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Preface

This book is designed for a two-semester sequence as a first course in abstract
algebra for advanced undergraduate and junior post-graduate students. A
glance at the table of contents will reveal the scope of the book; the range of
topics covered is reasonably standard, with no major surprises. Our intention
is to present a text that is logically developed, precise, and in keeping with
the spirit of the times. Guided by the principle that a routine diet of defini-
tions, theorems and results soon becomes unpalatable, we have concentrated
on supplementing the concepts with examples and counter-examples and on
establishing the important and fruitful results in a formal, rigorous fashion.
En route, we have tried to showcase the power and elegance of the abstract —
modern approach in mathematics, particularly in algebra, and chosen the title
‘Algebra — Abstract and Modern’ for this book.

The reader is not presumed to possess any previous knowledge of the con-
cepts of modern algebra, except certain mathematical maturity and a will to
learn abstract thinking. Consequently, the book’s initial chapters are some-
what elementary, with the exposition proceeding at a leisurely pace, filling in
the details of proofs, particularly of basic results. To smoothen the approach,
we have devoted Part I to preliminaries consisting of two chapters, one on
sets, relations, function, partitions and the cardinality of a set and the other
on number systems, matrices and determinants. This part also serves as a
vehicle for introducing some of the notation and terminology concerning the
language of basic mathematics to be used in the later parts. Proofs of most of
the results in Part I are skipped and given as exercises to encourage interested
readers to work on them.

There are three parts in the main text of the book, Part II (Chapter 3-8),
Part III (Chapter 9-13) and Part IV (Chapters 14-16) covering Group
Theory, Ring Theory and Field Theory respectively. Each chapter is divided
into a suitable number of sections in which definitions of the various con-
cepts are immediately followed by a sufficient number of examples and
counter-examples. Worked exercises are included in each section in addition
to a set of exercises of varying levels of difficulty at the end of each section.
These exercises are an integral part of the book and require the reader’s
active participation. Some of them introduce a variety of ideas not treated
in the body of the text and impart certain additional information about con-
cepts discussed in chapters. We have given a brief introduction of vector
spaces and linear transformations to the extent necessary for a discussion
on Galois Theory. We have resisted the temptation to use Exercises, except
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those in Part I, to develop results that will be needed thereafter. As a result,
the reader does not need to work on all the exercises to assimilate the ideas
presented in the rest of the book. However, for the benefit of slow learners,
answers/hints for all even-numbered exercises have been provided.

When the publishers approached us with a proposal to take up the project
of writing a text book on Algebra, we considered various opinions on what
should be attempted within the framework of a first course in algebra. In
selecting textual material, we have followed, to a considerable extent, our
own interests, condensing or omitting altogether a number of topics that other
authors might have pursed more vigorously. The measure of success of our
efforts in writing this book is directly proportional to the number of readers
stimulated to expand their horizons in the realms of algebra. Comments and
suggestions for the improvement of the quality of the book are most welcome
and will be acknowledged in later editions. We may be excused for any pos-
sible typos.

We profusely thank all persons who directly or indirectly helped us in
bringing out this book. We are grateful to the people at Pearson Education,
to Mr. King D Charles Fenny in particular, for their encouragement and help
in completing this project. A special word of appreciation and thanks goes to
my wife, Lakshmi, who patiently helped me in the early morning hours on the
days when [ was writing this book.

U. M. Swamy
A.V.S. N. Murty
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Sets and Relations

1.1 Sets and Subsets

1.2 Relations and Functions

1.3 Equivalence Relations and Partitions
1.4 The Cardinality of a Set

The concept of a set was used even by the ancient mankind without having
an exact idea of what it was. In modern mathematics, the notion of a set is
most basic. In fact, almost all the mathematical systems are certain collec-
tion of sets and their theories can be categorised as parts of set theory. We do
not intend to discuss axiomatic development of set theory. But, any person
with an intention of starting to learn the present day algebra must necessarily
possess certain elementary knowledge of set theory. This chapter provides a
fairly good platform to refresh with those elementary notions of sets, rela-
tions, functions and the cardinality of a set.

1.1 SETS AND SUBSETS

A set is usually defined as a well-defined collection of objects, in the sense
that, given any object we must be in a position to decide whether the object
belongs to the collection or not. First, let us take up two examples.

Example 1.1.1. Let us call a positive integer, a prime number if it has exactly
two positive divisors, namely 1 and itself. Clearly, 1 is not a prime number,
since 1 has only one positive divisor. Let C be the collection of all prime
numbers. We shall argue that C is a well-defined collection of objects. Let a
be any object. If @ is not a positive integer, then we can immediately say that
a does not belong to the collection C. Suppose that a is a positive integer,
we can evaluate all the positive divisors of @ and see whether these are two in
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number. For example, let a = 123456789, on simple examination, we can say

+
that 3 divides a (since the sum of the digits of a is M =45)and 3 # 1

and 3 # a and hence a is not a prime number, so that a does not belong to the
collection C. On the other hand, let » = 123457687. It may be difficult for us
to decide whether b is prime or not. However, one thing is certain, it is either
a prime or not a prime, but not both. Therefore, C is a well-defined collection
of objects.

Example 1.1.2. Let C be the collection of all sets A satisfying the property
that A is not an object in 4 (or 4 does not belong to A). We shall argue that
C is not a well-defined collection. Suppose on the contrary that C is a well-
defined collection, that is, C is a set. Then, if C is an object in C, it follows
that C is not an object in C. On the other hand, if C is not an object in C,
then it follows that C is an object in C. Either way, it leads to a contradiction.
Therefore, we cannot decide whether C is an object in C. Therefore, C is not
a well-defined collection.

Definition 1.1.1. A well-defined collection of objects is called a set. If S is
a set, then the objects in S are called elements of S. We write a € S and read
‘a belongs to S”, when a is an object in S. We write a ¢ S to say that a does
not belong to S.

Sets are usually denoted by uppercase letters, such as 4, B, X, Y, etc. and
the elements of sets are denoted by lowercase letters, such as a, b, x, y, etc.

Example 1.1.3

1. The collection of all intelligent persons in India is not a set, since, if we
select a person from India, we cannot say with certainty whether he/
she belongs to the collection or not, as there is no standard scale for the
evaluation of intelligence.

2. For a similar reason, as detailed above, the collection of all tall persons
in India is not a set.

3. The collection of all prime numbers is a set, as discussed in Example
1.1.1.

4. The collection of all positive integers, which are not prime, is a set.

In this book, it is convenient to represent a set with the help of certain
property or properties satisfied only by the elements of the set. In order to
represent a set by this method, we write between the brackets { } a variable
x which stands for each of the set followed by the property or properties
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possessed by each element of the set and these two are separated by a symbol
> or °|’, read as ‘such that’. Therefore, we write

x:p)}y or {x[p(x)}

to represent the set of all objects x that satisfy the statement p(x). For example,
the set of all prime numbers is represented by

{x : x is a prime number}.
The set of all positive odd integers is represented by
{x : x is a positive integer and x is odd}

which is same as the set {1, 3,5,7, ...}.

Definition 1.1.2. A collection having no objects is clearly a set and is called
the empty set or null set and is denoted by the symbol .

Example 1.1.4. The set {x : x is an even integer and 2 < x < 4} is the empty
set, since there is no even integer x, such that 2 < x < 4. Similarly,

{x :xisaninteger and x> + 2 = 0}
is the empty set.

Notation 1.1.1. The implication symbol = will be read as ‘implies’. If P and
Q are statements, then P = Q stands for the statement ‘the truth of P implies
the truth of O’ or simply ‘P implies O’. The symbol <> is read as ‘implies and
implied by’. For any statements P and Q, P < Q stands for ‘P implies and
implied by Q’ or ‘P if and only if O’.

Example 1.1.5

1. Let P be the statement, ‘x is an integer and x> = 0’ and Q be the state-
ment, ‘x = 0’. Then, we have P < Q since, for any integer x, x> = 0 if
and only ifx = 0.

2. Let P be the statement, ‘x is a real number and x*> = x” and Q be the state-
ment, ‘x = 0 orx = 1°. Then, P < Q since, for any real number x, x> =
xifand only x = 0 orx = 1.

Definition 1.1.3. Let 4 and B be two sets. Then, we say that
1. A 1is equal to B and express this by 4 = B if, for any object x,

xe A< x e B.
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2. Ais a subset of B (or 4 is contained in B) and express this by 4 C B if,
for any object x,

xeAd=x¢eB.

For any two sets 4 and B, clearly 4 = B if and only if 4 C B and B C 4.
Whenever we are required to prove that two given sets 4 and B are equal, we
usually prove that 4 C B and B C A, that is, for any object x,

xeAd=>xe€B and xeB=xeA.

Sometimes, we say that a set 4 is smaller than B (or B is larger than 4) if 4 is
a subset of B. A4 is said to be a proper subset of B and write A — Bif 4 C B and
A # B. Also, instead of writing 4 C B or A — B, some times we write B O 4
or B D A and say that B contains 4 (or B is a superset of 4) or B properly
contains A4, respectively. We write 4 ¢ B if A is not a subset of B.

Definition 1.1.4. For any set S, the collection of all subsets of S is again a set
and is called the power set of S and is denoted by P(S).

Note that the power set P(S) of any set S is always nonempty, since the
empty set (J is a subset of every set S. In fact, if S is the empty set J, then

(&) = {D},

a set consisting of only one element. It can be easily proved that, for any non-
negative integer n, a set S has exactly n elements if and only if the power set
P(S) has exactly 2" elements.

Definition 1.1.5. A set whose element are sets is called a class of sets or
family of sets.

Class of sets will be usually denoted by script letters, such as 54, B, 6, etc.
For any set S, the power set P(S) is a class of sets. A class € of sets is called
an indexed class if there exists a set / such that, for each i € /, there is a unique
member 4, in 6 associated with i and the class 6 is equal to the class of all 4,
i € I; in this case, we write

C={d:iel} or €={4},
and [ is called the index set.

Example 1.1.6. For any positive integer n, let

A, Z{x : x 1s a real number and 0<x<l}.
n
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Then, {4,} . 1is an indexed class of sets and the set Z" of positive integers
is the index set.

Definition 1.1.6. For any indexed class of sets {4,},_,, we define the set as

(14 ={a:ac 4 forallicl}.

iel

This set is called the set intersection of A’s, i € 1. In particular, if 4,4, ..., A
are sets, we define

n

ﬁAi={a:aeAi fori=1, 2, ..., n}

i=1
and is also denoted by 4, M4, N ... N A . For any sets 4 and B, we have
ANB={x:xeAandx € B}.

Two sets 4 and B are said to be disjoint if A N B = (J, that is, there are no
common elements of 4 and B.

Definition 1.1.7. For any indexed class {4} _, of sets, we define the set as

UAi={a:a€Al. for some i € /}.

iel

This set is called the set union of As, i € 1. In particular, for any sets 4, 4.,
..., 4,, we define

UAi={a:a€A,. for some 1<i <n}

=1

and this is also denoted by 4 U 4, U ... U 4 . For any sets 4 and B, we have
AUB={x:xeAorx e B}.

Example 1.1.7. For any positive integer n, let

A4, = {x . x is areal number and 0 < x §l}
n

Then, we have 4 D A4 | for any n and therefore
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[0,1]=4,24,54,>...04 DA, D ..

ﬂ A ={x:x isarealnumberandOstl forallneZ '} ={0}
n

nezt

and | 4,=4=[0,1].

nezt

The following theorems can be easily proved by straight-forward veri-
fications.

Theorem 1.1.1. The following holds good for any sets 4, B and C.

—_
— O

—_
[\S)

—_— —
AW

XN kWD =

AUBCC&ACCandBCC
ACBNCsACBandACC

ANBCACAUB

AUA=A=ANA

AUB=BUAandAdNB=BNA
AUB)UC=AUBUCO)andAdNB)NC=4Nn(BNCO)
A=ANB&SACB&AUB=B
AN(AUB)=A=AUANB)
ANBUC)=ANBUMUNC)
AUBNC)=AUBNMUAUC)

. AN (-LEJ/ 4)= Y (AN 4)) for any indexed class {4 },_, of sets.
. AU (_QI 4)= n (AU 4,) for any indexed class {4} _, of sets.
. ACB=A4ANCCBNCand4UCCBUC

ANBCANCandAUBCAUCSBCC

Definition 1.1.8. For any two sets 4 and B, the difference of A with B is
defined as

A—B={x:xeAandx ¢ B}.

Theorem 1.1.2 (De Morgan Laws). For any indexed class {B,},_, of sets and

for

any sets 4, B and C, the following holds good.

L A_(iLeJ1B") - iQI(A_Bi)
2 A=(0,8)= (4=B)
3.

4. (igl B)-4= igl(Bf —4)

BCC=4-CCA—BandB—ACC—4
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(iQ1Bf)_A:iQI(B’_A)
AUB)—C=A—-C)UB-0

ANB) -C=U-C)NB-C)
A—BUCO=A—-BNMA-0
A—BNC=A-BUMA—-C)

10. A—B)—C=4—-—BUC)=A—-C)—B
1. A—B—-C)=A—-BUMUANC)

12. ANB=J<ACA—-—B<BCB—4
13. A—- =4

4 O—-A4=0

0 0N

Definition 1.1.9. For any sets 4 and B, the symmetric difference of A and B
is defined as

A®B=(4—B)U(B — A).

That is, 4 ® B = {x : x belongs to exactly one of 4 and B}.

Theorem 1.1.3. The following holds good for any sets 4, B and C.
1. A®&B=B®4
2. A®B)®C=4® B+ 0
=ANBNOU(A - B)-OU((B—-O—4)
U(C—A4)—B)
3. A =4
4. A®A=T

Theorem 1.1.4. For any sets A4, B and C,

ANB®C)=UNB)®ANC).

EXERCISE 1(A)

1. Express each of the following sets in the form {x : P(x)} and specify the prop-
erty P(x).
(i) The set of all rational numbers, whose denominators are not divisible by 5.
(i1) The set of all integer multiples of 5 in between —96 and 96.
(iii) The set of all points in the three-dimensional Euclidean space, whose
distance from (0, 0) is a rational number.
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(iv) The set of all pairs of real numbers, whose sum of their squares is nonzero.
(v) The set of all even primes.
(vi) The set of all subsets of {1, 2, 3, 4} not containing 3.

2. Write explicitly all elements in each of the following sets
(i) {a:aisaninteger and 0 =< > =< 26}
(ii) {g:r and s are nonzero integers and —1<< % <1}
(iii)) {4:AC{a,b,c}andb ¢ A}

(iv) The set of all three-digit positive integers, whose all the digits are even
and are in strictly increasing order.

(v) The set of all pairs of integers, whose sum of the squares is zero.
(vi) The set of all integers, whose squares are in between 10 and 15.
3. Letd = {a e Z":3 divides a} and
B = {a € Z" : The sum of the digits in a is divisible by 3}.
Prove that 4 = B.
4. Describe P(X) if X = {1, 2, 3}.

5. LetX={aeR:—-1=a=1}and
Y={reR:r=sint — costforsome t € R}.
IsX=7Y?

6. LetX={1,2,3,...,100},A={aeX:a=0beZ},
B ={a e X:aisodd} and foreach | =i = 96,

C ={ii+1,i+2,i+3,i+ 4} Write explicitly all elements in each of the
following sets.

() 4NB
(i) AUBUC,

(iii) (:'le cyn4
(iv) Bﬂ([goq)
V) X—(AUB)
vi) x=(UC)

i) A=(UC)

(viii) 4 - B

7. For any two sets 4 and B, prove that

A=ANB&ACB<AUB=B8.

8. Prove Theorem 1.1.1.
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9. Prove Theorem 1.1.2.
10. Prove Theorem 1.1.3.
11. Prove Theorem 1.1.4.

12. Prove or disprove each of the following for any sets X and Y.
(i) PXNY)=EX)NEQY)
(i) PXYUY)=PX) UB(Y)
(iii) P —Y) =P — P(Y)
(iv) PO =P =X=Y

1.2 RELATIONS AND FUNCTIONS

Consider the set 4 of all points in the plane and the set B of all straight
lines in the plane. For any x € 4 and L € B, let us write

x R L if x lies on L (or L passes through x).

Then, R is a relation between the elements of 4 and the elements of B. Here,
X R L can be read as ‘x is related to L’ and R denotes the relation ‘lies on’. We
can also consider R as the set of ordered pairs (x, L) such that x lies on L. This
pair is ordered in the sense that x and L cannot be interchanged, because the first
component of the pair is a point of 4 and the second component is a point of
another set B and because the statement ‘L lies on x” has no meaning. Therefore,
we can consider R as a set of ordered pairs (x, L) satisfying the property that x
lies on L. This concept is formalised in this section by introducing an abstract
concept of a relation and by discussing the various properties of relations.

Definition 1.2.1. A pair of elements (not necessarily in the same set) writ-
ten in a particular order is called an ordered pair and is written by listing its
elements in a particular order, separated by a comma, and enclosing the pair
in brackets. In the ordered pair (x, L), x is called the first component (or first
coordinate) and L is called the second component (or second coordinate).

The ordered pairs (x, L) and (L, x) are different even though they consist of
the same pair of elements. For example, the pairs (2, 5) and (5, 2) represent
two different points in the plane.

Definition 1.2.2. Let 4 and B be any two sets. Then, the set of all ordered
pairs (a, b) with a € 4 and b € B is called the Cartesian product of A and B
and is denoted by 4 X B. That is,

AXB={(a,b):aecAdandb € B}.
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Example 1.2.1. If 4 = {1, 2} and B = {a, b, ¢}, then
A X B={(1,a),(1,b),(1,¢),(2,a),(2,b),12,0)}
AXA={(1,1),(,2),(2,1),(2,2)}
B X B = {(a, a), (a, b), (a, ¢), (b, a), (b, b), (b, ¢), (c, a), (c, b), (c, c)}.
Note 1.2.1. For any sets 4 and B,
AXB=OoA=TorB=C
AXB=BXA&A=B

Definition 1.2.3. For any sets 4, 4,, ..., 4 , we define the Cartesian product
of A, A, ..., A as the set

A XA, X.. X4 ={(a,a, ...,a): a €A foralll =i=nj.
In particular, for any set 4 and for any positive integer n, we define
A" ={(a,a, ..., an) ca,ed forall 1 =i =n}.

Definition 1.2.4. Let 4 and B be any sets. Then, any subset of 4 X B is called
a relation from A to B. For any relation R from A4 to B (that is, R C 4 X B), if
(a, b) € R, then we say that ‘a is R-related to b’ or ‘a is related to b with respect
to R’ or ‘a and b have relation with R’ and is usually denoted by a R b.

Definition 1.2.5. Let 4 be any nonempty set. A relation from 4 to itself is
called a ‘binary relation on A’.

Example 1.2.2. Let Z be the set of all integers and »n a positive integer.
Define

R={(a,b) € Z X Z:ndividesa — b}
S={(a,b)eZ X7Z:a= nb}.

Then, both R and S are binary relations on Z.

Definition 1.2.6. Let 4, B, and C be sets, R be a relation from A4 to B and S be
a relation from B to C, thatis, R C 4 X Band S C B X C. Define

SoR={(a,c)eAX C:aRbandb S c for some b € B}.
In other words, for any a € 4 and ¢ € C,

(a, ¢) € So R < There exists b € B such that (a, b) € R and (b, ¢) € S.
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Note that, when S o R is defined, R o S may not be defined. Even when
S o Rand R o S are both defined, they may not be equal. S o R is called the
composition of R with S.

Definition 1.2.7. For any relation R from a set 4 to a set B, the inverse of R
is defined by

R "= {(b,a): (a,b) € R}.

Note that R™! is a relation from B to 4, R o R™! is a binary relation on B and
R~ o0 R is a binary relation on 4. It can be easily verified that (R™")' = R and
(SoR)!'=R"o S forany relation R from 4 to B and any relation S from
Bto C.

Definition 1.2.8. A relation R from a set 4 to a set B is called a function (or
a mapping) of A into B, if for each a € A, there exists unique b € B such
that (a, b) € R. Usually, functions are denoted by lowercase letters f, g, &,
etc. If f'is a function of 4 into B, then f C A4 X B satisfying the following
conditions:

(1) Foreach a € A4, there exists b € B such that (a, b) € f.
(ii) If(a,b) € fand (a, b)) € f,thenb = b,.

If f'is a function of 4 into B and (a, b) € f, then we write a /b or (a)f = b
or f(a) = b. More popular convention is writing f(a) = b. This is reasonable,
since b corresponds to a uniquely. In this case, b is called ‘the image of a
under f” and a is called ‘a pre-image of b under /. We write simply f/: 4 —
B, to denote that f'is a function from 4 into B. If f: A — B, any element a of
A will have exactly one image f(«a) in B, while an element b of B may have
any number of pre-images in 4 or may not have any pre-image at all. These
circumstances lead to the following.

Definition 1.2.9. Let /: 4 — B be a function.

1. fis said to be an injection (or a one-one function) if each element of B
has at most one pre-image in 4; or, equivalently, forany a , a, € 4,

fla) =fla) = a =a,

2. fissaid to be a surjection (or an onto function) if each element of B has
atleast one pre-image in A4; or, equivalently,

beB=f(a)=b forsomea e A4.
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3. fis said to be a bijection (or a one-to-one function) if each element of B
has exactly one pre-image in 4, or, equivalently, f'is both an injection as
well as a surjection.

Note that, to describe a function f: 4 — B, it is enough if we prescribe the
image f(a) of each element a in 4.

Example 1.2.3. Let Z be the set of all integers.

1. Define f: Z — 7Z by f(a) = a* for any a € Z. Then, f'is a function of
Z into itself and f'is neither an injection (since f(—1) = 1 = f(1)) nor a
surjection (since there is no pre-image for —1).

2. Define g: 7Z — Z by g(a) = 4a for any a € Z. Then, g is an injection, but
not a surjection.

3. Define h: Z — Z by h(a) = a + 2 for any a € Z. Then, & is a bijection.

4. Let N be the set of all nonnegative integers and define m : Z — N by m(a)
= |a| for any a € Z, where |a| = a or —a depending upon a is positive or
not. Then, m is a surjection, but not an injection.

Let f': A —> B be a function. Then, 4 is called ‘the domain of ' and is
denoted by Dom(f) and B is called ‘the codomain of f' and is denoted by
Codom(f). The set {f(a) : a € A} is called ‘the image of f' and is denoted by
Im(f). Note that Im(f) is a subset of the codomain B and is not necessarily
equal to B. In fact, f'is a surjection if and only if Im(f) = Codom(f).

Definition 1.2.10. Letf: 4 — B and g : B — C be functions. Then, the com-
position g o fis also a function from 4 to C. Recall from Definition 1.2.6 that
g o fis defined by

gof={(a,c)eAXC:(a,b)ef and (b,c)eg forsomeb € B}
={(a,c) e AXC:f(a)=b and gb)=c}
={(a,c) e A X C: g(f(a)) = c}.

Therefore, go f: A — Cis a function defined by
(gof)a) = g(f(a)) foranya e A.

Note that g o fis defined only when Codom(f) = Dom(g) or Im(f) C Dom(g).
In fact, we have

Dom(g o /) = Dom(f)
and Codom(g o /) = Codom(g).



Sets and Relations  1-15

Two functions fand g are said to be equal if their domains are equal and f(a) =
g(a) for all the elements a in the common domain. For two functions f'and g,
both fo g and g o f may be defined but still they may not be equal, consider
the following example.

Example 1.2.4. Definef: Z — Z and g: Z — Z by f(a) = a + 1 and g(a) =
a* forany a € Z.

Then, (f'o g)(a) = f(g(a)) = f(a®) = a® + 1
and (gof)a)=g(f(a)=gla+1)=(a+ 1)y =a>+2a+ 1.
Therefore, (f'o g)(a) # (g o0 f)(a) for 0 # a € Z and hence fo gand go f
are not equal.

Note that, if fand g are injections (surjections, bijections), then so is fo g.
Further, we have (fo g) o 4 = f'o (g o &) for any functions f, g and %, when-
ever the compositions are defined.

Definition 1.2.11. Let 4 be any nonempty set and define a function /, : 4 —
Aby I (a) = aforall a € A. Then, I, is called the ‘identity function on A’. I,
will also be denoted by /d, or Id on X.

For any function f: A — B, it can be seen that

fol =f=10f

In the following, we give certain characterisation properties for injections,
surjections and bijections.

Theorem 1.2.1. Letf: A — B be a function, then

1. fis an injection if and only if there exists a function g : B — A such that

gof=1,
2. fis a surjection if and only if there exists a function /# : B — 4 such that
foh=1.

Theorem 1.2.2. A function /: 4 — B is a bijection if and only if there exists
a function g : B — 4 such that

fog=1 and gof=1I,.

In this case, g is unique and is called the inverse of f'and is denoted by /™.
Note that, forany a € 4 and b € B,

fla)y=bsa=[0b)

and that /™' is also a bijection.
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Iff: A — B is a surjection, then usually we say that f7is a surjection of 4 onto
B, instead of 4 into B, just to mention that f'is an onto function (or surjection).

Definition 1.2.3. Let 4 and B be two sets. 4 is said to be equivalent or
equipotent with B if there exists a bijection of 4 onto B; in this case, we
denote it by 4 = B.

If: A — Bis abijection, then /™! : B — A is also a bijection and therefore
we have

A=B& B=A4.
Also, since the identity function /, : 4 — A4 is a bijection, we have
A=A forany set 4.

Further, if f: A — B and g : B — C are bijections, then g o f: 4 — C is also
a bijection and therefore

A=B and B=C=A4=0C.

Example 1.2.5. Let E be the set of all even integers and Z be the set of all inte-
gers. Then, £ = {2a :a € 7Z} and E is equivalent to Z; for, define /: E — Z by

) 2b if a=4b
a:
b ifa=2band b is odd.

Then, f'is a bijection. Therefore E = Z.

Definition 1.2.12. Letf: X — Y be a function, 4 C X and B C Y. The image
of A under fis defined as the set
f(4) = {f(a):a € 4}.

The inverse image of B under f'is defined as the set

fY(B)={x e X:f(x) e B}.

Then, clearly f(A4) is a subset of Y for all A C X and f'(B) is a subset of X for
all B C Y. In other words, f'induces a function from the power set P(X) into
the power set P(Y) and another function from P(Y) into P(X). In this context,
we have the following.

Theorem 1.2.3. The following holds good for any function f: X — Y and
subsets 4, and 4, of X'and B, and B, of Y.

1. /(D) = D and f(X) = Im(f)

2. fFAD) =T andfI(Y) =X

3. f(4,U4) =f(4) US4,
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4. fY(B,UB) =f"(B)US(B)
5. f(B,NB,)=/"B)NSf\B,)
6. f(4,NA,) Cf(4)Nf4,)
7. ACS(f(A) forany 4 C X
8. f(f'(B)) CBforanyBC Y.
Notice that there are only one-side inclusions in (6), (7) and (8). In gen-

eral, these one-side inclusions cannot be replaced by the equality in these. In
this context, we have the following.

Theorem 1.2.4. The following are equivalent to each other for any function
fX—>Y

1. fis an injection.

2. A=ff(4)) forany 4 C X.

3. f(4,N4) = f(4) N f(4,).

Theorem 1.2.5. A function ' : X — Y is a surjection if and only if
f(f'(B)) = B for any subset B of Y.

Definition 1.2.13. Let /: X — Y be a function and Z C X. Then, (Z X V)N f
is a function of Z into Y and is called the restriction of f to Z and is denoted
by f]Z. Note that

(f12)(a) = f(a) foranya € Z

EXERCISE 1(B)

1. Prove each of the following for any sets 4, B and C.
i) AUBXC=AXCUBXCOC)
(i) UNB)XC=AXC)N(BXC)
(ili) A—B)XC=AXC)—(BXCO)
(iv) AXB=AXC=A4=JorB=C
2. In each of the following cases, find sets 4, B, C and D to disprove the
statement.
(i) A=BsA4—-C=B-C
(il) A=B<ANnC=BncC
(i) A=B<AUC=BUC
(iv) (4—B)X(C—D)=(4XC)— (BXD)
V) (AUB)X(CUD)=(AXC)U(BXD)
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10.

11.

12.

13.

14.
15.

Prove that (4 N B) X (CN D) = (4 X C)N (B X D) for any sets 4, B, C and D.

If 4 has n elements and B has m elements, then prove that 4 X B has nm elements.
Determine the number of relations from 4 to B.
State whether each of the following is a function and substantiate your answers.
(i) R={(a,b)eZXZ:b=a}
(i) R={(a,b) e Z X Z:a*=b}
(i) R={(a,b) e RXR:2a>—1=10}
(iv) R={(a,b)) e RXR:2p>—1=a}
v) R={(a,b) e Q XQ:a*+ b*is an integer}
vi) R={(a,b) e ZXQ:2b=a}.

. If 4 has n elements and B has m elements, then determine the number of func-

tions from 4 into B.

. Prove that, for any relation R from A4 to B and any relation S from B to C, R™! o

S =(SoR)".

. Prove that a function /: X — Yis an injection if and only if f]Z is an injection for

every subset Z of X. Is this true if we replace injection with surjection?

. For any function /: X — Yand 4 C B C X, prove that (f|B)|4 = f]4.

Let@ =4 C Xandf: A — Ybe a function. Does there exist a function g : X —
Y such that g|l4 = f? If yes, how many such functions g can be found?

Letf: 4 — Band g: B— Cbe the functions. If fand g are bijections, prove that
g o f1is a bijection. Is the converse true? Substantiate your answer.

If f: R — R is defined by f(a) = a* for all a € R, then determine /! [—2, 8),
S (=, 0L,/ (=1, 1) and /(Z).

For any real number a, let [a] be the largest integer less than or equal to a and
define f/: R — Z by f(a) = [a] for any a € R.
Then, determine the following sets
» AL D)
i) A[=1,1D
(i) f7'({0, 1})
(iv) f7!(E), where E is the set of even integers.
L 2 2

v 33

4 3°3
(vi) ({0}

Prove Theorem 1.2.1.

—

Prove Theorem 1.2.2.
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17.

18.

19.

20.

21.

22.

23.

24.

25.

26.
27.
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Prove Theorem 1.2.3.

Give an example of a function /: X — Y and a subset 4 of X for which 4 is prop-
erly contained in f~'(f(4)).

Give an example of a function /: X — Y and a subset B of Y such that /(f~(B))
is properly contained in B.

If X is an n-element set and Y is an m-element set, how many bijections can be
there from X onto 1?

Let f: X — Y be a function, & # 4 C X and & # B C Y. Then, prove the
following.

@ fUTA)) = f4)
i) fTEUTB)) =71B)
(i) (1A' (B) =f(B)NA.
Letf: X — Yand g : Y — X be mappings, such that g o f'= I,. Prove that the
following are equivalent to each other.
(i) fis a surjection.
(i) gis an injection.
(iii)  f'is a bijection.
(iv) gis a bijection.
and that, in this case, fo g = I,.
Letf: X — Yand g: Y — Z be mappings, such that g o fis an injection. Then,

prove that f'is an injection and that, when f'is a surjection also, then g is an
injection.

Let 6[0, 1] be the set of all real-valued continuous functions defined on the
closed interval [0, 1] and 6'[0, 1] be the set of all differentiable functions fin
%[0, 1], such that /(0) = 0 and the derivative f” is continuous. Prove that the
function

D :6'[0, 1] — [0, 1] defined by D(f) = 1"
is a bijection.

Let 4 be an n-element set and B be an m-element set. Find the number of injec-
tions of 4 into B in each of the following cases.

W)n=m,()n>m,@ii)n <m.

Definef: Z* — Z" by f(a) = 2a — 1. Prove that there exist infinitely many func-
tions g : Z* — Z~, such that g o f'= 1. and there is no function 4 : Z* — Z*
such thatfo g = I,

Prove Theorem 1.2.4.

Prove Theorem 1.2.5.
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28. Letf,,f,, ....f, be bijections, such that f, o f, o ... o f, is defined. Then, prove
that f,' 0 f, "} 0--- 0 f" is defined and is equal to (f, 0 f, 0 ... 0 /)"

29. Letf: X— Yandg: Y — Xbe functions, such that g o fis an injection and fo g
is a surjection. Then, prove that both g o f'and f'o g are bijections.

30. Letf: X — Ybea function. If g : Y — X'is a function, such thatgo f= 1, (fo g
= 1,), then g is called a left (respectively, right) inverse of f. Prove that the fol-
lowing are equivalent to each other.

(i) fhas aunique left inverse.
(i) f'is a bijection.
(iii)  f'has a unique right inverse.
31. Letn and m be positive integers greater than 1, such that » and m have no com-

mon factors except 1. Let I be the set {1, 2, ..., n}. Prove that there is a bijection
Sl . —1 . suchthatf(n +m)=n+ mandf(i + 1) — (i) € {n, —m} for

n+m

all 1 <i<m + n.

32. Let X be a nonempty set. Prove that fo g = g o ffor all bijections fand g of X
onto itself if and only if X has almost two elements in X.

33. Letf: X— Ybea function and F: P(Y) — P(X) be defined by F(4) = f~'(4) for
all 4 C Y. Then, prove the following.

(i) fis injection if and only if F is surjection.
(i) f'is surjection if and only if F is injection.
(iii)  f'is a bijection if and only if F is a bijection.
34. Let X'be a set and define f: P(P(X)) — P(X) by
f(e= AU( A for any € CP(X).
€6
Then, find two distinct right inverses of £.

35. Define f: Z* X Z* — Z* by f(a, b) = 2*7'(2b—1). Then, prove that /'is a bijec-
tion and find /.

36. Let Xand Y be nonempty sets and ¥* be the set of all functions of X into Y. Prove
the following for any (J # 4 C X.

(i) The function i : Y* — ¥4, defined by n(f) = f/A, is a surjection.
(i) If Y has atleast two elements, then 7 is a bijection < 4 = X.
37. Let Xbe any set and 2 = {0, 1}. Prove that the map y : P(X) — 2%, defined by
(A)x) = 1 ifxed
0 ifx¢g A4
for any 4 € P(X) and x € X, is a bijection.

38. Deduce from the above that if 4 is an n-element set, then IP(4) is a 2"-element set.
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1.3 EQUIVALENCE RELATIONS AND PARTITIONS

Dividing a set into disjoint subsets is called a partitioning of the set. In this
section, we discuss a special type of binary relations on a set which induce
partitions of the set.

Definition 1.3.1. Let S be any nonempty set and R, binary relation on S.
1. Ris said to be reflexive on S'if (a, a) € R foralla € S.
2. Ris said to be symmetric if (a, b) € R = (b, a) € R.
3. R is said to be transitive if (a, b) € R and (b, ¢) € R = (a, ¢) € R.

4. R is said to be an equivalence relation on S, if it is reflexive on S, sym-
metric and transitive.

Example 1.3.1
1. Let X be any nonempty set and
A = {(x,x):xeX}.

Then A is an equivalence relation on S and is called the diagonal on X.
A, can also be defined as

A ={(xy) e XXX:x=y}.
2. For any set X, the whole of X X Xis an equivalence relation on X.
3. For any positive integer 7, let
R = {(a,b) € Z X 7 : ndivides a - b}.
Then, R is an equivalence relation on Z.

4. LetR={(a,b)e Z X Z:a=0=borab > 0}.
Then, R is an equivalence relation on Z.

Definition 1.3.2. Let R be an equivalence relation on a set X and x € X. The
R-equivalence class of x (or simply, the R-class of x) is defined to be the set

Rx)={yeX:(x,y) e R}.
The following can be proved easily.

Theorem1.3.1. Let R be an equivalence relation on a set X. Then, the following
holds good.

1. Foranyxandy € X,

(x,y) € R < R(x) = R(y)
and (x,y) € R< R(x) NR(y) = .
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2. Any two R-equivalence classes in X are either equal or disjoint.

3. ngR(x) =X.
Definition 1.3.3. Let X be a nonempty set. A class € of sets is said to be a
partition of X if the following conditions are satisfied:

1. Each member of € is a nonempty subset of X.

2. Forany 4, B € 6, either 4 = BorAN B = .

3. The union of all the members of @ is X.

In other words, a class 6 of nonempty subsets of a set X is called a partition
of Xif each element in X is in exactly one member of €.
The following is an immediate consequence of Theorem 1.3.1.

Theorem 1.3.2. For any equivalence relation R on a set X, the class of all
R-equivalence classes in X is a partition of X and is denoted by X/R; that is,

X/ ={R(x): x € X}.

X/R is called the partition on X induced by R or the quotient of X by R.
The converse of the above result is also true, in the sense that, for any
partition 6 of X, there exists an equivalence relation R, on X such that the

partition of X induced by R, is precisely equal to the given partition 6.

Theorem 1.3.3. Let ¢ be a partition of a nonempty set X. Define

R = {(x,y) € X X X: both x and y belong to the same member of €}.
Then, R is an equivalence relation on X and X/R = 6. (In fact, if x € 4 € 6,
then 4 = R(x).)

These two processes R — X/R and € — R, are inverses to each other in the
sense that

R—XR—R, ,=R and 6+— R, +— X/R, =6

for any equivalence relation R on X and for any partition € of X. Therefore,
we have the following.

Theorem 1.3.4. For any nonempty set X, let £(X) be the set of all equivalence
relations on X and Part(X) be the set of all partitions of X. Then,

E(X) = Part(X),
that is, there is a bijection of £(X) onto Part(X).

Example 1.3.2. Consider the relation R given in Example 1.3.1 (4), we have

R={(a,b) e ZXZ:a=0=borab > 0}.
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Forany a € Z, R(a) = {0} or Z" or Z~ accordingasa = Qora > 0ora <0,
respectively, where Z~ stands for the set of all negative integers. Therefore,

X = ({0}, 2+, 7).

Example 1.3.3. Let n be a positive integer and R be the equivalence relation
on Z defined in Example 1.3.1 (3); that is,

R = {(a,b) € Z X Z : ndivides a - b}.
Then, for any a € Z, the R-class of a is given by
R (a) = {a+nx:xeZj.

Ifa=gqn+rq,reZand0=r<n,thenR (a) = R (r) and hence R (0),
R(1), ..., R (n — 1) are all the distinct R -classes in Z. That is, there are
exactly n R -classes in Z.

Definition 1.3.4. Let ¢, and 6, be two partitions on a set X. Then, 6, is said
to be a refinement of ‘6 if every member of 6, is a union of members of 6,.

Theorem 1.3.5. Let R and S be two equivalence relations on a set X and ’%
and % be partitions corresponding to R and S, respectively. Then, R C S if

and only if X/g is a refinement of %

Proof: Suppose that R C S, then, for any x, y € X,
y)eR=(x,y) eSS
and hence R(x) C S(x) for all x € X. It can be seen that S(x) = Lgl( )R( ).
redx

Therefore, % is a refinement of % Conversely suppose that )% isa

refinement of X/R Let (x, y) € R. Then, S(x) is a member of % and hence
S(x) is a union of members of X - Therefore,
Sx) = U R(z) forsomeZC X.
z€Z
Now, since x € S(x), we get that x € R(z) for some z € Z and hence (x, z) € R.

Since (x, y) € R also, we have that (y, z) € R so that y € R(z) C S(x). Therefore,
(x,y) € S. Thus,R C S. <

The following theorem is a simple verification.

Theorem 1.3.6. The intersection of any class of equivalence relations on
a set X is again an equivalence relation on X. In particular, if R and S are
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equivalence relations on X and % and % are the corresponding partitions
of X, then R N S'is also an equivalence relation whose corresponding partition

is {R(x) N S(x) | x € X}. In other words,

(RN S)(x) = R(x) N S(x) foranyx e X.

These can be better understood by the following figures showing partitions

of R, Sand RN S.

]

Vi

—

Vs

%OS

L L
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Recall that a binary relation R on a set X is an equivalence relation on X if
andonly if R=R"",RoRC Rand A C R, where A _is the diagonal of X; in
fact, in this case, R o R = R. In general, for any equivalence relations R and S
on a set X, the composition R 0 § may not be an equivalence relation. In this
context, we have the following.

Theorem 1.3.7. Let R and S be equivalence relations on a set X. Then, the
following are equivalent to each other:

R o S'is an equivalence relation on X.
R o S is symmetric.

R o S is transitive.

RoSCSoR

SoRCRo0OS

RoS=SoR

S o R is symmetric.

S B ARG o e

S 0 R is transitive.

Theorem 1.3.8 (Fundamental theorem of functions). Any functionf: X — Y
can be expressed as

f=goh

for some injection g and some surjection /.

Proof: Letf: X — Y be a function. Define
R = {(a,b) e XX X: f(a) = f(b)}.

Then, R is an equivalence relation on X. Consider the partition X/R = {R(x) :
x € X} and define

h:X— X/Rby h(x) = R(x) foranyx e X.

Also, define

g : XIR — Y by g(R(x)) = f(x). If R(x) = R(x"), then (x, x") € R and hence
f(x) = f(x"). Therefore, g is a well-defined function and clearly g is an
injection. Also, it is clear that g(4(x)) = f(x) for all x € X. Thus, f= g o A,
g is an injection and /4 is a surjection. <
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EXERCISE 1(C)

1. Which of the following are equivalence relations?
(i) {(a,b) € R X R:a-bisarational number}
(i) {(a,b) € Q X Q:a-bisan integer}
(ili)) LetZ* =7 - {0} and
R = {(a, b) € Z* X Z*: b = 2"q for some n € Z}
(iv) {(a,b),(c,d) e R*XR*: > + b* = & + &}
V) {(a,b) € Z X Z:a=nbforsomen e Z}
(vi) {(a,b) € Z* X Z* : n divides both a and b for some | <n € Z}
(vii)  {(a,b) € R X R : ab is a rational number}
(vii) Let M(R) be the set of all mappings of R into R and
R={(f,g) € MR) X M(R) : f(a) = g(a) for some a € R}
(ix) For any set X,
{(4, B) € P(X) X P(X) : 4 ® B s finite}
(x) LetR* =R-{0}:and
R={(a,b) e R* X R*:0<ab' e Q}.

2. Give three examples of binary relations showing that a relation can satisfy any
one of reflexivity, symmetricity and transitivity without satisfying the other two.

3. Prove that reflexivity, symmetricity and transitivity of a relation are independent
in the sense that no two of them imply the other.

4. If R is an equivalence relation on a set X and ¢¢ # Y C X, then prove that
RN (Y X Y) is an equivalence relation on R.

5. LetX=7Z X (Z-{0}) and
R = {((a, b), (¢, d)) € X X X: ad = bc}.
Prove that R is an equivalence relation on X.
6. LetX=27Z"XZ"andR = {((a, b),(c,d)) e XX X:a+d=0b + c}.
Prove that R is an equivalence relation on X.

7. Describe the partitions corresponding to each of the equivalence relations given
in Exercises 5 and 6 above.

8. Prove Theorem 1.3.1.
9. Prove Theorem 1.3.2.

10. Prove Theorems 1.3.3 and 1.3.4 and apply these to the relations given in
Exercise 5 above.

11. Prove Theorems 1.3.5 and 1.3.6.
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12. Let R be a binary relation on a nonempty set X. Then, prove that R is an equiva-
lence relation on X if and only if R is reflexive on X and

(a,b) e R and (b,c) e R=(c,a) € R.
13. Describe the equivalence relations on Z corresponding to the following parti-

tions of Z:

(i) {n—-5-1,3,7,..0,{..-6,-2,2,6,..},
(o= T,-3,1,5, .}, oy —8,—4,0,4, ...}

(i) {2n:neZ},{2n+ 1l:neZ}
(i) Z7, {0}, Z"
i) {...,-3,0,3,6,...},{....,-2,,4,7,...}, {...,—1,2,5,8, ..}

14. Describe the partitions corresponding to the equivalence relations given in
Exercise 1 above.

15. Prove Theorem 1.3.7.

1.4 THE CARDINALITY OF A SET

The concepts of cardinality of a set and of cardinal number are very impor-
tant in the abstract study of any branch of mathematics and, in particular, in
the study of abstract algebra. In this section, we give a brief introduction of
these concepts.

Definition 1.4.1. For any set X, let |X] denote the class of all sets that are
equivalent to X (that is, bijective with X). Then, |X] is called the cardinality of
X or the cardinal number of X or, simply, a cardinal number.

If we define, for any two sets 4 and B, A = B whenever there is a bijec-
tion of 4 onto B, then == is actually an equivalence relation on the class of
all sets. The following is a direct consequence of the discussion made after
Definition 1.2.3.

Theorem 1.4.1. Let 4, B and C be any sets. Then, the following holds good.

1. |4 =Bl A=B< A€|Bl & Beld
2. Ae|Bland B € |[C|= 4 € |C].

Definition 1.4.2. For any nonnegative integer #, let / be the set of positive
integers less than or equal to n. That is,

[ =1{1,2,3,...,n}.

Note that, if n = 0, then [ is the empty set.
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Theorem1.4.2. The followingare equivalent to each other for any nonnegative
integers n and m.

Lo =11
2.1 =1
3. n=m

In view of the above theorem, we denote the cardinality of / by simply n.
Note that, for any set 4, |[4| = n if and only if there is a bijection of 4 onto the
set {1, 2, ..., n} and, for this reason, we say that 4 has n-elements or 4 is an
n-element set if |4| = n.

Definition 1.4.3. A set A4 is called a finite set if the cardinality of 4 is a
nonnegative integer. 4 is called an infinite set if it is not a finite set.

In other words, a set 4 is called finite if 4 is bijective with the set / for
some nonnegative integer n. A is called infinite if it is not bijective with /_ for
any nonnegative integer 7.

Definition 1.4.4. A cardinal number is said to be finite if any (and hence all)
of its members are finite sets.

Example 1.4.1. The set Z* of positive integers is an infinite set, for we can
easily check that there cannot be a bijection of Z* onto /, for any nonnegative
integer n. If f: [ — Z* is a function, we can choose m € Z™ such that f(a) <
mforallael.

Theorem 1.4.3. Let n be a nonnegative integer and X be a set, such that | X] = n.
Then, for any subset Y of X, |¥] = m for some 0 = m = n.

Corollary 1.4.1. Every subset of a finite set is finite. Equivalently, any
superset of an infinite set is infinite.

We can identify any nonnegative integer n with the cardinal number |4|,
where 4 is a set with n elements. It can be easily seen that, for any nonnegative
integers n and m, n = m if and only if there is an injection of 4 into B, where
A and B are sets of cardinalities n and m, respectively. This suggests an exten-
sion of the usual ordering = on the set N of nonnegative integers to that of
cardinal numbers.

Definition 1.4.5. Let o and 8 be two cardinal numbers and X and Y be sets,
such that |X|] = « and |Y] = B. Then, we define « is less than or equal to 8 (and
express this by a = B) if there is an injection of X into Y.

First of all, we have to prove that = is a well-defined relation on the cardi-
nals, in the sense of the following.



Sets and Relations  1-29

Theorem 1.4.4. Let X, Y, A and B be sets, such that |[X] = |4| and |Y] = |B|. Then,
there is an injection of X into Y if and only if there is an injection of 4 into B.

Proof: Since |X] = |4| and |Y] = |B|, there are bijections f: X > dand g: Y
— B.If h: X — Yis an injection, then g 0 4 0 /! is an injection of 4 into B.
On the other hand, if p : 4 — B is an injection, then g0 p o fis an injection
of X'into Y. <

Thus, = is a well-defined binary operation on the set of cardinals. Since
A = A for any set A4, it follows that = is reflexive on the set of cardinals.

Also, since the composition of injections is again an injection, we have that
= is a transitive relation. In addition to the reflexivity and transitivity of the
relation =, we have another important property, namely the anti-symmetricity;
that is, « = 8 and B = « are possible only if « = . The proof of this is not
that straight forward and requires a skilled proof.

Theorem 1.4.5. (Schroeder-Bernstein Theorem). Let X and Y be sets
and f: X —> Yand g : Y — X be injections, then there exists a bijection of
Xonto Y.

Proof: Put Z = g(Y). Then, Z is a subset of X.

Define h : X > Z by h(x) = g(f(x)) for any x € X. Then, since g and f'are
injections, 4 is also an injection. We define sequences {X } and {Z } of sets
as follows:

X, =X and Z =7
and, forn > 1, X = h(X )and Z = h(Z ). Then, X = A""'(X) and
Z = h"\(Z), where "' = hoho ..o h(n—1times)and h’ = Id,.
We have
X=X2Z2X2Z2X,2Z2X,D ..

Define p : X —> Z by

h(x) ifxe X,—Z, for some n
p(x)= . )
X otherwise

Then, it can be easily verified that p is a bijection of X onto Z. Now, define
q:X— Yby

qg(x) =y ifg(y) = p(x).
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Since g is an injection and p(x) € Z = g(¥), there will be unique y € Y such
that p(x) = g(»). Therefore, g is a well-defined mapping of X into Y. It can be
verified that ¢ is a bijection of X onto Y. <

Corollary 1.4.2. The relation =< is an anti-symmetric, transitive and reflexive
relation on the set of cardinals.

One can also define a relation = on the set of cardinals as |Y] = |X] if there is
a surjection of Y onto X. This is also an antisymmetric, transitive and reflexive
relation on the set of cardinals. In fact, this is precisely the relation = in view
of the following.

Theorem 1.4.6. Let X and Y be any nonempty sets. Then, there is an injection
of X'into Y if and only if there is a surjection of Y onto X.

Proof: Suppose that f: X — Y is an injection, choose an arbitrary element
x, € X. Define g: ¥ — X'by

[x itfw=y
g(y) B x, otherwise (that is, y & j10.9))

Since fis an injection, for each y € f(X), there exists unique x € X such that
f(x) = y. Therefore, g is a well-defined function of Y into X. Also, for any x €
X, f(x) € Yand g(f(x)) = x and hence g is a surjection of ¥ onto X.
Conversely suppose there is a surjection g : ¥ — X. For each x € X, consider
the set

A =g '({xp) ={ye¥:gl =x}.

Since g is a surjection, each 4, x € X, is a nonempty subset of Y. There-
fore, {4 :x € X} is a nonempty class of nonempty sets. By an important
axiom of set theory (known as the axiom of choice), there exists a function
c:X — U, A, suchthatc(x) € 4 foreachx € X (such a function is called
a choice function). Now, define /: X — Y by f(x) = c(x).

Note that 4 N 4, = O for any x # x" € X and hence c(x) # c(x") if x #x'.

Therefore, fis an injection of X into Y. <

If 4 is a finite set and |4| = n, then we know that its power set P(4) (the set
of all subsets of 4) is of cardinality 2" and that n << 2". We can extend this to
arbitrary cardinals. First let us have the following.

Definition 1.4.6. If « is the cardinal of a set 4, then the cardinal of the power
set P(4) is denoted by 2¢, for the simple reason that P(4) = {0,1}* under the
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bijection B — x,, where x, is defined by x,(a) = 1 or 0 according as a € B or
a & B. x,is called the characteristic map of B.

For any two cardinals @ and 8, we write « < B if @ = 8 and a # 3. Also
write @ 5 3 to say that « is not less than or equal to 3.

Theorem 1.4.7. For any cardinal «, @ < 2°.

Proof: Let « be a cardinal and 4 be a set such that [4| = «. Since the cardinal of
the empty set @ is 0 and P(Q) = {@} which is a nonempty set, we get that |@| =
0 <1 =2°= |P(Q)| therefore, we can suppose that 4 is a nonempty set. Define

f:A—>P)byf(a) = {a} foranya € A.
Then, clearly fis an injection and hence
a = A = [P4)| = 2*

Now, we prove that |4] # |P(4)| or, equivalently, [P(4)| % |4|. By Theorem
1.4.6, it is enough if we can prove that there is no surjection of 4 onto P(4).
Suppose, if possible, that there is a surjection g : 4 — P(4). Then, for each a
€ 4, g(a) is a subset of 4 and every subset of 4 is of the form g(a) for some a
€ A (since g is a surjection). Now, consider the set B defined by

B={aecAd:ag g}
Then, B is a subset of 4 and hence B = g(a) for some a € 4. Now,

a€eB=aecgla)=aeB
and a¢g B=a ¢ gla)=aecB

which are contradictions, since exactly one of the statements @ € Banda ¢ B
must be valid. Therefore, there is no surjection of 4 onto P(4) and hence
[P(4)| % |4]. Thus, @ = 4| < |P(4)] =2 <

Next, we have a brief discussion on countable cardinals.

Definition 1.4.7. Let X be any set and Z* be the set of positive integers. Then,
X is said to be a countable set and |X| said to be a countable cardinal if |X] =
|Z*|; that is, if X is equipotent with Z* and if /: Z" — X is bijection, then X can
be expressed as X = {f(1), f(2), ..., f(n), ...} or, simply X = {x, x,, ... }.

If Xis not a countable set, then X is called an uncountable set and |X] is called
an uncountable cardinal.

Definition 1.4.8. A set X is called at most countable if it is either finite or
countable.
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Theorem 1.4.8. The following are equivalent to each other for any non-
empty set X:

1. There is an injection f: X — Z*
2. Xis at most countable.

3. Xis a subset of a countable set.
4. There is a surjection g : Z* — X.

Proof: (1) = (2): Suppose that there is an injection /: X — Z*, put ¥ = f(X).
Then, X =Y C Z*. Suppose that X is not finite, then Y is an infinite subset of
Z7. Define g : Z* — Y as follows.

Let g(1) be the least element in Y (use the well-ordering principle in Z™).
Having defined g(1), ..., g(n — 1), let g(n) be the least element in ¥ — {g(1),
2(2), ..., g(n—1)}, for any n > 1. Since Y is infinite, ¥ — {g(1), ..., g(n — 1)}
# (J for any n > 1 and hence g is welldefined. Now, we have

g <g2)<..<gn<..

Clearly, g is an injection of Z* into Y. We prove that g is surjection also. Let y
€ Y. Then, the number of g(m), such that g(m) = y is finite and hence we can
choose the largest m such that g(m) = y. Then, g(m) = y <g(m + 1). If g(m)
< y, then we get that g(m + 1) = y (since g(m + 1) is the least in ¥ — {g(1),
...,gm)}andy € Y- {g(1), ..., g(m)}. Therefore, g(m) = y and hence g is a
surjection also and hence Z* = Y so that Y is countable. Thus, X is countable
(g7'of: X— Z" is a bijection).

(2) = (3): If X = [ for some n or X = 7", in either case, X can be treated as
a subset of a countable set.

(3) = (4): If Xis a subset of a countable set Y, then there is a bijection f: ¥ —
7. Then, the restriction of f'to X is an injection of X into Z™*. Therefore, by
Theorem 1.4.6, there is a surjection of Z* into X.

(4) < (1) follows from Theorem 1.4.6. <

Corollary 1.4.3. The set R of real numbers is uncountable.

Proof: Let X = {0 - xx,,... : x, = 0 or 1 for all i}. Then, X C R. We prove
that X is uncountable. Suppose, if possible, that X is countable. Let /: Z* —
X be a bijection. Then, X = {f(1), f(2), ...}. Let

fn)=0-x x x .., wherex =0orl.
1 "2 73 i

For each n € Z*, definey, = 1 — x and consider

y=0-yyy,...
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Then, since y, 7 x for each n, we get that y 7 f(n) for all n and hence y ¢ X,
which is a contradiction. Thus, X is uncountable and thus so is R. |

For any cardinal number «, we have proved that o < 2* (Theorem 1.4.7)
and, in particular |Z+| < ZW which automatically implies that 2‘Z+‘ is an
uncountable cardinal. In the following, we prove that the cardinal number of
the set R of real numbers is precisely Z‘ZW . The cardinal number of Z* will

be usually denoted by N, and that of R by c.

Theorem 1.4.9

N,
c=2"

Proof: Recall that P(Z") = 2% , the set of all mapping of Z* into the two-

element set {1, 0}. We prove that there is a bijection of 2% onto R. Define
I 27 R by

f(g) =0-g(1)gQ)... forany ge?2?,

where 0 - g(1) g(2)... is the real number in the interval [0, 1) whose decimal
places are g(1), g(2), .... Then, clearly f'is an injection. On the other hand,

noted that any real number x can be represented in the binary scale in the
form

X = XXX, XX X X

where each x = 0 or 1 for every n € Z*. Now, define #: R — 2% by
h(x)(n) = x ifx = .. xxx -xxx...

for any n € Z*and x € R. Then, % can be easily verified to be an injection.
Therefore, we have two injections f: 22 — R and 4 : R — 27", By the
Schroeder—Bernstein Theorem 1.4.5, it follows that there is a bijection of R

onto 2%, Thus,
= ol =g, <

c=[R|=2%

Theorem 1.4.10. Let X ,.X, ... be finite sets. Then, Ejl X, is at most countable.
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Proof: Let X = ) X ,. Without loss of generality, we can assume that each

X, is nonempty. Let |X | = m and X, ={x,, x,, ...,x,, }. Then,

X, X.

125 00 Mg Aars e Ao

X. X.

X={x,,x U

which shows that there is a surjection of Z* onto X. By Theorem 1.4.8, X'is at
most countable. <

Corollary 1.4.4. If 4 and B are finite sets, then 4 U B, A N Band 4 X B are
all finite sets.

Proof: Clearly,4 U B and 4 N B are finite. Also, foreacha € 4, {a} X B=B
and hence finite and therefore 4 X B is finite, since AXB=U,_ {a} X B. 4

Theorem 1.4.11. If X and Y are countable sets, then X U Y and X X Y are
countable and X N Y is at most countable.

Proof: Suppose that X and Y are countable, then we can write
X={x,x,x,...} and Y={y,y,¥, ...}

Since X' N Y'is a subset of the countable set X, X N Y is at most countable (by
Theorem 1.4.8). Also, since

XUY= {xl,yl,xz, Vs X3 V35 R
it follows that X' U Y is countable. For each n € Z*, let
A4, = {(xl.,xj):i+j=n + 1}

Then, each 4 is afinite setand X XY = @1 A,. By Theorem 1.4.10, X X Yisat

most countable. Further, since {x} X Y=Y, Yisinfiniteand {x} X YC X X ¥,
it follows that X X Y'is infinite. Thus, X X Y is countable. |

Corollary 1.4.5. If X, X, ..., X are countable sets, then so are .QIX,- and
X XX, X o XX

Corollary 1.4.6. Z, Z X Z and Q (the set of rational numbers) are countable.

Corollary 1.4.7. Countable union of countable sets is countable.
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Proof: Let {X,X,, ..., X, ...} be a countable class of countable sets. Then,

n

for each n € Z~, there exists a bijection f, : Z* — X . Now, let X = EO:JI X, and
define f: Z* X Z* — X by
S(n,m) = f(m).

Then, clearly fis a surjection. Also, since Z* X Z" is countable, there is a bijec-
tiong:Z" > 7Z* X Z*. Now, f o g is a surjection of Z" onto X. Therefore, X is
at most countable. But, since X is infinite, it follows that X is countable. <

Note that countable product of at most countable sets may not be count-
able. For consider the following.

Example 1.4.2. The set 2 = {0, 1} is a finite set and Z* is a countable set.
Here, 2%* (= R) is uncountable.

EXERCISE 1(D)

1. Prove that the cardinal numbers of Z*, Z~, Z, Q* and Q are all equal to each
other.

2. Letf: X— Yand g:Y— Zbe injections. Then, prove the following:
@ X =lZ=M=lZ
(i) X[ =[Yand f(X) CA4C Y= |4 = Y]
(1)) XCACYand|X] =1|Y]= 4] =V

3. Prove that any infinite subset of a countable set is countable.

4. If Xis a countable set and /- X — Y is a surjection, then prove that Y is at most
countable.

5. Prove that a set X is infinite if and only if |X] = || for some proper subset Y of X.
6. For any positive integer n, prove that (Q*)" is countable.

7. If X is a set such that |X] = |P(P(X))|, then prove that there exists a surjection
[ X - PWX).

8. Deduce from Exercise 7 above that |X] < [P(P(X))| for any set X.

9. If |X] = |4| and |Y]=|B|, then prove that |45| = |X?|.
10. For any sets X and Y, prove that |X] = |Y] if and only if |[P(X)| = |P(Y)|.
11. Prove that [P(Z)| = |P(Q)|.

12. Give an example of a set € of circles in the plane such that every circle with
positive radius properly contains a member of 6.
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13. Prove that |(a, b)| = |(c, d)| for any intervals (a, b) and (¢, d) in R with a < b and
c<d.
14. Letl ={1,2,...,n} forany n € Z*. Prove that |Z*| = |Z* — I | forany n € Z".
15. Let X be a countable set and P,(X) be the set of all finite subsets of X. Then,
prove that
0| =lal=Ie, oo
n=1

16. Prove that the set of polynomials in the indeterminate x over the set of rational
numbers is countable.

17. A real number a is said to be an algebraic number if there exists a nonzero
polynomial

S =a,+ax+ - +ax witha eQ
such that f(a) = 0. Prove that the set of algebraic numbers is countable.

18. A real number is said to be transcendental if it is not algebraic. Prove that the set
of transcendental numbers is uncountable.

19. Prove that the set of complex numbers is uncountable.

20. Prove that the set of complex numbers, whose real and imaginary parts are ratio-
nal numbers, is countable.
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2.1 Integers

2.2 Congruence Modulo #

2.3 Rational, Real and Complex Numbers
2.4 Ordering

2.5 Matrices

2.6 Determinants

This chapter is meant to review some of the important properties of the set of
positive integers, the set of integers, the set of rational numbers, the set of real
numbers and the set of complex numbers. We do not discuss any axiomatic
development of these systems. We simply assume familiarity with addition
and multiplication of these and their usual properties. Also, we briefly dis-
cuss the concept of a partial order on a set in general and the usual ordering
on the real number system, in particular, these facilitate us in facing several
encounters with these throughout this book. Further, we recall the notion of
a matrix over the number systems and some important elementary properties
of the matrices and their determinants.

2.1 INTEGERS

In this section, we review certain important elementary properties of integers,
by assuming familiarity with the addition, subtraction, multiplication and the
usual ordering in these (that is, m = n if and only if  — m is nonnegative).
As mentioned in the beginning of the book, we follow the notations given
below.

Z : The set of integers {..., =2, —1,0, 1,2, ...}
Z* : The set of positive integers {1, 2, 3, ...}
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7 : The set of negative integers {..., =3, =2, —1}
N : The set of nonnegative integers {0, 1, 2, 3, ...}
m=nifandonlyifn —m €N
m<nifandonlyifn —me€ Z”*

For any subset S of Z and a € S, a is called the smallest (or least) member
of Sifa = s for all s € S. It is well known that, for any given integers m and n
with m < n, there are only finitely many (at most » — m number of) integers a,
such thatm < a <n.

Theorem 2.1.1 (Well-ordering Property of Z*). Any nonempty set of posi-
tive integers has the smallest member.

Proof: Let S be a nonempty set of positive integers. That is, & # S C Z".
Suppose, if possible, that S has no smallest member. Since S is nonempty, we
can choose a € §. Then, a is not smallest in § and hence there exists a, € S
such that a < a; that is, a, < a. Again since a, is not smallest in S, we get
a, € S such that a, < a . Continuing this, we get an infinite set of integers
such that

0<<a <a_ < <a,<a<a

1
which is a contradiction, since there can be only a finite number of integers
between 0 and a. Thus, S has smallest member.

In fact, the above well-ordered property of Z* can be extended to Z as
given below whose proof is similar to the above one.

Theorem 2.1.2. Let S be a nonempty subset of Z and b € Z such that b < s
for all s € S. Then, S has smallest member.

Now, we derive some more properties of Z* as consequences of the well-
ordering property.

Theorem 2.1.3 (First Principle of Induction). Let » € S C Z" such that
b=neS=n+1€es.

Then, m € S for all m = b.

Proof: Put 7= {m € Z* : b = m and m & S}. It is enough if we can prove

that 7 is the empty set. Suppose, if possible, that 7"is not empty. Then, b — 1

< m for all m € T. Therefore, by Theorem 2.1.2, 7"has smallest member, say
m,. Then, since m, € T,
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b=m, and m &S.
Then, since b € S, we get that b < m and hence b =m, — l andm — 1 &
S (otherwise b = m; — 1 € S, so that m; € §). This implies that m, — 1 €
T, which is a contradiction to the least property of . Thus, T'is empty and
hence m € S for all m = b.

Corollary 2.1.1. Let S C Z" such that 1 € Sand n + 1 € S whenever n €
S.Then, S = Z*.

Corollary 2.1.1 is the actual statement of the first principle of induction.
However, this has more general form in Theorem 2.1.3. Often, induction is
stated in terms of a proposition on Z*. A proposition on a set S means that,
for each a € S, P(s) is a statement about s and P(s) is either true or false. The
above principle of induction is equivalent to the following.

Let P be a proposition on Z* such that P(b) is true for some b € Z* and
P(n + 1) is true whenever n = b and P(n) is true. Then, P(n) is true for
alln = b.

Example 2.1.1. Letus provethat1 +2 + -+ +n = @ foralln € Z".

Let P(n) be the statement ‘1+2+---+n :@’ andS={n€Z":Pn)is
true}. Then, clearly 1 € S C Z*.

n € S = P(n) is true

2
é1+2+.--+n+n+1=w+n+1:w

= P(n + 1) is true
=>nt+tl€eSs

Therefore, by the first principle of induction, S = Z* and hence P(n) is true
foralln € Z*.

The following shows the importance of the general version of the first
principle of induction given in Theorem 2.1.3.

Example 2.1.2. Let us find all positive integers » for which 3" < n!
LetS={n€Z":3"<n!}.

Clearly 3! > 1!, 32 > 2!, 3> > 31,3* > 41,3 > 5! and 3° = 729 > 720 = 6!
But 37 = 2187 < 5040 = 7!, 38 < 8! and 3° < 9! which suggests that n € S
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for all » = 7. To prove this, let us apply the first principle of induction (Theorem
2.1.3). We have 7 € S and

T=nelS=3"<n!
=31 =33 <nl(ntl)
= 3" < (n+1)!
=n+1€S.

Thus, by Theorem 2.1.3, n € S for all n = 7. Since we have already checked
that n & S for 0 < n < 7, we get that

S={n€Z :7=n}.
The first principle of induction does not work sometimes when we need to
know the truth of one or more smaller cases and not necessarily the immedi-
ately preceding one. To handle situations like this, we need another form of

induction given below.

Theorem 2.1.4 (Second Principle of Induction). Let S be a set of positive
integers and b € S such that, forany b = n € Z*,

bb+1,..,.neES=n+1€S.
Then, m € S for all m = b.
Proof: Put 7= {m € Z* : b = m and m & S}. We need to prove that T is
empty. Suppose, if possible, that 7 is nonempty. Then, by the well-ordering
property of Z* (Theorem 2.1.1), T has a smallest member, say m,. Since m, €
T, we have b = m and m & S. But, since b € S, we get that b < m,. Also, by
the least property of m, any integer less than m cannot be in T. Therefore,

b,b+1,...m —1€S.

By the hypothesis, it follows that m, € S, which is a contraction. Thus, 7'is
empty and hence m € S for all m = b.

Corollary 2.1.2. Let S C Z* such that 1 € Sand, forany n € Z~,
meS foralm<n=ne€s.

Then, S = Z~.
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We have actually used the well-ordering property of Z* to prove both the
first and second principles of induction. However, we can prove the well-
ordering property using either of the induction principles. In the following,
we prove that all three are equivalent.

Theorem 2.1.5. The following are equivalent to each other:

1. Well-ordering property of Z* (Theorem 2.1.1).
2. The first principle of induction (Theorem 2.1.3).
3. The second principle of induction (Theorem 2.1.4).

Proof: The proof of Theorem 2.1.3 is precisely the proof of (1) = (2).
(2) = (3): Assume that the first principle of induction holds.
Letb € S C Z" and, for any n = b,

bb+1,..,nES=n+1ES.

Putd={a€Z":a=bandb,b + 1,...,a € S}. By our assumption on S,
it follows that b € 4 and

b=n€Ad=n+1€A.

From the first principle of induction, m € A for all m = b. In particular,
m € Sforallm = b.
(3) = (1): Assume that the second principle of induction holds. Let 4 be a
nonempty set of positive integers. Suppose, if possible, that 4 has no smallest
member. Put S = Z* — 4. Then, 1 & A and hence 1 € S. Forany n = 1,if 1,
2,...,n€ S, then 1,2, ..., n & A4 and therefore n + 1 & A (otherwise n + 1
becomes the smallest member in 4) and hence n + 1 € S. From the second
principle of induction, it follows that n € S for all » = 1; that is, S = Z* and
hence A4 is empty, which is a contradiction. Thus, 4 has a smallest member.
The next result is one of the best applications of the second principle of
induction. Before this, let us recall that a positive integer p > 1 is called a
prime number (or simply, prime) if 1 and p are the only factors of p (a is said
to be a factor of b if ac = b for some integer c).

Theorem 2.1.6 (Fundamental Theorem of Arithmetic). Any positive integer
greater than 1 can be uniquely expressed as a product of prime numbers.

Proof: LetS= {n € Z" : n> 1 and n is a product of primes}. Then 2, being a
prime, is amember of S. Let2 =n € Z* such that 2,3, ...,.n €S. Ifn + lisa
prime, then clearly n + 1 € S. Suppose that n + 1 is not a prime; then there is
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afactora of n + 1 suchthata # 1 and a # n + 1. Therefore, there are positive
integers a and b such that

n+1l=ab and 1<a<n+1 and 1<b<n+1.

From the induction hypothesis, @ and b € S and hence a and b can be expressed
as products of primes and therefore sois# + 1. Thus, n + 1 € S. By the second
principle of induction, it follows that m € S for all m = 2. Thus, any n > 1 can
be expressed as a product of primes.

We prove the uniqueness of the factorization also by using induction prin-
ciple. Let

PPy P,=N=q,q,...4q,

where p’s and q/s are prime numbers. Suppose that p, = g, for some 7 and ;.
We can suppose, by renumbering of pi’§ and q!.’s, that p, = 4y Then, p, p, ...
P, = 4,4, ... q. < n and hence, by the induction hypothesis, » = s and each
p, is equal to some g, and vice versa. Next suppose that p, # g, for all i and ;.
Without loss of generality, we can suppose that p, > ¢,. Then,

n> (p1 — ql)p2 D, =P\ Py D, TGPy D,

=q,9,---9,— 4,P,---D,

=q, (q2 - q, D, ...py).
Again by the induction hypothesis, ¢, = p, for some 2 =< i < r or g, divides
p, — q,-Butg, # p, foralliand hence g, divides p, — ¢q,. Therefore, g, = p,,
a contradiction to our assumption. Thus, » = s and each p, is equal to some g,
and vice versa. ‘

The following is an important property of integers which we use through-
out this book. The proof of this is again by the well-ordering property of Z*.

Theorem 2.1.7 (The Division Algorithm in Z). Let a and b be any integers
and b > 0. Then, there exist unique integers ¢ and r such that

a=bg+r and 0=r<b
(Here ¢ is called the quotient and r is called the remainder of a modulo b.)

Proof: Ifa = 0, we can take ¢ = 0 = r and, if b = 1, then we can take ¢ = a
and » = 0. Therefore, we can assume that » > 1 and a # 0. Put

S=Z"N{a—bx:x EZL}.
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Since b > 1, a < bla| and hence a — b(—la|) € S. Therefore, S is a nonempty
subset of Z*. By the well-ordering property of Z™, S has a smallest member,
say m,.

Letm, = a — bx > 0 (since my € S). If b <m, then0 <m, —b=a—b
(x+1) € Sand m; — b < m which is a contradiction to the least property of
m,. Therefore, we have m; = b. If m; = b, thena — bx = b and hence a = b
(1 + x), so that we can take ¢ = x + 1 and = 0. Thus, m; < b and

a=bx+ (a—bx)=bx+m,

so that we can take ¢ = x and » = m,.

To prove the uniqueness of ¢ and , let
bgtr=a=bg' +r,0=r<b and 0=r' <b.
Then, b(q — ¢') = r' — r and hence
blg—q'| = |r'=r <b.
This implies that |¢ — ¢'| = 0; thatis,¢ = ¢’ and r = 7.

Definition 2.1.1. For any m and n € Z*, let CD(m, n) be the set of all com-
mon divisors (factors) of m and n in Z*. That is,

CD(m, n) = {c € Z" : ¢ divides both m and n}.

Clearly CD(m, n) is a nonempty subset of Z* for any m and n € Z*, since
1 is a divisor of any positive integer. Also, for any @ and b € Z*,

adividesb=a=5b

and hence every member of CD(m, n) is less than or equal to both m and
n. This implies that CD(m, n) is finite and has a largest (greatest) member,
which is called the greatest common divisor of m and n and is denoted by
g.c.d.{m, n} or, simply (m, n). The following is an interesting property of the
g.c.d’s.

Theorem 2.1.8. Let m and n be positive integers. Then, the following are
equivalent to each other for any d € CD(m, n).

1. d=gc.d{m, n}

2. d =ma + nb forsomeaand b € Z

3. Every member of CD(m, n) divides d.
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Proof: Letd € CD(m, n); that is, d is a common divisor of m and n.

(1) = (2): Suppose that d is the greatest member of CD(m, n). Let S =
Z* N {ma +nb : aand b € Z}. Clearly S is a nonempty subset of Z* (for
example, m? + n? € S). By the well-ordering property of Z*, S has a smallest
member, say d. We prove that d, = d. Since d, € S, we have

0<d0=ma+nb for some a and b € Z.

We first prove that d; € CD(m,n). By the division algorithm (Theorem 2.1.7),
we can write

m=dg+r,0=r<d,q and re€Z.

Now, r = m — dg = m — (ma + nb)qg = m(1 — aq) + n(=bg). If r >0,
then 7 € Sand r < d, which is a contradiction to the least property of d in S.
Therefore, » = 0 and m = d g. Thus, d, divides m and, similarly d, divides n
and hence d;, € CD(m, n). From this, it follows that d, = d. Also, since d €
CD(m, n), d divides m and n and hence d divides ma + nb = d,. Therefore, d
=d,. Thus,d = d, = ma + nb.

(2) = (3) and (3) = (1) are trivial.

Definition 2.1.2. Two positive integers m and » are said to be relatively prime
(or, prime to each other) if (m, n) = 1. This is equivalent to saying that CD(m,
n) = {1}.

Note that m and n are relatively prime if and only if there is no prime
number dividing both m and n. The following is an important consequence
of Theorem 2.1.8.

Theorem 2.1.9. Let m, n and r € Z* such that m divides nr and (m, n) = 1.
Then, m divides r.

Proof: By Theorem 2.1.8, there exist integers a and b such that ma +
nb = 1. Now,

r =rl = r(ma + nb) = mra + nrb.
Since m divides mra and m divides nr, it follows that m divides r.

Corollary 2.1.3. Let p be a prime number and m and n be positive integers
such that p divides mn. Then, p divides either m or n.

Proof: Suppose that p does not divide m. Then, (p, m) = 1 and therefore, by
Theorem 2.1.9, p divides n.
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Definition 2.1.3. Let X be any set. A function s : Z" — Xis called a sequence

in X. A sequence s is usually represented by {s(1), s(2), ...} or {s, s, ... }.
Quite often a sequence s is described inductively by giving s(1) and a rule

to find s(n + 1) from s(n). For example, we define s(n) = n! inductively by

=1

and (n + 1)! = (n + Dn! forany n = 1.

In the next theorem, we prove that this inductive method of defining a
sequence works well in the sense that there exists a unique sequence s : Z* — X
satisfying the given conditions for determining s(n + 1) from s(n).

Theorem 2.1.10 (Recursion Theorem). Let X be a set and x, € X. Suppose
that /: Z* X X — X is a mapping. Then, there exists a unique sequence s :
Z" — X such that

s(1) =x,and s(n + 1) = f(n, s(n)) foralln € Z~.

Proof: First we prove the existence of a sequence s : Z* — X satisfying the
required conditions. Let

P={SCZ"XX:(1,x)€ES and if(n,x) €S, then(n+ 1,[(n x)) € S}.

Then, P is nonempty, since Z* X X € P. Let T be the intersection of all
members in P. Then, clearly 7 is a member of P and is contained in every
member of P. Put

A = {n € Z" : there is a unique x € X such that (n, x) € T}.

We prove, by induction principle, that 4 = Z*. Suppose, if possible, that 1 & A.
Since (1,x,) € T, there exists x # x, in X such that (1, x) € 7. Then, T— {(1, x)}
is a member of IP and hence it contains 7, which is a contradiction. Therefore,
1€ 4.

Next, letn € 4. Suppose, if possible, thatn + 1 & 4. Let x, be the unique element
in X'such that (n,x ) € T. Since T € IP, it follows that (n + 1, f(n, x )) € T. Since
n+ 1 & A, there exists y # f(n, x ) in X'such that (n + 1, y) € T. Again, it can
be easily verified that 7 — {(n + 1, y)} is a member of P and hence

TCT— {(n+1,y)}, which is a contradiction.

Therefore, n + 1 € A. By the first principle of induction, it follows that 4 = Z*.
Thus, for each n € Z7, there exists unique element, say x , in X such that (n, x )
€ T. Now, define s : Z*" — X'by s(n) = x . Then,

s(1) =x, since(l,x)€ET
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and s(n + 1) = f(n, s(n)), since (n, s(n)) € T and hence (n + 1, f(n, s(n))) € T.
Thus, s is a sequence satisfying the required properties.
Next, we prove the uniqueness of s. Let s and ¢ be sequences such that

s(1) =x, = «(1)
and s(n + 1) = f(n,s(n)) and #n + 1) = f(n, t(n))

foralln € Z*. Let B = {n € Z* : s(n) = t(n)}. Then, 1 € B and, if n € B,
then s(n) = #(n) and hence

s(n + 1) = f(n, s(n)) = f(n, t(n)) = t(n + 1),

so that » + 1 € B. Again, by the first principle of induction, B = Z*. Thus,
s(n) = t(n) for all n € Z* and hence s = t.

Before we close this section, let us recall the concept of absolute value of
an integer.

Definition 2.1.4. For any a € 7Z, define
a ifa=0
lal= . :
—a ifa<0

Note that |[a| = 0 for all @ € Z. The following can be proved by straight
forward verification.

Theorem 2.1.11. The following holds for any integers a, b and c.

i) la=0=a=0
(ii)  |ab| = |al|b]
(iii) |a — bl = |b — 4
(iv) |a + b| =|a| + |b]|
(v) |a + b| = |a| + |b| if and only if either both a and b are nonpositive or
nonnegative.
(Vi) la—bl=la—cf+]c—b
(vii) |la| — [bl| = |a — b
(viii) |la| — |b]| = |a — b| if and only if |a + b| = |a| + |b].
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EXERCISE 2(A)

1. Prove the following forany n € Z*:
i 1P+22+3+ - +nw=nn+ 1)2n+ 1)/6

2
() P+22+33+ - +n= n(n2+1)

(i) 1-11+220 + 331+ nnl=@m+ 1) — 1
(iv) If Xisasetand |[X] = n, then [P(X)| = 2"
V) »»=1=@x—-D@'"+x2+ - +x+1)

o) @Hyr=3% f:]xn,y,
(vii) X %Z’ :3_%
vit) 2y =3t

(ix) %r(r-l—l):w

x) 1+3+5+-+Q2n—1)=n
2. Findall » € Z* for which 2n + 1 < 2",

3. Let X'be a set such that |X] = n = 2. Prove that these are exactly @ subsets
each with exactly two elements.

4. Forany nand r € Z" such that 1 = r = n, prove that

£l

i=r \I'

n+1
r+1

5. Use the Binomial theorem given in Exercise 1 (vi) above to prove the

following.
i % "]—3" forall n€ Z*
r=0| p

(i) (a+ by €aZ* + b foralla,bandn € Z*
n n
iy 2, [,] -k [,]

0=r=n 0<r=n

6. Prove that the set of prime numbers is infinite.

7. For any a € Z" and for any prime number p, prove that there is a largest
nonnegative integer » for which p" divides a.

8. Prove that any positive integer a can be expressed as
a=p' py.p’

where p,, p,, ..., p, are distinct primes and 7, n,, ..., n_are nonnegative
integers.
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9. Leta,bandc € Z*. cis said to be a common multiple of a and b if both a and b
divide c. Prove that there is a least common multiple for any @ and b € Z". This
will be denoted by l.c.m.{a, b} or [a, b].

10. Let a= p{" p}*...p,", where ps are distinct primes and #,’s are nonnegative inte-
gers and let » € Z™. Then, prove that b divides « if and only if
b=p

m

py*..p", wherem € Zand 0 = m, = n,.

11. Let a= H p and b= H p!", where ps are distinct primes and #,’s are non-
negative 1ntegers Then, prove that
g.c.d.{a, b} = P, , where k, = minimum of », and m,
and l.c.m.{a, b} = 1:[1 P, , where d; = maximum of n, and m,.

12. For any positive integers @ and b, prove that the product of @ and b is equal to the
product of their g.c.d. and l.c.m.

13. Let a, b and ¢ be positive integers such that a divides both b and c. Then, prove
that a divides mb + nc for any integers m and n.

14. Let 1 < n € Z". Prove that either » is a prime or has a prime divisor which
is = \/; .

15. Leta,a,, ...,a € Z*anda = g.cd.{a,a, ..., a}. Then, prove the following:

12 720
(i) d=ba +ba+---+ba forsomeb,b,, ...b €L
(i) IfS={ba +ba,+ - +ba. b €L}, then
S = aZ and a is the least member of SN Z™.

(i) Ifb € Z* and b divides q, for all 1 =i =< r, then b divides a.

16. Leta, b,c,d € Z* and a = bc + d. Then, prove that
g.c.d.{a, b} = g.c.d.{b,d}
17. For any positive integer a, prove that 1 + a + ¢ and 1 + a are relatively prime.
18. Prove the following for any a, b, ¢, d € Z*.
(i) gecdia,c} =1=gcd{b, c} < gedfab,c} =1
(i) gecdda, b} =1sgcdfa b’} =1foranyn € Z*.
19. Establish the Euclidean Algorithm given below to find the greatest common divi-
sor of given positive integers a and b.

*Leta, b € Z* with a > b and b not a divisor of a. Use division algorithm
(Theorem 2.1.7) repeatedly as necessary, to write

a=bq +r,
b=rlq2+r2

rL= g, + r
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rn*} = rn*an*l +r -

n—1
rn—Z = rn—lqn + rn

where 7 is the last nonzero reminder. Then,

g.cd.{a, b} =7 = xa + yb for some x, y € Z.

20. Find x and y € Z such that
g.c.d.{969, 1273} = 969x + 1273y.

21. For any positive integers a and b, prove that a divides b if and only if 2 — 1
divides 2° — 1.

22. Forany aand b € Z*, prove that a and b are relatively prime if and only if ma +
nb = 1 for some m and n € Z and, in this case, |m| and |n| are relatively prime.

23. Let a and b be relatively prime and a, b, c € Z*, then prove that ab divides c if
and only if both a and b divide c.

24. Ifa, b, c,d € Z" such that a = c(a, b) and b = d(a, b), then prove that (c, d) = 1.

25. Leta, b € Z* such that b > 1 and (a, b) = 1. Then, prove that (a + bc, b) = 1
for any ¢ € Z* and there is a unique n € Z* such that 1 =n < b and (n, b) = 1
and b divides an — 1.

2.2 CONGRUENCE MODULO n

Here, we briefly discuss an important equivalence relation, namely congru-
ence modulo 7, on the set Z of integers. The importance of this is due to the
fact that it is compatible with addition, subtraction and multiplication in Z.
Let us first agree with the following notation.

Definition 2.2.1. For any subsets 4 and B of Z, let
A+B={a+b:a€Adandb € B}
and AB = {ab:a € Aand b € B}.
Note that4 + B =B + 4, AB = BA,(AB)C = A(BC)and (4 + B) + C =
A+ (B + C)forany 4, B and C C Z. Also AB is empty if and only if 4 is

empty or B is empty. If 4 is a single element set {a}, then we write a + B for
{a} + B and aB for {a}B.

Theorem 2.2.1. Let n be any positive integer. Then,
nZ,l +nZ,...,(n — 1) + nZ

form a partition of Z.
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Proof: Foranyiandj € {0,1,2,...,n — 1},

(i+nZ)yN(G+nzZ)+ =i+ na=j+ nbforsomeaandb €Z
=i —jl =nlb — 4
=i—j=0¢(since|i —j| <n)
==

Therefore, for any i # j, i + nZ and j + nZ are disjoint. Also, for any a € Z,
we have (by the division algorithm, Theorem 2.1.7)

a=nq+r
for some ¢ and » € Z such that 0 = » < n and hence
a€r+nZ forsomer=20,1,...,n— 1.
Thus, the sets » + nZ, 0 = r = n — 1 form a partition of Z.

Theorem 2.2.2. Let = be the equivalence relation on Z corresponding to the
partition given in the above theorem. Then, for any ¢ and b € 7Z

a =, bifand only if n divides |a — b|.

Proof: Forany aand b € Z,a = b if and only if @ and b belong to the same
set in the partition. Therefore,

a=bsa and bei+nZ forsome0=i<n
Sa=i+nx and b=i+ny forsomex,y€Z
Sa—b=nkx—y)
Sla—bl=nx—-y,x,yEZ
< n divides [a — b|.

Definition 2.2.2. The equivalence relation = obtained above is called the
congruence modulo n. Quite often, we write

a=b(modn) fora= b.
That is, for any integers a and b and for any positive integer n,

a = b (mod n) < n divides [a — b|.
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If = (a) is the equivalence class containing a corresponding to = , then
we have

= (@) =a+nZ=r+nZ, wherea=nqg+r,0=r<n.
Also, forany aand b € Z

= (a) = =, (b) & a= b (modn)
Sa€b+nZ
Sa—benZ
< n divides |[a — b|.

In the following, we prove that the congruence modulo 7 is compatible
with the usual arithmetical operations.

Theorem 2.2.3. Let 1< n € Z. Then, the following holds for any a, b, ¢ and
de .
(i) a=b(modn)andc=d(modn)=a+ c=>b+ d(modn)

(i) a=b(modn)= —a= —b (modn)

(i) a = b (mod n) = ac = bc (mod n)

(iv) a = b (mod n)and ¢ = d (mod n) = ac = bd (mod n)

(v) a=b(modn)= a”"=b"(modn) forallm € Z*

(vi) ac = bc (mod n) and (¢, n) = 1 = a = b (mod n)

Proof:
(i) a=, bandc= d= ndivides|a — b| and |c — d
=nx =a— bandny = ¢ — dforsome x, y € Z
=nxty)=(@t+c)—b+td,x+yeZ
= ndivides |[(a@ + ¢) — (b + d)|
:>(a+c)En(b+d)
(i1) and (iii) can be proved similarly.
(iv) a= bandc= d= ac= bcandbc = bd (by (iii))
= ac =, bd (since = is transitive)
(v) is a simple consequence of (iv) and the principle of induction.
(vi) ac =, bcand(c,n) = 1= ndivides lac — bc| = cla — b
= n divides [a — b (since (¢, n) = 1)
=a=b.
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Corollary2.2.1. Letl <n€ Zanda,b,a,,a,,...,a,b,b,, ...,b € Z.Then,
the following holds:

(i) a,=b (modn)foralll =i=r= iai = ibl.(mod n) and lzllal. =
K i=1 i=1 i=
_l;[lbi(mod n).

(i) Iff(x) is a polynomial with integer coefficients and

a = b (mod n), then f(a) = f(b) (mod n).

Proof: To prove (i), use Theorem 2.2.3 (i) and apply induction on r. (ii) is a
consequence of (i), (iii) and (v) of Theorem 2.2.3.

Observe that, when x = y (mod 8), either of x and y may be replaced by
the other in any polynomial congruence modulo #n (by Corollary 2.2.1 (ii))
and this idea can be used in solving linear congruences ax = b (mod n)
when a and n are relatively prime. Before proving this, let us have the
following.

Theorem 2.2.4. Let 1 < n € Z and a € Z such that (Ja|, n) = 1. Then, there
exists unique » € Z* such that | = r <n, (r,n) = 1 and ar = 1 (mod n).

Proof: Since (Ja|, n) = 1, there exists v and v € Z such that uja| + vn = 1 (by
Theorem 2.1.8) and hence

sa+vn=1 *)

for some s and v € Z. We use the division algorithm to get » and ¢ € Z
such that

s=ng+r and 0=r<n.

If » = 0, then »n divides sa + vn = 1, which is a contradiction to the
hypothesis that n > 1. Therefore, we have 1 = r < n. Also, by substituting
s = ng + rin (*), we get that

(ng + rya+vn=1
or ra+(v+gqgan=1 (**)

which implies that ra — 1 is a multiple on n. Thus, ra = 1 (mod n) and 1 = r
< n. Also, from equation (**), we get that (, n) = 1. If 7’ is any other integer
such that 1 =7 <nandr'a =1 (mod n), then (r — r') a = 0 (mod n), so that
|r — r'||a| is a multiple of n. Since (|a|, n) = 1, it follows that n divides |[r — 7'|.
Since 1 =r, 7" <n,wegetthatr —r' =0orr =r'.
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Theorem 2.2.5. Letn € Z" and a and b € Z such that (||, n) = 1. Then, the
linear congruence equation

ax = b (mod n)

has a unique solution rin {0, 1, 2, ..., » — 1} and the set of all integer solu-
tions of this is precisely equal to the congruence class » + nZ.

Proof: By Theorem 2.2.4, there exists unique s such that 1 =< s <n, (s,n) =1
and as = 1 (mod n). Choose the unique r such that 0 = r <nand sb € r + nZ
(or, equivalently, sb = r (mod n). Then,

ar = asb = b (mod n).

Therefore, r is a solution of ax = b (mod n) in {0, 1, ..., n — 1}. We prove that
the congruence class = | (r) = r + nZ is equal to the set of integer solutions
of ax = b (mod n). For any x € Z,

ax = b (mod n) < sax = sb (mod n)
< x = r(mod n)
Sxer+nZ

The uniqueness of  is clear.

Example 2.2.1. Let us find all integer solutions of 55x = 65 (mod 80). First
observe that, if m is a common divisor of a, b and #n, then ax = b (mod ») if
and only if £x =2(mod2). Since 5 is a common divisor of 55, 65 and 80,
55x = 65 (mod 80) if and only if 11x = 13 (mod 16). Note that (16, 11) = 1.
A quick check reveals that 3-11 = 1 (mod 16). Therefore, the integer solutions
of 11x = 13 (mod 16) are all y = 3-13 (mod 16) or, equivalently, all y = 7
(mod 16) (since 39 = 7 (mod 16)). Thus, integer solutions of 55x = 65 (mod 80)
are members of 7 + 16Z and those in {0, 1, 2, ..., 79} are precisely 7, 23,
39,55, 71.

The method that is followed in Example 2.2.1 above is formalized in the
following.

Theorem 2.2.6. Let 1 <n € Z* and a and b € Z. Then, ax = b (mod n) has
an integer solution if and only if the g.c.d. (a, n) divides b.

Proof: Letd = (a,n). Suppose that ax = b (mod n) has an integer solution. Let s
be an integer solution of ax = b (mod n). Then, as = b (mod n) and hence nr =
as — b for some r € Z. Now, b = as — nr, d divides both a and » and hence
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ddivides b. Conversely suppose that d divides b. Puta’ = a/d, b’ = b/dandn’' =
n/d. Then, (a', n") = 1 and hence, by Theorem 2.2.5, a’x = b’ (mod n") has an
integer solution, say x,. Then, n" divides |a’x, — b'| and hence n'q = a'x, — b’
for some ¢ € Z. Now

dn'q = da'x, — db’

and hence ng = ax, — b, which implies that ax, = b (mod n). Thus, ax = b
(mod n) has an integer solution.

We close this section by developing tests for the divisibility of integers by
various primes. These tests are easy for small primes, but these are not practi-
cal for large primes. The following is easy, since any integer is divisible by 2
if and only if the last digit in it is one of 0, 2, 4, 6, and 8.

Theorem 2.2.7. Let a € Z*, then a is even if and only if @ = r (mod 10) for
some r € {0, 2,4, 6, 8}. Also a is divisible by 5 if and only if ¢ = 0 (mod 10)
or a =5 (mod 10) (that is, the last digit in @ is 0 or 5).

r

Theorem2.2.8. Leta€ Z anda=a a, _ ...aa,= > a, 10, where a’sare
integers such that 0 = @, = 9. Then, =0

a= zr:ai (mod 3),a= Zy:al. (mod 9)
=0 =0
anda=(a,+a,+a,+ )= (a,+a,+a,+ ) (mod11).
Proof: Consider the polynomial given by
fy=a,+ax+ax*+ - +ax.

Then, f(10) = E a,10" = a. Since 10 = 1 (mod 3), it follows from Corollary
2.2.1 (i) thatf(lO) f(1) (mod 3). Then, a = 2 a, (mod 3). Also, since

10 =1 (mod9), we getthata = f(10) =f(1) = %} a, (mod 9). Similarly, since

10= —1(mod 11), we get thata = f(10) = f(—=1) = (a, + a, + --*) — (a, +
+ ---) (mod 11).

Corollary 2.2.2. Leta € Z* and a = %ailoi with 0 = a, = 9. Then,
(i) 3 divides a if and only if 3 divides é a,

(i) 9 divides a if and only if 9 divides E a,,and
(iii) 11 divides a if and only if 11 divides (a ta,+-)—(a +a + ).
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Theorem 2.2.9. Let p > 5 be a prime and a € Z" such that a = 10k + a,
where k and q, are nonnegative integers and 0 =< a; = 9. Then, there exists
unique m, € 7" satistying the following:
(i) 1=m<p
(i1) lOmp = 1 (mod p)
(iii) Foranys = m, (mod p), p divides a < p divides k + sa, (in particular,
p divides a < p divides k + ma,).

Proof: Notice that, when a is represented in decimal system a = 2 a, 10’ or
a=aa _ ..aa with0=a =09, thena = 10k + qa, wherek—a a. . ..

= é a, 10", Since p is prime and p > 5, (p, 10) = 1. By Theorem 2.2.4,
there ex1sts unique m, € Z* such that | = m, < p, (m ,p) = land 10m, =1
(mod p). By Theorem 2.2. 3,

am = 10km +am =k + ajm (since 10m = 1).
P P P P P P

Therefore, p divides am, if and only if p divides k + agm,.

Since (p, m) =1, it follows that
p divides a < p divides am,
< p divides k+ma,
& p divides k + sa for any s = m, (mod p).
The above theorem can be better understood by the following examples,
in which we test certain positive integers for their divisibility by a given
prime p > 5.

Example 2.2.2

1. Let us test the divisibility of 62354 by 7. Here, a = 62354 = 10k + a,,
where k = 6235 and a, = 4 since 10.5 = 1 (mod 7), m, = 5.
7 divides 62354 < 7 divides k + m.a,
& 7 divides 6235 + 5.4 (= 6255)
< 7 divides 625 + 5.5 (= 650)
< 7 divides 65 + 5.0 (= 65)

Since 7 does not divide 65, it follows that 7 does not divide 62354.

2. Consider a = 5876438 and test its divisibility by 7 we have 10.5 = 1
(mod 7) and hence m, = 5.

7 divides a < 7 divides 587643 + 5.8 (= 587683)
& 7 divides 58768 + 5.3 (= 58783)
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< 7 divides 5878 + 5.3 (= 5893)
& 7 divides 589 + 5.3 (= 604)
< 7 divides 60 + 5.4 (=80)

< 7 divides 8 + 5.0 (=8)

Since 7 does not divide 8, if follows that 7 does not divide 5876438.

Example 2.2.3

1.

Test 7892654 for its divisibility by 11. Since 10.10 = 1 (mod 11), we
have m , = 10. Also, since 10 = — 1 (mod 11), we can take s = —1 in
Theorem 2.2.9 (iii).Therefore,

11 divides 7892654 <> 11 divides 789265 + (—1) 4 (= 789261)
< 11 divides 78926 + (—1)1 (= 78925)
< 11 divides 7892 +(—1)5 (= 7887)
< 11 divides 788 + (—1)7 (= 781)
< 11 divides 78 + (— D) 1(= 77),
which is true.

Thus, 11 divides 7892654. In this context, note that Corollary 2.2.2 (iii)
is a better test for the divisibility by 11.

. Test 7892654 for the divisibility by 13.

Since 10.4 = 1 (mod 13), we have m,, = 4. Therefore,

13 divides 7892654 < 13 divides 789265 + 4.4 (= 789273)
< 13 divides 78927 + 4.3 (= 78939)
& 13 divides 7893 + 4.9 (= 7929)
< 13 divides 792 + 4.9 (= 828)
< 13 divides 82 + 4.8 (= 114)
& 13 divides 11 + 4.4 (= 27)

Since 13 does not divide 27, it follows that the given number 7892654 is
not divisible by 13.

. Test whether 7892654 is divisible by 23.

Since 10.7 = 1 (mod 23), m,, = 7.

We have 23 divides 7892654 <> 23 divides 789265 + 7.4 (= 789293)
& 23 divides 78929 + 7.3 (= 78950)
& 23 divides 7895 + 7.0 (= 7895)
& 23 divides 789 + 7.5 (= 824)
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& 23 divides 82 + 7.4 (= 110)
& 23 divides 11 + 7.0 (= 11),
which is not true.

Thus, 23 does not divide 7892654.

EXERCISE 2(B)

1. State whether the following are true or false.
(i) 10"=0 (mod2") forany n € Z*
(i) 6789453 = 5987654 (mod 3)
(iii) 237092 = 236092 (mod 100)
(iv) 13*=31%(mod 23)
(v) 786 — 687 (mod 11)

2. Find the set of integer solutions for each of the following.
(1) 15x =25 (mod 35)
(i) 21x =35 (mod 49)
(ili) 25x = 16 (mod 20)
(iv) 27x =21 (mod 24)
(v) 7x=16 (mod 17)
(vi)  9x = 14 (mod 15)
3. Prove that, for any prime p, (p — 1)! + 1 = 0 (mod p). (This is known as Wilson's
theorem.)
4. Test the following divisibilities.
(1) 876453 by 3
(i) 746538 by 9
(ili) 587642 by 7
(iv) 7896534 by 11
(v) 87965325 by 17
(vi) 97865432 by 19
(vil) 67892345 by 23
(viii) 79862345 by 29

5. For any prime p and for integer a, prove that @ = a (mod p). (This is known as
Fermat's theorem.)

6. Letn € Z*. Aset{a a,, ...,a,} of distinct integers is called a transversal for
congruence modnifa, € i + nZ foreach0 =i=n — 1.
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Prove the following for any transversal {a, a,, ..., a,_,} for congruence
modulo 7.

(i) a# a, (mod n) for any i # j
(i) a,=i(modn)forany0=i=n—1

(i) Foranya € Z,a = a,(mod n) forsome 0 =i=n — 1.

7. Find whether the following are transversals.
(i) {0, 3,2, 1} for congruence mod 5.
(1) {—3,-2,—1,0,1,2,3} for congruence mod 7.
(iii)  {0,2,2% 23 ..., 2"} for congruence mod 11.
(iv) {2,4,6, ...,2n} for congruence mod n, if n is odd.
(v) {a,2a,3a, ..., na} for congruence mod n if (a, n) = 1
(vi) {5, 10, 15,20, ..., 105} for congruence mod 21.

8. For any n € Z", prove that any n consecutive integers form a transversal for
congruence mod 7.

9. Characterise all n in each of the following cases that satisfy the given
condition
i 1+2+3+ -+ (m—1)=0(modn)
(i) 1P+22+32+ -+ (n—1?=0(mod n)
(i) 1PP+2°+3+ -+ (m— 1) = (modn)

10. Forany n € Z", prove that 3 divides » implies 3 divides m for m any rearrange-
ment of the digits in 7.

11. Forany n € Z*, prove that 10° =1 (mod3""?).

12. Find all the digits x (0 = x = 9) for which 12x, 527, 846, 531 is divisible by 3;
9;or1l.

13. Ifa,a,...,a €{0,1,2,...,9} anda # 0, prove that 11 divides aa,...aaa, ...
aa,.
14. Prove the following for any relatively prime positive integers m and n:
(i) Foranyaandb € Z*, a = b (mod mn) < a = b (mod m)
and a = b (mod n)
(i) If ¢ and d are both integer solutions of x = @ (mod n) and of x = b (mod
m), then ¢ = d (mod mn).
15. Foranyr € Z*,let M, =1 + 100 + 100>+ -+ + 100",
(i) Prove that M = 101010...01 having exactly » ones.
(ii)  Prove that each of 7, 9 and 11 divides M, for infinitely many r’s.
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2.3 RATIONAL, REAL AND COMPLEX NUMBERS

Although we assume familiarity with the rational, real, and complex num-
bers, we prefer to give the structure of rational numbers for the simple reason
that we imitate this construction later in this book in a more general set up.
We do not attempt the construction of real numbers, since it is outside the
scope of this book.

Definition 2.3.1. Let Z be the set of all integers and Z* = Z — {0}. We define
a binary relation R on the set Z X Z* as follows: For any (a, b) and (c, d) in
7. X 7%,

(a, b) R (¢, d) & ad = bc (that is, the products ad and bc are equal).
The following is a straight forward verification.

Theorem 2.3.1. R is an equivalence relation on Z X Z*.

Definition 2.3.2. For any (a, b) € Z X Z*, the equivalence class of (a, b)

corresponding to R will be denoted by %. That is,

%=R(a,b)= {(c,d) EZ X Z*: (a, b) R (c, d)}

i.e.,%z {(c,d) EZ X Z* : ad = bc}.

For example, % represents the set of all pairs (c, d) of integers, with d # 0,
such that 2d = 3c. Note that, for any (a, b) and (¢, d) € Z X Z*,

& (a,b) R (c,d) < ad = bc.

SR
SHIE

Definition 2.3.3. For any (a, b) € Z X Z*, the R-equivalence class % is called

a rational number and the set of all rational numbers is denoted by Q. That is,
QI{%:a and beZ andb¢0}

Note that Q is precisely the quotient of Z X Z* by R. In the following, we
introduce the arithmetical operations addition, subtraction, multiplication and
division. First of all, observe that the following holds for any a, b, ¢, d € Z
with b # 0 and d # 0.
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Definition 2.3.4. For any r =% and s= % in Q, we define the following.

r+s_£+£_m
b d

rs—[zl[ ]=a—d

——élfa?:o
r o a

d

|I

|
—_—
@‘IQ
—_——
@|Q

It can be easily verified that » + s, — r, 7 - s and £ does not depend on the
integers a, b, ¢ and d, but they depend on the classes 2 and %; that is,

b
a a c ad+bc dd+bc —a —d
—=— and —=—= = , — = ——
b b d d bd b'd b b’
GC_aC nd 9T e 40 and ¢ #0
bd  bd be be V€ e e 7o

That is, the operations +, —, * and / are well-defined. Also, it can be easily
seen that the following arithmetical laws are satisfied in Q.

l.r+s=s+r

2. r+(s+t)=(r+s)-|(—)t

3. v+ 0=r, where 0 = T
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r+(—r)=0(=9)

4,
5.r-(@-H)=(r-s)-t
6. r-(s+tty=r-s+r-t
7. r-s=s-r | b
8. r-1 =r,wherel=1(= ZforaninbEZ)
9. r-(Ly=1
Definition 2.3.5. Any nonempty set together with the operations +, —, - and /

satisfying the properties (1) to (9) above is called a field.
We will be discussing about fields in great detail later in Part I1I and Part
IV of this book. We just want to highlight here that the set Q of rational num-

. . . . a
bers is a field. For any integer a, consider the rational number n and, we can

aj . e . .
see that the map a — n is an injection of the set Z of integers into the set

Q of rational numbers. If we identify a with a/1, then we can see that Z is a
subset of Q and, for any a and b € 7Z,

5 a .
1 1 11 1

g+2:a+b_£:—_a a b _ab
1 1 1

These demonstrate that the usual arithmetical operations addition, subtrac-
tion and multiplication on the integers are simply the restrictions of those on
rational numbers to Z. Thus, for all practical purposes, we can treat integers
as rational numbers by means of the identification of a with %

As we have constructed rational numbers from integers, we can construct
real numbers from rational numbers. However, the procedure is not as simple
as the construction of rational numbers. We need some more techniques from
analysis to construct real numbers from rational number. However, for the
benefit of an enthusiastic reader, a brief sketch of the construction of real
numbers is given in the exercises. The proofs are not very difficult, but require
care, attention and some elementary knowledge about sequences, Cauchy
sequences, convergent sequences and their limits. The real number system is
denoted by R and it is known that R is a field.

Next we construct the system of complex numbers. Consider the Cartesian
product R X R, where R is the set of real numbers. We define addition, sub-
traction, multiplication and division to make R X R a field. For any z = (a, b)
and w = (¢, d) in R X R, let us define

z+w=(a,b)+ (c,d)y=(a+c,b+d
—z=—(a,b) = (—a, —b)
(a,b) - (c,d) = (ac — bd, ad + bc)

zZ-w
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1 =
(a,b)
iz(a,b)z[ac—i-bd bc—ad
w (c,d) \F+d* F+d?

a -b
a*+b 7 a* +b?

1
z

] if a#0orb#0

and ] if ¢#0ord+#0.

Theorem 2.3.2. R X R, together with the operations defined above, is a field.
For any a € R, consider (a, 0) in R X R. Then, a — (a, 0) is an injection
of R into R X R and satisfies the following for any ¢ and b € R.

(a +b,0)=(a,0)+ (b,0)
(—a,0) = —(a, 0)
(ac, 0) = (a, 0)(c, 0)

[1,0]= ! if a#0
a (a, 0)

5,0]:M if a0
a (a, 0)

These show that we can identify R with the subset R X {0} of R X R, by
means of the injection a — (a, 0) and that the usual arithmetical operations on
R coincide with those on R X R restricted to R (= R X {0}).

Now, let us identify another distinguished element, namely (0, 1), in R X R.
First observe that

0, D0, 1)=(-1,0) = —1
since we are identifying (a, 0) with a,
Put (0, 1) = i.

Then, # = —1 and hence i is a root of the polynomial x> + 1 over R. Further,
any element z = (a, b) in R X R can be expressed as

z=(a,0) + (0, 1)(b,0) = a + ib
by identifying (a, 0) with a, (b, 0) with 5 and (0, 1) with i. Thus,
RXR={a+ib:aandb ER}

where i is the element (0, 1). a + ib is the usual familiar form of complex
numbers and let us agree to call any element of R X R as a complex number.
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R X R, together with the arithmetical operations defined above, is denoted
by C. Thus, we have

C={a+ib:aandb € R}
and the arithmetical operations on C take the following form.

(a+ib)+(ctidy=(a+c)+ilb+d
—(a +ib) = (—a) +i(—D)
(a +ib)(c + id) = (ac — bd) + i(ad + bc)

1 a_\y; —b
(a+ib) \a*+b’ a’+b’
(a+ib) _[ac+bd n bc—ad
(c+id) |\ +d? c+d’

Now, we have the following number systems.

7+ = The set of positive integers

N = The set of nonnegative integers
7, = The set of integers

@Q = The set of rational numbers

R = The set of real numbers

C = The set of complex numbers

These are interrelated by
Z'+CNCcZcQcRcC

in such a way that the usual arithmetic operations addition, subtraction and
multiplication on each of these are precisely restrictions of those on the next
system. Moreover, Q, R and C are fields while the others are not.

We close this section with an additional operation, namely the complex
conjugation, on C.

Definition 2.3.6. For any z = a + ib € C with ¢ and b € R, the complex
conjugate of z is defined as the complex number.

zZ=a—ib (=a+i(—b)).
Ifz=a + ib,and a and b € R, then a and b are called real part and imaginary

part of z, respectively.
The following are easy verifications.
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Theorem 2.3.3. The following holds for any complex numbers z and z":

z+z

= The real part of z.

5= The imaginary part of z
z=7 < z € R & The real part of z=0.

S T i B

Theorem 2.3.4, Foranyz =a + ib(aand b € R) € C,
zz=a"+b%,

The nonnegative square root of zZis called the absolute value of z and is
denoted by |z|; That is,

|z =zZ = a*+ b~

The map z — |z] satisfies the following properties:

L. z+Z =z + |Z|

2. |zz'| = lellZ'|

3. Iz7l=0&2z=0

4. |rz| = |r||z| for any real number .
r ifr=0

5. For any real number r, |7 |= )
—r ifr<0

EXERCISE 2(C)

A sequence {a } of rational numbers is said to be a Cauchy sequence if, for each posi-
tive rational number €, there exists n, € Z* such that

la —a|<€& forallnandm =n,.
n m 0

A sequence {a,} in Q is said to be convergent if there exists 7 € R such that, for
each rational € > 0, there exists n, &€ Z" such that [¢, — | < € for all n = n and in
this case we write a, — r and r = limit of @ .

Prove the following:

1. Q is countable and R and C are uncountable.

2. Forany aand b in Q such thata < b, then the set {r € Q : a < r < b} is bijective
with Q.
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Ifa, b, cand d € Q with a < b and ¢ < d, then (a, b)Q is bijective with (c, d)@,
where
(a,b)Q: {reQ:a<r<b}.
For any real numbers a, b, ¢ and d with a < b and ¢ < d,

(a, b) = (¢, d) =R and (a, b)Q:(C, d)Q:Q
where (a, ) = {s ER:a <s < b}.

Between any two real numbers, there is a rational number.

{%} is a Cauchy sequence.

. Every convergent sequence in Q is a Cauchy sequence.

Let CS(Q) be the set of all Cauchy sequences in Q.
For any {a,} and {5 } in CS(Q), define

{a,} ~{b} ifandonlyifija —b|— 0.

Then, ~ is an equivalence relation on CS(Q).

. Foreach {a } € CS(Q), there exists » € R such thata, — 7.

For each r € R, there exists {a,} € CS(Q) such that a — r and, if {b} is
another Cauchy sequence in Q such that 5, — r, then {a } ~ {b }.

The quotient CS(Q)/~ is bijective with R.

For any a € Q, the sequence {a,}, such that a, = a for all n, is called a con-
stant sequence and is denoted by {a}. Then, a > {a} is an injection of Q into

CS(Q)/~.
If {a } and {b } € CS(Q), then {a, + b } and {a b} € Q.
Forany {a }, {b },{a} and {5} € CS(Q),
{a,} ~{ayand (b}~ {b}={a,+b,} ~ {a,+b} and {a,b} ~ {a,b,}.
Forany {a } and {b } € CS(Q), define
{a,}+{b,}={a,+b,}
~{a}={"a}

{a,}-{b,}={a,b,},

where {gn} is the ~-equivalence class of {@ } in CS(Q). Then, the operations +, — and -
are well-defined on CS(Q)/~.
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2.4 ORDERING

The well-ordering property of positive integers is with respect to the natural or
usual ordering. This natural ordering is there on the rational number system and
the real number system also. However, there is no such ordering on the complex
number system. In this section, we introduce the abstract concept of a partial
ordering on a given set and discuss its elementary properties in general and those
of the natural ordering on R in particular. Let us begin with the following.

Definition 2.4.1. Let X be a nonempty set. A binary relation 6 on X is said
to be a partial order or a partial ordering if 0 is reflexive, transitive and anti-
symmetric (that is, @ 0 b and b 0 a only when a = b). A pair (X, =) is called
a partially ordered set or, simply, a poset if X is a nonempty set and =< is a
partial order on X.

A partial order is usually denoted by the symbol = (which is read as ‘less
than or equal to’). It can be easily verified that, if = is partial order on a set
X, then the inverse of =< is also a partial order on X and is denoted =. That is,
forany a and b € X,

a=bsb=a.
If a = b and a # b, then we write a < b.

Example 2.4.1

1. (2%, =),(Z, =), (Q, =) and (R, =) are all partially ordered sets, where
= is the natural ordering.

2. For any nonempty set X, the equality relation is a partial order on X. That
is, for any a and b € X, if we define a = b if and only if @ = b, then = is
a partial order on X. Note that this is the only binary relation on X which
is both an equivalence relation and a partial order on X.

3. Let P(X) be the set of all subsets of a given set X. For any 4 and B €
P(X), define

A = Bifand only if 4 is a subset of B.

Then, = is a partial order on P(X).

4. Let X be the set of all real valued functions defined on a set 4 (that is, X
= R4). For any fand g € X, define

f=gifand only if f(a) = f(b) in R for all a € 4.

Then, = is a partial order on X.
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5. Let(X,,=),(X,,=),...,(X,=)be posets and X = X, X X, X ... XX
Foranya = (a,a,,...,a)and b = (b, b b ), define

a=bifandonlyifa, =b, foralll=i=n.

1Py ees

Then, = is a partial order on X and is called the coordinate-wise ordering.

6. In Example (5) above, define ¢ = b if and only if either @ = b or there
i8 i), 1= i, = n,such thata, = b forall i <i and a, <b, .Then, =isa
partlal order onX =X X X X e X X and is called the lexicographic
ordering or dictionary ordering.

Definition 2.4.2. A partial order = on a set X is called a total order if, for
any @ and b € X, either a = b or b = a and, in this case, (X, =) is called a
totally ordered set.

R together with the natural ordering is totally ordered set. In Examples
(2) and (3), the partial orders are not total orders, except when X has at most
one element.

Definition 2.4.3. Let (X, =) be a poset, 4 C X and x € X. Then, x is called
a lower bound (upper bound) of A in X if x = a (respectively a = x) for all
a € A.If A has a lower bound (upper bound) in X, then 4 is said to be bounded
below (respectively, bounded above). A is said to be bounded if it is both
bounded below and bounded above. A lower bound x of 4 is called great-
est lower bound if y = x for all lower bounds y of 4 in X and it is denoted
by glb A or, simply, glb A4 when there is no ambiguity about X. Similarly, an
upper bound x of 4 is called least upper bound and denoted by lub A4 or lub 4
if x = y for all upper bounds y of 4 in X.

Example 2.4.2

1. In(R, =), Z" is bounded below and not bounded above, while the set Z~
of negative integers is bounded above and not bounded below.

2. 1 is the lub of the interval (0, 1) and 0 is the glb of (0, 1) in (R, =).

Definition 2.4.4. Let (X, =) be aposet, 4 C Xand a, € 4. ais said to be the
least (greatest) element of A if a; = a is (respectively a = a) for all a € A.
a, is said to be a maximal element of A if there is no element a in 4 with a,
< a. Similarly, a is said to be a minimal element of A if there is no element
ain 4 witha <a,.

Clearly any subset of a poset can have at most one least element and at most
one greatest element. Also, the least element (greatest element), if it exists, is
minimal (respectively, maximal). However, a subset 4 of a poset may possess
more than one minimal (maximal) elements and any minimal (maximal) ele-
ment is not necessarily the least (respectively, greatest) element.
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Example 2.4.3

1.

2.

The interval (0, 1) in (R, =) has neither a minimal element nor a maxi-
mal element.

Let X be a set with more than one element and consider the poset
(P(X), ©) of all subsets of X. Let Y be the set of all nonempty subsets
of X. Then, Y has minimal elements; in fact, for any x € X, {x} is a
minimal element in Y and is not the least element, since {x} Z {y} for
any y # x in X. Also, let Z be the set of all proper subsets of X. Then,
Z has maximal elements; in fact, for any x € X, X — {x} is a maximal
element in Z and is not greatest in Z.

Definition 2.4.5. Let (X, =) be a poset. Any nonempty subset A in X, such

that,

forany a and b € 4, either a = b or b = a, is called a chain in X.

In other words, any totally ordered subset of a poset is called a chain.

Example 2.4.4

1.

2.

Z is a chain in (R, =). In fact, R itself is a chain in (R, =) and hence any
nonempty subset of R is a chain.

IfX = {a, b, ¢, d}, then
A =1{D,{a}, {a, b}, {a,b,c}, X}
is a chain in the poset (P(X), C).

. Consider the set Z* of positive integers and, for any ¢ and » € Z*, define

% if a divides b (that is, ac = b for some ¢ € Z™). Then, | is a partial
orderon Z*. Forany a € Z*,

{a":nE€Z"}

is a chain in (Z*, 1).

The following is an important axioms of set theory, though its popular
name is Zorn’s lemma. It is a lemma used to prove some other equivalent
axioms of set theory.

Zorn’s lemma 2.4.1. Let (X, =) be a poset in which each chain has an upper
bound in X. Then, (X, =) has a maximal element.

The following is an equivalent form of Zorn’s lemma and, in this form only
the Zorn’s lemma is used several times in this book.

Corollary 2.4.1 (An equivalent form of Zorn's lemma). Let & be a class of
subsets of a given set X satisfying the following.
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If € is a subclass of & such that, for any 4 and B € ¢, either 4 C B or
B C A, then ALEJ%% A€ Y. (In this case, ¥ is said to be closed under unions of

chains.) Then, ¥ has a maximal member, in the sense that, there is a member
M in & such that M is not properly contained in any other member of &.

Next, we take up a brief discussion of the well-ordering principle which
is also an axiom equivalent to the Zorn’s lemma. First, let us have the
following.

Definition 2.4.6. Let X be a set. A partial order = on X is called a well-order
if every nonempty subset of X has a least element with respect to =.

It can be easily seen that any well-order on a set is a total order; for, the set
{a, b} should possess a least element which must be either a or 5. However,
there are total orders which are not well-orders. Consider the examples given
below.

Example 2.4.5

1. The natural order on Z* is a well-order (by Theorem 2.1.1).

2. The natural order on Q is a total order, but not a well-order; for, the
interval (0, 1) N Q has no least member, since for any 0 < a < 1, there
is a rational number 7 such that 0 < r < a.

3. The division order | on Z* (that a|b if @ divides b) is not a total order (for
example, if p and ¢ are distinct primes, then p 4+ g and g 4 p) and hence
not a well-order.

The Principle of Well-ordering 2.4.1. Any nonempty set can be well-
ordered; that is, if X is a given nonempty set, then there is a well-order on X.

We close this section with a mention of another important axiom of set
theory, namely the axiom of choice which is known to be equivalent to each
of the Zorn’s lemma and the principle of well-ordering. First, we have the
following.

Definition 2.4.7. Let {4}, be an indexed nonempty class of nonempty sets
(that is, / is a nonempty set and, each 4, i € I, is a nonempty set). Then, any
function ¢ : I — Y, 4; such that c(i) € 4, for all i € Iis called a choice func-
tion.

This amounts to saying that a choice function c is simply choosing one
element from each 4, i € I. If the index set / is a finite set, say [ = {1, 2,
..., n}, then the choice functions can be easily seen to be just elements of
the Cartesian product 4, X 4, X --- X 4 and, in this case, the existence of
choice function is precisely equivalent to say that the Cartesian product 4, X
A, X -+ X A4 is nonempty. This idea can be extended to define the Cartesian
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product of infinite class of sets. That is, if {4, },_, is an infinite class of non-
empty sets, then their Cartesian product can be defined as

HAl:{c:]Hu[Ai :c(i)€ A foralliel}.
ic

iel

The axiom of choice, given below, say that the Cartesian product of any non-
empty class of nonempty sets is a nonempty set.

The Axiom of Choice 2.4.1. Given any nonempty class {4} _, of nonempty
sets, there is a choice function ¢ : I — .%JI A, (thatis, c is a function such that
c(i) € 4, forall i € I).

EXERCISE 2(D)

1. List all the partial orders on a 2-element set, a 3-element set and a 4-element
set.

2. Prove( thla)lt the number of partial orders on an n-element set is less than or equal
n(n—
to 2 2

3. Prove that the lexicographic ordering on X| X X, X --- X X is a total ordering if
and only if the partial orders on each X is a total order.

4. Prove that any well-order on any set is a total order.
5. Give an example of total order which is not a well-order.

6. Let (X, =), ..., (X, =) be posets and X = X| X X, X --- X X . Prove that the
lexicographic ordering on X is a well-order if and only if the partial order < on
each of the X’s is a well-order.

2.5 MATRICES

Though matrices are originated from the study of solutions of certain systems
of linear equations and are later found to be in one-to-one correspondence with
linear transformations of a finite dimensional linear space into another finite
dimensional linear space, but these have acquired an independent status and
form one of the most important areas of study in modern abstract algebra. In
particular, matrices are a rich source of examples and counter examples of sev-
eral concepts in noncommutative algebraic structures which we come across
throughout this book. Actually, we study later in detail about matrices over an
abstract ring. However, in this section, we briefly discuss matrices over the real
number system or complex number system. Let us begin with the following.
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Definition 2.5.1. For any positive integer n, let / denote the set of integers
from 1 to n; that is,

I ={1,2,..., n}.
For any m and n € Z*, a mapping
A:I X1 —R(orC)

is called an m X n matrix over R or C, as the case may be or, simply, an m
X n matrix, when there is no ambiguity about R or C. An m X n matrix A4 is
usually represented by the values A(i, ), which are real or complex numbers,
foreach 1 =i =mand 1 = = n and we express the matrix 4 by writing

4= (ay), where a; = A( j).
Also, we express an m X n matrix 4 by an array of mn real or complex

numbers @, | =i =mand 1 = j = n, written in m rows and n columns
with @, in the i™ row and j™ column as exhibited below.

4, d 4 a,
a21 a22 a23 aZn
A =
ai3 ain
aml amZ am3 T amn

Here, a_ is called the i/ entry in the matrix 4 and m X n is called the size
of A. Actually, the size of 4 is not an integer, but it is a pair (m, n) (which is
usually written as m X n) of integers. An m X n matrix 4 = (al./.) and an r X
s matrix B = (bl.j) are said to be equal if m = r,n = sand a, = b forall 1 =
i=mand 1 =j = n; that is, 4 and B have equal number of rows and equal
number of columns and have the same i/ entry for each i and j. The n-tuple
(ail, s s ai,,) is called the i row and the m-tuple (aij_, azj, ...,a,)is called
the /™ column of the m X n matrix 4 = (a).A1Xn matrix is called a row
matrix and an m X 1 matrix is called a column matrix.

Definition 2.5.2. An n X n matrix is called a square matrix of order n and
the n-tuple (a,, a,, ... a,) is called the diagonal of a square matrix 4 = (a,).
A is called a diagonal matrix if a;,=0 for any i # j; that is, except the entries
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on the diagonal, all other entries are 0. A diagonal matrix 4 = (a,) is called a
scalar matrixifa, = a,, - = a, '

n

Definition 2.5.3. A square matrix 4 = (a,) is called an upper triangular
matrix if a; = 0 for all i > j and A is called a lower triangular matrix if a, =
0 foralli <j.

The set of all m X n matrices over the real number system (complex num-
ber system) is denoted by M _ (R) (M, (C), respectively). The set of all

mXn

square matrices of order 7 is denoted by M (R) or M (C) as the case may be.

Example 2.5.1
2 31 -1
1. {1 0 2 3 |isa3 X 4matrix over R (over C also, since R C C).
01 1 1
1 2 -1
2. 12 3 0| is asquare matrix of order 3 over C.
2 i =i
1 2 0
3. {0 2 3| isan upper triangular matrix of order 3.
0 0 —1
0 0 0
1 0 0], . .
4. is a lower triangular matrix of order 4.
-1 2 20
5 =2 0 4
2 0 0
5. 10 1 0] isa diagonal matrix.
0 0 -1
2 00
6. [0 2 0] is a scalar matrix.
0 0 2

Note that, for any positive integer n, if we define /: R — M (R) by fla) =
(al./.), where

aifi=j
a, =4 . ,
Poloifi=
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for any a € R, then f'is an injection of R into M (IR) and therefore, we can
identify @ in R with the scalar matrix f{a) in M (R) and hence R can be
identified with the subset of M (R) consisting of all scalar matrices of order
n. Similarly C can be identified with a subset of M (C). In the following, we
extend the arithmetical operations addition, subtraction and multiplication
in the real and complex number systems to M (R) or M (C). We do this in a
more general set up.

Definition 2.5.4. Let m and n be any positive integers and 4 = (a,) and B =
(b,) be any m X n matrices over R or C. Then, we define
A+ B=(c), where c,=a,+ b’_/_ forall ]l =i=mand 1 =; = nand define

-4 = (—aij)

A + B will also be expressedas 4 + B = (a, + b,-,-)~

Example 2.5.2
2 3 1 -4 31 2 5
LetdA=|—-1 2 0 -3| and B=|2 3 -1 4 €M ,R).
4 5 =2 2 -1 =2 0 1
2+3 3+1 1+2 —4+5
Then, A+ B =| —1+4+2 2+3  0+(—1) —3+4
4+(=1) 5+(=2) —-2+0 2+I1
54 3 1
=1 5 -1 1
33 -23
-2 -3 -1 4
and —-A4=|{1 -2 0 3
-4 -5 2 =2

Definition 2.5.5. Let m, n and r be any positive integers and 4 = (g, €

M  (R)and B = (b,) € M (R). Then, we define the product 45 as an
mXn ij nXr

m X r matrix given by

4-B=(c) wherec, = kz a,b,;
foralll =i=mand 1 = = r. That s,

cifza“bll_+ab +--4+ab

272 in " nrt
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Note that for the product 4B to be defined it is necessary that the number
of columns in 4 must be equal to the number of rows in B. Therefore, even
if AB is defined, B4 may not be defined. If we define the dot product of two
n-tuples, a = (a,, a,, ...,a)and b = (b, b,, ..., b ) by

a b= albl + a2b2 +oet anbn’
then the i/™ entry in the product 4B is precisely the dot product of /™ row in A
and j™ column in B. Also, note that the product of any two square matrices of
the same order is always defined.

3 2 -1
21 3 2 5 0
Example2.5.3. Let A=3 2 -1 0| €M, ,(R)and B=1 Lo
€M, R) 6 4 2 1
4 2 3
Then, 4 - B = (c,)s where
C,=2-3+1:2+3-1+2-4=19
C,=2-2+1-0+3(-1)+22=5
Co=2(-D)+114+30+23=5
C,=3"3+22+(-1yl1+0-4=12
C,=32+20+(-1) (-)+0-2=7
Co=3(-D+2-14+(-1):0+0-3=—1
C,=6:3+4:2+2-1+1-4=32
C,=6:2+4-0+2:(-)+1-2=12
andC,=6-(—1)+4-1+2-0+1-3=1
19 5 5
and hence 4B = |12 7 —1|. Similarly, we can compute B4 and see that
32 12 1

AB # BA. Here, note that AB is a 3 X 3 matrix and B4 is a 4 X 4 matrix.
Even if AB and BA are of same size, they may not be equal; for, consider the
matrices

0 2 1 1 0 2
A=|0 1 2| and B=|2 1 0f.
30 1 3 21
7 4 1 6 2 3

Then, AB=|8 5 2| and BA=|0 5 4| and therefore AB # BA.
6 2 7 3 8 8
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Definition 2.5.6

1. Forany m andn € Z*, the m X n matrix all of whose entries are zero is
called the zero matrix and is denoted by O, or, simply O, when there is
ambiguity about the size of the matrix.

X

2. For any n € 7", the square matrix (80.) is called the identity matrix of
order n, where 6, is defined by

s |1 ifi=J
Tl ifiEj

The identity matrix of order 7 is denoted by I or, simply /, when there is
no ambiguity about the order of the matrix.

Theorem 2.5.1. Letmand n € Z" and 4, B and C be m X n matrices over R
or C. Then, the following holds:

l.A+B=B+4
2. A+B)+C=4+B+0C)
3.44+40 =4

mXn

4. A+(-4)=0

Theorem 2.5.2. The following holds for any matrices 4, B and C, in the sense
that whenever one side of an equation is defined, then the other side is also
defined and both sides of that equation are equal.

1. ABC)=(4B)C
2. A(B+ C)=AB + AC
3. 4+ B)(C=A4C + BC
4. AI = A = IA, where [ is the identity matrix of appropriate order.
In addition to the operations addition and multiplication of matrices, we
have yet another operation of matrices, namely the scalar multiplications. The

real or complex numbers are called scalars and we multiply any matrix by any
scalar as defined below.

Definition 2.5.7. LetA4 = (a;) be anm X n matrix and a be a scalar; that is a
€ R or C. Then, the matrix a4 is defined as

ad = (aaij).

That is, a4 is obtained by multiplying each entry a, of 4 by a to get ij*
entry of a4.
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Theorem 2.5.3. The following holds for any matrices 4 and B and for any
scales @ and b.

1. a(4 + B) = aA + aB, whenever 4 and B are of same size.
2. (a+ b)4d=aAd + bA

3. a(AB) = (ad)B = A = (aB), whenever A4 - B is defined.

4. a(bA) = b(aAd) = (ab)A

Definition 2.5.8. Letn € Z*, 1 =i =nand 1 = = n. Then, the n X n
matrix whose i/ entry is 1 and all other entries are 0 is called a matrix unit
and is denoted by E,. Note that each E, is a square matrix of order n. In gen-
eral, the order of £, is not mentioned in the notation of the matrix unit £, and
the order is to be understood as per the context. However, we call E, as the n
X n matrix unit, when it is necessary to mention the order of El.j. Note that, for
any scalar a, aE is the square matrix whose i/ entry is a and all other entries
are 0 and hence we have the following.

Theorem 2.5.4

1. Any n X n matrix 4 can be expressed as

4= ZZ% E;

=1 j=1
2. EE =6  whered = 1or0accordingasj=rorj#r.

ijors Jris

We close this section by introducing another important operation on
matrices.

Definition 2.5.9. Forany m X n matrix 4 = (a,.j), the transpose of A is defined
as the n X m matrix obtained by interchanging the rows and columns of 4.
The transpose of 4 is denoted by A’; that is,

A = (aﬁ).
Example 2.5.4

1 2 3
1. If A= , then 4'=|2 -1
2 -1 0
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31 2 3 34

2. If A=|-1 0 2 —4,thenA’=1 0 _2,
4 -2 -3 0 202 73

3 -4 0

3. If 4 is a square matrix, then A’ is also a square matrix of order same
as of 4.

Theorem 2.5.5. The following holds for any m X n matrices 4 and B.

1. 4)Y=4

2. (ad) = ad'

3. A+B))=4"+ B
4. (mA)y = -4

Definition 2.5.10. A square matrix 4 of order # is said to be nonsingular or
invertible if there exists a square matrix B of order n such that

AB =1= BA.
A matrix is said to be singular if it is not nonsingular.

Theorem 2.5.6

1. If 4 is an m X n matrix and B is an n X r matrix, then (4B)' = B'A’
2. If 4 is a nonsingular square matrix, then there exists a unique square
matrix B such that
AB =1= BA

and this B is called the inverse of 4 and is denoted by 4.

3. If 4 and B are nonsingular square matrices of the same order, then 4B is
nonsingular and (4B)™! = B7'47L.

4. A square matrix 4 is nonsingular if and only if its transpose A’ is nonsingular
and, in this case (4") ~' = (47")".

EXERCISE 2(E)

1. Compute the following for the matrices

2 3 1 21 0 01 3
A=|-1 2 =3|, B=|0 2 —1| and C=(2 3 0
1 3 -2 1 0 -2 1 0 2
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(i) A+B
(i) A+B)+C
(i) B+C
(iv) A+(B+C)
(v) 4B
(vi) A’

(vii) B

(viii) B4’

(ix) BA
x) AB

2. For any two matrices 4 and B, prove that both AB and BA are defined if and only
if 4 and B’ are of the same size and that, in this case, both AB and BA are square
matrices.

3. Prove that a square matrix 4 of order n is a scalar matrix if and only if 4B = BA
for all square matrices B of order n.

4. Prove Theorem 2.5.2.
5. Prove Theorem 2.5.3.

6. For any scalar a, let S, be the n X n scalar matrix in which all the diagonal entries
are a and other entries are 0. Prove that S 4 = a4 = A4S, for all n X n matrices 4.

7. Prove Theorems 2.5.4 and 2.5.5.
8. Prove Theorem 2.5.6.

9. Prove the following for any integer n = 0.

. 1 1) (1 n
0 ]=]

01 0 1
| n(n—1)
1 o)
@i |0 1 1] =|0 1 n
0 1 00 1

where, for any square matrix 4, A" is defined inductively by A° = [ and A" =
A" 4 forany n > 0.

10. Prove that the sum and product of two upper triangular matrices are again upper
triangular matrices and that the same statement for lower triangular matrices is
also true.
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11. A matrix 4 is said to be symmetric if A = A', and A4 is called skew-symmetric if
A = —A'. Prove the following.

(i) Any symmetric or skew-symmetric matrix is a square matrix.

(ii)) If 4 and B are symmetric matrices, then so is 74 + sB for any scalars
rand s.

(iii)  For any matrix 4, 4 - A"and 4’ - 4 are both symmetric.

(iv)  For any symmetric matrices 4 and B, the product 4B is symmetric if and
only if AB = BA.

12. Prove that the diagonal entries of a skew-symmetric matrix are all zero.
13. For any square matrix 4, prove that 4 + A4’ is symmetric.

14. Prove that any square matrix can be expressed as the sum of a symmetric matrix
and a skew-symmetric matrix.

2.6 DETERMINANTS

In this section, we briefly discuss an important function known as determinant
function which maps square matrices into scalars. The term ‘determinant of 4’
is conventionally used to call the value of this function at a given square matrix 4.
Determinants have definite importance as a theoretical tool, besides their
effectiveness as a device for computations. For example they provide us with
simple criterion for the nonsingularity; namely, a square matrix is nonsingular
if and only if its determinant is nonzero.

There are several ways of defining the determinant function. However, we
prefer the classical definition which uses permutations. In view of this, we
first have a brief discussion on permutations. We begin with the following.

Definition 2.6.1. For any positive integer n, let / = {1,2, ..., n}. Any bijec-
tion of / onto itself is called a permutation on / . The set of all permutations
on/ is denoted by S .

Any permutation f'on / can expressed by means of an array (a 2 X n matrix)

[ 1 2 3 n ]
SO f2) 3 - f(n)

symbolising that each i is mapped to f(i). Note that the order of the columns
in this representation of f'is immaterial. For example

1 2 3 4 5 34 215
and
341 5 2 1 5 4 3 2
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represent the same permutation fwhich is given by /(1) = 3, f(2) = 4,/(3) =1,
f(4) =5andf(5) = 2.

If fand g are permutations on / , the fo g, /' and g~' are also permutations
on /. The set S of all permutations on / has the structure of a group, which
we thoroughly discuss later in chapter 6. Note that |S | = n! for any n € Z*.
A permutation f'is called an r-cycle (or cycle of length r) if f maps r elements
i, i, ..., 1 cyclically, keeping the remaining elements, if any fixed and such
an r-cycle will be denoted by

f= iy 0)

Thatis, /(i) = i,, f(i,) = i, ..., f(i,_) = i and f(i ) = i and f(i) = i for all
i €1 —{i, iy...,i}. Observe that (i, i, ... i), (iy iy ... id)y.cr (0,0 0y i)
are all represent the same cycle. A 2-cycle is called a transposition. Note that,
if fis an r-cycle, the /(= fo fo ... o f, r times) is the identity map on / and
r is the least such positive integer. In particular, if fis a transposition, then f*
is the identity map and f interchanges two elements in / and keeps all other
elements fixed.

Two cycles (a, a, ... a)and (b, b, ... b)) are said to be disjoint if @, # bj for
alll =i=rand 1 =j = s. It can be easily proved that f'o g = g o ffor any
disjoint cycles f'and g and that any permutation on / can be expressed, in an
essentially unique way, as a product of disjoint cycles. Further, any cycle is a
product of transpositions (since (¢, a, ... a) = (a,a)o (aa,_,) o ... 0(a,a,)
and hence any permutation can be expressed as a product of transpositions,
although not necessarily uniquely. For example (24) - (45)-(13)=(13)o
(24)0(13)0(45)o0(13). However, it can be proved (see Corollary 6.4.2)
that, if a permutation can be expressed as a product of even number of trans-
positions, then it cannot be expressed as a product of odd number of transpo-
sitions. In view of this, a permutation is called an even (odd) permutation if
it is a product of even (odd, respectively) number of permutations. If fand g
are even permutations, then clearly fo g, /7! and g™! are also even (since /' =
fiof,0...of impliesthat /' = f "o f"' _o...0f, " of"). Note that an
r-cycle is even if and only if 7 is odd.

Definition 2.6.2. For any permutation f on / , the signature of f, denoted by
sgn f, is defined by

1 iff iseven

sgn | = .
gnf {—1 iff is odd

It can be easily verified that, for any permutation fand gon / ,
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sgn(fog) = sgnf- sgngandsgnf=sgnf .
In the following, we give a formal definition of the determinant function.

Definition 2.6.3. Let 4 = (a,) be an n X n matrix. Then the sum

Z (SE0f) iy 1)y gy -+ oy )

=H
is called the determinant of A and is denoted by det 4 or |4|.
Examples 2.6.1

a, a
1. Let 4 =[ " 72| be a2 X 2 matrix. Since S, has only two elements,

a21 a22
namely the identity e which is an even permutation and the transposition
o = (1 2) which is odd, we have

det 4 = (sgn e)a, a,, + (sgn o)a, ,a,,
= a11a22 - a12a21
a, a, a

11
2. Considera3 X 3 matrix 4=|a, a,, a,;

12

a3 Gy Ay

S, has 3! elements; these are
1 23 5 1 23 1 23
e: . = N =
1 23 2 31 g 3 2
1 2 3 8 1 2 3 1 23
a= ) = s V=
213 132713 21
Note that e is the identity, /= (12 3),g=(132)a =(12),8 =(23) and

v = (1 3) and hence e, f'and g are even and «, B and vy are odd. Therefore

det 4 = a,,a,a;; + apa,a, + a,a,0,,=a,,a,0,, = a,0,,a, — a,,a,,4,

3. The determinant of the zero matrix is 0.

—_—

4. det ] = 1, where [ is the identity matrix of any order.

In the following we prove some results that facilitate the evaluation of the
determinant of any square matrix in a less tedious manner. First recall that, if
A= (“i,-) is an n X n matrix, R, ..., R are the nrows of 4 and C, C,, ..., C,
are the n-columns of 4, then we express 4 as
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R

1

R2
A=\ . or 4= (C

1?72

C,...C)

n

Here, each R, is a 1 X n matrix and each C/ is an X 1 matrix.

Theorem 2.6.1. Let 4 = (a,) be an n X n matrix and R, R, ..., R be the
rows of 4. For any fixed i, 1 =i=wn,letS, = (b, b, ... b, )beal X nmatrix.
Then, the following holds.

Rl Rl Rl
R, : :
: : R,
1. det|R +S, |=det| R |+det| S,
Ri+1 : Ri+1
R, R, R,
Rl RI
Ri—l Ri—l
2. det|aR, |=adet| R,
Ri+1 i+l
R R

Proof:

1. The left hand side of the equation is

Z (g0 1y - iy @iy T D)y -+ Gupin

J€s,
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= Z(sgnf Mty 1y -+ Gy Gy = Gogn

J€s,

+ Z (5801 )y - iy by @iy -+ Gupn
7es,

=The right hand side of (1)
2. This is clear from the definition.

Theorem 2.6.2. For any square matrix 4, det 4 = det A’

Proof: Let4 = (a,) be an n X n matrix. Then, 4" = (a,) and

det ' ="y " (sgnf) a0, @s -

7es,

- fZS(Sgnf)alf,](l)azf,l(z) S
JES,

— —1

- 126; (sgnf )alf"(l)azr‘(z) i)

=det 4 (since S, = {/ . fE S }).
Theorem 2.6.3. If two rows of a square matrix 4 are equal, then det 4 = 0.

Proof: Let 4 = (al.j) be an n X n matrix and R, R,, ..., R, be the n rows of
A. Suppose that the 7" row and s row are equal; that is, R = R and r # s.
Without loss of generality, we can assume that » < s. Let g be the transposi-
tion (r, s). Let

A={€S fr)<f(s)} and B={f€S :f(r)>f(s)}.

Then, the map « : A — B defined by «a(f) = f'o g is a bijection. Also, note that
AUB =S (sincer #s,f(r) # f(s) forany f€ S ) and 4 N B = . Therefore,

det 4= Z(sgnf)alm) . R A

fed
D8y e By
feB
=D (580 Nyl gy -y
fed

+D (580 0 &)y Ay By
fea
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= Z(sgnf ety -+ oy -Gy Gy = Gy =By =+ Doy Doy ]
fed

= Z(sgnf)[awl) by oo Ay oo Gy = Aty -+ Gy - By ...anf(n)]
fed

=0 (sincea, = a forall1 =j=n).

Theorem 2.6.4. LetA4 = (q, ) be an n X n matrix and B be the matrix obtained

from A by interchanging the " row and the 5™ row, then det 4 = —det B.
Rl
Proof: We can assume that » < s. We have A =| : |, where R.is the "™ row of 4.
R R,
R +R
Put C = i |. Then, the * row of C = s™ row of C and all other
R +R
Rn
" rows of C are same as those of 4. Now, by Theorem 2.6.3, we have
R] Rl Rl Rl
R R R R
0=det C=det| : |+det| : |+det| : |+det
R R R R
Rﬂ Rn Rn Rn

=det4d +0+ 0+ detB

Thus, det A = —det B.
The following is an immediate consequence of Theorems 2.6.2 and 2.6.4.

Corollary 2.6.1. Let A be an n X n matrix and B be the matrix obtained from
A by interchanging two columns of 4. Then, det 4 = —det B.

Corollary 2.6.2. If R, R,, ..., R are the rows of an n X n matrix 4 and fis a
permutation on {1, 2, ..., n}, then
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L
det| : |=(sgnf)detAd
Ry
Proof: Let f'be a product of m transpositions. Then the matrix 4 can be trans-
R

1)
formedto| : |by m interchanges of the rows. Therefore, by Theorem 2.6.4,
L
Ry R
det| : [=(=1)"det| : |=(sgnf)det A
Lo R,

The following is one of the most important properties of the determinants of
matrices.

Theorem 2.6.5. For any n X n matrices 4 and B,
det(4 - B) = det 4 - det B

Proof: Letd = (a;)and B = (b,) be two n X n matrices and AB = (c,). Then,
c;=2a, b, forany 1 =i, j=n.

r=1

det (4B) = Z(sgnf) Clrty Ca2) ++Cofmy

7es,
= Z(sgnf)[Zam br.f(l)]"'[zann, brnf(n)]
f€Ss, i=1 n=1

= > (q azrz---am)[z(sgnf ) bnf’<1>brz/'<2>--'brmn)]

1<h,n,...5,<n fes,

In the above summation, if r, r
Theorem 2.6.3,

,» ..., 7', are not all distinct, then, by

Z(sgnf )by by by py =0

JEes,
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and therefore, we can consider only the summands corresponding to distinct
n-tuples r, r,, ..., r . Therefore,

det(4B) = Z (d)51) Goee) ---ang<n>)[2 (€01 Byiry ity -+ By i

g€S, JESs,

= Z (sgng) ay ) -4, | (det B) (by Theorem 2.6.10)

g€S,

= (det 4) (det B).

Corollary 2.6.3. If 4 is a nonsingular n X n matrix, then det 4 # 0 and

1
det A4

detA™' =

Proof: If 44~ = I (the identity n X n matrix), then
detA - detA™! = det (A447") = det (1) = 1.
Next, we discuss an expansion for the determinant of a matrix which pro-
vides us with an inductive algorithm to find the value of det A. First, we have

the following.

Definition 2.6.4. Let 4 = (al.j) be an n X n matrix and, forany 1 =i,j = n, let

4,= > enf) [ a0

fES, ri
(oS
= 22680 e By Gy -+ Gy
fes,
Qs

Then, Al_/_ is called the cofactor of a, in det A.

Theorem 2.6.6. The following holds for any n X n matrix 4 = (a,-,-)-
U detd ifr=i

1. a. A =

; v { 0 ifr#i

1 detd ifr=j
2. Zair Ai‘ = © 1 T
pan Y 0 ifr#j
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Proof: Consider all the summands in the sum

det A= Z (sgnf) QiAo (a) =+ Doy

SES,

that contain a given entry a_ as a factor. These are corresponding to those
permutations f for which f(i) = j. Therefore, the sum of all the summands in
the summation for det 4 involving a, as a factor is

D (senf) iy 8y = A,

J€S,
SD=j

and hence

det A = Z(sgnf) A1y Qoriay -+ Dpiny

J€Ss,

n
= Z Z (sgn f) @)y -Gy

J=1 f€S,
S@)=j

n
=Zal.j Al.j foreach 1=i=n.
j=1

Similarly, det 4=3 a, 4, for cach 1 = = n.
i=1
Next, let 1 = r # i = n and consider

Za = Za Z (sgnf) H‘km)

Jj=1 f€S, s=i
fH=j

= Z (Sg0f) @y e Giyyony Grpiry Gopinny + - Gopn
fes,

=0 (by Theorem 2.6.7)

Similarly a, 4

; ifr# .
The equatlon 2 a; A, =det Agivenin (1) above is called the expansion of det
A with respect to the row and the equation E a; A; = det 4 given in (2) above

is called the expansion of det A with respect to the j" column. The following
result provides a method to evaluate the cofactors 4, for the matrix 4 = (a,).
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Theorem 2.6.7. Let4 = (al.f) be an n X n matrix and, forany 1 =i,j = n, let
A¥ be the submatrix of 4 obtained by deleting the i row and j* column. Then,
the cofactor 4 of a, in det 4 is given by

A, = (—1)" det A7

Proof: Let us first find the cofactor 4, of a,, in det A. By Definition 2.6.4,
we have

4, = Z (Sgf) tyr) Qyys) -o-Gypy-

JES,
S=1

Iff€ S and f(1) = 1, then the restriction of f'to {2, 3, ..., n} is a permuta-
tion on {2, 3, ..., n} and any permutation on {2, 3, ..., n} can be uniquely
extended to a permutation fon {2, 3, ..., n} by defining /(1) = 1. Also, for f
€ S with f(1) = 1, fis an even permutation if and only if the restriction of /
to {2, 3, ..., n} is even. Thus, the above equation is precisely same as

A, =detd" = (—1)"" det A"

Next, to find the value of a general cofactor 4 of a,, let us bring 4, to the (1, 1)
position by performing some row and column interchanges on 4. To bring a,
to the (1, 1) position, we move the /" column to the left to j— 1™ column (that
is, interchanging j* column and j—1% column), then to j—2" column, ...,
to 1* column, so that after j—1 interchanges of the columns, the j® column
becomes the first column. Next, in a similar way, we move the /™ row up to
the 1% row in i—1 interchanges of the rows. Now, we have a matrix B that
is obtained from A4 by j—1 interchanges of columns and i—1 interchanges
of rows. Therefore, by Theorem 2.6.4 and Corollary 2.6.1, the determinant
of the new matrix B is (—1)V" V"D det 4 = (—1)¥ det 4. If B = (b,), then
b, = a,and the matrix obtained by deleting the 1* row and 1* column in B is
precisely A7. Thus,

A, = (= 1) det 47,

Corollary 2.6.4. For any n X n matrix 4 = (al_j),

SNy i ;
detA—Z( )™ a, det 4”, foreach 1<i<nm

J=1

=> (=)™ a, det4”, foreach1<j<n.
i=1
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Example 2.6.2. Let us determine the determinant of a 3 X 3 matrix 4 = (aij),
using Theorem 2.6.7 and Corollary 2.6.4. We have

S = [azz azz] 42 =

a3, A4y

a a a

21 (123] and A13 :[ 21

a3 Ay a; 4y

22

Now,

det A = (—1)"*1 @'l det A"+ (= 1)1 @' det A2+ (—1)1*3 a3 det 47

_ a22 a23 a21 a23 a2| a22
=a, —a, +a,

a;, 4y a3 Ay a3 4y

=4a, (azz a3 — dy azs) —ap (a21 a3 — 4y azs) + al}(aZI a3 —ay azz)'

This is the expansion of det 4 with respect to the 1* row. Notice that we get
the same value for det 4 by expanding it with respect to any other row or any
column.

The following result characterizes nonsingular matrices in terms of the
value of their determinants.

Theorem 2.6.8. A square matrix A is nonsingular if and only if det 4 # 0
and, in this case, the inverse of 4 is given by

Ai-m( i)

where (4, ) is the matrix whose /™ entry is the cofactor A, of the i/ entry in A.

Proof: Let4 = (q, ) be an n X n matrix andA be the cofactor of a, in det 4.
Let B be the transpose of (4, )

Thatis, B = (4, )’ = (b, ) say

Then, b, = 4, for all i and j. By Theorem 2.6.6,

zn:arjb Zarj [, =9, det 4
=1

where 8§ . = 1 or 0 according as » = i or r # i. This implies that, the 7i" entry
in the product matrix 4B is det 4 if » = i, and 0 if  # i. Therefore,

AB = det A-1
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where 7 is the n X n identity matrix. Similarly, B4 = det 4-1. Thus, det 4 # 0

implies that
A- ! B|=1= ! B-4
det 4 det 4

. . -1 1 _ 1 ¢
and hence 4 is nonsingular and 4 Tt A B Tt d (4;)". Converse follows
from Corollary 2.6.3.

Definition 2.6.5. For any n X n matrix 4 = (al,j), the transpose of the matrix

(A,y) is called adjoint of A and is denoted by adj 4, where 4, is the cofactor
of a; in det 4.

Corollary 2.6.5. For any square matrix 4,

A - (adj A) = det 4 - I = (adj A) - A.

EXERCISE 2(F)

1. Evaluate the determinants of each of the following matrices

2 4 1
M |3 -1 2
-4 -3 -2
21 3 4
|14 23
w 3412]
43 21
4 3 2 1
12 3 4
N P
-3 4 -4 -1

2. Prove that the determinant of an upper (or a lower) triangular matrix is equal to
the product of the diagonal entries.

1 a &
3. Prove that det|l b b*|=(a—b)(b—c)(c—a).

2
1 ¢ ¢



10.

11.
12.
13.
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1ox, xt e
1 1 1
1 x, x3 - x)
Prove that det|, 2> ™2 2= H (x; —x,).
: 1<i<j<n
i x, x x!
1l ad
Prove thatdet|1 b b’ |=(b—c)(c—a)(a—b)(a +b +c).
1l ¢ ¢

If A is a nonsingular square matrix such that 4> = 4, then prove that det 4 = 1.

Prove the following:

(b+c)’ a’ a’
(i) det b’ (c+a) b* |=2abc (a+b+c)
c? c? (a+b)’
a—b—c 2b 2c
(i)  det 2a b—c—a 2¢c |=(a+b+c)
2a 2b c—a—b

. If4isan X n matrix such that 4” = O for some m € Z", then prove that 4

is singular.

. Letd = (a) and B = (b[/.) be n X n matrices such that b,-,- = (=1)" a; for all i

and j. Then, prove that det 4 = det B.

Prove that a square matrix 4 is nonsingular if and only if 4’ is nonsingular.

If 4 is an n X n skew-symmetric matrix, then prove that det 4 = (—1)" det 4?
If n is odd, prove that any skew-symmetric n X n matrix is singular.

Prove that for any n X n nonsingular matrix 4, det (adj 4) = (det A)""".

Prove the following for any n X n matrices 4 and B:
(i) det (4B) = det (BA)
(i) det (4 - A" = (det 4)*
(iii)  If 4 is nonsingular, then det (4BA™") = det B.
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Groups

3.1 Binary Systems

3.2 Groups

3.3 Elementary Properties of Groups
3.4 Finite Groups and Group Tables

3.1 BINARY SYSTEMS

It is well known that the product of two integers is again an integer. That is, if
a and b are integers, then the product a - b is again an integer. Here, the sym-
bol ‘-’ denotes the ‘operation of taking product’ of @ and b, in this order. Sim-
ilarly, if 4 and B are two 2 X 2 matrices over the real number system, then the
product 4 - B is again a 2 X 2 matrix over R. Here, the symbol ‘-’ denotes the
‘operation of taking product’ of the matrices 4 and B, in this order. Further,
if fand g are two mappings of a set X into itself, then the composition g o fis
also a mapping of X into itself. Here, the symbol ‘0’ denotes the ‘operation of
taking composition’ of g and f;, in this order. Also, if 4 and B are subsets of a
given set X, then the union 4 U B is also a subset of X. Here again, the symbol
U denotes the ‘operation of taking union’ of 4 and B, in this order.

In each of these cases, from any two elements of a given set, we obtain
another element of the same set by performing an operation on the two ele-
ments in a specific order. This is formalized in the following definition.

Definition 3.1.1. Let S be a nonempty set and S X S be the set of all ordered
pairs of elements of S. That is,

SXS={(ab):a€ Sand b € S}.

A mapping f: S X § — Sis called a binary operation on S.
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If fis a binary operation on a set S and a and b are elements of S, then we
write a f'b for f(a, b). This is only for convenience. Recall that we write a - b
for the product of two integers a and b. By definition, for any set S, any map-
ping of § X Sinto S is a binary operation on S. Certain special binary opera-
tions on certain special sets are important to be mentioned. In the following,
we list several binary operations on certain special sets, as examples.

Example 3.1.1

1. The usual multiplication ‘-’ is a binary operation on the set Z of integers.
Quite often, we simply write ab for a - b.

2. The usual addition + is a binary operation on the set Z of integers.

3. Let us define the mapping — : Z X Z — Z by — (a, b) = a — b, the
usual difference of b with a, for any integers a and b. Then, — is a binary
operation on Z. Note that — is not a binary operation on the set Z* of
positive integers, since @ — b need not be positive for any two positive
integers a and b. Likewise, — is not a binary operation on the set Z~ of
negative integers. Note that both the multiplication and addition given in
(1) and (2), respectively are binary operations on Z*. The operation —
is called the difference operation. Note that each of addition, difference
and multiplication is a binary operation on the set Q of rational numbers
and on the set R of real numbers.

4. Let R be the set of real numbers and, for any real numbers a and b,
define

a A b = The minimum of a and b
and a v b = The maximum of ¢ and b.

Then, both A and v are binary operations on R. In fact, these are binary
operations on any nonempty subset of R and, in particular, on Q, Z and Z".

5. Consider the set Z* of positive integers. For any ¢ and b in Z*, define

a g b = (a, b), the greatest common divisor of @ and b
and a{ b = [a, b], the least common multiple of @ and b.

Then, g and € are both binary operations of Z*. Usually, we write (a, b)
and [a, b] to denote respectively the greatest common divisor and the
least common multiple of any positive integers a and b.

6. Let X be any set and P(X), the power set of X; that is, P(X) is the set of
all subsets of X. For any 4 and B € P(X), define

ANB={x:x€ Aandx € B}
AUB={x:x€Aorx € B}
A—B={x:x€ Aandx & B}
A+B=(A—-B)U(B — A).
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Then, N, U, — and + are all binary operations on the set P(X) and are
respectively called intersection, union, difference and symmetric differ-
ence. Note that P(X) is not empty even if X is empty.

For any positive integers m and #, let M (IR) be the set of all m X n
matrices over the real number system R. For any 4 = (a,) and B = (bi/.)
inM _ (R), define

A+ B= (cl./.),

where ¢, =a, + bij and + is the usual addition of real numbers. Then, +
is a binary operation on M (R) and is called the addition of matrices
(of same order).

For any positive integer n, let M (R) be the set of all n X »n matrices
(square matrices of order n). For any 4 = (a,) and B = (b,) in M (R),
define

A-B=(d), whered = ;aikbkj
forany 1 =i, =< n. That is,

d =ab +ab, + - +ab
) oy L 2

in”nj*

(The operations involved in defining ¢, above are the usual addition and
multiplication of real numbers.) Then, -’ is a binary operation on M (R)
and is called the multiplication of square matrices (of the same order).
Note that, we can define addition and multiplication (as in (7) and (8)
above) on the sets M _ (Z) and M (Z) of matrices over the set Z of
integers or on the sets M (Q) and M (Q) of matrices over the set Q of
rational numbers.

Let X be any set and M(X) be the set of all mappings of X into itself. For
any mappings f'and g in M(X), define

fog: X — Xby(fog)x) =f(g(x)) foranyx € X.

Then, o is a binary operation on M(X) and is called the composition of
mappings.

Let C be the set of complex numbers; that is C is the set of expressions
of the form a + bi, where a and b are real numbers.

C = {a + bi : a and b are real numbers}.
For any a + bi and ¢ + di in C, define

(a+bi)+(ctdiy=(a+c)+ b+ di
and (a + bi) - (c + di) = (ac — bd) + (ad + bc)i.
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1.

12.

13.

14.

15.

Then, + and -’ are binary operations on C and are called the usual addi-
tion and multiplication of complex numbers, respectively.

Let n be a positive integer and
Z,=10,1,2,...,n— 1},
For any a and b in Z , define

theusual suma+5b, ifa+b<n

at b= . .
at+b—n, ifa+b=n

Then, + is a binary operation on Z_and is called the addition modulo n.
Let Z, be the set considered above. For any a and b in Z , define

a- b=r,

n

where 7 is the remainder obtained by dividing the usual product ab with
n; that is 7 is the integer such that

ab=gn+r,gandr€Z and 0=r<n.

For example, 7 -, 6 = 2,5+ 8 = 0and 8 - 8 = 1. Then, - is a binary
operation on Z _and is called the multiplication modulo n. Note that, in
the example given in (11) above, forany a and bin Z , a + b can also
be viewed as the remainder obtained by dividing the usual sum a + b
with n, since 0 = a + b <2n.a + banda - b are respectively called
the sum and product of a and b modulo #.

Let n be any integer and define, for any integers a and b,
a*b=a+b+n.

Then, * is a binary operation on the set Z of integers.
Let E be the set of all English words (whether meaningfull or not); that
is, E is the set of all finite sequences

a a,...a,n>0andas are in alphabet of English.

Foranya =a a,...a andb = b b, ... b ,define
a*b=apb,.

Then, * is a binary operation on E. Note that a * b is the two letter word
consisting of the first letter of a followed by the last letter of b.

Let X' be any nonempty set and R¥ be the set of all mappings from X into
R. For any fand g in R, define f + gand /- g: X — R by

(f+ @)x) = f(x) +g(x)
and  (fr 2@)(x) = f(x) - g(x), forallx € X
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Note that the + and - on the right hand sides of the above are the usual
addition and multiplication in the real number system R. Then, + and -
are binary operations on R* and are respectively called the point-wise
addition and point-wise multiplication.

16. The above example can be generalized as follows. Let * be a binary oper-
ation on a nonempty set S and X be a nonempty set. Let $* be the set of
all mappings of X into S. For any fand g in S%, define f* g : X — S by

F*2x) =f(x) * g(x) forallx € X.

Then, * is a binary operation on S* and is called the point-wise operation
on S* with respect to the operation * on S.

Note that, in (16) above (and so is in (15)), we have denoted the operations
on S$* and in S with the same symbol *. There should not be any confusion.
The * on the left sides is the one we are defining on S* and that on the right
sides is the given binary operation on S.

Note 3.1.1. In defining a binary operation on a set S, one should observe the
following:

(1) For each ordered pair of elements in S, the element assigned to it must
be again an element of S.

(i) Exactly one element of S must be assigned to each ordered pair of
elements in S.

For example, consider the set R of real numbers and, for any a and b in R,
define a b= Then, * is not a binary operation on R, since * is not defined

for all ordered pairs of elements in R. Note that 2 * 0 is not defined, while 0
* 2 is defined. However, this * is a binary operation on a smallest set, namely,
the set R — {0} of nonzero real numbers.

Let us consider another example. Let S be the set of all people in a par-
ticular village and define, for any @ and b in S, a * b = ¢ where c is a person
whose height is equal to the minimum of the heights of a and b. Then, * is
not a binary operation on S, since ¢ * b may not be an unique element in S;
there can be more than one person in the village whose height is equal to the
minimum of those of a and b.

Note 3.1.2. Let S be a finite set with z elements. Then, the number of elements
in S X Sis n?. Any binary operation S is simply a nzlapping of S X Sinto S; that is,
an element of $*. Therefore, there are exactly #n" many binary operations on S.

Definition 3.1.2. A pair (S, *) is said to be a binary system if S is a nonempty
set and * is a binary operation on S. Here, S is called the underlying set in the
binary system (S, *).
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Definition 3.1.3. A binary system (S, *) is said to be finite if the underlying
set S'is finite.

A finite binary system (S, *) can be represented by means of a table as
detailed below. Let S = {a , a,, ...,a }. These elementsa,a, ..., a aretobe
listed across the top of the table and at the left of the table, both in the same
order. The element a, * g, is written in the " row and j column as given in the
table given below and * is to written on the extreme left of the top.

1 2 3 j n

* * * * *

a, ara, ara, a ra, a, Clj ara,
* * * * *

a, a,”a, a,”a, a,”a, a, Cl/ a,*a,
* * * * *

a, a,”a, a,*a, a,”a, a, Cl/ a,*a,
* % i * * i *

a a*a a*a a*a a*a a*a
n n 1 2 n 3 n J n n

In the example given below, we shall construct the table representing the
binary system (Z,, +,) where Z, = {0, 1, 2, ..., 8} and + is the addition
modulo 9 (see Example 3.1.1 (11)).

Example3.1.2. LetZ, = {0,1,2,...,8} ={a € Z:0=a <9} and +, the
addition modulo 9. + is the binary operation on Z, defined by

. the usual suma+b, ifa+b<9
a = .
’ a+b—09, ifa+b=9

for any a and b in Z,. The following table represents the binary system (Z, +,).

+, 0 1 2 3 4 5 6 7 8
0 0 1 2 3 4 5 6 7 8
1 1 2 3 4 5 6 7 8 0
2 2 3 4 5 6 7 8 0 1
3 3 4 5 6 7 8 0 1 2
4 4 5 6 7 8 0 1 2 3
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5 5 6 7 8 0 1 2 3 4
6 6 7 8 0 1 2 3 4 5
7 7 8 0 1 2 3 4 5 6
8 8 0 1 2 3 4 5 6 7

Here,2 +,7=0,2+,5=7,4+,5=0,5+,7=3,6+,8=5,8+,
8 =17, etc.

Example 3.1.3. Let S be the set of all positive divisors of 36 and, for any a
and b in S, define

a g b = (a, b), the greatest common divisor (GCD) of @ and b

(see Example 3.1.1 (5)). Then, (S, g) is a binary system which is represented
by the table given below. We have

§=1{1,2,3,4,6,9,12,18 ,36}

g 1 2 3 4 6 9 12 18 36
1 1 1 1 1 1 1 1 1 1
2 1 2 1 2 2 1 2 2 2
3 1 1 3 1 3 3 3 3 3
4 1 2 1 4 2 1 4 2 4
6 1 2 3 2 6 3 6 6 6
9 1 1 3 1 3 9 3 9 9
12 1 2 3 4 6 3 12 6 12
18 1 2 3 2 6 9 6 18 18
36 1 2 3 4 6 9 12 18 36

Let (S, *) be a binary system. For any elements a, b and ¢ in S, the expres-
sion a * b * ¢ has no meaning, since * is a binary operation and hence * is
defined for pairs of elements. For example, 1 — 2 — 3 has no meaning and we
should specify whether it is (1 — 2) — 3 (this is what we usually take) or 1 —
(2 — 3). Note that (1 — 2) — 3 # 1 — (2 — 3). For arbitrary elements a, b and
¢ in a binary system (S, *), a * b and c are two elements in S and hence (a * b)
* ¢ is defined and so is @ * (b * ¢). In general, (@ * b) * cand a * (b * ¢) may
be different. In this context, we have the following definition.
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Definition 3.1.4. A binary operation * on a set S is said to be associative if
(a*b)y*c=a*b*c)
for all elements a, b and ¢ in S.

Definition 3.1.5. A pair (S, *) is said to be a semigroup if S is a nonempty set
and * is an associative binary operation on S.

Example 3.1.4. The binary operations given in Example 3.1.1, except those
in (3), (6) and (16), are all associative and therefore, these together with the
corresponding underlying sets, are semigroups. (Z, —) is not a semigroup,
since — is not associative. For any set X, ( P(X), N), (P(X), U) and (P(X), +),
given in Example 3.1.1 (6), are all semigroups. However, (P(X), —) is not a
semigroup; For, consider X = {a, b, c,d}, A = {a, b, c},B = {c,d} and ¢ =
{b}. Then, A, B and C € P(X) and

(A—-B)—C=({a,b,c} —{c,d}) — {b} = {a, b} — {b} = {a}
and
A—-B-0={ab,c}—({c,d} —{b}) ={a, b, c} — {c,d} = {a, b}

and therefore (4 — B) — C# A — (B — (), so that — is not associative. Note
that the operation * on $* given in Example 3.1.1 (16) is associative if and
only if the operation * on § is associative.

The associativity of a binary operation involves three arbitrary elements in
the underlying set. If we take four elements a, b, c and d in a binary system
(S, *), then we get several expressions involving * and the elements a, b, ¢ and
d, in this order. These are given below.

(a*b)*(c*d)
a* (b*(c*d))
a*((b*c)*d)
((a*b)*c)*d
(a*(b*c)*d
One can easily prove that these expressions represent one single element, if *

is associative. In fact, we can generalize and extend the associativity for any
finite sequence of elements. First, let us have the following definition.

Definition 3.1.6. Let (S, *) be a binary system and a, a ,, ..., a, € S. A
meaningful expression involving * and a,, a,, ..., a , in this order, is called a
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meaningful product of a , a, ..., a , in this order. The one given in the follow-
ing definition is a meaningful product.

Definition 3.1.7. Let (S, *) be a binary system and a,a, ...,a €S The
standard product IT” a, of a,a,, ..., a, in this order, is defined inductively
as follows.

a, ifn=1

n

a =1 .
il [Ha[]*an ifn>1

i=1

For example,

a=a *a

i 1

Jo-{[le

H% — (@ ) a) *a)

2

.:N

*a,=(a,*a,)*a,

:u

Theorem 3.1.1 (Generalised Associative Law). Let (S, *) be a semlgroup and
a, a, .., a, elements of S. Then, all meaningful products of @, s a,in
this order are equal to each other.

Proof: We shall use induction on n to prove that each meaningful product
ofa,a, ..., a, is equal to their standard product. If » = 1 or 2, the theorem
is trivial. Suppose that n > 2 and assume that any meaningful product of b,
b,, ..., b, withm < n, is equal to the standard product of b, b, ..., b _, in this
order. Let x be any meaningful product of a,, a,, ..., a , in this order. Then,
there exists 7 such that 1 = r» <n and

x=s%*t

where s and ¢ are meaningful products of ¢, a,, ...,a anda  ,a_, ...
these orders, respectively. By the induction hypothesis, we get that

,a,in

n’

S—Ha and t= Ha

j=r+l



3-12  Algebra - Abstract and Modern

Now, x=s%*¢
uaine
“[f1e){ {1 o

i=1 j=rl

r n—1
= [Ha[]*[ H aj] *a, (since * is associative)
i=1

j=r+l

n—l
= H ai] *a, (by the induction hypothesis)

i=1

n
1
1
i=1

Thus, x is the standard product of a, a,, ..., a , in this order. |
Definition 3.1.8. A binary operation * on a set S is said to be commutative if
a*b=>b*a forallaandbinS.

Example 3.1.5. Exceptin (3), (6), (8), (9), (14) and (16), all other binary oper-
ations given in Example 3.1.1 are commutative. The operations N, U and + on
P(X), given in Example 3.1.1 (6), are all commutative and the operation — on
P(X) is not commutative. Also, the operation * on S*, given in Example 3.1.1

(16) is commutative if and only if the operation * on S is commutative.

Theorem 3.1.2 (Generalised Commutative Law). Let * be a commutative

and associative binary operation on a set Sand a,, a,, ..., a, € S. Then, for
any permutation o of {1, 2, ..., n}, any meaningful product of ¢, a,, ..., a_is
equal to any meaningful product of Aoy Qoo o> Aoy

Proof: Since * is associative, it is enough to prove that

n n
H 4= H 0)
i=1 i=1

for any permutation o of {1, 2, ..., n} (by Theorem 3.1.1). We shall prove theo-
rem using induction on . If n = 1, the theorem is trivial, if n = 2, the theorem
follows from the commutativity of *. Let n > 2 and assume that the theorem is
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true for any #n — 1 elements in S. Let o be a permutation of {1, 2, ..., n}. That
is, o is a bijection of {1, 2, ..., n} onto itself. Let o(n) = k. Then, we have

(o(l), 0Q2), ..., o(n=D)Y=1{1, 2, ... k=1, k+1, k+2, ..., n.

Consider the standard product
n n—l
= %
[0 = {1140 |* 20
i=1 i=1
k—1 n
=\I1a|*I]a
i=l1

i=k+1

* a, (by induction hypothesis)

a,* H a,.](by associativity and commutativity of *)

i=k+1

=11 <

Note that the operation * in a finite binary system (S, *) represented by
the corresponding table is commutative if and only if the entries in the table
are symmetric with respect to the diagonal that starts at the upper left corner
of the table and terminates at the lower right corner (let us call this left-right
diagonal). There is no such single technique to check the associativity of a
given binary operation.

Worked Exercise 3.1.1. Determine the number of commutative binary opera-
tions on a set with » elements.

Answer: Let S be a set with n elements. S X S has n* elements. A binary
op?ration on S is just a mapping of S X S into S. Therefore, there are exactly
n" number of binary operations on S. As mentioned above, a binary opera-
tion is commutative if and only if the entries in the corresponding table are
symmetric with respect to the left—right diagonal. The number of pairs (a, b)
in § X S with a # b, is n* —n. If * is a commutative binary operation on S,
thena * b = b * a for all a, b € S and hence, we can consider only half of the
number of pairs (a, b) with a # b. These together with the pair (a, a) ,a € S,
constitute a set X consisting of
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elements. A commutative binary operation on S can be identified with a map-
ping of X'into S. Therefore, the number of commutative binary operations on
S'is equal to

?+n

1S |=n 2 .

Worked Exercise 3.1.2. Let X be a nonempty set and M(X) be the set of all
mappings of X into itself. Let o be the composition of mappings on M(X).
Then prove that o is a commutative operation on M(X) if and only if X has
exactly one element.

Answer: If X has exactly one element, then M(X) also has only one element
and the result is trivial. Conversely suppose that X has more than one element,
choose a # b € X and define fand g : X — X by

f(x)=aforallx e X
and g(a) = b, g(b) = a and g(x) = x for all x & {a, b}.
Then, (fog)(a) = f(gla) =f(b) =a
and  (gof)a) = g(f(a) = gla) = b.

Therefore, (fo g)(a) # (g o f)(a) and hence fo g # g o f-

Worked Exercise 3.1.3. Determine the number of noncommutative binary
operations on a 5-element set.

Answer: Let S be a 5-element set. The total number of binary operations on
S is 5%. The number of commutative binary operations on S is

5245

52 =55
Therefore, the number of noncommutative binary operations on S is

525 _ 515 — 515(510 -1).

EXERCISE 3(A)
1. Construct tables representing the following binary systems:
@ (Z,+)
®) (Zyy, )
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() (PX),U), where X = {a, b, c}
(d) (S, €), where S is the set of positive divisors of 100 and ¢ is defined by
alb=LCMof {a, b}

(e) (M(X), o), where X = {a, b}, M(X) is the set of mappings of X into itself
and o is the composition of mappings.

() (S, -), where S = {1, i, —1, —i} and ‘-’ is the usual multiplication of
complex numbers.

2. Compare the tables in (a) and (f) above.

3. Fill in the blanks in the following table such that the binary operation * repre-
sented by the table is commutative.

* a b c d e f

a d e c b
b f d f
c a C a d
d c e d
b b d

-
Q
[a)
<
Q

4. Compute the following from the table given in (3) above.
(b*(d*a)*(c*(b*a)
((@a*b)y*c)*d
(a*b)*(c*d)
5. Is the operation * given in (3) above associative?
6. Give an example of an associative binary operation which is not commutative.

7. Prove that the associativity and the commutativity are independent of each
other.
8. Prove or disprove the statement:

Every commutative binary operation on a 2-element set is associative.

9. Which of the following binary operations are associative or commutative?
(a) On the set Z of integers, a * b = (a + 3)(b + 2).
(b) OnthesetZ,a* b= d".
(¢) On the set R of real numbers, a * b = a — b.
(d) OnthesetR,a*b=a+ ab.
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(e) On the power set P(X) ofaset X, 4 * B = (X —A)U (X — B).
(f) OnanysetX,a*b=a.
(g) OnthesetZ,a*b=0.
(h) On the set Z* of positive integers,
a* b= 5
10. Prove or disprove the following statement:

Every binary operation on a set S is both commutative and associative if and
only if S has exactly one element.

11. Compute the number of commutative binary operations on a 4-clement set.
12. Compute the number of noncommutative binary operations on a 3-clement set.
13. Let (S, *) be a binary system and

A={x€S:(x*b)*c=x*(b*c)} forall band c € S}.

If 4 is nonempty, prove that (4, * ) is a semigroup.

14. Let (S, *) be a semigroup and e be any element not in Sand S” = SU {e}. Define
a binary operation + on S’ as follows. For any a and b€ §’, define

a*b if bothaandbES
atb=1a if b=e
b ifa=e

Then prove that (S’, +) is a semigroupand e + x =x =x + eforallx € §’.

3.2 GROUPS

The integer 0 has a special property in the binary system (Z, +) and is unique
satisfying this property; namely

a+t0=a=0+a foralla €Z.

Similarly, the integer 1 is the unique element in the binary system (Z, )
satisfying the property

a1=a=1-a foralla € Z

Likewise, the identity map /,, defined on any set X by / (x) = x for all
X € X, is the unique element in the binary system (M(X), o) satisfying the

property
fol =f=1of forallfe MX),
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where M(X) is the set of mappings of X into itself and o is the composition of
mapping. An abstraction of these ideas is made in the following definition.

Definition 3.2.1. Let (S, *) be a binary system and e be an element of S.

1. eissaid to be a right identity in (S, *) ifa * e = a foralla € S.
2. eis said to be left identity in (S, *) ife *a = a foralla € S.

3. e is said to be an identity in (S, *) if e is both a left identity and a right
identity; thatis,a *e =a =e*aforalla € S.

Example 3.2.1
1. 0 is the only identity in (Z, +).
2. 1 is the only identity in (Z, -), where ‘-’ is the usual multiplication of
integers.
3. Let X'be any nonempty set and /, : X — X be defined by / (x) = x for all
x € X. Then, [, is the identity in (M(X), o).
4. Let m and n be any positive integers and M _ (R) be the set of all mXn

matrices over R. Let O, be the m X n matrix in which each entry is the
number 0. Then,

O,,TA=A4=4+0

for all matrices 4 and hence O, _ is the identity in (M (R), +), where
+ is the usual addition of matrices.

5. Let S be any nonempty set and define a * b = b for all @ and b in S. Then,
every element of S is a left identity in the binary system (S, *).

6. Let Sbe any nonempty set and define a * b = a forall @ and b € S. Then,
every element of S is a right identity in (S, *).

7. For any set X, the empty set (J is the identity in (P(X), U) and also in
(P(X), +), where U is union operation and + is the symmetric difference
operation.

8. Also for any set X, the whole set X is the identity in (P(X), N), where N
is the intersection operation.

From examples (7) and (8) above, the concept of identity is depending on
the binary operation of the system. Also, it depends on the underlying set. For
example, 0 is the identity in the system (Z, +) where as it is not the identity
in (Z*, +), since 0 is not an element in the underlying set Z".

Also, from examples (5) and (6), observe that a binary system can possess
any number of right identities without having any left identity and vice versa.
However, if e is a right identity and fis a left identity, then e must be equal to
/- This is proved in the following theorem.
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Theorem 3.2.1. Let (S, *) be a binary system and e be a left identity in (S, *).
Then, every right identity in (S, *) is an identity and coincides with e.

Proof: Let f'be a right identity in (S, *). Then,

f= e* f(since e is left identity)
= e (since f'is right identity)

Therefore, f = e and hence f'is a left identity also. Thus, fis an identity
and = e.

Corollary 3.2.1. There can be almost one identity in any binary system.

Proof: Let (S, *) be a binary system and e and f'be identities in (S, *). Since e
is a left identity and fis a right identity, e = fby the above theorem.

Example 3.2.2

1. Let E be the set of even integers and is the usual multiplication of inte-
gers. Then, there is no identity in the binary system (£, ).

2. Let S be any set and define a * b = b for all a, b € S. Then, every ele-
ment of S'is a left identity in (S, *). However, (S, *) has no right identity,
unless S is a singleton set (one element set).

3. Similarly, if we define a * b = a for all a, b € S then every element of S
is a right identity in (S, *) and there are no left identities in (S, *), unless
S'is a singleton set.

4. The integer 0 is the only identity in (Z, +).

Definition 3.2.2. A semigroup (S, *) is called a monoid if it has identity. That
is, a binary system (S, *) is called a monoid if * is associative and the identity
exists in (S, *).

Example 3.2.3

1. The set M (R) of all n X n square matrices over R together with the
matrix multiplication is a monoid. Here, the matrix / , in which all the
diagonal entries are 1 and the others are 0, is the identity element in
M (R). I is called the identity matrix. Note that / = (aij), where a; = 1
or 0 according as i = j or i #j.

2. (Z, +),(Z,-)and (Z" , -) are all monoids, where + and -’ are the usual
addition and multiplication, respectively. 0 is the identity in (Z, +) and
1 is the identity in (Z, -) and in (Z", -).
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3. (Z*, +) is a semigroup, but not a monoid.
4. The set M(X) of all mappings of a set X into itself together with the com-
position of mappings is a monoid. The identity in (M(X), o), is precisely
the identity map /, defined by /,(x) = x for all x € X.
Next, we shall take up the solvability of linear equations of type a * x = b,
where a and b are given elements in a binary system (S, *). It is well known

that, for any real numbers a and b, there is a unique real number x satisfying
the equation

a+x=h

Our usual procedure of finding x is the following.
Considera + x =D

(—a)t(a+tx)=(—a)+b (by adding —a)
(—ata)+x=—-a+b (by associativity)
0O+x=—-a+b (—a+a=0)
xX=—-a+b (0 is the identity in (R, +)).

Also, if we substitute —a + b for x in a + x = b, we get that
at(—a+b)=(@+(—a)+b=0+b=hb

This is to say that —a + b is the unique real number satisfying the equa-
tion a + x = b. In this process finding the unique solution of a + x = b, we
have skipped one step by not explaining what —a is. It is obvious that —a is
the unique real number x satisfying the equation x + a = 0. This concept is
abstracted in the following definition.
Definition 3.2.3. Let (S, *) be a monoid in which e is the identity and ¢ € S.
1. Anelement a’ € S is called a left inverse of a if
ad*a=e
2. Anelement a” € S'is called a right inverse of a if
a*a =e
3. Anelementa’ € Sis called an inverse of a if a’ is both a left inverse and
a right inverse of a; that is,
a*a=e=a*d.

4. ais called invertible, if there exists an inverse of a.
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Example 3.2.4

1.

In the monoid (R, +), the number 0 is the identity and every element of
R has inverse.

In the monoid (Z, -), 1 is the identity, where ‘-’ is the usual multiplica-
tion. Here, 1 and —1 are the only elements having inverses.

Consider the set M(Z) of all mappings of Z into itself. Then, (M(Z), 0)
is a monoid, in which the identity map /, defined by /(x) = x for all x €
Z, is the identity element. Define f': Z — Z by f(x) = 2x forallx € Z.
For each integer a, define g : Z — Z by

X .. .
— if xisaneveninteger
g0 =12
a ifxisanodd integer.
Then, (g, 0 )(x) = g (f(x)) = g(2x) = 2 = x for all x € Z. Therefore,
g, of=1

and hence g is a left inverse of f; for each integer a.

. In (3) above, note that f'has no right inverse; for, if g is a right inverse of

£, then
Jog=1

and, in particular, (fo g)(1) = I(1) = 1 and hence
2g(l)=1

which is false, since we cannot get an integer g(1) such that 2g(1) = 1.

From the examples (3) and (4) above, we have noticed that an element in

a monoid can have several left inverses without having any right inverses.
However, if an element has both left inverse and right inverse, then they must
be equal. This is proved in the following theorem.

Theorem 3.2.2. Let (S, *) be a monoid in which e is the identity and a € S.
Let a’ and @’ be left inverse and right inverse of a, respectively. Then, a* = a’
and a is invertible.

Proof: We are given that ’ * a = ¢ = a * a’. Now, consider

at=a'*e (since e is the identity)

=a'*(a*a) (since a" is right inverse of a)



Groups  3-21

=@*a)*a (by associativity)
=e*da (since a' is left inverse of a)
=a (since e is identity)

Therefore, a‘ = a" and hence a* * a = e = a * a’ so that ' (= ') is inverse of a.
Corollary 3.2.2. Any element in a monoid has at most one inverse.

Proof: Let (S, *) be a monoid in which e is the identity and a € S. Suppose
a' and ¢" are inverses of a. Then, a' is a left inverse and " is a right inverse
of a and hence, by the above theorem a’ = a”.

Note that in a monoid, certain elements may be invertible and other
elements may not be invertible. The identity element e in any monoid is
always invertible and, since e * e= e, e is the inverse of itself. In the fol-
lowing, we give an example of a monoid in which each element is inverse
of itself.

Example 3.2.5. Let X be any set and P(X) be the power set of X. For any 4
and B € P(X), define

A+ B=(4—-B)U(B—A).

Then, (P(X), +) is a monoid with the empty set J as the identity element.
Here, for any 4 € P(X),

A+A=A-ADUUA-A=CUT =0

and hence 4 is the inverse of itself.

In certain monoids, some elements may have left inverses, some elements
may have right inverses, some may have both left and right inverses and some
may have neither left inverses nor right inverses. In the following theorem, we
give one such example.

Theorem 3.2.3. Let X be any nonempty set and M(X) be the set of all map-
pings of X into itself. Then, (M(X), o) is a monoid in which the following
holds for any /€ M(X).

1. fhas a left inverse in M(X) if and only if fis an injection.
2. fhas aright inverse in M(X) if and only if f'is a surjection.
3. fis invertible in M(X) if and only if /'is a bijection.
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Proof: We know that (M(X), o) is a monoid (see Example 3.2.3 (4)) in which
o is the composition of mapping and the map /, : X — X, defined by / (x) = x
for all x € X, is the identity. Let f'be an arbitrary element of M(X); that is,
f: X — Xis amapping.

1. Suppose that f'has a left inverse in M(X). Then, there exists g € M(X)
such that
gof=1,
For any a, b € X, we have

Sla) = f(b) = g(f(a)) = g(f(b))
= (gof)(a) = (gof)b)
= I (a) = I (b)
=a=bh

Therefore, fis an injection.

Conversely, suppose that f'is an injection. Define
g: X— Xby

a ifx= f(a)forsomeac X

E

gx)= {

s otherwise

where s is an arbitrarily chosen fixed element of X. Note that, since fis
an injection, there can be at most one a € X such that x = f(a) and hence
g is welldefined. Now, for any a € X,

(gofNa) = gf(a) = a = I(a)

and hence g o f'= I, so that g is a left inverse of /.

2. Suppose that f'has a right inverse in M(X), Then, there exists # € M(X)
such that

foh=1.
For any x € X, we have h(x) € X and
SUh(x)) = (fo h)(x) = I(x) = x
and therefore f'is a surjection.

Conversely suppose that fis a surjection. Define # : X — X as follows.

For any x € X, choose one element a_ € X such that f(a ) = x (since f’is
a surjection, f~'{x} is a nonempty subset of X, for each x € X and now,
we have to the axiom of choice). Now, define

h(x) = a, foreachx & X.
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Since (f'o h)(x) = f(h(x)) = f(a) = x forall x € X, we have fo h = I,
and hence / is a right inverse of /.
3. This follows from (1) and (2) and from Theorem 3.2.2.

Definition 3.2.4. A monoid (G, *) is called a group if every element of S is
invertible.

To be more elaborate, A pair (G, *) is called a group if the following are
satisfied:

1. G is anonempty set and * is a binary operation on G.
2. a*(b*c)y=(a*b)*cforalla,bandc € G.
3. There exists e € G such that

a*e=a=e*a foralla € G

4. For each a € G, there exists ¢’ € G such that
a*a=e=a*a

Recall that a pair (G, *) is called a binary system if (1) is satisfied, semi-
group if (1) and (2) are satisfied, monoid if (1), (2) and (3) are satisfied and is
called a group if all the four (1), (2), (3), and (4) are satisfied.

Also, recall that the element e in (3) is unique and is called the identity in
(G, *). Further, the element a’ in (4) is unique and is called the inverse of a.
The inverse of a is usually denoted by a™'.

Example 3.2.6

1. (Z,+),(Q, +), (R, +)and (C, +) are all groups in which + is the usual
addition, 0 is the identity and —a is the inverse of any element a.

2. (@ —{0}, ), (R —{0}, -) and (C —{0}, -) are all groups in which ‘-’ is the
usual multiplication, 1 is the identity and 2 is the inverse of any element a.

3. Neither (Z, ) nor (Z—{0}, *) are groups, since not all elements are
invertible.

4. For any set X, (P(X), +) is a group in which + is the symmetric differ-
ence operation, (J is the identity and, every element is inverse of itself.

5. Let X'be a nonempty set and S(X) the set of all bijections of X onto itself.
Then, (S(X), o) is a group in which o is the composition of mappings, /,
is the identity and /™! is the inverse of any bijection f. Recall that, for any
bijections f'and g, the composition f'o g is also a bijection.

6. The set M, (R) of all m X n matrices over R together with the addition
of matrices is a group. Here the zero matrix, in which all the entries are 0,
is the identity and, for any 4 = (aii) , the matrix (—a,) is the inverse of 4.
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For any positive integer n, (Z,, +) is a group where Z = {0, 1,2, ...,
n — 1} and + is the addition modulo n. Here, 0 is the identity and, for
any a € Z , n — a is the inverse of a. This group (Z, + ) is called the
additive group of integers modulo n.

. Letn be a positive integer. 4 n X n square matrix A4 is called nonsingu-

lar if its determinant is not zero. The set NSM (R) of all nonsingular
n X n matrices over R together with the matrix multiplication is a
group. Here, the identity matrix / , in which all the diagonal entries
are 1 and other entries are 0, is the identity. It is well known that a
n X n square matrix 4 is nonsingular if and only if there exists n X n
matrix B such that

AB =1, = BA.

. For any points @ = (a,, @,) and b = (b, b,) in the two-dimensional

Euclidean space R X R, d(a, b) be the usual Euclidean distance between
a and b; that is,

d(a, b)=J(a,— b)* +(a, — b,)’.

Let X'be the set of all points on a given geometrical figure (in fact, X may
be any nonempty subset of R X R).

A bijection f of X onto itself is called a symmetry of X if
d(f(a), f(b)) = d(a,b) foralla, b€ X.

Let Sym(X) be the set of all symmetries of X. Then, (Sym(X), o) is a
group in which o is the composition of mappings, /, is the identity and
f1is the inverse of any 7. This group (Sym(X), o) is called the group of
symmetries of X.

Let p be any prime number and Gp ={1,2,...,p — 1}.Then, (Gp,-p) is
a group in which - is the multiplication modulo p (see Example 3.1.1
(12)) defined by

a - b = the remainder obtained by dividing
the usual product ab with p.

Here, 1 is the identity and, for any 0 < a < p, the GCD of @ and p is 1
and hence, there exists integers « and 8 such that

aa + Bb =1.

If we divide a by p, we get the remainder b. Then, 0 <b <pandb -
a = land hence b is the inverse of a in (Gp, -p).
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Theorem 3.2.4. Let (M, *) be a monoid and G be the set of all invertible ele-
ments in (M, *). Then, (G, *) is a group.

Proof: First we shall observe that G is a nonempty set, since the identity e in
(M, *) is always invertible and hence e € G. Also, ifa and » € G and ¢’ and
b' are inverses of a and G, respectively, then

(a*b)y*(b' *a'y=a*b*b)*a

=a*e*d

=a*a =e
and b *aY*(@*b)=b"*@@ *a)*b

=b' *e*bh

=b *hb=e¢e
and hence a * b is invertible and b’ * a’ is the inverse of a * b, so that a * b
€ G. Therefore, * becomes a binary operation on G. Also, since * satisfies
associativity on M, * is associative on G also. Since e € G, (G, *) is a monoid

and clearly, the inverse of any invertible element is also invertible. Therefore,
every element in (G, *) is invertible. Thus, (G, *) is a group.

Definition 3.2.5. Let (M, *) be a monoid and @ € M. For any nonnegative
integer n, define

. |e, theidentity ifn=0
a' = .
a"'xa ifn>0

If a is invertible and # is a negative integer, define

a" = (a')™, when a’ is the inverse of a.

Note thata’ = e, a' = a,a®> = a* a,a®> = (a * a) * a, etc. and, if a is invert-
ible, then

a'=a', theinverse ofa
a?=(a')
and a"=(a"y” foranyn € Z".

This justifies the notation a! for the inverse of a.

Worked Exercise 3.2.1. Let a be an invertible element in a monoid (M, *) and
a’ be the inverse of a. Then prove the following for any integers m and n.
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1. a"m =a"*a™
2. (@) =am
3. (an)m o anm o (am)n

Answer: We shall fix n € Z and use induction on m.
1. Case (i): Suppose that m = 0.
Ifm=0,thena"" =a"=a"*e=a"*a".

Let m > 0 and assume that a""™D = 4" * g™ Then,
ar*am=a"* (a"' * a) (by definition of a™)
=@ *a"")*a (by associativity)
= (™" V) * q (by induction hypothesis)
— an +m

Thus, a™™ = a" * o for all n, m € Z withm = 0.
Case (ii): Suppose that m < 0.
Consider, a" * a" = a" * (a’)™ (by definition of a™)
a™ ™ ifnz=-m
(a!)*m*n lf_ m>n
__ _ntm
=a
2. This is trivial if n = 0, since (¢')° = e = d°
If n > 0, then —n < 0 and hence, by definition,
a"=(a'y™ = (a'y.
If n < 0, then, again by definition,
(a'y" = a™, since a is the inverse of a’.
3. This is trivial if m = 0 or n = 0. Therefore, we can assume that mn = 0.

Case (i): Suppose that mn > 0.
If both m and n are positive, then, by (1),

(an)m = g™ = g" = (am)n.
If both m and n are negative, then
(@) = ((a)' )™
= (@)
= (@)
— (afn)fm

= gnEm = g
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Case (i1): Suppose that mn <0. To be specific, suppose that n < 0 and

m > 0. Then,
am = (a’)fnm
= (a’)(fn)m
= ((@")y™"y" (since —n > 0 and m > 0)
— (an)m.

So is the case when n > 0 and m < 0.
Thus, (an)m = g™ = g™ = (am)n.
Worked Exercise 3.2.2. Let G be the set of all rotations of the plane about

the origin in the plane and o the composition of mappings. Thus, prove that
(G, o) is a group.

Answer: The rotation about the origin through an angle 6 can be represented
analytically as the map f, : R X R — R X R defined by

fy(x,¥)=(xcos §— ysin 6, xsin § + ycos 0)
Therefore, G = {f,: 0 < 6 < 2mr}. Note that

foy  ifO+P<2m

O P T R e

It can be easily verified that o is an associative binary operation on G and that
J, ( = the identity map) is the identity in (G, o). Also for any 0, f,  is the
inverse of f, (considering f, = f)). Thus, (G, 0) is a group.

Worked Exercise 3.2.3. For any real numbers a and b with a # 0, define
Jfop ' R—=Rbyf (x) =ax + bforallx €R,

let G ={f ,:0#a€Randb € R}. Then prove that (G, o) is a group, where
o is the composition of mappings.

Answer: Note that, for any a, b, c and d € R,

(Jop LX) =1, (ex + d)
=a(lcxt+d)+b
=acx +ad+ b

= Jocaars®)
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and hencefa’b ofc’d =fac! ey Also, if @ # 0 and ¢ # 0, then ac # 0. Therefore,
0 is an associative binary operation on G. Further, f,  is the identity in
(G, 0),sincef (x) =1-x+ 0= xforall x ER. Also, fl’_b is the inverse
of f, . Thus, (G, 0) is a group. “

We shall conclude this section with two more important examples of
groups given below.

Example 3.2.7. Let G = U S fyo Jis 155 13> where each f; is a function of
R — {0, 1} into itself as defined below.

ﬁ<x>=x,f;<x)=§,ﬂ(x>=1—x,

0= =2 ad g =

b
X x—1

Then, (G, o) is a group, where o is the composition of mappings. The following
table represents the binary operation o on G.

0 f, f, f, f, f, f,
f, f, f f, f, f, f,
f, f, f, f, f, f, f,
f, f, f, f, f f f,
f, f, f f f, f, f,
f, f, f, f f, f, f,
f f f, f f f, f,

Note that f, is the identity and the inverses are given by
S = o = B = B S = S S = S S =

Also note thatf, o f, = f, # f. = f, 0 f,.

Example 3.2.8. The group discussed here is called the group of symmetries
of the square (see Example 3.2.6 (9)). Let X be the set of all points in a square
of unit side. Recall that a symmetry of X is a bijection f'of X into itself such
that

d(a, b) = d(f(a), f(b)) forallaand b € X.
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Let G be the set of all symmetries of X. Then, (G, o) is a group, where o
is the usual composition of mappings. Note that G consists of exactly eight
symmetries and these are listed below.

e = The identity function.

r, = The clock-wise rotation about the centre of the square through an
angle %

r, = The clock-wise rotation about the centre through an angle 7.

r, = The clock-wise rotation about the centre through an angle 3

h = The reflection about the horizontal line through the centre of the
square.

v = The reflection about the vertical line through the centre of the square.

d, = The reflection about the diagonal D,.

d, = The reflection about the diagonal D,.

1
d\ 1 7’
! ,
1/ ! K
\ 1 7
I~ 2
N 1 7
NI
Y R N A W\ _[yh
r. PN r.
3 , N 1
, N
, .
4, .3
" $
, R
N

We have G = {e, r,, 7, ry h,v,d,d,}.
The binary operation o on G is represented by the following table.

o e r r r, h v d, d,
e e r r, r, h v d, d,
r, r, r, r, e d, d, v h
r, r, r, e r v h d, d,
r, r, e r, r, d, d, h v
h h d, v d, e r, r, r,
v d, h d, r, e r r,
d, d, h d, r, r, e r,

<
Q
>
~
~
~
[
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EXERCISE 3(B)

1. Determine the following in which + and -, are the addition and multiplication
modulo #, for a given positive integer n.

() 7+,11
(i) 8+,7
(i) 7., 11
(v) 8,7
(V) 45

(vi) (7+,6)",8
(vii)  77in (Zg, +,)
(viii)  5°in(G,,-)

(ix) 7*%in(G,,,,)

(x) 6%in(Z,,,)

2. List all the invertible elements in each of the following monoids.
W) (@ )
() (Zyy )
(i) (Zyg )
) (Z,-)
(v) (M(X), o), where M(X) is the set of all mappings of X into itself
(vi) (P, +).
(vii) (R, ")
(viii) (Z*, ")
3. Determine which of the following gives a group structure on the given set.
(i) Foranya,bEZ,a*b=a+ b+ ab.
(i) Foranya,b €ER",axb=4%.
(i) axb= Tb forany a, b € R™.
(iv) a*b = |ab|foranya, b € C.
v) a*b=a+b—2foranya, b € Z.
(vi) Foranya,b, €R",a* b = 5ab.
(vii) Foranya, b€ Q",a* b = |ab|
(viil) a*b=a+ b+ ab,foranya, b € 7.

4. Prove that the matrices

PO P A )
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form a group under the matrix multiplication. What is identity element? Determine
the inverse of each element.
State whether each of the following is true (T) or false (F):
(i) Any semigroup has exactly one left identity.

(il) Any semigroup has at most one right identity.

(iii)  Any group has exactly one left identity.

(iv) Ina group, each element has exactly one right inverse.

(v) There is a group with exactly one element.

(vi) For each positive integer n, there is a group with exactly n elements.
(vii) Every semigroup has an identity.
(viii)  For any positive integer 7, there is a semigroup with exactly » elements

in which every element is a right identity.

Let (G, *) be a group. Prove that the identity e is the only element satisfying
x*¥x=ux

Let n be a positive integer and G be the set of all n™ root of unity; that is,
G = {z:zis a complex number and z" = 1}.

Prove that G is group under the usual multiplication of complex numbers.

. Let (G, *) be a group and X be any nonempty set. Let G¥ be the set of all map-

pings of X into G. For any f, g € G, define f* g: X — G by

(F*g) (x) = f(x) * g(x) forall x € X.

Prove that (G, *) is a group. What is the identity in this group? Determine the
inverse of any f € G*.

For any positive integer n, prove that (Z,, *,) is a monoid, where Z = {0, 1, 2,
...n — 1} and - is the multiplication modulo 7.

For any n > 1, prove that (Z , - ) is never a group.

For any 1 = a < n, prove that a is invertible in the monoid (Z , - ) if and only if
a is relatively prime to n.

For any prime number p, prove in detail that (Gp, -p) is a group, where
G, =17,- {0}.

For any positive integer n, give an example of a group having exactly 2"
elements.

Is {1, 2, 3,4} a group under multiplication modulo 5?

Is {1, 2, 3,4, 5} a group under multiplication modulo 6?
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Prove that the following are equivalent to each other for any integer n > 1.
(1) -, isabinary operationon Z — {0}.
(2) (Z,— {0}, ")) is agroup.
(3) nisaprime number.
(4) any 1 = a < nis relatively prime with #.
Let G be the set of all rotations about the origin in the plane and reflections in the

lines through origin. Then prove that (G, o) is a group, where o is the composi-
tion of mappings.

. Consider the regular n-gon (polygon of n equal sides and equal internal angles)

inscribed in the unit circle in the plane, so that one of the vertices is (1, 0). Let
R be the set of all rotations about the origin which maps this regular n-gon into
itself. Prove that (R , o) is a group, where o is the composition of mappings.
How many elements are there in this group?

Let D, be the set of all rotations and reflections which the regular n-gon, given in
18 above, into itself. Then prove that (D , o) is a group, where o is the composi-
tion of mappings. How many elements D, has? The group (D,, o) is called the
dihedral group of degree n (see Theorem 6.4.8). The elements of D, are called
the symmetries of the regular n-gon.

For any rational numbers » and s, define » ~ s if and only if » — s is an integer.

Then prove that ~ is an equivalence relation on the set Q of rational numbers.
Let Q/Z denote the set of equivalence classes w.r.t. ~ in Q and, for any classes
7,8, define 7 +5 = 7+ 5. Then prove that (Q/Z, +) is a group.

ELEMENTARY PROPERTIES OF GROUPS

In this section, we shall derive certain important elementary properties
of groups. In particular, we obtain several sets of equivalent conditions
for a semigroup to become a group. Let us agree to denote the identity
element in an abstract monoid or group by e. We begin with the following
theorem.

Theorem 3.3.1. Let (G, *) be a group and @, b and ¢ € G. Then, the following

holds.
l.a*b=e< a'=>b< b' = a, where e denotes the identity in the
group.
2. (@Y'=a
3. (@*b)yt=b1*a!
4. a*b=c&sa=c*b'sSb=a'*c
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Proof:

1

1. a*b=e=a'=a"'ve=a '"x(axb)=(a 'xa)xb=exb=b

a'=b=axb=axa '=e
a*b=e=b"'=exb ' =(axb)xb ' =ax(bxb ')=axe=ua
b'=asaxb=b"'xb=¢
2. Since a! * a = e, it follows from (1) that (a!)! = a
3. Since(a*b)*(b'*aYy=a*b*b' Y a'=a*e*a'=a*a' =e,
again from (1) it follows that (a * b)' = b' * a’!
4. axb=c=cxb '=(axb)xb'=ax(bxb ')=axe=a
a=cxb ' =axb=(cxb )xb=cx(b'xb)=cxe=c
axb=c=a 'xc=a"x(axb)=(a"'xa)xb=exb=b
b=a"'xc=axb=ax(a 'xc)=(axa )xc=exc=c
Note that if we take e for ¢ in (4), we get (1).
Letus recall that a semigroup is a pair (S, *) where S'is a nonempty set and *
is an associative binary operation on S and that a semigroup with identity is

called a monoid and also that a monoid is called a group if every each of its
elements is invertible.

Theorem 3.3.2. Let (S, *) be a semigroup. Then, (S, *) is a group if and only
if the following conditions are satisfied.

1. (S, *) has a right identity e. That is, there exists e € S such that a « e =
aforalla € S.

2. For each a € S, there exists a’ € Ssuchthata *a' = e

Proof: If (S, *) is a group, then clearly (1) and (2) are satisfied. Conversely sup-
pose that the conditions (1) and (2) are satisfied. By (1), there exists e € S, such
thata * e = a for all a € S. We shall prove that this e is actually the identity in (S,
*). Let a be an arbitrary element in S, By (2), there exists ¢’ and x in S such that

axa'=e and (a'xa)xx=e 6]

Consider

(@'xa)x(a'xa)=a x(axa")*xa
=(a'*xe)xa (by (1)) (ii)

=d'x*a
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Now,
e=(a'*a)xx (by (1))
=((a'xa)x(a'xa))xx (by (ii))
=(a'xa)*x((a'xa)*x) (by associativity)
=(d'xa)xe (by (1))
=da'*a

Thus, for any a € §, there exists ¢’ € S such that
a*a=e=a*a (1i1)

Also,e*a=(a*a)Y*a=a*(@ *a)=a*e=a.
Thus, e is the identity in (S, *) and, for any a € S, @' is the inverse of a (by
(ii1)), Therefore, (S, *) is a group.

On the lines of above proof, one can also prove that a semigroup is a group
if and only if it has left identity with respect to which every element has left
inverse.

Recall that, for any given real numbers a and b, the equationa + x = b
has a unique solution in R. In fact, this is an important defining property of a
group as proved in the following theorem.

Theorem 3.3.3. A semigroup (S, *) is a group if and only if, for any elements
a and b in S, the equation

a*x=b and y*a=5»>

are solvable in S (in the sense that there are elements x and y in S satisfying
these equations).

Proof: Let (S, *) be a semigroup. If (S, *) is a group, then for any a, b € S,
we have a™! * b and b * a! are elements of S such that

a*(@'*b)y=(@*a)Y*b=e*b=0»b
and b*aY*a=b*(@'*a)y=b*e=5>
and therefore the equations ¢ * x = b and y * ¢ = b have solutions in S.

Conversely suppose that these equations have solutions in S for any
aand b in S.
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Let a be an arbitrary element in S. Then, there exists e € s such that
a*e=a (sincea* x = aissolvable in S).

We shall prove that b * e = b for all elements b € S. To prove this, let b € S.
Then, choose an element s € S such that

s*a=>b (sincey*a = bissolvable in S).

Now,b*e=(s*a)*e=s*(a*e)=s*a=>b.
Thus, e is a right identity in (S, *). Also, since a * x = e is solvable in S, we
get that, for each a € S, there exists ¢’ € S such that a * a’ = e. Thus, by the
above Theorem 3.3.2, (S, *) is a group.

Recall that, in the elementary school mathematics, one is used to conclude
b = c whenevera + b = a + ¢ for some a and we were used to give reasoning
for this by saying ‘subtracting a from both sides’ which amounts to adding
—a both sides.

This is abstracted in the following theorem.

Theorem 3.3.4. Let (G, *) be a group and a, b and ¢ € S. Then,

axb = axc = b=c (left cancellation law)

and bxa = cxa= b=c (rightcancellation law).
Proof: Consider

axb=axc=a 'x(axb)=a '"x(axc)
= (a '*a)xb=(a '*xa)xc
=exb=exc

=b=c

Also,b*a=c*a=Ob*a)*a'=(c*a)*a!
=>b*@*aY=c*@*a™)
=b*e=c*e
=b=c

A semigroup may satisfy both the left and right cancellation laws without

being a group. This is to say that the converse of the above theorem is not
true. For, consider the following examples.
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Example 3.3.1

1. Consider the semigroup (Z*, +), where Z* is the set of positive integers
and + is the usual addition. Since (Z, +) is a group, (Z, +) satisfies both
the cancellation laws. Since Z™ is a subset of Z, (Z*, +) also satisfies
both the cancellation laws. Nevertheless, (Z*, +) is not a group, since
this has no identity.

2. A monoid may satisfy the cancellation laws without being a group. Con-
sider the set W of all nonnegative integers. Then, for the same reason
given above, (W, +) is a monoid satisfying both the cancellation laws
and this is not a group, since no element, except 0, has inverse.

Even though the converse of Theorem 3.3.4 is not true in general, we prove
the converse in the case of finite semigroups. Recall that a semigroup (S, *) is
called finite if the underlying set S is finite.

Theorem 3.3.5. Let (S, *) be a finite semigroup satisfying both the cancella-
tion laws. Then, (S, *) is a group.

Proof: Since S'is a finite set, we can enumerate the elements of S. Let a, a,,
..., a_be all the distinct elements of S. That is,

S={a,a,..,a}.
Let @ and b be any arbitrary elements in S and let
% — % % %
a*S={a*a,a*a,..,a*a}.
Then, a * a;s are all distinct elements in S, since

a*a, =a* a,=a,=a, (by left cancellation law)

=i = j (since a,’ are distinct).

Therefore, a * S is an n-element subset of S and S also has n-elements and
hence

a*S==_S.

In particular, » € S = a * S and hence b = a * x for some x € S.

Similarly, by using the right cancellation law, we can prove that S * a = §
and hence y * a = b for some y € S. Therefore, for any elements a and b in
S, the equations
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a*x=b and y*a=5»b

are solvable in S. Thus, by Theorem 3.3.3, (S, *) is a group.

Definition 3.3.1. A binary operation * on a set S is said to be commutative if
a*b=b*aforallaand b € S.

A group (G, *) is said to be a commutative group or abelian group (in

honour of a great algebraist Abel) if * is commutative ; that is,

a*b=b*aq forallaand b € G.

Example 3.3.2

1.

(z, +), (Q, +), (R, +) and (C, +) are all abelian groups, since the
addition + is commutative.

. (Q@—{0},"), (R—{0},") and (C—{0},") are abelian groups, since the

multiplication is commutative.

. For any set X, (P(X), +) is an abelian group, since, for any 4 and B in

P(X),
A+B=(—-B)UB-A)=B-A)UA — B) =B + A.

. Let X be a set with atleast three elements and S(X) the set of all bijections

of X onto itself. Then, (S(X), o) is a group which is not abelian. For, con-
sider three distinct elements a, b and ¢ in X and define fand g : X — X by

fla)=b,f(b)=a and f(x)=x forallx#a,b
and gb)=rc,glc)=b and gkx)=x forallx=D,c.
Then,  (fog)a) = f(g(a)) = fla) = b
and (g of)a) = g(f(a)) = g(b) = c# b = (fog)(a).
Therefore, fo g # g o f- Thus, (S(X), o) is an abelian group.

. The matrix multiplication is not commutative. Let NSM (IR) be the set

of all nonsingular n X n matrices over R. Then, (NSM (R), - ) is a group
which is not abelian if n > 1.

The addition of matrices is a commutative operation. (M, (R), +)is an
abelian group for any positive integers m and n, where M (R) is the set
of all m X n matrices over R.

Theorem 3.3.6. The following are equivalent to each other for any group
(G, ™).

1.

(G, *) is an abelian group.

2. (a*b)y'=a'*b'forallaand b € G.
3. (a*bP=a**b*forallaand b € G.
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Proof:
(1) = (2): If (G, *) is an abelian group and @ and b € G, then, by Theorem
3.3.1(1),

(@a*by'=b'*agl=ag'*b.

(2) =(3): Suppose that (a * b)' = a! * b foralla and b € G.
Then, for any ¢ and b € G, we have

(a*by =(a*b)*(a*Db)

(a* @) * ((a)y' *b)
a * ((bfl)fl * (afl)fl) % b

a 3k (afl * bfl)—] * b
a*((a* b)—l)—l * b
=a*@*b)*b
=@*a)*(b*b)y=a**b

(3)=(1):Foranyaand b € G

(a*by=a*b’=(a*b)*(a*b)=(a*a)*(b*b)
=a*b*a)*b=a*@*b)*Db
= b * a = a* b (by cancellation laws)

Worked Exercise 3.3.1. Let X be any nonempty set and S(X) be the set of all
bijections of X onto itself. Then prove that (S(X), o) is an abelian group if and
only if [X] < 3.

Answer: If |X] = 3, then we have proved in Example 3.3.2 (4) that the group
(S(X), o) is not abelian.

On the other hand, suppose that |[X] < 3. Then, |[X] = 1 or 2. If |X] = 1,
then S(X) has only one element, namely the identity map and S(X) = {/ }
is clearly abelian. If |X] = 2, say X = {a, b}, then there are exactly two
bijections, namely the identity map /, and the function f: X — X defined
by f(a) = b and f(b) = a and therefore S(X) = {/,, f} which is clearly an
abelian group.

Worked Exercise 3.3.2. Let (G, *) be a group. Then prove that (G, *) is abe-
lian if and only if there exist three consecutive integers » such that (a * b)" =
a** b foralla, b € G.
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Answer: If (G, *) is an abelian group, then for any a and b € G, we have
(a*b)’=e=e*e=a"*D°
(@a*b)=a*b=a"*D

and (@a*by=(a*b)*(a*b)

a*(b*a)*b

a*@*b)*b

(a*a)*(b*b)=a* b

and hence, forn =0, 1,2, (@ * b)" = a" * b" for all a, b € S. Conversely sup-
pose that there exists an integer n such that

(a * b)n—l = g *® prl (1)
(a* by =a"* b (ii)
and (a* by = g * prl (iii)

for all a and » € G. From (i) and (ii) we have
a %k (an—l * b) % bn—l =q" * bn
=@*by
— ((1 % b) % (a * b)n—l
= (a 3k b) % anfl ES bnfl
=a % (b % an—l) % bn—l
and hence, from the cancellation laws, we get that
a'*pb=b*a" foralla,b€ G (iv)
Similarly, by using (ii) and (iii) we get that
ar*b=>b*qg" foralla,b € G v)
Now, for any a and b € G, consider

bnfl * (a % b) = (bnfl % a) % b

=(@*b")*b (by (iv))
=q* (bn—l * b)

=a*p

=0b"xa (by (v))
— (bn—l * b) * g

= b1 % (b * q)
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By the left cancellation law, we get a * b = b * a for all a and b € G, Thus,
the group (G, *) is abelian.

Worked Exercise 3.3.3. Let (G, *) be a group such that a> = e forall a € G.
Then prove that (G, *) is an abelian group.

Answer: For any elements a and b € G, wehavea *a=a*>=ceandb * b =
b* = eand hence a! = aand b! = b. Now

(a*byt=a*b=a'*b!
Thus, by Theorem 3.3.6, (G, *) is an abelian group.

Worked Exercise 3.3.4. Let (G, *) be a group such that x? # e for all x # ¢ in
G. Then prove that (G, *) is an abelian group if and only if

(a*b)*=(b*a)y forallaand b € G.
Answer: If (G, *) is an abelian group, then clearly
(a*b)*=(b*a)y forallaand b € G.

Conversely suppose that (a * b)* = (b * a)* foralla and b € G.
Let a and b be arbitrary elements of G and consider

@=(a*ep=(a* ("' *b)
=(a*b")* by
=(b*@*bh)y (by hypothesis)
:b*a*b—l*b*a*b—l
=ph*g*e*g*ph!

= ph* g2 * !

Therefore, a> = b *a®> * b' forallaand b € G and hence a* * b = b * a* *
b'*b=0b*d.

Therefore, a> * b = b * a*forallaand b € G.

Now, put x = (a * b) *(a™' * b™') and consider

X=x*x=(a*b)* (@' *b)*(@*b)*(a'*b")
=(@*b)*(@' *b'*a)*b* (a'*b")
=(@*b)y*(@*a?*b'*a)*b* (a'*b?)
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:(a*b)*(a*bfl*afz*a)*b*(afl*bfl)
— (a *b) % (a * ol ok a—l) * bk (a—l % b—l)
:(a*b)*(a*b*biz*ail)*(b*ail*bil)
=(a*b)*(a*b*a’l*b’z)*(b*a"*b’l)
:(a*b)*(a*b)*afl*bil*afl*bfl
— (a * b)z % (a—l * b—l)z
— (b sk a)z * (afl 3k bfl)Z
=b*a)*b*ay?=e

Therefore, x> = e and hence, by hypothesis, x = e. From this it follows that

a*b*a'*b'=eandhencea*h=(a'*bH)'=0BHY"'*@)' =b*a
This (G, *) is an abelian group.

Worked Exercise 3.3.5. Let (G, *) be a group, @ and b € G and m and n be
relatively prime positive integers such that

a"=>b" and a"=b"
Then prove that a = b.

Answer: Since m and n are relatively prime there exist integers » and s
such that

rm+sn=1
Now, consider

a= al = qgm + sn
— (am)r % (an)s
— (bm)r % (bn)s

— pmon
=pl =
Worked Exercise 3.3.6. Let (G, *), (G, *), ..., (G, *) be groups and
G=G XG X XG,
Foranya = (a,a,, ...,a)and b = (b, b,, ..., b ) € G, define

a*b=(a *b,a,*b,....,a *b).
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Then prove that (G, *) is a group and (G, *) is abelian if and only if each
(G,, *) is abelian.

Answer: Clearly * is a binary operation on G and, using the associativity of
the operationson G, G, ..., G, we can prove that * is associative on G. Also,
ife,e,...,e are 1dent1t1es in G G,, ..., G , respectively, then the elemente =
(el, ez, . en) becomes 1dent1ty in (G *). Further, for any a = (@, a,, ..., a))
in G, (a[l, a,',...,a ") is the inverse of a in (G, *). Thus, (G, *) is a group.
If each (G, *) is abelian, then
a*b=(a,ay..a)*(b.b,...b)
=(a,* bv a,*b,...,a *b)
=0, *a,b,*a,....,b *a)

=(b,by,....0)*(a,ay,...,a)
—ph*q

For all a, b € G and hence (G, *) is abelian. Conversely suppose that (G, *)
is abelian. Fix 1 <i < n. For any a, and b, € G, consider

a=(e,...e ,a,e,,...,e)

i-1° i+1?
bl’ i+ € )

andb = (e, ..., e

i-1°

Since (G, *) is abelian, we have a * b = b * a and, in particular, their i coor-
dinates must be equal and therefore a, b, = ba.. Thus, (G, *) is abelian for
all 1<i<n.

Worked Exercise 3.3.7. Describe the group of symmetries of the set X of all
points on the perimeter of an equilateral triangle.

Answer: Let 1, 2 and 3 be vertices of an equilateral triangle and its altitudes
be as shown in the adjacent figure. Let X be the set of all points on the perim-
eter of the triangle.
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Recall that a symmetry of X is a bijection f'of X onto itself such that

d(f(a), f(b)) = d(a, b)

for all a and b € X, where d(a, b) is the usual Euclidean distance between
a and b. Therefore, a symmetry of X should map each vertex to a vertex only
and hence we can identify the group (Sym(X), o) with the group (S(V), o),
where S(V) is the set of bijections of the set V' of vertices onto V' = {1,
2, 3}. It follows that Sym(X) has exactly b elements which are described
below. Each of these map each of 1, 2, 3 to the number given vertically
below that.

9
I
—_—
—_
\}

3 1 23 1 23
,d= and s= .
2 321 21 3

These six elements e, a, b, ¢, d and s are related by the following equations.

—
w

aoa=bjaoaoa=e=coc=dod=sos=bobob
cod=a;doc=aoa=b;dos=a
sod=b;cos=b;soc=a
aoc=s,coa=d;aod=c

doa=s;s0a=c,aos=d

The following table describes the binary operation o on Sym(X) = S(V)

0 e a b c s
e e a b C s
a a b e s c d
b b e a d s c
C c d s e a b
d d s b e a
s s c d a b e

Note that this group is not abelian, since a 0 ¢ # c 0 a.
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EXERCISE 3(C)

1.

11.

12.

Prove the following for any elements @, b and ¢ in a group G in which e is the
identity.

(i) a*b=esb*a=e
(i) (@*b)*c=es(b*c)*a=-e

Give an example of a finite semigroup satisfying the left cancellation law, but
not satisfying the right cancellation law.

Give an example of a finite semigroup satisfying the right cancellation law,
which is not a group.

Let (G, *) be a semigroup satisfying the following.
(1) (G, *) has a left identity e.
(i) Foreach a € G, there exists a’ € G such thata * a' = e.

Then prove that (G, *) is a group.

Prove that a group (G, *) is abelian if and only if (a * b)" = a" * b" for all @ and
b in G and for all integers n.

In any finite semigroup, prove that there exists an element e such that ¢* = e.

Let m and n be relatively prime positive integers and (G, *) a group such that
A Ebn=b"EF g and @' b= b g

for all @ and b € G. Then prove that (G, *) is an abelian group.

Let (G, *) be a finite group and suppose that the number of elements in G is
even. Then prove that there exists an element a, other than the identity, in G
such that a* = e.

. For any element « in a finite group (G, *), prove that there exists a positive inte-

ger n such that a” = e, the identity in G.

. For any finite group (G, *), prove that there exists a positive integer » such that

a'=e foralla € G
where e is the identity in (G, *).

For any elements a and b in a group (G, *) and for any positive integer 7, prove that
(@*b*a'yYy=a*b*a's b =Db

Let (G, *) be a group and X be any nonempty set. Let G* be the set of all map-
pings of X into G. For any fand g € G¥, define f * g : X — G by

(f* g)(x) = f(x) * g(x) forallx € G.
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Then prove that (G, *) is a group which is abelian if and only if so is G.
13. Give an example of a nonabelian group having exactly six elements.
14. Prove that any group with fewer than six elements is abelian.

15. For any integer n > 1, prove that the set of all nonsingular » X n matrices over
R forms a nonabelian group under the multiplication of matrices.

16. Let (G, *) be a group. Define a new binary operation o on G by
aob=b*a

for all @ and b in G. Then prove that (G, o) is a group which is abelian if and only
if (G, *) is abelian.

3.4 FINITE GROUPS AND GROUP TABLES

We know that a binary operation on a finite set can be represented by means
of a table. In this section, we shall take up finite groups and the description of
their group structure in terms of the table representing the binary operation.
First consider the smallest group. Any group should contain the identity ele-
ment e and hence {e} is the smallest group. Since e * ¢ = e, the table for the
group ({e}, *) is trivial, as given below.

Next, we consider a two element group G. Then, there should be only one
element in G other than the identity e and therefore G = {e, a}, where a # e,
wehavea *e =a =e*aand e * e = e. What could be a * a? It cannot be a,
for,ifa * a = athen a * a = a * e and, by the cancellation law, a = e which
is false. Therefore, the only possibility is @ * a = e. The table for the group
(G, *), where G = {e, a}, is given below.

* e a
e e a
a a e

Next, we shall take up a 3-element group. In this case, there are exactly two
elements, say a # b, in G other than the identity e. That is,

G = {e, a, b} and e, a and b are distinct.
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The table representing this group (G, *) should be like the one given below

Let us search for the possible entries for the vacant places in the table. First
observe that a * b # a (since a * b = a = a * e = b = e, which is false).
Similarly, a * b # b (since a # e). Therefore, the only possibility isa * b = e
and b *a = e.

Next, we shall search for a * a. First of all @ * a # a (since a # e). Also,

a*a=e=a*a*b=e*b=0»>
=a*e=0b
= a = b, which is false.

Therefore, a * a # e and a * a # a and hence the only possibility isa * @ = b and
similarly b * b = a. Now, the table is complete and is given below

The above procedure for arriving at the full table representing the group
{e, a, b} yields the fact that the table of any three element group looks like
the same, except the interchanging of the elements a and b or relabeling the
elements g and b as b and a.

Consider the group (Z, +,), where Z = {0,1,2, ...,n—1} and + isthe
addition modulo n. For n = 2 and n = 3, the tables representing (Z,, +,) and
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(Z, +,) look like exactly the above tables representing a 2-element group
and a 3-element group. In these cases, 0 is the identity, Z, = {0, 1} and
Z,=1{0,1,2}.

+, 0 1 2

+, 0 1 0 0 1 2

0 1 1 1 2 0

1 1 0 2 2 0 1
(Z,, +,) (Zy, +)

Careful examination of these tables reveal certain necessary conditions
that a table representing a binary operation on a finite set must satisfy
certain properties for the operation to give a group structure on the set.
There must be one element of the set which is the identity in the group
and is denoted by e. Since a * e = a for all elements «a in the set, the col-
umn of the table under e at the very top must contain exactly the elements
appearing at the extreme left in the same order. Also, since e * a = a for
all elements «a in the set, the row of the table opposite e at the extreme
left must contain exactly the same elements appearing across the very top
of table in the same order. Further, since any element of the set has left
inverse and right inverse, the row having a at the extreme left must contain
e in some place and the column under « at the top must contain e at some
place. Therefore, ¢ must appear in each row and in each column. In fact,
for any elements a and b in the group, the equationsa *x =bandy *a = b
have unique solutions in the group. This is equivalent to saying that, for a
given element a in the group, every element of the group appears exactly
once in the row with a at the extreme left and exactly once in the column
with a at the very top. In the following, we have formulated a converse of
the above argument.

Theorem 3.4.1. Let * be an associative binary operation on a nonempty finite
set G. Then, (G, *) is a group if and only if, for any a € G, every element of
G appears in that row with a at the extreme left and in the column with « at
the very top.

Proof: Consider the table representing the operation * on G. For any ele-
ments a and b in G, the equation @ * x = b is solvable in G if and only if b
appears in the row with a at the extreme left. Also, the equation y * @ = b is
solvable in G if and only if b appears in the column, with a at the very top.
Now, the theorem is a direct consequence of Theorem 3.3.3.
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Example 3.4.1. The table representing the group (Z,, +,) is given below.
Recall that Z, = {0, 1,2, 3,4, 5,6, 7, 8} and + is the addition modulo 9.

+, 0 1

0 N o U b~ W N

0 N o v A~ W N

S 00 N O U b~ w N

- O 00 N O u M W NN

N S 00 N O 1B~ W w

w O 00 N O v b~ s
- O 00 N o wu wuv

v A W N S 0 N O O

a v A W N o 00 N N

N OO o A WN =, O 0

Example 3.4.2. Let X = {1, 2, 3} and S(X) be the set of all bijections of X
onto itself. S(X) has six elements and these are

1 23 1 2 3 1 2 3
e= , a= , b= ,
[1 2 3] [2 3 1] [3 1 2]

1 2 3 1 23 1 2 3
c= ,d= and s=
1 3 2 3 21 21 3

Then, (S(X), o) is a group, where o is the composition of mappings and its
table is given below.

o e a b C s
e e a c s
a b e c d
b b e a d c
c d e a b
d d e

s s d a b e

The vacancies in the above table can be filled in using Theorem 3.4.1.
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Worked Exercise 3.4.1. Let X = {1, 2, 3} and P(X) be the set of all subsets
of X. Construct the table representing the group (P(X), +), where + is the
symmetric difference.

Answer: P(X) has 2* (= 8) elements since X is a 3-element set. For conve-
nience, we label them as given below.

e=, a= {1}, b= {2}, c = {3},

p =112}, q = {2,3}, r={1, 3}, X={1,2,3}.

+ e a b c p q r X

e e a b C p q r X

a a e p r b X C q

b b p e q a c X r

c c r q e X b a p

p p b a X e r q

q q X c b r e p a

r r c X a q p e b

X X q r p c b e
(PX), +).

Worked Exercise 3.4.2. Let G, _{1,2,3,4,5,6} and -, be the multiplication
modulo 7. Construct the table representing the group (G, -,)

Answer:

o1 2 3 4 5 6
1 1 2 3 4 5 6
2 2 4 6 1 35
3 3 6 2 5 1 4
4 4 5 2 6 3
5 5 3 1 6 4 2
6 6 5 4 3 2 1

(G73 .7)'
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Worked Exercise 3.4.3. Examine whether the table below represent a group

structure.
* a b c d e
a b c d e a
b a d a b
c d c b e c

d c a a b d

e a b c d e

Answer: The underlying set is X = {a, b, ¢, d, e}. If the table represents a
group (X, *), then the set of entries in each row and in each column must be
equal to the set X. The third row opposite to ¢ at extreme left consists of d,
¢, b, e and a is absent in this and hence the given table does not represent a
group structure on X. Note that ¢ * x = a is not solvable in X. However, the
element e is the identity in the binary system (X, *).

EXERCISE 3(D)

1. Examine the following tables representing binary systems and determine which
of them represent a group structure.

(1) (i)
* 0 1 2 3 4 * a b c
0o 0 0 0O o0 O a a c
1 0 1 2 3 4 9 a
2 0 2 4 1 3 < < a
30 3 1 4 2
4 0 4 3 2 1

(iii) (iv)
* a b d e * 1 2 3
a b C d e a 1T 1 2 3
b ¢ d e a b 2.2 3 4 1
c d e a b C 33 4 2 3

4 4 3 2 1
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) (vi)
i =i 1 1 * 1 2 3
i =1 1 —i i 1 1 2 3
—i I i —i 2 2 3 4 1
=1 —i i 1T -1 3 3 4 1 2
1 i =i -1 1 4 4 1 2 3

. LetG,=1{1,2,3,4,56,7,8,9, 10} and - | be the multiplication modulo

L1. Then prove that (G, , - ) is a group and construct the table representing the
group.

. Let n be a positive integer greater than n and S = {1, 2, ..., n — 1}. Prove that

the multiplication modulo 7 is a binary operation on S if and only if # is a prime
number.

Construct tables representing all the 2-element groups, 3-elements groups,
4-element groups and 5-element groups.

By observing the tables in 4 above, prove that every 2-element groups, 3-element
groups, 4-element groups and 5-element groups is abelian.

Prove that a finite group (G, *) is not abelian only if |G| > 5.
Give an example of a nonabelian group with exactly six elements.

For any positive integer n, give an example of an abelian group with exactly n
elements and construct a table representing it.

Let G be the set of all rational numbers with odd denominators. Prove that (G,
+) is a group, where + is the usual addition of rational numbers.

i .
O]’ where i is the complex number such that 2 = 1.
i

Let
O, ={A"'B"):n,m € Z}.

Prove that (Q,, -) is a group, where ‘-’ is the usual multiplication of complex
numbers and that O, has exactly 8 elements. This group is called the Quaternion
group of order 8.
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Subgroups and

Quotient Groups

4.1 Subgroups

4.2 Cyclic Groups

4.3 Cosets of a Subgroup
4.4 Lagrange’s Theorem
4.5 Normal Subgroups
4.6 Quotient Groups

A nonempty set together with certain operations on it is called an algebraic
system. In the study of any algebraic system, the subsets of the underlying set
which are closed under the operations of the algebraic system called subsys-
tems or substructures. In general, we are not interested in arbitrary subsets of
the underlying set 4 in the algebraic system; for, they do not reflect the fact that
A has an algebraic structure imposed on it. Whatever subsets we do consider
will be those endowed with algebraic properties derived from those of the given
algebraic system. In this chapter, we introduce the notion of a subgroup of a
group and study various properties of subgroups of a several group.

First let us slightly change our notation followed till now. If * is the binary
operation on a given group (G, *) and a and b are arbitrary elements of G, it is
cumbersome to write @ * b. Let us agree to write simply ab for a * b, without
writing the specific symbol * in between a and b. Already we are practicing
this; for example, for any two real numbers a and b, we write ab to denote
the product of @ and b. Here afterwards, we simply write ab for a * b, except
on specific occasions where the binary operation in the group is a special one
we are familiar with. For example, when we consider the group (R, +), we
write a + b.
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Also, instead of saying that ‘(G, *) is a group’, we simply say that ‘G is a
group’ or ‘G is a group under *’. It is not that * is unimportant and need not
be mentioned. Actually the binary operation in a group is like a backbone to
the group structure. However, for convenience and simplicity, we ignore to
mention the binary operation *, when only one operation is under consider-
ation and there is no ambiguity. When we consider two binary operations on
the same set, then we invariably specify the binary operation which is under
consideration. When there is no ambiguity about the binary operation, we use
G to denote the group as well as the underlying set of the group.

4.1 SUBGROUPS

Recall that a binary operation * on a set S is a mapping of S X § into S. If
A is a subset of S, then 4 X A is a subset of § X § and if the restriction of * to
A X A is a binary operation on A4, then the restriction also will be denoted by
* and is called the operation 4 induced by the operation * on S. In particular,
if (G, *) is a group and 4 is a subset of G such that a * b € 4 whenever a and
b € A, then * can be treated as a binary on A4 with respect to which 4 can be
a group and, in this case, we say that 4 is a group under *.

Definition 4.1.1. Let (G, *) be a group. A subset H of G is said to be a sub-
group of (G, *) if H on its own becomes a group under *.

Before going, for example, we obtain equivalent conditions on a subset
of a group to be a subgroup. These facilitate us in checking whether a given
subset is a subgroup.

Theorem 4.1.1. The following are equivalent to each other for any nonempty
subset H of a group G-

1. aandbEH=abE Handa ' € H.
2. aandbEH=ab ' €EH.
3.aandbEH=a'bEH.

4. H is a subgroup of G.

Proof: Let G be a group and H be a nonempty subset of G.
()= @Q)aandbE H=aandb ' € H (by (1))

=ab'€ H (by(l))

(2) = (3): Suppose thataand b € H=ab™' € H.
Ifa € H, then e = aa™' € H and hence

a€EH=a'=ea'€H (sinceeanda € H)
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Now,aandb EH=a 'andb ' EH
Sa'bHh)'eH
=a'bEH

(3) = (4): Suppose thataand b € H=a"'b € H.
Since H is nonempty, we can choose 2 € H. Then,

e=h'heH

Also,a € H=a'=a'e€ H (sinceaande € H)
Now,aandb E H=a 'andb E H

= @YyYbeH
=ab€EH

That is, a * b € H whenever a and b € H. Therefore, the operation * on G,
when restricted to H, becomes a binary operation on H. Since * is associative
on G, so is on H. Also, since ¢ € H and e is the identity in (G, *), e becomes
the identity in (H, *) also. Further, forany« € H,a™' € Hand aa™' = e =
a'a and hence a™! is the inverse of @ in (H, *). Thus, (H, *) is a group and
hence H is a subgroup of G.

(4) = (1): Suppose H is a subgroup of G. Then, (H, *) is a group and
hence a * b € H, whenever a and b € H. Also, for any a € H, the inverse of
a exists in H also. Let @' and ™' be inverses of @ in H and G, respectively.
Then both these are inverses of a in G and hence equal. Therefore, a™! = a’
€ H. Now,

aandbEH=abEH and a'€EH.

If the symbol + is used to denote the binary operation in a group, then we
write —a for the inverse ¢! of a and write @ — b for ab™' (for psychological
reasons!). In this case, a nonempty subset H of G is a subgroup of G if and
only if a — b € H whenever a and b € H. Recall that, in the group (R, +)
or (Z, +) or (C, +), 0 is the identity and —a is the inverse of an element a.
Also, the element a” defined in the Definition 3.2.5 will be denoted by na,
when + is used to denote the binary operation. This is only for not violating
our usual practice right from the elementary school stage. Recall that we are
habituated to write

nafora +a+---+a (ntimes)

and a"'fora-a-a-...-a (ntimes)
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— a for the inverse of @ in (R, +)
a—bfora+ (—b)

% for 671, the inverse of b in (R — {0}, -)
2 forab~'.
b

When H is a nonempty finite subset of a group G, we get a simpler crite-
rion for H to be a subgroup of G, which gives a simpler procedure to check
whether a given finite subset is a subgroup. This criterion is obtained in the
following theorem.

Theorem 4.1.2. Let H be a nonempty finite subset of a group G. Then, His a
subgroup of G if and only ifa and b € H = ab € H.

Proof: Suppose thata and b € H = ab € H. In order to prove that H is a sub-
group of G, we have to only prove that a™' € H whenever a € H (by Theorem
4.1.1). Now, let « € H. Since H is given to be finite, we can write

H={a,a,..,a} a# a, fori # j.

2%
Consider the set alf = {aa, aa,, ... ,aa }.

We have aa, = aa, = a, = a, (by cancellation law)

=i=j

and hence aa,, aa,, ..., aa are all distinct. Also, since a and a, € H, we have
aH C H and H and aH have the same number of elements. From the finiteness
of H, it follows that aH = H. In particular,

a€ H=aH
and hence a = aa, for some 1=i=n.
Since all these are elements in the group G, we get thate = a, € H. Now e €
H = aH and hence
e=aa, forsome 1 =j = n.
Therefore, a™! = a, € H. Thus, H is a subgroup of G.

The finiteness of H in the above theorem is necessary; for, consider the
set Z* of positive integers. Then, Z* is a subset of Z, (Z, +) is a group
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and a + b € Z* whenever a and b € Z* and still Z* is not a subgroup of
(Z, +).

Now, we collect certain examples of subgroups of groups. Some of the

subgroups given below are earlier given as examples of groups.

Example 4.1.1

1.

1
. Let A=
l

If H is a subgroup of a group K and K is a subgroup of a group G,
then clearly H is a subgroup of G. If + denotes the usual addition
of numbers, Z is a group of (Q, +), Q is a subgroup of (R, +) and
R is a subgroup of (C, +) and hence Z, Q and R are all subgroups
of (C, +).

If e is the identity in a group G, then clearly {e} and G are subgroups of
G and are called the trivial subgroups of G. Any subgroup other than {e}
and G is called a nontrivial subgroup. A group G is called nontrivial if
G # {e} and trivial if G = {e}.

. If - is the usual multiplication of numbers, then Q — {0} is a subgroup

of (R — {0}, -)and R — {0} is a subgroup of (C — {0}, -). Therefore,
both Q — {0} and R — {0} are subgroups of (C — {0}, -).

. Let X be any nonempty set and (S(X), o) be the group of bijections of X

onto itself, where o is the composition of mappings. Let x, be an arbi-
trary element of X and

H, =1 €S(X):f(x)=x,}.
Then, H_ isa subgroup of (S(X), 0) Also, for any subset ¥ of X, the set
H,={f€SX):fiyy=y forally €Y}
is a subgroup of (S(X), o).

. Letnbeapositive integer and NSM (IR) be the set of all nonsingularn X n

matrices over the real number system R. Then, (NSM, (R), -) is a group
where - is the usual multiplication of matrices. Let

H={(a,) ENSM,(R) :a, =0 foralli>j}
and K= {(al.j) € NSM (R) : a, = 0 foralli <j}.

Then, H and K are subgroups of NSM (R).

611 tac R}. Then, 4 is a subgroup of (NSM,(R), -). One

can easily verify that, for any ¢ and b € R,
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1 a1l b) (1 a+b
0 1](0 1 0 1
1 &' (1 -
and - a.
0 1 0 1

7. Consider the additive group (Z,, +,) of integers modulo 4. We have Z,
= {0, 1, 2, 3} and 0 is the identity. If / is a nontrivial subgroup of Z,,
then H = {0,2} (sincel e H=2=1+,1€ Hand3 =1+,1+,1
€Hand3 € H=1=3+,3+,3€ H=1,2,3 € H). Therefore, {0},
{0, 2} and Z, are the only subgroups of (Z,, +,).

8. The group (Z,, +,) has no nontrivial subgroups; for, if H is a subgroup
of Z, then

l€EH=1,2,3,4€ H=>H=1Z,
2eH=2+2+2€eH=1€H=H=1Z,
JEH=1=3+3€H=>H=Z,
4€eH=3=4+4€H=H=1,
Since every subgroup of a group G should contain the identity e in G, it
follows that {e} is the smallest subgroup of G. Also, clearly G is the largest

subgroup of G. In the following theorem, we describe the smallest subgroup
of a group G containing a given element of the group.

Theorem 4.1.3. Let G be a group and a € G. Let

<a> = {a": nis an integer}.
Then, <a> is the smallest subgroup of G containing a.
Proof: Recall that ¢" is defined as

e ifn=0
a"=1a""a ifn>0
(@™ ifn<0
and hence " € H for all integers n and for all subgroups H of G containing

a. Also, by Worked Exercise 3.2.18, <a> is a subgroup of G and contains a.
Thus, <a> is the smallest subgroup containing a.

Definition 4.1.2. For any group G and a € G, <a> = {a" : n is an integer} is
called the cyclic subgroup generated by a in G.
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Before going for a detailed discussion on cyclic subgroups generated by
elements of an arbitrary group, we shall first discuss certain elementary prop-
erties of subgroups.

Theorem 4.1.4. The intersection of any class of subgroups of a group G is
again a subgroup of G.

Proof: Let € be a class of subgroups of a group G and
1etH=CQ%C={a:a € C forall C € €}.

If € is empty class, then, by logical convention, H = G and hence H is a sub-
group of G. Therefore, we can assume that € is a nonempty class.

Since the identity element e must be in every subgroup, we get that e € H and
hence H is a nonempty subset of G. Now,

aandbEH=aandbE C, forallCEE
=ab'E€C, foralCE®
=ab ' E H.

Therefore, H is a subgroup of G.

Definition 4.1.3. For any subset S of a group G, let <S> be the intersection
of all subgroups of G containing S. Then, by the above theorem, <S> is a sub-
group of G containing S and is called the subgroup generated by S in G.

Note 4.1.1

1. For any subset S of a group G, <S> is the smallest subgroup of G con-
taining S.
2. <> = {e} and <G> = G, for any group G.
<{a}>=<a>={a":n€ Z} foranya € G.
. For any nonempty subset S of a group G, S'is a subgroup of G if and only
if § = <§>.

» oW

In the following, we describe the elements of <§>, for any nonempty sub-
set S of a group. The description of elements of <{a}> is already given in
Theorem 4.1.3. This is generalised in the following theorem.

Theorem 4.1.5. Let S be a nonempty subset of a group G and <S> be the
smallest subgroup of G containing S. Then,

<§>= {Hsi :n€Z" and, foreachi, s;ors; ' € S}.
i=l1
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Proof: Let A4 be the set defined on the right side of the required equality. If
H is any subgroup of G containing S, then s and s7' € H for all s € S and
therefore any product of elements of S and their inverses must be in H. This
is to say that 4 C H for all subgroups H containing S. Also, & # S C A4 and,
since

-1 -1

(5,8 .8)t,ty ... t,) =58, .5t 't 0.

ot
Therefore, 4 is also a subgroup of G containing S. Thus, <S> = A.
Corollary 4.1.1. For any subset S of a group G,

<S§>=<§"'> where S'={s":s5e S

We have proved in Theorem 4.1.4 that the intersection of any class of sub-
groups is again a subgroup. A similar statement is not true for unions of
subgroups. In this context, we have the following theorem.

Theorem 4.1.6. Let 4 and B be subgroups of group G. Then, 4 U B is a sub-
group of G if and only if either 4 C B or B C 4.

Proof: If 4 C B,then 4 U B = B and, if B C A then 4 U B = A and hence,
in this case, 4 U B is a subgroup of G. Conversely suppose that 4 U B is a
subgroup of G. Assume that 4  B. Then, there exists a € 4 such that a &
B. Now,

beB=aandbec AUB (sinceac A)
=abec AUB (since AU Bisasubgroup)
=abecA4 or abeB
=abc A (sinceab€B = a=(ab)b' € B)
=b=a'(ab)c 4

Therefore, B C A.

From the above, it follows that, for any subgroups 4 and B of a group G,
A U B is not a subgroup in general. However, we have noticed earlier that
A N B is always a subgroup and this is the largest subgroup contained in both
A and B. Also, there is a smallest subgroup containing both 4 and B (which
need not be 4 U B). In certain cases, we can describe the elements of this
elegantly. First, we have the following definition.
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Definition 4.1.4. Let G be a group and 4 and B be subsets of G. Define
AB={ab:a€Aandb € B} and A '={a':a€ A4}.

Note that, from the associativity of the operation in G, we get that (4B)
C = A(BC) for any subsets A, B and C of G. Also, observe that a nonempty
subset 4 of G is a subgroup of G if and only if 447! = A.

Theorem 4.1.7. Let 4 and B be subgroups of a group G. Then, AB is a sub-
group of G if and only if AB = BA and, in this case, 4B is the smallest sub-
group of G containing both 4 and B.

Proof: Suppose that AB is a subgroup of G. Then,
AB=(AB)'=B'4"' = BA.
Conversely, if AB = BA, then
(AB)(AB) ' =(AB)Y(B'4™")
= A(BB A
=(4B)A™

=(BA)A™
= B(AA")=BA= AB

and hence 4B is a subgroup of G.
Since e € 4 and e € B, if follows that

A=A{e}C AB and B={e}BC AB.

If H is any subgroup containing 4 and B, then clearly AB C H. Thus, when
AB = BA, AB is the smallest subgroup containing both 4 and B.

Corollary 4.1.2. For any subgroups 4 and B of an abelian group G, 4B is also
a subgroup of G.

Worked Exercise 4.1.1. Prove that any subgroup of the group (Z, +) is the
subgroup generated by a single nonnegative integer.

Answer: Recall that, when the symbol + is used for the binary operation in
a group, then we write na for a” and as such

<a> = {na : nis an integer}.
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Now, let A4 be a subgroup of (Z, +). If A = {0}, then clearly 4 = <0>. Sup-
pose that A # {0}. Then, there exists a # 0 such that a € 4. Since 4 is a
subgroup, —a also is in 4. Since a or —a is positive, it follows that 4 N Z~
is a nonempty subset of Z*. By the well-ordering principle, 4 N Z* has the
smallest member, say m. Then, since m € 4, we get that <m> C A. On the
other hand, let x € A. By the division algorithm, we can write

x=gm+r, qr€Z and 0=r<m.

Then, r = x — gm € A (since x and m € A). Since r < m and since m is the
least positive integer in A4, it follows that » = 0 and hence x = gm € <m>.
Thus, 4 = <m> ={nm :m € Z} = nZ.

Worked Exercise 4.1.2. Compute all subgroups of the group (rnZ, +) for any
positive integer 7.

Answer: Let n be a positive integer and 4 be a subgroup of (nZ, +). Then, 4
is a subgroup of (Z, +) and hence 4 = <a> for some a = 0. Since 4 C nZ, we
get that @ € nZ and hence a = ng for some g € 7Z. Therefore, a is multiple of
n. Conversely, if a is a multiple of n, then aZ is a subgroup of (nZ, +). Thus,
the subgroups of (nZ, +) are precisely of the form aZ, where a is an integral
multiple of .

Worked Exercise 4.1.3. Compute all the subgroups of (Z , +)) for any posi-
tive integer.

Answer: Let n be a positive integer and 4 be a subgroup of (Z,, + ). Suppose
that 4 # {0}. Let m be the least positive integer in 4. As in Worked Exercise
4.1.1, we can prove that 4 = <m> and that m is a positive divisor of n. Note
that, since m € 4 C Z , m < n. Therefore, the subgroups of (Z,, +) are
precisely of the form <m>, where m = 0 or a positive divisor of n. Note that,
form # 0,

<m>= {0, m,2m, ..., (g — ym},

where gm = n.

EXERCISE 4(A)

1. Determine whether the set given is a subgroup of the group in each of the
following.

() 10,1,2,3,4} in(Z, +,)
(i) {0,3,6,9}in(Z,, +,)
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(i) R*in (R, +)
(iv) R*in(R—{0},")
(v) Q" in(R",-)
(vi) 7Qin (R, +)
(vi)) {z€C|zl=1}in(C — {0}, ")
(viii) 5Zin (8Z, +)
2. Determine whether the following are subgroups of the group of nonsingularn X n

matrices under the usual multiplication of matrices, where 7 is a given positive
integer.

(i) The set of all » X n matrices whose determinant is 2.
(i) The set of all » X n matrices whose determinant is 1.
(i) The set of n X n matrices whose determinant is a positive real number.
(iv)  {(a;) € NSM, (R):a; =0 foralli < j}.
(v)  {(a;) € NSM, (R):a, = Oforalli>j}.
(vi) {(a;) €NSM, (R):q; =0fori#j}.
(vii) The set of all » X n matrices whose determinant is a negative real number.
(viii) ~ {(a;) € NSM, (R):q; = Ofori#janda, = a foralliand j}.
3. Let € be a nonempty class of subgroups of a group G such that, for any 4 and B

in €, there is a member C in ‘¢ containing both 4 and B. Then prove that CU(@C
is a subgroup of G. <

4. Let G be a group such that G = <a> for exactly, one element @ in G. Then prove
that G has at most two elements.

5. Let G be a group having exactly two subgroups. Then prove that G = <a> for
some a € G.

6. Letn be positive integer and consider the group (Z , +,) of integers modulo n. For
any 0 < d < n, prove that Z = <d> if and only if d is relatively prime with .

7. Prove that there is a bijection between the set of subgroups of (Z,, +,) and the
set of positive divisors of 7.

8. Let G be a group and @ € G. Prove that the set
C =1{x€G:ax = xa}
is a subgroup of G. C, is caller the centralizer of a.
9. Let S be any subset of G. Then prove that the set
C,={x€G:ax=xaforalla € S}

is a subgroup of G.
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10. For any group G, prove that the set
Z(G)={x€ G:ax =xaforalla € G}
is a subgroup of G. Z(G) is called the centre of G.

11. Determine all the subgroups of each of the following:
O (Z,, +,)
() (Z, +)

12. For any positive integer n, prove that (Z , + ) has exactly two subgroups if and
only if n is prime.

13. For any subgroup H of a group G and a € G, prove that
aHa™' = {axa™': x € H} is also a subgroup of G.

14. For any finite subgroup H of a group G and @ € G prove that H and aHa™' has
equal number of elements.

15. Determine all the subgroups of the group (S(X), -) of bijections of X onto itself,
where X is a 3-element set.

16. Prove that a nonempty subset H of a group G is a subgroup of G if and only if
HH'CH.

4.2 CYCLIC GROUPS

The concept of a cyclic group is an important tool in determining the struc-
ture of a finite (or finitely generated) abelian group. In fact, we prove later
that any finitely generated abelian group is a finite product of cyclic groups.
In order to understand the structure of a finitely generated abelian group, one
has to understand cyclic group. In this section, we thoroughly discuss the
various properties of cyclic groups.

First let us recall that, for any element a of a group G, the smallest sub-
group of G containing a is given by

<a> ={a": nis an integer}
and is called the cyclic subgroup generated by a in G.
If one uses + to denote the binary operation in a group, we write na for a”

and —a for the inverse of a.

Definition 4.2.1. A group G is called a cyclic group if G = <a> for some
a € G; that is, there exists a € G such that
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G = {a": nis an integer}.

In this case, a is called a generator of G.

Example 4.2.1

1. (Z, +) is a cyclic group, since <I> = Z. In fact, Z = <—1> also and
hence both 1 and —1 are generators of the group Z. Later we will be
proving that these are the only generators of Z.

2. For any positive integer 7, the group (Z , + ) of integers modulo 7 is a
cyclic group. Here also, 1 and —1 (= n — 1) are generators of Z . Later,
we shall prove that any positive integer less than » and relatively prime
with n is a generator of Z .

3. LetG = {1, —1,i, —i}. Then, G is a cyclic group under the usual multi-
plication of complex numbers. Here, <i> = G = <—i > and hence i and
—i are the only generators of G, as we can easily see that <I> = {1} #
Gand<—1>= {1, -1} # G.

4. The group Z, X Z, is not cyclic, since, for any element «a in this group,
2a = 0, the identity and hence <a> = {0, a} # Z, X Z,.

The following is a fundamental tool in the study of cyclic groups and we
might have used this earlier. Here, we offer a proof. First recall that for any
real number q, there exists largest integer, less than or equal to a and it is
denoted by [a]. That is, [a] is the unique integer such that [a] = a < [a] +1.
[a] is called integral part of a.

Theorem 4.2.1 (The Division Algorithm). Let n be a positive integer and a be
any integer. Then, there exist unique integers ¢ and r such that

a=gn+r and 0=r<n

q and r are respectively called the quotient and the remainder obtained by
dividing a with n.

Proof: Let g =[4], the integral part of %, and » = a — gn. Then, ¢ is an
integer such that

qsg<q+l.
n
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Since a, ¢ and n are all integers, 7 is also an integer. We have
gn=a<gn+n

andhence 0=a—gn<n.
Therefore, we have a = gn + r and 0 =< r < n. For proving the uniqueness, let
q, and r, be any integers such thata = gn + r and 0 = r, <n.

Then, 4 =g, +% and 0= r—,‘; < 1. Therefore,
q052<q0+1 andhenceq0=l£]=q
n n

andry=a—qn=a—qn=r.

Example 4.2.2

1. The quotient and remainder when 46 is divided by 8 are respectively 5
and 6, since

46=5-8+6 and 0=06<S8.

2. The quotient and remainder when 46 is divided by 8 are respectively —6
and 2, since

—46=(—6)8+2 and 0=2<8.

We shall make use of the division algorithm in proving the following
theorem.

Theorem 4.2.2. Every subgroup of a cyclic group is cyclic.
Proof: Let H be a subgroup of a cyclic group G and let a € G such that
G = <a> = {a" . nis an integer}.

If H = {e}, we are through, since, H = <e>. Suppose that H # {e}. Since,
for any n,

aEHSa"=()"'EH,

it follows that there exists a positive integer n such that ¢” € H. By the well-
ordering principle, there exist least positive integer m such that a” € H. Since
H is a subgroup and a” € H, we have <a”™> C H. On the other hand, letx € H.
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Then, x € G and hence x = a” for some integer n. By the division algorithm,
there exist integers g and 7 such that

n=gm+r and 0=r<m.

Now, a” = a" 7 = a"(a™)"¢ € H (since a", a” € H). By the least property of
m, r should not be positive and hence » = 0 and n = gm, so that

x=a"=a" = (a")! € <a">.
Therefore, H C <a™> and hence H = <a™>. Thus, H is a cyclic group.
Theorem 4.2.3. Every cyclic group is abelian.
Proof: Let G be a cyclic group and a € G such that
G = <a> = {a" : n is an integer}.

Let x and y € G. Then, there exist integers m and »n such that x = " and
y = a". Now,

xy = a"q" = am+n — an+m = a'a" = yx.

Thus, G is an abelian group.
The converse of the above theorem is not true; for example, the group
7, X 7, is an abelian group which is not cyclic (see Example 4.2.1 (4)).

Example 4.2.3. Consider the cyclic group (Z, +) in which Z = <1>. Following
the proof of Theorem 4.2.2, one can prove that any subgroup of (Z, +) must be
of the form <n> = {mn : m € Z} = Zn for some nonnegative integer 7.

Example 4.2.4. Let n be a positive integer and consider the group (Z,, + )
of integer modulo n. Here again one can prove that any subgroup of (Z , + )
must be of form <d> = {0, d, 2d, 3d, ..., (m — 1)d}, where d is a positive
divisor of n and md = n (see Worked Exercise 4.1.3).

Definition 4.2.2. If G is a finite group, then the number of elements in G is
called the order of G and is denoted by |G].

Note that |G] is precisely the cardinality of G. If |G| = n, then G is called
a group of order n. In the following, we define the concept of the order of an
element in a group which, in the finite case, turns out to be the order of the
cyclic subgroup <a> generated by a.
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Definition 4.2.3. Let G be a group and a € G. If " = e for some positive
integer n, then the least positive integer m such that a” = e is called the order
of a and is denoted by O(a). In this case, a is said to be an element of order m.
If a" # e for all positive integers 7, then the order of a is defined to be infinity
and a is said to be an element of infinite order.

In other words, a is said to be an element of order m if m is the least ele-
ment in the set {n € Z*: a" = e}. If this set is empty, then a is said to be of
infinite order.

Theorem 4.2.4. Let a be an element of finite order in a group G, then the
following holds:

1. O(a™") = O(a)

2. For any integer n, there exists 0 = r < O(a) such that a” = "
3. For any integer n, a" = e if and only if O(a) divides n.

4. <a>={e,a,d’ ...,a" '}, where m = O(a).

Proof:

1. This is a direct consequence of the fact that, for any integer n, a” = e if
and only if (¢ ')" = e (since (a7 ') = a™" = (a")").

2. Letn be any integer. By the division algorithm, there exist integers ¢ and
r such that

n=¢q0(a)+r and 0=r<O0(a).

NOW, a = aqO(u)*V — aqO(a).ar ] (ao(a))qar =elad = ea = a'.
3. Letn be an integer. If O(a) divides n, then n = ¢O(a) for some integer ¢
and hence

a' = @%@ = (aO(a))q =l = ¢

conversely suppose that a” = e. Then, as in (2), we can write n = gO(a)
+ r for some integers ¢ and » such that 0 = » < O(a). Then, as in (2),

a=a =e
Since 0 = r < O(a) and O(a) is the least positive integer such that ¢«
= ¢, it follows that » = 0 and n = qO(a). Thus, O(a) divides n.
4. <a> = {a" : nis an integer}
={a:0=r<0(a)}

={e=d%a,d ... a°"" '}
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Corollary 4.2.1. For any element a of finite order in a group,
O(a) = |<a>|.

That is, the order of the element a is precisely equal to the order of the cyclic
group <a>.

Proof: In the above theorem, we have proved that
<a>={e,a,d,...,a%" 1},

Also, if a” = @, then @° = e = @* " and hence O(a) divides r — sand s — r
and; if 0 = r and s < O(a), then = 5. Thus, e, a, @, ..., a®@! are distinct.
Thus, |<a>| = O(a).

It is well known that the greatest common divisor (g.c.d.) of two positive
integers m and n can be written as a linear combination m and n. We shall
prove this using Theorem 4.2.2.

Theorem 4.2.5. Let m and n be two positive integers and (m, n) be the great-
est common division of m and n. Then, there exist integers  and s such that

(m,n) = rm + sn.

Proof: Let H = {am + bn : a and b € Z}. Note that H = Zm + Zn =
<m> + <m>. Since (Z, +) is a cyclic group and H is a subgroup of Z (by
Corollary 4.1.2), we get that H is a cyclic subgroup of (Z, +) (by Theorem
4.2.2). Therefore, there exists a positive integer d such that

H=<d>=7d.

In particular, since d € H, d = rm + sn for some integers » and s. We shall
prove that d is the g.c.d. of m and n. Since m = 1lm + On € H = Zd, d is a
divisor of m. Similarly, d is a divisor of n. Also, if ¢ is any common divisor
of m and n, then

m=gqgk and n=gqt forsomek, t€Z

and hence m and n € <g> so that am + bn € <g> for all integers a and b and,
in particular, d = rm + sn € <¢> = Zq. Therefore, g divides d. Thus, d is the
greatest common divisor of m and n.

The converse of the above therefore is also true, in the sense that, if d is a
common divisor of m and n and d is of the form rm + sn, r, s € Z, then d is
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the greatest common divisor of m and n. In particular, m and » are relatively
prime if and only if 1 = rm + sn for some r and s € Z.

Theorem 4.2.6. Let G be a group and a € G such that O(a) = m < . Then,
forany 0 =r <m,

N m
O(a )_—(m, "

where (m, r) is the g.c.d. of m and r.

Proof: Let 0 <r < m be fixed and d = (m, ). Then, by Theorem 4.2.5, there
exist integers s and ¢ such that

d=sm+ tr.
Put b = a". Since d divides both m and r, % and 5 are integers and

7

d

1=5s

ﬂ]w
d

and therefore % and 5 are relatively prime.
We have

ul~

b?=(a")! =a’ =(a")! =e.

On the other hand, for any integer ¢,

b'=e=(a")" =e
=dad'=e
= O(a) divides rq
= mdivides rq

=" divides L-q
d d

=2 divides q|since ﬂ,i =1|.
d d’d

Therefore, % is the least positive integer £ such that b* = e.
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g O(a’)=0(b)=%= -

(m.r)

Corollary 4.2.2. Let G be a group, a € G and O(a) = m < . If d is a posi-
tive divisor of m, then

ofa')=2 =2

Proof: This follows from the above theorem and the fact that, for any posi-
tive divisor d of m, (m, d) = d.

Let us recall that, if G = <a>, then a is called a generator of the cyclic
group G. In the next result, we derive formulae to determine the number of
generators of a cyclic group. First, we have the following definition.

Definition 4.2.4. For any positive integer n, let ¢(n) be the number of
positive integers less than or equal to n and relatively prime with n. Then,
¢ : Z* — Z* is a function and is called the Euler—Totient function, which is
an important arithmetical function in the theory of numbers.

Note that ¢(1) = 1 = ¢(2), ¢ 3) =2 = ¢d(4), $(5) = 4, $(6) = 2 and
&(7) = 6. In fact, for any prime number p, ¢(p) = p — 1, since any positive
integer less than p is relatively prime with p.

Theorem 4.2.7. Let G be a cyclic group and a € G such that G = <a>. Then,
G is infinite if and only if @” # a™ for all n # m € Z and, in this case, a and
a~! are the only generators of G.

Proof: We are given that G = <a> = {a" : n € Z}. Suppose that a" = a"
for some n # m € 7Z. We can assume that n < m. Then, m — n is a positive
integer and a” " = a"(a")"' = e. Therefore, a is an element of finite order and,
by Theorem 4.2.4 (4),

G=<a>={ead, .., a%""""}
and hence G is finite.
Conversely suppose that G is finite. Then, since a” € G foreachn € Z, a" = a™
for some n # m € Z. Next, suppose that G is infinite. Then, " # o™ for all

n # m € Z and, in particular, ¢ # a~'. Also,

G=<g>=<q >
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and therefore a and a™! are two distinct generators of G. Now, suppose that b
is any generator of G. Then,

<b>= G =<g>

and hence a = " and b = a” for some n and m € Z. Since a = b" = (a™)" =
a™, it follows that 1 = mn. Since m and n are integers, we get thatm = 1 =
norm= —1=nand hence b = a or b = a”'. Thus, a and a™' are the only
generators of G.

Note that, for any group G and a € G, a is a generator of G if and only if
a~!is a generator of G. Also, a group G can have exactly two generators, but
still G may be finite. For consider the following.

Example 4.2.5. In the group (Z,, +,) of integers modulo 3, 1 and 2 (= —1)
are the only generators and (Z,, +,) is a finite group.

Theorem 4.2.8. Let G be a finite cyclic group of order n and a € G such
that G = <a>.

1. Forany 1 = r < n, a" is a generator of G if and only if 7 is relatively
prime with 7.

2. G has exactly ¢(n) generators.
Proof: By Corollary 4.2.1, n = |G| = |[<a>| and hence O(a) = n so that
G={ead,..,a""}.

1. Let 1 = r < n. Then, by Theorem 4.2.6,

n

(n,7)

a"isageneratorof G < n=0(a") =
< (n,r)=1

2. This follows from the definition of ¢(n) and from (1) above. Note that,
since ¢p(1) = 1, (2) is trivial when n = 1.

Example 4.2.6

1. (Z, +)is a cyclic group with 1 and —1 as the only generators.
2. (Z, +,) is afinite cyclic group with ¢(n) generators.

3. There are exactly two generators in each of the groups (Z,, +),), (Z,, +,)
and (Z,, +,), since ¢(3) = 2 = p(4) = P(6).
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4. Since ¢(8) = 4, there are four generators for (Z,, +,) and these are 1, 3,
Sand 7.

5. For any prime number p, there are p — 1 generators for the group (Zp, +p),
since ¢(p) = p — 1. That is, any nonzero (nonidentity) element Zp isa
generator.

Worked Exercise 4.2.1. Compute the order of 16 in (Z,,, +,,).

Answer: Z, = <1>and O(1) = 24in Z,,

Worked Exercise 4.2.2. For any positive integers a and b, prove that
aZ + bZ = (a,b)Z and aZ NbZ = [a, b]Z
where (a, b) and [a, b] are respectively the g.c.d. and l.c.m. of @ and b.
Answer: These follow from the fact that, for any n and m € Z*,
nZ. C mZ < n € mZ < m divides n

and that aZ + bZ is the smallest subgroup of Z containing aZ and bZ. Also
aZ N bZ is the largest subgroup of Z contained in aZ and bZ.

Worked Exercise 4.2.3. Determine all the generators of 36Z + 24Z.

Answer: Since 36Z + 24Z= (36, 24)Z = 127 and 12Z is an infinite cyclic
group generated by 12, we get that 12 and —12 are the only generators of
127 = 367 + 247.

Worked Exercise 4.2.4. If a cyclic group has exactly two generators, then
what can we say about the order of G?

Answer: If G is an infinite cyclic group, then, by Theorem 4.2.7, G has
exactly two generators. Suppose that G is a finite cyclic group of order n and
that G has exactly two generators. Then, ¢(n) = 2 and we have to determine
all n for which ¢(n) = 2. Clearly ¢(3) =2 = ¢$(4) = ¢(6). If n> 6 and n is
odd, then 1, 2, n — 1 are distinct and relatively prime with n. Let n > 6 and
n be even. Suppose that 2 < p < p, <.+ < p_are all the distinct primes
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dividingnandm =p p,...p — 2. Then, (m,n) = 1and 1<m <n — 1 and
hence ¢(n) > 2. Therefore, ¢p(n) = 2 if and only if n = 3 or 4 or 6.

EXERCISE 4(B)

1. State whether each of the following are true and substantiate your answer.
(i) Every finite abelian group is cyclic.
(i)  An infinite group is abelian if and only if it is cyclic.
(iii) (Q, +) is a cyclic group, where QQ is the set of rational numbers.
(iv) (R, +)is a cyclic group.
(v) (C, +)is acyclic group.
(vi) If G, and G, are cyclic groups, then G, X G, is also a cyclic group.
(vii)) (C — {0}, -) is an abelian group which is not cyclic.
(viii)  (Q — {0}, -) is a cyclic group.
(ix) Any group of order 5 or 7 is cyclic.
(x) The group S(X) of bijections of a set X onto itself is a cyclic group under
the composition of mappings.
2. Which of the following are cyclic groups? Substantiate your answers.
® @R —={0},)
(i) (PX), +), where Xis a set.
(iii)  The group of quaternions which is of order 8.
(iv) (@", )
v R*,)
(vi) For any positive Integer n, the group of all n" roots of unity of under the
usual multiplication of complex numbers.

3. What can we say about a cyclic group having exactly one generator?

4. List all the elements in each of the following subgroups of the groups mentioned.
(i) <7>in(Zg, +,)

(i) <5>in(Z,, +,)
(i) <3>in(Z,,, +,,)
(iv) <3>in(Z,, +,)
(v) <i>in(C - {0}, ")
i) <J2>in(R*,")

i) <2>in (R, +)

(viii) <v=2>in (C — {0}, *)
(ix) <e>inany group G, where e is the identity in G.
(x) <I12>in (3Z, +).
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Prove that O(«) is finite for any element a of a finite group and give an example
of an infinite group in which every element is of finite order.
If G is a group in which O(a) is finite for all ¢ € G, then can G be finite?

Let K and H be finite cyclic subgroups of orders m and » respectively in an abe-
lian group G. If m and n relatively prime, prove that G has a cyclic subgroup of
order mn.

. In Exercise 7 above, if the least common multiple of m and # is K, then prove that

G has a cyclic subgroup of order K.

If 4 and B are subgroups of a group G and one of 4 and B is cyclic, then prove
that 4 N B is a cyclic subgroup of G.

. Ifaand b are elements of a group G, such that O(a) and O(b) are relatively prime

positive integers, then prove that <a> N <b> = {e}.

Let G be a finite cyclic group of order » and d be a positive divisor of n. Then
prove that the equation x/ = ¢ has exactly d solutions in G.

Prove that the set {4, 8, 12, 16} is a group under the multiplication modulo 20. What
is the identity element? Is this a cyclic group? If so, what are its generators?

Let G = {7, 35, 49, 77}. Then prove that (G, -,,) is a group, where -, is the
multiplication modulo 84. What is the identity in G? Is this a cyclic group? If so,
what are its generators?

Is Z X Z a cyclic group, where the operation is a coordinate-wise addition?
Is Z, X Z,, cyclic? If so, what are the generators?

Let G and H be finite cyclic groups of orders m and n, respectively. Then prove
that G X H is cyclic if and only if m and n are relatively prime.

If G is a finite cyclic group and H is an infinite cyclic group, then can G X H be
cyclic?

Let G be a group and a € G such that O(a) = 24. Then find a generator of the
group <a®> N <a'®>. In general, find a formula for the generator of <a"™> N <a™>
forany | =n, m < 24.

Let Gbea ﬁmte cyclic group of order n. Then, for each positive divisor 1 of n,
prove that <a’> is the only subgroup of order  and that the map » — <a’>isa
bijection of the set of positive divisors of # onto the set of all subgroups of G.

Find all the subgroups of (Z,,, +,,) and (Z,,, +,,).

24>
Given a positive integer m, give an example of a cyclic group having exactly m
subgroups.

List all the subgroups of (Z

625° ()25)’
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23. Let U, be the group of all n™-roots of unity under the usual multiplication of
complex numbers. Any generator of U, is called a primitive n"-root of unity.
Determine all the primitive n"-roots of unity for each of n = 5,7 and 11.

24. Prove that any group having only a finite number of subgroups must be finite.
25. Give an example of a nonabelian group such that every proper subgroup is cyclic.

26. Let G be an abelian group and n be a positive integer. Then prove that the set {a
€ G : O(a) divides n} is a subgroup of G.

27. Leta be an element of order 7 in a group G. Then prove that O(a”) = O(a"") for
alll =r<n.

28. Let G be a cyclic group of order 24 and a € G such that a® # e and a'> # e. Then
prove that a is a generator of G.

29. For any elements @ and b of a group, prove that O(ab) = O(ba).

30. Let G be an abelian group. Prove that the set of elements of finite order in G is a
subgroup of G.

4.3 COSETS OF A SUBGROUP

For a given subgroup of a group G, we consider two important equivalence
relations on G and study the relationship between their equivalence classes
and the given subgroup. Let us begin with the following theorem.

Theorem4.3.1. Let H be a subgroup of a group G and define two binary rela-
tions L, and R, on G as follows:

(a,b)eL, ifa'beH
and (a,b) ER, ifab'EH
for any a and b € G. Then, L, and R, are equivalence relations on G.

Proof: Let us recall that a reflexive, symmetric and transitive relation on G is
called an equivalence relation. For any a € G,

a’'la=e € H (since H is a subgroup)

and hence (a, @) € L, Therefore, L,, is a reflexive relation on G. Also, for
any a and b € G,

(a,b)EL,=a'bEH
= (a’'b)"' € H (since H is a subgroup of G)
=bla€EH
= (h,a) EL,
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and hence L, is symmetric. Further,

(a,b)and (b,c)EL,=a'hb and b'cEH
= (ab)(blc)EH
=a'lc€EH
=(a,c)EL,

and hence L, is transitive. Thus, L, is an equivalence relation on G. Similarly,
R,, is an equivalence relation.

Definition 4.3.1. Let H be a subgroup of a group G and a € G. Define

aH = {ax:x € H}
and Ha = {xa:x € H}.

aH is called a left coset of H corresponding to a in G and Ha is called a right
coset of H corresponding to a in G.

Recall that, for any equivalence relation 6 on a set X, the equivalence class
of 6 containing a given element x € X is given by

0(x) ={y EX:(x,y) €O}
and that the equivalence class of 6 form a partition of X in the sense that any
two distinct equivalence classes of 6 are disjoint and the union of all equiva-
lence classes of 0 is equal to the whole set X. In the following, we prove that

the equivalence classes of L, (respectively R,) are precisely the left (right)
cosets of H. Note that, if G is an abelian group then aH = Ha for all a € G.

Theorem 4.3.2. Let H be a subgroup of a group G and a € G. Then,

L(a)=aH and R,(a)= Ha
Thatis,{bpEG:a'bEH} =aH and {bE G:ab'€ H} = Ha.
Proof: Foranyx € G,

x€L,(a)s(a,x) €L,
Sa'xe€H
Sx=alax) €aH

and hence L,(a) = aH. Similarly,



4-26  Algebra - Abstract and Modern

xER(a) & (a,x) ER,
Sax'eH
Sxa'=(@h'eH
< x = (xa)a € Ha

and hence R, (a) = Ha.
Corollary 4.3.1. Let H be a subgroup a group G and ¢ and b € G. Then,

aH=bH<=a'bEH
and Ha = Hb < ab™' € H.

In particular, aH = H< a € H<< Ha = H.

Corollary 4.3.2. For any subgroup H of a group G, any two left (right) cosets
of H in G are either equal or disjoint.

Corollary 4.3.3. For any subgroup H of a group G, the left (right) cosets of H
in G form a partition of G, then note that, if we use + to denote the operation
on the group G, then write ¢ + H for aH and H + a for Ha.

Example 4.3.1

1. If H= {e}, thenaH = {a} = Ha for any ¢ € G and any subgroup H of G.

2. Consider the group (Z, +) of integers under the usual addition and let
H be a subgroup of (Z, +). Then, by Worked Exercise 4.1.1, H = nZ
for some nonnegative integer n. If H = {0}, then for any a € Z, the left
coseta + H = {a} = H + a. Suppose that H # {0}. Then, n > 0. For
any a € Z, choose g and » € Z such that

a=gn+r and 0=r<n

and hence r — a = (—¢)n € <n> = H and
thereforea + H=r + H.
Thus,

0+H(=H),1+H2+H, .., (n—1)+H

are all the left (right) cosets of H in Z. One can observe that these are all
distinct. Thus, there are exactly n cosets of nZ = H in Z.

3. Let X = {1, 2, 3} be a 3-element set and S(X) be the group of all bijec-
tions of X onto itself under the composition of mappings. We know from
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Example 3.4.2 that S(X) = {e, a, b, c, d, s} and the group (S(X), o) is
represented by the table given below.

o e a b ¢ d s
a b ¢ d s
a a b e s c d
b b e a d s C
d s
d d s

e e

o
o
n
Q
S

S
0
Q

s s c d a b e

Let H = {e, s}, then H is a subgroup of (S(X), o). The left and right
cosets of H in S(X) are given below.

eH = {ee,es} = {e,s} = H
aH = {ae,as} = {a,d} =
bH = {be, bs} = {b,c} = cH.

Therefore, there are exactly three distinct left cosets of H in S(X) and
each of these contain exactly two elements. Also

He = {ee,se} = {e,s} = H
Ha = {ea, sa} = {a,c} = Hc
Hb = {eb,sb} = {b,d} =

Therefore, again there are exactly three right cosets of H in S(X) and
each of these contain exactly two elements. Note that, even though the
number of left cosets of H is equal to the number of right cosets, a left
coset may not be a right coset and vice versa. For example, aH is not
equal to any right coset.

. Consider the group (Z,,, +,,) of integers modulo 24. Let us compute all
the subgroups of Z,, and their cosets. This being an abelian group, any
left coset of a subgroup is a right coset. We know that the subgroups of
Z.,, correspond to the positive divisors of 24 which are precisely 1, 2, 3,
4,6,8,12 and 24.

For any divisor d of 24, let

H,=1{0,d,2d, ...,(q—1)d}, where q=%.

0,1,2,..,24—1}=7,
0,2,4,6,8, 10,12, 14,16, 18, 20, 22}
0.3,6,9, 12, 15, 18,21}

Then

H =A
H,={
H={
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H, = 1{0,4,8, 12,16, 20}
H, = 1{0,6,12,18}

H, = {0,8, 16}
H,=1{0,12}

H,, = {0

The above eight are all the subgroup of Z,,. Coming to the cosets, it
is clear that Z,, is the only coset of H|. There are two cosets of H,
namely

0+,,H,(=H,) and 1+, H,;

Foranya € Z,,, ifais even, thena € H,and hence a +,, H, =0+,, H,
and, if a is odd, then @ —1 is even and hence a — 1€ H, so that
a+,H, =1+, H,.

In general, for any divisor d of 24, there are exactly d cosets of /7, and
these are

0+, H,=H,, 1+,,H,, 2+, H,, ..., d—1)+,, H,.

Worked Exercise 4.3.1. Let H be a subgroup of a group G such that there are
exactly two left cosets of H in G. Then prove that every left coset of Hin G is
a right coset and vice versa.

Answer: Since H(= eH) is a left coset, it is given that there is only one more
left coset of H in G and let this be aH. Then, aH # H and a & H. Now,

aHNH=¢ and aHUH=G

and hence aH and H are complements to each other in G. Thatis, G — H =
aH and xH = aH for all x & H. If x € H, then Hx = H = He. On the other
hand, for any x & H,

Hx=H%= x"H)'=(aH)"'=H'a'= Ha™! = Ha.

Thus, Ha and H are the only right cosets of H in G and hence Ha =
G —H=aH.

EXERCISE 4(C)

1.

Determine all the subgroups of each of the following and list their cosets.
O (Zg +)
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(D) (Zy, +y)
(i) (Zyy, +,)
(v) Z,X7Z,

. Consider the subgroup Z of the group (R, +). Prove that there is a bijection

between the set of left cosets of Z in R and the interval [0, 1).

. Let H be a subgroup of a group G such that aha™' € Hforallh € Hand a € G.

Then prove that every left coset aH is equal to the right coset Ha.

. For any subgroup H of a group G, prove that aH — Ha ™' is a bijection of the set

of left cosets of H in G onto the set of right cosets of H in G.

. Let Hbe a subgroup of a group G, a € G and K = aHa™". Then prove that K is a

subgroup of G and that there is a bijection of the set of left cosets of H in G onto
the set of left cosets of K'in G.

. Let X = {1, 2, 3} and (S(X), o) be the group of bijections of X onto itself. Let f

€ S(X) be such that f{1) = 2, 2) = 3 and f{3) = 1. Then prove that H = {e, f,
f~'} is a subgroup of S(X). Compute all the left and right cosets of H in S(X).

. Let A = <27> be the cyclic subgroup generated by 27 in the group (R, +).

Prove that the trigonometric functions sine and cosine are constant on any left
coset of 4 in (R, +).

. Let (S(X), o) be the group of all bijections of a nonempty set X onto itself and

x #y € X Let
A = {f€S5X): fix) = x}
and A, ={f€SX) :flx) =y}
Prove that 4 is a subgroup of S(X) and that 4, is not a subgroup of S(X).

. In Exercise 8 above, prove that 4, is a coset of 4_in S(X). Is it a left coset or a

right coset?

Let A be a subgroup of a group G and x, y and z € G such that xy4 = xzA. Then,
prove that y4 = zA. Also, prove that Ayx = Azx implies Ay = Az.

Give an example of a subgroup 4 of a group G such that the product of two left
cosets of 4 in G is not a left coset of 4 in G.

. For any subgroup A4 of a group G, prove that the only left (right) coset of 4 in G,

which is also a subgroup of G, is 4 itself.

Let 4 and B be two subgroups of a group G and x and y € G such that 4x = By.
Then prove that 4 = B.

Prove that a subset S of a group G cannot be a left coset of two distinct sub-
groups of G.
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4.4 LAGRANGE’S THEOREM

We have proved in the previous section that the left cosets of a subgroup
H in a group G form a partition of the group G. This provides a counting
technique that the total number of elements of a finite group G is equal
to the sum of those in the cosets of a subgroup. In fact, we prove that the
number of elements in any finite subgroup H is equal to that in any of its
left or right coset and deduce the famous theorem of Lagrange which states
that the order of any subgroup of a finite group is a divisor of the order of
the group. We prove this theorem of Lagrange and obtain certain important
consequences.

First, let us recall that the number of elements in a finite group G is called
the order of G and is denoted by |G| and that, if a group G is infinite, we say
that the order of G is infinite. In general, for any finite set X, |X| denote the
number of elements in X. Note that |X] = 0 if and only if X is the empty set.

Theorem 4.4.1. Let H be a subgroup of group G and a € G. Then, H, aH and
Ha are all bijective to each other.

Proof: Define f: H — aH by fix) = ax for all x € H. Clearly fis a surjection.
By the left cancellation law, f'is an injection also. Therefore, f'is a bijection
of H onto aH. Similarly the map x — xa is a bijection of H onto Ha. Thus,
Ha = H = aH.

Theorem 4.4.2 (Lagrange’s Theorem). Let G be a finite group and H be a
subgroup of G. Then, the order of H is a divisor of the order of G. That is, |H|
divides |G].

Proof: Since G is a finite set and H is a nonempty subset of G, |G| and |H| are
positive integers. Again, since G is finite, the number of left (right) cosets of
Hin G is also finite. Let a H, a,H, ..., a H be all the distinct left cosets of H
in G. By the above theorem,

P
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la.H| = |H| for all 1 =i = n. Also, we have

aHNaH= foralli#j
anda HUa,HU...Ua H=G.

Therefore, |G| = |a H| + |a,H| +...+ |a H|
= |H| + |H| + --- + |H| (ntimes)
= n|H|.

Thus, |G| = n|H| and |H] is a divisor of |G|. <

Corollary 4.4.1. For any subgroup H of a finite group G, the number of left

cosets of H in G is equal to the number of right cosets of H in G which is

same as g
H]

Proof: In the proof of the above theorem, we have proved that |G| = nr|H| and
hence

G
H: n = The number of left cosets of H in G.

In the above proof, we can replace left cosets with right cosets and prove
similarly that |G| = m|H|, where m is the number of right cosets of H in

G. Now,
Y
|H] <
Definition 4.4.1. For any subgroup H of a finite group G, the number of left

(right) cosets of H in G is called the index of H in G and is denoted by i ().

Corollary 4.4.2. For any subgroup H of a finite group G,

Note that, even when G is an infinite group, a subgroup can have only
finitely many cosets and one can talk about the index of such a subgroup.
Consider the following example.
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Example 4.4.2.

1. Let n be a positive integer and H = nZ = {na : a € Z}. Then, H is a
subgroup of (Z, +) and, by Example 4.3.1 (2),

H1+H2+H,..(0—H

are all the cosets of H in Z. Therefore, the index of H in Z is n.

2. Consider the group (Z,,, + ,) of integers modulo 12. Let H = <3> = {0,
3,6,9}. Then, |H| = 4 and |Z,,| = 12 and hence 4} (= 3) is the index of
HinZ, Wehave0 + H=3+ H=6+ H=9+_ H=H,

I+, H=4+,H=7+,H=10+,H={1,4,7,10},
2+, H=5+,H=8+,H=11+,H=1{2,5811}.

Therefore, ,1 + , Hand 2 + , H are all the distinct left cosets of //
inZ,.
3. Consider the example given in Example 4.3.1 (3) in which H = {e, s}

and G = the group S(X) of bijection of a 3-element set X onto itself.
_Gl_6_

Here, |G| = 3! = 6, |[H| = 2and hence i (H) = 77 =5 = 3 and therefore
there are exactly 3 distinct left(right) cosets of H in G.
For any element a in group, recall that the order of a is defined as the least

positive integer n such that a" = e (if all there is one such) and is denoted
by O(a).

Theorem 4.4.3. Let a be an element in a finite group G. Then, O(a) divides |G].
Proof: First note that, since G is finite and a” € G for all integers n, a” = a™
for some n # m and hence a” = e for some positive integer . Therefore, a
is an element of finite order. Let O(a) = n. Then, by Corollary 4.2.1, O(a) is
equal to the order of the subgroup <a> generated by @ in G. By the Lagrange’s
Theorem 4.4.2, |<a>| divides |G|. Thus, O(a) divides |G|.

Corollary 4.4.3. In a finite group G, d° = e foralla € G.

Proof: Let G be a finite group, a € G and O(a) = n. Then, by the above
theorem, nm = |G| for some m € Z* and hence

a\G\ = g = (a/z)m =" = g,

Theorem 4.4.4. Let G be a group of order a prime number. Then, G is a
cyclic group and every nonidentity element in G is a generator of G.
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Proof: Let|G| = p be a prime number. For any a # e in G, O(a) > 1 and O(a)
is a divisor of p. Since p is prime, O(a) = p and therefore

<a>C G and [<a>| = O0(a) =p = |G|

Since G is a finite set, <> = G. Thus, G is a cyclic group and every a # e
in G is a generator of G.

In the next three theorems, we derive two important results in the theory
of numbers, using the Lagrange’s theorem. First, let us have the following
definition.

Definition 4.4.2. Let n be any positive integer. For any integers a and b, a is
said to be congruent to b modulo n if n divides @ — b and we denote this by

a = b (mod n).

That is, a = b (mod n) if and only if n dividesa — bora — b € nZ.

Actually, the above is precisely the equivalence relation R, on Z defined
in Theorem 4.3.1, where H = nZ, the cyclic subgroup generated by » in the
group (Z, +). Besides being an equivalence relation, it has some other prop-
erties. Some of these are listed in the following theorem.

Theorem 4.4.5. Let n be a positive integer. The following holds for any inte-
gers a, b and c.
1. a =a (mod n)
a = b (mod n) = b = a (mod n)
a = b (modn)and b = ¢ (mod n) = a = ¢ (mod n)
a=b(modn)=a+ c=b+ c(modn)
a = b (mod n) = ac = bc (mod n)
a = 0 (mod n) < a is an integral multiple of .

NSk v

For each a € 7Z, there exists an integer » such that 0 = r <mnanda =r
(mod n).

8. Forany 0 =r # s < n, r # s (mod n).

Proof: (1)to (6) are direct implications of the above definition. Forany a € Z,
we can use the division algorithm to get integers ¢ and  such that

a=gn+r and 0=r<n

and now, @ — r = gn and hence a = r (mod n). This proves (7). To prove 8,
consider 0 = r, s < n. Then, |r — 5| < n and hence r — s cannot be a multiple
of n, unless r = s.
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Recall that, for any n € Z*, we have defined ¢(n) to be the number of
positive integers which are less than or equal to » and relatively prime with n
and that the function ¢ : Z* — 7Z7 is called the Euler—Totient function.

Theorem 4.4.6 (Euler’s Theorem). Let 1 be a positive integer. Then,
a’™® =1 (mod n)

for all integers a which are relatively prime with n, where ¢ is the Euler—
Totient function.

Proof: The theorem is trivial if # = 1. Therefore, we can assume that n > 1.
Let S be the set {1, 2, ..., n — 1}. Then, S is a monoid with respect to the
multiplication - modulo 7 in which 1 is the identity. We know that an element
r in S is invertible if and only if 7 is relatively prime with n. Let G be the set
of all invertible elements in (S, ~n); that is,

G={reZ"|\r<n and (r,n)=1}.

Then, (G, -)) is a group where - is the multiplication modulo n. Also, we
know that |G| = ¢(n) (see Definition 4.2.4). Now, let a be any integer which
is relatively prime with n. Then, by the division algorithm, we can write

a=qn+r, wheregqgandr€Z and 0=r<n.

Since (a, n) = 1, we get that (r, n) = 1 and » > 0.
Therefore, r € G. Now we have

at™ = (gn + r)b®
=sn + "  forsomes € Z
=sn + 7l
=1 (modn) (by Corollary 4.4.3).

Theorem 4.4.7 (Fermat’s Theorem). Let p be a prime number and « be any
integer. Then,

a’ = a (mod p).

Proof: We have to prove that p divides a” —a = a(a”"' —1).

If p divides a, then clearly p divides a(a””' —1). Suppose that p does not
divide a. Then, since p is prime and (a, p) is a divisor of p, it follows that
(a, p) = 1. Also, ¢(p) = p — 1. Now, by the Euler’s theorem proved above,
we get that
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@' = a*» =1 (mod p)

and hence p divides (a”' —1), so that p divides a(a”" —1).

In the following, we introduce certain counting techniques which play cru-
cial roles in the proofs of various results in the theory of finite groups. If 4
and B are subgroups of a group G, recall that the set 4B may not be subgroup
and that 4B is a subgroup if and only if 4B = BA. However, it is quite natural
to think of the number of elements in 4B in terms of those in 4 and B, when 4
and B are finite subgroups. The following is a precise answer to this.

Theorem 4.4.8. Let 4 and B be finite subgroups of a group G and
AB = {ab:a € A and b € B}. Then,

| 4] B]

| AB|= =|BA|.
B

Proof: First note that it is quite possible that ab = a b, for distinct elements
aand a, in A and distinct elements b and b, in B. We shall find out how often
does an element ab appear as a product of an element in 4 and an element in
B. For any x € A N B, we have

ab = (ax) (x~'b)

and ax € A4 (since a and x € 4) and x~'b € B (since x and b € B). Also, if ab
=ab,whereaanda, € 4,and b and b, € B, then

171

a'a =bb~'=s,say and sEANB.

Also,a, = asand b, = s7'b.
This is to say that any representation of x = ab as a product of an element of
A and an element of B must be of the form

(as) (s~'b), wheres € AN B.

Thus, for each @ € 4 and b € B, the product ab appears |4 N B| times as a
product of an element of 4 and an element of B. This implies that the number
of distinct elements in 4B is the total number in the listing of AB as a product
of an element in 4 and an element in B (that is, |4||B|) divided by the number
of times a given element (that is, |4 N BJ). Thus,

|4l B| _ Bl 4]

| AB|=
|ANB| |BNA|

=|BA,

since ANB=BNA.
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Corollary 4.4.4. Let A and B be subgroups of a finite group G such that
ANB = {e}.Then, |[4| = |G| or |B| = /| G|.

Proof: Since AB C G, we have

|G| = |4B| = MZ |A||B| (by the above theorem)
|[4n B|

and hence \/@ = |A4| or\/@ = |B|.

For any subgroup 4 of a finite group G, we have |4|. i (4) = |G| and hence
both the order and index of 4 in G are divisors of the order of |G|. In the
following, we derive some more properties of the index of a subgroup of a
finite group. First note that if 4 and B are subgroups of a group G and 4 C B,
then 4 is a subgroup of B also and we can talk of the index of 4 in B also.

Worked Exercise 4.4.1. Prove that the following holds for any subgroups
A and B of a finite group G.

1. If4 C B, theni(4) = i(A4) - i (B)

2. i(ANB)=i/(B)

3. i(ANB) =i, B)ifand only if G = 4B.

4. i(ANB)=i[A)- i (B)ifandonlyif G = 4B.

Answer:

1. Suppose that 4 C B. Then, by Corollary 4.4.2, we have

i(4) = H:H.Hzi (B)-i,(A)
S I
2. i (ANB) = 4 :Msgz%(m
[40B] B [B]
3. Consider [AB| = m=g (AﬂB)|B|. Now
|4n B|

i (ANB) = i (B) =|4B| = i (B)|B| = |G| = G = AB

and, conversely, if G = AB, then

4. If G = 4B, then
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6l __ ld  _ldllal
[4n B[ |4|B] /48] |4] |5
and, conversely, if i (ANB) = i (4)'i (B), then

6] _ldllol
[4n8| |4 |8

i(ANB) = =i (4)-i,(B)

and hence |G| :%z |AB|

which implies that G = 4B.

Worked Exercise 4.4.2. Let G be a group of order p'n, where p is a prime not
dividing n. Let 4 and B be subgroups of G of orders p” and p?, respectively. If
B Z A, prove that 4B is not a subgroup of G.

Answer: We are given that |4| = p” and |B| = p*. Since |B| divides |G| and p”
is the largest power of p dividing |G|, we get that 0 = s = r. Since [4 N B| is
a divisor of |4], |4 N B| = p' for some ¢ = (. Suppose, AB is a subgroup of G,
then |4B| is a divisor of |G] = p'n. But [4B] = | ince 4], B] and |4 1 B
are all powers of p, |AB| = p* for some o = 0 and o = r (since p’ is the largest
power of p dividing |G]). Therefore,

|AB| = p* =p" = |A| = |4B| (since 4 C AB)

and hence |[AB| = p’, so that 4 = AB D B, which is a contradiction. Thus, AB
is not a subgroup of G.

Worked Exercise 4.4.3. Let 4 and B be finite subgroups of a group such that
|A| = p~and |B| = ¢*, where p and ¢ are distinct primes and » and s are positive
integers. Then prove that 4 N B = {e}.

Proof: Since A N B is a subgroup of 4 as well as B, |4 N B is a common divisor
of |4] and |B| and hence |4 N B| is a divisor of (p’, ¢*), which is equal to 1 since
p and q are distinct primes. Thus, |4 N B| = 1 and hence |4 N B| = 1.

EXERCISE 4(D)

1. State whether the following are true or false and justify your answer.

24 +4)'
(ii)  There is a subgroup of order 36 in (Z ,, + ,,)-

(i) There is no subgroup of order 9 in (Z

(iii)  In any group of order 240, there is a subgroup of index 36.

(iv) If Xis a 5-element set, then the group (S(X), o) of bijections of X onto
itself has a subgroup of order 24.
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(v) For any positive integer n, there is an element of order # in (R, +).
(vi) If X'is a 6-element set, then the group S(X) has an element of order 27.
(vii) The order of any element in a finite group is finite.
(viii) 43 divides 2**—1.
(ix) 19 divides 9"*—1.
(x) 8 divides 729*—1.

If A and B are subgroups of a group G such that |4] is a prime and 4 N B # {e},
then prove that 4 C B.

. If A is a subgroup of index 2 in a group G, then prove that x> € 4 for all x € G.

Prove that the following are equivalent to each other for any subgroup 4 of a
group G.

i) if4) =2
(i) x'yeA4forallxandy € G — A.
(ili) xy '€ Aforallxandy € G — A4.

If G is a group having no nontrivial subgroups, then prove that G is a cyclic
group of order prime or G is trivial.

If 4 and B are subgroups of finite index in a group G, prove that 4 N B is also of
finite index and that

i(ANB)=i(d)-i(B).

If 4 and B are subgroups ofa group Ganda and b € G, then prove that Aa N\ Bb = J
or Aa N Bb = (4 N B)c for some ¢ € G.

Let 4 and B be subgroups of finite index in a group G such that AB = BA4. Then
prove that

iAB(A na) = iAB(A) ’ iAB(B)'

If an abelian group has two subgroups of orders n and m, then prove that it has a
subgroup whose order is the least common multiple of » and m.

Let a and b be elements of a group such that @® = e and ab~'a = b?, then find O(D).
Determine all the subgroups of a group of order 137.

Let G be an abelian group of order 2n, where n is an odd positive integer. Prove
that G contains exactly one element of order 2.

. Prove that any group of order 4 is abelian and give an example of a noncyclic

group of order 4.

Prove that any nonabelian group has atleast six elements and give an example of
a 6-element nonabelian group.
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4.5 NORMAL SUBGROUPS

For any subgroup 4 of a group G, the collection of left cosets of 4 in G is in
general not the same as the collection of right cosets of 4 in G. Subgroups for
which these two collections are same are of special importance. In this sec-
tion, we discuss certain important properties of these special subgroups.

Definition 4.5.1. A subgroup N of a group G is said to be normal in G if
every left coset of N in G is a right coset of N in G.

Note that if a left coset a/V happens to be a right coset, then it must be the
coset Na only; for if aN = Nb, then a € aN = Nb and hence ab™' € N so that
Na = Nb. In the following, we obtain several other equivalent conditions for
a subgroup to be normal.

Theorem 4.5.1. The following are equivalent for any subgroup N of a group G.

N is a normal subgroup of G.

aN = Na foralla € G.

aNa ' C Nforalla € G.

Every right coset of N in G is a left coset of N in G.

The product of any two left cosets of Nin G is a left coset of Nin G.
(aN) (bN) = abN for all a and b in G.

(Na) (Nb) = Nab for all a and b in G.

L, = R, (see Theorem 4.3.1); that is, for any a and b € G, a'be Nif
and only ifab™! € N.

S B ARG o e

Proof:

(1) = (2): Suppose that N is a normal subgroup of G. Then, for any a € G,
aN = Nb for some b € G, aN = Nb for some b € G which implies that
a € (Nb) N (Na) and hence Nb = Na. Therefore, aN = Na.

(2) = (3): If aN = Na, then aNa™' = N.

(3) = (4): Suppose that aNa~'C N for all @ € G. Then,

aN = (aNa "a C Na
and, since a 'N(a™")~' C N, we get that = 'N C Na~' and hence Na = a(a™'N)
a C a(Na=")a = aN. Thus, Na = aN for all a € G.
(4) = (5): Suppose that every right coset of N in G is a left coset of N in G.
For any a and b € G, first choose ¢ € G such that Nb = c¢N and now

(aN)(bN) = a(Nb)N = a(cN)N = acNN = acN.
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Thus, (aN) (bN) is a left coset of N in G.
(5) = (6): Assume (5). For any @ and b € G, there exists x € G such that

(aN)(bN) = xN.
Now, ab = ae'be € (aN)(bN) = xN and hence (abN) N (xN) # O so that
(aN)(bN) = xN = abN.
(6) = (7): Letaand b € G. Then, ¢ ! and b~! € G and consider

(Na) (Nb) = (b"'N~'a N H)~!

=((b"'N)(@'N)™!
=(b""a ' N)" (by (6))
= Nlab

= Nab.

(7) = (8): For any a and b € G, consider

a'b&€ N=b=a(a"'b) € aN
= e =ebb'€ N (aN) b™' = (Na)(Nb~') = Nab~! (by (7))
= e =xab™!, forsomex €N
=ab'=xTEN.

Similarly ab™' € N = a~'b € N. Thus, L, =R,
(8) = (1): For any a € G, consider
XENasxa'EN
& x"'a € N (by (8))
Sa'lx=@'la)y'eEN
& x € aNl.

Thus, aN = Na for all @ € G and hence N is a normal subgroup of G. <

Example 4.5.1

1. In any group G, the trivial subgroup {e} and G are always normal in G.

2. Consider the group (S(X), o) of all bijections of a 3-element set X onto
itself (see Example 3.4.2). Following the notation given in Example
3.4.2,let H = {e, s}. Then, H is a subgroup of S(X). Also,

bsb™' = bsa = ca =d & H.

Therefore, H is not a normal subgroup of S(X).
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Clearly every subgroup of an abelian group is normal. However, the con-
verse of this may not be true in general. That is, a group in which every sub-
group is normal may not be abelian; for, consider the following example.

Example 4.5.2. Consider the set G = {1, —1, i, —i,j, —J, k, —k}. Define the
binary operation on G as just multiplication of numbers, treating 7, j and k as
numbers satisfying the following rules.

i2=j2=k2=—1
ij=k and ji= —k
Jjk=1i and k= —i
ki=j and ik=—j

i

NS

Then, G is a group under this operation. This group is called the Quaternion
group of 8 elements. Since ij = k # —k = ji, this group G is not an abe-
lian group. However, every subgroup of G is normal, as proved in Worked
Exercise 4.5.2.

Worked Exercise 4.5.1. Prove that any subgroup of index 2 in any group is
normal.

Answer: Let 4 be a subgroup of a group G and i (4) = 2. Then, there are
exactly two left cosets of 4 in G. By Worked Exercise 4.3.1, 4 is normal
subgroup of G.

Worked Exercise 4.5.2. Prove that every subgroup of the Quaternion group
of 8 elements is normal.

Answer: Let G be the 8-element Quaternion group and A4 be a subgroup of
G. Then, the order of 4 must be a divisor of the order of G (by the Lagrange’s
Theorem 4.4.2). Therefore, |4| divides |G| = 8 and hence |4] = 1 or 2 or 4 or 8.
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If|4| = 1, then 4 = {1} and hence 4 is normal.
If|4| = 8, than 4 = G and hence A4 is normal in G.

If|4] = 4, than i (4) = % = % =2 and hence, by Worked Exercise 4.5.1, 4
is normal.

Finally suppose that |4| = 2, then 4 = {1, a}, where a is an element of G such
that a> = 1 and @ # 1. The only such element in G is —1 and hence

A={l,—1}.
Since (—1)x = —x = x(—1) and lx = x = lx for all x € G, it follows that
xA = {x, —x} = Ax
for all x € G. Thus, 4 is normal in G.
Worked Exercise 4.5.3. Prove that the centre of any group is normal.
Answer: Recall that, for any group G, the centre of G is defined as the set
Z(G)={a € G:ax = xa for all x € G}.
Thus, for any x € G, xZ(G) = Z(G)x and hence Z(G) is a normal subgroup of G.

Worked Exercise 4.5.4. Let X be any nonempty set X and (S(X), o) be the
group of bijections of X onto itself. For any x € X, let

H = {fe S8X):flx) = x}.

Then prove that /_ is a normal subgroup of S(X) for all x € X if and only if X
has at most two elements.

Answer: Suppose that X has three distinct elements, say x, y and z. Let fand
g : X — Xbe defined by

fx)=y,f(y)y=x and f{s)=s foralls € X — {x,y}
and g(y)=z,g(z)=y and g(s)=s foralls € X — {x,y}.

Then, g € H_and /'€ S(X) and
(fgf H(x) = flg(F'(x)) = flg) = fla) =z # x

and hence fg /' & H . Therefore, fH f~' ¢ H_and hence H_is not normal
in S(X).
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On the other hand, suppose X has at most two elements. If |X] = 1, then

S(X) = {e} = H_and hence H  is normal. If |X] = 2, then X = {x, y}, where
x#y,and H = {e} = H, which is clearly normal.

EXERCISE 4(E)

1. Let 4 and B be subgroups of a group G and one of them be normal in G. Then
prove that AB is a subgroup of G. Is AB normal in G?

2. For any normal subgroup 4 of a group G and for any subgroup B of G, prove that
A N B is a normal subgroup of B.

3. Let G be the set consisting of the following eight matrices.

I P A
P S O

Prove that G is a group under the multiplication of matrices over the complex
numbers. Also prove that G is not abelian and that every subgroup of G is nor-
mal. Compare this with the example given in Worked Exercise 4.5.2.

4. Determine all the normal subgroups of the group S(X) of bijections of a 3-ele-
ment set X onto itself.

5. Let G be a group and n € Z*. If 4 is the unique subgroup of order n in G, then
prove that 4 is normal in G.

6. Let 4 be a subgroup of a group G such that, for any x and y € G,
XA =y4 = Ax = Ay
Then prove that 4 is normal subgroup of G.

7. Let 4 and B be two normal subgroups of a group G such that |4 N B| = 1. Then
prove that ab = ba foralla € A and b € B.

8. Give an example of a group G and subgroups A and B such that 4 C B, 4 is
normal in B, B is normal in G and A4 is not normal in G.

9. Let G be a group and a € G. Define
N(a) = {x € G:ax = xa}.

Prove that N(a) is a subgroup of G containing <a> as a normal subgroup. N(a) is
called the normaliser of a in G.
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Let 4 be a normal subgroup of a finite group G such that |4] and i (4) are rela-
tively prime. For any x € G, prove that x € 4 if and only if x| = e.

Let G be a group containing a nontrivial subgroup 4 which is contained in every
nontrivial subgroup of G. Then prove that every element of G is of finite order.
What could be the order of 4?

Let 4 be a subgroup of a group G and
CA)={x€ G:xa=axforalla € 4}.

Prove that C(4) is a subgroup of G containing A4 as a normal subgroup. C(4) is
called the centralizer of A in G.

For any subgroup 4 of group G, let
NA) = {x € G:x4 = Ax}

Prove that N(4) is the largest subgroup of G containing 4 as a normal subgroup.
N(A) is called the normaliser of A in G.

Compare the normaliser and the centralizer of a subgroup of a group.

For any subgroup 4 of a group G, let
N=(Yada).
acG

Then prove that N is the largest normal subgroup of G containing A4.

Let 4 be a subgroup of a group G such that x> € 4 for all x € G. Then prove that
A is normal in G.

For any real numbers a and b, define 7, : R — R by T, (x) = ax+b forallx €
R. Prove that the set {7, : @ and b € R} is a group under the usual composition
of mappings in which {7, : b € R} is a normal subgroup.

Prove that the intersection of any class of normal subgroups of a group G is
again a normal subgroup of G.

. Prove that, for any group G, the centre Z(G)= ﬂG N(a), where N(a) is the
ac

normaliser of @ in G.
For any set X with |X] = 3, prove that Z(S(X)) = {e}.

Let G, and G, be any groups and 4, and 4, be subsets of G, and G, respectively.
Then prove that 4, X 4, is a (normal) subgroup of the group G, X G, if and only
if 4 and 4, are (normal) subgroups of G, and G,, respectively.

If G, and G, are groups, prove that {e;} X G, and G| X {e,} are normal sub-
groups of G, X G,, where e and e, are identities in G| and G, respectively.
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4.6 QUOTIENT GROUPS

For any normal subgroup N of a group G, we have proved earlier that the
product of any two left cosets of N in G is again a left coset of N in G. That
is, taking product can be considered as a binary operation on the set of all left
cosets of N in G, which will be actually a group under this operation. This is
proved in the following definition.

Definition 4.6.1. Let G be a group and A and B be subsets of G. Then, we
define the product 4 - B as the set

A-B={ab:a &€ Aand b € B}.

Then, AB is called the product of 4 and B, in this order, induced by the binary
operation on G. Then, - is a binary operation on the set P(G) of all subsets of
G and is called the multiplication of subsets of the group G.

Theorem 4.6.1. Let N be a normal subgroup of a group G and
G/N = {aN:a € G}.

Then, G/N is a group under the multiplication of subsets of the group; that is,
for any aN and bN € G/N,

aN-bN = {xy :x € aN and y € bN}.

Proof: First of all recall that, aN-bN = abN for all @ and b € G (since N is a
normal subgroup of G) and hence the multiplication of subsets of the group
G is a binary operation on the set G/N of all left cosets of N in G.

For any a, b and ¢ € G, we have

(aN-bN)-cN = (abN)-cN
= ((ab)-c)N
= (a(bc))N
= aN-(bN-cN)

and hence the operation on G/N is associative.
Also, the coset eN = N satisfies the property that

(eN) - (aN) = eaN = aN = (ae)N = (aN) - (eN)
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for all aN € G/N and hence eN (= N) is the identity in G/N. Further, for any
aN € G/N with a € G, consider

(a"'N)-(aN) = a 'a-N = eN = aa'N = (aN)(a"'N)

and therefore a™!N is the inverse of aN in G/N. Thus, G/N is a group under the
multiplication of subsets of the group G.

Definition 4.6.2. For any normal subgroup N of a group G, the group G/N
constructed above is called the quotient group of G by N. Whenever we refer
to a G/N as a group, we only mean the set of left(right) cosets of N in G
together with the multiplication of subsets of the group G.

Corollary 4.6.1. For any subgroup N of an abelian group G, G/N is an abelian
group.

Theorem 4.6.2. Let N be a normal subgroup of a finite group G. Then,

|G| = [N |G/N|
Proof: This follows from the facts that |G/N| = i (N) and |G| = |N|"i (N).

Example 4.6.1. Let (Z, +) be the group of all integers under the usual addi-
tion and let # be any positive integer and <n> = {na : a € Z} be the subgroup
of (Z, +) generated by n. Since + is the operation on the group Z, the ele-
ments of Z/<n> are of the form a + <n> with a € Z. From Example 4.3.1
(2), we know that any coset of <n> in Z is of the form » + <n>, where 0 =
r < n. Thus,

Zi<n>={N,1 + N,2+N,...,(n — 1)+ N}, where N = <n>.

Example 4.6.2. Let E be the Euclidean plane and pick any point P in £ and
fix a coordinate system with P as origin. Then, any point in £ can be expressed
uniquely as an ordered pair (x, y) of real numbers and P corresponds to (0, 0).
For any points O, = (x,y,) and Q, = (x,, »,), define

0, +0,=K, +x,y, +y).

The following diagram illustrates this addition of points by the construc-
tion of parallelogram with adjacent sides PQ, and PQ,. Then, £ is an abelian
group with respect to the above operation.
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O1 + 02
Qa(X2,¥2)

Qi(x1,¥1)

P >

Let L be a straight line in E passing through P. Then, one can easily check
that L is a subgroup of . Let us describe the cosets of L in E. If O is any point in
E, then one can prove that the coset Q + L is precisely the line passing through
0 and parallel to L. Therefore, the quotient group E/L consists precisely all the
straight lines parallel to L, including L. For any points Q, and Q, in E, we have

Q+0)+ 0, +L)=(Q +0)+L

This is illustrated in the following figure.

L

Q1+QZ

Q

L Qi+L Q+L Qi+ Q+L
Worked Exercise 4.6.1. Let a be an element of finite order in a group G and
N be a normal subgroup of G. Then prove that the order of the element aN in
G/N is a divisor of O(a).
Proof: Let O(a) = n. Then,
(aN)'=a'N=eN =N (since O(a) =n,a" =e)

N is the identity in the quotient group G/N. Therefore, aN is of finite order in
G/N and O(aN) is a divisor of n = O(a) (by Theorem 4.2.4 (3)).
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Definition 4.6.3. Let a and b be elements of a group G. Then, the product
aba™'b7! is called the commutator of a and b and is usually denoted by
[a, b]; that is,

[a,b] = aba ‘b

One can easily verify that ab = [a, b]ba and hence we can view the com-
mutator [a, b] as a measure of the extent to which ab differs from ba. In fact,
the elements @ and b commute (that is, ab = ba) if and only if [a, b] = e,
the identity in G. The commutators of elements of a group G may not form a
subgroup of G, in general. However, we have the following theorem.

Theorem 4.6.3. Let G be a group and consider the set

[G,G]={ll[[ai,bi] :a; and bl.GG}.

i=1

Then, [G, G] is a subgroup of G. Also, any subgroup of G containing [G, G]
is normal in G.

Proof: Forany a and b € G, we have

[a,b] ' = (aba 'b™")"' = bab~'a™! = [b, a]
and therefore [G, G] is precisely the subgroup of G generated by the set {[a, b] :
aand b € G} (see Theorem 4.1.5). Thus, [G, G] is a subgroup of G. Next, let
A be any subgroup of G such that [G, G] C A. Foranya € 4 and x € G,

xax™' = (xax'a Na € 4,

since a € A and xax"'a™' = [x, a] € [G, G] C A. Thus, 4 is a normal sub-
group in G.

Corollary 4.6.2. For any group G, [G, G] is a normal subgroup of G.

Definition 4.6.4. For any group G, the subgroup [G, G] is called the derived
subgroup or commutator subgroup of G and the quotient group G/[G, G] is
called the commutator quotient group or abelianized group. The reason for
the latter terminology is the following theorem.

Theorem 4.6.4. Let N be any normal subgroup of a group G. Then, the
quotient group G/N is abelian if and only if [G, G] C N.
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Proof: Since ab = ba < [a, b] = e, the identity, for any elements @ and b in
any group, we have

G/N is abelian < [aN, bN] = N forallaN and bN € G/N
& aN-bN-(aN)"'(bN)"' =N foralla,b € G
& (aba 'b"")N=N foralla, b, € G
S [a,b)EN foralla,bE G
< [G,G]ICN.

The following is a direct consequence of Corollary 4.6.2 and Theorem
4.6.4.

Corollary 4.6.3. For any group G, G/[G, G] is an abelian group.

Theorem 4.6.4 and Corollary 4.6.3 say that the commutator subgroup
[G, G] is the smallest normal subgroup of G having an abelian quotient group.
The transition from a group G to its commutator quotient group G/[G, G] is
referred to as the abelianization of the group G and provides a convenient
procedure to produce abelian groups from nonabelian ones. Note that a group
G is abelian if and only if the commutator subgroup [G, G] = {e}.

In the following, we give a procedure to find all subgroups of the quotient
G/N, where N is a given normal subgroup of a group G.

Theorem 4.6.5. Let N be a normal subgroup of a group G and G/N be the
quotient group. For any subgroup A of G containing N, A/N = {aN :a € A}
is a subgroup of G/N. Further, 4 — A/N is a one-to-one correspondence
between the subgroups of G containing N and the subgroups of G/N.

Proof: Foranyaand b € 4,
(aN)(bN")=(aN)(b"'N)=ab 'N € A/N,

since A4 is a subgroup, and hence 4/N is a subgroup of G/N. If 4 and B are
subgroups of G containing N and A/N = B/N, then

a€ A= aN € A/N = B/IN
= aN = bN forsomeb € B
=a'bEN
=ab"' € NCB (since N is normal)
=a=(ab")bEB
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and hence 4 C B. Similarly, B C 4 and therefore A = B. Thus, 4 — A/N is
one-one. Further, if M is any subgroup of G/N, define 4 = {x € G : xN € M}.
Then, 4 is a subgroup of G containing N and A/N = M.

Thus, 4 — A/N is a one-to-one (bijective) correspondence between the
subgroups of G containing N and the subgroups of G/N.

Remark 4.6.1. Note that, in the above, A/N is normal in G/N if and only if 4
is normal in G. Also, for any subgroups 4 and B containing N, A/N C B/N if
and ifonly 4 C B.

If N = {e}, then G/N = G and, if N = G, then G/N = {N}, the trivial
group.

EXERCISE 4(F)

1. Describe the quotient group of each of the following in the groups mentioned
against them.

(i) 10,4,8,12}in(Z,,, + ).
(i1) The set £ of even integers in (Z, +).
(iii) Zin(Q, +).
@iv) {1,—1}in ({1, — 1,4, —i}, ).
v) Rin(C, +).
(vi) Qin (R, +).

2. Let G = <a>be a cyclic group of order 15 and 4 = <a*>. Construct multiplica-
tion table representing the quotient group G/A.

3. For any group G, determine the quotient groups of the trivial normal subgroups
{e} and G.

4. Let A be a subgroup of a group G such that x> € 4 for all x € G. Then prove that
A is normal in G and the quotient group G/4 is abelian.

5. Let Z(G) be the centre of a group G. If G/Z(G) is cyclic, prove that G is
abelian.
6. Let N be a normal subgroup of a finite group G. Then prove the following.
() |G/IN| = [GI/|N| = i(N).
(i) Ifn =i/ N),thenx" € Nforallx € G
(iii) The order of aN in G/N is a divisor of the order of @ in G, for any a € G.

Can they be equal? Justify your answer.

7. Let N be a normal subgroup of a group G. Then prove that G is finite if and only
if both N and G/N are finite.
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A group G is said to be finitely generated if G = <F> for some finite subset F of
G. Let 4 be a subgroup of an abelian group such that both 4 and G/4 are finitely
generated. Then prove that G is finitely generated.

. Let G be a group and S = {a? : ¢ € G}. Then prove that <S> is a normal sub-

group of G and that G/<S> is an abelian group.

List all normal subgroups of the group (S(X), o) of bijections of a 3-element set
X onto itself and construct tables representing the quotient group of each normal

subgroup S(X).
Let G = {(a,b) € R X R:a # 0} and, for any (a, b) and (c, d) € G, define
(a, b) * (¢, d) = (ac, ad + b).

Then prove that (G, *) is a group. If K = {(1, b) : b € R}, then prove K is a
normal subgroup of G.

Let G be a group of order 2n, where n is odd. Prove that G contains a normal
subgroup of index 2.
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Homomorphisms

of Groups

5.1 Definition and Examples

5.2 Fundamental Theorem of Homomorphisms
5.3 Isomorphism Theorems

5.4 Automorphisms

Homomorphisms play a major role in all aspects of modern algebra. One of
the most difficult problems in the theory of groups is to list all finite groups
having the same order. The difficulty is that we may list the same groups in
different forms. The notion of isomorphism builds up an equivalence relation
between groups, so that we may consider two groups belonging to a given
equivalence class as the same. Just as we cannot conclude that two human
beings are same, because they wear an identical set of clothes or the same
person putting on a different set of clothes does not become different, groups
are to be recognized as same or different on the basis information that is not
readily apparent. Consider the group (Z,, +,), where Z, = {0, 1,2, 3} and +,
is the addition modulo 4, and the group (G, *), where G = {1,i, —1,i} and ‘-’
is the usual multiplication of complex numbers. We have

Z,=<1>=1{0,1,2,3} and G={l,i & i}

and hence these two groups look same as we have the correspondence - Z, — G
defined by £(0) = 0, f(1) = i, /(2) = i? and f(3) = . This correspondence is
compatible with the operations +, on Z, and ‘> on G and is a bijection of Z,
onto G. This helps us in proving that any property of Z, gives a similar prop-
erty in G'. Such correspondences are called homomorphisms.
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In this chapter, we focus our attention on homomorphisms of groups. A
homomorphism of two groups may reveal some information about one of
the groups as a deduction of known structural properties of the other. If fis a
homomorphism of a group G onto another group G’ and if we know all about
the structure of G, then we can deduce the structure of G'also.

5.1 DEFINITION AND EXAMPLES

For any groups G and G’, we are interested in the mappings f of G into G’
such that the product of images of two elements in G is same as the image of
the product. If * and o are the binary operations in groups G and G’, respec-
tively, then a mapping f: G — G’ is called a homomorphism if the figure
given below is commutative, in the

Gx G > G
fxf f

4 \ 4
G x@G > G

sense that, the composition of fand * is same as that of o and /' X f, where
fXf:GXG— G X G isdefined as (f X f)(x, y) = (f(x), f(»)). This is
precisely expressed in the following definition.

Definition 5.1.1. Let G and G’ be groups. Then, a mapping f: G — G’ is
called a homomorphism of G into G" if

Sab) = f(a)/(b)

for all elements @ and b in G.

Here, the product ab which appears on the left side of the above equation cor-
responds to the binary operation on G, whereas the product f(a)f() on the
right side corresponds to the binary operation on G'. As we have agreed to
skip the symbol denoting the binary operation in a group and to write simple
ab for a * b, when * is the binary operation of G and a and b are elements of
G, the equation f(ab) = f(a)f(b) makes sense since a and b are elements of G
and f(«a) and f(b) are those in G'. Strictly speaking, we should have written
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f(axb)= f(a)o f(b) foralla,beG,

where * and o are the binary operations in the groups G and G’, respectively.
Examples given below make these things clear.

Example 5.1.1

1.

Consider the groups (Z, +) and (R*, -) where + and ‘-’ are the usual
addition and multiplication of real numbers. Let m be any positive inte-
ger and define f: Z — R by

fla)=m* foralla € Z.
Then, for any a and b € Z, we have
fla+b)=m™ = m* - m" = f(a) - f(b)

and hence f'is a homomorphism of (Z, +) into (R*, -).
Consider the groups (R*, -) and (R, +) and let m be any positive integer
greater than 1. Define

f:R* —Rbyfla) =log a foralla e R".
Then, for any ¢ and b € R*,
fla-b)= 10gm (ab) = logma + logmb = f(a) +f(b).
Therefore, fis a homomorphism of (R*, ) into (R, +).

. For any group G, define f: G — G by

fx)=x forallx € G.

Then, clearly fis a homomorphism of G into itself and is called the iden-
tity homomorphism.

Let G and G’ be groups in which e and e’ are the identities, respectively.
Define

f:G—G byf(x)=¢ foralxeQd.
Then, for any a and b in G, we have
flab) =e" = e -e" = fla) f(b)

and hence f'is a homomorphism of G into G' and is called the trivial
homomorphism.

. Let m be an arbitrary integer and define f': Z — Z by

fla) =ma foralla € Z.
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Then, f(a + b) = m(a + b) = ma + mb = f(a) + f(b) for all a and
b € Z. Therefore, fis a homomorphism of (Z, +) into itself.

Consider the groups (Z, +) and (Z,, +,), where +, is the addition mod-
ulo 2. Define

0, ifaiseven
Z — 7., b =17
S 2= 2, by f(a) {1, if a is odd

for any a € Z. Then, since @ + b is even if and only if both ¢ and b are
even or both a and b are odd, we get that

fla + b) = f(a) +,f(b) forallaandb € G.

Therefore, fis a homomorphism of (Z, +) into (Z,, +,).

Consider the group (R—{0}, ) of all nonzero real numbers under the
usual multiplication of real numbers and the group NSM_(IR) of all 2 X 2
nonsingular matrices over R under the usual multiplication of matrices.

Define
[a b H =ad —bc
c d

b ros).
P and B= , in NSM_(R), we have

f:NSM(R) — R — {0} by f

a b
for any [ d] € NSM,(R).

C

Then, for any 4 = ¢

c u

ar+bt as+bu
f(4B)=f
cr+dt cstdu
= (ar+bt) (cst+du)—(as+bu) (cr+dt)

= ares + ardu + btes + btdu — ascr — asdt — bucr — budt

= ardu + btcs — asdt — bucr
= (ad — bc) (ru—st)
= f(A)f(B).
Therefore, fis a homomorphism of (NSM_(R), -) into (R — {0}, -).

Let N be a normal subgroup of a group G and G/N, the quotient group
of G by N. Define

f:G— G/Nbyf(a) =aN foralla € G.
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Then, for any a and b in G,
flab) = (ab)N = aN - bN = f(a):f(b)

and hence fis a homomorphism of G into G/N and is called the natural
or cannonical homomorphism.

In the following, we derive certain important elementary properties of
homomorphisms.

Theorem 5.1.1. Let f: G — G’ be a homomorphism of groups. Then, the
following holds:

1. f(e) = €', where e and ¢’ are the identities in G and G, respectively.
2. fla )y =f(a) ' foralla € G
Proof:
1. Letf(e) = x. Then, x is an element in G" and hence
xe' =x = f(e) = f(ee) = f(e)f(e) = xx.
Therefore, xx = xe' and, by the left cancellation law, x = e'. Thus,
fle)=¢€'".
2. For any a € G, we have
fa)fla™) = flaa™) = fle) = ¢' = fle) = fla 'a) = fla™") f(a)
and hence f(a™") is the inverse of f(a) in G'; that is,
fla™) =fla)™.
Theorem 5.1.2. Letf: G — G’ be a homomorphism of groups.
1. For any subgroup 4 of G, the image f(4) is a subgroup of G'.
2. For any subgroup 4’ of G’, the inverse image f~!(4") is a subgroup of G.
Proof:
1. Let A be a subgroup of G. Then,
f) = {f(@):a EG} C G
First of all, since 4 is a subgroup of G, we have e € 4 and hence
e' = fle) Ef(4)
so that f(A4) is a nonempty subgroup of G'. Also,
xandy € f(4) = x = f(a) and y = f(b) witha and b € 4.

=xy ' = fla)f(b)"" = fla) f(b") = flab™")
€ f(A) (since A4 is a subgroup).
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Therefore, f(A4) is a subgroup of G'.
2. Let A" be a subgroup of G'. Then,

FA)={aEG:fla)EA".

Since f(e) = ¢’ € A', we get that e € f7!(4") and hence f7'(4') is a
nonempty subset of G. Now,

aand b € f1(4") = f(a) and f(b) € 4’
= flab™) = fla)f(b™") = fla)f(b) ' € A’

(since A’ is a subgroup of G')
=ab ' € fYA").

Thus, /7'(4") is a subgroup of G.

Theorem 5.1.3. Letf: G — G’ be a homomorphism of groups.

1. Iffis a surjection and A4 is a normal subgroup of G, then f(4) is a normal
subgroup of G'.
2. If A" is a normal subgroup of G’, then /~!(4") is a normal subgroup of G.

Proof:

1. Let f'be a surjection and A4 be a normal subgroup of G. Then, we have
already proved that f(A) is a subgroup of G'. Now,

xE€f(A)andy € G' = x = f(a) and y = f(b) for some a € 4
andb € G
= yxy ' = f(b)fa)f(b)"! = f(bab™") € f(A).

Therefore, yf(4)y~' C f(A) for all y € G’ and hence f(4) is a normal
subgroup of G'.

2. Let A’ be a normal subgroup of G'. By the above theorem, f~'(4") is a
subgroup of G. Now,

a€f'(Ad)andx € G=f(a) EA" and f(x) E G’
= flxax™") = f)f(a)fx) ' € 4’

(since A" is normal in G")
=xax ' € f1(4").

Therefore, ~'(4") is a normal subgroup of G.
Remark 5.1.1. Note that in Theorem 5.1.3 (1), it is necessary that f'is a sur-

jection; for, consider a group G’ and a subgroup G of G’ such that G is not
normal in G'. Let f: G — G’ be the inclusion map defined by f(x) = x for all
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X € G. Then, fis a homomorphism of G into G, G is a normal subgroup of
G', but f(G) (= G) is not normal in G".

For any homomorphism /: G — G, the subgroup f/~!({e'}) of G is of the
special importance and is called the kernel of f. This is formally defined in
the following definition.

Definition 5.1.2. Let /: G — G’ be a homomorphism of groups. Then, the
kernel of fis defined to be the set

kerf={a€ G:fla)=¢"},
where e’ is the identity in the group G'.

Theorem 5.1.4. For any homomorphism f: G — G’ of groups, the kernel of
f'is a normal subgroup of G.

Proof: By the definition of the kernel of £, we have

kerf=f"'({e'}),

where e’ is the identity in G'. Since {e'} is a normal subgroup of G’,
it follows from Theorems 5.1.2 (2) and 5.1.3 (2) that ker f'is a normal
subgroup of G.

The converse of the above theorem is also true, in the sense that, any nor-
mal subgroup of a group G is the kernel of some homomorphism of G into
some group G'. This is proved in the following theorem.

Theorem 5.1.5. Let N be a normal subgroup of a group G and G/N, the quo-
tient group of G by N. Define

f:G— G/Nby f(a) =aN foralla € G.
Then, f'is a homomorphism, whose kernel is N.
Proof: For any a and b in G,

f(ab) = abN
= aN - bN (since N is normal in G)
= f(a)f(b)

and hence fis a homomorphism (see Example 5.1.1 (8) also) and
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ker f= {a € G : f(a) = the identity in G/N}
={a€ G:aN =N = eN}
={a€GaE N} =N.

Let us compute the kernels of homomorphisms given in Example 5.1.1.

Example 5.1.2

l. f:Z — R" is defined by f(a) = m“ for all @ € Z, where m is a given
positive integer. Now,

kerf'= {a € Z : f(a) = the identity in R*}
={a€Z:m =1}

|2, ifm=1
{0}, ifm>1

2. f:R" — R is defined by f(a) = log a.

m

ker f= {a € R": f(a) = the identity in (R, +)}
={a€R":log a =0}
= {1}.

3. For any group G, define f(x) = x for all x € G. Then,

ker f'= {e}.

4. f: G — G'is defined by f(x) = ¢’ forall x € G.
Therefore, ker f = G.

5. f1Z — Z is defined by f(a) = ma for all a € Z, where m is a given
integer. Then,

kerf'= {a € Z : f(a) = 0, the identity in (Z, +)}
={a € Z|ma=0}

|z, itm=0
{0}, ifm#0

0, ifaiseven
6. 7 — 7. is defined b ={"
Jrl= T, y (@) {1, if a is odd

ker f={a € Z: f(a) = 0, the identity in (Z,, +,)}
= 27, the set of all even integers.
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7. f:NSM(R) — R — {0} is defined by
a b
= ad — bc.
1

c

ker f= {[a
c

8. The kernel of the natural map /: G — G/N, defined by f(a) = aN, is
precisely N.

b
P € NSM, (R):ad —bc= 1}.

In the following, we define various types of homomorphisms.

Definition 5.1.3. Let /: G — G’ be a homomorphism of groups. Then, f'is
called

a monomorphism if f'is an injection.
an epimorphism if f'is a surjection.
an isomorphism if f'is a bijection.
an endomorphism ift G = G'.

SAEE A e

an automorphism if fis a bijective endomorphism.

Example 5.1.3

1. If m> 1, then the map f: Z — R", defined by f(a) = m“, is a monomor-
phism of (Z, +) into (R™, -).

2. The homomorphism given in (2), (3) and (5) (if m # 0) of Example
5.1.2 are monomorphisms, while those given in (2), (3), (6) and (8) are
epimorphisms.

Note that a homomorphism f: G — G’ is an epimorphism if and only if
f(G) = G'. In the following, we give a characterization of monomorphisms
in terms of their kernels.

Theorem 5.1.6. Let /: G — G’ be a homomorphism of groups. Then,
fis a monomorphism if and only if the kernel of f is trivial, that is, ker

f= e}

Proof: Suppose that f is a monomorphism. Then, f is an injection and
therefore

a€kerf=fla)=¢ =fley=a=c¢
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and hence ker f'contains e alone. Thus, ker f = {e}. Conversely, suppose that
fis not a monomorphism, then f'is not an injection and hence there exists
a # b € G such that f(a) = f(b). Now, ab™! # e and

Slab™) = fla)f(b™") = fla)f(b)" = f(b)f(b) ' = e

and hence e # ab™! € ker f, so that ker f # {e}.
Recall that a mapping /: 4 — B is a bijection if and only if there exists a
unique mapping g : B — A such that

fog=1, and gof=1;

that is, f(g(b)) = b for all b € B and g(f(a)) = a for all a € 4.
This unique g is called the inverse of f'and is denoted by f~'. Also, in this case,
forany a € 4 and b € B, we have

fa)y=bsa=[0b).

In the following, we prove that the inverse of a bijective homomorphism
is again a homomorphism.

Theorem 5.1.7. Let /: G — G’ be an isomorphism of groups. Then, /! : G’
— G is also an isomorphism.

Proof: We are given that /': G — G’ is a bijective homomorphism. Then,
clearly /' : G" — G is a bijection. Now, for any x and y € G’,

SO ) = xy = /(1) U0 = 0)

and since f’is a bijection, we have

fxy) =fx)f (y) forallxandy € G'.
Thus, /! is a homomorphism and a bijection and hence an isomorphism.

Definition 5.1.4. Two groups G and G’ are said to be isomorphic if there is
an isomorphism f: G — G’ and, in this case, we write G = G'.

Theorem 5.1.8. The following holds for any groups G, G’ and G”":

1. G=G
2. G=G=G=G
3. G=G and G'=0"=G= G
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Proof:
1. follows from the fact that the identity map /. on G is an isomorphism of
G onto itself.
2. is consequence of Theorem 5.1.7 and

3. follows from the fact that the composition of two isomorphisms is again
an isomorphism.

Example 5.1.4. Consider the groups (Z,, +,) and (G, -), where G = {1, —1, 1,
—i} and *-is the multiplication of complex numbers. Define /: Z, — G by

fO)=1f1)=4f2)=i=—-1 and f(3)=7F=—i
Then, fis an isomorphism and hence Z, = G.

Worked Exercise 5.1.1. If /: G — G" and g : G’ — G" are homomorphisms
of groups, prove that g o f: G — G” is a homomorphism.

Answer: For any a and b € G, we have

(g 0/)(ab) = g(f(ab))
= g(f(a)f (b))
= g(f(@)g(f(b))
= (gof)a)(g o)D)

Therefore, g o fis a homomorphism.

Worked Exercise 5.1.2. Let/: G — G’ be a homomorphism of groups and a
be an element of finite order in G. Prove that the order of f(a) is finite in G’
and that O(f(«a)) divides O(a).

Answer: Leta € G be of finite order and O(a) = n. Then, a” = e and (f(a))" =
fla) = fle) ="

Therefore, f(a) is of finite order and, by Theorem 4.2.4 (3), O(f(a))
divides O(a).

Worked Exercise 5.1.3. Letf: G — G’ be a homomorphism of groups and K
= ker f. Describe the cosets of K in terms of /.

Answer: We know that K = ker /= {a € G : f(a) = ¢’} and that K is a nor-
mal subgroup of G and hence every left coset of K is a right coset of K in G.
For any a € G, consider
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aK = {ax:x € K}
= {av:f(x) = €'}
= EG/ =S},

since f(ax) = f(a)f(x) = fla)e' = f(a) and, if y € G is such that f(y) = f(a), then
y = ax, where x = a~'y € ker f'= K. Thus, aK = f"'{f(a)} forany a € G.

Worked Exercise 5.1.4. Let n be a positive integer and Z = {0, 1, 2, ...,
n — 1}. Define f/: Z — Z, by f(a) = r, where r is the remainder obtained by
dividing a with n. Then, prove that /is an epimorphism of (Z, +) onto (Z, , + ).

Answer: Note that, for any a € Z, f(a) = r, where
a=qgn+r,gqgandr€Zand0=r<n

and hence f(a) € Z . Therefore, f: 7Z — 7 _is a mapping. For any a and
beZ,let

fla)=r and f(b)=s.

Then,a = gn + rand b = ¢'n + s, where ¢ and ¢’ are integers.
Now,

atb=(qg+q)m+(r+s)
_ (gt g+ (r+s), ifr+s<n
(gtqg'tDOn+(r+s—n), ifr+s=n
=m+(r+,s) and 0=r+ s<n
and hence f(a + b) =r + s = f(a) +, f(b).

Thus, fis a homomorphism. Also, for any 0 = a <n, f(a) = a and hence fis a
surjection also. Thus, fis an epimorphism of (Z, +) onto (Z , + ).

Worked Exercise 5.1.5. Let G be an abelian group of order m and let n be any
positive integer relatively prime to m. Define f: G — G by f(a) = a” for all a
€ G. Then, prove that fis an automorphism of G.

Answer: Since G is an abelian group, we have
flab) = (ab)" = a"b" = f(a)f(h)

for all  and b € G and hence fis a homomorphism of G into G. For any a €
G, O(a) divides |G| = m and hence

a"=e foralla € G.
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Since n is relatively prime to m, there exist integers » and s such that rm +
sn = 1. Now, for any a and b € G,

fla)=f(b)=a"=b" and a"=e=D>D"
=q= arm+.m = (am)r(an)x
e (bm)r(bn)s — brm+sn — b

and hence fis an injection. Therefore,
m = |G| = [f(G)| =G| =m
and hence |[f(G)| = |G| so that f(G) = G (since G is finite and f(G) C G).

Therefore, fis a surjection also. Thus, fis an isomorphism of G onto G; that
is, fis an automorphism.

EXERCISE 5(A)

1. Determine which of the following are homomorphisms between the given
groups:
(1) Consider the group (Z, +) and define f/: Z — Z by f(a) = 2* forall a € Z.
(i) Considerthe groups(Z, +,) and (Z,, + ) and definef: Z, — Z by f(a) = a
foralla € Z,.
(iii)  Consider the groups (Z,, +,) and (Z, +) and define f: Z,— Z by f(a) = a
foralla € Z,.

. 0, ifaiseven
(iv) Define f: Z, — Z, by f(a) ={

1, ifaisodd

(v) Definef: Z , — 7Z, as in (iv) above.

(vi) Consider the group (R, +) and define /': R — R by f(x) = cos x for
allx € R.

(vii) Let Y be a nonempty subset of a set X and consider the group P(X) and
P(Y) under the symmetric difference of sets. Define f/: P(X) — P(Y) by
f(4) = AN Yforany 4 € P(X).
(viii)) Let Xand Y be as in (vii) above. Define f: P(X) — P(Y) by f(4) =Y — 4
for any 4 € P(X).
(ix) Let G be the group of all real valued continuous functions of the
interval [0, 1] under point-wise addition. Define /' : G — R by
1

fla)=fa(x)dx foralla € G.

(x) Let X be any nonempty set and R* be the set of all mappings of X into R.
Consider the group (RX, +) where + is the point-wise addition. For any
x, € X, define - R¥ — R by f(«) = a(x,) for all @« € R".
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Let G and G’ be groups and /: G — G’ be a mapping. Prove that /is a homomor-
phism if and only if

flab™) = f(a)f(b)"! foralla and bEG.

LetC — {0} and R — {0} be the groups of nonzero complex numbers and nonzero
real numbers, respectively, under the usual multiplications. Prove that the map

f:C— {0} - R — {0} defined by f(z) = |z| is a homomorphism.

Let G be a group and define /: G — G by f(a) = a™! for any a € G. Prove that f
is an endomorphism if and only if G is an abelian group.

. Determine the Kernels of the homomorphisms (if they are) given in Exercise 1

above.
Determine all the homomorphisms of (Z, +) into (Z,, +,).
Determine all the endomorphisms of the group (Z, +) into itself.

Prove that every nontrivial endomorphism of (Z, +) into itself is a
monomorphism.

Prove that there is no epimorphism of (Z, +) onto itself, except the identity map.

Considerthe groups (Z, +)and (R, +) and, forany real number a, definef, : Z— R
by f.(x) = ax for all x € Z. Prove that a mapping f: Z — R is a homomorphism
if and only if /= f, for some a € R.

Let G and G’ be finite groups and /: G — G’ be a homomorphism. Prove that
the index of the Kernel of fin G is a divisor of |[f(G)|.

Let f: G — G’ be a homomorphism of groups and a € G. If O(a) is finite, then
prove that O(f(a)) is also finite and is a divisor of O(a). Give an example where
O(f(a)) is a proper divisor of O(a).

Let fand g : G — G’ be homomorphisms of groups and 4 = {a € G : f(a) =
g(a)}. Then, prove that 4 is a subgroup of G.

Letf: G — G’ be ahomomorphism and G be a finite group of prime order. Then,
prove that fis either trivial or a monomorphism.

Let f: G — G’ be a homomorphism of groups and [G, G] be the commutator
subgroup of G (see 4, 6, 12). Then, prove that f(G) is an abelian group if and
only if [G, G] C ker f.

Let G be a group and a and b € G. Consider the group Z X Z under coordinate-
wise addition and define f: Z X Z — G by

f(m,n) = a™b" forany (m,n) € Z X Z.

Obtain a necessary and sufficient condition, in terms of a and b, for f'to be a
homomorphism.
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. Let a be an element in a group G and n € Z"*. Define

fiZ,—Gbyf(i)=a for0=i<n.

Obtain a necessary and sufficient condition in terms of @ and » for f'to be a
homomorphism.

For any element a in a group G, define f: Z — G by f(n) = a" for all n € Z.
Prove that f'is a homomorphism and determine the kernel of /.

Letn € Z* and G be the group of all n™ roots of unity under the usual multipli-
cation of complex numbers. Prove that G = (Z , + ).

Let Q, be the quaternion group with eight elements. Prove that there is a unique
homomorphism f: G — Z, such that /(i) = 0 and f(j) = 1.

Let G and G’ be finite groups of the same order and /: G — G’ be a homomor-
phism. Then, prove that the following are equivalent to each other:
(i) fis a monomorphism.

(i) fis an epimorphism.

(iii)  fis an isomorphism.
Let R — {0} be the group of nonzero real numbers under multiplication and
G = {1, —1}. Define
1, ifa>0

f:R—>Gbyf(a)={_L e

Then, prove that fis an epimorphism.
Prove that there is no epimorphism of (Z, +) onto (R, +).
Exhibit a monomorphism of Z into Z,.

For any positive integers m and n, obtain a necessary and sufficient condition for
having a monomorphism of Z_ into Z .

List all the isomorphisms of (Z, +) onto (Z, +).
How many homomorphisms are there from Z. into Z,,?

Let G and H be any groups and H be an abelain group. Let Hom(G, H) be the set
of all homomorphisms of G into H. Prove that Hom(G, H) is a group under the
point-wise operation.

Prove that the composition of any two monomorphisms (epimorphisms) is again
a monomorphism (epimorphism).

Letf: G — G' and g : G'—G" be homomorphisms, such that g o f'is a mono-
morphism. Then, prove that f'is a monomorphism. If g o f'is an epimorphism,
then prove that g is an epimorphism.

Let G be a group and /: G — G be defined by f(x) = x* for all x € G. If fis
monomorphism, then prove that G is abelian.
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5.2 FUNDAMENTAL THEOREM OF HOMOMORPHISMS

For any homomorphism fof a group G into a group G’, we know that /(G) is a
subgroup of G’ and hence f(G) is a group by itself. /(G) is called a homomor-
phic image of G. For example, if N is any normal subgroup of a group G and
G/N is the corresponding quotient group, then G/N is a homomorphic image
of G, since we have the natural map f: G — G/N which is a homomorphism
and f(G) = G/N. In the following, we prove a converse of the above; that is,
any homomorphic image of a group G is isomorphic to a quotient group of G.

Theorem 5.2.1 (Fundamental Theorem of Homomorphisms). Letf/: G — G’
be a homomorphism of groups. Then,

Glker f= f(G)
and, in particular, if /is an epimorphism, then
Glkerf= G'.

Proof: For simplicity, let K = ker f'= {a € G : f(a) = ¢'}. We know that K
is a normal subgroup of G and hence we have the quotient group whose ele-
ments are the cosets of K in G. Also, we know that f(G) is a subgroup of G’
and hence f(G) is a group on its own.

Define g: G/K — f(G) by g(aK) = f(a)

for any aK € G/K. There is an apparent ambiguity in the definition of g. This
looks like depending on a. Actually, this does not depend upon the represen-
tative a of the coset aK. For, consider

aK =bK=a'bE K=kerf
= fla)"f(b) = fla )f(b) = fla"'b) = ¢’
= fla) = f(b)

This clears the ambiguity and it follows that g is well defined. For any ¢K and
bK € G/K, we have

g(akK - bK) = g(abK)
= f(ab)
= f(a)f(b)
= g(aK) - g(bK)
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and therefore g is a homomorphism. Since any element of /(G) is of the form
f(a) = g(aK) for some a € G and aK € G/K, g is a surjection. Also, for any
aK and bK € G/K,

g(aK) = g(bK) = f(a) = f(b)
= f(a"'b) = fla) 'f(b) = ¢
=a'bEkerf=K
= aK = bK.

Therefore, g is an injection also. Thus, g : G/K — f(G) is an isomorphism
and hence G/K = f(G). If fis an epimorphism, then f(G) = G’ and hence
G/IK=G".

For any sets A, B and C, if « : A — B is a bijection and B is a subset of C,
then « can be considered as an injection of 4 into C. On the other hand, if
B : A — Cis an injection, then 8 can be considered as a bijection of 4 onto
B(A4). Now, the following is an important consequence of the Fundamental
Theorem of Homomorphisms.

Theorem 5.2.2 (Factorization Theorem). Any homomorphism of groups can
be expressed as a composition of an epimorphism and a monomorphism.

Proof: Letf: G — G’ be a homomorphism of groups and K = ker f. Then,
by the Fundamental Theorem of Homomorphisms (Theorem 5.2.1), there
is an isomorphism g : G/K — f(G) such that g(aK) = f(a) for all a € G.
Now, since f(G) is a subgroup of G, g can be considered as a monomor-
phism of G/K into G'. Also, let 4 : G — G/K be the natural homomorphism
defined by A(a) = aK for all a € G. Then, clearly 4 is an epimorphism and
we have,

G——G/K—-G'

forany a € G, (g o h) (a) = g(h(a)) = g(aK) =f(a) are hence f = g o h. There-
fore, fis the composition of the epimorphism % and the monomorphism g.

Example 5.2.1. Let n be a positive integer and (Z, , +,) be the group of inte-
gers modulo n. As in Worked Exercise 5.1.4, define f': Z—Z by f(a) = r,
where 7 is the remainder obtained by dividing a with r; that is, if g and r are
integers such thata = gn + rand 0 = r<nm, f(a) = r.

In Worked Exercise 5.1.4, we have proved that /is an epimorphism. By the
Fundamental Theorem of Homomorphisms, Z/ker f = Z , we have
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ker f= {a € Z: f(a) = 0, the identity in Z }
= {a € Z : a = nq for some q € 7}
= nZ
= <n>, the subgroup of Z generated by n.

Theorem 5.2.3. Let G, G, and G, be groups. Then, prove that G = G, X G,
if and only if there exist normal subgroups N, and N, of G such that N N, =
G,NNN, = {e}, G, = G/N, and G, = G/N,.

Proof: Lete, e and e, be identities in G, G, and G,, respectively. Suppose that
G=G X G,andletf: G — G, X G, be an isomorphism. Put 4, = {e } X

G, and 4, = G, X{e,}. Then, 4, and A4, are normal subgroups of G, X G,.
Now, put

N, =f"'4,) and N,=f"(4,).

Then, N, and N, are normal subgroups of G. For any x € G, we have f(x) =
(a,a) € G, X G,.Choose x, and x, in G such that

f(x) =(e,a,) and f(x) = (a,e,).
Then, x, € f7'(4,), x, € f7'(4,) and
Jx) = (e, a) (a,, e,) = fx) flx,) = flx, x,)
and hence x = xx, € N,N,. Therefore, NN, = G, Also,

XENNN,=xEf(4) and xE[f'(4,)
=f(x) €A =1{e} XG, and f(x)EA, =G, X {e}
= f(0) € ({e,} X G) N (G, X {e,}) = {e,} X {e,}
= f(x) = (e,, e,) = f(e) (since fis a homomorphism)
=x=e

Therefore, N, N N, = {e}. Next define f,: G — G, andf,: G — G, by
fix)=a, and f, (x)=a, iff(x)=(a,a,).
Then, f, and f, are epimorphisms and ker f, = N, and ker f, = N,; For

XEN & fx) €A < f(x) =(e,a)=f(x)=e
and XEN,&fx) €A, & f(x) = (a,e) & f(x) = e,
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Therefore, G/N, = G, and G/N, = G,.

Conversely suppose that N, and /N, are normal subgroups of G such that N,
N,=G,N, NN, = {e}, G/N, =G and G/N, = G,. Leta, : G/N, — G, and
a,: G/N, — G, be isomorphisms and 8,: G — G/N, and B,: G — G/N, be
nature homomorphisms. Now define

0:G— G XG, by 0(x)= ((al o) Bl)(x), (a2 o) Bz)(x))

for any x € G since «, B,, @, B, are all homomorphisms, 6 is also a homo-
morphism. Also, for any x € G,

0(x) = (e, e) & a,(B,(x) = e, and a,(B,(x)) = e,
< B,(x) = N, and B,(x) = N,
(since «, and e, are isomorphism)

SxENNN, = {e}.

Therefore, ker 6 = {e} and hence 6 is a monomorphism. For any (x, x,) €
G, XG,, choose a,, a, € G such that ,(a,N))= x, and a,(a,N,) = x,. Since N,
and N, are normal subgroups and N, N N, = {e}, we get that ab = ba for all
a € N, and b € N, (for, consider aba™'b™' € N N N, = {e}).

Now since a, and a, € G = N N, we get that

1772
a, =rr,anda, = s s, forsomer,s €N andr,s, EN,.
Putx = r,s,. Then,
-1 | . -1 -1
a x=(r, i, 1), €N, (since r, , ,€EN, ands, EN))
-1 —1 -1 P ) | -1
and a, x=s5,8 (nhs)=s,58 (sKH)=s, €N,
and hence a N, = xN, and a,N, = xN,. Now,

0(x) = ((a,(B,(x))),cx, (B, (x)))
= (a,(xN,),a, (xN,))

=(a,(a,N)).a,(a,N,)) = (x,,x,).

Thus, 6 is a surjection also. Therefore, 6 is an isomorphism and G =
G, X G,

Theorem 5.2.4. Let N and M be normal subgroups of a group G such that
NM = G. Then,

G/INN M= G/N X G/M.
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Proof: Define f: G — G/N X G/M by f(a) = (aN, aM) for alla € G.
For any a and b € G, we have
f(ab)=(abN, abM)
=(aN - bN, aM - bM)
=(aN, aM) - (bN, bM)
= f(a) - f(b)
and hence f'is a homomorphism. We shall prove that fis a surjection also. Let

(xN, yM) € G/N X G/M, where x and y € G. Since NM = G, x andy € NM
and hence

x=vrs, forsomer&eN and sEM
and y=tu, forsomer&€N and u €& M.
Now, put a = st. Then,
a'x=(st)""(rs) =t '(s"'rs) € N (since t, r € N)
and hence
aN = xN, Also,
aly = (st)y"N(tu) = (t"'s™'t) u € M (since s, u € M)

and hence aM = yM. Therefore, f(a) = (aN, aM) = (xN, yM). Thus, f'is an
epimorphism. By the Fundamental Theorem of Homomorphisms,

G/ker f= G/N X G/M.
Now, ker f ={a € G: f(a)=the identity in G/N XG/ M}
={aeG:(aN,aM)=(N,M)}
={acG:aN =NandaM = M}
=NNM.

Thus, G/IN N M = G/N X G/M.

Worked Exercise 5.2.1. Let m and n be relatively prime positive integers.
Then, prove thatZ =7 X Z .

Answer: Consider the group (Z, +) of integers and let N = nZ and M = mZ.
Since (n, m) = 1,

1 =an + bm for some integers a and b
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and hence | € N + M so that N + M = 7Z. By Theorem 5.2.4 (where we have
written NM, since the binary operation in G is taken as -),

ZINNM = Z/N X ZIM.

Now, N N M = kZ, where k is the least common multiple of » and m. Since
(n, m) =1, k = mn. Therefore,

7., = ZlmnZ (by Example 5.2.1)
=ZINONM
= 7Z/N X ZIM
= Z/nZ X ZImZ = Z/N X Z/M.

In the following, we shall classify the cyclic groups and prove that (Z, +)
and (Z , +) are the only (up to isomorphism) cyclic groups.

Theorem 5.2.5. Let G be a cyclic group. If G is infinite, them G = Z. If G is
finite, them G = Z_where 7 is the order of G.

Proof: Since G is cyclic, we can choose an element a in G such that
G=<a>={a":n€Z}.
Consider the group (Z, +) of integers and define
f:1Z — Gby f(m) =a™ forany m € Z.
Forany mand n € Z,
flm +n)=am"=a"-a"=fm)-f(n)

and hence f'is a homomorphism. Since any element of G is of the form
a™ = f(m) for some m € Z, f'is a surjection. Therefore, f'is an epimorphism.
By the Fundamental Theorem of Homomorphisms,

Z/Ker f= G.

Since ker f'is a subgroup of (Z, +), ker f = nZ for some nonnegative integer
n (by Worked Exercise 4.1.1),

n= 0« Ker f= {0} < fis a monomorphism.

Thus, by Theorem 4.2.7, G is infinite if and only if f'is an isomorphism and
hence Z = G. Also,
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G is finite < Z/ker fis finite
& ker f=nZ,n>0.

In this case, |G| = |Z/nZ| = |Z | = n.
Thus, if G is finite, then G = Z , where n is the order of G.

Worked Exercise 5.2.2. For any positive integers n and m, prove that the fol-
lowing are equivalent to each other.

1. n and m are relatively prime.

2. Z,X Z,1is cyclic.

3' Zn X Zm = an

Answer: (1) = (3) is proved in Worked Exercise 5.2.1 and (3) = (2) is triv-
ial, since Z  is cyclic and, for any group G and G’ such that G = G', G is
cyclic if and only if G’ is cyclic. We are left with only (2) = (1). Assume that
Z, X Z is cyclic. Since the order of Z X Z is mn, it follows from Theorem
5.2.5 that

Z, X7, =1

mn"

There must be an element (a, b) inZ X Z such that O(a, b) = mn,0 =a<m
and 0 =< b <n. Let k be the l.c.m. of m and n. Then,

k= ms and k = nt for somesand t € Z*.

Now, k (a, b) = (ka, kb)
= (msa, ntb)

=(0,0)sincea€ %, and bEZ,.
Therefore, O(a, b) divides k and hence mn divides k.

k=mn=kd

where d is the g.c.d. of m and n. Therefore, d = 1; that is, m and » are rela-
tively prime. <

EXERCISE 5(B)

1. If N and M are normal subgroups of a group G, prove that G/N N M is isomor-
phic to a subgroup of G/N X G/M.
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2. For any positive integers m and n whose least common multiple is &, prove that
7, is isomorphic to a subgroup of Z X Z .

3. Suppose that G is a finite group and Z, is a homomorphic image of G. Then,
what can be said about the order of G?

4. Prove that Z,, is not a homomorphic image of Z.,.

5. For any finite group G, prove that there exists a prime number p such that Zp is
not a homomorphic image of G.

6. Prove that the order of any homomorphic image of a finite group G must be a
divisor of the order of G.

7. InTheorem 5.2.2, we have proved that any homomorphism can be expressed as
a composition of an epimorphism and a monomorphism. Discuss the uniqueness
of this expression.

8. Letf: G— G'and g: G' — G" be homomorphism of groups. If g o f'is a mono-
morphism, prove that fis a monomorphism. If g o f'is an epimorphism, prove
that g is an epimorphism

9. Express Z, as a homomorphic image of Z,,

10. Prove that Z, is isomorphic to a subgroup of Z, -

5.3 ISOMORPHISM THEOREMS

The Fundamental Theorem of Homomorphisms is also called the First
Isomorphism Theorem. In this section, we present two more isomorphism
theorems. If N is a normal subgroup of a group G and if we are required
to prove that the quotient group G/N is isomorphic to another group G’,
then Fundamental Theorem of Homomorphisms provides a technique. We
simply exhibit an epimorphism of G onto G’ whose kernel is the given nor-
mal subgroup N. We shall use this technique in proving the following two
theorems.

Theorem 5.3.1 (Second Isomorphism Theorem). Let M and N be sub-
groups of a group G and N normal in G. Then, M N N is a normal subgroup
of M and

M/M N N = MN/N.
Proof: Since N is given to be a normal subgroup of G, Na = aN for all a€G

and, in particular Na = aN for all @ € M so that NM = MN. Therefore, MN
is a subgroup of G and N C MN. Also, the normality of N in G implies the
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normality of N in MN and hence the quotient group MN/N is defined. Also,
clearly M N N is a subgroup of M. For any a € M N N and x € M, we have

xax™' € N (since ¢ € N and N is normal in G)
and xax™' € M (since a € M and x € M)

and therefore xax™' € M N N. Thus, M N N is a normal subgroup of M. Now,
define

f:M— MN/N by f(m)=mN forallme& M.

Observe that, since M C MN, mN € MN/N for all m € M and therefore f'is
well defined. For any a and b € M,

f(ab) = (ab)N = aN - bN = f(a)f(b)
and hence fis a homomorphism. If xN € MN/N, then
xN = (mn)N = m(nN) = mN = f(m)

for some m € M and n € N. Therefore, fis an epimorphism.
By the Fundamental Theorem of Homomorphisms,

Miker f= MNJIN.
Now, Ker f'= {m € M : f(m) = the identity in MN/N}

={m &€ M:mN = N}
={mEM:mEN, =MNN

and therefore M/M N N = MN/N. |

Example 5.3.1. Consider the group (Z, +) of integers and let M = <3> = 37
and N = <5> = 57. Since + is commutative on Z, M and N are normal
subgroups of Z. Also,

MNN=152 and M+ N=7Z
and hence, by the above theorem, we have

3Z/15Z = Z/5Z.

Recall that Z/57Z = 7., the group of integers modulo 5.
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A closer examination of the cosets and operation in the quotient group 3Z/15Z
reveals this to be none other than the group ({0, 3, 6,9, 12}, + ). The above
isomorphism is a disguised version of the isomorphism

({0,3,6,9,12}, + ) = (Z,, +)).

Theorem 5.3.2. Let f: G — G’ be an epimorphism of groups and N be a
normal subgroup of G such that ker f C N. Then,

GIN = G'/f(N).

Proof: Since N is a normal subgroup of G and f'is an epimorphism, it fol-
lows that f(N) is a normal subgroup of G’ (see Theorem 5.1.3) and hence the
quotient group G'/f(N) is defined. Now, define

g: G — G'/f(N) by g(a) = f(a)f (N)

forany a € G. Forany x and y € G,

glwy) = f)f(N)
= XY N)
= f(xX)f(N):f(»)f(N) (since f(N) is normal in G")
= gg)

and therefore g is a homomorphism. Also, for any z € G’, there existsa € G
such that f(a) = z (since fis an epimorphism) and therefore

ga) = fla)f(N) = zf(N).
This implies that g is an epimorphism. Further, for any a € G,

a € ker g & g(a) = the identity in G'/f(N)
< fla) f(N) = f(N)
& fla) ESN)
& f(a) = f(x) forsomex €N
& fixla) =fx) " fla) =€ ,xEN
Sxla€kerfCN and xEN
Sa=x(xa)EN

and therefore ker g = N. Thus, by the Fundamental Theorem of Homo-
morphism,

G/N = G/ker g = G'/f(N).
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While applying the above theorem, one frequently starts with a normal
subgroup of G’ and use its inverse images, rather than starting with a normal
subgroup of G containing the kernel. In this context, recall the one-to-one
correspondence between normal subgroups of G containing the kernel and the
normal subgroups of G'. In view of this, the above theorem can be rephrased
as follows.

Corollary 5.3.1. Let f: G — G’ be an epimorphism of groups and M be a
normal subgroup in G'. Then,

GIf (M) = G'IM.

Proof: Put N = f"/(M). Since M is a normal subgroup of G’, N is a normal
subgroup of G. Also,

kerf=f"({e'}) C /(M) = N.

Further, since f'is a surjection,

JWN) = f(f (M) = M.
Thus, by Theorem 5.3.2,
G/f'\M) = G/N = G'/f(N) = G'/M.

The following is another special case which is of interest on its own and
is popularly called the Third Isomorphism Theorem. The reader is cautioned
that there seems to be no universally accepted agreement on the numbering
of these three Isomorphism theorems. However, the Fundamental Theorem
of Homomorphisms deserves to be called as the First [somorphism Theorem,
since the other two are proved using this.

Theorem 5.3.3 (Third Isomorphism Theorem). Let A/ and N be normal sub-
groups of a group G such that M C N. The N/M is a normal subgroup of G/M
and (G/M)/(N/IM) = G/N.

Proof: By Remarks 4.6.1, N/M is a normal subgroup of G/M. Define f :
G/M — G/Nby f(aM) = aN for any a € G. First observe that fis well defined;
for, if a and b € G, then

aM =bM=a'bEMCN=a'b&EN= aN = bN.
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Clearly fis an epimorphism and its kernel is given by

ker f= {aM € G/M : a € G and f(aM) = the identity in G/N}
={aM € G/M : a € G and aN = N}
={aM € G/M :a € N} = N/M.

Thus, by the Fundamental Theorem of Homomorphisms,

G/M _G/M
N/M kerf

=G/N

Therefore,

(G/M)_G
(N/M) N’

Worked Exercise 5.3.1. Let M and N be subgroups of a group G such that N
isnormal in G and MN = G. Then, prove that

G/N=M ifandonlyift MN N = {e}.
Answer: By the Second Isomorphism Theorem 5.3.1,
G/N = MN/N = M/M N N.
Therefore, GIN=M < M/IMNN=M
S MNN = {e}.

EXERCISE 5(C)

1. Let G, G, and G, be groups and f, : G — G, and f, : G — G, be epimorphisms
such that ker f, C ker f,. Then, prove that there exists a unique homomorphism
f: G, — G, such that

fofi=1,

i

Y



5-28 Algebra - Abstract and Modern

2. From the above exercise, deduce the Factorization Theorem 5.2.2.

3. Let G be the group of nonzero real numbers under the usual multiplication and N
= {1, —1}. Then, prove that N is a normal subgroup of G and the quotient group
G/N is isomorphic to the group of positive real numbers under multiplication.

4. Letf: G — G’ be an epimorphism of groups. Then, prove that A — f'(4) is a
one-to-one correspondence between the (normal) subgroups of G’ and the
(normal) subgroups of G containing ker f.

5. Let G, be the group of symmetries of a square (see Example 3.2.8) and define
f:G,— 7, XZ, by
&) = f(r) = (0,0),f(r) = f(r,) = (1,0),
S =/(0)=/(0,1) and f(d)=1(d)=(,1).
Prove that f'is an epimorphism and deduce that
GJZG,) =7, X Z,, where Z(G,) is the centre of G,.

6. Find all (up to isomorphism) homomorphic images of the group G, of symme-
tries of a square and exhibit the correspondence between the subgroups of G,
containing Z(G,) and the subgroups of G/Z(G,).

7. Forany (a,b) € R X R witha # 0, define 7, : R—R by T, (x) = ax + b for all
x € Rand let
G={T,:(a,b)cRXR and a#0}
and N={T, beR}
Prove that G is a group under the composition of mappings and N is a normal
subgroup of G. Further, prove that the quotient group G/N is isomorphic to the
group of nonzero real numbers under the multiplication.
8. Prove the following for any epimorphism f: G — G’ of groups:
(i)  For any subgroups 4 and B with ker fC A N B, (4 N B) = f(4) N f(B).
(ii) For any subgroup 4 of G, 4 ker /= f' (f(4))
(i) If[G, G] is the commutator subgroup of G and ker f C [G, G], then
G/[G,G]=G"/[G',G]

9. Letf: G — Z, be an epimorphism of a group G onto the group Z, of integers
modulo 8. Prove that G has normal subgroups of index 2 and 4.

10. Letf: G — G’ be an epimorphism of groups and 4 and 4" be subgroups of G
and G’, respectively. Then, prove the following:

(i) If A is of finite index in G and ker f C 4, then

ig(A)=1_,(f(4)
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(i) If A’ is of finite index in G', then
i(f (A =i ().

1I1. Prove that any group of order 4 is isomorphic to either Z, or Z, X Z, and hence
is abelian.

12. Prove that any group of prime order p is isomorphic to Zp and hence is cyclic.

13. Letf: G — 4 and g : G — B be homomorphisms of groups such that g is an epi-
morphism and ker g C ker /. Then, prove that there is a unique homomorphism
f:B— Asuchthat fog=f

G > A

Y

B

14. Prove the following in the above Exercise 13.
@) 7 is an epimorphism if and only if f'is so.

(ii) ? is a monomorphism if and only if ker /' = ker g.

15. LetA, N, and N, be subgroups of a group G such that N, and N, are normal in
Gand 4 NN, = AN N,. Then, prove that AN /N, = AN/N .

16. LetA,, A4, and N be subgroups of a group G such that N is normal in G and 4 N
= A,N. Then, prove that 4 /4 NN=4,/4,NN.

5.4 AUTOMORPHISMS

Let us recall that a homomorphism of a group G into itself is called an
endomorphism of G and a bijective endomorphism of G is called an auto-
morphism of G. Among the endomorphisms of a group G, the automor-
phisms of G need special attention, for the reason that they form a group
on their own under the composition of mappings and that the structure of
this group reveals that of the group G itself. Even though the following is a
repetition, we prefer to give an independent status for convenience and for
its importance.
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Definition 5.4.1. For any group G, a bijective homomorphism of G onto
itself is called an automorphism of G. The set of all automorphisms of G will
be denoted by Aut(G).

Theorem 5.4.1. For any group G, the set Aut(G) of all automorphisms of G
forms a group under the composition of mappings.

Proof: Let G be a group, since the identity mapping /. : G — G, defined by
I (x) = x for all x € G, is an automorphism of G, we have /. € Aut(G) and
hence Aut(G) is a nonempty set. If f'and g are automorphisms of G, then the
composition f 0 g is also an automorphism of G. Therefore, o is a binary
operation on Aut(G), which is clearly associative. Also, for any /' € Aut(G),
we have

folg=f=I;of.

Therefore, the identity map /, is the identity element in the semigroup
(Aut(G), o). Further, we know that (see Theorem 5.1.7), if f'is an automor-
phism of G, then the inverse mapping /! also an automorphism of G and

fof'=1,=f"of

Thus, Aut(G) is a group under the composition of mappings.

Example 5.4.1

1. If G is an abelian group, then the map f: G — G, defined by f(x) = x™!
for any x € G, is an automorphism of G.

2. Consider the group (Z
Z,, by

+,) of integers modulo 12 and define /: Z , —

12°
fl@y=5a(=a+,at,a+t,a+,a).

Note that f(a) = r, where Sa = 12q + r, where ¢ and r are integers and
0=r<I2.

Then, fis clearly an endomorphism of Z
Also,

ker f={a €Z,; f(a)=0}
={a€Z,; S5a=12q, q€Z}
= {0} (since (5, 12)=1)
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and therefore f'is a monomorphism of Z , into Z  .Since Z , is a finite set, it
follows that f'is an surjection also. Thus, fis an automorphism of Z .

In the following, we discuss about a special subgroup of Aut(G) consisting
of certain special class of automorphisms which are important in the case of
an abelian group.

Theorem 5.4.2. Let Gbeagroupanda € G. Define 7, : G — G by
T(x)=axa' forallx€G.
Then, 7 is an automorphism of G and hence 7, € Aut(G).
Proof: Foranyxandy € G,
T(xy) = a(xy)a™' = (axa "Yaya™") = T(x)T(y)
and hence 7| is a homomorphism. Also, for any y € G, we have
a'yva€ G and T, (a'ya)=a(a'ya)a ' =y

and therefore T is a surjection. From the cancellation laws, we have

T(x)=T,(y)=axa '=aya ' =x=y
and hence 7 is an injection also. Thus, 7| is an automorphism of G.
Definition 5.4.2. For any element a in a group G, the automorphism 7
defined above is called the inner automorphism of G corresponding to a. The
set of all inner automorphisms of G will be denoted by /(G); that is,
I(G) ={T:a € Gj.
Theorem 5.4.3. Let G be any group and define o : G — Aut(G) by

a(@) =T foralla € G.

Then, « is a homomorphism and /(G) is a subgroup of Aut(G). Also,
G/ Z(G) = I(G), where Z(G) is the centre of G, defined by

Z(G)={a €G:ax =xa forallx € G}.
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Proof: For any ¢ and b € G, we have

T,,(x) = (ab)x(ab) "' = a(bxb™")a " =T (T,(x)) = (T, 0 T,)(x)

forany x € G and hence 7, = T, o T, Therefore,

a(ab)=T, =T, o T, = a(a) 0 a(b)

for all @ and b € G. Therefore, a is a homomorphism of G into Aut(G) and
hence a(G) = I(G) is a subgroup of G. Now, let us compute the kernel of «.

a € ker a < a(a) = the identity in Aut(G)
T =1,
< T(x)=1.(x) forallxe G
Saxal'=x forallxe G
Sax =xa forallx € G
< a € Z(G), the centre of G.

Thus, by the Fundamental Theorem of Homomorphisms,
G/Z(G)=G/kera =a(G)=1(G).

It can be easily seen that a group G is abelian if and only if 7 (x) = x for
allaand x € G (thatis, T, = [ for all a € G and the group /(G) is trial). If G
is a nonabelian group, then there exists an automorphism 7 # /.. In the fol-
lowing, we prove that a group G has a nonidentity automorphism if and only
if G has atleast 3 elements.

Theorem 5.4.4. Let G be a group. Then,

|Aut(G)[>1 ifandonly if |G [>2.

Proof: Suppose that |Aut(G)| > 1. Then, the group Aut(G) has an element
other than its identity. That is, there exists an automorphism fof G such that f
# I, the identity map. Now, we can choose an element a € G such that f(a)
# I (a) = a. Since f(e) = e, it follows that @ # e and, since f'is injective,
f(a) # f(e) = e. Therefore, e, a and f(a) are three distinct elements in G and
hence |G| = 3 > 2.
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Conversely suppose that |G| > 2. If G is not abelian, then ax # xa for some a
and x € G and hence

T(x)=axa™' #x

so that T # I, € Aut(G), where T is the inner automorphism of G corre-
sponding to a and hence |[Aut(G)| > 1. Therefore, we can assume that G is
abelian. Then, the map g : G — G, defined by g(x) = x~! for all x € G, is an
automorphism of G. If g # I, then |Aut(G)| > 1.Therefore, we can assume
that g = / ; thatis, g(x) = x orx™' = x or x> = e for all x € G. since |G| > 2, G
has atleast three distinct elements; that is, G has atleast two distinct elements
other than the identity. Let a and b € G such thata # e, b # eand a # b. Put
A = {e,a, b,ab}. Then,

(abya = ba’ =be=b and (ab)b = ab’ = ae = a
and hence 4 is a subgroup of G. Define f: 4 — A by

fle)=e,f(a)=b,f(b)=a and f(ab) = ab.

Then, it can be easily verified that fis an automorphism of 4. We shall extend
fto an automorphism of the whole of G. Consider the set

% = {(B, g): Bisasubgroup of G,4 C B, g € Aut(B) and g/4 = f}.

Note that (4, /) € 6 and hence 6 is a nonempty set. For any (B, g) and (C,
h) € G, define

(B,g)=(C,h) ifandonlyif BCC and H/B=g.

Then, = is a partial order on 6. If {(B, g)},, is a chain in the partially
ordered set (6, <) and B = U,, B, then B is a subgroup of G and, if we define
g : B — B such that g/B, = g, then (B, g) is a member in 6 and is an upper
bound of {(B, g)},., in €. Thus, (‘6, =) satisfies the hypothesis of the Zorn’s
lemma which guarantees the existence of a maximal member, say (M, «), in
(6, =). Since 4 C M and a/4 = f, we have a(a) = f(a) = b # a and hence «
# Id,, and therefore it is enough it we prove that M = G.

Otherwise, suppose that there is an element s € G such that s & M. Put
B = M U Ms and define g : B — B by g(m) = a(m) and g(ms) = a(m)s for
all m € M. Then, B is a subgroup of G (note that B = MS, where S is the
subgroup {e, s}), g € Aut(B) and g/M= « so that (M, «) < (B, g), which is
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a contradiction to the maximality of (M, «) in 6. Thus, M = G, a € Aut(6)
and @ # I so that [Aut(6)| > 1.

In the following, we completely determine all the automorphisms of a
cyclic group. In fact, each automorphism of a cyclic group corresponds to a
generator of the group and vice versa.

Theorem 5.4.5. Let f'be an automorphism of a cyclic group G.

1. Forany a € G, G = <ag> if and only if G = <f(a)>.
2. If fand g € Aut(G) and « is a generator of G such that f(a) = g(a),
then /= g.

Proof: First recall that /! is also an automorphism of G.
1. Suppose that a € G such that
G=<a>={a":n€Z}
Then, since f(a) € G, we have < f(a)> C G. On the other hand,
xXEG=f'(x) € G=<a>
=f1(x)=a" forsomen E€Z
=x=f("x) = fla") = fla)" € <fla)>

and hence G = <f(a)>. The converse follows from the fact that /! is an
automorphism of G.

2. Letfand g € Aut(G) and G = <a> such that f(a) = g(a). Then, for any
x € G,x = a" for some n € Z and

J) = fla") = fla)" = gla)" = gla)' = g(x)
Therefore, /= g.

Corollary 5.4.1. For any cyclic group G, the number of automorphisms of G
is finite and is precisely equal to the number of generators of G.

Proof: Let G = <a> be a cyclic group. Then, by the above theorem f'— f(a)
is an injection of Aut(G) into the set gen(G) of generators of G. Further, if b
is any generator of G, then we can define automorphism f'such that f(a) = b
(that is, f(a") = b" for any n € Z). Thus, f— f(a) is a bijection of Aut(G) onto
gen(G). From Theorems 4.2.7 and 4.2.8, gen(G) is a finite set and hence so is
Aut(G) and |Aut(G)| = |gen(G)|.

Corollary 5.4.2
1. For any infinite cyclic group G, |Aut(G)| = 2.
2. For any finite cyclic group G of order n, |Aut(G)| = ¢ (n), where ¢ is the
Euler-Totient function.



Homomorphisms of Groups  5-35
Proof: These follow from Corollary 5.4.1, Theorems 4.2.7 and 4.2.8.

Worked Exercise 5.4.1. For any groups G and H, if G = H, prove that
Aut(G) = Aut(H).

Answer: Suppose that G = H and «; G — H is an isomorphism. Define
0 : Aut (G) — Aut(H) by 0(f) = aofoa™!

for any f € Aut(G), since f, @ and a " are isomorphisms, so is
aofoa™': H— H. Therefore, « 0 fo o' is an automorphism of H. For
any fand g € Aut(G),

O(fog)=ao(fog)oa™!
=(@ofoaHo(eogoa™)

= 0(f) 0 0(g).
Therefore, 6 is homomorphism. Further,

0(f)=6(g)=aofoal=aogoa!
=f=(@'oa)ofo(a'oa)=a'lo(@ofoaHou
=a'o(@ogoaHoa=(a'oa)ogo(a'oa)
=&

Therefore, 6 is an injection. Also,

he Aut(H)=a 'ohoa cAut(G)andf(a ' oho a)=
ao(a'ohoa)oa'=h.

Therefore, 0 is a surjection. This 6 is a bijective homomorphism and hence an
isomorphism of Aut(G) onto Aut(H).

Worked Exercise 5.4.2. List all the automorphisms of the group (Z , + ) for
any positive integer n and, in particular, of the group (%, ,, +,).

Answer: Recall that, forany 1 =< r <n, ris a generator of Z if and only if 7 is

relatively prime to n. Therefore, by Corollary 5.4.2 (2), these are exactly ¢ (n)
automorphisms of Z, and these are given by

S 1Ly, — Ly, f(m)=mr(mod 12)

for each 1 = r <n, such that (r, n) = 1.
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Consider Z ,. We have ¢ (n) = 4 since 1, 5, 7 and 11 are the only integers
rsuch that 1 =7 <12 and (r, 12) = 1. Therefore, there are exactly four auto-
morphisms of Z , and are given below.

S, = 1, the identity map of Z ,

fi: %, — 7, defined by f,(m) = 5m (mod 12),

f,: %, — 7, defined by f,(m) = 7m (mod 12),

/i, %, — 7, defined by f, (m) = 11m (mod 12).

The following table gives a complete description of all the four automor-
phisms of Z ..

o 1 2 3 4 5 6 7 8 9 10 11

f 0 1 2 3 4 5 6 7 8 9 10 11

EXERCISE 5(D)

1. For any endomorphism f'of a finite group G, prove that the following are equiva-
lent to each other:

(i) fisan epimorphism.
(i) fis an automorphism of G.
(iii)  fis a monomorphism.
2. Give an example of an infinite group G and of an isomorphism of G onto a

proper subgroup of G.

3. Let G ={e, a, b, ab} be a group of order 4 in which a®> = ¢ = »* and ab = ba.
Then, determine Aut(G).

4. Let A be a subgroup of a group G, such that f(4) C A for all f € Aut(G). Then,
prove that A is a normal subgroup in G.

5. Let G be a group and /'€ Aut(G). Prove that the set {a €G : f(a) = a} is a sub-
group of G.

6. For any group G, prove that {a € G : f(a) = a for all f € Aut(G)} is a normal
subgroup of G.

7. Let G be a finite group and '€ Aut(G), such that, for any xEG,

f(x) =x ifandonlyifx = e.
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Then, prove that any element x of G can be expressed as

x=y7f(y) forsomey € G.

. If /> = I _for the fin Exercise 7 above, then prove that G is an abelian group.

. Let G be a finite group and /' € Aut(G) such that f'sends more than three-quarters

of the elements of G onto their inverses. Then, prove that f(a) = a~! forall a €
G and that G is abelian.

Let C be the commutator subgroup of a group G and f € Aut(G). Prove that
(G)eye

If a group G has a nonidentity automorphism, then prove that G has atleast three
elements.

Prove that any homomorphic image of a cyclic group is cyclic.
Prove that any homomorphic image of an abelian group is abelian.
Determine Aut(Zp) for any prime number p.

Find all the automorphisms of (Z, +) and (Z , +)) forany n € Z".

Let G be a finite cyclic group of order n and define f, : G — G by f, (@) = a” for
alla € Gand m € Z". Prove that f is an automorphism of G if and only if m is
relatively prime with n.

. Let G be a finite group of order n > 2. If a> # e for some a € G, then prove that

G has a nonidentity automorphism.
If G is a noncyclic finite abelian group, prove that Aut(G) is not abelian.

Let G be a finite group, such that |Aut(G)| = p, where p is a prime number. Then,
prove that |G| = 3.

Prove that Aut(Z, X 7Z,) = Aut(Z,) X Aut(Z,).
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Permutation Groups

6.1 Cayley’s Theorem

6.2 The Symmetric Group S

6.3 Cycles

6.4 Alternating Group 4, and Dihedral Group D,

For any nonempty set X, the set M(X) of all mappings of X into itself forms a
monoid under the composition of mappings in which the invertible elements
(elements possessing inverses) are precisely the bijections of X onto itself.
In fact, we have observed that a mapping /: X — X has left (right) inverse in
M(X) if and only if /'is an injection (respectively, surjection) and, as such, the
set of all bijections of X onto itself forms a group under the composition of
mappings. Before the advent of the abstract form of a group, mathematicians
were only interested in the group structure of certain sets of bijections, which
were also known as permutations, when the set X is finite. In this chapter, we
discuss thoroughly the structure of this type of groups.

6.1 CAYLEY’S THEOREM

Before the formation of the present day abstract concept of a group, most of
the groups were in the form of a set of transformations of a particular math-
ematical structure, like the group of symmetries of square or of an equilateral
triangle. Most finite groups appeared as groups of bijections of an n-element
set onto itself for some positive integer n. The English Mathematician Cayley
first noted that any abstract group can be viewed as a subgroup of the group
S(X) of bijections of X onto itself, for a suitable set X. In this section, we shall
prove this theorem of Cayley and some of its consequences. First, we have
the following definition.
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Definition 6.1.1. Let X be a nonempty set. Any bijection of X onto itself
is called a permutation on X. The set S(X) of all permutations on X forms
a group under the composition of mappings. Any subgroup of X is called a
group of permutations on X.

Theorem 6.1.1. Any group is isomorphic to a group of permutations on a
suitable set.

Proof: Let G be a group. For any ¢ € G, define

f,:G—=Gbyf(x)=ax forallx €.
Then, forany y € G,a™'y € Gand f(a"'y) = a(a”'y) = y and therefore f is a
surjection. Also, by the left cancellation law in the group G, f is an injection.
Therefore, / is a permutation on the set G. Now, define

G =1{f:a€G).

We shall prove that G’ is a group of permutations on the set G and that
G = G'. For any a and b € G, we have

S = (ab)x = a(bx) = f(f,(x)) = (/- [,)(x)
forall x € G and hence f, = /. - f,. Also, if e is the identity in the group G,
fi(x) =ex=x forallxe G

and hence f, = I, the identity map on G. In particular, for any a € G,
ﬂ'f,,l:faa':fezlG:fe:ﬂ'a:fa"fa

and hence /~' = f , € G. Therefore, G' is a subgroup of the group (S(G), 0);
that is, G’ is a group of permutations on the set G. Now, define

0:G— G'byb(a)=f foralla€eG.

Then, 6(ab) = f

", = 1.+ f, and hence 6 is a homomorphism. For any a and
beGQG,

f,=1f,=f(e)=f(e)=a=ae=be=Dhb

and therefore 6 is an injection. Clearly 6 is a surjection. Thus, 6 is an isomor-
phism of G onto G’ and therefore G = G'. <
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Cayley’s theorem enables us to view any abstract group as a more con-
crete object, namely as a group of mappings and the binary operation on G
as the composition of mappings. However, this has its own disadvantages.
For example, if G is a finite group of order », then S(G) is a group of order
n! which is far bigger than n. Now, a natural question is that can we find a
smaller set X such that G is isomorphic to a subgroup of S(X). The following
theorem is a step ahead in this direction.

Theorem 6.1.2. Let G be a group and H be a subgroup of G. Let X be the set
of all left cosets of H in G. Then, there exists a homomorphism 6 : G — S(X)
satisfying the following:

1. ker 6 is the largest normal subgroup of G contained in H.

2. 0 is a monomorphism if and only if H contains no nontrivial normal
subgroup of G.

Proof: We have X = {aH : a € G}. For any x € G, define
g X — Xbyg(aH) = (xa)H
for all aH € X, a € G. Note that, for any a and b € G,

aH=bH=a'bEH
= (xa)'xb)=a'x"xb=a'bEH
= (xa)H = (xb)H

and hence g is well-defined. Also, for any ¢ and b € G,

g.(aH) = g (bH) = (xa)H = (xb)H
= (xa)"'(xb) € H
=a'xxb€EH
=a'b€ H= aH = bH

and therefore g_is an injection. Further, if bH € X, then (x~'b)H € X and
g (" 'D)H) = ((x'b)H = bH

and hence g _is a surjection also. Thus, g_is a permutation on X; that is, g &€
S(X) for any x € G. Now, define

0:G— SX)byO(x) =g,  forallx € G.
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Forany x and y € G and aH € X (a € G), we have

O(xy)(aH) = g (aH) = (()a)H = g (g (aH)) = (0(x) - 0(y))(aH)

and hence 0(xy) = 6(x) - 8(y). Therefore, 0 is a homomorphism of G into S(X).
1. Clearly ker 6 is a normal subgroup of G and
ker 8 = {x € G : 6(x) = the identity in S(X)}
= {xEG:gx:[X}
={x&€G:g(aH) = aH foralla € G}
={x€ G:xaH =aH foralla € G}

={xEG:a'xae H foralla € G}
={xEG:xEaHa' foralla € G}

= ﬂ aHa™'

acG

Therefore, ker 6 C aHa ™! for all @ € G and, in particular,
ker 6 C eHe ' = H.
If N is any normal subgroup of G contained in H, then
a'NeCNCH
and hence N C aHa ! for all a € G, so that
NC (aHa' = ker 6.

acG
Thus, ker 0 is the largest normal subgroup of G contained in H.
2. 6 is a monomorphism < ker § = {e}
< {e} is the largest normal subgroup of G
contained in H.

< H contains no nontrivial normal subgroup
of G. <

Note that the Cayley’s Theorem 6.1.1 can be deduced from the above theo-
rem by taking H = {e}. The above theorem is an important tool in determin-
ing the existence of normal subgroups of a group G contained in a given
subgroup of G.

Theorem 6.1.3. Let A be a subgroup of a finite group G such that |G| is not a
divisor of i (H)! Then, H contains a nontrivial normal subgroup of G.

Proof: Let X be the set of all left cosets of / in G. Then, |X] = i (H). By the
above theorem, there exists a homomorphism 6 : G — S(X) such that ker 6 is



Permutation Groups  6-5

the largest normal subgroup of G contained in H. Then, 6(G) is a subgroup of
S(X) and hence, by the Lagrange’s theorem, |0(G)| is a divisor of |S(X)| = |X]!
If ker = {e}, then 0 is a monomorphism and

|G| = |6(G)|, which is a divisor of [S(X)| = i (H)!,

a contradiction to the hypothesis. Therefore, ker 6 is a nontrivial normal sub-
group of G contained in H. <

Corollary 6.1.1. Let H be a normal subgroup of a finite group G such that
i (H)! <|G|. Then, H contains a nontrivial normal subgroup of G.

Worked Exercise 6.1.1. Let 4 be a subgroup of order 9 in a group of order 36.
Prove that 4 contains a normal subgroup of G whose order is 3 or 9.
@!=£!=4!<36=|G|

4] 9

and hence, by Corollary 6.1.1, 4 contains a nontrivial normal subgroup N

of G. Since N is a subgroup of 4, we get by the Lagrange’s theorem that |V]
divides |4] = 9. Also, since N is nontrivial, |[N] = 3 or 9.

Answer: i (A)!=

Worked Exercise 6.1.2. Let G be a group of order 187. Prove that any sub-
group of order 17 in G must be normal.

Answer: Let 4 be a subgroup of order 17 in G. Then,

Since 17 is a prime and 17 > 11, we get that 17 does not divide 11! = i (4)!
and hence |G| does not divide i (4)! By Theorem 6.1.3, 4 contains a non-
trivial normal subgroup of G. Let N be a nontrivial normal subgroup of G
contained in A. Then, 1 < |N| and, by Lagrange’s theorem, |V]| is a divisor of
|[4| = 17. Since 17 is a prime, |[N] = 17 = |4| and hence N = 4. Thus, 4 is a
normal subgroup of G.

Worked Exercise 6.1.3. Let G be a finite group of order # and p be a prime
number such that p > % Then prove that any subgroup of order p in G is
normal in G.

Answer: Let 4 be a subgroup of order p in G. Then, p divides # and i, (A4) = %
Since p > % and p is a prime, it follows that p does not divide i (4)!
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By Theorem 6.1.3, 4 contains a nontrivial normal subgroup N of G. By the

Lagrange’s theorem, | V| divides |4| = p. Since |[N] > 1 and p is a prime, |[N] =
p = |A| and, since N C 4, N = A. Thus, 4 is a normal subgroup of G.

EXERCISE 6(A)

1. Which of the following mappings f: R — R are permutations on R?
@ f)=x-2
(i) fx)=x*—2
(iii) f(x)=3x+2
@iv) fix)=2x-3
V) fx)=x>+6x*+ 12x + 8
Vi) () =] =2
(vil) f(x) =sinx
(vili) f(x) = log ]
. e’ ifx=0
) F@= —e " ifx<0
2. State whether the following are true or false and substantiate your answers:
(i) Every surjection of Z_ onto itself is a permutation, for any n € Z".
(i) Every injection of Z into Z is a permutation.
(iii) Forany n € Z*, every injection of Z into Z is a permutation.
(iv)  For any finite set X, every surjection of S(X) into S(X) is a permutation.

(v) For any finite set X, every injection of P(X) into itself is a permutation,
where P(X) is the power set of X.

(vi) Any group G is isomorphic with a subgroup of (S(G), o).
3. If Xis a finite set with |[X] = n, prove that S(X) is a finite group of order »!
4. For any set X, prove that X is finite if and only if S(X) is finite.

5. Let G be a group and define g, : G — G by g (x) = xa for any a and x € G. Then
prove that g is a permutation on G. Can we replace f, with g in the proof of the
Cayley’s theorem?

6. Let 4 be a subgroup of a finite group G and i (4) = m. If 4 does not contain any
nontrivial normal subgroup of G, then prove that |G| divides m!

7. Let G be a group of order 396. Prove that any group of order 11 in G is normal
in G.

8. Let G be a finite group of order n and p be a prime number such that p? does not
divide n. Prove that any subgroup of order p in G is normal in G.
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9. For any elements ¢ and b in a set X, prove that there is a permutation f'on X such
that f(a) = b and f(b) = a.

10. Construct a permutation f'on R such that f(n) = n + 1 for all integers n.

6.2 THE SYMMETRIC GROUP S_

Recall that a bijection of a set X onto itself is also called a permutation on X
and the permutations on X form a group under the composition of mappings
which is denoted by S(X). It is well-known that a set X is said to be equipotent
or bijective with another set Y if there is a bijection of X onto Y and that, in
this case, we write X = Y. The following can be easily proved by using induc-
tion on the number of elements of X.

Theorem 6.2.1. If X is a finite set and |X| = n, then |S(X)| = n!
Theorem 6.2.2. For any nonempty finite sets X and Y,
X =7 ifand only if S(X) = S().
Proof: Suppose that X = Y. Then, there exists a bijection « : X — Y. Now, define

0:8X)—SY) by 6f)=aofoa’!
y—  x—L x—oy

for all /'€ S(X). For any fand g € S(X),
0(fog)=ao(fog)oa!
=(xofoaHo(@ogoa™)=0()ob(g)
and therefore 6 is a homomorphism of groups. Also, for any fand g € S(X),
0f)=0(g) = aofoa'=aogoa’!

=a'lo(@ofoaoa=a'lo(@ogoaoa
=f=g

Therefore, 6 is an injection. Further, for any 4 € S(Y), ™' 0 h 0 « € S(X) and

Ola'ohoa)=ao(a'ohoa)oa™! =h.

Therefore, 6 is a surjection also. Thus, 6 is an isomorphism of S(X) onto S(Y)
and hence S(X) = S(Y). Conversely suppose that S(X) = S(Y). Then, S(X) =
S(Y) and hence

2" = |S(X)| = |S(Y)| = 2", where |X] = nand |Y] = m.
This implies that » = m and hence |X] = |Y], so that X = Y. <
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The above theorem says that two finite sets X and Y are equipotent if and only
if the groups (S(X), o) and (S(Y), o) are isomorphic. In particular, if X is a set
with n elements, then S(X) = S(/ ), where I = {1, 2, ..., n}. For this reason,
it is enough if we study the permutations on the set {1, 2, ..., n}. We begin
this with the following formal definition.

Definition 6.2.1. For only positive integer n, the set / is defined by
I ={1,2,...,n}

and the group (S(/ ), o) of permutations on / is denoted by S and is called
the symmetric group of degree n. Any permutation f'on / is usually denoted
by an array

1 2 3 ... n

o @ e s

which symbolizes that each 1 = i = » is mapped onto f(7), the integer that is
written just below 7 in the array. As usual, let e denote the identity in the group
S . Note that e is the identity mapping on / .

Example 6.2.1

1. Consider/, = {1,2,3,4,5,6} anddefine f: /. — I by f(1) = 3,/(2) = 5,
f(3) =1,f(4) = 2,/(5) = 4 and f(6) = 6. Then, f'is denoted by
1 23 45 6]

f:[3 512 46
2. Letf€ S, be given by

1 23456789
4 6 8 52379 1)

2

Then, fis a permutation on {1, 2, 3,4, 5,6, 7, 8, 9} defined by f(1) = 4,
f(2) =6,f(3) =8,/(4) =5,/(5) =2,/(6) =3, /(7) = 7,/(8) = 9 and
f9) =1.

Recall that the order of the symmetric group of degree # is n!

Theorem 6.2.3. Let n and m be positive integers. S is isomorphic to a sub-
group of S if and only if m = n.
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Proof: Suppose that m = n. For any / € § , define 6(f) € S, as given
below.

. fG), iflsi=m
0 i)= .
(1)@ {i, ifm<i=n
Then, it can be easily checked that 6 is a monomorphism of S into S, and
hence S, = 6(S ), which is a subgroup of S . Conversely suppose that S is
isomorphic to a subgroup of S . Then, |S | divides |S | so that m! divides !
which happens only when m < n. <

In view of the above theorem, a permutation fin S, can be identified with
a permutation in S, for any m = n with the understanding that /(i) = i for all
n<i=m.

Worked Exercise 6.2.1. Construct a table representing the symmetry group
of degree 3.

Answer: There are 3! (=6) elements in the group S,, which are given below
(recall Example 3.4.3).

S Q
(o))
n
Q
Q.
(%]
(o)

[a]
(o)
Q
[
o
Q
<
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EXERCISE 6(B)

Algebra - Abstract and Modern

1. Consider the following elements in S, and compute the expressions in (i) to (viii)

given below.

and
1
= [8
i) a*
(i) ab?
(iii)  abc
(iv) ab’c
(v) a*bc
(vi) abc?
(vii)  b*ca
(viii) c*a

4 56 78
6 8 51 2

|

2. For any positive integer n, prove that the order of any element in S is finite and

is a divisor of n!

3. Find the orders of a, b and ¢ given in the Exercise 1 above.

4. Determine all the elements in the cyclic subgroups <a>, <b> and <c>, where

a, b and c are as given above.

5. Prove that S is abelian if and only if n = 2.

6. Can S, be a homomorphic image of S,?

7. Can S, be isomorphic to a subgroup of S ,?

8. Compute aba™!, beb™" and cac™! for the elements a, b and ¢ given in Exercise 1.

9. Determine the orders of all the elements in .

10. List all the elements of S,.
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6.3 CYCLES

Consider the permutation fin S, given by /(1) = 3, /(2) = 1,f(3) = 5,/(4) = 2
and f(5) = 4. In the array form, f'can be expressed as

12345
f_[31524]'

Instead of this, we can write

1 3 5 4 2
Vi R A VA VA VA
3 5 4 2 1

suggesting that | -3 — 5 —4 — 2 —1; thatis, fmaps 1 to 3,3 to 5, 5to 4,
4 to 2 and 2 to 1 back. Here, the action of f'on the elements of / is cyclic.

4 5
L

In this case, we can as well denote fby (1 3 5 4 2) hinting each element, except
the last, is mapped onto the next and the last element to the first, completing
the cycle. Permutations like this are called cycles, which play a vital role in
the study of the permutations for the simple reason that any permutation can
be expressed as a product (composition) of cycles. Before going to prove this
fundamental theorem, we first have the following definition.

Definition 6.3.1. Let n be a positive integer and i, i,, ..
ments in the set /, = {1, 2, ..., n}. Define f: I — [ by

., i_be distinct ele-

i, ifi=i,1=j<r
foy=ti, ifi=i

i, ifi#ij,ls]'sr



6-12  Algebra - Abstract and Modern

That is, (i) = i, f(i,) = iy, ..., f(i,_) = i, f(i) = i}, and f(i) = i for all
PE (i iy, .i}

The action of fis cyclic on the set {i , i, ..., 7.} and fis identity on the comple-
mentof {i,i,...,i}.

TN

2

For this reason, f'is called a cycle of length r or simply an r-cycle and is
denoted by (i, i,, ..., i) which is called the cyclic representation or the
cyclic form of the r-cycle. A 1-cycle is to be interpreted as the identity
permutation.

The cyclic representation (i, 7, ... i) is not unique. For example, (i, 1, ... i,
i) represents the same cycle as (i, i, ... i ). Also, ifa = (i i, ... 1) isanr-cycle
in S , then a is an r-cycle in S for all m = n. In fact, if m is the maximum of

i, i,...,i,then(i i,...i)isanr-cycleins .

Example 6.3.1

1. @ =(253406)isa6-cycle in §, and hence in § for any m = 6. a is
defined by
a2y =5,a(5)=3,a3)=4,a(4) = 6,a(6) =2
and a(i)=1i foralli& {2,3,4,5,6}.
1 23 45 6 7

8
2. Leta= . Let us express this in cyclic form.
3657 2 4281

We have a(1) = 3, a(3) = 5, a(5) = 2, a(2) = 6, a(6) = 4, a(4) = 7,
a(7) = 8 and a(8) = 1. Therefore,

a=(13526478)

Note that a(1) = 3, @(1) = 5, @(1) = 2, a*(1) = 6, a¥(1) = 4, a’(1) =
7,a’(1) = 8 and a¥(1) = 1.
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The example given in (2) above can be extended to any r-cycle as given
in the following.

Theorem 6.3.1. Let a be a cycle in S, and a(i) # (i) for some i € . Then,
a = (ic@) i) ... ¢ (i) for some r > 1.

Proof: Leta = (i, i, ... i ). Since a(i) # i, we get that i = i, for some 1 =k
= r. Then,

a(i) = a(i,) =1i,,,
@) = ali,.) =iy,
a”"(l') = ik+r7k = ir
LR A e
a @) = a(i) =i,

a'()=1i_,

and ai)=1i.

Therefore, a=(i i, ...0i1 ...0_))

= (ia(i) (i) ... a\()). )

Theorem 6.3.2. Leta be an r-cycle in S . Then,

1. O(a) = r (that is, length of a is same as the order of @)

2. at=a=( i i), wherea = (i i,...1)

r—=1 "

3. For any positive integer m, a” = e if and only if » divides m.

Proof: Leta = (i i,...i). Then,

s L . - =
a= (i, ...iii..i_ ) foranyl=k=r.

From the above theorem, it follows that a’(i,) = i, forall 1 < k = n and hence

a” coincides with the identity permutation. Therefore, a” = e. Also, for any
l=k<r,

hn .
a(zl)— L 71,
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and hence a* # e for all 1 = k < r. Thus, r is the smallest positive integer such
that @ = e and hence the order of a is , which gives (1).
(2) Since a” = e, we get that a=! = a"~!. By the above theorem, we get that

ar_l(ir) = ir*l
a '(i_)=1i_,etc.

andhence a'=(i_ ...i,1).
(3) This is clear, since O(a) = r. <
Note: Ifa = (i i, ... i) is an r-cycle, then a"(i/.) =i, where s = j + k (mod r).

Definition 6.3.2. A 2-cycle in S is called a transposition.

Note that any transposition a is a cycle of the form (i j) where i # j € I,
and that a interchanges the positions of i and j and fix all the other elements
of / . That is,

a(i)=j,aG) =i and a(k)=k forall k€1, ~ {i,j}.

Theorem 6.3.3. Any r-cyclein S is a product of » — 1 transpositions. In fact,
ifa= (i i,...i)is anr-cycle, then

a=({i)o(i_)o...o(i1L).

Proof: Leta = (i, i,...1).Ifkel — {i,i,....i},thena(k) =k = (i )
(k) for all 2 = j = r and hence

a(k) = ((i,i)o (@ i_)o...o(i i) k).
On the other hand, for 1 = <r
a(i) =i, = ((G,i)o G i_)o...o( i)i)
(G i)o (i, _Do...o( i)i)=(Gi)o( i )o..o0( 1))
=(i)o...o(i,)i)
=@ i)o...0(i,)0,)
=i, =a()
and (ii)o(i_po..o(@ i)i)=(i)i)=1i =a().

Thus,a = (i,i)o (i, i_)o...0(i i). <
Example 6.3.2. Leta = (2536 1 4) be a 6-cycle in S,. Then,

a=024)0@21)0(26)0(23)0(25).
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Definition 6.3.3. For any permutation fin S , the support of fis defined as the
set {i €S : f(i) # i} of all elements in / which are not fixed by /. The support
of fwill be denoted by supp(f).

Note that if a is the r-cycle (i, i, ... i ), then the support of a is precisely
the set {i,i,...,1}.

Examples 6.3.3

1 23 456 7 89
6 53 7 41 2 8 9/

Then, supp(f) = {1,2,4,5,6,7}.
1 2 3 45
and
4 2 3 51
Then, supp(f) = {1, 4, 5} and supp(g) = {1,2,3,4,5,6,7}.
1 23 456 7
1 6 73 5 2 4

1. Letf=

2. Letf=

1 23 456 7
56 73 4 2 1)

Alsofog = [
1 23 456 7
36 7 4521

and therefore supp(fo g) = {2, 3,4,6,7}
and supp(go f) = {1,2,3,6,7}.

andgof= [

Definition 6.3.4. Two permutations fand g in S, are said to be disjoint if their
supports are disjoint sets.

Permutations f,, f, ..., f. are said to be disjoint if they are pair-wise dis-
joint; equivalently, if /(i) # i for some k, then jj(i) = (i) for allj # k.

Theorem 6.3.4. Any two disjoint permutations in S commute; that is,
fog=gofiffand g are disjoint.

Proof: Let fand g be disjoint permutations in S . Suppose that supp(f) = 4
and supp(g) = B. Then, A N B = J and hence, forany | =i<n,i &€ Aori
& B; that is, f(i) = i or g(i) = i.

Ifi &€ AU B, then f(i) = i = g(i) and hence

(fo &)()) = fg() = /(i) = i = (g 0 ).
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Ifi € A4, then f(i) # i and g(7) = i and hence

(fo 2)(d) = f(g(@) = f()) = g(f(1)) = (g 0)()

(since f(i) # i and f'is an injection, f(f(7)) # f(i) and hence f(i) € A4 so that
f(i) & B and g(f(i)) = f(i)). Similarly, if i € B, then g(i) # i and /(i) = i and
hence (fo g)(i) = (g 0 f)(i). Thus, fog =g o f. <

In the following, we prove a fundamental theorem on permutations which
will be an important tool in the study of permutations.

Theorem 6.3.5. Any nonidentity permutation fin S can be expressed as
f=ao0a,0...0a,

where a, a,, ..., a_are pair-wise disjoint cycles each of length atleast two. This
expression of /is unique except for the order of occurrences of the cycles a..

Proof: Lete # f€ S and 4 = supp(f). For any i and j € 4, define i ~j if and
only if f"(i) = j for some r € Z. Note that f°(i) = e(i) = i and that f"(i) = j
if and only if f7(j) = i. These imply that ~ is an equivalence relation on
A = supp(f). Let i be the equivalence class of ~ containing ~. Then, we shall
prove the following for any i € A4.

1. 1 ={f():r E7Z}.
2. There exist r € Z* such that
= LS. L), )
) =iand f*(i) # fi@) forall0=s #t<r
3. The restriction of fto 7 is an r-cycle, r > 1.

1. Follows from the definition of ~.
2. First note that j € i = f(j) Ei. Since I and hence supp(f) is finite, iis
also a finite set, therefore, there exists least positive integer  such that i,
f@), f40), ..., /(i) are all distinct and f"(i) = i. Thus, we have (2).
3. The restriction of f'to ¢ is the r-cycle
W fG) ) . [ (D).
Since f'(i) = i and i € supp(f), it follows that » # 1 and hence » > 1.

Now, since supp(f) is finite, the number of equivalence classes of ~ in
supp(f) is finite. Let
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be all the distinct equivalence classes of ~ in supp(f). These are pair-wise
disjoint and their union is the support of /. Corresponding to eachi,, 1 =j =5,
define a1, —1 by

flh), ifkei

a. (k)= 2.
;0 k, ifngij

The restrictions of a, and f'to z~] are equal and hence, by (3) above, a, isacycle
of length atleast two and clearly

flk) =(a,0a,0...0a)k) forallkel.

Thus, f=ao0a,0...0a,.
Also, since distinct equivalence classes are disjoint, a, a,, ..., a_are pair-wise
disjoint cycles, each of length atleast two.

The uniqueness of this representation of f'is a direct consequence of the
facts that a, and f coincide on ¢, and a, is the identity outside i,. <

Corollary 6.3.1. For any integer n > 1, every permutation in S is a product
of transpositions.

Proof: This is a consequence of the above theorem and the fact that any cycle
is a product of transpositions (see Theorem 6.3.3). Note that the identity per-
mutation e can be expressed as

e=(ij)o())

where (i j) is any transposition in S, (since n > 1, there is a transposition
inS). <

Note 6.3.1. An algorithm is given below for expressing a given permutation
as a product of disjoint cycles.
Let /'be a permutation in § and

A =supp(f) = {icl :f()+#i}.
Choose i, € 4 and consider
ilaf(il)ﬂfz(i1)9f3(i1)a

There should exist least 7, > 1 (since all these are elements in the finite set A)
at which f1(i))=1i,.
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Now, consider the 7 -cycle

a] = (llf(ll)fz(ll) frlil(il))

Clearly » > 1 and f"(i,) = i,. Next choose i, € A — {i,, f(i,), ..., /" (i)}
and consider

b, JU0), f2(5,), /() -

By the same argument given by, there exists », > 1 such that f*(i,) = i, and

i ), S50, ooy S ()

are all distinct. Now, consider the 7,-cycle

a, = (i, (i) f2() ... £27'(G,))

Next choose i, € A — {i,, f(i ), .... f"' (i), iy f(i), ..., f"'(i,)} and con-
tinue the above process. This process terminates when all the elements of
the support of f'exhaust. Then, we get disjoint cycles a,, a,, ..., a_such that
f=a,0a,0...0a.Since as are pair-wise disjoint, they commute with each
other and hence

f= d,,0d,,0...0a,,

for any permutation o on {1, 2, ..., s}.
1 23 456 789

a
3654122897
product of disjoint cycles and as a product of transpositions.

Worked Exercise 6.3.1. Express [ = s a

Answer: We have supp(f) = {1,2,3,5,6,7,8,9}.
Now 1 € supp(f) and consider

LA =3,/ =5/, =1L

(13 5) is the cycle (1 /(1) f4(1)).
Next choose 2 € supp(f) — {1, 3, 5} and consider

2,/(2) = 6,12(2) = 2.

(2 6) is the cycle (2 £(2)).
Next choose 7 € supp(f) — { 1, 3, 5, 2, 6} and consider

7,007 =8,/%7) = 9,./°(7) = 7.
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(7 8 9) is the cycle (7 f(7) f*(7)). We have exhausted all the elements of
supp(f) and hence

f=(1350(26)0(789).
By using Theorem 6.3.3, we have

(135 =(150(13)
and (789)=(79)0(78)
andhence f=(150(13)0(26)0(79)0(783).

Worked Exercise 6.3.2. Leti, i, ..., i be given distinct elements in /. How
many distinct r-cycles can be formed using all the i, i, ..., 1.

Answer Any permutation o on {1, 2, ..., r} gives us an r-cycle () Ly -+
L) and every r-cycle formed using all the i , i must be of this form.
But, we have discount repetitions, since if (i, i , . lr(r)) is an r-cycle, then
) is the same r-cycle forany 1 =k =r.

1 2,

( (r(k) (r(k+1) u‘()) (r(l) (7(2) r(k 1)
Therefore there are exactly ,,'( (r—1)!) distinct r-cycles formed by using
allthei, i, ..., 1.

Expressing a permutation as a product of disjoint cycles is an important
tool in determining the order of that permutation. The following result gives
us a formula for the order of a permutation.

Theorem 6.3.6. Letf, f, ..., f. be pair-wise disjoint permutations in S and

f=/fof,0..0f.Then,
O(f) = Le.m. of {O(f)), O(f), ..., O(f)}.

Proof Let O(f) = r,r = Lem. of {r, r
fl s are pair-wise dlS_]Olnt we get that

Ty b yandr =rt, t € 7" Since

fiof,=fof foralll=ij=<s.

Now,

Sr=(,of,0...0f)
=flofjo.. o]j’(sincefl.o];ZJ;ofi)
— ﬁ”l’l Of'zrztz 0 - Of;rxtx

e (since O(f) =r, f"=e).
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On the other hand, for any positive integer ¢,

fl=e=f'oflo..of'=e
=f'=f = =Jf!=e (sincef’s are disjoint)
= O(f) divides t forall 1 =i =
= r dividestforall 1 =i =y

= rdivides ¢ (since » = lL.e.m. of {r, ..., 7 }).

Thus, O(f) = r = Le.m. of {O(f), O(f,), .., O()}.

Corollary 6.3.2. Letf=a 0a,0...0a, wherea, a,, ..., a_are pair-wise
disjoint cycles of length r, r,, ..., r, respectively. Then,

O(f) = Lem. of {r, r,, ..., 1 }.
Proof: Since a, is a cycle of length r, we have O(a,) = r, and hence
O(f) = lL.c.m. of {O(a,), O(a,), ..., O(a )}

=lem.of {r,r,...,r}. <

EXERCISE 6(C)

1. State whether each of the following is true or false:
(i) Every cycle is a transposition.
(i1) Every transposition is a cycle.
(iii) Every cycle is a permutation.
(iv) Every permutation is a cycle.
(v) Every transposition is a permutation.
(vi) Every permutation is a product of disjoint transpositions.
(vil) f* = e for any transposition f.
(viii) f? = e implies that f'is a transposition.
(ix) ForanyfandginS,fog=e=f=e=g
(x) supp(f) = supp(g) if and only if f'= g.
2. Which of the following are cycles? If they are cycles, then express them in cyclic
representation.
@ (1 23 456 78
4 6 8235117
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(i)

(i)

i S S

2
3
2
3
2

(U0 S U VC R N VY
N RS
[V e Y, - NV

78
81]
. 78 9
(‘V)867951234]

3. Express the following as products of disjoint cycles, each of length atleast two.
Also express each of following as a product of transpositions.

(.)123456789
i
4 321586 709
1 23 45 6| (1 23 456
(i1) ()
324165[514623]
(12345678 (123456
(1i1) o
23146 578 |56 2341
. 1 2 3} (1 23 456
(iv) o
231 13125 6 4

v 1 37 4 602 356 4908 7 6 2 4 3 5
viy 1 2 3 4902 3 4 503 4 5 06)
4. Determine the order of each of the following permutations.

0 123456789
1
246173895

. 1 23 456 (1 23 45
(i1) o
4 32165 (23415
(i) (5 4 3 2)o(l 2 3 4 5 6)o2 4 613 5)
(ivi 8 76 9 3 4)0(4 396 7 803 456 7809
5. For any permutations fand g in S , prove that supp(f'o g) C supp(f) U supp(g).
6. 1If fand g are disjoint permutations in S , prove that

supp(f o g) = supp(f) U supp(g)
and supp(f) N supp(g) = <.

7. Iff=f of 0...0f and f’s are pair-wise disjoint permutations in S , prove that
supp(f,), ..., supp(f,) form a partition of supp(f).

8. Forfe€ S and for m € Z, prove that supp(f™) C supp(f).

9. For any disjoint permutations f'and g, prove that fo g = eifand only if f= e = g.
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10. For any permutation fin S , prove that supp(f) = & if and only if f = e.
11. Letf€ S, Prove that fis a transposition if and only if supp(f) is a 2-element set.

12. Prove that f'is a 3-cycle if and only if supp(f) is a 3-element set. Can this be
extended for any r-cycle?

13. Let e # f € §,. Prove that /> = e if and only if f'is a product of disjoint
transpositions.

14. Forany fand g € S , prove that O(f) = O(g f'g™").

15. Forany 1 =< r = n, prove that there is an element in S, whose order is r.

16. If a is an r-cycle and r is odd, prove that @? is also a cycle.

17. If ris even in Exercise 1b, then can ¢ be a cycle? Substantiate your answer.

18. Ifais an r-cycle and 1 = s <r such that  and s are relatively prime, then prove
that @* is also an r-cycle.

19. For any r-cycle a, prove that fo a o f! is also an r-cycle for any permutation f.

20. Ifa and b are disjoint cycles, prove that fo a o f ' and fo b o /! are also disjoint
cycles.

21. Iff=a,0a,0 ... 0a,is arepresentation of a permutation fin S, as a product of
disjoint cycles and g is any permutation in f, then prove that

gofog'=(goa,0g)o(goa,0g)o...o(goa0g™")
is a representation of g 0 g 0 g7! as a product of disjoint cycles.

22. For any positive integer n, a partition of n is defined to be a finite sequence r, r,,
..., of positive integers such that r =7, < --- =r andr +r,+ === +r =n.
List all the partitions of 4 and 5.

23. For any permutation f'in S , let |f] denote the number of elements in the support
off Letf=a 0a,0...0a wherea,,a, ...,a aredisjoint cycles, each of length
greater than 1, such that |a | < |a| = --- = |a|. Then prove that |a |, |a,, ..., |a|
is a partition of |f].

24. Prove that any permutation in S, determines a partition of » such that f'and g
determine the same partition of 7 if and only if g = h o fo A~ forsome 1 € S,.

25. Prove that S, is generated by the n — 1 transpositions (1 2), (1 3), (1 4), ..., (1 n).
26. Prove that S is generated by (12)and (1234 ... n).
27. Prove that S is generated by the transpositions (1 2), (2 3), (3 4), ..., (n — 1 n).

28. Iff'= (i i,...1)isanr-cyclein S , then prove that g fg™' = (g(i,) g(z,) ... (i)
forallg e S .
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29. Forany fand g € S , prove that fis an r-cycle if and only if g fg~'is an r-cycle.

30. Prove that any group of order 6 is isomorphism to either Z, or S,.

6.4 ALTERNATING GROUP A AND DIHEDRAL
GROUP D,

We have proved in the previous section that every permutation can be expressed
as a product of transpositions. This expression is not unique unless the trans-
positions involved are disjoint. For example, for any distinct 7, j, k and /in [,

(ij)okho(i)= (k)
(ij)o(i)y=e=(kl)o(lh.

Even though an expression of a permutation as a product of transpositions is
not unique, the number of transpositions involved in any expression of a given
permutation is always even or always odd. That is, if a permutation f'can be
expressed as a product of even number of transpositions, then any expression
of fas a product of transpositions contains even number of transpositions. In
order to prove this, we first have the following definition.

Definition 6.4.1. Let f'be a nonidentity permutation in S, and
f=a0a,0...0a

where a, a,, ..., a_are pair-wise disjoint cycles. Then, the Cauchy index of f
is defined as

O(a,) + O(a) + --- + O(a) — s

and is denoted by CI(f). Also, for the identity permutation e, we define Cl(e)
to be 0.

Since any f # e can be uniquely, except for the order of occurrences of the
cycles, expressed as a product of disjoint cycles, the Cauchy index of f'is
well-defined and CI(f) is always a positive integer for any f'# e. Note that,

CICf) =3 0@)=s=|f| -

where e # = a, 0a, 0 ... 0 a_is an expression of fas a product of disjoint
cycles a’s and [f] is the number of elements in the support of f. Since each a,
is a cycle of length atleast two, O(a,) > 1 for all 1 =i =< s and hence |f] > s,
so that CI(f) > 0.



6-24  Algebra - Abstract and Modern

Examples 6.4.1
1 23 456 7289
413279856
Then, f=(142)0(578)0(69) =a,0a,0a,
Therefore, CI(f) = O(a,) + O(a,) + O(a,) — 3
=3+3+2-3=5
2. Letf=(12)0125 045 0B7)0(03)0(69)0(89). Then, we
should express fas a product of disjoint cycles, to find the Cauchy index
of /. We have

1. Letf=

f=(0254039867)=a 0a,
Therefore, CI(f) = O(a,) + O(a,) — 2
=4+5-2=7
Theorem 6.4.1. If f€ S is a product of s transpositions, then
CI(f) + s is even.

Proof: Letf€ S andf=a,0a,0...0a,wherea, a,, ..., a, are pair-wise
disjoint cycles of orders r, r,, ..., r, respectively. Then, we have

Ci)y=r +r,+ - +r —1t
We shall prove that
Cl((ij)of) = CI(f) = 1
for any transposition (z, j). To find CI((Z, j) o f), we should first express (i j) of
as a product of disjoint cycles. We do this in the following cases:
Case (1): Suppose that (7 ;) is disjoint with /. In this case, (i /) is disjoint with
each a, and
(ij)of=(ij)oa,0a,0...0a,
which is a product of # + 1 number of pair-wise disjoint cycles and therefore
Cl(ippof)=2+r +r,+ - +r—(t+1)

=@ t+r,+ot+tr—n+1

=CI(f) + 1
Case (2): Suppose that i € supp(f) andj & supp(f). Then, f(i) # i and f(j) = /.

We can assume, without loss of generality, that i € supp(a,) and i & supp(a,)
for all 1 <k = ¢ and that

a,=(ikk ..k
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Then, r, = O(a,) = r + 1 and

(ipof=(@Gjpo(ikk, ..k)oa,0a,0...0a,
=(kk,...k jJoa,0a,0...0aq,

which is a product of z number of disjoint cycles and therefore

Cl(@j)ofN)=@+2)+r,+ - +r —t
=@+ +rtdr -t
=@ tr,+-F+r—0n+1
=CI(f) + 1

Case (3): Suppose that both i and j belong to supp(f).

(1)

(i)

Suppose that both i and j involve in the same cycle, say a.
Then,a, = (ik ...k jm ...m)
andr, = O(a) =r+u+2.
Now, (ij)of=(ijo(ik ...k jm ...m)oa,0...0aq,

=@k ..k)o(jm . m)oa, 0o  oa
which is a product of # + 1 number of disjoint cycles and therefore
Clij)oNN=@+D+@+DH+r,+-+r—-@+1)
(r+u+2)+r2+-~~+rf— t+1
=@ try+tr,=0-1
= CI(f) — L.

Suppose that i and j involve in distinct cycles of £, say

a =@k ..k) and a,=(Gm ...m).

Then,r, = O(a) =r+ landr,=O(a,) =u + 1
Now,
(ipof=(ij)oa,0a,0...0a,
=(@j)o(ik ...k)o(jm, ...m)oa,0...0aq,
=@k ...k jm ...m)oa0..0aq,

which is a product  — 1 number of disjoint cycles.

Therefore, CI((i j)of) = (r +u+2) +r, + - +r —(—1)
=@ trtr,+o+tr—-0n+1
= CI(f) + 1.

Thus, in any case, CI((i j) o f) = CI(f) = 1 for any transposition (i ;).
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Now, let f'be a product of s transpositions; that is, /= ¢, 0 ¢, 0 ... 0 ¢, where
¢, €y -+, C, are transpositions. Then consider

0 = Cl(e) = CI(f ' 0 /)
=CIl((c,0c,0...0c) ' of)
= Cl(c,0c _
= Cl(c

,0...0c,0c,0f)

+
0..o0c,0oc0f)*1

s—1

=Cl(f) =1+ =1
=Clf)+tp—q

where p and ¢ are nonnegative integers such that p + ¢ = s. Therefore,

Ciif) +p=g4q
and CI(f) + s=CI(f) + p + g = 2q.

Since 2q is always even, it follows that CI(f) + s is even. <

Corollary 6.4.1. Leta, a,,...,a and b, b, ..., b be transpositions such that

a,0a,0...0a,=bobo..ob,
r 1 2 K

Then, » + s is even and hence either both » and s are even or both » and s
are odd.

Proof: Letf=a 0a,0...0a,=b ob,0...0b.
Then, by the above theorem, CI(f) + r and CI(f) + s are even and hence

CI(f) + r + CI(f) + s is even.

So that » + s is even. The later assertion follows from the fact that » + s is odd
if and only if one of 7 and s is odd and the other is even. <

Corollary 6.4.2. If a permutation can be expressed as a product of even num-
ber of transpositions, then it cannot be expressed as a product of odd number
of transpositions.

Definition 6.4.2. A permutation in S is called an even permutation if it can
be expressed as a product of even number of transpositions. A permutation
which is not even is called an odd permutation.
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Examples 6.4.2
1 23 456 789

1. The permutation /= can be expressed as
4 6 57231938

f=(147)0(2635)0(89)
=(17)0(14)0(250(23)0(26)0(89)

which is a product of six transpositions. Therefore, f'is an even permu-
tation.

2. Any r-cycle can be expressed as a product of » — 1 transpositions and
therefore an r-cycle is an even permutation if and only if 7 is odd.

3. Any three cycle (i j k) = (i k) o (ij) is an even permutation.
4. Any transposition is an odd permutation.
5. The identity e in S is an even permutation if n > 1.

Theorem 6.4.2. For any integer n > 1, the set of all even permutations in S
is a normal subgroup of S and is of index 2in S .

Proof: Letn > 1 and
A, = the set of all even permutations in S .

Consider the group G = {1, —1} under the usual multiplication of real num-
bers. Define

L if fiseven
0:S —G by 0(f)= O .
—1, if fisodd

Since n > 1, we have (1, 2) € §, and (1, 2) is an odd permutation and hence
0 ((1,2)) = —1. Also the identity

e=(12)0(12)

and hence e is an even permutation so that 6(e) = 1. Therefore, 6 is a surjection.
For any fand g in § , note that fo g is even if and only if either both fand g are
even or both fand g are odd. Also, for any a and b in G, the product ab = 1
if and only if eithera = 1 = bora = — 1 = b. From these, it follows that 6
is a homomorphism and hence an epimorphism. Also,

ker0 ={fe€S§ :0()=1} =4
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The kernel of any homomorphism is a normal subgroup of the domain group
and hence 4 is normal subgroup of S . Further, by the Fundamental Theorem
of Homomorphisms,

S/4 =G.
Therefore, we have
. S, |
i, (A)y=—2-"=|S /4 |=|G|=2.
5, (4,) PR 1S,/4,|=G|
Thus, the index of 4 in S is 2.
1S,/

Corollary 6.4.3. Foranyn > 1,| 4, |= 5 "7' <

Definition 6.4.3. For any n > 1, the group 4, of all even permutations in S,
is called the alternating group of degree n.

Worked Exercise 6.4.1. Construct a table representing the alternating group
A, of degree 3.

Answer: First note that |4 = 3t =3,

The identity e and the 3-cycles a = (1 2 3) and b = (1 3 2) are the only even
permutations in S,.
Therefore, 4, = {e, a, b}. Note that

ad=bad=eb=a and P =e

o e a
e e a
a b e
e a

Worked Exercise 6.4.2. List all the elements of 4, and construct a table
representing the group 4,.

Answer: First note that |4,| = % =12.

There are eight 3-cycles, each of which is an even permutation. These are

a,=(123),a,=(132)
b =(234),b,=(243)
¢, =(124),¢c,=(142)
d =(134),d =(143)
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Also, p=(12)0(34)
g=(13)0(24)
and r=(14)0(23)

are also even permutations. There are only 12 even permutations and there-
fore the above together with the identity form 4,. That is,

A,={ea,a,b,bc,cd,dp,q,r}.
Here, we have

2 _ 2 _ 3 3
a =a,, a=aq, 4a

2 _ 2 _ 3 — 13
b =b,, by=b, b =e=Db
2 __ 2 __ 3, —
¢ =c, ¢ =¢, =e=c

’=d,, d=d, d'=e=d

The following table represents the group 4,

o e a, a, b, N c c d, d, p q r
e e a, a, b, b, q 5 d, 5 p q r
a, a, a, e p c q d, b, r d, b, c
a, a, e a, d, q b, r p c b, c, d,
b, b, q q b, e d, p r a, a, d, c,
b, b, d, p e b, r a, c q c a, d,
c, c r d, a, p c e q b, d, a, b,
c, c b, q r d, e C a, p b, d, a,
d, d, c r q a, p b, d, e a, c N
d, d, p b, c r a, q e d, c, b, a,
p p b, d, C a, b, d, c a, e r q
q q c b, a, d, d, a, b, c, r e p
r r d, c 5 q a b, a, b, q p e

Alternating group of degree 4
We know that any 3-cycle is an even permutation. In fact, every even permu-
tation is a product of 3-cycles and hence the 3-cycles generate the group 4.
This is proved in the following theorem.
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Theorem 6.4.3. Let n > 2 and i # j € I = {1, 2, ..., n}. Then, the
alternating group A4, is generated by the 3-cycles of the form (i j k), where
kel —{i,j}.

Proof: LetS = {(ijk): k&€l — {i,j}} Clearly S C 4 . Any even permuta-
tion must be a product of terms of the form

(ab)yo(cd) or (ab)o(ac)
where a, b, ¢ and d are distinct elements of / . Since

(ab)o(cd)y=(acbh)o(acd
and (ab)o(ac)= (acbh),

it follows that 4 is generated by the set of all 3-cycles in S . Next, we prove
that any 3-cycle can be expressed as product of 3-cycles in S. Any 3-cycle is
of the form (i j a) or (i a j) or (i a b) or (j a b) or (a b c¢), where a, b and ¢ are
distinct elements / — {i, j}. Now, we have

(faj)=(ija)o(ija)
(fab)y=(ijb)o(ija)o(ija)
(Gab)=(ijb)o(ijb)o(ija)

and (abc)=(jayo(ijc)yo(ijb)}o(ija)

Thus, every 3-cycle is a product of members of § and hence 4, is gener-
ated by S. <

Corollary 6.4.4. For any n = 2, 4 is the smallest subgroup of S containing
all the 3-cyclesin §,.

Theorem 6.4.4. Let n > 2 and N be a normal subgroup of 4 . If N contains
a 3-cycle,then N = 4 .

Proof: Suppose that N contains a 3-cycle (i j k), where i, j and k are some
distinct elements in / .
Forany a € I — {i, ], k}, we have

(ija)=(@j)o(ka)o(ijkyo(ka)o(ij)

=(@j)o(ka)o(ijkyo((ij)oka) ' €fNSfT,
wheref'= (ij)o (ka) € 4,
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Since N is normal in A4, it follows that (i j ) € N. By Theorem 6.4.3,
N=A4,

In the following, we prove an important property of the alternating groups;
namely, all alternating groups, except 4,, are simple in the following sense.

Definition 6.4.4. A nontrivial group G is said to be simple if G does not
contain any nontrivial proper normal subgroups; that is, {e} and G are the
only normal subgroups of G.

Example 6.4.3

1. Any finite group of prime order is simple; for if |G| = p, where p is a
prime number and H is a subgroup of G, then, by the Lagrange’s theo-
rem, |H| divides |G| and hence |H] = 1 or p which implies that H = {e}
or H=G.

2. A,is anot a simple group, since

N={epq,r}

is a normal subgroup of 4, (see Worked Exercise 6.4.2)
3. In the following, we prove that 4 is simple for any n # 4.

Theorem 6.4.5. Let n > 2. Then, the alternative group 4, is simple if and
only if n # 4.

Proof: SinceA,isagroupoforder3 (Z %),A3 issimple (see Example 6.4.3 (1)).
Also 4, is not simple by Example 6.4.3 (2). Now, let n > 4. We shall prove
that 4 is simple. Let N be a normal subgroup of 4 and N # {e}. By
Theorem 6.4.4, it is enough if we can prove that N contains a 3-cycle. We
prove this by distinguishing the following cases.

Case (1): Suppose that N contains an element f'such that fis the product of
disjoint cycles, atleast one of which is of length » = 4. Then,

=G i ...i)0pB

where r =4 and (i, 7, ... 1) and B are disjoint. Now, put « = (i, i, i,). Then, «
€ A, and, by the normality of Nin4 , « o fo a™' € N. Now, we have

G i,i)=B"0( ii_  ..i)oao(ii..i)oBo(, ii
=flo(@ofoa)EN

Thus, N contains a 3-cycle.
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Case (2): Suppose that N contains an element f such that f'is the product of
disjoint cycles, atleast two of which are 3-cycles. Then,

f=G ii)o(,ii)op

where (i, i, 1,), (i, i, i,) and B are disjoint.
Puta = (i, i,1,). Then, & € 4 and, by the normality of Nin4 ,a0foa™ €N.
Now, consider

(i iyi i) =B 0 (i i i)o(i i i) o (i i,i)o (i i,i,)
o(i,ijiJoBol(ii,i
=flo(@aofoa)EN

Therefore, N has a 5-cycle and hence, by Case (1), N contains a 3-cycle.
Case (3): Suppose that N contains an element f'which is the disjoint prod-
uct of one 3-cycle and some 2-cycles. Then,

f=03ii)op

where (i, i, i,) and B are disjoint and S is a product of disjoint 2-cycles. Now
we have

(i] i3 i2 = (ll i2 i3 ?
= (i,1,1,)* o B* (since B> = e)
= (i i2i3)oBo(i] i2i3)oB
=f?€N.

Thus, N contains a 3-cycle.
Case (4): Suppose that every element of N is the product of (an even
number of) disjoint 2-cycles.
Letf'€ Nsuch that /= (i, i,) o (i, 1,)
where (i ,i,), (i,,i,) and N are disjoint. Put @ = (i, i, i,
Then, « € 4, and therefore f ™' o (¢ 0 fo a™') € N. But

fo(aofoa)y=B"o(, i) 0, i) 0 i,-i,) 0@ i,) O
(i3 i)opBol( iy
= (i, i) o (i,i,)

Now, put y = (i, i,) o (i, 1,). We have y € N. since n = 5, we can choose
JEIL — {iiyiyi}. Put = (i i, )
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Then, 6 € 4 and yo (o yo67') € N. Also,

vyo(oyo 071) = (iiiy) 0 (4,i,) 0 (iyiy j) 0 (ijiy) 0 (4,i,) 0 (i jiy)
= (1,3, ).

Therefore, (i, i, j)) € N. Thus, N contains a 3-cycle. Thus, in any case, N
contains a 3-cycle and, by Theorem 6.4.4, N = A . Thus, 4 is simple for
alln = 5. <

Theorem 6.4.6. For any n > 1, the alternating group 4, is the only subgroup
of index 2 in the symmetric group S .

Proof: Let H be a subgroup of index 2 in S . Then, there is only one left coset
of H other than H. Then, fH = S, — H and hence fH = gH for any fand g €
S — H.In particular, fH = f~'H for any f € S, — H (note that f € H if and
only if /' € H) and hence f* € H forall fE S .

If a = (i j k) is any 3-cycle in S , then o’ = e and hence

a ! = a* € H and therefore o € H.

Therefore, H contains all 3-cycles. By Corollary 6.4.4, 4 C H. But

IS, _. . S, |
=i (H)=2=i,(4)=—L
=2 ()=
and hence |H| = |4, |. Thus, H = 4. <

In the following, we shall exhibit another special subgroup of the sym-
metric group S, and prove a characterization theorem for it.

Definition 6.4.5. Letn =3 and 6 and ¢ € S be defined as follows:

0 = the n-cycle (123 ... n)

1 2 4
and ¢ = 3 "
1 n n-1 n=2 .. 2

Note that ¢ = 1II (i n+2—1i), the product of the transpositions (i n +

2=i=n+2—i
2 — i). Let D, be the subgroup of S generated by {0, ¢}. D, is called the
dihedral group of degree n.
The dihedral group D, is completely characterized by certain properties of its
generators 6 and ¢.
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Theorem 6.4.7. Let n = 3. Then, a group G is isomorphic to the dihedral
group D, of degree n if and only if G is generated by two elements a and b
satisfying the following.

1. O(a) =n
2. O(b) =2
3. aba=0b

Proof: Let G be a group. Suppose that G = D and f: G — D, is an isomor-
phism. Recall that D is generated by 6 and ¢ , where

0=1 2 3 ... n)

1 2 3 4 - n

and @=L a2 o af

Being an n-cycle, 6 is of order n. Also,

o= [] G n+2-)=2 mo(3 n—o@4 n—2)o0 -

2=i=n+2—i

which is a product of disjoint transpositions. Since the order of any transposi-
tion is 2, we get that O(¢p) = 2. Also, it can be easily verified that

fodob=d.

If we choose @ and b € G such that f(a) = 0 and f(b) = ¢, then we get that G
is generated by a and b, O(a) = n, O(b) = 2 and aba = b.

Conversely suppose that G is generated by two elements a and b, such that
O(a) = n,O(b) = 2 and aba = b (or ab = ba™"' or ba = a~'b). Then, for any
integers j and k,

ba"*=a'ba"' = aba*r = --- =a b

and  bd" =b"aFb=b"2a" b == g VD,

From these relations and from the hypothesis that G is generated by « and b,
it follows that every element of G can be expressed as a* ' for some integers
kand ;. Since O(a) = n,

{dieZ)=<a>={e,a,a*, ...,a""}.
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Also, since O(b) = 2, we have b = b~! and hence

b — e, ifjiseven'
b, if jisodd

Thus, G = {a*V/: 0 =k <nandj=0orl}.
Further, suppose that ¢*b’ = a'b*, where 0 = k, r < n and j, s € {0, 1}.
Then,

a7 =b".
Ifs # j,thens —j = 1 or —1, so that ¢*" = b and

k=r+2 _ "

a a(ad* a=aba=b=d"
and hence a@* = e, which is a contradiction (since O(a) = n > 2). Therefore,
s=janda*" =esothatk=r

Thus, every element of G can be uniquely expressed as a* »’ where 0 < k < n
and j = 0 or 1. Now, define

f:G—=D by f(a"'b)=20'¢

forall 0 = k <mandj = 0 or 1. Using the fact that 6 and ¢ satisfy the same
conditions (1), (2) and (3) in D, as a and b in G, it can easily checked that f'is
an isomorphism. Thus, G > D . <

Corollary 6.4.5. The order of the dihedral group D, of degree  is 2n.

Proof: This is an immediate consequence of the fact that any element of D,
can be uniquely expressed as 6 “¢p/, where 0 = k <nandj = 0 or 1.

Recall from Example 3.2.8 that the group of symmetries of a square
(aregular 4-gon) is of order 8. In fact, we prove in the following theorem that
the group of symmetries of a square is isomorphic to the dihedral group D,
of degree 4.

Theorem 6.4.8. Letn = 3 and D/ be the group of all symmetries of a regular
n-gon (a polygon of n equal sides). Then,

D =D.
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Proof: Consider a regular n-gon. Without loss of generality, we can assume
that one of the vertices of the n-gon lies on the X-axis. First observe that D’
is generated by the rotation a and the reflection b, where a and b are analyti-
cally given by

2 . 2 . 2w 2
a(x,y) =|xcos—— ysin—, xsin—+ ycos—
n n n n

and  b(x,y) = (x, —y).

It is clear that O(a) = n, O(b) = 2 and aba = b. Therefore, by Theorem 6.4.7,
D' =D.

Corollary 6.4.6. The group of symmetries of a square is isomorphic to the
dihedral group D, of degree 4 and the group of symmetries of an equilateral
triangle (see Worked Exercise 3.3.7) is isomorphic to D,

Worked Exercise 6.4.3. Prove that the dihedral group D , n = 3, is not simple.

Answer: D is generated by two elements 6 and ¢, where O(0)", O(¢) = 2
and 6 0 ¢ 0 6 = ¢. Consider the subgroup 4 generated by 6 in D . Then, |4|
= O(0) = n. Since |D,| = 2n, the index of 4 in D, is 2 and hence 4 is normal
inD,A# {e} and 4 # D, .Thus, D has a nontrivial proper normal subgroup
and hence D is not simple.

EXERCISE 6(D)

1. State whether the following are true or false and substantiate your answers.

(1) The Cauchy index of a permutation f'is equal to the number of elements
in the support of /.

(ii) The order of 4, is even.
(iii) 4, is an abelian group.
(iv) A, is an abelian group.
(v) |44 =120

(vi) A, is trivial.
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(vii) The Cauchy index of any permutation is even.
(viii)  The set of all odd permutations is a subgroup of S .
(ix) Cl(fog) = CI(f) + Cl(g) forall fand g € S .
(x) Foranyn> 2,4 hasasubgroup of order 3.

2. Determine the Cauchy index of each of the following permutation.
@ 2 3 4 5 6 7 8 9
i
34 2 1 5 7 8 9 6
. 2 3 4 5 6 7 8 9
(ii)
34 6 71 9 8 2 5
(i) (35264)0(45673)0(72839)
(iv) (783496)0(5673)0(42638)

3. Which of the following are even permutations?

{1 23 45 6 78
o | ]

78 6 5 3 4 2 1
(1 23 45 6 7 89
(i)

9 8 7 6 5 4 3 2 1

(i) (2486)0(43261)0(853)
(iv) (84653)0(789456)0(123456)

4. Prove that the Cauchy index of any permutation f'is equal to that of /™.

5. Prove that CI(f) is a nonnegative integer for any fin S .

For any permutations fand g in S , prove that that CI(f) = Cl(g o fo g™").
For any f'€ S , prove that CI(f) = 0 < f’is the identity.

Prove that CI(f) = 1 if and only if /'is a transposition.

v o =2

Determine all the permutations in S, whose Cauchy index is two.
10. Determine all the elements in S, whose Cauchy index is one.

1. Find all the positive integers n for which 4, is a cyclic group.

12. Prove that 4, is abelian if and only if n < 4.

13. List all odd permutations in S, and S,.

14. For any n > 1, prove that the number of odd permutations in S is equal to that
of even permutations in S, .

15. How many odd permutations are there in S,?

16. Show that 4, contains an element of order 15.
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17.
18.
19.
20.
21.

22.

23.

24.
25.
26.

27.
28.

29
30.
31.
32.

33.

34.
35.

36.

37.
38.
39.
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What is the maximum order of any element in 4, ?

Prove that f* is even for all permutations fin S .

Find all maximal subgroups M of S, such that /> € M forall fE S,
Prove that there is no proper subgroup of S, containing 4, properly.

Let H be a subgroup of S, containing an odd permutation. Then prove that exactly
half of the number of elements in H are even.

Prove that the order of any subgroup of S containing an odd permutation is
even.

If fis an odd permutation in S , then prove that f4, is the set of all odd permuta-
tionsin S, .

Prove that any element of order 5 in S, is a 5-cycle.
Prove thatfo gof' o g "iseven forall fand g € S,.

Prove that there is no subgroup of order 6 in 4,. What does this say about the
Lagrange’s theorem.

How many elements of order 5 are there in S,?

Determine the centralizers of (24 1) and (12) 0 (34)in 4,.

If o € S, such that a* = (2143 56 7), then what is ?

Prove that (1 2 3 4) is not a product of 3-cycles in S for alln = 4.

If f=(123)o0(145),then express f* as a product of disjoint cycles.

Iff=(1357986)0 (24 10), what is the smallest positive integer n for which
=1

Prove that {f € S, : f(3) = 3 and f(5) = 5} is a subgroup of S.. What is its
order?

How many elements of order 7 are there in 4,?

Iff=097531)0(642)0(810)andf™isa 5-cycle, then what can we say
about m?

If fis a 10-cycle, then find all the integers m between 2 and 10 for which ™ is
also a 10-cycle.

For any f'and g in S , prove that g is even if and only if fo g o /" is even.
Prove that the set of all odd permutations in § is a coset of 4 in S, .

Prove that the centre of the group S is trivial for any n < 3.
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41.
42.
43.
44.

45.

46.

47.
48.

49.
50.
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How many 3-cycles are there in S,?
For any 1 <r = n, derive a formula for the number of r-cycles in S .
How many 4-cycles are there in 4.
For any 1 <r = n, derive a formula for the number of r-cycles in 4.

Letf'€ S , such that the order of f'in the group S, is odd. Prove that f'is an even
permutation.

Let n = 3. Let G be the multiplicative group of matrices over complex numbers
generated by
2mi/n 0 0 1
¢ ] and B= [ ]

A= _
0 & 10

Prove that G is isomorphic with the dihedral group D, of degree n.

If a is the generator of order n in D, prove that <a> is normal in D, and
D /<a>=17,

List all the normal subgroups of D .

For any n > 1, prove that the alternating group 4 is the only subgroup of index
2in S .

Determine all the subgroups of 4,

Prove that Z(D,), the centre of the dihedral group of degree n, is of the order
1 or 2 according as 7 is odd or even.
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—— Group Actions on Sets ——

7.1 Action of a Group on a Set
7.2 Orbits and Stabilizers

7.3 Certain Counting Techniques
7.4 Cauchy and Sylow Theorems

Before the concept of an abstract group took its present shape, the theory of
groups dealt only with permutation groups. Abstract groups were introduced
much later in order to focus attention on those properties of permutation
groups that concern the resultant composition (the binary operation in the
permutation groups) only and do not refer to the set on which the permuta-
tions act. However, we have seen that any group can be identified (isomor-
phic) with a group of permutations on some set. Switching back from the
abstract point of view to the concrete case of a permutation group is often
useful in the abstract theory. The use of permutation groups provides cer-
tain counting techniques which play an important role in the theory of finite
groups. In this chapter, we provide a procedure for passing from the abstract
point of view to the concrete case of permutations, by introducing the con-
cept of ‘a group acting on a set’ and develop certain counting techniques in
finite groups.

7.1 ACTION OF A GROUP ON A SET

Cayley’s theorem states that any group is isomorphic with a subgroup of the
group S(X) of permutations on some set X (bijections of X onto itself). Sup-
pose that G is a subgroup of S(X). Then, for any a € G and x € X, there cor-
responds an element a(x) of X and this correspondence satisfies the following
properties.
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(i) e(x)=x
(i)  (a - b)x) = a(b(x))

forall x € Xand a and b € G, where e is the identity in G. This is abstracted
in the following definition.

Definition 7.1.1. Let G be a group and X be any nonempty set. A mapping
0 : G X X — Xis called an action of G on X if it satisfies the following
properties.

1. 6(e, x) = x for all x € X, where e is the identity in the group G.
2. 0(ab, x) = 0(a, (b, x)) forallx € Xand a, b € G.

We say that G acts on X if there is an action of G on X.

Example 7.1.1

1. Let X be a nonempty set and G be a subgroup of the group S(X) of per-
mutations on X (bijections of X onto itself). Define

0:GXX—X by6b(a,x)=alx)

for any a € G and x € X. Then, it can be easily verified that 6 is an action
of G on X. Note that the identity in G is the identity mapping and the
binary operation in the group G is the composition of mappings. This
action is called the natural action of G.

2. Let G be a group and X be the set G itself. Define 0 : G X X — X by 6(a,
X) = a * x, where a - x is the product of @ and x in the group G. Then
clearly 0 is an action of G on itself and is called the action of G on itself
by left translation. The action of an element a in G on an element x in X
(= G) is simply multiplying x by a on the left.

3. Again let G be a group and X be the set G. Define 6 : G X X — X by
0(a, x) = xa~'. Then,

O(e,x) = xe ! =xe =x

and 6(ab, x) = x(ab)™' = x(b~'a™") = (xb Ha"! = 6(a, (b, X))

forall x € Xand a, b € G. Therefore, 0 is an action of G on itself and is
called the action by right translation.

4. By clubbing the above two actions of a group G on itself, we get another
important action of G. Let G be a group and X be the set G itself.
Define

0:GXX—X by6b(a x)=axa™'
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foralla € G and x € X (= G). axa! is called the conjugate of x cor-
responding to a. For any a and b € G and x € X(= G), we have

O(e,x) = exe ' =x

and  O(ab, x) = (ab)x(ab)™' = a(bxb™")a™' = O(a, 6(b, x)).

Therefore, 6 is an action of G on itself and is called the action by conju-
gation.

5. Let H be a subgroup of a group G and X be the set of all left cosets of H
in G. Define

0 :GXX—X by6(a,xH) = axH
for all a € G and xH € X with x € G. First note that 6 is well defined; for

xH=yH=x"'vyeH
= (ax) (ay)=x"'alay=x"yEH
= axH = ayH

Then, 0 is an action of G on the set of left cosets of H in G.

6. Let G be a group and X be the set of all subgroups of G. Define 0 : G X
X—X by

0(a, H) = aHa™' foranya € G and HE X.

Then, 6 is an action of G on the set of all subgroups of G.

As in the case of the binary operation in a group, we simply write ax
for O(a, x), where 0 is an action of G on X, a € G and x € X. This is only
for simplicity and convenience. The defining conditions for an action can be
rewritten as

1. ex=xforallx e X
2. (ab)x = a(bx) forall a, b € G and x € X.

The condition (2) is not the associative law, for we are not dealing with a
binary operation on a set. @ and b are elements of the group G and x is an ele-
ment of X. There should not be any confusion with this notation. One should
understand as per the context.

There may be several actions of the same group on the same set, as given
in the examples (2), (3) and (4) above. In the following, we establish an inter-
relation between the actions of a given group G on a given set X and the
homomorphisms of G into the group S(X) of permutations on X.
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Theorem 7.1.1. Let 0 be an action of a group G on a nonempty set X. For
each a € G, define

J(@): X —X byf(a)x) = 0(a,x)

for any x € X. Then, f,(a) is a permutation on X and f, defines a homo-
morphism of G into S(X). Further, 6 — £, is a bijection of the set of all
actions of G on X onto the set Hom(G, S(X)) of homomorphisms of G

into S(X).

Proof: First note that, forany « € G and x, y € X,

Sa)x) = f(a)(y) = 6(a, x) = 0(a, y)
= 60(a’!, 0(a, x)) = 6(a”", 6(a, y))
= 0(a'a,x) = 0(a"'a,y)
= 0(e, x) = 0(e, »)
=X =y

Therefore, f,(a) : X — Xis an injection. Also, for any y € X, we have 6(a™", y)
€ Xand

T a)0(a™, y)) = b(a, 6(a”", y)) = O(aa™', y) = O(e,y) =y

and hence f; is a surjection also. Therefore, f,(a) is a permutation on .X; that
is, f,(a) € S(X) and hence f, can be considered as a mapping of G into S(X).
Also, for any a and b € G, we have

Ji(ab)(x) = 6(ab, x) = 6(a, 6(b, x)) = (f,(a) - £,(b))(x)

for all x € X and therefore f,(a, b) = f,(a) - f,(b). This means that £, is a
homomorphism of G into S(X). If 6, and 6, are two actions of G on X, such
that Jo. = 1o, then for any (a, x) € G X X,

0,(a,x) = f, (a)(x) = £, (a)(x) =0,(a,x)

and hence 6, = 6,. Thus, 6 +— f, is an injection.
Next, let « € Hom(G, S(X)) and define 6 : G X X — X by

0(a,x) = a(a)(x) foralla € Gandx € X.

Then, it can be verified that 6 is an action of G on X and f, = «. Thus,
0 — £, is a bijection of the set of actions of G on X onto the set Hom(G, S(X))
of homomorphisms of G into S(X). <
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Definition 7.1.2. For any action 0 of a group G on a set X, the homomor-
phism f, : G — S(X) defined above is called the homomorphism associated
with the action 6. If f, is an injection, then 6 is called an effective action of G
on X and, in this case, we say that G acts on X effectively. The kernel of f, is
called the kernel of the action 6.

That is, ker 6 = {a € G : f,(a) = the identity in S(X)}
=1{a € G f(a)(x) = x forall x € X}
={a€ G:60(a,x)=xforall x € X}

Therefore, an action 6 is effective if and only if ker § = {e}; that is, e is the
only element a in G such that 6(a, x) = x for all x € X. For example, if 0 is
the action of G on itself by left translation (see Example 7.1.1 (2)), then 6 is
effective. On the other hand, if 6 is the action of G on itself by conjugation
(that is, 6(a, x) = axa™'), then 6 is effective if and only if the centre Z(G) of
G is trivial, since

Z(G)={a € G:ax =xaforallx € G}
={a€ G:axa' =xforallx € G}
={a€ G:0(a,x) =xforallx € G}
= ker 6.

Since a group G is abelian (commutative) if and only if Z(G) = G, we can

consider the effectiveness of the conjugacy action as a measure of the com-
mutativity of the group.

Worked Exercise 7.1.1. Let X be the set of all complex number with unit
modulus and G be the additive group of real numbers. Define § : G X X — X
by 0(a, x) = €% for any ¢ € G and x € X. Then prove that 6 is an action of
G on X. Is 6 effective?

Answer: Note the 0 is the identity in G (= (R, +)) and that the usual addition
+ is the binary operation on G.

0(0,x) =% = 1x=x forallx X
Also, forany e and b € Gand x € X,

O(a+b, x) = @ x = 4ex) = 6(a, 6(b, x)).
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Therefore, 6 is an action of G on X. Note that,

ker6 = {a € G: 0(a,x) = x forall x € X}
={a € G:éu=xforallx € X}
={a€G:é" =1}
= {2nm:n € Z}

Therefore, 6 is not effective.

Worked Exercise 7.1.2. Let 6 be an action of a group on a set X. For any
A C X, define

0'(a, A) = {6(a,x) :x € A}.

Then prove that 0’ is an action of G on the power set of X and that ker
6 =ker6'.

Answer: For any 4 C X,

0'(e,A) = {0(e,x):xEA} = A4
and 0'(a, 0'(b, A)) = {0(a,y):y € 0'(b, A)}
= {0(a, 0(b,x)) : x € A}
= {0(ab, x) : x EA}
= 0'(ab, A)

Therefore, 6’ is an action of G on P(X), the power set of X. For any a € G,

a€kerf < 6(a,x)=x forallxEX
< 0'(a,A)=A forallACX
(note that 6'(a, {x}) = {6(a, x)})
S a€kerf.

Therefore, ker & = ker 0'; in particular, 6’ is effective if and only if 6 is
effective.

EXERCISE 7(A)

1. Let G be a group and define 6 : G X G — G by 6(a, x) = xa. Then prove that 6
is an action of G on itself if and only if G is abelian.

2. LetG = S;and X = {x,x,,x,,x,, x,} and define § : G X X — Xby 0(f, x) = Xy for
any f€ S and | =i = 5. Then prove that 6 is an action of G on X. Is it effective?
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Let X be the set of vertices 1, 2, 3, 4 of a square and G = D,, the dihedral group
of degree 4. Define 6 : D, X X — Xby 0(f, i) = f(i). Then prove that 6 is an action
of D, on X.

Let H be a subgroup of a group G and X be the set of left cosets of H in G. Define
0:GXX— Xby

0(a,xH) = axa'H fora€ G and xHE X,x €G.

Then prove that 6 is an action of G on X. s it effective? What is the Kernel
of 67

. Let H be a subgroup of finite index » in a group G. Then prove that there is a

homomorphism f: G — S whose kernel is N aHa™'.
€

a

If H is a normal subgroup of finite index » in a group G, then prove that G is
isomorphic to a subgroup of S,

. If Gis a simple group and H is a proper subgroup of index 7 in G, then prove that

G is isomorphic to a subgroup of S .

Let G be the group of symmetries of a cube. Prove that there are nontrivial
actions of G on each of the set of edges, the set of faces, the set of vertices and
the set of diagonals of the cube.

. Let 6 be an action of a group on a set X and define 6’ : G X (X X X) —(X X

X) by
0(a, (x, ) = (6(a, x), 0(a, y))

for any ¢ € G and x and y € X. Then prove that 6* is an action of G on X X X
and that 6? is effective if and only if 6 is effective.

Let G be a group and X, and X, be nonempty sets, let 6, and 60, be actions of G
on X, and X, respectively. Define (6,X0,) : G X (X, X X)) — X X X by

(8, X 0,)(a, (x,x)) = (0,(a, x)), 0,(a, x,))
forany a € G and (x, x,) € X, X X,. Prove that 6, X 6, is an action of G on X
X X, and that
ker(6, X 6,) = ker 6, Nker 0,.

Let a group G act on itself by left translation. Prove that the action is effective
and deduce the Cayley’s theorem.

Let H be a subgroup of a group G and X be the set of right cosets of H in G.
Prove that (a, Hx) — Hxa ™! is an action of G on X which is effective if and only
if H contains no nontrivial normal subgroup of G.

Let H be a proper subgroup of a finite group G. Then prove that G # U aHa .

acG
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14. Let p be the smallest prime dividing the order of a finite group G. Then prove
that any subgroup of index p in G is normal in G.

15. Derive from the above that any subgroup of index 2 in a group is normal.
16. Prove that any subgroup of order 539 in a group of order 2695 is normal.

17. Let p and ¢ be distinct primes such that p << ¢. Prove that any subgroup of order
q in a group of order pq is normal.

18. Let G be a group of odd order. Then prove that any subgroup of index 3 is
normal in G.

7.2 ORBITS AND STABILIZERS

In this section, we introduce two important concepts regarding the actions of
groups on sets. When 6 is an arbitrary action of a group G on a set X, we sim-
ply write, as agreed earlier, ax for 6(a, x) for any ¢ € G and x € X, when there
is no ambiguity about the action 6. Recall that a group is a pair (G, *) where
G is a nonempty set and * is a binary operation on G satisfying certain condi-
tions. However, we use to simply say that G is a group without specifically
mentioning about the binary operation and further we used to write simply ab
for a * b, where a and b € G. Likewise, when there is an action of a group
G on a set X, we simply say that G acts on X without specifically mentioning
the action of G on X. It is understood that is an action (a, x) — ax sending any
pair (a, x) in G X X onto the element ax.

Definition 7.2.1. Let a group G act on a set X and x € X. The orbit of x is
defined to be the set

O(x) = {ax:a € G}.

Before going to certain examples, we prove an important elementary prop-
erty of orbits in the following theorem.

Theorem 7.2.1. Let a group G act on a set X. Then, the orbits of elements
of X form a partition of X. That is, any two orbits are either equal or disjoint

subsets of X and the union of all orbits is equal to X.

Proof: For any x € X, we have O(x) = {ax : a € G}. Clearly O(x) is a subset
of X for each x € X. Also, since

x =ex € O(x)
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We have X = UX O(x). Now, let x and y € X such that the orbits O(x) and
xe
O(y) are not disjoint. Then, choose z € O(x) N O(y). Thus,

z=ax = by forsomeaand b € G

and hence x = (¢'b)y and y = (b~ 'a)x so that O(x) C O(y) and O(y) C O(x)
and therefore O(x) = O(y). Then,

0X)NOW) =T or O) = O0®). <

Definition 7.2.2. Let a group G act on a set X and x € X. The stabilizer of x
is defined to be the set

St(x) = {a € G: ax = x}.

Theorem 7.2.2. Let a group G act on a set X and x € X. Then, the stabilizer
St(x) is a subgroup of G and there is a bijection of the orbit O(x) onto the set
of left cosets of the stabilizer St(x) in G.

Proof: Since ex = x, where e is the identity in the group G,
e€EStlx) ={a€ G:ax =x}
and hence St(x) is a nonempty subset of G. Also,

aand b € St(x) = ax = x = bx
= (ab)x = a(bx) = ax = x
= ab € St(x)
and a € St(x) = ax =x
Sa'x=alax)=(a'a)x =ex =x
=a ' € St(x).
Therefore, the stabilizer St(x) is a subgroup of G. Next, let 4 be the set of all
left cosets of St(x) in G. That is,
A = {aSt(x) : a € G}.
Define « : O(x) — 4 by a(ax) = aSt(x).
For any a and b € G, we have
ax=bx < a'bx =x
< a'h € St(x)
& aSt(x) = bSt(x).

Therefore, « is well defined and is an injection. Clearly « is a surjection also.
Thus, « is a bijection of O(x) onto the set of left cosets of St(x) in G. <
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Corollary 7.2.1. Let G be a group acting on a finite set X and x € X. Then,
the number of elements in the orbit of x is equal to the index of the stabilizer

of x in G. That is, [O(x)| = i(St(x)) = |S'1(G)‘C)|

Now, we shall take up various examples of actions of groups on sets and
determine the orbits and stabilizers of arbitrary elements of X.

Example 7.2.1

1. Let X be any nonempty set and G be any group. Define 6 : G X X —
Xby

0(a,x) =x forallae G and x€X

Then clearly 6 is an action of G on X and is called the trivial action.
Here, for any x € X,

the orbit O(x) = {x}
and the stabilizer St(x) = G.

2. Consider the action of any group G on itself by left translation (see
Example 7.1.1 (2)). Here, X = G and, for any x € X (= G),

the orbit O(x) = {ax:a € G} =X =G

since any b € G can be written as b = (bx™")x, bx™' € G.
Also, the stabilizer St(x) = {a € G : ax = x} = {e}.
3. Consider the action of a group on itself by conjugation (see Example

7.1.1 (4)), where 6 : G X G — G is defined by 6(a, x) = axa™!, for all a
and x € G. Here, for any x € X,

the orbit O(x) = {0(a, x) : a € G}
={axa':a € G}
and the stabilizer St(x) = {a € G : 0(a, x) = x}
={a€G:axa' =x}
={a€ G:ax = xa}
The orbit O(x) is called the conjugacy class of x in G and is usually
denoted by C(x). Also, the stabilizer St(x) is called the centralizer of x in
G and is usually denoted by Cent (x). That is,
Cx) = {axa':a € G}
and Cent (x) = {a € G : ax = xa}.

4. Let H be a subgroup of a group G and X be the set of left cosets of H in
G.Define 6 : G X X — Xby

0 (a,xH) = (axa "\ H
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forany a € G and xH € X, x € G. Then, 6 is an action of G on X. The
orbit of any xH, x € G, is

OxH) = {6(a,xH) : a € G}
={axa 'H:a € G}

and the stabilizer of xH is

St(xH) = {a € G : 6(a, xH) = xH}
={a € G:axa'H = xH}.

Definition 7.2.3. An action of a group G on a set X is said to transitive
if there is only one orbit in X; that is, O(x) = X for all x € X or, equiva-
lently O(x) = O(y) for all x and y € X. In this case, we say that G acts
transitively on X.

Clearly an action is transitive if and only if, for any x and y € X, there is
an element a in the group G such that ax = y; that is, any element of X can be
transformed to any other element of X by means of the action of an element
of the group.

Example 7.2.2

1. The action of a group G on itself by left (right) translation (see Example
7.1.1 (2) and (3)) is transitive, since, for any x and y € G, yx~' € G and
vy~ lx € Gand

x Hx=yp and x(y'x)'=y

2. The action of a group G on itself by conjugation (see Example 7.1.1 (4))
is not transitive, in general. This is transitive if and only if there is only
one conjugacy class or, equivalently, any two elements of the group or
conjugates to each other.

A group may act on the same set (or on two different sets) differently. In
the following, we define equivalence of two such actions in a natural way.

Definition 7.2.4. Let a group G act on two sets X and X’. These two actions
are said to equivalent if there is a bijection @ : X — X’ such that

a(ax) = aa(x)

foralla € Gand x € X; thatis, if 0 : G X X — Xand 0’ : G X X' — X' are
actions of G on X and X', respectively, then 6 and 6" are said to be equivalent if

o fa) = f(a) - @
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X fy(a) X
o o
X > X
fy(a)

for all a € G, where f,(a) and f, (a) are the permutations on X and X" cor-
responding to the actions 6 and ', respectively (see Theorem 7.1.1). In other
words,

a(0(a, x)) = 0'(a, a(x))
foralla € Gandx € X.

Example 7.2.3. Consider the actions of a group G on itself by left translation
and right translation defined by

0(a,x) = ax and 6'(a,x)=xa'

(see Example 7.1.1 (2) and (3)). Define o : G — G by a(x) = x~' forany x € G.
Then, « is a bijection and, for any ¢ and x € G,

a(0(a, x)) = a(ax) = (ax)"' =x"'a™' = 0'(a, a(x)).

Therefore, the actions 6 and 6’ are equivalent.

In the following, we obtain an internal characterization of transitive
actions. This is an extension of Theorem 7.2.2 which gives us that the orbit
of any element x in X is bijective with the set of left cosets of the stabilizer
ofxin G.

Theorem 7.2.3. Let a group G act transitively on a set X, x € X and
H = St(x). Then, the action of G on X is equivalent to the action of G on the
set of left cosets of H in G by left translation.

Proof: Let 6 be the given transitive action on X and Y be the set of left
cosets of Hin G. Let 6 be the action of G on Y by left translation; that is,
0' : G X Y — Yis defined by

0'(a, bH) = abH foranya € G and bHEY.
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Since the action 6 is transitive, we get that the orbit O(x) = X. Leta : X — Y
be the bijection given in the proof of Theorem 7.2.2; that is,

a(ax) = aH foranya € G.

Now, for any ¢ € G and y € X, choose b € G such that y = bx (since X is the
orbit of x) and we have

a(0(a, y)) = a(ay) = a(abx)
= abH = 0'(a, bH)
= 0'(a, a(bx)) = 0'(a, a(y)).
Thus, the actions 6 and 6" are equivalent. <

Among the transitive actions, there is a special class, namely primitive
actions, which deserves an emphasis. In the following, we define primitive
actions and characterize these in terms of the stabilizers.

Definition 7.2.5. Let 6 be an action of a group G on a set X. An equiva-
lence relation ¢ on X is said to be compatible with the action 6 if, for any
xandy € X,

(x,y) €Y= (0(a,x),0(a,y) €y foralla € G.

Clearly the whole of X X X and the diagonal A, = {(x, x) : x € X} are equiva-
lence relation X which are compatible with every action of G on X. These two
equivalence relations are called trivial relations.

Definition 7.2.6. An action of a group G on a set X is called primitive if
X X Xand A, are the only equivalence relations on X which are compatible

with the action. An action which is not primitive is called imprimitive.

Theorem 7.2.4. Let 6 and 6’ be equivalent actions of G on X and X', respec-
tively. Then, 6 is primitive if and only if so is 6".

Proof: Since 6 and 6’ are equivalent, there exists a bijection a : X — X’
such that

a(b(a, x)) = 6'(a, a(x))
for any a € G and x € X. For any equivalence relation ¢ on X, let

a) = {(a), a(y): (x,y) € ).
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Then, a(i)) is an equivalence relation on X" and ¢ — «(i}) is a one-to-one cor-
respondence between the equivalence relations on X and those on X'. Now,
theorem follows from the fact that ¢ is compatible with the action 6 on X if
and only if (i) is compatible with the action 6’ on X". <

Theorem 7.2.5. Let 6 be an action of a group G on a set X. Then, 6 is imprim-
itive if and only if there exists a proper subset Y of X with |Y] > 1 such that,
for any a € G, either 6(a, Y) = Yor 6(a, Y) N Y = J, where 0(a, ¥) = {0
(a,y):yE Y}

Proof: Suppose that 0 is imprimitive. Then, there exists an equivalence rela-
tion ¢ on X which is compatible with 6 such that ¢y # X X X and ¢y # A,.
Choose x # y € X such that (x, y) € . Put Y = the equivalence class of
containing x. Thatis, Y = )(x) = {z E X: (x,z) EJ}. Sincex #y € ¥, |¥] > 1.
Also, since y # X X X, Y is a proper subset of X. Now, let « € G and 6(a, )
N Y # (J. Then, choose z € Y such that 6(a, z) € ¥ = i(x). Since (x, 6(a, z))
€ ¢ and ¢ is compatible with 6, we get that

(6(a, x), 6(a, 0(a, 2))) €
and hence (0(a, x), 6(a, z)) € ¢ so that (x, 6(a, x)) € . Now, it can be easily
verified that 8(a, Y) = Y. Conversely suppose that there is a proper subset Y of

X such that |Y] > 1 and, for any a € G, either 6(a, Y) = Yor6(a, )N Y = .
From this it follows that, for any ¢ and b € G,

either 6(a,Y) =60(b,Y) or 6(a, Y)NO(Db,Y)=.
Put Z=X—( UGG(a,Y)). Then, € = {6(a, Y) : a € G} U {Z} is a partition
of X and the ca(frresponding equivalence relation i on X is compatible with
the action 6. Recall that

= {(x,y) € X X X:both x and y belong to the same set in 6}.

Since Y = 6(e, Y) is an equivalence class and Y # X, it follows that ¢y #
X X X. Also, since |Y| > 1, ¢ # A . Thus, 0 is imprimitive. |

Theorem 7.2.6. Let 6 be an action of a group on a set X and define

Y, ={(x,y)) EX X X:0(a,x) =y forsomea € G}.
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Then, i, is an equivalence relation on X, that is, compatible with the action 6.
Proof: Note that (x, y) € i, < y € O(x), the orbit of x
< x € 0(y), theorbitofy

and hence ¢, is precisely the equivalence relation corresponding to the parti-
tion of X consisting the orbits of elements of X. Now, for any a € G,

(x,y) €y, 0(0,x) =y forsomeb e G
& 0(b, 6(a, x)) = 0(ab, x) = 0(a, 0(b, x)) = 6(a, y)
& (0 (a,x),0(a,y) € ¢,

Therefore, ¢, is compatible with the action 6. <

Corollary 7.2.2. If an action 0 of G on X is primitive, then either 6 is trivial
(that is, 6(a, x) = x for all a € G and x € X) or 6 is transitive.

Proof: If 6 is primitive, then ¢y, = A or X X X and hence all orbits or
singleton sets or there is only one orbit which mean that either 6 is trivial or
transitive.

In particular, a nontrivial primitive action must be necessarily transitive
and hence the class of nontrivial primitive actions of a group on a set X is a
subclass of the transitive actions of G on X. But in general a transitive action
need not be primitive. For consider the following example.

Example 7.2.4. Let a group G act on itself by left translation. (see Example
7.1.1 (2)) and H be a nontrivial proper subgroup of G. The action 6 of G on
itself is defined by 6(a, x) = ax, the product of ¢ and x in G. For any x and y
€ G, we have y = (x )x = 6(yx~!, x) and yx~! € G and therefore the action
0 is transitive. Define a relation iy on G by

(x,y) € ifandonlyifx~ly € H.

It can be casily seen that ¢ is an equivalence relation on G. Also for any
a€eQqG,

xy€EYy=xyeEH
= (ax) () =x"'alay=x"yEG
= (ax,ay) € Y
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and hence s is compatible with the action 6. Also since H # {e}, ) # A, and
since H # G, y # G X G. Therefore, the action 6 is imprimitive.

Note that in the above example, any equivalence class of s is simply
a left coset of H in G. If G has no nontrivial proper subgroups, then the
above action is primitive and vice versa. In other words, the action of G
on itself by left translation is primitive if and only if {e} is a maximal
subgroup of G.

This is generalised in the following theorem. First, let us call a proper sub-
group K of a group G maximal if there is no proper subgroup of G containing
K properly; that is, for any subgroup H of G, K C H C G implies that either
H=KorH=G.

Theorem 7.2.7. Let a group G act transitively on a set X with |[X| = 2. Then,
the action is primitive if and only if the stabilizer of any x € X is a maximal
subgroup of G.

Proof: For any x € X, let S = St(x), the stabilizer of x in G. By Theorem
7.2.3, the given action G on X is equivalent to the action 6 of G on the set G/S
of left cosets of S'in G by left translation.

Here, 0 : G X G/S — G/S is defined by 6(a, xS) = axS for any ¢« € G
and xS € G/S, x € G, where G/S = {xS : x € G} (note that G/S is not
the quotient group, unless S is a normal subgroup of G). Therefore, by
Theorem 7.2.4, the given action of G on X is primitive if and only if 6 is
primitive.

First suppose that S = St(x) is not a maximal subgroup of G for some x € X.
Then, choose a subgroup H of G such that SG H G G.

Let Y= {xS:x € H}.

Since H g G, Yis a proper subset of G/S. Also, since S ; H, Y has atleast two
elements. Further, for any a € G,

O0a, YYNY# D= xS = 06(a,yS) forsomex,y€ H
= xS =ayS, forsomex,y € H
=>xlayeESCH,x,yEH
=a€ExHy'=H
=0aY)={axS:x€H} = {)S:yEH} =7.

Thus, by Theorem 7.2.5, 6 is imprimitive and hence the given action of G
on X is imprimitive. Conversely, suppose that the given action of G on X is
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imprimitive. Then, again by Theorem 7.2.5, there exists a proper subset ¥ of
X with |Y] > 1 such that, for any a € G,

eitheraY =Y or a¥YNY=.

Choose x € Y. We shall prove that the stabilizer St(x) is not a maximal sub-
group of G.

PutH={a€ G:aY=17}.
Clearly H is a subgroup of G. Also,

a € Stx) =>ax =x
=a¥NY+J
=a¥=Y
=a€H.

Therefore, St(x) C H C G. Since |Y] > 1, we can choose y € Y such that
y # x. Since the action of G is transitive, there exists a € G such that ax =
y # x. Now, a & St(x) and, since ax = y € a¥Y N Y, it follows that aY = Y and
hence a € H. Therefore, St(x) ; H. Further, since Y is a proper subset of X,
we can choose z € X such that z € Y. Again by the transitivity of the action,
there exists a € G such that ax = z &€ Y, so that aY # Y and hence a & H.
Therefore, H S G. Now, since

Stx) CHS G,

if follows that St(x) is not a maximal subgroup of G. <

Worked Exercise 7.2.1. Let G be a finite group of prime order. Suppose that
G acts on a set X and x € X such that ax = x for some a # e in G. Then prove
that bx = x forall b € G.

Answer: Consider the stabilizer St(x), which is a subgroup of G. Since the
order of G is prime, by the Lagrange’s theorem |St(x)| = 1 or |G| and hence
St(x) = {e} or G. If there is a # e, such that ax = x, then St(x) # {e} and
hence St(x) = G, so that bx = x forall b € G.
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EXERCISE 7(B)

1.

10.

Let H be a subgroup of a group G and

N= ﬂxHxil.

xeG

Then prove that N is largest normal subgroup of G contained in H.

Prove that the N given in (1) above is kernel of the action of G on the set of left
cosets of H in G by left translation.

. Prove that a subgroup H of a group contains no nontrivial normal subgroups of

G if and only if the action of G on the set of cosets of / in G by left translation
is effective.

Let H be a subgroup of a group G and X be the set of right cosets of H in G. Then
prove that

(a, Hx) — Hxa™!

is an action of G on X whose kernel is the largest normal subgroup of G con-
tained in H.

. Letagroup G act on a set X and Y be asubset of X. Let St(Y) ={a € G:ay =y

for all y € Y}. Prove that St(Y) is a subgroup of G.

Let G be the group (R, +) and X = R? be the two-dimensional Euclidean space.
For any a € G, let r, be the rotation of the plane about the origin through a
radius. Prove that a +— r, is a homomorphism of G into S(X) and hence yields an
action of G on X. Is this action effective? Give a geometrical description of the
orbit of a point P in R What is the stabilizer of a point P?

Let a group G act on a set X. Prove that the action of G on X is effective if and
only if, for any a and b € G,

ax =bx forallx EX=a=b.

Let a group G act on a set X primitively and N be a nontrivial normal subgroup
of G. Then prove that the induced action of N on X is transitive.

Let two groups G, and G, act on sets X, and X, respectively and X, N X, = .
Define an action of G, X G, on X, U X, by

(a,a)x =ax and (a,a)x, = ax,

for any (a,, a,) € G, X G,, x, € X, and x, € X,. Prove that this is an action,
which is not transitive.

An action of a group G on a set X is called doubly transitive if, for any x , x,, y,
and y, € X, there exists @ € G such that ax, = y, and ax, = y,. Prove that any
doubly transitive action is primitive. Is the converse true?
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7.3 CERTAIN COUNTING TECHNIQUES

We have observed in Theorem 7.2.1 that the orbits form a partition of X,
when a group G acts on X and that, in Theorem 7.2.2, we have proved that the
number of elements in any finite orbit is precisely the index of the stabilizer
of the corresponding element. We consolidate these ideas in proving the fol-
lowing theorem.

Theorem 7.3.1. Let G be group acting on a finite set X and O(x,), O(x,), ...,
O(x,) be all the distinct orbits in X. Then, the number of elements in X can be
obtained by the formula

|X|=§3I0<xf>:'G'[:St(lx»)l]'

i=1
Proof: Since the orbits form a partition of X, we have

UO(x)=X and OG)NO(x)=@ for i ).

X O(xp) | O(x3)

Therefore, the total number of elements in X is equal to the sum of the num-
bers of elements in the orbits. That is,

X1 = 10(x))| + [OCx,)| + - + [O(x,)|
=i (St(x,)) + --- + i(St(x )) (by Theorem 7.2.2)
Gl ... |G
|S(x)) | [S(x,)]

J— - 1
_'G'[;smxm]' <

We shall apply the above formula to a special action of a group on itself
and derive an important formula for the order of a finite group, namely,




7-20  Algebra - Abstract and Modern

the class equation. First let us recall that (a, x) — axa™! is an action of a group
G on itself and is called the action of G on itself by conjugation. Here, for any
X € G, the orbit of x is simply the conjugate class C(x) of x in G; that is,

O) = {axa™':a € G} = C(x).
and the stabilizer of x is given by

St(x) = {a € G:axa™' = x}
={a€ G:ax =xa}
which is known as the centralizer of x in G and is denoted by Cent (x). By

Corollary 7.2.1, we have |C(x)| = i (Cent (x)); that is, the number of elements
in the conjugate class of x is equal to the index of the centralizer of x in G.

Theorem 7.3.2 (The class equation). Let G be a finite group. Then,

G|=3 i, (Centy (x,) + Z(G)|

i=1

where Z(G) is the centre of G and x , ..., x, are elements of G such that C(x,),
C(x,), ..., C(x,) are all the distinct conjugacy classes, each with more than one
element. This equation is known as the class equations of G.

Proof: Consider the action of G on itself by conjugation. Then, the orbit of x
is the conjugacy class of x and the stabilizer of x is the centralizer of x. Since
the orbits form a partition of G, the conjugacy classes form a partition of G.
Therefore,

1G1=21C0D1= D i Centg ()

Now, we shall distinguish two types of conjugacy class, namely classes each
with only one element and classes each with more than one element. Note
that, for any x € G, the conjugacy class of x is

Clx) = {axa':a € G}.

Therefore, |C(x)| = 1 < C(x) = {x}
Saxa'=x foralla € G
Sax =xa foralla € G
< x € Z(G), the centre of G.
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Therefore, each element of Z(G) contributes a singleton conjugacy class and
vice versa. If C(x,), C(x,), ..., C(x,) are all the distinct conjugacy classes each
with more than one element, then

1G1=12(6) |+ 01 Cx)|
=1 2(G) | +3 g (Cent (x)

o 1
2T Com(n) |]‘ <

For any subset 4 of a group G and for any element x in G, the set

=[Z(G)|+]|G|

xAx™' = {xax"':a € 4}

is called the conjugate of 4 corresponding to x. The map (x, 4) — xAx~'is an
action of G on the power set of G, with respect to which the orbit of 4 is

C(A) = {xAx':x € G}
and the stabilizer of 4 is

Cent(4) = {x € G:xAx™' = 4}
= {x € G:x4 = Ax}.

C(A4) and Cent (4) are respectively called the conjugacy class of 4 in P(G)
and the centralizer or normalizer of 4 in G. Clearly, for any subset 4 of a
finite group G,

, |G
C(A)|=i,(Cent (4)=——.
| C(4) | = ig(Cent;(4)) [Cent, ()]

In the following, we give certain important applications of the class equa-
tion of a finite group G proved in Theorem 7.3.2. The following is a simple
consequence of the discussion made above.

Theorem 7.3.3. Let K be a subgroup of a finite group G. Then, the number
of subgroups of G conjugate to K is equal to the index of the normalizer of
Kin G.
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Theorem 7.3.4. Let p be a prime number and » be a positive integer. Let G be
a group of order p”. Suppose that G acts on a finite set X and

X,={x€X:ax = xforalla € G}.

Then, |X] = |X | (mod p).

Proof: We have to prove that |[X| — |X|| is a multiple of p. Observe that the
orbit of an element x € X is a singleton set if and only if x € X|. Therefore,
there are exactly |X | number of singleton orbits in X. Let O(x,), O(x,), ...,
O(x ) be all the distinct orbits each with more than one element. Then, by
Theorem 7.3.1, we have

| X =] X, |+ OX) | =] X, [+ i (St(x)).
i=1 i=1
Note that the stabilizer St(x,) is a subgroup of G and |G| = p". By the Lagrange’s

theorem, [St(x,)| is a divisor of p" and

G

St oSt =10Gx) -1

for each 1 = i = n. Therefore, foreach 1 =i = n,
i(St(x))) = p" for some n, > 0.

Therefore, | X =1, [+2 p" = X, [+ p(3 p" )
and thus |X| — |X|| is a multiple of p, so that

X = 1,/ (mod p). <

Theorem 7.3.5. Let G be a group of order p”, where p is a prime and n be a
positive integer. Then, the centre of G is nontrivial; that is, |Z(G)| > 1.

Proof: Consider the action of G on itself by conjugation. Then, by Theorem
7.3.4,

|G| = |G| (mod p),
where G, = {x € G:axa™' = x for all a € G} = Z(G). Therefore, p" = |G| =

|Z(G)|(mod p), which implies that |Z(G)| is a multiple of p. Since e € Z(G),
|Z(G)| > 0 and hence |Z(G)| > 1, so that Z(G) # {e}. <
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Theorem 7.3.6. Let p be a prime number. Then, any group of order p? is abelian.

Proof: Let G be a group of order p? and Z(G) its centre. By Theorem 7.3.5,
|Z(G)| > 1 and, by the Lagrange’s theorem |Z(G)| is a divisor of |G| = p%.
Therefore, |Z(G)| = p or p>. Suppose that |Z(G)| = p. Then, Z(G)| ; G and
hence we can choose ¢ € G such that a & Z(G). Then, there exists x € G such
that ax # xa. Consider the centralizer of x

Cent(x) = {y € G :xy = yx}.

Cent (x) is a subgroup of G containing Z(G) properly (since x € Cent(x)
and x & Z(G)). Then follows that |Cent (x)| is a divisor of p* and |Cent (x)| >
|Z(G)| = p. Therefore, |Cent (x)| = p* = |G| and hence Cent (x) = G which is
a contradiction, since a ¢ Cent (x). Therefore, being |Z(G)| = p is impossible
and hence |Z(G)| = p? so that Z(G) = G and hence G is abelian. <

In the following, we prove a theorem of Burnside which has applica-
tions in combinatories. When a group G act on a set X, then, for any a € G,
define

X ={xEX:ax = x}.

That is, X is the set of all elements of X which are fixed by the action of a.
Note that X, = X, where e is the identity in group G.

Theorem 7.3.7 (Burnside’s theorem). Let a finite group G act on a finite set
X and n be the number of orbits in X. Then,

1
=—S"1x,|
n |G|§ﬁ| A

acG

Proof: Consider the set
A={(a,x) € GXX:ax = x}.

Note that, for any fixed element x in X, the number of pairs (a, x) in 4 is pre-
cisely equal to the order of the stabilizer St(x). Also, for any fixed element a
in G, the number of pairs (a, x) in 4 is exactly equal to |X |, where X = {x €
X : ax = x}. Therefore, we have

SISty [=14[=) ] X, |-

xeX acG
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By Corollary 7.2.1,

Gl

S
|St(x) = o)’

where O(x) is the orbit of x. Note that O(x) = O(y) for all y € O(x). Since X
is finite, the number of orbits in X is finite. Let O(x)), O(x,), ..., O(x)) be all
the distinct orbits in X. Then,

SIS =Y L 1G]

{0
<1613 3 o
';@;uow
=161Y106)] i
L Glon
Thus, =% 3 [St0) 1= 3| X, | <

Worked Exercise 7.3.1. Let p be a prime number and # be a positive integer.
Find the number of different necklaces formed by p beads, where the beads
can have any of » different colours.

Answer: Let (Z,, +) be the additive group of integers modulo p and X be the
set of all possible necklaces. Since there are p beads in each of the necklaces
and each bead can have any of » different colours, |[X| = »”.
Xq Xis1

Xp

X2 Xiv2

Let Zp act on X'as shown in the figure, where the subscripts are modulo p. The
action of any i € Z on any given necklace yields the same necklace; only
the beads are permuted cyclically. Therefore, the number of orbits in X is
same as the number of different necklaces, which can be computed by using
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Theorem 7.3.7. First, let us compute X, = {x € X : ix = x}, forany i € Zp.
Clearly, X, = X and hence |X,| = n*. Forany 0 # i € ZP,

X ={x€EX: ix=x},
={xeX:(+, jx=xforall0=;<p}
={xeX:jx=xforalljE€Z},

since Zp is a cyclic group of prime order and hence any nonidentity element
generates Z . Therefore, forand 0 # i € ZP, X consists those necklaces which
are unchanged by permutation and hence X, consists of those necklaces in
which all the beads are of same colour. Since we are given with » different
colours, it follows that |X| = n for all 0 # i € Z . Thus, by the Burnside’s
theorem, the number of different necklaces (the number of orbits in X) is

p—1

1 1
WZIXJ:—ZIXJ
)2

i€z, i=0
1
=—m"+(n+---+tn))
p
1
=—n"+(p—Dn
p
=2 +p=1)
p

Worked Exercise 7.3.2. Let G be a group and a € G such that O(a) > 1. Sup-
pose that G has exactly two conjugacy classes. Then prove that |G| = 2.

Answer: Let O(a) = n > 1. Then, a # e. Since G has exactly two conjugacy
classes and {e} is a singleton conjugacy class, it follows that {e} and C(a) are
the only conjugacy classes. Therefore,

G — {e} = Cla) = {xax':x € G}.

Since O(a) = O(xax™"), it follows that O(b) = n for all b # e and, in particular
b" = e for all b # e. Now, we prove that n is a prime. Since n > 1, we can

choose a prime p dividing n. Then, O(a”)= % = % # n and hence & = e,

so that p = O(a) = n. Thus, n is a prime. Next, consider a?. If a*> # e, then a?

€ (C(a) and hence a®> = xax™! for some x € G, so that (a®>)" = x"ax™" for all
m > (0 and

1

e=a* = (xax” 'y = x"ax™" = eae”' = a,
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which is a contradiction. Therefore, > = e and O(a) = 2. Thus, b* = e for all
b € G (since O(b) = O(a) for all b # e). Therefore, G is abelian and hence
C(a) = {a}. Thus, G = {e, a} and |G| = 2.

Worked Exercise 7.3.3. Let p be a prime number and # be a positive integer.
Let G be a group of order p” and N be a nontrivial normal subgroup of G.
Prove that Z(G) N N is nontrivial, whole Z(G) is the centre of G.

Answer: Since N is a nontrivial subgroup of G, [N] > 1 and |V is a divisor of
|G| = p". Therefore, |N] = p™ for some m > 0. Also, since N is normal in G,
axa™' € N for all x € N and a € G. Therefore, G acts on N by conjugation
(the action is (a, x) — axa™'). By Theorem 7.3.4,

[N = |N,| (mod p)

where N,={xEN:axa' = xforalla € G}
={xE N:ax =xaforalla € G}
= NN ZG)

Since p divides both |V and [N] — |N,|, it follows that |N,| is a multiple of p.
Also, since e € Z(G) N N = N, [N,| > 0 and hence |N,| = p > 1. Thus, Z(G)
N N is nontrivial.

EXERCISE 7(C)

1. Determine all the distinct conjugacy classes in each of the following and verify
that the number of elements in each conjugacy class is a divisor of the order of
the group

(i) The symmetric group S, of degree three.
(ii) The alternating group 4, of degree four.
(iii)  The symmetric group S, of degree four.
(iv) The dihedral group D, of degree four.

2. Find the number of different (distinguishable) dice that can be made by marking
the faces of a cube using one to six dots.

3. How many different tetrahedral dice can be made by marking the faces of a
regular tetrahedron using one to four dots?

4. How many different ways can seven people be seated at a round table, where
there is no distinguishable leader to the table?

5. Find the number of different ways the edges of an equilateral triangle can be
painted if four different colours of paint are available, assuming only one colour
is used on each edge, and the same colour may be used on different edges.



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
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Repeat Exercise 5 above with the assumption that a different colour is used on
each edge.

. For any proper subgroup H of a finite group G, prove that G# U aHa .

aeG

. Let H be a proper subgroup of finite index in a group G. Prove that H contains a

normal subgroup N that is of finite index.

Let G be a group such that any proper subgroup is contained in a maximal
subgroup of finite index in G and that any two maximal subgroups of G are
conjugate to each other in G. Then prove that G is cyclic.

Let N be a normal subgroup of a finite group G such that the order and the index
of N are relatively prime. If a is an element of G, such that O(a) divides |N|, then
prove thata € N.

Let Gbe agroup and H = {a € G : C(a) is finite}, where C(a) is the conjugacy
class of a. Then prove that H is a subgroup of G.

Let N be a normal subgroup of order 3 in a group G such that N ¢ Z(G). Then
prove that G has a subgroup of index 2.

Find the number of different necklaces that can be formed with five beads and
two colours.

Determine the number of different necklaces that can be formed with six beads
and two colours.

Find the number of neckties having »n strips (of equal width) of K distinct
colours.

Let S be a subset of a group G and

C(S)={aSa':a € G}
and N©S)={a€ G:aSa'=S}.

Prove that N(S) is a subgroup of G and that C(S) is bijective with the set of left
cosets of N(S) in G. N(S) is called the normalizer of S in G.

Let G be a group of order p”, where p is a prime and n € Z*. If 4 is a proper
subgroup of G, then prove that 4 is properly contained in the normalizer of
Ain G.

If G is a group of order p" (p is a prime and n € Z") and 4 is a subgroup of order
p""'in G, then prove that 4 is normal in G.

Prove that any subgroup of order 343 in a group of order 2401 is normal.

Find the number of different necklaces formed by 11 beads, where each bead can
have any of the five given different colours.
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7.4 CAUCHY AND SYLOW THEOREMS

The Lagrange’s theorem states that, for any finite group G, if d is the order
of a subgroup of G, then d is a divisor of the order of G. The converse
of this is not true. That is, if d is a divisor of the order of G, we may not
find a subgroup of order d in G. For, consider the alternating group 4, of
degree 4 whose order is 12. Even though 6 is a divisor of the order of 4,
there is no subgroup of order 6 in 4,. However, in certain special cases, the
converse of the Lagrange’s theorem is true. In particular, when the divisor
d is a prime or a power of a prime, then there always exists a subgroup of
order d. We prove these and certain important consequences of these in
this section.

Recall that any group of prime order is cyclic and hence, for any group G
and for any prime number p, the existence of a subgroup of order p in G is
equivalent to the existence of an element of order p in G.

Theorem 7.4.1 (Cauchy’s Theorem). Let G be a finite group and p be a
prime number such that p divides the order of G. Then, G has an element of
order p.

Proof: Consider the set
X={(x,x, ...,xp) x, €G and x,x, X, = e}

Then, |X| = |GP~, since, for any (x,, x,, ...,x ) € G, (x,,x,, ... X, X))
€ X, where x, = (x, X, .. X, )"and vice versa. Since p d1V1des |G| and
-1>0,it follows thatp d1v1des |X].
Consider the group Z, of integers modulo p. We shall define an action of
Zp on X as follows: for any x = (x, x,, ...,xp) EXandi € ZP ={0,1,2, ...,
p—1}, define

i (x),xy, ...,xp) = (X, X, vy Xy Xy X, s X))

Since (x, x, ... x) (x,, X, - xp) = e, it follows that
(x,, - x) (x, . ) e

and hence the above defines a mapping of ZP X Xinto X. It can be easily veri-
fied that this is an action of Zp on X. Therefore, by Theorem 7.3.4,

X = [X,|(mod p),
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where X = {xEX:ixzxforalliEZp}
={(x,x,, ...,xp) eEX:1-(x,x, ...,xp) = (x,, x,, ...,xp)}
= {(x, x,, ...,xp) EX:(x,x, X, x) = (x,x, ...,xp)}
= {(x,x,, oX)EXix =x) = =x}

2
={(,x ..,x):x E Gandxp =e}.

Since p divides |X] and |X] — |X|, it follows that p divides |X |. Also, since (e,
e, ...,e) € X, we get that |X| > 0. Therefore, |X| = p" for some n € Z* and,
in particular,

|_X'0|2p>l.

Thus, there exists (x, x, ..., x) € X, other then (e, e, ..., e) and hence there
exists x # e in G such that x» = e. Then, O(x) > 1 and O(x) is a divisor of p.
Since p is prime, it follows that O(x) = p. Thus, x is an element of order
pinG. <

Corollary 7.4.1. Let G be a finite group and p be a prime divisor of the order
of G. Then, G has a subgroup of order p.

Proof: Ifx € G such that O(x) = p, then
<x>={e,x,x% ..., X"}
is a subgroup of order p in G.

Definition 7.4.1. Let p be any prime number. A group G is called a p-group
if the order of every element of G is a power of p; that is, for any a € G,
O(a) = p" for some integer n = 0.

Theorem 7.4.2. A finite group G is a p-group (where p is a prime) if and only
if |G| = p™ for some nonnegative integer .

Proof: Let G be a finite group and p be a prime number. Suppose that |G| = p",
0 =m € Z. For any a € G, O(a) divides |G| = p™ and hence O(a) = p™ for
some 0 = n =< m. Therefore, G is a p-group. Conversely suppose that |G| # p™
for any m = 0. Then, there exists a prime ¢ # p such that g divides |G|. By
the Cauchy’s theorem, there exists an element a of order ¢ in G and therefore
G is not a p-group. <

In the proof of the above theorem, the finiteness of G is necessary. For any
prime p, there are infinite p-groups. Consider the following example.
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Example 7.4.1. Let p be any prime number and

H={in:aandn€Zandn20}.
p

Then, (H, +) is a group, where + is the usual addition of rational numbers.
Any integer a can be expressed as a/p® € H. Therefore, Z is a subgroup of
H. Now, let

G = the quotient group H/Z.

Then, for any positive integers » and m,

ln —ngz and hence in—kZiLm%—Z.

p p p p

Therefore, G is an infinite group. Let x be any element of G. Then,

x=in+Z for someaandn € Z,n = 0.
p

Since p'x = p"((a/ p")+7Z)=a+Z =17, it follows that O(x) is a divisor of
p"and hence O(x) = p™ for some 0 = m = n. Thus, G is a p-group.

Definition 7.4.2. A subgroup H of a group G is called a p-subgroup of G if it
is a p-group; that is, every element of H is of order p” for some n = 0.

Clearly the trivial subgroup {e} is a p-subgroup of any group G, for any
prime p. Also, every subgroup of a p-group is a p-subgroup. In the follow-
ing, we prove an important result on p-subgroups which plays a crucial
role in the proofs of Sylow theorems. For any subgroup H of a group G,
the set

N(H)={a € G:aHa' = H}

is called the normalizer of H in G. Recall that N (H) is precisely the stabilizer
of H when G acts on the power set P(G) by conjugation. Also, clearly N_(H)
is the largest subgroup of G containing H as normal subgroup; that is, for any
subgroup 4 of G containing H,

Hisnormal in4 < 4 C N (H).
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Theorem 7.4.3. Let G be a finite group and p be a prime number. Let H be a
p-subgroup of G. Then,

iy (H) =iy, (H)(mod p),
where i (H) is the index of H in G.

Proof: Let X be the set of all left cosets of H in G. Then, H acts on X by
left translation; that is, (4, xH) — hxH is an action of H on X. Then, by
Theorem 7.3.4,

i,(H) = X] = X,[(mod p)

where X, = {xH € X: hxH = xH forall h € H}
={xHEX: x'hx € Hforall h € H}
= {xH:x € Gandx 'Hx C H}
= {xH:x € Gand xHx™' = H}
= {xH:x € N(H)}

Therefore, |X| = iy, (H), the index of H in N(H). Thus, i (H) = iy_,;,(H)
(mod p). <

Corollary 7.4.2. Let H be a p-subgroup of a finite group G such that p divides
i(H). Then, N (H) # H.

Proof: By the above theorem,
i(H) = iy ) (H)(mod p).

Therefore, p divides i (H) — Iy ) (H). By the hypothesis, p divides i (H)
also. Therefore, p divides iy ,,(H) also, and hence,

Nq(H)
| H |

=iy un(H)= ps forsomese AR

which implies that |H] < |N_(H)| so that H is a proper subgroup of N ().
When p" divides the order of a finite group G, the following theorem guaran-
tees the existence of a subgroup of order p” in G.
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Theorem 7.4.4 (Sylow Theorem — I). Let G be a finite group, p be a prime
number and » be a nonnegative integer such that p” divides the order of the
group G. Then, G has a subgroup of order p”.

Proof: We shall prove the theorem by induction on n. The theorem is trivial
for n = 0 and, for n = 1, the theorem is a consequence of Corollary 7.4.1.
Now, let » > 1 and p" divides |G|. Then, p"~! divides |G| and hence, by induc-
tion; there exists a subgroup H of order p"~! in G. By Theorem 7.4.3,

io(H) = iy, 1y (H) (mod p).

Since p" divides |G| = |H| - i (H) = p"~' - i (H), it follows that p divides i _(H)
and therefore p divides i, ., (H). Recall that N(H) = {a € G :aHa ' =
H} and hence H is a normal subgroup of N (/) and therefore we have the
quotient group N (H)/H whose order is i, ., (H). Now, N (H)/H is a group
whose order is divisible by p. Therefore, by Corollary 7.4.1, N (H)/H has a
subgroup K of order p. Then, K= A/H where A is a subgroup of N () con-
taining H. Now,

| = |4/H] - |H| = |K] |[H| = p - p"" = p"

and, since 4 is a subgroup of N (/) which is a subgroup of G, it follows that
A is a subgroup of order p" in G. <

Corollary 7.4.3. Let H be a subgroup of order p"~! in a finite group G, where
p is a prime number and # is a positive integer. If p” divides |G], then there
exists a subgroup 4 of order p” such that H is a normal subgroup of 4.

Proof: In the proof of the above theorem, we have HC A C N (H) and hence
H is a normal subgroup of 4 (since a € A = a € N (H) = aHa™' = H).

Corollary 7.4.4. Let G be a finite group and p be a prime number. Then, every
p-subgroup of G is contained in a maximal p-subgroup.

Proof: Follows from the fact that a subgroup H of G is a p-subgroup if and
only if the order of H is a power of p and from the above corollary.

Definition 7.4.3. For any prime number p, a maximal p-subgroup of a finite
group G is called a Sylow p-subgroup of G.

Note that the order of a Sylow p-subgroup of G must be the largest power
of p dividing the order of G. In fact, a subgroup H of G is a Sylow p-subgroup
of G if and only if |H| = p", where p" divides |G| and p"*! does not divide |G].
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By the Sylow Theorem — I (7.4.4), for any prime p and a finite group
G, maximal p-subgroups exist in G. If p does not divide |G|, then p°(=1)
is the largest power of p dividing |G| and hence {e} is the only Sylow p-sub-
group of G.

Example7.4.2. Consider the alternating group 4, of degree 4. The order of 4,
is 12 = 2%+ 3!, For any prime p other than 2 and 3, {e} is the Sylow p-subgroup
of 4,. Also, any subgroup of order 4 is a Sylow 2-subgroup and any subgroup
of order 3 is a Sylow 3-subgroup. Clearly any Sylow 3-subgroup is a cyclic
subgroup generated by a 3-cycle in S,. Further, any subgroup of order 4 in
A, is not cyclic, since a 4-cycle is not an even permutation. It can be easily
checked that any Sylow 2-subgroup of 4, must be necessarily of the form
{e, a, B, a3} where each of & and 3 is a product of two disjoint transpositions,
and that there are three Sylow 2-subgroups of 4,.

Note that, for any prime p and for any finite group G, a subgroup H of G
is a Sylow p-subgroup if and only if aHa™! is also a Sylow p-subgroup for
every a € G, since H and aHa ™! are of same order. Therefore, if H is a Sylow
p-subgroup of G, then any conjugate of H in G is also a Sylow p-subgroup
and, in the following, we prove that {aHa ' : a € G} is the complete list of
Sylow p-subgroups of G.

Theorem 7.4.5 (Sylow Theorem — Il). Let p be a prime number and G be a
finite group. If S'is a Sylow p-subgroup of G and H is a p-subgroup of G, then
H C aSa™! for some a € G. In particular, any two Sylow p-subgroups of G
are conjugate to each other.

Proof: Let Sbe a Sylow p-subgroup and H be any p-subgroup of G and let X
be the set of all left cosets of S'in G. Since |S] is the largest power of p divid-
ing |G| and |X] = i (S) = |G]/S], it follows that p does not divide |X]. Now,
H acts on X by left translation; that is, (4, xS) — /xS is an action of H on X.
Then, by Theorem 7.3.4,

i(S) = X = [X,/(mod p),
where X, = {xS€ Xand hxS = xS forall h € H}
={xS:x€ Gandx 'hx € Sforall h € H}
= {xS:x € Gand H C xSx"'}.

Since p divides |X] — |X | and p does not divide |X], it follows that p does not
divide |X | and hence |X| # 0; that is, X is a nonempty set. Thus, there exists x
€ G such that H C xSx'. In particular, if H is also a Sylow p-subgroup of G,
then |H| = |S] and H C xSx~! and hence H = xSx™! for some x € G. <
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Corollary 7.4.5. Let S be a Sylow p-subgroup of a finite group G. Then, S is
normal in G if and only if S is the only Sylow p-subgroup of G.

Corollary 7.4.6. Let G be a finite abelian group. Then, for each prime num-
ber p, G has a unique Sylow p-subgroup.

Sylow Theorem — II describes all Sylow p-subgroups in terms of a given
Sylow p-subgroup. However, it does not give the exact number of Sylow
p-subgroups. In the following, we derive certain formulae to find the exact
number of Sylow p-subgroups.

Theorem 7.4.6 (Sylow Theorem — lll). Let G be a finite group. For any prime
p, let n, be the number of Sylow p-subgroups of G. Then,

1. n, divides |G|/ p", where p" is the largest power of p dividing |G|,

2.n, divides |G| and

3. n,= mp + 1 for some nonnegative integer 1.

Proof:

1. Let X be the set of all subgroups of G. Then, G acts on X by conjugation.
Let P be a Sylow p-subgroup of G. By the Sylow Theorem — II (7.4.5),
the orbit of P in X is precisely the set of all Sylow p-subgroups of G. We
know that

n, = |O(P)| = i(N(P)),

where N (P) = {a € G : aPa' = P}. Let p" be the largest power of p
dividing |G|. Then, |P| = p" and, by Worked Exercise 4.4.1 (1),

iy, (P):n, =iy (P)-ig(Ns(P) = ig(P) = f”l

and hence n, is a divisor of |G|/ p".
2. This a single consequence of (1).

3. Let Y be the set of all Sylow p-subgroups of Gand S € Y. Let Sacton Y
by conjugation. Then, by Theorem 7.3.4,

Y] = [Y|(mod p),
where Y = {P € Y:aPa™' = Pforalla € S}
={PEY:SCN(P)},

where N (P) = {a € G : aPa™' = P}. We shall prove that Y, is a single-
ton set. Consider P € Y. Then,

aPa ' = Pand hence aP = Paforalla € S
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so that SP = PS which implies that SP is a subgroup of G. Also, since S and
P C N(P), it follows that § € SP C N_(P). Since § and P are p-subgroups
of G. SP is also a p-subgroup of G. By the maximality of S, it follows that
S = SP and hence P C S. Since P and S are subgroups of the same order
(because both of these are Sylow p-subgroups), we get that P = S. Thus,
Y, = {S} and |Y| = 1 and therefore

= Y] = 1(mod p).

That is, n, — 1 is divisible by p or n, = mp + 1 for some nonnegative
integer m. <

In the following theorem, we prove that the converse of the Lagrange’s
theorem holds good for finite abelian groups.

Theorem 7.4.7. Let G be a finite abelian group and d be a positive divisor of
|G|. Then, G has a subgroup of order d.

Proof: The theorem is trivial if |G| = 1. Therefore, we can assume that |G| > 1.
Let us suppose that

|G| = p{ py s

where p,, p,, ..., p, are distinct primes and r
Then, since d is a divisor of |G,

\» ¥ --.» I}, AT€ pOSitive integers.

d=p'py-p,

where s, s, ..., s, are integers such that 0 = s, < r forall 1 =i = k. Now, for
each i, p;' is a divisor of d and d is a divisor of |G| and hence p;' is a divisor
of |G|. Therefore, by Sylow Theorem — 1(7.4.4) there exists a subgroup A4, of
G suchthat|4| = p.Forany i # j, A N 4, is a subgroup of 4, as well as of 4,
and hence, by Lagrange’s theorem |4, n4 | is a common d1v1sor of |[4] (= p;' )
and |A| (= p /). Since p, and p; are distinct primes, p; and p are relatively
prime ‘and hence ,NAl=1 forall i # J. Also, since G is an abelian group,
AA, is a subgroup of G and

A4

J

|ij| ‘AlﬂAj| i D -
This argument can be extended inductively to prove that

| Ay A A A | A=y pr
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forany 1 =i =< k. Now, put 4 = 4A,...4,. Then, 4 is a subgroup of order
pipr--pr=dinG. <

Worked Exercise 7.4.1. Prove that any group of order 15 is cyclic.

Answer: Let G be a group of order 15. Let n, and n, be the number of
Sylow 3-subgroups and Sylow 5-subgroups, respectively. Then, by Sylow
Theorem — III (7.4.6),

G| _

n3dividesT—5 and n,=3m+1,m=0

G _

n, diVides? =3 and n =55+ 1,s=0.

These imply that n, = 1 = n_. Therefore, there is a unique subgroup 4 of
order 3 in G (note that 3! is the largest power of 3 dividing |G| and 5' is the
largest power of 5 dividing |G|) and hence 4 is normal. Similarly, there is a
normal subgroup B of order 5 in G. Since |4| and |B]| are relatively prime, we
get that 4 N B = {e}. From this, we have

|AB\=M=|A||B|=3~5=15=|G|
|ANB]|

and hence 4B = G. Any element of G can be uniquely expressed as ab with a
EAdandbEB(ab, =ab,= a,'a, = bb,' EANB=1{e}=a,'a, =e=
bb ' = a, = a,and b, = b,). Also, forany a € A and b € B, a(ba™'b"") =
(aba ")b™' € AN B = {e} and hence aba™'b~' = e or ab = ba. From these, it
can be verified that (a, b) — ab is an isomorphism of 4 X B onto G. Further,
A=7 . and B =17,

.'.GEAXBEZ3><ZSEZIS.

Thus, G is cyclic.

The above result is extended to any groups of order pg, where p and ¢
are primes, p > ¢ and ¢ does not divide p — 1. In the above result, we have
15 =5 -3 and 3 does not divide 5 — 1.

Worked Exercise 7.4.2. Let G be a group of order pg, where p and ¢ are dis-
tinct primes, p > ¢ and g does not divide p — 1. Then prove that G is cyclic.
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Answer: Letn, and n_be the number of Sylow p-subgroups and the number
of Sylow g-subgroups, respectively. Then, we have

np=mp+1,m20,nq=sq+l,s20,

n, divides g and n, divides p. Since p > ¢ and n,=mp+1,m=0, it follows
that n,=1 and hence there exists unique Sylow p-subgroup 4 in G and this
A must be normal subgroup of order p. Also, since n, divides p and p is a
prime, n,=1orp; butsg + 1= n,#p (otherwise sg+1 = p and ¢ divides
p — 1, which is a contradiction to the hypothesis). Therefore, n, =1 and
hence G has a unique Sylow g-subgroup B, which becomes a normal sub-
group of order ¢ in G. As in 3.4.19, we get that A N B = {e} and 4B = G.
Therefore, as in the above exercise,

G=AXB=7Z X7 =7 .
P q rq
Thus, G is cyclic.
Worked Exercise 7.4.3. Prove that there are no simple groups of order 63.

Answer: Let G be a group of order 63 = 32 - 7. Let n, be the number of Sylow
7-subgroups in G. Then, n, = 7m + 1, m = 0 and n, divides 63. From these
two, we can infer that m = 0 and n, = 1. Therefore, there is a unique Sylow
7-subgroup H of G. Then, H is a normal subgroup of order 7 in G and hence
H # {e} and H # G. Thus, G is not simple.

Worked Exercise 7.4.4. Let S be a Sylow p-subgroup of a finite group G. Then
prove that N (N(S)) = N(S), where N (S) is the normalizer of S'in G.

Answer: We have N (S) = {a € G:aSa™' = S} and

N,N(S)) = {a € G:aN(S)a"' = NS)}.

For simplicity, let N = N(S).

First note that every conjugate of S is a Sylow p-subgroup of G. Also, if H is
a subgroup of G such that aSa™! C H, then aSa~! is a Sylow p-subgroup of
H. Clearly S is a Sylow p-subgroup of N (S) = N. Further, if T is any Sylow
p-subgroup of N, then T = aSa~! for some a € N and hence T = S. Therefore,
S is the only Sylow p-subgroup of N. Now, consider
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a€N(N)=aNa™' =N
=aSa ' CaNa'=N
=aSa'=S
= a € N,S)=N.

Therefore, N (N) C N. Since N is always contained in N (N), it follows that
N, (N) = N.

EXERCISE 7(D)

1. State whether each of the following is true or false and substantiate your
answer.

(i) For any prime p and for any finite group G, there is a Sylow p-subgroup
of G.

(ii)) The order of a Sylow 3-subgroup of a group of order 108 is 27.
(iii))  Any Sylow 3-subgroup of a group of order 54 is normal.
(iv) There exists a subgroup of order 16 in a group of order 216.
(v) Any group of order 159 is simple.
(vi) Any group of order 159 is cyclic.
(vii) A group of prime power order has no Sylow p-subgroups.
(viii)  Every p-subgroup of a finite group is a Sylow p-subgroup.
(ix) Any group of order 121 is abelian.
(x) Any group of order 8§ is abelian.

2. Determine all the Sylow p-subgroups of the following groups for all the primes p.
@O Z
(i) S, the symmetric group of degree 3.

,,» the group of integers modulo 24.

(i)  S,, the symmetric group of degree 4.
(iv) A, the alternating group of degree 4.
V) Z,XZ,

3. Prove that any group of order 45 has a normal subgroup of order 9.
4. Prove that there is no simple group of order 56.

5. Show that a normal p-subgroup of a finite group is contained in every Sylow
p-subgroup.

6. For any fixed prime p, prove that the intersection of all Sylow p-subgroups of a
group G is a normal subgroup of G.

7. Prove that there are no simple groups of order 255.



10.

11.
12.
13.
14.
15.
16.

17.
18.
19.
20.

21.

22.

23.

24.
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If p is a prime and r and » are positive integers such that n < p, then prove that
there are no simple groups of order p"- n.

Let G be a group of order p”, where p is a prime and n € Z". Prove that there
are normal subgroups 4, for 0 =i < n such that |4 | = p'and 4, C 4, for all 0
=i<n.

Deduce from above that there are no simple groups of order p”, for any prime p
andn = 2.

Prove that no group of order 30 or 36 or 48 is simple.

Show that any group of order 225 is cyclic.

Prove that there is exactly one, up to isomorphism, group of order 323.
Prove that any group of order 899 or 961 is cyclic.

Prove that no group of order 160 is simple.

Prove the following in the symmetric group S, of degree n.

(i) Ifa=( i,...i)isanr-cycle, thenf-a- ' = (fi) fii) ... i), which
is again an r-cycle.

(i) Any two cycles of same length are conjugate to each other.

(iii)  Two permutations fand g in S, are conjugates to each other if and only if
f=a a, - -aandg=0>b b, - b, wherea’s are disjoint cycles
and b’s are disjoint cycles such that O(a) = O(b) forall 1 =i=*k

(iv) A finite sequence 0 <r =r, = --- =7, of positive integers is said to be
a partition of nif r, + r, + --- + r, = n. Then, the number of conjugate
classes in S, is equal to the number of partitions of n.

Determine all the conjugacy classes in S, and write down the class equation of S,.
Prove that the centre of S is trivial for any n > 2.
Let G be a group of order 341. Prove that any subgroup of order 31 is normal in G.

Let p be a prime and N be a normal subgroup of a group G. Prove that G is a
p-group if and only if both N and G/N are p-groups.

Let N be a normal subgroup of order p in a p-group G, where p is prime. Then
prove that N is contained in the centre of G.

Let p be a prime and n € Z* such that p > n. Prove that any subgroup of order
p ina group G of order p” is normal in G.

If a group G contains a proper subgroup of finite index, then prove that G con-
tains a proper normal subgroup of finite index.

Give an example of an infinite 7-group.
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25. Let G be an infinite p-group. Then prove that either G has a subgroup of order
p" for each positive integer n or there exists a positive integer m such that every
finite subgroup of G is of order = p™.

26. Letf be an endomorphism of a finite group G. If S'is a normal Sylow p-subgroup
of G, then prove that fla) € S forall a € S.

27. Letp and g be distinct primes and p > ¢. Prove that any group of order p"g con-
tains a unique normal subgroup of index g.

28. Prove that any finite abelian group of square-free order is cyclic (an integer is
said to be square-free if it is not divisible by m? for any integer m > 1).

29. Let G be a finite abelian group and p be a prime number. Let
Sp = {a € G:0(a) = p" for some r = 0}.
Then prove that S, is the unique Sylow p subgroup of G.

30. Use the above to find all Sylow p-subgroups of Z. , for each prime p.

307



Structure Theory

of Groups

8.1 Direct Products

8.2 Finitely Generated Abelian Groups
8.3 Invariants of Finite Abelian Groups
8.4 Groups of Small Order

It is well known that any cyclic group is abelian and the product of any class
of abelian groups is abelian. In this chapter, we prove the celebrated theo-
rem known as the Fundamental Theorem of finitely generated abelian groups
which states that any finitely generated abelian group is a product of finite
number of cyclic groups. This amounts to saying that the cyclic groups are
like ‘building blocks’ for the finite or finitely generated abelian groups. Since
any cyclic group is isomorphic to the group Z of integers or the group 7
of integers modulo n for some positive integers, the Fundamental Theorem
implies that any finitely generated abelian group is isomorphic to the product
of a finite number of copies of Z and Z ’s. This facilitates to a great extent
the study of finitely generated abelian groups and, in particular, finite abelian
groups. In fact, we derive a precise formula for the number of abelian groups
of a given order # in terms of the partitions of 7.

8.1 DIRECT PRODUCTS

It is well known that, for any groups G,, G,, ..., G, the Cartesian product
G =G, X G, X -+ X G, can be made into a group by defining

(a,ay,...,a) (b,b, ....b)=(ab,ab,..,ab)
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for any (a, a,, ...,a)and (b, b,, ..., b ) € G. In this group, (e, e,, ..., € )
is the identity, where e, is the identity in G, and, for any (a,, a,, ..., a) € G,
(al , a2 s ey an’l) is the inverse of (a,, a,, ..., a ), where a' is the inverse
of . in G, This group G is called thg direct product, or simply, the product
of G, G, ..., G, and is denoted by l_l:IIG,. or G, XG, X---XG,. If a group H

is isomorphic to G, X G, X --- X G , then H is said to be decomposed into
product of groups G, X G, X --+ X G . In this section, we obtain equivalent
conditions for the decompositions of a group G into products of groups in
terms of normal subgroups of G and the corresponding quotient groups.

If 4 and B are normal subgroups of a group G such that 4B = G and
A N B = {e}, then we have proved (see 7. ...) that the map (a, b) — ab is
an isomorphism of 4 X B onto G. This is extended further in the following
theorem.

Theorem8.1.1. LetG,G,G,, ..., G begroups. Then, G =G, X G, X---XG,
if and only if there exist normal subgroups N, N,, ..., N of G satisfying the
following:

I. NN,..N =G

2. Foreachl =i=n, NNV, ..
3. N,=¢G, foreachl=i=n.

11 z+1' N)_{e}

Proof: Let H= G X G, X -+ X G .Foreach 1 =i =n,let
= {(a,, 2,...,an)EH:aj=ejforallj¢i}.

Then, it can be easily verified that each M, is a subgroup of H. For any
a=(a,..,a)EMandx = (x,...,x) € H, we have,

(xax~ ) =x,a,x; —)cjejx;1 =e, forallj#i
and hence xax™' € M.. Therefore, M, is a normal subgroup of H. Further, any
x = (x,, X, ..., Xx ) € H can be expressed as
X =(x,e, ..., en)~(el,xzy e,...,e)...(e,e,....e ,Xx)
and therefore M M,---M = H. Also, forany 1 =i =n,if xe M,N(M,---
M_ M., M), thenx = e forallj #i,and x=x,-- x, xl+1 -x, for some
X, EM,] * i, so that x —(xl) (), () (x, ) =e --ee e =e¢ and
therefore x = (e, e, ...,e) = e, the identity in /. Thus,
HN@HH H,--H)={e} foreachl =i=n.

l+l
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Also, x — x, is an isomorphism of M, onto G, and hence M, =G.,.

i

Now suppose that G= G, X G, X---X G, and fis an isomorphism of G onto
G, X G, X -+ X G . By taking N, = f!(M)) for each 1 =i = n, it follows that
N, N,, ..., N satisfy all the three required conditions.

Conversely, suppose that N, N, ..., N, be normal subgroups of G such that

1. NN,~N = G.
2. N,A(N,---N_,N,,---N,)={e} foreach1=i=n.

i

3. N,=G, foreachl=i=n.

Define g : N, X N, X -« X N — G by
gla,a,...,a)=aa,a,.

We shall prove that g is an isomorphism so that
G=N XN, X---XN =G XG,X---XG,.

First observe that, forany i # janda € N, and b € N/., we have

(ab)(a'b™")y=(aba™")b~' = a(ba 'b"") € N, AN, ={e},

since NV, and N, are normal subgroups of G and

N,NAN,CN,NO(N,--N_N,--N,)={e}.

Therefore, ab(ba)' = ab(a'b™") = e so that ab = ba. Now, for any (a,, ..., a,)
and (b, ...,b) EN, X - X N,

gla, ....,a)b, ... b))=glab, ..., ab)
= (a,b)(a,b,) - (a,b,)
= al(blaZ )(b2a3) o (bn—lan )bn
=aa,---abb, b,

=g(a, ..., a)gb, ..., b).

Thus, g is a homomorphism of G into N, X --- X N . For any (a,, a,, ..., a,)
E N, X - X N , we have

ga,..,a)=e=aa,..a =e

n
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=a,a, = afl ENlﬂ(szNn) ={e}
:al :e:az...an
=a =e and a;l =a,a, Esz(Ns"'Nn) = {e}
:>a1:e:a2:...:an

=(a,...,a)=(e,...,e)

and hence ker g = {e} so that g is an injection. Since G = N\N,--N , it follows
that g is a surjection also. Thus, g is an isomorphism of N, X --- X N onto G.
Therefore,

G1><G2><...XanNIXNZX...XNn;G_ <

Corollary 8.1.1. Let G, G, and G, be groups. Then, G = G, X G, if and only
if there exist normal subgroups N, and N, of G such that G = NN, N NN,
={e},G =N and G,=N,.

Corollary8.1.2. LetN,N,, ..., N, be subgroups of a group G. Then, the map-
ping(a,a,, ...,a ) aa,a isanisomorphismof N, X N, X --- X N onto
G if and only if the following are satisfied.

1. Each M, is a normal subgroup of G.
2. NN, N =G.
3. NO(N,*N_ N,

N ) = {ejforeachl =i=n.

We obtain another characterization of a decomposition of a group G in terms
of its quotient groups. First recall that quotient groups of G are precisely (up to
isomorphism) the homomorphic images of G. If N is a normal subgroup of a
group G, then the natural map x — xN is an epimorphism of G onto the quotient
group G/N. If N, and N, are two normal subgroups, then clearly the map x —
(xN,, xN,) is ahomomorphism of G into G/N, X G/N,. We obtain a necessary and

sufficient condition for this map to be a surjection in the following theorem.

Theorem 8.1.2. Let N, and N, be normal subgroups of a group G. Define
f:G— G/IN, X G/N, by f(x)=(xN,xN)

for any x € G. Then, fis an epimorphism if and only if N N, = G.

Proof: Clearly f'is always a homomorphism. Suppose that NN, = G. Let

(x,N,, x,N,) € G/N, X G/N,, where x, and x, € G = N,N,. Then, we can

write

x =aa, and x,=bb,
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where a and b, € N, and a, and b, € N,. Now, put x = b a,. Then, we have
x'x, = (ba)'aa, = a,'(b 'a)a, EN,,

since b, 'a, € N, and N, is normal in G. Therefore, xN, = x N,. Also,
x'x, = (ba)'x,=a,'b (b b,)=a,'b, €N,
and hence xN, = x,N,. Therefore,
Jx) = (xN, xN,) = (x N, x,N,).
Thus, f'is a surjection and hence an epimorphism. Conversely suppose f'is
an epimorphism. Let x € G. Consider the element (N,, xN,) € G/N, X G/N,.
Since f'is a surjection, there exists a € G such that
(aN,, aN,) = f(a) = (N,, xN,).

Then, aN, = N, and aN, = xN, and hence a € N, and alx € N, so that

1 1

x = a(a'x) € N\N,. Thus, NN, = G. <

Corollary 8.1.3. Let N, and N, be normal subgroups of a group G such that
NN, = G. Then,

G/N, NN, =G/N,XG/N,
and in particular, when N N N, = {e}, G = G/N, X G/N,.

Proof: In the above theorem, we have an epimorphism f: G — G/N, X G/N,
whose Kernel is given by

ker f= {x € G: f(x) = (eN,, eN))
={x&€G:xN, =N andxN, = N,}
=N, NN,

and therefore, by the fundamental theorem of homomorphisms
G/N,N N, = G/N, X G/N,.

These are generalised in the following theorem. <
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Theorem 8.1.3. Let N, N, ..., N, be normal subgroups of a group G and
f:G— GIN, X G/N, X --- X G/N, be defined by

f(x) = (N, xN,, ..., xN)).
Then, fis an epimorphism if and only if, for each 1 =i < n,

N, -[ﬂNj]=G

J=i

Proof: Clearly fis a homomorphism. Suppose that fis epimorphism. Fix 1 <
i = n. For any x € G, consider the element

(xN,, ..., xN_, N, xN,

i-1° i+1°

xN) € G/IN, X --- X GIN,.
Since f'is a surjection, there exists « € G such that

(xN,, ..., xN_,N,xN,_, ...,N) = f(a)
= (aN,aN,, ...,aN ).

Therefore, xN, = aN, forall j # i and N, = aN, and hence ¢ € N, and a'x
EN, for all j # i, so that

__ -1
x=a(a x) GN{..(}QN/.).

Thus, G=N, - (ﬁN)

Conversely suppose that N, (ﬁ N,)=G foreach | =i = n.Then, NN G
for all i # j and

m—1
[_ﬂlNi]-NmZG forall lI<m=n

(note that, for any subgroups 4 and B of a group G, AB = G if and only if
BA = G). We shall use induction on 7 to prove that f'is a surjection. If n = 1,
it is trivial. If n = 2, Theorem 8.1.2 gives the result. Let » > 2 and assume
the result forn — 1. Let

®N,x,N, ..., x N) € G/N, X GIN, X - X GIN,

127202
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where x, x,, ..., x € G. Then, there exists y € G such that
YN, =xN, foralll=i=n—1
and hence y''x, € N forall 1 =i=n— 1.
Now,put M = N N N,N--- NN _.Then, MN = G and hence, by Theorem

8.1.2, a — (aM, aN ) is an epimorphism of G onto G/M X G/N,. We have
(vM, x N ) € G/IM X G/N,. Therefore, there exists x € G such that

xM =yM and xN =xN,
sothatx'y € Mandx'x € N .Forany 1l =i=n — 1, we have
x'x,=@Y)@p'x) EN, foralll=i=n—1
and hence xN, = x N, for all 1 =i = n, so that
JS&x) =GN, ...,xN)=(xN, ..,x N ).

Thus, f'is a surjection and hence an epimorphism. <

Corollary 8.1.4. Let N, N,, ..., N be normal subgroups of a group G and
define

by

f[x[_r’%N,.]]z(le, e, xN,).

i=1
Then, f'is an isomorphism if and only if, foreach 1 =i =n,

% (v )-c

J=i
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Corollary 8.1.5. Let G, G, G,, ..., G be groups. Then, G = G, X G, X
- X G, if and only if there exist normal subgroups N\, N,, ..., N of G
satisfying the following:
I. NON,N--NN, = {e}.
2. N,- (ﬂN) G foralll =i=n.
3. G/N G,foralll =i=n.

Proof: Let H = G, X G, X --- X G, and define

piH— Gbyp(x,x,...,x)=x.

I 2"' i

Then, it can be easily verified that p, is an epimorphism for each 1 =i =n

and hence H/ker p, = G,. Put M, = ker p.. Then, M, is a normal subgroup of H

foreach 1 =i=nand H/M,= G.Also,M, "M, ---NM = {e}, wheree =

(el, ,» --+» €) and e, is the identity in G, Forany 1 =i <nandx = (x, x,,
., X ) € H, we can write

X= (XX, p € X e X ) (€€ X €, 5. e)

which is an element in M, -(N M ;)= H. If/: G — H is an isomorphism and
J=i

N, =f'M)for1 =i=n,thenN,N,, ..., N, satisfy all the required proper-
ties. Converse follows from Theorem 8.1.3 and Corollary 8.1.4. <

Worked Exercise 8.1.1. Let 4, 4,, ..., 4, be subgroups of a group G and
G=44,4,
Definef: 4 X 4, X -+ X A — Gby

fla,a,...,a)=aa,...a.

Then prove that f'is an isomorphism if and only if each 4, is a normal sub-
group of G and any element a € G can be uniquely expressed as a = a,a, -
a forsomea € 4,1 =i=n.

Answer: Suppose that fis an isomorphism. For each 1 =i = n, let
B ={(a,...,a)EA X XA :a=eforallj#i}.

Then, as in Theorem 8.1.1, we can verify that each B, is a normal subgroup
of 4, X -+ X' A4 and f/B, is an isomorphism of B, onto 4. Therefore, 4, is a
normal subgroup of G for each 1 =i = n. Since f'is an isomorphism and, in
particular, a bijection, any element of G can be uniquely expressed as a prod-
ucta, a,--a,, where a, €4,
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Conversely, suppose that each 4, is a normal subgroup of G and any element
of G can be uniquely expressed as a, a,'*-a , a, € A.. Then, clearly fis a bijec-
tion. To prove that f'is a homomorphism, first observe that 4. N 4, = {e} for
any i # j; for, ifa € 4, N4, and i # j, then

fle, ..., e, a, e ... e)=f(e, ....,e, a,e, ..., e)

it j‘h

and hence a = e. From this we get that, for any i # j, a, € 4, and a, €4,

-1 _—1y _ -1 -1 —
a(aa; a; )=(aaa )a;, €4NA ={e}
and therefore aa, = aa,. From this, it follows that f'is a homomorphism.
Thus, fis an isomorphism.

Worked Exercise 8.1.2. Let G be a finite nontrivial group such that a> = e for
alla € G. Then prove that G = C, X C, X --- X C , where n > 0 and each C,
is a cyclic group of order 2 and deduce that |G| = 2".

Answer: Since a’> = e, we have a = a~! for all ¢ €G and hence ab = (ab)™!
= b7la™! = ba for all a and b € G. Therefore, G is an abelian group. Since
G is nontrivial, choose a, # e in G and let C, = {e, a }. Then, C, is a normal
subgroup of G and C| is a cyclic group of order 2.

If G = C,, we are through. Otherwise, choose @, € G such that a, o4 C, and
let C, = {e, a,}. Then, C, N C, = {e} and C,C, = C, X C,. Also C g C G,
Again, if C\C, = G, we are through. Otherwise, choose a, € G such that a,
¢ C,C, and continue the process to get cyclic subgroups C,, C,, C,, ..., each
of order 2 and

C,GCCSCCGS. ..
Since G is finite, the process should terminate at a finite stage and then
G=C/ XC, X XC,.

Worked Exercise 8.1.3. Prove that any group of order p? where p is a prime,
is isomorphic to either sz or ZP X ZP.

Answer: Let G be a group of order p?, where p is a prime. Then, by
Theorem 7.3.6, G is abelian and hence every subgroup of G is normal. If G
is cyclic, then by Theorem 7.3.6, G = sz. Suppose that G is not cyclic, then
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O(a) # |G| = p*forall a € G. Choose a # e in G and let A = <a>. Then,
O(a) is a divisor of p? and therefore O(a) = p. Since 4 # G, there exists
b€ Gsuchthath € A. Let B= <b>.Then,|ANB|=1lorp.If|[ANB| =
then A N B = A and hence A C B so that 4 = B, which is not true. Therefore,
|[A N Bl =1and hence 4 N B = {e}. Also

,IAIIBI,IAIIBI,pz:

and hence AB = G. Therefore, by Corollary 8.1.1,
G=AXB=Z7Z X7,
P P
since any group of prime order is cyclic.

Worked Exercise 8.1.4. Let G be a cyclic group of order p/p,*...p",
where p,, p,, ..., p, are distinct primes and »,, 7, ..., r, are positive integers.
Prove that G is isomorphic to a product of cyclic groups 4,, 4,, ..., A4, where

|4 |=p/.

Answer: Since G is given to be cyclic, there exists @ € G such that G=<a>
and O(a)=p,"p,*...p,". Foreachl =i=n,let m, =1I p "and b, =a"
J=i
Then, O(b,) = O(a) p/. Let A, = <b>.Then, 4, is a cyclic subgroup of
order p". Slncepl,pz, ..., p, are distinct primes, (p,", m;)=1 foreachl =i
= n. From this, it follows that
ANMA,...4_A., ...4) = {e}

foreach 1 =i=n.Also,4, 4,---A, = G. Note that G is abelian (being cyclic)
and hence 4 ’s are normal subgroups of G. Therefore,

G=A XA, X X4,

EXERCISE 8(A)

1. State whether each of the following is true or false and substantiate your
answer.

(i) Any group of order 25 is cyclic.

(i) If Gis a group of order 9 and G is not cyclic, Then, G = Z, X Z,.
(i)  Any group of order 121 is abelian.
(iv)  Any group of order 8 is abelian.
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11.

12.
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(v) Any cyclic group of order 180 can be decomposed as a product of non-
trivial groups.

i) Z,, =7,XZ,
(vi)) If G is a group of order 36, than, G = Z, X Z,.

it 20 =Y * Yy

. Prove that Z, cannot be decomposed as a product of groups of order 2.

Show that Z, cannot be decomposed as a product of two nontrivial subgroups.

Let4,, 4,, ..., A, be subgroups of a group G such that 4, 4,---4 = G. Prove
that the map f/: 4 X -+ X 4 — G, defined by f(a,, ..., a )= a,a,"*-a,, is an
isomorphism if and only if each 4, is normal in G and, for any a, € 4,

alaz...an = e:>al :az = =q = e.

. Let G be a group of order pg, where p and ¢ are distinct primes. If 4 and B are

normal subgroups of orders p and ¢, respectively, then prove that G is cyclic.

Prove that Z, is isomorphic to the product of the subgroups 4 = {0, 2, 4, 6, 8}
and B = {0, 5}.

. Let G be a cyclic group of order mn, where m and n are relatively prime positive

integers. Prove that there exist subgroups 4 and B of orders m and n, respectively
suchthat G=4 X B.

Is Z X Z cyclic?

. Let G be a finite abelian group of order p,"p,”...p,", where p, p,, ..., p, are

distinct primes and 7, r,, ..., 7, are positive integers. For each 1 =i =n, let
S ={a€ G:0(a) =p forsome 0 =s € Z}.

Prove that each S, is a subgroup of G and G is isomorphic to the product S, X S,
X XS,

Let m=pip,*...p,", where ps are distinct primes ;s are positive integers.
Prove that

Z,=7 XL ,X-XZL,.
P P P,
A nontrivial group is said to be indecomposable, if it is not isomorphic to the
product of two nontrivial groups. Prove that Zp is indecomposable.

Prove that the group of symmetries of a square, the group (Z, +) and the group
(Q, +) are all indecomposable.

Prove that the group (Z , + ) is indecomposable if and only if n = p” for some
prime p and » > 0.
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14. Let 4 and B be normal subgroups of a finite group G such that |4] - |B| = |G| and
|A| and |B| are relatively prime. Then prove that G = 4 X B.

15. Let 4 and B be subgroups of a group G such that G = 4 X B. For any normal
subgroup N of G, prove that either N is contained in the centre of G or N has
nontrivial intersection with 4 or B.

16. Prove that the symmetric group S, is indecomposable.

17. Letf: G — G' be an epimorphism of groups and N be a normal subgroup of G.
If the restriction of f'to N is an isomorphism of N onto G’, prove that G = N X

(ker f).

18. Let G, G,, ..., G, be groups and G = G, X G, X -+ X G, . For any group H,
prove that a mapping f: H — G is a homomorphism if and only if p, - f: H — G,
is a homomorphism for each 1 = i = n, where p, : G — G, is the i" projection.

19. Let A and B be any normal subgroups of a group G. If the natural map /: G —
G/A (defined be f(x) = xA4) induces an isomorphism of B onto G/A, then prove
that G =4 X B.

20. Prove the following for any groups G|, G, and G,:
(i) G, XG,=G,XG,
(i) (G, XG)XG, =G X(G,XG)
(iii) G, =G,= G XG,=G,XG,
(iv) G, X G,is abelian < G, and G, are abelian.
(v) G, X G,iscyclic = G and G, are cyclic.

(vi) The converse of (v) is not true.

8.2 FINITELY GENERATED ABELIAN GROUPS

The study of finitely generated abelian groups and, in particular, finite abe-
lian groups is one of the richest and deepest branches of the whole of group
theory. No other general class of groups is the structure as completely known
or as easily described. The overall strategy in the study of a structure theory
of any algebraic system is to express, in some sense, a complicated algebraic
system in terms of those which are better behaved and whose structure is
well known. For example, the structure of a cyclic group is well known and
in fact, we have proved earlier that any cyclic group is isomorphic to the
additive group Z of integers or to the group Z_of integers modulo 7 accord-
ing as the group is infinite or finite of order #n, respectively. Here, we prove a
fundamental theorem which states that a group is a finitely generated abelian
group if and only if it is isomorphic to the product of a finite number of cyclic
groups.
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We first consider the case of finite abelian groups. Let us recall that a
group G is called a p-group, where p is a given prime number, if the order of
any element of G is a power of p and that a finite group is a p-group if and
only if it is of order p" for some nonnegative integer n. The following is a
central topic in the structure theory of finite abelian groups.

Theorem 8.2.1. Any finite abelian group is isomorphic to a product of
p-groups.

Proof: The trivial group {e} is a p-group, for any prime p (since its order is
1 = p°. Let G be a nontrivial abelian group of order n and n > 1. We can
write

— iy " Ti
n=p p, by >

where p, p,, ..., p, are distinct primes and r, 7, ..., 7, are positive integers.
From Sylow Theorem 1(7.4.4), there exist subgroups 4, 4,, ..., 4, of G such
that | 4 |= p,” for 1= i = k. Since the group G is abelian, each 4, is a normal
subgroup of G. Also, since ps are distinct primes, it can be easily verified
that 4, N A, = {e} (for, the order of 4, N 4, is a common divisor of |4| and
|A [) fori # j.

Further the order of A4, N (4,---4,_4,,,-~*4) is a common divisor of

tlt+l

4] = (= p/)and |4 -A_A,  Al(= Hp )and,smcep ande are

LlHrl

relatively prime, it follows that |4, N (4, A A, A4) = 1and hence
Am(A A111+1. )_{e}

Also, it can be proved that 4 4, ... 4, = G.
Therefore, by Theorem 8.1.1,

G=4 XA4,X X4,
and each 4, is a p -group (actually 4, is the unique Sylow p -subgroup of G).
Definition 8.2.1. Let G be a finite abelian group. For any prime p, let

Gp ={a€ G:0(a) =p forsome ) =r & Z}.
It can be easily verified that Gp is a p-subgroup of G. In fact, Gp is the unique

Sylow p-subgroup of G. The following is a simple consequence of the proof
of the above theorem.
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Corollary 8.2.1. Let G be a finite abelian group. Then,

G=G, XG, X--XG,,

where p , p., ..., p, are all the distinct primes dividing the order of G.

The two results proved above reduce the study of arbitrary finite abelian
groups to the study of finite abelian p-groups. The basic result on p-groups
from which the whole structure theory can be pinned down is proved in the
following theorem.

Theorem 8.2.2. Let p be an arbitrarily fixed prime number. Then, any finite
abelian p-group is isomorphic to a product of a finite number of cyclic

p-groups.

Proof: Let G be a finite abelian p-group. Then, |G| = p” for some nonnega-
tive integer n. We shall use induction on n. If n = 0, there is nothing to prove,
since G becomes trivial. If » = 1, then G is a group of order p, which is a
prime, and hence G is itself a cyclic p-group. Now, let » > 1 and suppose that
the theorem holds good for all groups of order p” with m < n.

Since G is a p-group, the order of any element of G is a power of p. Let a be
an element of maximal order in G and O(a) = p*, where k =< n. Put H = <a>,
the cyclic subgroup of G generated by a. If k = n, then H = G and hence G
is itself a cyclic p-group. Suppose that £ < n and consider the quotient group
G/H whose order is p"* and n — k < n. By the induction hypothesis,

GIH=G, X G, X X G,

where G, 1= i = r, is a cyclic p-group. By Theorem 8.1.1, there exist sub-
groups A, 4,, ..., A, of G/Hsuchthat 4, = G for1 =i=r, 4 4,4 =
G/H and

AN A A, A) = {H]}.

i1

For any 1= i = n (note that A is the identity in G/H).
Therefore, there exist subgroups H,, H,, ..., H_of G such 4, = H/H for
1= i =r. Now, these subgroups /s satisfy the following:
. HCH foralll =i=r
2. G,=H/Hforalll =si=r
3. GH=H/H -HJ/H" - H/H
4 HNH-H_H_ --H)=Hforall=i=n.

iy
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Since G, and hence H/H is cyclic, we get a coset b /1 generating [ /H. Let |H/
H| = p’ for each 1 = i =< r. Then, the order of b H in G/H is equal to p”.

In the next step, we produce a representative c, of b H such that the order of c,
in G is equal to the order of /7 in G/H. For convenience, let us write tempo-
rarily b for b, and j for j. Since (bH )" "= H, we have

b eH=<a>

and hence b” = a* for some s. Since Athe order of @ is maximal and O(a) = p*,
we have O(b) = p* and therefore b” = e which implies that

a”’ :(as)pm =" )pH =p' =e.

Therefore, O(a) divides sp*~ ; that is, p* divides sp*~ and hence p/ divides s.
Lets =/ and ¢ = ba™". Then, b~'c = a~' € <a> = H and

J — J J —
¢’ =(ba) =b"a’’ =da’a*=e

which implies that O(c) = p/.
Restoring the index i, we have the following:
For each 1 = i =, there is an element ¢, € G and an integer v, such that

¢H=bH and (" =e.

Let K be the subgroup of G generated by ¢, c,, ..., c,. We shall prove that
HK = Gand HN K = {e},sothat G = H X K.
Consider an arbitrary element x € G. Then, xH € G/H and hence

xH = (b,H)" (b,H)" ---(b H)" forsomeintegersn,
=(cH)" (e, H)" --(c.H)"
=(¢"cy ¢ )H.
Therefore, x =(c"cy*---c/")y for somey € H. Thus, x € KH = HK.
Thus, HK = G.

To prove that H N K = {e}, consider an element x in H N K. Since x € K,
there exist integers m, such that

x=clcyteel.

»
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Now,
H=xH=(c,H)"(c,H)"™ (¢, H)™
=(bH)" (b,H)"™ ---(bH)™.
From the property (4) of Hs above, it follows that

(bH)" =H foralll=i=r.

Since the order of b H in G/H is equal to the order of ¢, (which is equal to P,
we get that p” divides m and hence (c;)" = eforall 1 =i=r,sothatx =
e. Thus, HN K = {e}. Again by Theorem 8.1.1, we have

G=HXK.

From the induction hypothesis, there exist cyclic p-groups K, K, ..., K
such that

K=K X XK,
Now, H is also a cyclic p-group and
G=HXK=HXK X XK.

This completes the proof. <

Theorems 8.2.1 and 8.2.2 together yield the following fundamental structure
theorem.

Theorem 8.2.3 (Fundamental structure theorem for finite abelian groups).
Any finite abelian group is isomorphic to a product of cyclic p-groups.

Since any cyclic group of order 7 is isomorphic to the group Z_of integers
modulo 7, we have the following corollary.

Corollary 8.2.2. Let G be any nontrivial finite abelian group. Then,

G=Z , XL, X-XT,,
P Py by

where p, p,, ..., p, are (not necessarily distinct) primes and n, n,, ..., n_are
positive integers.

We derive a formula to find the exact number of distinct (nonisomorphic)
abelian groups of a given order n. For example,
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%7, and 7Z,XZ,

4

are the only distinct abelian groups of order 4 and
Ziy L, X 7., and Z,X Z, X 7,

are all the distinct abelian groups of order 8. Before going for the derivation
of the formula, we collect few miscellaneous facts about abelian groups that
will be used in the derivation of the formula.

For any abelian group G and for any integer m, the sets

G"={a":a € G}

and G(m) = {a € G:a" = ¢}
are subgroups of G. For any prime p and a positive integer , it can be easily
verified that

ZZ = an,m foranym<n
and an(p) =Z,.
If G, G, ..., G are groups and f: G — G, X -+ X G is an isomorphism,
then finduces isomorphisms. For any groups G, G, G,, ..., G,if G = G, X
G, X - X G, then G" =G/"XG) X---XG/"
and G (m)=G,(m)XG,(m)X---XG, (m)

for any integer m.

Definition 8.2.2. Let n be any positive integer. 4 finite sequence {n,n,,...,n }
of positive integers is said to be a partition of n if

n=n<=<--=n and n +n+--+n=n
Let P(n) denote the number of partitions of n. For example, P(1) = 1,
P(2) =2, since {1, 1} and {2} are the only partitions of 2.

P(3) = 3,since {1, 1, 1}, {1, 2} and {3} are the only partitions of 3.
P(4) = 5and P(5) = 7.

Theorem 8.2.4. Let p be a prime and » be a positive integer. Then, there are
exactly P(n) number of distinct (nonisomorphic) abelian groups of order p”,
where P(n) is the number of partitions of .
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Proof: For any partition {n, n,, ..., n } of n, consider the product

ZXZXXZ

which is an abelian group of order p" - p™...p" = p"™ """ = p"
We shall prove that the correspondence

{n, ny, ..., ”r}’_’an. Xanz ><~~><me,

is a bijection between the set of all partitions on » and the set of all distinct
(nonisomorphic) abelian groups of order p". If G is an abelian group of order
p", then, by Theorem 8.2.2,

G=7 ,XZ , XX Z

PL o

(since any cyclic p-group must be isomorphic to Zp”, for some m > 0) and,
in this case,

pn:|G|:|Z X7 X XZ nFny e,

P

=p

and hence n = n, + n, + --- + n. We can rearrange Z ’s such that n, =
n, < --- = n_and therefore {n1 > --+» M} IS @ partition of n. Therefore, the
above correspondence is a surjection. To prove the injectivity of this correspon-

dence, let {n, n,, ..., n } and {m , m,, ..., m } be partitions of n such that
G=7 X7 X--X7Z =17 XZPMZX‘“XZ
P s

" " m
P2 P M P

Then, we have to prove that » = s and n, = m, for all 1 =i < 5. From the
discussion made before Definition 8.2.2, we have

Z,XL,X-XL, =L (p)XZL  (p)X-XL  (p)

(r times)

=(Z, XL X-XL ,)p)

=G(p)

=(Z,, XL, X XL . )p)

n
P

=7 XL X---X7
r P p

(stimes)

and therefore p” = p* and hence r = s.
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Thus, we have proved that if a group G is isomorphic to a product of » number
of Z .5, then any expression of G as an isomorphic copy of a product of Z
has exactly r number of factors.

Now, suppose n, # m_ for some 1 =i = r. Choosej, | =j=rsuch that n =
m_foralli <j and n, # m_. We may assume that n,<m. Since (Z )p = {O}
for i = Jj (note that 0 is the identity in Z ,)> WE have

G" =(Z ,XZ , X--XZL k)
P P P
EZPZI’ XZ"Z XX 7P
s

=7 XL X X7,

P n n npnj
JHTN J+271 e
p P

andn, —n=n_,—n=--=n-—n. Clearly there are at most » — j nonzero
factors in the above decomposmon of G””. Similarly, since n, = m, for i <j

and n.<m and since G = mel XX Zp .. » we get that
p J 1 r

G" =7 XL oo X XL

m/ nj pm,ﬂ nj pm;n,

and 1 = mo—n=m. = n C=m, —n, Clearly, there are atleastr — j + 1
nonzero factors in the second decomposmon of G*" . Therefore, we have two
decompositions of the group G" as a product of cyclic p-groups and the
number of factors in the first decomposition is less than the number of factors
in the second decomposition. This contradicts the conclusion obtained just
after proving that » = s. Thus, we must have n, = m, for all 1 =i = r. This
proves that there is a bijection between the set of partitions of # and the set of
distinct (nonisomorphic) abelian groups of order p” and hence the numbers of
members in both the sets are same. <

Corollary8.2.3. Let m= p" p;*...p.", wherep ,p., ..., p, are distinct primes
and n, n,, ..., n_are positive integers. Then, the number of distinct (noniso-
morphic) abelian groups of order m is equal to p(n,) p(n,) ... p(n ), where
p(n,) is the number of partitions of ..

Proof: Any abelian group of order m must be isomorphic with a product

G, X G, X XG,
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where each G, is an abelian group of order p,", 1 =i = r, and conversely any
such product is an abelian group of order m. For each 1 =i = r, we know (by
the above theorem) that there are p(n,) number of distinct (nonisomorphic)
abelian groups of order p," and hence the corollary. <

Corollary 8.2.4. Let m be any square-free positive integer (that is, m is not
divisible by any perfect square greater than 1). Then, any abelian group of
order m is cyclic and hence Z _ is the only (up to isomorphism) abelian group
of order m.

Proof: Since m is square-free, we can write

m=pp,...p,

where p, p,, ..., p, and distinct primes. By Corollary 8.2.3, the number of
distinct abelian groups of order m is p(1) p(1)---p(1) = 1. We know that the
group Z, of integers modulo 7 is an abelian group of order n. Thus, Z is the
only (up to isomorphism) abelian group of order x. <

Worked Exercise 8.2.1. Find the number of abelian groups of order 7,200.

Answer: We have to first express 7,200 as a product of primes. We have
7,200 = 25 X 3% X 5% and hence, by Corollary 8.2.3, the number of distinct
abelian groups of order 7,200 is p(5) p(2) p(2), where p(n) denotes the num-
ber of partitions of n. Note that p(2) = 2, since {1, 1} and {2} are the only
partitions of 2. Coming to p(5), note that

{1, 1,1, 1, 1}, {1, 1, 2}, {1, 1, 3},
{1,2,2},{1,4},{2,3} and {5}

are the only partitions of 5 and hence p(5) = 7. Thus, there are exactly 7 X 2 X
2 (= 28) abelian groups of order 7,200.

Worked Exercise 8.2.2. Prove that any abelian group of order 2,310 is cyclic.

Answer: Note that 2,310 = 2 X 3 X 5 X 7 X 11, which is a product of
distinct primes and hence square-free. By Corollary 8.2.4, the group Z, ,,,
of integers modulo 2,310 is the only (up to isomorphism) abelian group of
order 2,310.
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Worked Exercise 8.2.3. List all (up to isomorphism) abelian groups each of
order 240.

Answer: First, we have to express 240 as a product of primes.
240 = 243" 5!

Therefore, there are p(4) p(1) p(1) (= 5 X 1 X 1 = 5) abelian groups of order
240. To list these, we have to write down all the partitions of 4 and 1.
Partitions of 4 are {1, 1, 1, 1}, {1, 1, 2}, {1, 3}, {2,2} and {4}. Partitions of
Lis {1}.

Thus, the following five are all (up to isomorphism) the abelian groups of
order 240.

Ly X Ly X Loy X Loy X Loy X Ly
Ly X Ly X Ly X Ly X L
Z,X L, XL, XL
Ly X Ly X 7.y X Ly
Z,X 7, XL,

Note that Z X 7Z = 7Z  if n and m are relatively prime and therefore
Z, X Z.3 X Z, = 7., The above five groups are isomorphic to the following,
respectively.

Ly X Ly X Ty X Ly (= Ly X Ty X Ty X Ty )
Ly X Ty X Ly (= Ly X Ty X L)
ZZ X ZIZO (E ZB X Z30)
ZIZ X ZZO
Z

240

Worked Exercise 8.2.4. List all (up to isomorphism) abelian groups of
order 3,375.

Answer: We have 3,375 = 3% X 5% and hence there are 9 (= p(3)p(3) = 3 X 3)
abelian groups of order 3,375. The partitions of 3 are

{1,1,1},{1,2} and {3}.
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Therefore, the required groups are given below.

L, XLy X L X L X L X L (=L, X L, X L)
Ly XLy X Ly X Ly X Ly (= Ly X Ly X L)
ZyX L X Ly X Ly (= Ty X Ly X L)

LZyX Loy X Ly X Ly X L (= Lyg X Lyg X L)
ZX Ly XL X L, (=L, XL

Ly X Ly X L (= Ly X L)

Ly X Ly X Ly X L (= Ly X T X I,)
Ly X Ly X L (= Lyys X Zyy)

Ly X Z5s (=7

225)

3‘375)

Next, we prove a most general form of the fundamental structure theorem
for finitely generated abelian groups. For convenience, we shall denote the
binary operation in an abelian group by + instead of - and, as such we write
0 for the identity element of an abelian group (G, +). The inverse of a will
be denoted by —a instead of a™! and write na instead of a”, where « is an
arbitrary element of an abelian group (G, +) and » is an integer. That is, na
is defined as

0 if n=0, the integer zero
na={(n—a+a ifn>0
(—n)(—a) ifn<<0

Definition 8.2.3. Let (G, +) be an abelian group and S C G. If G = <S>,
the smallest subgroup of G containing S, then S is called a generating set for
G. G is called finitely generated if there exists a finite generating set for G.

IfS = {s,s,, ...,s } is a finite generating set for an abelian group (G, +),
then any element a of G can be expressed as

a=ns, + 1,8, + -+ ns,
for some integers n, n,, ..., n . In fact, for any subset S of G, we have
<§>={ns +ns,+ - +ns:s €Sandn € ZL}.

The expression @ = n;s, + nys, + --- + ns_need not be unique. In this
context, we have the following theorem.
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Theorem 8.2.5. Let (G, +) be an abelian group. Then, G is isomorphic to
the product of a finite number of copies of (Z, +) if and only if there exists
a finite generating set {s, s,, ..., s, } such that any element a of G can be
uniquely expressed as

a=ns, + 1,8, + -+ ns
rr

for some integers n,, n,, ..., 1.
Proof: Let G=7Z X Z X - X Z (rcopiesof Z)andf: G — Z X Z X -
X Z be an isomorphism. Foreach 1 =i=r,letz = (0, ...,0, 1,0, ...,0), the
element whose i component is 1 and all other components are zeros. Then,
any element 1 € Z X --- X Z can be uniquely expressed as

t=n,ny,..,n)=nt +nt +-+nt.

rr

If we consider s, = f° l(ti) forl =i=r,thens,s, ..., s, satisfy the required
property. Conversely, suppose that s, s, ..., s, are elements in S satisfying the
given properties. Then, it can be easily verified that the map

(n,ny,..,n)—ns +ns, +--+ns

2 o

is an isomorphism of Z X Z X --- X Z (r copies of Z) onto G. <

The following result provides a complete characterization of finitely gen-
erated abelian groups. First, let us agree, for convenience, to write

Zal. fora, +a,+ - +a,

n
i=1

where a, a,, ..., a are any elements of an abelian group (G, +).

Theorem 8.2.6 (Fundamental structure theorem for finitely generated
abelian groups). Let (G, +) be a finitely generated abelian nontrivial group.
Then, G is isomorphic to the product of a finite number of cyclic groups 4;;
that is,

G=A4 XA4,X XA,
where each 4, is a nontrivial cyclic group such that either all of the 4 s are
infinite or for some s, 1 =s =k, A4,4,, ..., A are of orders m, m,, ..., m
respectively with m, divides m,,, for each 1 =i < s and 4
infinite.

s

oo oo A, are
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Proof: Since (G, +) is a finitely generated abelian group, there are finite sets
generating G. Let & be the least positive integer such that G has a k-element
generating set. We shall use induction on £. If £ = 1, then G is generated by
a single element and hence G itself is cyclic. Suppose that £ > 1 and assume
that the theorem is true for all abelian groups generated by a set of £ — 1
elements.
If G has a generating set {a,, a,, ..., a,} such that

na +--+na=0=n=-=n=0 *)
then any element of G can be uniquely expressedasn,a, + - + na,n € Z
and hence by Theorem 8.2.5,

G=7 X -+ X Z(rcopies).

Next, suppose that G has no generating set {a, ..., a,} .satis.fying the property
(*). Then, for any generating set {a, ..., a,}, there exists integers n,, ..., n
not all zero, such that n,a, + --- + n,a, = 0. Since

e

k k k
Zniai =0= Z(_ni)ai == an‘ai =0.
i=1 i=1 i=1

There is an equation of the form n,a, + -+ + n.a, = 0 with one of n’s posi-
tive. Let 7 be the set of all positive integers occurring in equations of the form
na + - +na =0,where {a, ..., a,} is a generating set for G. The above
discussion implies that 7 is a nonempty set of positive integers. Let m, be the
least positive integer in 7. We can assume that

ma, +na, + - +na =0 )
for some generating set {a,, a,, ..., a,} for G and integers n, ..., n,. We shall
prove that m, divides each n, 2 = i = k. By the division algorithm, let us
write

n=gm +r,0=r <m,q and r € Z.

Then, from Equation (1),

mb +ra + - +ra =0 2)
where b, =a, +qa, + - + 9,9, Ifb, = 0,thena, = — 4y, = 43y =
g,a,and hence {a,, a,, ..., a,} is a k — 1 element generating set for G which

is a contradiction to the least property of £.
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Therefore, b, # 0. Also,
a,=b —qa, - —qq

and therefore {b , a,, ..., a,} is a k-element generating set for Gand r, ..., r,
are nonnegative integers less than m occurring in Equation (2). By the least
property of m , it follows that », = r, = --- = r, = 0 and hence m, = g;m, for
2 =i = k. Also, from Equation (2), we have
mb, = 0.

Put 4, = <b >, the subgroup generated by b, in G. Put H, = <a,, ..., a,>,
the subgroup generated by {a,, ..., a,} in G. Since {b ,a,, ..., a,} is a generat-
ing set, we get that 4, + H = G. Also, we prove that 4, N H, = {0}. If x €
A, N H , then, since m b, = 0,

x=mb1 forsomeOSm<m1

and x=mna, + - +na forsomen,..,n €E7Z
and therefore mb, + (= n)a, + --- + (—n)a, = 0. By the least property of
m,, we get that m = 0 (otherwise m € Xand m < m,) and hence x = 0. There-
fore, 4, N H = {0}. By Theorem 8.1.1, G = A, X H . Also, H is generated
by k — 1 elements a,, ..., a, and it is not generated by a set with less than k — 1
elements (otherwise G would be generated by a set with less than & elements,
which is a contradiction). Therefore, by the induction hypothesis,
H=4,X-- XA,
where each 4, is a cyclic group such that either all the 4, 4, ..., 4, are infi-
nite or for some s, 2 =< s =r, 4,, ..., A are of orders m,, ..., m_respectively
with m dividesm  forall2 =i<sand 4, ..., 4, are infinite. The proof
is complete, if we can show that m, divides m, also. To do this, let 4, = <b>
and b, be of order m, for 2 = i < k. Then, {b, b,, ..., b } is a generating set
for G and

mb, + mpb, + 0b, + --- +0b, = 0.

By an argument similar to that made after Equation (1), it follows that m,
divides m,. Thus, we have

GEAlelelezxmxA

k

where 4,, 4,, ..., 4, are cyclic groups satisfying the required properties. This
completes the proof of the theorem. <
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Since any infinite cyclic group is isomorphic to the group (Z, +) and any
finite cyclic group of order 7 is isomorphic to the group (Z, + ), the follow-
ing is an immediate consequence of the above theorem.

Corollary 8.2.5. Let G be a finitely generated abelian group. Then,

G=TZX--XLXZ, XX,
1 s

(r components)

where r and s are nonnegative integers and m, ..., m_are positive integers
such that m, divides m,, forall 1 =i <ls.

Worked Exercise 8.2.5. State and prove the converse of Corollary 8.2.5.
Answer: Ifa group G is isomorphic to a product

ZX--XLXL, X--XT,

then G is a finitely generated abelian group.
In fact, we prove that the product of finite number of cyclic groups is a finitely
generated abelian group.

LetG,, G, ..., G, be cyclic groups and

G=G XG X XG,

since each G, is abelian, the product G is also abelian. Let a, be a generator for
G, and e, be the identity in G,. Put x, be the element in G whose i component
is a, and other components are identities. That is,

X, =(e,..,e_,a,€. ,...,e).

Then, any element g € G can be written as
g=(g, - 8,) &€,

=(a',....,a"), €l

=x" X7 X €SN, ey X, >

Therefore, G is generated by {x, x,, ..., x }. Thus, G is a finitely generated
abelian group.
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Worked Exercise 8.2.6. Let G be a finitely generated abelian group. Prove
that G is finite if and only if the order of every element of G is finite.

Answer: If G is finite and ¢ € G, then O(a) = |G| (in fact, O(a) is a divisor of
|G|) and hence O(a) is finite. Conversely, suppose that O(a) is finite for every
a € G. By Corollary 8.2.5,

G=7LX-XLXZL, X-XL,
1 s

(r components),

where 7 and s are nonnegative integers and m, ..., m_are positive integers. If
r > 0, then consider

a=(2,0,..00,..,0)

then a is of infinite order and hence the element x in G corresponding to a is
also of infinite order, which is a contradiction to our hypothesis. Thus, » = 0
and hence

G=Z, X-XZ,
since each Z  is finite, so is G.

EXERCISE 8(B)

1. State whether each of the following is True or False. Substantiate your answer.
(i) Z,XZ,=7Z,.
(i) Z, XZ,, is cyclic.
(ill) Z¢ X Z, is cyclic.
(iv) There is exactly one abelian group of order 105.
(v) There is exactly one group of order 30.
(vi)  Any abelian group of order 165 is isomorphic to Z, ..
(vii) The number of abelian groups of order 24 is 3.
(viii)  The number of groups of order 24 is 3.
(ix) Any abelian group of order divisible by 7 contains a cyclic subgroup of
order 7.
(x) Any abelian group of order divisible by 9 contains a cyclic subgroup of
order 9.
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2. Prove that the following are equivalent to each other for any positive integers m
and n.

(@) Z, XZ,is cyclic.
) Z,X72,=7,,.
(c) m and n are relatively prime.

(d) Z=<m, n>, the subgroup generated by m and n in the group (Z, +).
3. Prove that any abelian group of order 8 is isomorphic to one of the following.
Ly, Ly, XLy, Ly XLy XL, .

4. LetG,G,,...,G begroupsanda, € G, 1 =i=n.Leta = (a,a,, ...,a). Prove
that O(a) is finite in the product G, X G, X --- X G, if and only if O(a,) is finite
in G, for each 1 =i = n and, in this case, O(a) = l.c.m. {O(a)), ..., O(a,)}.

5. Prove that, for any n > 1, Z , is not isomorphic with Z, X Z, .

6. Let Z(G) denote the centre of any group G. For any groups G, G,, ..., G, prove
that Z(G, X G, X -+ X G)) = Z(G)) X Z(G,) X -+ X Z(G,).

7. Let [G, G] denote the commutator subgroup of a group G. For G = G, X -+ X
G, prove that

[G,G]=1[G,,G] X X[G,G].

8. Let N, and N, be normal subgroups of groups G, and G,, respectively. Prove that
N, X N, is a normal subgroup of G | X G, and that

G,/N,X G,/N, =(G,*G,)/N,xN,.

9. Let N and M be normal subgroups of a group G such that NN M = {e}. Then
prove that G is isomorphic to a subgroup of G/ M X G/N.

10. Prove that any cyclic p-group is finite.

11. Prove that any finite abelian p-group is generated by its elements of highest
order.

12. Show that any homomorphic image of a p-group is a p-group and product of
p-groups is also a p-group.

13. Let G be a finite cyclic group and p be a prime dividing the order of G. Prove that
there are exactly p — 1 elements in G each having order p.

14. Prove that a nontrivial finite abelian group is cyclic if and only if it is isomorphic
toZ ,XZ , X---XZ , forsome distinct primesp, ..., p, and positive integers
n P, A r

R

15. Determine all (up to isomorphism) abelian group of order 144, 625 and
1,94,481.
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16. Prove that a cyclic group is indecomposable if and only if it is either infinite or
of prime power order.

17. Describe all the positive integers n for which there is exactly one (up to isomor-
phism) abelian group of order n.

18. Let {a, a,, ..., a} be a generating set for an abelian group G. Prove that the
following are equivalent to each other.

0 (n,ny,..,n)— gnia,. is an isomorphism of Z XZ X---X Z (r copies)
onto G. -

(2) Any element a of G can be uniquely expressed as

a=na + - +na,forintegersn,n,...,n,
(3) For any integers n, n,, ..., n,
na +na, +--+na=0=n=n=--=n=0
ror 1 2 r

19. Let G be a finitely generated abelian group. Prove that G is finite if and only if G
is isomorphic with a product of finitely many cyclic groups.

20. Let G be a nontrivial abelian group. Prove that G is finite if and only if
G=Z, X---XZL,

for some positive integers m, ..., m_such that m > 1 and m, divides m_,  for all
l=i<r.

8.3 INVARIANTS OF FINITE ABELIAN GROUPS

The fundamental structure theorem for finitely generated abelian groups
(Theorem 8.2.6) can be applied to finite abelian groups to associate a unique
finite division sequence of positive integers with each finite abelian group.
First, let us define the following.

Definition 8.3.1. A finite sequence m ,m,, ..., m_of positive integers is called
adivision sequence if 1 <m, and m_divides m_ foreach 1 =i <r.A division
sequence is denoted by

1 <mm,)...|m.

In general, if @ and b are integers, we write % to say that a divides b; that is,
ac = b for some integer c.

Theorem 8.3.1. Let G be a nontrivial finite abelian group. Then, there exists
a unique division sequence

1 <m]m,...|m

r
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suchthat G =7, XZ,  X---XZ,
Proof: By Theorem 8.2.6, there exists nontrivial finite cyclic groups G|, G,,

., G ofordersm , m,, ..., m , respectively such that m, divides m , m,, ..., m
respectively such that m, divides m ,  for each 1 =i <rand

r

G=G,XG,XXG,.

Since any cyclic group of order m is isomorphic to Z , we get that 1 <m |m,|
.. |m_is a division sequence and

G=17, XL, X-XL,. (1)

Suppose that 1 < |n,| ... |n_is any division sequence such that

G=17, XL, XX L,. )

We shall prove that » = s and m, = n, for each 1 = i = r. First note that the
order of any element of Z  is a divisor of m, and hence that of G is a divisor
of the Le.m. {m,m,, ..., m } which is equal to m_ (since m, divides m_for all
1 =i = r). Therefore, the order of any element of G is a divisor of m . Since
the element (0, ..., 0, 1) is of order n_in Z, X.--XZ, =G, there exists an
element of order n in G and therefore n d1V1des m. S1m11arly, by symmetry,
we can prove that m_divides n_and hence m, =n. From the decompositions
(1) and (2), we have

mrflG = (mrfl Zm]) XX (mrfl Zm,,l) X (mrfl Zm,)
= (mr—l an ) X o X (mr—l an,] )X(mr—l an )’

where m4 stands for {ma : a € A}. Since m/m _ forall 1 =i=r—1,it
follows that m,_, Z, = {0} for each 1 =i =r — 1 and hence

| mr*lG |:‘ mr*l Zm, |:| mHan | .

This implies that |m,_Z |=1 for each 1 =j = s — 1 and, in particular

|m, | Zn_,|=1so thatn__ ; divides m _,. Similarly, by interchanging m.’s and
nj’s, we get that m__ divides n_,. Therefore, m _, = n_ . Continuing this
process, we can prove thatm _ = n_ fori=0,1,2,....Sincem m,...m =

|G| = n n,-n,wegetthatr = sand m, = n_ forall I=i=r. <
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Definition 8.3.2. If G is an abelian group and 1 < m |m,| ... |m is a division
sequence such that

G=1Z, XL, XX,

then G is said to be of type (m,, m,, ..., m ) and the integers m , m,, ..., m,
are called the invariants of G. The following is an immediate consequence of
Theorem 8.3.1.

Corollary 8.3.1. Let n be a positive integer greater than 1. Then, the number
of abelian groups of order 7 is equal to the number of division sequences 1 <
m|m,| ... |m suchthatn =m m,..m.

;"

Example 8.3.1. Let us find the invariants of the group G = Z, X Z, X Z..
First note that 6, 8, 5 do not form a division sequence. We have

G=ZLg XLy XLy =Ty X Loy X Loy X g
=7,X7

120

and 2 divides 120. Therefore, the invariants of G are 2, 120.

Worked Exercise 8.3.1. Determine the invariants of the group

G=17,XZ, XLy XL, X Ly,

Answer: By inspection, we can see that

G = ZQ ><Z54 X Z324
and 9|54|324 is a division sequence. Therefore, 9, 54, 324 are the invari-
ants of G.

The following provides an algorithm to find the invariants of a given finite
abelian group. Let us recall that a partition of a positive integer # is a finite
sequence {n, n,, ..., n } of positive integers such thatn, =n, < --- = n_and
n, +n,+ - + n = n. For the convenience and for the purpose of proving
the following result, we relax the definition of a partition of n by including
certain zeros in the beginning. Accordingly, a partition of # is a sequence of
nonnegative integers {n, n,, ..., n} suchthat 0 =n =n, = -+ =n and
n,+n,+--+n=n
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Theorem 8.3.2. Let G be an abelian group of order n= p" p)*--- p;" where
D> Dy ---» P, are distinct primes and m, m,, ..., m, are positive integers. For
eachl =i =k let {”p Ny sy } be a partition of m, such that

G = (L, XX L) XKoo X (L XX L),

Foreach 1 = = r, let s; =p1"" ...p . Then, s, s,, ..., s, are the invari-
ants of G.

Proof: Note that 0=n, =n_=---=n_andn, +n, + -+ +n_=m for
each1 =i =k Let ? '

'l

G =%2,X%, X.4Z,, forl=j=r.
J n’ o Py

m

Since p,, p,, ..., p, are distinct primes, it follows that p,"/, p2 s ,p,f‘” are
pair-wise relatively prime and hence

g

~ —_ i i
G,=Z,, wheres,=p" p,”..p".

Now, G=G, X G, X---XG, X7, XZ XX .
Also, since n,=n,., forl =i= kand 1 <] =r, we get that p” divides p,
and hence s d1V1des S foreach 1 =j <r. Thus,s,s,, ..., s, are the invari-

ants of G.

Mijsy

Example 8.3.2. Let G be the set of all positive integers less than 100 and rela-
tively prime to 100. Then, G is an abelian group under multiplication modulo
100. Let us find the invariants of G.

First, we shall list all elements of G and find the order G. We have |G| =
¢ (100) = 40 = 23X5

G=1{1,3,7,9,11,13,17,19, 21, 23, 27, 29, 31, 33,
37,39,41,43,47,49,51, 53,57, 59, 61, 63, 67,
69,71,73,77,79, 81, 83,87, 89,91, 93, 97, 99}.

One can easily verify the G = <3>, the cyclic subgroup generated by 3.
Therefore, G is a cyclic group of order 40 and hence G = Z,. 40 is the only
invariant of G.



Structure Theory of Groups ~ 8-33

EXERCISE 8(C)

1. Determine the invariants of each of the following groups.
(i) Z,XZ,X7Z;X 7L,
(i) Zy X Zyg X L, XLy X Ly,
(i) Z, X Z, X Z, X Z,
(V) Z,XZ,XZ XLy XL, XL XL,

2. Let Xbe a set with 5-elements and G = (P(X), &), where P(X) is the power set of
X and @ is the symmetric difference operation. Determine the invariants of G.

3. Let G be the group of all positive integers less than 47 and relatively prime to 47,
under the multiplication modulo 47. Then find the invariants of G.

4. Let G be the group of all mappings of a 4-element set into the group (Z,, +,)
under point-wise operation. Determine all the invariants of G.

5. Determine the invariants of each abelian group of order less than or equal to 30.

8.4 GROUPS OF SMALL ORDER

We conclude the discussion on group theory with the complete description
of all groups of order less than or equal to 20. We have derived an exact for-
mula for the number of abelian groups of a given order » and an algorithm
to list all these groups, up to isomorphism. However, there is no precise
formula for the number of all groups (nonabelian groups) of a given order
n. In this section, we describe these groups (up to isomorphism) of order n
for n = 20.

Let us first recall that any group of prime order is cyclic and hence abelian
and that any group of order p?, where p is prime, is abelian and there are only
two such groups, namely Zp or Zp X ZP. Further, we have proved that any
group of order pg, where p < g are primes such that p does not divide ¢ — 1,
is cyclic. In the following, we prove that there is a unique nonabelian group
of order pgq, when p divides ¢ — 1.

Theorem 8.4.1. Let p and ¢ be primes such that p < ¢ and p divides ¢ — 1
and G be a nonabelian group of order pg. Then, G is a group generated by two
elements a and b satisfying the following:

1. a?=1=bla+ eand b # e

2. a'ba = b, where r # 1(mod ¢) and »* = 1(mod g).

Also, G is the unique (up to isomorphism) nonabelian group of order pgq.
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Proof: By Sylow Theorem III, the number of Sylow g-subgroups of G is kq
+ 1 which divides |G| = pq. This implies that kg + 1 = 1 and hence there
exists exactly one Sylow g-subgroup B which is a normal subgroup of order
g in G. Since g is prime, it follows that B is cyclic and hence B = <b> for
some b € G such that b7 = e # b. Also, the number of Sylow p-subgroups is
of the form mp + 1 for some m = 0 and is divisor of |G| = pq. This implies
that mp + 1 = 1 org. If mp + 1 = 1, then, as above, there exists a unique
subgroup 4 of order p which becomes normal in G and, in this case 4 N B =
{e} and 4B = G,sothat G=A X B=7 X7 =17, andhence G is cyclic
and abelian, which is a contradiction to the hypothesis that G is nonabelian.
Therefore, mp + 1 = g; that is, the number of Sylow p-subgroups is ¢.

Let A be a Sylow p-subgroup of G. Then, |[A| = p and hence 4 = <a> for
some a € G such that @* = e # a. Consider the subgroup <a, b> generated
by a and b. Since 4 and B are contained in <a, b>, we have AB C <a, b>.
Also, A N B = {e} and hence

A| B :
|AB|:| 1Bl _p 9_\g
|ANB|

and hence AB = G, so that <a, b> = G.

Since B = <b> is a normal subgroup of G, a”'ba = b" for integer r, then r
1 (mod g), (otherwise, a 'ha = b and hence ba = ab which implies that G is
abelian, a contradiction). Now, we have

a'ba = b = a'b*a = (a'ba)(a'ba) = b*
=a'ba=b" (by induction)
= al(a'ba)a = a'ba = b
= aba* = b
= a?ba’ = b (by induction)
= b = ebe = atha’ = b”
= =1 (mod g) (since O(b) = q).

Thus, G is generated by a and b, which satisfy the following:

1. e =e=bla+eand b # e
2. a'ba=0b",r#1(modq)and ” = 1 (mod g).

On the other hand, if G’ is any nonabelian group of order pg, then G’ is gen-
erated by elements a and b satisfying the above properties (1) and (2). Now,
AB = G', where A = <a> and B = <b> and hence

G ={adb:0=i<pand0=;<g}.
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Since the solutions of ¥ = 1 (mod ¢), x # 1 (mod g¢), are r, 72, ..., ", it fol-
lows that G = G’, since replacing a by & as a generator of <a> replaces r by
7. This completes the proof.

Corollary 8.4.1. Let G be a group of order pg, where p and ¢ are primes such
that p < g. Then, either G is cyclic or G is a nonabelian group generated by
two elements a and b satisfying the properties (1) and (2) above.

Now, we list all groups of order less than or equal to 20. Some of the

proofs involved in the listing are left as exercises to the reader.

o »

10.

11.
12.

1. The trivial group {e} is the only group of order 1.

2. Z, is the only (up to isomorphism) group of order 2, since 2 is prime.

3.

4. Any group of order 4(= 2?) is abelian and there are only two groups of

Z, is the only (up to isomorphism) group of order 3.

order 4, one cyclic and the other noncyclic abelian group; namely Z, and
Z, X L,
Since S is prime, Z, is the only group of order 5.

. There are two groups of order 6, one is cyclic and the other is a nonabe-

lian group (see Corollary 8.4.1). These are Z, and the symmetric group
S..Since 6 = 2 - 3, 2 and 3 are primes, there is exactly one abelian group
of order 6 which is the cyclic group Z_. S, is a nonabelian group of order
6 and S, is generated by the elements

a=(12) and b=(123),
ad=e=b0,a#eb#e and
a'ba=(12)(123)(12)=(132)=b*(see Theorem 8.4.1).

Since 7 is prime, Z, is the only group of order 7.

There are 5 groups of order 8, 3 abelian and 2 nonabelian. Z, X Z, X 7Z.,,
Z, X Z, and Z, are the only abelian groups of order 8.

The quaternion group O, = {1, — 1,4, — i, /, — j, k, — k} and the dihe-
dral group D, are the only nonabelian groups of order 8.

Any group of order 9 (= 3% and 3 is prime) is abelian. There are only
two groups of order 9, one is cyclic Z, and the other is noncyclic abelian
Z, X L.

There are only two groups of order 10, one is the cyclic group Z,, and
the other is the dihedral group D,

Since 11 is prime, the cyclic group Z | is the only group of order 11.
There are five groups of order 12, two abelian and three nonabelian. Z ,
and Z, X 7, are the abelian groups of order 12.
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13.
14.

15.

16.

17.
18.

19.
20.
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The alternating group A, (the group of even permutations in S,), the
dihedral group D, and the group G described below are the only nonabe-
lian groups of order 12. Note that

D65S3><ZZED3><ZZ.

G is the group generated by two elements a and b such that O(a) = 4,
O(b) =3 andab = b 'a.
Since 13 is a prime, the cyclic group Z , is the only group of order 13.

There are two groups of order 14, one is the cyclic group Z , and the
other is the dihedral group D.,.

Any group of order 15 is cyclic (since 15 = 3 - 5 and 3 does not divide
5 — 1) and hence Z , is the only group of order 15.

There are totally 14 groups of order 16 out of which 5 are abelian and 9
are nonabelian.

The abelian groups of order 16 are Z
and Z, X 7, X 7, X 7,.
The nonabelian groups of order 16 are given below.
(i) The dihedral group D,.
(ii) D, X Z,, where D, is the dihedral group of degree 4.
(i) Qg X Z,, where Q, is the eight element quaternion group.
(iv) The group generated by two elements a and b such that O(a) = 8,
O(a) = 2 and ab = ba’.
(v) G = <a, b>,where O(a) = 8, 0(b) = 2 and ab = ba’.
(vi) G = <a, b>, where O(a) = 4 = O(b) and ab = ba’.
(vil) G = <a, b, ¢c>, where O(a)= 4, O(b) = 2 = O(c), cbca’h = 1,
bab = a and cac = a.
(viii) G = <a, b>, where O(a) = 8, a* = b* and aba = b.
(ix) G = <a, b>, where O(a) = 4 = O(b), abab = e and ab* = ba’.

17 is a prime and hence Z . is the only group of order 17.

ZyX Ly T, X Ty T, X T, X T,

16>

There are five groups of order 18, two abelian and three nonabelian. Z
and Z, X Z, are the abelian groups and the nonabelian groups are D,,
S, X Z, and the group G = <a, b, ¢> such that O(a) = 2, O(b) = 3 =
O(c), bc = ¢b, bab = a and cac = a.

19 is a prime and hence Z , is the only group of order 19.

There are five groups of order 20, two abelian and three nonabelian. Z, and
Z, X Z,, are the abelian groups, while the nonabelian groups are the dihe-
dral group D, the group G = <a, b> where O(a) = 4, O(b) = 5 and bab
= a and the group H = <x, y> where O(a) = 4, O(b) = 5 and ba = ab’.
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Rings

9.1 Examples and Elementary Properties
9.2 Certain Special Elements in Rings
9.3 The Characteristic of a Ring

9.4 Subrings

9.5 Homomorphisms of Rings

9.6 Certain Special Types of Rings

9.7 Integral Domains and Fields

It is well known that there are two familiar binary operations, namely the
addition + and the multiplication - on the set Z of integers and that (Z, +) is
an abelian group where as (Z, -) is only a semigroup. We have earlier worked
with algebraic systems, namely semigroups, monoids and groups, where
there is only one binary operation in each. Now, in this chapter, we initiate
the study of abstract algebraic systems having two binary operations as in the
case of integers. Also, we have the rational number system, the real number
system, the complex number system, the set of all » X n matrices, where in
each of these cases we have two binary operations satisfying certain connec-
tive properties in addition to the properties satisfied by the individual opera-
tions. We introduce a common abstraction of these in the form of a ring and
develop a general elementary theory of rings. A ring is basically a combina-
tion of an abelian group and a semigroup and therefore a previous knowledge
of groups and semigroups will be of considerable help. Most of the important
concepts in group theory have natural extensions to ring theory.

9.1 EXAMPLES AND ELEMENTARY PROPERTIES

When we have two binary operations say * and o on a set X, in order to get
information about the algebraic system (X, *, o) more than we could obtain by
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studying each operation separately, these must be some relationship between
the two operations. The most common requirement is that one of them be
distributive over the other: the operation * is said to left distributive over o if

a*boc)=(@@*b)o(a*c) forallag,bandc € X
and * is said to be right distributive over o if
(aob)*c=(@*c)o(b*c) foralla,bandc € X.

We say that * is distributive over o if it is both left and right distributive
over o.

In this section, we present a formal definition of a ring with several illus-
trative examples and prove certain important elementary properties of rings.

Definition 9.1.1. A triple (R, +, -) is called a ring if R is a nonempty set and
+ and - are binary operations on R satisfying the following:

I. (R, +) is an abelian group; that is,
(ILD)a+b=>b+aforallaand b € R
(I2)a+ (b +tc)=(a+b)+ cforalla,band c € R
(I.3) There is a (unique) element 0 such that

a+0=a foralla €R and

(I.4) For each a € R, there exists (unique) element —a € R such that
a+ (—a)=0.
II. (R, ) is a semigroup; that is,

a*(b-c)y=(@-b)-c foralla,bandc € R
III. The operation - is distributive over the operation +; that is,

a-(b+c)y=(a-b)+(@a-c)
and (a+b)-c=(a-c)+((b-c) foralla,bandc €R.

One should clearly understand that + and - are abstract binary opera-
tions and not ordinary addition and multiplication of integers or real num-
bers. However, for convenience, we call the operation + as addition and
the operation - as multiplication. In the light of this terminology, it is
natural then to speak of the abelian group (R, +) as the additive group of
the ring (R, +, -) and of (R, *) as the multiplicative semigroup of the ring
(R, +, ).
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Recall from the group theory that the element 0 in (1.3) above is unique
and is called the additive identity or the zero element in R. Also, for any
a € R, the element —a in (1.4) above is unique and is called the additive
inverse of a.

In order to minimize the use of parentheses (brackets) in expressions
involving both the operations + and -, let us stipulate that multiplication is to
be performed before addition. Accordingly, the expression a - b + ¢ stands
for (a - b) + c and not for a - (b + ¢). Also, because of the generalised asso-
ciative law, parentheses can also be omitted when we write sums or products
of more than two elements. For example, we write

al'bl+a2~b2+a3+a4~b4
instead of  ((a, - b)) + (a,* b)) + (a, + (a, " D).

It is needless to say that a + b is called the sum of @ and b and a - b is called
the product of a and b in this order. Also, as usual, we write ¢ — b for a +
(—b) and ab for a - b, when there is no ambiguity about the multiplication.
Note that, as in the case of groups, we simply say that ‘R is a ring’ instead of
saying that ‘(R, +, -) is a ring’ when there is no ambiguity about the opera-
tions + and -.

Further, notice that the operations + and - in a ring R cannot be inter-
changed, for (R, ) may not be a group at all and + may not be distribu-
tive over -. In fact, except in the trivial case when R = {0}, (R, ) isnot a
group. These things will be more clear, when we consider the following
examples.

Example 9.1.1

1. Let Z be the set of all integers, QQ be the set of all rational numbers and
R be the set of all real numbers. Then, (Z, +, -), (Q, +, ) and (R, +, *)
are all rings, where + and - are the usual addition and multiplication of
real numbers. In each of these cases, the number 0 is the zero element
(that is, the additive identity).

2. Let (G, +) be an abelian (commutative) group in which 0 is the identity
element. Define @ - b = 0 for all a and b € G. Then, (G, +, -) is aring,
since - is clearly associative and distributive over +, for,

a-b+c)=0=0+0=(a-b)+(a-c)
and (a+b)-c=0=0+0=(@-¢c)+(b-c)

for any a, b and ¢ € G. The multiplication here is called the trivial mul-
tiplication in an abelian group. Rings of this type are called zero rings.
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3. LetM (R)bethesetofall2 X 2matricesover R (thatis, withentriesasreal

. all a12 bll b12 :
numbers).For any matrices 4 = and B = in M,(R),
b

define G Ay b by
A+ B = a,+b, a,th,
a, +b, a,t+by
and A-B= [anbn +a,b, a,b,+a,b, ]
ay b, T ayb,,  ayb, +a,b,

Then, (M (R), +, -) is a ring and is called the ring of 2 X 2 matrices
over R. One should carefully check the validity of the axioms I, IT and
IIT of Definition 9.1.1 carefully. Note that the matrix in which all the
entries are zero is the zero element and is called the zero matrix. Also,
the additive inverse —4 of 4 is given by

4= [_all —ap ]
Ty Tdp
4. Let C denote the set of all complex numbers; that C is the set of all

expressions of the form a + ib, where a and b are arbitrary real numbers.
Foranyx = a + ibandy = ¢ + id in C, define

x=y&sa=c and b=d
x+y=(a+b)+ib+d
x+y = (ac — bd) + i(ad + bc),

where a + b, ac, etc. are the sums and products in the ring (R, +, ).
Then, (C, +, -) is aring and is called the ring of complex numbers. Note
that 0 + {0 is the zero element in C, which is also denoted simply by 0.
Further, the additive inverse —x of x = a + ib is given by

—x = (—a)+i(—b)
As usual, we denote @ + i0 by a, 0 + ib by ib and 0 + i1 by i. As per this

notation, note that i-i = —1.

5. In the above example, the operation + is defined coordinate wise. If
multiplication is also defined as coordinate wise (considering a and b
as first and second coordinates of a + ib), then C together with these
coordinate wise addition and multiplication forms a ring.

6. The procedure in 5 above can be generalised as follows. Let (R, +, *),
(R, +,*), ..., (R, +, ) be any rings and

R=R XR X +XR ={(a,a, ...,a):a R forl =i=n}.
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Foranya = (a,a,,...,a)and b = (b, b,, ..., b)) in R, Define

22 1272

atb=(a +b,a,+b,..,a +b)
and a-b=(a b,a, b,..,a D).

Then, (R, +, -) is aring and is called the product of R , R,, ..., R, and is
denoted by _I:IIRi or, simply, R, X R, X --- X R . Note that, (0,0, ..., 0)

is the zero element in the product, where 0 stands for the zero element in
each R, The additive inverse of any a = (a,, a,, ..., @) is given by

—a=(—a,—a,..., —a).

. Let (R, +, -) be any ring and X be any nonempty set. Let R be the set
of all mappings of X into R. For any fand g € R, define f+ gandf- g:
X — Rby

(f+ &) = f(x) + g(x)
and (f- 2)(x) = f(x) - g(x), forallx € X,

where the operations + and - on the right side are those in R. Then, (R¥,
+, +) is a ring. The operations + and - on R* defined above are called
point-wise addition and point-wise multiplication. The constant map
which maps each element of X onto the zero element in R will be the
zero element in RY and the additive inverse of fis defined by (—/f)(x) =
—f(x) forallx € X.

. Let n be any positive integer and consider the group (Z, , +,), where
Z,=10,1,2,...,n— 1}
and + is the addition modulo 7. Recall that + is defined on Z by

a+b ifa+b<n
a +n b = . )
atb—n ifa+tb=n
forany aand b € Z . Note thata + b is precisely the remainder obtained
by dividing the usual sum a + b by n. Now, extend this to the multiplica-
tion also, by defining
a-b=r, where0=r<n,ab=gqn+r,q and re€z,

n

forany a and b € Z . Note thata - b is precisely the remainder obtained
by dividing the usual product ab by n. This operation - is called the
multiplication modulo n. 7 _is a finite set with n elements and the addi-
tion + and multiplication - modulo » are given in the following table
forn = 6.
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10.

(Zg +9)
. 0 1 2 3 4 5
00 0 0 0 0 0
1.0 1 2 3 4 5
2 0 2 4 0 2 4
303 0 3 0 3
4 0 4 2 0 4 2
5.0 5 4 3 2 1

(Zg )

It can be proved that (Z , + , *)) is aring and is called the ring of integers
modulo 7.

Let R be a set consisting of only one element, say R = {a}. Then, the
only way of defining binary operationon Risa + a =aanda -a = a
and (R, +, -) is a ring in which a itself is the zero element and —a = a.
This ring is called the trivial ring. When we say that R is a nontrivial
ring, it means that R contains atleast two elements.

Let X be any set and P(X) be the set of all subsets of X. For any 4 and B
in P(X), define

A+B=A—-B)UB —A)
and A-B=A4ANBKB

Then, we shall prove that (P(X), +, -) is a ring. Recall that the empty set
J is the zero element and that (P(X), +) is an abelian group. Clearly -
is associative. Also, for any 4, B and C in P(X), we have
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A-B+C)=4N(B—- C)U(C — B))
=UNB-C)UMUN(C—B)
=(@ANB)—ANCOY)U(ANC) —(ANB))
—(ANB)+ (AN 0O
—(A-B)+(4-C)

Since N is a commutative operation, there is no need to verify that - is
right distributive over +. Thus, (P(X), +, *) is a ring.

In the following, we prove certain important elementary properties of

rings.

Theorem 9.1.1. Let (R, +, ) be a ring. Then, the following holds good for
any elements a, b and ¢ in R.

1. 0a = 0 = a0, where 0 is the zero element in R.
2. a(—=b) = —(ab) = (—a)b
3. (—a)—b)=uab
4. a(b —c¢)=ab — ac
5. (a — b)c = ac — bc.
Proof:
1. We have

0+ 0a=0a=(0+ 0)a=0a+ 0a

and, by the cancellation law in the group (R, +), it follows that 0 = Oa.
Also,

0+ a0 =a0=a0+0)=a0 + a0
and hence 0 = 0.
Consider
ab + a(=b) =a(b + (=b)) =a0 =0 (by (1))

and hence a(—b) is the additive inverse of ab. That is, —(ab) = a(—b).
Similarly

ab + (—a)b = (a + (—a))b = 0b = 0 (by (1))

and therefore, (—a)b = —(ab).
We have (—a)(—b) = —((—a)(b))=—(—(ab)) = ab

4. alb—c)=alb+ (—c)) =ab + a(—c) = ab — ac

. (a—=b)c=(a+ (=b))c=ac+ (—b)c=ac— bc. <
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Definition 9.1.2. A ring (R, +, *) is said to be commutative if the multiplica-
tion - is a commutative operation; that is,

a-b=b-a forallaand b € R.

Note that the additive operation + is always commutative in any ring R and
therefore, by a commutative ring R, we only mean that the multiplication is
commutative.

Definition 9.1.3. A ring (R, +, ) is said to be a ring with unity or a ring with
identity if there exists an element e in R such that

a-e=a=e¢-a foralla €R.

The element e, if exists, is unique.

Note that R always has the additive identity, namely the zero element 0. By
a ring with unity, we only mean that R has multiplicative identity also. The
multiplicative identity, if exists, is usually denoted by 1, with due respect to
the convention that the multiplicative identity in the real number system R is
1, and is called the unity or identity in the ring.

Theorem 9.1.2. Let (R, +, *) be a ring with unity. Then, R is trivial if and
only if 0 = 1 in R (that is, the additive identity coincides with the multiplica-
tive identity in the ring R).

Proof: If 0 = 1, then, for any a € R,
a=1la=0a=0
and hence R = {0}. The converse is trivial. <

Example 9.1.2
1. Eachof the rings (Z, +, -), (Q, +, ), (R, +, ), (C, +,),(Z,, +, -,) for

any n € Z* and (P(X), +, N ) is a commutative ring with unity. nXlns the
unity element in (P(X), +, N), while 1 is the unity element in all these
other rings.

2. Any zero ring (see Example 9.1.1 (2)) is commutative and has no unity

element, unless it is trivial.
3. The ring M (R) of 2 X 2 matrices is with unity, where

is the unity. However M (R) is not commutative, for consider

0 2 1 0
A= and B = .
o 1)z, 3
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0 21 O 4 0
Then, A-B= . =
0 1)1(2 0 2 0

1 0}(0 2) (0 2
and B- 4= . =
2 0)10 1 0 4
andhence 4 - B # B - A.
4. Thering R = R X R, X --- X R given in Example 9.1.1 (6) is commu-

tative if and only if each R, is commutative and R has unity if and only if
each R, is so.

5. In Example 9.1.1 (7) also, R* is commutative if and only if R is commu-
tative. Further R has unity if and only if R is so.

Worked Exercise 9.1.1. Prove that (Z, + , -) is a commutative ring with
unity for any positive integer n, where + and - are addition and multiplica-
tion modulo #, respectively.

Answer: Recall that Z, = {0, 1, 2, ..., n — 1} and that we have already

proved in group theory that (Z , +)) is an abelian group.
Leta, b and ¢ € Z,. Suppose that

Then,ab = gn + r,rc =qn +s
bc=pn+t and at=pn+u,
where ¢, q,,pandp € Zandr,s,tandu € {0, 1,2, ...,n — 1}.
Since the usual multiplication of integers is associative, we have (ab)c =

a(bc) and therefore

(gn + r)c = a(pn + 1)
gnc +gqn+s=apn+tpntu
ie, (gc+gq)n+s=(ap+pn+u

By the uniqueness of the quotient and the remainder in the division algo-
rithm, it follows that

gc+q,=ap+p, and s=u

In particular, (@ * b)) c=r- c=s=u=a- t=a- (b- o).
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Thus, -, is associative. Also, since the usual multiplication is commutative, -
is also commutative.
To prove the distributivity of - ,leta,bandc € Z,

and b+ c=xa: (b+ c)=y
a b=z and a- c=v
sothat b+c=g¢gn+x,ax=¢q'n +y,
ab=pn+z and ac=p'n+tv,

where ¢, q',pandp’ € Zand x, y,zandv € {0, 1,2, ..., n — 1}.
Letz+v=jn+t,0=t<n,

sothatz + v =1

Now, by the distributivity of the usual multiplication over the usual addition
in Z, we have

a(b +c¢)=ab + ac

and hence a(gn + x) = (pn + z) + (p'n + v).
Therefore, agn + ¢'n +y =@ + p')n +jn +t

Slag+tgm+y=@-+p +jm+t
and hence y = ¢, so that
a, b+ co)=y=t=z+ v=(a- b+ (a- o).

Thus, - is distributive over + . Therefore, (Z , + , - ) is a commutative ring.
If n = 1, then Z is trivial. If n > 1, then 1 is the unit element in Z . Thus,
(%, +,, ) is a commutative ring with unity.

Worked Exercise 9.1.2. Prove that, for any set X, (P(X), +, N) is a commuta-
tive ring with unity.

Answer: We have already proved that (P(X), +) is an abelian group, where
+ is the symmetric difference operation. For any subsets 4, B and C of X, we
have A NB)NC=AN(BNC)and 4 N B = BN Aand hence (P(X),N)isa
semigroup. In Example 9.1.1 (10), we have proved the distributivity of N over
+. Thus, (P(X), +, N) is a commutative ring. Also, since

XNA=4 forall 4 € PX),

X is the unity element in P(X). Thus, (P(X), +, N) is a commutative ring with
unity.
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Worked Exercise 9.1.3. Let Z[i] = {a + ib : a and b € Z}. Then, prove
that (Z[i], +, -) is a commutative ring with unity, where + and - are the
usual addition and multiplication of complex numbers, defined in Example
9.1.1 (4).

Answer: Clearly, (Z[i], +) is an abelian group. Let x, y and z € Z[i]. Then
x=a+tiby=c+id and z=r+is
where a, b, ¢, d, r and s € Z. Then,

x-(-z)=(a+ib)((cr — ds) + i(cs + dr))
= (a(cr — ds) — b(es + dr)) + i(a(cs + dr) + b(cr — ds))
(x-y):z=((ac — bd) + i(ad + bc)) - (r + is)
= ((ac — bd)yr — (ad + bc)s) + i((ac — bd)s + (ad + bc)r)
=x-(y-2)

Therefore, (Z[i], -) is a semigroup, clearly - is commutative.
Also,x - (y +z)=(a +ib) - ((c tr)+id+ys))

= (a(c +r) = b(d + s)) + i(b(c +r) + a(d + s))
= [(ac — bd) + i(ad + bc)] + [(ar — bs) + i(as + br)]
=x-y+tx-z
Thus, - distributes over +. Also, 1(= 1 + i0) is the unity in Z[{]. Thus, (Z[i],
+, -) is a commutative ring with unity. Z[7] is called the ring of Gaussian

integers.
Recall the following from group theory.

Definition 9.1.4. Let (R, +, -) be a ring. Then, for any ¢ € Rand n € Z, we
define na inductively as follows.

0 ifn=0
na={(n—Da+a ifn>0.
(—n)(—a) ifrn<0

Thatis,0a = 0,la =a,2a=a+a,3a=a+a+ a, (—2)a=2(—a)=
(—a) + (—a), etc.
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Definition 9.1.5. For any element a in a ring R and positive integer n, we
define

a =

. la ifn=1
aa ifn>1

Thatisa*> =a-a,a®> = a - a- a, etc. If the ring R has unity 1, then we define
a® = 1. If the element a is multiplicatively invertible in R and a’ is its inverse
in R, then we define a™" = (a')" for all n > 0.

EXERCISES 9(A)

1. Which of the following are rings- Substantiate your answers (here + and - are
usual addition and multiplication of numbers).

»H @z, +,)
(i) (6Z, +,-)

(iii) (E, +, -), where E is the set of even integers.
(iv) (O, +, ), where O is the set of odd integers.
v) (P(X), N, U), where P(X) is the power set of a set X.
(vi)  (PCX), U, M)

(vii)  (PX), +, L)

(viii)  (Z[V2], +,-), where Z[N2]={a+ b2 :a, bE Z}.
(ix) (Q[\/E ], +, *), where Q[JE 1={a+ b2 : a and b are rational numbers}.
x @, ,t)
(xi) (Q@—{0},+,")

i) R—-Q,+,)

2. Compute the following in the given rings.
@O 1358 (25, + 57,9
(11) 7 'l()9in (Z]O’ +l()’ '10) 1 1
(i) A4-4-A4in (M(R), +, -) where A_[l 1].
(iv) 34, 6710 (Z5 + 50 " 100)
V) 84,000,600+ 7 Hin(Z,,+,"
(vi) (4 + B)N Cin (P(X), +,N), where 4 = {2,3,4,5}, B={3,5,6,7}
and C = {1, 2, 3}.

3. Prove that aring (R, +, ) is commutative if and only if (@ + b) (¢ — b) = &* —
b*forall e and b in R.
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Let (R, +, *) be a ring. Prove that the following are equivalent to each other.
(1) + distributes over -.
(i) R s trivial; that is, R = {0}.
(iii) (R, -, +)isaring.
(iv) atb=abforallaandbinR.

. Leta and b be two elements of a ring such that a - b = b - a. Prove the following

for any positive integer n.
(a+by=a + ne, a'b + ne, a4 -+ ne,_, ab” ' + b

n!

n
= chra””b’, where ne, = ————.
(n—r)!
=y r! !

For any prime p and @ and b € Zp, prove that (a + by = o + br.

Prove that the commutativity of the operation + in a ring (R, +, *) is a conse-
quence of the other axioms of a ring.

Let (R, +, -) be a ring with unity 1. Define new operations & and © on R as
follows for any @ and b € R.

a®b=a+b+1
a®Ob=a-b+a+b.

Prove that (R, @, ©) is a ring with unity and that (R, +, -) is commutative if and
only if (R, &, ©) is commutative.

. Let (R, +, -) be a ring such that (a*> + a)x = x(a* + a) for all @ and x € R. Then

prove that (R, +, -) is a commutative ring.

Let (R, +, -) be a ring such that, for any a, b and ¢ € R,
ab=ca=a=0 or b=c

Then prove that (R, +, -) is a commutative ring.

Prove that a ring (R, +, +) is commutative if the group (R, +) is cyclic.

Let (R, +, -) be aring and n be an integer such that n > 1 and x” = x for allx € R.
Then prove that, for any ¢ and b € R,

ab = 0<% ba = 0.

Prove that the set {0, 2, 4} is a commutative ring with unity with respect to addi-
tion and multiplication modulo 6.

Give an example of a finite noncommutative ring.
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9.2 CERTAIN SPECIAL ELEMENTS IN RINGS

In any ring, we have the additive identity 0 and, in certain rings, there is unity
which is the multiplicative identity. In this section, we shall introduce certain
other special elements in a ring and discuss their properties.

Definition 9.2.1. An element a in a ring (R, +, ) is said to be an idempotent
ifa-a=a

Example 9.2.1

1. The zero element 0 and the unity, if it exists, in any ring are idempotents.
2. 3 and 4 are idempotents in (Z, +,, -(),since 3 3 =3and4 - 4 =4;5
is not an idempotent, since 5 -, 5 = 1 in Z .

3. In the ring Z of integers, 0 and 1 are the only idempotents.

Definition 9.2.2. A ring (R, +, *) in which every element is an idempotent is
called a Boolean ring.

Example 9.2.2

1. (Z,, +,, +,), the ring of integers modulo 2 is a Boolean ring.

2. For any set X, (P(X), +, N) is a Boolean ring, since 4 N 4 = A for all
ACX

3. For any set X, the set Z; of all mappings of X into Z, is a Boolean ring
under the point-wise operations (see Example 9.1.1 (7)), since Z, is a
Boolean ring.

Note that examples (2) and (3) given in Example 9.2.2 are not different.
They appear to be the same in the sense given below.

Theorem 9.2.1. Let X be any set. For any 4 C X, define

1 ifxe4d

X—7Z, b = .
X 2 By X {o ifxe A

Then, 4 — y, is a bijection of P(X) onto Z} such that, for any 4 and B
in P(X)

Xiww = Xa T2 X @M X0y = X, 7 Xy
Proof: If 4 and B € P(X) and a € 4 — B, then

X (a)=1and y,(a) =0
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and hence x, # x, if 4 # B. Thus, 4 — x, is an injection. Further, if f' & /s
and 4 = f7'({1}), then x, = f. Thus, 4 — Yy, is a bijection of P(X) onto Zy.
The other assertions follow from the definitions of the operations + on P(X)
and Z; , N on P(X) and the point-wise operation -, on Zy. <

Theorem 9.2.2. For any elements a and b in a Boolean ring (R, +, *),

a+a=0; thatis,a = —a
and ab = ba

and hence every Boolean ring is commutative.
Proof: Let (R, +, -) be a Boolean ring and @ and b € R. Then, consider

at+b=(a+byl=(a+b)(a+bh)
=a*+ab + ba + b
=a+ab + ba + b.

From the cancellation laws in the group (R, +), we have
0 =ab + ba.
In particular, by taking a = b, we have
O0=aa+aa=a+a

Also, ab = —(ba) = (—b)a = ba.
Thus, (R, +, -) is a commutative ring. <

Definition 9.2.3. Let (R, +, -) be aring and a € R. Then, a is called a nilpo-
tent if a" = 0 for some positive integer 7.
Example 9.2.3

1. The zero element 0 in any ring R is nilpotent, since 0' =
2. 6is anilpotent element in Z, since

6 =(6,6)6=4-6=0

3. Except 0, no element in the ring of integers is nilpotent.

Definition 9.2.4. A nonzero element ¢ in a ring R is said to be a zero-divisor
if there exists a nonzero element b such that ab = 0 = ba.
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Note that, for two elements @ and b in a ring R, it is quite possible
that ab = 0 and ba # 0. For consider the example (4) in the following
example.

Example 9.2.4

1. Thering (Z, +, ) of integers has no zero divisors, since, for any integers
a and b, ab = 0 only whena = 0 or b = 0.

2. 2 and 3 are zero divisors in (Z,, +, *,).

3. IfXisasetand 4 isanonempty propersubsetof X, then4 N (X — 4) =,
A# Jand X — A # J and hence 4 is a zero divisor in (P(X), +, N).

4. Consider the ring M,(R) of 2 X 2 matrices. Let

10 00
A= and B= .
[1 0] [1 1 ]

00 00 00
Then A-B= and B-A= + .
00 20 00

However, there is some other C in M (R) such that 4 - C = 0 = C - 4; for,

00
take C = [1 ] Then, AC = 0 = CA and therefore A4 is zero divisor.

Definition 9.2.5. Let (R, +, ) be aring and @ € R. If R is a ring with unity
and a has multiplicative inverse in R, then « is called a unit or multiplicatively
invertible or, simply, invertible. That is, a is a unit in R if there exists b € R
such thatab = 1 = ba.

Note that, in any ring (R, +, -), every element a has additive inverse,
namely —a. However, an element in a ring with unity may not possess mul-
tiplicative inverse. Elements possessing multiplicative inverse need special
attention. First, Let us consider the following example.

Example 9.2.5

1. In any ring, the unity (if it exists) is a unit.

2. In the ring of integers Z, 1 and —1 are the only units and, for each of
them, the multiplicative inverse is itself.

3. In the ring of rational numbers, or in the ring of real numbers, or in the
ring of complex numbers, every nonzero element is a unit.

4. The zero element is a unit in a ring R if and only if R is trivial; since
0a =0 =a0foralla €R.
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If @ is a unit in a ring R, then the element b € R such that ab = 1 = ba is
unique and is denoted by a~! and is called the inverse of a. Note that the
additive inverse of a is denoted by —a, while the multiplicative inverse (if
exists) of a is denoted by a .

Theorem 9.2.3. Let (R, +, ) be a ring with unity. If @ and b are units in R,
then so is their product ab and (ab)™' = b~ 'a'. Also, the set U(R) of all units
in R forms a group under multiplication.

Proof: Ifaa™' =1 =a'aand bb™' = 1 = b~ 'a, then (ab)(b~'a™") = a(bb™")
a'=aa' = 1and(b'a")ab) = b”'(a'a)b = b,"'b = 1 and hence ab
is a unit and (ab)™' = b~ 'a"'. Therefore, the multiplication in R, restricted to
U(R), is a binary operation on U(R) and is clearly associative. Also, the unity
1 will be the identity in (U(R), -). Further, if a is a unit, then so is its inverse
and (¢7!)"! = a. Thus, (U(R), -) is a group. <

Worked Exercise 9.2.1. Let 1 <7 € Z and Z, be the ring of integers modulo
n. For any a € Z , prove that @ is a unit in Z_if and only if a and » are rela-
tively prime.

Answer: Consider the following

(a,n)=1<xa+yn=1 {forsome integers x and y
< ba+zn=1 forsomeb,zE€ Zwith0<b<n
(use division algorithm to write x = gn + b)
b a=1,bEZ,
S aisaunitin(Z, + , ).

n n

Worked Exercise 9.2.2. For any n > 1, prove that any nonzero element in the
ring Z_is either a unit or a zero divisor.

Answer: Let 0 < a < n. Suppose that a is not a unit in Z, . Then, (a, n) > 1
and let d = (a, n). Then, d is a common divisor for a and » and hence both %

and % are integers and

Therefore, a "(5) =0inZ and % is nonzero in Z, . Therefore, a is a zero
divisor in Z .
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Worked Exercise 9.2.3. Let a and b be elements in a ring R such that ab = ba.
Prove the following:

1. a + bis anilpotent if a and b are nilpotents.
2. ab is anilpotent if a or b is a nilpotent.

Answer:

1. Suppose that a and b are nilpotents. Then, there exist positive integers n
and m such that @" = 0 = b™. Now, since ab = ba, we have

(a + by"™"=a™" +(m + n)cla’”*”’lb + o+ (m+ n)cmﬂb'”*”
m+n
= Z(m +n)C.a"" D"

r=0

since @* = 0 for all s > n and b* = 0 for all # > m and since, for any 0 = r
=m + n,eitherm + n —r=norr=m(otherwise m +n —r) +r <
n + m, an absurd), we get that a”*"" = 0Qorb" = 0forall0 =r=m +
n and therefore (a + b)"*" = 0, so that ¢ + b is a nilpotent.

2. Ifa" = 0, then (ab)" = a"b" = 0b" = 0. Therefore, if a is a nilpotent, then
ab (= ba) is also a nilpotent.

Worked Exercise 9.2.4. Prove that 1, —1, i and —i are the only units in the
ring Z[i] of Gaussian integers.

Answer: Letx = a + ib be a unit in Z[i]. Then, there exists y = ¢ + id in Z[i]
such that xy = 1. Here q, b, ¢ and d are integers. Then,

L=l = kPl = (@ + b°)(c* + &)

Therefore, > + b*> = 1 = ¢* + d&° (since a® + b* > 1). Again, since a*> > 0 and
b*> 0, we get that
a=1lor—1 and H=0
(or) a=0 and b=1or—1

sothat x=1lor—1 or x=ior —i.

EXERCISE 9(B)

1. Determine all the zero divisors, nilpotents, idempotents and units in each of the
following rings
(i) The ring R of real numbers.
(i) Z X R, where Z is the ring of integers.



11.
12.

13.

14.
15.

16.
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(iii)) Z X Z.

(iv) The ring Z,, of integers modulo 24.
V) Z,

i) Z, X Z.

(vil) (P(X), +, N), for any set X.
(viil)  Z, X Z,,
In any nontrivial ring with unity, prove that no zero divisor is a unit.

Let a be a nonzero element in a commutative ring R. Prove that « is not a zero divi-
sor if and only if a satisfies the following cancellation law for any b and c in R:

ab=ac=b=rc

Let R be a Boolean ring with unity. Prove that the unity is the only unit in R and
the zero is the only nilpotent in R.

. Let n be any integer greater than 1. The content of # is defined to be the product

of all distinct primes dividing » and is denoted by c(n). Prove thata € Z is a
nilpotent if and only if ¢(n) divides a.

Using 5 above, derive a formula for the number of nilpotents in the ring Z, of
integers modulo 7.

For any integers @ and n with 0 =< a < n, prove that a is an idempotent in Z _if
and only if a(a — 1) is a multiple of n.

. LetR,R,..,R beringsand R =R X R, X -+ X R Foranya = (a,, a,, ...,

a) € R, prove that a is a nilpotent (idempotent) in R if and only if each q, is a
nilpotent (respectively idempotent) in R, for 1 =i = n.

In 8 above, when each R, is a ring with unity, prove that (@, a,, ..., a ) is a unit
inR X R, X - XR ifandonly if a,is a unit in R, for each 1 =i = n.

. If @ and b are idempotents in a commutative ring R, prove that ab is also an

idempotent. Can a + b be an idempotent? If not, give a counter example.
Find all the solutions of x* + 2x + 4 = 0 in the ring Z.

Prove that 0 is the only solution of x> = 0 in a ring R if and only if R has no
nonzero nilpotents.

For any prime number p, prove that the set of all nonzero elements in Zp forms a
group under multiplication modulo p.

Prove that any nonzero nilpotent in any ring R is a zero divisor in R.

Let ¢ be the Euler-totient function. Prove that the multiplicative group of units
in Z is of order ¢ (n), for any integer n > 1.

Let R be a ring with unity and @ € R be a nilpotent. Then prove that 1 + « is a unit.
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17. Let R be a ring with unity and without zero divisors. For any a and b in R, prove
that ab = 1 if and only if ba = 1 and that ¢> = 1 if and only ifa = 1 or —1.

18. Let R be a ring without nonzero nilpotents and a be an idempotent in R. Prove
that ax = xa for all x € R.

9.3 THE CHARACTERISTIC OF A RING

It is well known that na # 0 for any positive integer n and any nonzero
integer a. That is, there is no positive integer n such that na = 0 for all ele-
ments ¢ in the ring Z of integers. However, there are rings for which there
exists a positive integer n such that na = 0 for all elements « in the ring. For
example, consider a positive integer m and the ring Z_ of integers modulo
m. Then, ma = 0 for all @ € Z . In fact if n is any positive integral multiple
of m, then na = 0 for all @ € Z, . Recall that, for any element a in a ring R,
the order of a in the group (R, +) is precisely the smallest positive integer
(if exists) n such that na = 0. In this section, we discuss the existence of a
common positive integer n such that na = 0 for all elements a in the ring.
First recall that, for any positive integer » and for any element a in a ring R,
we have defined na inductively by

a ifn=1
na= ) .
(n—Da+ta ifn#1

Definition 9.3.1. Let (R, +, -) be a ring. If there is no positive integer n such
that na = 0 for all a € R, then the characteristic of R is defined to be zero.
Otherwise, the smallest positive integer n such that na = 0, for all @ € R, is
called the characteristic of R and is denoted by char(R).

Note that na = 0 if n is the integer zero or a is the zero element in the ring
R. If char(R) = 0, then, for each positive integer 7, there exists an element a
in the ring R such that na = 0. If char(R) = n > 0, then na = 0 foralla € R
and 7 is the least such positive integer.

Theorem 9.3.1. Let (R, +, *) be ring and char(R) = n > 0. Then, for any
integer m,

ma =0 foralla € R ifand only if n divides m.

Proof: Let m be any integer. If n divides m, then m = nr for some integer r
and hence, for any ¢ € R,

ma = (nr)a = r(na) = r0 = 0.
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Conversely suppose that ma = 0 for all @ € R. By the division algorithm, we
can express m as

m=qn+r, wheregandr € Zand 0 =r <n.
Then, for any a € R, we have

0=ma=(gn +rya=q(na) +ra=0+ra=ra.
Since n is the least positive integer such that na = 0 for all @ € R and since
r < n, it follows that » cannot be positive. Since 0 = r, we get that » = 0 and

hence m = gn. Thus, n divides m. <

Theorem 9.3.2. Let (R, +, ) be a ring with unity 1. Then, the characteristic
of R is precisely the order of the unity in the group (R, +).

Proof: This follows from the fact that, for any « € R and n € Z,
na = n(la) = (nl)a
and that na = 0 for all @ € R if and only if nl = 0. <

Example 9.3.1

1. The characteristic of each of the rings Z, Q, R and C is zero, since for any
integer n > 0 and for any nonzero real or complex number a, na # 0.

2. char(Z,) = n for any positive integer n, where Z is the ring of integers
modulo 7.

3. char(Z X Z ) is the least common multiple of m and n for positive inte-
gers m and n.

Worked Exercise9.3.1. Let R and S be rings of characteristic m and n, respec-
tively. Then prove that the characteristic of the product ring R X S is the least

common multiple of m and n.

Answer: We have char(R) = m and char(S) = n. First let us assume that m > 0
and n > 0. Let r be the least common multiple of m and »n and

r=ms and r=nt

for some positive integers s and ¢. Then, for any element (a, b) in R X S,
we have
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r(a, b) = (ra, rb)
= ((ms)a, (nt)b)
= (s(ma), t(nb))
= (50, 10) = (0, 0)

Therefore, 0 < char(R X S) = r. Put char(R X S) = k.
Then, for any a € R,

(ka, 0) = k(a, 0) = (0,0) and hence ka = 0.
By Theorem 9.3.1, char(R) divides k. Similarly, we can prove that char(S)
divides k. Therefore, k is a common multiple of m and n and hence r =< k.
Thus,
char(R X S) = r = L.e.m.{m, n}.
On the other hand, if char(R X S) = p > 0, then
(pa, pb) = p(a, b) = (0, 0)

and hence pa = 0 and pb = 0 for all a € R and b € S so that char(R) > 0
and char(S) > 0.

Worked Exercise 9.3.2. Determine the characteristic of Z , X Z.
Answer: If n is any positive integer, then

n(0, a) = (n0, na) = (0, na) # (0, 0)
forany a € Z and (0, a) € Z,, X 7Z. Therefore, char(Z , X Z) = 0.

EXERCISE 9(C)

1. Find the characteristic of each of the following rings.

(i) The ring E of even integers

(i) 5Z
(i) Z, X Z,
(iv) ZX1Z,

v) (PX), +,N) for any set X

(vi) Z;g under the point-wise operations, where X is any set.



10.

11.
12.
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(vii) The trivial ring R = {0}.
(viil))  The ring Z[7] of Gaussian integers.
(ix)  Z* under the point-wise operations, where X is any set.
(X) Z,XZy,yX 7,
Let R be a commutative ring with unity and char(R) = 3. For any ¢ and b € R,
compute the following and simplify.
i (a+ by
(i) (a + by
(iii) (a + b)°
(iv) (a + b)*?
Prove that a ring R is trivial if and only if char(R) = 1.

Prove that the characteristic of any finite ring is positive.

Let R be a commutative ring of characteristic 2 and E(R) be the set of idempo-
tents in R. Prove that £(R) is a ring under the operations on R.

Give an example of a ring R of characteristic 5 such that every nonzero element
in R is a unit.

. Let R be a commutative ring with unity in which each nonzero element is a unit.

If char(R) = 2 and R has atleast three elements, then prove that there exist ele-
ments « and b in R such that

(a + by #d + Db
In Exercise 7 above, suppose that char(R) is a prime number p and
A={a€R:a = a}.

Then prove that 4 is a ring under the operations on R and that every nonzero
element in 4 is a unit in 4.

Let R be a ring with identity and char(R) = n > 0. If n is not prime, prove that R
has zero divisors.

LetRbeafiniteringandR = {a,,a,, ...,a }. Let O(a) be the order of @, in the group
(R, +). Prove that char(R) is the least common multiple of O(a,), O(a,), ..., O(a,).

Prove the characteristic of a finite ring R that divides |R].

Let R be a finite ring with unity and @ and b € R. Prove that ab = 1 if and only
if ba = 1.

9.4 SUBRINGS

In this section, we deal with the situation where a subset of a ring constitutes a
ring again. Recall the set Z of integers is a subset of the ring (R, +, -) of real
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numbers and 7Z itself is a ring under the addition and multiplication of real
numbers. This is abstracted in the following definition.

Definition 9.4.1. Let (R, +, -) be a ring. A nonempty subset S of R is called
a subring of R if § is itself is a ring under the operations + and - on R
restricted to S.

In other words, S is a subring of R if S is a subgroup of (R, +) and Sis a
subsemigroup of (R, -) (that is, ab € S whenever a and b € S). The reason for
this is that the distributive laws and the associativity of the multiplication -
hold automatically for the elements of S as a consequence of their validity in
the ring R. The following is a simpler characterization of a subring and whose
proof is trivial.

Theorem 9.4.1. Let S be a nonempty subset of a ring R. Then, S is a subring
of R if and only if

aandbES=a—-bES and ab€ES.

Clearly {0} and the whole of R are subrings of any ring R and are called
trivial subrings and all other subrings (if they exist) are called nontrivial sub-
rings. A subring S of R is called a proper subring if S #+ R.

Example 9.4.1

1. Zis asubring of the ring (Q, +, -) of rational numbers, Q is a subring of
the ring (R, +, -) of real numbers and R is a subring of the ring (C, +, - )
of complex numbers.

2. Let Y be a subset of a set X. Then, P(Y), the power set of Y, is a subring
of (P(X), +, N).

3. For any nonnegative integer n, the set nZ of all integral multiples of n, is
a subring of the ring (Z, +, -) of integers. In particular, the set £ of even
integers is a subring of (Z, +, -).

Note that a ring R may possess the unity (multiplicative identity) while a
subring may not possess and, even when a subring possesses unity then it may
be different from that of R. Consider the following examples.

Example 9.4.2

1. The set E of even integers is a subring of the (Z, +, -) of integers. Z has
unity, while £ has no unity (there is no even integer e such that ea = a
for all even integers).

2. LetXbeasetand Ybe a proper subset of X. Then, P(Y) is a subring of (P(X),
+,N). Xand Y are unit elements in P(X) and P(Y), respectively and ¥ # X.
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The following is a routine verification. Observe that any subring S of a ring
R contains the zero element 0, since S is a subgroup of (R, +).

Theorem 9.4.2. The intersection of any class of subrings of a ring R is again
a subring of R.

Worked Exercise 9.4.1. Let (R, +, ) be a ring and define
C(R)={a€R:ax=xa forallx €R}.
Then prove that C(R) is a subring of R. C(R) is called the centre of R.

Answer: Since Ox = 0 = x0 for all x € R, 0 € C(R) and therefore C(R) is a
nonempty subset of R. For any ¢ and b € C(R) and x € R, we have

(a—b)x = ax — bx = xa—xb = x(a—b)
and (ab)x = a(bx) = a(xb) = (ax)b = (xa)b = x(ab)

and hence a — b € C(R) and ab € C(R). Thus, C(R) is a subring of R.

Worked Exercise 9.4.2. Let S be a subring of a ring R and char(R) > 0. Then
prove that char(S) is a positive divisor of char(R).

Answer: Let char(R) = n, we are given that n > 0 and na = 0 for all @ € R
and, in particular, na = 0 for all « € S. Therefore, char(S) > 0 and, by Theorem
9.3.1, char(S) divides .

Worked Exercise 9.4.3. Let R be a ring. For any a € R, let
C(a) = {x ER:ax = xa}.
Prove that C(a) is a subring of R and that C(R) = QR C(a).

Answer: Clearly a and 0 € C(a) and hence C(a) is a nonempty subset of R.
For any x and y € C(a), we have

ax —y)=ax —ay=xa—ya=(x — y)a
and  a(xy) = (ax)y = (xa)y = x(ay) = x(ya) = (xy)a
and there x — y € C(a) and xy € C(a). Thus, C(a) is a subring of R. Also,

XE€ CRR) < xa=ax foralla ER
< x € Cla) foralla €R.

Therefore, C(R) = QR C(a).
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EXERCISE 9(D)

1.

10.

11.

12.

13.

14.

Determine all the subrings of each of the following rings.
O 2Z,+,-)
(i) (@, +,-)
(i) (Z,y +,5 )
iv) (Z,+,-)

. If S'is a subring of a ring R and T is a subring of S, then prove that T'is a subring

of R.

Prove that S is a subring of the ring Z of integers if and only if S = nZ for some
nonnegative integer n.

Let n be a positive integer and Z  be the ring of integers modulo n. Prove that §
is a subring of Z if and only if § = {0, m, 2m, ..., (r — 1)m} for some divisor m
ofnandrm = n,r > 0.

Let X be a subset of a ring R and (X) be the intersection of all subrings of R con-
taining X. Prove that (X) is the smallest subring of R containing X. (X) is called
the subring of R generated by X.

In Exercise 5 above, describe all the elements of (X).
Let S be a subring of a ring with unity 1 and 1 € S. If a € C(R), prove that
Suia})={s,+sa+ - +sa:n=20ands, €S}

. Give an example of a ring R without unity and of a subring S of R such that S is

with unity.

Let S be a nontrivial subring of a ring R and 1’ be the unity in S such that 1" is
not the unity in R. Then prove that 1’ is a zero divisor in R.

Let S and T'be subrings of a ring R. Then prove that S U T'is a subring of R if and
only if either S C Tor T C §.

Let 6 be a class of subrings of a ring R such that, for any S, and S, € 6, there exist
S, € 6 containing both S, and . Then prove that stS is a subring of R.
(59

Let S be a nonempty subset of a finite ring R. Prove that S is a subring of R if and
only if

aandbES=a+b and ab€ES.

Let R be a ring which has no nonzero nilpotent elements. Prove that every idem-
potent in R is in the centre C(R).

Let R be a ring such that ¢> + @ € C(R) for all a € R. Prove that R is a commuta-
tive ring.



Rings 9-29

15. Let (R, +, ) be aring of characteristic » > 0 and (Z,, + , *)) the ring of integers
modulo n. Define the operations + and - on R X Z_by

(x,a) + (,b)=(x+y,a+ b)
and (x,a) - (y,b) = (xy +ay + bx,a- b).

Prove that (R X Z,, +, ) is aring in which R X {0} is a subring.

9.5 HOMOMORPHISMS OF RINGS

A homomorphism from a ring R into a ring R’ is, as one might guess, a
function f: R — R’ which preserves both the ring operations. This amounts
to applying the familiar homomorphism concept to the underlying additive
group (R, +) and the multiplicative semigroup (R, -). In the following, we
give a precise definition.

Definition 9.5.1. Let R and R’ be rings. 4 function /: R — R’ is called a
homomorphism of R into R if

fla +b) = fla) + /(b)
and f(a-b)=f(a) - f(b) forallaandb € R.

Note that the symbols + and - occurring on the left sides of the above
equations denote the addition and multiplication in R where as + and - occur-
ring on the right sides denote those in R'. This use of the same symbols for
the operations of addition and multiplication in two different rings need cause
no confusion provided the reader gives careful attention to the context if the
notation is employed. The following is the usual terminology we apply, as in
the case of group theory.

Definition 9.5.2

An injective homomorphism is called a monomorphism or an embedding.
A surjective homomorphism is called an epimorphism.

A bijective homomorphism is called an isomorphism.

A homomorphism of a ring R into itself is called an endomorphism of R.
An isomorphism of a ring R onto itself is called an automorphism of R.

S e

A ring R is said to be isomorphic with a ring R" and denote this by
R = R’ if there is an isomorphism of R onto R’. The following examples
should help us for a better understanding of the above concepts.
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Example 9.5.1

1. Let R and R’ be any rings and define f: R — R’ by f(x) = 0 for all x € R.
Then, for any a and b in R,

fla+b)=0=0+0=f(a) + f(b)
flab) =0=10-0=f(a) - f(b)

and therefore f'is a homomorphism, which is called the trivial or zero
homomorphism. Note that this is not a monomorphism unless R = {0}
and is not an epimorphism unless R = {0}.

2. The identity mapping /, of a ring R onto itself is an automorphism of R.

3. Let R be any ring and X be any nonempty set. Consider the ring R* of
all mappings of X into R under the point-wise operations (refer Example
9.1.1 (7)). For any x € X, define a_: R* — R by

a(f) =f(x) forallfe R".

Then, for any fand g € R, we have

a(f+g =+ =[x+ g =alf)+alg)
and  a(f g = (@) =/(x) ) =) ale)

and hence «_is a homomorphism of R* into R which is called the evalu-
ation homomorphism at x. It can be verified that « is an epimorphism.

4. Let n be a positive integer and consider the ring Z of integers and the
ring 7, of integers modulo n. Define /: Z — Z by

flay=r, wherea=gn+r,gandr€Z and 0 =r <n.

That is, f(a) is precisely the remainder obtained by dividing a with n.
Then, fis an epimorphism (see Worked Exercise 9.5.1).

In the following, we exhibit a few elementary properties of homomor-
phisms of rings and prove that some of the structural features are preserved
under homomorphisms of ring. First of all, the following is a simple conse-
quence of the fact at a homomorphism of rings is a homomorphism of the
underlying additive groups.

Theorem 9.5.1. Let R and R’ be rings and f: R — R’ a homomorphism of
rings. Then, the following holds.

1. £(0) = 0.
2. f(—a) =—f(a) foralla € R.
3. fla — b) = f(a) — f(b) forallaand b € R.



Rings  9-31

Theorem 9.5.2. Letf: R — R’ be an epimorphism of rings with unity. Then,
f(1) = 1 and, for any unit a in R, f(a) is a unit in R" and f(a™") = f(a)~".

Proof: Let x" € R'. Since fis an epimorphism, we can choose x € R such
that f(x) = x'. Now,

Jx" = f(Df(x) = f(1x) = f(x) = x'
and  x'f(1) = f(x)f(1) = f(x1) = f(x) = x’
and hence f(1) is the multiplicative identity in R’ so that (1) = 1, the unity in

R’. Next, let a be a unit in R. Then, there is an element ¢! in R such that aa™!
= 1 = a 'a. By applying f'to these, we get that

flayf(a™) = flaa™") = f(1) = 1
and f(a ")f(a) =fla'a) =f(1) =1

and therefore f(a) is multiplicatively invertible in R" and f(a)™' = f(a™!). <«

Theorem 9.5.3. Let /: R — R’ be a homomorphism of rings. Then, f(S) is
a subring of R’ for any subring S of R and /~!(S") is a subring of R for any
subring S” of R'.

Proof: LetSand S’ be subrings of R and R, respectively since f(0) = 0 and S
and S’ contain zero elements, it follows that /(S) # ¢ and /~'(S") # ¢. Now,

xandy € f(S) = x =f(a)and y = f(b) forsomeaandb € S
=x—y=fla—fb)y=fla—b) and a—bES
and xy = f(a)f(b) = f(ab) and ab €S
=x—y and xy€f(S)

and therefore f(.S) is a subring of R'. Also,

aandb € f1(S') = f(a) and f(b)ES
= fla — b) = fla) — f(b) €Y
and f(ab) = f(a)f(b) € S’
=a—b and ab€f(S)
and therefore f7!(S") is a subring of R. <

We discuss some more important properties of homomorphisms of rings
after introducing the concepts of ideals and quotient rings later.
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Worked Exercise 9.5.1. Let n be a positive integer and define f: Z — Z_by
f(a) = r, where r is the remainder obtained by dividing a with n. Then prove
that f'is an epimorphism of rings.

Answer: For any a € 7Z, we have
fla)=r, wherea=gn+r,qr€Zand0=r<n.

Ifr€Z,then 0 = r <nand clearly f(r) = r.
Therefore, fis a surjection.
Leta and b € Z and

a=gn+r and b=g'n+s,

where ¢, q',r,s € Z,0 =r <nand 0 = s < n. Then, f(a) = rand f(b) = s.
Now,

atb=gqn+r+qgn+s=(@+qgm+@+s)
g+ gHn+(r+,s) ifr+s<n
(g+qg'+Dn+(r+,s) ifr+s=n

and therefore f(a + b) = r + s = f(a) +, f(b). Also,
ab=(gn +r)¢g'n +s)
=(qq'n +gs+q'rm+rs

Ifrs =un +t,0 =t <n,then

ab=(qq'n +qs+q'r+un+t
and hence f(ab) =t=r- s = f(a)-, f(b).

Thus, fis a homomorphism of rings. Since fis a surjection also, it follows that
f1s an epimorphism.

Worked Exercise 9.5.2. Prove that the composition of homomorphism of rings
is again a homomorphism.

Answer: Letf: R — R' and g : R' — R" be homomorphisms of rings. Then,
gof:R— R"is afunction and, for any a and b € R, we have

(gof)a +b) =g(fla+ b)) =g(fla) + f(b)= g(f(@) + g(f(b))
and (g of)(ab) = g(f(a)f (b)) = g(f(a)e(f(h))

and therefore g o f'is a homomorphism.
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Worked Exercise 9.5.3. Define /: Z — Z, by

0 ifaiseven

f(“):{l ifaisodd

Then prove that fis an epimorphism of rings.

Answer: This is a special case of Worked Exercise 9.5.1 by taking n = 2.
However, the following is an independent proof.

Since f(0) = 0, f(1) = 1 and Z, = {0, 1}, f'is a surjection. Also, note that,
for any integers a and b, a + b is even if and only if both a and b are even or
both @ and b are odd.

Since 0 + 0 = 0 = 1 + 1, it follows that

f(a + b) = f(a) + f(b) foralla,b€E Z.

Further, ab is even if and only if atleast one of a and b is even. Since
0:-1=0=1-0=0-0and1-1=1,it follows that

f(ab) = f(a)f(b) forallaandb € Z.
Thus, f'is an epimorphism of rings.

Worked Exercise 9.5.4. Determine all the endomorphisms of the ring Z of
integers.

Answers: Let f: Z — Z be a homomorphism of rings.
Since

J) =71 - 1) = f()AQ),
we have f(1)(f(1) — 1) = 0 and hence f(1) = 0 or f(1) = 1. If f(1) = 0, then,
foranya € Z,
M) =fla-1)=fla)-f(1) = f(@)0 =0

and hence f'is the zero homomorphism. On the other hand, if /(1) = 1, then
forany 0 <a € Z,

flay=f1+1+ -+ 1) (atimes)

=f(1) + f(1) + -+ + f(1) (a times)
=1+1+ -+ 1 (atimes)

=a
and for0 >a € Z, —a > 0 and

M) =f(=(=a) = —f(-a) = —(-a) = a
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Therefore, if (1) = 1, then f(a) = a foralla € Z.

Thus, the zero homomorphism and the identity homomorphism are the only
homomorphisms of Z into itself. These two are the only endomorphisms of
the ring Z. In this context, recall that there are several endomorphisms of the
group (Z, +).

EXERCISE 9(E)

For any rings R and R’, let Hom(R, R") denote the set of all ring homomorphisms of R
into R" and End(R) denote the set of all endomorphisms of the ring R.
1. Determine all the members of each of the following:
(i) End(Q), where Q is the ring of rational numbers.
(i) End(Z,), for any positive integer 7.
(iii) Hom(R, Z), where R is the ring of real numbers.
(iv) Hom(Z, R)
) Hom(Z, Q)
(vi) Hom(Q, Z)

2. State which of the following are true. Substantiate your answers.
(i) Every monomorphism of Z_into Z is an isomorphism.
(i)  For any integers 0 < n < m, there exists a monomorphism of Z into Z .
(iii)  If there is a monomorphism of Z into Z , then n divides m.
(iv) If'ndivides m, then there is an epimorphism of Z_onto Z .
(v) For any ring R, End(R) has atleast two members.
(vi) The zero map is the only homomorphism of R into Q.
(vii)) Hom(Q, R) has exactly two members.
(viii) ~ For any prime number p, End(Z,) has exactly two members.

3. For any ring R, prove that (End(R), +, o) is a ring, where + is the point-wise
addition and o is the composition of mappings.

4. Let R be aring with unity. Prove that /: R — R is an endomorphism of the ring R
if and only if there exists an idempotent e in the centre of R (that is, ee = e and
ex = xe for all x € R) such that f(a) = ea for alla € R.

5. Letf: R — R’ be a homomorphism of rings and a € R. Then prove that

atkerf={x€R:f(x)=fla)},
where kerf= {y € R:f(y) = 0}.

6. Iff: R — R’ is an isomorphism of rings, then prove that /! : R’ — R is also an
isomorphism of rings.
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7. For any homomorphismf: R — R’ of rings, prove that ker /is a subring of R such
that ax and xa € ker ffor all @ € ker fand x € R.

8. Let R be a ring with unity and define /: Z — R by f(n) = nl for all n € Z. Prove
that f'is a homomorphism of rings and ker f'= mZ if char(R) = m > 0 and ker
f= {0} if char(R) = 0.

9. Prove the following for any rings R, R' and R".

i) R=R
(i) R=R' =R =R
(ili) R=R'andR'=R"=R=R"
10. Let R be a ring with unity. Prove that there is a subring S of R such that S is iso-
morphic to Z or to Z _ depending on whether char(R) = 0 or m.

11. Prove that the rings R and C are not isomorphic.

12. Determine all the ring epimorphisms of Z onto Z.

9.6 CERTAIN SPECIALTYPES OF RINGS

In almost every occasion where there is a need for an example of a ring, we
used to refer till now to the ring of integers or of real numbers or of complex
numbers or the ring Z_of integers modulo n. Notice that all these are commu-
tative rings. It is not that noncommutative rings are unimportant. In fact the
knowledge of noncommutative rings is very important in the study of linear
algebra, in particular, of linear transformations from a vector space into itself.
In this section, we discuss mainly three types of noncommutative rings.

Theorem 9.6.1 (Ring of Endomorphisms of an Abelian Group). Let (G, +) be
an abelian group and End(G) be the set of all endomorphisms of the group G.
Then, (End(G), +, o) is a ring with unity, where + is the point-wise addition
and o is the composition of mappings.

Proof: Note that, for any fand g € End(G), f + g and f o g are defined by

(f+ 2)x) =/x) + g
and  (fo g)(x) = f(g(x)).

For any fand g € End(G) and x and y € G, we have
oty =flx+ty+gx+y
=)+ /) + g + g0
= f(x) + g(x) + f(v) + g(») (since G is abelian)
=+ 20 +(f+ 20
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and (fog) (x +y) = flglx + )
= flglx) + g()
= flgx) + f(g() = (fo@x) + (fo ()

and therefore f + g and f o g are endomorphisms of the group (G, +). Thus,
+ and o are binary operations on End(G). The associativity of + in End(G)
follows from that of + in G. The zero endomorphism will be the zero element
in End(G). Also, for any '€ End(G), the map —f, defined by (—f)(x) = —f(x)
for all x € G, is the additive inverse of f'in End(G). Thus, (End(G), +) is an
abelian group. Also, clearly the composition o is associative and,

(fo (g + m)x) =f(g+ hx)
= f(g(x) + h(x))
= f(g)) + f(h(x))
=(fog+fon(x)

and ((f+ g) o h)(x) = (f + g)(h(x))
= f(h(x)) + g(h(x))
=(foh +goh)(x)

for all x € G and hence

fo@g+th =fog+foh
and (f+g)oh=foh+goh

for any £, g and 4 € End(G) Thus, (End(G), +, o) is a ring. Further, the iden-
tity homomorphism 7, of the group G is the multiplicative identity in the ring
End(G). Thus, (End(G), +, o) is a ring with unity. <

In general the ring End(G) of endomorphisms of an abelian group G is not
commutative. For, consider the following example.

Example 9.6.1. Let G be the product group 7Z X Z under coordinate wise
addition and define fand g : G — G by

fla,a)=(a,a, —a) and gla,a)=(—a,a).

It can be easily verified that fand g are endomorphisms of G(= Z X Z). Now
consider

(fo)1, D) =fe, D) =f(-1, ) =(-1L-1-1)=(-12)
and (go/f)(1, 1) =g(f(1, 1)) =g(1,1 = 1) =g(1,0) = (0, 1).
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Therefore, (fo g) (1, 1) # (gof)(1, 1) and hence fo g # g o f- Thus, End(G)
is a noncommutative ring.

Next let us consider the familiar concept of a real matrix; that is, an array
in which all the entries are real numbers. In fact, we can replace the real num-
ber system here with an abstract ring. In the following, we define addition
and multiplication of #» X n matrices in such a way that the set of all n X n
matrices becomes a noncommutative ring.

Definition 9.6.1. Let (R, +, -) be a ring and n a positive integer. By ann X n
matrix over R, we mean an array of n? elements of the ring R, not necessarily
distinct, arranged in # rows and »n columns as given below.

a, 4y dy a,
ay Gy a4y @,
anl anZ an3 arm

where each a; l =i=nand 1 =j = n,is an element of the given ring. The
elements a 1 =j = n, constitute the i row and the elements a,l=i=n
constitute the / column. As such a; is the element in both the i row and j*
column. The matrix itself will be denoted by ("y)' The set of all n X n matri-
ces over aring R will be denoted by M (R). Two matrices (aij) and (b,y) are said
to be equal ifal.j = bl.j forall 1 =i,j=n.

Definition 9.6.2. Let (R, +, -) be aring and n € Z*. For any matrices
A4 =(a) and B=(b)inM/R),

we define 4 + B and 4 - B as follows.
A+ B= (C,-,-)’ where ¢, =a;+ bij

and 4 - B = (dl./.), where dij =a,- b]/_ +a,- bz,— +ta, - bm, forany 1 =i,
j = n. Note that the + and - on the right sides are those in the ring R.

Theorem 9.6.2. Let n be a positive integer and R be an arbitrary ring. Then,
the set M (R) of all n X n matrices over R is a ring under the operations +
and - defined above.

Proof: Let 4 = (a,),B = (b,-,-) and C = (c,) be arbitrary n X n matrices over
R. Since the addition + on R is commutative and associative, we have
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A+B=(a,+b)=(b,+a)=B+4
and (4 + B) + C:((a,-,~+b,-,)+c,~j)
=(al_/_+(b,_j+cl./.))=A+(B+C).

Therefore, + is commutative and associative on M (R). Let us denote the n X
n matrix, all of whose entries are 0, by 0 itself. Then, clearly

A+0=4=0+4
and 4+ (—A)=0=(—4) + 4,

where -4 = ( faij). Therefore, (M (R), +) is an abelian group. To prove the
associativity of -, let

= (s,./.) and A4-B)-C= (ti/')'

Then, s, = zn:aikbkj and 7, = zn:s[kck/. Now,
k=1 k=1
Z[Zazr rk]£

- ZZ(% bu)ey

k=1 r=1

=3 a by

k=1 r=1

Sl

=the i entry inA4 - (B - C).

Thus, (4 - B)- C = A - (B - C). Also,

A-(B+C)= [Zn:air(br/ +c,)

-[Sa, |+ (S,

=A-B+A4-C

and, similarly (4 + B) - C= A4 - C + B - C.Thus, (M (R), +, *) is aring.
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Note:

1. If Ris aring with unity 1 and E is the n X n matrix defined by

1 ifi=j

0 ifi#j
then E -4 = A = A - E_ for any matrix 4 in M (R). Therefore, if R is
with unity, then M (R) is a ring with unity.

2. Ifn=1,thenal X 1 matrix (a) can be identified with a itself and, hence
M (R) is isomorphic with R.

3. Ifn>1, then M (R) may not be commutative even when R is commuta-
tive; for consider the following theorem.

E = (e), where e, ={

Theorem 9.6.3. For any n > 1, the ring M (R) of n X n matrices over the real
numbers is a noncommutative ring with unity.

Proof: Let n > 1. Since the real number system R forms a ring with unity,
by Theorem 9.6.2 (1), M (R) is a ring with unity. Let 4 = (al,j) and B = (bij)
be the matrices defined by

|1 ifi=l=j
v 0 otherwise

1 ifj=landi=1or2
and b, = ) .
|10 otherwise
1 0 o1 0 . 0
1 0 0
0 0 0oj{1 0 . 0
0 0 0
Then, AB=|0 0 .. oflo 0 .. o=
Ak 00 0 0
0 0 0)l0 0 0
1 0 .0 0 0 1 0 ... 0
0[10 0 1 0
and BA=|0 0 0[=(0 O
0O 0 ... 0)I0 O ... O 00 ... 0

and hence AB # BA. Thus, M (R) is a noncommutative ring. <
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In the following, we give another important example of a noncommutative
ring, namely the ring of real quaternions.

Definition 9.6.3. The algebraic system (R, +, -), where R* is the set of all
quadruples of real numbers and + and - are the binary operations defined
as follows, is called the system of real quaternions and each element of this
system is called a real quaternion.

For convenience, let us write a quadruple by (a,, a,, a,, a,). For any

a=(aya,a,a,) and b= (bo, b,b, b3) in R4,
we define
a+b=(a,+b,a +b,a+b,a +b)
and a-b=(c,c,c,c,), where

¢, = ab, —ab, —ab,—ab,
¢, =apb +ab,+ab, —ab,
c,=ab,+ab,+ab —apb,
and ¢, =ap, +ab,+ab,—apb,

Even though + is defined coordinate wise, the multiplication - is not coordi-
nate wise and needs special attention. An easy way of remembering the rule for
multiplication is given below. Let us represent a quadruple (a, a,, a,, a,) by

(apa,a,a)=a,+ai+aj+ak
(as a complex number (a, b) is represented by a + bi).

i

As we go around clockwise, we read off the product; for example,
irj=kj-k=ik-i=].
Going around anticlockwise, we read off the negatives; for example,

ick=—jji=—kk-j=—i
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The multiplication in R* is now defined as if we multiply two sums of real
numbers obeying the following rules.

ivi=jj=k-k=-1
ij=kjk=ik-i=j (A)
jri=—kkej=—iji-k=—j

Now, the multiplication of real quaternions can be formally defined as
follows.

(a)+tai+aj+ak) (by+bi+bj+bk)=c +citcj+chk,

where ¢, =ab, —ab, —ab, — ab,
¢, =apb +ab,+ab, —ab, (B)

¢,=apb, +ab,+ab —apb,

and ¢, =apb, +ab,+ab,—ab,.

To multiply a, + ai + a,j + a,kby b, + bi + b,j + b k on the right, we first
multiply each ‘term’ in the first quaternion with each term in the second on
the right, use the laws given in (A) and collect the terms with each of 7, j and
k and without any of them. Recall that the elements 1, —1, i, —i, j, —/, k and
—k form a nonabelian group of order 8 under the above multiplication rules
(A) and is called the group of quaternions. If we write

(1,0,0,0) = 1,(0,1,0,0) = i
0,0,1,0)=; and (0,0,0,1) =k,

then, by (B) above,
#=(0,1,0,0)-(0,1,0,0) = —(1,0,0,0) = —1

and, similarly /2 = —1 = &? and other rules of multiplication in (A) can be
derived from (B). Now, the following is a routine verification.

Theorem 9.6.4. The real quaternions form a noncommutative ring with unity
under the addition and multiplication given above. This ring is denoted by Q,
and is called the ring of real quaternions.

Worked Exercise 9.6.1. Give an example of a noncommutative ring with
exactly 16 elements.



9-42  Algebra - Abstract and Modern
Answer: Consider the ring Z, of integers modulo 2. Then, Z, = {0, 1}. Then,

the ring M,(Z,) of 2 X 2 matrices over Z, has exactly 22** (=16) elements and
is not commutative. For, consider

1+1 0} (0 O

0 0] 10 0O

b ol o
w o0

Worked Exercise 9.6.2. Prove that every nonzero element in the ring of real
quaternions is a unit.

Answer: Let0 # a = a, + a,i + a,j + a,k € Q,. Put s=a; +a} +a; +a;.
Since a # 0, atleast one a, must be nonzero and hence s > 0. Now, consider
4 _ 9 a,

p=20-4-50 Sy
N N N S

Then, ab = ba = Soq. Therefore, a is a unit in Q.
s

EXERCISE 9(F)

1. Evaluate the following products @ - b and b - a in the rings mentioned against them.
(i) a, b € End(R®) defined by
a(r,1,n) = (1 + 15,1 =1,0) and

b(r,r,1)= (= R,y = 1,1, — 1)

1 00 021
() a=[0 2 3|andb=|1 2 3|inM,(Z).
210 31 2

(i) a=2+3i+4+5kandb=1+2i+3 +kinQ,.
(iv) a=1+2i+5—3kandb=3+2i—2j + kinQ,.

2. Give an example of a noncommutative ring with unity having exactly 81 elements.
3. Describe the ring End(Z,), where Z, is the group of integers modulo 6.

4. Prove or disprove that the set

|

is a subring of the ring M,(R) of 2 X 2 matrices over R.

a a+t+b
a+b b

: a and b are integers




Rings 9-43

5. Give examples of two matrices 4 and B in M (R) such that AB = 0 and BA # 0.
6. Leta=aqa,+ai+aj+akandb=aqa,—ai—aj— ak wherea,a,a,a,
are real numbers. Evaluate the products a - band b - a in Q.

7. Prove that Q, — {0} forms a group under the multiplication of real
quaternions.
8. Determine all the nilpotents and all the idempotents in the ring O, of real
quaternions.
0 01
9. If A=|0 0 1|, then compute 4" in M (R) for any positive integer .
0 01

a a
10. Prove that {[b b] : a and b are integers  is a subring of M (R).

I1. Prove in detail that Q, is a ring under the addition and multiplication of real
quaternions.

12. Find the centre of the ring of M (R) of all n X n matrices over the real number
system R.

13. Extend the above Exercise 12 for an arbitrary ring R in place of the ring R of real
numbers.

14. Determine the centre of the ring of real quaternions.

15. If Sis a subring of a ring R, prove that M (S) is a subring of M (R) for any posi-
tive integer n.

16. If R is a ring such that M (R) is a ring with unity, then prove that R is a ring with
unity.

9.7 INTEGRAL DOMAINS AND FIELDS

Now we turn our attention to certain important special types of commuta-
tive rings. One of the motives of inventing the abstract concept of a ring is
to put the algebraic properties of the integers into an abstract setting. A ring
is not the appropriate abstraction of the integers, because much is lost in
the process. Besides the two obvious properties of commutativity and the
existence of unity, there is one other essential feature of the integers that
rings in general do not satisfy, namely cancellation property for multiplica-
tion. In this section, we introduce a special class of rings, known as integral
domains, which have all the three properties, namely the commutativity,
the existence of unity and the cancellation law for multiplication. Integral
domains play a major role in Algebraic Number Theory and various other
areas of mathematics. Also, a special kind of integral domains, namely
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fields, are introduced in this section and several elementary properties of
these are discussed. Fields are abstractions of the rational or real or com-
plex number systems.

First let us recall that a nonzero element @ in a ring R is called a zero divi-
sor if there exists a nonzero element b in R such that ab = 0 = ba.

Definition 9.7.1. A nontrivial commutative ring with unity and without zero
divisors is called an integral domain.

Recall that a ring R with unity 1 is nontrivial or nonzero (that is, R # {0})
if and only if the additive identity 0 and the multiplicative identity 1 are dif-
ferent. In the following, we obtain some other simple equivalent conditions
for a ring to be an integral domain.

Theorem 9.7.1. The following are equivalent to each other for any nontrivial
commutative ring (R, +, +) with unity.

1. (R, +, *) is an integral domain.
2. For any elements a, b and ¢ in R,

ab=ac=a=0 or b=c
3. For any elements a and b in R,

ab=0=a=0 or b=0.
Proof: (1) = (2): If ab = ac and a # 0, then
a(b—c)=ab—ac=0

and, since a is not a zero divisor, b—c = 0 or b = c.
(2) = (3): If ab = 0, then ab = a0 and therefore, by (2),a = 0 or b = 0.
(3) = (1) is clear. <

Example 9.7.1

1. The ring Z of integers, the ring Q of rational numbers, the ring R of real
numbers and the ring C of complex numbers are all integral domains
with respect to usual addition and multiplication. In each of these, the
product of any two nonzero elements is again nonzero and hence there
are no zero divisors.

2. The ring Z[i] of Gaussian integers is an integral domain with respect to
the addition and multiplication of complex numbers. Note that Z[7] is a
subring of the ring C of complex numbers.

3. (Zp, +, -p) is an integral domain for any prime number p.
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4. (Z, +,, ,) is not an integral domain, since 2 # 0,3 # 0and2- 3 =0
in Z,. This is a commutative ring with unity and zero divisors.

5. For any n > 1, (nZ, +, -) is a commutative ring without zero divisors
and with no unity and hence not an integral domain.

6. The ring Q, of real quaternions is a ring with unity and without zero
divisors and not commutative and hence not an integral domain.

The examples in (4), (5) and (6) above substantiate that the three defining
properties of an integral domain, namely, the nonexistence of zero divisors,
the existence of unity and the commutativity are all independent of others, in
the sense that no two imply the other. In the following, we introduce a special
class of integral domains.

Definition 9.7.2. A nontrivial commutative ring with unity is called a field if
every nonzero element of it is a unit (that is, multiplicatively invertible).

Example 9.7.2

1. The rings @, R and C are all fields, since for any nonzero number a,
there is 1/a for which a - % =1 and hence a is a unit.

2. The ring Z of integers is not a field, since 2 is not a unit in Z. In fact, 1
and —1 are the only units in Z.

3. For any prime number p, (Zp, +, -p) is a field, since any 0 < a < p is
relatively prime with p and hence a unit in Zp.

4. The ring O, of real quaternions is not a field, even though every nonzero
element is a unit in it; because it is not commutative.

Theorem 9.7.2. Every field is an integral domain and the converse is not true.

Proof: Let (R, +, -) be a field. Then, R is a nontrivial commutative ring with
unity and, if 0 # a € R, a has multiplicative inverse a~' in R and therefore,
for any b € R,

ab=0=aYab)=0=(a"'a)b=0=5b=0.

Therefore, R has no zero divisors and hence R is an integral domain. The
converse is not true, since the ring Z of integers is an integral domain but not
a field. <«

However, certain special type of integral domains are fields. In this context,
we have the following theorem.

Theorem 9.7.3. Every finite integral domain is a field.
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Proof: Let (R, +, -) be a finite integral domain. Then, R is a nontrivial com-
mutative ring with unity and without zero divisors. Let 0 # a € R. Since R
is finite, we can write

R—-1{0}={a,a, ...,a},

where a, a,, ..., a are all the distinct nonzero elements in R. Since R is an
integral domain, a # 0 and each a, # 0, we get thataa, # 0 foreach 1 =i =n.
Therefore, the set

S={aa,aa, ..., aa}

is a subset of R — {0}. Further, aa, # aa, foralli # j (sincea # 0 and a, # aj).
S is an n-element subset of R — {0}, which also has » elements. Therefore,

R—1{0} =8 ={aa,aa,, ...,aa}.

In particular, I € R — {0} and hence aa, = 1 for some i. Therefore, a is a unit
in R. Thus, R is a field. <

Corollary 9.7.1. The following are equivalent to each other for any positive
integer 7.

1. nis a prime number.
2. (Z,+,,",) 1s an integral domain.
3. (Z,+,,-)isafield.

Proof: First note that, for each of these, n must be necessarily greater than 1
(for, if n = 1, Z s trivial).
(1) = (2) follows from the fact that, for any a and b € Z ,
ab = 0inZ, = ndivides ab
and that, if » is prime,

n divides ab < n divides a or b.

(2) = (3) follows from Theorem 9.7.3.
(3) = (1) follows from the fact that, forany 0 < a <n,aisaunitin Z if and
only if a is relatively prime with #.

Corollary 9.7.2. For any prime number p, (Zp, +, -p) is a field.

Definition 9.7.3. A nontrivial ring with unity is called a division ring if every
nonzero element is a unit.
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Note that any field is a division ring and the converse is not true, since
the ring Q,, of real quaternions is a division ring, but not a field (see Worked
Exercise 9.6.2). However, any commutative division ring is a field.

Theorem 9.7.4. The characteristic of any integral domain is either 0 or a
prime number.

Proof: Let R be an integral domain and char(R) > 0. Since R is nontrivial,
char(R) # 1. Let char(R) = n > 1. Suppose that 7 is not a prime. Then, there
exist positive integers  and s such that n = rs, » > 1 and s > 1.

Now, consider

(rl) - (s1) =rsl =nl = 0.

Since » < n = char(R), r1 # 0 (otherwise rx = 0 for all x € R). Similarly,
s1 # 0. This is a contradiction, since R is an integral domain. Thus, 7 is
prime. <

Corollary 9.7.3. The characteristic of any field is either 0 or a prime.

Worked Exercise 9.7.1. Prove that any integral domain has exactly two idem-
potents.

Answer: Let R be an integral domain. Then, 0 # 1 and clearly these two are
idempotents. If a is any idempotent in R, then a* = a and hence

a@—1)=0 sothata=0o0ra =1
Thus, 0 and 1 are the only idempotents of R.

Worked Exercise 9.7.2. Prove that Z,[i] = {a + bi:aand b € Z,} is a field
under addition and multiplication modulo 3 by writing the tables representing
the operations +, and -, on Z,[i]. Z,[] is called the ring of Gaussian integers
modulo 3.

Answer: We have
ZJi] ={0,1,2,i, 1 +,2 +i,2i, 1 + 2,2 + 2i}.

Here, the elements are added and multiplied as in the complex number system,
except that the coefficients are reduced modulo 3. In particular, note that

—1=2,-i=2i, 2,2=1, 2i-2i=2
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It is a straight forward verification that Z,[7] is a commutative ring with unity.
By looking at the multiplication table given above (zero does not appear in any
row and column corresponding to nonzero elements), we can infer that Z,[i] is
an integral domain. Since it is finite (with 9 elements), it is a field also.

Worked Exercise 9.7.3. Prove that Z,[i] = {a + bi:aand b € Z,} is a com-
mutative ring with unity which is not an integral domain under addition and
multiplication of complex numbers modulo 2.

Answer: We have
Z,[i] = {0, 1,4, 1 + i}.

The tables for +, and -, on Z,[7] are given below.

+, 0 1 i 1+i
0 1 i 1+i

1 1 0 T+i i

i i 1+i 0 1

T+i 140 i 1 0

Y 0 1 i 1+i

0 0 0 0 0

1 0 1 i 1+i

i 0 i 1 1+i

1+i 0 1+i 1+i 0

It can be easily verified that (Z,[i], +,, -,) is a commutative ring with unity.
Since

A+D)(1+iH)=1+2i+(=1)=0,
1 + i is a zero divisor and hence Z,[i] is not an integral domain.

Worked Exercise 9.7.4. Let R be a nontrivial ring such that, for each 0 # a
€ R, there exists unique element x in R such that axa = a. Prove that R is a
division ring.

Answer: We first prove that R has no zero divisors. Suppose thata and b € R
such that ab = 0 and a # 0. Choose x € R such that axa = a. Then,

a(x + b)a = axa + aba = axa + 0 = axa = a.
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By the uniqueness of x, it follows that x + b = x or » = 0. Thus, ab = 0 implies
that @ = 0 or b = 0. From this we get R — {0} is closed under multiplication.
Let 0 # a € R and x be the unique element in R such that axa = a. Then,
ax + ax = ax and xa - xa = xa and hence ax and xa are idempotents and are
nonzero (since axa = a # 0). Next, we shall prove that there is only one
nonzero idempotent in R. Let e and /' be nonzero idempotents in R. Let g be
the unique element such that

(ef) g (ef) =ef
Then, g # 0, since ef # 0. Now,
(ef)(ge)ef) = ef and  (ef)(f2)(ef) = ef.
By the uniqueness of g, we get that g = ge = fg. Also, (ef)(ge - fg)(ef) = ef
and hence ge - fg¢ = g which implies that g2 = g. Therefore, geg = g = gfg

and hence e = f. Thus, R — {0} has exactly one idempotent, say e.
In particular, ax = xa = e and hence

ae =axa=a and ea = axa =a.

Thus, e is the unity in R and, since ax = e = xa, x is the multiplicative inverse
of a. Thus, R is a division ring.

EXERCISE 9(G)

1. Consider the following classes of rings.
FF = The class of all finite fields.
F = The class of all fields.
ID = The class of all integral domains.
R = The class of all rings.
RU = The class of all rings with unity.
CR = The class of all commutative rings.
CRU = The class of all commutative rings with unity.
NCR = The class of all noncommutative rings.
Draw a Venn diagram representing the above classes.
2. Which of the following are fields or integral domains? Substantiate your
answers.
(i) R X R under coordinate wise addition and multiplication.

(i) Q, where Q is the field of rationals and n € Z* under coordinate wise
operations.
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(1i1) Z[\/E 1={a+ bW2:aandbe Z} under the addition and multiplication
of real numbers.

(iv)  Z[i], the ring of Gaussian integers.

W (@i, +5 ).
Vi) (Z0) +y ).
(vi))  (Z,[i], +., ).

(vii)  (Z[i], +,, ).

(ix) Z,XZ,

x) Z,

Prove that Q[i] = {a@ + bi : a and b are rationals} is a field under the addition
and multiplication of complex numbers.

Let R be a field. Prove that R is a Boolean ring if and only if R has exactly two
elements.

. Give an example of a field with exactly 30 nonzero elements.

Let n be a positive integer and
Zlil={a+bi:aandb EZ }.

Prove that Z [] is a ring under addition and multiplication modulo .
Give an example of a positive integer n for which Z [i] is not an integral domain.

Prove that Z [i] is an integral domain if and only if it is a field.

. Let Z[\/E] ={a +by2 :a and b are integers}. Prove that Z[ﬁ] is an integral

domain under the addition and multiplication of real numbers.
Prove that Z[\/E ] is not a field.

Let p be a prime number and

R= {% :a and b € Z and p does not divide b}.

Prove that R is an integral domain under the usual addition and multiplication of
rational numbers.

Is the above R a field?

. Let R be a nontrivial finite ring without zero divisors. Then prove that R is with

unity and that (R — {0}, -) is a group.
Prove that any finite commutative ring without zero divisors is a field.

For any simple abelian group (G, +), prove that the ring End(G) of all endomor-
phisms of (G, +) is a division ring.
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16.
17.
18.

19.

20.
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Prove that the characteristic of a finite field is a prime number.
Is there an integral domain having exactly 6 elements?

Let R be a nontrivial finite ring without zero divisors. Then prove that R is a divi-
sion ring.

Let R and S be two rings. Then prove that the product ring R X S is an integral
domain if and only if one of R and § is an integral domain and the other is the
trivial ring.

Let R be an integral domain, 0 # a € R and n € Z* such that na = 0. Prove that
char(R) > 0.
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10.1 Ideals

10.2 Quotient Rings

10.3 Chinese Remainder Theorem
10.4 Prime Ideals

10.5 Maximal Ideals

10.6 Embeddings of Rings

In the study of finite groups, we have proved several results using the concept
of a normal subgroup, quotient construction and induction on the group order.
Homomorphic images of groups are identified with quotient groups with the
help of the kernel of the homomorphism which is a normal subgroup. The
role of normal subgroups in groups is played by ideals in rings. The concepts
of ideal and quotient rings are important in the structure theory of rings. A
special kind of subrings, which are most suitable (ideal) for the study of the
structure of rings, are popularly called ideals.

10.1 IDEALS

In this section, we introduce the notion of an ideal in a ring and discuss sev-
eral important elementary properties of ideals.

Definition 10.1.1. Let (R, +, -) be a ring and / be a subgroup of (R, +).
Then, [ is called

1. aleftideal of R ifra € Iforalla € Iand r € R.
2. arightideal of R ifar € I foralla € [and r € R.
3. anideal of R if it is both a left ideal and a right ideal of R.
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Clearly any left ideal or right ideal of a ring R is a subring of R. But a sub-
ring of R may be neither a left ideal nor a right ideal. For example, the set Z
of integers is a subring of the ring R of real numbers and Z is not an ideal of
R, since % 1& Z. If R is a commutative ring, there is no difference between

a left ideal, a right ideal and an ideal. Sometimes, we refer to an ideal as a
two-sided ideal.

Example 10.1.1
1. For any ring R, clearly {0} and R are ideals of R and are called frivial

ideals. {0} is called the zero ideal. 1deals other than {0} and R are called
proper ideals.

2. If (R, +, -) is a ring with trivial multiplication, that is, ab = 0 for any a
and b in R, then every subgroup of (R, +) is an ideal of R.
3. Consider the ring M_(IR) of 2 X 2 matrices over the real R and let

0
I= “ : a and b are real numbers .
0 b
Then, I is a left ideal of M (R), since
r s|f0 a| (0 ra+sb
t u)l0 b 0 tat+ub

It can be easily verified that / is a subgroup of M (IR). However, [ is not
a right ideal of M (IR), since

o 3l il e

b
4. Let J= {[g 0] :a and b are real numbers]. Then, J is a right ideal of

€1 forall [: S]EMZ(R).
u

M (R) and is not a left ideal.
5. For any nonnegative integer n, let

nZ = {na: a is an integer}.

Then, nZ is an ideal of the ring Z of integers. In fact, any ideal of Z is of
this form nZ for some n = 0.
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a b
6. Let K= {[ d}: a, b, ¢ and d are even integers ;. Then, K is an ideal
c

of M (7). Later, we shall prove that M_(IR) has no nontrivial ideals, since
R is so. However, Z has several ideals and so is M (7).

7. Let X be any set and consider the ring (P(X), +, N) of all subsets of X,
where + and N are defined by

A+ B =(A—B)U(B— A) and AN B = The intersection of 4 and B.

Let I = {Y: Yis a finite subset of X}. Then, / is an ideal of (P(X), +, N).

8. Let R be any ring and X be any nonempty set and consider the ring R* of
all mappings of X into R. For any ¥ C X, let

IY={f€RX:f(y)=0forally€Y}.

Then, /, is an ideal of R¥.

Theorem 10.1.1. Let R be a ring with unity and U(R) be the set of all units
in R. Then, the following are equivalent to each other for any left (right or
two-sided) ideal 7 of R.

1. I=R
2. UR) CI

3. INUR) # T
4. 1€1

Proof: Let /be a leftideal of R. (1) = (2) and (2) = (3) are trivial.

(3) = (4): Suppose that a € I N U(R). Then, a has multiplicative inverse a™'
inRand 1 =a™'-a € [(since a € [ and [ is a left ideal of R).

(4) = (1): If 1 € [, then, forany » € R, » = r - 1 € I and therefore R C [ so
that / = R.

In the following, our discussion is restricted to ideals of rings. Some of
the results proved for ideals can be extended to left or right ideals easily.
However, we are more interested in two-sided ideals, since these lead to the
construction of quotient rings. First, we discuss certain standard methods of
constructing new ideals from given ones.

Theorem 10.1.2. Let {/ } _. beanonempty class of ideals of a ring R. Then,
0 1, is also an ideal of R.
(S
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Proof: First note that every ideal contains the zero element of the ring; for, an
ideal / is nonempty and hence there exists a € I so that 0 = Oa € I. Therefore,
0 foralla € A Put]= ﬁ I, Then, 0 € [ and hence / is a nonempty

subset of R. Since the 1ntersect10n of any family of subgroups of (R, +) is
again a subgroup, it follows that / is a subgroup of (R, +). Also,

a€landrER=a€l foralla € Aandr €R
=raandar €1, foralla € A
=ra and ar €l

Thus, 7 is an ideal of R.

We have proved above that the intersection of ideals is again an ideal.
However, the union of ideals may not be an ideal. If / and J are ideals, then
they are subgroups of (R, +). Therefore, / U J is a subgroup of (R, +) if and
only if / C JorJ C I (see Theorem 4.1.6). Thus, for any ideals /and J, I U J
is an ideal if and only if / C J or J C [. For certain special classes of ideals,
union of the class of ideals is again an ideal.

Theorem 10.1.3. Let {/ } _, be aclass of ideals of a ring. Suppose that, for
any @ and B € A, there exists y € A such that / C I and IB - I7 and IB - I7
(such classes are called directed above). Then, Y 1, is an ideal of R.

aE

Proof: Let [ = uA 1,,. Then, clearly / is a nonempty subset of R. Now,
aE

aandb€l=a €l andb €], for some a and B € A
:>thereexistsyeAsuchthataelagly and ZJEIBQI7
:aandbE[y,yEA
éa—beggl
=a—-beEl

Therefore, [ is a subgroup of (R, +). Also,

a€landr ER=a €l forsomea € Aandr ER
=ra and ar€l CI
=ra and ar €l

Thus, 7 is an ideal of R. <

Corollary 10.1.1. Let {/ } _,. be a chain of ideals of a ring R (that is, given
any two members in the class, one of them is contained in the other). Then,
Y 1, is again an ideal of R.

aEl
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Definition 10.1.2. Let R be aring and S C R. Let
<§>=nN{l:lisanideal of R and S C /}.

By Theorem 10.1.2, <S> is an ideal of R and is called the ideal generated by
S. Note that, for any ideal / of R, S C [ if and only if <§> C [. For this reason,
we say that <S> is the smallest ideal of R containing S. If / = <S>, then we
say that 7 is the ideal generated by S or S generates /. An ideal / is said to be
finitely generated if I = <S> for some finite set S. If § = {a}, then <S> will
be denoted by <a> and is called a principal ideal generated by a.

A natural question that arises in one’s mind is about the precise form of
elements in the ideal <S> generated by S. Answer to such a question will be
clear if we can determine the precise form of the elements in a principal ideal
<a>. We do this in the following theorem.

Theorem 10.1.4. Let R be aring and ¢ € R. Then, any element of <a> is of

the form
m
ra +as +na +le.ay,.,
i=1
where m is a nonnegative integer, » is an integer and 7, s, X, ..., X , ¥, ...,
y, ER.

Proof: Let A be the set of all elements of the form given in the theorem. We
shall prove that 4 is the smallest ideal of R containing a. By taking » = 0 = s;
m = 0andn = 1, we have a € A. If ] is any ideal of R containing a, then ra,
as, xay and na € I for any r, s, x,y € R and n € Z and hence 4 C I. Thus, we
are left with only verifying that 4 is an ideal of R. Using the commutativity of
+ and the distributivity of the multiplication over the addition, one can easily
prove that 4 is an ideal of R. Thus, 4 = <a>.
In certain special cases, <a> turns out to be much simpler.

Corollary 10.1.2. Let R be a ring with unity and ¢ € R. Then,

<a>= {Zx,.ay,- :0=mEZ x; andy, € Rl"

i=1

Proof: Let B be the set given on the right hand side. Then, by taking m = 1,
x, = 1 = y, (the unity in R), we get that a € B. Since B is closed under +, it
follows that na € B for all n € Z. Also, by taking m = 1 and x, = 1, we get
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that ay € B for all y € R. Similarly, xa € B for all x € R. Thus, by Theorem
10.1.4, <a> C B C <a> and hence <a> = B.

Corollary 10.1.3. Let R be a commutative ring and a € R. Then,
<g>={ra+na:r€Randn € Z}.

Proof: By Theorem 10.1.4, ra + na € <a> for any r € R and n € Z. Also,
since R is commutative,

r+s+2xiay, a + na.

i=1

ra +as + na + inayi =
i=1

Thus, any element of <a> is of the form ra + na for some r € Randn € Z
and hence

<a>={ra+na:r€ERandn € Z}.
Corollary 10.1.4. Let R be a commutative ring with unity and @ € R. Then,
<a>={ra:r € R} =Ra=aR.
Proof: For any » € R and n € Z, we have
ra+na=ra+ (n-1a= -+ nl)a€Ra,
where 1 is the unity in R. Therefore, by Corollary 10.1.3, <a> = Ra = aR.

For any ideals / and J of a ring R, clearly / N J is the largest ideal contained
in both / and J. In the following, we describe the smallest ideal containing
both 7 and J. This may not be / U J, since / U J may not be an ideal at all,
unless / C JorJ C L.

Theorem 10.1.5. Let / and J be ideals of a ring R and
I+J={a+b:aE€Elandb € J}.

Then, / + J is the smallest ideal of R containing both / and J; that is, / +
J=<lUJ>

Proof: Since 0 € I N J, we have

[=1+{0CI+JandJ= {0} +JCI+J
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Since [ and J are subgroups of (R, +), sois [ + J. Also, forany r € R, a €
land b € J.
Also, foranyr ER,a E Iand b € J,

ra+b)y=ra+rb€el+J
and (a+byr=ar+brel+J
and hence / + Jis an ideal of R. Further, if K is any ideal of R containing both
I and J, then clearly 7 + J C K. Thus, [ + J is the smallest ideal of R contain-
ing both / and J.

Corollary 10.1.5. For any ideals /, 7, ..., of aring R, let

Sl =1+1++1 ={a+a,++a,:a L}
i=1

Then, 3 I, is the smallest ideal containing U1 -
i=1 i=1

Corollary 10.1.6. Let {/ } _. be a nonempty class of ideals of a ring R and
Y1, = < U 1a>.
a€A a€A

Then, % I, ={a,+a,+---+a,:a, €I _forsome o, E A}.
a€A !

Corollary 10.1.7. Let S be a nonempty subset of a ring R. Then, any element
of <S$> is a finite sum of elements of the form

ra+as+na+2xiayi,

i=1
wherea € S,nandm € Z,m = 0,and r, s, x,y, € R.

Corollary 10.1.8. Let R be a commutative ring with unity and S be a non-
empty subset of R. Then,

<S>={Z;;ai :mZO,Fi ERand a; ES}

i=1

For any ideals /, I, ..., I of aring R, we have proved that any element of

<UIl. can be expressed asasuma, +a, + -+ +a witha, €1, 1 =i=n.
i=1 n i i
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However, there is no guarantee that this expression is unique, unless the ide-

als/, I, ..., I satisfy certain additional conditions.
Theorem 10.1.6. Let/, [, ..., beidealsofaringRand /=1 + 1 + -
+ . Then, any element of / can be uniquely expressedas a, + a, + -+ + a,

with a, € 1, if and only if

[N

le]z{O} foralll<i=<n.

J#Fi

Proof: Suppose that any element a of / can be uniquely expressedasa = a, +

a,+ - +a,witha €EI.Fix 1 =i=nandleta € I,N _E_If . Then,
a € Iand =

1
or a,+--+a —ata, + +a=0=0+0++0.

a=a +~--+ai71+ai+l+-~-+an,a/_61f forj #i

By the uniqueness, a = 0. Thus, 7, Q(E I j) = {0}. Conversely, suppose that
J=i

the given condition is satisfied. Since / = I, + I, + --- + [ , any element of /
can be expressed as a, + a, + --- + a , with a, € I. Now, suppose that

a+a,+-+a=>b+b++b,

where a, b, € I for 1 =i = n. Now, for each i,

2.1

J=i

a,~b=> (b,—a)EIN = {0}

J=i

and hence a, — b, = 0 or a, = b.. Thus, any element of / can be uniquely
expressedasa, +a, + --- + a,witha € 1.

Corollary 10.1.9. Let /and J be ideals of a ring R. Then, any element of R can
be uniquely expressed as a + b with @ € I and b € J if and only if

I+J=R and INJ={0}.

Definition 10.1.3. Anideal / of a ring R is said to be a direct summand of R if
there is an ideal J of R such that / + J = Rand / N J = {0}. In this case, R is
said to be the direct sum of I and J and denote this by R = I @ J. Also, I and
J are called direct complements to each other if R =1 @D J.
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In a ring with unity, we can have yet another beautiful description of direct
summands. Before going to this, let us define the following definition.

Definition 10.1.4. Let R be a ring and ¢ € R. Then, a is called a central
idempotent if a*> = a and ax = xa for all x € R; that is, a is an idempotent
belonging to the centre of R.

Theorem 10.1.7. Let R be a ring with unity and 7 be an ideal of R. Then, /
is a direct summand of R if and only if / is the principal ideal generated by a
central idempotent of R.

Proof: First note that, for any central idempotent e in R, the principal ideal
generated by e is of the form

<e>=eR = {ex:x E R}.

Suppose that / = <e> for some central idempotent e. Then, put J = (1 — e)
R={(1 — e)x : x € R}. Since

(l1—eP=l—-e—eted=1—e—ete=1—c¢

and (Il —ex=x—ex=x—xe=x(1 —e¢)

for all x € R, we get that 1 — e is also a central idempotent in R and J =
<1 — e>, the principal ideal generated by 1 — e. Now, for any x € R, we
can write

x=ex+(l—exel+J
and hence I + J = R. Also,

a€lnNnJ=a=ex= (1 —e)y forsomex,y € R

Sa=ex=ex=ea=e(l —ey=0

and therefore / N'J = {0}. Thus, R = I @ J and [/ is a direct summand
of R.

Conversely, suppose that / is a direct summand of R. Then, there is an ideal
Jor Rsuchthat R =@ J; thatis, / + J= Rand /NJ = {0}. Since R is with
unity, | € R =1+ Jand hence 1 = ¢ + s for some e € [ and s € J, clearly
s =1 — e. Now,

es€INJ= {0} andhencees=0.
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From 1 = e + s, we have
e=ce(let+s)=e +es=¢e (sincees=0)
and therefore e is an idempotent. Also, for any x € R,
extsx=(ets)x=x=x(e+s)=xe+xs

and therefore ex — xe = xs —sx € INJ = {0} (since e € [ and s € J), so
that ex — xe = 0 or ex = xe. Thus, e is a central idempotent in R. Now, since
e € I, we get that <e> C [. Also,

xEl=x=(etsx=ex+sx=ex (sincesx&lNnJ=1{0})
= x € <e>.

Thus, I = eR = <e>.
The central idempotents in any ring have certain nice properties. They form
a Boolean ring under suitable operations, defined in the following theorem.

Theorem 10.1.8. Let (R, +, -) be a ring and B(R) be the set of all central
idempotents in R. For any a and b € B(R), define

a*b=a+b—2ab(=(a — ab) + (b — ab)).
Then, (B(R), *, -) is a Boolean ring. Also, if R is with unity, then so is B(R).

Proof: First observe that, for any @ and b € B(R), a * b and a - b are central
idempotents of R; i.c.,

(a*xb)*=(a+b—2ab)*=a+ b —2ab

(a - b)* = abab = ab

(a*b)x =(a+ b —2ab)x =x(a + b — 2ab) = x(a * b)
and (a - b)x = abx = axb = xab = x(a - b).

It is a straight forward verification to prove that all the axioms of rings are
satisfied in B(R) with * as addition and - as multiplication. Note thata - a =
aand a * a = 0 for all a € B(R) and 0 is the zero element in B(R) also. If R
has unity 1, then 1 € B(R) and 1 is the unity in B(R) also.

In addition to the two binary operations N and + on the set of ideals of a
ring, we introduce yet another binary operation, which is denoted by juxtapo-
sition, in the following definition.
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Definition 10.1.5. For any ideals / and J of a ring R, define

IJ:{Zal.bi ‘n€Z", a €I and b, EJ}.

Theorem 10.1.9. Let / and J be ideals of a ring R. Then, 1/ is an ideal of R
and IJCINJ.

Proof: If x and y € 1, thenx—Eab and y = Ecd where n,m € Z", a
andc € land b, andd EJThen

x—y=ab +--+tab +(—c)d + -+ (—c)d

and hence x — y € 1J, so that J is a subgroup of (R, +).
Also, if r € R and x = 3 a,b, € IJ, then
i=1

rx = Zl(rai)bi and xr= Zla,.(bir)

and ra, a, € I'and b, by € J and hence rx and xr belong to LJ. Thus, 1/ is an
ideal of R. Clearly ZJ C I and J.

There is an important observation that an ideal of an ideal need not be an
ideal; that is, if / is an ideal of a ring R, then / can be treated as a ring on its
own (since / is a subring of R) and, if J is an ideal of /, then J need not be an
ideal of the ring R. This is illustrated in the following example.

Example 10.1.2. Let R be the ring of real numbers under the usual addition
and multiplication. Consider the ring R® of all mapping of R into R under the
point-wise addition and multiplication. Let

S = {f € RE: fis continuous},

where R is with the usual topology. Then, S is a subring of R and hence S is
a commutative ring with unity (the constant map 1 is the unity in S). Let i be
the identity map defined by i(x) = x for all x € R. Then, i € S. Now, let

I={if:f€ Sandf(0) = 0}
and J={if+n?:f€S,/(0)=0andn € Z}.

Then, 7 is an ideal of the ring S and J is an ideal of /. However, J fails to

be an ideal of S, since # € J, % € S and %iz & J, where % denotes the
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constant map of R which maps every element of R onto the real number 1
The assumption %iz € J leads to a contradiction; for, let %iz € J. Then,

%iz = 2f + ni* for some f € Swith f/(0) =0 and n € Z.

Therefore, fi*> = (% — n)i%; that is, f(x)x* = (% —n)x* forallx € R. Ifx # 0,
fx) = % — n. Therefore, f'is a nonzero constant function on R — {0} and

f(0) = 0. This is a contradiction to the fact that fis continuous.
Next we discuss a characterization theorem for ideals of a matrix ring
M (R), where R is an arbitrary ring with unity.

Theorem 10.1.10. Let R be a ring with unity, n be a positive integer and
M (R) be the ring of n X n matrices over R. For any / C M (R), I is an ideal of
M (R) if and only if / = M (J) for some ideal .J of R.

Proof: It can be easily verified that M (J) is an ideal of M (R) for any ideal J
of R. Conversely suppose that / is an ideal of M (R).

Forany 1 = i,j = n, let E, be the n X n matrix over R such that the i
entry is 1 and all other entries are 0. Then, any » X n matrix (al.j) can be
expressed as

(a,)=> a,E,

i,j=1
1 ifj=k
0 ifj#k
Now, consider the given ideal / of M (R) and define

and EijEkr = kaEl_r, where 6jk = {

J={a€R:a=a, forsome (a,) €1}

That is, J is the set of all 11 entries (entries in the first column and first row) of
the matrices belonging to 7. Since I # J, J is a nonempty subset of R. Clearly
a — b € Jforany a and b € J. Next, suppose that a € Jand r € R. Then, a
= a,, for some (a,) € I. Since / is an ideal of M, (R), we have

n
Zal.jEij

ij=1

n
Z a,E,;

i,j=1

raE,=rkE, EIIZrE“(aij)EHEI

and ar E | =E,, rE, = E,(a,)rE, €1
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and hence ra and ar € J (since ra is the 11" entry of raFE | and ar is the 11"
entry of arE ). Thus, J is an 1deal of R. We shall prove that I=M(J).

Letd = (a)E]Then A= 2 a,E,. Forany 1 =< i, j = n, consider

: :ars rs

r.s=1

z :ars ir 15 jl

r.s=1

=>a,8,8,E, =a,E,.

rs ir D sj
r.s=1

Since 4 € I and aUEll = E],AE/.1 € I, we get that a; € J. Therefore, I C
M(J).

On the other hand, let 4 = (a, ) € M,(J). Then, a, € J for all i and j. Now, for
any 1 =i,j=n,a, € Jand hence there exists B = (b)) € I'such that b,

a, Now,

::mm

r,s=1

11 1j :meEzlE E

r,s=1

=Zb8EE

1ris
r,s=1

= Zb 8,8,E,=b,E,=a,E,.
r,s=1

Therefore, aE = E BE € I, since [ is an ideal and B € I. Now,
A= 2 a.E. € [ Therefore M (J) C I.Thus, I = M (J) and J is an ideal of R.

)
The above theorem is false for rings without unity. This is illustrated in the
following example.

Example 10.1.3. Consider the ring 2Z of even integers. Note that 27Z has no
unity. Consider the ring M,(27Z) of 2 X 2 matrices over 27Z. Let

I={(a,) € M,QZ): a,, € 4Z}.

It can be easily checked that / is an ideal of M,(2Z). Note that / # M,(J) for
any ideal J of 27Z.

Theorem 10.1.10 is useful only to the extent that we can describe the ideals
of a ring R, which is not usually easy to do, although it is easy for the ring Z
of integers (recall that any ideal of Z, being a subgroup of (Z, +), is generated
by a nonnegative integer). However, the ideals of fields are easy to describe.
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Theorem 10.1.11. Let R be a nontrivial commutative ring with unity. Then,
R is a field if and only if {0} and R are the only ideals of R.

Proof: Clearly {0} and R are ideals of R and these are distinct, since R is
nontrivial. If R is a field and 7 # {0} is an ideal of R, then there exists 0 #
a € Iand hence 1 = a'a € [, so that I = R. Conversely suppose that {0}
and R are the only ideals of R. Let 0 # @ € Rand I = aR = <a>. Then, ['is a
nonzero ideal of R and hence / = R. In particular, 1 € R = I = aR and hence
1 = ab for some b € R. Therefore, a is a unit. Thus, R is a field. |

Corollary 10.1.10. The ring R of real numbers (or the ring C of complex
numbers) has only two ideals, namely {0} and the whole ring.

Corollary 10.1.11. For any positive integer , the ring M (R) of n X n matri-
ces over R has exactly two ideals namely {0} and the whole ring M (R).

Since M (R) is a noncommutative ring for n > 1, M (R) is not a field (and
not a division ring) even though it has only two ideals. This says that the
commutativity of the ring R in Theorem 10.1.11 cannot be dropped from the
hypothesis. Nontrivial rings having only two ideals are called simple rings.
M (R) is a simple ring for all n € Z*.

Worked Exercise 10.1.1. Let / and J be ideals of a ring R with unity. Then

prove that R = [ @ J if and only if there are central idempotents a and b in R
suchthata + b= 1,ab = 0,1 = aR and J = bR.

Answer: Suppose that R =@ J. Then, I + J= Rand INJ = {0}. Since 1
€ R =1+ J, we have

l=a+b forsomea & landb E J.

Then, since ab € INJ = {0}, we have ab = 0. Therefore,a = a - 1 = a(a +
b) = @* + ab = a*. Similarly, b = b*. Also, for any x € R,

ax + bx = (a+ b)x =x =x(a + b) = xa + xb
and hence ax —xa=xb—bx€INJ= {0}

so that ax = xa and bx = xb. Therefore, a and b are central idempotents in
R, Also, since a € I, aR C I. Further, if x € [, then bx € I N J = {0} and
hence

x=(a+tbx=ax+bx=ax+ 0=ax €aR.
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Thus, I = aR. Similarly, J = bR.
Conversely suppose that a and b are central idempotents such thata + b = 1,
ab = 0,aR = I and bR = J. Then, for any x € R,

x=(@tbx=ax+bxel+J
and hence I + J = R. Also,

x€lNJ=x=ay=>bz forsomeyandz € R
=x=a* =ax=a(bz) = abz =0

and hence /NJ = {0}. Thus, R=1D J.

Worked Exercise 10.1.2. Let /, J and K be ideals of a ring R such that 7/ C K.
Then prove that

I+JUNK)y=U+J)NK.
This is known as modular law.

Answer: Since /C/+ Jand/ C K, wehave I C (I + J)N K. Also, JN K C
(I +J)N K. Therefore, I + (JNK) C (I + J) N K. On the other hand, let x €
(I +J)NK.Then,x € Kandx = a + b for some a € [ and b € J. Now,

b=x—a€K (sincex& Kanda € [ CK)

andhenceb € JNKandx =a + b €[+ (JNK). Therefore, (/ + J) N K C
I+ (UNK)Thus, I+ (JNK)=({I+J)NK.

Worked Exercise 10.1.3. Consider the ring Z of integers. For any positive
integers n and m, let I = nZ and J = mZ. Then, compute / + J, I N J and 1J.

Answer: Let (m, n) and [m, n] be the greatest common divisor and least com-
mon multiple of m and n, respectively. Note that ¢ € nZ if and only if a is a
multiple of n (or n divides a). Therefore,

a€l+J<sa€nZ + ml
< a=nx +my forsomex,y € Z
& (m, n) divides a
Sae€(mn)
a€lNJ&saenZN\mi
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<> a is a common multiple of » and m
& a is a multiple of [m, n]
S a € [m,n]Z
aells a=2x,.yi, x, €nZ and y, €EmZ
i=1

S a= Zx,. ¥;, n divides x, and m divides y,

=1
< mn divides a
< a € mnZ.

Thus, I + J = (m,n)Z, INJ = [m, nlZ and IJ = mnZ.

Worked Exercise 10.1.4. Letf: R — S be a homomorphism of rings. If Jis an
ideal of S, then prove that f7!(J) is an ideal of R. Also, if fis an epimorphism
and / is an ideal of R, prove that f(/) is an ideal of S.

Answer: LetJ be an ideal of S. Then,
i) ={a€ER:flayeJ} +J, sincef(0)=0€J.
For any a and b € R, we have

aand b € f'(J)=f(a) and f(b)EJ
=fla —b)=fla) —f(b) EJ
=a—bESfI()
and a€f'()andx ER=fa)EJ and f(x)ES
= flax) = fla)f(x) € J
and f(xa) = f(x)f(a) EJ = ax and xa € f'(J).

Thus, /~!(J) is an ideal of R.
Next, let f'be an epimorphism and / be an ideal of R. Then,

JO)={fla):a€l} +, sincel # .
Now, we have

xandy € f(l)=x=f(a) and y=f(b),aandb E ]
=x—y=fla) — f(b) = fla — b) E ()
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and x € f()ands € S=x = f(a) forsomea € [and
s =f(r) forsomer € R

= xs = f(a)f(r) = flar) € f(])
and sx = f(r)f(a) = f(ra) € f(]).

Thus, (/) is an ideal of S.

Worked Exercise 10.1.5. Let R be a ring with unity and / C R X R. Prove
that / is an ideal of the ring R X R if and only if / = /| X [, for some ideals
I and [, of R.

Answer: Suppose that / is an ideal of R X R. Put

I,={a€R:(a,b)E I for some b E R}
and I,={bER:(a,b)E] for someaE R}.

Then, /, and I, are ideals of R, since I, = p (/) and I, = p,(I), where p, and
D, : R X R — R are the first and second projections, respectively and since
p, and p, are epimorphisms of rings. Also,

(@b)el=a€cl and bEI
=(a,b)€l X1,

Therefore, I C 1, X ,. On the other hand,

(a,b)el XI,=a€l and bE]
= (a,c)€l and (d,b)€, forsomec,d ER.
=(a,0)=(1,0)(a,c) €I and (0,b)=(0,1)d, b)EI
=(a,b)=(a,0)+ (0,)E I

and therefore /, X [, C 1. Thus, I =1 X I..
Converse can be easily proved.

EXERCISE 10(A)

1. Determine all the ideals in each of the following rings under the operations.
(i) The ring Z of integers.

(i) The ring Q of rational numbers.
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(iii)  The ring R of real numbers.
(iv) The ring C of complex numbers.
(v) The ring Q, of real quaternions.
(vi) Thering Z  of integers modulo n for any n > 0.
(vii)  M,(R), the ring of 2 X 2 real matrices over R.
(viii)  The ring M (Z) of n X n matrices over Z, for any n > 0.
(ix) Z,
x) Z,X1Z,

2. Which of the following are true? Substantiate your answers.
(i) Zisanideal of Q.
(i) Qs an ideal of R.
(i) Every subring of a ring R is an ideal of R.
(iv) Foranyideal /ofaringR,/+1=1
(v) Foranyideal /ofaringR,I={a—b:a,b€I}.
(vi) There is a finite ideal in any ring.
(vii) There can be infinitely many ideals in a finite ring.
(viii) There is a ring with exactly three ideals.
3. For any subsets S and 7 of a ring R, prove that
<SUT> = <S>+ <>,
Is<SN 7> = <§> N <T>true?

4. Let R be aring with unity. If R is a division ring, prove that R has only two ideals.
Is the converse true?

5. Let R be a commutative ring and 4 C R. Prove that
A*={x€R:xa=0 foralla € 4}
is an ideal of R. A* is called the annihilator of A in R.

6. For any ideals / and J of a commutative ring R, prove the following:
1) (+DH*=rFnJ*=JUhH*
(i) ICI=J*CI*
(i) ¥ +J*CINJH*
7. Let Ibe an ideal of the ring Z of integers and 13 € I. Then prove that / = 137Z or
I=7.

8. Prove the Exercise 7 above with an arbitrary prime number in place of 13.

9. Let R be a commutative ring and / be an ideal of R. Let

rl)={a € R:a" € [forsomen € Z"}

Prove that (/) is an ideal of R containing /.
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. For any ideals 7 and J of a commutative ring R, prove the following:

® rnJ)y=rhnrJ)
(i) ICJ=r)Cr)
(i) D)+ r)) C (I +J)
(iv) L+ J) = (D) + ()
For any ideas / and J of a ring R, let
(I:))y={xER:xac Jforalla € I}.
Prove that (/ : J) is a left ideal of R.

Express each of the following in the form of nZ for a suitable n.
i) 8ZnNI12Z
(i) 6Z + 9Z
(iii) (6Z :97Z)
(iv) r(127Z)
V) (122)*
(vi) (9Z:6Z)
For any positive integers m and n, express each of the following in the form of
dZ for a suitable integer d-
(i) mZnNnZ
(i) mZ + nZ
(iii)  r(mZ)
(iv) (nZ:mZ)
V) (mZ)*

Consider the ring Z[\/§]= {a+b\/§ :a and b € Z}, under the usual addition
and multiplication of real numbers. Prove that the set

I={a+b3:a, bEZ and a—b is even}

is an ideal of Z[\/g].

Let R be a ring without zero divisions. If every subring of R is an ideal of R, then
prove that R is commutative.

Let S be a subset of a ring R and define

Ann(S) = {x ER:xs = 0 forall s € S}.

Then prove that Ann(S) is a left ideal of R. If S'is a left ideal of R, then prove that
Ann(S) is an ideal of R. Ann(S) is called the left annihilator of S.

Define the notion of the right annihilator Ann (S) of S and formulate and prove a
statement similar to the Exercise 16 for right annihilators.

Prove that every ideal of Z, is a principal ideal.
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19. Let R be commutative ring in which {0} and R are the only ideals. Then prove that

R is field or R is a finite ring with |R| as a prime and ab = 0 for all a and b € R.
20. Prove that the set

1:{a+bx/5:a and b€ 7 and a is even}

is an ideal of the ring Z[ﬁ].

21. Inthe ring Z[i] of Gaussian integers, prove that the set
I ={a+bi:aand b are even}
is an ideal and find the annihilator /*.

22. If R is a simple ring with unity, then prove that the ring M (R) of all n X n matri-
ces is a simple ring.

10.2 QUOTIENT RINGS

The concept and construction of quotient rings are same as for quotient
groups. For an ideal / of a ring R, / is a subgroup of the abelian group (R,
+) and hence / is a normal subgroup of the group (R, +) and therefore, as in
Theorem 4.6.1, we can construct the quotient group (R, +y as the group of
all cosets @ + 1, a € R under the operation defined by I

@+D+GB+D=(@+b)+1I

Then, (R, +y is an abelian group. Since R is a ring, we have the multipli-
|

cation in R and it is natural to ask whether the quotient group (R, +)/I has a
corresponding ring structure using (a + /) - (b + I) = ab + [ as the multipli-
cation. This is answered positively in the following theorem.

Theorem 10.2.1. Let / be an ideal of a ring (R, +, +) and
RI={a+1:a€R}.
Forany a + I'and b + [ in R/I, define

(a+h+Bb+DH=(@+b)+1
and (a+D-(b+DH=ab+ L

Then, (R/I, +, -) is a ring.

Proof: Since / is a subgroup of (R, +), which is an abelian group, / becomes
a normal subgroup of (R, +). Therefore, by Theorem 4.6.1, (R/I, +) is an



Ideals and Quotient Rings  10-21

abelian group. Next, with regard to the multiplication in R//, we should first
prove that the operation on R// is well defined.
To do this, for any a, b, ' and b’ € R, we have

atl=a+1
=a—ad €l and b—bEI
b+I=b'+1
=(a—ad)b €1 and d(b-b)EI
=ab—db' =(a—a)b+a(b—b)EI
=ab+I=dab'+1.

Therefore, the multiplication on R// depends on the cosets, but not on their
representatives. For any a, b and ¢ € R, we have

@+ D-(b+1D):(ct+ D)= (ab)c + I=a(bc)l
=(a+D-((b+tD)-(c+1D).

Therefore, - is associative. Also,

(a+D-(b+D+(c+D)=ab+c)+1
=(ab +ac) +1
= (ab + I)+ (ac + 1)
=((a+ Db+ D)+ ((at DctD).

Therefore, - distributes over + from left and, similarly from right also. Thus,
(R/I, +, +) is a ring.

Definition 10.2.1. For any ideal / of a ring R, the ring (R/I, +, -) constructed
above is called quotient ring of R by I or factor ring of R by 1.

Note 10.2.1

1. The zero element in the quotient ring R//is 0 + [ = I, where 0 is the zero
element in R.

2. If the ring R has unity 1, then R/I also has unity, namely 1 + /. The con-
verse may not hold good. That is, R// may have unity while R has no unity.
For example, R is an ideal of R and the quotient R/R is the trivial ring
which obviously has unity (when a ring has only one element, then that
element is the additive identity as well as the multiplicative identity).

3. If R is a commutative ring, then the quotient R// is also commutative ring
for any ideal / or R.
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In group theory, we have defined the concept of the kernel of a homomor-
phism and proved that it is a normal subgroup of the domain group and con-
versely, any normal subgroup is the kernel of a homomorphism. These results
are extended to the case of rings in the following definition.

Definition 10.2.2. Let /: R — S be a homomorphism of rings. Then, the
Kernel of f'is defined to be the set

ker f= {a € R: f(a) = 0in S}.

Theorem 10.2.2. The kernel of any homomorphism of rings is an ideal of
the domain ring.

Proof: Let /: R — S be a homomorphism of rings. Then, f'is a homomor-
phism of the group (R, +) into the group (S, +) and hence ker fis a subgroup
of (R, +). Also,

a€kerfandrER=f(a)=0 and re€R

= f(ra) = f(nf(a) = f(r)0 = 0
and f(ar) = fla)f(r) = 0f(r) =0=ra and ar € kerf.

Thus, ker fis an ideal of R.

We prove the converse of the above result; that is, any ideal / of a ring R is
the kernel of a homomorphism of R into some ring S.

Theorem 10.2.3. Let / be an ideal of a ring R. Then, there exists a ring S and
a homomorphism f: R — S such that / = ker f.

Proof: Consider the quotient ring R// and define f/: R — R/I by f(a) = a + 1
for any a € R. Then, fis a homomorphism of rings; for,

fla+by=(@+by+I=@+D+ b+ =fla)+f(b)
and f(ab) = ab + I = (a + I\(b + I) = f(a)f(b)

for any a and b € R. Also,

kerf={a €R:f(a) = 0in R/}
={a€R:a+t1=1}=1
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Definition 10.2.3. For any ideal / of a ring R, the homomorphism f: R — R/I,
defined by f(a) = a + I for any a € R, is called the canonical homomorphism
or natural homomorphism. Actually, f'is an epimorphism, since any element
of R/l is of the form a + I for some a € R.

The fundamental theorem of homomorphisms of groups proved in
Theorem 5.2.1 is extended for rings in the following theorem.

Theorem 10.2.4 (Fundamental Theorem of Homomorphism for Rings). Let
f: R — S be a homomorphism of rings. Then, f(R) is a subring of S and

R/ker f = f(R).
In particular, if fis an epimorphism, then R/ker f'= S.

Proof: The proof is same as that of Theorem 5.2.1, except that the map g :
R/K — f(R) defined by

gla + k) = fla)

is a ring homomorphism also, where k£ = ker f.
This is clear from

gl(a+k)(b+k) = glab + k) = f(ab) = f(@)f (D).

The above fundamental theorem can be restated as ‘any homomorphic image
of'aring R is isomorphic to a quotient ring of R’. This is not only a fundamen-
tal result but also an important tool in proving several isomorphism theorems
for quotient ring. Some of these are listed below and their proofs are similar
to those proved in Section 5.3.

Theorem 10.2.5. For any ideals 7 and J of a ring R,

RS

nJ J

Theorem 10.2.6. Let /: R — S be an epimorphism of rings and / be an ideal
of R such that ker f C /. Then, f(/) is an ideal of S and

R S

Ifuy
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Theorem 10.2.7. Letf: R — S be an epimorphism of rings and J be an ideal
of S. Then, f!(J) is an ideal of R and

R =
S

Theorem 10.2.8. Let /and J be ideals of a ring and / C J. Then, J/I is an ideal
of R/I and

(R/D/(JIT) = RIJ.

Further, the correspondence between the subgroups of a quotient group G/N
and the subgroups of G containing N can be easily extended to rings as given
in the following theorem whose proof is routine.

Theorem 10.2.9. Let / be an ideal of a ring R. Then,
J—=JI

is a one-to-one correspondence between the ideals of R containing / and the
ideals of R/I.

Example 10.2.1. Let 7 be a positive integer and Z _ be the ring of integers
modulo n. We shall prove that Z, is isomorphic to a quotient of the ring Z of
integers, by using the fundamental theorem of homeomorphisms, as in the
case where we have treated these as groups alone (see Example 5.2.1). As
usual, define

fiZ—1Z, by fla)=r,
where 7 is the remainder obtained by dividing a with n; that is, a = gn + r,
0 = r < n.Then, fis a epimorphism of rings (see Example 9.5.1 (4)) and ker
f= nZ and hence
Zinl. = 7.,

Worked Exercise 10.2.1. Prove that any nontrivial homomorphic image of a
field is again a field.

Answer: Let R be a nontrivial homomorphic image of a field F. Thatis, Risa
nontrivial ring and there is an epimorphism /: /' — R of rings. Then, consider
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ker f'which is an ideal of F. Since F is a field, ker /= {0} or F. Also, F/ker
f=f(F)= R Ifker f = F, then F/ker fis trivial and hence R is trivial, which
is a contradiction to the hypothesis that R is nontrivial. Therefore, ker = {0}
and hence

F = Flker f=R.
Since F'is a field, R is also a field.

Worked Exercise 10.2.2. For any ideal / and J of a ring R, prove that R// N J
is isomorphic to a subring of R/I X R/J.

Answer: Define f: R — R/ X R/J by
flay=(a+1La+J) foranya€ R.

It can be easily verified that fis a homomorphism of the ring R into the prod-
uct ring R/I X R/J. By the fundamental theorem of homomorphisms, f(R) is
a subring of R/l X R/J and R/ker f = f(R). Since = (0 + [) and J = (0 + J)
are the zero elements of R/I and R/J, respectively, (/, J) is the zero element in
the ring R/ X R/J. Therefore,

ker f'= {a € R : f(a) = zero element in R/] X R/J}
={a€R:(a+La+J)y=(UJ)}
={a€R:a+I=Ianda+J=J}
={a€R:a€landa € J}
=INnJ.

Thus, R/I NJ = f(R), which is a subring of R/ X R/J.

Worked Exercise 10.2.3. Let / = 37Z/127Z. Prove that [ is isomorphic to an
ideal J of Z , such that Z [J = Z..

Answer: Recall that 127 C 3Z C Z and 12Z and 37Z are ideas of Z. By
Theorem 10.2.8,

(ZN2Z)(3ZN2Z) =TT = 7.,

Since 37Z/127 is an ideal of Z/127 = 7., (by Example 10.2.1), there must be
an ideal J of Z , such that

[=37212Z=J and ZJJ=TZ,
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Worked Exercise 10.2.4. Let /and J be ideals of array R such that /NJ = {0}
and / + J = R. Then prove that

J=R/1,1=R/.

Answer: Define f: J — R/Iby f(a) = a + [ for any a € J. Then, clearly fis a
homomorphism of rings. Also, for any x + / € R/, x € R, we can write x =
b + a, forsome b € [ and a € J (since R = [ + J) and therefore x + 7 = (b
+a)t+I=a+ (b+ 1) =a+ I(since b € ])and hence fis an epimorphism.
Also, for any a € J,

fla)=0=a+ =1, thezeroin R/
=a€]
=a€lnJ= {0}
=a=0.

Therefore, fis an injection also and hence f'is an isomorphism of J onto R/J.
Thus, J = R/I. Similarly, [ = R/J.

Worked Exercise 10.2.5. Let / be an ideal of a ring R and the characteristic

of R be n > 0. Prove that the characteristic of the quotient ring R// is a divi-
sor of n.

Answer: We are given that char(R) = » and hence #» is the least positive
integer such that na = 0 for all @ € R. Now, forany a + I € R/I, a € R,
we have

ma+I)=na+1=0+1=1 thezeroin R/
and therefore char(R/I) > 0 and, by Theorem 9.3.1, char(R//) is a divisor of n.

Worked Exercise 10.2.6. Let P(X) be the power set of any set X. Let Y be anon-
empty proper subset of X. Prove that P(Y) is an ideal of the ring (P(X), +, N)
and describe the quotient ring P(X)/ P(Y).

Answer: We are given that P(Y) = {4 : 4 C Y}. We have

AandBEPY)=A4A+B=(A—-B)UB—-—A) CAUBCY
and ANZCY forall Ze PX).
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Therefore, P(Y) is an ideal of the ring (P(X), +, N). Any element of the quo-
tient ring P(X)/P(Y) is of the form Z + P(Y) for some Z € P(X); that is,
Z C X. Now, we can write

Z=ZNHUuZNX-7Y)
=(ZNY)+(ZNWX- 1)
andhence Z+PY)=(ZNnY)+PY)+{(ZNX—7Y)) + P(Y))
=(ZNWKX-Y) +PW), sinceZNYePY).

Therefore, P(X)/ P(Y) = {4 + P(Y): A C X — Y}.
Note that, forany 4 and BC X — ¥,

A+ P(Y)=B+P(Y)=A4— BEPY)
=A+BCY
=A+BCYNX-N=J
=A+B=0
=A=—-B=8B

Thus, A — A + P(Y) is a bijective map of P(X — Y) onto IP(X%(Y). It can
be easily verified that this map preserves the ring operations in P(X — Y) and
P(X%( Y) Thus, the factor ring P(X%( Y) is isomorphic to P(X — Y). One

can consider the map f: P(X) — P(X — Y) defined by f(4) =ANX — Y). It
can be verified that fis an epimorphism of rings and ker / = P(Y) and hence,
by the fundamental theorem of homomorphisms,

PX)/ P(Y) = P(X — 7).

EXERCISE 10(B)

1. Determine all the elements of each of the following quotient rings.
(i) Z/5Z
(i) 3Z/6Z
(iii) 2Z/10Z
(iv) 3Z/9Z
(v) R/, where R= {[
a 2b

=
{30 3d

(vi) P(X)I, where X = {1,2,3,4,5} and I = P({2,4}).

a 2b

ca,b,candd €EZ} and
3¢ d

] ta, b candd € Z}
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2.

10.

State whether each of the following is true or false. Substantiate your answers.
(1) For any ring R, R has unity if and only if R// has unity for all ideals / of R.
(i) For any ideal / of a commutative ring, R// is commutative.

(iii) A ring R is commutative if and only if R// is commutative for all ideals
Iof R.

(iv)  For any integral domain R, R// is an integral domain for any ideal / of R.

(v) Aring R is an integral domain if and only if R// is an integral domain for
any ideal / of R.

(vi) Any quotient ring of a field is a field.
(vii) For any ideal / of aring R, R/I is a field if and only if R is a field.
(viil) A nontrivial ring R is a field if R// is a field for all proper ideal, / of R.

Prove that a homomorphism f: R — S of rings is an injection if and only if

ker f= {0}.

For any subring S of a ring R, prove that the multiplication of additive cosets of
S'in R is well defined by the equation

(a+S)b+s)y=ab+ S

if and only if S is an ideal of R.

. For any ideals 7 and J of a ring R, prove that the set

j={a+1.’aEJ}

is an ideal of R/I.

Determine all the idempotents, nilpotents and units in each of the following
quotient rings

(i) z/6z
(i) Z/8Z
(i) 7Z/7Z

. Let Ibe an ideal of the ring Z such that Z/I is an integral domain. Then prove that

I = {0} or [ = pZ for some prime number p.

Prove that the following are equivalent to each other for any positive integer n.
(i) nisaprime number.
(i) Z/nZ is a field.
(iii)  Z/nZ is an integral domain.

Let R be a commutative ring and N be the set of all nilpotents in R. Then prove
that NV is an ideal of R and the quotient ring R/N has no nonzero nilpotents.

Prove that Z s, {0} and Z are the only homomorphic images of the ring Z of
integers.
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11. Let S be a subring and / be an ideal of a ring R such that SN 7 = {0}. Prove that
S is isomorphic to a subring of the quotient ring R//.

12. For any two subsets 4 and B of a ring R, let the product of 4 and B be defined by
the set

AB = {ab:a € Aand b € B}.

Give an example of an ideal / of a ring R such that the product (x + /) (v + /) of
two cosets (x + /) and (y + 1) is properly contained in the coset (xy + ).

13. For any ideal / of a ring R, prove that
M (R)/M (1) = M (R/])
for any positive integer n, where M (S) denotes the ring of n X n matrices over S.

14. For any pair of relatively prime positive integers m and n, prove that Z /nmZ
=7Z.
15. LetR, ...,R beringsand /, ..., I beideals of R, ..., R , respectively. Then
prove that
R X -+ XRJ/ X+ X[ =R/ X+ XRIJ.

16. For any positive integer n, determine all the ideals of the quotient ring Z/nZ and
all the homomorphic images of Z/nZ.

10.3 CHINESE REMAINDER THEOREM

In this section, we extend a remarkable result known as ‘Chinese Remainder
Theorem’ in the theory of numbers to the ideals of a ring. Recall that the set
Z of integers forms a ring under the usual addition and multiplication of inte-
gers and that the ideals of Z are of the form nZ for some nonnegative integer
n. Note that, if / = nZ and a € 7Z, then

a €1 = nZ < ndivides a.

The classical version of the Chinese Remainder Theorem is that ‘given dis-
tinct primes p,, p,, ..., p, and integers a, a,, ..., a,, one can always find an
integer a such that

a=a(modp) foralll =i=n;

thatis,a —a,€pZora +pZ = a +pZforalll =i=n’lIf wetake/ =
pZ, then the Chinese Remainder Theorem states that, for any elements a , a,,
..., a_ in the ring Z, there exists an element @ in Z such that

a+l=a+1 foralll =i =n.
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In the following theorem, we arrive at a necessary and sufficient condition

onideals/, [, ..., I of an arbitrary ring for the validity of the above results.

Theorem 10.3.1. Let R be a ring with identity and /, L, ..., I be ideals of
RIfI + Ij = R for any i # j, then, for any x,, x,, ..., x € R there exists x €
R such that

x —x, € [l;thatis,x + [ =x,+ [ foralll =i=n.

Proof: Recall that an ideal 7 of R is the whole of R if and only if the unity 1
belongs to . Suppose that

I+ =R forall i # j.

First, we shall prove that, foreach 1 =i =n,

I+ =R

N,

J#Fi

To prove this, fix 1 =i =nand put K; = N I,. For eachj # i, we have
J=i
l€R=1+1 andhencel =a + b,

for some a,€ I and b/. e I, Now, consider

IZH(aj+bj):Si+ti’

JFi

where f, = I;Ib/. and s, € 1, since the expansion of II(a; +b,) gives a sum
J#E ! ! JE
in which all the summands, except 15, are products involving atleast one
JE -
J

teNI =K

Jj#i !

a, which is in 7 and /, is an ideal. Also, ¢, = l_;[_bj €1, for all j # i and hence
J7 :

Therefore,
l=s5+t,s, €l and tEK, *)

and hence L+(NI)=1I1+K =R forall 1 =i =n. Now,letx,x, ..., x
J#Ei

be any elements in R. Put

x=xltl +x2t2+ e Xt

nn
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Then, foreach 1 =i = n,

x—x, =y xt,—x(s +1,) (by (*))
Jj=i
= ijtj -xs5 €1

J#i

since LEI forallj # iand s, € I.
A converse of the above result is also true and this is proved in the follow-
ing theorem.

Theorem 10.3.2 Let/, I, ..., [ be ideals in a ring R such that, for any ele-

12 722
ments X, X,, ..., X, in R, there exists x € R withx — x, € Il_for all =i =,

Then,[i+]/_=Rforalli¢j.

Proof: Fixi # j. Leta € R. Define x, x,, ..., x, by x, = @ and x, = 0 for all
k # i. Then, by hypothesis, there exists x € R such that

x—a=x—x&€I and x=x—-x€&I
and therefore @ = (@ — x) + x € [, +1. Thus, [, + [, = R forall i # ;. <

Theorem 10.3.3. Let /, [, ..., I be ideals of a ring with unity and R/,

1 2%
R/, ..., R/ be the corresponding quotient rings. Define /: R — R/I, X R/,
X -+ X R/l by

SO =+, x+1,..,x+1)

for any x € R. Then, fis an epimorphism if and only if /, + =R foralli #j
and, in this case R/ 61]" is isomorphic to R/I, X R/I, X -+ X R/I .

Proof: Clearly fis a homomorphism of rings and

kerf={a€R:fla) = zeroin R/[ X - X R/ }
={a€R:(at+l,...,a+l)=(U,..,1)}
={a€R:a€lforl =i=n}

-1
i=1
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Also, f'is a surjection if and only if, for any x, x,, ..., x_in R, there exists
X € R such that

x+ I =x+1 foralll =i=n

which in turn, by Theorems 10.3.1 and 10.3.2, is equivalent to saying that /. +
I, = R for all i # j. In this case, we have by the fundamental theorem of
homomorphlsms that

I R £>< R Xoee Xﬁls an isomorphism.
ﬁ 1, I, 1
I "
i=1
Corollary 10.3.1. Let R be a ring with unlty and [, I, ..., I be ideals of R

such that /, + /, = R for all i # j and ﬂ[ ={0}. Then, R = R/I. X R/, X
- X R/

Corollary 10.3.2. Let R be a ring with unity and R be the direct sum of ideals
I and J. Then,

R=R/IXR/.

Corollary 10.3.3 (Chinese Remainder Theorem). Letm , m,, ..., m be posi-
tive integers which are pair-wise relatively prime. For any integers al, Ay ooy
a , there exists an integer a such that

a=a(modm) foralll=i=n.
Further, a is unique modulo the l.c.m. of {m ,m,, ..., m }.

Proof: Put/ = mZ for1=i=n.Then,] 1san1dealonand1 +1= g.c.d.

tm, m}7Z = 1Z = Z for all i # j. Also, OI = mZ, where m = lcm of
{m,...,m}.Now,leta,a, ..., a beany 1ntegers Then, by Theorem 10.3.1,

there exist @ € Z such that

9.5a—a[€Ii=miZ foralll =i=n

and hence m, divides a — a, so that @ = a(mod m). Also, if b is any other
integer with this property, then

a—b=(a—a)—(b—a)Elforalll=i=n

and hence a—b €& ﬂ[ = mZ, so that a = b(mod m). Thus, a is unique
modulo m.
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Corollary 10.3.4 (Classical Chinese Remainder Theorem). Letp ,p,, ..., p,
be distinct prime numbers and a,, a,, ..., a, be any integers. Then, there exists
an integer a such that

a=a(modp) foralll =i=n

and this @ is unique modulo the product p p, - p .

n

Corollary 10.3.5. Let m be a positive integer greater than 1 and
m=plip?..p",

where p,, p,, ..., p, are distinct primes and r,, r,, ..., r, are positive integers.
Then,

7 =7 XL ,X--XT .
2 P p"

Proof: Z, =Z/mZ="7/piZX--XZ|piZ=1 ,x-XL .

pn

Worked Exercise 10.3.1. Prove that Z , = Z, X Z,.

Answer: Since 12 = 22 X 3'and 2 and 3 are distinct primes, it follows from
Corollary 10.3.5 that

Ly =Zp XLy =Ly XLs.
Worked Exercise 10.3.2. CanZ , =7, X Z, X 7,?

Answer: No; for, char(Z,) = 2 and char(Z,) = 3 and hence char(Z, X Z, X
Z,) = lem {2, 2,3} = 6. But char(Z,,) = 12 and hence Z,, cannot be iso-
morphic with Z, X Z, X Z,.

EXERCISE 10(C)

1. Which of the following are true? Substantiate your answer.
(i) Z XZ,=1ZLy
(i) ZXZ,=7,X7Z,
(i) Z, X Zyy =7,
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(iv) PX)=P(Y) X P(X — Y) for any subset Y of a set X, where P(X) is the
ring. (P(X), +, M)

V) Z=7,X17,

Vi) ZXZ=7

2. Let R be any ring with unity and

=5 ¢

Then prove that S is a ring under the usual addition and multiplication of matri-
ces over R.

:a,banchR}.

3. Let/andJ be ideals of a ring R with unity and S be the ring given in Exercise 2.
Let

a b
K=[[ ] :aEI,cEJ,bER}.
0 ¢

Then prove that K is an ideal of S and that
S/K = R/ X RIJ.

4. Let {Rj}jEJ be a class of rings and

[IR =4 : T=JR,: f()HER, foralljE J}.

= JEJ

Then prove that HJ R, is a ring under the point-wise addition and multiplication.
jE

5. Let @ R,={f € Il R:f(j)=0 for all but finite j’s in J}. Then prove that & R,
jes / jes ey

is a subring of the l'[j R, given in 4 above.
JjE

6. For any nonempty proper subset K of J, prove that there is a subring S of

/.GEBJR/' given in 5 above such that S= @ R, S is an ideal of @ R, and
JEK JjEJ

@ R, S= ¢ R

JEJ jer-k 7

7. For any igeals 1,1, ...,1I ofaring R, prove that R/ 61 I, is isomorphic to a sub-
ringof G R/1,. ’

=l
8. Forany class {/} ., of'ideals of a ring R, prove that R/ ﬂj 1, is isomorphic to
jE
a subring of IT R/ .
=

10.4 PRIME IDEALS

We have noticed earlier that a quotient ring of a ring may be an integral
domain irrespective of whether the given ring is so. For example, the ring Z
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of integers is an integral domain and the quotient ring Z/6Z(=Z,) is not an
integral domain, while the quotient ring Z/5Z(= Z,). is an integral domain.
In this section, we discuss ideals with respect to which the quotient ring
becomes an integral domain.

Definition 10.4.1. Let R be aring. A proper ideal P of R is said to be a prime
ideal if, for any ideals [ and J of R,

IJCP=ICP or JCP

Example 10.4.1

1. {0} is a prime ideal of the ring Z of integers.

2. A nonzero ideal I of Z is prime if and only if / = pZ for some prime
number p.

3. Consider the ring Z X Z under co-ordinate wise addition and multiplica-
tion. Then, Z X {0} and {0} X Z are prime ideals of Z X Z.

4. {0} is not a prime ideal in the ring M (R) of 2 X 2 matrices over the real
number system.

Theorem 10.4.1. Let P be a proper ideal of a ring R such that, for any a and
bin R,

abEP=a€P or bEP.
Then, P is a prime ideal. The converse holds if R is a commutative ring.

Proof: Let/andJbe ideals of R such that / ¢ PandJ ¢ P. Then, there exist ele-
ments a and b such thata € I, a & P, b € Jand b & P. Then, by the hypothesis,
ab & P. Since ab € 1J, it follows that ZJ ¢ P. Thus, P is a prime ideal of R.
Conversely suppose that R is a commutative ring and P is a prime ideal of R. Let
a and b € R such that ¢ & P and b & P. Consider the ideals <a> and <b>. We
have <a> ¢ P and <b> ¢ P and hence <a><b> ¢ P. Therefore, there exists an
element x € <g><b> such that x & P. x is a finite sum of elements of the form

(ra + na) (sb + mb) = rsab + mrab + nsab + nmab
(see Corollary 10.1.3) and, since x & P, it follows that ab & P.

Corollary 10.4.1. A proper ideal P of a commutative ring R is prime if and
only if, for any ¢ and b in R,

abeEPsa€EP or beEP.
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Theorem 10.4.2. Let P be an ideal of a commutative ring R with unity. Then,
P is prime if and only if the quotient R/P is an integral domain.

Proof: Suppose that P is a prime ideal of R. Since P is proper ideal of R, R/P
is a nontrivial ring. Also, since R is a commutative ring with unity, so is R/P.
Now, foronly ¢ + Pand b + P in R/P,

(a+ P)b+ P)=zeroinR/P=ab+ P=P
=ab € P
=a€P or bEP
=a+P=P or b+P=P.

Thus, R/P is an integral domain.
Conversely, suppose that R/P is an integral domain. Then, R/P is nontrivial
and hence P is a proper ideal of R. Now, for any ¢ and b in R,

abeEP=(a+P)b+P)=ab+P=P
= (a + P)(b + P) = The zero in R/P
=a+P=P or b+P=P
=a&€P or bEP.

Thus, P is a prime ideal of R.
Let us recall that, for any ideals 7 and J of a ring R, the set

% ={a+Il:a€J}
is an ideal of the quotient ring R/l and that J — J/I is a one-to-one cor-
respondence between the ideals of R containing / and the ideals of R/I (see

Theorem 10.2.9). This correspondence can be carried to prime ideals also,
as proved in the following theorem.

Theorem 10.4.3. Let / be an ideal of a ring R and P be an ideal of R contain-
ing /. Then, P is a prime ideal of R if and only if P/ is a prime ideal of R/I.

Proof: Suppose that P is a prime ideal of R. Then, P/I is a proper ideal of R/I,
since P is proper in R. Let 4 and B be ideals of R/I such that 4B C P/I. Then,
A = J/I and B = K/I for some ideals J and K of R containing /. Also,

JK/I = (JIN(KIT) = AB C P/

and hence JK C P, so that J C P or K C P, since P is prime. Therefore, 4 =
JII C P/lor B = K/I C P/I. Thus, P/l is a prime ideal of R/I.
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Conversely suppose that P/I is a prime ideal of R/I. Then, P/I is proper in R/]
and hence P is a proper ideal of R. Let J and K be ideals of R such that JK C
P, Then, J/I and K/I are ideals of R/l and

(JINKIT) = JK/I C P/I.

Since P/I is a prime ideal of R/I, it follows that J/I C P/I or K/I C P/I and
hence J C Por K C P. Thus, P is a prime ideal of R.

Corollary 10.4.2. Let / be an ideal of a ring R. Then, P+ P/I is a one-to-
one correspondence between the prime ideals of R containing / and the prime
ideals of R/I.

Example 10.4.2. Consider the ring Z of integers in which {0} is a prime
ideal and any nonzero prime ideal is precisely of the form pZ for some prime
number p. Recall that any ideal of Z is a principal ideal. Let / = <n> = nZ
and n=p/' py*...p", where r >0, Py» P,» ---» P, are distinct prime numbers
anda, a, ..., a, are positive integers. Then, P is a prime ideal of Z containing
nZ if and only if P = p Z, for some 1 = i < r. Thus, there are exactly r prime
ideals in Z/nZ(=Z,) and these are PZ/nZ , 1 =i =<rr.

In the following definition, we introduce a concept which plays an impor-
tant role in many aspects of the theory of ideals in commutative rings.

Definition 10.4.2. Let R be a commutative ring and / be an ideal of R. The nil
radical of I is defined as the set

JI={xER:x" €1 forsome n € Z"}.

Using the commutativity of the ring R, one can easily prove that JI s an
ideal of R containing /. In fact, we prove in the following that JI is the inter-
section of all prime ideals of R containing /. Before going to the proof of this,
let us recall an axiom of the theory of sets, which is popularly known as the
Zorns lemma. Though it is called a lemma, it is actually an axiom. There are
several equivalent formulations of this axiom. We present a convenient form
of this in the following lemma.

Zorn’sLemma 10.4.1. Let X be any set and J be a nonempty class of subsets
of X. Suppose that, for any subclass € of 7 in which any two members of
% are comparable (that is, for any 4 and B € €, either 4 C B or B C A), the
union of all the members of 6 is a member of J. Then, J has a maximal
member; that is, there exists M € J such that M is not properly contained in
any member of J.
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Theorem 10.4.4. Let / be an ideal of a commutative ring R. Then, the nil
radical of / is equal to the intersection of all prime ideals of R containing /.

Proof: Let ~/I be the nil radical of 7 and J be the intersection of all prime
ideals of R containing /. We shall prove that JI=J.1fPis any prime ideal
of R containing /, then

x€JI=x"EI C P forsomenEZ"
=x"EP,nEL"
= x € P (since P is prime)

and hence \/_ I C P. Therefore, f I CJ.
On the other hand, let x € R such that x & JI. Then, x" & [ for all n €
7 . Put

={x"n€Z"}.

Then,x € Sand SN I = . Let

J ={K:Kisanideal of R,/ C Kand SN K = J}.

Since I € J, I is a nonempty class of subsets of R. We shall verify that the
hypothesis in the Zorn’s Lemma is satisfied for 7. Let € be a subclass of I
such that, for any 4 and B € 6, either 4 CBorBC 4. If K = U A, then K is
an ideal of R (by Corollary 10.1.1), /C Kand SN K = J and hence KeJ
Therefore, I satisfies the hypothesis of the Zorn’s Lemma and hence I has a
maximal member, say M. Then, M is an ideal of R, I C M and x & M (since x
€ Sand S N M = ). We shall prove that M is a prime ideal, which implies
that x & J. Let a and b € R such that ab € M. Suppose, if possible, a & M
and b & M. Then, M G M +<a> and M G M + <b>. By the maximality of
M, M + <a>and M + <b> cannot be members of J. Therefore,

SNAM+<a>)# and SN(M + <b>) + .
and hence there exist positive integers » and m such that
x'=y+ra+sa and x"=z+rb+th
for some y,z € M,r,r, € Rands, t € Z. Now x""" € § and

Xt =x'x" = (y + ra + sa)z + r,b + tb)
=y +rb+th)+ (ra+ sa)z+ rrab + trab + srab + stab.



Ideals and Quotient Rings  10-39

Since y, z and ab € M, we get that x"*” € S N M, which is a contradiction to
the fact that S N M = (J (since M € ). Therefore, « € M or b € M. Thus,
M is a prime ideal of R. Since x & M and I C M, we get that x & J. Therefore,
we get that JQ«/?. Thus, \/7:.].

Example 10.4.3. In the ring Z of integers, let n= p" py* -+ p)", wherep , p,,

..., p, are distinct primes and @, a,, ..., a, are positive integers. Then, p Z,
D,Z, ..., p.Z are all the prime ideals containing nZ and hence

NnZ = (pZ)N(p,Z)N---N(p,Z) = (p,p, - P, )L
As concrete illustrations of this, we have
\247 =67 (since 24 =2° - 3")

and  +/100Z =10Z (since 100 =2 - 5%).

Corollary 10.4.3. The nil radical of {0} in any commutative ring R is pre-
cisely the set of nilpotents in R; that is,

J{0} ={xER:x"=0 forsome n € Z"}.
VJ{0} is usually denoted by N(R) and is called the prime radical of R.
Corollary 10.4.4. For any ideal / of a commutative ring R,
37

1

i

Worked Exercise 10.4.1. Prove that the following are equivalent to each other
for any ideal 7 of a commutative ring R.

1L 1=+1
2. 1= \/7 for some ideal J of R.
3. [is the intersection of a class of prime ideals of R.

Answer: (1) = (2) is trivial.

(2) = (3) follows from the fact that JJ s equal to the intersection of prime
ideals of R containing J (by Theorem 10.4.4).

(3) = (1): Suppose that {P } _, is a class of prime ideals of R such that

1= ﬂAPa , we always have [ C \/7 . On the other hand,
aE
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xEﬁéx"€]=ﬂpa for some n€Z"

a€A
=x"€p, foralla EA
=x€E€p, forall a €A (since p, is prime)

=>x€E ﬂpa=l

aEA

and therefore /T CI. Thus, I = NI

Worked Exercise 10.4.2. Let / be an ideal of a commutative ring R. Prove that
I= T ifand only if the quotient ring R/I has no nonzero nilpotent elements.

Answer: Suppose that [ = JI . Leta+Ibea nilpotent element in R//. Then,
(a + Iy = [ for some n € Z* and hence " + [ = I. This implies that " € [
and hence a € \/I = I, so thata + I = I. Therefore, zero element is the only
nilpotent in R/I.

Conversely suppose that R/I has no nonzero nilpotents. Then,

a€I=a" €1 forsomen€Z*
=(a+)'=a"+1=1,n€EZL"

. . . R
=-a+1 is anilpotent in T

=sat+l=1
=a€l.

Therefore, NI cIC VI and hence I = /1.

Worked Exercise 10.4.3. Let P and Q be prime ideals of a ring R. Prove that
PN Qisaprime ideal if and only if P C Qor Q C P.

Answer: If PC Qor Q C P,then PN Q = Por Qand hence P N Q is a prime
ideal, conversely suppose that P N Q is a prime ideal and P ¢ Q. Choose an
element a € P such that a & Q. Then,

bEQ=abEPNQ
=a€PNQO or bEPNQ
=bEPNQ (sincea & Q)
=bEP

and hence O C P.
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Worked Exercise 10.4.4. Let R and S be commutative rings with unities and
f: R — S be an epimorphism of rings. Prove that S is an integral domain if
and only if ker fis a prime ideal of R.

Answer: By the fundamental theorem of homomorphisms (Theorem 10.2.4),
R/ker f= S. Note that S is nontrivial < ker f'is a proper ideal and therefore, S
is an integral domain if and only if ker f'is a prime ideal of R.

EXERCISE 10(D)
1. Determine all the prime ideals of each of the following rings
i) Z
(i) Z,
(i) R
(iv) Q
v) RXQ
viy QX2
i) ZXZ
(vii))  Z,,
(ix) MR
x) RXRXR
(xi) M,(Z)
(xii) (P (X), +,N).
2. Let {P_} ., be aclass of prime ideals of a ring such that, for any o and g € A,

there is y € A such that Py CP_ and Py - PB. Then prove that ﬂAPa is a prime
ideal of R. “

3. Let{P } ., be class of prime ideals of a ring R with unity such that, for any o and
B € A, there is y € A such that P, C P and P, C P . Then prove that LJA P isa
prime ideal of R. <

4. Let{P_} ., be a chain of prime ideals of a ring R with unity (that is, for any o
and B € A,P_ C P, or P, C P). Then prove that N P, and U P, are prime
. « B B @ aEA @ aEA @
ideals of R.

5. Let /and J be ideals of a commutative ring R. Then prove the following.

(@)
(if)
(iii)
(iv)

JIT =TT =107
NIT+T CNT+T =1 +7
VI CNT if 1" C J for some n€Z*.

NI =VT
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11.

12.

13.

14.

16.

v) ~NI"=VI forallnez".
(vi) For any prime ideal P of R,/ C P & \/7 CP.
(vii) If7is prime, then / = JI .
(vii)) 1= JI ifand only if &> € I implies a € I for any a € R.
A proper ideal / of a commutative ring R is called primary if, for any a and b € R,

abEl=a€&€l or b€l forsomen € Z".

Prove that every prime ideal of R is primary. Give an example to prove that the
converse fails.

Prove that a nonzero ideal 7 of the ring Z of integers is primary if and only if
I = p"Z for some prime number p and positive integer n.

Let / be a primary ideal of a commutative ring R. Prove that JI is the smallest
prime ideal of R containing /.

. Prove that an ideal / of a commutative ring R is primary if and only if every zero

divisor of the quotient ring R// is nilpotent.

. For any prime number p and any positive integer n, prove that every zero divisor

in the ring 7 , is nilpotent.
4
For any ideal / of a ring R, prove that P> P/ is a one-to-one correspondence

between the primary ideals of R containing / and the primary ideals of R//.

A commutative ring R is called regular if, for any a € R, there exists b € R such
that aba = a. Prove that a commutative ring R is regular if and only if 7 = JI
for all ideals / of R.

Prove that the prime radical N(R) of a ring R is {0} if and only if, for any ideals
land Jof R,

1J={0} & InJ={0}.
Prove that the following are equivalent to each other for any commutative ring
R, with unity.
(i) R has a unique prime ideal.
(i) Every nonunit in R is nilpotent.

(ii1) {0} is a primary ideal and every nonunit nonzero element of R is a zero
divisor.

. Let R be the ring of all mappings of the real number system R into itself under

point-wise addition and multiplication. Let
I={feR:f(1)=0=/(-D}.
Prove that / is an ideal of R. Is / a prime ideal of R?

Let R be a commutative ring and char(R) = n > 0. [f N(R) = {0}, then prove that
n is square free (that is, a®> does not divide » for any integer n > 1).
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10.5 MAXIMAL IDEALS

In this section, we discuss another special type of ideals of rings, namely
maximal ideals. Clearly, for any ring R, the whole ring R is the largest ideal of
R. We search for ideals of R which are maximal among all proper ideals.

Definition 10.5.1. Let R be a nontrivial ring. A proper ideal M of R is called
a maximal ideal if M is not properly contained in any proper ideal of R; that
is, for any ideal 7 of R,

MCICR=M=1 or I=R

Example 10.5.1

1. Let us recall that any ideal of Z is of the form »nZ for some nonnegative
integer n and that nZ C mZ if and only if m divides n. Therefore, nZ is
a maximal ideal of Z if and only if # is a prime number.

2. In the ring R of real numbers, {0} is a maximal ideal. In fact, {0} is a
maximal ideal in any field, since a field has two ideals, namely {0} and
the whole field.

3. Let R = R X R under co-ordinate wise addition and multiplication.
Then, R X {0} and {0} X R are maximal ideals of R.

4. Consider the ring M (R) of n X n matrices over the real number system
R. Then, {0} is a maximal ideal of M (IR), since, by Theorem 10.1.10,
M (R) is the only nonzero ideal of M (R).

Let us recall that a commutative ring R with unity is a field if and only if R
has exactly two ideals, namely {0} and R. This, together with the fact that the
ideals of R/I are in one-to-one correspondence with the ideals of R containing
1, imply the following important result. However, we prefer to give an inde-
pendent proof in view of its technicality.

Theorem 10.5.1. Let M be an ideal of a commutative ring R with unity. Then,
M is a maximal ideal of R if and only it the quotient ring R/M is a field.

Proof: First note that M is a proper ideal of R if and only if R/M is nontrivial.
Suppose that M is a maximal ideal of R. Then, M is a proper ideal and hence
R/M is a nontrivial commutative ring with unity (since so is R). Now, let a +
M be a nonzero element of R/M. Then, a + M # M and hence a & M. Let
be the ideal defined by

I=M+<a>={x+ra:x ER}.
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Then, M ; I (since a € I and a & M). By the maximality of M, it follows that
I = R.In particular, 1 €= x + ra for some x € M and r € R.
Now, we have 1 — ra = x € M and hence

(r+ M)a+ M)=ra+ M=1+ M, the unity in R/M.

Therefore, r + M is the multiplicative inverse of @ + M in R/M. Thus, every
nonzero element in R/M is a unit and hence R/M is a field.

Conversely suppose that R/M is a field. Then, R/M is nontrivial and hence
M is a proper ideal of R. Let J be any ideal of R such that M C I C R. Suppose
that M # I. Then, there exists a € I such that a & M. Now, a + M is a nonzero
element in the field R/M and hence a + M is a unit in R/M. Therefore, there
exists b € R such that

ab+M=@+Mb+M)=1+M
and hence 1 — ab € M C I. Also, since a € I, ab € [ and therefore
1=(0—ab)+abel
which implies that / = R. Thus, M is a maximal ideal of R.

Corollary 10.5.1. A commutative ring R with unity is a field if and only if
{0} is a maximal ideal of R.

Proof: This follows from the fact that R/{0} = R and from Theorem
10.5.3.

Theorem 10.5.2. Let R be a ring with unity. Then, every maximal ideal of R
is a prime ideal and the converse is not true.

Proof: Let M be a maximal ideal of R. Then, M is a proper ideal of R. Let /
and J be ideals of R such that ZJ C M. Suppose that / ¢ M. Choose a €  such
that ¢ & M. Recall that

<a>={2xiayi +ar+sa:x, y,r, SER, nEO}.

i=1

Put K = M + <a>. Then, K is an ideal of R containing M properly, since a €
K and a & M. By the maximality of M, we get that K = R. In particular, 1 €
K = M + <a> and hence
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1=x+2xiayl. +ar+sa

i=1

for some x € Mandx,y,r,s € R, n>0. Now,

beJ=b=1b= x+2xiayl.+ar+sa b

i=1

S b=xb+ 3 (4a) (b)+(ar) bt (5a) b

=beM+1J, sincexEMacl,be]
=beM, sincel/JCM and M+ ILJ=M.

Therefore, J C M. Thus, I C M or J C M and hence M is a prime ideal. The
converse is not true; that is, an ideal can be prime without being maximal.
For example, {0} is a prime ideal of the ring Z of integers and {0} is not a
maximal ideal.

Note that, in proving the above theorem, the existence of unity in the ring
is essential. For consider the following example.

Example 10.5.2. Consider the ring 2Z of even integers. Let M = 4Z.
Then, M is a maximal ideal of 27Z; for, let 7 be an ideal of 2Z such that
M C I C 27. Suppose that M # I. Then, there exists 2a € [ such that 2a
& M = 47. Now, a must be odd and hence a = 2n + 1 for some n € Z.
Consider

2=2-1=2a—2n)=2a—4n€l

(since 2a € [ and 4n € M C I). This implies that 2Z C [ and hence / = 2Z.
Thus, M is a maximal ideal of 2Z. However, M is not prime, since

2:2€M and 2 €& M.
Note that 27Z is a commutative ring without unity.

Theorem 10.5.3. Let M be a proper ideal of a ring R. Then, M is a maximal
ideal if and only if M + <a> = R foralla € R — M.

Proof: Suppose that M is a maximal ideal of R and a € R — M. Then, M +
<a> is an ideal of R containing M properly. Since M is maximal, we get that
M + <a> = R. Conversely, if M is not maximal, then there exists an ideal
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I of R such that M g 1 ; R and therefore there existsa €/ — M C R — M, so
that M + <g> C [ and hence M + <a> # R. |

Corollary 10.5.2. Let R be a commutative ring with unity and M be a proper
ideal of R. Then, M is maximal if and only if, foreacha ER — M, 1 — ar €
M for some r € R.

Proof: This is a consequence of the above and of the fact that M + <a> = R
if and only if 1 = x + ar for some x € M and r € R. <

Next, we obtain a general result which assures the existence of suitably
many maximal ideals. The crucial step here is again the Zorn’s Lemma; an
equivalent form of which is given in Zorn’s Lemma 10.4.1.

Theorem 10.5.4. Let R be a ring with unity. Then, any proper ideal of R is
contained in a maximal ideal of R.

Proof: Recall that an ideal of R is proper if and only if it does not contain the
unity of R. Let / be a proper ideal of R. Consider the class

J = {J:Jisaproperideal of R and I C J}

since / € J, J is a nonempty class of subsets of R. If {J_ } is a chain in J
(that is, any two members of it are comparable), then by Corollary 10.1.1,
U J, is an ideal of R and, since each J_ is a proper ideal of R, 1 & J_for each

a€A
a € A and hence 1 € UA J ., so that UA J, is a proper ideal of R. Also, clearly
aE, aE
UA J, is amember of J containing each /. Therefore, the hypothesis of the
a€!l

Zorn’s Lemma is satisfied for 7 and hence J has a maximal member, which
is clearly a maximal ideal containing /. <

Corollary 10.5.3. Let R be a commutative ring with unity and ¢ € R. Then, a
is a unit in R if and only if @ does not belong to any maximal ideal of R.

Proof: ais anonunitin R if and only if <a> (= aR) is a proper ideal of R and
hence, by the above theorem, <a> is contained in a maximal ideal of R. <«

Theorem 10.5.5. Let R be a commutative ring with unity. Suppose that R has
exactly one maximal ideal. Then, 0 and 1 are the only idempotents in R.

Proof: Let M be the unique maximal ideal of R. Let a be an idempotent in R;
that is, a> = a € R. Suppose that a # 0 and a # 1. Then,

a(a—1)=0
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and hence a and a — 1 are zero divisors in R. Therefore, a and a — 1 are both non-
units and, by Corollary 10.5.3,a € M and a — 1 € M. From this, we get that

l=a—(a@a—-1)eM

which is a contradiction to the fact that M # R. Thus, either ¢ = 0 or
a=1. <

Recall from Corollary 10.4.3, the prime radical of R is defined as the set
of all nilpotents in R and, by Theorem 10.4.4, it is precisely the intersection of
all prime ideals of R. In the following, we introduce another type of radical,
which plays an important role in the structure theory of commutative rings.

Definition 10.5.2. Let R be a nontrivial commutative ring with unity. The
intersection of all maximal ideals of R is called the Jacobson radical of R and
is denoted by J(R) or by Rad(R). R is said to be semisimple if J(R) = {0}.

The Jacobson radical always exists, since any nontrivial commutative ring
with unity has atleast one maximal by ideal, by Theorem 10.5.4. Also, from
the definition of J(R), it is immediate that the Jacobson radical of R is an ideal
contained in each maximal ideal of R. Two important examples of semisimple
rings are given below.

Example 10.5.3

1. Recall that the maximal ideals of the ring Z are precisely of the form pZ
for some prime number p. Now, the Jacobson radical of Z is given by
J(2)= () pL =10},
PEP
where P is the set of prime numbers. Therefore, Z is a semisimple ring.
2. Let X be a nonempty set and F be a field. Then, the set F* of all map-
pings of X into F' forms a commutative ring with unity under the
point-wise operations, with reference to the ring operations in F. For
eachx € X, let
M, = {f€ F*: f(x) = 0}
and define a_: F* — F by a (f) = f(x). It can be easily verified that «_is
an epimorphism of rings and ker &« = M . By the fundamental theorem

of homomorphisms, F*/ M_=F . Since F is a field, it follows from
Theorem 10.5.1 that M_is a maximal ideal of 7. Also,

(M, ={fEF*: f(x)=0 forallx& X}={0}

and therefore the Jacobson radical of F¥is {0}. Thus, F¥ is a semisimple
ring.
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In the following, we obtain a basic connection between the Jacobson radi-
cal and multiplicative invertibility of the elements of the ring.

Theorem 10.5.6. Let / be an ideal of a commutative ring R with unity. Then,
I C J(R) if and only if each element of the coset | + /is a unit in R.

Proof: Supposethat/ CJ(R).Letl +a€ 1+ [,a € L. If1 + aisanonunit,
then by Corollary 10.5.3, there exists a maximal ideal M of R such that 1 +
a € M. Then, since a € [ C J(R) C M, we get that

l=(1+a)—aEM

which is a contradiction to the fact that M is a proper ideal. Thus, | + aisa
unit for any a € 1.

Conversely suppose that 1 + « is a unit in R for each a € I. Suppose, if
possible, that I  J(R). We can choose an element @ € [ such that a & J(R).
Then, there exists a maximal ideal M such that a & M. Then, M is properly
contained in M + aR. By the maximality of M, we have M + aR = R. In
particular, | € R = M + aR and hence

l=x+arforsomex&E M and rER.

Now, sincea €I, —ar&€land 1 — ar € 1 + [. Therefore,x (=1 —ar)isa
unit in R, which is a contradiction since x € M and M is a proper ideal. Thus,
1 C JR).

The above theorem gives us a characterization of elements of the Jacobson
radical J(R), if we replace [ above a principal ideal <a>.

Theorem 10.5.7. Let R be a commutative ring with unity. Then, the Jacobson
radical J(R) is given by

JR)={a€R:1+ arisaunitinR for all r € R}.

Proof: If « € J(R), then <a> C J(R) and hence every element of 1 + <a>
is a unit in R; that is, 1 + ar is a unit for all » € R. Conversely suppose that
1 + ar is a unit for all » € R. Then, every element of 1 + <a> is a unit and
therefore, by the above theorem, <a> C J(R) which is equivalent to saying
that a € J(R).

Corollary 10.5.4. The following holds for any commutative ring R with
unity.
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1. 0 is the only idempotent in the Jacobson radical J(R).

2. Anelement g € R is aunit in R if and only if the coset a + J(R) is a unit
in the quotient ring R/J(R).

3. The prime radical N(R) is contained in the Jacobson radical J(R).

Proof:

1. Leta € J(R) be an idempotent. Then, by Theorem 10.5.7, 1 — a is a unit
in R and hence there exists b € R such that (1 — a)b = 1. Now,

a=al =a(l —a)b = (a— a*)b = 0 (since a’> = a)

Thus, 0 is the only idempotent in J(R).

2. Leta € R. Suppose that a + J(R) is a unit in R/J(R). Then, there exists
b € R such that

(a +JR)b +JR) =1+ JR)

and therefore 1 — ab € J(R). By Theorem 10.5.7, 1 — (1 — ab) is a unit
in R and therefore ab is a unit. Thus, a is a unit in R. The converse is
trivial.
3. a € N(R) = a belongs to every prime ideal of R
= a belongs to every maximal ideal of R (since every maximal
ideal is prime)
= a € J(R).

Thus, N(R) C J(R). <

Theorem 10.5.8. Let R be a commutative ring with unity and J(R) be the
Jacobson radical of R. Then, the quotient ring R/J(R) is semisimple.

Proof: We have to prove that the Jacobson radical of R/J(R) is trivial. Let a +
J(R) be an element in the Jacobson radical of R/J(R). Then, by Theorem
15.5.15,

1 +JR) + (a +JR)r + JR)(= + ar) + JR))

is a unit in R/J(R) for all » + J(R) € R/J(R) and therefore, by Corollary
10.5.4 (2), 1 + aris aunitin R for all » € R. This implies that a € J(R) and
hence @ + J(R) is the zero in R/J(R). Thus, J(R/J(R)) is trivial and hence
R/J(R) is semisimple. <

Worked Exercise 10.5.1. Letn € Z* and R = R X R X --- X R (n factors).
Then, R is a commutative ring with unity under the co-ordinate wise opera-
tions. Determine all maximal ideals of the ring R.
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Answer: Let any element of R be denoted by
a=(a,a,...,a)
where a, a,, ..., a are real numbers. For each 1 =i = n, let
M ={a€R:a =0}
Letp.: R — R be the i" projection; that is,
pla) =a, foralla €R.
Then, p. is an epimorphism of rings and ker p. = M.. Therefore, R/M, =R.
Since R is a field, so is R/M, and hence M, is a maximal ideal of R. We shall
prove that M|, M, ..., M are the only maximal ideals of R.
Let M be any maximal ideal of R. We shall prove that M C M, for some

1 =i =nandhence M = M. On the contrary, suppose that M ¢ M, for all
i. Then, we can choose, for each 1 =i = n, x' € M such that x’ & M. Then,
x; #0 foreach 1 =i = n.Put

a= "+ @)+ )
Then, a € M, since x' € M for all 1 =i =< n. Since the i co-ordinate of a is

a =)+ )
Since x| # 0, we get that (x/)* >0 and hence

ai>0f0rallliisn.

Now,

1 1 1
GL ..., )=(,a,, ..., an)[—, —, ,—]

al aZ an
and hence «a is a unit in R. This is a contradiction to the fact that ¢ € M and
M is a maximal ideal. Thus, M C M, and, by the maximality of M, M = M, for
some 1 =i =n.Thus, M|, M,, ..., M are all the maximal ideals of R.

Worked Exercise 10.5.2. Let / be a proper ideal of a Boolean ring B (see
Definition 9.2.2). Prove that the following are equivalent to each other.
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1. [is aprime ideal of B.
2. [Iis a maximal ideal of B.
3. Foranya € B, eithera € [or b — ab € [ for all b € B, but not both.

Answer: (1) = (2): Suppose that / is a prime ideal of B. Let J be an ideal of
B containing / properly. Choose a € J such that a & I. Then,

al —a)=a—-a*=0€L

Since [ is a prime ideal and a & I, we get that 1 — a € I C J. Now, since
a € J, we have

l=a+(1—-ae€J
and hence J = B.
(2) = (3): Suppose that / is a maximal ideal of B and ¢ € B. Suppose that a
& I. Then, I + <a> = B and hence, for any b € B,

b=x+ar forsomex & landr €EB
and ab =ax + a*r = ax + ar

andhence b —ab=x—ax €l
Ifbotha € Tand b — ab € I for all b € B, then

b=({b—ab)+abe&l forallbeEB
and hence / = B, which is a contradiction. Thus, eithera € Torb — ab € I
for all » € B and not both.
(3) = (1): Suppose (3) is satisfied. Let @ and b € B such thatab € . If a &
I, then b — ab € I (by (3)) and hence

b=({b—ab)+abeEl

Therefore, a € [ or b € I. Already we are given that / is a proper ideal of B.
Thus, / is a prime ideal of B.

Worked Exercise 10.5.3. Consider the ring Z[i] of Gaussian integers. Let
1= {a + bi € Z[i] : a and b are both even}

Prove that / is an ideal of Z[7], which is not a maximal ideal.
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Answer: Ifx = a + biandy = ¢ + di € I, then a, b, ¢ and d are even and
hence a — ¢ and b — d are even and thereforex —y = (a —c¢) + (b — d)i €
I Also, ifx =a + bi € land z = s + #i € Z[i], then

xz = (as — bt) + (at + bs)i € 1

since a and b are even and hence as, bt, at and bs are all even. Thus, [ is an
ideal of Z[i]. Note that Z[i] is a commutative ring with unity. We shall prove
that 7 is not a maximal ideal of Z[i]. Let

J={a+ bi €EZ[i]: a® + b is even}.

Observe that a> + b?* is even if and only if either both a and b are even or both
a and b are odd. We verify that J is an ideal of Z[i].
Letx =a + biandy = ¢ + di € J. Then, a* + b* and ¢* + d* are even and

x—y=(@—c)t+tb-—-dieJ

since (a — ¢)* + (b — d)? = (&®* + b?*) + (® + d*) — 2(ac + bd), which is
even. Also, for any z = 5 + #i € Z[i],

xz = (a + bi)(s + ti) = (as — bt) + (at + bs)i
and (as — bt)* + (at + bs)* = (a® + b»)s*> + (a* + b*)P
which is even, since a*> + b? is even. Therefore, xz € J. Thus, J is an ideal of

Zi]. Further,

1CJCZ[i],
+  #
since | +i&€J—land 1 + 2i & J. Thus, [ is not a maximal ideal of Z[{].

Worked Exercise 10.5.4. Let [ = {a + bi € Z[i]: 3 divides both a and b}.
Prove that / is a maximal ideal of the ring Z[i] of Gaussian integers.

Answer: Clearly 3 + 3i € 7 and hence / is a nonempty subset of Z[i]. Letx =
a + biandy = ¢ + id € I. Then, 3 divides a, b, c and d and hence 3 divides
a — cand b — d, so that

x—y=(@—o+®B-diel
Also, forany z = s + ti € Z][i],

xz = (a + bi)(s + t)
= (as — bt) + (at + bs)i
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which belongs to /, since 3 divides @ and b and hence 3 divides as — bt and at +
bs. Thus, [ is an ideal of Z[i]. To prove that / is maximal, let J be any ideal of
Z[i] such that 7 ; J C Z[i]. Choose a + bi € Jsuch that a + bi & I. Then, 3

does not divide a or b or both. We shall distinguish these cases separately and
prove that 1 € J in each case.

1. Suppose that 3 divides a and 3 does not divide b.
Then, a = a+0i € I C J and hence
bi=(a+ bi)—a€J
Now, b? = (bi)(—bi) € J, since J is an ideal. Since 3 does not divide b,

g.c.d. (3, b*) = 1 and therefore there exist ¢ and d € Z such that 3¢ +
b*d = 1. Now, b*d € Jand 3¢ € I C J and hence

l=3c+bde]
which implies that J = Z[i].

2. Suppose that 3 does not divide a and 3 divides b. In this case, using the
technique of (1) above we can prove that J = Z[i].

3. Suppose that 3 divides neither a nor b. Then, a = 3k + 1 or 3k + 2 for
some k € Zand b = 35 + 1 or 35 + 2 for some s € Z. Then,

a? =3Bk +2k)+1 or 3Gk +4k+1)+1
and »*=33s>+2s)+1 or 3Bs>+4s+1)+1

which imply that a*> + b* = 3¢ + 2 for some ¢ € Z and hence 3 does not
divide a* + b*. Put ¢ = a*> + b>. Then, g.c.d.(3, ¢) = 1 and hence there
exist integers n and m such that 3m + cn = 1. Now,

3€l/CJandc=a*>+ b>=(a+ biYa—b))EJ
since a + bi € J. Therefore, 3 and ¢ € J and hence
l1=3m+cneJ
which implies that J = Z[i].
Thus, in all cases, we have proved that J = Z[i]. Therefore, [ is a maximal

ideal of Z[].

Worked Exercise 10.5.5. Let M and N be two distinct maximal ideals of a
commutative ring R with unity. Then prove that MN = M N N.

Answer: Since M and N are distinct maximal ideals, M ¢ N and N ¢ M and
hence M + N # M and M + N # N. In particular, M+ N is an ideal of R con-
taining M properly. By the maximality of M, it follows that M + N = R. In
particular, | € R = M + N and hence

l=a+b forsomea & Mandb € N.
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Now, clearly MN C M N N. Also,
XEMNN=x=xl =xa+ xb& MN

sincex € N,a € M,x € Mand b € N. Therefore, M " N C MN. Thus, MN =
MNN.

EXERCISES 10(E)
1. Determine all maximal ideals and the Jacobson radicals in each of the following
rings.

» R

(i) Q

(iii)) Z

(i) Z,,

V) ZXZ

vi) QXZ

(vii)  M(R)
(viii) Z,n€Z".
2. Give an example of a maximal ideal in the ring 3Z which is not a prime.

3. LetIbe a proper ideal of a ring R. Prove that M + M /I is a one-to-one corre-
spondence between the maximal ideals of R containing / and the maximal ideals
of R/I.

4. Letn € Z*. Prove that an ideal of Z, is prime if and only if it is maximal.

5. Let R be a finite commutative ring with unity. Prove that an ideal of R is prime if
and only if it is maximal.

6. Let X be a nonempty finite set with n elements. Prove that there are exactly n
maximal ideals in the ring (P(X), +, N).

7. Let (X, R) be the set of all real valued continuous functions defined on a topo-
logical space X. Then prove that ‘€(X, R) is a commutative ring with unity under
the point-wise addition and multiplication.

8. In the ring €(X, R) given in 7 above, prove that the set

M, = {f€6(X,R): f(x) = 0}

is a maximal ideal for each x € X.

9. Let X be a Compact Hausdorff space and (X, R) be the ring given in 7 above.
Prove that x — M is a bijection of X onto the set of maximal ideals of ‘6(X, R),
where M _is the set given in 8 above.



11.

12.

14.

15.

16.

17.

18.

19.
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. Let Z[i] be the ring of Gaussian integers. Prove that the set

1= {a+ bi € Z[i]:a — biseven}.

is a maximal ideal of Z[7] and find the number of elements of the quotient ring
Z[i)/1.

Let Z[\/E] = {a +by2:aandbE Z}. Prove that Z[ﬁ] is a commutative ring
with unity under the usual addition and multiplication of real numbers. Prove
that the set

I ={a+bJ2 €22 ;5 divides both a and b}

is a maximal ideal of Z[\/E ] and find the number of elements in Z[\/E ]/ I.
Prove that the set
1= {a+ bi € Z[i] : 5 divides both a and b}

is an ideal of Z[i] and is not maximal. Is this a prime ideal? Estimate the number
of elements in the quotient ring Z[i]/ 1.

. Prove that a proper ideal M of a ring R is maximal if and only if, for any ideal /

of R, either / C Morl + M = R.

Letf: R — S be an epimorphism of rings.
(i) If Mis a maximal (prime) ideal of R containing ker £, prove that f(M) is
a maximal (prime) ideal of S.
(i) If M’ is a maximal (prime) ideal of S, then prove that f~'(M") is a maxi-
mal (prime) ideal of R.
(i) Prove that M+ f(M) is a one-to-one correspondence between the

maximal (prime) ideals of R containing ker f'and the maximal (prime)
ideals of S.

A nonzero ideal / of a ring R is called minimal if there is no ideal properly in
between {0} and /. Prove that a nonzero ideal / of R is minimal if and only if / =
<a> for all 0 # a € I. Show that the ring Z of integers has no minimal ideals.

Let P be a prime ideal of a commutative ring R such that the quotient ring R/P is
finite. Then prove that P is a maximal ideal.

Let R be a commutative ring with unity such that, for each a € R, there exists an
integer # > 1 such that " = a. Prove that an ideal of R is prime if and only if it
is maximal.

Let M be a maximal ideal of a commutative ring R with unity and n € Z*. Prove
that R/M" has exactly one prime ideal.

Prove that the following are equivalent to each other for any commutative ring
with unity.



10-56  Algebra - Abstract and Modern

(1) R has a unique prime ideal.

(i1) R has a unique maximal ideal and the Jacobson radical of R is equal to
the prime radical of R.

(i)  Every nonunit in R is nilpotent.

20. Prove the following for any commutative ring R with unity.

(1) R is semisimple if and only if, for each ¢ € R, 1 — ra is a nonunit for
some r € R.

(i) If R is regular, then it is semisimple.

(ii1) If/isanideal of R such that R// is semisimple, then the Jacobson radical
of R is contained in /.

10.6 EMBEDDINGS OF RINGS

Rings without unity lack certain important properties. However, we shall
prove in this section that any ring can be treated as a subring of a ring with
unity. It is well known that any subring with unity of a field is an integral
domain. We prove a converse of this, in the sense that any integral domain can
be treated as a subring of a field. First, let us have the following definition.

Definition 10.6.1. A ring R is said to be embedded in a ring S if R is isomor-
phic to a subring of S.

It can be easily proved that R is embedded in § if and only if there is a
monomorphism of R into S. In the following, we prove that any ring can be
embedded in a ring with unity.

Theorem 10.6.1. Let R be any ring. Then, there exists a ring S with unity
satisfying the following properties:

1. Ris embedded in S.

2. R is isomorphic to an ideal of S.

3. R is commutative if and only if § is commutative.
4. char(R) = char(9).

Proof: First, we assume that R is of characteristic zero. Let
S=7ZXR.
For any (m, a) and (n, b) € S, define

(m,a) + (n,b) = (m + n,a + b)
and (m,a) - (n, b) = (mn, mb + na + ab).
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Then, + and - are binary operations on S. Since + is precisely co-ordinate
wise addition and (Z, +) and (R, +) are abelian groups, it follows that (S, +)
is also an abelian group in which (0, 0) is the identity, where the first O is the
integer 0 and the second 0 is the zero element in the ring R. For any (m, a), (n,
b) and (7, ¢) in S, we have

((m, a) - (n, b)) - (r, ¢) = (mn, mb + na + ab) - (r, c)
= ((mn)r, mnc + r(mb + na + ab) +
(mb + na + ab)c)

= (m(nr), m(nc + rb + bc) + nra +
a(nc + rb + bc))

= (m, a) - ((n,b) - (r, ©)).
Therefore, - is associative on S. Also,

(m,a) - ((n,b) + (r,c))y=m,a)-(n+r,b+c)
=@mmn +r),mb+c)+ n+ra+ab+c))
= (mn + mr, (mb + na + ab) + (mc + ra + ac))
= (mn, mb + na + ab) + (mr, mc + ra + ac)
= (m,a) - (n,b) + (m,a) - (,c).

Similarly, we can prove the other distributive law.
Thus, (S, +, -) is a ring. Consider the element (1, 0) in S. For any (m, a) € S,
we have

(m,a)-(1,0) = (ml, m0 + la + a0) = (m, a)
and (1,0) - (m,a) = (Im, la + m0 + 0a) = (m, a)

and therefore (1, 0) is the unity (multiplicative identity) in S. Thus, S is a
ring with unity. We shall prove that this ring S satisfies all the required three
properties.
1. Define f: R — Sby f(a) = (0, a) for any @ € R. It can be easily verified
that /'is a monomorphism of rings. Therefore, R is embedded in S.
2. Put/=f(R) = {(0,a):a € R}.Then, for any (0, @) € I and (n, b) € S,
we have
0, a) - (n, b) = (0n, 0b + na + ab) (0, na + ab) € 1
and (n, b) - (0,a) = (n0, na + 0b + ba) = (0, na + ab) € I.

Also, (0, a) + (0,b) = (0,a + b) E I.
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Thus, / is an ideal of S. Clearly the map f'defined in (1) above is an iso-
morphism of R onto f(R) = I.

3. If S is commutative, then f(R), being a subring of S, is commutative
and hence R is commutative. Conversely suppose that R is commutative.
Then, for any (m, a) and (n, b) in S, we have

(m, a) - (n, b) = (mn, mb + na + ab)
= (nm, na + mb + ba)
= (n, b) - (m, a)
and hence S is commutative.
4. Since Z is of characteristic zero, so is S and hence char(R) = 0 =

char(S).

Next, we assume that char(R) = n > 0. In this case, the above construction of
S'is of no use, since Z is of characteristic zero and hence so is S, irrespective
of whether char(R) is zero or not. Therefore, we slightly change the construc-
tion at S. Let

S=17 XR,

where Z is the ring of integers modulo n. Define addition and multiplication
in S as follows

(i,a)+ (,b) =+ j,a+b)
and (i, a)(j,b) = (i, j,ib + ja + ab).

Then, similar to the above case, we can easily prove that (S, +, -) is a ring
with unity satisfying the properties (1) through (4). Note that char(S) = n =
char(R).

We have proved earlier that any field is an integral domain and that any
finite integral domain is a field. Also, any subring (with unity) of a field is
an integral domain. In the following theorem, we prove that integral domains
arise as subrings of fields only.

Theorem 10.6.2. Any integral domain can be embedded in a field.

Proof: Let R be an integral domain; that is, R is a nontrivial commutative
ring with unity in which product of any two nonzero elements is again non-
zero. Let

S={(a,b):aandb € Rand b # 0}
and define a binary relation © on S by

(a,b) O (¢, d) < ad = be.
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We shall verify that © is an equivalence relation on S. Since R is commuta-
tive, ab = ba and hence (a, b) O (a, b) for any (a, b) € S. Therefore, O is
reflexive. Also,

(a,b) O (¢,d) = ad = bc = ¢b = da = (¢, d) O (a, b)
and therefore O is symmetric. Further,

(a,b) O (¢,d)and (¢, d) O (s, ) = ad = bc and ct = ds
= adt = bct = bds
= (at)d = (bs)d
= at=bs sinced # 0
= (a, b) O (s, 1).

Therefore, O is transitive also. Thus, O is an equivalence relation on S. For
any (a, b) € S, let

[a, b] = The equivalence class containing (a, b)
={(c,d) €S :(a,b) O (c,d)}
Recall that [a, b] = [c, d] < (a, b) O (¢, d) & ad = be. Let
F={la,b]:(a,b) €S}
we shall define addition and multiplication on F by

[a, b] + [c, d] = [ad + bc, bd]
and [a, b] - [c, d] = [ac, bd].

First note that, since R is an integral domain and b # 0 and d # 0, we have
bd # 0 and hence the above definitions of + and - make sense. Next, we have
to prove that + and - are well defined, in the sense that they depend on the
classes [a, b] and [c, d], but not on the representative elements a, b, ¢ and d.
Suppose that

[a,b] =[a',b'] and [c,d] = [c,d].
Then, ab’ = ba' and cd' = dc' and hence

(ad + be)b'd' = adb'd' + beb'd'
= (ab")dd' + (cd")bb’'
= (ba')dd' + (dc")bb'
= bd(a'd + b'c")
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and hence [ad + bc, bd] = [a'd" + b'c’, b'd']. Thus, + is well defined. Simi-
larly, we can prove that - is well defined. In the following, let [a, b], [c, d] and
[s, 7] be arbitrary elements of F.

([a, b] + [c, d]) + [s, ] = [ad + bc, bd] + [s, ]
= [(ad + bc)t + bds, bdt]
= [a(dt) + b(ct + ds), bdt]
= [a, b] + ([¢, d] + [s, 1]).

Therefore, + is associative.

[a, b] + [c, d] = [ad + bc, bd]
= [¢b + da, db]
= [c,d] + [a, b].

Therefore, + is commutative.
[a, b] + [0, 1] = [al + b0, b1] = [a, b]
Therefore, [0, 1] is the additive identity in F
[a, b] + [—a, b] = [ab + b(—a), b*] = [0, b*] = [0, 1].

Therefore, [—a, b] is the additive inverse of [a, b] in F. Thus, (F, +) is an
abelian group. One can easily verify that - is associative and commutative.
Also,

[a, b] - [1, 1] = [al, b1] = [a, b]
and therefore [1, 1] is the multiplicative identity in F.

[a, b] - ([¢, d] + [s,7]) = [a, D] - [ct + ds, di]

[a,

= [a(ct + ds), bdf]

= [b(act + ads), b(bdr)]
= [acbt, + bdas, bdbt]
= [ac, bd] + [as, bt]

= [a,b] - [c,d] + [a, b] - [s, 1]

Therefore, - distributes over + . Thus, (¥, +, -) is a commutative ring
with unity. Also, since R is nontrivial, 1 # 0 in R and [1, 1] # [0, 1] in F.
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Therefore, F is nontrivial. Also for any [a, b] # [0, 1], we have @ # 0 and
hence [b, a] € F and

[a, b] - [b, a] = [ab, ba] = [1, 1].

Therefore, [b, a] is the multiplicative inverse of [a, b]. Thus, (F, +, *) is
a field.

Now, define f: R — F'by f(a) = [a, 1] for all @ € R. One can easily verify that
f'is a monomorphism of rings. Thus, R is embedded in the field F.

Definition 10.6.2. For any integral domain R, the field F’ constructed above
is called the field of quotients of R.

Example 10.6.1. The ring Z of integers is an integral domain and the field
of quotients of Z is precisely the field Q of rational numbers. A rational
number is usually written as a/b which is precisely [a, b]. Recall from the
high school mathematics that two rational numbers a/b and c/d are equal if
and only if ad = bc and that a/b represents a class of pairs (¢, d) for which
ad = bc.

By means of the monomorphism fof an integral domain R into the field of
quotients F defined by f(a) = [a, 1], we can identify an element a in R with
the element [a, 1] in F. With this identification, we can treat R as a subring
of F. Also, any element [a, b] of F can be expressed as ab™! with a € R and
0 # b € R, since

[a, b] = [a, 1] - [1, b] = [a, 1][b, 1]7".

Corollary 10.6.1. If R is a field, then the field of quotients of R is isomorphic
to R.

Proof: Let R be a field and F be its field of quotients.
Let f* R — F be the monomorphism defined by

f(a) =[a, 1] foranya € R.
Then, for any [a, b] € F, we can write
[a, b] = [ab™", 1] = f(ab™")
and ab™' € R (Note that b # 0 and hence b is a unit in R).

Therefore, f is a surjection also and hence f is an isomorphism. Thus,
F=R
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Theorem 10.6.3. Let R be an integral domain and K be a field containing R
as a subring. Let

QO={ab'E€K:aandb E Rand b # 0}.
Then, Q is a subfield of K and is isomorphic to the field of quotients of R.
Proof: Let F be the field of quotients of R and define g : FF — Q by
g ([a, b]) = ab™' forany [a, b] E F.
For any [a, b] and [c, d] € F, we have

[a, b] = [c, d] < ad = bc
Sab ' =cd!

This shows that g is well defined and is an injection. By the definition of O, g
is a surjection also. Further,

g(la, b] + [c, d) = g(lad + be, b))
= (ad + be)(bd)™!
= (ad + bc)b™'d™!
=ab '+ cd!
= g([a, b]) + g([c, d])
and  g([a, b] [c, d]) = g([ac, bd]) = ac(bd)™
= ab'cd™" = g([a, b])g([c, d)).

Therefore, g is a homomorphism also. Thus, g is an isomorphism of
F onto Q. This implies that Q is a subfield of K and F = Q.

Corollary 10.6.2. Let R be an integral domain and F be its field of quotients.
Then, F is the smallest field containing R, in the sense that any field contain-
ing R as a subring should contain an isomorphic copy of F.

Worked Exercise 10.6.1. Let F' be the field of quotients of an integral domain
R. Then prove that R and F are of same characteristic.

Answer: We can treat R as a subring of F' and the unities in R and F are the
same. In Theorem 9.3.2, we have proved that the characteristic of any ring
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with unity is precisely the order of the unity in the additive group of the ring.
Therefore,

char(R) = O(1) = char(F),
where O(1) is the order of 1 in the group (R, +).

Worked Exercise 10.6.2. Let Z[i] be the ring of Gaussian integers. Deter-
mine the field of quotients of Z[].

Answer: Recall that
Z[i]l = {a + bi: a and b are integers}

and that Z[i] is an integral domain under the addition and multiplication
of complex numbers. Let C be the field of complex numbers. Then, Z[{] is
a subring of C. By Theorem 10.6.3, the field of quotients of Z[{] is equal
(isomorphic) to

Q= {st':sandt € Z[i]and t # 0}

Ifs=a+biandt = ¢ + di # 0,then ¢ # 0 or d # 0 and hence * +
d? > 0. Now,

—i_atbi _ (a+bi)c—di)
ct+di (c+di)c—di)
_ act+bd+(bc—ad)i
c+d’
_actbd  bc—ad
= + 1
c+dt C+d?

st

Since a, b, ¢ and d are all integers, it follows that s¢~! belongs to the set
Ql[i] = {p *+ qi : p and g are rational }
and hence O C Q[i].
On the other hand, let p + gi € Q[i] and p= % and g= %, where a, b, c,
d€ Z,b# 0and d # 0. Then,

p=ab™' and q=cd ' a,b,c,dEZ L[]
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and hence p and ¢ € Q. Since i € Z[i] C Q, it follows that p + gi € Q. There-
fore, Q[i] C Q. Thus, QO = Q[i]. That is, the field of quotients of Z[i] is Q[i].
Recall that Q is the field of quotients of Z.

Worked Exercise 10.6.3. Prove that any isomorphism between two integral
domains can be extended to their fields of quotients.

Answer: Let R and R’ be integral domains and f: R — R’ be an isomorphism.
Let F and F” be fields of quotients of R and R’, respectively. Then,

F={ab'":aand b € Rand b # 0}
and F'={xy':xandy € R andy # 0}.

Define g : F — F' by g(ab™") = f(a)f(b)~'. Note that » # 0 in R if and only if
f(r) # 0 in R', since fis an isomorphism. Also,

ab ' =cd ' < ad = be
< flad) = f(bc)
< fla)f(d) = f(b)f(c)
< fla)f(b) = flef(d)!

This shows that g is well defined and is an injection. Also, if xy~! € F" with x,
y € R"and y # 0, we can choose elements a and b in R such that f(a) = x and
f(b) = y (since fis a bijection). Then, b # 0 and g(ab™") = f(a)/(b)~' = xy~".
Therefore, g is a surjection also. Further, for any ab™!, cd™!, € F,

glab™ + cd™) = g((ad + bc)(bd)™)

= flad + be)f(bd)™!
= (fla)f(d) + [ (D) ()™
= flay(b)™" + fle)f(d)™!
= glab™") + gled™)

and g((ab™") - (cd™")) = glac(bd)™)
= flac)f(bd)™
= fl@f ()b (d) ™!
= f@)yf(b)"fe)f(d)!
= glab™")g(cd™).

Therefore, g is a homomorphism also. Thus, g is an isomorphism of F onto

F'. Also, g is an extension of f, since g(a) = g(al™") = f(a)f(1)"' = f(a)]l =
f(a) forall a € R.
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Worked Exercise 10.6.4. Let F'be the field of quotients of an integral domain
R and S be a subring of F such that R C S C F. Prove that the field of quotients
of S is isomorphic to F.

Answer: Since F is a field, it is an integral domain. Being a subring of F, S is
also an integral domain.

Note that the unity in R is same unity in S as well as in . Now, by Theorem
10.6.3, the field of quotients of S is given by

Q= {ab " aand b € Sand b # 0}.

Since F is a field containing S, we get from Corollary 10.6.2 that O C F. On
the other hand,

xEF=x=ab!, whereaandbE Randb # 0
=x=ab',a,bE€ S,b# 0 (since R CS).
=x€ Q.

Thus, F C Q and hence F = Q.

EXERCISE 10(F)
1. Determine the field of quotients of each of the following integral domains.
(i) 2z
(i) 7,
(iii)y Z,
(iv) ZJi] = {a + bi : a and b € Z,} under addition and multiplication
modulo 2.

v R
(vi) Q[]

2. Prove in detail that Z X R in the proof of Theorem 10.6.1 is a ring with unity
and is of characteristic n, where R is a ring of characteristic .

3. Determine the field of quotients of the integral domain
Z[\3]={a+b3:aand bE Z}.

4. LetR = {%: a and b € Z and 5 does not divide b}.

Prove that R is a subring of the ring Q of rational numbers and deduce that R is
an integral domain. Determine the field of quotients of R.

5. Let F be a field containing no subfield properly (such fields are called prime
fields). Prove that F is isomorphic either to the field Q of rational numbers or to
the field Z  of integers modulo a prime p.
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10.

11.

12.

14.

15.

Prove that every field contains a subfield, that is, isomorphic to Q or Z, (such
subfields are called prime subfields).

. Prove that any automorphism of a field F' fixes every element of the prime

subfield.

Determine the prime subfields of each of the following fields.
i R
(i) Q
(iii) Z,
(iv) Q[\/g]:{a-i-b\/g:aandbe(@}
v) QN2]={a+bV2:aand bEQ}
(vi) Q[i]={a+bi:aand bEQ}

. If F is a subfield of a field K, then prove that  and K have the same prime

subfields.

If a field F' has exactly 9 elements, then prove that the prime subfield of F is
isomorphic to Z,.

If Z is the prime subfield of a field F, then prove that there exists @ € F such
thata + a # 0.

Prove that any automorphism of an integral domain can be extended uniquely to
an automorphism of its field of quotients.

. Let R be a commutative ring with no zero divisions. Then prove that R can be

embedded in an integral domain.

Prove that a commutative ring can be embedded in a field if and only if it has no
zero divisors.

Let R be a commutative ring with unity. A subset S of R is said to be multiplica-
tiveif 1 € S,0 & Sand ab € S for any a and b € S. Define a binary relation O
on R X Sby

(a, s) O (b, t) < there exists u € S such that u(at — bs) = 0.

Prove that © is an equivalence relation on R X S. Let the equivalence containing
(a, s) be denoted by a/s and let

S7'R={£:a€R andsES}.
s

Define addition and multiplication on S™'R by

a b at+bs
Tz ="_
st st



16.

17.

18.
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Then prove that (S'R, +, -) is a commutative ring with unity. This ring is called
the ring of fractions of R by S.

Prove that the field of quotients of an integral domain R is the ring of fractions
of Rby R — {0}.

Let P be a prime ideal of a commutative ring R with unity. Then prove that
(R — P)"'R has a unique maximal ideal.

Let S be a multiplicative subset of a commutative ring R with unity. Prove that
there is a one-to-one correspondence between the prime ideals of R disjoint with
S and the prime ideals of the ring S™'R of fractions of R by S.
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Polynomial Rings

11.1 Rings of Polynomials
11.2 The Division Algorithm
11.3 Polynomials over a Field
11.4 Irreducible Polynomials

We are very familiar with polynomials which are introduced to us very early
in our mathematical education, in fact, in high school itself, we are thoroughly
drilled in adding, multiplying, dividing, factoring and simplifying them. We
have learnt the remainder theorem in eighth or ninth standard. Later, at higher
level, polynomials appear as functions and we were concerned with their con-
tinuity, derivatives and integrals and their maxima and minima. Now, we are
interested in polynomials, but from neither of the above view points. Here,
polynomials will simply be elements of a certain ring and we shall be con-
cerned with the algebraic properties of this ring.

At the secondary school level, we have studied polynomials with integer
coefficients, rational coefficients, real coefficients and, may be even complex
coefficients. Notice that, in each case, the set of coefficients is a ring and the
set of polynomials also forms a ring under suitable addition and multiplica-
tion, with which we are all familiar. In this chapter, we make an abstraction
of these cases and study polynomials with coefficients from a given abstract
ring.

11.1 RINGS OF POLYNOMIALS
The word ‘polynomial’ reminds us an expression or symbol of the form

2
a,tax+tax +---+ax"
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We used to quickly add, multiply and divide such expressions. Now, it is
appropriate to clarify what different terms of such an expression mean. Of
course, 4, 4,, 4, ..., a,_are from some number system. Instead, we can take
these a’s as elements of an abstract ring. What are a,x, ax*, ..., a x"? What is
the + in between them? We used to write

3x +x3+2x° for 0+ 3x + 0x? + 1x° + Ox* + 2x°.
Also, we used to treat two polynomials
a,tax+ax’+ - +ax" and b +bx+bx+ -+ b x"

equal if and only if a, = b, for all i = 0.

In essence, the coefficients a, a,, a,, ..., a, are only important things and
the arithmetics of polynomials only depend on these a;s. In this section, we
shall formulise these intuitive ideas and arrive at an exact idea of how the
classical arithmetic of polynomials fit into our ring theory. To begin with, we
have following definition.

Definition 11.1.1. Let (R, +, -) be any ring. 4 polynomial over R is defined
to be an infinite sequence

(a,, a,, ay, ..., a,, ...)

of elements of R such that a s are zero for all but finite number of #’s; equiva-
lently, there exists a nonnegative integer & such that @, = 0 for all n = k. The
set of all polynomials over R will be denoted by Poly(R).

Recall that an infinite sequence of elements of R can be viewed as a
mapping of the set of nonnegative integers into R. Let us agree that two
polynomials

f=(ay, a,a, ..) and g=(b, b, b,, ...)

are considered to be equal if and only if a, = b, forall n = 0.

Often it is convenient to use the notation (a, a,, a,, ..., a, 0,0, ...) for a
polynomial with a, as the last nonzero term; when n = 0, we allow the pos-
sibility that @, = 0 in order to include the zero polynomial (0, 0, 0, ...) each
of whose term is zero. With this notation, we have

0,0, ..):a, €ERand n=0}.

no

Poly(R)={(a,, a,, a,, ..., a
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Therefore, (0,1, 1,0, 1,0, 0, 0, ...) is a polynomial over Z, where as (0, 1, 0,
1,0,1,0,1,...)is not. In the following, we introduce suitable operations on
Poly(R) to make it a ring.

Definition 11.1.2. For any polynomials a = (a,, a,, a,, ...) and b = (b, b,,
b,, ...) over aring (R, +, *), define
atb=(a,+b,, a,+b,a,+b,, ...)
and  a-b=(c, ¢, ¢,, -..),
where ¢, = ayb, +ab,_, +---+ab,= %a b,,= X ab,.

ron—r
rts=n

Note that the additive operation + and the multiplicative operation - on the
right sides of the above defining equations are those in the (R, +, -). Since a
and b are in Poly(R), there exist nonnegative integers m and n such that

a =0foralli=m and b,=0foralli=n

and hence, for any i = max{m, n}, a, = 0 = b, so that

a,+b=0

and ¢ = 3 ab_ =0 foralli = max{m,n}
r=0

(since i = m + nimplies » = m ori — r = n for any 0 = r = i and therefore,
a = 0orb_, = 0). This leads to the fact that @ + b and a - b are well
defined.

Theorem 11.1.1. For any ring (R, +, ), (Poly(R), +, -) is a ring, where + and -
are the operations defined above.

Proof: Let (R, +, -) be aring and a, b and ¢ be arbitrary elements of Poly(R).
Then, a, b and c are polynomials given by

a=(a,, a,, a,, ...)
b=(b,, b, b,, ..)

and c=(c, ¢, ¢,, ...)

with a’s, bs and ¢’s are elements in the given ring R. Then, using the asso-
ciatively and commutativity of + in R, we can prove that

(atb)tc=a+(b+c) and atb=b+a.
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Therefore, + is associative and commutative in Poly(R). Let us write 0 for the

polynomial (0, 0, O, ...). Then,

at+0=a=0+a forall a € Poly(R).

Therefore, 0 is the identity element for +. Also, for any a = (a,,

Poly(R), the polynomial —a defined by
—a=(—a,, —a,, —a,, ...)

satisfies the property

a+(—a)=(0,0,0, ..)=0=—a+a

a.,a

EECTREE

.)in

and hence —a is the inverse of a@ with respect to +. Thus, (Poly(R), +) is an

abelian group.
To prove the associativity of multiplication, let

a-b=(d,, d, d,, ...)

and (a-b)-c=(x,, X, X,, ...).

Then,

d, = iarbn,r :i ab,
r=0

rts

and x, = idscn_s = Z dc,
5=0

s+t=n

> [Sanl

s+t=n rtu=s

= Z ab,.c,

rtutt=n

Z a}_[z buct]

which is precisely the n™ term in @ - (b - ¢). Thus,

(a-b)-c=a-(b-c).
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Also,ifa - (b +¢) = (¥y, ¥ Yy ---), then

y,= > a(b+c)

r+s=n

= Z ab + Z a.c,

r+s=n r+s=n

which is precisely the n' term in (a - b) + (a - ¢). Thus,a - (b +c)=a- b +
a - c. Similarly, one can prove that (¢ + b) - ¢ = a - ¢ + b - ¢. Thus, (Poly(R),
+, -) is aring.

Definition 11.1.3. For any ring R, (Poly(R), +, -) is called the ring of polyno-
mials over R and is simply denoted by Poly(R).

In the following, we prove that any given ring R is isomorphic to a subring
of the ring of polynomials over R.

Theorem 11.1.2. Any ring R can be embedded in Poly(R).

Proof: Let (R, +, ) be a ring and Poly(R) be the ring of polynomials
over R. Define f: R — Poly(R) by f(a) = (a, 0, 0, 0, ...). Then, for any
aand b €ER,

fla+b)=(a+b, 0,0, ..)
=(a+b, 0+0, 040, ...)
=(a, 0,0, ..)+(b, 0,0, ..)
= f(@)+ f(b)
and f(ab)=(ab, 0, 0, ...)
=(a,0,0,..):( 00, ..)
= f(a)- f(b).

Therefore, f'is a homomorphism. Also, for any a and b € R,

fa=fb)=(a, 0,0, ..)=(,0,0, ..)

=a=h.

Thus, f'is an injection also and hence f'is a monomorphism of R into Poly(R).
This says that R can be embedded in Poly(R) and R is isomorphic to the sub-
ring f(R) of Poly(R).
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Theorem 11.1.3. For any ring R, the ring Poly(R) is commutative if and only
if R is commutative.

Proof: Let R be a ring. If Poly(R) is commutative, then clearly R is commuta-
tive, since R is isomorphic to a subring of Poly(R). Conversely, suppose that
R is commutative. Then, for any

a=(apa,ay,..) and b= (b,b,b,...),

17 722

in Poly(R), we have, for any n = 0,

n"termina - b = Z a,b,
rts=n

= b
st+r=n

=n" terminb-a
and hence a + b = b - a. Thus, Poly(R) is commutative.

Theorem 11.1.4. A ring R is with unity if and only if the ring Poly(R) is with
unity.

Proof: Let R be a ring. Suppose that R has unity 1.
Lete = (1,0,0,0, ...). Then, for any a = (a, a,, a,, ...) in Poly(R), we have,
forany n = 0,

n"termina - e = E ae,

rts=n
=a, (sincee, =0 foralls>0ande =1)
o

rts=n

=pn"termine-a

and hence a - e = a = e - a. Thus, e is the unity element in Poly(R).

Note that a ring R is trivial if and only if the ring Poly(R) is trivial. Recall
that a nontrivial commutative ring with unity and without zero divisors is
called an integral domain.

Theorem 11.1.5. Let (R, +, *) be a ring R. Then, R is an integral domain if
and only if Poly(R) is an integral domain.

Proof: First note that, from Theorems 11.1.1 and 11.1.4, R is a nontrivial
commutative ring with unity if and only if so is Poly(R). Therefore, we can
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assume that R is a nontrivial commutative ring with unity, which is a neces-
sary qualification for R (and hence for Poly(R)) to be an integral domain.

Suppose that R is an integral domain. Let a = (a,, a,, a,, ...) and b = (b,
b, b,, ...) be any nonzero elements in Poly(R). Since a # 0 and b # 0, there
exist nonnegative integers n and m such thata # 0, b # 0 and a, = 0 for
alli > nand b, = 0 for all j > m. Now, consider the (n + m)™ term in the

product @ - b. It is given by

Z ab =ab, #0,

r+s=nt+m

since R is an integral domain, ¢, # O and b, # 0. (Note thatr + s =n + m
=r=nors=m= (r=nora = 0)or (s =morb = 0). Therefore, the
(n + m)" term of a - b is nonzero and hence a - b # 0. Therefore, Poly(R) has
no zero divisors. Thus, Poly(R) is an integral domain.
Conversely, suppose that Poly(R) is an integral domain. Since R is isomorphic
to a subring of Poly(R), it follows that R is an integral domain.

In the following result, we demonstrate that Poly(R) can never be a field,
even when R is a field.

Theorem 11.1.6. For any ring R, Poly(R) can never be a field.

Proof: Let R be a ring and suppose that Poly(R) is a field. Then, Poly(R) is an
integral domain and hence, by Theorem 11.1.5, R is also an integral domain.
Consider the element

x=(0,1, 0, 0, ...) in Poly(R).

Then, x is a nonzero element in Poly(R) and hence x is a unit. Therefore, there
exists a = (a,, a,, a,, ...) in Poly(R) such that

xa=a-x=1=(,0,0, ...

hence (a, a,, a,, a,, ..)=(1, 0, 0, ...).

Therefore, 0 = 1, which is a contradiction to the fact that R is nontrivial.
Thus, Poly(R) is not a field.

The element x given in the above proof is of special importance. Even from
the high school days, we are well aware that a polynomial over R is an expres-
sion of the form

2 n
a, tax tax +---+ax,
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where a, a , a,, ..., a are real numbers and x is an indeterminate. Though we
are familiar with this, we did not know what x is what ax is for any a € R.
Further, we should give a mathematically valid explanation for the operation
symbol + in the above expression of a polynomial. We shall give satisfactory
answers to these questions in the following result. Recall that R can be identi-
fied with a subring of Poly(R) and any element a in R can be identified with
the polynomial (a, 0, 0, ...).

Theorem 11.1.7. Let (R, +, -) be a ring with unity and x be the polynomial
over R given by

x=(0,1,0,0, ..).

Then, any polynomial over R can be expressed uniquely as
a,ta-x+ta,-x’+--+a, - x",

where a, a, ..., a are elements of R, identified with the elements of Poly(R).

0>

Proof: Note that, in the expression a,+*a - x+a,- X+ -+ a, - x', the
operation symbols + and - denote the addition and multiplication in Poly(R).
Using the definitions of x and the multiplication in Poly(R), the following can
be proved easily.

x=(0,1,0,0, ...

x*=x-x=(0,0,1,0,0, ..)
X =x2~x=(0, 0,0,1, 0,0, ..)

x"=x"x=(0,0,..0,10,0,..)
(n+1)" term

for any positive integer n. Also, for any a € R, by identifying a with (a, 0,
0, ...) in Poly(R), we have

a-x=(0,a,0,0, ..)
a-xZI(O, 0,a, 0,0, ..)
a~x3=(0, 0,0,a, 0,0, ..)

a-x"=(0,0, ..., 0,a,0,0, ..
(n+1)" term
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for any positive integer n. If p is a polynomial over R, then p is a sequence
(ay a,a, ...,a,0,0,..)with a’s are in R. These as are unique in R
such that

r=(ay, a, a,, ..., a, 0,0, ..).

Now, we have

p=(a,, 0,0, ..)+(0, a, 0,0, ..)++(0,0,...,0,a,0,0,..)

2
=a,ta - -x+ta, x" +--+a, - x".

Remarks 11.1.1

1.

If we identify a € R with (a, 0, 0, ...) in Poly(R) and identify R as a
subring of Poly(R), then Poly(R) is the subring generated by R and x. For
this reason, we prefer to write R[x] for Poly(R).

. The expression a, + ax + ax* + -+ + ax" for a polynomial looks

simple and elegant for two reasons. The first one is that we are familiar
with this right from our school days. The second is that we can straight
away multiply two polynomials by treating x also as a real number or as
an element in the ring containing as.

. As mentioned in the above theorem and its proof, x is not an element

in the ring R and it is an element in Poly(R); that is, x is a polynomial
over R.

4. x is usually called an indeterminate.

. When we are completely aware of what Poly(R) and R[x] are, we prefer

to use familiar notation for polynomials over a given ring R and for the
ring of polynomials over R. R[x] is the most standard notation used to
denote the ring polynomials over R.

. The expression a, + ax + -+ + a x" for a polynomial is known as poly-

nomial in an indeterminate form. Though x is called an indeterminate, it
is actually a polynomial by itself and the operations + and - in the above
expression are the addition and multiplication of polynomials only.
Often, nfor convenience, a polynomial a; + ax + -+ + a x" is also writ-
ten as 2 a,x', with the assumption that x° = 1.

i=1

To sum up, the polynomials in an indeterminate form are expressions of

the form a, + ax + ax> + --- + ax", where a, a,, ..., a, are elements of
a given ring R and the set of all such expressions will be denoted by R[x].
The elements of R[x] can be added and multiplied as we do in the number
systems.
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Example 11.1.1

l. ZIx]={a,tax+ - +ax':n=0,a,EZ}.3+2x +x* + 4x’isin
Z[x], while 2 + \fx + 3x%is not in Z[x]. However, 2 + J3x + 3x%isan
element of R[x].

2. Let us compute (3 + 2x + x*) + (5x + 3x + 2x*) and (3 + 2x + x%) -
(5x + 3x* + 2x%).

First writep =3 + 2x + ¥’ = a, + ax + ax* + ax’and ¢ = 5x + 3x*
+2x*=b,+ bx+bx*+ bx’+ bx',wherea = 3,a, =2,a,= 0and
a,=l;andb, = 0,b, = 5,b,=3,b,=0and b, = 2.

ptg= X}:aixi +Z4:bixi = i:(ai +b)x’
i=0 i=0 =0

where a, = 0 forall i >3 and b, = 0 for all i > 4.

P+ g=0C+0)+ 2+ 5+ 0430+ (1+ 00+ (0 + 2
=3+ 7x +3x2 + X3 + 2%

Also,pg =c,tcx+cexX +cx® +ext +cx’ +cx® + cx,

wherec, =a, b, =3:0=0

c,=a, b +ta -b=3-5+2-0=15

c,=a, b, +ta b +a-b=3-3+2:-5+0-0=19

c=230ab3 =3-0+2-34+0-5+1-0=6

c,=32+2-0+0:-3+1-5+0-0=11

4

¢.=3:0+2:2+0:0+1:3+0:5+0:0=7
¢,=3:0+2:0+0:2+1:0+0:2+0:5+0:0=0
¢,=3:0+2:0+0:0+3:2+0-0+0:3+0-5+

Thus,p - g =0+ 15x + 19x2 + 6x° + 11x* + 7x° + 0x° + 6x7
= 15x + 19x? + 6x° + 11x* + 7x° + 6x7.

3. Letuscompute (2 +x + x°) + (1 + 2x + x* + x°) in Z,[x]. The required
sum is

QA+, D+ A+, 2x+ 0+, D>+ (14, )x* =x>+ 2x°
since2 +,1 =0inZ,
4. 1 + 2xis a unit in Z,[x]; for
I+20)(1+2x)=1+Q2+,2x+ (2 -2 =1

since2 +,2 =0 =2 -, 2. Here, 1 + 2x is the multiplicative inverse of
itself.
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Definition 11.1.4. Let p = (q, a,, a,, ...) be a nonzero polynomial over a
ring R. Then, a, # 0 for some i. The largest n for which @ # 0 is called the
degree of p and is denoted by deg(p).

Note that we have not defined the degree of the zero polynomial (0, 0, 0, ...).
Also, if p is a polynomial of degree 7, then p can expressed as

p=aq,tax+ - +tax"

The a;’s involved in this expression are called the coefficients in the poly-
nomial p.
Example 11.1.2
1. The degree of 2 + 3x* in R[x] is 4, since
2+ 3x* =2+ 0x + 0x? + 0x® + 4x*
2. InZ,[x], the degree of (1 + 2x)* is 0, since

(1 +20P=1+@Q2+,2x+ Q2,2
=1+0x+0x*>=1.

Definition 11.1.5. The zero polynomial and the polynomials of degree 0 are
called constant polynomials.

For any ring R, the set of constant polynomials over a ring R form a sub-
ring of R[x] and is isomorphic to R. In the following, we discuss how the
degrees of polynomials vary when we take sums and products.

Definition 11.1.6. Let R be a ring and R[x] be the ring of polynomials over R.
The following holds for any nonzero polynomials fand g € R[x]:

1. Either f+ g = 0 or deg(f + g) = max{deg(f), deg(g)}.

2. Either f- g = 0 or deg(f- g) = deg(f) + deg(g).
3. IfRis an integral domain, then /- g # 0 and deg(f- g) = deg(f) + deg(g).

Proof: Let deg(f) = m and deg(g) = n. Then,
f=a,tax+ax’+ - +ax",a #0
and g=b,+bx+bx*+ - +bx',b #0.
Let k = max{m, n}. Then, we can write

= 24 .. k
f=a,+ax+ax’+ - +ax

and g=b,+bx+bx*+ -+ bxt,
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where a,= 0 for i > m and bj = 0 forj > n.

1. Wehavef+ g =(a,+ b)) + (a, + b)x + --- + (a, + b )x" and therefore
either f+ g = 0 or

deg(f + g) = k = max{deg(f), deg(g)}-
2. Suppose that /- g # 0. Let
frg=c, tex+ex*+ - +ecx,

r

where ¢, = 0al.b,,l. = _+% ab;.

Ifi +j=r>m + n, then either i > m or j > n and hence a, = 0 or
bj = 0 and, in either case aibj = 0. Therefore,

c.=0 forallr >m + n

which implies that deg(f g) = m + n = deg(f) + deg(n).
3. Suppose that R is an integral domain. Then,

Con = Z ab;=a,b,#0 (since R is an integral domain)

m+n
i+ j=m+n

and, as in (2), ¢, = 0 for all » > m + n. Therefore,

deg(f- g) = m + n = deg(f) + deg(g).
In fact, the converse of (3) above is also true, in the sense of the following
corollary.

Corollary 11.1.1. Let R be a nontrivial commutative ring with unity. Then,
the following are equivalent to each other.

1. deg(f- g) = deg(f) + deg(g) for all nonzero fand g € R[x].
2. Ris an integral domain.
3. R[x] is an integral domain.

Proof: We have proved (2) < (3) in Theorem 11.1.5 and (2) = (1) by
Definition 11.1.6 (3).

(1) = (3) follows from the fact that the degree is defined for nonzero poly-
nomials only and hence, by (1), /- g # 0 for all nonzero fand g in R[x]. <«
Worked Exercise 11.1.1. In Z [x], let f = 2 + x + 4x* + 3x°

and g =4 + 3x + 5x* + 3x%.

Compute '+ g and /- g and their degrees.
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Answer: f+g=(2+ 4+ (1 + 3x+ @+, 5%+ (3 +,3)x°
=0+4x+3x2+0-x°
= 4x + 3x*

and therefore, deg(f + g) = 2 < max{deg(f), deg(g)}.

Also, f- g = (2 + x + 4x> + 3x%) (4 + 3x + 5x> + 3%%)

=@+ Q3+ L Axt (2 5+, 1,3+, 4- 4
+Q2- 3+, 1 5+,4:3+,3: 4
(1 34,45+, 33w+ @4 3+,3 50
+ (3 3N

=2+ 4x+ @+, 3+ HE+(5+,0+, 0
+ (34,2 + 3+ (04, 3)x° + 3x°

=2+ 4x + 5x + 5x% + 2x* + 3x° + 3x°

and therefore, deg(f - g) = 6 = deg(f) + deg(g).

Worked Exercise 11.1.2. Give examples of two polynomials f'and g over a
ring R for which /- g # 0 and

deg(f- g) < deg(f) + deg(g).
Answer: Letf =1+ 2xand g =1 + 3x* in Z [x].

Then, /- g = (1 + 2x)(1 + 3x?)
=1+2x+3°+ 2,30
=1+ 2x + 3x* + (since 2 -, 3 = 0).

Therefore, deg(f - g) = 2 < deg(f) + deg(g).

Worked Exercise 11.1.3. Let R be a commutative ring with unity. Then, prove
that R and R[x] have the same characteristic.

Answer: First note that both R and R[x] have the same unity, namely 1. Now,
it follows from Theorem 9.3.2 that

char R = 0(1) in (R, +)
= 0(1) in (R[x], +)
= char R[x].
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EXERCISE 11(A)

1.

2.

A

11.

Evaluate the following:
(i (1,2,0,4,0,0,...) +(2,0,1,4,0,0, ...) in Poly(Z,).
(i) (1,2,0,3,0,0,...)-(3,1,0,4,2,0,0, ...) in Poly(Z).
(i) (4,3,2,1,0,0,...)-(1,2,3,4,5,0,0, ...) in Poly(Z,).
(iv) (1,2,3,4,0,0,...)+(4,3,2,1,0,0, ...) in Poly(Z,).
v) (0,1,0,0,...)"in Poly(R) forany n € Z"*.
(vi) (1,1,0,0,...)y"in Poly(Z,), for each n € Z".
State whether each of the following is true and substantiate your answer.
(i)  Z,[x] is an integral domain.
(i) Z[x]1is a field.
(i)  Z[x] is an integral domain.
(iv) A ring R is finite if and only if R[x] is finite.
(v) 1+ xisaunitin Z[x].
(vi) 2+ 2xis anilpotent in Z,[x].
(vii) 1 + xis a zero divisor in Z [x].
(viii)  Z,[x] is a finite integral domain.
If S is a subring of a ring R, then prove that S[x] is a subring of R[x].
If 7 is an ideal of a ring R, then prove that /[x] is an ideal of R[x].

Determine all the units in the ring Z[x].

Prove that a polynomial f over R is a unit in R[x] if and only if f'is a nonzero
constant polynomial.

For any positive integer n, prove that Z [x] is an integral domain if and only if »
is a prime number.

Determine the number of nonzero polynomials of degree = 5 in Z,[x].

For any positive integers m and n, derive a formula for the number of polynomi-
als of degree less then m in Z [x].

. For any ring R, prove that the set

1= {ao tax+ - tax"€ R[x] : a, = 0}
is an ideal of R[x].
For any i > 0, let

J={a,+ax+ - +ax"ER[x]:a =0}

Then, for any ring R, is J, an ideal of R[x].
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12. Let R be a commutative ring with unity. Prove thata, + ax + -+ + a x" € R[x] is
aunit in R[x] if and only if ¢ isa unitin Rand a, a,, ..., a, are nilpotents in R.

13. Deduce Exercise 6 above from Exercise 12 above.

14. Let R be a commutative ring with unity and / be a proper ideal of R. Then prove
that / is a prime ideal of R if and only if /[x] is a prime ideal of R[x].

15. Can we replace ‘prime ideal’ in Exercise 14 above by ‘maximal ideal’?

16. Let R be a commutative ring with unity. Then prove that R[x]/<x> = R, where
<x> is the ideal generated by x in R[x].

11.2 THE DIVISION ALGORITHM

It is well known that there is an algorithm through which, by dividing any
integer by any nonzero integer, we get the quotient and the remainder, pre-
cisely, if a is any integer and b is a nonzero integer, then there exist unique
integers g and r such that a = gb + r and || < |b|. The algorithm through
which we get ¢ and r is called the division algorithm in Z. In this section,
we extend this algorithm to polynomials over commutative rings with unity.
The degree of a polynomial is used in the derivation of the division algo-
rithm in as much the same way as the absolute value is employed among
integers.

First, let us have a small change in the notation for polynomials. The
elements of R[x] are the polynomials over R in the indeterminable form
and these will be denoted by f(x), g(x), etc., in order to mention the inde-
terminate x also. This will also be helpful later in treating polynomials as
functions.

Definition 11.2.1. Let R be a ring and f(x) = a, + ax + -+ + ax"be a
nonzero polynomial over R of degree n. Then, a, # 0 and a, is called the
leading coefficient of f(x). If a_is the unity in R, then f(x) is called a monic
polynomial.

Example 11.2.1
1. Iff(x) = 2 + 3x + x* + 6x° € Z[x], then degree of f(x) is 3 and 6 is the
leading coefficient in f(x).
2. If f(x) = 2 — x* € Z[x], then —1 is the leading coefficient of f(x).
3. 3 +x — 2x* + x* is a monic polynomial over Z.

Theorem 11.2.1 (Division Algorithm for Polynomials). Let f(x) and g(x) be
polynomials over a commutative ring R with unity such that g(x) # 0 and the
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leading coefficient of g(x) is a unit in R. Then, there exists unique polynomi-
als g(x) and r(x) in R[x] such that

J(x) = q0)gx) + r(x)
and either 7(x) = 0 or deg(r(x)) < deg(g(x)).

Proof: If f(x) = 0 or f(x) # O such that deg(f(x)) < deg(g(x)), then we can
take g(x) = 0 and r(x) = f(x). Therefore, we can assume that f(x) # 0 and

deg(f(x)) = deg(g(x)).

We apply induction on the degree of f(x). First, let deg(f(x)) = 0. Then, since
deg(f(x)) = deg(g(x)) = 0, it follows that deg(g(x)) = 0 and hence both f(x)
and g(x) are constant polynomials, so that f(x) and g(x) are elements of R. In
particular, the leading coefficient of g(x) is g(x) itself and is invertible in R (by
the hypothesis). Now, put

q(x) = f(x)g(x)™" and r(x) = 0.

Then, g(x) and r(x) satisfy the required properties.

Next, let deg(f(x)) = n > 0 and assume that the theorem is true for all
polynomials f,(x) of degree less than n. Let deg(g(x)) = m. Then, we have
n=m.

Letf(x) =a, +ax+ - +ax",a #0

andg(x) = b, + bx + -+ b x", b F0.

By hypothesis, b, is a unit in R. Put

L) = f(x)=ab,'x""g(x).

Then, f,(x) € R[x] and deg(f,(x)) = n. Since the coefficient of x" in f,(x) is
a,—(a,b,")b, =0, it follows that deg(f,(x)) < n. By the induction hypoth-
esis, there exists polynomials g (x) and (x) € R[x] such that

/1) = q,(0)g(x) + r(x),

where r(x) = 0 or deg(r(x)) < deg(g(x)).
From this, by substituting for f,(x), we get

f(x)=(q,(x)+a,b,'x"")g(x)+r(x)
= q(x)g(x) + r(x),

where  q(x)=¢q,(x)+ab 'x"".
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To prove the uniqueness of g(x) and r(x), suppose that

J(x) = g(x)gx) + r(x) = ¢'()gx) + r'(x),

where 7(x) and 7' (x) satisfy the requirements of the theorem. Then, we get that

r(x) = r'(x) = (¢'(x) = q(x))g().

Since the leading coefficient b of g(x) is a unit in R, it is not a zero divisor.
If ¢'(x) — g(x) # 0, then

deg[(g'(x) — g(x))g(x)] = deg(q'(x) — ¢(x)) + deg(g(x))
= deg(g(x)) > deg(r(x) — r'(x))

which is a contradiction. The last in equality is based on the fact that the
degrees of both r(x) and »'(x) are less than deg(g(x)). Thus, it is necessary
that ¢'(x) — g(x) = 0 and hence r(x) — r'(x) = 0. Therefore, g(x) = ¢'(x) and
r(x) = r'(x).

Definition 11.2.2. The polynomials ¢(x) and 7(x) in the above theorem and
called, respectively, the quotient and remainder on dividing f(x) by g(x). The
proof of the above theorem actually provides an algorithm to find the quotient
and remainder and hence the theorem is called the division algorithm. Let us
take up an example.

Example 11.2.2. In Z[x], let f(x) = 2 + 3x — 4x*> + x* — 3x*and g(x) = 3 +
x — x%. The leading coefficient of g(x) is —1 which is a unit in the ring Z. Put

l. fi(x)= f(x)—a,b,'x""g(x) (as in the above proof).

Then, fi(x) = (2 + 3x —4x> + ¥ — 3x*) — (=3)(— 1) "¥* B +x — x?)
=2+3x—42+ X =3 =323 +x—x?)
=2+ 3x— 13x> — 2x?

2. Put f(x) = f,(x)—ab,'x’*g(x), where a is the leading coefficient of

f,(x). Then, f(x) = (2 + 3x — 13x* — 2x°) — (=2)(—1)"x3 + x — x?)

=2 +3x— 132 —2x%) —2x(3 + x — x?)
=2—3x— 15
3. Put fi(x) = f,(x)—bb,'x*g(x), where b is the leading coefficient of
£(x). Then, £,(x) = (2 — 3x — 15x2) — (—15)(=1)"'(3 + x — x?)
(2 —3x—15x%) = 153 + x — x?)
= —43 — 18
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Now, deg(f,(x)) = 1 < deg(g(x)) and the process stops, we have, from (1),
(2) and (3),

) = fi(x)+ab,'x""g(x) (by (1))
=/, + (=3)(=D)"x*g(»)
= [0 +ab,'x g(x)+3x’g(x) (by (2))
=) + (=2)(—= 1) 'xg(x) + 3x°g(x)
= () +bb,'x*? g(x)+2x g(x)+3x’g(x) (by (3))

= —43 — 18x + (—15)(—1)"g(x) + 2xg(x) + 3x%*g(x)
(15 + 2x + 3x?)g(x) + (—43 — 18x)
= q(x)g(x) + r(x),

where ¢(x) = 15 +2x + 3x* and r(x) = —43 — 18x.

Algorithm 11.2.1 (The Process of Division Algorithm). Consider f(x) and
g(x) as in Theorem 11.2.1. Let deg(f(x)) = n, deg(g(x)) = m =< n. Let

L= f(0)=ab,'x" "g(x),

where a and b are leading coeficients of f(x) and g(x), respectively. Let c,
be the leading coeflicient of f,(x) and n, = deg(f,(x)). Let

f(x)= fi(x)— clb,;'x"‘f"’g(x)

and continue the process of obtaining polynomials f,(x) = f(x), f,(x), f,(x),
f{(x), ... of degrees n, = n, n,, n, n,, ... with leading coefficients ¢, = a , ¢,
¢, C, ..., Tespectively. Then,

fa(x)=f(x)=cb, 'x""g(x) forallr=0
and  deg(f(x)) > deg(f,(x)) > deg(f,(x)) > ...

At some stage, we should get f(x) such that deg(f/(x)) < m = deg(g(x)) and
let f(x) be first such stage. Then,

f@)=ab,'x""g(x)+ f;(x)
=cb,'x" " g(x)+¢b,'x" " g(x)+ f(x)
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= [xz_:bmlctx"z_m}g(x)-}—ﬁ(x)
S Jx) = g(0)gx) + r(x),

s—1

where g(x) = 3 b, 'cx" ™" and r(x)= f.(x) and these are the quotient and
=0

remainder, respectively.

The following are an immediate consequences of the division algorithm
(Theorem 11.2.1).

Corollary 11.2.1. Let f(x) and g(x) be polynomials over a commutative ring
R with unity. If g(x) is a nonzero monic polynomial, then there exist unique
q(x) and r(x) in R[x] such that

J(x) = q(0)g(x) + r(x)
and either r(x) =0 or deg(r(x)) < deg(g(x)).

Corollary 11.2.2. Let F be a field and f(x) and g(x) € F[x] with g(x) # 0.
Then, there exists unique ¢(x) and 7(x) in R[x] such that

J(x) = q(x)g(x) + r(x)
and either r(x) =0 or deg(r(x)) < deg(g(x)).

In the following, we introduce the concept of an evaluation homomor-
phism which is an important tool in the study of solutions of polynomial
equations.

Theorem 11.2.2. Let S be a commutative ring with unity and R be a subring
of S containing the unity of S. For any « € S, define

¢, :R[x] —S

by (a,+ax+ax’+ - +ax)=a,+aa+ac’+ - +aa forall
a,+ax + -+ +ax" € R [x]. Then, ¢_ is a homomorphism of R[x] into S
such that ¢ (x) = o and ¢ (a) = a foralla € R.

Proof: First of all, observe thata € Sand a, a, ...,a, € R C S and hence
a,taa+--+aa" €S Also,a,+tax+ - +ax"=b +bx+ -+
b x"implies thata, = b forall l =i=<=nandhencea, + aa + -+ + a " =
?70 —I—Sbla + -+ + b a" Therefore, ¢, is a well-defined mapping of R[x]
mnto 5.
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Now, letf'=a, +ax + -+ +ax"
and g=b,+bx+ - +bx
be arbitrary elements in R[x], where a, b, € R.
Putr = max{m, n},a,= 0 = b/. for i > m and j > n. Then, we have

o (f+g=¢,a,+Db)+ (a +b)x+ -+ (a + b))
=(a, +b) +(a, +b)a+ -+ (a +b)"
=(a,taa+ - +aa)+ (b, +bat - +ba)
=(a,taa+ - +aa”)+ (b, +ba+- - +ba"

= o)+ ¢,(2).
x"*" where ¢, = é ab

AlSO,f-g:co+c1x+...+cm+n .
Now, d)a(f g) =c, + ca + .+ c, amtn i=0

+n
=(a, *aoa+ - +. a.ma’.”) (by +ba+ -+ ba”
(by the commutativity in S)

=) ¢,(8)
Thus, ¢, is a homomorphism of R[x] into S. By the very definition of ¢ , it
follows that ¢ [x] = a and ¢ [a] = a foralla € R. <4

Definition 11.2.3. The homomorphism ¢ defined above is called the evalu-
ation homomorphism at «.

The evaluation homomorphism at « is actually unique with respect to its
defining properties, namely ¢ (x) = a and ¢ (a) = a for all @ € R, for the
simple reason that R[x] is generated by R and x; that is, R[x] is the only sub-
ring of R[x] containing R and x. This justifies the notation R[x] for the ring of
polynomials over R.

Theorem 11.2.3. Let S be a commutative ring with unity 1 and R be a subring
of S containing 1. For each @ € S, there exists a unique homomorphism ¢ :
R[x] — S such that ¢ (x) = @ and ¢ (a) = a forall a € R.

Proof: Let @ € S. We have the existence of the required homomorphism,
namely ¢ , in Definition 11.2.1. To prove the uniqueness, let ¢ : R[x] — S be
a homomorphism such that ¢ (x) = « and ¢ (a) = a for all @ € R. Then, for
any f=a,+ ax + -+ + ax"in R[x], we have

o(f)=d(a, tax~+ - +ax
=da) + ¢a)px) + -+ ¢(a)b)

=a, + a«a + -0+ ana”
= ¢ (/).
Thus, ¢ =¢,. <



Polynomial Rings  11-21

For any @ € R and the evaluation homomorphism ¢ , we often write f(«)
for ¢ (f), where /= f(x) is a polynomial over R. This is to say that ¢ (f) is
just the element of R obtained by substituting « for x in the polynomial /' =
f(x). The following is an important result to which we were exposed at school
level itself and now, we supplement a proof of the most general version of the
remainder theorem.

Theorem 11.2.4 (Remainder Theorem). Let f(x) be a polynomial over a
commutative ring R with unity and @ € R. Then, there exists unique g(x) €
R[x] such that

J(x) = q()(a = x) + fla),

where f(a) is the element in R obtained by substituting a for x in f(x); that is,

@) = ¢ (/).
Proof: Let f(x) = a, + ax + -~ + ax" Then,
flay=a,+aa+ - +aa €R.

Consider the polynomial ¢ — x whose leading coefficient is —1, which is a
unit in R. Therefore, by Theorem 11.2.1 (the division algorithm), there exist
unique ¢(x) and r(x) in R[x] such that

Jx) = q(x)(a — x) + r(x) (*)
where r(x) = 0 or deg(r(x)) < deg(a — x) = 1. Since deg(r(x)) is always a

nonnegative integer, it follows that deg(7(x)) = 0 and hence r(x) is a constant
polynomial over R. Let r(x) = b € R.

fla)=gqg(a)(a—a) +b=0+b=0>b=rx).
Therefore, again by (*),

Jx) = g(x)(a — x) + f(a).

Definition 11.2.4. Let f(x) and g(x) be polynomials over a commutative
ring R. Then, g(x) is said to be a divisor (or a factor) of f(x) if g(x)h(x) =
f(x) for some A(x) € R[x]; in this case, we also say that f(x) is a multiple
of g(x).

Corollary 11.2.3. Let f(x) be a polynomial over a commutative ring R and
a € R. Then, a — x divides f(x) if and only if f(a) = 0.
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Definition 11.2.5. For any polynomial f(x) over R and a € R, we say that a is
a root (or zero) of f(x) if f(a) = 0.

In other words, a is a root of f(x) if and only if f(x) = (a — x)g(x) for some
g(x) € R[x]. The next theorem is about the number of roots of a polynomial
in a integral domain.

Theorem 11.2.5. Let f(x) be a nonzero polynomial of degree n over an inte-
gral domain R. Then, f(x) can have at most » distinct roots in R.

Proof: We apply induction on the degree of f(x), If deg(f(x)) = 0, then the
theorem is trivial, since f(x), being nonzero, cannot have any root in R.
Next, suppose that deg(f(x)) = n > 0 and assume that any nonzero polyno-
mial of degree m < n can have at most m distinct roots in R. If f(x) has a root
in R; that is, if € R is such that f(a) = 0, then, by Theorem 11.2.5,

f(x) = (@ — x)g(x) for some g(x) € R[x].
Now, b is a root of f(x) in R implies that

0 = f(b) = (a — b)g(b)

and, since R is an integral domain, it follows that » = a or g(b) = 0. Therefore,
the number of roots of f(x) in R other than a cannot exceed the number of
roots of g(x) in R. Since R is an integral domain, we have

n = deg(f(x)) = deg(a — x) + deg(g(x)) = 1 + deg(g(x))

and hence deg(g(x)) = n — 1. By the induction hypothesis, it follows that
2(x) can have at most n — 1 district roots in R. Thus, f(x) can have at most n
distinct roots in R.

Corollary 11.2.4. Let f(x) and g(x) be polynomials of degree n over an inte-
graldomain Rand a, a,, ..., a,, be distinct elements of R such that f(a,)) =
g(a) for 1 =i = n.Then, f(x) = g(x).

Proof: Consider i(x) = f(x) — g(x) € R[x]. If h(x) # 0, then deg (h(x)) =
nanda, ..., a  are distinct roots of 4(x) in R, which is a contradiction to
Theorem 11.2.5. Therefore, 2(x) = 0 and f(x) = g(x).

Corollary 11.2.5. Let f(x) be a polynomial over an integral domain R. Sup-
pose that 4 is an infinite subset of R such that f(a) = 0 for all a € A. Then,
f(x) is the zero polynomial.
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Proof: If f(x) is a nonzero polynomial, then deg(f(x)) = n and f(x) can have
at most n district roots in R which is a contradiction to the assumption that
each element of the infinite set 4 is a root of f(x).

Worked Exercise 11.2.1. Find the quotient and remainder when f(x) = 3 +
dx + 3x* + 2x° + 2x* + x* is divided by g(x) = 5 + 3x + 4x* + ¥’ in Z [x].

Answer: We follow the process of division algorithm as given in Algorithm
11.2.1 (the process of division algorithm). Note that the addition and multi-
plication in Z, are modulo 6.

JB3+4x+3x7 +2x° +2x +X7|

5+3x+4x*+x , , R
—(5x"+3x"+4x" +x°)

3+4x+4x" +5x° +4x°
—(2x+0+4x* +4x")
3+2x+4x*+x° |1
—(5+3x+4x* +x°)
4+ 5x

|4x

Therefore, the quotient is 1 + 4x + x? and the remainder is 4 + 5x.

Worked Exercise 11.2.2. Let R be a commutative ring with unity and a € R.
Then prove that R[x]/ <a—x> = R, where <a — x> is the principal ideal
generated by @ — x in R[x].

Answer: Consider the evaluation homomorphism ¢ from R[x] into R (by
taking §' = R in Definition 11.2.1) defined by ¢ (@, + ax + --- + a x") = a,
+aa+ -+ aa" If a €R, then, for the constant polynomial @ in R[x],we
have ¢ (a) = a. Therefore, ¢ is an epimorphism and hence, by the funda-
mental theorem of homomorphism,

R —~
[%er ¢, =%

Iff€ <a — x> = (o — x)R[x], then f = (a — x)g for some g € R[x] and
hence

) = (@ =19, (2) = (@~ ), (g) =0
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so that /'€ ker ¢ . Using the division algorithm (whose proof is given in the
next section), one can prove that ¢ () = 0 implies /= (o — x)g for some g
€ R[x]. Therefore,

ker¢ = <a — x>

Thus, R[x]/<a—x>=R.

EXERCISE 11(B)

1. Find the remainder and quotient when f(x) is divided by g(x) in the rings men-
tioned in each of the following:

i) fx)=2+3x+x+x*+2x%and g(x) = 2 + x> — x3 in Z[x].
(i) f=1+x+x+x"+x°andg(x) =1+ x+x*inZ[x].
(iii) f(x)=%+x+§x2+%x3 andg(x)=é+%x in Q[x].
(iv) f(x) =2+ 3x +4x> + 5xand g(x) = 1 — x in Z[x].
(v) fx)=1+2x+3x+4and g(x) = 1 + x*in Z [x].
vi) fx) =1 +i)+ @2+ 3ix+ (1 —2)x%+ (1 +3i)x°and gx) =i +
(2 + i)x — 2x*in C[x].
2. Evaluate each of the following for the indicated evaluation homomorphism ¢, :
ZJx] — Zi
(i) G2+ 3x +4x* + X°)
(i) (1 +x+x+x+x+x°
(iii) (1 + 2x + 3x* + 4x° + x%)
(iv)  ¢,2 + 3x + 4x* + x° + x9)
V) ¢,2+x+32+x+x)
3. Find eight elements in the Kernel of the evaluation homomorphism ¢,: Q[x] — R.

4. For any subfield F of any field E, prove that the Kernel of the evaluation homo-
morphism ¢ : F[x] — E is an infinite set for each a € E.

5. Find all the roots in Z, of the polynomial 2 + 4x + 3x* + 4x* + x*in Z[x].
6. Prove that I + 4x is a unit in Z[x].

7. Let F be an infinite field and f(x) € F[x]. Prove that f(a) = 0 for infinitely many
elements a in F if and only if f(x) = 0.

8. Let R be an integral domain and f(x) and g(x) € R[x]. Prove that {a € R : f(a) =
g(a)} is infinite if and only if f(x) = g(x).

9. Determine all the roots of x — x° in Z.

10. For any prime number p, prove that every element of Zp is a root of the polyno-
mial x — x” in Zp[x].
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11.3 POLYNOMIALS OVER A FIELD

The ring F[x] of polynomials over a field F has a rich structure theory. In par-
ticular, F[x] satisfies most of the ring theoretic properties that are satisfied by
the ring Z of integers. For example, we will be proving that any ideal of F[x]
is generated by a single element, as in the case of Z. Also, we have unique
factorizations in F[x]. More so, we have the division algorithm, as mentioned
in Corollary 11.2.2 and Theorem 11.2.4 (Remainder Theorem). Throughout
our discussions in this section, F' always denotes an arbitrary field, unless
otherwise stated.

Let us recall from Theorem 11.2.4 (Remainder Theorem) that, for any
a € F and 0 # f(x) € F[x], f(a) is the remainder obtained by dividing f(x)
with @ — x and that « is a root of f(x) if and only if @ — x divides f(x) (or
a — x is a factor of f(x)).

Definition 11.3.1. Let F be a field, f(x) € F[x] and ¢ € F. If (¢ — x)"is a
factor of f(x) for some n > 1, then a is called a multiple root of f(x), and the
least such # is called the multiplicity of the root a.

The following is a slight variation of Theorem 11.2.5, where we have
proved that any nonzero polynomial of degree » over an integral domain R
can have at most n distinct roots.

Theorem 11.3.1. Any nonzero polynomial of degree n over a field F' can
have at most z roots in F, including the multiplicity of the roots.

Proof: Let F' be a field, 0 # f(x) € F[x] and deg(f(x)) = n. We shall use
induction on . If n = 0, there is nothing to prove. If n = 1, then f(x) = a, +
a,xand a, # 0 and hence —a,a, " is the only root of f(x).

Suppose that » > 1 and that the theorem is true for all polynomials of degree
less that . If f(x) has no roots in F, then we are done. Let a be a root of f(x)
in F. Then,

f(x) = (@ — x)"g(x) for some g(x) € F[x]and m € Z*.
Comparing the degrees both the sides, we get that
n = deg(f(x)) = m + deg(g(x))
and hence deg(g(x)) = deg(f(x)) —m <n —m <n.

If f(x) has no roots other than a in F, then we are done, since m = n. On the
other hand, if » # a is a root of f(x) in F, then

0 =f(b) = (a — b)"g(b)
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and hence g(b) = 0, so that b is a root of g(x). By the induction hypothesis,
g(x) has at most deg(g(x)) roots in F, including the multiplicity of the roots.
Thus, f(x) has at most » — m ( = deg(g(x))) roots in F other than a. Therefore,
f(x) has at most m + (n — m) roots in F, including the multiplicity of the
roots.

Let us recall that an ideal 7 of a ring R is called a principal ideal if I = <a>
for some @ € R; that is, [ is generated by a single element of R. It is well
known that every ideal of the ring Z of integers is a principal ideal. This prop-
erty is satisfied by the rings of polynomials over fields also.

Theorem 11.3.2. Let F' be a field and F[x] be the ring of polynomials over F.
Then, F[x] is an integral domain in which every ideal is principal.

Proof: By Theorem 11.1.5, F[x] is an integral domain since F is so. Let / be
an ideal of F[x]. If / = {0}, then there is nothing to prove, since / = <0> =
{0}. Suppose that / is a nonzero ideal; that is, / contains atleast one nonzero
polynomial. Consider the set

S = {deg(f(x)) : 0 # f(x) € I}.

Since § is a nonempty set of nonnegative integers, S has a least member, say
n. Then, n = deg(f(x)) for some f(x) € I and n = deg(g(x)) for all 0 # g(x) €
1. We shall prove that 7 is generated by f(x). Since f(x) € I, we have <f(x)>
C I. On the other hand, suppose that g(x) € I. Then, by the division algorithm,
there exist g(x) and 7(x) € F[x] such that

g(x) = q(x)f(x) + r(x),
where r(x) = 0 or deg(r(x)) < deg(f(x)) = n. Now,
rx) = g(x) — qx)f(x) €1

since g(x) and f(x) € [ and / is an ideal. By the least property of #, it follows
that 7(x) = 0 and hence

8(x) = qx)f(x) € <f(x)>.

Therefore, I C <f(x)>. Thus, I = <f(x)>.
The converse of the above result is also true in the sense of the following
theorem.

Theorem 11.3.3. Let R be a ring such that R[x] is an integral domain in which
every ideal is principal, Then, R is a field.
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Proof: Since R[x] is given to be an integral domain, it follows from
Theorem 11.1.5 that R is an integral domain. To prove that R is a field, let
0 # a € R. Consider the ideal <a, x> generated by a and x in R[x]. By
hypothesis, this ideal must be principal and hence there exists f(x) € R[x]
such that

<a, x> = <f(x)>.

First of all, note that f(x) # 0, since 0 # a € <f(x)>. Since both ¢ and x €
<f(x)>, we get that

a = f(x)g(x) €]
and x = f(x)h(x) 2)

for some g(x) and /(x) € R[x]. From (1), we have
0 = deg(a) = deg(f(x)g(x)) = deg(f(x)) + deg(g(x))

and hence deg f(x) = 0. Let f(x) = a, € R.
Then, from (2), we have x = a, h(x) and hence

1 = deg(x) = deg(a,) + deg(h(x)) = deg(h(x)).

Therefore, h(x) = b, + b x for some b and 0 # b, in R and hence, from (2),
we have

x =ayb,+ b x).
By comparing the coefficient of x on both sides, we get that
1 =ap € <f(x)> = <a,x>.
Therefore, there exist f,(x) and f,(x) in R[x] such that
1= afl(x) + xfz(x)

which implies that 1 = ac, where ¢, is the constant term in f,(x). Thus, a is a
unit in R. Therefore, R is a field.

Worked Exercise 11.3.1. Give an example of an ideal of Z[x] which is not
principal.
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Answer: Since 7Z is not a field, it follows from Definition 13.3.2 that there
must be an ideal of Z[x] which is not principal. Let

I={a,*+ax+ - +ax"€Zx]:a,is even}.

Then, one can easily verify that / is an ideal of Z[x]. We prove that / is not a
principal ideal. On the contrary, suppose that

I'=<f(x)>, f(x) € Z[x].
Then, 2 € I = <f(x)> and hence
2 = f(x)g(x), for some g(x) € Z[x].

Then, 0 = deg(2) = deg(f(x)g(x)) = deg(f(x)) + deg(g(x)), so that deg(f(x)) =
0 = deg(g(x)). Let f(x) = b and g(x) = ¢ € Z. Then, 2 = bc, we can assume
that b > 0 and ¢ > 0 (since <—f(x)> = <f(x)>). Then, b = 1 or 2.

But b # 1, since 1 & I. Therefore, b = 2. This implies that / = <2>, which
is a contradiction, since 2 + x € /and 2 + x & <2>. Thus, I # <f(x)> for
any f(x) € Z[x]. That is, I is not a principal ideal in Z[x].

Worked Exercise 11.3.2. Let F be a field. For any a € F, let
M, = {f(x) € F[x] : f(a) = 0}.

Then, prove that M is a maximal ideal of F[x] and that F[x]/M = F.If F'is
infinite, prove that ﬂF M, ={0}.
ac

Answer: Let a € F. Consider the evaluation homomorphism ¢ : F[x] — F
defined by ¢ (f(x)) = f(a). Then, ¢ is an epimorphism (for, if » € F, then
r € Flx] and ¢ (r) = r). Also,

ker ¢, = {f(x) € Flx] : ¢ (f(x)) = 0}
= {/(x) € Flx] : fla) = 0}
=M,
By the fundamental theorem of homomorphisms, M is an ideal of F[x] and

F[x}/M = F. Since F'is a field, so is F[x]/M and hence M is a maximal ideal
of F[x]. Further, suppose that F is infinite. If f(x) € ﬂF M, then f(a) = 0 for
ac

infinitely many a and therefore, by Corollary 11.2.5, f(x) = 0. Thus,

(1M, ={0}.

acF
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Worked Exercise 11.3.3. Let /" be a field and M, be as defined in Worked
Exercise 11.3.2 above for any a € F. Then prove that

(M, = {0} & Fisinfinite.

ackF

Answer: Suppose that F is finite and |F] = n. Consider the group F* =
F — {0} under the multiplication in F. Then, F* is a finite group of order
n — 1 and hence

a'=1 foralla € F*.

Therefore, a” = a for all a € F. Put f(x) = x — x". Then, 0 # f(x) € F[x] and
f(a) = 0 for all a € F. Therefore, 0 # f(x) € ﬁFMa. Thus, ﬂFMa # {0}.
ac ac

Converse of this is proved in Worked Exercise 11.3.2.

Worked Exercise 11.3.4. Let R be an integral domain. Prove that R is a field
if and only if <x> is a maximal ideal of R[x].

Answer: Suppose that R is a field. For any a € R. Let

M, = {f(x) € RIx] : f(a) = 0}.

Then, by Worked Exercise 11.3.2, M_is a maximal ideal of R[x]. In particular,
M, is a maximal ideal of R[x]. For any f(x) € R[x], we have

f&x)eEM, < f(0)=0
& x divides f(x) (by Corollary 11.2.3)
S f(x) € <x>.

Therefore, M, = <x> and hence <x> is a maximal ideal of R[x]. Con-
versely, suppose that <x> is a maximal ideal of R[x]. Since <x> = M = ker
¢,, where ¢, is the evaluation homomorphism at 0, it follows that

R[x]/<x> =R.

since <x>> is a maximal ideal of R[x], R[x]/<<x> and hence R is a field.

We close this section with a remark that several other properties of rings
of polynomials over fields will be discussed in the next section and in the
next chapter.
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EXERCISE 11(C)

10.
11.

12.
13.

14.

15.
16.

. Let F be field and f(x) be a polynomial of degree n (n > 0) over F. Then prove

that the quotient ring f[x]/<f(x)> is bijective with F".

. Let R be a commutative ring with unity in which every ideal is principal. Then

prove that an ideal in R is maximal if and only if it is prime.

. Let Fbeafield, 0 # a € F and f(x) € F[x], prove that <f(x)> = <af(x)>.

. Let F'be a subfield of a field £ and a € E. Then prove that {f' € F[x] : a is a root

of f(x)} is an ideal of F[x] and describe a generator of this ideal.

. Let F'be a field and / be the set of all polynomials over F for each of which the

sum of the coefficients is zero. Then prove that / is an ideal of F[x] and determine
a generator of /.

. Prove that there are infinitely many polynomials f(x) in Z,[x] for each of which

every element of Z, is a root.

. Prove that the rings @[ﬁ] and Q[x]/v/2—x? are isomorphic.

. Let p be a prime number. Then prove that (x — 1)(x —2)(x — 3)...x —(p — 1)) =

X' —1in Zp[x].

. Let f(x) € R[x], @ € R and f"(x) be the derivative of f/ with respect to x. Then

prove that f(a) = 0 = f’(a) if and only if (¢ — x)* divides f(x).
In Z[x], prove that <x> is a prime ideal but not a maximal ideal.

Let P be a prime ideal of a commutative ring R with unity. Then prove that P[x]
is a prime ideal of R[x]. If M is a maximal ideal of R, is M[x] a maximal ideal
of R[x]?

Prove that R[x]/<<1 + x*> is isomorphic to the field of complex numbers.

Prove that Z[x]/<1 + x?> is isomorphic with the ring of Gaussian integers
Z[i].

Let R be an integral domain. Then prove that the set
1= {f(x) € R[x] : f(x) =0 or deg(f(x)) > 0}
is an ideal of the ring R[x]. Also, for any n > 0, prove that
I'= {f(x) € R[x] : f(x) =0 or deg(f(x)) = n}.
In Exercise 14 above, determine nlil ",

Let f(x) € Z[x] be a monic polynomial and a be a rational number such that
f(a) = 0. Then prove that « must be integer.
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11.4 IRREDUCIBLE POLYNOMIALS

Several interesting questions on factorization of polynomials are based on the
idea of irreducibility. In this section, we discuss irreducible polynomials over
mainly integral domains.

Definition 11.4.1. Let R be an integral domain. A polynomial f(x) of
positive degree over R is said to be irreducible over R if f(x) cannot be
expressed as a product of two polynomials of positive degree over R. That
is, f(x) € R[x] is said to be irreducible over R if deg(f(x)) > 0 and, for any
g(x) and A(x) € R[x].

J(x) = gh(x) = deg(g(x)) = 0 or deg(h(x)) = 0.

If f(x) is not irreducible and deg(f(x)) > 0, we say that f(x) is reducible.

Note that the above definition applies only to polynomials of positive
degree and as such the constant polynomials are neither reducible nor
irreducible. Also, the irreducibility of a polynomial f(x) € R[x] depends
much on the integral domain R; that is, a given polynomial may be irre-
ducible when viewed as a polynomial over one domain, yet reducible when
viewed as a polynomial over another domain. For, consider the following
example.

Example 11.4.1

1. The polynomial 1 + x? is irreducible over R the field R of real numbers;
but it is reducible over the field C of complex numbers, since 1 + x> =
(1 +ix)(1 —ix)and 1 + ixand 1 — ix € C[x].

2. 1 + x*is reducible in Z [x], since 1 + x* = (1 + x)(1 + x) in Z,[x]; but
1 + x* is irreducible in Z[x].

Thus, to ask merely whether a polynomial is irreducible, without specifying
the coefficient ring involved, is incomplete and meaningless. More often, it
is a formidable task to decide when a given polynomial is irreducible over
a specific ring. The following provide certain simple tips in finding a given
polynomial to be irreducible over a given field or an Integral Domain.

Theorem 11.4.1

1. Let R be an integral domain and f(x) € R[x] with deg(f(x)) = 1. Then,
f(x) is irreducible over R.

2. Let F be a field and f(x) € F[x] with deg(f(x)) = 2 or 3. Then, f(x) is
irreducible if and only if f(x) has no root in F.
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Proof:

1. Recall that the degree of any nonzero polynomial is a nonnegative inte-
ger. If f(x) = g(x)h(x) and g(x);A(x) € R[x], then

1= deg(f(x)) = deg(g(x)) + deg(h(x))

and hence deg(g(x)) = 0 or deg(i(x)) = 0. Therefore, f(x) cannot be
expressed as a product of two polynomials of positive degree. Thus, f(x)
is irreducible over R.

2. We shall prove that f(x) is reducible over F if and only if f(x) has a root
in F. First note that any polynomial a;, + ax, @, # 0 of degree over F
one has a root, namely, —a; 'a, in F. Suppose that f(x) is reducible over
F. Then,

f(x) = g(x)h(x) for some g(x) and h(x) € F[x]

with deg(g(x)) > 0 and deg(%(x)) > 0. Then, either deg(g(x)) = 1 or
deg(h(x)) = 1 (otherwise, if deg(g(x)) = 2 and deg(/(x)) = 2, then
deg(f(x)) = deg(g(x)) + deg(h(x)) = 4, which is a contradiction to the
hypothesis that deg(f(x)) = 2 or 3). If deg(g(x)) = 1, then, by (1) above,
2(x) has a root in F and hence f(x) has a root in F. Similarly, if deg(/
(x)) = 1, then A(x) and hence f(x) has a root in F.

Conversely, suppose that f(x) has a root in F. Let a be a root of f(x) in F.
Then, by Corollary 11.2.3, @ — x divides f(x). Therefore, there exists
g(x) € F[x] such that f(x) = (@ — x)g(x). Since deg f(x) = 2 or 3, it follows
that deg(g(x)) > 0 and hence f(x) is reducible over F.

Theorem 11.4.2. Let f(x) be a nonzero polynomial over a field F. Then, the
following are equivalent

1. f(x) is irreducible over F
2. <f(x)> is a maximal ideal of F[x].
3. <f(x)> is a prime ideal of F[x].

Proof: (1) = (2): Suppose that f(x) is irreducible over F. Then, f(x) is not
a constant polynomial and hence f(x) is not a unit in F[x], so that <f(x)>
is a proper ideal of F[x]. Let / be any ideal of F[x] containing <f(x)>. By
Theorem 11.3.2, [ = <g(x)> for some g(x) € F[x]. Since <f(x)> C [ =
<g(x)>, we get that f(x) = g(x)h(x) for some A(x) € F[x]. Since f(x) is irre-
ducible, it follows that either g(x) or A(x) is a constant, If g(x) is a constant,
then g(x) is a unit (note that f(x) # 0 and A(x) # 0, since deg(f(x)) > 0 and
hence f(x) # 0) so that I = <g(x)> = F[x]. If A(x) is a constant, then A(x) is



Polynomial Rings  11-33

a unit in Fx] and g(x) = f(x)h(x)"' € <f(x)> so that / C <f(x)> and hence
I = <f(x)>. Thus, <f(x)> is a maximal ideal of F[x].

(2) = (3): This is trivial, since any maximal ideal of a commutative ring with
unity is a prime ideal.

(3) = (1): Suppose that <f(x)> is a prime ideal of F[x]. Then, <f(x)> is a
proper ideal and hence f(x) is not a unit. Therefore, deg(f(x)) > 0. For any
g(x) and A(x) € Flx],

Jx) = g0h(x) = gh(x) € <f(x)>
= gx) € <f(x)> or h(x) € <f(x)>
=gx) = f(x)g,(x) or h(x)=f(x)h(x) forsome
g,(x) and h (x) € F[x]
= f(x) = f(x)g,()h(x) or f(x) = gx)f(x)h,(x)
= g,(x)h(x) = 1or = gl)h (x) =1
= h(x) or g(x)isaunit
= deg(h(x)) =0 or deg(g(x)) =0.

Thus, f(x) is irreducible over F[x].

When we deal with polynomials over the field of complex numbers, the
crucial tool is the fundamental theorem of algebra. There are several proofs
of this theorem but none of these come under the topics covered in this book
and hence proof'is omitted here and the reader can simply assume the validity
of the following theorem.

Theorem 11.4.3 (Fundamental Theorem of Algebra). Any nonconstant
polynomial over the field C of complex numbers has atleast one root in C.

Corollary 11.4.1. Let f(x) € C[x] be a polynomial of degree n > 0. Then,
f(x) can be expressed as a product of z (not necessarily distinct) polynomials,
each of degree one.

Proof: This follows from Theorem 11.4.3 (fundamental theorem of algebra)
and from the fact that a is a root of f(x) if and only if @ — x is a factor of f(x)
and also by using induction on the deg(f(x)).

Corollary 11.4.2. The only irreducible polynomials over C are those of
degree one. Since the field R of real numbers can be considered as a sub-
field of the field C of complex numbers, R[x] can be considered as a subring
of C[x]. Therefore, any nonzero polynomial over R can be considered as a
polynomial over C and hence has a root in C. This observation leads to the
following corollary.
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Corollary 11.4.3. Let f(x) be a nonconstant monic polynomial over the real
number system R. Then, f(x) can be expressed as a product of polynomials
over R, each of degree 2 or 1.

Proof: Let deg(f(x)) = n. Since f(x) € R[x] C Cl[x], it follows from Corollary
11.4.1 that

fx) = g(x0)g,(x) ... g,(x),

where g(x) is a polynomial of degree one over C, for each 1 = j = n. Since
/(x) is monic, we can assume that each g (x) is monic (the leading coefficient
is a unit) and hence

gj(x)zs—x,sE(C.

If s € R, then gj(x) € R[x]. If s € R, then s = a + bi, where a and b € R
and b # 0. Note that s is a root of f(x) (since g(x) = s — x is a divisor
of /(x)).

Also, since f(x) € R[x], all the coefficients of the f(x) are real numbers.
Now, consider the complex conjugate S =a—bi ofs.

Iff(x) =a,+ax+ - +ax", a €R,then

s)=a,+‘as+---+as"
f( ) 0 1 n

__ —_ n
=a,tas+t---+tas

and hence § is a root of f(x), so that 5 —x is also a factor of f(x), so that
§—x = g,(x) for some 1 = k = n. Now,

g;(x)g,(x)=(s—x)(5 —x)
= (a + bi —x)(a — bi — x)
= (a*+ b*) — (a + bi + a — bi)x + x*
=a’ + b* — 2ax + x* € R[x].

Therefore, g/.(x)gk(x) is a factor of f(x) and is a polynomial of degree 2 over R.
Thus, f(x) is a product of polynomials over R, each of degree 1 or 2.

In the next chapter, we prove some more important properties of irreduc-
ible polynomials and, in particular, we prove the Eisenstein criterion to find
the irreducibility of certain polynomials. <

Worked Exercise 11.4.1. Prove that the polynomial f(x) = 1 + x + x*is
irreducible over Z,.
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Answer: Ifthere are any factors f(x), then atleast one factor must be of degree
one, say a + bx (with a and b € Z, and b # 0). In this case, —b~'a is a root of
a + bx and hence of f(x). Therefore, if f(x) is reducible, then f(x) must have
aroot in Z,; but it can be easily verified that f(0) = 1 = f(1) (sense 1 + 1 =
01in Z,) . Therefore, f(x) is irreducible over Z,.

Worked Exercise 11.4.2. Let f(x) € R[x] and s be a complex number. Then,
prove that s is a root of f(x), if and only if 5 is a root of f(x), where s is the
complex conjugate of s.

Answer: Lets = a + bi, where a and b € R. Then, 5 = a — bi. Let
f&x)=a,+ax+ - +ax,

where a, a, ..., a, € R. Note that r is a real number if and only if 7 =r.
Now, suppose that s is a root of f(x). Then, f(s) = 0 and

f&)=a,tas+---+a,(s)"

a, +as+--+ans"

n
a,tas+---+ta,s

= f(s5)=0=0.

Thus, 5 is a root of f(x). The converse follows from the fact that 5 = s.

EXERCISE 11(D)

1. Which of the following are true?
(i) The degree of any irreducible polynomial is positive.

(i) The degree of any reducible polynomial is greater that one.

(iii) 1 +x+ x> + ¥’ is irreducible over Z,

(iv) 1+ x+ x>+ ¥ is reducible over Z,

(v) 3 — x?is irreducible over Q.

(vi) The degree of any irreducible polynomial is less that 4.
(vii)  The number of irreducible polynomial in Z,[x] is finite.
(viii)) <x> is a maximal ideal in R[x].

(ix) <x>is a maximal ideal in Z[x].

(x) <x>isa prime ideal in Z[x].

2. Let f(x) be a nonconstant polynomial over a field F. Then, prove that f(x) is
irreducible if and only if F[x]/<f(x)> is a field.
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10.

11.
12.

13.

14.

Prove that Z,[x]/1 + x + x*is a field and determine the number of elements in it.
Give an example of a field with exactly nine elements.

Let p be a prime number and f(x) be an irreducible polynomial of degree n over
Z,, then prove that Z [x]/ < f(x)> has exactly p" elements.

Let F be a field, f(x) € F[x] and 0 # a € F. Then prove that f(x) is irreducible
over F if and only if so is f(x).

Is 1 + x + x* + ¥’ reducible over Z [x]?

Prove that Theorem 11.4.1 (2) fails if deg(f(x)) = 4.

. Prove that 1 + x + x* + x* is reducible over any field F.

Let R[x] be the ring of polynomials over a commutative ring R with unity. Then,
the ring of polynomials over R[x] will be denoted by R[x, y]; that is, R[x, y] =
R[x][y]. By induction, we define

Rlx, x, ...,x]=R[x, ...,x_ 1[x ]

1772

for any » > 1. This is called the ring of polynomials in # indeterminates over R.
Prove that R[x, x,, ..., x, ] is an integral domain if and only if so is R.

172
Prove that there is an ideal in R[x, y] which is not principal.
For any field F, prove that
Flx,yl/ <x+y> = Fx] = F[y].

For any field F, prove that the ideal <x, y> generated by {x, y} in F[x, y] is a
maximal ideal of F[x, y].

Prove that Z,[x] has infinitely many units and infinitely many nilpotent elements.
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Factorization in Integral
Domains

12.1 Divisibility in Integral Domains

12.2 Principal Ideal Domains

12.3 Unique Factorization Domains

12.4 Polynomials over UFDs

12.5 Euclidean Domains

12.6 Some Applications to Number Theory

This chapter is concerned with the problem of factoring elements of an integral
domain. The motivation for this lies in the ring Z of integers, where the Funda-
mental Theorem of Arithmetic states that every integer » > 1 can be written, in
an essentially unique way, as a product of prime numbers; for example,

6,300 =2 X2X3X3X5X5X7

and 2, 3, 5 and 7 are prime numbers. In this chapter, we extend the factoriza-
tion theory of the ring Z and, in particular, the above-mentioned Fundamental
Theorem of Arithmetic, to a more general setting. Naturally, any reasonable
abstraction of these number theoretic ideals depends on a suitable interpreta-
tion of prime elements (the building blocks for the study of divisibility prob-
lems in Z). All the topics discussed in this chapter are more concerned with
integral domains. We proceed from the most general results about divisibility,
prime elements and factorization to stronger results concerning certain spe-
cific classes of integral domains.

First, let us recall that an integral domain is a nontrivial commutative ring
with unity and without zero divisors (or equivalently, product of two nonzero
elements is again nonzero).
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12.1 DIVISIBILITY IN INTEGRAL DOMAINS

In this section, we extend the concepts of divisibility, greatest common divisor
(g.c.d.), least common multiple (1.c.m.) and primes in the ring Z of integers to
arbitrary integral domains. Let us begin with the following definition.

Definition 12.1.1. Let R be an integral domain and a and b € R. If a = bu
for some unit # in R, then we say that a is an associate of b and denote this
by a ~ b.

Since a = al, it follows that a ~ a for each a € R. Also, ifa ~ b, then a = bu
for some unit # in R and hence b = au ™! so that b ~ a. Further, ifa = buand b =
cv for some units «# and v in R, then uv is a unit in R and a = c¢(uv) and hence
a ~ c. All these arguments say that ~ is an equivalence relation. If & stands for
the set of all associates of @, then the following can be easily proved.

0 = {0}
= {au :uisaunitin R}, forany a € R.
= The set of all units in R.

v

1
2
3.
4. 4= b ifand only ifa ~ b.
5

. a’s form a partition of R.

Example 12.1.1

1. In the ring Z of integers, 1 and —1 are the only units and hence a ~ b if
and only if |a| = |b|, for any a and b € Z, where |a| is the absolute value
of a.

2. In a field F, each nonzero element is a unit and hence a ~ b (since a =
b(b~'a)) for any nonzero elements a and b in F. Therefore,d = R — {0}
forany 0 # a € R.

3. Consider the ring Z[7] of Gaussian integers in which 1, —1, i and —i are
the only units. For any x = a + bi € Z][i],

X = {x, —x, ix, —ix}
= {a + bi, —a — bi, —b + ai, b — ai}.

4. Let R[x] be the ring of polynomials over an integral domain R. Then, the
units of R[x] are precisely the units in R. For any f(x) € R[x],

f(x)={uf(x):u is aunit in R}.

Definition 12.1.2. Let ¢ and b be any elements of an integral domain R. If
there exists x € R such that ax = b, then we say that a divides b (or a is a
divisor of b or b is a multiple of a) and denote this by alb.
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Virtually all statements about divisibility can be phrased in terms of prin-

cipal ideals. Let us recall that, for any element « in an integral domain R, the
principal ideal generated by a in R is given by

<a>=aR = {ar:r € R}.

Theorem 12.1.1. The following holds for any elements a, b and ¢ in an
integral domain R.

l. alb & b € <a> < <b>C <a>

2. alband bla < a ~ b < <a> = <b>
3.

4. all S aisaunitinR & <a> =R

al0

Proof:

1.

2.

3,
4,

alb < ax = b for some x € R
< b € aR = <a>
& <h> C <g>.

By (1), alb and bla < <a> = <b>.

Suppose that a ~ b. Then, a = bu and au™"' = b for some unit « in R and
hence alb and bla. Conversely, suppose that a|b and b|a. Then, ax = b
and by = a for some x and y € R and hence

a = by = (ax)y = a(xy).

First note that @ = 0 if and only if 5 = 0. Now, if @ # 0, then xy = 1
(since a = a(xy) and R is an integral domain) and hence x and y are units.
Since ux = b and x is a unit, we get that a ~ b.

a0 = 0 and hence a|0.

all < ax =1 for some x € R.
< gisaunitin R
& <a> = R.

When alb, we often use the phrases ‘a is a factor of b’ or ‘b is divisible

by a’ or ‘b is a multiple of @’. When a does not divide b, we write a { b. The
next result is a routine verification and hence its proof is left as an exercise
to the reader.

Theorem 12.1.2. The following holds for any elements a, b and ¢ of an
integral domain R.
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1. ala and l|a

2. alb and b|c = ac

3. alb = aclbc; the converse holds if ¢ # 0.

4. a|c and alb = alcx + by forallx and y € R.

In the following, we introduce the notion of the g.c.d. for a given finite set
of nonzero elements in an integral domain.

Definition 12.1.3. Leta,,a,, ..., a, be nonzero elements in an integral domain
R. An element d € R is called a g.c.d. of a, a,, ..., a if the following are
satisfied.

(i) dla foralll =i=n.
(ii) Ifc € Randcla, forall 1 =i = n,thencld.

The use of the superlative adjective ‘greatest’ in the above definition does
not imply that d has greatest magnitude than any other common divisor ¢ of
a,a,, ..., a;but only that d is a multiple of any such c. A natural question
that arises is whether the elements a, a,, ..., a, can possess two different
g.c.d.s. The answer is affirmative; for, in the ring Z of integers, both 2 and
—2 are g.c.d.s of 6 and 10, as per the above definition. However, 2 and —2
are associates to each other. The same is true in a general integral domain. If
dand d’ are both g.c.dsofa,a, ..., a,then, by (ii) above, d|d" and d'|d and
hence d and d' are associates to each other. Thus, the g.c.d. of a,ay, ...,a, is
unique up to associates, whenever it exists and is usually denoted by (a, a,,
..., a,). The following theorem deals with the existence of g.c.d.

Theorem 12.1.3. Let a, a, ..., a be any nonzero elements in an integral
domain R. Then, a, a,, ..., a have g.c.d. d expressible in the form

d=ar +ay,+ - +ar (r€R)

if and only if the ideal <a , a,, ..., a > generated by the set {a, a,, ..., a } in
R is the principal ideal.

Proof: Suppose thatd = ar +ayr, ++ar (r,€R)isagcd. ofa,a,
..., a in R. Then, d|a, and hence a, € <d> for all 1 = i =< n. Therefore,

<a,a, ...,a>C<d>,

1°

where <a,, a,, ..., a > is the ideal generated by a,, a,, ..., a, in R. Also, since

d=ar +ar,+--+ar €<a,a,..,a>,
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we get that <d> C <a , a,, ..., a >. Thus,

<a,a, ...,a>=<d>.
Conversely, suppose that <a, a,, ..., a > = <d> for some d € R. Then, a,
€<d> and hence dla, for all 1 = i < n. If ¢ is a common divisor of a , a,, ...,
a , then cla, and hence a, € <c>forall 1 =i < n, so that

<d>=<a,a, .. a>C<c>
1’ 25 b n _—

Therefore, c|d. Thus, disa g.c.d. of a, a,, ..., a,. Also, since
de<d>=<a,a, ..,a>=aR+aR++aR,

it follows thatd = a;r, + a7, +---+ ar forsomer,r,...,r €R.
It is well known that the ring Z of integers is an integral domain in which
every ideal is a principal ideal. This together with the above theorem implies

the following corollary.
Corollary 12.1.1. Any nonzero integers a, a,, ..., a, have g.c.d. and
ged {a,a, ..,a}=ar +ar,++ar,

for some integers |, 7, ..., 7.

Dual to the notation of g.c.d., we have the concept of l.c.m. which is
defined in the following definition.

Definition 12.1.4. Let @, a,, ..., a, be any nonzero elements in an integral
domain R. An element d € R is called l.c.m. of ¢, a,, ..., a, if the following
are satisfied.

(i) aldforalll=i=n.
(i) Ifc € Randacforall 1 =i = n,thendc.

In other words, a common multiple of a, a,, ..., a, is called l.c.m. if it
divides any other common multiple. Note that a l.c.m., if it exists, is unique
apart from the distinction between associates, for, if d and d" are .e.m.’s of @
a,, ...,a in R, then by (ii) above, d| d' and d'|d and hence d and d' are associ-
ates to each other.

Theorem 12.1.4. For any nonzero elementsa, a,, ..., a inan integral domain

R,a,a,, ...,a have l.c.m. if and only if the ideal 61< a, > is principal.
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Proof: This follows from the definition of l.c.m. and fro;n the fact that, for
any a and b € R, a|b if and only if <b> C <a>. Note that rj] <a,> is the larg-
est ideal contained in each of <a>. "

Next, we introduce two new classes of elements, namely prime and irre-
ducible elements in an arbitrary integral domain. When we consider the ring
7 of integers, these two concepts become equivalent and yield the usual
notion of a prime number.

Definition 12.1.5. Let p be a nonzero and nonunit element in an integral
domain R. Then,

1. pis called a prime element if, for any a and b € R,
plab = pla or p|b.

2. pis called an irreducible element if, for any a and b € R,
p=ab=-aisaunit or b isaunit.

In other words, a nonzero and nonunit element p is called irreducible
if it cannot be factored in R in a nontrivial way; that is, the only factors of
p are its associates and units in R. Note that any unit « is a factor of every
element, since u(u'a) = a. In fields, where each nonzero element is a
unit, the concepts of prime elements and irreducible elements are of no
significance.

Theorem 12.1.5. Let R be an integral domain. Then, every prime element in
R is irreducible. The converse is false.

Proof: Let p be a prime element in R. Then, p is nonzero and nonunit. To
prove the irreducibility of p, let a and b € R such that p = ab. Then, p|ab and,
since p is prime, p|a or p|b. Now,

pla=ps =a forsomes & R
= abs = a
= bs =1 (since p # 0 and hence a # 0)
= bisaunitinR.

Similarly, p|b = a is a unit in R. Thus, either a or b is a unit in R. Therefore,
p is irreducible. The converse fails; for, consider the following example in
which we exhibit an irreducible element which is not prime.

Example 12.1.2. Let Z[J=5] = {a + b~/=5;aand b € Z}. Then, Z[/=5]
is an integral domain under the usual addition and multiplication of complex
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numbers. For any X = a+b+~=35, let x| be the usual modulus of the complex
number x = a+ib~/—5; that is,

| = Va* +5b°.

The following can be easily verified for any x and y in Z[v—5].

L oyl = Ixlly]
2. xl=0&x=0
3. xisaunitin Z[J_s] Shl=1x==1.

Now, we shall prove that 2 + J=5is irreducible, but not prime in Z[\/—_S ].
Let p=2+~/=5. Then, |p| =9 = 3.

Suppose that x and y € Z[\/=5] such that p = xy.

Then, 3 = |p| = |xy| = |x|ly| and hence |x| = 1 or [y| = 1 so thatx or y is a unit

in Z[v-5].

Thus, p is irreducible. Now, consider
3X3=9=2+~=5)2—~v=5)=p(2—+-5).

Therefore, p divides 3 X 3. But p does not divide 3, since we cannot find
integers a and b such that (2+ [\/—_5])((1 + b\/—_S) =3. Thus, p is not prime
in Z[-5].

Recall that we have introduced the notion of an irreducible polynomial over an
integral domain R as a nonconstant polynomial over R which cannot be expressed
as a product of two nonconstant polynomials. In the integral domain R[x], an
irreducible element may be a constant and hence not an irreducible polynomial.
However, if F is a field, then the ring F[x] of polynomials over F is an integral
domain in which units are precisely nonzero constant polynomials and hence
irreducible polynomials over F and irreducible elements in F]x] are same.

In the following, we establish a relation between primeness (irreducibility)
of an element p and the primeness (maximality) of the ideal <p> generated
by p. First, let us define a principal ideal of R to be a maximal principal ideal
if it is maximal (with respect to the inclusion relation) in the set of proper
principal ideals of R.

Theorem 12.1.6. The following holds for any nonzero and nonunit p in an
integral domain R.
1. pisaprime element in R if and only if <p> is a prime ideal of R.

2. pisan irreducible element in R if and only if <p> is a maximal principal
ideal of R.
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Proof:

1. is trial because of the fact that x € <p> if and only if p divides x.

2. Suppose that p is an irreducible element in R and <p> C <x>, x € R.
Then, <p> # R (since p is a nonunit) and p € <x> and hence p = xy for
some y € R. Since p is irreducible, either x or y is a unit in R. If x is a
unit, then <x> = R. If y is a unit, then x = py~! € <p> and hence <x> C
<p>, so that <x> = <p>. Thus, <p> is a maximal principal ideal of R.

Conversely, suppose that <p> is a maximal principal ideal of R. Then, <p> # R
and hence p is not a unit. Suppose a and b € R such that p = ab. Then, p €
<a> and hence <p> C <a@>. By the maximality of <p>, either <p> = <a> or
<g> = R. If <a> = R, then a is a unit. If <p> = <a>, then a = pc for some
¢ € R and hence

p = ab = (pc)b = p(cb)

since R is an integral domain and p # 0, it follows that 1 = ¢b and hence b is
a unit. Therefore, in any case, either a or b is a unit. Thus, p is an irreducible
element in R. <

Worked Exercise 12.1.1. Let p and ¢ be associates to each other in an integral
domain R. Then, prove the following:

1. pis prime if and only if ¢ is prime.
2. pisirreducible if and only if g is irreducible.

Answer: Since p ~ ¢, we have p = qu for some unit # in R and hence ¢ =
pu~!. Therefore, p = 0 if and only if ¢ = 0 and p is a unit if and only if ¢ is a
unit. Also, note that p|g and g|p.

1. Suppose that p is prime. Then, p is nonzero and nonunit and hence so is
q. Forany aand b € R,

qlab = plab (since p|q)
= pla or p|b (since p is prime)
= glaorg|b (since g|p).

Thus, ¢ is prime. Converse follows from the fact that p ~ ¢ if and only
ifg~p.

2. Suppose that p is irreducible. Then, p is nonzero and nonunit and hence
sois ¢q. Let a and b € R such that ¢ = ab. Then, p = qu = abu. Since p
is irreducible, either a or bu is a unit. Therefore, a or b is a unit. Thus, ¢
is irreducible.
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Worked Exercise 12.1.2. Prove that an integral domain is a field if and only
if there are exactly two associate classes.

Answer: Let R be an integral domain. If R is a field, then every nonzero ele-
ment of R is a unit and hence a ~ 1 foralla # 0in R, sothat 0 and 1 (= R —
{0}) are the only associate classes in R. Conversely, suppose that there are
exactly two associate classes in R. Since 0 = {0}, we get that 4 = R — {0}
for any 0 # a € R. In particular, 1 ~ g for all 0 # a € R and hence, every
nonzero element in R is a unit. Therefore, R is a field.

EXERCISE 12(A)

1. State whether the following are true and justify your answers.

(1) 5is an irreducible element in Z.

(i) 10 is an irreducible element in Z[].

(iii) 13 is a prime element in Z[i].

(iv) Any prime element in Z is a prime element in Z][i].
) 2++/2 is an associate of v/2 in Z[\/E].

(vi) V2 is irreducible in R.

(vii) 5 1is aprime element in R.

(viii) —5is a prime element in Z.

2. Determine all the units in each of the following:

(i 7z
(i) Z[i]
(i) Z[N2]
(iv) Z[x]
(v) R[x]
Vi) Z[x].

3. Determine all the associates of each of the following in the rings mentioned
against them

(i) 4inZ
(i) 1+ xinR[x]
(iii) 1+ iinZ[]
(iv) 2+ xinZx]
(v) 1+ 2xinZ,[x]
(vi) 1+x+x*inZ,)[x].
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10.

Consider the rin Z[\/g] ={a+ b3:aandbe Z}. In this, prove that 2 +fBisa
unit and 3+ 2+/3 is an associate /3.

Let a and b € Z such that ¢® + b? is prime in Z. Then prove that a + bi is prime
in Z[i].

Prove that 2 and 1 + +/5 are irreducible in Z[\/g ] but not prime.

Let a and b € Z such that |@> — 1057 is prime in Z. Then prove that a +bJ10
is irreducible in Z[V10].

. Let R be an integral domain and a, a,, ..., a, € R. If p is a prime element in R

and p divides the product a, a,, ..., a,, then prove that p divides atleast one a,.

Let a and b € Z such that ¢> + 3b* is prime in Z. Then prove that a +b+/—3 is
irreducible in Z[v—3].

Let a and b be nonzero elements in an integral domain R and a ~ b. If ¢ € R and
a = bc, prove that c is a unit in R.

12.2 PRINCIPAL IDEAL DOMAINS

It is well known that every ideal of the ring Z of integers is a principal ideal.
In this, we discuss integral domains in which every ideal is principal.

Definition 12.2.1. An integral domain in which every ideal is a principal is
called a principal ideal domain (PID).

Example 12.2.1

1.
2.
3.

Z is a PID.

Any field is a PID, since <0> and <1> are the only ideals of a field.

The ring Fx] of polynomials over a field F is a PID (refer Theorem
11.3.2).

The ring Z[x] of polynomials over Z is an integral domain, but not a
PID; for, we have exhibited, in Worked Exercise 11.3.1 an ideal of Z[x]
which is not principal.

The following is an immediate consequence of Theorems 12.1.3 and

12.1.4.

Theorem 12.2.1. In a PID, any finite number of nonzero elements have both
g.c.d. and L.c.m.

Corollary 12.2.1. LetRbeaPID anda , a,, ..., a, € R, Then,

ged {a,a,..,a}=ar tar,+ - +ar,

for suitable elements 7, 7,, ..., 7, in R.

1?02
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Definition 12.2.2. Leta ,a,, ..., a be nonzero elements of an integral domain

such thatg.c.d. {a,,a,, ...,a } isaunitin R. Then, a , a,, ..., a, are said to be
relatively prime and denote this by g.c.d. {a,,a,, ...,a } ~ 1.
Note that any nonzero elements a,, a,, ..., a, of a PID R are relatively

prime if and only if there exist elements r, 7,, ..., 7 in R such that
ar, tay, ++ar =1

This identity is known as Bezout s identity. The following is one of the most
useful applications of Bezout’s identity.

Theorem 12.2.2. Let R be a PID and a, b and ¢ € R such that a and b are
relatively prime and « divides bc. Then, a divides c.

Proof: Since a and b are relatively prime, there exist 7 and s € R such that
ar +bs =1
(by Bezout’s identity). Now,
c=c-1=car+ cbs = a(cr) + (bc)s.
Since a divides bc, ax = bc for some x € R. Therefore,
¢ = acr + bes = a(er + xs)

and hence a divides c.

Although prime elements are irreducible in a general integral domain (by
Theorem 12.1.5), we have observed that the converse is not true. However,
in a PID, any irreducible element is prime, as proved in the following
theorem.

Theorem 12.2.3. The following are equivalent to each other for any nonzero
element p in a PID R.

1. pisa prime element.

2. pisan irreducible element.
3. <p>is a maximal ideal of R.
4. <p>is a prime ideal of R.

Proof: First observe that, to satisfy any of the conditions (1) through (4)
above, it is necessary that p is a nonunit in R. (1) = (2) follows from Theorem
12.1.5.
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(2) < (3): By Theorem 12.1.6 (2), p is irreducible if and only if <p> is
maximal among proper principal ideals of R. But R being a PID, every ideal
of R is principal. Therefore, p is irreducible if and only if <p> is a maximal
ideal of R.

(3) = (4) is trivial and (4) = (1) follows from Theorem 12.1.6 (1). <

Corollary 12.2.2. A nonzero ideal of a PID is maximal if and only if it is a
prime ideal.

The next results are concerned with the ideal structure of a PID. A sequence
{1 } ofideals of a ring R is said to be an ascending (or increasing) sequence if
I C1  foralln. A sequence {/ } is said to ferminate at a finite stage if there
existsn € Z* suchthat/ =1 =1 =1 forallkeZ".

Theorem 12.2.4. The following holds in any PID R.
1. Every ascending sequence of ideals of R terminates at a finite stage.
2. Any nonempty class of ideals of R has a maximal member.

Proof:

1. Let /[, € 1, C I, C ... be an ascending sequence of ideals of R. Put

I= y 1, Then, I is an ideal of R. Since R is a PID, there exists a € R
such that

C:s

I, =1=<a>.

n=1

Then, for some n € Z*, a € I and hence

I, ,.Cl=<a>CICI_,

n+k —

forall k€ Z*,sothat/ = I  forall k € Z*. Thus, the sequence termi-
nates at a finite stage.

2. Let %6 be a nonempty class of ideals of R and suppose, if possible, that €
has no maximal member. Since 6 is nonempty, choose / , E€Then,/ is
not maximal in ¢ and hence there exists /, € 6 such that /, G I,. Again,
since 7, is not maximal, there exists /, € ‘6 such that /, ; I,. Continuing
this procedure, we get an ascending sequence

LSLSLS

of ideals of R which does not terminate at any finite stage. This is a con-
tradiction to (1) above. Thus, 6 must contain a maximal member. <
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Corollary 12.2.3. Let R be a PID and {a,} be a sequence of elements in R
such that @ divides a _, for all n > 1. Then, there exists n € Z* such that

a~a  ~a_ forallkeZ".

That is, a and a,, are associates for all k € Z~.

Proof: This is an immediate consequence of Theorem 12.2.4 above and of
the facts that, for any @ and b € R,

<a> C <b> if and only if b divides a

and <a> = <b>if and only if a and b are associates. <

Theorem 12.2.5. Let R be a PID and a be a nonzero nonunit element in R.
Then, there exists a prime element p in R such that p divides a.

Proof: Since «a is a nonunit, the principal ideal <a> is a proper ideal and
hence <a> is contained in a maximal ideal M of R. Since R is a PID, there
exists p € R such that M = <p>. Also, since a # 0. We have

<0> # <g>C M = <p> and hence p # 0.

Since M is a maximal ideal, we get from Theorem 12.2.3, that p is a prime
element of R. Since <a> C <p>, we get that p divides a. <

Theorem 12.2.6. Any nonzero nonunit in a PID can be expressed as a finite
product of prime elements.

Proof: Let R be a PID and a be a nonzero nonunit element in R. By the
above theorem, there exists a prime element p, in R such that p, divides a
and hence

a=pa, forsomea €R.

Then, a, # 0 (since a # 0). If a, is a unit, then a is an associate of p, and
hence a itself is prime. If @, is not a unit, then again by the above theorem,
there exists a prime element p, dividing a, and hence a, = p,a, for some a, €
R. Repeating this process with a, and so on, we get prime elements p, p,, ...
in R and elements a, a,, ... in R such thata, = p , a . . Now,

@ =pa =ppa, = = pPpspd,



12-14  Algebra - Abstract and Modern

Then, {a } is a sequence of nonzero elements such that a _, divides
a, for all n. By Corollary 12.2.3, there exists n such that a ~ a, ,, for all
keZ".

Let n be the least positive integer such thata ~a  forall k € Z*. We claim
thata (and hencealla _,)is aunit. For, otherwise, we have the prime element
p,. suchthata =p a and, sincea ~a it follows thatp isa unit
which is a contradiction to the primeness of p, , . Thus, @, is a unit and hence

p,a, is also prime. Now, we have
a :p]pz "'pnflpnan
andp,, p,, ...,p,_, and (p a, ) are primes in R. <

Worked Exercise 12.2.1. Prove that the ring Z[i] of Gaussian integers is
a PID.

Answer: We have Z[i] = {a + bi:a and b € Z}. Z[i] is an integral domain
under the usual addition and multiplication of complex members. Let / be an
ideal of Z[i]. If I = {0} = <0>, we are done. Suppose / # {0}. Let

A={a+b*:0+a+ bi €I}
Then, A4 is a nonempty subset of Z* and hence 4 has a least member. Let 0 #
a + bi € I'be such that a*> + b? is least in 4. Now, we shall prove that [ is the

principal ideal generated by a + bi. Put x = a + bi. Since x € I, we have <x>
C I. On the other hand, let y = ¢ + di € I. Consider the complex number

(c+di)a—bi) _ (ac+bd)+(ad—be)i _

y .
2 + Bi,
X (a+bi)a—bi) e Ai

where « and 3 are rational numbers given by

ac+bd
a:

_ ad — bc
a’ +b*

a+br

B
Choose integers m and n such that

|m—oz|<l and |n—B|<l

=3 =7

Now, y = (a + Bi)x = (m + ni)x + ((a« — m) + (B — n)i)x
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Putr = (¢ — m) + (B — n)i)x. Then,
r=y—(m+nix €l (sincexandy € I).
Also,

I = (@ = m)* + (B — n)’)

s[l+l]|x|2:1|x|2<a2+b2.
PR 2

Since a® + b? is least in A4, it follows that » = 0 and hence
y = (m + ni)x €<x>.
Therefore, I C <x>. Thus, [ = <x>. Therefore, Z[i] is a PID.

Worked Exercise 12.2.2. Let R be a PID. Then prove that any nonzero proper
ideal of R can be expressed as a finite product of maximal ideals of R.

Answer: Let / be a nonzero proper ideal of R. Since R is a PID, [ = <a> for

some nonzero nonunit ¢ in R. By Theorem 12.2.6, a can be expressed as a
product of prime elements. Let

a = p1p2. “pn’

where p, p,, ..., p, are prime elements. Put M, = <p> for each 1 =i =< n. By
Theorem 12.2.3, each M, is a maximal ideal of R. Now,

I: <q> = <plp2...pn>
= <p1><p2>--~<p”>
= MlMZ...Mn.

Worked Exercise 12.2.3. Determine all the units of the ring Z[i] of Gaussian
integers.

Answer: Leta + bi be a unit in Z[7]. Then, there exist integers ¢ and d such that
(a + bi)(c + di) = 1.
By taking the absolute values, we have

(@ + D) + ) = 1.
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Since a, b, ¢ and d are all integers, it follows that
c+HbP=1=+d

and(a =0andb = *1)or(b=0anda = £1)and hencea + bi = 1 or —1
orior —i. Thus, 1, —1, 7 and —i are all the units in Z[{].

Worked Exercise 12.2.4. Let / be a nonzero ideal of the ring Z[i]. Then prove
that the quotient ring Z[i]/I is finite.

Answer: Since Z[i] is a PID, / is a nonzero principal ideal and hence 7 = <x>
for some 0 # x € Z[i]. Letx = a + bi. Then, a # 0 or b # 0 and hence a* + b?
is a positive integer. Consider an element y + [ € Z[i]/I with y € Z[i]. As
in Worked Exercise 12.2.1, we can write

y=(m+nix+r
for some integers m and n and r € Z[i] such that

> <xP* =a* + b~
Now,y —r = (m + ni)x € <x> = [and hence y + [ = r + [, where r €
7Z[i] such that |r]* < a®> + b% Since r must be of the form ¢ + di with ¢ and d
integers and ¢*> + @? < a® + b* and since there can be only finitely many pairs

(c, d) of integers such that ¢ + d&? < a* + b?, it follows that

ZliVl ={(ctdi)+I:candd € Zand * + &*<a* + b*}

is finite.
EXERCISE 12(B)
1. Which of the following are PIDs? Justify your answers.
»H Z
(i) Q
(iii) R[x]
(iv) Clx]

Vv Z
vi) Z
(vii) Z

Z

(viii)



e A

10.

11.

12.

13.

14.

15.

16.

17.

18.

Factorization in Integral Domains ~ 12-17

(ix) F[x], where F'is a field.
(xX)  Flx, y] (= Flx][¥]), where F is a field.
Prove that Z[x] is not a PID.

For any integral domain R, prove that the polynomial ring R[x] is a PID if and
only if R is a field.

Prove that any homomorphic image of a PID is a PID.

Prove that Z[~—3] = {a + b~—3 :aand b € Z} is an integral domain under
the usual addition and multiplication of complex numbers and that Z[v—3] is
not a PID.

Prove that Z[/—19] is not a PID.
For any odd prime number p, prove that Z[,/—p] is not a PID.
Prove that Z[+—2] is a PID

LetD = {a,+ ax + --- + ax" € R[x] : a,is rational}. Prove that D is an integral
domain under the usual addition and multiplication of polynomials.

Let R be a PID and S be a multiplicative subset of R. Prove that the ring of
fractions of R by S (refer Exercise 15 of 10(f)) is a PID.

Let / be a nonzero ideal of a PID R. Then prove that any descending chain of
ideals of R/ terminates at a finite stage.

Prove that an integral domain R is a PID if and only if R/I is a PID for each
ideal / of R.

Let R be an integral domain in which any descending chain of ideals terminates
at a finite stage. Then prove that R is a field.

Prove that a PID R has a unique maximal ideal if and only if any two irreducible
elements of R are associates.

Prove that a nontrivial commutative ring with identity is a field if and only if
every proper ideal is prime.

LetR,R,, ...,R bePIDsand R = R X R, X---X R Then prove that every ideal
of R is principal. Is R a PID?

Prove the following for any ideals 7, J and K of a PID R.
@ IJNK)= ()N UK

i) INJ+K=UnNnJ)+ INK)

(i) I+UNK)y=I+J)N{I+K)

(iv) IfI+J=R, thenlJ=1INJ

Let R be a PID. Prove that a nonzero ideal P of R is primary (refer Exercise 6 of
10(d)) if and only if P = <p™> for some prime element p in R and n € Z".
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12.3 UNIQUE FACTORIZATION DOMAINS

We have developed the analogues, in an arbitrary integral domain, of the con-
cepts of the divisibility and prime numbers in the ring Z of integers. Recall
that any nonzero nonunit in Z is a product of finite number of prime numbers
(or their associates) and that this factorization is unique, except for the order
of occurrences of the primes and their associates. We shall formalise this in
the following definition.

Definition 12.3.1. Let R be an integral domain and ¢ € R such that

a=pp,...p,

where each p, is an irreducible element in R. Then, the equationa = pp, ... p,
is called a factorization of a in R.

Examples 12.3.1
1. 6 =2-3and 6 = (—2)(—3) are factorizations of 6 in Z, since 2, 3, —2
and —3 are irreducible in Z.
2. 20=2-2-5,20 = (—2)2(—5) and 20 = 2(—2)(—5) are factorizations
of 20 in Z.

3. 1 +2x+x*=(1+x)(1 + x) is a factorization of 1 + 2x + x? in Z[x],
since 1 + x is irreducible in Z[x].

4. 1+ x*= (1 +x)(1 + x) is a factorization of 1 + x* in Z,[x], since 1 + x
is an irreducible element in Z,[x].

Definition 12.3.2. An integral domain R is called a factorization domain
(FD) if every nonzero nonunit in R has a factorization in R.

Examples 12.3.2

1. ZisaFD.

2. Any PID is a FD (recall Theorem 12.2.6). Note that an element in a PID
is prime if and only if it is irreducible.

3. The ring Z[i] of Gaussian integers is a FD, since it is a PID (see Worked
Exercise 12.2.1).

4. The ring F[x] of polynomials over a field Fis a FD, since F[x] is a PID.
In the following, we give sufficient condition on an integral domain for it

to be a FD. This helps us as a tool to quickly ascertain that a given integral
domain is a FD.
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Theorem 12.3.1. Let R be an integral domain such that there isamapé : R —
{0} — Z satisfying the following for any elements @ and b in R — {0}.

1. 8(a)=0

2. 8(ab) = 6(a)

3. 8(ab) = 6(a) if and only if b is a unit in R.
Then, R is a FD.
Proof: We have to prove that every nonzero nonunit in R has a factorization
in R. Let S be the set of all nonzero nonunits in R which have no factorizations

in R. It is enough if we prove that S is empty. On the contrary, suppose that S
is not empty. Consider the set

A={6(a):a €S}
Then, 4 is a nonempty set of nonnegative (by (1)) integers. By the well-
ordering principle, 4 has a least member. Let n be the least in A. Then, n =
6(a) for some a € S. Then, a is not irreducible (since every irreducible ele-
ment gives a factorization of itself). Therefore, @ = bc for some nonzero
nonunits b and ¢ in R. Then, by (2) and (3),
8(a) = 8(bc) > 86(b) and 6(a)>6(c).

By the least property of 6(a), it follows that b & S and ¢ & S and hence
both b and ¢ have factorizations in R. But then a (= bc) also has a fac-
torization in R, which is a contradiction to the fact that a € S. Thus, S is
empty and hence any nonzero nonunit in R has a factorization in R. Thus,
Ris aFD. <
Corollary 12.3.1. Z is a FD.

Proof: The map a — |a| from Z — {0} into 7Z satisfies the properties men-
tioned in Theorem 12.3.1 and hence Z is a FD. <

Corollary 12.3.2. The ring Z[i] of Gaussian integers is a FD.
Proof: Define 6 : Z[i] — {0} — Z by
8(a + bi) = a* + b~

Then, & satisfies (1), (2) and (3) of Theorem 12.3.1 and hence Z[/] isa FD. <«
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Corollary 12.3.3. Let n be a positive integer greater than 1 and

Z[H}={a+bJ—_n:aandbeZ}.

Then, Z[/=;] is a FD.

Proof: Define 6 : Z[\J—n| — Z by
8(a+b\J—n)=a’ +nb’.

Then, 6 satisfies the conditions in Theorem 12.3.1 and hence Z[v—n]
is a FD. <

Definition 12.3.3. A FD R is called an unique factorization domain (UFD)
if the following is satisfied:

Ifpp,-p, =94, 4q,, where p’s and qs are irreducible elements in R,
thenn = m and a, ~ bo(l.) for some permutation o on {1,2, ..., n}.

In other words, an integral domain R is called a UFD if every nonzero and
nonunit in R has a factorization in R which is unique, except for the associates
and order of occurrences of the irreducible factors.

Before going to certain examples of an UFD, we first prove two important
properties of UFD’s which are tools in determining whether a given FD is
a UFD.

Theorem 12.3.2. Let R be an UFD. Then, an element p in R is irreducible if
and only if it is prime.

Proof: We know that every prime element in any integral domain (and hence
in R) is irreducible. Conversely, suppose that p is an irreducible element in R.
Let b and ¢ € R such that p|bc. We can assume that b and ¢ are both nonzero
(since p|0). If b is a unit, then p|c. Similarly, if ¢ is a unit, then p|b. Suppose that
neither b nor ¢ is a unit. Since p|bc, there exists a € R such that pa = bc. Then,
a # 0 (since b # 0 and ¢ # 0) and a is nonunit (otherwise, if a is a unit, then
p = b(ca™") and, since p is irreducible, b or ca™! is a unit which is not true).
Thus, a, b and ¢ are nonzero nonunits in R. Since R is a UFD, we get that

a :plpz...pn’ b = qlqz...q)n and C = rlrz-..rt’
where p’s, g’s and s are irreducible elements in R. Therefore, we have

PPy D, = A,y d, Ty eT,
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By the uniqueness of the factorizations in R, p is an associate of g, or r, and
hence p divides b or c¢. Thus, p is a prime element in R.

Example 12.3.3. Consider the integral domain Z[\/—_S]. We have seen in
Corollary 12.3.3 that Z[E] is a FD. Also, in Example 12.1.2, we have
proved that 2+ J=5 s irreducible, but not prime in Z[\/—_S ]. Therefore, by
the above theorem, Z[\/—_S ] is not an UFD.

Next result is a converse of Theorem 12.3.2 in the sense that a FD is an
UFD if every irreducible element is prime.

Theorem 12.3.3. Let R be a FD. Then, R is an UFD if and only if every irre-
ducible element in R is prime.

Proof: Suppose that every irreducible element in R is prime. Since R is a FD,
any nonzero nonunit in R can be expressed as a product of finite number of irre-
ducible elements. We have to prove only the uniqueness of the factorizations.
Letp,p,,...,p,and g, q,, ..., q, be irreducible elements in R such that

plp2.”pn = qqu.”qm'

Suppose, if possible, that » # m. Without loss of generality, we can assume
that n > m. Since all the p s and qj’s are irreducible, they are primes. Since
p, is a prime and p, divides ¢,q, - q,, p, should divide some q, Let a(1) be
such aj. Thatis, 1 = o(1) = m and p, divides ¢, . Since g, is irreducible,
it follows that p, is an associate of g, . Therefore, there exists a unit u, in R
such that pu, = ¢, . Now, we have

PPy Py = o (jgl)qj) = plul( 11 ‘1,-).

J=o(l)

Since R is an integral domain and p, # 0, we can cancel p, on both the sides.
Then, we have

pz'--pn=u1( H qj).

J#Fa(l)

We can repeat the above process, with p, in place of p , to get o(2) €{1, 2, ...,
m} — {q(1)} such that p,u, = g, for some unit u, in R. Then,

Dy P, = U prU, H q;
Jj=o(1),0(2)

and hence p,---p, =uu, H q,

J#Fo(1),0(2)
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This process can be continued for m steps (since n > m) to exhaust all q’s and
then we get

pm+1.”pn = uluZN'um’

where u,, u,, ..., u are units and hence their product u,u,---u _is also a unit.
Now, p _ divides the unit u u ---u and hence p _ itself is a unit which
K m+1 o 172 m N m+1 X X

is a contradiction to the fact that an irreducible element is necessarily a

nonunit. Thus, » = m and we have permutation o on {1, 2, ..., n} such
that p, ~ Do for all 1 =i =< n. Thus, R is an UFD, converse is proved in
Theorem 12.3.2. <

Corollary 12.3.4. Every PID is an UFD.

Proof: Let R be a PID. In Theorem 12.2.3, we have proved that an element
in R is irreducible if and only if it is prime. Also, in Theorem 12.2.6, we
have proved that R is a FD. Therefore, by the above Theorem 12.3.3, R is
an UFD. <

The converse of the above result fails. That is, there are UFDs which are
not PIDs. For example, Z[x] is not a PID (refer Worked Exercise 11.3.1).
However, we prove in the next section that Z[x] is an UFD.

Corollary 12.3.5. The ring F[x] of polynomials over a field F' is an UFD
in which the irreducible elements are precisely the irreducible polynomials
over F.

Proof: We have proved in Theorem 11.3.2 that, for any field F, F[x] is a PID
and hence, by the above corollary, F[x] is an UFD. <

Unique factorizations in an UFD help us in determining the g.c.d. and
l.c.m. of two elements. In this direction, we have the following theorem whose
proof is a routine verification.

Theorem 12.3.4. Let R be an UFD and a and b be nonzero nonunits in R.
Then, we can express a and b by

a,

— pY p* n
a=p Py ---pP,
— B By
and b=ppy...p",
where p, p,, ..., p, are pair-wise nonassociate irreducible elements in R (i.e.,

p,is notan associate to any p,, j # i) and as and B’s are nonnegative integers.
Also, we have the following:
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1. adivides bifand only if @, = B, forall 1 =i =n.
2. g.c.dfa, b}= Epimm{a,, B}
3. lemda, b} = i[lpimax(a” 5

We have proved earlier (see Theorem 12.2.3) that, in a PID, the principal
ideal generated by an irreducible element is a maximal ideal. We prove the
converse in the following theorem.

Theorem 12.3.5. Let R be an UFD. Then, R is a PID if and only if <p>is a
maximal ideal of R for any irreducible element p of R.

Proof: Suppose that <p> is a maximal ideal for any irreducible p in R. Let /
be an ideal of R. If / = {0}, then / is principal. Therefore, we can assume that
I # {0}. Also, we can assume that / # R. Put

. m€Z+:m=iaiandﬁpf‘ el,
- i=1 i=1

where p,, ..., p, areirreduciblein R

Since [ has atleast one nonzero nonunit, if follows that 4 is a nonempty set of
positive integers. Let m be the least member in 4. Then, there exist irreducible
elements p, p,, ..., p, in R and positive integers «, «,, ..., & _such that

a’Zﬁpi‘"EI and mZEai.
i=1 i=1

Now, we claim that / = <d>. Since d € I, we have <d> C I. On the other hand,
suppose that 0 # x € /. We can assume that each p, is not an associate of any
other p, j # i. It is enough if we can prove that each p;¥ divides x. Suppose
that p" does not divide x. Then, we have

x=p/y, where0=n<a, and P ty.

Then, y & <p> and <p > is a maximal ideal of R. Therefore, <> +
<p,> = R and hence

1 =ay+ bp, forsomeaandb € R.

a -l _a,

Put Z=p;"" p5*...p.". Then,
z=z1 = zay + zbp,
= p{y(ap! ™" py ... pi)+db
= x(ap" ""p .. piy+dbET
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since x € [ and d € I. Therefore, z € [ which is a contradiction to the least
property of m. Therefore, p { x. Similarly, p t x for all 1 <7 < n and
hence d|x. Therefore, x € <d>. Thus, I = <d>. Therefore, R is a PID. Converse
is proved in Theorem 12.2.3. <

Worked Exercise 12.3.1. Let Z[\3] = {a + b~3: a and b € Z}. Then
prove that Z[/3] is a FD.

Answer: Define 8 : Z[\3] — {0} — Z by
S(a + b\3) = |a> — 30

Then, 3(x) = 0 for all 0 # x € Z[f3]. Also, if x = a + b3 and y =
¢+ d~3,then

o(xy) = 0((ac + 3bd) + (ad + bc)\/g)
= |(ac + 3bd)* — 3(ad + bc)?|
= |a’c? + I’ d* — 3a*d? — 3b*
= |a® — 3bY |c* — 3d¥ = 8(x)5(y)
= |a2 — 307 = 8(x)
and 8(x) = 1< | — 307 = 1
Sla+bB)a—b3) =1
@+ b\V3)a—b3)==*1

Sa+ b\/g 1S a unit.

.. 8(xy) = 8(x) ifand only if y is a unit. Therefore, by Theorem 12.3.1, Z[\/g ]
isa FD.

Worked Exercise 12.3.2. Let R be a UFD and P be a nonzero prime ideal of
R. Then prove that there exists an irreducible element in P.

Answer: Since P # {0}, we can choose 0 # x € P. Also since P # R, xisa
nonunit. Now, we have

p— (43 . ap
X=pipyps

where p,, p,, ..., p, are irreducible elements in Rand @, «,, ..., @, are positive
integers. Since x € P and P is a prime ideal, p, € P for some i.
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EXERCISE 12(C)

1.

10.

Which of the following ring are UFDs? Justify your answers.
i) Z

(i) Q
(i) R
(iv) Z,
V) Z[]
vi) Z[J=5]
(vii)  R[x]

(vii) Q[x].

Prove that the l.c.m. of any finite subset of an UFD exists and is unique up to
associates.

. Let R be an UFD and F be its field of quotients. For any prime p in R, let

a
R, = «[; € F:gcdfa, b}=1and pt b}.

Prove that R, is a subring of F and that R, is a PID and hence an UFD.

Let S be a multiplicative set in an UFD R and S~ 'R the ring of fractions of R by
S. Prove that S™'R is an UFD.

Let R be an UFD and {a,} be a sequence of elements in R such that a  divides
a foralln € Z*. Then prove that there exists n € Z* such that a_is an associate
ofa,, forallkeZ".

Let p be a prime element in an UFD R such that any prime element in R is an
associate of p. Prove that every nonzero proper ideal of R is of the form <p™> for
somen € Z*.

Let R be an UFD and P be the only nonzero prime ideal of R. Then prove that
any nonzero proper ideal / of R is of the form P" for some n € Z.

Prove that any increasing sequence of principal ideals in an UFD terminates at a
finite stage.

If P is a nonzero prime ideal of an UFD R, then is R/P a UFD?

Let R be an UFD and (a, b) denote the g.c.d. {a, b} for any @ and b € R. Prove
the following for any nonzero elements @, b and ¢ € R.

@ (@, (b, ) ~((a,b), c)
(i) (a,1)~1
(ii1)  (ca, cb) ~ c(a, b)
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(iv) (a,ab)~a
(v) (a,b)~1~(a,c)=(a,bc)~1
(vi) (a,b)~ 1, alc and b|c = ablc
(vii) (a, b) ~ 1 and albc = alc
(viii) ab ~ (a, b)[a, b], where [a, b] = Lc.m. {a, b}.

12.4 POLYNOMIALS OVER UFDS

Polynomials over an UFD are of special importance in view of the famous
Gauss theorem which states that such polynomials again form an UFD. In this
section, we introduce few more concepts in polynomials which ultimately
lead to the proof of the Gauss theorem. Let us recall that, in any UFD, any
finite number of nonzero elements have g.c.d.

Definition 12.4.1. Let Rbe an UFD and f(x) = a, + ax + ax* + --- + a x"
be a nonzero polynomial over R. Then, the content of fis defined to be the
g.c.d. of the coefficients a, a,, a,, ..., a, and is denoted by c(f(x)); that is,

0’
c(fx)) = ged. {ay,a,a,...,a}.

A polynomial f(x) is said to be primitive over R if ¢(f(x)) is a unit in R.
The content and the primitivity of a polynomial depends on the UFD over
which the polynomial is defined. Consider the following example.

Example 12.4.1. Let f(x) = 4 + 8x + 6x°. If we consider f(x) as a polyno-
mial over Z, then

c(f(x)) = g.cd. {4,8,6} =2

and therefore, f(x) is not primitive over Z. However, if we consider f(x) as a
polynomial over the field Q of rational numbers, then

c(f(x) =1,
since any nonzero in QQ is a unit. Therefore, f(x) is primitive over Q.

Note 12.4.1

1. Any monic polynomial over any UFD is primitive.
2. If Ris an UFD and 0 # f(x) € R[x], then

J() = e(fx))g(x)

for some primitive polynomial g(x) in R[x].
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In the following, we prove that primitive polynomials over any UFD are
closed under multiplication.

Theorem 12.4.1. Let R be an UFD and f{(x) and g(x) be primitive polynomials
over R. Then, f(x)g(x) is primitive.

Proof: Letf(x) =a,+ax+ - +ax',a #0
and g(x)=b,+bx+ - +bx",b #O0.

If deg(f(x)) = n = 0, then c(f(x)) = a, and hence a,(= f(x)) is a unit so that
c(f(x)g(x)) ~ c(g(x)) ~ 1. Therefore, we can assume that » > 0 and m > 0.

We prove that there is no prime element in R that divides all the coefficients
in f(x)g(x). To prove this, let p be a prime in R. Since f(x) is primitive, p does
not divide some coefficient a, in f(x). Let a, be the first coefficient in f(x) which
is not divisible by p. Similarly, let 5. be the first coefficient in g(x) which is not
divisible by p. Let c, " be the coefficient of x™*/ in f(x)g(x). Then,

c, —ab +ab -+a. b

07 i+) 17i+j-1 i+j 0
= E ab.,.

rts=itj

Since pla, for all 0 = r <iand p|b_forall 0 = s <}, it follows thatc_ . — a b,
is divisible by p. Since p does not divide a b, we get that p does not d1v1de [
Therefore, there is no prime dividing all the coefficients in f(x)g(x) and hence

c(f(x)g(x)) is a unit.
Thus, f(x)g(x) is primitive. <

Corollary 12.4.1. For any nonzero polynomials f(x) and g(x) over an UFD,
c(f(x)g(x)) = c(f(x))c(g(x)).

Proof: Let R be an UFD and f(x) and g(x) € R[x] — {0}. Then, there exist
primitive polynomials f,(x) and g (x) in R[x] such that

Jx) = c(f))i(x) and  g(x) = c(g(x))g,(x).
Thus, by the above theorem, f(x)g,(x) is primitive and

J(x)g(x) = c(f(x)c(g(x))f,(x)g,(x)
and therefore, c(f(x)g(x)) = c(f(x))c(g(x)).
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Let us recall that an element p in an integral domain R is called irreducible
if it is nonzero, nonunit and not a product of two nonunits. (See Definition
12.1.5). Also, recall that a polynomial over R is called irreducible over R if
it is nonconstant and not a product of two nonconstant polynomials over R.
In the case of polynomial rings over an integral domain R, there is a subtle
difference between irreducible elements in R[x] and irreducible polynomials
over R. However, if R is a field, both these concepts coincide. In the case of
general integral domains, we distinguish these two. Irreducible elements in
R[x] and irreducible polynomials over R are two different concepts. Irreduc-
ible elements in R[x] are often called irreducible in R[x].

Before going further, let us observe that, if F is the field of quotients of an
UFD R and 0 # f(x) € F[x], then we can write f(x) = ab'g(x) for some a
and b € R and g(x) is primitive in R[x]; for, if

f(x)=“—°+ﬂx+-..+‘;"

0 1 n

xn

andb = b, ... b, € Rand f(x) = b~'h(x) = b~'c(h(x))g(x) for some primi-
tive g(x) in R[x]. <

Theorem 12.4.2 (Gauss Lemma). Let R be an UFD and F be the field of
quotients of R. Let f(x) € R[x] be a primitive polynomial of positive degree.
Then, f(x) is irreducible in R[x] if and only if f(x) is irreducible in F[x].

Proof: Suppose that f(x) is irreducible in F[x]. Suppose that f(x) = g(x)/(x)
where g(x) and 4(x) € R[x]. If g(x) and /(x) are both of positive degree then
they are nonunits in R[x] and in F[x], which is a contradiction to the irreduc-
ibility of f(x) in F[x]. Therefore, g(x) or i(x) is of degree 0. Let deg(g(x)) = 0.
Then, g(x) € R. Since f(x) is primitive in R[x], we get that g(x) is a unit in R.
Similarly, if deg(4(x)) = 0, then A(x) is a unit in R. Thus, f(x) is irreducible
in R[x].

Conversely, suppose that f(x) is reducible in F[x]. Then, f(x) = g(x)h(x) where
g(x) and A(x) are nonunits in F[x] and hence g(x) and A(x) are polynomials of
positive degree (since F'is a field). Let

g(x)=&+ﬂx+---+&x", a,#0,n>0
y b b

1 n

¢, ¢ c
and h(x)=—°+—‘x+---+d—”'x”’, ¢, #0, m>0
0 1 m

where a, b, [ dj € R, b, # 0and dj # 0.
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Puth = bbb, ..bandd=ddd,...d,

07172

Then, bg(x) and dh(x) € R[x]. We can write
bg(x) = ag,(x) and dh(x) = ch (x)
for some primitive polynomials g (x) and % (x) in R[x]. Now, we have

bdf(x) = bg(x)dh(x) = acg (x)h (x).

By Theorem 12.4.1, g ,(x)h (x) is primitive in R[x]. Since f(x) is also primi-
tive, it follows that bd is an associate of ac and hence bdu = ac for some unit
u in R. Now,

bdf(x) = bdug (x)h (x).
and hence f(x) = ug,(x)h (x), which implies that f(x) is reducible in R[x]. <

Theorem 12.4.3 (Gauss Theorem). The ring R[x] of polynomials over an
UFD R is also an UFD.

Proof: Let R be an UFD. Then, clearly R[x] is an integral domain. Let
0 # f(x) € R[x]. If deg(f(x)) = 0, then f(x) € R and, since R is an UFD, f(x)
has a factorization in R and hence in R[x]. Therefore, we can assume that

deg(f(x)) > 0.
Let F be the quotient field of R. Then, R is a subring of F. We can write
f(x) = c(f(x))g(x), where g(x) is a primitive polynomial over R and hence
over F. Now, recall that F[x] is an UFD (by Corollary 12.3.5). Since g(x)
€ F[x] and deg(g(x)) > 0, we get that

8(x) = g,(x)g,(x)---g,(x)
for some irreducible polynomials g (x), g,(x), ..., g (x) in F[x]. Then, deg(g (x))
>0 for each 1 = i = n. We can write g,(x)=ab, ' h(x) where a,b €R
(b, # 0) and £ (x) is primitive in R[x]. Then, we have
bbb g(x) = aa, - -ah (x)h(x)h (x).

Since each /(x) is primitive, so is their product. Also, since g(x) is primitive,
it follows, by taking contents both sides that

b]bz-nbn ~aa,--a inR

and hence g(x) = uh,(x)h,(x)---h (x),



12-30 Algebra - Abstract and Modern

where u is a unit in R. Further, since each /4 (x) is irreducible in /[x] and
primitive in R[x], it follows that each /(x) is irreducible in R[x] (by the Gauss
Lemma (Theorem 12.4.2)). Thus,

J) = c(fe)uh (x)h,(x)---h,(x).

If c(f(x)) is a unit in R, c(f(x))uh (x), h,(x), ..., h (x) are irreducible elements
in R[x] and hence we have a factorization of /(x) in R[x]. If ¢(f(x)) is not a unit
in R, then, by the factorization property in R,

c(f(x)) = pl pz”'pma

where p, p,, ..., p, are irreducible elements in R and hence in R[x]. Then,

J&) =pp,p, p,wh (X)hx)-h,(x)

is a factorization of f(x) in R[x]. Thus, R[x] is a FD.

To prove the uniqueness of the factorizations in R[x], first observe that any
irreducible polynomial in R[x] of positive degree must be primitive. Any fac-
torization of f(x) in R[x] must be of the form

J) = cc,ec.8,(0)g,(x) g, (x) ()

where ¢, c,, ..., ¢, (n = 0) are irreducible elements in R and g,(x), g,(x), ...,
g,(x) (m = 0) are irreducible in R[x], each of positive degree, and hence g, (x),

g,(x), ..., g (x) are primitive. Now, suppose that
Jx) =dd,--d h,(x)h,(x)---h (x) 2

is another factorization of f(x) in R[x]. Since each of g(x) and /(x) are
irreducible polynomials of positive degree in R[x], they are primitive and
hence these are irreducible in F[x]. Also, by taking contents in (1) and (2),
we get that

clcz...cn = udl...dr (3)

for some unit « in R. Since R is an UFD, n = r and each c, is an associate of
some d. Further, from (1), (2) and (3), we get that

h ), (x)---h (x) = ug,(x)g,(x)---g,(%).

Since F[x] is an UFD, it follows that s = m and each 4 (x) is an associate of
gj(x). Thus, the factorization (1) is unique. Therefore, R[x] is an UFD.
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Corollary 12.4.2. If R is an UFD, then so is R[x , x
cux ] =Rx,...,x_ ]x]

5 - X |, where R[x, x,,

Corollary 12.4.3. Z[x] is an UFD but not a PID.

Corollary 12.4.4. For any field F, F[x, x,, ..., x ] is an UFD.

Though we have proved in the above theorem that any polynomial over
an UFD R can expressed as a product of irreducible elements in R[x], it is
a difficult task to find such a factorization for a given polynomial. Gauss
theorem only ensures the existence of a factorization. There is no general
explicit method for obtaining such a factorization, not even for deciding
whether a given polynomial is irreducible or not. However, we have certain
sufficient conditions for the irreducibility of a polynomial over an UFD as
given below.

Theorem 12.4.4 (Eisenstein’s Criterion). Let R be an UFD and F be the field
of quotients of R. Let

fx)=a,+ax+---+ax',n>0,a #0
be a nonconstant polynomial in R[x]. Suppose that there exists a prime
element p in R such that

1. pdivides a, for 0 =i <n.
2. p does not divide a .
3. p* does not divide a,.

Then, f(x) is irreducible in F[x]. Also, if f(x) is primitive, then f(x) is irreduc-
ible in R[x].

Proof: First, we assume that f(x) is primitive and prove that f(x) is irreduc-
ible in R[x]. Suppose, if possible, f(x) is not irreducible. Since f(x) is a non-
constant primitive polynomial, there exist two nonzero nonunit polynomials
f,(x) and £,(x) in R[x] such that

J) = £ x).

Letf(x) =c, T cx+ - +cxandfi(x) =d, +dx+ - +dx.
Then,

n = deg(f(x)) = deg(f,(x)) + deg(f,)) = r + 5.

If » = 0, then f,(x) = ¢, and f(x) = ¢ f,(x) and hence ¢, is a nonzero non-
unit (since so is f,(x)) divisor of c¢(f(x)) which is a unit. Therefore, r # 0.
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Similarly, s # 0. Since n = r + s, it follows that 0 <7 <n and 0 <s <n. Now,
f(x) = f,(x)f,(x) implies that a, = c,d,. Since p|a, and p*fa,, it follows that p
divides exactly one of ¢, and d,. Without loss of generality, we can assume
that p|c, and pfd,. Also, we have a, = ¢ d_and pfa, and hence pfc, and ptd .
Therefore, we have p|c, and p{c,. Let i be the least positive integer such that
pfc,. Then, p|c/. for all 0 = j <i. Equating the coefficients of x' in f(x) and f,(x)
(%), we get that

a=cd+cd_ +--+cd,
where ¢ = 0 for all j > r and dj = 0 for all j > s. Now, since p|c,, plc,, ...,
ple,_,, we get that

pla,—cd,

Also, since 0 <i = r<n, pla, by (1). Therefore, p|cd, which is a contradiction
since p is prime, p{c, and p{d,.

Thus, f(x) is irreducible in R[x]. Also, since f(x) is primitive, the Gauss
Lemma (Theorem 12.4.2) implies that f(x) is irreducible in F[x].

Now, let us take up the general case. There exists a primitive polynomial g(x)
in R[x] such that

J() = c(fx)g(),

where ¢(f(x)) is the content of f(x). If c(f(x)) is a unit, then f(x) is primitive
and hence, by the first case, f(x) is irreducible in R[x] and in F[x]. Suppose
that ¢(f(x)) is a nonunit. Let

c(fx)) =d and g(x)=b,+bx+--+Dbx"

Then, deg(f(x)) = deg(g(x)) and hence b, # 0. Since f(x) = dg(x), we get
that

a =db, forall0=i=n.

Since ptan, we get that p{d and ptb, . Also, for any 1 = i <n, p|a, implies that
plb.. Further, p*b,, since p*fa,. Thus, by the first case, g(x) is irreducible in
R[x] and hence in F[x]. Since d is a unit in F, we get that f(x) is an associate
of g(x) in F[x]. Thus, f(x) is irreducible in F[x].

Since Z is a UFD and the rational number field Q is the field of quo-
tients of Z, the following is an immediate consequence of the Eisenstein’s
Criterion.
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Corollary 12.4.5. Letf(x) = a, + ax +---+ a x" be a constant polynomial in
Z[x] and p be a prime number satisfying the following:

1. pdividesaq, forall0 =i<n.

2. p does not divide a .

3. p*does not divide a,.
Then, f(x) is irreducible in Q[x]. Further, if f(x) is primitive, then f(x) is
irreducible in Z[x].

Corollary 12.4.6. Let p be a prime number and f(x) = 1 + x + x> + --- +
x?~1. Then, f(x) is irreducible in Q[x] and in Z[x]. This polynomial f(x) is
called the cyclotomic polynomial.

Proof: Since f(x) is a monic polynomial, it is primitive in Z[x].Consider the
polynomial f(x + 1). We are given that

p_
f(x):1+x+x2+...+xp71:x 1.
x—1
+1)? —
Therefore,  fer+1)="D "1
(x+1)—1

1 - -
=;(x"+pxp " (X" e+ px)

p—1
= (p)x"""
r=0
e +pxp_2 +...+(pi)x1""‘1 +- 4+ p.

By the Eisenstein’s Criterion (Theorem 12.4.4), f(x + 1) is irreducible in
Q[x] and therefore, f(x) is irreducible in Q[x]. Since f(x) is primitive in Z[x],
it is irreducible in Q[x]. <

The following theorem is a very useful tool to determine the irreducibility
of certain polynomials in Z[x] and their rational roots.

Theorem 12.4.5. Let f(x) = a, + ax + --- + ax" € Z[x] with g, # 0 and
a, # 0. Let p and ¢ be relatively prime integers and ¢ > 0. Suppose that p/q
is a root of /() in Q. Then, p divides a, and ¢ divides a,.

Proof: We are given that f(p/g)=0 and therefore

2

p

q

a, ta £ +a,

N +---ta,

ﬁ] =0.
q
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By multiplying with ¢”, we have
aq"+apg' +apq T+ t+a_plgtap =0

and hence

aq" = p[—z a,'p’q””]

r=1

and

n—1
a,p'= q[—z arp’q”’]-

r=0

Therefore, p divides a¢" and ¢ divides a p". Since p and ¢ are relatively
prime, it follows that p divides a, and g divides a,. <

Worked Exercise 12.4.1. Letf(x) = 5 + 11x — 7x* + 9x* € Z[x]. Prove that
f(x) is irreducible over Q as well as over Z.

Answer: Since deg(f(x)) = 3, f(x) is irreducible over Q if and only if f(x)
has a root in Q. Suppose that p/q is a root of f(x), we can assume that p and ¢
are relatively prime integers and ¢ > 0. Then, by the above Theorem 12.4.5, p
should divide 5 and ¢ should divide 9. Therefore,p = = lor = Sandg = *
1 or = 3 or = 9 and hence

But, none of the elements in this set is a root of f(x). Therefore, f(x) has no root
in Q. Thus, f(x) is irreducible over Q. Since f(x) is primitive in Z[x], it follows
from Gauss Lemma (Theorem 12.4.2), that f(x) is irreducible over Z also.

Worked Exercise 12.4.2. Letf(x) = —2 + 15x — 9x*> + x* € Z[x]. Prove that
f(x) is irreducible over neither Q nor Z.

Answer: Suppose, if possible, (p/q) € Q is a root of f(x). We can assume that
p and q are relatively prime integers and ¢ > 0. Then, by the above Theorem
12.4.5, p should divide —2 and ¢ should divide 1 and hence p = =1 or =2
and g = = 1. Therefore,

+1 or =£2.

< 3
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By a physical verification, we can see that 2 is a root of f(x); that is, /(2) = 0.
Thus, x — 2 is a factor of f(x); in fact,

JxX) =@ —2)x2—"7x + 1).

Thus, f(x) is reducible over QQ as well as over Z.

EXERCISE 12(D)
1. Which of the following are UFDs? Justify your answers.
() ZIx]
(i) Q]
(iii) R[x]
(iv) Clx]
V) Z]
i) Z[]
(vil)  Z[x]
(viii)  Z,[x].

2. Prove that every field is an UFD.

3. LetRbe an UFD and f(x) € R[x]. Prove that f(x) is irreducible over R if and only
if f(x + a) is irreducible over R for some a € R.

4. Which of the following polynomials are irreducible over the UFDs mentioned
against them?

(@)
(if)
(iii)
(iv)
™)
(vi)
(vii)
(viii)
(ix)
)

15 —9x2 + 6x° + 2x* over Z
34+ 2x2+xPoverQ

4 + 2x + X’ over Z,

1+ x>+ x’overZ,

9 — x* over Z,,

1 +x3+ x0overQ

5+ 10x + 15x° + 2x° over Z
2+ 2x + x*over Q

9 —x’overZ,,

14 — 7x + 10x* over Q.

5. Prove that any polynomial over R of degree = 3 is reducible over R.

6. For any prime number p, prove that p — x" is irreducible over Q for any positive
integer n.
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7. Prove that 1 + x* is irreducible over Q and reducible over Z, for any prime
number p.

8. Determine all irreducible polynomials of degree 2 in Z,[x].

9. Give an example of a polynomial which is irreducible over Z but not irreducible
over Z,.
2

10. For any prime p, prove that there are exactly (p(p — 1))/2 irreducible monic
polynomials of degree 2 in Zp[x].

11. Let p be a prime number and
S =1l-x+x—-x+ -+ (-1lpw
Then prove that f(x) is irreducible over Z.

12. Let R be an UFD and F be its field of quotients. Prove Theorem 12.4.5 with R
and F in place of Z and Q, respectively.

12.5 EUCLIDEAN DOMAINS

Another important class of integral domains, about which we discuss in this
section, is the class of Euclidean domains. These arose out of attempts to
generalize the familiar Euclidean division algorithm for integers to elements
of arbitrary rings. Let us begin our discussion with the following.

Definition 12.5.1. An integral domain R is said to be an Euclidean domain if
there exists a function g : R — {0} — Z" satisfying the following conditions:

1. g(ab) = g(a)g(b) for allaand b € R — {0}.
2. Forany a and b € R with b # 0, there exist elements ¢ and » € R such that
a=gb+r andeitherr =0 or g(r)<g).
The function g is called the guage function (or Euclidean valuation).

In other words, an integral domain R is called an Euclidean domain if,
to each nonzero element a of R, there is an associated positive integer g(a),
called the guage of a, satisfying the conditions (1) and (2) above. Condition
(2) is called the Euclidean division algorithm and ¢ and r in (2) are called
quotient and remainder, respectively. We first mention the following simple
examples of Euclidean domains.

Example 12.5.1

1. The ring Z of integers is an Euclidean domain, in which the gauge func-
tion is defined by

g(a) = |a|, the absolute value of a,
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for any a € Z — {0}. Clearly, |ab| = |a||b|. To prove the division algo-
rithm, let @ and b € Z and b # 0. Without loss of generality, we can
assume that b > 0. Let g be the integral part of the rational number a/b;
that is, ¢ is an integer such that

a a
=— and +1>—.
=% 7%

Then, bg = a and bg + b > a. Now, put r = a — bq. Since a, b and g are
all integers, we get that » € Z and
a=qb+r, wherer=0or|r|=r<b=lb|

Thus, Z is an Euclidean domain.

Every field F is an Euclidean domain; for, define g : F — {0} — Z* by
gla) = 1foralla € F — {0}. Then, g(ab) = 1 = g(a)g(b) for all a and
be F — {0} and

a= (@ Hb+0=gqgb+r, whereq=ab™'! and r=0.

In the following, we exhibit certain elementary properties of the gauge

function of an Euclidean domain.

Theorem 12.5.1. Let R be an Euclidean domain with gauge function g. Then,
the following holds

1.

g()=1.

2. Forany 0 # a € R, ais a unit in R if and only if g(a) = 1.

3.

If a and b are associates in R — {0}, then g(a) = g(b).

Proof:

1.

follows from the facts that g(1) is a positive integer and g(1) = g(1 - 1)
= g(Dg(1).

Let 0 # a € R. If a is a unit in R, then there exists b € R such that ab = 1.
Then, b # 0 and

1 = g(1) = glab) = g(a)g(d).

Since g(a) and g(b) are positive integers, we get that g(a) = 1 = g(b).
Conversely, suppose that g(a) = 1. By the Euclidean division algorithm,
there exist ¢ and » € R such that

l=gqga+r, wherer=0 or g(r)<gla)=1.

If » # 0, then g(r) € Z* which is not true, since g(r) < 1. Therefore,
necessarily » = 0 and 1 = ga. Thus, a is a unit in R.
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3. Suppose a and b are associates. Then, au = b for some unit u in R. Now,
g(b) = glau) = g(a)g(u) = ga) (since g(u) = 1). <
Theorem 12.5.2. Every Euclidean domain is a PID.

Proof: Let R be an Euclidean domain with gauge function g. Let / be an ideal
of R. If I = {0}, then / = <0> and hence / is principal. Suppose that / # {0}.
Consider the set

A={gla):0Fa €I}

Then, 7 is a nonempty set of positive integers and, by the well-ordering prin-
cipal, 4 has a least member, say g(a) with 0 # a € 1. Now we prove that 4
= <a>. Since a € I, we have <a> C [. On the other hand, let x € 1. Then, by
Euclidean division algorithm, there exist ¢ and » € R such that

x=gqga+r, wherer=0 or g(r)<g(a).
Now, r = x — ga € I (since x and a € I). Since g(a) is least in 4, it follows

that » = 0 and hence x = ga € <a>. Thus, I C <a> and hence / = <g>. Thus,
R is a PID. <

Corollary 12.5.1. Every Euclidean domain is an UFD.

Proof: This follows from the fact that every PID is an UFD and from the
above theorem. |

Theorem 12.5.3. The ring F[x] of polynomials over a field F is an Euclidean
domain and hence a PID and an UFD.

Proof: Let F be a field. For any 0 # f(x) € F[x], define

2f(x)) = 250,

Since deg(f(x)) = 0, g : F]x] — {0} — Z"is a function.
Also, for any nonzero f(x) and A(x) in F[x],

g(f(x)h(x)) = 24l

= Qdeg(f(x)+deg(h(x))

— Ddeg(f) . Ddeg(h(x)

= g(f(x)g(h(x)).
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Also, for any f(x) and h(x) € F[x] with i(x) # 0, by the division algorithm for
polynomials, there exist ¢(x) and 7(x) € F[x] such that

) = q)h(x) + r(x),

where r(x) = 0 or deg(r(x)) < deg(h(x)) and hence r(x) = 0 or g(r(x)) <
g(h(x)). Thus, F[x] is an Euclidean domain. <

The following is a generalization of the well-known algorithm to find the
g.c.d. of any two positive integers.

Theorem 12.5.4. Let R be an Euclidean domain with gauge function g and a
and b € R —{0}. Let {¢ } and {r } be sequences of elements in R satisfying
the following:

b=gq,a+r,wherer = 0org(r)<ga)
a = gq,r, +r,wherer, = 0org(r,) <g(r)
ro=qpr, T, where P, = 0or g(r3) <g(r)

r,=qr, T, where r,=0or g(r4) <g(r)

Then, there exists n such that 7 = Oand 7, _
integer, then

= 4,7, If nis the least such

r.=gcd. {a, b}.

Proof: First observe that, since g(a) > g(r,) > g(r,) > ..., the above process
of getting ¢ ’s and r’s should terminate (at most after g(a) number of steps)
and hence .| = 0 for some n. Writing from bottom to top of the above equa-
tions, we have

rn*l = qn+lrn

rn—2 = ann—l + rn’ 0 # rn = rn—2 - ann—l

rn*} = qn*lrn*2 + rn*l’ 0+ rn*l = rn*3 - qn*lrn*Z

ro= gy, T r3,0 * r,=Tr Ty,

a=q2rl+r2,09&r2=a—qzrl

b=ga+r,0#r =b—gqa.

Tracing from top to bottom of the left hand side equations, we get that

rlr._,rlr . ...,r|aand r |b. Therefore, r is a common divisor of ¢ and b.
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Also, if d is any common divisor of a and b, then tracing from bottom to top
of the equations on the right hand side above, we get that

da, d\b, dlr, dlr,, dr, ..., d|r

n—1

and dr.

Thus, 7, is the g.c.d. of @ and b. <
Worked Exercise 12.5.1. Let R be an Euclidean domain or a PID and @ and
b € R — {0}. Then prove that the g.c.d. {a, b} exists and is of the form ax + by

for some x and y € R.

Answer: Since every Euclidean domain is a PID, we prove this result in a
PID. Consider the ideal aR + bR, Then, there exists d € R such that

aR + bR = <d> = dR.

Then, it can be easily verified that d is the g.c.d.{a, b} and d = ax + by for
some x and y € R.

Worked Exercise 12.5.2. Let R be an Euclidean domain with gauge function
gand a € R — {0}. Then prove that a is a unit in R if and only if g(ab) = g(b)
for some 0 # b € R.
Answer: Ifgisaunitin R and 0 # b € R, then

glab) = gla)g(b) = 1g(b) = g(b).
Also, if g(ab) = g(b) for some 0 # b € R, then

g(a)g(b) = glab) = g(b).

and hence g(a) = 1 (since g(b) > 0), so that a is a unit in R.
Worked Exercise 12.5.3. Let Z[v2]={a+b\2:a and b € Z}. Then prove
that Z[\/E ] is an Euclidean domain under the usual addition and multiplica-

tion of real numbers.

Answer: It can be easily proved that Z[\/E ] is a nontrivial subring of the
integral domain R and hence Z[\/E ] is an integral domain. Define

g:Z[N2]1— {0} — Z* by g(a+by2) =|a* — 25 |.
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Since a+b~/2 # 0 implies @ # 0 or b # 0 and hence |a*> —2b*| > 0

for, a> = 2b? has no integral solutions). Thus,
g

g(a+by2)>0 forall a+by2 € Z[V2].
Also, foranyx = a + b~/2 andy = ¢ + d~2 in Z[\2]1-{0},

g(x) = g((a+b2) (c+dv2))
= g(ac+2bd + (ad + be)2)
=|(ac+2bd)’ —2(ad +bc)* |
=|a’c* +4b°d’ + 4acbd — 2a’d”> — 2b*c* — 4adbc |
=|(a’ —2b)[|(c* —2d%)|
=g(x)g(y).

Next, letx = a + h2 and 0 Fy=c+ bd € Z[N2].
Then, ¢ # 0 or d # 0. Now,

_(a+bV2) (c=d\2) _

X
— a+ x/i, sa
y &t —2d? A Y

where « and S are rational numbers. Choose integers m and n such that
1 1
|m—al=— and |n—B=-.
2 2

Then, x = y(a—i—B\/E=(m+n\/§)y+[(a—m)+(ﬁ—n)x/5]y.
Now, [(a—m)+(B—n)\/§]y=x—(m+n\/§)y€Z[\/§]
Put r=[(a—m)+(B—n)x/2—]y. Then, x = yq+r,
whereq=m+n«/§ andr =0 or

g(r) =l (@=m)* =2(B—n)" ||¢* —2d" |

= %—I—% |c*—2d* |<|c® —2d’ |= g(p).

Thus, Z[\2] is an Euclidean domain.
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Worked Exercise 12.5.4. Determine the g.c.d. of 1 + x + x> and 1 + 2x +
3x* + x°in R[x].

Answer: We know that R[x] is an Euclidean domain. Let us follow the algo-

rithm given in Theorem 12.5.4.
Letf(x) =1 + x + x?and g(x) = 1 + 2x + 3x* + x°. Then,

gx)=(2+3x—xX+)N(1+x+x)+x+3
Il+x+x2=Cx—-2)x+3)+7
x+3= [lx]7+3
7
7=2-3+1
3=3-1+0.

Therefore, 1 is the g.c.d. of 1 + x + x?>and 1 + 2x + 3x* + x°. This is better
understood by the following method.

X +3x° +2x+1

x2+x+1 X —x*+3x-2
X +3x° +x+3
X +x+1
x+3 s x—
x“+x—6
x+31
—x
x |7
3112
3
1 |3
O.

Before we close this section, let us summarize various classes of integral
domains introduced in this section and discuss their inter relationships. Let
us fix notation for these classes as given below.

ID = The class of integral domains

FD = The class of factorization domains

UFD = The class of unique factorization domains
PID = The class of principle ideal domains

ED = The class of Euclidean domains

F = The class of fields.
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Theorem 12.5.5. We have the following inclusions among the above classes

FCEDCPID CUFD C FD C ID

and these are strict inclusions.

Proof:

1.

In Example 12.5.1 (2), we have proved that every field is an Euclidean
domain and therefore F C ED.

7 is an Euclidean domain, but not a field and hence F ; ED.

In Theorem 12.5.2, we have proved that every Euclidean domain is a
PID and therefore ED C PID. Consider the ring R given by

R={a+§(1+i\/ﬁ) ta andbEZ}.

Then, R is a PID, but not an Euclidean domain (the proof of this is little
bit involved and hence we skip the proof). Therefore, ED ; PID.

. In Corollary 12.3.4, we have proved that every PID is an UFD and hence

PID C UFD. The ring Z[x] is an UFD but not a PID (see Theorem 12.4.3).
Therefore, PID & UFD.

ID
FD
FD
PID,
ED

©

. Clearly, every unique factorization is a FD. We have seen in 12.3.... that

Z~—5 is a FD which is not an UFD. Therefore, UFD ; FD.

5. Clearly, every FD is an integral domain. There are integral domains
which are not FDs. That is, FD & ID. <
EXERCISE 12(E)

1. Let R be an Euclidean domain with gauge function g. Forany e and b € R — {0},

prove that a and b are associates if and only if a divides b and ¢(a) = $(b).
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2. Prove that Z[x] is not an Euclidean domain.
3. Prove that Q[x], R[x] and C[x] are all Euclidean domains.

4. If R is an integral domain which is not a field, prove that R[x] is not an Euclidean
domain.

5. Prove that any nonzero prime ideal in an Euclidean domain is maximal.

6. In any integral domain with gauge function g, prove that g(a) = g(—a) for any
nonzero element a.

7. Prove that, forany n € Z*, g: Z — {0} — Z" defined by g(a) = |a|" is a gauge
function on Z.

8. Prove that Z[\/g] ={a +b\/§ :a and b €7} is a Euclidean domain.

9. Let R be an Euclidean domain and a, b € R with b # 0. Let ¢, r € R such that
a = bq + rwith r # 0. Then prove that g.c.d. {a, b} = g.c.d. {b, r}.

10. Let x=—102+10+/3 and y =1+ 7+/3. Find g and in Z[+/3] such that x = yg + r
where either 7 = 0 or # = a+b+/3 with |a®> — 3b%| < 146.

12.6 SOME APPLICATIONS TO NUMBER THEORY

In this section, we apply the general results proved about Euclidean rings
to the ring of Gaussian integers and obtain a relatively difficult theorem
about prime numbers due to the famous mathematician, Fermat. First
recall that

Z[i]l = {a + bi: a and b are integers}
is an integral domain under the usual addition and multiplication of complex
numbers. In fact Z[i] is a subring of the field of complex numbers. Also,

recall that 1, —1, i and —i are the only units in Z[7] and that Z[i] is called the
ring of Gaussian integers.

Theorem 12.6.1. The ring of Gaussian integers Z[/] is an Euclidean domain.
Proof: Define g: Z[i] — {0} — Z* by
gla + bi) = a*> + b~

Note that a + bi # 0 in Z[i] implies that a # 0 or b # 0 and hence a*> + b?
is a positive integer.
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Foranyx =a + biandy = ¢ + di € Z][i]

2() = g((a + bi)c + di))
= g((ac — bd) + (ad + bc)i)
= (ac — bd)* + (ad + bc)?
= a’c® + b*d® + a*d® + b*c?
= (@ + b)(*+ &)
= g(x)g().

To prove the Euclidean division algorithm, letx = a + biand 0 # y = ¢ +
di € Z[i]. Then, ¢* + d* > 0. Consider the complex number

X (a+bi)(c—di) (ac+bd)+(bc—ad)i )
—= = =a+Bi
y (c+di)(c—di) A +d?

for some rational numbers « and 8. Now, choose integers m and n such that
1 1
loe—m|=— and |B—n|=—
2 2

we have x = (a + Bi)y
=(m + ni)y + (@ — m) + (B — n)iy.

Putg=m + niand r = [(« — m) + (8 — n) 1]y.
Then, clearly ¢ € Z[i] and

r=x— (m+ ni)y € Z[il.

Now, x = gy + r and either » = 0

or g(r) = ((a —m)’ + (B — n)’)g(y)

%ﬁ] g()<g(v).

<

Thus, Z[i] is an Euclidean domain. <

Corollary 12.6.1. Z[i] is a PID and an UFD.
Now, we are free to apply the properties of PIDs and UFDs to Z[i] to prove
the following purely number theoretic results.
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Theorem 12.6.2. Letp € Z" be prime and n € Z such that p does not divide
n. Suppose that we can find integers x and y such that np = x*> + y?. Then, p
can be expressed as a sum of two squares of integers; that is, p = a*> + b?* for
some g and b € Z.

Proof: First observe that any integer m can be treated as a Gaussian inte-
ger m +