 years is X40 and is given by

X40 = c1λ
40
1 v1 + c2λ

40
2 v2 + c3λ

40
3 v3

= c1(0.6)40v1 + c2(0.8)40v2 + c3(1)40v3

= c3v3 ∵ (0.60)40 ≈ 0, (0.8)40 ≈ 0
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= 0.125

 1
2
5


=

 0.125
0.250
0.625


∴ The land use in the town after 40 years is 12.5% residential, 25% commercial
and 62.5% industrial.

17.5 Exercise

1. For the following matrices find the eigenvalues without calculation.

(i)

 −1 2 3
0 1 4
0 0 5

 (ii)

 2 0 0
0 3 0
0 0 0

 (iii)

 −1 0 0
0 −1 0
0 0 −1


(iv)


3 0 0 0
−4 −1 0 0
1 0 3 0
6 0 −1 0

 (v)


2 0 0 0
2 1 0 0
3 −1 0 0
4 3 −4 −6


2. Find one eigenvalue of the following matrices without calculation.

(i)

 1 −2 4
1 −2 4
2 −4 8

 (ii)

 1 2 3
4 5 6
5 7 9

 (iii)

 2 2 2
2 2 2
2 2 2


(iv)


1 2 3 4
2 −1 6 0
3 1 9 4
−1 1 2 0


3. Find the eigenvalues of the matrix A

(i) A =

(
1 1
−2 4

)
(ii) A =

(
1 1
0 −1

)
(iii) A =

(
1

√
3

−
√

3 1

)

(iv) A =

 2 4 3
−4 −6 −3
3 3 1


(v) A =

(
cos θ − sin θ
sin θ cos θ

)
4. Find the eigenvalues of the following matrices

(i)

(
3 5
1 4

)
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(ii)

 0 1 2
−1 0 −3
−2 3 0


(iii)

 0 −1 2
−1 0 2
2 2 3


(iv)

 6 −3 −2
4 −1 −2
10 −5 −3


5. If the characteristic equation of a non-singular 3× 3 matrix A is
λ3 − pλ2 + qλ− r = 0
prove that the characteristic equation of adjA is
λ3 − qλ2 + rpλ− r2 = 0

6. Prove that A and At have the same eigenvalues. Do they necessarily have
the same eigenvectors?

7. Prove that the eigenvalues of kA are k times the eigenvalues of A. Also
prove that the corresponding eigenvectors are the same.

8. Prove that the eigenvalues of Ap are the pth powers of the eigenvalues of
A, where p is a positive integer and that the corresponding eigen vectors
are the same.

9. Prove that a matrix is singular if and only if 0 is an eigenvalue.

10. If A and B are n-rowed square matrices and if A is invertible, show that
A−1B and BA−1 have the same eigenvalues.

11. If A and B are the n-rowed square matrices and λ and µ are eigen values
of A and B corresponding to an eigenvector X, prove that

(i) λ+ µ is an eigenvalue of A+B.

(ii) λµ is an eigenvalue of AB.
Is λµ an eigenvalue of BA also?

12. For A =

 2 1 0
9 2 1
0 0 2

 find the eigenvalues and the corresponding eigen-

vectors. Find the eigen values and eigen vectors of At and hence verify Q 6.

13. For A =

 2 2 3
1 2 1
2 −2 1

 find the eigenvalues and the eigenvectors. Also

find the eigenvalues and eigenvectors of -2 A and 3A. Hence verify Q.7.

14. For A =

(
3 −1
−2 2

)
find the eigenvalues and eigenvectors of A2 and

A3. Hence verify Q.8.

15. Prove that every square matrix of odd order has atleast one real eigenvalue.
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16. If A =


12 0 0 0
0 12 0 0
0 0 1 0
0 0 0 3

, prove that (i) each diagonal entry is an eigen-

value (ii) the eigenspace associated with the eigenvalue 12 is 2-dimensional,
whereas the eigen spaces associated with 1 and 3 are each 1-dimensional.

17. Prove that the eigenspace of a n× n scalar matrix is Rn.

18. For the following matrix find the characteristic polynomial, eigenvalues
and the corresponding eigenspaces. 8 −6 2

−6 7 −4
2 −4 3


.

19. Let V = P1, the vector space of polynomials of degree 1 or less. Let
D:P1 −→ P1 defined by

D(f(x))) = d(f(x))
dx

Find the matrix A of D relative to the standard basis and the associated
eigen-space.
Repeat the above problem for P2.

17.6 Diagonalization

In this section we study a very useful application of eigenvalues and eigen-
vectors.
In physics, chemistry, engineering, business etc. we come across situations where
we need to calculate high power of a given matrix A. Such calculations are very

time consuming and prone to errors. For instance, if A =

(
1 1
−2 4

)
and we

want to calculate A6, then

A6 = A A A A A A

=

(
1 1
−2 4

) (
1 1
−2 4

) (
1 1
−2 4

) (
1 1
−2 4

) (
1 1
−2 4

) (
1 1
−2 4

)
=

(
−1 5
−10 14

) (
−1 5
−10 14

) (
−1 5
−10 14

)
=

(
−49 65
−130 146

) (
−1 5
−10 14

)
=

(
−601 665
−1330 1394

)

We know that, there is a diagonal matrix D =

(
2 0
0 3

)
and an invertible

matrix P =

(
1 1
1 2

)
such that A = PDP−1
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Then

A6 = (PDP−1) (PDP−1) (PDP−1) (PDP−1) (PDP−1) (PDP−1)

= PD6P−1

= P

(
2 0
0 3

)6

P−1

=

(
1 1
1 2

) (
26 0
0 36

) (
2 −1
−1 1

)
=

(
64 729
64 1458

) (
2 −1
−1 1

)
=

(
−601 665
−1330 1394

)
The calculations have been simplified because A = PDP−1

=⇒ A6 = PD6P−1

It is easy to find D6, as D is a diagonal matrix.
Thus we observe that if any matrix A can be expressed in the form PDP−1, for
some diagonal matrix D, then it is very easy to calculate any power of A. In
this case we say that A is a diagonalizable matrix. Thus we have the following
definition.

Definition 17.6. (Diagonalizable Matrix): A square matrix A is said to be
diagonalizable if A is similar to a diagonal matrix, i.e. there exist an invertible
matrix P and a diagonal matrix D such that A = PDP−1.
The following theorem gives a characterization of diagonalizable matrices.It also
gives a way to construct the matrix P .

Theorem 17.11. An n-rowed square matrix A is diagonalizable if and only if
A has n linearly-independent eigenvectors.
In this case D = P−1AP , where D is a diagonal matrix whose diagonal elements
are the eigenvalues of the A, and P is a matrix whose columns are respectively
the n linearly independent eigenvectors of A.

Proof: Let A be an n-rowed diagonalizable matrix. Then there exists a
diagonal matrix D and an invertible matrix P such that A = PDP−1

∴ AP = PD (17.19)

Let D =


λ1 0 . . 0
. λ2 . . 0
. . . . .
0 0 0 0 λn

 , P =
(
v1 v2 . . vn

)

Then AP =
(
Av1 Av2 . . Avn

)
and PD = P


λ1 0 . . 0
. λ2 . . 0
. . . . .
0 0 0 0 λn


=
(
λ1v1 λ2v2 . . λnvn

)
From (17.19) we get

(
Av1 Av2 . . Avn

)
=
(
λ1v1 λ2v2 . . λnvn

)
=⇒ Avi = λivi , i = 1 , 2 , . . . , n. (17.20)
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Since P is non-singular, ∴ the columns of P are non-zero and are linearly inde-
pendent.
Thus from (17.20) and above we conclude that v1 , v2, . . . , vn are linearly inde-
pendent. Thus A has n linearly-independent eigenvectors.
Conversely, suppose A has n linearly-independent eigenvectors v1 , v2 , . . . , vn.
Let λ1, λ2, . . . , λn be the corresponding eigenvalues. Then Av1 = λ1v1 , Av2 =
λ2v2 , . . . , Avn = λnvn, so that(

Av1 Av2 . . Avn
)

=
(
λ1v1 λ2v2 . . λnvn

)
(17.21)

Let P =
(
v1 v2 . . vn

)
, D =


λ1 0 . . 0
. λ2 . . 0
. . . . .
0 0 0 0 λn


∵ vi’s are linearly independent, ∴ P is non-singular.
(17.21) =⇒ AP = PD, so that A = PDP−1 as P is invertible.
Hence A is diagonalizable.

Problem 17.8. Is

(
1 1
0 −1

)
is diagonalizable.

Solution: Let A =

(
1 1
0 −1

)
Characteristic equation of A is∣∣∣∣ 1− λ 1

0 −1− λ

∣∣∣∣
=⇒ (λ+ 1)(λ− 1) = 0
=⇒ λ = −1, 1
Eigen values are -1 , 1

Let us now find the eigenvectors. Let v =
(
x1 x2

)t
is a eigenvector corre-

sponding to the eigenvalue λ. Then (A− λI)v = 0

=⇒
(

1− λ 1
0 −1− λ

)(
x1

x2

)
= 0 (17.22)

Eigenvector corresponding to λ = 1
For λ = 1, equation (17.22) becomes(

0 1
0 −2

)(
x1

x2

)
= 0 (17.23)

Echelon form of the coefficient matrix is(
0 1
0 0

)
But (17.23) ⇒ x2 = 0
∴ Eigenspace corresponding to λ = 1 is{(

x1

0

)
: x1 ∈ R

}
=

(
x

(
1
0

)
: x ∈ R

)
Hence {v1} =

{(
1
0

)}
is a basis of this eigenspace.

Similarly eigenspace corresponding to λ = -1 is{(
x1

−2x1

)
: x1 ∈ R

}
=

{
x1

(
1
−2

)
: x1 ∈ R

}
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Thus {v2} =

{(
1
−2

)}
is a basis of this eigenspace.

∵ the eigenvectors corresponding to distinct eigenvalues are linearly indepen-
dent,
∴ A has 2 linearly independent vectors v1 and v2

Hence A is diagonalizable, with

P = ( v1 v2 ) =

(
1 1
0 −2

)
, and D =

(
1 0
0 −1

)
, such that P−1 AP =

D.
Steps involved in diagonalizing a matrix

Step 1 Find the characteristic roots of A which are the roots of
|A− λI| = 0

Let them be λ1 , λ2 , . . . , λn
Step 2 If all the roots are real then proceed to Step 3.

If not, then A is not diagonalizable.
Step 3 For each eigenvalue λi, find a basis for the eigenspace. This basis is

the set of linearly independent eigenvectors associated with λi.
If the number of all linearly independent eigenvectors corresponding to the eigen-
value λi, is n then go to step4, else A is not diagonalizable.

Step 4 Let v1 , v2 , . . . , vn be the n linearly independent eigenvectors,
corresponding to the eigenvalues λ1 , λ2 , . . . , λn ( in this order ) obtained in
Step 3.

Let P =
(
v1 v2 . . vn

)
, D =


λ1 0 . . 0
. λ2 . . 0
. . . . .
0 0 0 0 λn


Then A = PDP−1 or P−1AP = D is the required diagonalization of A.

Problem 17.9. (Case of repeated eigenvalues) Is the matrix

A =

 2 4 3
−4 −6 −3
3 3 1

 diagonalizable?

Solution: Let A =

 2 4 3
−4 −6 −3
3 3 1


Step 1 Characteristic equation of A is

|A− λI| = 0

=⇒ λ3 + 3λ2 − 4 = 0
=⇒ (λ− 1)(λ+ 2)2 = 0
=⇒ λ = 1,−2,−2.
One eigen value is repeated.

Step 2 Let us find the eigenvectors corresponding to the eigenvalues.
The eigenspace corresponding to λ1 = 1 isk

 1
−1
1

 |k ∈ R


A basis of the eigenspace is


 1
−1
1

 =
{
v1

}
(say)
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The eigenspace corresponding to λ2 = -2 isk
 −1

1
0

 |k ∈ R


A basis of the eigen space is


 −1

1
0

 =
{
v2

}
(say)

Thus there are only two linearly independent vectors v1 , v2 and there are 3
eigen values. So A is not diagonalizable.

Problem 17.10. (Case of repeated eigenvalues) Diagonalize the matrix

A =

 1 3 3
−3 −5 −3
3 3 1

, if possible.

Step 1 The eigenvalues of A are the roots of the equation
|A− λI| = 0

=⇒ λ = 1,−2,−2
Eigenvalues are λ1 = 1, λ2 = −2
Step 2 The eigenspace corresponding to λ1 = 1 isk

 1
−1
1

 |k ∈ R


A basis of the eigenspace is


 1
−1
1

 =
{
v1

}
(say)

Eigen space corresponding to λ2 = -2 isk1

 −1
1
0

+ k2

 −1
0
1

 |k1 , k2 ∈ R


A basis is


 −1

1
0

 −1
0
1

 =
{
v2 , v3

}
(say)

Thus there are 3 linearly independent vectors.
Step 3

Let P = [ v1 v2 v3 ] =

 1 −1 −1
−1 1 0
1 0 1


D =

 λ1 0 0
0 λ2 0
0 0 λ3

=

 1 0 0
0 −2 0
0 0 −2


Then A = PDP−1 or D = P−1AP. so that A is diagonalizable.

Remark 17.1. Let A be a n × n matrix with distinct eigenvalues λ1 , λ2 , . . . , λk
(some may be repeated )
If the eigenspace of λ1 , λ2 , . . . , λk are of dimensions m1,m2, . . . ,mk respec-
tively, and

(i) if m1 +m2 + . . .+mk = n , then A is diagonalizable.

(ii) If m1 +m2 + . . .+mk < n then A is not diagonalizable.
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Example 17.4. Compute A8, where A =

(
4 −3
2 −1

)
First we diagonalize A, if possible.
It can be easily seen that eigenvalues of A are λ1 = 1 , λ2 = 2

Eigenvector corresponding to λ1=1 is v1 =

(
1
1

)
Eigenvector corresponding to λ2 = 2 is v2 =

(
3
2

)
If P =

(
v1 v2

)
=

(
1 3
1 2

)
, D =

(
λ1 0
0 λ2

)
=

(
1 0
0 2

)
then D = P−1AP so that A = PDP−1.

Hence A8 = PD8P−1 =

(
1 3
1 2

)(
18 0
0 28

)(
−2 +3
+1 −1

)
=

(
766 −765
510 −509

)

17.7 Exercise

1. Compute A4, where A = PDP−1, where

(i) P =

(
5 7
2 3

)
, D =

(
2 0
0 1

)
(ii) P =

(
2 −3
−3 5

)
D =

(
1 0
0 1

2

)
(iii) P =

(
1 1
2 −1

)
D =

(
1 0
0 4

)
2. If A ,v1 , v2 are given. Suppose you are told that v1, v2 are eigenvectors

of A. Use this information to diagonalize A, where

(i) A =

(
−3 12
−2 7

)
, v1 =

(
3
1

)
, v2 =

(
2
1

)
(ii) A =

(
1 1
−2 4

)
, v1 =

(
1
1

)
, v2 =

(
1
2

)
3. Diagonalize the following matrices, if possible.

(i)

(
5 1
0 5

)
(ii)

(
2 3
4 1

)

(iii)

 4 2 2
2 4 2
2 2 4


(iv)

 4 0 −2
2 5 4
0 0 5


(v)

 0 −4 −6
−1 0 −3
1 2 5


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(vi)

 −7 −16 4
6 13 −2
12 16 1


(vii)

 5 −8 1
0 0 7
0 0 −2


17.8 Supplementary Exercises

1. State whether the following statement are true or false. Justify the false
ones.

(i) If a transformation T moves a non-zero vector v parallel to itself,
then v is an eigenvector of T.

(ii) The transformation of rotation of R2 about the origin has no eigen-
vector.

(iii) The identity matrix has a unique eigenvalue and eigenvector.

(iv) If λ is an eigenvalue of a n×n matrix A, then the subset S of Rn
consisting of all eigenvectors of A associated with the eigenvalue λ is
a subspace of Rn.

(v) The dimension of an eigenspace corresponding to an eigenvalue can
be zero.

(vi) If A is an n × n matrix, then the sum of the dimensions of the
eigenspaces associated with all the eigenvalues of A may exceed n.

(vii) The eigenspace associated with an eigenvalue λ of a matrix is same
as the null space of (A− λI).

(viii) If Wλ is the eigenspace of A associated with eigenvalue λ, then Av ∈
Wλ, for all v ∈Wλ.

(ix) If A is an n × n diagonal matrix with distinct entries di, i = 1 , 2 ,
. . . , k ; di repeated ki times, then di is an eigenvalue of A and the
dimension of the eigenspace associated with di is less than ki.

(x) If A is a scalar matrix then A has only one eigenvalue and the
eigenspace is Rn.

(xi) A square matrix whose eigenvalues are not all distinct is not similar
to a diagonal matrix.

(xii) An n× n matrix over R has exactly n real eigenvalues.

(xiii) The matrix whose characteristic equation is x3−3x2 +5x−6= 0 can
be a singular matrix.

(xiv) Every root of the characteristic equation of A a matrix over R is a
charactristic value of A.

(xv) A matrix which is similar to a diagonal matrix has exactly n eigen-
values.

(xvi) A matrix with eigenvalues 1 , 2 , 3 cannot have its trace equal to
zero.
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(xvii) The matrix

(
a b
0 c

)
, a 6= c is similar to a diagonal matrix.

(xviii) If an n × n matrix has n distinct eigenvalues then the eigenspaces
associated with each eigenvalue is at most 1-dimensional.

(xix)

(
a b
0 c

)
is always similar to a diagonal matrix.

2. Find the eigen values and eigen space of the matrix 2 1 0
9 2 1
0 0 2

. Also find a basis for the eigen spaces.

3. Find the characteristic polynomial of

(i) A =


0 1 0 0
0 0 1 0
0 0 0 1
−a0 −a1 −a2 −a3


(ii) A =

 0 0 1
1 0 −1
0 1 1


4. Prove that the matrix

(
a −b
b a

)
, b 6= 0 has no real eigenvalue.

5. Prove that the characteristic roots of a real symmetric matrix are real.

6. Prove that the only real characteristic roots of a real skew symmetric
matrix is zero.

7. Prove that the characteristic vectors corresponding to distinct real roots
of a real symmetric matrix are orthogonal.

8. Prove that the only real characteristic roots of an orthogonal matrix are
± 1.

9. Prove that the only eigenvalue of nilpotent matrix is zero.

10. If A is a diagonal matrix with an entry d1 repeated k times then prove
that d1 is an eigenvalue with multiplicity k and that the dimension of the
eigenspace associated with the eigenvalue d1 is k.

11. For square matrices A and B , show that the following are equivalent
(i) Zero is an eigenvalue of AB.
(ii) Either A or B is singular but not both.
(iii) Zero is an eigen value of BA.

12. If A and B are square matrices then AB and BA have the same eigen
values.

13. If A and B are 2×2 matrices such that trace A = trace B, |A| = |B| then
prove that A and B have the same eigenvalues.

14. Let A and B are n × n matrices. If I - AB is invertible the I - BA is
invertibe and (I −BA)−1 = I +B(I −AB)−1A
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17.9 Answers to Exercises

Exercise - 17.3

6. Hint: |A| = 0. ⇒ ‘0’ is an eigenvalue of A, If λ is any other eigenvalue of
A, then Av = λv ⇒ A2v = λAv = λ2v ⇒ λ2v = 0 ⇒ λ = 0.

7. Hint: The columns of | A − λI | adds up to ’0’ so A is row equivalent to
a matrix with one row of 0’s. Therefore, | A− λI | is singular.

9. Hint: λ = (11 . . . 1)t

Exercise - 17.5

1. (i) -1,1,5
(ii) 2 , 3 , 0
(iii) -1 , -1 , -1
(iv) 3 , -1 , 3 , 0
(v) 2 , 1 , 0 , -6 .

2. (i) 0 ,
(ii) 0
(iii) 0
(iv) 0

3. (i) 2,3
(ii) 1,-1
(iii) None
(iv) 1,-2,-2
(v) None

4. (i) 7±
√

21
2

(ii) 0 , ±i
√

14

(iii) 1 , 1 + 2
√

3
(iv) 2, ±ι

5. Hint: λ is eigenvalue of A =⇒
|A− λI| = 0 =⇒ |A− λA(adjA)

|A| |= 0

A λ
|A| (

|A|
λ I − (adjA))| = 0

=⇒ |A| λ|A| |(adjA)− |A|λ I| =0

|adjA− |A|λ I| = 0 ∵ λ 6= 0
|A|
λ is an eigenvalue of A.

if f(λ)= 0 is the characteristic equation of A, then the characteristic equa-

tion of (adj(A))is f( |A|λ ) = 0

6. |A− λI| = |(A− λI)t| = |At − λIt| = |At − λI|



746 CHAPTER 17. EIGENVECTORS AND EIGENVALUES

7. |kA− kλI| = |k(A− λI)| = kn|A− λI|
∴ |kA− kλI| = 0⇐⇒ |A− λI| = 0
If X is an eigen vector corresponding to eigen value λ, then AX = λX
∴ k(AX) = kλX =⇒ (kA)X = kλX

8. Use induction.

10. ( A−1B − λI) = A−1(BA−1 − λI)A
∴ |A−1B − λI| = |BA−1 − λI|

12. λ1 = −1, λ2 = 2, λ3 = 5
X1 = (1 − 3 0)t, X2 = (1 0 − 9)t, X3 = (1 3 0)t

for At λ1 = −1, λ2 = 2, λ3 = 5
X1 = (9 − 3 1)t, X2 = (0 0 1)t, X3 = (9 3 1)t

13. λ1 = −1, λ2 = 2, λ3 = 4
X1 = (1 0 − 1)t, X2 = (−2 − 3 2)t, X3 = (8 5 2)t

19. −λ3 + 18λ2 − 45λ; 0 , 3 , 15 Span
(

1 2 2
)t
, Span

(
−2 −1 2

)t
,

Span
(

2 −2 1
)t
.

Exercise - 17.7

1. (i)

(
226 −525
90 −209

)
(ii) 1

16

(
151 90
225 −134

)

(iii)

(
171 −85
−170 86

)

2. λ1 = 1, λ2 = 3 P =

(
3 2
1 1

)
, D =

(
1 0
0 3

)
P−1 A P = D

3. (i) Not possible.

(ii) P =

(
1 −3
1 4

)
, D =

(
5 0
0 −2

)
(iii)P =

 1 −1 −1
1 1 0
1 0 1

 , D =

 8 0 0
0 2 0
0 0 2


(iv) P =

 −2 0 −1
0 1 2
1 0 0

 , D =

 5 0 0
0 5 0
0 0 4


(v) P =

 −2 −3 −2
1 0 −1
0 1 1

 , D =

 2 0 0
0 2 0
0 0 1


(vi) P =

 −4 1 −2
3 0 1
0 3 2

 , D =

 5 0 0
0 5 0
0 0 −3


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(vii) P =

 1 8 −58
0 5 −49
0 0 14

 , D =

 5 0 0
0 0 0
0 0 −2


Supplementary Exercises

1. (i) True
(ii) True
(iii) False, unique eigen value, but every vector is an eigen vector.
(iv) False, must contain zero vector also.
(v) False
(vi) False
(vii) True
(viii) True
(ix) False
(x) True
(xi) False
(xii) False
(xiii) False
(xiv) False, complex roots will not be characteristic value.
(xv) True
(xvi) True
(xvii) True
(xviii) False, exactly 1.
(xix) False, if b = 0 it is true.

3. (i) a0 + a1λ+ a2λ
2 + a3λ

3 + λ4 = 0
(ii) λ3 − λ2 + λ− 1 = 0

14. Hint: Let (I −AB)−1 = C
∴ I = (I −AB)C
=⇒ ABC + I = C
=⇒ BABCA+BA = BCA
=⇒ (I −BA)(I +BCA) = I
=⇒ (I −BA)−1 = I +BCA



Chapter 18

Markov Process

Definitions and Examples

Suppose that each year 6% of the population of Delhi migrate to Mumbai
and 4% of the population of Mumbai migrate to Delhi. Let the population
of Delhi be x0 and that of Mumbai be y0. We are interested in knowing the
population after 1, 2, 3 years.
Initial population vector X0 = [x0 y0]t if x1, y1 are the populations of Delhi and
Mumbai after 1 year.

∴ x1 = 0.94x0 + 0.04y0

y1 = 0.06x0 + 0.96y0

In the matrix form, we get(
x1

y1

)
=

(
0.94 0.04
0.06 0.96

)(
x0

y0

)
If X1 = [x1 y1]t is the population vector after 1 year

X1 = AX0

where

A =

(
0.94 0.04
0.06 0.96

)
If X2 = [x2, y2]t is the population vector after 2 years, then we will get

X2 = AX1

or X2 = A2X0

Thus, the population vector Xn = [xn, yn]t, after n years, is given by

Xn = AXn−1

or Xn = AnX0

748
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The matrix A has the following characteristics:
(i) Since the entries of each column of A represents the probability of a

person residing in one of the two cities in the next year, therefore each
entry is non-negative, and less than or equal to 1.

(ii) Since a person has to reside in one of the two cities (because we are
assuming that total population remains the same), therefore the sum of
the entries in each column is 1.

Now we give the following definitions:

Definition 18.1. (Probability vector):

A vector V = (x1, x2, · · · , xn)t is called a probability vector if

(i) xi ≥ 0 i = 1, 2, · · · , n
(ii) x1 + x2 + · · ·+ xn = 1

Definition 18.2. (Transition matrix):

Suppose that a system has n possible states, s1, s2, · · · , sn. Let pij be the
probability that if the given system is in state sj at a certain period of ob-
servation, then it will be in state si at the next period of observation, for
i, j = 1, 2, · · · , n. The matrix P = (pij)n×n is called the transition matrix
of the system.
Note that we assume that pij remains the same for all time periods.
The transition matrix is also called stochastic matrix or probability matrix or
Markov matrix. From the definition it follows that the columns of a transition
matrix are probability vectors.

Example 18.1. P =

 0.2 0.1 0
0.5 0.8 0.3
0.3 0.1 0.7

 is a transition matrix as

(1) All entries are non-negtive and less than or equal to 1.
(2) Sum of each column is 1.

Example 18.2. P =

 0 0.4 0.3
1 0.6 0.2
0 0.1 0.5

 is not a transition matrix as the sum

of the entries of the second column is not 1.

Example 18.3. P =

(
−0.5 0.7
1.5 0.3

)
is not a transition matrix even though

the sum of the entries of each column is 1. This is because one of the entries is
negative.

Definition 18.3. (Markov process):

A sequence of probability vectors X0, X1, · · · , and a transition matrix P such
that

Xi+1 = PXi, i = 0, 1, 2, · · ·

is called a Markov chain.
The vectors Xi in a Markov chain are called the state vectors at the ith stage.
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Thus X0 is the initial state vector. Since

Xi+1 = PX0, i = 0, 1, 2, · · ·
X1 = PX0

X2 = PX1 = P 2X0

X3 = PX2 = P 3X0

In general Xk = P kX0, so that the vector at any state is expressible in terms of
the initial vector.

Example 18.4. Give 3 terms of the Markov chain whose transition matrix is(
0.3 0.6
0.7 0.4

)
and initial vector is

(
0.6
0.4

)
.

Here

X0 =

(
0.6
0.4

)
,

P =

(
0.3 0.6
0.7 0.4

)

The first 3 terms are X0, X1, X2 where X1 = PXi−1, i = 0, 1, 2
Thus

X0 =

(
0.6
0.4

)
X1 = PX0 =

(
0.42
0.58

)
X2 = PX1 =

(
0.574
0.426

)
Example 18.5. Two companies X and Y manufacture mobiles. Initially X
has 3

5 of the market while Y has 2
5 of the market. Each year, company X keeps

1
4

th
of its customers while 3

4 switch to Y where as company Y keeps 2
3 of its

customers while 1
3 switch to X. Find

(i) Initial state vector
(ii) The transition matrix
(iii) The distribution of market after 1 year, 2 years and 3 years.

Solution: (i) If X0 is the initial market share, then

X0 =

(
3
5
2
5

)
(18.1)

(ii) The Transition matrix is

P =

 From X Y To
1
4

1
3 X

3
4

2
3 Y

 (18.2)
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(iii) Market distribution after 1 year is given by

X1 = PX0

Using (18.1) and (18.2)

X1 =

(
17
60
43
60

)

Market distribution after 2 years

X2 = PX1

X2 =

(
223
720
497
720

)

Market distribution after 3 years

X3 = PX2 =

(
2657
8640
5983
8640

)

We now define the steady state vector:

Definition 18.4. (Steady state vector):

Let X0, X1, X2, · · · be a Markov chain with transition matrix P . If the se-
quence X0, X1, X2, · · · is convergent then limn→+∞Xn is called the steady state
vector of the Markov chain.

Thus, if X is the steady state vector of a Markov chain with transition matrix
P , then

Xk+1 = PXk

Taking limits as k → +∞, we get

X = PX

Equivalently,

(P − I)X = 0̃

Thus the steady state vector is a solution of the homogeneous system

(P − I)X = 0̃

Example 18.6. Find the steady state vector in illustration.

If X =

(
x1

x2

)
is the steady state vector, then

x1 + x2 = 1 (18.3)
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as X is a probability vector. Also X is the solution of

PX = X ⇒ (P − I)X = 0

⇒
(

1
4 − 1 1

3
3
4

2
3 − 1

)(
x1

x2

)
= 0

⇒
(
− 3

4
1
3

3
4 − 1

3

)(
x1

x2

)
= 0

⇒ −3

4
x1 +

1

3
x2 = 0 (18.4)

3

4
x1 −

1

3
x2 = 0 (18.5)

Solving (18.3), (18.4) and (18.5) we get x1 = 4
13 , x2 = 9

13 .

Steady state vector =

(
4
13
9
13

)
Problem 18.1. There are two brands of tea, A and B, used by persons of a
certain town. Each year 30% users of Brand A start using Brand B, whereas
20% users of Brand B, start using Brand A. Initially, there are 8000 users
of brand A and 2000 users of Brand B. Assuming that the total no. of users
remains constant, how many users of each brand will there be after

(i) 1 year?
(ii) 2 years?
(iii) What is the steady state?

Solution: The initial vector is

X0 =


8000

10000
2000

10000

 =

(
0.8
0.2

)

The transition matrix is

P =

(
0.70 0.20
0.30 0.80

)
Vector Xk after k years is given by

Xk = PXk−1, k = 1, 2, · · ·

∴ X1 = PX0 =

(
0.70 0.20
0.30 0.80

)(
0.80
0.20

)
=

(
0.60
0.40

)
X2 = PX1 =

(
0.70 0.20
0.30 0.80

)(
0.60
0.40

)
=

(
0.50
0.50

)
Steady state vector X is the solution of

PX = X
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If X =

(
x1

x2

)
, then

x1 + x2 = 1 (18.6)

as X is a probability vector.

Also PX = X

⇒ (P − I)X = 0

⇒
(
−1 + 0.70 0.20

0.30 −1 + 0.80

)
X = 0

⇒ − 3x1 + 2x2 = 0 (18.7)

⇒ 3x1 − 2x2 = 0 (18.8)

Solving (18.6), (18.7) and (18.8) we get

x1 =
2

5
= 0.40

x2 =
3

5
= 0.60

(i) After 1 year, X1 =

(
0.60
0.40

)
Number of users of Brand A = .6× 10000 = 6000
Number of users of Brand B = .4× 10000 = 4000

(ii) After 2 years, X2 =

(
0.50
0.50

)
Number of users of Brand A = .5× 10000 = 5000
Number of users of Brand B = .5× 10000 = 5000

(iii) Steady state vector X =

(
0.40
0.60

)
Number of users of Brand A = .4× 10000 = 4000
Number of users of Brand B = .6× 10000 = 6000

Problem 18.2. In a college canteen three brands A,B,C of a soft drink are
available. Every year the change of liking of the students from a particular brand
to another is shown by the following diagram.

Write the transition matrix for the Markov chain.
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Solution: From the figure we see that the transition matrix is:

P =


From A B C To

0.5 0.1 0.0 A
0.2 0.6 0.2 B
0.3 0.3 0.8 C


Problem 18.3. In the above problem, if initially the distribution for brands

A,B,C is

 0.30
0.30
0.40

, find the distribution after 1 year. What is steady state

vector?

Solution: Here X0 =

 0.30
0.30
0.40


Distribution vector after 1 year is

X1 = PX0 =

 0.18
0.32
0.50


If X is the steady state vector, then X is the solution of

PX = X

⇒ (P − I)X = 0 (18.9)

Also X = [x1 x2 x3]t is a probability vector, so that

x1 + x2 + x3 = 1 (18.10)

(1)⇒

 −0.5 0.1 0.0
0.2 −0.4 0.2
0.3 0.3 −0.2

X = 0 (18.11)

We are required to solve the equations (18.10) and (18.11), i.e. the system
1 1 1
−0.5 0.1 0.0
0.2 −0.4 0.2
0.3 0.3 −0.2

X =


1
0
0
0

 (18.12)

The reduced echelon form of the augmented matrix of system (18.12) is
1 0 0 1

15

0 1 0 1
3

0 0 1 3
5

0 0 0 0


Thus the solution of system (18.12) is

X =

 x1

x2

x3

 =


1
15
1
3
3
5

 ≈
 0.07

0.33
0.60


X is the steady state vector.
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Problem 18.4. Show that every 2× 2 transition matrix has at least one steady
state vector. There are two linearly-independent steady state vectors if the tran-
sition matrix is I2.

Solution: By the definition of transition matrix, any 2× 2 transition matrix

is of the form

(
α 1− β

1− α β

)
with 0 ≤ α, β ≤ 1.

Let

P =

(
α 1− β

1− α β

)
The steady state vector X is a solution of

PX = X

⇒ (P − I)X = 0 (18.13)

P − I =

(
α− 1 1− β
1− α β − 1

)
∼
(
α− 1 1− β

0 0

)
Since the echelon form has a row of zeroes, therefore there is one free variable.
Hence Eq. 18.13 has at least one solution.
Thus there is at least one steady state vector.

If α = 1, β = 1 then P =

(
1 0
0 1

)
and P − I =

(
0 0
0 0

)
so that there are two free variables. This gives two linearly-independent solution
of Eq. 18.13. This gives two linearly-independent steady state vectors. (In fact
every vectors in R2 is a steady state vector.)

Problem 18.5. Let P be a transition matrix. Then the following properties
hold:

(i) The rows of (P − I) are linearly dependent.
(ii) Row rank of (P − I) is less than n.
(iii) The null space of (P − I) is non-zero. Thus PX = X always has a non

trivial solution.

Solution: Let P = (pij)n×n be a transition matrix. Then 0 ≤ pij ≤ 1 ∀i, j =
1, · · · , n
For each j = 1, 2, · · · , n

p1j + p2j + · · ·+ pnj = 1 (18.14)

P − I =


p11 − 1 p12 · · · p1n

p21 p22 − 1 · · · p2n

...
...

. . .
...

pn1 pn2 · · · pnn − 1

 =


R1

R2

...
Rn


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(i) Applying Rn → Rn +R1 + · · ·+Rn−1, the last row is
[p11+p21+· · ·+pn1 − 1 p12+p22+· · ·+pn2 − 1 · · · p1n+p2n+· · ·+pnn − 1]
i.e. [0 0 · · · 0]
Thus R1 + · · ·+Rn = 0
Hence the rows of (P − I) are linearly dependent.

(ii) By (i) the rows of (P − I) are linearly dependent. Thus, there can be at
most n − 1 linearly independent rows. Therefore dimension of row space
≤ n− 1
Since row rank = dimension of row space
∴ row rank of (P − I) ≤ n− 1 < n

(iii) Null space of (P − I) is the set of all solutions of

(P − I)X = 0 (18.15)

Since columns rank of (P − I) = row rank of (P − I) < n by (ii)
∴ Column rank of (P − I) < n.
Hence (18.15) has a non-trivial solution. Hence (P − I) has non-zero null
space.
∴ ∃ 0 6= X0 such that (P − I)X0 = 0
Hence

PX0 = X0

∴ PX = X has a non-zero solution.

18.1 Exercise

1. The land use in a city in 2009 is 30% residential, 20% commercial and
50% industrial. If the transition matrix is given by 0.8 0.1 0.0

0.1 0.7 0.1
0.1 0.2 0.9


Find the distribution after 1 year, 2 years.

2. Which of the following matrices are not transition matrices. Give reasons
for your answer.

(i)

(
0.4 0.6
0.2 0.8

)

(ii)

 0.2 0.3 0.8
0.9 0.7 0.1
0.1 0.0 0.1


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(iii)

 0.8 0.2 1.0
0.2 0.8 0.0
0.0 0.0 0.0



(iv)


0.2 0.6 0.3
0.2 0.1 0.1
0.4 0.1 0.1
0.2 0.2 0.5


(v)

 0.2 0.4 0.3
0.0 −0.1 0.3
0.8 0.7 0.4


3. A car rental company XYZ has branch offices in three cities A, B and C.

A car rented from one office can be left at any other office. The company
started the business with 30 cars at each of the offices.
The monthly distribution is shown by the following diagram:

Find the distribution after 1 month, 2 months. Also find the steady state.

4. Find the steady state vector for the following transition matrices:

(i)

(
0.6 0.2
0.4 0.8

)
(ii)

(
0.9 0.4
0.1 0.6

)
(iii)

(
0.5 0.8
0.5 0.2

)
5. Find the steady state vector for the following matrices:

(i)

 0.8 0.1 0.2
0.1 0.7 0.1
0.1 0.2 0.7



(ii)

 0.6 0.1 0.3
0.3 0.7 0.2

0.1 0.2 0.5


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6. A new means of transport, namely ‘the Metro’, has gone into operation
in Delhi. Studies made by the transport authority predict the percentage
of commuters who switch over to Metro or continue using their old means

of transport. The transition matrix is

(
0.7 0.2
0.3 0.8

)
. Suppose that the

population of the commuters remains constant and initially 30% of the
commuters use Metro. What percentage of the commuters will be using
the Metro after 1 year, 2 years?

7. A behavioural psychologist places a rat every day in a cage with two
doors, A and B. The rat can go through door A where it receives an elec-
tric shock, or through door B, where it receives food. A record is made of
the door through which the rat passes. At the start of the experiment, on
a Monday, the rat is equally likely to go through door A as through door
B. After going through door A and receiving a shock, the probability of
going through the same door on the next day is 0.3. After going through
door B and receiving food, the probability of going through the same door
on the next day is 0.6.

(i) Write the transition matrix.
(ii) What is the probability of going through door B Wednesday?
(iii) What is the probability of going through door A on Thursday?

8. The students of Vidya Mandir School are given one of the 3 drinks every
day — milk, juice or coffee. If they are given milk today, the chances of
getting juice or coffee tomorrow are 30% and 10% respectively. If today
they get juice, then the chances of getting milk or juice tomorrow are
40% and 30% respectively. Finally if they get coffee today, then there
are 40% chances of getting milk and 50% chances of getting juice on the
next day.

(i) Write the transition matrix.

(ii) If today there are 50% chances of getting milk and 50% chances of
getting juice, what are the chances of getting coffee tomorrow, and
juice the day after tomorrow.

(iii) Suppose that on a Tuesday there are 40% chances of getting milk and
60% chances of getting coffee. What are the chances for
(a) Juice on Thursday (b) Milk on Friday.

(iv) In the long run, what are chances of milk being served?

18.2 Answers to Exercises

Exercises - 18.1

(1) After 1 year 26% residential, 22% commercial, 52% industrial
After 2 years 23% residential, 23.2% commercial, 53.8% industrial
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(2) (i) Column Sum is not 1
(ii) Sum of elements of 1st column 6= 1
(iv) Not a square matrix
(v) Has a negative entry .

(3) (27, 18, 45) in offices at A,B,C respectively after 1 month and 2 months
(.3, .2, .5) the steady state vector.

(4)
(i)

(
1
3
2
3

)

(ii)

(
0.8
0.2

)

(iii)

(
8
13
5
13

)
(5)

(i)


7
16
4
16
5
16



(ii)


11
37
17
37
9
37


(6)

(
0.35
0.65

)
,

(
0.375
0.625

)
(7) (i)

(
0.3 0.4
0.7 0.6

)
(ii) 0.635
(iii) 0.3635

(8) (i)

 0.6 0.4 0.4
0.3 0.3 0.5
0.1 0.3 0.1


(ii) 20%, 34%
(iii) (a) 32%

(b) 49.92%
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p-rowed minor, 464

Diagonal Matrix, 442
Scalar matrix, 442

Abelian group, 185
Adjoint of a Matrix, 464
an echelon form, 363
Angle between two vectors, 476
antisymmetric, 26
associates, 141
Associative operation, 51
Associativity, 186

basic variables, 395
Basis, 615
bijective, 83
binary operation, 49
Binary relation, 20
block diagonal matrix, 467
block upper triangular matrix, 467

Cardinality of a finite set, 111
Cartesian product of sets, 16
centralizer, 240
Centralizer of a subset, 240
Centralizer of an element, 239
Centre of a group, 241
Centre of a ring, 313
characteristic equation, 483, 726
characteristic polynomial, 483, 726
characteristic root, 483
characteristic roots, 726
Closure, 186
co-domain of transformation, 511
Cofactor, 464
Column Rank, 635
Commutative Operation, 53
Commutativity, 186
Comparable matrices, 443
Complement of a set, 12
composite, 100, 141

congruent, 166
Conjugate of a matrix, 450
coordinates, 617
coordinates of a vector, 617
Countable set, 112
Countably infinite set, 112
cyclic group, 271
Cyclic subgroup, 253
cyclic subgroup, 271

diagonal set, 23
Diagonalizable Matrix, 490, 738
Difference of two sets, 10
Dimension, 628
Disjoint sets, 9
Divisibility, 140
Division ring, 318
domain of transformation, 511
Dot product, 476

Eigenspace, 721
eigenspace, 484
eigenvalue, 483
eigenvalues, 726
eigenvector, 483
Eigenvector and Eigenvalue, 719
Eigenvector and Eigenvalues of a ma-

trix, 720
Empty set, 4
Equality of Matrices, 443
Equality of sets, 4
Equipollent sets, 111
Equivalence class, 28
equivalence relation, 27
Existence of identity, 186
Existence of inverse, 186
Extension of a function, 85

Field, 318
Finite Dimensional Vector Space, 627
finite order, 245
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Finite set, 5, 111
free variables, 395
function, 77

generator, 271
Graph of a Relation, 21
Greatest common divisor, 150
group, 184
groupoid, 184

Hermitian matrix, 457
horizontal shear, 540

Identity matrix, 443
identity relation, 23
Identity transformation, 514
identity transformation, 653
image, 77
image of transformation, 511
infinite order, 185, 245
injective, 83
Integral domain, 318
Intersection of two sets, 8
Invariant subspace, 722
Inverse of a Function, 97
Inverse of a Matrix, 463
Inverse of a relation, 22
Invertible Elements, 52

Kernel, 666

latent root, 483
latent roots, 726
leading entry, 359
least common multiple (lcm), 159
left identity, 220
left inverse, 220, 463
linear combination, 379
linear congruence, 168
linear transformation, 653
Linearly dependent vectors, 601
linearly independent, 602
linear operator, 525
Linear transformation, 524
lower triangular matrix, 443

mapping, 77
Markov chain, 749
Markov matrix, 749
Markov process, 749
Matrix addition, 444

matrix of the linear transformation, 692
Matrix transformation, 513
maximal linearly independent, 627
Minor, 464
monoid, 184

Norm or length of a vector, 476
Normal Vector, 476
normalizer, 244
Normalizer of a subset, 243
Null matrix, 443
Nullity, 667
Nullity A, 636

one-one, 83
One-to-one correspondence, 111
onto, 83
order, 185
Order of an element, 245
Orthogonal matrix, 479
Orthogonal Vectors, 477
Orthogonal vectors, 476
Orthonormal Vectors, 477

partial order, 27
partially ordered set(Poset), 27
partition of a set, 29
pivot column, 363
pivot position, 363
postfactor, 447
Power set, 5
pre-image of transformation, 511
prefactor, 447
preimage, 77
Prime Number, 141
probability matrix, 749
Probability vector, 749
Product of vectors, 446

Quotient set, 28

range of transformation, 511
Rank, 666
Rank of a matrix, 635
reflexive, 22
Relatively prime, 151
remainder, 164
Restriction of a function, 85
Reversal law for transpose, 449
right identity, 220
right inverse, 220, 463
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row echelon form, 359
Row Matrix, 442
Row rank, 635

Scalar Multiplication, 445
semigroup, 184
Set, 2
Shear along a line, 539
shear factor, 540
Similar Matrices, 489
Singleton, 4
Singular matrix, 465
skew Hermitian matrix, 457
skew symmetric matrix, 456
Square Matrix, 442
standard matrix, 693
state vectors, 749
Steady State Vector, 751
stochastic matrix, 749
subgroup, 231
Subset, 5
surjective, 83
symmetric, 24
Symmetric difference of two sets, 14
symmetric matrix, 455

the reduced echelon form, 363
Trace of a matrix, 451
Tranjugate of a matrix, 450
Transformation, 510
Transition Matrix, 680, 749
transitive, 25
Transpose of a matrix, 449
Triangular matrix, 443
trivial transformation, 653

uncountable, 112
Union of two sets, 7
Unit matrix, 443
Unitary Matrix, 478
Universal Set, 3
upper triangular matrix, 443

weights, 379

Zero Divisor, 318
Zero matrix, 443
zero transformation, 653
Zero transformation, 514
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