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Preface

There are two schools of thought: one, a particular topic be chosen and
taught at an advanced level; the other, topics be chosen and first taught
at the introductory level and then at the advanced level. Each has its
own advantages and disadvantages. In the first case, study becomes very
focused and a significant level of the course can be achieved. But at
the same time it leaves inter-related topics introduced together. Even
the choice of examples becomes very limited. Thus, for the first timers
a course on algebra requires to go through several books. Connecting
topics becomes a difficult task. Different assumptions and notations too
pose a big problem.

In the second approach, however, related topics are studied simultane-
ously. They are collected at one place. Though an advanced level cover-
age may not be taught at the first stage, a reasonably good introduction
and sound background can be prepared. For a student coming to study
a course on algebra for the first time, this book presents all the basic
materials in one place and gives an opportunity to begin understanding
the topics in a most easy and comfortable way. The presentation of the
text is lucid. A large number of examples are used to explain the con-
cepts. This also prepares the students to attempt exercises themselves.
The book contains a large number of exercises, together with answers of
varying difficulty. These help students build confidence. Difficult exer-
cises follow simple ones. Graphics are also introduced. We have tried to
make a complete textbook for a first course in Algebra. That is why it is
Algebra — I. Two more volumes, Algebra — II and Algebra — I11, will take
the students to higher and sufficiently advanced levels, as is expected
from a three-year undergraduate degree programme of any university or
institute.

The entire text of Algebra — Iis divided into six different units formed
of related topics. Each unit is divided into chapters and each chapter
into sections. All theorems, lemmas and examples are continuously num-
bered by a three-digit number. That is, x.y.z means that the result is
in Chapter z, Section y and within the section its serial number is z.
At the end of each section, an exercise set is given. It is also numbered
as a section. The answers to the exercises in a chapter are given at the
end of the chapter. Each chapter begins with learning objectives and is
concluded by a summary of the topics covered. An attempt has been
made to make this book a complete resource book of a first course in
Algebra.

We are grateful to a lot of people. It is not possible to include
the names of all of them here. We thank a large large number of stu-
dents who have helped us in bringing out this book in its present form.

XIIT
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Bhavya Chauhan, Sweta Mishra, Neha Makhijani and Parvesh Lathwal
are some of them. We remain indebted to all those who have helped us
in any manner in bringing out this book.

RAJENDRA KUMAR SHARMA
SUDESH KUMARI SHAH
AsHA GAURI SHANKAR
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Chapter 1

Sets and Relations

In our daily life we come across words such as set, collection, group, clear
etc... In this chapter we begin by giving a mathematical definition of the word
”set” and proceed to study various types of relations on them. To make concepts
easily comprehensible, lots of examples and diagrams, called Venn diagrams have
been given. So, first thing first.

1.1 Sets

Definition 1.1. (Set): A set is a well defined collection of objects.

The adjective ‘well defined’ means that given an object, it should be possible
to decide whether it belongs to the collection or not. There should not be any
ambiguity. The objects that belong to a set are called its members or elements.

Example 1.1. The following are examples of sets:

(i)  Factors of 120.

(ii)  Roots of the equation x> — 3z + 2 = 0.

(iii)  Letters of the word Boole.

(iv)  The rivers of India originating in the Himalayas.

(v)  The students of Sri Venkateswara College taking admission in 2009.

Example 1.2. The following are not sets:

(i) The collection of all intelligent teachers of Delhi University.

(ii)  The collection of all fat ladies in Shalimar Bagh, Delhi.

(i1i)  The collection of all rich people in Delhi.

(iv)  The collection of all hardworking students of Lakshmibai College.
(v)  The collection of 9 natural numbers.

This is because the adjectives intelligent, fat, rich and hardworking are not
well defined.These terms are all relative. The collection (v) is not a set as it is
not well defined. The natural number 7 may or may not belong to the collection.
If the statement is modified as ‘the collection of first nine natural numbers’, then
it is a set and 7 is a member of the set.
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Notation: Sets are usually denoted by capital letters and their members
by lower-case letters. The statement “a is an element of A” is written as a € A
and is read as “a belongs to A”, where € is the Greek letter epsilon.

Example 1.3. 3¢€Z,5€N, -5¢ N.

Definition 1.2. (Universal Set): The set from which we pick the elements
to test whether the properties under consideration are satisfied or not, is called
the Universal Set. This set may change depending on the context.

For instance, if we consider the set of all students obtaining more than 85%
marks in mathematics, it is not clear from where do we have to pick these
students. They can be picked from any one of the following sets:

(i)  All students of Sardar Patel School, Delhi who have appeared for
class VIII.

(ii)  All students of Delhi University who appeared in the annual
examination of 2009.

(iii)  All students of Lakshmibai College who appeared in first year
examination of 2009.

Depending upon which of the sets (i), (ii) or (iii) we choose, our set defined
above will change.

Sometimes the universal set is not mentioned, then it is understood from the
context. We shall denote it by U.

Example 1.4. Let A={z e R | -4 <z < 4}.
B={z€Z| -4<z<4}.
C={zeN| —4<x<A4}.

In the above examples the universal sets are R, Z and N respectively. Thus
the sets A, B, C are different though the condition is the same in all the three
cases, A is the interval [-4, 4], B={-4, -3, -2, -1, 0, 1, 2, 3, 4} and C={1, 2, 3,
4}.

Description of a set: There are two ways of describing a set:

(i) Tabular method or Listing method or Roster method.
(ii)  Set builder method or Property method or Rule method.

In the Roster method, all the elements are listed. Two elements are sepa-
rated by a comma and the entire set of elements is enclosed by curly brackets
(or braces).The elements should not be repeated, i.e., no element should be
written more than once. Moreover, the order in which the elements are written
is immaterial.

Example 1.5. 1. S={1, 2, 3, 4, 5, 6}
is the set of the first 6 natural numbers.

2. The set of the letters of word ‘mathematics’ is T={m, a, t, h, €, i, c, s}.
Note that though the letter m occurs twice in the word, it is written only
once when writing the set. In fact, if we write the letters in alphabetic
order, then S can be written as

{a, ¢, e, h, i, m, s, t}.
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3. E={2, 4, 6, 8, ...} is the set of even natural numbers.

In the Set builder method the elements are described by means of a
property which is possessed by all the elements.

Example 1.6. 1. In the preceding example, the set S can be written as
S={neN|n<6}.

2. If A is the set of all alphabets, then the set T can be written as
T={z € A|x is a letter of the word ‘mathematics’}.

3. The set E can be written as
E={z € N | z is an even natural number}.

We can describe it as
E ={z € N | z is divisible by 2 }.
Now, we give some sets which are written in Roster form as well as Set builder
form.

Example 1.7.
S. No. Roster Form Set Builder Form
1 {3,-2,-1,0, 1, 2} {wezZ] —3<z<2}
2 {-2,-1,0, 1, 2} {x € Z| 2?2 < 5}
3 {1, 2, 3} {z € N| 3 <50}
4 {B, 0,1, e} {z| z is a letter of the word Boole}

At times the Roster method is not good, for example in the set {cat, dog,
rabbit, ...} it is not clear what are the other elements of the set. But when the
same set is written in set builder form, namely, {z|z is a mammal}, it is clear
which elements have to be included in the set.

Definition 1.3. (Empty set): A set which does not have any element is called
the empty set (or null set or void set).
It is denoted by {} or ¢. The latter symbol is read as phi.

Example 1.8. 1. The set of all alive persons in India born before 1800
2. {z €Z|2*><0}

3 {zecZ|xz>2andx <1}

are all null sets.

Definition 1.4. (Singleton): A set consisting of exactly one element is called
a singleton. It is written as {a}.

Example 1.9. 1. {¢} is a singleton whose only element is the null set ¢.
2{x€Z|x>2andx <2 }={2}.

Definition 1.5. (Equality of Sets): Two sets A and B are equal if and only
if they have the same elements.
We write A= B. If two sets A and B are not equal, we write A # B.

Example 1.10. 1. If A ={2,3,5,7}, B = {z € N| z is a prime number and
x <8},then A = B.
2. A = letters of the word wolf, B= letters of the word flow.
Then A ={w,o,l, f}, B={f,l,0,w}, so that A = B.
3. IfA=¢, B=1{o}, then A+ B.
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Definition 1.6. (Finite Set): A set is said to be finite if it is either empty
or it is in one-to-one correspondence with {1, 2, ..., n} for some n € N. The
number of elements in a finite set A is denoted by o(A).

A set which is not finite is infinite.

Example 1.11. 1. The set A of the months in a year is a finite set with
o(A)=12.

2. B={z€Z| x is divisible by 2}, B is an infinite set.

3. The set of all natural numbers, integers, rationals, and reals are infinite sets.
4. The set of all persons living in India on Sep 1, 2009 is a finite set.

Definition 1.7. (Subset): If A and B are two sets such that every element of
A is an element of B, then A is called a subset of B, we write ACB. If A is a
subset of B and A # B, then we say that A is a proper subset of B and we write
AcCB.

When A C B, we may also say that A is contained in B. We can write this a B
DO A and we say that B is a superset of A or B contains A.

Example 1.12. 1. Let A ={1, 2, 3, 4}, B={1, 2, 8, 4, 5}.

Then A C B. Since 5 € B and 5 ¢ A, . A is a proper subset of B.
2. If A is the set of letters in the word ‘algebra’ and B is the set of letters in
the word ‘real’,

then A = {a,b,e,g,l,7}, B={a,e,l,r}. Clearly B C A.

Theorem 1.1. For any set A,

(i) ¢< A
(ii)) ACA
Proof:

(i) Suppose on the contrary ¢ ¢ A. Then there exists x € ¢ such that x ¢ A.
This is absurd as ¢ does not contain any element. ... Our assumption is
wrong, so that, ¢ C A.

(ii) Since every element of A is an element of A, therefore A C A. O

Theorem 1.2. If A and B are two sets, then A = B, if and only if A C B and
BC A.

Proof: Left to the reader. O
The above theorem gives a practical way to prove the equality of two sets.

Definition 1.8. (Power Set): The set of all subsets of a given set A is called
the power set of A. It is denoted by P(A).
In symbols, P(A) = {B| B C A}.

Example 1.13. 1. If A = {1}, then P(A) = {{1}, ¢}
o(P(4)) = 2

2. If A = {xz, y}, then
P(A) = {¢7 {$}, {y}7 {LE, y}}
o(P(A)) = 4=22.

3. If A ={p, q, r}, then

P(A) ={o, {p}, {d}, {r}, {p, &, {p, 7}, {a 7}, {p, ¢ 7}}
o(P(4)) = 8 = 23.
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Can you guess the number of elements in P(A4), when number of element in
A is given. It is interesting to note that the power set of the empty set is not

empty. In fact, P(¢) = {¢}.

Problem 1.1. If A is a finite set containing n element, then P(A) has 2"
elements.

Solution: Let 0o(A) = n.
For 0 < r < n, the number of subsets of A containing r elements is "C,.. Thus
total number of subsets of A

Hence o(P(A)) = 2".
It follows from the above result that the power set of an infinite set is infinite.

1.2 Exercise

1. Write the following sets in Roster Form:
(i) {x | z is a natural number, z = z?}
(ii) {x e Nz is divisible by 5}

(iii) {r€Z|2*—-64=0}

(v) {acZ|-1<la<5)

(v) {ze€eZ| -6<x<8}

2. Write the following sets in Set Builder Form:
(i) A=1{3,6,9,12, 15, 18}
(i) B ={1, 2}
(i) C ={2,5,10,17, 26, ...}
(iv) D=4{3,-2,-1,0,1, 2, 3}
(v) E=1{1,-1, i, i}, where i = —1

3. List 3 elements of the following sets:
(i) {p | pis a four letter word ending with ice}
(i) {x+yV7 |z, y are rationals}
(iii) {z+y|z yeR, 2?+y* =4}
(iv) {z+yl|x yeZ, z*+y* =25}
(v) {z€qQ| (2? —1)(2* —2)(2® + 322 4+ 2z) = 0}
(Vi) {%| T € {07 1’2}’ y € {_L 1}}

4. Let P = {2, 4, 6, 8, 10}, write a subset @ of P such that
i  {2,10}c @
(i) ¢<@
(ii) {4,6} C @
(iv) @ C{4,10}
(v) Qc{6,8}
(vi) Qg {24, 6}
(vii) {2,4} CQ C {2, 4,8}
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5. Let A = {p,q,r,s,t} write a subset of A such that
(i) ¢ belongs to the set A
(if) It contains 3 elements
(iii) It contains s and ¢
(iv) It does not contain r or s
(v) It contains none of p, ¢, r, s or t.

6. Write the power set of A and tell the number of element in it, where
i) A=¢
(i) A={¢}
(iii) A={w,z,y,z}

7. Let A = {p,q,r}. Indicate whether the following are true or false, with

justification.
i) o¢€A
(i) ¢cA
(i) pCA
(iv) peAd
(v) AeA
(vij ACA

(vii) A€ P(4)
(viii) ¢ € P(4)

(ix) {a,r}CA

x) {qr}eAd
(xi) {a, 1} CP(A)
(xii)  {q, r} € P(4)

1.3 Algebra of Sets

We now discuss some ways in which two or more sets can be combined to
give a new set.

Definition 1.9. (Union of two sets): Let A and B be two sets. The set of
all elements which belong to A or B or both is called the union of A and B. It
is denoted by A U B.

Symbolically AU B ={z | z € A or z € B}.

Example 1.14. If A = {1, 2, 3, 4}, B = {8, 5, 7, 11}, then AU B = {1, 2,
3, 4, 5,7, 11}.
AU ¢ =A, BU{¢} = {3 5. 7, 11, ¢}.

Using Venn diagram, the shaded region represents A U B in different cases.
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_‘
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AUB
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AUB

AUB=A

&

AUB=B

Definition 1.10. (Intersection of two sets): Let A and B be two sets. The
intersection of A and B is the set of all those elements which are in A as well
as in B. It is denoted by A N B.

Symbolically AN B ={z| z € A and z € B}.

Example 1.15. If A ={a, b, ¢, d, e}, B ={a, ¢, i, 0, u},
then AN B ={a, e}, AN ¢ = ¢.
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Using Venn diagram, the shaded region represents A NB in different cases.
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ANB=B

ANB=A

Definition 1.11. (Disjoint sets): Two sets A and B are said to be disjoint

ifANB=¢.

Example 1.16. A = set of all vowels, B = set of all consonants.

Then AN B = ¢.
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The following results, though simple to prove, are important in set theory.
Theorem 1.3. If A, B and C are three subsets of the Universal set U, then
e ACAUB, BCAUB
e AUB=BUA
AU(BUC)=(AUB)UC

e AUA=A
e AUU=U
e AUp=A

ANBCA ANnBCB
e ANB=BNA
AN (BNnC)=(ANB)NC
e ANA=A
e ANU=A
s AN¢ =¢
Proof: Left to the reader. O

Since the union of three sets is associative, therefore there is no need to use
parentheses, we can simply write A UB U C. Similarly if we have n sets Ay,
Ao, . A,,, we can write

Al UAQU ....... UAn as U?:lA’L

Similarly, if A is some index set and for each A € A, there is defined a set
Ay, then union of all these sets Ay is written as J,., Ax. Similar notation
holds for intersection. Note that if union and intersection are used in the same
expression then it is essential to use parentheses. That is A N B U C' is not well
defined, as the two sets (A N B) U C and A N (B U C) are different. This is
shown by following example.

Example 1.17. Let A = {a,b,c,d, e}, B={a,e,i}, C ={b,d,e, f,g}.
Then ANB = {a,e}, (ANB)UC = {a,b,d,e, f,g}.

BU C ={a,b,d,e, f,g,i}, AN (BU C) ={a,b,d,e}.

Hence (AN B)U C# AN (BU Q).

In fact union (intersection) is distributive over intersection (union).

Theorem 1.4. If A, B, C are any three sets, then
AN (BUC)=(AnB)U (AN C).
AU(BNC)=(AUB)n (AU ().

Proof: Try yourself. O

Definition 1.12. (Difference of two sets): Let A and B be two sets. The
difference of A and B in that order is the set of all elements of A which do not
belong to B. It is denoted by A ~ B or A\B or A — B. 1t is also called the
complement of B in A.

Symbolically A\B = {z € A | z ¢ B}.
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Using Venn diagram, A\ B is represented by the shaded region.

11

@>

A\B=4

-

A\B

A

-

910 =

A\B

From the definition it is obvious that

(i)
(i)

ANA =9

-

A\B = ¢
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Example 1.18. Let A ={a, b, ¢, d, ¢, f, g, h, i}, B={a, ¢, ¢, g, i, 0, u},
C ={p, ¢, r, s}. Then

ANB = {b, d, [, h}

ANA ={} =9

B~A = {o, u}

ANC={a, b, c,d, e, f, g, h i} =A

C\NA ={p, q, 1, s} = C.

Definition 1.13. (Complement of a set): The complement of a set A is the
difference of U and A. It is the complement of A in U, the universal set. It is
denoted by A’, A°, A or U \A.

We shall use A¢ for the complement of A. In the Venn diagram, the shaded
region represents A°.

Example 1.19. Let U be the set of natural numbers
A = set of all multiples of 3

B = set of all prime numbers.

Then A¢ = {x € N | z is not a multiple of 3}.
Clearly 19 € A°, 80 ¢ A€

Ac =1{1,2 4,5 78 10, 11, ...}

B¢ = {z € N | x is not a prime number}

Clearly 1 € B€ ("' 1 is not a prime), 2 ¢ B°.

The following results hold for complementation.

Theorem 1.5. Let A and B be any two sets. Then
(i) (A)° A

(ii) AUA®=U

(iii) ANAC =¢

(iv) ¢ =1U

) T=¢

(vi) A\B =ANDB*

(vii) (AUB)\C = (A\C)uU (B\CO)
(viii) (AU B)¢ = A°N B¢, De Morgan’s law
(izx) (AN B)¢ = A°U B¢, De Morgan’s law
(x) (A\B)\C =ANn(BUC)°

Proof: We shall prove only (ix)
x€(AUB) <z ¢ AUB
< uxr¢ Aandx ¢ B
<=z € A°and z € B¢
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< x € A°N B¢
Hence (AU B)¢ = A°nN B°. O

The following results are useful in solving problems as they give the number
of elements in the union, intersection and complements of finite sets in terms of
the number of elements of the sets.

Theorem 1.6. If A, B, C are finite subsets of a universal set U, then

(1)) o(AUB)=o0(A)+o(B), if A and B are disjoint sets.

(i) o(ANB) = o(A) — o(AN B).

(iii) o(AUB) = o0(A) +o(B) —o(AN B).

(iv) o(AUB U C) = o(A) +0o(B) +0o(C) —o(ANB) —o(BNC)—
O(CﬂA) +o(ANBNCO).

(0)  o(A%) = o(U) -

Proof:

o(4), if U is finite.

(ii) Since A = (A\ B)U (AN B) and (A\ B)N (AN B) = 6.
By (i)

o(A) o(A\ B) +o(AN B)
or o(A\B) = 0(A) —o(ANB)

(iii) AUB=(A\B)U(B\A)U(ANB)
and the sets A\ B, B\ A and AN B are mutually pairwise disjoint.

Applying (ii) the result follows.

(iv)

o(AUBUC) = 0o(AUB)+0(C)—0o((AUB)NC) using (iii)
= 0(A)4+o(B) —0o(ANB)+o(C)—0o((ANC)
u(BNC))

= o(A)+o(B)+0(C)—0o(ANDB) — (0(ANC)
—o(BNC)+o((ANC)N(BNC))) wusing (iii)

= 0o(A)+o(B)+0(C)—0(ANB)—0o(ANC)
—o(BNC)+0o(ANBNC)

Hence proved.
(i) and (v) are left to the reader O

Problem 1.2. If B is a finite set and A C B such that o(A) = o(B), then
A =B.

Solution: Let o(B) =n.

Let, if possible A # B.

Then B\ A # ¢ so that o(B\ A4) > 1
Now,

o(B\A) = o(B)—0(ANDB)

o(B) —o(A) (mANB=A,as ACB)
=0
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which contradicts the fact that o(B\ A) > 1. Hence our assumption is wrong,
so that A = B.

The above result fails to hold if A and B are infinite.
Consider
A= set of even integers
B = set of integers
Then A C B, A and B are both infinite sets.

Definition 1.14. (Symmetric difference of two sets): Let A and B be two
sets. The symmetric difference of A and B is the set of elements which are in
A or B but not in both. It is denoted by A A B.

Symbolically, AA B={z|zec AUB,z¢ AN B}.

Thus A A B= (AU B)\(AN B).

Using Venn diagram, the shaded region represents A A B.

A r A r
AAB
A r A r
AAB
r r
A A

AAB
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ArB

From the definition, we get

AAB=(ANB)U (B \ A4

Example 1.20. In N, et

A ={z | z is a multiple of 4}

B = {z | z is a multiple of 6}

Then A A B = {z | z is a multiple of 4 or 6, but not of both}
={4, 6, 8 16, 18, 20, 28, 30, ...}

Problem 1.3. If A, B and C are any sets, then
(i) AAB=BAA
(it) (A A B)AC=ANA (BAC)

Solution:
(i) AaB=(AUB)\(ANB)

= (BU A)N(B N A)

=BAA
(ii) Let A, B,C € P(S)
(AAB)AC = ((ANnB"Yu (BN A")AC
=H{ANBYU(BNA)}INCMUICN{(ANB)u(BNA)}]
=[((AnB)YNC)U((BNnAYNCHUCN{(AUuB)N (B UA)}
=[(ANB'NC)YU(BNANCHU[CN{(AUB)N(B'UA)}]
Now,
(AUuB)N(B'UA)={(AUuB)NB}U{(A"UB)n A}
=A'NBYUBNB)UA NA)U(BNA)
=(A'NnBYU(BNA)

Hence (AAB)AC = (ANB'NC)U(BNA'NC)U[CN{(A' NB')U(BNA)}]

=(ANnB'NCHYUBNANCHYUCNANBYU(CNBNA)

Similarly AA(BAC) = (ANB'NC")U(BNA'NC")U(CNA'NB)U(ANBNC)

Hence (AAB)AC = AA(BAC).

In view of the above result, we need not put any parenthesis while writing
the symmetric difference of 3 sets. Using Venn diagram, the shaded portion

shows A A B A C.
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AABAC

Thus the parentheses can be dropped while writing the symmetric difference of
n sets.

More generally, it can be proved that the symmetric difference of n sets A;, Ao,
v, Ap, written as A1 A Ay A...A A,, is the set of those elements which are
members of an odd number of the sets A;, i=1, 2..., n.

Definition 1.15. (Cartesian product of sets): Let A and B be two sets.
Then the cartesian product of A and B is the set {(a, b) | a € A, b € B}. It is
written as A xB. We read it as A cross B. If one of the sets A or B is the
null set then A x B is defined as the null set.

The elements of A x B are called ordered pairs. This is because the order
of the elements is important. Thus if a # b, (a, b) # (b, a).
If (a1, b1), (a2, ba) € A X B, then
(a1, b1) = (a2, b2)
if and only if a; = ap and by = bsy.
More generally, the Cartesian product of n sets Ay, Aa, ..., Ay is
A X Ay X ... x A, = {(al,ag, ...,an)| a; € A;,1 <1 < n}

Example 1.21. Let A = {a, ¢, i}, B ={p, q},

then A x B = {(a’ p)7 (a7 Q)) (6¢ p), (6; Q); (@ p)7 (i; Q)}
B x A ={(p, a), (v, €), (v, 1), (¢ a), (¢ ¢), (¢ i)}

Bx B ={(p,p) (v, a) (¢ ») (¢, ¢)}

Thus, we see that

(i) AxB#BxA
(i)  number of elements in A x B=6=38x 2 =0(A4) x o(B)
(ii) number of elements in Bx A =6 =2x 8 =0(B) x o(A)
(iv)  number of elements in B x B =4 =2x 2= 0(B) x o(B)
More generally, if A and B are finite sets with m and n elements respectively,
then number of elements in A X B = mn = o(A) X o(B).

Theorem 1.7. If A, B, C are three sets, then
Ax (BUC)=(Ax B)U (A x C)
Ax (BNC)=(Ax B)n (Ax C)

Proof: Let (z,y) € Ax (BUC).
~rxeAandye BUC

= zrzcAandyecBoryeC

= (z,y)€ AxBor (z,y) € AxC
= (z,y) e AxB)UAxC(C)
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Hence Ax (BUC)C (AxB)U(AxC) ...(1).
Let (a,b) € (Ax B)U (A x C).
o (a,b) € Ax Bor (a,b) e AxC
= ac€A beBorac A beC
= a€ A, andbe BUC
= (a,b) e Ax (BUC)
Hence (AX B)U(AXxC)CAx (BUC) ...(2)
(1) and (2) = Ax (BUC)=(Ax B)U(Ax ().
The proof of other part is left to the reader. O

Problem 1.4. Let X, A and B be three sets such that XN A = XN B and X
U A = XU B. Prove that A = B.

Solution: We show that A C B
Letz € A
Two cases arise:

Case 1: x € X
Thenxe ANX=XNBAB
=x€EB

Case 2: x ¢ X
Thenx€e A=>xe AUX=BUX
=x€ B (-x¢X)

Hence in each case x € A = x € B. So that A C B.
Similarly B C A. Hence A = B.

Problem 1.5. For any sets A and B prove that A N B = A if and only if
ACB

Solution: We first prove that AN B=A= AC B.
Since ANBCB,...ACB.
Conversely, we prove that A C B = AN B = A.
By definition A N B C A.
Ifxe Athenx € B (- A C B).
Hence x € A N B, so that
ACANB.
Thus AN B = A.

Problem 1.6. Prove or disprove the following:
(i) P(AnB)=P(A)NP(B)

(ii)) P(AUB)=P(A)UP(B)

(iii) P(A~ B)=P(A)\ P(B)

Solution:

(i) Xe P(AN B)
< XCANB
& XCAand X C B
< X € P(A) and X € P(B)
< X € P(A) N P(B)

Hence P(A N B) = P(A) N P(B), so the result is proved.

(ii) The result is not true.
Let A = {1, 2,3}, B = {2, 3,4}
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Then AU B = {1,2, 3,4}, C = {1, 4} € P(A U B)
but C ¢ P(A) and C¢ P(B)
so that C ¢ P(A) U P(B).

~P(AU B) £ P(A) U P(B).

(iii) The result is not true. Choose A and B as in (ii) above. Then A \ B =

{1}. So P(A \ B) ={¢, {1}}, {1, 2} € P(A) ~ P(B) but {1, 2} ¢ P(4
~ B).

Hence P(AN B) # P(A) \ P(B).

1.4 Exercise

1.

10.

Let A denote the set of letters of the word ‘mathematics’, B denote the
set of letters of the word ‘algebra’ and C' denote the letters of the word
‘analysis’.

Find AnC, AU B, (AU B)NC, A A B, (B\C) ~A, AN(B~\C), (AU
B U C)¢ Cx(ANB).

I A=(8,2),B=(1,5), write AUB, AN B, AN B, (AU B)¢ as an

interval.

.Let X ={z e N|2z <8}

Y={x €Z]| |z +1|<5}
Z ={x € R | 2%-323-42=0}.
Find X NY, X UZ, (X NY) x Z, (XNY)NZ, X 4 Z, (Y & Z).

CIfA={1,2,4,6}and B = {1, 2, 3},

find (AxB) U (B x A), (A x B)N (B x A), (A x B)\(B x A).

. For any two sets A and B, prove that (ANB)N(B~\A) = ¢.
. Using (A U B)¢ = A° N B¢, prove that (A N B)¢ = A° U B-.

. Find the necessary and sufficient conditions for

(i) AuB=A
(i) ANB=A4
(i) ArB=A
(iv AnB=AUB

. Let A, B, X and Y be sets such that AU B=XUY, AnB=XnNnY

= ¢. Show that X = ¢ if and ounly if B = (XN A)U(Y N B).

. If A, B, C are sets show that

(i) A~(BUC) = (A~B) N (ANC)
(i) A~(BNC) = (A~B) U (A~C).

Prove or disprove the following statements
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11.

12.

13.

14.

15.

16.

17.

(i) (AUB)xXC=(AUC)x(BUCQC)
i) (ANB)xC=(ANC)x(BNC)

) IfACCand BC D,then A x BC CxD
(iv) IfAxBCCxD,thenACCandBCD
(v) (A x B)U(C xD)=(AUuC)x(BUD)

(vi) A°x B°=(Ax B)*°

(vii) (ANB)xC = (AxC)N(BxC(C)
(AUB)xC = (A x C)U(B x C).

(ix) (ANB)xC = (AxC)N(Bx ().
(Aa B)xC = (AxC)a(BxC).

Let N denote the set of natural numbers, Z the set of integers, E the set
of even integers and P the set of all prime numbers. Express the following

statements in set theoretic notation.
(i)  Not every natural number is prime.

(ii) 2 is an even number which is also prime.

(iii) 3 is an odd prime.

(iv) Every natural number is an integer but not vice versa.
(v)  There exists an integer which is not a natural number.
(vi) Every prime is odd.

If A and B are two sets having m and n elements respectively, prove that
A x B has mn elements.

If LL is a straight line and E is an ellipse in a plane, what are all the possible
values of o(LNE) ?

If A= {n e N: nis a multiple of 12}
B = {n € N: n is a multiple of 18}
Find AUB, ANB, (AUB)~(BNA), Ax B.

Let U = set of all quadrilaterals in a plane, P, R, T and S be the subsets
of U defined as follows:

P = set of all parallelograms

R = set of all rhombus

T = set of all rectangles

S = set of all squares

Find the relationships between P, R, T and S in terms of containment.

In a survey of 100 delegates attending a conference, the number of dele-
gates who knew one or more of the 3 languages Tamil, Punjabi, and Bangla
was as follows: Tamil 28, Punjabi 30, Bangla 42; Tamil and Bangla 10;
Tamil and Punjabi 8; Punjabi and Bangla 5. Only 3 people know all the
three languages.

(i) How many did not know any language at all?

(i) How many knew only Bangla?

In a class 70% of the students like mango, 80% like bananas, 75% like
apples, 85% like grapes and 2% like all the four fruits. Find the minimum
value that is possible for z.
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18. Rakesh and Geeta are husband and wife. Geeta has 7 married friends
and Rakesh has 5 married friends. They arrange a party and invite their
friends with their partners. If all the friends come to the party, what is

the maximum and minimum number of
(i) guests in the party.

(ii) common guests in the party.

19. For 3 sets A, B, C regions are labelled as below. The sets A, B, C are
described as below:
A: set of all women
B: set of lawyers
C: set of cricket lovers

A

/A
N,

Express the following regions in the terms of the sets A, B, C":
(i)  region labelled 1

(ii) region labelled 2

(iii) region labelled 3

(iv)  region labelled 5 or 7

(v) region labelled 1, 4 or 6

20. Describe the persons represented by the regions in Q.19.

1.5 Binary Relation

Given two sets A and B at times, we are interested in associating elements
of A with elements of B. The pairs of associated elements form a subset of
A x B. This motivates the following definition:

Definition 1.16. (Binary Relation): Let A and B be two sets. A binary
relation from A to B is a subset of AxB. A subset of AXA is called a binary
relation on A.

The empty set (called void or null relation) and the entire cartesian prod-
uct AxB (called universal relation) are always binary relations form A to B,
though they are not as interesting as certain non-empty proper subsets of Ax B.
If R C AXB and if (a, b) € R we say that ‘a is R related to b’ and we may
write aRb.

Example 1.22. Let A = set of all students of St. Xaviers school

B = {hockey, football, badminton, cricket, volley ball, table tennis, basket
ball}
R1 = {(a,b) € A x B| student a plays game b}
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Ry = {(a,b) € A x B| student a plays lawn tennis}
R3 = {(a,b) € A x B| student a plays hockey or cricket}.
Then Ry, Ro, R3 are relation from A to B. Note that Ry = ¢.

Example 1.23. R; = {(a,b) € Z xN| b = a®}
={(1, 1), (-1, 1), (-2, 4). (2. 4), ...}

Ry = {(a,b) € Z xN| b = |a|}
={(-1, 1), (1, 1), (-2, 2), (2, 2), ...}

are relations from 7, to N.

Example 1.24. R3 = {(a,b) € Z XZ| b = a+1}
={(1, 2), (-1, 0), ...}. Ry ={(1,-1),(2,3),(—29,341)}. Then Rs and

Ry define a relation on Z.

Graph of a Relation

A relation can be represented graphically also and this helps us to understand it
better. If R is a relation from A to B, then to draw the graph of R we proceed
as follows:

Take two perpendicular lines OX and OY. Represent the elements of A by
points on OX and the elements of B by points on OY. Plot the members of R
as points in the XOY plane. This is the graph of R.

Example 1.25. Let A = {0, 1, 2, 3, 4}, B ={0, 2, 4, 6}.
Define R = {(a, b) | b > 2a}. Then R ={(0, 2), (0, 4), (0, 6), (1, 4), (1, 6),
(2, 6)}.

The graph of R is as shown by points marked X.

6 X X X
4X X

2

o 1 2 3 4

Example 1.26. Let Ry be a relation defined on R as follows:

Ry = {(z,y) | 162%+25y> = 400}
The graphical representation of this relation is the set of points in the plane of
R? satisfying 16x°+25y> = 400 i.e. ”5”—2 + Z—i = 1 which is an ellipse centered
at origin with major axis of length 10 along x-axis and minor axis of length 8
along y-axis .
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(0,4)

s

(0, -4)

Example 1.27. Let A = {Rita, Gita, Anita, Mita}

B = {Red, Blue, Green, Yellow, Orange}

and R = {(Rita, Blue), (Gita, Green), (Gita, Orange), (Mita, Red)}.
The graph of R is:

Orange|
Yellow]

Green|

Blue | X

Redl X

N } } }
| Rta Gita Anta Mia

Definition 1.17. (Inverse of a relation): Let A and B be two sets and a
relation R from A to B. The inverse of R is the set

{(b, a) € BxA | (a, b) €R}
and is a relation from B to A, and is denoted by R™!.

Example 1.28. 1. Let A ={1, 2, 3, 4, 5}, B={qa, b, ¢, d}
R = {(17 a)7 (1; d), (37 b)7 (27 C)}
Then R=Y = {(a, 1), (d, 1), (b, 3), (c, 2)}

2. Consider the relation from Z to N defined by
S={(a, b)) € Z x N| b = a?}
= {(1} 1): ('1} 1): (2) 4)7 ('2’ 4)7 (37 9)? ('37 9)? }
Then S~1 ={(b, a) e N x Z | b = d*}
= {(17 1)7 (1’ '1)7 (4’ 2)) (47 _2)) (‘97 3)7 (97 '3)7 }

It is important to note that every relation has an inverse. The graph of R~!
can be obtained from the graph of R by reflecting it in the line y = z.

Properties of Binary Relation on a Set
Some binary relations on a set have certain properties which make them

special. We shall study these properties.

Definition 1.18. A binary relation R on a set A is said to be reflexive if and
only if (a, a) € RV a € A.



1.5. BINARY RELATION 23

Example 1.29. 1. Ry = {(z,y) € RxR | & > y} is a relation on R. Since z >
xVx eR, sothat (x,x) € Ry V x € R. Hence Ry is a reflexive relation.
The graph of the relation is as shown:

v=Z=u

It is the shaded region including the line y = .

2. Ry ={(z, y) e RxR | z> y}. Since 2 ¢ 2.. (2, 2) ¢ Ry

Hence Ry is not reflexive. The graph of the relation is as shown:

.
v=Z=u

.
.
.
.
.
.
.
.
.
.
.
.
o
.
.
.
.
o
.
.
.

It is the shaded region excluding the line y = x.

3. Ry = {(z,y) e R? | 22 + ¢ > 0}
(z, ) € Rs for all x # 0.
(0, 0) ¢ Rs3, so that R3 is not reflexive.
This shows that (z, ) € Ry ¥V x € R for the relation to be reflexive. If it
fails even for one x, the relation is not reflexive.

By looking at the graph of the relation can we say that it is reflexive? Before
doing this, let us define the diagonal of A x A.

Definition 1.19. Let A be any non-empty set. Then D = {(a, a) | a € A} is
called the diagonal set of AxA.

Graphically, a relation R on a set A is reflexive if and only if the diagonal of
AxA is contained in R.

A relation R on a set A for which R = D is called the identity relation.
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Example 1.30. Let A = {1, 2, 3}
R = {(17 1)} (2; 2)7 (37 3)7 (1; 2); (3; 2)}
The graph of R is

8 X

2+ X X

1 X X
\ 1 4 &

Since the graph of R contains the diagonal, therefore R is reflexive.

Definition 1.20. A binary relation R on a set A is symmetric if and only (a,
b) € R implies that (b, a) € R.

Example 1.31. 1. Ry = {(z, y) € R? | zy = 1} is a relation on R. If (z, y)
€ Ry then zy =1 so that yx = 1. . (y, ©) € Ry. Hence Ry is symmetric
relation.

The graph of this relation is

‘ v=Z=u

It is symmetric about the line y = .

2. Ry = {(v, y) € Z* | P*+y* = 25} is a relation on Z.
If (z, y) € Ry then 2 +y* = 25 so that i +2° = 25.
Hence (y, ) € Rs. Thus Ry is symmetric.

The graph of Rs is
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Y -
XEMIRF }('—X
X X
X X
EJR"\{‘[{ I : X erive X/

X . X

D ¢ X
Xemiure

Observe that the graph is symmetrical about y = x.

3. Re = {(z, y) € 2% | y = |af}
Some points on Rg are (1, 1), (-1, 1), (-3, 3) etc. Observe that the 2nd
component is always positive. (-1, 1) € Rg but (1, -1) ¢ Rg. Hence Rg is
not symmetric. The graph of Rg is

Ja JP======, JO 743 Q

Though the graph looks symmetrical but still Rg is not symmetric, because
symmetry is about y-axis, and not the line y = x.

Just by looking at the graph of the relation can we say that the relation is
symmetric? Yes, of course. If the graph of the relation is symmetric about the
line y = z, then if (z, y) belongs to the graph, so will (y, =). Hence the relation
will be symmetric.

A relation R is symmetric if and only if R = R™! i.e. R and R™! have identical
graphs.

Definition 1.21. A binary relation R on a set A is transitive if and only if (a,
b), (b, ¢) € R implies that (a, c) € R.

Example 1.32. 1. Consider the relation Ry defined in Example 1.29. If (a,
b), (b, ¢) € Ry then a> b and b > ¢ so that a > ¢. Hence (a, ¢c) € Ry so
that Ry is a transitive relation.

2. Consider the relation Rg defined in Example 1.51.
If (z, y), (y, z) € Rg then y=|z| and z = |y|. Thus z = |z| so that (z, z)€
Rg. Thus Rg is a transitive relation.
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3. Consider the relation Ry defined in Example 1.31
(3, %), (3. 3) € Ry, but (3, 3) ¢ Ra, so that Ry is not transitive.

Definition 1.22. A binary relation R on a set A is antisymmetric if and only

if both (a, b), (b, a) € R implies that a = b.

Remark 1.1. As the name suggests antisymmetric is ‘against symmetric’, so
the graph will not be symmetric. It is not just the negation of symmetric.

In fact, no pair (a,b) € R, with a # b is such that (b,a) € R. So, not
symmetric does not imply antisymmetric and not antisymmetric does not imply
symmetric.

Example 1.33. 1. Consider the relation Ry defined in Example 1.81. (3, %),
(%, 3) € Ry, but 8 # % Hence the relation Ry is not antisymmetric.

2. Consider the relation Ry defined in Example 1.29. Let (z,y), (y,z) € R;.
Then © > y and y > x so that x = y. Hence Ry is an antisymmetric
relation.

3. Let A be any set and P(A) the power set of A. On P(A) define a relation as
follows:
R ={(X,Y) e P(A)xP(A) | XC Y}
If (X, Y), (Y, X) € Ry then X C Yand Y C X, so that X = Y. Hence
R7 is antisymmetric.

By looking at the graph of a relation can we conclude whether it is antisym-
metric or not? Yes.

The graph of an antisymmetric relation is such that no pair of points other
than on the main diagonal are symmetrically located about y = x. So it is
possible that some points are symmetrically located whereas some points are
not. Such a relation is neither symmetric nor antisymmetric. Further the graph
consisting of points on the main diagonal only is both symmetric and antisym-
metric.

In the following example, we verify the properties of relations.

Example 1.34. Let A = {1, 2, 3, 4, 5}
Ry = {(17 1)7 (2) 2)7 (17 2)7 (27 1)}

Ry ={(4.5). (5. 4). (1, 2), (2, 3), (1, 1), (2, 2), (3, 3), (4, 4). (5, 5)}

Ry = {(1’ 1), (57 5), (2 3)¢ (4, 5)}

Ry = {(17 2)7 (2) 1)7 (17 1)7 (2’ 2)} (37 3)7 (47 4)7 (5’ 5)}

Then Ry is not reflexive as (3, 3) ¢R 1

Ry is symmetric as whenever (a, b) € Ry = (b, a) € Ry. Ry is transitive as
(a, b), (b, ¢) € R1 = (a, ¢) € Ry. Ry is not antisymmetric, as (1, 2), (2, 1) €
R1 but 1 75 2.

Thus Ry is a symmetric and transitive relation but not reflexive and antisym-
metric.

Since (a, a) € Ro ¥ a € A. . Ry is reflexive. Ry is not symmetric, as (1, 2)
€ Ry (2, 1) ¢ Ra, Ro is not transitive, as (1, 2), (2, 3) € Ra but (1, 3) ¢ Rs,
(4, 5), (5, 4) € Ra but 4 # 5 so Ry is not antisymmetric. Thus Ra is reflexive
only.

R3 is antisymmetric because no two points of the form (x,y) and (y,x) forxz £y
belong to Rs. It is not reflexive as (1, 1) ¢ Rs, it is not symmetric as (2, 3) €
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R3 but (3, 2) ¢ Rs. It is transitive. Thus Rs is an antisymmetric and transitive
relation. It is neither symmetric nor reflexive.
Ry is reflexive, symmetric and transitive. It is not antisymmetric as (1, 2), (2,

1) € Ry but 14 2.

Equivalence Relation
We have studied four different types of properties of binary relations and each
of them is totally independent of the other. But relations satisfying a certain
combination of these properties form an important class of relations studied in
Mathematics.

Definition 1.23. Let R be a binary relation on a set A. Then R is called a
partial order on A if it is reflexive, antisymmetric and transitive and the system
(A, R) is called a partially ordered set(Poset).

(Z,>), (N,<) are partially ordered sets.

Definition 1.24. Let R be a binary relation on a set A. Then R is called an
equivalence relation if it is reflexive, symmetric and transitive.

Example 1.35. Suppose A is the set of all points on the surface of the earth.
On A, define R = {(a, b) € AxA | a and b have the same longitude}

Clearly (a, a) € RV a € A, so that R is reflexzive. Let (a, b) € R then a, b have
the same longitude so that (b, a) € R. Hence R is symmetric.

Let (a, b), (b, ¢c) € R. Then a, b have the same longitude and b, ¢ have same
longitude. Thus a, ¢ have the same longitude, so (a, ¢) € R. Thus R is transi-
tive.

Since R is reflexive, symmetric and transitive therefore it is an equivalence re-
lation.

Sometimes we do not talk of a specific relation on A. We denote it by ~.
We write a ~ b. The symbol ~ is read as ‘wiggle’. We read it as ‘a is related to
b’ or ‘a wiggle b’.

Example 1.36. On Z define a relation ~ as follows a ~ b if (a —b) is divisible
by 4. Clearly for any a € Z, a — a=0 which is always divisible by 4.

san~aV¥ a€Z sothat R is reflexive.

Let a ~ b. Then (a - b) is divisible by 4 so that (b - a) is also divisible by 4.
Hence a~ b implies that b ~ a.

"~ s symmetric.

Let a, b, ¢c € Z such that a ~ b and b ~ ¢, then (a - b) and (b - ¢) are both
divisible by 4. . (a - b)+(b - ¢) = (a - ¢) is divisible by 4, hence a ~ ¢, so that
~ 18 transitive.

Thus ~ is an equivalence relation on 7Z.

In the above example we observe the following:
0~ 4k, 1 ~ 1+4k, 2 ~ 4k+2 and 3 ~ 4k+3 for any k € Z. Any n € Z is either
of the form 4k, 4k+1, 4k+2, 4k+3 for some k € Z.
Thus every integer is related to 0 or 1 or 2 or 3. Consider the sets

Ag = {ii,-12,-8,-4,0, 4,8, 12, ....... }
Ay = {o,-11,-7,-3,1,5,9, 13, ........ }
Ay = {en, ,-10, -6, -2, 2, 6, 10, 14, .......}

Ay ={i,-9,-5,-1,3,7, 11, 15, ........ }
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Any two elements of Ay are related to each other and each of them is
related to 0. Similarly each element of A; is related to 1, each element of A is
related to 2 and each element of Aj is related to 3. Every integer n belongs to
exactly one of the sets Ay, Ay, As or Az. That is

A()UAlUAQUAg:Z
and any two A;’s are disjoint, ¢ = 0, 1, 2, 3.

Thus the set Z is divided into 4 mutually disjoint subsets such that any two
members of the same set are related and any two members from different sets
are not related.

This motivates us to see whether this is possible for every equivalence

relation.

Definition 1.25. (Equivalence class): Let A be any set and ~ is an equiv-
alence relation on A. For any a € A, the set {x € A : a ~ z}, of all elements
of A which are related to ‘a’ is called the equivalence class of ‘a’.

It is denoted by @ or [a] or cl(a). We shall use the notation [a] for the
equivalence class of ‘a’.

Definition 1.26. (Quotient set): Given an equivalence relation ~ on a set
A, the set of all equivalence classes is called the quotient set of A mod ~. It
may be denoted by A/~.

Thus in Example 1.36 the equivalence classes of 0, 1, 2, 3 are Ay, A1, Ag,
Aj respectively.
Thus [O] = Ao, [1] = Al, [2] = AQ, [3] = A3.
In fact [4] = Ap so that perhaps we may say that if x € [0] then [x] = [0].
The quotient set of Z mod ~ is {4y, A1, Aa, As}.
We now prove that any two elements which are related give rise to the same
equivalence class.

Theorem 1.8. Let ~ be an equivalence relation on a set A. Let a € A. Then

forany b e A, b~ aif and only if [b] = [a].

Proof: [a] ={x€ A|a~ x}.

Let b € A such that b ~ a. We show that [a] = [b].

Let x € [a]. Then a ~x. Now b ~ a,a~x = b ~ x (".- ~ is transitive)
= x € [b]. Hence [a] C [b]. (1)
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If x € [b], then b~ x.
Now b ~a = a~ b (.- ~ is symmetric).
Since a ~ b and b ~ x , therefore a ~ x by transitivity.

= x € [a]. .. [b] C [a] (2)

(1) and (2) = [a] = [b].

Conversely let [a] = [b].

beb](-b~b)=becfa]=a~b=Db~a (.~ issymmetric). O

Theorem 1.9. Let ~ be an equivalence relation on a set A and a, b € A. Then
the equivalence classes [a] and [b] are either identical or disjoint.

Proof: In case [a] = [b], then proof is complete.

Suppose [a] # [b], we prove that [a] N [b] = ¢.

Let, if possible, x € [a] N [b]. Then x € [a] and x € [b]. . a ~ x and x ~ b, so

that a ~ b. Then [a] = [b] by Theorem 1.8, which contradicts our assumption.

Hence [a] N [b] = ¢. O
The above theorem is generally stated as “two equivalence classes are either

identical or disjoint”. Thus, an equivalence relation gives rise to a partition of

the underlying set. Before proving this, we give a formal definition of a partition.

Definition 1.27. A partition of a set A is a collection of subsets {An : o €
A} such that

(i) Unen Ao = A

(it) Ao N Ag = ¢ fora# 5, a, 5 € A.

If A is a finite set, then the partition will be finite. If A is an infinite set,
the partition may be finite or infinite.

Example 1.37. 1. Let E = set of even integers
and O = set of odd integers
Then {E, O} is a finite partition of Z.

2. Referring to FExamples 1.36
the set {Ag, A1, As, As} forms a partition of Z. Thus an infinite set Z
has a finite partition.

3. On Z, define Ay = {0}, forn >0 A,, = {n,—n}. Then {4, |n € NU{0}}
is an infinite partition of Z.

Theorem 1.10. Let A be any set. Every equivalence relation on A gives rise
to a partition of A. Conversely, corresponding to every partition of A, there is
defined an equivalence relation on A.

Proof: Let ~ be an equivalence relation on A. Since each element of A belongs
to some equivalence class, namely [a], and any two equivalence classes are either
identical or disjoint, therefore {[a] : a € A} forms a partition of A. Conversely
let {A4: @ € A} be a partition of A, where A is some index set. Then A =
Uaer Ao and A, N Ag = ¢ for a # B, o, € A. We define a relation ~ on A
as follows:

For a, b € A, a ~b if and only if a, b belong to the same set A, for some o € A.
Let a, b, c € A. Then

1. Since A = (J,cp Aa, there exists a € A such that a € A,. Hence a ~ a,
so that ~ is reflexive.
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2. Let a ~b. Then, there exists a € A such that a, b € A,.
S.bya € A, sothath ~ a. Hence ~ is symmetric.

3. Let a ~b and b ~c,
a ~b= 3 a € A such that a, b € A,.
b ~c =3 € Asuch that b, c € Ag.
If o # 3 then A, N Ag = ¢ but b € A, N Ag, so that a = B ie. A, =
Ag. Thus a,ce A,. Hence a ~ c. So ~ is transitive.

From 1, 2, 3 it follows that ~ is an equivalence relation on A. O

Graph of an Equivalence Relation

Consider a set A consisting of 10 elements, say
A = {al, (07, XU ) (110}

Suppose R is an equivalence relation on A, whose equivalence classes are
Cy = [al] = {al, az, 05}7 Cy = [as] = {ag, a4, ar, &9}, Cs = [GG] = {ae, as},
Cy = [a10] = {a10}-

Then every element of C; is related to each other, i =1, 2, 3, 4 (by definition
of equivalence relation) and no two elements of C; and C; are related, for ¢ # j.
S R= (Cl X Cl) @] (Cg X CQ) U (03 X 03) U (04 X 04)

=RiURyUR3U Ry, where R, = C; x C;, 1 =1,2,3,4.
Thus R; is the universal relation on C;. Also R;NR; = ¢, i # j,i,5 =1,2,3,4.
o(R;) = o(C; x Cy) = [o(C;)]?
4 4

o(R) =Y o(Ri) =Y [o(Cy)]? =32 +4%2 422 + 12 = 30.
i=1 i=1

In fact, R = {(a1, a1), (a1, a2), (a1, as), (a2, a1), (a2, a2), (az, as), (as, a1),
(as, a2), (as, as), (a3, az), (a3, as), (a3, a7), (a3, ag), (a4, az), (a4, as), (as,
az), (as, ag), (a7, a3), (a7, as), (a7, azr), (a7, ag), (a9, az), (ag, as), (a9, az),
(ag, ag), (as, as), (as, as), (as, as), (as, as), (a10, a10)}-
The graph of the R is shown in the Figure 1.
If we rearrange the elements of A on the axes so that the elements of an equiva-
lence class occur together then the graph of R appears as in Figure 2. Another
way of rearranging the elements is shown in the Figure 3.

Thus the graph of an equivalence relation can be rearranged as square blocks,
put diagonally.

a X
X
a,-
a,- X X
al X X
L 1 L I
a, a, a a, a, a @&
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a, X X
a, X X
a, - X X X X
ag - X X X X
ar- X X X X
ar X X x X

u av
Fig 2
r X
a, X X
a, X X
a, - X X X
ag - X X X
- X X X

Fig 3

Thus, we can generalize the above result as follows:

Let A be a finite set having n elements and let R be an equivalence relation
on A. Let Cy, Co, Cs, ...., Ck be the equivalence classes of R and o(C;) = n,
1<i<k Then A=r,C.

Since any two elements of C; are related and no two elements of C; and Cj are
related for i # j, therefore if R; is the universal relation, then

R = U§:1Ri7 R,NR; = ¢, R

o(R) = 3 i j0(R:) = 32 110(Ci)? = nf.

If the elements of A are written on the axes in the order of the elements of
Cy, Cy, Cs, ..., Ck, then the graph of R can be put as n; X n; square blocks,
along the diagonal i =1, 2, ..., k.

Problem 1.7. On R2?, define a binary relation as follows:
R ={((a,b), (c,d)) € R? x R? | a® + b2 = ¢ + d?}
Prove that R an equivalence relation. Find the equivalence classes of R.

Solution: Since a? + b% = a? +b%,  V(a,b) € R?
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“. ((a,b),(a,b)) € R V(a,b) € R% Hence the relation R is reflexive.
Let ((a,b),(c,d)) € R
,',a2+b2:02+d2
=24 d?=a®+ b2
= ((¢,d), (a,b)) € R
= R is a symmetric relation.
Let ((a,b), (¢, ), ((c,d), (e, )) € R
a4+ =4+ d?and 2 +d? =€+ f?
Thus a? + b2 = €% + f2
so that ((a,b), (e, f)) € R
Thus, R is transitive relation.
Hence, R is an equivalence relation.
Let us now find the equivalence classes of (a,b) € R%. [(a,b)] = {(x,y) €
R%[(z,y) ~ (a,0)} = {(z,y) € R?|(a? +y* = a® + b*}.
Thus [(a, b)] is a circle with center at the origin and passing through (a, ). Hence
the equivalence classes are the concentric circles with center at the origin.

Problem 1.8. Let A be a set having 5 elements.

(i)  How many binary relations can be defined on A?

(ii)  How many reflexive binary relations can be defined on A?
(ii)  How many symmetric binary relations can be defined on A?
(iv)  How many equivalence relations can be defined on A?

Solution: Since 0(A) = 5 = n(say)
- o(AxA) = 52 = 25.
Let A = {a,b,c,d,e}, Then D = {(z,z) | x € A}.

(i) Since a binary relation on A is precisely a subset of A x A and o(p(A x A))
— 225

.. There are 2% binary relations on A.

(ii) Since a reflexive relation on R always contains the diagonal D, and there
are 5(=n) elements in the diagonal.
. Number of subsets of A x A which always contains D = 2255 —
220(:271 —n).

(iii) Let R be a symmetric binary relation on A. Then (a,b) € R = (b,a) € R,
for a # b. Also any number of elements of the form (z,z) for € A may
be in R. Thus we see that the choice of elements of R has to be made from
5+4+4+3+2+1=15 elements.

.. Number of subsets of A x A which always contain (b,a) whenever it
contains (a,b) = 2!5. Number of symmetric relations on A = 21°.

(iv) Since every partition of a set gives rise to an equivalence relation on the
set, therefore the equivalence relations on a set with 5 elements is equal
to the number of partitions of a set with 5 elements.

Let A = {a,b,c,d,e}.

Number of partitions of A into subsets of the form {a}, {b}, {c}, {d}, {e} =
number of ways in which 5 sets containing one element each can be chosen
=1.

Number of partitions of A into subsets of the form {a}, {b},{c},{d, e} =
number of ways in which a set containing 2 elements can be chosen =°Cy =
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10.

Number of partitions of A into subsets of the form {a},{b},{c,d, e} =
number of ways in which a set containing 3 elements can be chosen =°C3 =
10.

Number of partitions of A into subsets of the form {a}, {b, ¢,d, e} = num-
ber of ways in which a set containing 4 elements can be chosen =°Cy = 5.
Number of partitions of A into subsets of the form {a}, {b,c},{d, e} =
number of ways in which a set containing 2 elements and another set con-
taining 2 of the remaining 3 elements can be chosen =°Cy x3Cy = 10x3 =
30.

Number of partitions of A into subsets of the form {a, b}, {c,d, e} = num-
ber of ways in which a set containing 2 elements can be chosen =2Cy = 10.
Number of partitions of A into subsets of the form {a, b, ¢, d, e} = number
of ways in which a set containing 5 elements can be chosen =°C5 = 1.
Total number of partitions of A =1+10+10+5+30+10+1=67.

.. Number of equivalence relations on A = number of partitions of A=67.

1.6 Exercise

1.

Let C be the set of all children in Delhi in the age group 3 to 10 years and
S the set of all schools in Delhi. Define 3 binary relations from C to S.

. If A and B are sets such that o(A) = 5 and o(B) = 3, then

(i) How many binary relations are there from A to B.
(i) How many binary relations are there on A.
(iii) How many binary relations are there on B.

Draw the graphs of the following binary relations.
(i) A={a,bcde}, B={x,y,z}
R ={(a,), (b, ), (c, ), (d,y), (e, 2)}
(i) A = {SVC, LBC, MC, JMC, DR, IP, HR, LSR, DB}
B = {B.Sc., BA, BBE, B.Com, MA, M.Com}
R = {(SVC, B.Sc), (SVC, MA), (LBC, B.Com), (MC, BA),
(LSR, BBE), (JMC, BA), (DR, M.Com)}

. Write the relation whose graph is the following:

Black+ X
White + X
Gray + X X

Orange|

Yellow X

Green X X
Blue | X

Red_ X

L 1
O‘ABCDEGHI
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11.

12.

13.
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Let R be a relation on the set of reals defined as follows:
R ={(z,y) e Rx R | y? = 4z}
Draw the graph of this relation.

Find the inverses of the relations in Q3 and draw their graphs.

If R is a relation on a set A. Prove that
(i) R is reflexive & R™! is reflexive.

(i) R is symmetric & R~! is symmetric.
(ili) R is transitive & R~! is transitive.
(iv) R is antisymmetric < R™! is antisymmetric.

Check whether the following relations are reflexive, symmetric, transitive
and antisymmetric.
(i) S is the set of all students of IIT, Delhi.
Ry = {(a,b) € S x S| A and B study a common course}
(i) W is the set of all words of the English language.
Ry = {(x,y) € W x W | words x and y have no letter in common}
(iii) P is the set of all points on the earth.
Rs = {(p, q) € P x P | p and g have the same latitude}
(iv) X is the set of all women in India.
Ry = {(a,b) € X x X | a is mother of b}
(v) X is the set of all people living in India.
Rs = {(x,y) € X x X | x and y have the same mother tongue}

On each of the sets defined in Q8, define a relation different from the one
already given.

Determine which of the following relations are reflexive, symmetric, tran-
sitive and antisymmetric.
(i) L is the set of all lines in a plane
Ry = {(li,12) € L x L | 1; is perpendicular to 1o}
Ry = {(l;,15) € L x L | 11 is parallel to 1o}
Rs = {(l;, o) € L x L | ]; intersects l in one point}
(i)  On Q, the set of rationals, define
Ry ={(a,b) €QxQ]la—b| <3}
R; = {(a,b) € Qx Q] |a] = [b]}
Re ={(3,5) €QxQ|ad=hbc}
(iii) On N, the set of natural numbers, define
R7; = {(a,b) € Nx N | a divides b }
(iv) On Z, define
Rs = {(a,b) € ZXZ | |a] = [b]}

For the relations defined in Q1, determine which of the properties: reflex-
ivity, symmetry, transitivity and antisymmetry do they possess?

Which of the relations in Q8 are equivalence relations. Determine the
equivalence classes of the equivalence relations.

Determine the set of equivalence classes of the equivalence relations in

Q10.
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14.

15.

16.

17.

18.

19.

20.

Determine a binary relation on S = {1, 2, 3, 4, 5} with the help of a
graph, which satisfies the following properties:

(i)  Symmetric and antisymmetric, not reflexive.

(ii)  Symmetric and reflexive, not antisymmetric

(ili) Symmetric, reflexive and antisymmetric.

(iv) Reflexive and antisymmetric, but not symmetric.

(v)  Neither reflexive, nor symmetric nor antisymmetric.

Draw the graph of the following relation on N. Also find the number of
elements in the relation.
A={(a,b) e NxN|a<b<15}

Let A C N x N defined as:

(i) (1,1) € A, (a,b) € A= (a, b+1) and (a+1, b+1)c A
Draw the graph of A.

(i) IfB={(a,b) e NxN|a>b},findANB

Construct examples of relations on S = {a,b,c,d,e} which satisfy the
following properties:

(i)  Reflexive but neither symmetric nor transitive.
(ii)  Symmetric but neither reflexive nor transitive
(iii)  Transitive but neither reflexive nor symmetric.
(iv)  Reflexive and symmetric but not transitive.

(v)  Reflexive and transitive but not symmetric.

(vi)  Symmetric and transitive but not reflexive.
(vii)  Neither symmetric, nor reflexive, nor transitive.
vili) Reflexive, symmetric and transitive.

y
ix Symmetric but not antisymmetric.
y y

(x)  Antisymmetric but not symmetric.
(xi) Antisymmetric and symmetric.

xii) Neither antisymmetric nor symmetric.

Y y

What are the equivalence classes of
(i) The identity relation on {2, 4, 6, 8, 10, 12}
(i1) The universal relation on the set {1, 2, 3, ...., 12}?

Construct an equivalence relation on the set {1, 2, 3, ....10} having exactly
(i) 3 equivalence classes

(ii) b equivalence classes

(iii) 11 equivalence classes

(iv) 10 equivalence classes.

Given below are the graphs of a binary relation on a set. By looking at
the graph, can you tell whether the relation is an equivalence relation?
What are the equivalence classes.
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a, - X X
ar X X X
Al X X
a, X X
a- X X X
r X X X
a-  x X
L 1 L | 1
a, a, a, a, a, a, a;
a, - X
a; - X X
a,l- X X
a, X X X X
al X X X
& X
a- X X X
I | I I L
a a a a, a, a a,

Let A = {a, bc, d, e, f}. Given the following partition of A, find the
equivalence relation corresponding to it.

(i) {{a,bd, e}, {c, f}}

(i) {{a, d, £}, {b, ¢}, {e}}

How many elements will there be in the equivalence relation?

Let A =1{1,2,3,4,5,6, 7}. Given the equivalence classes of the equiva-
lence relation R on A, find the partition of A where R has the equivalence
classes given by

() (1] =1{1,3 572 = {2 4,6}

G) 1] = {1}, [2] = {2, 3, 5, 7}, [4] = {4, 6}

Also find the equivalence relation. How many elements does the equiva-
lence relation contain ?

Let A = {1, 2, 3, 4, 5}. On A can you define an equivalence relation
having exactly

(i) 5 elements

(ii) 7 elements

(iii) 8 elements

(iv) 17 elements

(v) 18 elements.
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1.7 Supplementary Exercises

1. State whether the following are true or false. Justify the false ones.
(i) The null set is a superset of every set.
(i)  Every set is a superset of the universal set.
(iii) If A ={a, b, c} thenc C A.
(iv) If S ={1, 2, 3} then {1} € S.
&) 6C {4 (o))
(vij be{3a+4b|ac{1,0,1,2},be{01,2 3}}
(vii)  If A has 3 elements, then P(P(A)) has 27 elements.
(viii) If A and B are unequal sets, then AN B C AU B.
(ix) If A and B are sets then A A B # ¢.
(x) If Aand B are non-empty sets then A x B = B x A.
(xij ACB= A°C B°.
(xii) (A x B)¢ = A° x B°.
(xiii) If a relation R on a set A is symmetric then it is not anti-
symmetric.
(xiv)  Every relation on a set is reflexive.
(xv) If a relation R is symmetric, so is R™!.
(xvi) Every relation on a set A is either symmetric or antisym-
metric.
(xvii) If A = ¢, then P(A) = A.
(xviii) The number of subsets of A which contain neither 1 nor 5,
where A = {1, 2, 3, 4, 5, 6}, are 26- 22,
(xix)  The number of equivalence relations on a set with 3 elements

is 3.
2. If A={a,b, ¢}, B = {¢} list the elements of AU B, AN B, AN\ B, A A
B and P(A).
3. If A={a, b, c, {a, b}}, find
(i)  A~{a, b}

(i) {a,b,c} N A
(i) ({a, b, c}u {4}) N A

(iv) A~ {4}
(v)  P(A)
4. Ay, Ag, ..., Ay are sets such that A; C A;44,i= 1,2, ..., k-1. Find A

ﬂAQ ﬁ...ﬂAk and A1 UAQ U...UAk.

5. For any real number a, let
Ay ={aeR|a<a}
(i) write A, as an interval.
(11) UaE]R Aa'
(i) Aq N AS.
6. Let A={n€Z|niseven}, B={n € Z|nisodd},
C = {n € Z | n is a multiple of 3},
D = {n € Z | n is a multiple of 4}.
Find (i) AN C, (ii)) AUC, (iii) CUD, (iv) BN D, (v) BN C (vi) AN
BnNnCnND.

7. Prove that A C B if and only if (BN X) U A = B NX U A) for every
set X.
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10.

11.

12.

13.

14.

15.

16.
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. Write the power set of the set A where

(i) A=¢

(i)  A={¢}

(i) A= {9, {¢}}

(iv) A =P(A), where A is as in (iii)
(v) A=P(B).B={x yh

. Write 3 elements of the set

{(a,b) e RxR | # € Q, a, b are distinct irrational numbers}.

If A is any set, when can we have
(i) o(P(A)) = o(A)
(i) P(A4) = A

A and B are finite sets with o(A) = m and o(B) = n.
(i) How many binary relations can be defined from A to B?
(il) How many binary relations can be defined on A?

How many reflexive binary relation can be defined on a set with n ele-
ments?

How many symmetric binary relation can be defined on a set with n ele-
ments 7

Prove or disprove the following, “Every symmetric and antisymmetric bi-
nary relation on a set A is reflexive.”

On the set A, the following relations are defined. Check whether they are
equivalence relations or not. If not, give reasons. If yes, find the equiva-

lence classes.

(i) A=Z. Fora,beZ,an~bif |a]=|b|.

(i) A=7Z. Fora,beZ a~bifab>0.

(iif) A=R.Fora,beR,a~bifb=2a+ 3.

(iv) A=Q. For ¢, 5€Q, 3~ 5if ¢
and £ are equivalent to a rational number with common
denominator.

(v) A=7Z.Fora,beZ, a~bif2a+ 3b = 10.

On R2, the following relations are defined. Check whether they are equiv-
alence relations or not. If not, give reasons. If yes, find the equivalence

classes.
(i) (a, b) ~ (c, d) iff both the points lie on the same curve

4x 4+ 5y = k, for some k € R.
(ii)  (a, b) ~ (c, d) iff both the points lie on the same curve
x? 4+ y? = k2, for some k € R.
(iii) (a, b) ~ (c, d) iff both the points lie on the same curve
9x% + 16y? = k2, for some k € R.
(iv) (a, b), (c, d) € R? such that b, d > 0: (a,b) ~ (c, d) iff ¢ = 2¢7¢,
(v) (a, b) ~ (c, d) iff ad = be.
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17.

18.

19.

20.

21.

22.

(i)  On R* define the relation ~ as follows: a ~ b
if 7 is a rational number. Is ~ an equivalence relation?
If yes, find the equivalence classes.
(ii) On R define the relation ~ as follows: a ~ b if a-be Z.
In case ~ is an equivalence relation on R, find the equivalence
classes of ‘0’, i and \/5, a where 0 < a < 1.
(ili) On R define the relation ~ as follows: x ~ y if y = mx + c.
For what value of m and c is the relation symmetric ?
(iv) On R define the relation ~ as follows: x ~ y if y = -x.
Is the relation an equivalence relation ? Justify. Is it antisymmetric?

If Ry, Ro are two equivalence relations on a set A, then are the following
also equivalence relations on A

(i) R1 N Ry and (ii) Ry U Ry (iii) Ry

How many equivalence relations can be defined on a set with n elements,
where

(i) n=3

(i) n=4

Graph the relations

(i) A= {(a,b) € Nx N|b < a}.

(ii) Let A C N x N defined by
(a) (1,1)e A
(b) (a,b) € A= (a+1,b), (a+1, b+1)€ A.

Draw the graph of A. If B = {(a,b) € Nx N|b < a}
C={(a,b) e NxN|b>a}
Find ANB, ANC, BNC, AnB NC.

Let R = {(a,a),(b,c),(a,b)} be a relation on the set {a,b,c}. Add the

minimum number of element to R so that R becomes
(i)  reflexive

(ii)  symmetric

(iii) transitive

(iv) antisymmetric

(v)  equivalence relation.

Complete the graph of the following relation to define the smallest relation
which is:
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a;
as
a, - X
a X
@ X
& X
a- X
L 1 L L |
a, a, a, a, a, a, a;

(i) reflexive

(ii) symmetric

(iii)  transitive

(iv)  antisymmetric

(v)  equivalence relation.

23. Draw the graph of the following relation on N. For a fixed n € N, 4,, =
{(a,b) € Nx N|a < b <n}. How many elements are there in A,?

24. Find the flaw, if any, in the following argument:

(i) A is any set and R a symmetric and transitive relation defined on A.
(a,b) € R = (b,a) € R since R is symmetric.
Now (a,b), (b,a) € R = (a,a) € R, as R is transitive.
Thus (a,a) € R so that R is reflexive.
Thus a symmetric and transitive relation is reflexive.
(ii) Let A be any set and R is symmetric and antisymmetric relation on
A.
(a,b) € R = (b,a) € R since R is symmetric.
(a,b), (b,a) € R = a=b as R is antisymmetric.
Thus (a, a) € R so that R is reflexive.
Thus a symmetric and antisymmetric relation is reflexive.

1.8 Answers to Exercises

Exercise - (5.2)

1.

0 {1

(i) {5, 10,15, ...}

(i) &

(iv) {0,£1,42,+3,+4, £5}

(v) {6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6, 7, 8}
2.

(i) A={neN|nisamultiple of 3, n< 21}

(i) B={xeN|x<2}

(iii) C={2?+1|x€eN}

(iv) D={xeZ]||z| <3}

(v) E={xeC]|at1=0}
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3. Other solutions are possible
(i)  rice, mice, dice
(i)  2+5V7, —2+5V7,2-5V7
(iii)  2,-2, 2v/2

(v) 1,-1,7
(v) -2,0,-1
(vi) -1,1,2

4. Other answers are also possible
i {2, 4,10}

(i) {2}
(i) {4, 6, 8}
(iv) {4}
(v) {8}

(vii) {2, 4}

(vi) {2 4,10}
5. (1) {g,7}, (ii) {p,q, 7}, (ili) {r, s, t}, (iv) {p,q}, (v) &

@) A{e}
(i) {¢.{o}}
(iii) {¢7 {w}7 {33}7 {y}7 {Z}7 {wa 'T}a {*737 y}7 {yv z}: {Z, w}v {w7 y}, {xa Z}

{wa €T, y}» {U), €T, Z}v {I7 Y, 2}7 {% 2, w}v {wy Ty, Z}}’ 24 =16

7. (i) F, (ii) T null set is a subset of every set,
(i) F,pe A(iv) T (v) F, AC A
(vi) T (vii) T (viii)) T (ix) T (x) F, {q, r} C A (xi) F (xii)) T

Exercise (5.4)

1. {aa 577:}7 {m7a7t7 h7 67i,C, Svlagvb7r}a {avla S,i}, {mvtv h7’L'7C, Svlag7 ba ’I"},
{g,e,b,r}, {m7a7ta h,i,C, 8}? {da fvjv k,ovpaqv u, v, w, T, Z}v {(a‘va)a
(a’ 6)7 (Tl, (1), (me), (la (1), (176)7 (y7a)7 (ya 6), (S’a)7 (Sa 6), (iaa)7 (Za 6)}7

2. AUB=(-8,5), AN B = (-1,2), ANB = (-8, -1], (A U B)® = ] — 00, —8]U[5,
00)

3.XNY ={1,2,3,4}, XUZ ={-2,0,1,2, .., 7},
(X ﬂY)XZ = {(17 _2)7 (17 0)7 (17 2)7 (27 '2)3 (2a O)v (2a 2)v (Sa '2)7 (37 0)7
(37 2)’ (47 '2)’ (47 0)7 (47 '2)}7
(X \Y)Z = {5, 6, T},
XAaZ=1{201,34,5,6, 1}
Y A Z={-6,-5,-4,-3,-1, 1, 3, 4}

4. (AxB)U(BxA) = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (4, 1), (4, 2),
(4, 3), (6, 1), (6, 2), (6, 3), (1, 4), (1, 6), (2, 4), (2, 6), (3, 1), (3,2), (3,
4), (3,6)}
(AxB)N(BxA) = {(1, 1), (1, 2), (2, 1), (2, 2)}
z(3./)4}><B)\(B><A) ={(1, 3), (2, 3), (4, 1), (4, 2), (4, 3), (6, 1), (6, 2), (6,

6. In the given relation, replacing A by A¢ and B by B°.
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7. (i) BCA, (i) ANB = ¢, (iii) B = ¢, (iv) A= B

8. Hint: Suppose B = (X NA)U (Y N B).

10.

11.

13.

14.

15.

16.

17.

18.

19.

20.

B=BN(AUB)=Bn(XUY)=(BNnX)u(BnY).
T (XNAUXNB) =(BNX)U(YNB)

But XNACA, YNBCBand ANB = ¢.

o XNA=XNB=¢. Nowuse X =XN(AUB).

Only (i), (ii), (v) and (vi) are false.

(i) N ¢P, (i) 2€ENP, (i) 3¢ PE, (iv) N C Z, (v) Z\N # ¢, (vi) P C
EC

0,1o0r2

{z € N|z is a multiple of 12 or 18}
{z € N|z is a multiple of 36}
{z € N|z is either a multiple of 12 or 18 but not of 36}
{(z,y)|x is a multiple of 12, y is a multiple of 18 }

SCRCP
ScTcP

(i) 20, (ii) 30
10

(i) 24, 14 (ii) 10, 0

(i) A~(BUC)

(i) (ANC)~B
(i) AnBNC
(iv) C~A

(v) (AUB)\C

(i)  women who are neither lawyers nor cricket lovers
(i)  women who love cricket but are not lawyers

( women who are lawyers and love cricket

all men who love cricket

(v) women or lawyers who do not love cricket
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Exercise (1.6)

L (i) @ ~ b if a studies in school b.
(ii)  a ~ bif the distance of school b from the residence of a is less than
5 km.
(iii) a ~ b if the school bus of school b comes with 1 km. of the
residence of child a.
2. (i) 217, (i) 2%, (iii) 2°
3. (i)

z X
y X
x X X X
| | L L L
0 a b c d e
(i)
M.Comt X
MAT X
B.Com X
BBET X
BA.+ X X
B.Sct X
1 1 1 1 I T R N |
SVC LBC MC JMC DR IP HR LSR DB

4. {(A, Blue), (C, Red), (A, Black), (B, Green), (D, Grey), (D, White), (E,
Yellow), (G, Green), (H, Grey), }

\4
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6. (i)
e X
d X
c+ X
br X
a- X
e
(ii)
DB
LSRL X
P+
DR X
JMcH
mMC X
LBC X X
sver  x X
B.|Sc. B!A. B_Eli_E B.(I:om. N:.A. M.(!om.
8.
(i) RS
(i) S
(iii) RST
(iv) A
(v) RST
10.

(1) Rl IS, R22R5T7 R3ZS

(ii) R4 : RS, R5 : RST, RG : RST
(i) R7: RTA,

(iv) Rg:RST

12. R3 and Rs.

13. Rg, Rs, R and Rg are equivalence relations.
For Ry: If Iy is a line through O making an angle § with the X-axis, then
{[le] : 0 <6 < 2r}.
Ry : {[a]|la € QT U {0}}.
Re : {[#]la,b € Z,b% 0, (a,b) = 1}U{[0]}.
Rg : {[a] a € ZT U{0}}.
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15. 120 elements, graph is:

BEX X X X X X X X X X X X X X X
XX XXXXXXXXXXXX
XXX XXXXXXXXXX
XX XXXXXXXXXX
XXX XXXXXXXX
10LX X X X X X X X X X
XXX XXXXX X
XX XXX XXX
X X X X X XX
X X X X XX
51X X X X X
X X X X
X X X
X x
x
1 1 1
5 10 15
16.
A
6 —
5—X X X X X
4 -X X X X
3—-—X X X
2-X X
1 X
e -
1 2 3 4 5 6
(i))AN B ={(a,a)la € N)}
18.

() {2}, {4}, {6}, {8}, {10}, {12}
(i) {1,2,3,...,12}

19. Other answers are possible
(i) a~bif3divides (a —b).
(ii)  The relation with the equivalence classes {c1, ¢a, c3, ¢4, ¢5}
where ¢1 = {1,2,3},co = {4},¢3 = {5,6,7},ca = {8}, ¢5 = {9,10}.
(ili) not possible.
(iv)  identity relation.

(i)  Yes. Equivalence classes are {[a1], [a2], [as]}
where [a1] = {a1, a4}, [az] = {a2,as,a6}, [as] = {as, a7}
(i) Not an equivalence relation.
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(i)
(i)
22.
(i)
(i)
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{(a, a), (a, b), (a, d), (a, e), (b, a), (b, b), (b, d), (b, e), (d, a),
(d7 b)’ (d7 d)7 (d’ e)7 (e’ a)7 (e7 b)? (e7 d)’ (e7 e)7 (C7 C)’ (C7 f)7
(f, ¢), (f, 1)}, 20.

{(a, a), (a, d), (a, ), (d, a), (d, d), (d, ), (£, a), (£, d), (£, 1),
(b, b), (b, ¢), (¢, b), (d, a), (c, ¢), (e, e)}, 14.

Partition is {C, C2} where Cy = {1,3,5,7},Cs = {2,4,6}, 25.
{Cl,CQ,Cg} where Cl = {1},02 = {2,3,5,7},03 = {4,6},21.

23. If an equivalence relation has n elements then n = m$ + m3 + ... + m2,
where m; is the order of the i-th equivalence class.

(i)
(i)
(iii)
(iv)
v)

—
M = D
=
e e

T
S84 2 E
H'\—/\_/\_/\./
=

—
<
.
=
=

=

ix)

x)

xii)
(xiii)
(xiv)
-
(xvi)
(xvil)

—~
~—

Yes, 5=12+124+124+124+12
Yes, 7=12+12 412422

No

Yes, 17 =42 412

No

Supplementary Exercise

False

False

False, {c} C A

False, 1 € S

True

True

False

True

False, AAB # ¢ when A # B.
False, A x B # B x A when A # B.
False, B¢ C A°

False, (A x B)¢ D A x Be.
False, it can be both

False

True

False

False

(xviii)  False, 2%.

(xix)

False, it is 5

2. AUB={a,b, ¢}, AN B ={¢}, AN B={a, b}, A A B={a, b}

P(A)

= {0, {a}, {b}, {0}, {a, D}, {a, ¢}, {b, ¢}, {a, b, ¢}}

{c {a. b))

o

{4)

A

{6, {a}, {b}. {c}, {{a, b}}. {a. b}, {a. ¢}, {b, ¢}, {a, {a. b}),

{b, {a, b}}, {c, {a, b}}.{a, b, ¢}, {a, b, {a, b}}, {a, ¢, {a, b}},
{b, ¢, {a, b}}, A}
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4. Ay, Ay
5.
(i) Aa= (-00, o]
i) R
(i) if B < a, (8, o
ff>a ¢
6.
(i) {n€Z | nisamultiple of 6}
(i) {n€ Z | n is a multiple of either 2 or 3 or both}
(i) {n€ Z | n is a multiple of either 3 or 4 or both}
(iv) ¢
(v) {n€Z|nisan odd multiple of 3}
(i) o
11. (i)2mn (i)2m”
12. 27 n
13. 205

14. F, If A= {a,b,c}, R = {(a,a),(b,b)}.

15.
(i)  Yes, {{a,—a}|la € Z}
(ii)  No, Not reflexive
(iii) No
(iv) Yes, {{ZllpeZ,qg €N, (p,q) =1}
(v) No
16.
(i)  Yes, {lines with equations 4z + by = k|k € R}
(ii)  Yes, concentric circles with centre at the origin.
(iii)  Yes, { ellipse with equation 922 + 16y? = k?|k € R}
(iv)  Yes, {curves with equation y = k2%|k € R*}
(v)  Yes, { all lines through the origin, punctured at the
origin }U{(0,0)}
17.
(i) Yes, Q* {[r]|r is irrational} where [r] = {kr|k € Q*}.
() Z, Z+3%, Z+V?2, Z+a.
(ili) m = —1, ¢ can be take any value
m=1,¢=0
(iv)  Only symmetric.
18.
(i)  Yes
(i) No, Ry :a=0bmod4; Rz :a=0bmod3.
Then (1, 5), (5, 8), € R1 U Ry, but (1, 8), ¢ R; U Ra.
(iii)  Yes
19.
(i 5
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20.

21.

XXXZ(g'X

24.

CHAPTER 1.

(i) diagonal and below the diagonal
(ii) diagonal and below the diagonal.

B, {(a,a)|la € N}, ¢, ¢.

(i) {(®,0),(c,0)}
b), (b,a)}
{(a,0)}

¢
(v)  {(b,0),(c;0), (¢, b), (b, a), (a,¢), (¢, a)}

a, K
af &
ar K K x &

a K x & K
a, X K K
a, X K &
a,f X
L L | 1 L L
‘ a, a, a a, a, a, a,
n(n+1)
X ®X X X X X XX
NR
NM
alx x X X
X X
X
X X
X X
X X
X X
gx x
P*X
I'N o a

SETS AND RELATIONS

XXX XXXXXXXXXXX

XX XXX XXXXXXXX
XX XX XXXXXXXX

x x x XX X X X X X

XX XX XXX

NM f

NR

(i) (a,a) € R only when there exists some b € R such that
(a,b) € R. Such an (a,b) may not exist.

(ii) (a,b) € R may not exist.



Chapter 2

Binary Operations

We shall now extend the concept of addition and multiplication of numbers
to binary operations on other sets, like set of matrices, polynomials, functions,
etc. Properties of these binary operations will be studied. Finally, to illustrate
this, we shall discuss the symmetries of regular plane figures, for example, the
symmetries of an equilateral triangle, square rectangle etc...

2.1 Definition and Examples

The idea of binary operation may be illustrated by the usual operation
of addition in Z. For every ordered pair of integers (m,n), there is asso-
ciated an unique integer m + n. We may therefore think of addition as a
mapping from Z x Z into Z, where the image of (m,n) € Z x Z is denoted
by m + n. Generalizing this concept we have the following
definition:

Definition 2.1. Let S be a non empty set. Any mapping o : SxS — S is called
a binary operation on S. The image of (a,b) € S x S under the operation o, is
denoted by a o b.

Various symbols used for binary operations are +, X, 0, x, %, ®, juzrtaposition etc.

Remark 2.1. The adjective binary is used because our rule combines two ele-
ments at a time.

Example 2.1. The following are binary operations:
1. o defined by mon =m on N
2. x defined by mxn=m+n+1 on N

3. * defined by m*xn =|m —n| on Z

49
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4. Let S be a non empty set and P(S) the power set of S. Define
(i) =« defined by Ax B=AUB on P(S5),
(ii) o defined by Ao B=ANB on P(S).

The following are not binary operations:
(i) o defined by mon=m —n on N
v1,2eNbutlo2=1-2=-1¢N
(ii)  * defined by m*n=m-+non N
w1x2=1+2=1¢N
(ili) © defined by a®@b=a-+bonQ
1®0=1-+0 is not defined.

Example 2.2. : Let Q* be the set of non-zero rational numbers. Check whether
division (denoted by <+ ) is a binary operation in Q*. Verify whether the following
statements hold for all a,b,c € Q*.

(i) a+b=b+a

(i) a=(b+c)=(a+b)+c

Solution:  If a,b € Q* then a = ™, b = £, where m,n,p,q are non-zero

q )
integers. Then a +b= " +2 = ™ ¢ Q* because mg, np are non-zero integers.

Hence + is a mapping from Q* x Q* into Q*.

(i) This statement is false. This is because if we take a = 1,b = 2 then a,b € Q*
buta+b=1+2= %,b%a: % = 2 since % # 2, therefore a + b # b+ a.

=2,c=3thena~+ (b+c) =

(ii) This statement is false. Take a = 1,b
=(1+2)+3=1+3=1 therefore

1+2+3)=1+2=3(axb)=c

a+(b=xc)#(a+d)+ec
Example 2.3. Let R denote the set of real numbers and x a binary operation
on R defined by a xb = a + b+ ab. Verify that for all a,b,c € R

(i) axb=bx*a
(ii) ax (bxc)=(axb)*c
Solution:

(i) axb=a+b+ab=>b+ a+ ba = b+ a using the commutative property of
addition and multiplication in R.

(ii) a*x(bxc)=ax(b+c+bc)=a+ (b+c+bc)+alb+c+bc)=a+b+c+
bc + ab + ac + abe,
(axb)xc=(a+b+ab)xc=a+b+ab+c+(a+b+ab)c=a+b+c+
ab + ac + bc + abc

Hence a * (b*c) = (a*b) * c.

The multiplication table (Cayley table)

If S is a finite set consisting of n elements, then a binary operation x on S
can be described by means of a table consisting of n rows and n columns. The
rows and columns are headed by the elements of S. The entry at the intersection
of a row headed by an element z € S and column headed by an element y € S
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is  x y. Such a table is called a binary operation table, multiplication table,
composition table or Cayley table.

We may define a binary operation by giving the multiplication table or else,
having defined the binary operation by some rule, we may write the multiplica-
tion table for it. This is illustrated in the following examples.

Example 2.4. 1. Let S={x,y,z}. Let x be a binary operation on S defined
by the multiplication table

Reading the table, we find,
THT =T, T*Y =Y, T*x2 = T, Y*T =Y, Y*xY =Y, Y*2 = 2,2%L = T, 2%y =

Z, 2% 2= 2.

2. Let S = {1, -1, i, -i}, where i = \/—1, with the usual multiplication as
the binary operation.
The composition table is given below

t | ¢ -4 -1 1

3. Let S = {1,2,3,4,5} and o a binary operation on S defined by a ob =
gcd(a,b). The multiplication table is given below

o1 2 8 4 5
111 1 1 1 1
211 2 1 2 1
311 1 3 1 1
411 2 1 4 1
511 1 1 1 5

Properties of binary operations

A non-empty set equipped with one or more binary operations is called an
algebraic structure.
The algebraic structure consisting of a set .S and binary operations x,0 on S is
denoted by (S, x,0). (N, +), (Z,+,-), (Q,-) are algebraic structures. According
to the properties of binary operations, the algebraic structures are grouped into
different classes. We shall now discuss different types of binary operations. In
algebra, we come across various mathematical systems which give rise to such
type of binary operations.

Definition 2.2. (Associative operation):
Let x be a binary operation on a set S. Then % is said to be associative if and
only if if (axb)xc=a*(bxc) V a,bceS.
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Note that = will not be associative if there exists even one triad z,y, z of
elements of S such that (x xy) x z # x x (y * 2). In case x is associative on S,
we say that the algebraic structure (S, *) is associative or S is associative with
respect to .

Example 2.5. The addition and multiplication on any set of numbers are as-
sociative. Thus (N, +), (N, )(Z,+),(Z,-),(Q,+), (R, "), (R*,-) are all associative
algebraic structures.

(P(S),V), (P(S),N) are associative algebraic structures.

(Q*,+),(Z,—) are non-associative algebraic structures.

(R*, %) in example 2.3 is associative.

In example 2.4(1), (S,*) is not associative as

(xxy)*z £ x*(y*z2).

Operation with Identity Element

Let S be a non-empty set and * a binary operation on S. If there exists
some element e € S such that x xe = exx = z, Vo € S, then e is said to
be an identity element (neutral element)with respect to = and (S, *) is called
algebraic structure with identity element.

Example 2.6. 1. (Z,4) is an algebraic structure with identity element 0.
2. (N,) is an algebraic structure with identity element 1.
3. (P(S),V) is an algebraic structure with identity element, the null set.
4. (N,+) is an algebraic structure without identity element as 0 ¢ N.

Theorem 2.1. (Uniqueness of identity element)
Let (S, ) be an algebraic structure. If an identity element exists, it is unique.

Proof: Let, if possible there be two identity elements e; and es. Then
xxeg=e1xx=x V z€S5...(i)

Txeg=exskx=x V xz €S ...(ii)

In (i) taking x=eq, we get €1 x ea = e
In (ii) taking z = e, we get e; xe3 = €1
Hence e; = es. O

Definition 2.3. (Invertible Elements):

Let (S,%) be an algebraic structure with identity element e. An element
x € S is said to be invertible with respect to x if there exists some y € S such
that txy =yxx = e, and y is called an inverse of x.

Note that the inverse of identity element is itself. Also if y is an inverse of x
then z is an inverse of y.

Example 2.7. 1. In (N,-), 1 is the identity element and no element other
than 1 has an inverse.
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2. In (Z,4), every element has an inverse. In fact if x € Z, its inverse
18 —T.

3. In (Z,-), only 1 and -1 have inverses.

4. In (P(S),N), the identity element is S, and S is the only invertible element,
its inverse being S.

5. In (R,+), every element has an inverse.

6. In (R,-), every non-zero element has an inverse.

Theorem 2.2. In an associative algebraic structure with identity element, the
inverse of an element, if it exists, is unique.

Proof: Let (S,%) be an associative algebraic structure with identity ele-
ment e. Let, if possible an element x € S have two inverses y and z. Then,
zxy=y*rx=e...(i

xxz=z*xx=-e...(i)

Since * is associative, therefore

y* (zxz) = (y*x) * 2, so that, by using (i) and (ii), we get y xe = e % z,
that is y = z. O

Example 2.8. Let S = {1,2,3,4}. Define a binary operation x on S by the
table

x| 1 2 3 4
111 2 3 4
212 1 1 1
303 1 1 4
414 2 3 4

Is % associative? Does it have an identity element? If it does, find which ele-
ments are invertible.

Solution: x is not associative, because 2 x (3x4) = 1,(2x 3) x4 = 4, so that
2% (3x4) # (2% 3) 4. Clearly 1 is the identity element. From the table, 2 has
two inverses, namely 2 and 3. Inverse of 1 is 1. Also 2x4 =1 but 4x2 = 2.
Hence 4 does not have an inverse. Thus 1, 2 and 3 are the invertible elements.

Remark 2.2. The above example shows that some elements may be invertible
whereas others may not be. Moreover, if the binary operation is not associative,
iverse of an element may not be unique.

Definition 2.4. (Commutative Operation):
Let S be a non-empty set and x a binary operation on S. Then x is said to
be commutative if and only if txy =y*xx Vx,y € S.

In case * is commutative on S, we say that the algebraic structure (5, x) is
commutative or S is commutative with respect to x.

Example 2.9. (N,+),(Z,-),(Q,+), (R,-), (P(S),U), (P(S),N) are all commu-
tative algebraic structures.

(Z,—),(Q*,+), where Q* is the set of non-zero rational numbers, are not
commutative algebraic structures.

Note that if the multiplication table is symmetric about the main diagonal
then the binary operation is commutative and vice versa.
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2.2 Exercise

1.

Verify whether the following definitions of x is a binary operations on the
given set.
(i) * defined by a b = 2a + 3b on N.
(ii) * defined by axb=a — b on N.
(iii)  defined by a*b = |a — b| on N.
(iv) * defined by axb=a —b on Z.
(v) * defined by axb = +/|a — b] on Z.

Let S = {1, 2, 3}. Write the multiplication table for the following binary
operations on S.

(i) * defined by: (1,1) — 2,(1,2) — 3,(1,3) — 1,(2,1) — 1,(2,2) —
2,(2,3) = 2,(3,1) = 1,(3,2) = 2,(3,3) = 3

(iii) o defined by: (a,b) -1 V a,be S

(a) (a,b) — min(a,b) V a,beS.

. Does the following table define a binary operation % on (i) S={1, 2, 3} (ii)

P={1, 2, 3, 4}7
Justify your answer.

Verify whether the following operations on S are commutative and asso-
ciative:
(i) S ={1,2},0isdefined by 101 =2,102=2,201=2,202=1
(ii) S =1Z,0 is defined by aob=a+b—ab
(ili) S =1Z,0 is defined by aob = 2a + 3b
(iv) S =R,o is defined by aob=a
)

(v) S =R* oisdefined by aob = ¢, where R* denotes the set of non-zero
real numbers.

(vi) S =7Z,o0 is defined by aob=a — b — ab.

. How many different binary operations can be defined on a set S, if S has

(i) 2 elements (ii) 4 elements (iii) 8 elements (iv) n elements?
Give examples of the following types of binary operations:

(i) commutative but not associative
(ii) associative but not commutative

(iii) neither commutative nor associative.
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2.3 Introduction to Groups

Suppose that a square is removed from a piece of cardboard and fitted back
in the original space after moving it. Though it occupies the same space but
the position may be different in the sense that the vertices may occupy different
positions. Let us consider all the different possible movements of the square.
We would like to describe the relationship between the starting position and the
final position in the terms of motions. o
Cut out a square from a pieeé of cardboard and name the vertices as P, Q, R,
S. Also mark the corners of the board from where it has been cut as P, Q,
R, S.

Original Position

m

n

P

Final Position

m

m

n

m

n

The final position of the square can be obtained from the original position by
the rotation of the square about the axis through the centre, perpendicular to
the plane, through an angle of 90° anticlockwise. Let the plane of the square
be horizontal. Consider the following possible motions

1. Ry =Rotation of 0° about vertical axis in the plane of the square (no
change in position)

Om

2. R1= Rotation of 1 right angle anticlockwise about the vertical axis per-
pendicular to the plane of the square

3. Ry = Rotation of 2 right angles anticlockwise, about the vertical axis
perpendicular to the plane of the square.
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i) @) n m

4. R3= Rotation of 3 right angles anticlockwise, about the vertical axis per-
pendicular to the plane of the square.

5. H = Rotation of 180" anticlockwise about horizontal axis in the plane of
the square.

6. Rotation of 180° anticlockwise about vertical axis in the plane of the
square.
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8. Rotation of 180° anticlockwise about the other diagonal.

.
.
(0%
¢
>
.
.
.
.
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Two motions are equivalent if their net effect is the same. For example, a
rotation through one right angle clockwise is equivalent to a rotation through
three right angles anticlockwise. Moreover the effect of R;, followed by H is
equivalent to D, as is shown below:

P

o

m

n

(o]

o

n

It can be verified that any motion of the square which makes it fit back into the
original space is equivalent to one of the above eight motions.

Let Dg = {R,, R1, Ra, R3, H,V, D, D’}. On Dg define a binary operation as

follows:

For a,b € Dg (ab)O = a(b0) where a0 means the effect of ‘a’ on the square
ABCD. The composition table of Dg is as follows

Ry Ry Ry Rs H Vv D D
Ry|Ry Ri R, Rs: H V D D
Ri|Ri Ry, Ry Ry: D D H V
Ry|Ry, Rs Ry Ri: V H D D
Ry |Rs Ry R R,: D D V H
H|H D V D: Ry R, Ry Rs
V|V D H D: R Ry Ry R
D|D V D H: Ry R Ry Ry
DD H D V: R Rs Ry R
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We observe that for a,b € Dg,ab € Dg. This property is called closure
property of Dg.

Also note that if a € Dg then aRy = Rpa = a.

Thus combining any element of Dg with Ry on either side yields back the
element. An element Ry with this property is called identity element (no effect
element). Also for each a € Dg, there is exactly one b € Dg such that ab = ba =
Ry. Such an element b is called inverse of a and vice versa. For example, Ry, R3
are inverses of each other, whereas Ry, Ro, H,V, D, D’ are their own inverses.
If a and b are inverses of each other then b “undoes” whatever a “does” in the
sense that a and b taken together in any order produce the “no effect” element,
that is, the identity element Rj.

Observe that the eight motions describe above in Fig. 1 are mappings of
{P,Q, R, S} onto itself, and the operation is the composition of mappings. Since
the composition of mapping is associative, therefore, a(bc) = (ab)c for all a, b, ¢ €
Dg

From the table, observe that RV = D and VR, = D’, so that R1V # VR;.
Thus the binary composition is not commutative on Dsg.

2.4 Symmetries

Symmetries of Non-square Rectangle

We study the symmetries of a rectangle which is not a square. Consider a
rectangle ABC' D with centre O. Take O as origin and line through O parallel to
AB and BC as X-axis and Y-axis respectively. Consider the following motions.

R,= Rotation through 0°, i.e. no motion at all.

Ry = rotation through 7 anticlockwise about the line through O perpendicular
to the plane of rectangle.

a

| .
A a

H= Reflection in OXE, or a rotation through 180° ab(i)ut OX in space.

A

V= Reflection in OY?, or a rotation through 180" about OY in space.
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A

Al

These are the or:lly different symmetries of a reictangle. We note that a
reflection about any diagonal is not a symmetric motion. It would be a good
idea to take a cutout of a rectangle and observe the motions, as was done in
the case of a square. The binary operation is the composition of motions. The
multiplication table is:

Ry Ry H V
Ry| Ry Ri: H V
Ry |R, Ro: V H

H|H V: Ry R
V |V H: R Ro

Let V4 = {Ry, R1, H,V}. From the table we observe that Vj is closed with
respect to composition of motion. Ry is the identity element and each element
is its own inverse. Moreover, the table is symmetric about the main diagonal,
V, is commutative.

Symmetries of an Equilateral Triangle
Let us now consider the set of symmetries of an equilateral triangle. Let
ABC be an equilateral triangle with centre O. Consider the following motions:
Ry: Rotation about the centre through 0°

A A

R1: Rotation through %7‘( anticlockwise about the line through O perpendicular
to the plane of the triangle

A
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Ry: Rotation through %7‘(‘ anticlockwise about the line through O perpendicular
to the plane of the triangle.

A B
R,
[ (o]
B o ¢ A
M : Reflection in the axis 1.
§—> axis1 A
M
B C C B
My : Reflection in the axis 2.
A Cc
M
B \ C B A
axis2
M3 : Reflection in the axis 3.
A
B
M
axis3
B C A c

Let Dg = {Ro, R1, Ra, My, My, M3}. The operation considered is the com-
position of motions. The multiplication table is given as follows:
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Ry Ri Rp M, M, M;

Ry |Ro Ri Re: My M, My
Ry |Ri Ry Ry: Ms; M, M
Ry | R« Ry Ri: My, M; M

M1 M1 M2 M3 RO Rl RQ
M2 M2 M3 M] R2 RO Rl
M3 M3 M1 M2 Rl R2 RO

Observe that the 6 motions described above are mapping of {A, B, C'} onto
itself and operation is the composition of mappings. Clearly Dg is closed. Also
associative law holds because the composition of mapping is associative.

Ry is the identity element. R;, Ry are the inverses of each other whereas all
other elements are their own inverses. From the table it is clear that RoM; =
Ms, M1 Ry = Ms, so that RoM; # M;Rs. Thus the binary composition is not
commutative on Dg.

Dihedral group

Let us now study the symmetries of a regular polygon of n sides (n-gon).
Consider a regular n-gon Ai, As, ..., A,. Take a copy of this n-gon and move it
in any manner. Now place it on the original n-gon so as to cover it completely.
A motion of this nature is called a symmetry of the n-gon.

Ifa= 27” let Ry, denotes the anticlockwise rotation of the polygon about a line
through its centre and perpendicular to the plane of the polygon through an
angle ka, k=0, 1, 2, 3, ..., n-1. These are the n rotations. There are also n
reflections, through the n lines of symmetry L;, i=1, 2, 3, ..., n.
If n is odd, each line of symmetry passes through a vertex and the mid-point
of the opposite side. If n is even, there are two types of lines of symmetry, one
n

type passing through two opposite vertices (and these are § in number) and the

other type are the perpendicular bisectors of two opposite sides (these are also
5 in number). Thus, in this case also, there are n lines of symmetry.

Let Dy, be the set of all these rotations and reflections of the regular n-gon.
It has 2n elements. Let us define a binary operation on Dsy,. For A, B € Ds,,
by AB we mean the symmetry obtained by first applying B and then A to the
regular n-gon. There are only two types of symmetries, rotations and reflections.
Clearly rotation followed by a rotation is a rotation, reflection followed by a
reflection is rotation, and rotation followed by reflection (or vice versa) is a

reflection. Hence the closure property holds in Ds,. Since we are viewing
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symmetries as functions on the vertices of the n-gon, AB is just the function
composition. Since composition of function is associative, the binary operation
is associative. The identity of Dy, is the identity symmetry Ry. The inverse of
the rotation R; is the rotation R,_;, i=1, 2, ..., n and the inverse of Ry is Ry.
The inverse of a reflection is itself.

Do it Yourself

Take a piece of cardboard and cut out a regular n-gon from it (you can take
a specific value of n, say 6). Paint one face red and the other blue. Take a
reflection of this hexagon about any axis. The result of reflection is that if the
red face was on the top, the blue face comes on the top. The net result of a
reflection is that not only the order of vertices is changed but the face is also
reversed. Now apply a rotation to the hexagon. The effect of this is that the
face remains of the same colour, only the order of the vertices is changed.

Problem 2.1. Describe all the symmetries of the figure given below:

Solution: Rotational symmetries
Rotations about O, the centre of the circle, through angles 0, 7, %T’T and ‘%’T are
the 4 rotational symmetries.

Reflectional symmetries
Reflections about the axis AFE, BF,CG and DH are the 4 reflectional symme-
tries.

Hence there are 8 symmetries in all.

Problem 2.2. Describe the symmetries of the following:
(i) X X X X
(ii) an infinitely long strip of the alphabet X i.e. -+ X X X X X --

Solution:

(i) Let O be the centre of the figure. X X - X X
Rotation about the axis through the point O perpendicular to the plane
through an angle 0° (i.e. no motion) and 180°.
The reflections are:

(a) Reflection about an axis through O in the plane of the paper.

XX:XX
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(b) Reflection about the horizontal line passing through O as shown.

X XO0OX X

3
(ii) The rotational symmetry is as in (i), where O is any point in the centre of
any two consecutive X'’s.

L. XXXOX---

The reflections are:

(a) Reflection about an axis midway between any two consecutive X’s in
the plane of the paper

XXX X

(b) Reflection about an axis through the centre of any X, in the plane of
the paper.

X XXX

(¢) Reflection about the horizontal line passing through the centres of all
the X’s as shown.

2.5 Exercise

1. Describe all the symmetries of the following:
(i)  circle.
(if)  isosceles triangle which is not equilateral.
(iii) scalene triangle.

2. Are the following motions of a rectangle (which is not a square) symme-
tries?
(i)  reflection about a diagonal.
(ii)  rotation about an axis through the centre perpendicular to the plane,
through one right angle.
(iii) rotation as above through 2 right angles.

3. Consider an infinitely long strip of equally spread alphabets. Describe the
symmetries of these strips.
(i) ...00000...
(i) ..MMMMM....
(ii) ...NNNNN...
(iv) ...TTTTT...
(v ...DDDDD...
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4. List all the symmetries of the following:

(i)

(iii)

%
o
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(vi)

2.6 Solved Problems

Problem 2.3. How many binary operations can be defined on a set with five
elements

Solution:
Let S ={a,b,c,d, e}
The Cayley table of S looks like
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@‘abc d e
a | * *x K K* %
b |*x * x * %
c | * * K K %
d | * * x *x *%
e | * * K K %

The Cayley table has 5 x 5 = 25 entries. Each entry has 5 choices, namely
a,b,c,d,e. Moreover all the choices are independent of each other.

.. Number of ways in which the table can be completed = 525. Since a binary
operation on S corresponds to one way of completing the table.

.. Number of binary operations = number of ways in which the table can be
completed = 525,

Problem 2.4. How many commutative binary operations can be defined on a
set with five elements

Solution: Let S = {a,b,c,d,e}.

Number of binary operations on S = 52°

@‘abc d e
a | x *x x K* %
b I
c * Kk *
d *  *x
e *

If the binary operation is commutative, then in the Cayley table, the entries
below the diagonal are reflection with respect to the diagonal of the entries
above the diagonal. The x entries can be chosen arbitrarily from S. These
are 14-2+3+4+45=15 entries. Hence, the number of ways of choosing them
=5 x5 x 5...15 times = 5'°.

There are 5'° commutative binary operations.

Problem 2.5. How many binary operations having an identity element can be
defined on a set with 5 elements
Solution: Let S = {a,b,c,d,e}.

Number of binary operations on S = 52°. If the binary operation has an
identity element, say b, then the Cayley table of S looks like

identity
0
®|la b c d e
a | % a *  x x
identity — b a b ¢ d e
c | * ¢ *  x x
d |~ d *  * ok
e | x e * Kk ok

Thus nine elements in the Cayley table have been fixed. The remaining
25 — 9 = 16 elements, marked * can be chosen arbitrarily from the elements of
S.
Thus, number of such binary operations = 5 x 5 x 5...16 times = 5'6.
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Problem 2.6. How many commutative binary operations having an identity
element can be defined on a set with 5 elements

Solution: Let S = {a,b,¢,d,e}.

Without loss of generality, we can take ‘a’ to be the identity element. If the
operation is commutative also, then in the Cayley table only the entries marked
* have to be chosen. The Cayley table is:

@‘abc d e
ala b ¢ d e
b|b % *x % %
c |c * Kk ok
d | d * %
e | e *

Each entry can be chosen as any one from the elements of S.
Number of entries to be chosen =1+ 2+ 3+ 4 = 10.
Number of choices for each entry = 5.

.. Number of required binary operation = 50,

Problem 2.7. In Ds,, explain geometrically why a rotation followed by a ro-
tation must be a rotation.

Solution: A rotation changes the order of the vertices, while the top face
remains the same. Thus a rotation followed by a rotation means the top face
will remain the same, only the order of vertices will change, so that it will be a
rotation.

Problem 2.8. In Ds, explain geometrically why a refiection followed by a re-
flection must be a rotation.

Solution: Reflection means reversing the face of the regular n-gon. Thus a
reflection followed by a reflection means face reversed twice, that is, the same
face up. Only the order of the vertices may change. Thus it is a rotation.

Problem 2.9. In Ds,, explain geometrically why a rotation and a reflection
taken together in either order must be a reflection.

Solution: Reflection means reversing the face of the regular n-gon, whereas
rotation keeps the top face same. Thus a reflection and rotation taken in any
order means reversal of the face and hence it is a reflection.

Problem 2.10. Associate the number +1 with a rotation and number -1 with
a reflection. Describe an analogy between multiplying these two numbers and
multiplying elements of Do, .

Solution: A rotation followed by a rotation gives a rotation. Also we have
(+1)(+1) = +1.

A reflection followed by a reflection means face reversed twice, that is same
face up. The net result is a rotation. Also (—1)(—1) = +1. A reflection followed
by a rotation (or otherwise) gives a reflection (by the above example), Hence
its like (—1)(+1) = —1 or (+1)(—1) = —1.
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2.7 Supplementary Exercises

1. State whether the following statements are true or false. Justify your an-

swer.
(i) A binary operation on a set S assigns at least one element of S

to each ordered pair of elements of S.
(ii) A binary operation on a set S assigns not more than one
elements of S to each ordered pair of elements of S.
(iii) A binary operation on a set S assigns exactly one element of S
to each ordered pair of elements of S.
(iv) Every binary operation on a set consisting of 2 elements is
commutative.
(v) If x is a commutative binary operation on S, then
a*x(bxc)=(cxb)xa Va,b,c€ S.
(vi) Let S be the set of all 2 x 2 matrices over Z and x the usual
matrix multiplication. Then
(a) * is associative (b) % is commutative (c) (S, *) has identity
element (d) elements of S with non-zero determinant are invertible.
(vii) Addition on the set of odd integers is a binary operation.
(viii) On the set of even integers, x defined by a xb = aT'H’ is a binary
operation.
(ix) A rectangle has a symmetry about both the diagonals.
x) A rectangle has a rotational symmetry through an angle of 90°.
(xi)

xi) The symmetries of an equilateral triangle commute.
(xii) The symmetries of a rectangle commute.

(xiii) A regular pentagon has 10 symmetries.

(xiv) The English alphabet X has 2 symmetries.

(xv) Two mutually perpendicular lines has 6 symmetries.

2. . Which of the following are binary operations on N?
(i) mxn=m-n
(i) m*n=m-=n
(ili) mxn=n
(iv) mxn=m+n+m?
(v) m*n=4m+5n
(vi) mrn=m+n-—1
(vil) m*mn=m+n—mn
(viii) m*xn=mn— (m+n)
m+n—mn, ifm=1lorn=1

(ix)  mxn= mn—m-—mn, ifm#1andn#1
For the binary operations, check which of them are commutative, associa-

tive and have identity element.

3. Give an example of an infinite set S and a binary operation * on S such

that
(i)  exactly one element of (S, %) has an inverse

(ii)  exactly two elements of (S, *) have inverses
(iii) every element of S, except one, has an inverse.

4. Write the Cayley table for all the binary operations which can be defined
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10.

11.

on S = {a,b}

(i)  How many of them are commutative

(il) How many have an identity element

(ili) How many are commutative and have an identity element

Write the Cayley table for 6 binary operations on S = {a, b, ¢}, which
(i)  are commutative

(ii)  have an identity element

(ili) are commutative and have an identity element.

Let S be a non-empty set and * a binary operation on S. An element e € S
is called left (right) identity with respect to *.
ifexa=a Va€es, (axe=a Va € S). Give example of a binary
operation * on a set S which has
(i)  left identity but not right identity
(ii)  right identity but not left identity
(iii) right identity and left identity. Are they different?
Can you generalize your answer?

Give examples of a set and a binary operation x on S such that

(i) (S, *) has two distinct left identities

(ii) (S, *) has two distinct, right identities

(iii) every element of S is a left identity

(iv)  (S,%) has some invertible element and some elements which
do not have an inverse.

How many binary operations can be defined on a finite set S with
(i) 2 elements

(if) 3 elements

(iii) 4 elements

(iv) n elements?

How many commutative binary operations can be defined on a finite set

S with
(i) 2 elements

(ii) 3 elements
(iii) 4 elements
(iv) n elements?

How many binary operations having an identity element can be defined

on a finite set S with
(i) 2 elements

(ii) 3 elements
(iii) 4 elements
(iv) n elements?

How many commutative binary operations, having an identity element,

can be defined on a finite set S with
(i) 2 elements

(ii) 3 elements
(iii) 4 elements
(iv) n elements?
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12. Give two examples of figures for each of the following;:
(i)  having only rotational symmetry
(ii)  having only reflection symmetry
(iii) having both rotational and reflection symmetry
(iv) having neither rotational nor reflection symmetry.

13. Describe all the symmetries of the following:
(i) parallelogram which is neither a rectangle nor a rhombus
(ii)  rhombus which is not a square
(iii)  ellipse which is not a circle
(iv) hyperbola
(v) right angled isosceles triangle
(vi) right angled triangle which is not isosceles

14. List all the symmetries of following figures:

/N

ii

</ N\

op
oy

iii
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iv

15. Find the symmetries of the Indian 2-rupee coin shown below. Disregard
the printing and figure on the coin.
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2.8 Answers to Exercises
Exercise - 2.2
1. (i) Yes (ii) No (iii) No (iv) Yes (v) No.
2.

2 3
3 1
2 2
2 3
2 3
1 1
1 1
1 1

NN DN
W N =W

1

1
(#i1) 9 |1
1

3. (i) No,-.- 4¢ S (ii) No, ".© 4% 1 is not defined.

4. i commutative, not associative
ii commutative, associative
iii not commutative, not associative
iv not commutative, associative
v not commutative, not associative

vi not commutative, not associative
5. (1) 2% (i) 426 (iii) 854 (iv) n"”
6. 1 OnZ, defineaxb=la—0"|.

ii On the set of 2 x 2 matrices over Z, define A x B = AB, the usual
multiplication of matrices.

iii On Z define, axb =a — b.
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Exercise - 2.5

1. (i) Reflection about every diameter. Rotation about an axis through the
centre perpendicular to the plane of the circle, through an angle «a,
where « is any real number.

(ii) Identity motion, reflection in the median through the vertex.

(iii) Identity motion (i.e. no motion).
2. (i) No (il) No (iii) Yes

3. (i) Reflection about an axis

(a) between any two 0’s in the plane of the paper.
...O0|00O ...

(b) through the centre of any O in the plane of the paper.

...0000O0...

(c) through the centre of all the O’s
...0000O0 ...

Rotation about the axis L through the mid point of the centres
of any two consecutive O’s through an angle (a) 0° (b) 180°
Hence there are infinitely many symmetries

(ii) Reflection about an axis

(a) midway between any two consecutive M’s.
L MM|MM ...

(b) through the middle of any M.

Rotation about the axis L through the midpoints of any two consec-
utive M’s through an angle of 0° i.e. no motion.

(iii) Only the 'no motion’ rotation.

(iv) Similar to (ii).

(v) Reflection about the horizontal line bisecting the D’s
..DDDD ...

The 'no motion’ rotation.
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4. (i)

Rotation about the axis through O perpendicular to the plane through
an angle (a)0° (b) 90° (c) 180° and (d) 270°.

(ii) 6 rotations about an axis through O perpendicular to the plane through
angles 0°, 60°, 120°, 180°, 240°, 300°
Reflection about lines
(a) AD (b) BE (¢) CF (d) PS (e) QT (f) RU.
Thus there are 12 symmetries in all

(i) Only 6 rotations

(iv) 8 rotations about the centre, through angles k%, k =0,1,...,7
8 reflections.

(v) 5 rotations and 5 reflections.

(vi) 6 rotations.
Supplementary Exercise
1.

(i) F. It assigns exactly one element
(ii) F. It assigns exactly one element
(iii) T
(iv) F, let S = {a,b}. Define x by
*|a b
a|b a
b|b b
(v) T

(vi) (a) T, (b) F, (¢) T, (d) F, true when the determinant is 41
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(vii) F, 34+5=8, 8 is not odd.

(viii) F, 6x 8=7 which is not even.

(ix) F

(x) F

(Xl) F7 R]M2 7é M2R1

(xii) T

(xiii) T

(xiv) F, it has 4 symmetries

(xv) F, it has 8 symmetries

2. (i) No (ii) No (iii) Yes (iv) Yes (v) Yes (vi) Yes (vii) No (viii) No (ix) No.

3. (N, ) ()2, (E)Q,-)

4.
a b
a | * x
b|* %

Each x has 2 choices a or b. Thus the number of possible tables=16.
(i) 23 (ii) 2 (iii) 2.

6. Let S={a, b, ¢, d}

(i) Define xxy=y, Vz, y € S.
Then every element of S is a left identity. It does not have a right identity.

(ii) Definex @y=x Vz, y€S.
Then every element of S is a right identity . There is no left identity.

(iii) Let S = set of all 2x2 matrices with integral entries. Consider (.5, ). Then

0 1
They are not different. If right and left identity both exist then they must
be the same.

( L0 is a right as well as left identity.

7. For (i), (i), (iii) see 6(i) and (ii).
(iv) Max2(Z), the set of all 2x2 matrices over Z. All elements with deter-
minant +1 are invertible.
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8. (i) 24 (if) 3° (iii)4° (iv) n™’.

9. (i) 23 (ii) 3¢ (iii)4'° (iv) nn(n+1/2,

10. (i) 2 (ii) 3* (iii)4® (iv) n(= D"

n(n—1)

11. (i) 2 (ii) 32 (iii)4® (iv) n~ 2

12.

(i) 2 rotational symmetries, through 0° and 180°.

(ii) 2 rotational and 2 reflections in diagonals.

(iii) 2 rotational and 2 reflections in the major and minor axes.

(iv) 2 rotational and 2 reflections in the transverse and conjugate axes.

(v) One rotational (through 0°) and 1 reflection about the median through the
vertex.

(vi) One rotational (through 0°)

13.

(i) 2 rotations

(if) 2 rotations, 2 reflections

(iil) 2 rotations, 2 reflections (one each in the major and minor axis)

(iv) 2 rotations, 2 reflections (one each in the transverse and conjugate axes).
(v) One rotation (no motion), one reflection in the median through the vertex.
(vi) One rotation (no motion) only.

14.

(a) 3 rotations, 3 reflections

(b) 6 rotations, 6 reflections

(¢) 2 rotations,

(d) 1 reflection

(e) 8 rotations through angles %”, 0<k<7

15. It is a regular 11-gon. So 11 rotations and 11 reflections.



Chapter 3

Functions

Function is a commonly used word in everyday life having different mean-
ings. But, in Mathematics, the concept of a function is very basic and is
of fundamental importance. Moreover, it has a very specific meaning. In
this chapter we define mathematically a function and their various types and
study their properties in detail. Operation on functions, conditions of invert-
ibility and computation of the inverse of an invertible function will also be
discussed.

3.1 Definition and Representation

Definition 3.1. Let A and B be two sets. A binary relation f from A to B is
called a function (or mapping) from A to B if each element of A is related to
exactly one element of B. In other words, f is a function from A to B if for
each element a € A there exists exactly one element b € B such that (a,b) € f,
b is called the image of a under f and we write b= f(a).

In the above definition, the set A is called the domain and the set B is called
the codomain (or target) of f. The set {b € B | (a,b) € f, for somea € A}is
called the range of f. Thus, the range of f is the set of images of the elements
of A. If for any b € B there exists an a € A such that f(a) = b, then a is called
a preimage of b under f. An element b € B can have more than one preimages

in A.

Example 3.1. Let X = {1,2,3,4},Y = {z,y,2z} , f = {(1,2),(2,9), (3, ),
(4,y)}. X is the domain of f, Y is the codomain (or target) of f. Image of 1
under f is z. We write f(1) = z. Similarly f(2) =y, f(3) =z, f(4) = y.
Preimage of x is 3. f(2) =y and f(4) =y tells us that preimage of y is 2 as
well as 4. Thus y has two preimages.

Let g ={(1,2),(2,9),(3,2),(4,y), (2, 2)}. Since 2 is the first member of two
elements of g, i.e g(2) =y and g(2) = z, therefore 2 has two images, y and z,
hence g is not a function.

Let h = {(1,2),(2,2),(3,y)}, Since 4 does not have any image, therefore h
is not a function.

"
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Notation: ‘f is a function from set A to a set B’ is written as f : A—B or

Al>B. If the image of @ € A under f is b we say that f maps a to b and we
write b = f(a). This is also written as f : @ — b. The domain of a function f
will be denoted by D(f) and the range of a function f will be denoted by R(f).
Here D(f) = A and R(f) C B.

Example 3.2. Define f : Z — Z by f(x) = x> + 5. The domain and codomain
of f are both Z.
R(f) ={f(z)|lx € Z}
={n€Z| n—>5is a perfect square}
Let us find the preimage of 105, Since 105 —5 = 100 = 102, . 10 is a
preimage of 105 and f(10) = 105. What is the preimage of 77 7 —5 =2 # x?
for any x € Z, .7 does not have a preimage. So 7 ¢ R(f).

When we define a function, sometimes there is some ambiguity, i.e., an ele-
ment can have more than one images or the images do not lie in the codomain.
In such a situation we say that the function is not well defined. In fact, a func-
tion f: A — B is well defined if
(1)  f(a) is defined for each a € A
(ii) f(a)eBforallac A
(iii) There is no ambiguity in determining f(a).

This is illustrated in the following examples:

Example 3.3.

(i)  Define f:Z —Z by f(n) =—n for alln € N.
Here f(m) is not defined, form € Z, m <0
so f is not a well-defined function.

(i) Defineg:N—=Nby f(n)=n—-5 VneN. Then f(1)=—-4¢N,
so that f is not a well defined function.

(iii) Define h: Q — Z by h(%) = a. Here h(3) = 1.

Since £ = 2

4
()=,
Thus, h(%) is defined as 1 as well as 2 so that there is an ambiguity
in defining f(%). Therefore, h is not a well-defined function.

Definition 3.2. (Equal functions): Two functions f and g are equal if they

have
(i)  the same domain i.e D(f) = D(g)

(i)  the same codomain

(iii)  f(z) = g(x) for allz € D(f).
Arrow Diagram for Function

If A and B are finite sets of small orders, then a function from A to B can
be defined by an arrow diagram also. This enhances the understanding and is
very convenient. In Fig. 1, f is a function.
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Fig. 2

In Fig. 2, under g, 2 is mapped to y as well as z, so that g is not a function.

Fig. 3

In Fig. 3, under h, 4 does not have an image, so h is not a function. Observe
that in this diagrammatic representation for a function from each point of the
domain one and only one line should emerge. The arrow diagrams are specially
useful in giving counter examples for functions.

Representation of a Function

In general there are four ways to represent a function.
(i)  Verbally (in words) y is the square of x
(ii) Numerically (table of values)
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x[1[2[3]4]5
vy 1 [4[9]16]25

Fig. 4(Tabular form of a function)

(iii) Algebraically (formula) y = 22
(iv) Visually (graph or arrow diagram).

Fig. 5(Graphical representation of a function)

As shown above, the same function has been represented in all the four ways.
If a single function can be represented in all four ways, it is often useful to go
from one representation to another to gain insight into the function. Certain
functions are described more naturally by one method than by another.

3.2 Images and Inverse Images

If f: A— B is a function and C C A, then the set of images of elements of
C' is called the image of C' and is denoted by f(C).
Symbolically, f(C) = {f(z)|x € C}
Clearly, f(C) C B. We may also write f(C) as:
f(C)={ye B |y= f(a) for somea € C}.

Theorem 3.1. Let f: A — B be a function. If Ay, As are subsets of A, then
(i) f(A1UAz) = f(A1) U f(A2)
(1) f(A1NA2) C f(A)N f(A2)
(i) A1 C Az = f(A1) C f(A2)
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Proof: Left to the reader. ]

Remark 3.1. (i) Fquality may not hold in (ii).

(i) Define f:7Z — Z
by f(2) =22, V2 € Z.
Let A1 ={1,2,3} and As = {-1,-2,3,4}.
f(A1NAg) = {9}, (A1) N f(A2) ={1,4,9}
Thus, f(A1 n A2) 7é f(Al) n f(AQ)

(i) If f : A — B is a function and a € A, then f(a) € B, whereas f({a}) C B.
Thus, f(a) is not the same as f({a}).

Inverse Images

Given a function f from A to B, <+ we now explain what we mean by the
inverse image of an element of B. Let f : A — B be a function and let b € B.
The set of all elements of A which are mapped to b is called the inverse image
of b under f and is denoted by f~1(b).

Symbolically, f~(b) = {a € A | f(a) = b}.

Example 3.4. Let A ={1,2,3,4,5}, B={a,b,c,d}, f ={(1,a),(2,b),(3,a),
(47 b)v (57b)}' Thus, f(l) = f(?’) =4a, f(?) = f(4) = f(5) =b. f_l(a) = {173}:
[7H0) =1{2,4,5}, fH(c) = fH(d) = ¢.

Inverse image of a set

Let f : A — B be a function and C C B,C # ¢. The set of all elements of
A whose images belong to C' is called the inverse image of C' under f and is
denoted by f~1(C). Thus f~}(C)={x e A | f(x) €C}.

We define f~1(¢) = ¢.



82 CHAPTER 3. FUNCTIONS

Clearly, f~1(B) = A. In fact, f~1(R(f)) = A.

Example 3.5. Consider the function in Example 3.4.
If C = {a,c}, then f~1(C) ={1,3}.

If D= {b,c,d}, then f~1(D) = {2,4,5}.

If E = {a}, then f~Y(E) = {1,3}.

In fact, f~'({a}) = f~'(a).

Remark 3.2. If f is a function, then f~'(a) = f~'({a}).

Theorem 3.2. Let f: A — B be a function and By, By subsets of B. Then
(i) [N (BiUB2) = f1(B1)U 1 (B2)

(i) f~H(BiNBz2) = f~H(B1) ' (B2)

(iii) By C By= f~'(B1) C f~'(B2)

(iv) f(f~Y(B1)) C B, and equality may not hold

(v) IfC C A then CC f~1(f(C))

(vi)  f7HB1\B2) = f~H(B)\f"!(B2)

(vii)  f~1(Bf) = (f~1(B1))°.

Proof: We shall prove only (iv) and (v).

(iv) Let y € f(f~1(B1)). Then y = f(x) for some z € f~1(By).
ze f7H(B1) = flx)e B = ye B f(f~H(B1)) C Bi.
Let A={1,2,3,4},B = {a,b,c,d}.
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Let By = {b,c}. Then f=%(By) = {2}. f(f1(B1)) = {b} # By. Hence
proved.

(v) Let z € C. Then f(z) € f(C). So that x € f~1(f(C)).

Hence C C f~1(f(C)). Consider the function f as in (iv). Let C' =
{1,2}. ThenC C A. f~Y(f(C)) = f~Ha,b} ={1,2,3} #C. O

3.3 Types of Functions
We now study functions with special properties.
Definition 3.3. Let f: A — B be a function. Then

(1) f is said to be onto (or surjective) if R(f) = B, i.e for every b € B there
exists some a € A such that f(a) =b.

(ii) f 4s said to be one-one(or injective) if distinct elements of the domain have
distinct images, i.e if a, b € A such that a # b then f(a) # f(b). If a
function is not one-one it is many-one.

(iil) f s bijective if it is both onto and one-one.

The condition for a function f : A — B to be onto is that for every b €
B, f(z) = b has a solution in A. Usually, the contrapositive of the condition for
one-one is used. That is, f is one-one if a,b € A such that f(a) = f(b), then we
must have a = b. We illustrate the concept of onto and one-one by using arrow
diagram for functions.

Example 3.6. Let f1 be a function defined by

. N
—
]
L

Neither one-one nor onto function.

Then fi1 is a function which is not onto, as no element of A is mapped to z,
i.e f1(a) = z does not have a solution in A.
f1 is not one-to-one as 1 # 2 but f1(1) = f1(2) = «.
Thus f1 is neither one-one nor onto function.

Let fo be a function defined by
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One-one and onto function

Then fy is both one-to-one and onto.

Let f3 be a function defined by

N

N
?
J

Onto but not one-one function

Then f3 is not one-to-one, because 1 # 2 but f3(1) = x = f3(2). It is onto.

Let fy be a function defined by

7AN

A
|
-

One-one but not onto function

f4 is one-one, as distinct elements have distinct images. f4 is not onto as z € B
does not have a preimage. R(f) = {z,y,u,v} # B.
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The above examples show that the property of being onto or one-one are
independent of each other. A function may be neither one-one nor onto as fi,
both one-one and onto as fs, onto but not one-one as f3 or only one-one but
not onto as fy.

Example 3.7. Define f:Z — 7 by f(x) =x+4V x € Z. We show that f is
one-one.
Let x,y € Z(domain) such that f(z) = f(y). Then z + 4 =y + 4, so that
x =1vy. Thus f is one-to-one.
Now, we show that f is onto.
Let y € Z, the codomain. Suppose there exits x € Z, the domain, such that
f(x) =y. Then x+4 =y so that © =y —4. Thus for each y € codomain, there
exists y — 4 € Domain, such that f(y —4) = y. Hence f is onto.

So f is both one-one and onto function.

Example 3.8. Define g: Z — Z by g(x) = 2x + 4. g is one-one (prove it!).

It is not onto, 7 € Z the codomain. Suppose there is x € 7, the domain such
that g(z) = 7. Then 2z +4 = 7. = 2z = 3, which has no solution in Z. Hence
g 18 not onto.

Example 3.9. Define f : Z — Z by f(x) = x2. Then f is not onto for 7 € Z
the codomain, suppose x € 7 such that f(x) = 7 = 2% = 7. But this equation
has nmo solution in Z. Thus f is not onto. Let B = {z% | v € Z}.

Define f : Z — B by f(x) = 22. Letb € B. Then b= 22 for some x € Z. Thus
f(x) = 2% =b. or f(x) =b. So that fis onto.

The above example shows that by changing the codomain, an onto func-
tion may cease to be onto. Thus the property of being onto depends upon the
codomain. The property of being onto also depends on the domain as shown in
the Example 3.11.

Example 3.10. Define f1:Q — Z by f(x) =2z + 4.

f1 is onto. For, let y € Z, suppose there exists © € Z such that fi(x) =y =
2e+4=y. = x = (y—4)/2. Thus for eachy € Z, there exists x = (y—4)/2 € Q
such that f1(x) = y. Hence f1 is onto. We note that the function f :Z — Z
defined by f(x) = 2x + 4 is not onto. f and f1 have the same codomain, and
same rule, only their domains are different.

The following examples show that the property of a function being one-one
is dependent on the domain.

Example 3.11. Define f : R — R by f(x) = x2. f is not one-one, because
1,—1 € R (the domain). But f(1) =1 = f(-1). Define g : RT U{0} — R by
g(z) = 22. Let x1,22 € RY U{0} such that g(x1) = g(x2) then 23 = 22, so that
r1 = xo. Hence g is one-one. The only difference in the functions f and g is
in their domain.

Definition 3.4. (Restriction of a function):
Let f : B — C be a function and A C B. The function g : A — C defined by
g(x) = f(x) ¥V x € A, is called the restriction of f to A. It is denoted by f|a.

Definition 3.5. (Extension of a function):
Let f : A — C be a function and B D A. A function g : B — C is called an
extension of [ if gla = f.
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Example 3.12. Leti®> = —1 and Z[i] = {a +ib | a,b € Z}. Define f : Z[i] —
Z by fla+ib) =a®+b* and Z C Z[i]. Define g:Z — Z by g(x) = 2% Vz € Z.
Forz € Z, g(z) = 2? = 2 + 0> = f(2+i0) = f(z). Hence g(x) = f(x) Vx € Z,
so that f |z= g i.e g is a restriction of [ to Z.

Example 3.13. Define a function f : Z — Q by f(a) =| a|. Z is a subset of
Q. On Q defineg: Q — Q by g(§) = % Then g(a) =| a | V a € Z. Thus
g(a) = f(a) Ya € Z, so that g is an extension of f.

Define h: Q — Q by h(z) = { |(T ‘otzllf;fwisf’
Then h(z) = f(x) for all x € Z, so that h is also an extension of f. This
shows that the g and h are two extensions of the function f.Thus, extension of
a function need not be unique.

3.4 Real Valued Functions

While defining a function f(z), sometimes we want the variable = to take
real values and the value of the function f(x) should also be a real number.Thus
we have: “If a function f(x) is defined from a subset of R to a subset of R, then
we say that f(z) is a real valued function of a real variable.” For such functions,
the domain and range are both subsets of R . Thus, if f : R — R, then by
the domain of f, we mean{z € R | f(«) is defined and real}. This is called the
natural domain of f. If the graph of a function y = f(z) is drawn, then any
line parallel to the Y-azis should intersect the graph in at most one point. If it
intersects it in 2 or more points then it is not a function. This is because there
are more than one value of the function for a given value in the domain. This
is called the vertical line test.

Example 3.14. Consider the semi-circle x> +y?> =1, 2 > 0, i.e y = =1 — 22.

YA
&)

(X) ‘Y)

As shown, a line parallel to Y-axis meets the graph in two points, namely
(z,y) and (x,—y). Thus, y defined by above is not a function. The above test
is called the vertical line test. This test is very useful, because from the graph
we can determine whether it is a function or not.

Example 3.15. The graph of y?> = 4x is as shown.
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Does it define a function? Using the vertical line test we see that a line parallel
to Y-axis intersects the curve in two points A and B. So it does not represent
a function.

From the graph we can also determine whether a given function is one-to-one

or not. If a line parallel to X-axis intersects the graph in two or more points,
then it is not a one-to-one function.

Example 3.16. Consider y = x2. Is it a function? Is it one-to-one?

The graph is

(-x,y) (x,y)

Using the vertical line test we see that it is a function. Now using the hori-
zontal line test, we conclude that it is not a one-one function, as ¥3 = (—x1)2.

Example 3.17. Consider 2> +y> =1,y >0

A

\"




88 CHAPTER 3. FUNCTIONS
Using the vertical line test we find that it is a function. Horizontal line test tells

us that the function is not one-to-one.

Example 3.18. Consider > +y% = 1,2 > 0,y > 0. The graph is

EMINR

ENIMF

The vertical and horizontal line test tell us that it is a one-to-one function. The
domain and range can also we obtained looking at the graph of the function.
The domain is the projection of the graph on the X-axis. The range is the
projéction of the graph on the Y-axis. Here domain is [0, 1] and the range is
also [0, 1].

0
Example 3.19. Consider the function whose graph is

Taking projection on the X-axis and Y -axis, we find that domain = R, range
=7.

3.5 Some Functions on the Set of Real Numbers

We shall now define some commonly used functions on the set of real num-
bers.

(i) Identity function: The function from i : R — R defined by
i(z) = ¢ Yz € R, is called the identity function. It is a bijective function.

Its graph is :
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Graph of i(z) =z

(ii) Constant function: The function f: R — R defined by
f(z) = ¢ Va € R, where ¢ is some real number, is called a constant

function. It is neither one-one nor onto. Its graph is:

=]

=11

B
=h
x

EMAF

M 0
u cEuF ~d !
AM of)
Cc<Q
Graph of f(z) =c¢
(iii) Absolute value function: The absolute value function | | :R — R is
defined by
= x if x>0
|l —x ifx <0

Clearly | = |> 0 Vz € R. Range = [0,00), so the function is not onto.
Since | ¢ |=| —z |, therefore the function is not one-to-one.
Hence the function is neither one-to-one nor onto. Its graph is:
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cEnFZi

NEAFZ¥i NEAFZii
M fi

Graph of |z

(iv) Floor function or greatest integer function

The floor function | | : R — R is defined by

|z] = greatest integer less than or equal to x.

The range is Z, so the function is not onto. Since [2.3] =2 = [2.5], but
2.3 # 2.5 Therefore the function Is not one-to-one. Thus the function is
neither one-to-one nor onto. Observe that for any z € R,z —1 < |z] < =,
so that [1.8] =1,][—2.3] = —3. The graph of the function is:

A

JO JUN
=

Graph of floor function | |

Due to the shape of the function it is also called the step function.

(v) Ceiling function: The ceiling function [ ] : R — R is defined as

[2] = least integer greater than or equal to x.

The range is Z, so the function is not onto. Since [2.3] = 3 = [2.5] but
2.3 # 2.5, .. the function is not one-to-one. Thus the function is neither
one-to-one nor onto.

[1.9] =2,[-1.9] = —1

Observe that for any € R,z < [z] < 2 + 1. The graph of the function
is
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A
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Graph of ceiling function
(vi) Grass function:The grass function f : R — R is defined as

flx) =z —[z].
The graph of the function is:

o

MNO P
(vii) Signum function: The signum function sgn is defined by
sgn:R =R
0 ifz=0
sgn(z)=<¢ 1 if x>0

-1 ifx<0
Clearly signum function is neither one-to-one nor onto.The range is {—1, 0, 1}.
The graph of the function is:

N K

K &

Graph of signum function sgn(x).
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Problem 3.1. Define f : A — B by f(z) = 2% +62 —20. In the following cases
check whether f is one-to-one and/ or onto.Give reasons.

(i) A=17,B={beZb>-29}.
(i) A=R, B={beR[b>—29}.

Solution: (i) Suppose b € B. Then b € Z and b > —29. Let, there exists
a € A such that f(a) =b.

a2 +6a—-20=50

= (a+3)2-29=0

= (a+3)2=b+29 ..(1)

This has a solution a € Z, only when b 4 29 is a perfect square. Thus it has no
solution in Z for b = 0, so f is not onto. Let a1, as € A such that f(a1) = f(az)
the a? + 6a; — 20 = a3 + 6az — 20, so that (a3 + 3)% = (az + 3)?

= a1 +3==x(a2+3)

=a+3=ax+3o0ra;+3=—(az+3)

= a1 = ag or a; + as = —6.

Thus we do not always get a1 = as. Let us choose a1, as such that a; +as = —6.
Let a; = —2,a2 = —4. Then f(a1) = —28, f(az) = —28, so we get a1 # as but
f(a1) = f(az) so f is not one-one.

(ii) Let b € B. . b € R such that b > —29. Then as in (i), equation(1l) gives
(a + 3)2 = b+ 29. This equation has a solution for all b+ 29 > 0 and for all
a €R.

coa+3=2/(b+29)

=a=-3+./(b+29)

Take a; = —3 + /(b +29). Then a; € R and f(a;) = b. Hence f is onto.
Asin (i) f is not one-to-one.

Problem 3.2. Define f : R — R by f(z) =
range of f so that f is a bijective function.

1 . )
5"cos33" Find the domain and

Solution: Since f is one-to-one, therefore let 1, x5 € R. Then
f(z1) = f(22)
1 B 1

2 —cos3zy 2 — cos3xo
& cos3xp = cos 3xo
S 3 = 2k + 35
& 3(xy £ x9) = 2k7
2k

S rytre =

Thus choose an interval such that for x1,zs in the interval, x1 # zo we have
z1 £ x5 # % Thus we choose the interval as [0, 5].
- D(f) = [0, 2],
Let y € R(f). Then there exists @ € D(f) such that f(z) =y, as f is onto.
K 27C£SBCE =Y
z € [0, 3]
= 3z € (0,7
= —1<cosdxr <1
=1>—cosdz > —1
=3>2—cosdx >1
1

SN I —
35 92 _cos3z
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Problem 3.3. Suppose A and B are two finite sets and f : A — B be a
function. Then

(i) If o(A) > o(B) then f can not be one-to-one.

(i1) If o(A) < o(B) then f cannot be onto.

Solution: A and B are two finite sets. Let o(A) = n,o(B) =m.Let f: A — B
be any function.

(i) Suppose o(A) > o(B), i.e n > m. If f is one-one then elements of A must
have distinct images. Thus R(f) must have o(A) elements.
Then n = 0o(A) = o(R(f)) < o(B) = m, which is a contradiction. Thus f
cannot be one-one.

(ii) o(A) < o(B), i.e n < m. Since f is a function, therefore R(f) can have at
most o(A) elements, i.e R(f) can have at most n elements. Also f is onto
= R(f) =B
= o(R(f)) = o(B) =m
= R(f) has m elements
=>m<n
This is a contradiction to the fact that n < m.

Hence f cannot be onto.

Problem 3.4. Suppose A and B are two finite sets of the same order. Then any
function f: A — B is onto if and only if it is one-one. The result may fail to
hold if A and B are infinite sets.

Solution: Let o(A) = o(B) = n (say). Let f : A — B be any function.
Suppose [ is onto.Then R(f) = B. If f is not one-one then at least two elements
of A are mapped to the same element of B.

“ o(R(f)) < o(4) = o(B) = o(R(/)) < o(B)

= R(f) C B.

This contradicts the fact that R(f) = B. Hence f is one-to-one.

Now suppose that f is one-to-one. Then distinct elements of A are mapped

to distinct elements of B .

. o(R(f)) = o(A) = o(B).

Now R(f) C B and o(R(f)) = o(B)
. R(f)=B.

Hence f is onto.

The result fails to hold if A and B are infinite sets. Let f : Z — Z be defined
by f(z) = 2z, Vz € Z. Then f is not onto, as 7 € Z does not have a preimage.
Let z € Z be such that f(z) = 7. Then 2z = 7 which does not have a solution
in Z. f is one to one, for if z1, 29 € Z such that f(z1) = f(z2) then 2z; = 225,
so that z; = z9. Thus f is one-to-one but not onto.

Let g : Z — N U {0} be defined by
g(z) = |z| Vz €L
If n € N U{0}, then n € Z such that g(n) = n.

Hence g is onto. g is not one-to-one, because 2, —2 € Z, and
9(2) = 2| = 2



94 CHAPTER 3. FUNCTIONS

g(~2)=| -2/ =2
o2 =2, but g(2) = g(—2).
Thus ¢ is onto but not one-to-one.

Problem 3.5. Let A={1,2,3}, B={u,z,y,z}

(i)  How many functions are there from A to B?

(i)  How many onto functions are there from A to B?

(11i)  How many one-to-one functions are there from A to B? List 4 of them.
(iv)  How many bijective functions are there from A to B?

Solution: o(A4) =3,0(B) =4

(i) In a function each element of A is mapped to exactly one element of B.
.. There are 4 choices for f(1), 4 choices for f(2) and 4 choices for f(3).
Total number of functions from A to B
=4x4x4=43
= 64.

(ii) If f is an onto function from A to B, then R(f) has 4 elements. Since
o(A) = 3, therefore R(f) can have at most three elements, so f can not
be onto. Hence there is no onto function from A to B.

(iii) If f is a one-to-one function, then f(1) has 4 choices. Since f(2) # f(1),..
f(2) has only 3 choices and consequently f(3) has only 2 choices. Hence
number of one-to-one functions from A to B
=4x3x2
=24

Four one-to-one functions are
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(iv) Since there are no onto functions, hence there are no bijective functions.

3.6 Exercise

1. How many functions can be defined from A to B, if o(A) =9 and o(B) =
77

2. Let f: R — R be defined by

f(x) = cos|n? |z + cos| —7% |z

Find f(g)v f(fﬂ-% f(ﬂ-)’ f(%)
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- Let A={1,2,3,4} and B = {,y, 2} and f = {(1,2),(2,9), (3,7),(4,2)}
If A = {1,2}, Ay = {2, 3,4}
Find f(A1 () A2), f(A1) ) f(A2). What do you conclude?

. Let f: R — R defined by

f(z) = [z].
Find
i

(i) f70.5), F7H(V2), f(V2), [(0.5), f(—e)

(iii) Is f one-to-one?

(iv) Is f onto?

. Let f: R — R be defined by

f@) = |l

Find f~!(A) where

(i)  A={1}

(i) A={-1}

(iii) A=[-2,3]

. Let f : Z — Z be defined by

f(n) =remainder obtained on divided n by 5
Find

(i) R(f)

(ii)  f(A) where A is the set of all multiples of 3
(i) f7H0), f7H(1)

(iv)  f~Y(B) where B = {3,7}

. Find the range of the function f: R — R defined by
f(z) = =% 3z+3,x€R

. Find the domain and range of the function

1@ =
. Find the domalylof the function
f(il)) — % +25m T + zl_2

. Find the domain and range of the following functions

i f:R->R
f(@) = 2%

i) f:R—R
f(l‘) 3— Cos4w

(i) SRR
fl@)= =

. Which of the following functions defined from A to B are one-to-one?
(i) A=B=R,f(z)=|z+1]
(i) A=(0,00),B=R

1

g(@) =a+
(i) A=[-00,—4),B=R
h(z) = 2?44z —5

(iv) A:;:R
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12. Let f:R\{-1} — R\{—1} defined by
f@) =135

Prove that f is onto and one-to-one.

13. Give an example of a function f: R — R such that
(i)  f is one-to-one but not onto.
(ii)  f is onto but not one-to-one.
(iii)  f is both one-to-one and onto.
(iv)  f is neither one-to-one nor onto.

14. If A and B are sets such that o(A) = 8,0(B) = 10. Then
(i) How many functions can be defined from A to B?
(il) How many one-to-one functions can be defined from A to B?
(iii) How many onto functions can be defined from A to B?

15. Prove that the following functions are bijective.
(i) f:(=00,00) = (0,00) f(x) =27
(ii)  f:(0,1] = [1,00)
1

f@) =3

(i)  f:(0,1] — [a,00)
fl@)=1—-1+a

(iv) f:(0,1) %1(—00,00)
f(l’) = zg(vxfl)

(v)  f:(=00,00) = (a,00)
fl)=2"+a

3.7 Inverse of a Function

Consider a function defined on the sets A and B, where A = {a,b, ¢,d} and
B = {p,q,r}. Define
f1={(a,p), (b,p), (¢c,q),(d,)}. Then f; is onto but not one-to-one.
Also f1_1 = {(p7 a), (p,b), (g, ), (r, d)}
Since p has two images a and b, therefore f; 1'is not a function from B to A.
This is because f; is not one-one.
If we take A = {a,b,¢,d}, By = {p,q,r,s,t}
and define fo = {(a,p), (b,q), (c,7), (d, 5)},
then f, is one-to-one but not onto. Also f,* = {(p,a), (¢,b), (r,¢), (s,d)}
The relation f5 ! is not a function from B; to A as ¢ does not have any image
under f5 ! This is because f» is not onto. Let us now consider
A={a,b,c,d},Bs = {p,q,r, s} and define
f3= {(aap)v (ba Q), (C’ r)'(dv 5)}
Then f3 is a bijective function from A to Bs. Now,
fib = {(p,a), (4,b), (1, ), (5, d)}
fs !'is also a function from By to A. In fact it is also bijective. The above
illustrations lead us to believe that every function may not have an inverse, and
that perhaps bijective functions have inverses.

Definition 3.6. (Inverse of a Function):

Let A and B be two sets and f : A — B be a function. If there exists a function
g : B — A such that (b,a) € g < (a,b) € f, then g is called an inverse of f.We
denote g by f~L.
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If a function has an inverse we say that it is invertible.
If f=1 exists then f=1 = {(bya) € Bx A | (a,b) € f} and b = f(a) & a =
).

We now show that (f~0" = f.
Let f be a function defined from A to B.
Then f=1 = {(b,a) € Bx Al(a,b) € f}. Now, (f~1)~! = {(a,b) € AxB|(b,a) €
1}
= {(a,b) € A x B|(a,b) € f}
=f
We would like to know that if f is a function, under what conditions does f~!
exist?

In the above examples we saw that f; is onto, but not one-to-one and ffl
does not exist. f, is not onto but it is one-to-one and f5 ! does not exist. fs is
onto and one-to-one and f; ! exists.

The above examples suggest the following;:

Theorem 3.3. A function f: A — B has an inverse f~' : B — A if and only
if f is one-to-one and onto.

Proof: Suppose that f~! exists. We shall prove that f is a bijective function.
Since f~!': B — A is a function.
L) =as fla)=1b
f is one-to-one.
Let a1,a2 € A such that f(a1) = f(az).Let f(a1) = f(az2) = b (say)
Then f(a1) =b= f~1(b) =a; and f(az) =b= f~1(b) = ay
Thus a1 = f~!(b) = az, so that f is one-to-one.

f is onto.

Let b € B. Then f~1(b) € A (as (f~! is a function ). Let f~1(b) = a € A. Thus
f(a) = b, so that f is onto.

Conversely, let f be a bijective function. Let b € B. Since f is onto, there
exists a € A such that f(a) = b. Since f is one-to-one, the element a € A is
unique. Hence for each b € B, there exists a unique a € A such that f=1(b) = a.
Hence f~! is a function from B to A. O

Example 3.20. Define f : R = R by f(z) = 2+ 2 Ve € R. Then f is a
bijective function. Hence f has an inverse. If f~1(z) =y, then f(y) ==

> y+2=x

S>y=x—2

Cf N e) =22

We now outline the steps involve in finding an inverse of a function if it
exists.
Steps involved in finding f~!
Given f: A — B is a function
Step 1 Prove that f is a bijective function. Then f~! exists.
Step 2 By step 1
ff1:B—= A
we are required to find f~1(b), forb€ B. If f~1(b) =a (1)
Then b = f(a)
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Solve for a in terms of b. The solution must be in A. Substitute the solution
obtained in (1). Thus we get the function f~*.

Example 3.21. Define f : R~ — Rt by f(x) = 22. To find the inverse
function of f.

Stepl We prove that f is a bijective function. Letx € RY. Then, —/x € R~
such that

J(-D) = (~VaP =

Hence f is onto.
Let x,y € R~ such that f(x) = f(y). Then, 2 = y?

===y
Since x,y € R™
o, x = —y is not possible so that x =y. . f is one-to-one.
Thus f is a bijective function. . f~1 exists and
fHRT 5 R-

Step2 We shall now find the rule for defining 1.
Let v € RT.
Then f~1(z) e R™. Let f~(z) =y.
Then x = f(y)
=z =q?
=y==x
The solution of this equation in R™ is y = —/x
SN r) = =/

Example 3.22. Define f : R — Rt by f(x) = 2%. Then f is not one-to-one.
v 2,-2€ Rbut f(2) =4= f(—2).Then 2 # =2, but f(2) = f(—2). Hence f is
not bijective and so does not have an inverse.

Example 3.23. Define f : R~ — R by f(x) = 22

Then f(x) 20 VzreR™

—4 € R (the codomain ) and there does not exist any x € R™ such that f(x) =
—4.

Hence f is not onto, so that f is not a bijective function .

- f~1 does not exist.

Theorem 3.4. Let f : A — B be any function. Then f is bijective < f~1 is
bijective.

Proof: Let f be bijective. Then f~! exists and f~' : B — A. Let by, by €
B such that f~1(b1) = f~(ba). If f~1(b1) = f~1(b2) = =, then f(x)
b1 and f(z) = by, so that by = by. Hence f~! is one-to-one.

Let a € A and f(a) = b (as f is a function), so that f~!(b) = a. Thus f~!
is onto. This proves that f~! is a bijective function.

Conversely, let f~! be a bijective function. If g = f~! , then g is a bijective
function so that g~ exists and is bijective.
However, g=! = (f~1)~! = f, i.e f is a bijective function. O
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3.8 Composition of Functions

Having defined functions, we would like to combine them by applying one
function after the other so as to get another function.Thus we have the following
definition.

Definition 3.7. If f : A - B and g : B — C are two functions, then the
composite of f by g is the function gof : A — C defined by
(9of)(a) = g(f(a)) Va € A.

K0 -
I~
e
\%

Example 3.24. Let A={1,2,3,4}, B={z,y,2},C ={p,q,r, s}, and

f={12),(2,9),(3,2),(4,2)}

9= {(wap)a (y7Q)7 (27Q)}

Then f: A— B,g: B — C, so that

gof : A — C such that (gof)(a) = g(f(a)), for a € A.

Hence (gof)(1) = g(f(1)) = g(x) = p.

(9of)(2) =q
(9of)(3) =q
(gof)(4) =q.

Example 3.25. Define f:R* — R by f(z) =1/z, and
g:R—=R by g(r) =1

Then gof : R* - R

and (gof)(x) = g(f(x))



3.8. COMPOSITION OF FUNCTIONS 101

= (1/2)
z;{ere R(g) = [0,00) € R* = D(f)
. fog is not defined.

Example 3.26. Define functions f and g as follows:
f:R* > R*

flx) =1/

g:R* — R*

g(z) =22 +1

Then fog : R* — R*

and (fog)(z) = f(g(z)) = f(z* +1) = &y
Also gof : R* — R*

and (gof)(z) = g(f(z)) = g(1/z) = ;5 +1
Thus we see that

(fog)(1) =1/2

(gof)(1)=1+1=2

so that (fog)(1) # (gof)(1)

Hence fog # gof.

This shows that the composition of functions is not commutative. In fact, the
composition of functions is associative. Let A and B be two setsand f: A — B
and g : B — A be two functions. If gof = i4, the identity function on A, then
g is called a left inverse of f. If fog = ip, then g is called a right inverse of f.
If g is a right inverse as well as a left inverse of f, then g is called an inverse of f.
Though, inverse of a function is unique but a right (left) inverse is not unique.
In fact a right (left) inverse may exist but inverse may not exist.The following
theorem gives the conditions for a function to have a left (right) inverse.

Theorem 3.5. Let A and B be two sets and f : A — B be a function. Then
(i)  f is onto if and only if f has a right inverse.
(i)  f is one-to-one if and only if f has a left inverse.

Proof:
(i) Let f be onto. Then for each b € B, there exists a € A such that f(a) = b.
Also R(f) = B.
Define
g:B— A
by g(b) = a if f(a) =b. Since R(g) C A = D(f), therefore fog is defined,
and
fog: B— B
If b € B, then

(fog)(d) = [f(g(b))
= Z]:(a), where g(b) = a if f(a) = 0.
(fog)b) = .

Hence fog = ip, so that g is a right inverse of f.

Conversely, let f have a right inverse h . Then

h:B— A
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such that foh =ip. We prove that f is onto. Let b € B. Then

(foh)b) = ip(b)

= [f(h()) = b

= f(a) = b, wherea=h(b)eA.
= f is onto.

(ii) Let f be one-to-one. We prove that f has left inverse. If g : B — A is

a left inverse then gof must be defined, so that R(f) C D(g). We take
D(g) = R(f).

Since f is one-to-one, .". if a1, as € A such that a; # as then f(a1) # f(a2).
So, for every b € R(f), there exists unique a € A such that f(a) = b. Define

g:R(f)— A
g(b) = a, if f(a) =b.
Then gof : A — A
(gof)(@) = g(f(a)foracA
= g(b), where f(a)="».
= a, by definition of g.
(gof)(a) = aVaecA
So that gof =i4.

Conversely, let f have a left inverse say h . Let h: B — A. For hof to be
defined, we must have R(f) C B. Also

hOf = iA.
Let a1,as € A such that f(a;) = f(a2). Then
@) = h(f(a)
(hof)(@1) = (hof)(a2)
= ia(a1) = ia(az).
= ap = a2
= f is one- to- one.

O

Theorem 3.6. Let A and B be two sets and f : A — B be a function. Then f
is bijective < there exists g : B — A such that fog =ip, gof =i4.

Proof: Let f be bijective. By Theorem 3.5, there exists a right inverse g of f
and a left inverse h of f. Thus

=
=

fog=ip, hof =ia

Since composition of functions is associative,

ho(fog) = (hof)og
hoipg = i409
h = g

Thus there exists a function g : B — A such that fog =ip, gof =ia.
Conversely, let the conditions hold. By Theorem 3.5, f is onto and injective

so that f is bijective. O

Theorem 3.7. Let f: A — B be any function. Then, a function g : B — A is
an inverse of f if and only if fog =ip and gof =ia, where ia,ip are identity
functions on A and B respectively.
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Proof: Suppose g is an inverse of f. Then g = f~'. If a € A,b € B, then
fla)=b
< gb)=a
We see that fog: B — B and gof : A— A. For any b € B
(fog)(b) = f(g(b))
= f(a)
=b
. (fog)(b)=bV¥be B
so that fog = ip. Similarly gof = i4. Hence proved.
Conversely, suppose that the conditions hold. To prove that g is an inverse of
f, we must prove that for a € A,b € B, f(a) =b< g(b) =a. Let a € A,be B
such that f(a) = b then g(f(a)) = g(b)
= (gof)(a) = g(b)
= ia(a) = g(b)
= a=g(b)
Conversely let a € A, b € B such that g(b) = a.
Then f(g(b)) = £(a)
= (fog)(b) = f(a)
= ip(b) = f(a)
= b= f(a)
Thus we have proved that
fla)="b
< g(b) =a
so that g is an inverse of f. O
We shall now prove that if a function has an inverse, it must be unique.
Thus we will say the inverse of a function.

Theorem 3.8. Let f : A — B be a function. Then [ is invertible & f is
bijective.

Proof: Let f be invertible. By Theorem 3.7, there exists a function g : B — A
such that gof =i, fog =ip. By Theorem 3.6, f is bijective.

Conversely, let f be bijective. By Theorem 3.6, there exists a function
g: B — A, such that gof =ia, fog =ig. By Theorem 3.7, f has an inverse,
so that f is invertible. O

Theorem 3.9. An invertible function has a unique inverse.

Proof: Let f be an invertible function from A to B and let g and h be two
inverses of f. g: B — A, h: B — A such that

Then fog =ip, gof =ia and foh =ip,hof =ia. If b € B, then (foh) =ip
= (foh)(b) = ip(b)

~ go(foh)(b) = (goin)(®)

= ((g0f)oh))(b) = g(b)

= (ia0h)(b) = g(b)

= h(b) = g(b)

Since this holds for all b € B.

S h=g.

Hence inverse of a function is unique. O

Theorem 3.10. The composite of two bijective functions is bijective.
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Proof: TLet f: A — B and g : B — C be two bijective functions. Then
gof : A — C. We prove that gof is bijective.
Stepl To prove that gof is onto. Let ¢ € C. Since g is onto ... 3b € B such
that g(b) = c.
Since f isonto .. 3 a € A such that f(a) =05
Now g(f(a)) = g(b) = c
= (gof)(a) =c
= gof is onto.
Step2 'To prove that gof is one-to-one.
Let a1,as € A such that
(gof)(a1) = (gof)(as)
= g(flar)) = g(f(az))
= f(a1) = f(a2) " g is one-to-one and f(a1), f(a2) € B
= a1 = as *.© f is one-to-one
Hence gof is one-to-one.
Step3 Steps 1 and 2 prove that gof is a bijective function. O

Theorem 3.11. If f and g are invertible functions, so is gof. Moreover
(gof)~t = f"tog™".

Proof: Let f: A— B and g : B — C be invertible functions. Then
gof : A—C

f, g are invertible functions.

= f, g are bijective functions. .. (By Theorem 3.8)

= f~1 g7! exist and are bijective. .. (By Theorem 3.9)

Then f~': B — Aand g~! : C — B, so that

flog™t:C — A.

A N g C

Now f, g are bijective functions.

= gof is a bijective function.

= (gof)~! exists and is bijective function from C to A.

We see that f~log~! is also a mapping from C to A.

To prove that f~log=! = (gof)~! we must prove that their action on every
element of C' is same. Let ¢ € C. Then

f~rog™He) = f~H g7 ()

= f1(b), where g~ 1(c) =be B

=a, where f'(b)=a € A

Now g~ (c) =b< g(b) =c
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LB = a o fla) = b

Thus g(f(a)) = g(b) =c

= (gof)(a) =c

— (gof) () = a

Thus (gof)~"(c) = (flog~")(c) Ve € C

so that (gof)~' = f~log~". O

3.9 Solved Problems

Problem 3.6. Let A ={1,2,3}, B = {a,b}
Let f = {(1,&), (2vb)’ (3,&)}

and g = {(a,1),(b,2)}

Find gof and fog. Is g = f~1?

Solution: Since f is a mapping from A to B and g is a mapping from B
to A.

. fog and gof are defined and fog : B — B, gof : A — A. Now, (fog)(a) =
f(9(a)) = f(1) = a

(fog)(b) = f(g(b)) = f(2) =b

.. fog = ip, the identity mapping on B.

(9of)(1) = g(f(1)) =1

(90f)(2) =2

(90f)(3) =1

Thus gof #i4

Hence g # f~1. In fact f does not have an inverse as f : A — B is not one-one.

Remark 3.3. If f: A— B and g: B — A, then fog = ip is not sufficient to
ensure that f is invertible. We must also check that gof =ia. Also more than
one g can be found such that fog =1ip and gof #ia.

So f has two right inverses, h and g. In the above question, let h =
{(a,3),(b,2)}. Then (foh) =ip but h # g.

Problem 3.7. Define f:7 — N by f(z) = { ;Lﬂ_’_ lzf Cch<xo> 0

Show that f has an inverse and find f~! and hence find f~1(3686), f~1(231).

Solution: To prove that f is one-to-one.

Let z,y € Z such that f(x) = f(y). Three cases arise:
Case 1. x,y 20

Then f(x) = £(y)

=2r+1=2y+1

=>zx=y

Case 2. x,y <0

f(@) = f(y)

= 2fz| = 2y|

= —r=—y

=>z=y

Case 3. One of them is > 0 and the other is < 0
Without any loss of generality we can take x > 0, y <0

Then f(z) = f(y)
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=2z +1=2|y|
=2r+1=-2y
=>22+y =-1
>z+y=-1/2
which is not possible in Z.
Thus in all cases f(z) = f(y)
=>x=y
Hence f is one-to-one.
To show that f is onto.
Let y € N. Then y is either odd or even. Suppose that y is odd.
.y =2z+1 for some z € NU {0}
flz)=22+1
=y, where z = (y — 1)/2
Let y be even.
..y = 2z for some z € N
Then —z € Z, —z < 0 and
fl=2)=2[-z[=22=y
Combining the two we get
f(F) =y if yis even, and
f%) =y if y is odd
Thus f is onto.
To find f~!. Since f is a one-to-one and onto function, therefore f is invertible
so that f~! exists and f~': N = Z.
We now obtain a rule to define f~!.
Forz € N, let f~1(z) =y
Then z = f(y)
B { -2y ify<0
Tl 2y+1 ify>0
Solving for y in terms of x, we get

=L if x is even
. f_l(l‘) :{ é f
2

if xis odd
f71(3686) = =305 " 3686 is even.
= —1843
f7H(231) = 24=L - 231 s odd.
=115

Problem 3.8. Let A be a subset of R and suppose [ : A — A is a function
with the property that

[z) = f(lx) Vo € A. Show that

(i)  0¢A.

(ii)  f* =iy, the identity function on A.

Solution:

(i) Suppose that 0 € A. Since f is onto there exists some a € A such that

fla) = 0.
fa) = ﬁ, which is not defined.

Hence our assumption is wrong, so that 0 ¢ A.

(i) Let z € A. Then
) =
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@) = fs)

e (fof V(@) = f(75)

ie f(ﬁ) =z

Applying f on both sides

f2(515) = f(z), forallz € A ...(1)

f(z)
Let y € A. since f is onto, means that there exists some z € A such that
fz)=y
Then fQ(ﬁ) = f(2) using (1)

ie fQ(%) =yVyecAd ..(2)

Now fi(z) = f2(f2(x))

= /2(1) using(2)

=z using (2)

L ffr)=x VreA

Thus f* is the identity mapping on A.

Problem 3.9. If f: A— B and g: B — C, are functions, prove that
(i) If f is onto and gof is one-to-one then g is one-to-one.
(ii)  If g is one-to-one and gof is onto, then f is onto.

Solution: Clearly gof : A — C

(i) Let z1,x2 € B such that
g(z1) = g(x2) (1)
Since f is onto
. there exist T, Ty S A such that
f(xy) =21 and f(zy) =29 (2)
(1) and (2) =
9(f(z1)) :,g(f(%) ,
= (gof)(z1) = (gof)(x2)

=, =12y . gof is one-to-one
= f(xy) = f(z5)
= I1 = T

Hence g is one-to-one.

(ii) Let b € B. Then g(b) € C. Since gof is onto C and g(b) € C
. 3 some a € A such that (gof)(a) = g(b)
= g(f(a)) = g(b)
= f(a) =b since g is one-to-one
Thus f is onto.

Problem 3.10. If f and g are two functions such that gof is one-to-one then

prove that
(i) f must be one-to-one.
(i) g may not be one-to-one.

Solution: Let f: A— B, g: B — C be two functions. Then gof : A — C.
Suppose that gof is a one-to-one function .

(i) Let a1, az € A such that
fla1) = flaz) (1)
Now, f(a1), f(az) € B so that
9(f(a1)),9(f(az)) € C
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(1) = g(f(a1)) = g(f(az))

= (gof)(a1) = (gof)(az)

= a; = ay since gof is one-to-one
Thus f is one-to-one.

(i1) The functions f and g are defined by the arrow diagram.

A B

N s
[
\?r/

N

Let gof is one-to-one, but g is not one-to-one.

Problem 3.11. A function is defined on the set of real numbers as follows:
f:R = (1,00), f(z) = 8% + 1
Does =1 exist? If yes, find it.

Solution: To prove that f~! exist, we shall prove that f is a bijective function.
To prove that f is one-to-one. Let x1, x5 € R such that
f(@1) = f(x2)
Then 3%t +1 = 3222 41

= 32001 — 32902

= 2x1 = 229

= 1 = T2

Hence f is one-to-one.
To prove that f is onto
Let y € (1,00). In order to prove that f is onto, we need to solve

f@ =y ...()
for x € R

Thus 3%* + 1=y

=3 =y—1

Taking logrithm to the base 3, we get

x:%logg,(y—l) ...(2)

Since y € (1,00) .y > 1

i.e y —1 > 0 so that logs(y — 1) is defined.

Hence x € R.

Thus f is a bijective function, and therefore f~lexists.
From (1) and (2) it follows that

1
) = 5 logs(y — 1), where y € (1,00)
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Thus f~!: (1,00) — R defined by f~!(z) = logs(z — 1).

3.10 Exercise

1. Define f : Z — N by
2z x<0,
f(x)_{Q:erl x>0
Find fof.

2. Define functions on R as

f(x) =log(1£%)

.3
g(w) = 55

Find the natural domains of f and g. Show that (fog)(x) = 3f(x). Hence
deduce that fog and f have the same domain.

3. Let A=1{1,2,3,4,5}, B=1{1,3,5,7,9}
Define functions from A to B as follows:

1) f={(1,9).(2,7),(3,5).(4,3),(5,1)}
(i) g={(1,3).(2,5).(3,7).(4,5),(5,9)}
Find f~! and ¢!, in case they exist.

4. Let f: A — B.Give example of the following:

(1) f has a right inverse but not a left inverse.
(ii) f has a left inverse but not a right inverse.
(iii) f has neither a right inverse nor a left inverse.
(iv)  f has a right as well as a left inverse.

5. Define the following functions
f:1,3] =R
by f(x) =2z
g:R* — R*
by g(x) = 3
h:R—R
by h(xz) =1+ 3z
Find
(i) hogof.
(ii) R(hogof).

6. The functions f and g are defined as follows:
f:(1,2) >R
by f(z) =z — |z]
g:R* — R*
by g(x) = 3
(1) Find gof.
(i) Is gof bijective.
(iii)  If answer to (ii) is yes, find (gof) L.

7. If f and g are two functions such that gof is onto then prove that
(i) ¢ must be onto.
(i)  f may not be onto.

8. Show that the composition of two onto functions is an onto function.
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9. Show that the composition of two one-to-one functions is a one-to-one
function.

10. Define f: RT = R
by f(z) =1- ;17
g:RT =R
by g(x) = 3
h:Rt* - R
by h(z) =z +1
(i) Find range of f,g and h.
(i)  Show that gof, fog, hogof, and fogoh are all defined.
(iii)  Show that f, g, gof are all invertible functions.
(iv)  Verify that (gof)~t = f~tog™1 .

11. Define functions f, g, h as follows:

FiR* SR

by f(z) =2z
g:R* 5 R*

by g(z) =1/
h:R—=R

by h(z) =1+ 3z
Find

(1) Range of hogof.
(ii)  If (hogof)~! exists, find it.

12. If f: (—00,0) — R is defined by

flz) = \/|x1|7—x
Find f~!

13. If f:[0,3] — R is defined as
fz) = 142 0<z <2,
PTU3-2 2<2<3

Find

(i) Range f.

(ii) fof.

(iii) Suitable inverse.

14. Show that the function f : [2,00) — [1, 00) defined by
f(x) = 2% — 42 + 5 is a bijection. Find f~1.

15. Let f:[0,1] — [0,1] be defined by
fz) = { T if x is rational, }

1—2x if xis not rational
Show that

flx) = f~Y(x), Vo €]0,1].

3.11 Cardinality of a Set

Two finite sets can be compared in size by counting the number of elements
they have. But how do we compare the size of two infinite sets? The set of
natural numbers, integers, rational numbers, real numbers and complex numbers
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are all infinite sets such that N C Z € @ C R C C. Does it mean that Z is
larger in size than N, @ is larger in size than Z and so on? We may also think
that since all are infinite sets, so they are of the same size. Certainly not!

We now discuss how the sizes of infinite sets can be compared .

Definition 3.8. (One-to-one correspondence):

Let A and B be two sets. If f: A — B is a bijective function then we say that
there is a one-to-one correspondence between A and B. Equivalently, we say
that A and B are in one-to-one correspondence.

Example 3.27.

(i) A={a,b,c,d.....,z}
B=1{1,2,3,4........ ,26}
Define f: A— B
by f(a) =1, f(b) =2, f(c)=3,...f(z) =26
Then a — 1,b — 2,....,2 — 26
is a one-to-one correspondence between A and B.

(ii) Define f:2Z — 4Z
by f(22) =42 Vz € Z
Then f is a bijective function so that 2Z and 4Z are in one-to-one corre-
spondence.

Definition 3.9. (Finite set):

A set is finite if it is

(i)  either the null set, or

(i) in one-to-one correspondence with the set {1,2,3,...,n} for
some natural number n .

If a set is not finite, then it is said to be infinite.

Definition 3.10. (Cardinality of a finite set):

If A is a finite, non empty set and it is in one-to-one correspondence with
{1,2,3,...,n}, we define the cardinality of A to be n.The cardinality of the null
set is defined to be zero. The cardinality of A is denoted by |A|.

Example 3.28.
(i) Let A={n€ N |n<15}
Then |A| = 15.
(i) B={zeZ| —10<z <5}
Then B = {-10,-9,...,4}
|B| = 15.
(ii) Let C' = set of all persons living on a moon of Jupiter
Then C = ¢ so that |C] = 0.

Definition 3.11. (Equipollent sets):
Two sets A and B are said to have the same cardinality or are equipollent if
and only if there exists a one-to-one correspondence between A and B. We write

Al = |B].

We write A ~ B. It can be verified that equipollence relation on the family
of all sets is an equivalence relation.
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Example 3.29. (i) Let A = set of all alphabets of the English language.
B={1,2,..,26}
Then there is a one-to-one correspondence between A and B, so that |A| =

|B|=26 .

(ii) As seen in Example 3.27 there is one-to-one correspondence between 2Z and
47, hence |2Z| = |47Z)].

(iii) |N] = |NU{0}|, because
f:N—=Nu{0}
fln)=n-1
1s a bijective function, so that there is a one-to-one correspondence between
N and N|J{0}. Therefore N and N U {0} are equipollent and correspond-
ingly IN| = [NU{0}|.

Remark 3.4. If A and B are two sets such that |A| = |B|, then there exists a
bijective mapping from A to B. This mapping need not be unique. If A and B
are infinite sets such that A G B it is quite possible that |A| = |B].

Definition 3.12. Let A and B be two sets. If there exists a one-to-one mapping
from A to B then we say that |A| < |B|. If |A| < |B| and |A| # |B|, then
Al <|BJ.

If A and B are finite sets such that |A|] < |B| and |B| < |A|, we conclude
immediately that |A| = |B| by the antisymmetry of <.
But when A and B are infinite sets such a property of antisymmetry also holds
between |A| and |B|.

This is the following theorem.

Theorem 3.12. (Schroder Bernstein) If A and B are two sets such that |A| <
|B| and |B| < |A] then |A| = |B|.

Proof: Beyond the scope of the book. O

3.12 Countable Sets

Definition 3.13. (Countably infinite set): A set A is said to be countably
infinite if there is a one-to-one correspondence between A and N, i.e |A| = |NJ|.

Definition 3.14. (Countable set): A set A is said to be countable if it is
either finite or countably infinite.

A set which is not countable is said to be uncountable. Traditionality, the
cardinality of N is denoted by the symbol Xy (pronounced ’alpha naught’). Thus
the cardinality of a countably infinite set is Wg.

Let A be countably infinite set. If f is a bijective mapping from A to N.
Then elements of A can be listed as {a1,as, ...}, where aj, = f~(k), for k € N,

Example 3.30.
(i) Z,2Z,Q",Q are examples of countably infinite sets.
(1) RT R, (0,1),(a,b) for a < b are ezamples of uncountable sets.

Proofs of the above examples are given later.
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Since equipollence is an equivalence relation, therefore, to prove that a set
A is countable, it is sufficient to prove that it is equipollent to some countable
set B, i.e there is a one-to-one correspondence between A and B. Similarly to
prove that a set X is uncountable it must be equipollent to some set Y, which
is known to be uncountable. These two facts will be used repeatedly.

Theorem 3.13. FEvery subset of a countable set is either finite or countable.

Proof: Let A be a countable set and B be a subset of A. Since A is countable,
therefore it can be listed as {a1,aq9,...}. ...(1)
Two cases arise

Case 1. B is finite. Then B is countable by definition.

Case 2. B is infinite. Consider the listing of A as given in (1). From this
listing omit those elements of A which are not in B. The list which remains
gives a listing of the elements of B. Hence B is countable. O

Theorem 3.14. Fvery infinite set has a countable subset.

Proof: Let A be an infinite set. Then A is nonempty, so choose a; € A. Let
Ay = A\{a1}. Since A is infinite, therefore A; # ¢. Choose as € A; and let
As = A\{a1,a2}. Again, Ay # ¢ . Choose ag € As, and let Az = A\{a1,az2,a3}.
Continuing in this way, we obtain a countable subset {a1, as,as,...} of A. O

Corollary 3.15. If A is any infinite set then Vo < |A].

The next theorem gives a relation between the cardinalities of a set and its
power set.

Theorem 3.16. If A is any set, then |A] < |P(A)]

Proof: Define f: A — P(A)
by f(a) ={a} Vac A.
Then f is one-to-one, for if a,b € A such that

fla) = f(b)
then {a} = {b}
=a=25b

Hence |A| < |P(4)] ....(1)
We now prove that |A| # |P(A)]
On the contrary, suppose that
|A| = |P(A)|, so that there exists a bijective mapping g : A — P(A)
Consider B={a€ A|a¢ g(a)}
Then B C A so that B € P(A).
Since g is onto, therefore, there exists x € A such that
g(z) =B ...(1)
Two cases arise:
Case 1. x € B. Then x ¢ g(x) by definition of B
i.e z ¢ B using (1)
which is a contradiction to z € B.
Case 2. © ¢ B
In this case z ¢ g(z) by(1)
Thus z € A and z ¢ g(z)
.. & € B by definition of B which contradicts = ¢ B.
Hence, in either case we reach at a contradiction. So that there does not exist
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any bijective mapping ¢ from A to P(A).
Thus |A| < |P(A)] O

Corollary 3.17. P(N) is uncountable.
Taking A = N in the above theorem, we get [N| < |P(N)|
= |P(N)| > Xy = P(N) is uncountable. O

We have proved that |N| < |P(N)| and P(N) is an uncountable set. It can
be shown that |P(N)| = |R|
It follows that R is uncountable as P(N) is uncountable. The cardinality of R
is denoted by c. Thus

PN)| = |R| = c
ie2M =¢
Thus we get

Ng < c.
There is a conjecture: “There does not exist any set A such that Rg < |4| < ¢.”
This is called Cantor’s continuum hypothesis. This hypothesis can be re-
stated as “Every uncountable set of real numbers has cardinality ¢”.
It is proved later that |(0,1)| = |R]
Thus |(0,1)] = ¢. Let I =(0,1)
Then as above |P(I)| > |I| and |P(I] = 2¢
Also 2¢ > ¢. Thus, given a cardinal number k& we can always find a cardinal
number bigger than k, namely 2*. This is because if &k = |A|, where A is some
set, then |P(A)| = 2* and 2 > k.
Thus Ry < ¢ < 2¢ < 22° < ..., where ¢ = 2% and n < Rq for all n €
N ¥y is the smallest cardinal number. The set of integers can be listed as
0,1,—-1,2,—2,3,—3,... so that we can establish a one-to-one correspondence
between N and Z. This is done in a problem given later.

Theorem 3.18. The countable infinite union of countably infinite sets is
countable.

Proof: Let {A, : n € N} be a family of sets, where each 4, is a countably
infinite set. To prove thatA = U,cnA, is countable. It is sufficient to give a
listing of the elements of A.

Let Al = {ail,aiQ, Qg }

write the elements of the sets A; as follows:

311731%3/ Ay
a21 h 322/23 324

RS A A3y

a,{ aaz a43 Ay
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Traverse this array as indicated by the arrows. Thus every element of A can be
labeled as by, bs,.... Hence A is countable. O

Problem 3.12. Show that Z is countable.

Solution: Define f: N — Z
n/2 if nis even
by fM) =9 Zm—1)/2  if nis odd
Thus f is a bijective function (Verify), so that N and Z have same cardinality.
Since N is countable, we conclude that Z is also countable.

Problem 3.13. Show that N x N and N have the same cardinality Rg.
Solution: N x N = {(m,n)|m,n € N}

The elements of N x N can be listed as shown

INF’ EQIOF EQIQF EQIPFKK
ERINF ERIOF ERIPF ERIQRK

Listing of N x N

The order is indicated by the arrow. In case we want to define a mapping, we
define

fNxN-—>N

by f((l, b) _ (u.+b—2)2(a+b—1) +a

Thus |N x N| = R,.

Problem 3.14. The set of all rational numbers is countable.

Solution:

Stepl We first prove that the set of all positive rational numbers QF is
countable. We arrange these numbers not in order of size, but according to
the size of the sum of the numerator and denominator. Begin with all positive
rational numbers, % such that a+b = 2. There is only one such rational number,
namely 2 1 Ne>it list, with increasing numerator, all those nur{lbers % for which

a+b=23, 1e§and 2 Now those for which a +b = 4, i.e 3,3,‘;’,0omenext

in the list. Next are thoae for which a +b =5, i.e 1 % % % =4 and so on. We
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now list all these together which are from the beginning, omitting those already
listed. Thus we get the sequence 1, %7 2, %, 3, i, %, %, 4, %7 ... which contains each
positive rational number exactly once. Figure below gives a systematic repre-
sentation of this manner of listing. The first row contains all rational numbers
with numerator 1, second row all numbers with numerator 2 and so on. Traverse
this array as indicated by the arrows, leaving out the numbers which have been

encountered already.

1 1 1 1
1 ..... 7/73/2 ......
2K 2 2
1 2 .. 3 T
3/1/i 3

List of positive rationals

Thus the set of all positive rational numbers can be labelled as a1, a2, a3, a4. ..

Step2 We now prove that the set of all rational numbers is countable. All
the rational numbers can be listed as 0,a;, —a1, a2, —as, ... which proves that
Q is countable.

Problem 3.15. Prove that R and RT have the same cardinality.

Solution: Define f: R — R* by f(z) = €®
It is easy to verify that f is a bijective mapping. Thus R and RT have the same
cardinality.

v
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Problem 3.16. Show that if a,b € R such that a < b, then (0,1) and (a,b) are
equipollent.

Solution: Define f: (0,1) — (a,b) by f(z) =a+ (b—a)z

It can be easily seen that f is a bijective mapping. Thus (0,1) and (a,b) are
equipollent.

b 1,b)

\/

Problem 3.17. Prove that (0,1] and [a,00) where a € R have the same cardi-
nality.

Solution: Define f : (0,1] — [a,o0)

by f(z) =3 —1+a

Then verify that f is a bijective mapping, so that (0,1] and [a,00) have the
same cardinality.

a | (1,a)

Problem 3.18. Any two closed intervals have the same cardinality.

Solution: Let [a,b] and [c,d] be two intervals. Define f : [a,b] — [c, d]

by f(2) =+ 2z —a)

Then f is a bijective mapping (Verify). Hence [a,b] and [c,d] have the same
cardinality.
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d | (b.d)

(a,c)

Problem 3.19. Prove that (0,1) is uncountable.

Solution:  We prove the result by contradiction. Let, if possible (0,1) be
countable. List all the numbers in (0,1) as z1, 22, x3,.... Write each z; in the
decimal form. We also need to agree to write 0.499... as 0.5 etc, so that there
is no repetition. Thus we have

1 = 0.x11x12x13m14...

To = 0.1‘21.%‘221‘231'24...

I3 = 0.:133131‘323333.%’34...

Ty = 0.x41x42x43:£44...

We will find a number y in (0, 1) different from the z;’s. To do this we proceed
as follows:

If x11 =5, define y; =6

If 11 # 5, define y; =5

Similarly, if zo5 = 5, define y, = 6

If 9292 7é 5, define Y2 = 5

In general, for i = 1,2, 3...

deﬁneyi—{ 5 if @y 5

Let y = 0.y192y3.... Thus y differs from z; in the i** place, for all i = 1,2, 3...
iey#x; foranyi=1,2,3...

Also y # 0, y # 0.99...

so that y € (0,1), which is a contradiction. Hence our assumption that (0,1) is
countable, is wrong, so that (0, 1) is not countable.

Problem 3.20. Show that (0,1) and R have same cardinality.

Solution: Define f:(0,1) —» R by f(z) = ;(;1_/12)

We prove that f is a bijective mapping.
Step 1. To prove that f is one-to-one.

Let 1, x2 € (0,1) such that f(z1) = f(x2)
x1—1/2 _ xo—1/2

Then 111(3:1—1) - 122(m2—1)

Simplifying, we get

(1’1 — 132)[(1 — Jll)(l — 1’2) + 1’11’2] =0

Since 0 < x1, 22 < 1
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(=21 —22) + 1122 >0
so we must have r; — x5 = 0, i.e 1 = z2. Hence f is one-to-one.
Step2. To prove that f is onto.
Let y € R.To prove that f is onto, we have to find some z € (0,1) such that
f(z) = y. Clearly f(3) = 0. Choose y # 0.Suppose f(z) = y.
We will prove that z € (0, 1).
fx)=y
 z(x—1)
=iy —zy+1)+1/2=0

o= (y+1)i2\/(yz+1)

Y
Take = — % Vyitl

When y > 0

Now (y+1)2 =9y>+1+2y

Sly+1)2>yi 4l

= y+1>+/y?2+1 ( taking the positive square root )
Sy+1-/(P+1)>0

= VD o,y >0

Also /y2+1>1

V(R +D) < -1
:>y—\/W<Z/—1
=14+y—+/@W+1) <y
N 1+y7m<;

2y 2

2y 2
ie0 <z <3, sothat z € (0,3)C(0,1)
When y < 0, we can similarly prove that % <z<l1
Thus, there exists « € (0,1) such that f(z) =y
Hence f is onto.
Hence f is a bijective mapping so that (0,1) and R have the same cardinality.

<
Z
=
v

Graph of y = f(z)

Aliter: An elegant proof of the above result is given below.
The function f
[:00,1) = (553

’ 2
defined by f(z) = 1

)
m(x — 3) is a bijective function.
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Alsog: (5, 5) =R

g(z) = tanz is a bijective function.

Therefore gof : (0,1) — R is a bijective function.

Hence [(0,1)| = |R].

The beauty of mathematics lies in not only proving the result, but proving it
elegantly. So, you can choose the proof you like.

Problem 3.21. The elements of Z x Z are shown in the figure.
Show that Z x Z is countable by indicating a systematic way of listing the ele-
ments. Also list the first 20 elements.

Solution: The arrow show how the elements are listed. First 20 elements are
(07 O)? (L 1)7 (07 1)a (_13 1)7 (_17 0)7 (_17 _1)7 (Oa _1)3 (L _1)a (17 O)a (2a 1)7 (27 Q)v
(17 2)7 (07 2)7 (717 2)7 (727 72)7 (727 1): (72: 0)7 (727 71)7 (727 72)7 (713 72)

Problem 3.22. Prove that (0, 1] is uncountable by proving |(0,1]| = |(0,1)].

Solution: Let A= {1,311 .}

={l:neN} e

Then A is countable subset of (0, 1]. Define
f:(0,1] = (0,1)

by f(1) =3

f(3) =19, k=2 keN

fle)=xifz ¢ A
Then f is a bijective mapping so that |(0, 1]| = |(0, 1)|.Since (0, 1) is uncountable,
therefore (0, 1] is also uncountable.

Problem 3.23. Let S be an infinite set and © ¢ S. Then prove that S and
S U{z} have the same cardinality.

Solution: Since S is infinite, therefore it has a countable infinite set S;.
Let SQ = S\Sl, so that S = Sl U 52

SU{$}281USQU{I}

= (Sl U {x}) U Ss

Since S7 is countably infinite, list its elements as

{81, S92, 83, }
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Define f: S — SU {x}

by f(s1) ==z
f(Skt1) =5k, k=1
f(s)=s,5¢ 5

Then f is a bijective mapping. (Prove it!)
Hence |S| = |S U {z}].

Corollary 3.19. F is a finite set and S is any infinite set. Then |S| = |SUF|.

3.13 Exercise

1. Find a one-to-one correspondence between the sets A and B where
(i) A ={5,11, 31,18}
B= {st {bv C}v {d7 6}, {17 2, l‘}}
(11) A= [Oa OO), B= (_OO?O]
(i) Z xZ and {a +ib € Cla,b € Z}.

2. Prove that the following sets have the same cardinality
(i) 2N and 3N
(i) N and N J{0}
(ii) Z and 27
(iv) 4Z and 31Z
(v) Ax B and B x A, where A and B are any two sets.
(vi) (Ax B)x C and A x (B x C) where A, B,C are any 3 sets.

3. On the family of all sets J, define a relation ~ as follows:
For A,B € J, A~ B if and only if |A| = |B].

Prove that ~ is an equivalence relation on J.
4. Prove that the union of two countable sets is countable.
5. Prove that the set of all irrational numbers is uncountable.

6. Prove that the sets A and B have the same cardinality, where
(i) A=I500),B=300)
(il) A=15,00),B=[-3,00)

(iii) A= (6,00),B=(7,00)
(iv) A= (-6,00),B=(7,00)
(v) A=(a,00),B=(bo0)
(vi) A= (a,0),B=(—00,-b).

7. Prove that (0,1) and (0,00) have the same cardinality.
8. Prove that (a,b), (¢, d) have the same cardinality.

9. Show that the following sets have the same cardinality as R,

i [2,8

(i) [a, b

(iii) (a,o0)
(iv)  (—o0,—5)
(v) (—o0,a).

10. Show that any two circles have the same number of points on their cir-
cumference. What is the cardinality of this set?
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11. Prove that the number of points on the circumference of a semicircle is
the same as those on R.

12. By listing the elements in a systematic way, prove that the following sets

are countable. Also list the first 10 elements.
(i)  All the positive integral powers of 5.

(ii)  All integral powers of 3.
(iii) {a,b,c} xN

(iv) NxZ

(v) Zx(Nu{0})

(i) (N xN)U((-N) x (-N))

13. Determine whether the following sets are finite, countably infinite or un-
countable. Justify your answer.
(i)  The set of all sentences in the English language that contain
five words and each word of length at most ten.
(i)  {(a,b) € Q@ X Qla+ b =50}
(iii)  {(a,b) € R x Rla + b= 50}
(iv) {(a,b) € Z x Z]a + b =50}
v)  {(a,b) € Q x Qb= 4 —a?}
(vi)  {(a,b) € R x R|b =4 — a?}

(vii) The set of all grains of bajra in a gunny bag.

3.14 Solved Problems

Problem 3.24. Show that the function f: R — R defined by f(x) = \/(QZTQ)

is one-to-one.Find range of f.Is it onto? Find a suitable inverse.

Solution: Let 21,22 € R such that f(z1) = f(z2).

Th o =
on V@3 1) /(22+2)
Squaring both sides, we get
2 2

Ty . T3
x24+2 T x242
= 2 __ .2

T = X3
= 1 = tT9

Since f(z1) = f(x2), therefore z1,z2 both have the same sign, so that
Tr1 = T9.
To find range f
Let z € Rand f(z) =y
g ﬁ = y. Thus z,y have the same sign.
Squaring we get
2 z? 2

y - 2+x2 : 1 - 2“1’7
2 _ 2
52t = 2
V2y .. .
Vi (" z,y have the same sign)
Thus z is real when y? < 1
Le |yl <1
Hence range f = (—1,1)
Thus f is not onto.
To find f~!

==
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Clearly f~!is a function defined on (—1,1).
If f~(z) =y, then

fly) ==

Solving for y in terms of = (as above) we get
_ V2

V="

Hence f~!(z) = 22 z € (-1,1).

Vi—a?’

Problem 3.25. Let f : R — R be defined by f(x) =2|z| — =.

(i) Prove that f is bijective.

(ii) Find a formula for f~1(z).

(i) Draw the graph of f Can you decide from the graph that f has an inverse?

Solution: If n is an integer, and n < x < (n + 1), then |z| = n.
Lf@)=2n—z,ifn<r<(n+1).
f is onto
Let y € R, the codomain. Then there exists n € Z such that n <y <n+1
Two cases arise:
Case 1. y =n. Take z = y. Then z € R and
fly=2n-=z
=n
=Y
Case 2. n<y<n+1
In this case |y] =n
Nown<y<n-+1
=>n>2n—y>n-—1
=>n+2>2n—y+2>n+1
Let © =2n —y+ 2, Then x € R

lz] =n+1
f(@)=2z) - a
=2n+1)—2n—y+2)
Xlgox:2nfy+2
=2(ly) +1) -y

Thus there exists « € R such that f(z) = y.
Hence in both cases, we get for y € R, there exists z € R such that f(x) =y,
so that f is onto.
Now, show that f is one-to-one.
Let 21,29 € R such that

f(z1) = f(z2)

Let ©1 = ny + r1, where n; is an integer and 0 < r; < 1.

To = ng + ro, Where ny is an integer and 0 < ry < 1.

Then |z1| = ny, |z2] = na

Now f(z1) = f(22)
= 2L.’L‘1J — T = 2L.’L‘2J — T2
= 2nq — (77,1 + 7‘1) = 2ng — (TLQ +’I“2)
= N1 —7T1="Ng — Ty
= N1 — Ny =71 — T2
But ny —ng € Z and 0 < |rqp — r2| < 1 so that above result holds when both
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sides are zero.
i.e L —Tg :0,711 — N2 =0
=11 =To, N1 = N9y
= T1 = T2

Hence f is one-to-one.
(ii) Clearly,

flz)=—z,0<z<1
fl@)=2—-2,1<ax<2
flz)=4—2,2<x<3
fl&)==-2—-2,-1<2<0
fle)=—-4—z,-2<2z< -1

1
O

1
[==Y
\S)
&>
N

P

Graph of f(z)
Problem 3.26. A is a set such that o(A) = 6.Find o(P(A)).

Solution: Let A = {a1,a2,as,a4,a5,a6}. Let C =set of six digits numbers
with digits 0 or 1
We now define a mapping from P(A) to C and prove that the mapping is
bijective. If B € P(A), i.e B C A, then to B assign the six digits number
b1b2b3b4b5b6 such that
v 1 Zf a; € B
Thus f : P(A) — C such that f(B) = b1by....bg as defined above.
Clearly f(¢) = 000000
F(A) = 111111
Now we show that f is onto. Let ¢ = dydadsdsdsdg € C.
The d;’s are 0 or 1.
F1(e) = { ¢ ifdi=0 Vi=1,2,3...6
= K (say)

Clearly, K € P(A) and f(K) = c¢. Hence f is onto.

Now we show that f is one-to-one. Let X, Y € P(A) such that f(X) = f(Y).
Then z1T2T3T4T5T6 = Y1Y2YsyaYsys. so that z; = y; i = 1,2,...6, proving that
X=Y.
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Hence f is one-to-one.

Thus f is a bijective mapping so that f is one-to-one correspondence between
P(A) and C. But o(C) = 25. (since each digit can be chosen in 2 ways).
Hence o(P(A)) = 25.

The above method can be generalized to find the cardinality of the power set of
a finite set A.

3.15 Supplementary Exercise

1. State whether the following statements are true or false. Justify the false
ones

(i)  Every relation is a function.
(i)  Every function is a relation.
(iii)  The smallest equivalence relation on a set of n elements has
n elements.
(iv)  The smallest equivalence relation on a set is the identity
relation.
(v)  Reflexivity is redundant in the definition of an equivalence
relation R because if (a,b) € R, then (b,a) € R, by symmetry.
By transitivity (a,b), (b,a) € R= (a,a) € R.
(vi)  Every symmetric relation and anti-symmetric relation is
reflexive.
(vil) R=1{(1,2),(1,3)} is a transitive relation on A = {1,2,3}.
(viii) A binary operation associates at least one element of A to
every of A x A.
(ix) If a binary operation * is commutative than parenthesis are
not needed in a * b * c.
(x) A binary operation is always commutative and associative.
(xi)  The number of bijective functions from A to A is n™, where
n = o(A)
(xii)  Every function is invertible.
(xiii) If f: A— Band g: B — A are functions such that gof = i4
then f is invertible and g = f~1.
(xiv) If A={a,b,c},B ={z,y} and f is a function from A to B,
then we can define two functions g;and gs from B to A
such that fogi =ip, fogs = ip.
(xv) If f:A— Bandg:B — A aresuch that fog =ip,
then it is always true that gof = i4.
(xvi) If f: A— Bisa bijection and g : B — A is inverse of f, then
gof = fog = identity function.
(xvii)  The function f : R — R defined by
f(z) = (z+1)(x —2)(z + 5) is a bijective function.
(xviii) The function f(z) = 4z + 5 is a bijective function from Z
to itself.
(xix) If f: A — B be any function, X C A then f~1(f(X)) = X.
(xx) If f: A— B be any function and Y be any subset of B, then
FFIY)) =Y.
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10.

11.

. Let f:Z — N be defined by f(x)z{

‘Deﬁncf:R—HRbyf(x)—{
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(xxi)  The floor function from R to Z is onto.
(xxii) If ~ is not an equivalence relation on a set A then ~ is neither
reflexive, nor symmetric nor transitive.
(xxiii) A countable set must be infinite.
(xxiv) If A and B have the same cardinality then their power sets
also have the same cardinality.
(xxv)  If Ais a proper subset of B, then |A4| < |B].
(xxvi) If Ais a subset of B, then |B ~ A| = |B| — |A].
(xxvil) A subset of an infinite set may be finite.
(xxviii) Every superset of an countable set is uncountable.
(xxix)  The set of irrational numbers is countable.
(xxx)  The set of rational numbers is uncountable.
(xxxi)  The power set of a countable set is countable.

. Let A = {1,2,3,4,5}, B = {z,y,2,t},C = {x,y,t},D = {2,4}. De-

fine a function f from A to B and g from B to A as follows: f =
é()ijw), (3,2), (4,1),(L,1),(5,2)}, g = {(z,1), (y,3), (2,4), (t, 1)} Find

i) fog,

(ii) gof (iii) (fog)of

(iv) f7H(C), (v) f(D) (vi) f7HF(D))

(vit) f(f71(C))

Also find R(f) and f~1R(f).

lz|, if <0
2z|, ifz>=0
Is f an invertible function? If yes, find f~!.

. If f and g are functions defined on R by f(z) = ax + b,g(x) = cx + d.

Prove that fog = gof if and only if f(d) = g(b).

. Find the inverse of the function f: A — A defined by f(x) = 1%, where

Fo>
A=R~ {-1}.

. Can you construct an example of a function which has a right inverse and

a left inverse, but the two are not equal? Justify your answer.

. Prove that the function f : R — R defined by f(z) = 2 + 3az? + 3bz + ¢

is a bijection if a? < b.

x if xis rational,
1—=x if xisirrational
Prove that f is invertible and find f~!.

. Let f: R — R be defined as f(z) =  + 1. Find suitable domain and

range of f, so that f has an inverse. Also find f~1.

Prove that the number of points on a sphere is the same as those on a
plane.

Prove that the number of points on the surface of any two spheres is the
same.
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12. If A is a set with n elements find |P(A)].
13. Prove that any two open intervals have the same cardinality.

14. Prove by induction that a finite union of countably infinite sets is count-
ably infinite.

15. Prove that |Q"| = Ro.
16. Prove that the countable union of finite sets is countable.

17. Prove that the following mappings f are bijective mappings on the given
intervals:
(i)  f:la,00) = [b,00) defined by
flx)=x—a+b
(i1)  f:[a,b] = [c,d] defined by
fl@)=b+ &0z —a)

(iii) f:(0,1) — (0,00) defined by
f@) =15

18. For some ¢ € R, prove that (0,1) and (¢, 00) have the same cardinality.

3.16 Answers to Exercises

Exercise - 3.6

3. {y}, {z,y}, f(A1 N A) C f(A1) N f(A2). They may not be equal.

4. (i) [1,2)
(H) ¢3 ¢a 1a Oa -3
(i) No, No

5. (i) {-1,1}
(i) @
(iil) [-3, 3]
6. (i) {0,1,2,3,4}
(ii) {0,1,2, 3,4}
(iii) All multiplies of 5, set of integers of the form 5k + 1, k€ Z
(iv) Set of integers of the form 5k + 3

8. Hint \/|z| — z is defined when |z| > « i.e when 2 <0
D(f) = (=00,0), R(f) = (0,00)



128 CHAPTER 3. FUNCTIONS

10. (i) D(f) =R, R(f) =[5, 3]
(i) D(f) =R, R( )

(i) D(f) =] ~ L1LR(f) = [1.00)
11. (#¢) and (v)
14. (i) 10®

(i) 10p,

(iii) None

Exercise - 3.10

2—4z if x <0,
1. fof(w)—{ dr+5 ifr >0

2. (-1, 1)

3. (i) f~! exists and is

f_l = {(97 1)7 (7’ 2)v (573)7 (334)7 (175)}

(ii) g~! does not exist as g is not bijective.

T

5. (i) (hogof)(x) =1+
(i) 3, 3]

(i) (gof)(x) = ﬁ7 T e (172)
(ii) Yes
(iii) (gof)il(x) = zT_Hv M (LOO)

10. (i) R(f) = (1,00), R(g) = (0,00), R(h) = (1,00).
(ii) Since range of the first function is contained in the domain of second
function, .. all composition are defined.
(iii) Since f and g are bijective mappings, so f =%, g~ and (gof) ™! exist.

N

&

11. (i) (—00,1) U (1, 00)
(i) (hogof)™" = 5574y

12. f~Yz) = 5%, x€(0,00)

13. (i) [0,3]
(i) (o)) = { §H0 95023
(iii) £~ (2) = { iif: ?iiﬁéé

4. f~Y(z) =2+ Vo —1.
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Exercise - 3.13

6. (i) — (iv) are particular cases of this.
v)f:A—B
flz)=z—a+0
(vi)f: A— B
flx)=—z+a+b

7. Hint: x — % —1

o
—_

10. Hint: w.l.o.g. take circles to be concentric of radii 1, rs.

(r1c0s0,71151N0O) + (r9c080, 1951NO)

129



130 CHAPTER 3. FUNCTIONS

11.

O——centre of a circle
P+ Q

12. (i) 5',52,5% 54 55, ...
{": ne N}
(i) 39,31,371,32,372 ...
(iii) (a, 1), (b,1),(c, 1), (a,2), (b,2),(c,2), (a,3), (b,3), (¢, 3), (a,4)...

E~INF E~IOF E~IPF: -
A

EAINF EAIOF EAIPF - -

EAINF  EAIOF EAIPF...

(iv) One route is shown and others are possible.
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(v)

@

(vi)

X

13. (i) countable.
(ii) countable.
(iii) uncountable.
(iv) countable.
(v) countable.
(vi) uncountable.
(vii) finite.

Answers to Supplementary Exercises

1.
(i) F
i 7T
(i) T
(iv) T .
(v) F
(vi) F
(vii) T
F

—~
<
—
jaid
=

~—
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2
s}
eSS s e s B e B RS s B s B e s B B s B B e B S e

2. (i) {(=,1), (y, 2), (2,0), (£, ) }

(ii) {(1,1),(2,1),(3,4), (4, 1),(571)
i) {(1,1),(2,1),(3,1), (4,1), (5, 1)}
(iv) {1, 2,4, 5}

(v) {x, t}

(vi) {1, 2, 4, 5}

(vii) {x, t}

R(f) = {z, 2, t}, f7HR(f)) = {1,2,3,4,5}.

}

3. No, f is not one-to-one.
5. ft=f

6. No. Existence of right inverse = function is onto.
Existence of left inverse = function is one-to-one.
*. function is bijective and therefore invertible.

7. Hint. = f is not one-to-one.
= For z1 # xa, f(z1) = f(x2).
= f(k) = 0 for some k between 1 and x5. = 22 +2azx +b =0 has a
real root & = k. = no real root for a®> < b. = f is one-to-one.
flx)» —occasz— —ooand f(z)— o0 asz — oo.
Since f(x) is continuous, .. f(z) assumes all values between —co and oo.
. f is onto. Hence f is bijective.

8. fl=f
9. D(f) = (-1,1) ~ {0}, R(f) =R~ (-2,2)
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Chapter 4

Number System

The natural members have been extended to integers, rational numbers,
real number etc... This chapter is devoted to the study of natural numbers and
integers. The principle of mathematical induction, well ordering principle and
their applications are given the greatest common divisor and the congruence
relation in integers have also been discussed.

4.1 Number Systems

To count objects we use the numbers 1, 2, 3, ...in our daily life. These
numbers are called counting numbers. Mathematicians call them natural num-
bers. An axiomatic approach to study these numbers was given in 1899 by the
Italian mathematician Giuseppe Peano. He gave axioms for the study of natural
numbers called Peano’s Axioms. They are:

Axiom 1. There exists a natural number 1.
Axiom 2. There exists a one-to-one mapping
f:N—=>N
If n € N, then f(n) is called the successor of n.
Axiom 3. The mapping f is not bijective. In fact 1 ¢ f(N).
Axiom 4. If K C Nsuch that 1 € K andn € K = f(n) € K, then K = N.

Axiom 1 gives us that N is a non-empty set.

Axiom 2 gives us that if m,n € N such that f(m) = f(n) then m = n.

Axiom 3 tells us that 1 is not the successor of any natural number.

Axiom 4 gives us a test to determine when a subset K of N is identical with N.
It is also called the axiom of induction.

Starting with these axioms, we build the system of natural numbers and
define addition and multiplication in N. How we go about doing this, is not
the purpose of this book. Interested reader may refer to any book on number
systems.

Algebraic Properties of Natural Numbers

For all a, b, ¢ € N,
1. a+ (b+¢) = (a+ b) + ¢ (Associative law of addition)

134
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. a+b=>b+a (Commutative law of addition)

. a+c=b+c= a="b (Cancellation law of addition)

. ab = ba (Commutative law of multiplication)

2

3

4. (ab)e = a(bc) (Associative law of multiplication)

5

6. ac = bc = a = b (Cancellation law of multiplication)
7

. There exists a natural number 1 such that a.1 = l.a = a (Existence of
identity for multiplication)

8. a(b+ ¢) = ab + ac (Distributivity of multiplication over addition)

It can be shown that if m and n are any two natural numbers, then exactly one
of the following holds:

(i) m=n

(il)  m =mn+u for some u € N

(ili) n=m+v for some v € N

This helps us in defining an order relation in N. We say that ‘m is greater

than n’ (denoted by m > n ) if m = n + u for some v € N. We can also define
other order relations in N in terms of the relation >.
Let m,n € N. Then we define

(i)  mis less than n(m < n) if n > m.

(ii)  m is less than or equal to n(m < n) if either m = n or m < n.

(iii) m is greater than or equal to n(m > n) if either m = n or m > n.

Example 4.1. 4> 2, 4=2+2
5<9,°-9>5. In fact 9 =5+ 4.

If K is a non empty subset of N, then [ € K is said to be a least element of
Kifre K=xz=lorz >l

Order Properties of Natural Numbers
The relation ‘greater than’ i.e. > satisfies the following properties:

1. Law of trichotomy
For m,n € N exactly one of the following holds:
m=mn, m>n, n>m.

2. Transitivity
For m,n,p e N
m>nandn>p=m>p.

3. Monotone property for addition
For m,n,p e N
m>n=m-+p>n-+p.

4. Monotone property for multiplication
For m,n,p e N
m > n = mp > np.

5. Well ordering principle(WOP)
Every non-empty subset of the set of the natural numbers has a least
element.
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The properties stated above can be formulated in terms of the relation < also.
To solve the equation x+11 = 15, in the set of natural numbers, we get x = 4.
But if we want to solve the equation x + 15 = 11, we cannot find any solution in
the set of natural numbers. Thus, the set N lacks many properties. If m,n € N,
then the equation x +m = n may or may not have a solution in N. Naturally
we would like a number system such that for every pair of elements m,n of this
system, the equation z + m = n has a solution in this system. Moreover, we
would like this number system to share all the properties of N, if possible. It
would be nice if this number system is an extension of N. Such a system is the
set of integers, denoted by Z.

Algebraic Properties of Integers

For all a, b, c € Z,
1. a+ (b+c¢) = (a+b) + ¢ (Associative law for addition)
2. a+b="b+ a (Commutative law for addition)

3. There exists an element 0 € Z such that
a + 0 = a (Existence of zero element)

4. For each a € Z, there exists —a € Z such that
a+ (—a) = 0 (Existence of negative)

5. (ab)e = a(be) (Associative law for multiplication)
6. ab = ba (Commutative law for multiplication)

7. There exists an element 1 € Z such that
al =1 (Existence of unity)

8. a+c=0b+c= a=> (Cancellation law for addition)
9. ac =be,c # 0 = a = b (Cancellation law for multiplication)
10. a(b+ ¢) = ab + ac (Distributivity of multiplication over addition)

Order Properties of Integers

There exists a subset ZT of Z, called the set of positive integers such that
(i) For each a € Z, exactly one of the following holds
a€Zt a=0,-acZt
(i) a,beZ" = atbeZt abeZt
In Z we definea > bifa+ (—b) =a—b € Z*.
In terms of the relation >, the above properties can be rewritten as:
(a) Ifa,b € Z, then exactly one of the following holds:
a>b,a=bb>a (Law of trichotomy)
(b) Ifa, b, c € Z,such that
a>b,b>c=a>c (Transitivity)
(¢) Ifa,b,ceZ suchthata >b=a+c>b+c (Monotone
property for addition)
(d) Ifa,b,ceZsuchthat a >b, ¢>0= ac>bc (Monotone
property for multiplication)
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The well ordering principle does not hold in Z. In this respect all the prop-
erties of N are not carried over to Z. In fact, a modified version of this principle
holds. It is “Well Ordering Principle for Integers”.

“Every non-empty subset of the set of non-negative integers has a least element.”

The principle of mathematical induction is important in every area of math-
ematics. It is one of the most basic method which is used to prove results. This
is a way which establishes the truth of a statement about all natural numbers
or sometimes about all sufficiently large natural numbers. A formal statement
of the principle of induction is as follows:

Theorem 4.1. (First principle of induction)(FPI) Let {P(n)|n € N} be a set
of statements. If
(i) P(1) is true,
(i) If k € N, such that
if P(k) is true, then P(k+ 1) is also true,
then P(n) is true for all natural numbers n.

Proof: Let K = {n € N|P(n) is true}.
Step1 Since P(1) is true.
1 € K. Hence K # ¢.
Step2 Let k € K.
Then P(k) is true
= P(k+1) is true by (ii)
=k+1cK.
Hence, by the axiom of induction K =N, i.e. P(n) is true for all n € N. O

The method of induction is one of the most powerful tools for proving the-
orems. A proof by induction is like climbing a staircase with infinite number of
steps. The first step has to be climbed, and having climbed any particular step,
we can climb the next step. Then the whole staircase can be climbed. This is
similar to the two steps which have been described in the proof of the above
theorem. While using induction we shall always use these two steps.

Example 4.2. The number of subsets of a set containing n elements is 2. Let
P(S) denote the power set of S. Here the statement T'(n) is:
If S is a set containing n elements then P(S) has 2™ elements.
Stepl If S = {a}, then P(S) = {{a}, ¢}.
Thus P(S) has 2 elements. Hence the result holds for n =1, So T(1) is true.
Step2 Suppose that T'(k) is true, i.e. if S is a set containing k elements, then
P(S) contains 2% elements.
Consider a set S with k + 1 elements.
Let S = {al,ag, N ,ak+1}
For each subset A of S, either
ak+1 € A or ag+1 ¢ A. The collection of all those subsets of S which do not
contain ax11 is P(B), where B ={ay,az2,...,ax}.
Since B contains k elements, by hypothesis P(B) contains 2% elements. Thus
the number of subsets of S not containing a1 is 2".
Each subset A of S containing a1 can be obtained from a subset G of B by
adding a1 to G. Thus there are precisely 2 subsets of S each of which con-
tains agy1.-



138 CHAPTER 4. NUMBER SYSTEM

Thus the total number of subsets of S is 2% + 28 = 2841 5o that T'(k + 1) is
true.
Thus, by first principle of induction, T'(n) is true for all n € N.

The two conditions in the first principle of induction are equally important.
In case any one of them fails to hold, the result need not hold. This is shown
by the following examples.

Example 4.3. Let P(n) be the statement:
1424+ --+n=n(n+1)/2+5 for each natural number n.
Is P(n) true for alln € N?

Suppose k € N such that P(k) is true

Qe 14244 k=20 4 5 (1)
Now
k(k+1
1424+ +k+(k+1) = %—%5—%%4—1)7 using (1)
E+1)(k+2
%%,

Hence P(k + 1) is true.

Does this mean that P(n) is true for alln € N?
Forn=3,14+243=6

whereas P(3), 1+ 2+ 3 =11.

o, P(3) is not true. This is because P(1) is not true, as P(1) gives 1 =6
Thus, step 1 of the FPI fails to hold and so FPI can not be applied.

Example 4.4. For each n € N, let P(n) be the statement:

1+24---4+n=n
Clearly P(1) is true.

Suppose P(k) is true, fork € N. Thus 14+2+---+k =k (1)
142+ +k+(k+1) = k+(k+1), using (1)
= 2k+1

Hence P(k + 1) is not true. So FPI cannot be applied.

Sometimes it happens that the statement P(n) does not hold for a finitely
many of natural numbers. In such cases the FPI may be modified. The starting
point of the induction, instead of being 1, is some natural number m > 1. This
is precisely the second principle of induction.

Theorem 4.2. (Second principle of induction) Let P(n) be a statement for
each natural number n. suppose
(a) P(m) is true for some m € N
(b) If k € N such that k > m and P(k) is true = P(k +1) is true
then P(n) is true for all n > m.
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, if m=1
Proof: - Define A = ?1,2, cym =1} ifm>1
T={neN:n>mand P(n) is true} is the truth set of P(n) and K =T U A
Step 1 Clearly 1 € K.
Step 2 Let k € K. Then there are three possibilities
() ke {1,2,....m—=2}, (ii)) k=m—1, (iii) k >m —1
We shall take these cases one by one.

Case 1. When (i) holds
E+1€{2,3,.m—-1} C A
sothat k+1 € K.
Case 2. When (ii) holds
k=m-1=k+1=m
Since P(m) is true, .. P(k + 1) is true.
Sok+1eTCK
Hence k+1 € K.
Case 8. When (iii) holds
k>m—-1=k+1>m
Since k >mand k€ K. Alsok ¢ A, . keT
so that P(k) is true. By (b) P(k+ 1) is also true i.e. k+1€ T C K.
Hence in either of the three cases k+ 1 € K, so that by the axiom of induction
K =N.
Thus P(n) is true for all n > m. O
Observe that for m = 1, it is the first principle of induction. This can be
considered as a generalization of the first principle of induction, in the sense that
the starting point is not necessarily 1 but some other natural number m. This
can be compared to a child climbing a staircase with infinite number of steps,
and the child starts from some particular step(say mth) and not necessarily the
first step.

Theorem 4.3. (Third principle of induction) Let { P(n): n € N } be a set of
statements, one for each natural number n. If
(a) P(1) is true, and
(b) If for each k € N, P(m) is true ¥ m < k = P(k) is true,
then P(n) is true for all n € N.

Proof: Let F = {pe N: P(p) is false}

We assert that F' =¢.

If F# ¢, Then F is a non empty subset of N and so by the well ordering principle,

F has a least element, say [. Thus if m < [, then m ¢ F. In other words P(m)

is true for all m < I. By hypothesis (b) P(l) is true which implies that [ ¢ F.

This contradicts that [ € F.

Hence our assumption is wrong, so that F=¢.

. P(n) is true for all n € N. O
The FPI is nothing but a characterization of the WOP, as is proved in the

following theorem.

Theorem 4.4. The well ordering principle and the first principle of induction
are equivalent.
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Proof: Suppose that WOP holds. We shall prove FPI holds.
Let P(n) be a statement, one for each n € N, and K = {n € N: P(n) is true}
is such that

i) 1ekK

(i) keK=k+1eK.

We prove that P(n) is true, for all n € N. For this we show that K = N.
Clearly K C N. Suppose that K # N, so that K is a proper subset of N. Let
F=N-— K. Then F # ¢. Also FF C N. Thus F' is a non-empty subset of N so
that by WOP, F has a least element say [. Thus [ € F.

Nowle K=1¢F=[1>1=1>2.
Thus [ = m + 1 for some m € N,
Nowm<m+1=Ilie m<l

s.m ¢ F asl is the least element of F.
meK=>m+1lecK

=>leK

= [ ¢ F which is a contradiction.
Hence our assumption is wrong.
LF=¢=K=N.

Hence proved.

Conversely, let the FPI holds. We prove that WOP holds. Let S be any

non-empty subset of the set of natural numbers.

Let K ={z e N |z <s,Vs €S}

Clearly K C N.

Since1<sVseSs

.1 € K so that K # ¢.

Let me€ S. Then m+1 & msothat m+1¢ K.

oK CNand K #N.

Thus K is a non-empty, proper subset of N so that 37 € K such that [+1 ¢ K.
We assert that [ is the least element of S.

Since | € K

Sl<sVseSs.

Ifl¢ S, thenl<sVsesS.

sothat [ +1<sVse S

= [+ 1 € K, which is a contradiction,

asl+1¢ K.

Hence l € S.

Thus [ € S is such that [ < sV s € S,

so that [ is the least element of S. Thus S has a least element, is proved.

.. WOP holds. O

Divisibility
We now give a formal definition of divisibility, though you have been doing this
since childhood.

Definition 4.1. Leta,b € Z. We say that ‘a divides b’ if there exists an element
c € Z such that b = ac.

We write it as a | b and read it as ‘a divides b’.

When ‘a divides b’ we may also say that ‘a is a divisor of b’ or ‘ a is a factor
of b7 or b is a multiple of a’. If ‘a does not divide b’ we write a 1 b.
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The following results about divisibility though trivial and obvious, will be
used over and over again. We list them here for the sake of completeness.

Theorem 4.5. Let a,b,c,m,n € Z. Then

(i)  a|a (Reflexive property)

(i) ifa|bandb|c= alc (Transitive property)
(iii)  ifa|b and a|c = a|mb+ nc (Linear property)
(iv) ifa|b = ac|bc (Multiplication property)

(v) ifac|be, c#0 = a|b (Cancellation property)
(vi) 1| a (Property of unity)

(vii) a |0 (Property of zero)
(viti)  if 0| a = a=0 (Zero divides only zero)

(iz) ifalb= al b

(z) ifalbanda#0= (b/a)]|b

(xi) ifa|bandb#0 = |a| <|bl.

(zii) ifa|bandb]|a = |a|=|b|

Proof: Left to the reader. O

For each a € Z, the integers a, —a are such that each divides the other.
Moreover, because of (xii), these are the only two elements which divides each
other. So, a, —a are called associates.

Definition 4.2. (Prime Number): An integer p > 1 is said to be a prime
number if its only divisors are +1, +p.

A number p > 1 is said to be composite if it is not a prime number. The
number 1 is neither prime nor composite. It is called a unit. The set of integers
can be divided into 4 disjoint classes, namely

(i) primes and their associates

(ii)  composites and their associates

(iii) units, i.e. 1 and —1

(iv)  zero.

4.2 Division Algorithm

A fundamental property of the integers is the division algorithm which can
be proved by using the well ordering principle.

Theorem 4.6. If a,b € Z, b # 0, then there exist unique q,r € Z such that
a=bg+r, 0<r<lb.

Proof: Two cases arise
Case 1. b> 0
Ezistence of ¢ and r
Let A={a—bx:z €Z,a—bxr >0}
We first prove that A # ¢. Two cases arise:
Case (i). a >0
Thena=a—-b0>0also0€Z
s.a € A Hence A # ¢.
Case (ii). a <0
S.o—a>0
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Alsob>0=0b2>1

= —ab> —a
=a—ab>0
=>acA
= A# o

Hence in both the cases A # ¢.

Thus A is a non-empty subset of the set of non-negative integers so that by the
well ordering principle A must have a least element, say r.

.3 q € Z such that

a — bqg = r is the least element of A.

We assert that » < b. Let, if possible, r > b. Then r = b+ ¢, for some ¢ € Z s.t.
0<c<r. Then

c = r—>
= (a—bg)—b
= a—(b+1)q

Since ¢ > 0, ... ¢ € A. Also ¢ < r, which contradicts the fact that r is the least
element of A. Hence our assumption is wrong, so that r < b.
Hence r < b = |b|.

Uniqueness
We have proved that a=bq+r, for some ¢,r € Z, 0 <7 < b...(1)
Let, there exists ¢, 71 € Z such that
a=bg+r,0<r <b...(2)
Suppose ¢ > ¢q1. Then
1) -2 =
0=0bg—q1)+r—m
= blg—q)=r1—r
But b(¢ —q1) >b - q¢>q
rp—r>b...(3)
But 0<r, r1 <b
So that r; —r < b...(4)
Thus (3) contradicts (4).
Hence ¢ > ¢; is not possible, so ¢ < ¢1.
Similarly we prove that ¢q; < ¢ so that ¢ = ¢;.
Now bg+r=a=bq+r
= 7r=r1r.
Hence the uniqueness of ¢ and r is proved.
Case 2. b< 0
b<0=-b>0
Applying case 1 to —b, there exists unique ¢, € Z
such that
a=(=bg+r, 0<r<(=b)
na=b(—q)+r, 0<r < bl
Hence in both cases, there exists unique g, € Z such that
a=bqg+r,
0<r<|b O
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The integers ¢ and r in the above theorem are called the quotient and re-
mainder respectively, when « is divided by b. Note that the remainder is always
non-negative.

Problem 4.1. Prove that the sum of the cubes of 3 consecutive positive integers
is divisible by 9.

Solution: The problem amounts to proving that n3 + (n + 1)3 + (n + 2)3 is
divisible by 9, for all n € N.

Let P(n) : n® + (n+1)% + (n + 2)3 is divisible by 9.

P(1): 13+ 23+ 33 is divisible by 9.

i.e. 36 is divisible by 9, which is true.

For k € N, let P(k) be true, ie.

k3 + (k +1)3 + (k + 2)3 is divisible by 9

ie. k2 + (k+ 1)+ (k+2)3 = 9m for some m € N

Now

(k+12+ (k+2)°+ (k+3)° (k+1)°+ (k+2)° + k> + 27+ 9%k(k + 3)
9m + 27 + 9k(k + 3)

= 9m+3+k(k+3)]

Hence (k +1)% + (k +2)3 + (k + 3)? is divisible by 9.
. P(k+1) is true.
By the principle of induction P(n) is true for all n € N.

Problem 4.2. A rubber costs Rs 5 and a ball pen costs Rs 9. Show by using
induction that any amount, in exact rupees, exceeding Rs 31 can be spent in
buying rubbers and ball pens.

Solution: Let m be the number of rubbers and n be the number of pens.
Then for k rupees, the problem is equivalent to finding non-negative integral
solutions of

5m+9n==k, fork>32

When k£ =32, m =1,n = 3 is a solution.

Suppose that for k =t > 32 a solution exists. Thus for some non-negative
integers my,n; we have
t = bmy+9ny
t+1 = bmy+9n;+1
= 9ng + 5moy (say)
where mgo =mq +2, no =nq — 1.
Thus, ms, ny is a solution, provided no > 0 i.e. ny > 1.
If ny = 0, then t = 5m4 and
= 9x4+4+5(m —7)
So for integral value of m, the least value of m; = 7.
mp—7>0. . t+1=9%x4+5(my —7), where m; —7 > 0.
Hence there exists non-negative integral solution for k = ¢ + 1.
Thus by the first principle of induction the result follows.

Since t > 32, .. bmq > 32.
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Problem 4.3. Use induction to prove that 52" — 25" is divisible by 7 for all
n € N.

Solution: Let P(n) : 52" — 25" is divisible by 7.
52 — 25=25 — 32 = —7 which is divisible by 7.
Hence P(1) is true.

For some k > 1, let P(k) be true.

i.e. 52k — 25% ig divisible by 7.

. 5%k — 2%k = T for some me Z (1)
Now
52(k+1) _ 25(k+1) — 5252k _ 2525k
= 25.5%F —3225%
= 25(7Tm + 2°F) — 32.2%% using (1)
= 25 x7Tm—T7x 2%
= 7(25m — 2°%)

Thus 52(k+1) — 25(k+1) ig divisible by 7, so that P(k + 1) is true.
Hence, by the principle of induction P(n) is true for all n € N.

Problem 4.4. The fibonacci sequence < a,, > is given by a; = a2 =1, a, =
Gp_2 + an_1, n > 3. Using the principle of induction, prove that

az(n+1)
2

(i) ay+ags+ar+...+a3mne1) =

(ii) Formn > 2,
Gn—20nto if nis odd

a% +1= Gp—1Gn+1 if 1 is even
Solution:
(i) Forn =1,
L.H.S=a1 + a4.
RHS = %
3(as + aa)
= %(a4 + as + 04)
= jaz+ay
= %(01 +az) +ay
= %(2@1) + [e7}
= a1 +aq
S~ LHS = RHS

So the results holds for n = 1.
Let the result hold for n =k, i.e. a1 4+ a4 + ... + aggpr) = G2
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Now
a1+ aq + ...+ agp+1) T A3(k+1)+1 %ask+3 + a3k+4
= 1(asrts + 2a3k14)
= 3(askts + aspra + azpta)
= (ask+s + ask+a)
= Laskte

a3(k+1)43
2

Hence the results holds for n = k£ + 1. Thus by the principle of induction
the result holds for all n € N.

(ii) For k =2,
a%+1 = a2a1+a% ap=as =1
= &1(&2 + al)
= ajas
So the results holds for k£ = 2.
For k =3,
a%—i—l = (a2+a1)2+a2 oag = 1
= (a1 +a2)(a2+a1) + as
= 2(13 + ao
= agz+ag using as =as+aq
= as
= aias
L ai+1 = aas

So that the result holds for k& = 3.
Let the result hold for n = k.
We shall prove for n = k 4+ 1. Two cases arise:

Case 1. k is odd.
Then k£ + 1 is even.
a‘i+1+1 = ai+1+1+ai—ai
aj +1+aj,, — ag
= ap—20p42 + (ary1 — ax)(Cry1 + ar)
using induction hypothesis
= Qg—20k+2 T Qx—10Kk42
(ap—2 + ap—1)apso
= QrGg+2
= Ok+1)—10(k+1)+1
Hence the result holds for n = k + 1.

Case 2. k is even.

Then k + 1 is odd.

Also ai +1=ag_16k+1- Asin Case 1. it can be proved that
ap oy 1= aps1)—200k+1)42

So that the result holds for n = k£ + 1. Thus by the principle of induction
the result holds for all n € N.

Problem 4.5. Using induction prove that

(5+V13)" + (5 — V13)™ is divisible by 2" for all n € N.
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Solution: Let a =5++/13, b =5 — /13, and for each n € N,
P(n) : a™ 4 b™ is divisible by 2™.
For n = 1, a + b=10 which is divisible by 2 = 2'.
Hence the result holds for n = 1.
Let the result hold for all natural numbers n < m.
NOW aTrL+1 + b’m+1 — (a'rn + b’rn)(a + b) _ aTrLb _ ab’m
= 10(a™ +b™) — ab(a™ ! + b1
= 10(a™ +b™) —12(a™ 1 + b1
Now 2™ divides (a™ + b™), so that 2™+ divides 10(a™ + b™).
Also 2m~1 divides (a™~! + b™71), so that 2™ +! divides 12(a™~1 4 b™~1).
Hence 2™ 1! divides 10(a™+b™)—12(a™ 1 4+b™"1) i.e. 27 divides (a™ !+
bm+1)'
So that the result holds for n = m + 1. Thus by the third principle of induction
the result holds for all n € N.

Problem 4.6. Show that n! > 2™ forn € N, n > 4.

Solution: 4! =24, 2* = 16.

Since 24 > 16

o4l >0t

Hence the result holds for n = 4.

Let the result hold for some k > 4, i.e. k! > 2F.
Now (k+1)!=(k+1)k!

Since k£ > 4

Sk+12>25>2

Now k! > 2k

k+1>2

so that (k + 1)k! > 2k2

ie. (k—+1)! > 2k,

Hence the result holds for n = k + 1.

Thus, by the principle of induction, the result holds for n > 4.

Problem 4.7. If every non-empty finite set of natural numbers has a least ele-
ment, prove that every non-empty subset of natural numbers has a least element.

Solution: Let S be a non-empty subset of natural numbers. Let n € S, be
any element of S. Define T'={z € S |1 <z <n}. Thusn € T, so that T # ¢.
Then T is a non-empty finite subset of N, so by the given condition, T has a
least element say t.

Then t € S and ¢t < n.

For any s € S there are two possibilities: s > n or s < n.

If s >n thent <n < s, sothat t < s.

If s <n then s € T so that ¢t < s as t is the least element of T.

In either case t < s Vs € S.

Hence t is the least element of S.

Problem 4.8. If ay,as,...,a, are n positive numbers, then prove that

(a1 taz+--+an)

- > V(araz---ap)

The equality sign holds if and only if

a) =0ag =+ = Q.
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Solution: We shall use the principle of induction to prove the result.

Stepl

We first prove the result for those integers n which are powers of 2, i.e. for
n=2Mm.

Let a1, as > 0 be two numbers.

Then

(Var — az)? > 0 (4.1)
a1 +az — 2¢/aiaz =0

a1 + as
Z Va1as

Also equality in (4.1) holds if and only if /a1 = \/az i.e. a1 = as.

Thus “1'5“2 > /aias and equality holds if and only if a; = as. Thus the results
hold when n = 2 i.e. when m = 1.

Let us assume that the result holds when m =k i.e. n = 2*.

Let n = 2% and aq, as, ..., a, be n positive numbers. Then

ay + ag

B Va1a2
a3 + ay

>
2 = yJazay

Ap—1 + ap

2 = \/an—10n

These are 2% relations.
Adding the above inequalities, we get

(a1 +az +---+an)
o > (Varaz + -+ + Jan_1ay,) (4.2)

(yaraz, \/azaq, ..., \J/an_1Gy) are 2% numbers so that by the induction hypoth-

esis, we have

+ -+ San_10,
(Varaz - V@n=10n) > (Varaz —an_ian) /" (4.3)

(a) and (4.2) =

ap+azx+---+a k
9k+1 - > (v aiaz--- an_lan)1/2

ay+azx+---+a k+1
: 22k+1 L > (arag- - ap-ra,)'?
ar+as+---+an > (a1a2"'an—1an)1/n (4.4)
n

Thus the result holds for n = 2~+1,
Also equality holds in (4.4) if and only if it holds in (4.3) and (4.2), i.e.if and
only if it holds in each of the inequalities (a). Thus we must have
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a1 = a9, 3 =0ay4, ..., Ap_1 = G, and Vaitaz = \/azag = ... = \[ap_10y.

This is so if and only if a1 = as =+ = a,.

Thus, by the principle of induction, the result holds when n = 2™ for any m € N.
Step 2

We now prove the result for any integer n. Let a1, as, ... a, be n positive num-
bers, n being any natural number. Then there exists m € N such that 2™ > n.
Let A= (a1 +ay+---+a,)/n, G = (aras---a,)"/™. Applying step 1 to the 2™
numbers ai, ag, ... ap, 4, A, ... A (the number of A’s is 2™ — n), we obtain

(ar+ax+-+a + A+ A+ + A)

>(a1a2...anA...A)1/2m

2m
1.e. nA+ (Z: _ n)A > (GnAQM—n)l/Qm
ie. AT > grAT
ie. A" > G"
ie. A>G
ie (a1 +ag+---an) > (a1a2._.an)1/n
n
The equality holds if and only if a1 = as =--- =a, = A.

Hence the result holds for all n € N.

Remark 4.1. The above result is very important and it is called inequality of
means. It can be stated as
Arithmetic mean > Geometric mean.

4.3 Exercise

1. Use mathematical induction to prove the truth of the following assertions
for all n € N:
(i)  3.527+L 4 23n+1 g divisible by 17.
(i)  n(n+1)(n+2) is divisible by 6.
(iii) 10" 4 3.4"*2 + 5 is divisible by 9.
(iv) 2™ 43" — 5" is divisible by 6.
(v 8™ — 3" is divisible by 5.
(vi)  (2n)!is divisible by 2".
(vii) 22" — 1 is divisible by 3.
(viii) 32" — 1 is divisible by 8.

2. Prove the following statements using the principle of induction, for all
n € N.
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) 1+24--+n=0FD

(i) 124224+...4n%2=

(i) 1P+28+...4nd=
(iv) 1+434+5+--+(2n—1)=n?
11 1 1
144+ —4 4+ —=(2—- =
(v) totmptoto ( 2n)
(vi) 1.23+234+345+---+nn+1)(n+2)
_nn+1)(n+2)(n+3)

1 1 4 1 n

(vii) ﬂ+r7+”'+(3n—2)(3n+1):3n+1
(viii) 124324 4 (2n—1)2 = "(271*13)(2n+1)

(ix)  cosf+cos30 + -+ cos(2n — 1)0 = 1 sin 2ncosect

3. The Fibonacci sequence < a,, >isgivenby a; =as =1, ap = an_1+an_o,
n > 3. Using the principle of induction, prove the following
(1) ay+as+ -+ an =ania—1
(i) ar4+as+---+agm_1 =a,
(iii) as+ag+ -+ a9, =a9y_1 —1
(iv) Foranyr € N, ar+ ary1+ -+ ap = Gpta — Qg1

+ nt1 — 1
(v)  ax+tas '--+a3n71:%
: a 2,

(vi) az+ag+---+az, = (%)

(vil) a?+a3+ - +ad = anani1
n

(viil) Y (=DFap = (=1)"an-1 — 1
k=1

(IX) Q2n + (_l)n = (an+2 + an)an—l

(x)  azpg1 — (=1)" = (Gng2 + an)an.

4. Prove or disprove the following statements
n—1

1
(i) ;(k +1) = gn(n —1)
(if) 5"+ n+1is divisible by 7 for all n > 1
(iii) 3" >n3 foralln € N.
5. If x € R —{1,—1}, prove that
n 2+l
1+ 22)(1+a2t) - (1+2) = =2 using the principle of induction,

1—x2
for n € N.
Hence prove that
1— .1‘2n+1 _ gn+1
lim, 1 and lim,_, 4 both exist and are equal to 2.

2 2

— X — X

6. Using induction prove that (3 ++/5)" + (3 —+/5)" is divisible by 2" for all
n €N,

7. If n is an odd positive integer, use induction to prove that n(n? — 1) is
divisible by 24.
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Find the flaw in the following argument which shows that
3+5+---+(2n—1)=n2foralln € N.
Assume that

3454+ (2k—1) = k? (4.5)

for some k£ € N. Then
345+ +(2k—1)+ (2k + 1) = k? + 2k + 1 using()
=(k+1)?
Hence the statement holds for n = k£ + 1. Thus, by the principle of
induction the statement holds for all n € N.

Find the flaw in the following proof by induction of the statement
“All numbers in a set of n natural numbers are equal.”

Clearly the statement is true for n = 1. Suppose that the result holds
for n = k. Let {a1,aa,...,ar4+1} be any set consisting of k£ + 1 natural
numbers. By hypothesis, all the members of the set {aj,as,...ax} con-
sisting of k elements are equal, i.e. a3 = as = -+ = ag. Similarly, all
members of the set {as,as,...art1} consisting of k elements are equal,
ie. ag=as =" = aks1-

Hence a1 = a2 = -+ = ag41.

Thus result holds for n =k + 1.

By induction, the result holds for all natural numbers n.

A chocolate costs Rs 7 and a toffee costs Rs 3. Show by using the principle
of induction that any amount, in exact rupees exceeding Rs 11 can be spent
in buying chocolates and sweets.

4.4 Greatest Common Divisor

If a, b are two integers and d is an integer which divides a as well as b, then
d is said to be a common divisor of @ and b. The greatest of all the common
divisors of a and b is said to be the greatest common divisor of a and b. For
example consider a = 24, b = 36.
Common divisors of a and b are £1, £2, £3, £4, £6 and £12. Moreover,
—-6<-4<-3<-2<-1<2<3<4<6<12.Thus 12 is the greatest
common divisor of 24 and 36. Formally we have the following:

Definition 4.3. (Greatest common divisor):

Let a, b € Z such that not both are zero. If d € Z is the largest common divisor
of a and b, then we say that d is the greatest common divisor of a and b.
Symbolically, d € Z is called the greatest common divisor of a and b if

(1)
(i)

dla and d|b.
if ¢ € Z such that cla and c|b then ¢ < d.

We write d as ged(a,b) or (a,b).
Since 1 divides every integer,
.. by definition of the greatest common divisor,
ged(a,b) > 1
If a,b € Z, not both zero, then ged(a, b) is unique, for if dy, da are two ged’s of
a and b, then d; < dy as d; is a common divisor and ds is a ged.
Similarly do < d;y so that dy = d».
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Definition 4.4. (Relatively prime): Two integers are said to be relatively
prime if their greatest common divisor is 1.
Relatively prime integers are also called co-prime.

Theorem 4.7. Let d = ged(a,b). If a = da’ and b = db’ for some o', ¥ € Z,
then a’ and b’ are relatively prime.

Proof: Let ged(a',V)=k .. k>0

Then k| @’ and k| .

Let ' = ka” and b/ = kb” for some a”, b € Z
a=da =dkad" . dk|a

Similarly dk|b

By definition of ged,

dk < d
= k<1
Since k > 0 .. k=1.
Hence ged(a’,b') =1 O

The following theorem gives a characterization of the ged.

Theorem 4.8. Leta, b be integers, not both zero. Then the following statements
are equivalent:

(i) d=gcd(a,b).

(i) dla and d|b. If d' € Z such that d'|a and d'|b then d'|d.

Proof: (i) = (ii)

Let d = ged(a, b)

Then d|a and d|b by definition of ged.

Let d’ € Z such that d'|a and d’|b.

d|a and d|b

=a=dad,b=dV, ged(a, V) =1

for some a', b’ € Z.

Now d'|a, d'|b

= a=dm,b=d'n for somem,neZ
Thus da’ = d'm, db’ = d'n

codd'b =d'bm. Also da't = d'na’ ... (1)
so that d'b/m = d'nd’, .. ¥'m = na’

b |mb' = b|na’ = b'|n . ged(a’, V) =1

s.m = bz for some = € Z.

Substituting in (1),

da't = d'bxd

=d=dz

= d'|d.

(ii) = (i) obvious, since d'|d = d' < d. O

Theorem 4.9. Let a, b € Z, not both zero. Then ged(a,b) ezists and is unique.
Also, there exists integers m and n such that

am + bn = ged(a, b)

Proof: FEuxistence
Let A = {az + by|z,y € Z,ax + by > 0}.
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Since aa +00 € A -, A # ¢ if a # 0 otherwise a.0 + b.b € A.

Thus A is a non-empty subset of the set of positive integers, so by the well
ordering principle A has a least element, say d. By definition of A, 3 m, n € Z
such that

am+bn=d (4.6)
We prove that d = ged(a, b).
By division algorithm, applied to a and d, 3 ¢, r € Z such that
a=dqg+r 0<r <d.

r = a—dq

a — (am + bn)q
= a(l —mq) +b(—nqg)

Alsor > 0. If r # 0, then > 0 and r = a(1-mq)+b(-nq) so that r € A. But
r < d, which contradicts the fact that d is the smallest element of A. Hence
r = 0.

. a = dg so that d|a.

Similarly d|b.

Thus d is a common divisor of @ and b. If d’ € Z such that d’|a and d'|b,

then d’'|(ma + nb)

= d'|d

=d <d

Hence d = ged(a, b)

and am + bn = ged(a, b).

Uniqueness

It has already been proved that if gcd(a, b) exists, it is unique.

Theorem 4.9 tells us that two integers always have a unique greatest common
divisor. However, it does not give any method to determine it. We shall give
an algorithm to determine it. O

Corollary 4.10. Given integers a,b and c, the equation ax+by = c has integral
solutions if and only if gcd(a,b)|c.

Proof: Let d = ged(a,b)
Suppose the given equation has integral solution zg,yo. Then

axg +byg =c

Also d|a and d|b.
s d|(azo + byo) = de.

Conversely, let d|c.
. ¢ = kd for some k € Z.
Since d =gcd(a, b).
.. By the above theorem there exists integers m and n such that

am+bn=d
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Hence akm + bkn = kd or axg + byy = ¢
where xg = km, yo = kn. Clearly zo,yo € Z.
Thus the given equation has a solution. O

Remark 4.2. The integers m and n obtained above need not be unique, for if

d = am+bn
= am+bn+ kab— kab,k € Z
= a(m+ kb) + b(n — ka)

Giving different values to k, other values of m and n are obtained.
The ged of any two integers have the following properties.

Theorem 4.11. Ifa, b, ¢ € Z, then

1. gcd(a,b) = ged(b, a)

)
2. ged(a,0) = |a|
3. ged(a,l) =

)=

4. ged(a,8) = ged(jal, b))

5. ged(a, ged(b, €)) = ged(ged(a, b), c)

6. gcd(ac, be) = |c|ged(a, b)
Proof: Left to the reader. O
Theorem 4.12. Ifp is a prime and a, b € Z such that if p|ab, then pla or p|b.

Proof: The result holds trivially when a =0 or b = 0.
Suppose that a # 0 and b # 0. If p|a result is proved.
Suppose that pt a. We prove that pl|b.
We assert that ged(p,a) = 1.
Let d = ged(p, a).
Then d|p and d|a
dlp, pis prime = d=1,p
If d = p then d|a = p|a which contradicts the assumption that p { a.
Hence d=1.
Since ged(p,a) = 1, therefore, by Theorem 4.9, there exists integers m and n
such that
am + pn=1
= abm + pnb = b (multiplying by b)
Now plab, p|p
= p|(abm + pnb)
= plb
Hence proved. L
This result can be extended to product of n integers.
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Theorem 4.13. Let p be a prime and a1, as, ...a, be integers such that
plaias - - - a,. Then pla; for somei=1,2, ..., n.

Proof: Prove by using induction on n, using Theorem 4.12.
Theorem 4.14. Ifa, b, c € Z such that albc and ged(a,b) =1, then alc.

Proof: gcd(a,b) =1
= 3 m, n € Z such that
am—+bn=1

Multiplying by ¢, we get
acm +ben = ¢

Now ala, albe
= al(acm + ben)
= alc. O

In Theorem 4.14, it is essential for ged(a,b) = 1. For example, if a = 6,
b =3, c=4. Then albc, but a tc.
Note that ged(a,b) =3 # 1.

Lemma 4.15. Ifa, b € Z are not both zero, and q, r € Z such that a = bq + r,
then ged(a,b) = ged(b,r).

Proof: Let dy = gcd(a,b), do = ged(b, 1)
dy = ged(a,b)

= dy]a and d;]b

= di|(a —bq)

= dl\r

Thus di|r and d;|b.

= d1 < d2 ce (1)

Now dy = ged(b, 1)

= ds|b and ds|r

= da|(bg + 1)

= dz‘a

Thus dz|a and da|r

= dy < dy C (2)

Using (1) and (2), we get

dy = ds. O

We now give an algorithm to determine the ged of two integers.

Euclidean Algorithm

Let a and b be integers, not both zero.

Since ged(a, b)=gcd(lal, |b]), so, without any loss of generality, we may assume
a>0and b> 0.

By division algorithm, 3 ¢1, 11 € Z

such that

a=bqg+r,0<r; <b

and ged(a,b) = ged(b,r1), ... (by the above lemma)

If r1 # 0, then 3 g, o € Z such that

b=gor1 +72,0< <M
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and ged(b,r1) = ged(ri,r2)

If ro # 0, then 3 g3, 3 € Z such that

T = @3rey + T3, 0<ry3 <ry

and ged(r1,r2) = ged(re, r3)

Continue this process. Asry > rg > 13 > -+

After a finite number of steps, the remainder r1q = 0 for some integer k& > 0.
Then ry—1 = qgy17% + 0, and ged(rg—1,7%) = 7k

Also ged(a, b) = ged(b,r1) = ged(r1,7m2) = ged(ra,r3) = -+ = ged(Ti—1,7TK) = Tk
Thus ged(a, b) = 7, the last non-zero remainder.

Example 4.5. Find the ged of 595 and 205. Also find integers m and n such
that ged(595,205) = 595m + 205n.

Solution:
Let a = 595, b = 205, Dividing a by b, we get

595 = 2 x 205 + 185 (4.7)
Now divide 205 by 185(= r1 say)

205 =1 x 185 + 20 (4.8)
Now divide 185 by 20(= r2 say)

185 =9 x 20 + 5 (4.9)
Now divide 20 by 5(= r3 say)

20=4x5 (4.10)

The gcd is the last nonzero remainder, namely r3
ged (595,205) =5 =d (say)

Now, we express d as a linear combination of a and b. To do this, we can do back
substitution from (4.9), backwards to equation 4.7 and get the desired result.
But the calculations can be done in another way, in which the backward sub-
stitution is not required.

Write the given numbers a and b as a linear combination of a and b, as the
first two equations. At every step, the remainder r; is expressed as a linear
combination of a and b.

595 =1a+0b ...(1)

205 = 0a + 16 ... (2)

Apply operations on (1) and (2) such that L.H.S. is the remainder obtained on
dividing 595 by 205.
Thus (1) =2 x (2) =

185=a—2b ...(3)

This process is repeated till the remainder obtained is zero.
Applying (2)-(3), we get

20=—a+3b ...(4)

(3) -9 x (4) =
5=10a—29 ...(5)
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(4) —4x (b)) =
0=—4la+ 1196 ...(6)

The least non-zero remainder is the greatest common divisor. It is given by
equation (5). Thus
ged=5 and 10a — 29b = 5 or ma + nb = 5.
where m = 10,n = —29.
This expression for the ged is not unique. If d = ged(a,b) and m,n are
integers such that
d=ma+nb ...(x)

Then d = ma + nb + kab — kab where k € Z.
= a(m + bk) + b(n — ka).
Thus m; = m + bk, n; =n — ka, are also integers which satisfy

d=mia+nib

For each integer k, we get values for m; and n;. Hence there are infinitely many
values for m; and n;.

Working Rule
To obtain ged of two numbers ‘@’ and ‘D’ and to express the ged in terms of
‘a’ and ‘b’.

Step 1: Without any loss of generality we can assume a,b > 0 and a > b

Step 2: Express a and b in terms of ‘a’ and ‘b’
ie
a=1la+ 00 (4.11)
b=0a+ 10 (4.12)
choose ¢; such that a — bg; is the remainder obtained on dividing ‘a’ by ‘b .
Thus apply (4.11) — ¢1(4.12),  to get

rm=a—-baq (4.13)

Clearly 0<r; <b.
Choose g2 such that b — gor1 is the remainder obtained on dividing b by r;.
then applying
(4.12) — ¢2(4.13) gives
ro =b—qor1 = —qaa + b+ bq1q2
r9 = Maa + Nob (say)

r9 = Maa + nab. (4.14)

Thus the remainder at each step is expressed in terms of @ and b. Continue
this process. The last non-zero remainder gives an expression of the ged in terms
of a and b.

Step 3: Adjust the signs of m and n so to get the actual signs of numbers.

Example 4.6. Find the gcd of 154 and 260.
Also express the ged as a combination of 154 and 260. Is this expression unique?
If not, obtain two such expressions.
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Let a =260, b=154.
Now
a=260=1a+00b (4.15)
b=154=0a+10 (4.16)
Apply (4.15) — (4.16),
r1=106=a—10 (4.17)
Apply (4.16) — (4.17),
ro =48 = —a+2b (4.18)
Apply (4.17) — 2 x (4.18),
r3 =10 = 3a — 5b (4.19)
Apply (4.18) — 4 x (4.19),
ry =8 =—13a — 22b (4.20)
Apply (4.19) — (4.20),
rs =2 = 16a — 27b (4.21)

Apply (4.20) — 4 x (4.21),
r¢ = 0= —61a + 130b
Since r¢ = 0, therefore the last non-zero values of r;,namely r5 is the ged. Thus
rs =2 = ged(a,b) = 16a — 27b = 16 x 260 — 27 x 154
15 =16 x 260 + (—27) x (—154)
So m = 16, n = —27. This expression of the ged as a combination of the
numbers a and b is not unique.
In fact 2 = 16a — 27b 4 ab — ab
= (16 +b)a+ (—27 —a)b
Thus we have
2 =mia+nib
2 = moa + nab
where my = 16, n; = —27
me =16+b =170
ng = (—27 —a) = —287.

Problem 4.9.

(i) Find the ged of 3719 and 8146.
Express the ged in the form 3719 m + 8146 n, for m,n € Z.
Are the values of m and n unique?
If not, can you find 30 sets of values?

(ii) Also express the ged of -3719 and 8416 as m(—3719)+n(8146), for m,n € Z.
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Solution:

(i) Let b=3719, a = 8146
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a = 8146 = 1la+ 0b
b=3719=0a+1b
Apply (4.22) — 2 x (4.23)

rp =708 =a—2b
Apply (4.23) — 4 x (4.24)

ro =179 = —5a + 11b
Apply (4.24) — 3 x (4.25)

rg =171 = 16a — 35b
Apply (4.25) — x(4.26)

ry = 8 = —21a + 46b
Apply (4.26) — 21(4.27)

rs = 3 = 457a — 1001b
Apply (4.27) — 2 x (4.28)

reg = 2 = —93ba + 2048D
Apply (4.28) — (4.29)

r7 = 1 = 1392a — 3049)

(4.22)
(4.23)

(4.24)

(4.25)

(4.26)

(4.27)

(4.28)

(4.29)

(4.30)

Thus ged(a,b) = 1, and ma +nb =1, where m = 1392, n = —3049.
Values of m and n are not unique.

1= ma +nb

ma + nb + kab — kab, for all k € Z
(m+kb)a+ (n — ka)b

= mpa + nib

where my = m + kb, np =n — ka.

Giving different values to k, we get different values of my and ny.

Thirty sets of values can be obtained by giving 30 values to k.

(ii) In (i) we have proved
1=ma + nb

=m x 8146 +n x 3719

=m x 8146 — n x (—3719)
=m x 8146 + (—n) x (=3719)
=my x 8146 +ny x (—3719)

Here m; = m = 1392, n; = —n = 3049.
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4.5 Least Common Multiple

If @ and b are integers and [ is an integer which is multiple of a as well as
b then [ is called a common multiple of a and b. The least of all the positive
multiples of a and b is called the least common multiple of a and b.
Consider a =9, b=15
Multiples of a are 49, +18, +27, 436, +45, ...
Multiples of b are +15, 30, £45, £60, £75,+90, . ..
Common multiples of a and b are £45,£90, ...
The smallest of all the positive multiple of ‘a’and ‘b’ is 45.
Thus, the least common multiple of 9 and 15 is 45.

Formally, we have the following definition.

Definition 4.5. If a,b are non-zero integers, then a positive integer | is called
the least common multiple (lcm) of a and b if
(i) all and b|l
(i)  If m is a positive integer such that alm and blm then I < m.
We write | = lem(a, b).
Note that just like the ged, lem is always positive by definition.
Example 4.7.
(1) The least common multiple of 18 and 24 is 72.
(2) lem(8,—12) =24
(3) lem(—15,—-12) =60
Since |ab| is a common multiple of a and b, therefore least common multiple

always exists and is less than or equal to |ab|.
The following theorem gives a characterization of the lcm .

Theorem 4.16. Let a,b be two integers then the following statements are equiv-

alent

(1) 1=lem(a,b)

(2) Ifl is a positive integer such that a|l and b|l. If U is any positive integer
such that all’ and b|l' then I|U'.

Proof: Left as an exercise. O
Theorem 4.17. The ged of any two integers always divides their lcm.

Proof: Let a,b € Z and let d = ged(a,b) and I = lem(a, b).

Then d|a and d|b. Also a|l and b|l.

Now d|a and all, so that d|l.

Hence proved. L

The next theorem gives a relationship between the ged and lem of two numbers.

Theorem 4.18. If a,b € Z, not both zero, then ged(a,b) x lem(a,b) = |ab|.

Proof: Let d = ged(a,b), [ =lem(a,b).
Then d|a and d|b. Also by Theorem 4.9 there exist m,n € Z such that

ma+nb=d (4.31)
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l=lem(a,b) =1 =azx,l=by (4.32)

for some integers x,y € Z.
Multiplying (4.31) by [, we get

dl = mal + nbl
= maby + nbazx using (4.32)
= ab(my + nx)
Hence
abldl (4.33)
Also d|a and d|b
=a=dry, b=dy (4.34)
for some x1,y; € Z. Thus
ab = d*z1y, = (dx1y1)d (4.35)
Since ay; = dxr1y; = bxy ... using (4.34).

Thus a|dz1y1 and b|dx1y;.

So, by definition of lem  l|dz1yy
Let dxyyy =1k for some k € Z
= d?xy1 = dlk

= ab = dlk using (4.35).
= dl|ab. (4.36)
(4.33) and (4.36) = dl = +ab = |ab| o 1>0,d>0.

O
Euclid had proved that the number of primes is infinite. In order to prove this
result, we shall prove a lemma first.

Lemma 4.19. Given any natural number n > 1, there exists a prime p such
that p|n.

Proof: We shall prove this result by contradiction. Let, if possible, the result

does not hold.

Let S={neN |n>1 and n is not divisible by any prime }.

Then S # () by assumption. By the Well Ordering Principle, S being a non-

empty subset of N, it has a least element, say s. Also s is not divisible by any

prime, Since s|s, therefore s can not be prime. Thus there exists some k € N

such that 1 < k < s and k|s. Since s is the least element of S, therefore k& must

be divisible by some prime p.

Now, p|k and k|s so that p|s which contradicts that s € S.

Hence our assumption is wrong, so that there exists a prime p which divides

n. O
Though the prime numbers are very special, but they are infinite in number.

This result, due to Euclid, will be proved by using the fundamental theorem of

arithmetic.

Theorem 4.20. (Euclids theorem,)
There exists infinitely many primes.
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Proof: Let, if possible, there be only a finite number of primes, say m. Let
them be P1,P2,P35- -3 Pm-
Let n = pipeps - pm +1. Thenn € Nand n > 1.
But the above lemma there is a prime p such that p|n.
But p; fn for any i = 1,2,3,...m. So that none of the primes divides n, which
is a contradiction to the fact that there is a prime dividing n.
Hence our assumption is wrong, so that the number of primes is infinite.
O

One of the basic result of numbers is that every positive integer greater than 1
can be expressed as a product of prime numbers in essentially one way.

This also brings out the importance of prime numbers as building blocks of the
system of integers from the point of view of factorization. Thus we have the
following theorem.

Theorem 4.21. (Fundamental theorem of arithmetic)

Every integer n > 2 is either prime or is expressible as a product of finitely
many prime numbers. Moreover, such an expression is unique except for the
order of the factors.

Proof: FEuxistence

Let S={m €Z|m>1, m isnot prime, m is not expressible as a product of
primes}.

If, S = (), then the proof is complete.

If S # (0, then S is a non-empty subset of the set of natural numbers, so that
by the Well Ordering Principle, S has a least element, say s.

Since s € S is not prime and s > 1, therefore it must have a divisor other than 1
and s. Let s; be a positive divisor of s such that 1 < s; < s. Then there exists
a positive integer s, such that 1 < sy < s and s = s182. Since s is the least
element of S, therefore s; ¢ S and sy ¢ S. Therefore, either sq, s are primes
or they can be expressed as a product of primes. In either case, s is expressible
as a product of primes.

This contradicts the fact that s € S. Hence S = 0).

This proves that every integer n > 1 is either prime or is a product of primes.

Uniqueness

We shall use induction on n.

If n = 2, then trivially, expression is unique.

Assume the uniqueness for all integers m such that 2 <m < k.

Either k is prime, in which case result holds.

If £ is not a prime, then let it have two expression as a product of primes, say
k=pips - ps (1)
k=qa -q (2)

where p;,q; ,1 <i<s, 1<j<t areall prime numbers. Also £ is not prime

= s>2andt>2.

Then we shall prove that s =¢ and ¢, s are a rearrangement of the p;.s.

(1) and (2)= p1p2..-Ps = q142---Gu (3)

Now p1 | (p1p2- - ps)

= pilag
= pilg; for some j, 1< j <t wusing Theorem 4.13
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= p1=gq; "." gjis prime.

Since p; # 0, therefore by cancellation law in (3), we get

Pep3 - Ps = Qi qi-1qi+1 g =k (say) (4).

Since 1 < k1 < k, therefore by the induction hypothesis, the two expression of k;
in (4) are identical, except for the order of the prime factors. Hence s—1 =t—1

and q1,...¢j—1,¢j+1-- -, is just a rearrangement of py,pa,...,Ds.
Thus s =t and q1, qo, - - - , q; is a rearrangement of p1, po, . . ., ps. By the principle
of induction the result holds for all n > 2. O

Corollary 4.22. Let n € Z such that |n| > 2. Then n is either prime or is
expressible as a product of a unit and finitely many prime numbers. Moreover
such an expression is unique except as to the order in which the factors occur.

Proof: Two cases arise.

Case 1. n > 2.
Result follows from the above theorem.
Case 2. n <0, |n|>2.
Let n = —m, where m > 0
then |m| > 2. Also n = (=1)m.
Applying the above theorem to m, we get the result, as (-1) is a unit. O

Problem 4.10. If a,b,c € Z such that a, b are relatively prime and alc and
ble, then ab|c. What happens when a and b are not relatively prime?

Solution: We know that ged(a, b)lem(a,b) = |ab]

= lem(a,b) = |ab| ‘. ged(a,b) = 1.
Let I =lem(a,b)
1 = |ab|

Since alc and b|c
l|e by definition of lem.
= lab] |c
= ab |c
Take a =8, b=12, c=24.
Then alc,blc, but abtc. Note that ged(a,b) = 4.

4.6 Exercise

1. For any natural number n, in any set of n consecutive integers, one of the
integers is always divisible by n.
2. If a,b € Z such that a | b then prove that ged(a,b) = |al.
3. For any two integers a and b prove that ged (a,b) = ged (|al, |b]).
4. Given integers d, a, b, suppose there exists integers m and n such that
ma+nb=d
then prove that
(i)  gcd(a,b) divides d.
(ii)  ged(m,n) divides d.
(iii)  ged(a,n) divides d.
(iv)  ged(m,b) divides d.
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5.

© o0 N O

10.

11.

12.

13.

14.

15.

16.

17.

Let a,b,m,n € Z such that am + bn = 1, then ged(a,b) = ged(m,n)
=gcd(a,n) = ged(b,m) =1

. If a,b € Z show that ged(a,a + b) = ged(a, b).
. If a,b are integers then gcd(ged(a,b),a) = ged(a, b).
. Prove that any two consecutive integers are always relatively prime.

. If a, b are relatively prime integers, then

(i) gcd(a,a+b)=1.

(ii) ged(a+b,a—0b) =1 (or) 2.
(iii) ged(a+b,a® +b*) =1 (or) 2.
(iv) ged(a™,b) =1, neN.

If d,a,b € Z and d is an odd integer such that d|(a + b) and d|(a — b)
then d | ged(a, b).

Find the ged of a and b and express it in the form ma + nb for m,n € Z.
(i) a=143, b =247

(i) a=—143, b= 247

(iii) =314, b=159

(iv) a=-314, b=-159

(v) a=4144, b = 7696

(vi) a=4144, b= —7696
(vi)) a =394, b= —562

Find the ged of a and b. If d = ged(a, b), find three solutions in integers of
d = ma + nb.

(i) a=243, b=189

(i) a=741, b=1079

(iii) a = 4453, b =1314.

Find integers m and n such that
159m + 314n =T7.
Are m and n unique? If not, find another pair also.
Find integers m and n such that
Im + 11n = 4.
Show that m = 11k — 2, n = 2 — 9k for some integers k.
Show that there do not exists any integers m and n such that

219m 4+ 153n = 5.

Let m,n € Z. Prove that 10m + n is divisible by 7 if and only if m + 5n
is divisible by 7.

For any integer m, prove that

1 if mis odd

ged(m,m +2) = { 2 if m is even.
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18. For m € Z, are the following pairs co-prime
(i) T™m+1, 6m+1
(i) 5m+3, 3m+2
(ili) 9m+4, 1lm+5

(iv) Tm+4, 5m+ 2.

4.7 Congruence Relation

Modular Arithmetic

If a 12-hour clock shows 10, then after 6 hours it should show 10 + 6 = 16.
But the time shown by it is 16 — 12 = 4. This is because multiples of 12 are
subtracted to get the actual time.

If it is a thursday on 16 July then after 30 days it is 15 August. since the
days of week repeat after every 7 days, and 30 = 7 x 4 + 2, therefore on 15 Au-
gust, the day will be the one which is two days after thursday, that is, Saturday.
Similarly if your birthday falls on Saturday in 2009 then in 2010 it will be on
Sunday as 365 =7 x 52 + 1.

Let n > 1 be any integer and a € Z. By division algorithm, there exists
unique ¢,r € Z such that a=ng+r, 0 <r <n.
If multiples of n redundant, we reduce a by multiples of n and we say that r = a
modulon. Thus, we define a modn as follows:

Definition 4.6. If n > 1 is any integer and a € Z, we define amodn as the
remainder r obtained on dividing a by n and we write amodn = r. Clearly
0 <r <mn, so that amodn > 0.

Example 4.8.

1. 54mod8 = 6, because on dividing 54 by 8, the remainder is 6.

2. -54 mod 8 = 2, because on dividing —54 by 8, the remainder is 2. We
note that the remainder is positive.

3. 59mod9 =5, TTmod9 = 5. Also observe that 77 — 59 = 18 and 9| 18.

4. a mod 5 =0, whenever 5|a.

Remark 4.3. Ifa,b € Z, then amodn = bmodn < n|(a—b) Suppose a modn =
bmodn = r, then a = nq; +r, b = ngs + r for some q1,q2 € Z. Therefore
a—b=n(g1 —q) =n|(a—Db).

Conversely, let n|(a —b).

a=nqg +71,0<r <n

bZnCI2+T2,0§T2 <n

Hence a —b=n(q —q2) + 11 — ra.

Since n| (a —b) and n|n(q1 — g2), therefore n|(r1 —ra) = n||r1 — ro|

But 0 < |r1 — 12| < mn so that |r1 — 12| =0 =r; —r9 = 0 = r; = ryo, therefore
amodn = ry = r9 = bmodn.
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Example 4.9.

1. Calculate 283 mod 13,729 mod 13, (283 mod13 + 729 mod 13)
modl3, (283 + 729) mod13.
Since 283 =21 x 13+ 10
.. 283 mod13 = 10.

Similarly 729 mod 13 = 1

(283 mod13 4+ 729 mod13) modl13
= (10 + 1) mod13

=11

(283 4 729) mod13

= 1012 mod13

=11

2. Calculate (283 mod13)(729 mod13) mod13 and (283 x 729) mod13.
(283 mod13)(729 mod13) mod13
= (10 x 1) mod13
=10
(283 x 729) mod 13 = (206307) mod 13 = 10.

165

In the above illustration, we observe that (2834 729) mod13 = (283 mod13 +
729 mod13) mod13, and(283x729) modl3 = ((283 mod 13)(729 mod 13)) mod 13.

In general, we have the following result.

Theorem 4.23. If n > 1 is the integer then for a,b € 7Z,
1. (a+b)modn = ((amodn) + (bmodn)) modn
2. abmodn = ((amodn)(amodn))modn.

Proof: Let a mod n=1r, b mod n = s.
Then there exists ¢1, g2 € Z such that

a=mnqy+r
b=ngqgy+ s.

1. (a+b)=n(g1 +q2) +7+s.
s (a+b) mod n=(r+s) mod n=(a modn+bmodn) mod n.

2. ab = n(nqiq2 + @15 + qar) + 1.

. (ab) mod n = (rs) mod n = (a mod n)(b mod n) mod n. O
This theorem helps us to simplify calculations in modulo n.
Problem 4.11. A college XYZ assigns its students roll numbers. The last

three digits of the roll number of a female student born in month m on date b is
69m~+2b+1 and that of a male student is 69m + 2b. Find the date of birth and

sex corresponding to the numbers.
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i) 194

i) 074

(iii) 683

Solution: We will express the numbers in the form 69m + 2b + 1 or 69m +
2b.

(i) 194 =69 x 2 + 56 =69 x 2 + 2 x 28
Hence m = 2, b = 28 and the person is male.

Therefore date of birth is 28th Feb and the student is male.

(
(

(ii) 074=69 x 1 +5 =69 x 1 +2 x 2+ 1
Hence m =1, b =2 and the person is female.

Therefore date of birth is 2nd Jan and the student is female.

(iil) 683=69 x 9 +62 =69 x 9+ 2 x 31
Thus m =9, b= 31 and the person is male.

It is incorrect, Since the date of birth is 31 September, which is not pos-
sible.

Definition 4.7. Letn > 1 be a fized natural number. If a,b € Z we say that a is
congruent to b modulo n if and only if n | (a —0b). We write it as a = b(modn).
We read it as ’a is congruent to bmodn’' and n is called the modulus of the
congruence.

Example 4.10.
1. 77 = 59mod9, - 9| (77 — 59).
2. 125 = 136 mod11, as 11 (125 — 136).

Theorem 4.24. For a fized integer m > 0, the relation a = b (mod m) on Z
is an equivalence relation.

Proof: Left to the reader. O

The above relation partitions Z into mutually disjoint equivalence classes.
The class to which an integer ‘a’ belongs is called the equivalence class of ‘a’
and is denoted by [a] or @ or cl(a).

Thus [a] = {z€Z | x=a (mod m)}
= {a+km | keZ}.

Example 4.11. Find the distinct equivalence classes of the relation congruence
modulo 6 on Z.
Clearly 1 =7 (mod 6),1 = 13 (mod 6), ete. ...
1) = {1,7,13,19,...... }
={1+6k|keZ}

2] = {2+6k | keZ}
3] = {3+6k|kez}
4] = {446k | keZ}
5] = {5+6k | kezZ}

[6] = {6k [kcZ} = [0]
Thus, the distinct equivalence classes are [0], [1],[2], [3], [4], [5]-
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The following theorems gives some results regarding congruences, which are
very useful in manipulations.
Theorem 4.25. Let a = b(modm)and x € Z then
1. (a+2) = (b+ ) (mod m)
2. (a—z)=(b—2x) (mod m)
3. ax = bz (mod m).
Proof:

1. a = b(mod m)
= m|(a — b)
=m|((a+z)—(b+z)VezelZ
= (a+z) = (b+ x) (mod m).

2. and 3. can be proved similarly.

Theorem 4.26. Let a =b (mod m) and ¢ = d (mod m). Then
1. (a+c)=(b+d) (mod m)

(a=e) = (b—d) (mod m)

ac = bd (mod m)

(pa + gc) = (pb+ qd) (mod m), for all integers p and q.

a™ = b"(mod m) for alln € N

S Gvo o e

f(a) = f(b) (mod m), for every polynomial f(x) with integer coefficients.

Proof:
The proofs of 1., 2., 4. are left to the reader.

3. Since a = b (mod m) and ¢ = d (mod m)

a=b+mzr, c=d+my for some z,y € Z.
ac = (b+mz)(d + my)
= bd + m(xd + by + may)

ac = bd (mod m).

5. We prove the result by induction on n.
Since a = b(modm) . a' = b (mod m).
Hence the result is true for n = 1.
Let the result be true for n = k.
ie. a® = b* (mod m)
also a =b (mod m)
By (8), we get
a’a = b*b (mod m)
ie. aftl =t (mod m)
Hence the result holds for n = k + 1.
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Thus, by the principle of induction, the result holds for all n € N.

6. Let f(x) =po+p1x+ ...+ pux", pi € Z,n € NU{0}.
Since a = b (mod m)
a* = b* (mod m) for all k € N by (5.).
= pra® = ppb® (mod m), using Theorem 4.25
= pia+...+ppa"” =pi1b+ ...+ p,b" (mod m), using (1.)
= potpia+...+paa™ = po+pib+...+p,b" (mod m), using Theorem
4.25
= f(a) = f(b) (mod m) O
The following two theorems give the equivalent of cancellation laws in con-
gruence modulo m.

Theorem 4.27. If ac = be (mod m) and (¢,m) =1 then a = b (mod m).

Proof: Since (¢,m) = 1, therefore ¢ # 0, for if ¢ = 0, then (¢,m) = m, but
m>1

ca = cb mod m

=m | (ca — cb)

=m|cla—0b)

=m]|(a—0) (e,m) =1

= a="b (mod m) O

The next theorem gives the cancellation law when (¢,m) = d. In fact, the
above theorem becomes a special case, for d = 1.

Theorem 4.28. Let ac = be (mod m), and ¢ # 0 (modm). If (c,m) =d and
m = mad, then a = b (mod myq).

Proof: d=(¢,m) = d#0andd|c,dm
= ¢ = c1d, m = myd for some ¢y, m; € Z.
Such that(cq,mq) =1
ac = be (mod m)
= ac—bc=mt for somet €Z
= acid — berd = mydt
= (ac1 — ber)d = matd
= acy —bc; =mat,as d #0
= acy = bey (mod my)
Since (c1, m1) = 1, therefore by the above theorem
a=b (mod my). O
We now find solution of congruences.

Definition 4.8. An integer xg is a solution of the linear congruence
ax = b (mod m) if axg = b (mod m).
Example 4.12. Consider the congruence
3z =2 (mod 5) (4.37)

xo = 4 is a solution, because 3xg —2=10=2 x5
‘ 3z =2 (mod 5)
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Similarly x0=9,14,-1,—6 are all solution of (4.37)
Observe that 9=4+45
14=44+2x%x5
—1=4+(-1)5
—6=4+(-2)5

S0 9, 14, -1, -6 € [4].

Does it mean that every member of [4] is a solution of equation (4.37). This
is precisely the case, as is proved in the next theorem.

Theorem 4.29. If (a,m) = 1, then the linear congruence ax = b (mod m) has
a solution. Moreover, if xo is a solution then set of all solutions is [xo], the
equivalence class of xg.

Proof: Ezistence of a solution
(a,m)=1
= there exist r, s € Z such that ar +ms = 1.

= arb+msb = b, (multiplying by b).
= arb—b = m(—sb)

= azg—b = m(-sb), wherezo=rbeZ
= azg = b (mod m).

Thus the given congruence has a solution, namely xg.
We now find the set of all solutions.
Now xg is solution, then
azrg = b (mod m) (4.38)

Let y be any solution of axz = b (mod m). Then

ay = b (mod m) (4.39)
(4.38) and (4.39) =  axg = ay (mod m)
= xo =y (mod m), o (a,m) =1
= RS [.’L‘()]
Let z € [zo]
: z =z (mod m)
= az = axg (mod m)
= az=b (mod m) Using (4.38).
= z is a solution of (4.38). Thus the solution set is [x¢]. O

Remark 4.4. Since any two solutions are congruent modulo m, therefore we say
that the solution is unique modulo m. In case there is no chance of confusion,
we simply say that a congruence has unique solution.

Corollary 4.30. The linear congruence ax = b (mod p) where p is a prime
such that pta has a unique solution modulo p.

Proof: pisaprimeandpta, .. (a,p)=1.
The result now follows from Theorem 4.29. O
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Example 4.13. Solve the linear congruence 4x =3 (mod 5).
Herea =4, b=23, m=>5
since (a,m) =1, therefore the given congruence has a unique solution mod-
ulo 5.
Step1 Find r,s such that

ar+ms=1 (4.40)
In this case s=1, r=(-1).c 4x(-1)+5x1=1
Multiplying (4.40) by b.
arb+msb =5
= a(rb) — b = m(—sb)
= axg =b (mod m), where xg = 1b

Thus xo s a solution and [xg] is the set of all solutions.
xg=1b=(—1)3=(-3) =2 (mod 5)

(We generally take the smallest positive value of the solution).

Thus g = 2 is the solution which is unique (mod 5) of the given linear congru-

ence.

Solution set is [2].

We have seen that the linear congruence ax = b (mod m) always has a unique

solution, if (a,m) = 1.

If (a,m)=d#1, then a solution may or may not exist.

Example 4.14. Find the solution of 18z =5 (mod 6), if it exists.
Suppose xq is a solution of the given congruence. Then
1829 =5 (mod 6).

18zy — 5 = 6k for some k € Z
= 18xz9 — 6k =5
= 35 3|(18zg — 6k).

which is not true.
Hence the given congruence does not have a solution.
Observe that in the above illustration (a,m) = (12,15) = 3 # 1.
The following theorem gives the condition under which a given congruence
always has a solution.

Theorem 4.31. The linear congruence ax = b (mod m) has a solution if and
only if d|b, where d = (a,m). If a solution exists, it is a unique solution modulo
my, where m = myd. In fact, there are exactly d solutions x;, 0 < x; <m, no
two of which are congruent modulo m. L

Proof: Let d= (a,m)...(1)
Suppose the given linear congruence has a solution zq.
Then azg = b (modm)
So that m|(azg — b).

= axg—b=mk, for somek €Z
= axg—mk=">...(2)
Now (1) = d|a and d|m
= d|(axg — mk)
= d|b using (2)

Thus d|b.
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Conversely, let d|b. . b = dk, for some k € Z. Also (1) gives that there
exists A\, u € Z such that

ax+mp = d
= aXk+mpk = dk
= axg+mpuk = b where zg=M\k
= m| (axzo —b)
= arg = b (modm)
= ar = b (modm) has a solution
namely = = xg.
Hence ax = b (modm) has a solution if and only if d|b.
Suppose ax = b (modm) has two solutions zg and x;. Then
arg = b (modm)

and ar1 = b (modm)

So that a(xg —z1) = 0 (modm)
. a(zg—x1) = km, for some k € Z...(3)
Since d = (a,m), .". By Theorem there exists a;,m; € Z such that
a=aid, m =mid, (a1,m1) =1. .. (3) becomes
ad(xg—x1) = kmad

= &1(1‘0 7$1) = kmy d;éO
= m1| aj (IQ — .1‘1)
= mi|  (xo —x1) as (a1,m1) = 1.
= xg = w1 (modmy)

Hence there exists a unique solution. Call it zg.
The solution set is [xg] = {zo + mat : ¢t € Z}.
When any integer ¢ is divided by d, the remainders can be any one of 0, 1, ...,
d—1.
Any element of the solution set is of the form.
2o +mi(kd +r), where r =0,1,...,d —1
i.e. xg + midk + myr, where r =0,1,...,d — 1
ie. (xo +mir) + midk, where r =0,1,...,d -1
i.e. xg + myr, where r =0,1,...,d — 1; mod m
These are d solutions, no two of which are congruent mod m.
Hence the given congruence has d distinct solutions, no two of which are
congruent modulo m.

Example 4.15. Solve the linear congruence 24z =9 (mod 81).
Step 1
24z =9 (mod 81) (4.41)

& 24x — 9 =81k for some k € Z
& 8r—3=27k

& 8z =3 (mod 27) (4.42)

Thus xo is a solution of (4.41) if and only if x¢ is a solution of (4.42).
We now solve (4.42).
Step2
Here a=8, b=3, m =27
(a,m) = 1.
Find r and s such that
ar+ms=1 (4.43)
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In fact 8 x (—=10) 4+ 27 x 3 =1, so that r = —10, s = 3.
Multiplying (4.43) by b,we get
arb+msb=1>
= arb — b= m(—sb)
= arg — b=m(—sb), where zy =rb.
= azxg =b (mod m)

Thus xg = —30 is a solution of (4.42), But o = 24 (mod 27).
.24 is the unique solution mod m of (4.42).
The solutions are 24 4+ 27t, t € Z

Step 8
We now obtain all the solutions of (4.41).
Since (24,81) =3
There are 3 non-congruent solutions modulo 81.
To obtain these solutions, we proceed as follows:
Any integer is of the form
3k, 3k+1, 3k+2
Thus, any solution of (4.41) s of the form
24 4+ 27(3k), 244 27(3k + 1), 24+ 27(3k + 2).

i.e. 24+ 81k, 51+ 81k, 78 + 81k.

Thus the solutions are
x =24 (mod 81)
z =51 (mod 81)
x =178 (mod 81).

To solve a linear congruence ax = b (mod m)., first we check whether a so-
lution exists or not.

Existence of Solution
There are three cases arises:
Case 1.
(a,m) = 1.
In this case there is a unique solution modulo m.
Case 2.
(a,m)=d> 1.
If d1b then there is no solution.
Case 3.
(a,m)=d>1 and d|b.
In this case there are d non-congruent solutions modulo m.

We now give the steps to find the solution in case 1 and case 3.
Steps involved for Case 1.
Step 1 Since (a,m) =1
Find integers r and s such that ar +ms = 1.
Multiplying by b, we get
arb+msb=10
arg —b = m(—sb), where xog =rb.

=
= azp =b (mod m).
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Thus xo s a solution.
Step 2 The solution set is

{xo+km; ke Z} (4.44)

If xo does not satisfy 0 < xo < m, then reduce it so that it satisfy the above
condition.

This can always be done by adding multiples of m to xg, and it will still remain
a solution, because of (4.44).

Steps involved for Case 2.
Stepl Since (a,m)=d

a=da, m=dmy, b=db and (a;,m1)=1.

Then, ar =b (mod m) (4.45)
& a1z = by (mod my) (4.46)

Solve (4.46) as in Case 1.
Step 2 Obtain a solution of a1z = by (mod my).
where (a1,mq) = 1.
The steps have been outlined earlier. If xo is a solution,
then the solution set is
{160 +tmy: te Z}

Step 3 To obtained all the non-congruent modulo m solutions of (4.45).
Since (a,m) = d, therefore there are d non-congruent solutions of (4.45).
which are

T =z (mod m)
x = xo +my (mod m)
x = xo + 2my (mod m)

=z + (d—1)my (mod m).

Problem 4.12. Let m,n are fixed integers greater than 1, and a,b € Z. If
a =bmodmmn, then a = b modm and a = bmodn.

Is the converse true? if not, is it true under certain condition on m and n?
what are they?

Solution: a = bmodmn
= a — b = gmn for some q € Z
=m|(a—10) and n|(a—1b)
= a =bmodm and a = bmodn.
Conversely, If a = bmod m and a = bmod n, we need to prove that a = bmod mn
Take a =18,b=14,m=2,n=4
then,
18 = 14 mod4
18 = 14mod?2
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but, 18 2 14 mod(2 x 4)
18 2 14 mod8
We shall find condition on m and n so that we get the result,
a=bmodm = m | (a —b)
= a—0b=mgq; for some ¢; € Z
Similarly a = bmodn
= a—b=ngs for some ¢ € Z

Thus a — b = mq; = ngs (1)
If ged(m,n) =1, then
mqy = ngz2

m|ngs and n|maq

n|qi, since ged(m,n) =1

q1 = nky, for some ki € Z

a—b=mnk;

mn | (a —b)

a = bmodmn

Thus the converse holds when m and n are co-prime.

(1)

R R

Problem 4.13. If ‘a’ is any integer then a® =0, 1,0or 8 (mod 9).

Solution: Any integer ‘a’ is of the form 3k, 3k + 1, 3k + 2.
Three cases arises:

Case 1. a =3k
Then a® = 27k3
a’® =0 (mod 9)
Case 2. a=3k+1
‘ a® =3k +1)3
=9 (3K +3k*+k)+1
Hence a® =1 (mod 9).
Case 3. a=3k+2
: a® = (3k +2)3
=9 (3k® + 6k +8k) +8
Hence a® = 8 (mod 9). Thus if ‘a’ is any integer, then a® =

0, 1,0r 8 (mod 9).
Problem 4.14. Find the remainder when 1! 4 2! 4 --- 4 200! is divided by 12.

Solution: Clearly 12 |n! for all n > 4, therefore 12| (4! + ........ 200!)

= 4! 4+ -+ 200! = 12k for some k € Z = 11 + 2! + 31 + 4! +--- 200! =
12+ 11421 +31=12k+9

= 1!+ 2! +-.-200! = 9modl2

Thus, the remainder obtained on dividing 1! 4+ 2! 4 --- 4+ 200! by 12 is 9.

4.8 Exercise

1. Calculate
(i) 7 4 8(modll)

(i) 2+ 3+ 4+ 5(mods)
(iii) 8.9 (mod10)
(iv)  4.5.6 (modT7).
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10.

. Find the least positive integer modulo n to which the following expressions

are congruent.

(i) 5.7.13.23.413, n =11

(ii) 6+ 18429+ 346, n =13

(iii) 5.6+8114+19.23,n=9

(iv) 123.13.2+481.6 — 239.11 4+ 17.11 — 14.239, n = 15.

. Eyaluate

(i) (2517 x 4328) modl4
(ii) (2610 4 3929) mod9
(iii)  (1718)5 mod13

(iv) (5621 — 7398) mod12
(v)  220modll

(vi)  10%* mod9

(vii) 812690 mod7

. Calculate a + b, a.b, (a + b)?, (a + b)3 modn, for

(i) a=11528, b=17332, n = 91.
(i) a=—11528, b= —17332, n = 91.

. Examine which of the following are true.

(i) —6=18(mod12)
(i) 111 = 12 (modll)
i) 111 = 11 (mod11)
) —4=-4(modn),neN
(v) 100 = 10 (mod20)
(vi) 1625 = 15 (mod25).

Write the congruence classes of integers modulo 12. To which class does
5876 belong? Does —5876 also belong to the same class?

What is the general form of an integer in [3] relative to the congruence
mod11.

Write 3 negative integers in [2] relative to the relation congruent mod9.
Write the multiplication table of equivalence classes modulo 5.

In ABC university each student is assigned an enrolment number. The
last three digits of the enrolment number of a male student born in month
m on date b is 71m + 2b + 1 and that of a female student is 71m + 2b.
Find the date of birth and sex corresponding to the numbers.

(i) 480

(if) 911
(iii) 716
(iv) 717
(v) 172
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The last seven digits of the identification number of a employee gives the
date of birth. The four digits preceeding the last three digits is 4Y, where
Y is the year of birth. The last three digits of the identification number
of a female employee born in month m on date b is 67m + 2b + 1 and
that of a male employee is 71m + 2b. Find the date of birth and sex
corresponding to the numbers.

(i) 7792572

(i) 7936703

Solve the following congruences if the solution exists. If no solution exists,
explain why.

(i) 3z =1(modT7)

i (modo)

(iv) 27z =8 (mod9)
(v) 27z =15 (mod9)
(vi) 4z =1 (modb)
(vii) 4z = 2 (mod6)
(viii) 8z =4 (modl2)
(ix) 8z = 3(mod27)
(x) 12z =9 (modlb).

Find the solution of
(i) 2z =3(mod9)
(i) 4z = 6 (mod9).
Do you see some relation between the solutions of (i) and (ii).

Find the solutions of

(i) 5z =1(modl2)

(i) 10z =2 (modl2)

(iii) 152 = 3 (mod12).

Do you see any relation between their solution sets.

Construct linear congruences modulo 12 with
(i)  One solution mod12

(i)  No solution

(iii) More than one solution (mod12).

Find the remainder when (2138)? is divided by 31.

Find the remainder when
(i) (2)% is divided by 7.
(i) (41)% is divided by 6.
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4.9 Supplementary Problems

1. State whether the following statements are true or false. Justify.
(i)  Cancellation law for multiplication holds in the set of natural num-
bers.
(ii)  The equation z + m = n has a solution in the set of natural
numbers, for all m,n € N.
(iii)  If a,b,c € Z,then
ac=bc = a=0b.
(iv)  The first principle of induction is a special case of the second
principle of induction.
(v)  The principle of induction is used to prove results about numbers
only.
(vi)  The first principle of induction is equivalent to the Well ordering
principle.
(vii)  The relation of divisibility is an equivalence relation on N.
(vili) A number p € N is prime if the only divisors of p are £1 and +p.
(ix) A number which is not prime is a composite number.
(x) Division algorithm holds in the set of natural numbers.
(xi) Ifae€ Z, then ged(a,0) = a.
(xii)  The least element of the set {az+by |z,y € Z,ax+by > 0} is the
ged of a and b.
(xiii)  If a,b,c € Z, then gcd(ac, be) = ¢ ged(a,b).
(xiv) If a,b,c € Z, such that ac = be(mod m) for some integer m > 1,
then a = b (mod m).
(xv) Ifa,b,c € Z,such that alc and b|c then ablc.
(xvi) 25z = 1(mod49) has no solution.
(xvil) 2z = 3 (mod6) has no solution.
(xviil) If a € [b] modm is equivalent to saying [a] = [b].
(xix) If a,b,c € Z, such that ab = 1 (modm) then either a = 1 (modm)
and b = 1 (modm), or a = —1 (modm) and b = —1 (modm).
(xx) Ifa € Z, such that a® = 1 (modm) then a = 1 (modm).
(xxi)  ged(a,—a) =a, a € Z.
(xxii) If two integers a, b are coprime then their lem is ab.
(xxiii) Two consecutive integers are always coprime.

2. Prove that an integer is divisible by 4 if and only if the number formed by
the last two digits (digits in the ten’s and unit’s place) is divisible by 4.

3. Prove that an integer n is divisible by 9 if and only if the sum of the digits
of n is divisible by 9.

4. Show that
(i) (2)" > n?for all n > 5.
(ii)) n!> n3 for all n > 6.
5. If n is any integer, then prove that 5n + 3 and 7n + 4 are coprime.

6. If p is a prime and a,b are integers such that ab = 0 (modp), prove that
either a = 0 (modp) or b = 0 (modp). What can you say if p is not prime?

7. If a = b(modn), prove that ged(a,n) = ged(b, n).
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. If a,b € Z, and k is an odd integer such that & | (a — b) and k | (a + 1)

then prove that & | ged(a, b).

. If a,b are co-prime, prove that

(i) ged(2a+b,a+2b) =1 or 3.
(ii) ged(a+b,a®> —ab+b%) =1 or 3.
(iii) ged(a™,b™) =1, m,n € N.

If ‘@’ is an odd integer prove that
a? = 1 (mods)

Find the ged of a and b. Also find integers m and n such that ma + nb =
gcd(a, b), for the following pairs.

(i) a=578, b=—442

(ii) a=—826, b= 1890

(iii) a =741, b= 1079.

Let a be an odd integer. Show that
a®" = 1(mod2™t?) for all n € N using induction.

Solve the linear congruence

40z = 15 (mod135)

Prove that
84'0 = 1 (mod11)

Solve the following linear congruences. Obtain all the non congruent
solutions.

(i) 258z + 18 = 5(modT7)

(il) 222z 4+ 7 =19 (modl8)

(iii) 122 = 6 (mod16)

(iv) 18z + 24 = 15 (mod33).

Suppose P(n) is a statement about the natural number n such that
(i)  P(1) is true.

(ii) For any k > 1, P(k) is true = P(2k) is true.

(iii) For any k > 2, P(k) is true = P(k — 1) is true.

Prove that P(n) is true for all n € N.

4.10 Answers to Exercises

11.

Exercise - 4.7

() 13, 13=Ta — 4b
(i) 13, 13=—7a — 4b
(i) 1, 1=—40a + 79b
(iv) 1, 1=40a — 79b
(v) 592, 592=2a —b
(vi) 592, 592=2a + b
(vii) 2, 2=97a + 68b
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12.
(i) 27,m=-3, n=4; m=-3—kb, n=4+ka, for k=1,2
(i) 13, m=-16, n=11; m=—16 — kb, n =11+ ka, for k =1,2
(iii) 73, m=-5 n=17;, m=—-5—kb, n =17+ ka, for k=1,2.

13. m = 553, n = —280.
No, other pair is m = 867, n = —439.

14 m=-2, n=2.
15. Hint: gcd(219,153) = 3 and 31 5.
16. Hint: 7| (10m+n) < 10m+n =T7q¢ < m+5n =7(5¢—Tm) < 7| (m+5n)

18.
(i)  Yes
(ii)  Yes
(iii)  Yes
(iv) No
Exercise - 4.8
Lo()4 (i) 2 (i) 2 (iv) 1.
2. (1) 2 (i) 9 (iii) 6 (iv) 11.
3. (1) 8 (i) 5 (iii) 6 (iv) 11.
4.
(i) 13, 56, 78, 13
(ii) 78, 56, 78, 78
5. (1) T () T (i) F (iv) T (v)F (vi) F.
6. [k] ={k+12t|t€Z} for k=0,1,2,..., 1L
5876=8 (mod 12)
.. 5876 € [8]. No.
—5876 € [4].
7. 11k +3, k€ Z.
8. —7, 16, —25.
0. o
01T 2 3 4
00 0 0 0 O
110 1 2 3 4
210 2 4 1 3
310 3 1 4 2
410 4 3 2 1
10.

(i) F, 27th June
(i) M, 29th Dec
(iii) F, 3rd Oct
(iv) M, 3rd Oct
(v) Incorrect
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11.
(i) M, 2 August, 1948
(i) F, 16 October, 1984
12.
(i)  5(mod 7)
(ii)  2(mod 6), 5(mod 6)
(iii)  No solution
(iv)  No solution
(v)  No solution
(vi)  No solution
(vii)  2(mod 6), 5(mod 6)
(viii)  2(mod 12), 5(mod 12), 8(mod 12), 11(mod 12)
(ix)  24(mod 7)
(viii)  2(mod 15), 7(mod 15), 12(mod 15).
13.
(i) 6(mod 9)
(ii) 6(mod 9)
Both have the same solution.
14.

(i)  5(mod 12)

(ii)  5(mod 12), 11(mod 12)
(i)  5(mod 12), 1(mod 12), 9(mod 12).
(i), (ii) and (iii) have a common solution.

15. Other answers are possible
(i) 5z =T7(mod 12)
(ii) 2z = 3(mod 12)
(iii) 10z = 2(mod 12).
16. 30
17. (i) 4 (iii) 5.

Supplementary Exercises

1.

@M T

(i) F, z+5 =1 does not have a solution.

(iii)  F, not true for ¢ = 0.

(iv) T

(v) F, any statement involving natural numbers.
(viy T

(vii) F, it is not symmetric.
(vii) F,p,1

,.\
= <.
==
NaPR-H

F, it can be unity also.
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(x) F, No quotient exists when 3 is divided by 5.
(xi) F, ged(a,0) = lal.

(xii) T
(xiii) F, ged(ac, be) = |c|ged(a, b).

(xiv) F,7x3=5x3mod6, but 72 5 mod 6.
(xv) T, 8|24, 1224 but 8 x 12} 24.
(xvi) F, z =2(mod 49) is a solution.

(xvii) T

(xviii) T

(xix) F, 2 x 3=1(mod 5), but 2 2 £1(mod 5) and 3 % +1(mod 5).
(xx) F, 53 = 1(mod 31), but 5 2 1(mod 31).

(xxi) F, gcd(a,—a) = |al.

(xxii) F, lem is |abl.

(xxi) T

6. Not true. 2 x 3 = 0 mod 6, but 2 2 0 mod 6 and 3 2 0 mod 6.

9. Hint:
(a) d=gcd(a+b,a®—ab+b?)
= d|(a+b), d|(a® —ab+ b?)
= d|((a+b)? — (a® — ab + b?)
= d|(3ab)
Let ged(d,a) = d’
o d|dand d| = d'|b
d =1 - gcd(a,b)=1.
Similarly ged(d,b) = 1.
Hence d|3 = d=1, 3.
(b)  Use induction to prove (a™,b) = 1.

11.
(i) 34,m=-3, n=—-4
(i) 14,m=16, n=7
(i) 13,m=—16, n =11

13. 24, 51, 78, 105, 132 (mod 135)

14.
(i)  6mod 7
(i) 2,5, 8,11, 14, 17 (mod 18)
(iii) No solution exists.
(ii) 5, 16, 27 (mod 33)
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Chapter 5

Group

Definition and Examples

In this chapter we shall study different algebraic structures with one binary
operation and the relationship amongst them. The simplest algebraic structure
is a groupoid. We begin with a few definitions.

5.1 Definition of Group

Definition 5.1. A non-empty set G equipped with a binary operation x is called
a groupoid, that is, axb € G Y a,b € G. This is also referred to as: G is closed
with respect to *.

Definition 5.2. A non-empty set G equipped with a binary operation x is called
a semigroup if x is associative, i.e.

ax(bxc) = (axb)xc Va,bceQG. (5.1)

Definition 5.3. A non-empty set G equipped with a binary operation * is called
a monoid if
(i) * is associative, i.e.

ax(bxc) = (axb)xc Va,bceQG. (5.2)

(i) * has an identity element, i.e., there exists an element e € G such that
axe=exa=a Yat€QG.

Definition 5.4. A non-empty set G equipped with a binary operation * is called
a group if
(i) * is associative, i.e.

ax(bxc) = (axb)xc Va,bceQG. (5.3)
(i) * has an identity element, that is, there exists an element e € G such that

axe=exa=a VYacdCG.

184
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(iii) each element of G has an inverse with respect to *, that is, for every a € G
there exists some b € G such that

axb=bxa=ce.

‘b’ is called an inverse of ‘a’ and is denoted by a™?.

Each of these algebraic structures are denoted by (G, *). When the binary
operation * is understood from the context, we simply say that G is an algebraic
structure, and if there is no confusion we prefer to write a * b as ab.

From the above definitions it is clear that an associative groupoid is a semi-
group; a semi-group with an identity element is a monoid; and a monoid in
which every element has inverse is a group. This relationship is shown in the
following diagram.

—=déciécaC

L-—===ph3alécié
E~8&cha~iaiE=0&¢cilécaCF

£o—=jcacaC= )
E&kaa0ecié=iail
—==—4CE&i416F

Definition 5.5. In a group (G, *), if the set G is finite, the number of elements
in G is called the order of G and is denoted by o(G) (or |G]). If G is not a finite
set, then the group G is said to be infinite or a group of infinite order.

A groupoid is the simplest algebraic structure. Certain important results
about groups also hold true in more general structures like semigroups and
monoids, and therefore these structures have been discussed here. These struc-
tures have not been studied in details as our principal interest is to study groups.

Definition 5.6. A group (G, %), or a semigroup (G, %), is said to be commutative
or Abelian group, if

axb = bxa VabeaG. (5.4)

Having given a formal definition of a group, we shall now build up a good
stock of examples. These examples will be used throughout to illustrate results
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for their better comprehension. The reader is advised to study them carefully
since the best way to feel the essence of a theorem is to see what happens in
specific cases. To develop a complete understanding of these examples, you may
supply the missing details.

Whenever we check whether a given set is a group with respect to a given
binary operation x, we shall proceed as follows:

Step 1 (Closure) Verify that x is a binary operation on G, that is, a*b € G,
for all a,b € G.

Step 2 (Associativity) Verify that x is associative.

Step 3 (Exzistence of identity) Verify the existence of identity element e € G
with respect to .

Step 4 (Existence of inverse) Verify that every element of G has an inverse
in G, with respect to *.

In case it has to be seen whether the group is Abelian, we must do the
following additional step.

Step 5 (Commutativity) Verify that a xb = bx* a, for all a,b € G.

We observe that the associative law holds with respect to the usual addition
and multiplication in the set of complex numbers. Therefore associative law
holds for every subset thereof. Hence, for any set of numbers with respect to
the usual addition and multiplication, it is required to check only the existence
of identity and inverse. Moreover the commutative law holds with respect to
the usual addition and multiplication in the set of complex numbers, so that
this law holds for every subset thereof. Hence for any sets of numbers, if (.S, +)
or (S,.) is a group, it will be an Abelian group.

Remark 5.1. If only Step 1 holds then (G,x*) is a groupoid. If for a groupoid
Step 2 also holds then (G, %) is a semigroup. If for a semigroup, Step 3 holds
then (G, *) is a monoid. Finally a monoid for which Step 4 holds is a group.
For a groupoid (semigroup, monoid, group respectively) if Step 5 holds then it
is an Abelian groupoid(semigroup,monoid,group respectively).

Remark 5.2. In case of finite groups of small order, sometimes it is convenient
to prepare a multiplication table to verify the above steps. This table is known
as the Cayley table. It is prepared as follows:

Let G = {x1,22...,2,} be a set and let x be an operation defined on G, then
the Cayley table of G with respect to * is prepared as:

* T Zo . . . In

T I *x T T % XTo . . . T1 * Ty
T T * T T * To . . . T * Ty
Tn ITn *T1 Tn * T2 . . . T X Ty

Remark 5.3. If (G, %) is a group, then in the multiplication table in each row
and each column, every element of G appears exactly once. Note that this is
only a necessary condition, and not a sufficient condition for G to be a group.
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5.2 Exercise
Give examples to justify the statements, in Q1 to Q5.
1. The set of all odd integers is not a groupoid with respect to addition.

2. (Z,—) is a groupoid but not a semigroup.

3. (E,.) is a semigroup but not a monoid, where E is the set of even integers.
4. (N, +) is a semigroup but not a monoid.

5. (N,.) is a monoid but not a group.

6. What algebraic structure does (Q*,+) possess?

7. On N, define m * n = m™. What algebraic structure does (N, %) possess?
8. Let G = {a, b, c}. The binary operation * on G is defined by the following

table:

Prove that (G, *) a monoid. Is it a group?

9. Let G = {a, b, ¢, d}. The binary operation * on G is defined by the following
table:

QO o Q%
QO Q|
Q0 oo
QO Q2

L 2 [ Olo

Is (G, *) a group? If not, why?

5.3 Groups of Numbers

Example 5.1. The set of integers Z, the set of rational numbers Q, the set of
real numbers R and the set of complex numbers C are all groups under ordinary
addition. The identity element in each case is 0. The inverse of any element x
is —x. Since addition of numbers is commutative, therefore they all are Abelian
groups. Since Z, Q, R and C are infinite sets, these are infinite Abelian groups.

Each of the sets Z,Q,R and C is closed with respect to the usual multiplica-
tion of numbers. The associative law holds, the identity element exists and is 1.
Thus each of (Z,.), (Q,.), (R,.) and (C,.) is a monoid.

In (Z,.) none of the elements, except 1 and —1 are invertible. So (Z,.) is
not a group. In (Q,.) every non-zero element ™ has an inverse, namely 7-. But
0 does not have an inverse as there does not exist any q € Q such that 0.q = 1.
Thus (Q,.) is not a group. For the similar reason, (R,.) and (C,.) are also not
groups. Since 0 is the only element which does not have an inverse, is it possible
that the set of non-zero numbers forms a group with respect to multiplication?
This is answered in the following example.
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Example 5.2. Let Q* denote the set of non-zero rational numbers. Then (Q*,.)
is a group. Since the product of two non-zero rational numbers is a non-zero
rational numbers, Q* is closed with respect to multiplication. The identity ele-
ment is 1 and the inverse of ™ € Q* is I*. Since multiplication is commutative,
therefore (Q*,.) is an Abelian group. Moreover Q* is infinite. Thus (Q*,.) is
an infinite Abelian group. Similarly, (R*,.) and (C*,.) are also infinite Abelian
groups.

Example 5.3. For any fized integer m, let mZ={mz | z € Z}. Clearly (mZ,+)
is closed. In fact, (mZ,+) is a group. For, the identity element is O and the
inverse of mz € mZ is —mz. Since addition is commutative, therefore (mZ,+)
is an Abelian group. Further, mZ being an infinite set, it is an infinite Abelian
group.

Note that the set E of even integers is a group with respect to addition (taking
m = 2 in the above example, E = 27Z). What can we say about the set Q of
odd integers? Is (Q,+) a group? Since the sum of two odd integers is even,
therefore addition is not a binary operation on Q. Thus (O,+) is not even a
groupoid. What about O* = Q.

Example 5.4. Let QF denote the set of all positive rational numbers. Then
(QT,.) is a group. Clearly QF is closed. The identity is 1 and the inverse of
™ e QF is 2. It is an infinite Abelian group. Similarly (RT,.) is an infinite
Abelian group.

Example 5.5. Let Z[v2] = {a 4+ bv2 | a,b € Z}. Then (Z[\V?2],+) is a group.
For, Z[\/2] is closed with respect to addition. Addition is associative in this set.
The identity element is 0 and the inverse of a + byv/2 is —a — b\/2. Similarly
Z[V3], Z[V5], Z[V6),... etc. are groups with respect to the usual addition.
(Z[\2],.) is a monoid, the identity element being 1.

However, (Z[\/2],.) is not a group. Since 2 = 2+ 0v/2 € Z[/2], it does not have
an inverse in /2.

Example 5.6. Let Q[v2] = {a + bv/2|a,b € Q}. Then (Q[v2] ~ {0},.) is a
group. The identity element is 1 and the inverse of a +byv/2  is (o) +

(=552 )V2. Since multiplication is commutative, (Q[v2]\{0},.) is an Abelian
group. Similarly (Q[v/3]~{0},.), R[v2]~{0},.), (R[v3]~{0},.) are all Abelian

groups with respect to the usual multiplication.

Example 5.7. Let Z[i] = {a + bi | a,b € Z}. Then (Z[i],+) is a group. The
identity element is 0, as 0 = 0 + 0i € Z[i] and the inverse of a + bi € Zli] is
(—a) + (=b)i € Z[i]. It is an infinite Abelian group. Similarly (Q[i],+) is also
an infinite Abelian group.

Example 5.8. Let Q[i]* = Q[i] ~ {0}. Then Q[i]* is an Abelian group, the
identity element being 1 = 1+ 0i € Q[i|*. The inverse of a + bi € Qli]* is
e+ i € Q"

Example 5.9. The nth roots of unity form a finite Abelian group of order n,
with respect to multiplication. They are given by

2y = COS%T’T + isin2kET
k=0,1,...,n—1.

n
Let o = cos%Tr + isin3z,

n
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Then a# 1, o™ #1 for 0 < m < n, and o™ = 1.
Further, z, = oF, for k = 0,1,2,...,n — 1. Let G = {1,q,...,a""'}. Then
o(G) =n.

Step 1 (Closure) If a",a® € G then 0 < r,s <n—1, and

r+s -
s —grts = 1 @ ifr+s<n
ot ifr 45 > n.

Since r +s—n < n— 2, hence a"a® € G, the multiplication is a binary op-
eration on G.

Step2 (Associativity) Associativity in G follows from the associativity (with
respect to multiplication) of complex numbers.

Step3 (Existence of identity) The identity element of G is 1.

Step4 (Existence of inverse) Inverse of 1 € G is 1. If " € G, 0 <r <mn
then ™7 € G and a"a"™" = a" "a” = o™ = 1. Thus the inverse of a” is
a"l*T'.

Hence every element of G has an inverse in G. Thus G is a group. Moreover,
it is Abelian as multiplication of complex numbers is commutative. Since G has
n distinct elements, it is a finite Abelian group of order n.

Note that the above example helps us in constructing a finite Abelian group
of any given order. This is the first example of a finite Abelian group. So far
we have not seen an example of a non Abelian group. This does not mean that
all the groups are Abelian. Later on, we shall have plenty of examples of such
groups.

Example 5.10. The set R" = {(a1,a2,...,a,) | a1,...,a, € R} is a group
under the componentwise addition, that is, (a1,az2,...,an) + (b1,ba,...,b,) =
(a1+b1,a2+ba, ... an+by). Since addition is a binary operation on R, therefore
it is a binary operation on R™. Associativity in R implies associativity in R™.
The identity element is (0,0,...,0) and the inverse of (a1,az,...,a,) € R™ is
(—a1,—ag,...,—a,) € R™

5.4 Exercise

1. If G = {—1,1}, show that G is a group with respect to multiplication.

2. If G = {1,—1,i,—i}, where i2 = —1, show that G is a group with respect
to multiplication.

3. Prove that the set R® = {(aj,az,a3) : a1,as,a3 € R} is a group under
componentwise addition, i.e. (ai,as2,a3) + (b1,b2,b3) = (a1 + b1,a2 +
by, az + bs).

4. Let S =R~ {—1}. Define * on S by a*b=a-+ b+ ab. Show that (S, %)
is a group.
(i) Find the inverses of 3 and 4.
(ii) Find a solution of the equation 4 x x * 3 =5 in S. Is it unique?

5. If Q" denotes the set of positive rational numbers, show that (QV,x),
where a xb = 2 for all a,b € Q% is a group. What is the identity
element? What is the inverse of an element g € Q*?
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Show that the six 6th roots of unity form an Abelian group of order 6.
Give an example of a group of order (i) 53, (ii) 4021.
Show that (G,.) is a group, where G = {2" : n € Z}.

© % N>

Prove that the set of all rational numbers of the form 3™6", where m and
n are integers, is a group under multiplication

10. If G is the group of all the 20 roots of unity, what are the pairs of inverses?
Can you give a general formula for them

11. Show that (G, *), where G = {0,1,2} and a * b = |a — b| is not a group.
Which of the properties fail to hold?

5.5 Groups of Residues

Before discussing the groups of residues, we shall define a new type of addi-
tion and multiplication on Z.

Addition Modulo n
We now define a new type of addition called “addition modulo n” and written
as a @, b where a and b are integers and n > 1 is a positive integer. Define

a®,b=r, 0<r<n

where, r is the least non-negative remainder obtained on dividing a+b by n.
Clearly a ®,, b = (a + b)(modn)
For example, 18 ¢ 10 = 4 since 18 + 10 = 28 = 6 x 4 + 4.
Similarly, —28 ®33 =2, as —284+3 = —-25=—-9% 3+ 2.

Multiplication Modulo n

Let n > 1 be a positive integer. Define multiplication modulo n, to be written
as On, as follows:

If a, b are integers, then

aOpb=r,
0<r<n.
where 7 is the least non-negative remainder obtained on dividing ab by n.
Clearly a ®,, b = (ab)(modn)

For example, 9 ©7 6 = 5, because 9 x 6 =54 =7 x 7+ 5, and
—3069 =3, since (—3) x9=—-27=-5x6+3.

Example 5.11. Let G ={0,1,2,3,4,5}. ®¢ is a binary operation on G.
Given below is the multiplication table for G:

Cs |0 1 2 3

~ D G W
W~ D LA
L WO N D A~
LWV D OYO;

G LW ~D
G W=D
S A W~
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Associativity holds because
(a®6b) @ c=a®ds (bPgc) = (a+ b+ c)(modb)

Here the identity element is 0. The pairs of inverses are: 1,5; 2,4; 0,0; 3,3.
Note that 0 and 3 are their own inverses. Thus (G, ®g) is a group. It is a finite
group of order 6. It is also Abelian.

The group (G, ®¢) is denoted by (Ze,®s). (Zs,DPs) is a finite Abelian group
of order 6.

Example 5.12. Let n > 1 be any integer. Let G = {0,1,2,...,n — 1}. We
prove that (G, ®,) is a group.

Step 1 (Closure) For a,b € G, since the remainder obtained on dividing a+b
by n is a non-negative integer less than n, so that a @, b € G.

Step 2 (Associativity) Associativity of @, follows from the corresponding
property for addition in integers.

Step 3 (Existence of identity) The identity element is ‘0’ because

a®,0=0®,a=aVaecd.

Step 4 (Ezistence of inverse) For each m € G,n —m € G is such that
m @, (n—m) = (n—m)®d, m=0. Hence n — m is the inverse of m.

Thus (G,®,) is a group. This group is called additive group of integers
modulo n and denoted by (Z,,®n). It is a finite group of order n. Since @y, is
commutative, therefore (Z,,®,) is an Abelian group.

The above example helps us to construct a group of any given order.

Is (Ze,®¢) a group? It can be verified that Zg is closed with respect to
multiplication modulo 6. Construct the multiplication table. The identity ele-
ment is 1. Therefore (Zg, ®¢) is a monoid. The element 0 € Zg does not have
a multiplicative inverse. Hence (Zg, ®¢) is not group. What can we say about
(Z§, ®¢). Since 2,3 € Z§, but 206 3 = 0 ¢ Z§, thus Z§ is not even closed with
respect to ®g. Thus (Z§, ®) is not even a groupoid. In fact, if n is a composite
number, n = myms for some 0 < my,mo < n. and Z5 = {1,2,...,n — 1} then,
mi, mg € Z¥ but my ©, me = 0 ¢ Z?. Therefore ®,, is not a binary operation
on Z}. What can we say when n is prime? The following examples suggest an
answer to this question.

Example 5.13. Let Z; = {1,2,3,4,5,6}.
The multiplication table for Z; with respect to ©7 is:

o1 2 38 4 5 6
101 2 3 4 5 6
212 4 6 1 8 5
313 6 2 5 1 4
414 1 5 2 6 3
515 38 1 6 4 2
616 5 4 3 2 1

Note that 1 is the identity element. Each element of Z7 is invertible, the pair
of inverses are 1,1; 2,4; 8,5 and 6,6. Thus (Z7,07) is a group. It is a finite
group of order 6.
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Example 5.14. Let p be a fived prime and let Z,; = {1,2,...,p—1}. We prove
that (Z,,®p) is a group.

Step 1 ©p is a binary operation on Z,, for if a,b € Z, then by division
algorithm, there exist integers q and r, such that

ab=gqp+r, 0<r<p

If r =0 then ab = qp = p divides ab. Since p is prime, therefore p divides a or
p divides b. This is not possible since both a,b are positive integers less than p.
Hencer #0. Thus 0 <r <pie aGOpb=reZ,,.

Step 2 Associativity of @, follows from the corresponding property for mul-
tiplication in natural numbers.

Step 8 The identity element is 1 because

1®pa:a®p1:aVa€Zp*.

Step 4 We now show that each element of Z,; is invertible. Let a € Z, . Then
1 < a < p. Hence a and p are coprime, so that by Euclid’s Algorithm, there exist
integers m and n such that am 4+ pn = 1. By division algorithm applied to p
and m, there exist integers q and r such that m = pg+1r, 0 < r < p. In case
r =0, m = pq so that apg+pn = 1, that is p(aq+n) = 1. This is impossible, as
p > 1 and ag+n is an integer. Hencer # 0. i.e. 0 <1 <p, givingr € Z,'. Now

1=am+ pn =a(pg+r)+ pn =plag+n) + ar.

Thus a ®, r =1 so that v is the inverse of a. Thus (Zp*, ©p) s a group. This
group is called the multiplicative group of mon-zero integers modulo p and is
denoted by (Z,, ©p).

In fact, for any positive integer n > 1, the set Z," = {1,2,...,n—1} is a
group under multiplication modulo n if and only if n is prime. When n is prime
(Z,5,®n) is a group has been proved above.

Conversely, suppose (Z,F,®y) is a group and n is not prime, then n = rs
for some integers r and s such that 1 <r,s <n. Thenr,s € Z) andr ©Op s =
0 ¢ Z,;. This contradicts the fact that Z," is a group, hence n must be prime.

Example 5.15. Let U(15) = {n € Z|(n,15) = 1,0 < n < 15}
Then (U(15),®15) is an Abelian group.

U15) = {1,2,4,7,8,11,13, 14}.

The multiplication table is:

o | 1 2 4 7 8 11 13 14
11 2 4 7 8§ 11 13 1
2 |2 4 8 14 1 7 11 13
/14 8 1 18 2 1, 7 11
77 14 13 4 11 2 1 8
§ |8 1 2 11 4 13 14 7
11 |11 7 14 2 13 1 8 4
13 |18 11 7 1 14 8 4 2
14 |14 18 11 8 7 4 2 1

From the table it is clear that @15 is a binary operation on U(15). The binary
operation 15 s associative. 1 is the identity element. The elements 1, 4, 11
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and 14 are their own inverses, whereas the inverses of 2, 7, 8, 13 are 8, 13, 2,
7 respectively. Also a ®15b = b ®15 a for all a,b € U(15). Thus (U(15), ®15) is
an Abelian group of order 8.

Example 5.16. Let n > 1 be a fized integer and let U(n) = {m € Njm <

n,(m,n) =1}. Then

(i) (U(n),®n) is a group.

(ii) For n > 2, there are at least two elements in U(n) satisfying x> = 1. Clearly
1 eU(n).

(i) Step 1 Let a,b € U(n). We shall prove that a ®, b € U(n). Let a ©®, b = c.
Then there exists q € 7. such that ab = nq + c.
Ifc =0, then n|ab. Since (n,a) = 1, therefore n|b, which is a contradiction,
because (n,b) = 1. Hence ¢ # 0. We now prove that (¢,n) = 1. If (¢,n) # 1
then there exists a prime p such that p|(c,n), so that p|c and p|n. Hence
plng + ¢ i.e. plab. Since p is prime, therefore pla or p|lb. Thus p|(a,n)
which contradicts the fact that a € U(n). Hence (¢,n) = 1 so that ¢ =
a®nbeU(n). Thus ©, is a binary operation on U(n).
Step 2 Let a,b,c € U(n). It can be easily proved that (a ®, b) @, ¢ =
remainder obtained on dividing (ab)c by n. Similarly a @, (b ®n ¢) =
remainder obtained on diwviding a(bc) by n. Since multiplication in Z is
associative, therefore (a®,0)Onc = a®y, (bO,c). Hence ©y, is associative.
Step 31 €eU(n) and 1 ©pa =a®p1 =a V a € U(n). Hence 1 is the
identity element in U(n).

Step 4 Let a € U(n). Then (a,n) = 1. By Euclid’s algorithm, there exist
integers x and y such that ax +ny = 1. Also by division algorithm applied
to n and x, there exist integers q and r such that x = gn+1r, 0 < r < n.
Hence agn+ar+ny = 1 i.e. n(ag+y)+ar =1, so that a®,r = 1. Similarly
T Ona = 1. We claim that (r,n) = 1. Suppose (r,n) # 1. Then there
exists a prime p such that p|r and pln so that p|(qgn + r) i.e. p|z. Hence
p|(az + ny) i.e p|1 which is not possible as p > 1. Thus (r,n) =1, hence
relU(n). Also a @, r =1 0na=1. Thus r is the inverse of a.

We have proved that (U(n),®,) is a group.

(i) Clearly 1> =1. Now (n—1) €U and (n—1)2 =n? —-2n+1=n(n—2)+1
Thus (n—1) ®, (n—1) =1.
Thus x =1 and x = n — 1 satisfy 2> = 1. Moreover, forn > 2,n —1 # 1.

5.6 Exercise

1. Prove that (Z*5,®5) is an Abelian group.

Let 2Z*5 = {2,4,6,8}. Prove that (2Z*5, ®10) is a group.
Let S = {2,4,8}. Prove that (S, ®14) is a group.

Let G ={1,2,3,4,5}. Is (G, ®¢) a group?

Show that ¢(10) is a group of order 4.

AR I

What is the order of the group
(i) U(20) (ii) U(30) (iii) 4(40).
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7. In the group ¢(30) find the inverse of the elements 7, 11, 19 and 23.

8. When I was typing a list of nine integers which form a group under mul-
tiplication modulo 91, I missed out one element and typed only the eight
elements 1, 9, 16, 29, 53, 74, 79 and 81. Can you tell which integer was
left out?

5.7 Groups of Matrices

All the groups considered so far are Abelian. Does that lead us to believe that
every group is Abelian? Certainly not. The next example answers this question.

Example 5.17. Let GL(2,Q) be the set of all 2 X 2 non-singular matrices
over Q, the set of rational numbers. This is a group with respect to the usual
multiplication of matrices.

Step 1 (Closure) Let A, B € GL(2,Q), then |A| # 0 and |B| # 0. Now AB
is a 2 X 2 matriz over Q, and |AB| = |A||B| # 0. Hence AB € GL(2,Q). Thus
multiplication of matrices is a binary operation on GL(2,Q).

Step 2 (Associativity) Associativity in GL(2,Q) follows from the associativity
of multiplication of matrices.

Step 3 (Existence of identity)l = (

ment.

1 0

0 1 ) € GL(2,Q) is the identity ele-

Step4 (Existence of inverse) If A € GL(2,Q), then A = ( CCL Z ), for some

a,b,c,d € Q, such that ad — bc # 0. Let k = ad — be.
d b

IfB= ( ko k > then |B| = 293¢ = 1 £ 0. Thus B € GL(2,Q) such that
&k

k
AB = BA = 1. Hence B is inverse of A and so every element of GL(2,Q) is
invertible. We have proved that GL(2,Q) is a group. Clearly it is non Abelian,

for if A = < 1 (1) > B= ( (1) g > then A, B € GL(2,Q) and AB # BA.

Notation: GL(n,Q) denotes the set of all n X n non-singular matrices over Q,
and SL(n,Q) denotes the set of all n x n matrices over Q with determinant 1.

Clearly, SL(n,Q) C GL(n, Q). It can be proved that SL(n,Q) is also a group
with respect to multiplication of matrices. Moreover both are non-Abelian. These
groups provide a rich source of non-Abelian groups.

Example 5.18. Let My(Z5) denote the set of all 2x 2 matrices over Zs, integers
modulo 5. Then with respect to the usual addition of matrices, where the ele-
ments are reduced modulo 5, the set Mo(Zs) is a group. For, clearly addition in
Mo (Zs) is a binary operation. Also associative law holds, as it holds for addition

of matrices. The null matrix is the identity element. If A € My(Zs),

0 0

0 0
a Z i a,be,d € Zs thenB:(?)_Z S_Z)GMQ(Z}S) 18
such that B is the additive inverse of A.
Since addition of natural numbers is commutative, therefore addition in Ma(Zs)
is commutative. Hence Ma(Zs) is an Abelian group. Moreover, it is a finite

say A =
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group. Each entry in a matrix has 5 choices, hence the number of elements in
the group is 5* = 625. Thus Mx(Zs) is a finite Abelian group of order 625.

Notation: M, (F') denotes the set of all n x n matrices over F. If F' is a finite
set of order m, then o(M,(F)) =m™ .
a 0

2a 0
with respect to the usual multiplication of matrices.

a 0 b 0
Step 1 (Closure) Let A,B € G. Then A = ( % 0 ),B = ( % 0 ) for
ab 0

2ab 0

Example 5.19. Let G = {( ) la € Q*} . Then G is an Abelian group

some a,b € Q*. Further, AB = < € G. Hence multiplication is a

binary operation in G.

Step 2 (Associativity) Since multiplication of matrices is associative, there-
fore associative law holds in G.

Step 8 (Existence of identity) The matriz E = ( ; 8 ) € G is identity of

G, for, if A = < . 8 > € G, then EA = AE = A.

Step 4 (Ewxistence of inverse) Let A € G. Then A = ( 2(; 8 ) for some

a€ Q. IfB= ( 8 ), then B € G, such that AB = BA = E. Hence B

is an inverse of A, so that each element of G is invertible. Thus G is a group.
Clearly G is Abelian because AB = BA for all A,B € G.

We make two observations from this example. Firstly, that groups of ma-
trices can be Abelian as well as non-Abelian. Secondly, if the determinant of
a matriz is zero, then also it can be invertible (with respect to some identity
element). Note that this is so because in this case, the identity element is not

the usual unit matriz Iy. In fact Is = ( (1) (1) > ¢ G.

Q[N [

Example 5.20. Let G = {( Z Z ) la € Q*} Then G is an Abelian group

with respect to multiplication of matrices.
Step 1 (Closure) If A, B € G, then A = ( Z Z ) ,B = ( b b ) for some

b b
2ab  2ab

a,b € Q. Then AB = < 2ab  2ab

) € G. Thus multiplication is a binary

operation on G.
Step 2 (Associativity) Multiplication in G is associative as multiplication of
matrices 18 associative.

Step 3 (Ewistence of identity) The matric E = <

INIEE NI
D00 |

) € G is identity

element of G.

a

Step 4 (Ewistence of inverse) Let A € G. Then A = < a Z ) for some

a€Q*. NowB = ) € G is such that AB = BA = E. Hence B is the

QR [
Qe i

inverse of A.
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The above steps prove that G is a group. Moreover AB = BA holds for all
A, B € G. Hence G is an Abelian group.

Note that every element of G is a singular matriz but still they are invertible

n G.

Example 5.21. Let G = GL(3,Zs) be the set of all 3 x 3 non-singular matrices
over Zs, integers modulo 5. Then G is a finite non-Abelian group with respect
to the usual multiplication of matrices where entries are added and multiplied
modulo 5.

Step 1 (Closure) If A, B € G, then |A| # 0 and |B| # 0. In fact |A|,|B| €
Zs*. Since |A|, |B| € Zs*, therefore |A|, |B| are not multiples of 5 so that |A||B|
is not a multiple of 5, that is,|AB| is not a multiple of 5 (as |AB| = |A||B|.)
Hence AB is non-singular, so that AB € G.

Step 2 (Associativity) Since multiplication of matrices is associative, there-
fore associative law holds in G.

Step 3 (Existence of identity) The 3 x 3 unit matriz I3 is non-singular and
is over Zs, so that I3 € G. Also

I3sA=Al; = A for every A € G.
Hence I3 is the identity element of G.

Step 4 (Ezistence of inverse) For any A € G, |A| # 0. Since (Zs*,®5) is a
group so that |A| has a multiplicative inverse in Zs*, say b.

Now,

Aadj(A) = |AT
= bAadj(A) = bIAI=1
= Ab adj(A) = I
= AB = 1,

where B =b adj(A). Similarly adj(A)A = |A|L
= BA = I, Therefore A= = B € G. Hence G is a group.
1 2 1
Step 5 G is non-Abelian, as A= | 0 1 2
0 1 1

1
and B=| 4 are elements of G such that AB # BA.
0

O O N
—_ o W

Example 5.22. Let Q ={I,A,B,C,D,E,F,G}, where I = ( é

0 1 -1 0 0 -1 1 0
=(Sp)e=(0 S )e=(0 ) e-(0 5)

0 1 -1 0 0 -1 o
E = ( 10 I = 0 1 ,G = 10 )under the usual multipli-

cation of matrices. Then Q is a non-Abelian group.

0
1 )
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The multiplication table of Q 1is:

QIO QT ~|~
TR E~Qm e~
oA ~QWw
TEHOQWmE~QQ
=mQ~ET QYT
WA~ NQ D WX
Q~=2T QU SN
~>=mQOUEIY QR

QMmO Qe ~| -

Observe that I is the identity element. The elements I, B,D,E, F and G are
their own inverses whereas A,C are inverses of each other.

In a later chapter, when we discuss linear transformations we shall note
that these 8 matrices are the matrices of linear transformations of R%. They are
rotations about origin through 0°, 90°, 180° and 270°, reflection in the x-axis,
y-axis, lines y =z and y = —=x.

5.8 Exercise

1.

. Let G =

Prove that (M3(R), +) is an Abelian group. Is Ma(R) a group with respect
to multiplication? If not, what algebraic structure does (Ma(R),.) have?
Is it commutative?

. Let G be the set of all diagonal matrices over R*. Prove that G is a group

with respect to multiplication of matrices.

a 0

0 0

(i) F=Q* (ii) F =R* (iii) F =C* (iv) F =Z}

Prove in each case that G is a group with respect to multiplication of
matrices.

:a € F » where

o= {(0 )5 0 )50 (50

is a group with respect to matrix multiplication. Is it Abelian?

. Test whether the following are groups or not. Which of them are Abelian?

i) (GL(n,Q),.)
(i)  (M2(Z),+)
(i) (Mp(R),+)

. Prove that (Mj3(Zs),+) is a finite Abelian group. Compute its order.

. Prove that (M,,(Z,,),+) is a finite Abelian group. Compute its order.

5.9 Groups of Functions

Example 5.23. Let S be a non-empty set and let G be the set of all bijective
functions from S onto S. Then G is a non-Abelian group with respect to the
operation o the composition of functions.
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Step 1 (Closure) If f,g € G then f,g are bijective functions on S, so that
fog is also a bijective function on S. Hence fog € G. Thus o is a binary
operation.

Step 2 (Associativity) Since composition of functions is associative, therefore
o 1§ associative.

Step 8 (Existence of identity) The identity function e on S i.e. e(x) =
x V¥V x €8 being a bijective function, e € G. Moreover foe=cof = fV f € G.
Thus e is the identity element of G.

Step 4 (Ezxistence of inverse) Let f € G. Then f is a bijective function, so
that f~1 is also a bijective function on S. Thus f~' € G, and fof™' = f~lof =
e. Therefore, every element in G has an inverse.

Thus (G,0) is a group. However, it is not Abelian, for, consider S =
R, f(z) = 2% g(z) = 1 +a. Then (fog)(z) = (1 + )% (g0 f)(x) = 1+2°
so that fog # go f. Thus (G,0) is not Abelian. These groups are called trans-
formation groups and are denoted by A(S).

If S is a finite set having n elements then A(S) is a finite group of order nl.

Example 5.24. Let T, ,|R? — R?, be defined by
Top(z,y) = (x+a,y+0b) and let G ={T,:a,bcR}.

Then G is an Abelian group with respect to the composition of mappings as the
binary operation.
Step 1 (Closure) Let Ty p,Te.q € G then for any (z,y) € R?

(Tmch,d)(*r, y) = Ta,b(Tc,d(Iv y)) = Ta,b(x +c, Yy + d) = (l‘ tcta, Y +d+ b)
= (@t+a+ey+b+d) =Tare)mra

“TapTe.a = Tote, vra € G. Hence composition of mappings is a binary opera-
tion on G.

Step 2 (Associativity) Associativity holds because composition of mappings
1S associative.

Step 3 (Existence of identity) The mapping Ty is the identity of G.

Step 4 (Existence of inverse) For Top € G,T_, _ € G is
such that T, yT_q —p = To o using Step 1.
Also T_q,_pTop = To,0. Thus T_q —p is the inverse of Ty .

Step 5 (Commutativity) Since addition of real numbers is commutative

Ta,bTC,d = Ta+c,b+d = Tc+a,d+b = TC,dTu,b-
Steps 1-5 prove that G is an Abelian group.

Notation: The group G discussed in the above example is usually denoted by
T(R2). The elements of G are called translations.

Example 5.25. Let G be the set consisting of the six functions f1, fa,..., fs
deﬁned on R\{Ov 1} by fl(z) = LL‘,fg(x) = ].—l',fg(f) = %7.]04(1‘) = ﬁ7f5('r) =
’”lfl,fg(a:) = £ and let o be the composition of functions. Then (G,0) is a

non-Abelian group.
Solution: Given G = {f1, f2, f3, f1, f5, f6 }. We construct the composition table
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for G :

ol fi fo fs fi f5 fe
il fi o f3 fa fs s
folfe fi fs fo fz3 fa
fs|fs fa i fo fo fs
fao | fa f3 fo fs f1 [
fs|fs fo fo fi fo f3
foe|lfo fs fo fs fo f

Observe the following steps:

Step 1 (Closure) From the multiplication table it is clear that o is a binary
operation.

Step 2 (Associativity) Since the composition of functions is associative, there-
fore o is associative.

Step 3 (Exzistence of identity) The mapping f1 is the neutral element, because

fiof=fofi=fVfeG.

Hence fy is the identity of G.

Step 4 (Existence of inverse) fu, f5 are inverses of each other, whereas others
are their own inverses. Thus (G,0) is a group.
Also we see from the table that fso fy # fyo f3. Hence (G,0) is a non-Abelian

group.

We shall show later that every group of order up to 5 is Abelian. Thus the
smallest non-Abelian group is of order 6. The above group is an example of
such a group.

5.10 Exercise

1. Show that the set G = {f1, f2, f3, fa} where fi(x) =z, fo(z) = —z, f3(x)
= 1 fu(x) = =L for all z € R\ {0} is a group with respect to the
composition of mappings.

2. Let S=R~{0,1} and let f;, for i =1,2,...,6 be functions on S defined
by fi(z) =z, fox) =1 —x, fs(z) = I, fa(z) = 125, fs(z) = 24, fo(z) =

—2. If o is the operation ‘composite of functions’, determine which of the
following are groups? In case they are groups, are they Abelian?

(i) (Gi,0) where G1 = {f1, f2}

(i)  (Gg,0) where Gy = {f1, f3}

(iii)  (Gs,0) where Gs = {f1, f1}

(iv)  (Ga,o) where G4 ={f1, f5}

(v)  (Gs,0) where G5 = {f1, f6}

(vi)  (Ge,0) where G = { fa, f6}

(vii)  (Gr,0) where G7 = {f1, f1, f5}
(Viii) (va O) where Gg = {fl, fg, f?,7 fg}

5.11 Group of Subsets of a Set

Example 5.26. Let S be any set and P(S) be the power set of S. Define A on
P(S) by
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For A,B € P(S), AAB = (A~ B)U (B~ A). Then (P(S),A) is an Abelian
group.

Step 1 (Closure) If A, B € P(S) then AN B and B\ A are both subsets of S
so that (AN B)U(B\ A) is also a subset of S. Hence (AN B)U(B\ A) € P(S)
so that AAB € P(9).
Note that AN B=ANDB’, so that AAB=(ANB)U(BNA)

Step 2 (Associativity)

Step 3 (Existence of identity)p € P(S). For, A € P(S),

ANp= (AN U(pnA)=Aup=A
Similarly, pAA = A so that
AAp = pAA = A for all A€ P(S).

Hence ¢ is the identity element of P(S).
Step 4 (Existence of inverse) If A € P(S), then

AAA = (AN A UANA) =¢Ud=¢

Thus AAA = ¢. Thus each element of P(S) is its own inverse.
Step 5 (Commutativity) If A, B € P(S) then

AAB=(ANB)U(BNA)=(BNA)U(ANB)=DBAA

Hence AAB = BAA. So that A is commutative.
Thus (P(S),A) is an Abelian group.

If S is an infinite set, then P(S) is also infinite. But if S is a finite set with
n elements then P(S) has 2™ elements. Hence (P(S),A) is a finite group and
its order is 2™, where n s the order of S.

5.12 Exercise

1. Let S be any set. Is (P(S),N) a group? If not, why? Which algebraic
structure does (P(S),N) have? Is it commutative?

2. Let S be any set and A be a subset of S. Define G = {B C S: BNA = ¢}.
Prove that (G,A) is an Abelian group. When will G be a finite group?
What is G when A is the null set?

5.13 Groups of Symmetries

These groups have been studied in the previous unit. We shall mention them
here for the sake of completeness.

Example 5.27. The 8 symmetries of a square form a group with respect to
composition of motions.

It is called the dihedral group of order 8 and is denoted by Dg. It is a non-
Abelian group.
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Example 5.28. The 6 symmetries of an equilateral triangle form a group with
respect to composition of motions.

It is called the dihedral group of order 6 and is denoted by Dg. It is a non-
Abelian group.

Example 5.29. The 4 symmetries of a non-square rectangle form a group with
respect to composition of motions.
It is known as the Klein’s four group and is denoted by Vy. It is an Abelian

group.

Example 5.30. The 2n symmetries of a regular n—gon form a group with
respect to composition of motions.
It is called dihedral group of order 2n and is denoted by Da,,.
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CHAPTER 5. GROUP: DEFINITION AND EXAMPLES

5.14 Supplementary Exercise

1.

10.

11.
12.

State whether the following statements are true or false and justify your answer.

i) The set of rational numbers is a group with respect to multiplication.
(ii) The set of integers is a semigroup with respect to subtraction.
(iii)  In a group some elements may have more than one inverses.
(iv)  There exists a non-Abelian group of order 6.
(v) Every group of order two is Abelian.
(vi)  The identity element of (Z,*) where * is defined by a xb = a — b+
1VabeZis 1.
(vii)  (Q*, ¢) is a monoid where ¢ is defined by agb = |ab| V a,b € Q™.
(viii)  (N,.) is a monoid but not a group.
(ix) A group may have more than one identity elements.
(x) Ina group (G,x) for a,b € G the equation a * x = b has a solution in
G.
(xi) Inagroup (G, *) for a,b € G the equation (a*z)+b = 0 has a solution
in G.
(xii)  The null set can be considered to be a group.
(xiii) Every semigroup is a monoid.
(xiv)  Every monoid is a semigroup.
(xv) If S is the null set, then (P(S),U) is a group.
(xvi)  (Zio,®10) is a group.

. Give an example of a group in which every element is its own inverse.
. Can you give an example of a non-Abelian group of order 47

. Give five examples of each of the following:

(i)  Finite Abelian group.

(ii)  Finite non-Abelian group.
(iii)  Infinite Abelian group.

(iv) Infinite non-Abelian group.

. Give an example of a group of order

(i) 81 (i) 2° (i) 5'¢ (iv) p”2 (v) p™", where p is a prime and m,n are
natural numbers.

. Let (G, *) be a finite group with even number of elements. Show that there exists

at least one a € G, different from the identity element e such that a xa = e.

. Give a multiplication table for the binary operation on the set S = {e,a,b} of

three elements satisfying the properties of the existence of identity and existence
of inverse but not the associative law.

. Let SL(2,Q) be the set of all 2 x 2 matrices over Q with determinant 1. Prove

that SL(2,Q) is a group with respect to multiplication of matrices. Is it Abelian?

. Let G be the set of all diagonal matrices over R*. Prove that G is a group with

respect to multiplication of matrices. Is the group Abelian?

Let G = {£1,4i,+j, £k} where i? = j2 = k* = —1,ij = —ji = k,
jk = —kj = i,ki = —ik = j. Prove that G is a group. Is it Abelian? What is
the order of the group?

(This is called the Quaternion group and is denoted by Qs.)

Prove that every group of order 3 is Abelian.

Let G = {p,q,r,s,t}. If G is a group with respect to the binary operation x*,
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then complete the following table, given that p is the identity element.
*|p g r s &
pl- - - - -
Q- r - - p
r{- s t p -
s|- t - q r
t |- - - - -
13. Complete the following table:
Set Binary Groupoid | Semi- | Monoid | Group | Commuta-
Operation group tive law
holds
Nu {0} Addition Vv Vv Vv X Vv
/ Addition
Z Subtrac-
tion
Q Multipli-
cation
R* Multipli-
cation
R* Division
Ze Multipli-
cation
modulo 6
Irrational | Multipli-
numbers cation
Odd Addition
integers
U(s) Multipli-
cation
modulo 8
Odd Multipli-
integers cation

14. Let G be a group and let g € G. Define

15.

16.

(i)
(ii)

fo:G—= Gby fo(x) =gxg ' Ve

composite of mappings?

(iii)

Is it Abelian?

Show that f, is a bijective function.
Define Inn(G) = {fy : g € G}. Is Inn(G) a group with respect to

Let S = {5,15,25,35}. Show that (S, ®40) is a group. What is the identity
element of this group? Can you see any relationship between S and U(8)?

Determine whether each of the following sets form a group under the indicated
operation on the elements of the set. In case they do not form a group, state
which property fails to hold.
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17.

18.

19.

20.
21.

CHAPTER 5. GROUP: DEFINITION AND EXAMPLES

(i) S={& :p€ZnecN} under addition.

(i) S ={zeC:2™=1,n € N} under multiplication.

(iii) S = Set of all n x n matrices over Z under multiplication.

(iv) S = Set of all n X n matrices over Z with determinant +1 under
multiplication.

(v)  S={a,beRT :ax*b=a’} under multiplication.

(vij S={ze€R:0<z<1}.On Sdefinexaszxy=c+y—[z+y,
where [ ] denotes the greatest integer function.

(vii)  Let n be an arbitrary but fixed positive integer. Let S = set of all real
polynomials of degree < n in z including the zero polynomial; under
addition.

(viii) Let n be an arbitrary but fixed positive integer. Let S = set of all
real polynomials of degree n in x including the zero polynomial; under
addition.

(ix)  Let S = set of all non-zero real polynomials under multiplication.

(x) S = Set of all rotations of the plane R? about the origin, with respect
to composition of mappings. That if s*¢ = rotation ¢ followed by the
rotation s.

(xi) S = set of all translations of the plane R? parallel to a fixed line, with
respect to composition of mappings. That is, s x ¢ = translation ¢
followed by translation s.

Let G = (1) lll ta € Z}. Prove that G is a group with respect to the

usual multiplication of matrices? Is it Abelian?

Let S be any set. Prove that (P(S),U) is an Abelian monoid. Is it a group?
Justify.

Let S =R~ {0,1} and let g;, ¢ =1, 2, 3 be functions defined on S by

g(z) =2, g2(x) = ﬁ, g3(z) = "";1, xz €S.If G={g1,92,93}. Prove that
G is a group with respect to composition of mappings. What is the order of G?

Give three examples of groups of order 6.

The following are the “definitions” of a group given by students. Are they fully
correct? If not, correct them.

(a) A group is a set G such that
(i)  the operation is associative.
(ii)  there is an identity element {e} in G.
(i) for any a € G, there is an a’ (inverse for each element).

(b) A group is a set with a binary operation such that
(i)  the operation is associative.
(ii)  An inverse exists.
(iii)  An identity element exists.

(c) A set (G, x) is called a group such that
(i) = is associative.
(ii)  there exists an element e such that axe=exa=eVa
(iii) for every element a there exists an element a’ such that
axa =a xa=e.

(d) A group G is a set of elements together with a binary operation * such
that the following conditions are satisfied.
(i) = is associative under addition
(ii)  There exists e € G such that exz =z xe==x
(iii) There exists an element a’ (inverse) such that
axa =a xa=efor every a € G.
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(e) A set G is called a group over the binary operation * if
(i) = has an identity element.
(i) for a € G there exists a’ € G such that axa’ =a' xa=¢
VacG

(iii) = is associative over G.

5.15 Answers to Exercises

© 0 N o ok W=

Exercise - 5.2

Since 3, 5 are odd but 3 + 5 = 8 is not odd, so the closure property fails.
(2—-3)—4#2—(3—4). Associativity does not hold.

Identity element does not exist.

Identity element does not exist.

2 € N does not have an inverse.

Groupoid.

Groupoid.

b € G does not have an inverse.

(bxc)xd#bx*(c*d). Moreover ¢ has two inverses ¢ and d.

Exercise - 5.4

a

. 0 is the identity element. Inverse of a € S is —+%.

14+a
(i) Inverse of 3 is —2, Inverse of 4 is —2

5
(i) == —15, Yes.

%

Q[

th

. n"" roots of unity for

(i) n = 53, (i) n =4021.

10. For w = cos % + ¢ sin %r; w”; w27, 0 < 7 < 10 are the pairs of inverses.

For w = cos 2= + isin 27", w";w" ™" are inverses of each other.

11. (2% 1) %1 # 2% (1*1), * is not associative. Identity element is 0. Each element

® N o o WD e

is its own inverse.
Exercise - 5.6

Construct multiplication table.
Construct multiplication table.
Construct multiplication table.
No, 26063=0 ¢ G.

Construct multiplication table.
(1)8 (ii)8 (iii)15.

13, 11, 19, 17.

22, Construct multiplication table.



208 CHAPTER 5. GROUP: DEFINITION AND EXAMPLES

Exercise - 5.8

. No, Monoid, No.

Yes

Yes

. (i) Non-Abelian group
(ii) Abelian group
(iii) Abelian group
69

- 67

7. m"

T N e

(=)

Exercise - 5.10

2. (i), (ii), (v) and (vii) are Abelian groups. Others are not even groups.

Exercise - 5.12

1. Inverse of only identity element S exists. Monoid. Yes.

2. S finite. P(S5).

Supplementary Exercises

1.
(1) False, 0, has no inverse.
(i)  False, not associative.
(iii)  False, inverse is unique.
(iv)  True, Ds.
(v)  True,
(vi)  False, since 1%2 =0 # 2.
(vii)  False, for " if e is identity, (—2)¢e = 2|e| # —2.
(viii)  True.
(ix)  False, identity is unique.
(x)  True.
(xi)  False, since (a * z) + b is not defined in G.
(xii)  False, A group is always a non-empty set.
(xiii) False. (N,+).
(xiv)  True.
(xv)  True, when S = ¢, P(S) = {¢}.
(xv) False, 2,5 € Z10,2010 5 ¢ Zig, so not closed.
2. P(S)
3. Does not exist.
4. Look-up the examples in the text.
5. Other answers are also possible.

() (Zs1, ®s1);81 = 3* = 3%° (Ma(Zs), +)
(i)  (M3(Z2),+)

(iil)  (Ma(Zs),+)

(V) (Ma(Zp), +)

V) (Mumxn(Zp), +).

6. Since inverses exist in pairs and e is its own inverse.
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7. Table is given by
8. No.
9. Yes.
10. No. o(G) = 8.
12. The complete table is given below:
*|p q r s ¢
plp q r s t
qlq 7 s t p
rir s t p gq
s|s t p q 7
t|t p q r s
13. The complete table is given below:
Set Binary Groupoid | Semi- | Monoid | Group | Commuta-
Operation group tive law
holds
NuU {0} addition Vv V4 Vv X Vv
Z Addition V4 Vv N4 v N4
Z Subtrac- Vv X X X X
tion
Q Multipli- v v Vv X Vv
cation
R* Multipli- V4 v Vv Vv V4
cation
R* Division 4 X X X X
Zsg Multipli- v v Vv X v
cation
modulo 6
Irrational | Multipli- X X X X X
numbers cation
0Odd Addition X X X X X
integers
U(8) Multipli- Vv v Vv Vv Vv
cation
modulo 8
0Odd Multipli- V4 Vv Vv X 4
integers cation

14. (ii) Yes. (iii) Abelian if G is Abelian.
15. 25 is the identity element.

U(8)={1,3,5,7}. Every element of S is an element of U(8) multiplied by 5.
Every element of the multiplication table is multiplied by 52 modulo 40.
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16.

17.

18.
19.

20.

21.

CHAPTER 5. GROUP: DEFINITION AND EXAMPLES

(i) Yes.
(ii)  Yes.
(iii)  No. Existence of Inverse.
(iv)  Yes.

(v)  No. Associativity.
(vi)  Yes. 0 is the identity element, 07! =0 2z ' =1—=, z #0.
(vii)  Yes.
(viii)  No. Closure.
(ix)  No. Existence of Inverse.
(x)  Yes.
(xi)  Yes.

1 a\ " 1 —a
Unity is Io. (O 1) :(0 1 ).No.

¢ is the identity element. Only identity element is invertible.

Identity element is = g1. The elements g2, g3 are inverses of each other. Order of
the group is 3.

(Zs, ®6), 6th roots of unity, D other examples are possible. First is Abelian,
while second is non-Abelian.

Look at the definition of a group carefully.



Chapter 6

Group

Properties and Characterization

We have studied a variety of examples of groups in the previous chapter. We
will now study some properties shared by all groups. It will be proved that in
a groupoid if an identity element exists, it is unique. In examples of groups it
was observed that every element had only one inverse. This was not by chance.
In fact, we shall prove that, in a group, every element has an unique inverse.

6.1 Properties of Groups

Before discussing the properties of groups, some notations, which will be
used throughout, will be in order.
Notation: For a group (G, ) it is tedious to keep on writing the operation *
throughout our calculations. Thus, except where necessary, juxtaposition will
be used for the binary operation and a * b will be written as ab. In this case we
will say that (G, -), or simply G, is a group. When dealing with special groups,
the given group operation will be used.

In view of the generalized associative law, the product of three or more
elements of a group will not be bracketed. For the sake of completeness, we
prove the uniqueness of identity element.

Theorem 6.1. (Uniqueness of identity) In a monoid G identity element is
unique.

Proof: Let ej, ez be two identity elements in G. Then
elfa=ae; =a YaeG..(1)

ea=aes=a VaecG..(2)

In (1), taking a = eq, we get e1e2 = eae; = ea, and in (2), taking a = e1, we get
€9€1 = €162 = €7.
Hence e; = es, so that identity element is unique.

In view of the above result we may speak of the identity element in a group.
We denote it by e. O
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Theorem 6.2. (Uniqueness of inverse) In a group G every element has a unique
inverse.

Proof: Let G be a group. Suppose an element a € G has two inverses b and
c. Let e be the identity element in G. Then

ab=ba=¢e ..(1)

ac=ca=ce ..(2)

Now,
ab = e
= c¢(ab) = ce pre multiplying by ¢
= (ca)b = ¢ wusing associative law and property of identity
= e = ¢ using (1)
= b = ¢ using property of identity.

Hence a € G has a unique inverse. Since ‘a’ is an arbitrary element of G,
therefore every element of GG has a unique inverse. O
From Theorems 6.1 and 6.2 it follows that:
(i) in a monoid, the identity element is unique.
(ii) in a group, the identity element is unique and every element has a unique
inverse.
As a consequence of the above theorem, we can now speak of ‘the inverse’
of an element of a group. We denote the inverse of an element g € G by g~ 1.

We now define the integral powers of an element of a group.

Definition 6.1. In a group G, for any g € G and any non-negative integer m,
we define

1. g%=e

2. g™=gg---g (m-times)

3.9 = (g™

In view of the above definition, we have the following theorem.

Theorem 6.3. In a group G, for any g € G and for any integers m and n,

2. (gm)" =gm" = (g")"
3 (g t=(h)"
4. e"=e

Proof: Left to the reader.
O
The above theorem tells us that the familiar laws of exponents for real num-
bers also hold true for all elements in a group. The laws fail to hold for expres-
sions involving two elements of the group, because, in general, (ab)" # a™b". In
fact, (ab)? # a?b?. This is shown by the following example.
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Example 6.1. Let G = GL(2,R), the group of 2x 2 non-singular matrices over

the set of real numbers. Let A = (} é),B: (? 1) Then A,B € G.

13 8 34 21

: 2 212 :
It can be verified that (AB)* = ( 8 5 ), A’B? = ( 91 13 > Hence, in
general, (AB)? # A%2B2.

When dealing with a group whose binary operation is addition denoted by
+, the inverse of an element g is —g. When g is added n-times, it is written as
“ng”. This should not be confused with n- g, as the group operation is addition,
not multiplication. Moreover n may not be an element of the group at all. Note
that we do not permit non-integral exponents. The following Table 6.1 shows
the notations used for multiplicative and additive groups, respectively.

Multiplicative Group Additive Group
a.b or ab for multiplication | a + b for addition
e or 1 for identity/unity 0 for identity/zero

a~! for inverse of ‘@’ -a for inverse of ‘a’

a™ for nth power of a na for a added n-times

ab™! for quotient a — b for difference
Table 6.1

Theorem 6.4. (Cancellations laws) In a group G left and right cancellation
laws hold, that is for a,b,c € G

1. ba = ca = b= c (right cancellation law)
2. ab=ac=b=c (left cancellation law).
Proof: Let a,b,c € G be such that
ba=ca ... (1)

Since a is invertible, therefore it has an inverse, say a’. Post multiplying (1) by
a’ we get

(ba)a’ = (ca)d
Hence b(aa’) = c(aa’) using associativity.
This gives be = ce using property of inverse.
Thus b = c using property of identity.

Hence ba = ca = b = c, so the right cancellation law holds.

Similarly we can prove that the left cancellation law also holds. O
As a consequence of the cancellation property, we find that in the multipli-

cation table for a finite group, each element of the group occurs exactly once in

each row and in each column. Thus the multiplication table is a Latin square.!

Theorem 6.5. If G is a group and a,b are any elements of G then

1. (el =a

et S = {a1,az2,...,an}. Then an n x n array is said to be a Latin square over S if each
of its rows and columns is a permutation of a1, az,...,an.
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2. (ab)~t=b"ta™!

Lo al_1 for every integer m.

3. (ay...an) "t =a;
Proof:

1. Let a=! = ¢. By definition of inverse of an element ac = ca = e, the
identity element of G. Then ca = ac = e means that a = ¢~ = (a71)71.
Hence (a=1)~! = a.

2. Denote b~'a~! by c. Proving the result amounts to showing that c is the
inverse of ab, that is, proving that (ab)c = c(ab) = e. Now

(ab)e =

Il
—~ o~~~
IS
—~
S
i
—
—
~—
S
—
o
1)
&.
=]
o]
Q
9]
93]
o
Q.
&
=8
<
=.
=+
<

ae)(f1 using property of inverse
= aa~! using property of identity

= e using property of inverse

Similarly it follows that c(ab) = e.
So (ab)c = c(ab) = e and hence (ab) ™' =c=b"ta" L.

3. Prove by induction on n. O
Remark 6.1. Note that (ab)™ = b~ta™!, but in general (ab)™2 # b~2a"2.

For exzample, in the group GL(2,R), if A = < _11 _12 ) ,B = < _01 _11 ),
1

2 _ 3 —4 2 _ -1 2 _ (3 4 —2 _
then A —(_2 3 , B = 1 9 , 80 A™* = 9 3 ,B7% =
2 1\ 5,0 (8 11 (2 -3
(11)pran=(5 7)) ae-(247)
, (T 12 L (T 12
(AB) —(_4 - ) AB)2 =1, - )
Thus we see that (AB)™2 # B=2A72.

Theorem 6.6. In a group G, the equations ax = b and ya = b have unique
solutions in G for all a,b € G.

Proof: Since G is a group, for each a € G, a=! € G. Consider the equation
ax = b. Existence of the solution x € G:
Since a,b € G, therefore a='b € G.

Let ¢ a~1'b. Then
ac = a(a"'b)

= (aa™1)b using associativity

= eb using property of inverse

= b using property of identity

Thus ac = b so that ¢ € G is a solution of ax = b in G.
Uniqueness of the solution: Suppose c1,co are two solutions of ax = b in G.
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Then ac; = b, and aca = b. Thus ac; = ace. Using left cancellation law in G,
we get ¢; = co. Hence the solution is unique.

Similarly it can be proved that the equation ya = b also has a unique solution
y=>ba"!in G. O

Example 6.2. Let G be the group of quaternions. That is G = {£1, i, +j, £k},
where i2 = j2 =k = —1,ij = —ji=k, jk=—kj =i, kl = —lk =j. Verify
that:

The equation x2> = —1 has 6 solutions in G, namely x = +i, +7j, +k.

Similarly x* = 1 has 8 solutions. In fact, every element of G is a solution.

6.2 Solved Problems

We shall now give some sufficient conditions for a group to be Abelian.

Problem 6.1. If G is a group, and a,b € G are such that b= zaz™' for some
x € G, then b" = za"x ™!, for every integer n € Z.

Solution: Three cases arise:

Case 1. If n is a positive integer. We prove the result by induction on n.
The result obviously holds for n = 1.

Let the result hold for n =k, i.e.

Now

bk’+1 _ bkb
= (zd*z7 ) (zaz™!)
_ k(,.—1 -1
= za"(z” x)ax
= zdfaz™!

xa]”lx*l

Hence the result holds for n = k + 1. The induction is complete and thus, the
result holds for every positive integer n.
Case 2. If n is a negative integer, then n = —m, where m > 0.

bTL — b—m
_ (bm)fl

—_ (xamx—l)—l

= ga Mz ! using the law of inverse for a product
of elements.
= za"z~!
o= zax !
Case 8. If n = 0, then b° = e and za®z~! = zex™! = 227! = e. Hence

b0 = zalz 1.

Combining all the three cases we get b = za™z~! for all n € Z.
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Problem 6.2. Let G be a group such that if a,b,c € G and ab=ca =b=c
then G is Abelian (this property is called the cross cancellation law).

Solution: Let a,b € G. By the associative property a(ba) = (ab)a. The given
condition gives that ba = ab, so that G is Abelian.

Problem 6.3. If G is a group satisfying a> =e ¥ a € G, then G is Abelian.

Solution: Step! Let a € G. Then

a = e

= a (aa) = a le premultiplying by a=!

= (a7'a)a = a ! using associativity and property of identity
= ea = a!

= a = a L.

Hence every element is its own inverse.

Step 2 Let a,b € G. Then ab € G implies that a = o™, b = b~! and
ab = (ab)~1.

Now ab = (ab)~! = b~ta~!, by property of inverses.

Hence ab=ba V a,b € G. . G is Abelian.

Problem 6.4. If G is a group satisfying (ab)? = a®b* V¥ a,b € G, then G is
Abelian.

Solution: Let a,b € G. Then

(ab)? = a2b?
= (ab)(ab) =  aabb
= a(ba)b = a(ab)b using associativity
== ba = ab using cancellation laws

Hence G is Abelian.

Problem 6.5. Let G be a group and a,b be two elements of G satisfying (ab)’ =
a’b® for three consecutive integers i. Then ba = ab. If G has this property for
all a,b € G, then G is Abelian.

Solution: Let n,n + 1 and n + 2 be three consecutive integers for which the
given condition holds. That is,

(ab)™ = a™b" (6.1)

(ab)n+1 — an+1bn+1

(ab)n+2 _ an+2bn+2
Then

(ab)(ab)™™t = a"*t20"*+2  using (17.16)
(ab)(a™t1o"Th) = a"*t2pn*t2 using (6.2)

= ba"t! = a""'b  using cancellation laws
Thus

ba"tt = a" b, (6.4)
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Similarly, (ab)(ab)® = a"*1b" ! using (6.2)
= (ab)(a™™) = a™t1p"+1  using (17.18)
= ba™ = a™b using cancellation laws
- ba™t1 = a™ba  post multiplying by a
= a" b = aba  using (17.17)
== ab = ba using cancellation laws.

Thus ab = ba. If the condition holds for all a,b € GG then we get ab =ba V a,b €
G, so that G is Abelian.

Remark 6.2. If the above result holds just for two consecutive integers, then
G may not be Abelian. Give an example to prove this.

Problem 6.6. A group G is Abelian if and only if (ab)™ = a™b" for all a,b € G
and for every positive integer n.

Solution: Let G be Abelian. Let a,b € G. We prove the result by induction
on n. The result obviously holds true for n = 1. Let the result holds for n = k,
ie.

(ab)* = a** (6.5)
Now
(ab)**1 = (ab)(ab)---(ab), (k+ 1) — times
= a(ba)(ba)---(ba)b
= a(ba)kb

= a(ab)*b since G is Abelian
= a(a*b*)b using (6.5)
= ad®b*b

Gk 1pk+1

Hence the result holds for n = k+1. The induction is complete. Thus the result
holds for every positive integer n. Conversely, if (ab)” = a™b™ for all a,b € G
and for all n € N, then the consequence of n = 2 is that GG is Abelian, as proved
in problem 6.4.

Remark 6.3. The above result does not hold for non-Abelian groups. For ex-
ample, let G = GL(2,R), the set of all 2x 2 non-singular matrices over the set

of real numbers. If A = ( (1) } ), B = ( ? } >, then A, B € G are such
that (AB)? # A2B2.

Problem 6.7. Let G be a group and m,n be two relatively prime integers such
that a™b™ = b™a™ and a™b™ = b"a™ for all a,b € G, then G is Abelian.

Solution: Since m,n are two relatively prime integers, therefore (by division
algorithm) there exist integers xz, y such that

mx +ny = 1. (6.6)
Step 1 We prove that

(@)™ = (5"a™)™* and (a™b™)™ = (b"a™)"*  for all integers k.



218 CHAPTER 6. GROUP: PROPERTIES AND CHARACTERIZATION

Let r = mk. Two cases arise: k > 0 or k < 0, since for £ = 0, both sides are
trivially equal to the identity e.
Case 1. If k > 0, then r > 0, so that

(@™o™)" = (a™")(@™bd™) - (a™b™)  (r — times)

a™(®"a™)(b"a™) - (b"a™)b"

a™ (b a™) "

a™ (" a™)" (b"a™) "

a™(b"a™) a0
= a"(b"a™)a™™

a™(b"a™)mkgm™

am (™) ma

a™(c¢™a™™) where ¢ = (b"a™)*
= (a™c™)a™™
= (™a™)a™™ by the given condition
= cm
= (e
= (bra™)"m*
@"a™)"

Hence, (a™b™)" = (b"a™)". (6.7)
Case 2. If k < 0, then r < 0.
Let 7 = —r’ where ' > 0. Observe that
(™) = (a"b")"
= [

= [(0"a™)"]"" using case 1

= (®a™)"
®"a™)"
Thus we have proved that for every integer k,
(@™p™)™k = (pra™)™F (6.8)
Similarly, (a™p™)"k = (bra™)"* (6.9)

Step 2 We shall now prove that for all a,b € G, a™ and b™ commute, i.e.
a™b" =b"a™ for all a,b € G.
Observe that
(@mb") = (a™b")!

= (a™b™)™* ™ using (6.6)

= (a™b")™*(a™b"™)™ using laws of exponents

= (b"a™)™*(b"a™)™ wusing (11.10) and (11.10)
= (b a™)m Y
= (b"a™)!

b'ﬂ a7n
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Therefore,
a™b" =b"a™ (6.10)

Step 8 Finally let a,b € G. Then
lbl

mm+nybmm+ny

ab =

maT o nypm pny

MERG"H™Y  where p = a¥, ¢ =b"
MEGM P ™ using (6.10)
mapmae ny pny

a

= (@) ) (@) )"

b*)™ (a®)™ (a¥)" (b)

b)) (a®)™(bY)"(a¥)™ by the given property in G
(a¥)™ using (6.10)

by the given property in G

n
n

(
(
(b a
(%)™ (%) (a")™

HmE Y o ME Ny

_ bmm+nyamm+ny
= b'a' using (6.6)
= ba
Hence ab = ba for all a,b € G. Thus G is Abelian.

6.3 Exercise

1. Let G be a group and a,b € G such that ab = ba. Then prove that
(i) a v l=b"tat
(i) a7 'b=ba"l.
(iii) ab~! =b"la.

2. Prove that a group G is Abelian if and only if (ab)~! = a~1b~! for all
a,beq.

3. If G is a group and ay,as,...,a, € G, prove that is

—1_ -1 -1 1, -1
(amraz---an)" " =a, a,_;...ay aj .

4. Let G be a group, and a,b,c € G. Solve the following equations for =z,
in G:
(i) alza=c
(ii) azb=c.

5. Let G be a finite group having even number of elements. Show that there
is at least one element in G, other than identity which is its own inverse.

6. In a group G, prove that
(x7taz)" = 2~ tax for all a,z € G, n € Z.

7. Prove that in a group, the identity element is the only idempotent element.
(Recall that an element g € G is said to be an idempotent if g% = g.)
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8. Let G be a group and a,b be two elements of G such that (ab)™ = a™b"
for two consecutive integers n. Do a and b necessarily commute? Justify
yOUr answer.

6.4 Characterization of Groups

The axioms used to define a group can actually be weakened considerably.
This will give a stronger version of the definition of a group. The following
theorems characterize groups with the weaker axioms. First we give some defi-
nitions.

Definition 6.2. Let G be a groupoid.
(i) An element e, € G is said to be a right identity if ae, = a V a € G.
(ii) An element e; € G is said to be a left identity if eea =a V a € G.

Definition 6.3. Let G be a groupoid and let e, € G be a right identity of G.
Then

(i) an element a € G has a right inverse with respect to right identity e,. if
there exists b € G such that ab = e,..

(ii) an element a € G has a left inverse with respect to right identity e,.. if there
exists ¢ € G such that ca = e,.

Theorem 6.7. Let G be a semigroup. Then G is a group if and only if the

following conditions hold:

(i)  There exists e, € G such that ae, = a ¥V a € G, i.e. a right identity
element e, exists.

(it) For each a € G, there exists a. € G such that aal = e, i.e every
element of G has a right inverse with respect to right identities.

Proof: If G is a group then the conditions hold as identity element e is also
a right identity and inverse of an element is also a right inverse. Conversely, let
the conditions hold. We shall prove that G is a group.
Step 1 Let a € G. By (i) there exists a’ € G such that aa’ =e,...(1)
Since a’ € G, therefore there exists a” € G such that a’a” = e,...(2)

Now
aa a'(aer)
= d'(a(d’a”)) using (2)
= d'((aa’)a”)  using associativity
= d'(e,a”) using (1)
= (de)d”
= d'a” using condition (4)

= e, using (2).

o.d'a = ey, so that we get aa’ = d'a=-e,...(3).
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Step 2 era = (aad')a  using (1)

= a(d'a)
= ae, using (3)

= a using condition (i).

Thus ae, = era = a for all a € G. Hence e, is the identity element of G. Let us
denote it by e.
Step 3 By (3) we get
aa, = a,.a = e.

Hence a, is the inverse of a. Thus every element of G has an inverse.

Step 4 Steps 2 and 3 above show that the semigroup G has an identity
element and every element is invertible. Hence G is a group. O

This is a very important result. It tells us that if a binary composition on
a set G is associative and there exists a right identity and every element has a
right inverse then G is a group. Thus even by assuming weaker conditions, we
are able to prove that the algebraic structure is a group. In this sense we can
say that this is a stronger version of the definition of a group. The word ‘right’
in the above theorem can be replaced by ‘left’, as the following theorem shows.

Remark 6.4. We used Theorem 6.7 here. In that theorem it is essential for
G to be a semigroup. If G is not a semigroup then it may not be a group even
if right identity and right inverses exist in it. This can be seen in the following
example.

Example 6.3. Let Q be the set of positive rational numbers. Then (QT,+)
is a groupoid, but not a semigroup, since 2 + (3 +4) # (2 + 3) + 4.

Further a +~1=aV a € Q". Hence 1 is a right identity. Moreover a ~a = 1.
Hence a is a right inverse of a. Thus QT has a right identity and every element
of QT has a right inverse, but (QT, <) is not a group. Note that this is because
associative law does not hold in QF, w.r.t the operation .

Theorem 6.8. Let G be a semigroup. Then G is a group if and only if the

following conditions hold:

(i)  There exists e; € G such that eqa =a V a € G, i.e left identity element
e; exists.

(ii)  For each a € G, there exists a’ € G such that a’a = ey, i.e every element
of G has a left inverse with respect to some left identity.

Remark 6.5. If a semigroup G has an one sided identity and the other sided
inverse, then it need not be a group. In other words, if a semigroup G has a
left identity and every element has a right inverse, then G need not be a group.
This can be seen from the following example.

Example 6.4. Let G = {a,b,c,d}. Defineo on G as: xoy =y for allz,y € G.
The multiplication table for G is

QO |0
e e & &2
SaEESUIRS SRS MS S
a0 o oo
S S NS
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If x,y,z € G then

(voy)oz=yoz—2

zo(yoz)=zoz=z

Thus (xoy)oz==xo (yoz), so that the operation is associative. Hence (G, o)
is a semigroup. We see that aox = x for all x € G. Thus a is left identity. For
any x© € G, from the table

roa=a.

Thus every element x € G has a right inverse, namely, ‘a’. If G were a group,
then by Theorem 6.4, cancellation laws must hold in G. However from the table
boa=aand coa=a. Thenboa=coa butb+# c. Thus cancellation laws do
not hold in G and therefore G can not be a group.

Theorem 6.9. Let G be a semigroup. Then G is a group if and only if the
equations ax = b and ya = b are solvable in G for all a,b € G.

Proof: Let G be a semigroup. First suppose that G is a group, then the
equations ax = b and ya = b are solvable in G for all a,b € G, follows from
Theorem 6.6.
Conversely, suppose that for all a,b € G the equations ax = b and ya = b are
solvable in G.

Step 1 (G has a right identity element). Let a € G. Consider the equation
axr = a. This equation is solvable in G. Thus there exists e € G such that
ae = a. We shall prove that e is a right identity for G. Let ¢ € G. Then
the equation ya = g has a solution in G, so that there exists h € G such that
ha = g. Now ge = (ha)e = h(ae) = ha = g. Thus ge = g for all g € G, so that
e is a right identity in G.

Step 2 (Every element has a right inverse in G.) Let a € G. Then the
equation ax = e has a solution in G, say a’. Thus, we get aa’ = e, so that every
element in G has a right inverse in G.

Step 3 Steps 1 and 2 above show that G is a semigroup with a right identity
and that every element in G has a right inverse. Thus by Theorem 6.7, G is a
group. O

Theorem 6.10. A finite semigroup is a group if and only if cancellation laws
hold.

Proof: Let G be a finite semigroup. If G is a group, then cancellation laws
hold in G by theorem 6.4. Conversely, suppose cancellation laws hold in G.
Since G is finite, let G = {ay, az,...,a,}.

Step 1 Let a € G. Then aa; € Gforalli =1,2,...,n. Let P = {aay,aaq,...,
aan}. Then P C G. We assert that all the elements of P are distinct, for if
aa; = aa; for some ¢ # j; then by left cancellation law a; = a;, which is a
contradiction. Hence P has exactly n elements. Now P C G. Since G is finite
and both P and G have the same number of elements, therefore P = G. Let
b € G and since G = P, therefore b € P so there exists a; € G such that aa; = b.
Hence for all a,b € G, ax = b has a solution in G.

Step 2 As in Step 1, considering Q = {aia,...,ana} we can prove that for
all a,b € G, the equation ya = b has a solution in G.

The two steps using Theorem 6.9, prove that G is a group. O
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Remark 6.6. In Theorem 6.10, none of the following conditions on G can be
dropped:
(i)  finiteness of G.

(i)  associativity in G.

(i) (Z,-) is an infinite semigroup in which cancellation laws hold but is not a
group.

(ii) (QF, =) is a groupoid in which cancellation laws hold but (Q*, =) is not a
group.

In view of the above theorems, the task of verifying a given system for being
a group becomes bit easier. For example, for the non-commutative systems we
need not worry about finding both-sided identities and inverses (in the commuta-
tive systems, one-sided identities and inverses automatically become both-sided
identities and inverses).

6.5 Solved Problems

Problem 6.8. Let G be a semigroup such that there exists e € G satisfying
eg=gV g€ G. Also let for each pair of distinct elements a,b € G, there exist
a solution of the equation ya = b in G. Prove that G is a group.

Solution: We have eg = gV g € G. Hence e is a left identity in G. Let a € G.
Then ya = e has a solution (according to the given condition) in G, say b, so
that ba = e. Hence a has a left inverse. Thus G is a semigroup having a left
identity and each element having a left inverse. Hence G is a group.

Problem 6.9. Let G = {e,z,y,z}. A binary composition o on G is defined by
the following table as:

o ‘ e T Yy z
ele x y =z
x|y 2z e «x
ylez y z e
z|z e x y
Prove that cancellation laws hold in G. Is (G,0) a group?
Solution: In the given composition table, in any row or column no two

elements are repeated. This implies that cancellation laws hold in G. However,
G is not a group, as there is no identity element.

Remark 6.7. In the above example G, is a finite groupoid in which cancellation
laws hold, but it is not a group. This shows that for the conclusion of theorem
6.10 to hold true, the assumption of associativity of G cannot be dropped.

Problem 6.10. Let G be a finite group with identity e. Prove that

(a) the number of elements x of G such that 2% # e is even.

(b)  the number of non-identity elements that satisfy the equation x
even.

(c) the number of non-identity elements that satisfy the equation x® = e is
a multiple of 4.

3 =¢is
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Solution:

(a) Let g € G. If g2 = e then g = g~!. Thus, if g% # e, then the inverse h of

g, is such that h # ¢, and ¢ # e, h? # e. Thus such elements can be paired

{9,971} V g # g~ '. Hence the number of such elements is even.

(b) Consider gedq, g +£ ¢ such that g2 = e. We assert that ¢ is such that:

(i) g* # e (i1) g # g* (iii) (9°)° = e. For,

(1) if g% = e then g = e, which is a contradiction. Hence ¢ # e.

(ii) if g = g®> = ¢ = e implies g = e, a contradiction. Hence g # g%

(i7i)  Clearly g% = (¢92)3 = (¢®)% = e. Thus g, g2 are both non identity distinct
elements satisfying 23 = e. Such elements always occur in pairs, as {g, g%}
so they are even in number and result is proved.

(¢) Consider g € G . g ;é e such that ¢ = e. We assert that

(1) each of g, g2, g%, g% is dlfferent from identity.

g # e by assumption. ¢g? = e

=g’ =e

=9=()%") " =eg’=e
:>g5_e

=g=1(g )( )l=egt=e g =e
=g=(¢")""=

e.
(i1)  the elements g, g%, g3, g* are all distinct.
Any two powers of g are equal implies g = e or g = e or g% = e.
(iii) each of the elements g, g2, g3, g* satisfy 2% = e.
The proof is similar to the proof of part (b).

Problem 6.11. In D,,, let r be a rotation by an angle 2,—’; radians, in the
anticlockwise direction. Use a diagram to verify frf=' = r~1, where f is any
reflection. Use this relation to write the following elements in the form r or
rif, where 0 < i < n.

(a) in Dg, fr=2fr°

(b) in Do, r=3 frdfr—2

(c) in Dia, frofr=2f.

Solution: Let us consider the reflection f about the line which is the perpen-
dicular bisector of one of the sides and rotation r in the anticlockwise direction

by an angle of 27” radians. Observe the following diagrams:

\
Ay 1A As Ay

1
" As S As A,
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A, Ay A A,
Ap 2 ! 2 n—1
\/ > A A A
\ / \ /
\ / \ /
\
Ay 1 A Ap Ay
? :
Al Ay i Ana Ay
\ / \ /

\ / \ /

We find that frf=! =r1.

Since f is any reflection, then f2 is the identity motion, that is, no mo-
tion at all. We shall say f2 = e, the identity of the group D,,. Hence
f~' = f. Further, (frf~1* = frkf=' Vv k € Z. In particular in Dy,
™ =e= (frf~1)" = e. We shall use these two facts for proving the properties.
(a) In Dg, r* =e. If g = fr=2fr® then

g=(fr2f 7 = (frf )20 = () A0 =02 =T =0
(b) In Dyg, 7° =e. If h = 3 fr* fr=2 then
h=r=3frt f 2 = o3 (frf )42 = 32 = 0 = pO(medd) — g
(c) In Dy, 78 =e. If x = fr°fr=2f then
w= [P = (frf T = =T = =0

Problem 6.12. Let G be a group and g € G. Define f, : G — G by fq(x) =
grg™! for all x € G. For g,h € G prove that fon, = fyfn.

Solution: Let x € G. Then

fon(x) = (gh)z(gh)~"
= (gh)z(h~'g™")
= ghazh_lg_1
= g(hzh~")g™!
= fg(hxh_l)
= fo(fn(x))
= (fgfn)(x)

ThllS, fgh :fgfh~
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Problem 6.13. Let G be a semigroup such that for every a € G, there exists a
unique b € G, such that aba = a. Prove that G is a group.

Solution:

Step 1 There exists an idempotent in G.
Let a € G. Then there exists a unique b € G such that

aba
= abab
= (ab)(ab)
= (ab)?

= a
= ab
= ab
= ab

on post — multiplying by b

Hence ab is an idempotent element. Let ab = e. Thus e = e.
Step 2 The idempotent is unique.

Claim: e of Stepl is the
idempotent in G. Then f2

only idempotent element of G. Let f be another
= f. Hence there exists a unique g € G such that

(ef)glef) = ef (1)
= ef(gef)g = efg on post — multiplying by ¢
and using associativity
= ef(gefglef = (efg)ef on post — multiplying by ef
and using associativity
= ef(gefglef = (ef)glef)
- eflgefglef =  ef  using (1).
By uniqueness of g, we get
gefg=g9 ... (2)
Also
ef(ge)ef efge’f
= efgef sincee?=e
= (ef)glef)

ef wusing (1)

. ef(ge)ef = ef. Again by uniqueness of g, we get ge =g ... (3)
Similarly, by proving ef(fg)ef = (ef)g(ef) = ef, we get fg=g ...(4)

(3) and (2) = gfg = gefg=g...(5)

N g9 = g using (4)
= @ =g ...(6)

= g is an idempotent.

Now g® = g9 =gg=g?> =g using (6).
L =9=999=9..(7)
Post multiplying (6) by fg, we get

444l

9°fg
9(9)fg
glge)fg
g’efg
glef)g
glef)g

gfg
afyg
gfg (using (3)
afyg
gfg (using (6)
g  (using (5)
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By uniqueness of ¢ in (7) we get
ef =g
Hence ef is an idempotent. Thus

(ef)lef) = ef
= (eff)ef) = ef since f is an idempotent

= (ef)fef) = ef ...(8)

Similarly, using that g = ef is an idempotent we get

(efle(ef) =ef ... (9)

Using (8) and (9) and the uniqueness of f, we get
f=e

Hence G has exactly one idempotent element.

Step 3 If e = ab as in Stepl, then e = ab = ba.
Let a € G. Then there exists a unique b € G such that aba = a. Pre-multiplying
by b we get

baba = ba
= (ba)? = ba
= ba is an idempotent.

This gives us three idempotents namely e, ab and ba. Since G has a unique
idempotent e, we get ba = e = ab.

Step 4 We shall now prove that G has a left identity.
Let a € G. Then there exists a unique b € G such that aba = a. Since ab = e,
we get ea = a for all a € G. Thus e is a left identity of G.

Step 5 Every element of G has a left inverse.

aba = a
= b(aba) = ba pre multiplying by b
= (bab)a = e wusing Step 3 that ba =e
= bab is a left inverse of a.

Hence every element of G has a left inverse in G. We have proved that G is
semigroup having a left identity and every element of G has a left inverse. Hence
G is a group.

6.6 Exercise

1. Let G be a semigroup such that there exists e € G satisfyingge =g Vg €
G. If for each pair of distinct elements a, b of G, there exists a solution of
ax = b in G then prove that G is a group.

2. Let G be a semigroup such for all a,b € G, there exists a solution of the
equation axz = b in G. Is G a group? Justify.
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. Let G be a semigroup such for all a,b € G, there exists a solution of the

equation ya = b in G. Is G a group? Justify.

. LetG:{(Z b ) :a,bER,a—O—b;ﬁO},thenshowthat

b
(i) G is a semigroup under matrix multiplication.
(i) G has a left identity.
(iii) Each element of G has a right inverse.
(iv) G is a group.

. Let G = {e,a,b,c,d}. A binary composition * on G is defined by the

following table:

Q0 T o o|x
Qa0 T oo
o 0 T ol
o ® o oo
T a0 oo
T o o0 e

Prove that the cancellation laws hold in G. Is (G, %) a group?

. If a semigroup has a right identity, is it necessarily unique? Justify.

. Let where w # 1 is such that w® = 1. Show that

(i) G is a semigroup with respect to multiplication of matrices.
(i)  Cancellation laws hold in G.

(iii) G is a group.

Is G Abelian? Justify.

. Let G be a group with identity e. Let p be a prime number. Prove that

the number of the non-identity elements satisfying z” = e is a multiple of
p—1.

6.7 Supplementary Exercises

1. State whether following statements are true or false. Justify your answers.

(i)  The empty set is a group.
(#) A group has at least one identity element.
) A group can have more than one identity element.
(iv)  Every group has at least one idempotent.
(v)  Every group has at most one idempotent.
(vi)  Every group has exactly one idempotent.
(vii) In a group G, if a,b € G are such that a®> = b? then a = b or
a = —b.
(vigd)  If every element of a group G is its own inverse, then G is Abelian.
(iz) If G is a group, then (ab)™ = a™b" for all a,b € G .
(z) In a group G, every linear equation ax + b = ¢; a,b,c € G has a
solution.
(zi)  Inagroup G, every linear equation ax = b; a,b € G has a solution.
(zii)  If every element ‘a’ of a group G satisfies 22 = e, then G is Abelian.
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2 = x, € G has exactly two

(ziei) In a group G, every equation z
solutions 1 and 0.

(ziv)  There exists a group in which cancellation laws do not hold.

(zv)  In a group G, if (ab)? = a?b? V a,b € G then G is Abelian.

(zvi) In a group G, if (ab)™ = a™b" V a,b € G and some positive
integer n > 2, then G is Abelian.

(zvit) A semigroup G with a left identity in which every element of G
has a left inverse is a group.

(zvidgi) A semigroup G with a left identity in which every element of G
has a right inverse is a group.

(ziz) A semigroup G with an identity element (i.e monoid) in which
elements of G have a right inverse or a left inverse, is a group.

2. On the set R* of nonzero real numbers, define o by aob = |a|b. Show that
(i) o is a binary operation on R*.
(i¢) o has a left identity.
(#ii) every element of R* has a right inverse.
(iv) is (R*, o) a group?
Explain the significance of this question.

3. In a semigroup one sided identity is unique? Justify.

4. Let G be a group such that (ab)™ = a™b™ for two consecutive integers n,
and for all a,b € G. Is then G Abelian?

5. Give an example of an infinite semigroup in which cancellation laws hold,
but which is not a group.

6. Give an example of a finite groupoid which is not a group but in which
cancellation laws hold.

6.8 Answers to Exercises

Exercise - 6.3

4. (i) aca™l.
(i) a teb™L.

5.  Hint: There is an even number of elements which are not there own
inverses.

6. Hint: By induction prove that (r~laz)" = z~'a"x for all n € Z*.
Then take inverses of both sides.

7. Hint: Use cancellation law.

8.  Hint: No. Consider the group of Quaternions, and take a = i, b =
4, n=4,5.

Exercise - 6.6

1. e is the right identity. By solving ax = e, every element has a right inverse

in G.

2. No. Consider (G, *) with G having at least two elements x is defined by
axb=bVabeqG.
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3. No. Consider (G, *) with G having at least two elements a, b such that
axb=aVa,beq.

4. (i) ( Z 1—a ) for a € R is a left identity.

l1—a
(iid) %Tb 0 . ot | e @ b
1 L 0 is a right inverse o 0o b )

(iv) No, left identity is not a right identity.

5. (G, x) is not a group as * is not associative as a(bc) # (ab)c.

6. No. G = {( ayc 5 > rx,y € R} is a semigroup under multiplication, in

which ( 1 f v 1 f . ) is a right identity for every z € R.

7. Hint: G is not an Abelian group. Form the multiplication table.
8. Hint: z,z2,...,2P~ ! 2P = e are all distinct.

Supplementary Exercises

2.
(1) False
(ii) True
(iii)  False
(iv)  True
(v) False
(vi)  True

(vii)  False, since in U(10) we have 3% = 72. Also, in Klein’s 4 group,
G = {e,a,b,ab}, in which a? = b% = (ab)? = e.

(viii)  True
(ix)  False
(x)  False
(xi)  True

(xii)  True

(xiii)  False

(xiv)  False

(xv)  True

(xvi)  False, take G = Dg, n = 6.

(xvil) True

(xviii) False

(xix) False

2. (iv) No.

The significance of this problem is that it shows that formally weaker axioms
for a group must either be all left axioms or all right axioms and not half and
half.

3. No, find a counter-example.

4. No, group of Quaternions, with n =4, 5.

5. (IV,-) is one such example.

6. See Exercise 77 , Q5.



Chapter 7

Subgroups

7.1 Criteria for Subgroups

While studying examples of groups we had groups contained within larger
groups. For example, Z the group of integers under addition is contained within
the larger group Q of rationals under addition, which in turn is contained within
the group R of reals under addition. The best way to study any algebraic
structure is to study its subsets, which themselves have the same structure.
Therefore, we study subsets of a group which are groups in their own right.
They are called subgroups. Thus we have the following definition.

Definition 7.1. Let G be a group. A subset H of G is called a subgroup of G
if H is a group under the operation of G restricted to H.

Notation: If H is a subgroup of a group G, then we shall write H < G.
Further, if H # G then we shall write H < G.

Since the operation of G has been restricted to H, therefore we shall denote
the operation for the group G and for the subgroup H by the same symbol.

It is possible that H has the structure of a group with respect to some
operation other than the operation on G restricted to H. For example, (QT, ")
and (R,+) are groups, Q" C R but (Q",-) £ (R,+). This is because the
operation - is not a restriction of + to Q.

A natural question which comes to our mind is: Can a group and its subgroup
have different identity elements? The following theorem answers this question.

Theorem 7.1. If H is a subgroup of a group G then
(i) the identity element of H is the same as that of G.
(i2) for any a € H, inverses of a in H is the same as the inverse of a in G.

Proof: Let e be the identity element of G.

ae=ea=a V a€CG (7.1)
(i) Let €’ be the identity of the subgroup H. Then

ae =ca=a V a€H (7.2)

231
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Using 7.1, we get in particular
ae=ea=a YV a€H (7.3)

72and 73 = ae=ac V a € H.
Since H C G, therefore this is an equation in G. Using cancellation laws
in G, we get

e=c¢€.

(ii) Let a € H.
Let a1 be the inverse of a in G and b the inverse of a in H.

Then
aat=ata=e (7.4)
and ab="ba=¢e
74and 75 = aa l=ab
= a ! =b using left cancellation law in G. O

The above theorem tells us that the identity element of a group and its subgroup
are the same. Moreover, for any element a of H, its inverse in H is the same as
its inverse in G.

If e is the identity element of a group G, then trivially {e} and G are sub-
groups of G. They are called trivial subgroups of G. A subgroup of G other
than {e} and G is called a non-trivial (or proper) subgroup of G.

Example 7.1.
1. (Z,+) is a subgroup of (Q,+).
(Z,+) is a subgroup of (R,+).

(QT,-) is a subgroup of (R, -).

e

(QT, ) is not a subgroup of (R, +) though QT C R. This is because 2,3 €
Q",2:3=6but2,3 €R and 2+3 =5, Thus - is not the binary operation
on QF obtained from the binary operation + on R restricted to Q.

5. Vy, the Klein 4-group is a subgroup of the dihedral group Ds.
6. (N,-) is not a subgroup of (Q*,-), as (N,-) is not a group in its own right.

7. (Zs,®s5) is a group but it is not a subgroup of (Z,+), whereas (5Z,+) is
a subgroup of (Z,+).

We now give some tests to determine whether a subset is a subgroup or not.

Theorem 7.2. (Three steps test) A subset H of a group G is a subgroup of G
if and only if

(1) the identity element of G belongs to H.
(5) abe H V a, be H.

(iii) for everya € H,a=! € H.



7.1. CRITERIA FOR SUBGROUPS 233

Proof: If H is asubgroup of G, then H is a group with respect to the restricted
binary operation on H. Hence conditions (i) to (iii) hold.

Conversely, let H be a subset of G such that the conditions hold. Then
e € H = H is nonempty. Thus for H to be a subgroup the only axiom to be
checked is the associativity axiom. Let a,b,c € H. Since H C G, therefore
a,b,c € G. By associative law in G, a(bc) = (ab)c. Hence associative law holds
in H, so that H is a group in its own right. Thus H is a subgroup of G. O

Sometimes we need to check that a given subset of a group is not a subgroup.
How do we go about this? In view of the above theorem, a subset H of a group
G is not a subgroup if any one of the following is true:

(i) The identity e of G does not belong to H.

(ii) For some pair of elements a,b of H, ab ¢ H.

(iii) For some element a € H,a~! ¢ H.

The use of these conditions is illustrated by the following examples.

(i) (N,+) is not a subgroup of (Z,+) because the identity element 0 of Z does
not belong to N.

(ii) (Zg,®s) is a group, where Zg = {0,1,2,3,4,5}. Let H = {0,1,2}. Then
H CZ 1,2€ Hbut 1 ®s2 =3¢ H. Hence H is not a subgroup of G.

(iii) (Z*,-) is not a subgroup of (QT,-) as 2 € Z* but 27! = 1 ¢ ZT.

The three steps test can be simplified to testing of only 2 conditions instead
of 3. This is given in the following theorem.

Theorem 7.3. (Two steps test) Let G be a group and H a non empty subset
of G. Then H is a subgroup of G if and only if

(1) abe H, for alla,be H.
(ii) For each a € Hya ' € H.

Proof: 1If H is a subgroup of G, then conditions (i) and (ii) must hold by
definition of subgroup.

Conversely suppose H is a non-empty subset of G such that the conditions
hold. Since H is non empty, therefore there exits some a € H. Then for a € H,
by (i) a=! € H. Now a,a™! € H so that by (i), aa~! € H, that is, e € H.
Thus the identity element is in H. Hence, by Theorem 7.2, H is subgroup of
G. O

This two step test can be further reduced to a one step test, Great, isn’t it?

Theorem 7.4. (One step test) Let G be a group. A non-empty subset H of G
is a subgroup of G if and only if a,b € H = ab™! € H.

Proof: If H is a subgroup of G, then the condition holds by the definition of
a subgroup.

Conversely, let the condition hold. Since H is non-empty, therefore, there
exits an element a in H. By the given condition aa~! € H, that is, e € H.

e,a € H, so that ea™! € H, that isa™' € H. Let a,b € H. Then b~! € H.
By the given condition a(b=1)~! € H, that is, ab € H. Thus, by Theorem 7.3,
H is a subgroup of G. O
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The following theorem gives a condition for a finite subset of a group to be
a subgroup.

Theorem 7.5. (Finite subgroup test) Let G be a group and H a finite non
empty subset of G. Then H is a subgroup of G if and only if H is closed under
the operation of G.

Proof: If H is a subgroup of G then clearly it is closed.

Conversely, let H be closed. To prove that H is a subgroup of G, it is
sufficient to prove that a=' € H, whenever a € H. If a = ¢, then ¢! = e~ ! =
e = a, so that a=! € H. If a # e, consider the sequence a,a?,a?,... Closure
property of H implies that all powers of a are in H, since H is finite not all of
these elements can be distinct. Suppose a* = a’ for some 4, j such that i > j.
Then a’~7 = ¢; and since a # e, therefore i —j > 1. Thus a7 =a*7~1.a =,
so that a=! = @771, Since i — j — 1 > 1, therefore, a®7~! € H so that
a~! € H. Thus the proof is complete by Theorem 7.3. O

Note: For additive groups in above tests we replace e by 0, ab by a +b, a~*
by —a and ab~! by a — b.

Theorem 7.6. The intersection of two subgroups of a group is a subgroup.

Proof: Let G be a group and Hy, Hy be two subgroups of G. Let H =
Hy, N Hy. Since Hy, Hy are subgroups, therefore e € Hy and e € Hs, so that
e € HHN Hy = H. Hence e € H. This proves that H is non-empty. Let
a,b € H. Then a,b € H; and a,b € Hs. Since H; and Hs are subgroups,
therefore ab=' € H; and ab~! € H,, so that ab~' € HiNHy = Hieab ' € H.
Hence by the one step test, H is a subgroup of G. ]

Note that the above result does not hold for the union of two subgroups.
This is shown by the following example.

Example 7.2. The union of two subgroups need not be a subgroup. Consider
the group (Z,+). Then 27,37 are subgroups of Z. If H = 27 U 3Z, then H
is not a subgroup of Z, for 2 € 2Z C H and 3 € 3Z C H. Thus 2,3 € H but
24+3=5¢H as5¢27Z and 5 ¢ 3Z.

We would like to know under what condition is the union of two subgroups
a subgroup. This is answered in the next theorem.

Theorem 7.7. The union of two subgroups is a subgroup if and only if one of
them is contained in the other. That is, if Hi, Hy are two subgroups of a group
G, then Hy U Hsy is a subgroup of G if and only if Hy C Hs or Hy C H;.

Proof: Let Hp, Hy be subgroups of a group G. Suppose H; C Hs, then
H, U Hs; = Hy which is a subgroup of G. Similarly if Ho C H;, then H; U Hy =
H; is a subgroup of G.

Conversely, let H = H; U Hs be a subgroup of G, we shall prove that
either Hy C Hy or Hy C H;. Assume the contrary, that is, Hy ¢ H, and
H, ¢ H;. Thus, there exists hy € Hi, such that hy ¢ Hy and hy € Hs, such
that he ¢ Hy. Now hy € Hi C H and he € Hy C H, so that hihy € H (as
H is a subgroup). Since H = H; U Ha, therefore, hihs € Hy U Ha, so that
hlhg (S Hl, or h1h2 S HQ. Suppose hlhz € H,. Then hl_l(hlhz) c Hy (as H,
is a subgroup), that is hy € H; which is a contradiction to our choice of hs.
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Similarly hihy € Hy will also give a contradiction. Hence our assumption is
wrong, so that H; C Hy or Hy C Hj. O
The following theorem characterizes all subgroups of (Z, +).

Theorem 7.8. For every integer n > 0,nZ is a subgroup of Z. Moreover every
subgroup of Z is of the form mZ for some integer m > 0.

Proof: nZ = {nz|z € Z}. If n =0, then nZ = {0}, which is a subgroup of Z.
If n > 0, then 0 = n0 € nZ, so that nZ is non-empty. Let z,y € nZ then
x =mnz and y = nze for some z1,20 € Z. So x —y =nzy —nzg = n(z1 — 22) €
nZ(" z1 — z9 € Z). Thus by the one step test nZ is a subgroup of Z.
Let H be any subgroup of Z. If H = {0} then H = mZ where m = 0. Let
H # {0}. Then H contains some non-zero integer t, since H is a subgroup of
Z .. —t € H. Out of t,—t one of them must be positive. Thus H contains a
positive integer. Let m be the smallest positive integer in H. Clearly mZ C H.
Let h € H. By division algorithm there exists ¢, r € Z such that h = mg+r, 0 <
r<m. Thenr =h—mq, r € H. Now h,m € H so that h — mq € H, that is,
r € H. If r # 0 then 0 < r < m which contradicts our choice of m. Thus r = 0,
so that h = mqg € mZ, i.e H C mZ. Thus we get H = mZ. O
An important relation amongst the subgroups of Z is the following:
If mZ and nZ are two subgroups of Z then mZ < nZ if and only if n divides m.
This can be proved as follows:
mZ < nZ
mZ C nZ
& menZ < m=nz for some z €Z
& n divides m.

Example 7.3. Find all the subgroups of Z
(1) containing 20Z.
(#) contained in 20Z.

(1) 20Z C nZ
< nl20
< n=1,2,4,5,10,20.
Thus subgroups of Z containing 20Z are Z, 27,47, 57,107, 20Z.

(ii) If nZ is a subgroup contained in 20Z, then
nZ, < 207
& 20 divides n
< nis a multiple of 20
& n=20kkeZ, k>0.
& n=0,20,40,60...
Thus (0),20Z,40Z,60Z, ... are all subgroups of 20Z. Thus 20Z has in-
finitely many subgroups.

7.2 Solved Problems

Problem 7.1. If H is a subgroup of a group G and x € G, then xHz™! =
{zha=t: h € H} is a subgroup of G.



236 CHAPTER 7. SUBGROUPS

Solution: Clearly ¢ = zex™! € zHx™! so that zHz~! is non-empty. Let
a,b € xHz~'. Then a = zhixz~',b = xhex ™! for some hi,hy € H. Now ab =
(vhiz=1)(zher™1) = zhihoz~t € xHx™! (- hihy € H as H is a subgroup).
Thus ab € xHz~'. Also ! = (zhiz~ ')~ = (z7 )" (h) et =ah et €
xHz'(- hi' € H). Hence a € H = a~' € H. Thus we have proved that H is
a subgroup of G.

a b

Problem 7.2. If H = {<0 |

group of GL(2,R).

) | a#0a,be R} then prove that H is a sub-

Solution: Let A = (1) 1) € H. Thus H is a non-empty subset of GL(2,R).
Let A,B € H. Then A = (tlol bll) ,B = (%2 bf) for some a1, as, by, by €
araz  aiby + by

R, a1 #0, ay # 0. NowAB:(
R, ajas #0). Thus H is closed.
If A= (“1 b1> cH,

0 1 ) cH ( aias,a1by + by €

0 1

Z1 -1
then A=! = (a(l) 7b11a1 ) and A~! € H. Thus H is a subgroup of GL(2,R).

Problem 7.3. Let H = {a + ib € C|a® + b* = 1}. Describe the elements of H
geometrically. Is H a subgroup of C* under multiplication? Justify.

Solution: Let z = a +ib € H. Then |z| = distance of P(z) from origin
= +va2 + b2 = 1. Thus H represents all points on the circle of radius 1, centered
at the origin.

Y-axis

P (a+ib)

X-axis

C*, the set of non-zero complex numbers, is a multiplicative group with 1 as
the identity element and % as the multiplicative inverse of z. Thus H is the
set of all complex numbers of modulus 1. We shall now prove that H is a
subgroup of G. Clearly 1+ i0 € H, so that H is non-empty. Let 21,20 € H.
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Then |z1] = 1,|22] = 1. Now |z122] = |2z1]|22] = 1. Hence z120 € H. Also
|%| = ﬁ = 1 so that % €H. -zt :%sothatzfl € H. Thus H is a

subgroup of C*.

Problem 7.4. Let G be an Abelian group and let H = {2%|x € G}. Then H is
a subgroup of G.

Solution: Step 1 Since e? = e, therefore e € H. Hence H is a non-empty set.

Step 2 Let a,b € H. Then a = 22 and b = 22 for some z,y € G. Now
ab = 2%y? = z(zy)y = z(yz)y (as G is an Abelian) = (zy)(zy) = (2y)?, and
zy € G. Thus ab € H.

Step 3 Let a € H. Then a = x? for some * € G. Now a~! = (22)7! =
(x~1)2. Since x € G, therefore x7! € G, so that (z=1)% € H, that is, a! € H.
By the three step test, H is a subgroup of G.

Problem 7.5. Show that a group of order 6 cannot have a subgroup of order /.

Solution: Let G be a group of order 6. Let, if possible, H be a subgroup of
G of order 4. Let H = {e = hy, ha, h3,ha}, e being the identity element. Let
g € G such that g ¢ H such an element g exists because o(G) = 6 and o(H) = 4.
Consider the set gH = {gh1, gha, ghs,gha}. gH has at most 4 elements. We
assert that all the elements of gH are distinct and different from elements of
H. For if, gh; = ghj, i # j (1 <4,j < 4) then h; = h; by cancellation law
in G which is a contradiction. Hence all the elements of gH are distinct so
that gH has exactly 4 elements. Also H NgH = ¢, for if h € gH N H, then
he H hegH. ' h=h, for some h; and h = gh; for some h; € H.

.. ghj = h; so that g = hih;l € H which contradicts the fact that g ¢ H.
Element of H and G account for 8 elements in a group of order 6 and this is
not possible. Hence it is not possible for G to have a subgroup of order 4.

7.3 Exercise

1. Find the flaw in the following argument: “Condition (i) of Theorem 7.2 is
redundant since it can be derived from (ii) and (iii). For let a € H. Then
by (iii) a=! € H. By (ii) aa™! € H i.e e € H which gives (i).”

2. Determine which of the following subsets are subgroups of the group C of
complex numbers under addition.

)R

i) @

i) 7Z

iv) S={r":nelZ}
v) mQ={rzr:2€Q}

vi) The set iR of pure imaginary numbers together with zero.

~~ o~ I/~ o/~

3. If H=1{1,-1,i,—i} prove that H is a subgroup of the group of Quater-
nions.
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10.

11.

12.

13.
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. Consider M>(Z), the group of all 2 x 2 matrices over Z, under addition.

a b
Hl—{< ¢ d ) EMZ(Z):a+b+C+d:0}.

H2 = {(CCL Z) € MQ(Z)ZCL+b+C+d: 1}
Are H,, Hy subgroups of Ms(Z)? Justify your answer.

. Prove or disprove the following statements:

(i)  every subgroup of a non-Abelian group is non-Abelian.
(ii) every subgroup of an infinite group is infinite.

. If H is a subgroup of a group G and K is a subgroup of H, then prove

that K is a subgroup of G. (Note that this shows that the relation “is a
subgroup of” is transitive.)

. Let H be a subgroup of R under addition. Let K = {3*: a € H}. Prove

that K is a subgroup of R* under multiplication.

. Let R* be the group of non-zeros real numbers under multiplication. If

H = {z € R* : 22 is rational}, prove that H is a subgroup of R*.

. Let a,b,m be integer, m > 1 define a = b mod m if m divides a — b. Let

H = {x€U(20): z=1mod 3}. Is H a subgroup of 1(20)?

Let G = GL(2,R). Test whether the subsets define below are subgroups
of G.

(i) Hy ={A € G :|A4| is an integral power of 2}.

(ii) Ho = {((01 (b)) : a, b are nonzero integers}
(iif) Hs = {A € G : |A] is rational}
(iv) Hy ={A € G: |A| is an integer}.

Let H={a+1ib:a,beR,ab>0}. Is H a subgroup of C under addition?
Justify.

Let G be the group of functions from R to R* under multiplication. Set
H={fe€G: f(1) =1}. Prove that H is a subgroup of G.

Let G be an Abelian group and let n be a fixed positive integer. Let
G™ = {g" : g € G}. Prove that G" is a subgroup of G.

7.4 Centralizers, Normalizers and Centre

Given a group how do we go about finding its subgroups? we now give some
important families of subgroups of a group.

Centralizer of an Element

Although an element from a non-Abelian group need not necessarily com-
mute with every element of the group, there are always some elements with
which it will commute. For example, every element a commutes with all its
powers. This observation prompts the following definition.
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Definition 7.2. (Centralizer of an element):

Let G be a group and a € G, be a fixed element of G. The centralizer of a
in G, denoted by Cg(a), is the set of all elements in G which commute with a.
Symbolically, Ca(a) = {g € Glag = ga}. If the group G is understood then we
simply write C(a).

Example 7.4. Consider the dihedral group D (say).

C(Ry) = Ds

C(R)) = {Ro, Ry, Rs, Ry}
C(Ry) = Dy

C(R3) = {Ro,R1,R2, R3}
C(H) = {Ro,H Ry, V}
cV) = {Ro,H Ry, V}
C(D) = {Ro,D,Rs,D'}
cD) = {RO,D7R2,D/}.

Note that each of the centralizer is actually a subgroup of Dg. Also two
different elements may have the same centralizer.

Example 7.5. Consider the group G = GL(2,R) under multiplication, and

(} (1)> = A € GL(2,R). Then C(A), the centralizer of A is

{(‘CL Z>6G|c—b7d—a—b}.
IfB:G é) thenC’(B):{(CCL 2)6G|d=a,c=b}
RIS M

Theorem 7.9. Let G be a group and a € G. Then the centralizer C(a) of a is
a subgroup of G.

Proof: Cf(a) = {g € G|ga = ag}. Since e € G is such that ae = ea,
therefore e € C(a). Let z,y € C(a). Then za = azr and ya = ay. Now
ya = ay = y lyay~! = y~tayy~! (pre and post multiplication by y~! ), that
is ay™! =y la.

Now (zy~"a=2(y~'a) = z(ay™!) = (za)y ™' = (az)y~ ' = a(zy ™).

Thus xy~! € C(a). Hence by the one step test C(a) is a subgroup of G. O
The next theorem tells us that the centralizer of an element and its inverse are

the same set.

1

Theorem 7.10. If G be a group and a € G, then C(a) = C(a™1).

Proof: We know that C(a) = {g € Glag = ga}. Let © € C(a). Then
ax = za. Pre- and post-multiplying by a=1, we get a " taza~! = a " 'zaa"! that
is za™' = a~'z. Hence x € C(a™!), so that C(a) C C(a™!). Let y € C(a™?)
then a~'y = ya~!. Pre- and post-multiplying by a, we get a(a™'y)a = aya~'a,
that is ya = ay. Hence y € C(a). Thus C(a~!) C C(a), Thus, we have

Cla™!) =C(a). O
Problem 7.6. If G is a group and a,z € g, then C(z™'azx) = 271 C(a)x.
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Solution: Let y € C(z 'ax), then

(z7tax)y = y(z~'ax)
y e laxzy = z tax Pre-multiplying by y~—
zylz7lar = axy Pre-multiplying by x

Post-multiplying by y~

1

4

1

= ay'z7la = azy'z~! Post-multiplying by !
=  zy a7t € C(a)
= (zylaTH)7t € C(a) -~ C(a) is a subgroup
= ryz~! € C(a)
= Y e 27 1C(a)x
= C(z™taz) C 27 'C(a)z (7.6)

Let 2 € 27*C(a)z, so that z = 7 lcx for some ¢ € C(a). Thus ca = ac. We

shall prove that z(z laz) = (z71az)z

Now
2z rax) = (z7'cx)(ztax)
= a2 'cax
= z lacz ‘ac=ca

= 2z lazzlex
= (27 'ax)(z 7 ex)
(xtax)z
Thus z € C(z~tax) so that
z71C(a)x C Oz tax) (7.7)
7.6 and 7.7 = C(zx laz) = 27 1C(a)x.
Centralizer of a Subset

The concept of the centralizer of an element can be extended to that of a
subset.

Definition 7.3. If A is a subset of a group G, then by the centralizer of A we
mean the set {x € Glza = ar Va € A}. It is denoted by Cg(A). when the
group G is understood, we simply denote it by C(A).

From the definition we have the following important result.
Theorem 7.11. If A is a subset of a group G, then C(A) = NaeaC(a)
Proof:

y € C(4)
& ya = ay V acA
& y € C(a) vV a€eA
& Yy € Ngea Cla)
& C(A) = Naea C(a)

Hence the result. O
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Example 7.6. Let us find C(A), where A ={Ry,H} and A C Ds, the dihedral
group of order 8. We know that C(A) = Ngea C(a)

S C(A) = CR)NC(H)
= {Ro, Ra}.
Theorem 7.12. If A is a subset of a group G, then C(A) is a subgroup of G.

Proof: Clearly ea =ae Va€ A
. e € C(A) so that C(A) is non-empty.
Let a,b € C(A). Then

ar = xza YV z€A (7.8)
and br = b V z€ A (7.9)
Now, for all x € A
(ab)r = a(bx) associativity

a(xzb) by (7.9)
(ax)b associativity
= (za)b by (7.8)

= x(ab) associativity

so that ab € C'(A). Hence C(A) is closed.
IfaeC(A) thenar=xa V 2 € A

= altaza™ = a'zaa™'  Pre- and post-multiplying by a~!
= ra”t = alz
= a™l e C(A)

a€C(A) = a! € C(A),sothat C(A) is a subgroup of G. [

Centre of a Group

In a group G, the identity element e of G occupies a very special position
in the sense that it commutes with every element of the group. There may be
other elements which commute with every element of the group. In case one
such element a exits, then all powers of a will also commute with every element
of G. For example all scalar matrices commute with every matrix. Thus if
we consider the group G = GL(2,R) under multiplication, then every non-zero
scalar matrix commutes with every element of G. This motivates the following
definition.

Definition 7.4. (Centre of a group): The centre of a group G is the set of
elements of G which commute with every element of G, that is, the set {a €
Glax =za YV x € G}. It is denoted by Z(G).

From the definition it follows that
(i) In term of centralizer, Z(G) = C(G)
(i) Z(G)CCla) ¥ acG
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(il) Z(G) = Nuec C(a)

Example 7.7. Consider the group G = GL(2,R). Since a scalar matriz com-
mutes with every element of G, therefore every scalar matriz lies in the centre

of G. Thus {(8 2) la € ]R} C 72(@).

Example 7.8. Consider the group G = (Z,+). Since G is Abelian, therefore
every element of G commutes with all other elements of G. Hence Z(G) = G.

Example 7.9. Let us find the centre of Dg, the dihedral group of order 8.

Z(Ds) NaensC(a)

= {Ro, Rz}

Z(Dg) = {Ro, Ra2}-

Theorem 7.13. The centre of a group G is a subgroup of G.

Proof: Since Z(G) = C(G) and C(G) is a subgroup, therefore Z(G) is a
subgroup. O

Remark 7.1.

1. The centre of a group is an Abelian subgroup. If G is any group, then
Z(G)={9€G:ag=9gx ¥V z € G}. Let q1,92 € Z(G). Since ¢
commutes with every element of G, in particular it commutes with gs, so
that g192 = gag1. Hence Z(G) is Abelian.

2. The centre of a group G is G < G is Abelian.
Now, G is Abelian

& ab = ba VYV oa, be G
= b € Cgla) V a be @G
=2 b € Nuea Cg(a) Vbe G

= G = Z(G)

Problem 7.7. Find the centre Z(G) for G = Dg the dihedral group of order 6.

Solution:
D¢ = {Ro, Ry, Ry, My, M, M3}
Z(Dg) ={z € D¢ : xd =dx for all d € Dgs}

Now M3zM> = R»

M>M3 = Ry
Thus

My Ms # My Mo,

so that MQ,Mg ¢ Z(DG)

MRy = Ms

RoM; = M



7.4. CENTRALIZERS, NORMALIZERS AND CENTRE 243

so that
My, Ry ¢ Z(Ds)
Ry M3 = My
MsRy = M,
so that

M3, Ry ¢ Z(Ds)

Hence My, M2, M3, R1, R ¢ (Z(Ds)). Also Ry € Z(Dsg), being the identity
element. Hence Z(Dg) = {Ro}.

Problem 7.8. Prove that centre of GL(2,R) is the set of all scalar matrices.

Solution: Let A = <a b
c d

G. In particular it must commute with X = <(1) (1)) and Y = G é), where
X, Y €G.

) € Z(G). Then A commutes with every member of

- (
= b
Also AY = YA

= b =

a
0

N
~ = 0

Thus A< 2), so that Z(G)

Also if a € R, <8 2) € Z(G).

Thus 2(G) = { (8 0) o eR}.

a
Hence the centre of GL(2,R) is the set of all scalar matrices.

Normalizer of a subset
Let G be a group and A a non-empty subset of G. For any = € G,
zA={za:a€ A} ; Az = {az : a € A}.

It xa = ar VYV a€A (7.10)
then obviously TA = Az (7.11)

But the sets zA and Az may be equal without the condition (7.10) being sat-
isfied. This leads us to the following definition.
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Definition 7.5. Let A be a subset of group G. For any x € G, let vAz~! =
{zax—|a € A}. The set {x € GlxAz~! = A} is called the normalizer of A in
G. It is denoted by Ng(A) or simply N(A), when G is understood.

Remark 7.2. zAz~ 1= A
& rA = Ax
Thus the normalizer of a set A is that of all elements which commute with A.

Theorem 7.14. If H is a subgroup of a group G, then N(H) is a subgroup of
G.

Proof: Since eHe ™ = {ehe™! : h € H} = {h : h € H} = H, therefore
e € N(H). Hence N(H) is non-empty. Let z,y € N(H). Then xHz~' = H and
yHy™' = H. Now (axy)H(zy)™! = ayHy la~! = a(yHy Ha™! = 2Ha™ ! =
H, so that xy € N(H). Let + € N(H). Then xHx~! = H. Pre- and post-
multiplying by #~! and z respectively, we get 2 'axHz 'e = 2~ Hz, that is,
eHe = x7'H(z=)~'. Hence x'H(z~!)~! = H, so that x~! € N(H). Thus,
N(H) is a subgroup of G. O

7.5 Exercise

1. If a is an element of a group G, prove that (i) a=! € C(a) (ii) a™ € C(a)
for all n € Z.

2. For any element a of a group G, prove that z € C(a) = z € C(a™) for all
n € Z.

3. Find C¢(A) where G is the group of quaternions under multiplication and
A = {i}. Also find the centre of G.

4. If A and B are subsets of a group G, does C(A) = C(B) necessarily imply
A=DB?

5. A and B are subsets of a group G. Prove that (i) C(AUB) = C(A)U
C(B) (i) C(A)UC(B)CC(ANB).
1 1 01
6. Let G = GL(2,R). If A = <0 1> and B = (1 0), find C(A) and
C(B).
7. Find the centre of Dg, the dihedral group of order 8.
8. For any group G, prove that Z(G) = Nueq C(a).

9. Let G be the group of all 2 x 2 diagonal matrices under multiplication.
Find the centre of G.

10. If A is a subset of a group G, prove that the centralizer of A is a subset
of the normalizer of A.

11. If A is a subset of a group G, prove that (i) the centre of G is a subset of
the centralizer of A. (ii) the centre of G is a subset of the normalizer

of A.

12. For any subset A of a group G, obtain a relationship between centre of G,
centralizer of A and the normalizer of A.
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7.6 Order of an Element

Consider the group U(20) under multiplication U(20) = {1,3,7,9,
11,13,17,19}. Then 1 is the identity element. Let us compute the powers
of elements of U(20).

Clearly 1 =1

32 =9, 33=7 3'=1, 35=3, 35=9 etc..

7 =9 =3 T=1

92 =1,

112 =1;

132=9, 133 =17, 13*=1;

172 =9, 177 =13, 17*=1;

192 = 1.
Thus we observe that some power of each element becomes the identity element.
Each of the elements 3, 7,13 and 17 have 4 distinct powers whereas each of the
elements 9, 11 and 19 have 2 distinct powers. The identity element 1 has only
one distinct power. The number of distinct powers of an element is of great
importance in the study of groups and it motivates us to define the following;:

Definition 7.6. (Order of an element): Let G be a group and g € G. If
there exists a positive integer n such that g™ = e, then g is said to be of finite
order. If no such integer exists, then g is said to be of infinite order. If g is of
finite order, then the least positive integer n such that g™ = e is called the order

of g.

If G is an additive group and g € G, we replace g" by ng and e by o to find
the order of g.

Notation: The order of an element g is denoted by o(g) or |g|.

To find the order of an element g of a group, we compute the sequence of
powers of g, namely g, g2, g3, ... until we reach the identity element for the first
time. Suppose g™ = e for the first time. Then n is the order of g. If the identity
never appears in the sequence, then g has infinite order. Note that the order of
the identity element is always 1. In fact identity is the only element of order 1.

Example 7.10.

1. As explained above, in U(20) o(3) = o(7) = o(13) = o(17) = 4. 0(9) =
o(11) = 0(19) = 2.

2. Consider the group (Z,+). If 0 # a € Z, then na # 0 for every positive
integer n. Hence the order of a is infinite.

3. Consider the group GL(2,R). If A = ((1) —01
0 -1
1 0

smallest positive integer such that B* = I. Hence o(B) = 4.

> € GL(2,R), then A2 =1

so that o(A) = 2. If B = ( ) then B € GL(2,R) and / is the

Theorem 7.15. Let G be a group and a € G. Then
(i) @ and a=! have the same order.

(ii) a and x~rax have the same order for all v € G.
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Proof: Let G be a group and a € G. Then
(@ = (@) (7.12)

(i) Two cases arise

Case 1. o(a) is finite and o(a) = n. Then n is the smallest positive integer

such that
av = e (7.13)
If m is any positive integer
a = e
& (@)t = et
=S (a_l)m = e (7.14)
& o(a) = o(a™') using (7.13)

Case 2. o(a) is infinite. Then a™ # e for any positive integer m. Using
(7.14) we get (a=1)™ # e for every positive integer m, so that o(a™1) is
infinite.

(ii) Let « be any element of G and let b = 7 laxz. Then b™ = x~1a™x for
every positive integer m (see problem 6.1). Thus 0™ = e < a™ = e so
that o(b) = o(a). Hence o(z~1az) = o(a) for all x € G. O

The following theorem gives a criterion for two powers of an element of a group
to be equal in terms of its order.

Theorem 7.16. If G is a group and a € G of order n, then
(i) a* = e < n divides k.
(i1) a' = o/ < n divides i — j.
Proof: o(a) =n < n is the smallest positive integer such that
a® = e (7.15)

(i) Applying division algorithm to n and k, we can find integers ¢ and r such
that k=ng+r, 0<r<n.
Now a* = a™*" = (a")%a"” = a* = a” using (7.15).

Thus d*=e¢ < d" =e
< r=0 (sinceola)=nand0<r<n= a #0)
Hence k = nq. Thus n divides k.
(ii) a'=d/ & a7 =e & ndividesi— j using (i). O

The next theorem gives an upper bound on the order of an element of a finite
group.

Theorem 7.17. In a finite group G each element is of finite order. In fact, the
order of an element is at most o(G).
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Proof: Let G be a finite group of order n, and let a € G. Then a, a?, a3, a?,

are all elements of G. Since G is finite, therefore all powers of a cannot be
distinct, so that for some integers r» and s, a” = a®. Without any loss of
generality we may assume r > s. Thus a"7° = e. Let & = r —s. Then
k € Z* such that a* = e, so that a has finite order < k. If o(a) = m, then
a,a?,...,a™ 1 a™(= e) are distinct elements of G’ and hence m < o(G). This
gives that the order of any element of G is at most o(G). O

Example 7.11. Consider the group (Z%,©7). Let us find the order of each
element of Z%.

22=4, 22=1 = o(2)=3.

32=2 3=6 3'=4, 35=5 3=1 = o3)=6.

2=2 $=1 = o) =3

52=4, 55=6, ,51=2 5=3, 5=1 = o5 =6.

62=1 = o(6)=2.
Thus 0(6) = 2, 0(2) = 0(4) = 3, 0(3) = o(5) = 6 and the identity 1 is of order
1.

Problem 7.9. If in a group G, x € G such that o(z) = 6, find o(z?), o(x?), o(x*)
and o(x%).

Solution: Since o(z) = 6, therefore 6 is the smallest positive integer such that
2% = e. Let us find the powers of 2. Now (2%)? = 2% # ¢, (2?)% = 25 = .
Hence o(x?) = 3.

Similarly (%)% = 25 = e so that o(2?) = 2; (z%)? = x =% #e(x 4)3
2= =o0(2*)=3; (@2 =20#¢, @) =xP=23+#e, (%)= =
?#e, (PP =aP=a#e, (@°°=2=e = o(z°)=6
Thus, we have obtained o(z2) = 3, 0(z3) = 2,0(z*) = 3 and o(z°) = 6

Practically we do not need to find all the powers of 2* in order to find the
order of zF. Knowing the order of an element, can we find the order of any of
its power? ThlS is answered in the following theorem.

Theorem 7.18. Let G be a group.

(a) If a is an element of G of finite order n, then

(i) o(a™) = 2, if m divides n.
(#4) o(a™) =n, if m and n are coprime.
(#i1) For any integer m such that 0 < m < n,

my _ lem(m,n) _
0(0’ ) - m ~— gcd(m,n)”

(b) If a is an element of infinite order then for all m € Z\ {0} the element a™
is also of infinite order.

Proof:

(a) o(a) =mn = n is the smallest positive integer such that
a® = e (7.16)

(i) If m divides n, then n = mk, for some k € Z*. Thus k = . Now
(a™)k = a™ = a™ = e. If o(a™) = p, then (a™)P = e, so that
a™? = e, By Theorem 7.16(i), n divides mp, i.e., mk divides mp so
that k divides p. Thus k is the smallest positive integer such that
(a™)* =e. Hence o(a™) =k = 2.



248 CHAPTER 7. SUBGROUPS

(i) (a™)™ = a™ = (a™)™ = e™ = e. Suppose that ¢ is any positive
integer such that (a™)* = e. Then a™ = e. Using Theorem 7.16(i),
n divides mt. Now, n divides mt and m,n are coprime = n divides
t. Thus n is the smallest positive integer such that (a™)"™ = e, so
that o(a™) = n.

(iii) Let ! = lem(m,n). Then m and n both divide [ so that | = mu,l = nv
for some integer v and v. Now (a™)* = a™" = a! = a™ = (a")” =
(e)? = e. Hence (a™)" = e. Let k be a positive integer such that
(@™)* = e. Then a™* = e. By Theorem 7.16(i) n divides mk, i.e
mk is a multiple of n consequently mk is a multiple of I. Thus [
divides mk i.e mu divides mk. i.e u divides k. This gives that u is
the least positive integer such that (a™)" = e, so that o(a™) = u =

L= tem(m.n) - Since mn = lem(m, n)ged(m, n).
Therefore lcmgf’”) = Jed(mmy» SO that o(a™) = lcmg::l’n) = Sedlmy-
(b) If a is of infinite order then
a® # e (7.17)

for any positive integer k. Let, if possible, a™ be of finite order, say t.
Then (a™)! = e = a™ = e which is a contradiction to (7.17). Hence our
assumption is wrong so that a™ is also of infinite order for every m € Z*.

O

Remark 7.3. In the above theorem (i) and (ii) are special case of (iii) when m
divides n then ged(m,n) = m so (iii) = (i) when m,n are coprime ged(m,n) =
1 so (iii) = (ii).

The above theorem is used often, so we give the equivalent version when the
group operation is addition.
Theorem 7.19. Let (G,+) be a group.
(a) If a € G is of finite order n, then

(1) ma =0 if and only if n divides m.

(i¢) Forl,m € Z la = ma if and only if n divides | —m.
(iii) o(ma) = =, if m divides n.

(iv) o(ma) =n, if m and n are coprime.

(v) For any integer m such that 0 < m < n,

_ lem(m,mn) _ n
O(ma) - m — gced(myn)

(b) If a is an element of infinite order, then for all m € Z\ {0}, ma is also of
infinite order.

The use of the Theorem (7.18) is illustrated in the following examples.

Example 7.12. If G is a group and a € G such that a'? = e, what can you say
about the order of a?

By the above theorem o(a) divides 12. Thus the possible order of a is 1, 2, 8, 4,
6 or 12.
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Example 7.13. Let G be a group and a € G such that o(a) = 12. Let us find
the orders of a®,a®,a% a7, a®,a’,a'® and a''.

Letn = o(la) ..n =12 and a'2 = e. Let m = 3. Since m divides n
so(am) =2 =12 =4 e o(a®) =4
Also 6 divides n = o(a%) = L2 = 2.
Since 5 is coprime to 12(=n),

. By (i) of the above theorem o(a®) = n = 12. Similarly o(a”) = 12,
o(atl) =12
Now o(a®) = % by (iii) of the theorem thus o(a®) = 12 =3

o(a®) = 3.
Similarly o(a®) = 4, o0(a'®) = 6. Thus aa'! = a'la=¢ = o'l =a '
But o(a™!) = o(a) so that o(a™') = 12 i.e o(a'l) = 12.

Example 7.14. In (Z39,®30), 30.1=0 and m.1 # 0 for 1 < m < 30.

So o(1) = 30. We find the order of a given element using Theorem 7.18.

o(ma) = W‘?}(a» = o(—ma). So for any m € Zs

_ 1) _ 30 -
o(m) = Joqtmot) = geatmzay = o(—m)-

For instance o(2) = m =30 =15=0(28).
Other elements of order 15 are k.2 where (k,0(2))=1. Thus k = 1,2,4,7,

8,11,13,14. Hence order of 2,4,8,14,16,22,26,28 is also 15.

Using Theorem 7.18 we can summarize the order of the elements of Z3g as
below:

Element Order
0 1
1, 7,11,13

29, 23,19, 17 30
2, 4, 8, 14

28, 26, 22, 16 15
3, 9,27, 21 10
5, 25 6
6, 12, 24, 18 5
10, 20 3
15 2

7.7 Solved Problems

Problem 7.10. If G is a group and a € G such that a** = e,a'? # e,a® # e
find the o(a).

Solution: Let o(a) = n. Since a?* = e, therefore n divides 24, by Theorem

7.16. Hence n = 1,2,3,4,6,8,12,24, again by Theorem 7.16 Since a® # e,
therefore n # divisors of 8 i.e n # 1,2,4,8. Similarly a'? # e so that n #
1,2,3,4,6,12. Thus the only possible value of n is 24 so that o(a) = 24.

Problem 7.11. Prove that an Abelian group with two elements of order 2 must
have a subgroup of order 4.

Solution: Let G be an Abelian group with two elements a, b of order 2. Then
a’? =e="5b%and a # e and b # e. Let H be a subgroup of G containing both
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a and b. Then H must contain ab and e. We assert that S = {e, a,b,ab} is a
subgroup of G of order 4. Clearly a # e,b # e. We prove that ab # e. For
ab = e = a?b = ae (pre-multiplying by a) = eb = a = b = a, a contradiction.
Similarly ab # a and ab # b, by using cancellation law. Thus S has 4 distinct
element. Since G is Abelian, so ab = ba. Multiplication table of S is

‘ e a b ab
e e a b ab
a a e ab b

b | b ab e a
ablab b a e

Thus S is closed and every element of S has its inverse in S. Hence S is the
required subgroup of G of order 4.

Problem 7.12. Let G be a group and x,y € G such that x # e, o(y) =2, and
yry~t = 2% Find o(x).

Solution: Since o(y) = 2, .. y? = e so that y = y~ 1. Also yay~
€Tr =

yx = 22y. Now, 23 = 222 = 2%ex = 2%y%x = (2%y)y
yrdy = yziy =t = (yoy1)? = (22)% = 25. Thus 2 = 2%, so that z

o(z) =1 or 3. Since z # e, therefore o(z) # 1, so that o(z) = 3.

1 g2

(yx)yx = (yz)(z?y) =

3 = e. Hence

Problem 7.13. Let G be an Abelian group and let T = {a € G|o(a) is finite}.
Then T is a subgroup of G.

Solution: Clearly T is nonempty, as e € T. Let a,b € T. Let o(a) = m and
o(b) = n. Then a™ = e and b" = e. Now (ab)™" = a™"b™" (as G is Abelian)
= (a™)™(b™)™ = e. Thus ab is of finite order so that ab € T. If a € T and
o(a) = m then since o(a) = o(a™!), therefore o(a™!) = m so that a=% € T.
Hence T is a subgroup of G.

The above subgroup T is a well known subgroup of G, called the Torsion
subgroup of G.

Remark 7.4. The above subset T' fails to be a subgroup when G is non Abelian.
This is seen by the following example.

Example 7.15. Consider the group G = SL(2,R). Let A = <(1) _01), B =

_01 _11 Then A,B € G and o(A) = 4,0(B) = 3. Then A,B € T. Also
1 1 1 n .
AB = (0 1)7 (AB)" = (0 1) so that (AB)™ # I for any n. Hence AB is

not of finite order so that AB ¢ T'. Thus T is not a subgroup.

Problem 7.14. Find a group that contains elements a and b such that o(a) =
o(b) =2 and

(1) o(ab) =3
(#4) o(ab) =4
(73t) o(ab) =5
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Can you see any relationship between o(a), o(b), and o(ab)?
Solution:

(i) In Dg let @ = Mo, b = M;. Then ab = Ry. Also M} = Ry = M2, so that
o(a) = o(b) = 2. R} = Ry, R} = Ry, so that o(R;) = 3. That is,
o(ab) = 3.

(ii) In Dg let a = H,b = D. Then ab= R; o(a) = o(b) = 2. o(adb) = 4.

(iii) In D40, consider a = Hs, b = H5 (where H; denotes the reflection about the
line of symmetry through the i*" vertex of the regular pentagon). Then
ab = H3Hs = Ry. Now o(a) = 2,0(b) = 2,0(ab) = 5.

In general there is no relationship between the orders of a,b and ab. In fact
in Dy, we can find elements a and b such that o(a) = o(b) = 2 and o(ab) = n.

Remark 7.5. The above situation arises only in non-Abelian groups. Can you
predict what happens in an Abelian group?

Problem 7.15. If G is a group and a € G such that o(a) = 5, then prove that
C(a) = C(a®). Find an element a from some group such that o(a) = 6 and

Cla) # C(d®).

Solution: Since o(a) = 5, therefore a® = ¢, so that a® = a2 clearly C(a) C
C(a®) (see above remark). Let x € C(a3). Then xza® = a®z, so that xa=2 =
a2z, that is

ar = za® (7.18)
Now za® = a®x = a(a®z) = a(wa?®) using (7.18). Thus za® = aza?, so that
za = ax, i.e x € C(a). Hence C(a®) C C(a), so that C(a) = C(a?).

Consider the group G = D12. o(R;) = 6. Let o be the reflection about the
perpendicular bisector of the side joining the vertices 1 to 6 and the opposite
side. Then R} = Rz cR3 = R3o and oR1 # Ryo, So o0 € C(R3) whereas
o ¢ C(Ry). Hence C(Ry) # C(R3).

3

7.8 Exercise
1. Prove that the identity is the only element of order 1.

2. If a,b are two elements of a group G, prove that o(ab) = o(ba).
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10.

11.
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. Without actually computing the orders, explain why the two elements in

each of the following pairs of elements from (Zzg, @30), must have the
same order: {3,27}, {12,18}. Do the same for the following pairs of
elements from U(15) : {2,8} and {7,13}.

. For each group in the following list, find the order of the group and the

order of each elements in the group. In each case how are the orders of
each of the elements related to the order of the group?

(1) (Z12,®12)
(ii) (U(?O),@Qo)

(iii) Z3 x Z§ with respect to componentwise multiplication, where Zj =
{1,2}, Zt=1{1,2,3,4}.

. Let G be a group and z € G. If 22 # e and 2% = e, prove that z* # e and

2% # e. What can you say about the order of z?

. If G is a group and x € G such that o(z) = 9, find o(z*) for k = 2,3,...,8.

. a is an element of the group G.

(i) If o(a®) = 12, what are the possibilities for o(a)?

(ii) If o(a*) = 12, what are the possibilities for o(a)?

. For any positive integer n and any angle 6, show that in the group SL(2,R)

cosf —sinf\" _ [cosnf —sinnd
sinf  cosf ~ \sinnf cosnf |-
cos60° —sin60 ) nd

Use this formula to find the order of A = (sin 60°  cos60°

B cos(\/§:) fsin(\/ﬁoo)
sin(v2 ) cos(v2 ) |’

. Consider the group SL(2,R) and A, B € SL(2,R), where A = <0 —1)7

1 0
B = _01 _11> Find o(A), o(B) and o(AB). Does this answer surprise
you? Justify.
Consider (é 1) = A € SL(2,R). what is the order of A? If we view A

as a member of SL(2,Z,) (where p is prime), what is the order of A?

If G is a group of finite order, prove that there exists a fixed positive
integer n such that a™ = e for all a € G.
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7.9 Cyclic Subgroups

Consider the group (Zi2,®12). If S = {0,3} then S is not a subgroup of
Z12, because 3®123 =6 ¢ S. Let us see how big a subgroup H of Z15 would it
have to be if it contained 3. H should contain the identity 0 and the inverse of
3, which is 9. Also it must contain 3 @123 = 6. Thus, in addition to 3, 0, 6 and
9 should all belong to H. Given below is the multiplication table of {0, 3,6,9}:

@12 |0 3 6 9
0

9
0
3

NelN e UL N an}
O O O W
WO

3
6
9 6

From the table we see that H = {0,3,6,9} forms a subgroup of Z;2. Hence
the smallest subgroup of Z12 containing 3 is H.

We now generalize this concept. Let G be a group and a € G. Any subgroup
H of G containing a must contain aa, that is, a?; a?a that is a® etc.... In general,
it must contain all positive, integral powers of a, that is, a™ for every positive
integer n. Also, a subgroup containing ¢ must also contain a~!, and hence
by the above argument it must contain all powers of a~!, that is, a=™ for all
positive integers m. In addition, it must contain aa~! = ¢ = a°, that is, the
identity element. Summarizing, we have shown that a subgroup of G containing
a must contain {a"|n € Z}. Thus we have the following result.

Theorem 7.20. Let G be a group and a € G. Then H = {a"|n € Z} is a
subgroup of G and is the smallest subgroup of G which contains a. Moreover H
is Abelian.

Proof: Step 1 To prove that H is a subgroup of G we shall use the two step
test. Clearly a € H, so that H is non-empty. Let a”,a® € H for some r,s € Z.
Then a"a® = a"™° € H, - r + s € Z. Thus, the product of two elements of H
is an element of H, so that H is closed under the group operation on G. Let
a” € H, for some r € Z, then —r € Z, so that ™™ € H. Also a"a™" = a® = ¢,
so that (a")™! =a™" € H. Hence H is a subgroup of G.

Step 2 We shall now prove that H is the smallest subgroup of G containing
a € H. Let Hy be a subgroup of GG such that a € H;. Then every power of a
belongs to Hy, as H; is a group in its own right, i.e., a™ € H; for all n € Z.
Hence H C H;. Thus H is the smallest subgroup of G containing a.

Step 8 Let x,y € H then x = a™,y = a™ for some m,n € Z. This implies
that zy = a™a"™ = a™™" = "™ = a™a™ = yx. Thus H is Abelian. O

In view of the above result we have the following definition of a subgroup
generated by an element of the group.

Definition 7.7. (Cyclic subgroup): Let G be a group and a € G. Then
subgroup {a™|n € Z} of G is called the cyclic subgroup of G generated by a.

Cyclic subgroup generated by a is denoted by (a).

Remark 7.6. In view of the above definition and Theorem 7.20 we see that (a)
is the smallest subgroup of G containing a. Thus {(a) = {a"|n € Z}. In case of
additive notation (a) = {naln € Z}.
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Remark 7.7. From the definition it is clear that {a) = (a™1) as follows {a) =
{a"ln€Z}y ={a " n e Z} = {(a ) n € Z} = (a7 ).

Example 7.16. Consider the group (Z4,®4). Thus Z4 = {0,1,2,3}. If a € Z4
then {a) = {na|n € Z4}. Let us find the cyclic subgroups generated by the non
zero elements of Zy4.
OH={nds1llneZ}={0, 1, 1@41, ...}

={0,1,2 30,1, ..} ={0, 1, 2, 3} using congruence modulo 4.
(2y={n®s2neZ}=A0, 2,0, 2, ..} ={0,2}
(3)={n@s3|necz}=1{0,3 21,03 2 1, ..} ={0, 1, 2, 3} = Z,.
Thus (1) = (3) = Zj.

Example 7.17. Consider the group (U(30), ®30), where U(30) = {1,7,11,13,
17,19,
23,29}. Then U(30) is a group of order 8. find the subgroup generated by 7.
(@) = {a"ln ez}
(1) = {TIn e Z}
= {70, 7\, 7, ...
= {1, 7, 7 ..
= {1, 7, 19, 13, ..., 13,(13), ..}
= {1, 7,19, 13, .., 13, 19, 7.1, ..}
= {1, 7,19, 13, .., 13, 19, 7,1, ..}
= {1, 7, 13, 19}.

Example 7.18. In (Z,+), find (5), the cyclic subgroup of Z generated by 5.
5y = {n-5neZ}

{bn|n € Z}

= all multiples of 5

= bZ.

7= 772, )
()2}

Remark 7.8. In (Z,+) the cyclic subgroup generated by n, i.e. (n) is nZ.

The following Theorem shows that if an element a of a group G is of finite
order n then (a) is a finite subgroup of G of order n.

Theorem 7.21. If G is any group and a € G of order n then {(a) is a subgroup
of order n. Moreover {(a) = {e,a,a?,...,a" " 1}.

Proof: Let a € G be of order n. Then a™ = e. We know that (a) = {a™|m €
Z}. Let S = {e, a, a® .., a®1'}. Clearly S C (a). Let z € (a). Then
x = a"™ for some m € Z. By division algorithm, there exists ¢, € Z such that
m=nqg+r, 0<r<n.
Now a™ = q"tT, 0<r<n

= a™a”
ela”
ea”

=a €8 (- 0<r<n)
Hence © = a™ € S so that (a) C S. Hence (a) = S. Clearly (a) is of order n, as
o(a) = n implies that all elements of S are distinct.

O

Remark 7.9. If G is an additive group and a € G is of order m then {(a) =
{nal0 <n <m}={0, a, 2a, ..., (m—1)a}.
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Using the above theorem, we find all cyclic subgroups of some groups.

Example 7.19. Consider the group U(20). We find the order of each of its
elements and hence obtain the cyclic subgroups generated by them.
U20) = {1, 3, 7, 9, 11, 13, 17, 19}.

32 =93 =73 =1 . 003) =4andso (3)={1, 3, 32 33 =
{1, 3,9, 7} =11, 3, 7, 9}.
?=9 17=3 "T=1 - o) = 4and so (7) = {1, 7, 7?, T*} =

{1, 7.9, 3} ={1,3, 7, 9}

92 =1 . 0(9) = 2andso(9) = {1, 9}.

Similarly o(11) = 2 and so (11) = {1, 11}.

0o(13) = 4, and (13) = {1, 9, 13, i7}.

o(17) = 4, and (17) = {1, 9, 13, 17}.

0o(19) = 2, and (19) = {1, 19}

Thus U(20) has 4 cyclic subgroups of order 4 and 3 cyclic subgroups of order 2.

Example 7.20. Find all cyclic subgroups of (Z10,®10)-

Note that {(a) = {na|n € Z} = set of all integral multiples of a. Now Zy9 =
{0, 1, 2, 3, ..., 9} is an additive group.

2 times 21is2®102 =4, 3 times 215 2P1902P102 = 6, 4 times 2 is 2 D192 P1o
2 @10 2 = 8, 5 times 2 is 2 @10 2 @10 2 @10 2 @10 2 =0. Thus 0(2) =5 and

o(4) =5, (4) = {4n(modl0)|0 <n <4} ={0, 2, 4, 6, 8}
o(5) =2, (5) = {bn(modl0)ln=0, 1} = {0, 5}

0(6) =5, (6) = {0, 2, 4, 6, 8}

o(7) =10, () = Zo

o(8)=5, (8 = {0, 2, 4, 6, 8}

0(9) = 10, <9> = ZIO~

Example 7.21. In U(15) what are the orders of (2) and (11). Also write their
elements.

We know that (a) = {a, a?, a3, .., a" ', a® = e}, when o(a) = n. In
U5), o(2) =4 . 0(2) =4 and (2) = {2°=1, 2, 22, 23} = {1, 2, 4, 8}
and o(11) =2 (-- 112 = 1mod15) and (11) = {1, 11}.

Example 7.22. We find the cyclic subgroup generated by A € SL(2,R) where

A= <(1) i) We know that (A) = {A™n € Z}. By induction it can be

proved that A™ = <(1) 711 for n € N. Since A™ #£ I for any n € N, so that
. . 1 1 -1 _ 1 —n

A is not of finite order. A~ = 0 1) % that A~ = 0 1) % that

(A) = { (é Tf) In € Z}. Hence (A) is an infinite cyclic group.

7.10 Solved Problems

Problem 7.16. Let Q be the group of rational numbers under addition and let
Q* be the group of nonzero rational numbers under multiplication.

(i) In Q Ust the elements in (1).



256 CHAPTER 7. SUBGROUPS

(ii) In Q* list the elements in ().

(#91) Find the order of each element of Q.

(iv) Find the order of each element of Q.

Solution:

(i) In (Q4) (A)={n-3nez}={.., -1, —3,0, 3,1, 3,2, ..}
() In (@), (1) = {()minezh={1, L, 2 L4, .}

(iii) O being the identity, order of 0 is 1. If a € Q,a # 0 then there does not
exist any positive integer n, such that na = 0, so that o(a) is infinite.

(iv) o(1) = 1, 1 being the identity element in Q* . Also (—1)? = 1 so that
o(—=1)=2. If a € Q*,a # £1, a™ # 1 for any positive integer n. Hence a
is of infinite order. Thus -1 is of order 2 and all other elements different
from identity are of infinite order.

Problem 7.17. List the cyclic subgroups of U(30).

Solution: U(30) = {1, 7, 11, 13, 17, 19, 23, 29}

= {1}

= {7, 19, 13, 1} = {1, 7, 13, 19}

= {11, 1} = {1, 11}

= {13, 19, 7, 1} = {1, 7, 13, 19}

= {17, 19, 23, 1} = {1, ,17, 19, 23}

= {19, 1} = {1, 19}

{23, 19, 17, 1} = {1, 17, 19, 23}

= {29, 1} = {1, 29}.

us the cyclic subgroups of U(30) are — (1), (11), (19), (29),
(71y = (13), (17) = (23) as described above. There are 6 distinct cyclic
subgroups. Note that U(30) has 4 elements of order 4 but only 2 subgroups of
order 4.

[ e e NI
=

[\~
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=

Problem 7.18. Suppose G has exactly 8 element of order 3. How many sub-
group of order 8 does G have?

Solution: We assert that every subgroup H of order 3 contains exactly two
elements of order 3. For, let ¢ # a € H. If b = a®>. Then b # e. Also
bV =a'=a+#e b3 =a%=e. Thuso(b) =3. Also (a) = {e,a,a’} = {e,a,b}.
Now (a) is a subgroup of order 3 containing exactly 2 elements of order 3. Since
(a?) = {e,a,a®} . (a) = (a®). Thus two distinct elements a and a? of order 3
generate the same subgroup of order 3. Hence if there are 8 elements of order 3
then there are exactly 4 subgroups of order 3.

Problem 7.19. Find the smallest subgroup of Z containing both 8 and 12.

Solution: Let H and K be the smallest subgroups of Z containing 8, 12
respectively. Thus H = (8), K = (12). So H = {0, £8, +£16, +24, £36, ...}
and K = {0, £12, +24, +36, ...}. Let L be the smallest subgroup of Z
containing both H and K. Thus L must contain 12 —8 = 4. This is the smallest
positive element of L.

4y € L (7.19)
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a subgroup containing both H and K and so

Also 8 € (4) = (8) C (4) and 12 € (4) = (12) C (4) and consequently (4) is

LC(4) (7.20)

From (7.19) and (7.20) we get L = (4).

Problem 7.20. Dg has 7 cyclic subgroups. List them. Find a subgroup of Dg
of order 4 which is not cyclic.

Solution: Dg = {R07 R17 RQ, R3, H, ‘/, D7 D/}
Clearly o(Rg) =1, o(R2) =o(H) =0o(V) =0o(D) =0o(D') =2 o(Ry) =
0(R3) = 4, R% = RQ, R? = R3,R‘1* = RO
<R1> = {Ro, Ri, Ro, Rg} sunllarly <R3> = {RQ, Ri, Ro, Rg}
Ry) = {Ro, Ra2}
H) = {Ro, H}
V) = {Ro, V}

o~ o~~~

D) = {R,, D}
(D) = {Ro, D}

Also (R1) = (R3), (Ro) = {Ro}. Thus there are seven cyclic subgroups.
Also Vi = {Ro, H, V, Rs} is a non-cyclic subgroup of order 4. V;(Viergruppe)
is called Klein 4-group.

7.11 Exercise
1. List the elements of the subgroups (3) and (15) in (Zis, ®1s)-
2. List the elements of (3) and (7) in 4(20).

3. U(15) has six cyclic subgroups. List them.

4. In SL(2,R), find (A) where A = <é _11>

7.12 Lattice of Subgroups

We know that, in general, a group has subgroups, different from the trivial
subgroups. We will describe a diagram associated with a group representing the
relationship between its subgroups. This diagram, called the lattice of subgroups
of a group (or subgroup lattice) is a very good way of visualizing a group.
The structure of a group can certainly be seen in a better way than from the
multiplication table of the group. In a sense we can say that the subgroup lattice
gives a ‘family photo’ of the group.

The lattice of subgroups of a finite group G is constructed as follows:

1. Plot subgroups of G starting with (e) at the bottom and ending with G at
the top. Subgroup of larger order may be positioned higher on the page
than those of smaller order.

2. Draw a path upwards between subgroup using the following rule:

There will be a line segment upward from H to K if H < K and there
are no subgroups L such that H < L < K. Thus if H < K there is a
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many path) upward from H to K passing through a chain
e subgroups. The initial positioning of the subgroups on
newhat arbitrary. With some adjustment we can produce a
n which is pleasing to the eye.

lique way of drawing a diagram of a subgroup lattice . It
y draw a diagram of a subgroup lattice procedure outlined

w a subgroup lattice:

he subgroups of the given finite group.

chains of subgroups starting from (e) and ending at G.

e chains with (e) at the bottommost position and G at the

mon elements of the chain (i.e. those shared by 2 or more
only once.

n the subgroup lattice of G. If needed minor positioning
- done to get a beautiful look.

e draw the subgroup lattice of (Za, ®2), Z2 ={0, 1}. It has
namely (0) and Zy. Its subgroup lattice is
Z,
‘ 5,"(

</
(/IVAN
5K
AN
0 .’ N
e draw the subgroup lattice of (Zy4,®4), Z4 =10, 1, 2, 3}. /
are Hy = {0}, H; ={0, 2} = (2), Z4. The only chain is
- subgroup lattice is: ’

H,
e draw the subgroup lattice of (Z16, ®16), Z16 =10, 1, 2,
oups of Zig are Hy = (0), Hy = (2), Hy = (4), Hg = (8)
only chain is (0) < (8) < (4) < (2) < (1).
UPS 8:
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N

W

> draw the subgroup lattice of (p"Z, ®pn) where p is a prime.

Z are (1), (p), (p?), ..., (p"71), (p") = (0). The only chain
. < (P®) < {p) < (1) =p"Z. The subgroup lattice is:

e draw the subgroup lattice of (Z1s, ®1s) where Z1s = {0, 1,
groups of Zag are obtained as follows:

1, 2, 8, 6, 9, 18. There is precisely one subgroup of each
ated by (0), (9), (6), (3), (2), (1) respectively. The chains

) < (D)
) < (D)
) < (1)
vertically as follows:
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(1) (1) (1)
(2) (3) (3)
(6) (6) (9)
(0) (0) (0)

Writing the common elements, (0),(6),(3) and (1) only once we get the sub-
group lattice as shown.

™
e
7 @
<S>/ \<V>
N

Problem 7.21. Let S = {a, b, ¢, 1} with the following multiplication table:

|1 a b ¢
111 a b ¢
ala 1 ¢ b
blb ¢ 1 a
cle b a 1

Draw the lattice diagram of S.
Solution: From the table we see that 1 is the identity element, and a? = b? =
¢? = 1. Thus subgroups of S are (1), {(a), (b), {c), S. The chains are:

1 < (a9 < S
1 < b < 8
1 < {o < S

The lattice diagram is
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®

Problem 7.22. Draw the subgroup lattice of (i) Ss (i) Ds.

Solution:

() S=1{1,2 3}, S5 ={e (12), (13), (23), (123), (132)}. Sub-
groups of Sy are: ((12)) = {e, (12)}, ((13)) = {e, (13)},((23)) =
fe. 23)}, ((123))={e, (123), (132)}

The chains are:

() < (12) < 5
() < ((13) < S
(e) < ((23) < S
) < {(123) < S

The lattice diagram is:

AN

(EO0=PE)  €N=PB) EN=0F  EN=0=PF)

——

§—o—=0

()

(i) Dg = {Ro, R1, Ra, Rs, H, V, D, D'} Ry is the identity element. The
SUbgroup OfD8 are: <R0> < <R1>7 <R2>7 <H>7 <R2>3 <H>7 <V>7 <D>7 <D/>
and see problem p75. Also chain are

<R0> < <R2> < <R1> < Dg

(Ro) < (H) < Va < Dsg
(Ro) < (V) < Vi < Ds
<R0> < <R2> < Vi < Dg
(Ryy < (D) < K < Dg
(Ro) < (D) < K < Dg
<R0> < <R2> < K < Dy
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writing the chains vertically,

o> o> €5 Lo> >\@\<>

(EO=EE) EN=PE) En=08 | EN=0=PF)

o o Cax Qo> (oo o
(&)

The subgroup lattice is:

SN i
T
A & o & S <T>
<L|» <
~»
{ow

7.13 Exercise

1. Draw the subgroup lattice of the following groups:
(i)  Qs,the group of quaternions

(i)  (Zs,®3)

(i) (Zg, Do)

(iv)  (Z12,®12)

(v)  Deg, the dihedral group of order 6

(Vi) (Zso, ®30)

(vil)  (U(12),®12)

(viii)  (U(8),s).
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7.14 Supplementary Exercises

1. State whether the following statements are true or false. Justify your an-
swer. Also correct the false statements.

Every subset H of a group G is a subgroup under the binary
operation restricted to H.

Every group is a subgroup of itself.

Every set of numbers which is a group under addition is also a
group under multiplication.

There are groups in which cancellation laws do not hold.

The identity element of a subgroup can be different from the
identity element of a group.

If H is a subgroup of G and a € H then the inverses of a as
elements of H and G can be different.

The group of even integers, under addition is cyclic.

The cyclic group Z has a unique generator.

The set of all purely imaginary complex numbers is a subgroup
of the set of all non-zero complex numbers under multiplication.
Every subgroup of an Abelian group is Abelian.

Every subgroup of a non Abelian group is non-Abelian.

Every element of a group generates a cyclic subgroup of the
group.

Every non-Abelian group has at least one non-trivial Abelian
subgroup.

If @ and b are elements of finite order in a group G such that
ab = ba, then ab is also of finite order.

In a group G if a and b are elements of G which commute, such
that, o(a) = 3, o(b) = 4 then the order of ab is 12.

In a group G if a and b are elements of G which commute, such
that o(a) = m, o(b) = n then o(ab) is mn.

An element of a group of finite order may have infinite order.

A subset H of a finite group G is a subgroup if H is closed.
The set of all complex numbers which lie on the circumference
of a circle centered at the origin and radius 2 is a subgroup of
multiplicative group C*.

A group of order 8 cannot have a subgroup of order 6.

The dihedral group D,, of symmetries of a regular polygon

of n sides has order n, for n > 3.

Every proper subgroup of the group of quaternions is Abelian.
Every dihedral group Ds, for n > 3, is non-Abelian.

Every dihedral group Ds,, for n > 3 has a cyclic subgroup of
order n.

Dg has 4 cyclic subgroups of order 2 and one cyclic subgroup of
order 4.

2. Let GG be a group and let S be the set of all subgroups of G. On S, define
a relation ~ as follows: A ~ B if A is a subgroup of B. Is this relation an
equivalence relation? Justify you answer.

3. Let G be a group and n be a fixed positive integer. Let G™ = {¢" : g € G}.
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
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Prove or disprove that G™ is a subgroup of G.

. A and B are subsets of a group G. Prove that

(i) C(AUB) = C(A) N C(B).
(il) C(A)UC(B) C C(ANB).

. For any subset A of a group G, obtain a containment relationship between

the centre of GG, centralizer of A and the normalizer of A.

. Find the centre of the quaternion group Qs.
. Find a cyclic subgroup of order 4 in U(40).
. Find a non-cyclic subgroup of order 4 in U/(40).

. Let G be an Abelian group and p any prime number. Show that the set

of all elements of G whose orders are powers of p, is a subgroup of G.

Give an example of a group which is not cyclic, but its every proper
subgroup is cyclic.

Let G = GL(3,Q). Let H = {A € G : |A] is an integral power of 3}. Show
that H is a subgroup of G.

List the elements of the subgroups (20) and (10) in (Z3g, D30)-

If a group has exactly 4 elements of order 4, then how many subgroups of
order 4 are there?

Find all cyclic subgroups of the group G. Is there a proper subgroup of G
which is not cyclic, where

(i) G = Dg?
(ii) G = Dg?
(iil) G = Qg?

Let G be a finite group with at least 2 elements. Show that G has an
element of prime order.

For any element a in a group G, prove that (a) is a subgroup of C(a).

In a group G, if a is the only element of order 2, then prove that a lies in
the center of G.

Prove that every non-Abelian group has at least two non-trivial Abelian
subgroups.

G is a group and a,b € G such that ab = ba. Prove that (b) C C(a).

In a group, for any x € G, prove that () < Ng((z)). Further show that
equality need not hold.
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7.15 Answers to Exercises
Exercise - 7.3

1. If H = ¢, no such a exists.

[\

. (i), (1), (v), (vi) are Yes; (ii), (iv) are No.
4. H; is a subgroup. Hs is not closed so not a subgroup.

5. (i) V4 is an Abelian subgroup of non-Abelian group Dg. {£1, +4} is a finite
subgroup of (C*,.).

9. H is not a subgroup of U(20) 7€ Hbut 7TO07=9¢ H.

10. Hy, H3 are subgroups.
H> is not a subgroup as {(g g) } does not have an inverse.

H, is not a subgroup as {(g ;)) } does not have an inverse.

11. H is not a subgroup as 2 + 3¢, —3 — 2¢ € H but their sum —1 + ¢ is not in
H.

Exercise - 7.5

w

C{E1, %), Z(G) = {+1}

4. No, In the group of Quaternions Qs, if A = {i, j}, B = {i, k} then
C(A) =C(B) but A # B.

6. C(A) = {(g Z) :a,beR}, c(B) = {(‘; 2) :a,beR}.
7. {Ro, Ra)
9. G

12. Z(G) C C(A) C N(A)
Exercise - 7.8
2. Hint: ab = b"1(ba)b.
The elements in the pair are inverses of each other.
o(z) =3 or 6.

o(2?) = o(z*) = o(2®) = 0(27) = 0o(28) =9, o(x®) = o(25) = 3.

R

Hint: if o(a) = n, then o(a™) =

gcd(y'rln,n)
(i) o(a) =12 or 60.
(ii) o(a) = 48.
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_ n _ (cos(nv2) —sin(nv/2)
8. o(4) =6 B" = (Sin(n\/i) cos(nv/2)

such n exists. Hence o(B) is infinite.

> = I when nv2 = 360°. But no

9. o(A) =4,0(B) = 3,(AB)" = so that AB is of infinite order. A, B

1 n
0 1
are of finite orders but AB is of infinite order.

10. A" = <(1) ?) : In SL(2,R) o(A) is infinite. In SL(2,Z,), o(A) = p.
11. n = product of the orders of the elements of G.

Exercise - 7.11

—_

. (3)={0,3,6,9,12,15} = (15).

N

. (3)={1,3,9,7} = (7).

3. (1); (4); (11); (14); (2) = (8); (7) = (13).

5. (A) = {(é ’f):nez}.

Exercise - 7.13

@ @ &

/
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(viii)

(xix)
()
()
(xxii)
(xxiii)
(xxiv)
(rxv)

U (8)

Supplementary Exercise - 7.14

H should be a group.

T

F, (Z,+) is a group but (Z, -) is not.

F, cancellation laws always hold in a group.

F, they are same.

F, they are same.

T

F, it has 2 generators 1.

F, 2 is not pure imaginary.

T

F, subgroup of a non-Abelian group may be Abelian. Set of all
2x2 scalar matrices over R is an Abelian subgroup of non-Abelian
group GL(2,R).

, o(ab) = lem of m and n.

, every element is of finite order.

, H should be non-empty.

, |Z1| = 2, |Z2| = 2, then |Z122‘ =4 §£ 2.

HHHE M EmEa a4

F, 5 of order 2.

2. No, it is not symmetric. It is reflexive and transitive.

3. G™ is not a group, Dg is a group but D3 is not a subgroup of Dg. If G is
Abelian G™ in a group.

5. Z(G) C C(A) C N(A)
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{17 _1}
(3)

Hint: A non-cyclic subgroup of order 4 in U(40) must be of the form
{e,a,b,ab} such that o(a) = o(b) = 2. It is {1,9,11,19}.

Vi. Qs.
{0,10,20} = (20) = (10)

Hint: 1f o(a) = 4, then o(a®) =4 . {a) = (a®). Number of subgroups of
order 4 = §(Number of elements of order 4) = 2.

(i) (Ro), (R1), (M), (Ms), (Ms). No proper subgroup is non-cyclic.
(i) (Ro). (R1), (Ra), (H), (V). (D), (D'}, Vi ={Ro, H,V, Ra},

K ={Ry,D, D', Ry} are non-cyclic subgroups of Dg.
(iit)(1), (=1), (i), (4), (k). No.

Hint: Let e # a € G and o(a) = n. Then there exists a prime p which
divides n. Let m = 2. Then o(a™) = p.

Hint: o(zaz~') =o(a) Vre€G.

Hint: e # a € G, (a) is Abelian, G non-Abelian = (a) #G 3 be G ~
D ~ (a). Then (b) is also Abelian.

G:Qg, T =1.



Chapter 8
Cyclic Groups

In the previous chapter we have defined a cyclic subgroup of a group.
Recall that if a is an element of a group G, then {a"|n € Z} is a subgroup of
G, called the cyclic subgroup of G generated by a and is written as (a). In this
chapter we shall study cyclic groups and their properties.

8.1 Definition and Examples

Definition 8.1. A group G is said to be cyclic if there exists some a € G such
that (a), the subgroup generated by a is whole of G. The element a is called a
generator of G or G is said to be generated by a.

Thus G = {a) = {a™|n € Z}. If the binary operation is addition, then G = {a) =
{naln € Z}.

Remark 8.1. If G is a finite cyclic group of order n, generated by a, then
G = {a,a® a3 a* ...,a" 1 a" = e}.

An immediate consequences of the definition.
Theorem 8.1. Every cyclic group is Abelian.
Proof: Follows from Theorem 7.20. O

Example 8.1. Let G = {1, -1}, then G is a group with respect to multiplication.

. n_ | =1 ifnisodd
Since  (-1)" = { 1 ifn is even
Therefore (—1) = {(-1)*|n € Z} = {-1,1} = G.
Hence G is a finite cyclic group of order 2.

Example 8.2. Consider the group (Z,+). We show that Z is an infinite cyclic
group. (1) = {nljn € Z} = Z. Since n1 # 0 for any n € Z, therefore (1) is
infinite. Since additive inverse of 1 is —1, therefore (—1) = (1). Hence Z =
(1) = (=1). Thus Z is a cyclic group having at least two generators 1 and —1.
It is an infinite cyclic group.

271
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Let us recall. “If G is a group and a € G such that o(a) = n, then (a) is a
finite subgroup of G of order n.” Thus we have the following theorem:

Theorem 8.2. Let G be a finite group of order n, then G = (a) for somea € G
if and only if a is of order n. Further, if o(a) = n then G = {(a).

Proof: Given o(G) = n. Let G be a cyclic group and G = (a) for some a € G.
Then, o(G) = o({(a)) = o(a). Hence o(a) = n.

Conversely, suppose that o(a) = n, and H = (a). Then H is a cyclic subgroup
of G of order n. Also H C @G, since G is finite and o(H) = o(G), we get H = G.
Hence G = (a), so that G is cyclic. O

The above theorem tells us that in a finite group of order n, every element
of order n is a generator of the group. But this is not the case if the group is
not finite, i.e, in an infinite cyclic group, every element of infinite order may not
be its generator. This is shown by the following example.

Example 8.3. Consider the group (Z,+). Then Z = (1) = (=1). Thus Z is an
infinite cyclic group. Observe that 2 € Z is of infinite order, as 2n # 0 for any
n € N. Further,

(2) = {2z:2€Z}
= Set of even integers

£ 7

Thus 2 is not a generator of Z.

The condition of finiteness is also important in another sense. If G is an
infinite group and G has an element of infinite order, still G may fail to be
cyclic. This is shown in the following example.

Example 8.4. Consider the group (Q,+). Q is an infinite group. We assert

that it is not cyclic. Let if possible Q be cyclic and be generated by g, where

,q) = 1. Without any loss of generality, we can take L to be positive, such
P.q y g y b p

that Q = (£) = {n(%) : n € Z}. Now %(%) € Q. %(g) # k(L) for any k € Z.
Therefore %(%) ¢ (L). Hence Q is not a cyclic group.

We shall now give some examples of cyclic group.

Example 8.5. Consider the group (Zg, D¢).
Here Zg = {0,1,2,3,4,5}. 1 € Zg is such that, o(1) = 6.
(1) = {n.1(mod6)|n € Z}
= {nln=0,1,2,3,4,5}
= {1,2,3,4,5,0}
= Zg.

Thus Ze is a cyclic group.

Example 8.6. Consider the group (Z,,®.).
Here Z,, = {0,1,2,...,n—1}. Since 1 +1+1+---n times = 0, therefore order
of 1 in Z,, = n. Hence Z,, = (1), so that Z, is cyclic.
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Example 8.7. Group of cube roots of unity.
In particular, forn =3, G = {1,w,w?} where w = cos %’T + isin %’r, s a cyclic
group generated by w. In fact it is also generated by w?, because w™' = w?. Thus

G = (w) = (w?)

Example 8.8. Group of 4'" roots of unity. Forn =4, G = {+1,4i} and G =
(iy = (=i) = {i,i* = —1,i3 = —i,i* =1} = G.

Example 8.9. Group of n'* roots of unity is a cyclic group.
If G = {cos 2% + jsin %Tﬂk =0,1,2,3,...,n— 1}, then G is a multiplication

group of n** roots of unity. We shall show that G is cyclic.
Let a = cos 27? + ¢ sin %’T, then a € G. Also, by De Moivre’s Theorem:
af = (cos%r —i—z’sin%T k :COS%T”—I—z'sinZZ”, fork=1,2,...n—1.

Thus G = {a,a? a3,...,a" 1, a" = 1} = {(a). Hence G is a cyclic group gener-
ated by a.

Example 8.10. Consider the group U(14) under multiplication modulo 14, then
U(14) =1,3,5,9,11,13}. Observe that

32=9 33=13,3*=11, 3=5, 36 =1.

Therefore order of 3 is 6. Since 6 =o(U(14)) we get U(14) = (3). Thus U(14)
is a cyclic group.

However, in general U(n) is not cyclic as can be seen from the following
example.

Example 8.11. Consider the group U(8) under multiplication modulo 8. We
know that

UB) ={1,3,5,7}. Thus o(U(8)) = 4.

IfU(8) were to be a cyclic group, it would have an element of order 4. But none
of the elements is of order 4 as o(1) = 1,0(3) = o(5) = o(7) = 2. Thus U(8) is
not a cyclic group.

Example 8.12. Show that U(20) # (k) for any k in U(20) and hence deduce
that U(20) is not cyclic. We find that

U(20) = {1,3,7,9,11,13,17, 19}.

o(U(20)) = 8.

o(1) =1,0(3) =4,0(7) =4,0(9) = 2,0(11) = 2,0(13) = 4,0(17) = 4,0(19) = 2.
Thus none of the elements of U(20) is of order 8. Hence U(20) is not a cyclic
group. Thus U(20) # (k) for any k € U(20).

8.2 Description of Cyclic Groups

We now describe cyclic groups with regards to the number of elements it
has, i.e. whether it is finite or infinite. The following theorem gives a complete
description of cyclic groups, in terms of the order of the group or the order of
its generator.

Theorem 8.3. Let G be a cyclic group generated by a, then
(i) G is infinite if and only if a is of infinite order, then G = {a"|n € Z}
(ii) G is of finite order n if and only if o(a) = n,and

G ={a,a% ...,a" ' a" = e}.
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Proof: Let G = (a). Then
(i) G is infinite < For every positive integer n, a™ # e < a is of infinite order.
(ii) Follows from Theorem 7.21.

O

Remark 8.2. If G is a cyclic group of order n, and b is any element of G of
order n, then G = (b).

If a has infinite order, then multiplication in (a) works in the same way as

addition in Z, because a’.a? = a'*J for all 4,j € Z. If a has finite order n, then
the elements of (a) are multiplied by adding the powers of a modulo n, that is,
alal = a'®nd,
For these reasons, there are essentially two cyclic groups Z and Z,. What is
meant by this is that, although there may be different sets {a"|n € Z}, there is
only one way to operate on these sets, depending upon the order of a. Algebraists
do not really care what the elements of a set are; they care only about the way
the elements of the set can be combined.

Example 8.13. Consider the set G of rotations of a reqular n-gon, then
G = {Ro,R1,Ro,...,R,_1} where Ry is the rotation through an angle o %T”
Then Ry, = R¥ so that G = {Ry,R?,...,R""* R} = Ry}. Hence G is a cyclic
group of order n. In fact, Ry R; = R,,, where m = k ®,, l. Essentially we can
say that G is nothing but the group (Z,,®n).

Example 8.14. If G is the cyclic group of nt" roots of unity .Then G = (a),
where a = cos Qf—l—i sin 27” and a"a®* = a"®"* Thus G is also essentially (Z, ®y)-
Example 8.15. Let m be a fized positive integer, then (mZ,+) is a group.
mZ = {mz|z € Z} = {(m). Hence it is a cyclic group. If x,y € mZ, then
x =mi,y =mj for somei,j € Z. We get x +y = mi+mj = m(i + j), so the
operation in mZ works in the same way as the operation in Z.

0 1
Then H = {A° A*Y A%2 ) = {I, A*Y A*2 ). Since A" = ( (1) TIL >7

Example 8.16. Let H = (A) where A = ( L1 )

If M,N € H, where M =
A™ and

N

1 m 1 n m oA
o1 ) N=1{o 1),thenM—A,N—

(1T m4+n\ _ an
wv= (7Y e

Thus the multiplication operation in H is similar to addition in Z. Hence we
can say that H and Z behave in the same way in some sense.

Problem 8.1. Consider the set S = {4,8,12,16}. Show that (S, ®20) is a group
by constructing its multiplication table. What is the identity element? Is this
group cyclic?
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Solution: The multiplication table is

©p | 4 8 12 16
4 [16 12 8 4
8 |12 4 16 8
12 | 8 16 4 12
6 | 4 8 12 16

The table shows that 16 is the identity element, and (.S, ®29) is a group.Observe
that 42 = 16, 82 =4, 83 =12, 8 = 16. Since 8 is an element of order 4 = o(S),
therefore S = (8), so that S is cyclic of order 4 and 8 is its generator.

Problem 8.2. Prove that U(2™) for n > 3 is not cyclic.

Solution: Step 1

U2") = {keNlkisodd , k< 2"}
{1,3,5,...,2" — 1}
Therefore o(U(2")) = % x 2" =2t

If U(2") is cyclic, then it must contain an element of order 2"~!. Suppose
x € U(2") is an element of order 2”71, then z* # 1 mod 2" for any k < 2"~ 1.

Step 2 We prove that for every odd integer a, a2" " =1 mod?2™ for n > 3.
This result will be proved by induction on n.
For n = 3, we need to prove that a? = 1 mod8.
Since a is odd, say a = 2k — 1 for some k € N, then

a>—1 = (2k—1)*—-1
4k(k —1)
-1
- 8% (8.1)
= 0mod8 (since@EZ Vk € N)

a® = 1 (mod8).

Thus the result holds true for n = 3. -
Now let us assume that the result holds for n = k > 3, that isa® = 1 mod 2*.
Hence, observe that

o1 = 2, forsome m € Z. (8.2)
a2(k+1)72 . 1 _ a2k71 - 1
= (@ -1+
= 2]“m(a2k_2 +1)
2Fma2l

Since a odd = 2" + 1is even = a2~ + 1 = 21 for some [ € Z.
Thus

(k4+1)—2
a? 2k 1m

2k+1

-1

(k+1)—2
a2

1 mod
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Hence the result holds for n = k + 1. By the principle of induction we have
"’ =1mod2™ for n>3.

~o0(@))2"2 = o(a) < 2™ L. U(2") has no elements of order2”~!. Thus /(2")
is not cyclic for any n > 3.

8.3 Exercise

1. Prove that a non Abelian group cannot be cyclic.

2. Let S = {3,6,9,12}. Show that (S,®15) is a group by constructing its
multiplication table. Is it cyclic? What are the generators?

3. Let S = {7,35,49,77}. Show that (S, ®s4) is a group by constructing the
multiplication table. What is the identity element? Is the group cyclic?
If Yes, find its generators.

4. If a cyclic group has an element of infinite order, how many elements
(other than identity) of finite order does it have?

5. Show that the group of positive rational numbers under multiplication is
not cyclic.

6. Which of the groups U(n) for n = 7,10, 13,14, 15,16 are cyclic?

7. Prove that

1 m . .
{(O 1> tm € Z} is a cyclic group.

8. Prove that V; = {e, a, b, ab} where a® = b> = e, ab = ba is not cyclic.

8.4 Generators of a Cyclic Group

It was observed in the previous section, that a cyclic group can be generated
by more than one of its elements. Can we find all the generators of a cyclic
group without finding the order of the elements? Moreover without finding the
generators as such, is it possible to know how many generators a given cyclic
group can have? This is precisely our object of study in this chapter.

Theorem 8.4. (Generators of an infinite cyclic group) An infinite cyclic group
generated by a has precisely two generators namely a and o~ .

Proof: Let G = (a) be an infinite cyclic group, then a is of infinite order by
Theorem 8.3. If G = (a*) for some k € Z, then a € G

= a = (a*)™, for some m € Z.

= a=ad"m

=km=1

=k=m=1ork=m=—1. (Since k,m € Z)

Thus the only generators of G are a and a~'. O
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If G is an additive infinite cyclic group, then the above theorem reads as:

Theorem 8.5. An infinite additive cyclic group gemerated by a has precisely
two generators a and —a.

Theorem 8.6. (Generators of a finite cyclic group) Let G be a cyclic group of
order n generated by a € G, then a* € G is a generator of G if and only if k
and n are coprime.

Proof: G = (a) and o(G) = n. Suppose that a* is a generator of G, then
G = () ={(a*)? = e,a”, (a*)?,--- | (a*)"~1}. Since a € G, a = (a*)™ for some
m=0,1,2,...,n — 1. But then a = a*™ implies that n divides km — 1, i.e.,
km — 1 = ng for some g € Z or that km + (—q)n = 1.

Hence k and n are coprime. We shall prove that (a*) = G. Since k and n are
coprime, therefore there exists integers m and ¢ such that kt + mn = 1, then

a=a' = d"**tm" = ¥t (g")™ = (a*)e = (a¥)t. Thus a and so every power of a
can be expressed as a power of a*. Hence every element of G can be expressed
as a power of a*. Thus G = (a"). O

Let us recall the definition of Euler ¢ function.

Definition 8.2. If n is a natural number, then we define ¢p(1) = 1, and for
n>1,
¢(n)= number of positive integers less than n and coprime to n.

Thus we see
(i) &(p) =p—1, if p is prime.

(ii) o(U(n)) = ¢(n), for n > 1.

Thus the above theorem can be restated as:

“The number of generators of a finite cyclic group (a) of order n is ¢(n) and
the generators are a®, where k € U(n).” The beauty of this result lies in the
fact that by knowing the order of a finite cyclic group, we can find the number
of generators.

Theorem 8.7. Let (G,+) be a cyclic group of order n generated by a € G, then
ka € G is a generator of G if and only if k and n are coprime.

This theorem helps us to find all the generators of Z, . Using the fact that
Zy, is a cyclic group of order n, generated by 1 under addition modulo n, we get

Corollary 8.8. An integer k € Z,, is a generator of Zy, if and only if ged(k,n) =
1.

Remark 8.3. The generators of Z, are precisely the elements of U(n).

Example 8.17. What are all the generators of (Zs,®s). If k is a generator of
Zsg, then ged(k,8) = 1. Thus the generators are 1,3,5 and 7.

Note that these precisely are all the elements of U(8). Similarly, the generators of
(Zao, Bao) precisely are also all the elements of U(20) namely 1,3,7,9,11,13,17,19.

Example 8.18. Let G be a cyclic group of order 12 generated by a. What are
all the generators of G? Here G = (a),0o(G) = 12. Thus o(a) = 12. Now a* is
a generator of G iff (k,12) =1, 1 < k < 12, therefore k = 1,5,7,11. Hence the

generators of G are a,a®,a”, a'l.
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Problem 8.3. Let S = {4,8,12,16}. Prove that (S, ®20) is a cyclic group and
find all its generators.

Solution: We know that (S, ®g) is a cyclic group and S = (8) has been proved
in an earlier problem. We shall find all the generators of S. Since o(S) = 4, by
Theorem 8.6 8* is a generator of S, iff (k,4) = 1. Hence k = 1,3. Hence the
generators of S are 8', 83, i.e. 8,12.

Problem 8.4. Consider the group ({a), ®12) with a = 2. Then (2) = {0,2,4,6,
8,10}, so that (2) is a group of order 6. What are all the generators of (2) ¢

Solution: The other generators are ka where ged(k,6) = 1. Thus k = 5.
(5a) = (10) = {0,10,8,6,4,2} = {0,2,4,6,8,10} = (2). Thus 2 and 10 are the
only generators of (2).

Problem 8.5. If G is a finite cyclic group with more than 1 element then G
must have an element of prime order.

Solution: Let G = (a) and let o(a) = n. Let p be a prime such that p divides
n, then n = pk for some positive integer k. Let © = a*. Then x € G and 2P = e.
o(x)lp = o(x) =1orp Buto(z)=1= d"=e Butad #efork <n.
*. o(z) = p. Hence G has an element of order p.

Problem 8.6. Find the number of generators and all the gemerators of
(9Z24, ®24)-

Solution:  Observe that 9Z-4 = {0,9,18,3,12,21,6,15} = {0,3,6,9,12,15,
18,21}. Thus (9Za24, P24) is a group of order 8, and 0(9) = 8. Thus (9Z24 = (9).
The number of generators = o(U(8)) = ¢(8) = o({1,3,5,7}) = 4.

The generators are 9k (mod24)|k € U(8) ie. 9,27 (mod24), 45 (mod24),
63 (mod24) ie. 9,3,21,15.

Problem 8.7. Show that U(14) is cyclic. Find all the generators.

Solution: U(14) ={1,3,5,9,11,13}, o(U/(14)) =6

Verify that U4(14) = (3). Thus U(14) is a cyclic group of order 6, with 3 as a
generator. The number of generators = ¢(6) = o(U(6)) = O{1,5} = 2. The
generators are 3¥ where k € U(6) i.e. 3',3% modl4, i.e. 3,5.

8.5 Exercise
1. Find all the generators of Z.
2. Find all the generators of (Z19, D10).

3. If a is an element of infinite order of a group G, then how many generators
does (a) have? What are they?

4. Find the number of generators and all the generators of the following cyclic

groups.

(i)  (4Z10,®10)
(i)  (2Z12,B12)
(iii)  (6Za0, D20)
(iv)  (3Za4,®24)
(v)  (5Zs5,®35)



8.5. EXERCISE 279

5.

10.

11.

Find the number of generators and all the generators of the following cyclic

groups.
(i) up)
(i) U()

(iii) )
(iv) U(18)
(v) U(22)
(vi) U(25)

. If G = (z) is a cyclic group of order n. Find the number of generators and

all the generators of G, when
i)z=a,n=28
(i) z = b,n = 20

. If G is a finite group of order > 1, then G has an element of prime order.
. Prove that Z,, has an even number of generators if n > 2.

. Let G be a cyclic group of order 105. Find all generators of subgroups of

order

(i) 15 (ii) 21 (iii) 35.

On a circular track there are 20 stations numbered 1 to 20 on which trains
run in one direction only. All trains start from station number 20. There
are 3 types of trains.

Fast train: It stops at every alternate station ie. at 20, 2,4, .... It stops for
4 minutes at every station and takes 8 minutes to travel from one stoppage
to another.

Express train: It stops at every third station ie. at 20,3,6,.... It stops
for 3 minutes at every station and takes 10 minutes to travel from one
stoppage to another.

Super fast train: It stops at every sixth station ie. at 20,6,12,.... It
stops for 2 minutes at every station and takes 15 minutes to travel from
one stoppage to another.

Now answers the following:
(i) Swati wants to go to station 17. She boards the express train from

station 20. Will she able to reach her destination? If yes, after how
long?

(ii) Keerti has to go to station 10 and she boards a super fast train from
station 20. After how long will she reach her destination?

(iii) Was it better for Swati to board the super fast train? Why or why
not?

(iv) Shruti boarded the super fast train from station 2 and has to go to
station 10. How long did it take for her?

(v) Would it have been better to catch the fast train for Shruti? If yes,
why?

Can you solve the above problem using the concept of cyclic groups?
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8.6 Subgroups of Cyclic Groups

While dealing with subgroups of a cyclic groups, the following natural ques-
tions arise:

(i) Are the subgroups of a cyclic group necessarily cyclic?

(ii) Does there exists a subgroup of a given order?

(iii) If the answer to (ii) is yes, how many subgroups of a given order are
there?

(iv) How many distinct subgroups are there?
We shall answer these questions one by one. The answer to (i) is in the affir-
mative as given in the following theorem.

Theorem 8.9. A subgroup of a cyclic group is cyclic.

Proof: Let G be a cyclic group, then G = (a) = {a"|n € Z} for some a € G.
Let H be a subgroup of G. If G = {e} then H = {e} = (e). If G # {e}, then
G = (a) for some e # a € G. Two cases arise:

Case 1. H = {e}. In this case H = (e}, hence that H is cyclic.

Case 2. H # {e}, then o™ € H for some 0 # n € Z. Since H is a subgroup,

a~™ € H. Of n and —n, one of them is positive. Hence we have a* € H
for some k € N. Let m be the least positive integer such that a™ € H. We
claim that H = (a™). Clearly (¢™) C H as a™ € H, and (a™) is the smallest
subgroup of G containing a™.

Conversely if b € H, then b € G and b = a™ for some n € Z. By division
algorithm, there exist integers q,r € Z such that n = mqg+r, 0 <r <m. Then
a™ = o™ = (a™)%".

So a” = (a™)(a™)79. Since a",a™ € H and H is a subgroup, therefore
(a™)(a™)~% € H. Hence, a" € H. this is not possible for 0 < r < m since m
is the least positive integer such that a™ € H. ... r = 0. Thus n = mgq and
b=a" = (a™)? € (a™). Hence H C (a™). Combining we get H = (a™). O

The above theorem not only tells us that every subgroups of a cyclic group is
cyclic but it also gives us a method to obtain a generator of that cyclic subgroup.

Corollary 8.10. The subgroups of the group of integers Z (w.r.t. addition) are
precisely the groups (nZ,+), where n € Z7".

Proof: 7Z is a cyclic group under addition generated by 1. If H is a subgroup
of Z, then H is a cyclic subgroup of Z. If H = {0}, then it is of the form nZ,
where n = 0. If H # {0}, and let n be the least positive integer in H. Then
H is generated by n. For, if m € H, then by Euclidean algorithm, there exist
integers q and r such that m =ng+r, 0<r <n.

If r > 0, then r = m — ng € H, a contradiction.

Hence r = 0. But then m = ng € (n) or that H C (n). Since n € H we get
(ny C H. Thus H = (n). Thus H = nZ. Moreover, the set nZ of all multiples of
n is a subgroup of Z. Hence the subgroups of Z are precisely nZ, forn € Z*+. O

8.7 Subgroups of Infinite Cyclic Groups

Theorem 8.11. FEwvery subgroup of an infinite cyclic group is infinite cyclic.
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Proof: Let G = (a) be an infinite cyclic group. Then «a is of infinite order
. Further, let H be a subgroup of G. Since every subgroup of a cyclic group is
cyclic, we get H = (a™), for some a™ € H. Since, a is of infinite order, we get
a™ to be of infinite order and thus (a") is an infinite cyclic group. Hence H is
an infinite cyclic subgroup of G. L

Theorem 8.12. If G = (a) is an infinite cyclic group, then
(i) {a) C (a?) if and only if j divides i.

(ii)  {a¥) = (a?) if and only if j = .

(

Proof: Since (a) is infinite cyclic, therefore o(a) is infinite.
(i) Let (a') C (@), then a’ € (a*) C (a’). Hence a' = (a’)* for some k € Z, i.e,
a’ = a’*. Since o(a) is infinite, so no two distinct powers of a are equal. Thus
¢ = jk which implies that j divides 1.
Conversely, let j divide i. Then i = ¢j for some ¢ € Z. This gives that a’ = o'/ =
(a?)t € (a?).
Hence a' € (a’), so that (a’) C (a’).
(ii) Suppose, (a') = (a’). Then (a’) C (a’) and {a’) C (a%). By Part (i), we get
that j divides ¢ and ¢ divides j. But then j = 4.

Conversely, let j = +i. Then j divides 7 and 4 divides j. Again by part (i)
this implies that by (a’) C (a?) and (a’) C (a’). Hence (a*) = {a’). 0

Remark 8.4. From the Theorem 8.11, for the infinite group G = {a), it follows
that

i for every positive integer n, {(a™) is an infinite cyclic subgroup of G.
@ if my,n € ZT,m # n then (a™) # (a").
i if m € Z* then (a™) 2 (a®™) D (a*™) 2 (a®™) D ...

Example 8.19. Suppose a is an element of infinite order, then what are all the
generators of (a®)?

Since o(a) is infinite therefore o(a®) is also infinite. Hence the generators of
G = (a®) are a® and (a®)~" de. a® and a=3.

Example 8.20. (Z,+) is an infinite cyclic group then any subgroup H of Z is
of the form H = mZ for some m € Z. That is H is generated by m or —m.

8.8 Subgroups of Finite Cyclic Groups

Before coming to the results of this section, let us find out all subgroups of
a finite cyclic group. For example, let G = (a) is cyclic group of order 20. Since
subgroup of a cyclic group is cyclic, therefore all the subgroups of G will be of
the form (a*) for some non negative integer k.
Observe the following: Hy = (e) = {e}
Hy = {(a) ={e,a,...,a% = (a7 1) =
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Hg = (a5) = {e,a®, a2, a'®,a*, a'%,a'%, a2, a®, a4} = {e,a%,a?,. .., a'®}
= (@) = (a")

Hy = (@) = {e.a” . (a7)"° = '} = G = {(a") ") = (a'?)

Hg = (a®) = {e,a8,a'%,a*, a'2} = {e,a%,a8,a'2,a'%} = ((a®)1) = (a'2)

Hy = <CL9> — {67(15)7(1187 o (a9)19 — CLH} =G = <(CL9)_1> — <a11>

Hio = (a'%) = {e,al®} = ((a1%)~1) = (a!9).

Since subgroups of a cyclic group are cyclic, therefore these are the only
subgroups of G.
We observe that o(Hy) = 1.
Also Hy = H3 = H; = Hy = G and each is of order 20.
Hy = Hg and each is of order 10.
H, = Hg and each is of order 5.
O(H5) =4.
Note that the orders of the distinct subgroups are 1,2,4,5,10 and 20. There
is a unique subgroup of each of these orders. These orders are precisely the
divisors of 20. This leads us to believe that if G is a finite cyclic group of order
n, then for each divisor m of n, there exists a unique cyclic subgroup of order
m. Moreover, it is generated by a . The next theorem confirms this.

Theorem 8.13. Let G be a cyclic group of order n.

(i) If H is a subgroup of G, then o(H) divides o(Q).

(i)  Conversely, if m is a divisor of n, then G has exactly one subgroup
of order m.

Proof: Let G = (a) and o(G) =n. .. o(a) =n and a" =e.

(i) Let H be a subgroup of G. Since a subgroup of a cyclic group is cyclic. Let
H = (a™) for some m, 0 < m < n—1. Then o(H) = o(a™). Since (a™)" =
a™ = (a™)™ = e. Thus by Theorem 7.16 o(a™) | n ie. o(H) | o(G).

(ii) Let m|n. Then n = mk for some k € Z. Consider H = (a™/™) = (a*).

Now (a*)! = a** # e for any ¢ < m. This proves that o(a*) = m. Hence

H is a subgroup of order m. The subgroup H is unique. For, let T" be

another subgroup of order m, then T is cyclic. Let T = (oLl)7 where [ is

the least positive integer such that o' € T. By division algorithm, there

exist integers ¢ and r such that n = lg+ 7, 0 <r <!l. Now e = a" =

al*" = %", Thus a” = a7 = (a')~% € T. The choice of [ forces r to

be 0. So n = lg. Thus o(T) = o(a') = %n: g. But o(T) = m, So ¢ = m.
Hence I = ¢ = 7% and therefore T' = (am) = H.

Thus we have proved that if m|n, then there exists a unique subgroup of order

m generated by am . O

The above theorem can be applied to obtain the subgroups of (Z,, ®y).

Corollary 8.14. If m is a divisor of n, then there exists a unique subgroup of
Ly of order m, generated by = namely (1%)Zy,.

It will be proved that part (i) of the Theorem 8.13 proved above for cyclic
groups, also holds for finite groups. That is, if H is a subgroup of a finite group
G then o(H) divides o(G). This result is known as “Langranges theorem ” .
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8.9 Number of Generators

In the examples discussed so far, we have seen that some cyclic groups have
exactly one generator, whereas others have two or more generators. Is there a
way to find all the generators of a subgroup of a cyclic group? This is answered
by the following Theorems.

Theorem 8.15. Let G be a cyclic group of order n generated by a and let d | n.
If H is a subgroup of G of order d, then
(i)  the number of generators of H is ¢(d) = o(U(d)).

¥ ok _
(ii)  every generator of H is a™™, k € U(d) and m = 5.

Proof: Given o(G) =n, and G = (a). Since d | n, so n = md for some m € Z.
If H is a subgroup of G of order d, then H is cyclic of order d. Moreover,
H = (a™). Further, a™ is of order d. Let b = a™. Then H = (b) ,and H is of
order d.

Now, the number of generators of H = ¢(o(H)) = ¢(d) = o(U(d)). This proves
part (i).

Further, the generators of H are precisely b* = (a™)F = a™*, k € U(d), and
m = %. This proves part (ii). Hence the theorem. O

Remark 8.5. If G is a cyclic group of order n generated by a. If x € G, then
x is an element of order d < x is a generator of a subgroup of order d in G.
Therefore, the number of elements of order d is ¢(d). Moreover, these elements
are ™, where k € U(d) and m = 5. Thus the above theorem gives us the
elements of order d and the number of such elements.

Example 8.21. List all the elements of order 10 in Z4y. Here n = 40,d =
10,d | n.

The number of elements of order 10 is nothing but the number of generators
of a subgroup of order 10, which is ¢(10). But ¢(10) = 4. Let H = (b) be a
subgroup of order 10. The generators of H are b,3b,7b,9b by Theorem 8.7.
One such element of order 10 in Zyo is 20 = 4. Therefore the generators are

10
4,12, 28, 36.

Example 8.22. If G is a cyclic group of order 24 generated by a, find all the
generators of a subgroup H of order 8.

Here n = 24,m = 8, and d = % = 3. Then, by Theorem 8.15(ii) a® is a
generator of H. Thus others generators of H are a®*, 1 < k < 8, k € U(8).
Therefore k = 1,3,5,7. Hence all the generators of H are a3, a°,a'®, and o®.

Example 8.23. Given that U(49) is a cyclic group having 42 elements, find the
number of generators without actually finding them.
Let G =U(49),0(G) = 42. By Theorem 8.6 the numbers of generators is ¢(42).
But ¢(42) = o(U(42)).

Now, U(42) = {1,5,11,13,17,19, 23,25, 29, 31, 37,41}, therefore o(U(42)) =
12. Thus there are 12 generators of U(49). [In factU(49) = (2) = 2¥(mod49), k €
U(42) are different 12 generators of U(49).]

Theorem 8.16. If G = (a) is a finite cyclic group of order n, then

(i) (a") =(a""").

(a®) if and only if r is a multiple of smod n.
<agcd(n,r)>'
(

a®) if and only if ged (n,r) = ged (n, s).
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Proof: Since a is of order n, therefore n is the smallest positive integer such
that a™ = e. Also, G = {(a) and o(G) = n. Now

(1)

Since a” and @™~ " are the inverses of each other therefore a” € (a™~") and
a” " € (a"). Hence (a") C (™ ") and (a""") C (a"). Thus (a") = (a™").

& a" € (a”) C(a®)

< a" = (a®)™ for some m, 1<m<n
& ad'=a

<:> a'I—STﬂ BN

& r—smois a multiple of n

& r = smmodulon

& rois a multiple of smodulon.

(i) Let ged(n,r) = d. Then 0 < d < n. Also d | r and d | n. Since d | r =

{(a™) C {(a?) by (i4). Since ged(n,r) = d, by Euclidean Algorithm there
exists integers p, ¢ such that np + qr = d.

Now a? = a"P*9" = a"q? = (a")P(a")? = e(a")? = (a")9. Therefore
at € (a") so that (a?) C (a”). Hence we get (a”) = (a?) = (a9°%("7)).

Let d’ = ged(n,r) and d = ged(n, s). Then, by Theorem, 7.18 o((a?)) =

n
’

d

and o((a?)) = 2.

(a™)) = o((a®)) = 2~ Similarly, o((a®)) = %.

5y < o({a™)) = o({a ))@%z%@d:d’. O

Given a finite cyclic group, the above theorem helps us to find

(i) all the generators of the unique subgroup of a given order.

(i) the order of a given subgroup (a*) of (a). If o(a) = n then

o({a*)) = Jedtay for every positive integer k& < n.

Example 8.24. Let G be a cyclic group generated by a of order 15. Compute
the orders and generators of the subgroups (a®), (a®), (a®) and (a'®).

Solution: Here n = o(G) = 15. Observe that

o((a®)) = o(a®) = ;¥ sy = 5 =5
o((a®)) = 0(a®) = ;55 = 7 =5
o({a®)) = o(a ):m:h’).

o((a'?)) = 0(a") = aiGs = 5 =3

Example 8.25. In the cyclic group (Zaa, ®24), compute the orders of the sub-
groups (8),(5), and (9).

Here order of group is n = 24. For the element m = 8 € Zs4, we have
o((8)) = o(8) = % = 24 = 3 = d (say) number of generators of subgroup

of order 3 = ¢(3) = 0(2/1(3)) =2.

The generators are k8, k € U(3).

Thus k = 1,2. Therefore generators are 8,16.

Hence (8) = (16). Now o((5)) = 0(5) = —r— = gcd(zg,24) = 24.

ged(5,n)



8.9. NUMBER OF GENERATORS 285

Therefore generators of (5) are bk mod 24, k € U(24).

Hence k =1,3,7,11,13,17,19,23 and generators of (5) are 5,15,11,7,17,13,23,
19. 0((9)) = 0(9) = oy = gcd?g’m) = 8. Therefore generators of (9) are
9k mod 24,k € U(8) i.e. k=1,3,5,7.

Problem 8.8. How many subgroups does Ziog have? List all the generators for
each of these subgroups.

Solution:  Zsy is a cyclic group of order 20, generated by 1. Thus n =
0(Zao) = 20, the possible divisors of 20 are 1,2,4,5,10,20. Thus there exists
a subgroup H; of order i, for i = 1,2,4,5,10,20. Subgroup of order 1 is {0}. H;
= (0).

Subgroup of Order 2. Hered =2, .. m = 5 = 10. Thus Hy will be
a subgroup generated by 10. Hy = (10). The other generators of Hy are 10k,
where (k,2) = 1. The only possible value of k is 1. Hence Hy = (10) is the only
subgroup of Zsg of order 2

Subgroup of Order 4. Hered =4, -. m =2 =2 =5 Hence Hy = (5).
The generators of Hy are 5k, k € U(4) = {1,3} i.e. 5,15. Thus Hy = (5) = (15).

Subgroup of Order 5. Proceeding as above Hy = (4). All generators are
4k, k € U(5) i.e. 4,8,12,16.

Subgroup of Order 10. Hjy = (2). All generators are 2k, k € U/(10) i.e.
2,6,14, 18.

Subgroup of Order 20. Proceeding as above Hog = (1). All generators
are k, k € U(20) i.e. 1,3,7,9,11,13,17,19.

Summarizing:
Name of subgroup | Order of subgroup Generators
H, 1 0
H, 2 10
Hy 4 5,15
Hs 5 4,8,12, 16
Hy 10 2, 6,14, 18
Hy 20 1,3,7,9, 11, 13, 17, 19

Problem 8.9. If G is a cyclic group of order 24, then find a generator for
(@) N (a'®).

Solution o(G) = n = 24. Hence
(a®') = (a*), where k = gcd(24 21) = 3 and (a'®) = (a'), where | = gcd(24,18) =
6. Thtzs <> C1)<:>( 3), and (a'®) = (a8). Further, (a*1)N{a'®) = (a®)N(a®) = (a®),

Problem 8.10. Suppose that a cyclic group G has exactly three subgroups: G,
{e} and a subgroup of order 7. What is o(G)?

Solution: Let o(G) = n. For every divisor d of n, the group G has a subgroup
of order d. But G has three subgroups of orders 1,7 and n # 7. Since the only
3 divisors of n are 1,7,n. Hence n = 72 = 49. Thus o(G) = 49.

Problem 8.11. Let x be an element of order 40 in a cyclic group G. List all
the elements of (x) of order 10.
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Solution: Given z € G such that o(x) = 40. Let H = (z), then H is a
cyclic group of order 40. We have to find elements of H which are of order
10. Now, o(z*) = 10 if (z*)* is of order 10. So, (k,10) = 1. Hence, k = 1,3,7,9.
Thus 2*, (z4)3, (z*)7, (z*)? are of order 10, i.e. %, 22,228 and 25 are of order
10.

Problem 8.12. Determine the order of each element of Dgg. How many ele-
ments are there of given order.

Solution: Dgg consists of 33 rotations and 33 reflections. Since a dihedral
group is not cyclic, Dgg is not cyclic. It has a cyclic subgroup H of order 33
consisting of the 33 rotations. Each reflection is an element of order 2. Also
o(H) is odd, so it does not have any element of order 2.

Thus there are 33 elements of order 2. Further, the divisors of o(H) are 1, 3,11, 33.
Hence,

Number of elements of order 1 = ¢(1) =1

Number of elements of order 3 = ¢(3) = 2

Number of elements of order 11 = ¢(11) = 10

Number of elements of order 33 = ¢(33) = 20.

We can summarize as follows:

Order | Numbers of elements
1 1
2 33
3 2
11 10
33 20

8.10 Exercise

1. Suppose G = {(a) and o(a) = 20. How many subgroups does G have? List
all generators for each of these subgroups.

2. How many subgroups does (Z1s, ®15) have? List all generators for each of
these subgroups.

3. Let G = {(a) and let o(a) = 28. List all the generators of a subgroup of
order 4.

4. If G is a group and a € G is of infinite order, find all the generators of

().

5. List all elements of order 8 in Zggggo. How do you know that your list is
complete?

6. Suppose G is a cyclic group of order n
(i) If 6 divides n, how many elements of order 6 does G have?
(if) If 10 divides n, how many elements of order 10 does G have ?
If a is an element of order 10, what are others elements of order 107

7. Let m and n be elements of the group Z. Find a generator for the group
(m) N (n).
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8. Let p be prime. If a group G has more than p — 1 elements of order p, can

G be a cyclic? Justify.
9. If G is a cyclic group of order 15, find the orders of the subgroups {a”), (a'?)
(a®), (a*) and (a'?).

10. Let a,b be elements of a group G. If o(a) = 10, o(b) = 21, show that
(@) N {b) = {e}.

11. Let a,b be elements of a group G. If o(a) = 24, o(b) = 10, what are the
possibilities for o({a) N (b))?

)

8.11 Solved Problems

Problem 8.13. Find the smallest subgroup of Z containing 18,30 and 40.

Solution: Subgroups of Z are of the form nZ = (n) = {nala € Z}.

Now, ged(18,30,40) = 2. Since 18 = 2 x 9, 30 = 2 x 15, 40 = 2 x 20, we get
18,30, 14 € (2). Hence (2) is subgroup of Z containing 18, 30, 40.

If 18,30,40 € (n), then n divides each of 18,30 and 40 and therefore n divides
gcd(18,30,40) = 2. Thus n divides 2, so that 2 € (n) i.e. (2) C (n). Thus (2) is
the smallest subgroup of Z containing 18,30 and 40.

Remark 8.6. In Z, the smallest subgroup of Z containing ai,as,as,...,ax
is (d) where d = ged(a1,a2,as,...,ar). This subgroup is denoted by (a1, as,
as, ... 7CLk>.

Problem 8.14. Every group of order 3 is cyclic.

Solution: Let G be a group such that o(G) = 3. Let a € G, a # e. Consider
H = {a) = {a,a?,...}. Two cases arise:

Case 1. a* = e. Then H = {a,e} so that o(H) = 2. Thus there exists
b € G such that b ¢ H. Now bH = {b,ba}. Then H NbH = ¢, so o(G) > 4, a
contradiction.

Case 2. a® # e. If a® # e then e, a,a?,a® are distinct elements of G and
so again a contradiction o(G) > 3. So that we must have a® = e. Thus H =
{a,a? e}, o(H) = 3. Now since H C G, G is finite and o(H) = o(G) therefore
H = G. Hence G is a cyclic group.

Problem 8.15. Prove that a group of order 4 is Abelian.

Solution: Let G be a group of order 4. If a € G and o(a) = n > 4 then
e,a,a?,...,a™ ! are n > 4 distinct elements of G, which is not possible in a
group of order 4. Hence order of every element of G is less than or equal to 4.
Three cases a