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What is bioinformatics? 1
1.1 Introduction
Bioinformatics is an interdisciplinary life science field. This is a field which deals
with the collection and efficient analysis of biological data. In other words, it is a
recently developed science which uses information to understand biological phe-
nomenon. The research in bioinformatics is regarded as a domain which encom-
passes expanding, complex, and large datasets. It is a part of computational
biology which addresses the necessity of managing and interpreting the data,
massively generated in the past decade by genomic research. Bioinformatics is
the discipline that integrate the biotechnology and information technology, interpre-
tation and analysis of data, genomics convergence, development of algorithm and
modeling of biological phenomena. Bioinformatics is a wide encompassing branch
and is therefore difficult to define. For some it is still an ambiguous term encompass-
ing biological modeling, system biology, biophysics and molecular evolution.
Whereas for others it is simply computational science applied to a biological system.

Bioinformatics entails the usage of high technology solutions in biological exper-
iments through a variety of computer programs. Bioinformatics is becoming a vital
part of biology. Bioinformatics uses image and signal processing technology to derive
essential knowledge from vast volumes of data. In genetics, genome sequencing and
mutation analysis may be significantly important. Information plays a vital role in the
research for biologists and the creation of gene ontologies. It plays an essential func-
tion in the study of gene and protein influence. Bioinformatics tools help in explaining
and contrasting molecular biology evidences. It helps in recognizing the biological
processes and biological networks that are active in the biological system. We need
this in structural biology to simulate and forecast molecular activity.

Bioinformatics is a proliferating area which is currently in the foreground of sci-
ence and technology. Various institutes all over the world are heavily investing
(especially because of the pandemic) in possessing, transferring and exploiting
the data for future development. It is a valuable ticket at present, and bioinformatics
learners would thrive from the demand for jobs in private sector, in government and
academia.

There are several elements of science that contribute to bioinformatics. It also
implies to biological molecules and thus includes knowledge of the fields of
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molecular engineering, molecular biology, statistical mechanics, biochemistry, ther-
modynamics, molecular evolution, and biophysics. The use of computer science,
mathematical, and statistical principles are needed in the field. Bioinformatics is
at the intersection between experimental and theoretical research. Its not just about
“mining” data or modeling, it is about analyzing the molecular environment that
drives life from the perspective of evolution and mechanisms. It is genuinely
cross-disciplinary and is evolving. Like genomics and biotechnology, bioinformatics
is evolving from applied to fundamental research, from creating tools to creating
hypotheses.

Bioinformatics, Computational biology, and bio information infrastructure are
sometimes used interchangeably.

1. Bioinformatics relates to the methods, observations, and data storage utilized in
the genomic era.

2. Computational biology requires the usage of software to analyze biological
processes better.

3. Bio information infrastructure includes all the information software, compu-
tational methods, and networking networks supporting biology. The latter
dissertation may be seen as an informational scaffold for the first two.

1.2 History
Bioinformatics was first properly established 50 years back. Although the term “Bio-
informatics” was coined by Ben Hesper and Paulien Hogeweg in 1970 (Hesper and
Hogeweg, 1970), but the tracks of its emergence go back to 1960s with the efforts
put by Margaret Oakley Dayhoff, Russell F. Doolittle and Walter M. Fitch (Chang
et al., 1965). The contribution of Margaret is so important to this field that former
director of NCBI David J. Lipman called her “the mother and father of bioinformat-
ics”. There was need to compare and analyze a huge amount of protein sequences or
amino acids sequences from different organisms computationally as it was manually
impractical to handle such large data. This is what lead Margret O. Dayhoff, “the
first Bioinformatician” and her colleagues at the National Biomedical Research
Foundation in compiling the first ever “Protein Information Resource” (PIR), stating
that “analysis of protein was the starting point for bioinformatics” (Dayhoff et al.,
1974). They successfully organized the protein sequence data into various groups
and subgroups according to the requirement. Further contribution to the develop-
ment of bioinformatics was given by Elvin A. Kabat in the 1970s by his extended
analysis of protein sequences of comprehensive volumes of antibody sequences.
Further in 1974, George Bell and his associates initiated the DNA sequences collec-
tion into the GenBank, with the objective of contributing to the theoretical back-
ground to immunology. The primary version of GenBank was being prepared in
1982e1992 by Walter Goad’s group (Burks et al., 1987). Consequently, The DNA
Data Bank of Japan (DDBJ) and European Molecular Biology Laboratory
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(EMBL), “the world’s first nucleotide sequence database” were also made in 1984
and 1980 respectively.

The first conceptualization of Bioinformatics in Switzerland was in the early
1980s. Swiss bioinformaticians developed software to compare genetic nucleotide
sequences, created programs for the study of experimental peptide and protein re-
sults, invented computer tools for three-dimensional modeling structures of proteins,
and created databases of protein details. These individuals participated in the field of
bioinformatics and contributed to biology science in general. In 1998, Swiss bioin-
formatics became unified. The current five Swiss bioinformatics groups combined to
create the SIB (Swiss Institute of Bioinformatics), a charitable organization.

However, the most important development in these databases was the incorpora-
tion of the web-based searching algorithms which helped researchers in their
queries. GENEINFO was the resulting computer software developed by David Ben-
son, Lipman and associates. The software was made available through NCBI (Na-
tional Center of Biotechnology Information) web-based interface. Also, NCBI
was made available online in 1994 along with the tool BLAST (Altschul et al.,
1990). Afterward, several major databases which are still in usage like PubMed
(1997) and Human Genome (1999) came into existence.

Bioinformatics tools are growing evermore prolific and are increasingly expected
to replicate all results. To help students understand evolution more accurately, pro-
fessors are integrating this theory into biology students’ curriculum. Synthetic
biology, systems biology, and whole-cell modeling have emerged due to the ever-
increasing complementarity between computer science and biology (Hagen, 2000).

1.3 Biological databases
A biological database is a complex, extensive and complete structured collection of
biological data arranged in computer readable form which enhances the search speed
and retrieval. Biological databases have appeared as a response to the massive
amount of data provided by the low-cost DNA sequencing technologies. The first
database to develop was GenBank, which is a compilation of all the accessible
DNA and cDNA sequences.

Previously databases were perceived somewhat different. However, over the
course of time the term “biological database” has become a default concept. The
data is directly submitted to the biological databases for organization, indexing and
optimizing the data. The databases help students, scientist and researchers to find,
discover and analyze the related biological data by making it accessible in a format
which can be read and used on software’s. This is the primary purpose of these data-
bases, storing, managing and retrieval of biological information. A range of informa-
tion can be retrieved from these biological databases like binding sites, molecular
actions, biological sequences, metabolic interactions, motifs, protein families, molec-
ular action, homologous and functional relationships etc. A lot of Bioinformatics work
is based on data collection and manipulation. Any of these provide both “public” and
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“private” database references. Having those databases available to different computers
allows it far simpler for more users to communicate these databases efficiently.

Biological databases may be broadly classified into PRIMARY, SECONDARY
and DERIVED databases. And then there are further distribution. Primary databases
contain only sequential and structural information. These can also be called as
archival databases. They are loaded with experimentally generated data such as pro-
tein and nucleotide sequences. Experimental data are directly submitted to database
by scientist or the researcher. After the database accession number is given, the pri-
mary database data will never be changed: they become the part of the scientific re-
cord. Few examples of primary biological databases are: GenBank and DDBJ for
genome sequences, EMBL, Swiss- Prot and PIR for protein sequences and Protein
Databank for protein structures.

Secondary databases are those which constitutes data/information from primary
databases or the analyzed result of the primary databases. The primary databases
often have minimal sequence annotation information. A much more post processing
of the sequence data is required to convert raw data of sequences into more sophis-
ticated biological information. This implies the necessity for databases containing
computationally analyzed sequencing data which is obtained from primary data-
bases. Hence secondary database comes into the picture containing information of
the results of the analysis of primary data. Secondary databases are highly curated
and consists of more valuable information in comparison to the primary databases.
The databases comprise data such as signature sequence, active site residues and
conserved sequences. Few examples of secondary databases are: UniProt KB, Motif
databases, PDB and InterPro etc. (Fig. 1.1).

Composite or derived databases are the amalgam of the primary and secondary
databases. To enter the data as input in the database, it is first compared and then
sorted on the basis of the desired parameters. Primary databases are source for
extracting initial data and is then combined in conjunction based on specific param-
eters. They consist non-redundant data. Examples of composite databases are:
OMIM (Online Mendalian Inheritance in Men) and Swissport. Also, there are data-
bases which are specialized for a particular research interest, for e.g. HIV sequence
database, Flybase and Ribosomal Database project.

1.4 Algorithms in computational biology
Computational biology/Bioinformatics are interdisciplinary areas which are con-
cerned with employing computers capacities to address biological interests’ prob-
lems. The two terms are used interchangeably, but there’s a consensus formed
between the two. Bioinformatics refers or focuses on the activities which gives atten-
tion on developing and utilizing computational tools for the analyses of the biolog-
ical data. Whereas Computational biology refers to those activities which mainly
works on constructing or developing algorithm leading to address the biologically
relevant problems.
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Up until recently biologists have not had access to such massive quantity and
quality of data generated and stored in different databases discussed above. Over
the past 2 decades, unprecedented technical advancement has been made in produc-
ing biological data, techniques like microscopy, next generation sequencing, high
throughput techniques etc have contributed to data explosions. Researchers are pro-
ducing datasets that are so enormous that it has become impossible to analyze,
manage and make proper use of the data to understand biological process and their
relationships. This is what led to the introduction of the various algorithms in the
field. An algorithm is a process or description about how to solve a problem. Modern
day computer’s ability to perform and store billions of calculation and processes
makes it possible to use the amount of data generated not only in just biology but
any other field. The computational biology algorithms have several uses including
prove or disapprove a certain hypothesis.

The process of creating algorithms that resolves biological significant issues, in
computational biology comprises of two steps. First phase is to raise an interesting
biological question and to build a model of biological reality that makes it possible
to articulate the question as a computational problem. Secondly, construct an algo
which will be able to solve the formulated computational problem. The primary
step needs biological reality knowledge, while the latter requires algorithmic theory
knowledge. The algorithm quality is a combination of its space assumption and
running time and the answers of biological relevance it produced. Data scientist
frequently torture the various data structure in order to reduce the ambiguity of space
and time. This approach has explicitly benefited researchers well in the field. Hence

FIGURE 1.1

Biological information to data.
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having a working knowledge of basic computational algorithm is of paramount
importance to bioinformaticians or researchers in the field, also their expertise in
the development of novel algorithm would have a strategic advantage in both
academia and industry (Fig. 1.2).

There are many algorithms already existing in the field, helping in the current
research. Some of them are Dynamic programming: Needleman Wunsch (Global
alignment) and Smith waterman (Local alignment), Hidden Markov Models, Prin-
cipal Component Analysis Clustering, Phylogenetic tree construction, machine
learning applications (SVM, neural network), microarray data analysis, protein sec-
ondary structure prediction and many more.

Global and Local sequence alignment uses our understanding of a organism’s
proteins to understand more about the proteins of other organisms. Next HMM
are used for sequence modeling or model a DNA sequence. In HMM, the probability
of happening of an event is dependent on its previous state. This model uses a prob-
abilistic finite state machine in which a letter is emitted depending upon the present
state probability and then move to next state. The next state can be possibly e equal
to the original one. In gene regulation networks, they formed because of the different
protein’s interaction in an organism. The various proteins regulate each other and,
depending on the structure of their interactions, the cell type is determined (Crom-
bach and Hogeweg, 2008).

1.5 Genetic variation and bioinformatics
Genetic variations are the modifications (changes) in the chromosome sequences.
Variation is also the reason why two individuals of the same species having similar
characteristics, but are not identical. It is the engine of evolution which enables

FIGURE 1.2

Challenges in biology solved through algorithms.
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organisms to conquer the environmental challenges they meet (Stoletzki, 2008). It
may be both damaging and effective in the development of efficient mechanisms
in cell factories to tackle changes and survive. In the evolution of biotechnology, ef-
forts have been made to make use of genetic variation to our advantage in order to
produce strains with beneficial phenotype. It is also stated as the variation in the se-
quences of DNA among people within a population and it happens in somatic cells
as well as germ cell (egg and sperm cells). The only difference that exists is the vari-
ation in germ cell can be inherited through one person to another person, hence
impacting population dynamics and subsequently evolution. The main cause of vari-
ance are recombination and mutations. Mutations are said to be the original source
of variance causing permanent alteration in DNA sequence. It can be harmful, bene-
ficial or neutral to the organism. The other main reason for genetic variation is
recombination. Every organism has a combination of genetic information from their
parents. Thus, recombination happens when these genetic materials combine or say
homologous DNA strands are crossed and aligned. SNPs (single nucleotide poly-
morphism) are the genetic variation which is very common among people. Every
SNP reflects a variation in the DNA base A, G, C, T of a person’s genome. They
occur on average once in every 300 bases and are also present between genes.
The core priority area of modern medical research is studying the effect of SNPs
on human health. In more than 1% of population Single nucleotide substitution
can be observed. Numerous algorithms have been applied to evaluate the impact
of SNPs mainly focused on the human genotype data analysis which classifies var-
iations either diseases-causing or neutral, tolerant or intolerant and deleterious or
neutral. Which implies that the genetic variation would either expected to have no
impact or inflict some significant negative effects on the phenotype. The one down-
side to these algorithms is that they are classifiers build on existing knowledge and it
is well said that biology is the science of exceptions, presently scientific community
has able to uncover only the tip of the ice burg representing biological phenomena.
Therefore, these tools are built on the assumptions which we have onboard presently.
These tools are used for predicting disorders and are mainly used for diagnostic pur-
poses. There are many available tools and databases for predicting the effects of
SNPs. Some of them are Variant Effect Predictor (VEP) which evaluates the impact
of variants on genes, protein sequences, transcript etc., SIFT (Sorting Intolerant from
Tolerant) is sequencing homology-based tool which filters tolerant amino acids and
also determines whether the substitution of amino acid in protein would have a
phenotypic effect. DbSNP is the SNP database of NCBI, which contain information
on non-polymorphic, microsatellite and deletion/insertion forms.

Bioinformatics in Genetic variation covers the following areas;

(a) Latest algorithms and software development for genetic variance analysis and
application with pipelines and visualization tools.

(b) Genetic variations analysis in the genome; DNA and single nucleotide poly-
morphisms (SNPs); techniques to assess numbers of people with a disease;
study large-scale data sets.
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(c) It involves studies of data sets, and study of recent methodological advances in
the area of genetics.

(d) Involve in genetic variance identification, functional annotation, pathway
simulation, and analytical methods built for different sequencing platforms.

1.6 Structural bioinformatics
“Structural bioinformatics is a subset of Bioinformatics that deals with the predic-
tion and analysis of 3D structure of Macromolecules such as DNA, RNA, and Pro-
teins.” And the second thing which comes is why understanding the structure of
macromolecule is important. The reasons are first: structure determines function,
so learning structure helps in understanding of function. Secondly the Structure is
more conserved than the sequence, hence enabling identification of a much more
distant evolutionary relationship. Thirdly understanding the structural determinants
enables the design and modification of proteins for industrial and medical benefit.
The structural bioinformatics field and concepts related to it offers not only a way
of coordinating views about sequence-structure-function questions but also a mech-
anism for detecting unobserved behavior and proposing novel experiments (Konings
et al., 1987; Schuster et al., 1994).

Proteins are essential components of cells of living species. The structural spec-
ificity of a protein is related to the role of the protein. Protein structure visualization
is a subject of recent biochemistry research and is an essential method for structural
bioinformatics. Most often used is: Cartoon: This illustrates the secondary structure
variations for the protein. Besides, as a-helix is often interpreted as a form of a
screw, b-strands is also described as arrows, and loops as arcs. Lines: Each atom
is depicted by thin lines and allows for a lower cost of data in a visualization. Sur-
face: In this visualization, one can see how the molecule appears. Sticks: There are
covalent connections between amino acid atoms in proteins. This kind of cluster
graph strategy is most widely used for visualizing relationships between amino acids
(Fig. 1.3).

FIGURE 1.3

Amino acid chain to protein 3D structure.
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A substantial majority of bioinformatics study focuses on the estimation, inter-
pretation and simulation of protein 3D structures. Proteins first 3D structure (that
of myoglobin) was experimentally determined in 1958, through X-ray diffraction.
However, in 1951, Pauling and Corey set the first milestone in the protein structure
prediction. As in other fields of biological sciences, it is now possible to predict sec-
ondary and tertiary structure using computer calculations and that too with varying
degrees of certainty. High-throughput methods have given the knowledge required to
relate protein structures to their results. This structural and therapeutic details can be
valuable for bioinformatics applications in medical science. Computerized visuali-
zation of the protein models provides insights into biological processes that cannot
be appropriately described otherwise.

Though advances in 3D structure prediction field are vital, it is significant to
know that proteins are a dynamic network of atoms rather than being static. With
many advancements in biophysics, force fields have been designed to explain
atom interactions between themselves, which enabled the development of tools to
model protein molecular dynamics in 1990s. Even though tools were developed
and theoretical methods were available, but because of the huge computational re-
sources needed, it remained rather complicated to execute molecular dynamics
simulation. It can be explained by the example that it required weeks for the calcu-
lation of a microsecond simulation of a protein, using a supercomputer with 256
CPUs. Despite several improvements in the modern computers power like the use
of GPU (Graphics processing units) or graphics card, it is still not accessible to
perform molecular dynamics simulations on reasonable time scale. But yes,
increasing computational power in conjunction with the increasing data have
made the process a little bit convenient.

1.7 High-throughput technology
High-throughput sequencing methods have become important in the field of
genomic and epigenomic studies. With the advent of increasingly advanced
sequencing tools, the amount of DNA Sequencing Approaches has risen tremen-
dously. It has revolutionized the molecular biology field by enabling high-scale
whole genome sequencing and also a wide variety of experiments to study the inter-
nal cell workings explicitly at the RNA or DNA level. The data generated is the find-
ings of widespread molecular project like gene expression analysis, multiple
projects of genome sequencing, protein-protein interactions and analysis of geno-
mics. They are compiled and deposited in a number of databases.

High throughput sequencing is generally divided into two classes: RNA seq and
Genome sequencing. In the latter one, sequencing of fragmented genomic DNA is
done and reads sequence is used for the assembling of the while genome. But on
the other side, RNA-seq attempts to read the sequence taken from the RNAs. In
both the cases, reads may be paired end or single end. For RNA seq, reads are pro-
duced from both the ends of the longer fragmented RNA or DNA. While choosing

1.7 High-throughput technology 9



High throughput technology the user should consider the quality control issues, sam-
ple collection, along with the biological hypothesis being tested.

It is a technology developed as an alternative to microarray. Although high
throughput technology is also comparatively more costly than the microarray, it still
has many benefits for the evaluation of the factors that influences the gene expres-
sion regulation. For e.g.: microarray is limited to the model organism to which
the microarray has already been built while HTS may be extended to a non-model
organism. But High throughput methods are now getting cheaper and are likely to
replace even fingerprinting methods including analysis of traditional clone library.
High throughput sequencing methods provides the capacity for the detection of
rare phylotypes particularly, effectively offering quite reliable estimates of relative
abundance and assessment of diversity indices. The key benefit of HTS is that it pro-
duces good quality gene expression data sets. There is a need of specialized tool for
viewing, storing, indexing, organizing and analyzing biological and computerized
data. Thus, bioinformatics is the bridge between computational and biological sci-
ences, which can provide a deeper insight into this field. Data sets of HTS are
both complex and high dimensional in nature. It is quite challenging both computa-
tionally and algorithmically to integrate such data with various other data sets in or-
der to attain profile of a diseases completely. To integrate HTS data, network -based
approaches have the ability to incorporate data from various sources while ensuring
results that are relevant. There are many multidisciplinary programs like molecular
tumor boards that put together biologist, physicians and bioinformatics, which helps
in addressing the challenges of translating the data that are important to health care
providers and patients. Substantial computational power is needed by the related
algorithmic approaches. High Performance computing (HPC) offers resources
which can be exploited by computer/bioinformatics researchers. Some of the re-
sources offered by HPC are cloud computing platforms, GPU (Graphic Processing
Unit), or clusters. Every resource is different in terms of performance, technology,
ease and scalability of implementation, and cost. The table shows example of
High Throughput applications which uses GPU, cloud or other resources (Table 1.1).

Table 1.1 High throughput computing devices.

S.NO. HPC High throughput applications

1. GPU Read mapping,
Process-intensive task (RNA-seq alignment)

2. Clusters Self-Organizing Maps (SOM)
Exome analysis workflow

3. Cloud Used by private and public clouds like 1000 genome project and
international cancer genome consortium.
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1.8 Drug informatics
Drug Informatics relates to the combination of computer techniques and pharmacy
expertise to discover and examine drugs. Drug-Informatics is the study of relation-
ships between drugs, their mechanisms, and structures, focusing on medication
awareness and improving the quality of life. It is not manually possible for health-
care professional to hold all of the information which is required to provide medical
care with safety and efficacy aided by the scientific knowledge present today. The
scenario can further worsen as there is huge increment in the complexity and volume
of data regarding mechanisms of diseases generated through genomic revolution.
The solution to this whole mess is the acquiring of thorough technologies and tech-
niques for the management of the data. And that’s where drug informatics comes
into picture as it enfolds the area where these technologies and techniques affect
the use of drug data in a commercial, clinical or research setting.

It is the sum of all data and information generated throughout the life cycle of a
drug. The delivery of this information from lab to patient is not direct. It involves
drug informatics to provide specific information related to the patient. The sources
of drug informatics have been classified into 3 categories: primary, secondary and
tertiary. Primary level of literature includes data from the research lab of a university
or a pharmaceutical company or even the clinical observations from a hospital. It
also includes unpublished and published data from various journals but not every
published literature in a journal is said to be primary literature, such as editorials
or review articles are not said to be considered as primary literature. Secondary level
of literature consists of the data created as a repercussion of the use of data originally
accumulated for non-clinical purposes like pharmacy benefit reimbursement and
management. It also consists of sources that either abstract or index primary litera-
ture, with the intention of leading the individual to the appropriate primary literature.
Tertiary literature contains material which has been compiled and condensed by the
editor or author to provide a short and simple overview of the subject. Few examples
of this consist of journal review papers, compendium textbooks and general data
which can be downloaded on the internet (Fig. 1.4).

During the evolution of the drug informatics and its practices the healthcare
sector was faced significant challenges: rising prices, excessive loss rates, and
disgruntled patients and providers. Then entered the information technology appli-
cations in the field during the 1960s which focused on clerical and financial systems.
With the advent of effective network technology and personal computers in 1980s,
there came the introduction of more clinically oriented computing systems for
healthcare. It is still a field which is still new particularly in comparison with other
disciplines of medical. Drug informatics is an exponentially growing field with the
application of information technology and computer science to health and medical
data. It encourages the technology use as an essential resource to efficiently manage,
analyze, organize data on the use of drugs on patients. The fundamental aim of the
field is to disseminate two categories of information knowledge-based information:
consists healthcare scientific literature and patient specific information: generated

1.8 Drug informatics 11



during taking care of the patient. Policy makers and other leaders in health infor-
matics are now inclined toward the improvement of the safety and quality of health
care systems while at the same time lowering the cost.

1.9 System and network biology
Network and Systems Biology is the analysis of complex interconnecting systems
through the comprehensive method. Network and systems biology attempts to
explain the interaction network between hundreds of various biological molecules
concurrently. Biological science is undergoing two increasingly evolving phenom-
enon: first is the increased computer capabilities and advancement in software
tools, secondly advent of High throughput biological data on proteomes, transcrip-
tomes, genomes and so on. The biological field has become a data intensive field
due to which computer science and biology are now parallel to each other along
with fields like algebra, chemistry, physics and statistics. The integration of these
fields has contributed in the development of network biology, bigdata and other di-
visions of biology. The aim of the network biology is to comprehend cells or or-
ganisms as a whole at different stages of mechanism and functions. The
difficulties of analyzing and evaluating massive biological networks and molecular
data is now faced by system biology. The types of data in system biology are
sequence data: DNA sequences, Molecular structure data of DNA and RNA
extracted by using NMR and X-ray crystallography, Gene expression data, binding
sites and domains data, protein -protein interaction and metabolic pathways data.
Generation of network is done after receiving data from different data types. After

FIGURE 1.4

Schema of drug informatics.
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this multivariate analysis is done of the network, using regression analysis, PCA
(Principal Component Analysis) and Clustering. Some of the applications of
network algorithm in system biology are: Function prediction: system level
approach for determining the functions of an entity which is not known is carried
out by network creation of that entity along with the unidentified and identified en-
tities, Protein Complex detection: done using Y2H (yeast two hybrid system) and
Affinity purification- Mass Spectrometry, Analyzing evolution, Drug development,
Disease diagnosis and Interaction prediction (Crombach and Hogeweg, 2008; van
Hoek and Hogeweg, 2006; Lindenmayer, 1968).

1.10 Machine learning in bioinformatics
Machine learning is a technique for analyzing large amounts of data and devel-
oping predictive tools. While logical and computational algorithms pass the input
data through some logical rules or mathematical operations and provide the desired
output, on the other hand machine learning algorithms are trained on data consist-
ing of input and their outputs and formulate the rules for calculating the outputs
during training. Thus, machine learning can be used to calculate a predictive output
from new input data. Machine learning techniques are based on probabilities and
statical functions, and they attempt to fit the training data into a mathematical
model or function. Machine learning has become critical for solving complex
problems in the field of genomics. Machine learning has emerged as a savior as
the rapid evolution of high throughput technologies outpaces the development of
techniques capable of making sense of all available data. As with any other field
of science and technology, life science has embraced an Artificial Intelligence-
based approach to dealing with the avalanche of data generated (Minsky and
Papert, 1969) (Fig. 1.5).

In general, machine learning algorithms can be classified into three categories:
supervised learning, unsupervised learning, and reinforcement learning. When
both the input and output variables are known, supervised learning is used; this tech-
nique is primarily used to develop predictive tools based on known data. Unsuper-
vised learning is used in cases where the output results are unknown, but we attempt
to cluster data points based on their similarities or dissimilarities. Unsupervised
learning is used to discover correlations and variations in data or to identify outliers.
Reinforcement learning is used in situations where a dynamic environment requires
multiple outputs or a series of multiple outputs for specific inputs. Algorithms are
trained to select the best output based on a reward and punishment system, where
the correct output is rewarded and the incorrect output is punished. At the moment,
machine learning is being aggressively applied to nearly every problem in bioinfor-
matics. As a result, machine learning has become a necessary tool in the toolbox of
every bioinformatician. Chapter 9 of this book contains a more detailed discussion
of machine learning algorithms and their applications.
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1.11 Bioinformatics workflow management systems
A bioinformatics workflow management system is built primarily to compile and
implement a sequence of bioinformatics steps. As new pipelines are being developed
to analyze the data generated from various sources, standardization of these pipe-
lines becomes essential for the reproducibility of results. Pipelines are first divided
into their components then each components are built individually such that their in-
puts and outputs are in standard form and can be integrated independently when
require.

There are numerous workflow frameworks. Experts from various fields like have
developed some of the leading research workflow models. Such workflow is based
on an abstract description of how a computational pipeline continues in the context
of a directed graph. Each framework usually features a visual interface, enabling
users to construct complex programs by joining the input and outputs of various
components form various pipelines without becoming fluent in computer
programming.

Various workflow management systems exist like;
KNIME (Konstanz Information Miner): It is a free, open-source data process-

ing framework. Many tools combine to build complex structures for machine
learning and data mining under the modular term “Lego of Analytics.”

Online HPS: OnlineHPC is an online toolset that offers high-performance
computing and job flow services to broad agencies. An online group of scholars
working on computer systems science has developed.

FIGURE 1.5

Schema of a machine learning problem.
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Galaxy: Galaxy tools help scientists without computer programming to handle
computational biology results.

UGENE: UGENE is a software application for bioinformatics. It operates on
Windows, Mac OS X, or Linux operating systems. UGENE software helps geneti-
cists examine genomic details such as DNA genomes, genome descriptions, phylo-
genetic trees, and assembly files. The data can be processed both locally and online
(e.g. a lab database).

Gene Pattern:GenePattern is a publicly accessible computational biology open-
source software kit produced and built at the Large Institute, built to replicate new
genomic analyses by researchers.

1.12 Application of bioinformatics
Bioinformatics is a multidisciplinary area which develops software’s tools and
methods for analyzing the biological data. The advances in the both computer sci-
ences and molecular biology over the past 30e40 years has contributed in the devel-
opment of bioinformatics. Bioinformatics key areas include sequence alignment,
genomics, proteomics, molecular phylogenetic and many more. It is intended to
set up an automated archive that catalogs genomes and protein sequences from
single-celled species to multicellular ones. This approach enables three-
dimensional structures of complicated molecules to be studied and interpreted. Bio-
informatics is a mixture of mathematical, bio-chemical, and numerical approaches
to analyze human, biochemical and biophysical evidence. Bioinformatics is con-
cerned with gene sequences and their encoded details.

The bioinformatics field has become important for basic molecular biology and
genomic research along with having a significant influence on various fields of
biomedical science and biotechnology. Bioinformatics is being used in almost every
field of biology starting with medicine the various applications of it are:

Drug Designing: Changes in drug designing happened within a decade when the
first 3-D protein structure was illustrated. The information of target protein 3-D
structure was incorporated into the drug design procedure. In the process of drug
designing the structure of protein can influence the whole process at any stage.
Various online tools and software’s have been made to make for better accessibility
and results. For e.g.: Auto dock.

Personalized medicine: With the advancement of the pharmacogenomics area,
clinical medicine can become more personalized. This is an analysis about how ge-
netic inheritance of an individual influences the body reaction to drug. Till now, phy-
sicians were using trail and error methods to the determine the right medication to
treat a single patient, since people with the same health symptoms can show a wide
variety of reactions to the same therapy. In last decade personalized medicine has
emerged which allows doctors to prescribe best dosage and available drug therapy
from the start by analyzing the genetic profile/biomarkers of the patient (Anderson
et al., 2008).
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Gene Therapy: It is the approach used in the curing, preventing and giving treat-
ment of the diseases by changing the expression in the genes of a person. With the
use of bioinformatics tools, the possibility for the use of genes itself to cure diseases
have become the reality now.

Microbial Genome Applications: The emergence of full genome sequences and
their ability to provide deeper understanding of the microbial ecosystem as well as
the capabilities, could have far reaching and wide consequences for energy, indus-
trial, environmental, and health applications. After the genetic material analysis of
these organisms, researchers may start to known these microbes in their primitive
form and identify genes that provides them their remarkable ability to live under
harsh conditions.

Evolutionary studies: Genome sequencing of all the three organisms, archaea,
bacteria, and eukaryote signify that evolutionary studies could be carried out in the
pursuit of determining the tree of life and bioinformatics can surely help using phy-
logenetics studies.

Computational approaches for bioinformatics expand knowledge and strategies
for cellular and molecular levels into information for moving up to the level of inan-
imate structures such as habitats. Genome sequences offer a way of recognizing the
usual biological mechanisms, clarifying the malfunctioning of genes contributing to
diagnosing diseases and designing new medicines. There are so many applications
of bioinformatics in various fields of agriculture, microbial genome and medicine
etc. Using bioinformatics will help biologists and researchers to excel in the exper-
iments and will also helps in extending their skills in data processing more reliably
and quickly.
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Introduction to biological
databases 2
2.1 Introduction
A database is a large collection of well-organized data designed to remain intact over
time. Databases are typically associated with a piece of computer software that al-
lows users to alter (i.e., update), search for, and retrieve specific sets of data that are
kept within a computer-based framework. The DBMS software, which stands for
“database management system,” collaborates with the user application, and the data-
base to store, manage, and change data in such a way that it may be utilized to get
information that is of use. To obtain data, and create tables or objects, insertion, dele-
tion, and modification of data in a database, are done through queries written in
query language specific to a DBMS. Some of the examples of DBMS include
MySQL, Oracle, and PostgreSQL.

Among different sorts of databases, the ones comprising the databases applicable
to natural sciences like molecular science and bioinformatics are called biological
databases. In the current situation, the significance of biological databases can be
perceived from the accompanying focuses:

• Huge volumes of raw data, such as raw sequencing, proteomes, and other types
of data, are being generated at a very rapid pace due to many technological
advancements in molecular research and proteomics and the cheap cost of high-
throughput genome sequencing. As a result, the capability and handling of this
incredible data are among the most pressing issues facing genomics at the
moment.

• It contributes to the development of customized medicine by helping prescribe
the most effective drug.

• This approach allows for the modification of either the patient’s or the person’s
DNA to treat genetic diseases.

• As of now, biological databases have become the focal point of bioinformatics.
Through the different information mining devices, all-natural data can be
effortlessly gotten to, consequently saving time, assets, and endeavors.

• Additional uses include the manufacture of bioweapons, the investigation of
evolutionary processes, the improvement of agricultural yields, and the increase
of the nutritional value of food.
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• With the emergence of the machine learning era, NLP is being utilized for
automated curation of data, and thus biological databases allow knowledge
discovery (when the raw data is entered, there is hidden information that is not
known beforehand; entry into the database helps uncover those undiscovered
connections between a piece of information entered, which is called knowledge
discovery). This facilitates the uncovering of new biological insights from raw
data.

• Multiple-point access is possible, as is convenient retrieval of publicly accessible
data.

• improved indexing (for global access).
• reduced redundancy as data is curated computationally and manually.

2.1.1 Characteristics of biological data
The majority of other forms of data are substantially simpler in comparison to the
complexity of biological data. The definitions of this kind of data have to be able
to show both the intricate substructures of the data and the relationships that exist
between them to guarantee that no information is lost during the process of
modeling biological data. This is the only way to prevent any information
from being overlooked. Not just in a hierarchical, binary, or tabular layout, but
the data model should be able to display any amount of complexity included in
any data schema, relationship, or schema substructure. For instance, the National
Center for Biotechnology Information (NCBI) biological data model interprets a
biological sequence as a straightforward integer coordinate system, to which
many types of data may be connected. The coordinate system is connected to a
vast amount of information, including the sequence in which amino acids are
found in the body.

The quantity and range of data are quite different from one another.Therefore,
there must be some degree of adaptability in the handling of data kinds and values.
A single piece of data may need to be represented by more than one data type. This is
since biological data structures often include exceptions. In addition, the sorts of
data that are gathered for various species and genome projects sometimes overlap
with one another.

In biological databases, schemas are subject to constant modification. The
majority of relational and object database systems do not now support the addi-
tion of new fields to the schema. Therefore, nucleotide sequence databases like
GenBank will re-release the whole database with new schemas rather than mak-
ing incremental improvements to the system as required, which may seem invis-
ible to the user.

People who work with biological data often need to review prior versions of the
same data. As an example, GenBank makes use of Accession. The version number in
the flat file entries helps keep tabs on the protein sequences. In addition to this, the
version contains a GI number, which denotes a certain sequence. While the acces-
sion number does not change throughout updates, it does get a new GI number if
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there is a modification to the protein sequence. GenBank is a public database that
focuses on nucleotides; however, when nucleotides are translated, proteins are
created from the nucleotides (Gligorijevi�c and Pr�zulj, 2015).

2.2 Types of databases
Most databases can be put into one of three main groups: primary databases, second-
ary databases, and composite databases.

2.2.1 Primary database
Primary databases, which are also known as archival databases, are made up mostly
of datasets that were generated through experiments. These datasets include things
like nucleotide and protein sequences as well as information on how macromole-
cules are assembled. Users can augment this fundamental information by adding
functional annotations, references, and linkages to other databases. The material
was entered into the primary database by the researchers themselves. As soon as
the information is received, it is included in the scientific record and assigned a
unique number that is referred to as an “accession number.” Types of primary data-
bases include the following:

1. Primary nucleotide sequence databases: The three most significant databases
that save raw nucleic acid sequences and make them accessible to users are
GenBank (Bilofsky and Christian, 1988), EMBL (Kanz et al., 2005), and DDBJ
(Okubo et al., 2006). Users may access these sequences via these databases.
Users may also access the sequences by navigating through these databases.
You may access GenBank in the United States by going to the internet gateway
for the National Center for Biotechnology Information. GenBank is a database
that stores genetic sequences. The headquarters of GenBank may be found in
the United States of America. In their respective regions of the globe, the Eu-
ropean Molecular Biology Laboratory (EMBL) and the DNA Databank of
Japan (DDJB) may be located. The European Molecular Biology Laboratory,
which is also known as EMBL, is in the UK, while the DDJB is in Japan.

2. Microarray/Functional genomics databases: The study of trials that make use
of high-throughput technologies to assess transcripts, proteins, and metabolites
is what is known as the field of functional genomics. These investigations need a
great deal more information regarding the design, sample, and procedures
utilized than genomics does since they are highly dependent on the circum-
stances. For functional genomics, we want databases that adhere to both the
current and emerging data quality requirements. There are a few functional
genomic databases that concentrate on microbial genomes, and there are a few
different methods that may be used to build up functional genomic databases.
However, functional genomic databases are not yet particularly prevalent.
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3. Protein sequences and structure databases: PIR-PSD and SWISS-PROT
(Boeckmann et al., 2003) are both examples of databases that hold the pro-
tein sequences that have been determined. PIR-PSD is located at the National
Biomedical Research Foundation (NBRF) in the United States of America,
while SWISS-PROT is housed in Switzerland at the Swiss Biotechnology
Institute (SBI). During the development of the PIR-PSD, a collaboration be-
tween the PIR, the MIPS (Munich Information Center for Protein Sequences,
Germany), and the JIPID (Japan International Protein Information Database,
Japan) was essential. The PIR-PSD is now a complete object-relational database
management system that is well annotated and has no unnecessary components
(DBMS). The PIR-PSD is unique in that it organizes protein sequences into
groups by using the concept of “superfamilies” as its organizing principle. In
addition, the PIR-PSD sequence is partitioned into groups according to the
sequence motifs and homology domains that it contains. Homology domains
might be compared to the building blocks of evolution, while sequence motifs
refer to functional locations or regions that have not undergone any changes.
The approach of categorization makes it simpler to see how the sequence,
function, and structure are all interconnected with one another.

2.2.2 Secondary database
The original database’s information is transferred to a secondary database. A sec-
ondary sequence database contains data such as the conserved sequence, signature
sequence, and active site residues of protein families discovered by repeated
sequence alignment of a set of related proteins. The PDB entries are stored in a sec-
ondary structure database. There are listings for all alpha proteins, all beta proteins,
and so on, according to how they are created. These also include information about a
protein’s recurring secondary structural motifs. Secondary databases created by
various academics and housed at their labs include SCOP, created at Cambridge Uni-
versity; CATH, created at University College London; PROSITE, created by the
Swiss Institute of Bioinformatics; and eMOTIF, created at Stanford (Rother et al.,
2005).

1. Protein families, domains, and structure databases: Protein databases are now
indispensable to the practise of modern biology. The structures, functions, and,
most importantly, the sequencing of proteins are the subjects of a significant
amount of current research. When investigating a novel protein, the investiga-
tion often starts with a search via several databases. By comparing individual
proteins or whole protein families, we may learn about the connections that
exist between the proteins in a genome or between the proteins of different
species. This is far more information than we might get by examining a single
protein on its own. InterPro, PROSITE, SCOP, CATH, and the NCBI Conserved
Domain Database are all included here (CDD).
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2. Protein sequences and functional information databases: The functional in-
formation consists of a collection of data that the functional head needs to
successfully perform and administer the function. Because this knowledge is
solely helpful for performing that one function, it cannot be put to use in any
other context. This information will be used by a manager to plan and handle the
work at hand.

3. Nucleotide (Genes/Genomes) sequence and annotation databases: The pro-
cess of obtaining information on the structure and function of a protein or gene
from a raw data set is referred to as “genome annotation.” This is accomplished
by the use of a variety of mining methods, including analysis, comparison,
estimate, and precision. It is essential to annotate the genome since sequencing
the genome or DNA results in the creation of sequence information that pro-
vides no insight into how the system functions. After the genome has been
sequenced, the data must next be annotated to provide further details about the
genome’s structure and the way it functions, includes NCBI, Ensembl, etc.

2.2.3 Composite database
The necessity to search in many places is eliminated when using a composite data-
base since it integrates the information from many different major databases. The
search methodology used by each composite database is based on a separate primary
database as well as a unique set of criteria. In the composite database, there are many
different ways to search for the information you need. Researchers are granted un-
restricted access to the nucleotide and protein databases that are stored on the
massive, high-availability, redundant array of computer servers that are maintained
by the National Center for Biotechnology Information (NCBI), which is the organi-
zation that is responsible for hosting these databases. In addition to this, a link is pro-
vided to the Online Mendelian Inheritance in Man Database, which has information
on the proteins that may be associated with inherited diseases. There are situations in
which a data collection may function as either a main or secondary database. For
instance, primary peptide sequences may be easily uploaded to the Uniprot database.
In addition, Uniprot can collect protein clusters from primary peptide sequences. It
may also have the automated and manual explanations from TrEMBL and SwissProt
(Bateman et al., 2017).

2.3 Models of databases
The logical framework that is used for the storage of computational results via
DBMS is referred to as the database model. The kind of database model that is
used is a major factor in determining how effectively data can be retrieved and
stored. Earlier database models consisted primarily of two-dimensional data tables
or a single file containing fields and their values. But because data has grown so
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much in the last few decades, database models have become more complicated and
linked.

A few of the database models we’ll cover in the next sections are listed below.

• Flat File
• Hierarchic
• Network
• Entity-Relationship
• Relational

At least one presentation is possible within the context of every information base
administrative structure. The optimal structure is determined by the consistent
connection of the application’s data as well as the application’s requirements, which
include exchange rate (speed), unswerving quality, practicability, adaptability, and
cost. The perfect structure is determined by these factors. Even though products
can provide support for more than one model, the vast majority of information data-
base management systems are designed to revolve around a certain information
model. Any given coherent model may be actualized using a variety of different
physical information models. Because the choices that are made have such a large
impact on how the program is run, the vast majority of database programming
will provide the user with some level of control over the process of tuning the phys-
ical execution (Fig. 2.1).

A model is not only a means of organizing information; rather, it also outlines a
variety of actions that may be carried out on the data. These activities include: For
example, the social model characterizes tasks such as “select (venture) and join.”
Even though the results of these actions might not be clear in a certain question lan-
guage, they are still the building blocks on which a question language is made.

2.3.1 Flat file
The most fundamental kind of database is one in which information is kept in the
form of a file or a two-dimensional array (table) and is organized into columns,
rows, and values. In this architecture, the columns are responsible for defining the
various fields, while the rows hold the data of a single record and are linked together
by a shared ID. The relational model evolved from its predecessor, the flat file
model. The fields and values that are part of GenBank entries can be thought of
as an example of a basic flat file paradigm in biological databases.

2.3.2 Hierarchical model
The information included in this database model is structured in a manner that is
reminiscent of a tree, and each of the other nodes is linked to the one that serves
as the tree’s root. The hierarchy begins with the root data and develops in the shape
of a tree when more child nodes are added to the nodes that are already there and
make up the parent nodes. Every child node is connected to exactly one parent
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node. The data in a hierarchical model are laid out in a structure that resembles a
tree, and there are relationships between the various categories of data.

Example of a hierarchical database in the biological sciences: the cell type is the
root of the biological function network database; each cell has multiple organelles
and cytoskeletal elements; each component is involved in multiple pathways and
functions; and there can be more levels of hierarchy (Fig. 2.2).

2.3.3 Network model
A network-based extension of the hierarchical model is shown here. The data in this
model is structured more like a graph, and a node can have more than one parent
node. The data in this database model becomes more interconnected as more

FIGURE 2.1

Some common database models in DBMS.
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connections and interactions are made. Because the data is more interconnected,
accessing it is easier and takes less time.identifies data linkages on a many-to-
many scale. Prior to the introduction of relational databases, this was the most
commonly used model (Fig. 2.3).

2.3.4 Entity relationship model
In this information base paradigm, links are established by first breaking down the
item of interest into its constituent parts, or substances, and then breaking down its
attributes, or ascribes. Using connections, several different chemicals are linked
together. It is acceptable to design an information base using this model, and that
plan would subsequently be able to be converted into tables for use in the social
model.In this information base paradigm, links are established by first breaking
down the item of interest into its constituent parts, or substances, and then breaking

FIGURE 2.2

Hierarchical database model example.
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down its attributes, or ascribes. Using connections, several different chemicals are
linked together. It is acceptable to design an information base using this model,
and that plan would subsequently be able to be converted into tables for use in
the social model (Fig. 2.4).

2.3.5 Relational database model
The relational database model is now the most well-known information storage type
that is accessible. The data in this model are set up in two-dimensional tables, and a
common field is used to keep the link between the tables.Two-dimensional tables
serve as the primary organizational framework for the information included in
this model (basic flat file database). All of the information that may be categorized
under a certain heading is saved in the appropriate column of that table. After that,
relations are constructed between the several tables, hence the name.The relational

FIGURE 2.3

Network database model example.

FIGURE 2.4

Entity relationship model example.
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database model is now the most well-known information storage type that is acces-
sible. The data in this model are set up in two-dimensional tables, and a common
field is used to keep the link between the tables.Two-dimensional tables serve as
the primary organizational framework for the information included in this model
(basic flat file database). All of the information that may be categorized under a
certain heading is saved in the appropriate column of that table. After that, relations
are constructed between the several tables, hence the name.

A relational database would be incomplete without a primary key and a foreign
key.

• Primary key: It is the identifier column’s purpose to store values that are one-of-
a-kind (there is no room for duplication), and it is also the column that is used to
describe a specific record inside a table in such a way that there is no overlap in
the information stored. An example of this might be an accession number, index
number, or any of the like.

• Foreign key: It is the column that connects one table to another table that does
this (the primary key can also be made the foreign key). Relational databases are
distinguished by this one-of-a-kind characteristic.

In 1970, E.F. Codd developed the relational model as a way to make information
base management frameworks more independent of a particular application. This
was done via the use of a relational database. It is a numerical model that has
been defined in terms of predicate reasoning and set hypothesis, and different com-
puter frameworks have used different implementations of it. Centralized server, mid-
range, and microcomputer frameworks have all made use of it. In reality, the things
that are often referred to as social information bases put into action a model that is an
estimate of the numerical model that Codd outlined. Relations, attributes, and re-
gions are the three fundamental concepts that are applied extensively in social infor-
mation base models. A link may be seen as a table consisting of segments and
columns (Fig. 2.5).

2.3.6 Other models
The following is a list of some more models that are not as often used but are applied
in certain circumstances:

• Inverted File Model: The information itself is used as a key in a query table, and
the characteristics of the table are pointers to the location of each instance of a
specific content item. The query table is used to organize the information.

• Dimensional Model: The dimensional model is a special kind of social model
that is used to communicate with the data stored in information distribution
centers in such a way that the data may be easily summarized by making use of
online scientific handling or OLAP queries.

• GraphModel:Graph information bases make it possible to have a far more open
structure than an organization data set does; each hub may be connected to
another hub.
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• Multivalue Model: They can store the same path as relational databases, but in
addition, they grant a degree of profundity that the relational model can only
approximate by using sub-tables. This makes multivalue information bases
“knotty” information in the sense that they can store the same path as relational
databases.

2.4 Primary nucleic acid databases
The nucleotide database is a collection of different categories derived from a few
different sources, such as GenBank, RefSeq, and TPA. The information about the
genome, its quality, and the record layout provides the foundation for both biological
research and the discovery of new knowledge. Primary nucleotide databases are a
kind of biological database that holds data on nucleotide sequences that were ob-
tained directly from researchers doing experiments in university labs, independent
laboratories, or sequence centers. GenBank, EMBL, and DDBJ are the three most
important databases in terms of the storage and accessibility of crude nucleic acid
sequences to both the general public and analysts specifically. They are the reposi-
tory of all raw nucleotide sequences, which is why they are considered to be the most
important nucleotide sequence databases. The National Institute of Health at United
States of America hosts the GenBank data repository, which may be accessed
through the NCBI website. The DNA Databank of Japan (DDJB) is located in Japan,
whereas the European Molecular Biology Laboratory (EMBL) is located in Europe.

FIGURE 2.5

Relational database explained through the example of SRA (sequence read archive,

repository of HTS sequence data available on NCBI).
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To establish the highest level of synchronization possible across the three, each of
them will accept submissions of nucleotide sequences, after which they will share
fresh and updated data daily. Because they include the original sequencing data,
these three databases are considered primary databases.

2.4.1 EMBL
Nucleotide Sequence Collection of the European Molecular Biology Laboratory
(EMBL) is a comprehensive collection of primary nucleotide sequences that are
maintained by the European Bioinformatics Institute (EBI). There are many
different sources of data, some of which include individual scientists, gene
sequencing facilities, and patent offices.

2.4.2 GenBank
The GenBank nucleotide sequence database is a collection of all of the publicly
available nucleotide sequences and the protein interpretations of those sequences.
This database is open to the public and contains annotations. As a crucial part of
the NCBI, it is responsible for supplying and maintaining this data collection
(INSDC). Get access to the DNA sequences of base pairs that were produced in lab-
oratories all around the globe based on the characteristics of more than 100,000
different species. GenBank has developed into a valuable resource for scientists do-
ing studies in natural environments. This database is now expanding at an exponen-
tial pace, as it has done ever since it was first created. The rate at which it is filling up
is also exponential.

2.4.3 DDBJ
Its actual location may be found at Japan’s National Institute of Genetics (NIG),
which is located in the prefecture of Shizuoka. The DDBJ is the only nucleotide
sequencing database that is specifically intended for use in Asia. Although Jap-
anese researchers make up the bulk of DDBJ’s data pool, the organization also
welcomes contributions of sequences from researchers and donors from other
nations.

2.5 Primary protein databases
The information included in biological databases may be extensively structured into
data sets according to sequence and structure. The succession information bases are
important for both the protein groupings and the nucleic acid arrangements, but the
structure information bases are only relevant to the proteins themselves. After the
insulin protein sequence was made available to the public in 1956, the primary
knowledge base was developed in a very short amount of time. Insulin, which
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was not considered to be the most important protein to sequence, really is. Insulin’s
structure is shown by just 51 deposits, which are functionally analogous to letter sets
in a sentence. These deposits form the sequence.

Around the middle of the 1960s, a nucleic corrosive cluster of yeast tRNAwith
77 bases, which are single units of nucleic acids, was discovered for the first time.
During this period, research was conducted into the three-dimensional structure of
proteins, and in 1972, the now-famous Protein Data Bank was formed as the primary
information source on protein structure. Back then, there were just 10 structures in
all and currently it has more than 2,00,000 structures diposited.

While the basic information about how proteins are put together was kept at
each research facility, in 1986 work began on putting all of this information into
one place. This set of information is called the SWISS-PROT protein grouping
data set.This data set currently has approximately 70,000 protein sequences
from over 5000 model creatures, which is a small portion of every known life
form.

Both academic institutions and businesses now have access to these enormous
databases containing a wide variety of information sources, making it possible for
them to conduct research and investigate the data. These are made available as
open-access data in the greater context of the research network through the Internet.
These information databases are regularly updated with the addition of new
passages.

2.5.1 PDB
The Protein Data Bank, often known as PDB, is the only and most widely used li-
brary that includes both structural information and pictures of biological macromol-
ecules. The Protein Data Bank (PDB) is the primary information source for many of
the derived databases.It is where almost all of the structural bioinformatics studies
that have ever been done begin (Joosten et al., 2011).

Files of biological molecules, along with their 3D coordinates, are what are
largely kept in the PDB archive as the information that is saved there. These
data detail the particles that make up each protein as well as their three-
dimensional area in space. The aforementioned records may be accessed in a
variety of formats (PDB, mmCIF, XML). The “header” section of a typical
PDB-organized document is quite large and contains a lot of text. This section
summarizes the proteins, reference data, and nuances of the structural arrange-
ment. This section is followed by the succession and a not-insignificant rundown
of the particles and their directions. The exploratory senses that are used to deter-
mine these atomic coordinates are also included in this file, which can be found in
its entirety.

The RCSB Protein Data Bank adds to the data by making tools and resources for
studying and teaching in the fields of molecular biology, structural biology, compu-
tational biology, and other related fields.
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2.5.2 SWISS-PROT
The amino acid sequences that are utilized to connect amino acid sequences to in-
formation that is presently kept in the field of life sciences are retrieved from the
SWISS-PROT protein database. An overview of the pertinent information is pro-
vided for each protein entry by combining the findings of the primary investigations
with the characteristics estimated by simulations and other predictions, which may
on occasion lead to contradictory conclusions. This is done to provide a comprehen-
sive picture of the situation. This ends up producing an overview of the data that is
applicable across disciplines. By establishing direct linkages to a variety of informa-
tion databases, it is possible to get access to specialized knowledge that is not
covered by SWISS-PROT. The annotation of human (the HPI project) and other
model living creature passages is the primary emphasis of SWISS-PROT, but it
does include explanatory elements for all species. This is done to ensure that suffi-
cient annotation is accessible for individual agent proteins belonging to all protein
families. As the High-quality Automated and Manual Annotation of Microbial Pro-
teomes (HAMAP) project has done for species, some explanations may be applied to
other families. This permits a more comprehensive understanding of the phenome-
non to be gained. To stay current with the most recent findings in the field of logic,
protein families and protein groups are subjected to ongoing analyses on a regular
basis. By incorporating a growing amount of typically automated explanations,
TrEMBL is working toward its eventual goal of covering all protein categories
that are not yet handled in SWISS-PROT. This will be accomplished once all protein
categories have been covered in SWISS-PROT (Boeckmann et al., 2003).

2.6 Secondary protein databases
A secondary database stores information that was either obtained from the original
database or another secondary database. The primary database is the source of the
information included in the secondary database. Information like the conserved
sequence of a protein family, active site residues (derived from multiple sequence
alignments of a group of proteins linked functionally or by sequence), and signature
sequences are stored in a secondary database (identifying sequence). The Protein
Data Bank (PDB) may be broken down into its parts, each of which is referred to
as a secondary structural information base. Each alpha protein, each beta protein,
and so on all have portions that are arranged in a certain order because of how
the protein is structured. In addition, they provide information on the observed
optional structural motifs of the protein. Components of the optional information
base include SCOP, which was developed at Cambridge University; PROSITE,
which was developed at the Swiss Institute of Bioinformatics; CATH, which was
developed at University College London; and eMOTIF, which was developed at
Stanford. Each of these parts was made by different analysts at their own research
centers, where they are also being run.
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2.6.1 CATH
CATH is a database that essentially holds a hierarchical categorization of domains of
proteins based on how they fold. The domains that are stored in the Protein Data
Bank (PDB) are recognized and categorized both manually and via the use of auto-
mated computer processes, and they are then placed into CATH. The CATH online
interface allows for both simple searches for the categorization as well as thorough
searches and downloads of the data (Sillitoe et al., 2019).

• Class is generated from the content of the secondary structure, and for more than
90% of the structures that have been saved for proteins, it has been automati-
cally given.

• Architecture is a term that is used to define the fundamental alignment of
secondary structures, apart from their connectivities (currently assigned
manually).

• The topology level organizes the structures into groups based on how closely
connected they are topologically and how many secondary structures they have.

• Homologous superfamilies are groups of proteins that have extremely similar
activities and structures to one another.

2.6.2 SCOP
The purpose of the SCOP database is to provide descriptive and holistic details of the
structural and evolutionary relationships between proteins whose three-dimensional
structure is known and deposited in the Protein Data Bank. This information is
sought after to better understand how proteins have evolved (Hubbard et al.,
1999). The following are the primary levels of the classification:

• The term “family” refers to sets of proteins that are genetically and evolution-
arily very closely connected. Current techniques of sequence comparison,
including BLAST, PSI-BLAST, and HMMER, can identify their connection in
the vast majority of instances.

• A superfamily is a group of protein domains that are only loosely connected.
Their similarity is typically restricted to common structural characteristics,
which, when combined with a conserved architecture of active or binding sites,
or comparable processes of oligomerization, imply a likely evolutionary heri-
tage. Their similarities are frequently limited to common structural aspects.

2.6.3 Prostate
Documentation values illustrating protein domains, families, and functional infor-
mation are included in PROSITE, along with relevant examples and profiles that
are used to differentiate between the different types.

PROSITE is complemented with a set of rules known as ProRule, which are
reliant on profiles and examples. These rules enhance the ability of profiles and
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examples to skew results by providing additional information about amino acids that
are either functionally or structurally important.

2.7 Composite sequence databases
The necessity to search through a variety of resources is eliminated thanks to the use
of a composite sequence database, which combines a broad variety of important data
sources. In their inquiry calculations, diverse composite information bases make use
of unique fundamental data sets following a variety of principles. In addition to this,
several search avenues have been streamlined and compiled for your convenience
inside the comprehensive database. The National Center for Biotechnology Informa-
tion (NCBI), which stands for “National Center for Biotechnology Information,”
keeps these nucleotide and protein databases on their huge, easily accessible, and
redundant array of servers and gives researchers free access to them (Fig. 2.6).

2.7.1 Meta-databases
Metadatabases are knowledge bases that collect information about data sets to pro-
duce new data. This information is then used to generate new data. They could put
together information from many different sources and present it in a new and more
useful way, or they could focus on a certain disease or organism.

Examples are:

• An information discovery service was developed by the University of Antwerp
and the Vlaams Instituut Voor Biotechnologie called BioGraph. It is based on
the integration of more than 20 different types of databases.

• Information Framework for Neuroscience, hundreds of neuroscience-related
resources are integrated into this system

• ConsensusPathDB is a database that integrates information from 12 different
databases to provide a comprehensive view of molecular functional interactions.

• Entrez (National Center for Biotechnology Information)

2.8 Genomics and proteomics databases
Genetic information bases, which are also known as online genomic variation stores,
may be provided for a single (locus-explicit) or several (generic) traits, or they may
be provided expressly for a population or ethnic group (national or ethnic). In either
case, the databases may be referred to as “online genomic variation stores.” Both of
these scenarios are not just possible, but likely. Genomic information bases are crit-
ical components of human genome informatics, which has grown exponentially in
the postgenomic period as a consequence of a better understanding of the genetic
etiology of human diseases and the visible confirmation of various genomic
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FIGURE 2.6

NCBI is one of the most popular composite databases among researchers hosted by NIH (National Institute of Health), this is the page loaded

when we search ncbi.nlm.nih.gov.
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variations. In the postgenomic period, the field of genomics informatics has experi-
enced a period of explosive growth. This resulted in an improvement in our under-
standing of the genetic etiology of human illnesses as well as the visual confirmation
of several different genomic polymorphisms. These resources organize the data and
variations that were stated before with the hope that, in the future, they will be valu-
able not only for molecular diagnostics but also for doctors and analysts. To put it
another way, the purpose of these resources is to reduce the amount of effort required
for consumers to get the information that they need. The proteome databases are a
collection of easily searchable, species-specific protein databases that merge pub-
licly available sequence information with material that has been brought up to
date via the careful curation of the scientific literature by trained professionals. Ac-
cess to these databases is provided via the internet. As an example, the TUM serves
as the database host for ProteomicsDB (Schmidt et al., 2018).

2.8.1 The search engines for literature
Internet access enables rapid access to a large quantity of clinical writing, including
diaries, databases, word references, course readings, files, and electronic diaries.
This, in turn, enables access to more variable, personalized, and effective instructional
options. An online internet searcher is a piece of software or hardware designed to
search for information on the World Wide Web. This information may take the form
of website pages, photos, data, or other types of records. Web search tools for the
web-based pursuit of clinical writing include Google, Google researcher, Yahoo
internet searcher, and so forth, and information bases include MEDLINE, PubMed,
MEDLARS, and so forth. Business web assets (Medscape, MedConnect, andMedici-
neNet) add to the rundown of asset information bases, giving a portion of their sub-
stance to open access. Some online libraries, such as the Medical Framework and
the Emory Libraries, have been established as meta-destinations, providing important
linkages to various wellness resources located all over the world. The availability of
specificwebsites about dermatology, such asDermIs, DermNet, andGenamics Jornal-
seek, is a valuable addition to the list of electronic resources, which is always expand-
ing. When searching for a certain category of information, a scientist has to keep in
mind the benefits and drawbacks of the web crawler or data collection that they are us-
ing. In the field of medicine, information about the types of writing and levels of detail
that are available, the user interface (UI), how easy it is to get started, how reliable the
content is, and the time period that is covered makes it possible to get the most out of
these resources.

2.9 Miscellaneous databases
2.9.1 Humans
Over the last 5 years, the Human Genome Project has had a significant amount of
effect on the field of genetics research. This influence will soon be felt across the
entire biological and medical professions. It won’t be long now. After describing
them for centuries, we are now on the cusp of having a perfect comprehension of
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the cellular processes that take place within the human body. This is despite the fact
that we have been describing them for millennia. Linkage analysis in families using
limited sets of genetic markers was a technique that was necessary up until the late
1980s to establish the origin of hereditary disorders. This approach was time-
consuming and required the use of genetic markers. At the end of that decade, a
more all-encompassing strategy was proposed. It was called the Human Genome
Project, and it included the mapping of all 80,000e100,000 of our genes as well
as the decoding of our entire DNA sequence, which is 3 billion base pairs in length.
This project was intended to be completed by the end of that decade. The first and
most notable result of this program has been a spectacular acceleration in the process
of determining the factors that contribute to inherited diseases. This initiative has
considerably accelerated the development and distribution of advanced DNA tech-
nologies. Ten years have passed since the project’s first conception. It has been
shown that a malfunctioning gene or genes are to blame for the bulk of common ge-
netic illnesses (150e200), in addition to a considerable number of rare genetic dis-
eases (600e800). The majority of the disease-causing mutations have been
uncovered, which has led to a huge improvement in the diagnostic capabilities of
the condition. New genetic pathways have come to light as a result of these inves-
tigations, which are still ongoing. Genomic imprinting, expansion of triplet-repeat
sequences, and defects in DNA repair are examples of some of these processes.
This research, in turn, has led to breakthroughs in diagnostic techniques as well
as the discovery of more disease-causing genes. The study of the so-called
“genotype-phenotype correlation,” which makes it possible for a more in-depth ex-
amination of the relationship between fundamental molecular flaws and functional
disturbances of processes in cells, organs, and the organism as a whole, has also
been made possible as a result of advancements made on a global scale. Because
there are numerous stages in the chain of events that link cause and effect in the
cell, as well as a complex web of interactions between various genes and other com-
ponents of the environment, it is sometimes exceedingly difficult to establish these
correlations. This is because genes and other elements of the environment interact in
a complex web.

The Genome Database is a repository for data about human genes, clones, STSs,
polymorphisms, and maps. This data may be accessed by the general public. The
entries in the GDB are very well related to one another, to citations from the scien-
tific literature, and to entries in other databases, including the sequence databases
(Letovsky et al., 1998), OMIM, and the Mouse Genome Database. GDB is contin-
uously receiving fresh mapping data from a variety of sources, including big genome
centers as well as smaller mapping efforts. The database may be searched using a
variety of methods, ranging from simple keyword searches to more involved queries.
Over the last year, a significant number of brand-new capabilities have been
included. For instance, Comprehensive Maps, which are integrated maps of the hu-
man genome and are now in the process of being created, are being used to facilitate
positional searches and visual presentations. Printing maps and displaying ad hoc
query results in a graphical style are two new features that have been added to the
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GDB map viewer, often known as Mapview. The HUGO Nomenclature Committee
is continuing to collaborate with GDB to maintain a record of the proposed and offi-
cial gene symbols, in addition to the data associated with them. Because genome
research is moving away from mapping and toward sequencing and functional anal-
ysis, the GDB schema is getting bigger.

2.9.2 Animals
Agriculture focused on animals will have to adapt swiftly if it is to be successful in
meeting the food requirements of the future. The study of an organism’s entire
gene sequence is known as genomics, and it is a significant factor in the develop-
ment of novel agricultural practises and technologies. Healthier animals that
develop quicker, are less likely to become ill, and are better equipped to manage
stressful or changing surroundings may be the result of using genomic information
to improve how animals are bred. This may lead to the discovery of new animal
breeds. Eliminating these issues would not only enhance the health of the general
population but also cut expenses and losses for farmers. The satisfaction of clients
may be increased by producing higher-quality goods. In addition, genomics may
shed light on novel approaches to managing livestock production systems that
are both more effective and friendlier to the natural environment. However,
research into animal genomes is laborious, time-consuming, and costly. It might
be too costly for individual researchers or smaller institutions to get the necessary
tools and knowledge about genes. Because they do not know much about the latest
technology, some scientists could be reluctant to employ them. Researchers will
need to work together to make progress in animal genome research and find new
ways to use what they know.

Experiments led to the discovery of the sizes of the genomes of over 6000
different animal species, and this information is compiled in a database called the
Animal Genome Size Database. Each entry contains information on the taxonomy
of the species, common names, how and from what tissues the size of the species’
genome was estimated, and other relevant details. The database also includes con-
nections to other locations on the internet where users may get images and further
information about the species of their choice.

2.9.3 Fungi
To keep using fungi for the good of people, though, it’s important to know how these
organisms interact in both natural and artificial communities. People will soon be
able to collect samples from different locations to investigate the possibility of com-
plex fungus metagenomes. This will be an essential component of using fungus for
the goals of industrial production, energy production, and climate management.
However, unless we have well-defined reference data for fungal genomes, we
won’t be able to do a thorough analysis of these data.
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An international research team is collaborating with the Joint Genome Institute
of the Department of Energy on a project that will last for 5 years and will sequence
the genomes of 1000 different types of fungi that are found across the Fungal Tree of
Life. This will allow the team to learn more about the diversity of fungi. It is
intended that the Fungal Tree of Life will be completed by sequencing at least
two reference genomes from among the more than 500 families of fungi that are
currently known. To do this, the main goal of this project is to collect data that
can be used as a starting point for future studies on how plants and microbes interact,
how microbes release and absorb greenhouse gases, and how metagenomes from the
environment are sequenced.

A resource for functional genomics about pan-fungal genomes may be found in-
side the FungiDB database. It was put together by the Eukaryotic Pathogen Bioin-
formatics Resource Center, which contributed to its creation. Both the layout of
FungiDB and its user interface are reminiscent of those seen in EuPathDB. This im-
plies that complex and integrated searches may be done with a graphical method that
is easy to comprehend. The most recent iteration of the FungiDB database contains
the genomic sequences and annotations of 18 distinct fungus species that are repre-
sentative of a wide range of fungal groups. The Basidiomycota orders Pucciniomy-
cetes and Tremellomycetes, the Ascomycota classes Eurotiomycetes,
Sordariomycetes, and Saccharomycetes, and the Mucormycotina lineage, which is
the most fundamental “Zygomycete” lineage, are all included in this category.
More information is available on the cell cycle microarray, the hyphal growth
RNA sequence, and the yeast two-hybrid interaction in the FungiDB database.

2.9.4 Microorganisms
In our world, the group of creatures with just a single cell, known as microbes, is
without a doubt the most abundant and diverse. There are approximately 12,000
known species, but there are likely millions more waiting to be discovered on
our planet. Bacteria are capable of surviving practically every environment on
Earth, including those that do not seem to be favorable to the existence of life.
They have been seen as low as seven miles under the surface of the water and as
high as 40 miles in the sky. There are a great number of types of bacteria that
can survive in extreme environments such as intense heat, cold, and salt. The
genomic sequences of microorganisms give a wide diversity of strains with varying
degrees of quality and sampling intensity. Several significant diseases affect
humans among them, as well as species that are interesting for reasons other
than those related to medicine, such as biodiversity, epidemiology, and ecology.
We have learned a great deal about evolution, microbial biology and ecology,
and the existence of microbes from studying many different kinds of microbes,
such as obligate intracellular parasites, symbionts, free-living bacteria, hyperther-
mophiles, psychrophiles, and aquatic and terrestrial microorganisms. The archeal
genome of Candidatus Parvarchaeum acidiphilum was found to range in size
from 45 kb to the largest draught assembly of Mastigocoleus testarum and the
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largest whole genome (14.7 mb) of Sorangiumcellulosum, an alkaline-adapted
epiphyte maker. This discovery was made through research on mine drainage
metagenomes.

On a workstation, the MBGD system allows for comparative and analytical ex-
amination of completely sequenced microbial genomes. The primary objective of
the MBGD method is to generate an orthologous gene categorization table. This
is accomplished by using all-against-all similarity correlations that have previously
been computed between genes located in different genomes. By providing a list of
organisms and parameters, users of MBGD will be able to generate their very own
classification tables thanks to the incorporation of an automatic classification algo-
rithm within the software. When the user is interested in creatures that belong to the
same taxonomic category, this function is extremely beneficial since it allows them
to narrow their search. The categorization table that was created has been kept in the
database, where it may be seen in conjunction with data from individual genomes
and information about the degree to which individual genomes are similar to those
of other organisms.

2.9.5 Plant and crop genomic database
PlantGDB is a database that contains information on the molecular sequences of all
plant species that have had major attempts made to sequence them. EST sequences
are organized in the database into groupings referred to as “contigs.” These contigs
are assumed to represent individual genes. Contigs are assigned labels and, in cases
where it’s feasible, connected to the sections of genomic DNA to which they belong.
The individual components of the genome sequence are assembled using the same
method. The website known as PlantGDB aims to provide a method for locating
groups of genes that are present in all plant species or that are exclusive to certain
plant species alone. This is accomplished by integrating a variety of different bioin-
formatics tools, each of which makes it simpler to predict genes and compare them
across different species. You can see the genomes of different species using
PlantGDB that have undergone large-scale genome sequencing initiatives. It does
this by putting together all of the EST and cDNA evidence for the gene models
that are already available.

2.9.6 Organelle database
The online interface for the relational database known as Organelle DB may be
found at the following address: http://organelledb.lsi.umich.edu. It includes a
rundown of the key protein complexes as well as the proteins that may be found
in organelles. Since its launch in 2004, Organelle DB has had a 20% expansion in
size. It now contains over 30,000 proteins from 138 different eukaryotic species.
The information provided by Organelle DB includes the location of each protein
in the cell, the main sequence of the protein, and, if it is available, an in-depth
description of the function that the protein serves. Every entry in Organelle DB
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has been annotated with words taken from the controlled vocabulary that is main-
tained by the Gene Ontology collaboration. The facts associated with protein local-
ization are intrinsically visual, and Organelle DB contains a massive collection of
photos related to biology. It includes 1500 micrographs of yeast cells that have
been labeled to show the proteins.

2.9.7 Pathway databases
Pathway databases enable the compilation of lists of proteins and their associated
functions, as well as the integration of such lists into networks that depict the func-
tioning of an organism. The Reactome Knowledgebase is used as an example to
show how a reaction space is built from manually curated experimental data, how
semi-automated extensions of these manual annotations can be used to infer anno-
tations for a large portion of a species’ proteins, and how networks of functional an-
notations can be used to infer pathway relationships between different proteins that
have been linked to disease risk by genome-wide studies.
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Statistical methods in
bioinformatics 3
3.1 Introduction
Statistics is the study of collecting, mining, organizing, analyzing, and presenting
data in a manner that draws a meaningful conclusion about the set of data. This al-
lows us to utilize smaller sets of samples for making precise and wise interpretations
about a larger population. When statistics are incorporated into bioinformatics, it
aids in an easier and much faster analysis of biological data. The main objective
of statistics and bioinformatics is to assist researchers in acquiring equitable solu-
tions to various biological problems using computational data analysis. Statisticians
bring not only a distinct viewpoint but also a set of skills to this approach, putting
them at the center of computational research. Understanding fluctuations and uncer-
tainties in quantification is among the fundamental characteristics that distinguish a
statistician from other mathematicians. These are critical factors to take into consid-
eration when developing reliable techniques for biological discoveries and verifica-
tion, particularly when dealing with complex, high-dimensional data like that found
in genomic information. The decisions made when designing samples have big ef-
fects on the analysis that comes after. Decision making can influence the multistep
processing techniques while reducing data loss caused by extraction methods and
may be responsible for propagating the errors in the entire process, so accurate de-
cision making is prioritized using the standard protocols to reduce the errors. In the
next few sections, we will discuss about some statistical methods used to make sense
of biological data.

3.2 Statistics at the interface of bioinformatics
The word “bioinformatics” refers to a multidisciplinary area in which computational
researchers, mathematical data analysts, systems biologists, and statisticians inves-
tigate multiple dimensions of biological data, including its storage, retrieval, orga-
nization, and detailed evaluation. Due to the numerous obstacles presented by this
complicated discipline, bioinformatics must be multidisciplinary. It is not possible
for a single researcher to possess the medical, biological, computational, data repos-
itory management, mathematical analysis, and statistical skills and knowledge

CHAPTER

43All About Bioinformatics. https://doi.org/10.1016/B978-0-443-15250-4.00009-5

Copyright © 2023 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/B978-0-443-15250-4.00009-5


necessary to locate and validate the large amount of scientific information contained
in the outputs of these technologies. In bioinformatics, some of the most important
things to study are sequence alignment, gene discovery, gene assembly, protein
structure alignment and its predictions, gene expression estimation, protein-
protein interaction, and evolutionary modeling. Since the bulk of biological informa-
tion is not stored in a database reduced to a single, flat record, data extraction from
structured information is especially significant for bioinformatics application do-
mains. Bioinformatics databases are set up with elements that are connected to
each other and to other elements by links that describe a complex structure. The
unique viewpoint and skill set of statisticians position them at the core of this pro-
cess. Awareness of variability and unpredictability in assessment is one of the major
characteristics that set statisticians apart from all other quantitative disciplines.
These are critical factors for constructing reproducible techniques for biomedical
exploration and testing, particularly when dealing with complex, high-
dimensional data such as those observed in genomics. Statisticians are “data scien-
tists” who know the affects of sampling design decisions on later stage analysis, how
biases can spread through multi-step processing methods, and how information can
be lost if feature extraction methods are too simple. They are experts in inferential
reasoning, which enabled them to recognize the significance of multiple statistical
revisions to avoid reporting spurious results as discoveries and to structure algo-
rithms to hunt high-dimensional spaces and construct predictive statistical models
while obtaining precise measurements of accuracy (Fig. 3.1).

FIG. 3.1

Bioinformatics, an interdisciplinary field of science, aims at using concepts from major

branches like statistics, biology, computer science and physics.
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There are two types of statistical methods used in analyzing biological data: first
one is descriptive statistics while the other one is inferential statistics.

For describing data from a representative cohort, descriptive statistics utilize the
mean and standard deviation. It is a type of statistical analysis that looks at a pop-
ulation using math, graphics, and tables. Descriptive statistics assist in portraying
data in a more meaningful fashion, allowing for easier data interpretation.

Inferential statistics views information as a subgroup of a given sample, using
datasets from that sample to draw conclusions and make calculations about that
group. Inferential statistics allows one to establish generalizations regarding a group
using sample data. Hypothesis testing, confidence intervals, and linear as well as
multiple regression analysis are the most frequent inferential statistical approaches.

3.3 Measures of central tendency
Before going on to statistical analysis, it is required to review the raw data. Then, the
two most significant sample statistics that can be derived from a dataset are a mea-
sure of the sample distribution’s central tendency and the data’s dispersion around
this central tendency. These descriptive statistics are necessary for inferential statis-
tical analysis. In simple terms, “central tendency” is a technique for describing the
dataset’s core. It is also known as a distribution center or site. Various measures of
central tendency strive to define what is variably referred to as the typical, normal,
expected, or mean value of a dataset. The mean, the mode, and the median are
widely utilized for the majority of data types. The mean is one of the most common
measures of central tendency, and most people think it’s the best. However, in some
cases, either the median or the mode is preferable. Whenever there are some extreme
values in the given data, the median seems to be the recommended measure for the
central tendency (Smucker et al., 2018).

3.3.1 Mean
Statistically, a dataset’s mean is a single number that indicates the midpoint or
average value of all the data points. One way to gauge central tendency is through
the use of the mean, which is sometimes known as the arithmetic average. For deter-
mining the mean, the sum of all data elements is multiplied by the number of times it
has been observed. This is the most common and widely used statistic. It can be used
to characterize a population sample containing a singular value representing the
data’s center.

Mean¼ Sum of all the observations

Total Number of observations

Ideally, the mean represents the region in which the majority of the values in a
distribution fall. The mean does not, however, necessarily locate the center of the
dataset. It is susceptible to extreme data and can be skewed. This issue emerges
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when outliers have a considerable influence on the mean. As the skewness of the dis-
tribution increases, the average moves further from the center. In some instances, the
mean might be deceptive since it may not be close to the most common values.
Therefore, it is optimal to use the mean to identify the central tendency in a symmet-
ric distribution. For skewed distributions, it is frequently preferable to utilize the me-
dian, which locates the center using a different approach. The mean doesn’t tell us
anything about how different a distribution is, so we need to look at the standard de-
viation to figure out how different it is.

3.3.2 Median
It’s a straightforward metric for determining central tendency. For information cate-
gorized at an ordinal level, that is the most appropriate indicator of average. The me-
dian in statistics is the value that divides a ranked group of data entries in half and
corresponds to the 50th percentile of the dataset. It is exactly in the center of the
dataset, with half the numbers below and half above. Locating the median is simple.
Sort the values in the dataset from smallest to greatest. Then, find the value with the
same number of data entries above and below it. The middle value is determined
differently depending on whether your data has an even or odd number of values.
This section shows you how to figure out the median for data that is grouped or
ungrouped.

3.3.2.1 Median for the grouped data
The following formula is used to find the median when the data points are in odd
number:

Median¼
�
N þ 1

2

�th

term

The following is the formula for calculating the median for even number of data
points:

Median¼
Nth

2
termþ

�
N

2
þ 1

�th

term

2

Here, “N” represents the entire number of elements/observations in the sample
dataset and “th” indicates the (N)th number.

3.3.2.2 Median for the ungrouped data
If the data is well grouped then we use the following formula to find the median:

Median¼ lþ

0
B@
N

2
� cf

f

1
CA� h
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here, “l” is the median class lower limit, “cf ” represents the cumulative frequency of
class previous to the dataset’s median class. “f ” signifies the frequency of median
class and “h” represents the size of class.

One can gain an impression of a dataset’s dispersal by contrasting its median
with the mean. The set of data is almost uniformly dispersed across lowest and high-
est values whenever the mean and median value are identical. When the sample dis-
tribution is reported to be skewed, the median is a more accurate estimate of central
tendency than the mean since it is less vulnerable to outliers. Extreme values drive
the mean distant from the distribution’s center, rendering it potentially deceptive.

3.3.3 Mode
Similar to the mean and median, the mode is a statistical method to calculate the cen-
tral tendency. The mode is by far the most prevalent value in a data set, i.e., the char-
acteristic or value that occurs most frequently in any particular dataset. To put it
another way, the mode of a set of numerical data is the variable occurring with
the greatest frequency in that dataset. It is an averaged metric that can be applied
to nominal variables. There may be more than one mode in a dataset, which is
different from other measures of central tendency. A data set can be bimodal (having
two modes), trimodal (having three modes), multimodal (having >3 modes), or no-
model (having no modes). One of its best features is that it can be used for any kind
of data, unlike the mean and the median, which can’t be determined for nominal
data. In the case of normally distributed data, its mode has the same numeric values
as observed in the mean and median, although it can be quite distinct in severely
skewed patterns. Mode is unaffected by the most and least extreme numbers in quan-
titative datasets. So, it can give insights into almost any set of data values, no matter
how the data is organized. However, the statistical metric is not without its own
limits. For example, it cannot be dealt with mathematically any further. Therefore,
it cannot be utilized for a more comprehensive study. In addition, because mode is
not based on all values in the dataset, it is challenging to draw inferences about the
dataset using mode alone (Krzywinski and Altman, 2014a).

3.3.4 Percentiles, quartiles and interquartile range
Percentiles are remarkably versatile and can be used to produce a relative ranking, to
divide a dataset into equal proportions, to determine a distribution’s central ten-
dency, and to assess its dispersion. Also, quartiles are a means of describing the dis-
tribution of data. Every collection of “X” intervals that create boxes having an
identical number of observations is referred to as a “quantile” of that variable “X”
The audience is probably familiar with percentiles, which are boxes comprising
1% of information. Another popular method is the quartile, which uses “4X” inter-
vals for defining boxes holding 25% of the information. Whenever distributions
contain skewness or excessive kurtosis, the interquartile range (IQR) is usually
used instead of the standard deviation since the standard deviation cannot offer
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dependably decipherable information regarding non-Gaussian distributions. The
median represents the 50th percentile. This value halves a given dataset. Half of
the results fall under the 50th percentile, while the other half exceed it. Based on
percentiles, quartiles are the numbers that split your data into quarters. The 25th
percentile corresponds to the first quartile, commonly known as Q1 or the lower
quartile. One-fourth of the scores fall below this threshold, while three-quarters
exceed it. The median, often known as the second quartile or Q2, is just the value
of the 50th percentile. Half of the scores are significantly higher than average, while
the other half are significantly lower. The 75th percentile corresponds to the third
quartile, commonly known as Q3 or the upper quartile. One-quarter of the scores
exceed this number, while the remaining three-quarters are below. In descriptive
analysis, the interquartile range is often referred to as the “mid-spread,” the “mid
50%,” or the “H-spread.” It is a statistical dispersion indicator dependent on the di-
vision of a data frame across quartiles. The IQR is defined as the gap between the
75th and 25th percentiles, establishing a region of “X” that encompasses the central
50% of distributions, but is not always centered around the average as well as the
median (Fig. 3.2) (Krzywinski and Altman, 2014b).

IQR¼Q3� Q1

The q-q plot, also known as the “quantile-quantile plot,” is a method for deter-
mining whether two sets of data originate from the same population with the
same distribution (Fig. 3.2). By plotting the quantiles of two probability distributions

FIG. 3.2

A normal quantile-quantile plot (QQ-Plot).

48 CHAPTER 3 Statistical methods in bioinformatics



against each other, Q-Q (quantile-quantile) plots are a very important way to
compare and analyze them visually. If the two population distributions we are trying
to compare are exactly the same, then the observations on the Q-Q plot will flaw-
lessly continue lying on a straight line following “y ¼ x.” Q-Q plots are utilized
to compare the distributional shapes of two groups. They illustrate how placement,
size, and skewness are similar or dissimilar between the two distributions. Q-Q plots
can be used to compare data sets or models of possible outcomes.

3.4 Skewness and kurtosis
When sample data considerably deviates from the norm, skewness quantifies the
ensuing imbalance. Sometimes, the normal distribution appears to be skewed to
one side. This is because the possibility of data being greater than or less than the
mean is greater, resulting in an asymmetrical distribution (Fig. 3.3) (Royston, 1992).

As we know, a normal distribution takes the form of a bell curve, any deviation
from this normal bell curve leads to skewness, suggesting that the data are not
equally distributed. The asymmetry may take two forms:

1. Positively Skewed: In a distribution with a positive skew, the values are more
packed on the right side, while the left tail is more dispersed. Consequently, the
statistical results are left-skewed. Therefore, the mean, the median, and the

FIG. 3.3

Three types of skewness: Normal where mean, median and mode, all are equal; Positive

where mean is greater than median and mode; Negative where mode is greater than

mean and median.
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mode are always positive. In this type of distribution, the mean is bigger than the
median and the mode.

2. Negatively Skewed: The right side of the distribution has a higher density of
sample points when it is negatively skewed. The average, median, and mode
shift to the right as a result. Therefore, these numbers are always negative. In
this distribution, the mode exceeds the median while falling short of the mean
(Fig. 3.4).

Kurtosis, similar to skewness and is applied to discover data sample outliers. It
provides the proportion of outliers present in total. The data may have heavier tails
and a flatter peak, comparable to when a distribution is punched or squashed. It is
referred to as negative kurtosis (polykurtic). Positive kurtosis indicates a distribution
in which the top curve is steeper, indicating that the sample distribution is being
pulled upwards (leptokurtic). A normal kurtosis (mesokurtosis) indicates a normal
distribution (Fig. 3.5).

The expected value of kurtosis is 3. There is symmetry in this distribution. Pos-
itive kurtosis is present if the kurtosis value is greater than three. In this instance, the
range of the kurtosis value is between 1 and infinity. A kurtosis of fewer than three
also denotes a negative kurtosis. A negative kurtosis has a value range of 2 to infinity.
The peak gets higher as the kurtosis value increases (Fig. 3.6).

The typical distributions of variables in everyday life are seldom flawless. Both
the skewness and kurtosis coefficients show how much a dispersion is different from
data that is normally distributed. Thus, we may say that skewness and kurtosis are
used to define the width and height of the normal distribution. The data’s horizontal
drag is represented by skewness. Kurtosis is used to calculate the vertical drag or the
height of the peak, as it reflects how dispersed the data is.

3.5 Variability and its measures
Variability is a statistical method that usually represents the dispersion within a
given dataset. A measure of central tendency provides the mean, whereas a measure

FIG. 3.4

A schematic diagram showing positively skewed and negatively skewed distribution.
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of variability specifies the proportion of additional data points that are likely to
deviate from the mean. Within the context of a value distribution, variability is taken
into account. A low dispersion suggests that the sampled data points are firmly
grouped around the distribution’s center. The greater the dispersion, the further apart
they are likely to fall (Hazra and Gogtay, 2016).

Analysts usually use the mean to talk about the center of a group or even a whole
system. Since the mean is important, individuals frequently react more to variability.
When the variability of a distribution is minimal, the values in a dataset seem to be
more stable. However, whenever the variability is increased, the data points become

FIG. 3.5

Three types of kurtoses: Normal where distribution is identical to normal; Positive where

distribution is more peaked toward the normal; Negative where distribution is less peaked

toward the normal.

FIG. 3.6

A schematic diagram of different types of kurtoses representing their peaks.
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more different and the likelihood of extreme results increases. Therefore, under-
standing variability enables you to comprehend the chance of odd occurrences. In
the sections that follow, we will give an in-depth look at some of the measures of
variability used to understand biological data.

3.5.1 Variance
The prediction of a randomized variable’s squared deviation from its mean is called
its variance. It determines how distant a group of figures or information are from its
mean. The variance compares each value to the mean in order to include all values in
the computation. A huge variance shows that the sample units are far off from its
mean and each other. To generate this statistic, the squared discrepancies between
the data points and the mean are computed, added, and then divided by the total
number of observations in the sample dataset. There are two formulas to compute
the variance of the sample, depending on whether we are determining the variance
for the whole population or using a subset to predict the sample variance of the entire
population (Dakhale et al., 2012).

To assess the variation of the whole population, following formula of Population
Variance is used:

s2 ¼
P ðX � mÞ2

N

here, “s2” represents the variance’s population parameter, “m” represents the popu-
lation parameter for the population mean, and “N” denotes the number of data points
that should represent the overall population.

While, to find the variance of the population using a small subset of population,
following formula of Sample Variance is used:

s2 ¼
P ðX �MÞ2

N � 1

where, “s2” is the variance for the sample taken from the population and “M” de-
notes the sample’s mean. The inclusion of “N � 1” in the denominator compensates
for the propensity of samples to underestimate the population’s variance.

3.5.2 Standard deviation
The standard deviation shows how far each data point is from the population mean
on average. It goes down when the values in a dataset are closer together, indicating
a lower dispersion of data values. On the other hand, when there are more differences
between the values, the standard deviation goes up because the standard deviation
goes up, signifying a higher dispersion in the data values. The standard deviation
uses the data’s original units, which makes it easier to understand. So, the standard
deviation is the most common way to measure how much something can change
within a population as well as for a specific subset of that population. The standard
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deviation is determined by taking the square root of the sample variance, which is a
metric that represents the dispersion or variability of a sample in relation to its mean,
which represents how far a set’s measurements deviate from its average/expected
value.

To find the variance of the whole population, following formula of Population
Standard deviation is used:

s¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP ðX � mÞ2

N

s

here, “s” stands for the population standard deviation. “X” signifies the values pre-
sent in the data distribution, “m” signifies the population mean while “N” stands for
the total number of observations in the population sample.

To find the variance of a sample drawn out of a population, following formula of
Sample Standard deviation is used:

s¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP �

X � X
�2

N � 1

s

where, “s” signifies the standard deviation for the sample drawn out of a particular

population and “X” stands for the mean of the sample.
Remember that the square units are used to measure variance, and as a result, the

square root helps to restore the value to its native units. Standard deviation is used as
a parameter for the whole population and is shown by the symbol “s”, while as an
estimate from a sample, however, it is shown by the symbol “s”. To figure out the
standard deviation, figure out the variance as shown above, and then take the square
root of the result. The standard deviation is a number that is like the mean absolute
deviation and is considered the most accurate indicator of variation. Both use the
original units of the data and compare the data values to the mean to find out how
much they vary. But there are differences.

3.5.3 Standard error
Standard error, sometimes known as “standard error of the mean,” is an inferential
measure that depicts, in simple terms, the degree to which the data from a sample are
representative of the total population. For instance, if you conduct a survey of Delhi
residents, you will acquire a sample of data that is representative of a portion of
Delhi residents. Different types of the same population might thus have different re-
sults, so it is essential to evaluate the significance of your findings. The standard er-
ror represents the distance between two means when comparing the mean of the
sample data to the mean of the complete population on a distribution. How much
would the sample mean change if the same study was conducted on a different group
of Delhi, India residents? To figure out the standard error, divide the standard devi-
ation by the square root of the sample size “N” for the whole population.
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SE¼ sffiffiffiffi
N

p

In statistics, sample information is utilized to comprehend larger populations.
Probability sampling, in which pieces of a sample are picked at random, enables
the collection of data that is likely to be representative of the population. However,
there will be some sampling error with probability samples. In terms of measure-
ments like means and standard deviations, a sample can never exactly represent
the population from which it was drawn. By calculating the standard error, it is
feasible to assess the sample’s resemblance to the population and derive the relevant
conclusions. A huge standard error infers that the mean of the sample population is
not equitably spread around the population mean, suggesting that this sample may
not be successfully representing the population. A negligible standard error shows
that the mean of the sample is clustered closely around the population mean, recom-
mending that the sample effectively represents the population. By increasing sample
size, the standard error can be decreased. Using a huge, random sample is the most
effective method for reducing sampling bias.

What distinguishes standard deviation from standard error?
The standard deviation is a marker of to what extent a collection of observations

deviates from its mean or predicted values, whereas the standard error is basically an
estimation of how widely the collection’s average deviates from the genuine popu-
lation average. The standard deviation is invariably greater compared to the standard
error. Let’s compare the distinctions between them. The most significant distinctions
are: Standard error reflects variability across numerous samples of a population,
whereas standard deviation depicts variability within a specific subset of that popu-
lation. The standard error is a statistical descriptive metric that can only be approx-
imated, whereas the standard deviation is an inferential statistic that can be derived
from sample data. The formula for standard error is the standard deviation divided
by the square root of the sample size. The formula for standard deviation is the
square root of the sample variance.

3.5.4 Coefficient of variation
The coefficient of variation (CV) is a statistical metric of relative variability that rep-
resents the amount of standard deviation relative to the population mean. It is a com-
mon, non-united measurement that tries to determine the variability of dissimilar
groups and attributes. It’s also referred to as the “relative standard deviation”
(RSD). It comes in particularly handy when evaluating the level of variance between
two datasets, since the allowable limit inside the variance grows as the standard de-
viation number rises and the information becomes less exact. Utilizing a simple ra-
tio, the coefficient of variation is calculated. The variance can be estimated by
dividing the standard deviation by the sample mean.

CV ¼ Standard deviation

Mean
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For instance, the delivery time of a courier service is measured in minutes. The
average delivery time is 30 min, with a standard variation of 6 min, and hence, 0.20
is the coefficient of variation for the parcel delivery case. This value represents the
magnitude of the standard deviation relative to the mean. Analysts typically repre-
sent the coefficient of variation as a percentage, so for this situation of parcel deliv-
ery, the standard deviation is 20% of the mean size. If the value is one or 100%, then
the standard deviation and the mean are equal. Less than one implies that the stan-
dard deviation is less than the mean, while greater than one indicates that it is greater
than the mean. In general, bigger values correspond to a higher degree of relative
variability.

3.5.4.1 Comprehending the source of variability for analysis
Every statistical study presumes that whatever is seen in the samples could be
extrapolated to the entire populace. We might be fairly sure if our findings are gener-
ally applicable to a community under investigation if we recognize the samples. We
can cope with several causes of variation, including biological as well as technolog-
ical ones, which, if disregarded, can have a significant effect on the statistical anal-
ysis as well as the results. Scientists doing omics studies are familiar with a variety
of origins of unpredictability. Details can comprise information regarding dates and
manner of data gathering or processing, the procedure followed, the scientist doing
preliminary studies, computational tools, and a variety of other discovery details. We
can adjust for such possible disparities in the data using both quantitative and tech-
nological methods, but we’ll require such evidence first. We could set up the study so
that all the data is collected in the same way by the same scientist, or we could use
controls to make up for these differences in the statistical analyses. Determinants of
diversity in the research group are also crucial. These could be unfamiliar to individ-
uals conducting omics research, yet they certainly could have an impact on overall
results. When making a prediction based on different factors, like the effect of the
drug, it is important that the samples that got the drug and the ones that didn’t get
it are as similar as possible. Whenever the distinguishing factor is an inherent contra-
diction across data, such as when comparing the expression of genes in people with
the presence or absence of an illness, it gets increasingly problematic. It’s hard to
locate infected and uninfected people that are otherwise identical, so any changes
in expression could be attributable to anything besides the illness.

3.6 Different types of distributions and their significance
A “distribution” is basically a set of data or scores associated with a variable. Typi-
cally, these values are sorted from lowest to highest and can then be shown graph-
ically. The most popular distribution is the Gaussian distribution, commonly known
as the “normal” distribution. This distribution provides a standardized mathematical
formula that may be used to calculate the probability for each sample observation.
The probability density function, which indicates the grouping or density of the data,
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is represented by this distribution. The likelihood that an observation has a value
equal to or less than a specified value is also calculable. A cumulative density func-
tion offers an overview of various data relationships. In practice, we might think of a
distribution as a statistic that shows the relationship between observations in a data
point. For example, we may be interested in people’s height, with individual heights
representing domain observations and heights 140e180 cm being the sample space.
The distribution is a mathematical function that depicts the relationship between
different height readings. Many data points are congruent with well-known and
acknowledged mathematical functions, such as the Gaussian distribution. Modifying
the function’s parameters, such as the mean and the standard deviation in the case of
a Gaussian distribution, enables the function to be tailored to the given data. When a
distribution function is known, it may be utilized as a shortcut for defining and
computing related quantities, such as observation probabilities and domain connec-
tions (Islam and Al-Shiha, 2018).

3.6.1 Probability distributions
The probability distributions are statistical expressions that represent all of the po-
tential readings and probabilities for a random vector inside a particular region. This
region would be limited by the lowest and greatest input states, and wherever that
potential quantity would be displayed just on the probability density function, it
would be determined by a variety of parameters. The average, standard deviation,
skewness, and kurtosis of distributions are among such parameters. The normal dis-
tribution, also known as the “bell-shaped curve,” represents among the most frequent
probability distributions; however, there are many more. Usually, this method of
obtaining information about a phenomenon determines its probabilistic model.
The probability density is the name for such a procedure. In the data design phase,
there are two types of probability distributions that are used for different reasons is
the discrete probability function, and the second is the continuous probability func-
tion (Khakshooy and Chiappelli, 2018).

Some examples of these classes include the normal distribution, chi-square test
distribution, binomial distribution, and Poisson distribution. Distinct probability dis-
tributions describe distinct information generating methods as well as fulfilling
various purposes. The binomial distribution calculates the estimated likelihood of
the occurrence of events multiple times across a set of experiments, knowing the
overall likelihood of an incident within every attempt. Because just 1 or 0 is a legit-
imate answer, a binomial distribution is discontinuous rather than being a
continuum.

3.6.2 Continuous probability function
3.6.2.1 Normal distribution
The normal distribution is a homogeneous/symmetric probability distribution about
the mean that shows data closer to the mean are more common than data farther from
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it. A bell curve (Fig. 3.7) appears on a diagram representing a normal distribution. A
random variable with a normal sampling distribution (also called a Gaussian distri-
bution) is called a normal deviation. Although all normal distributions are symmet-
ric, not all symmetric distributions are normal. The mean and standard deviation
fully characterize the normal distribution, showing that the distribution is unbiased
but has kurtosis. The mean (average) equals zero and the standard deviation equals
one, which define a normal distribution with zero skewness and 3 kurtoses (Fig. 3.7).

In a normal distribution, approximately 68% of the collected data falls within�1
standard deviation of the mean, 95% of the data falls within �2 standard deviations
of the mean, and 99.7% of the data falls within �3 standard deviations of the mean.
As a clear contrast to binomial distribution, the normal distribution is continuous in
nature, meaning that all possible values are displayed (as contrasted to 0 and 1 with
no intermediate value).

When, “m ¼ 0” and “s ¼ 1”, it is called as Probability density function denoted
by “f ðxÞ”, “m” refers to mean (median and mode also) of the distribution and “s”

refers to standard deviation.

f ðxÞ¼ 1

s
ffiffiffiffiffiffi
2p

p e
�1

2

�
x�m

s

�2

Normal distribution integrals are the Cumulative density function of conven-
tional normal distributions, as depicted in equation below. This is typically repre-
sented with a capital Greek letter “F”.

FIG. 3.7

A bell curve illustrating the conventional normal distribution.
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FðxÞ¼ 1ffiffiffiffiffiffi
2p

p
Z x

�∞
e
�t2

2 dt

3.6.2.2 Continuous uniform distribution
A continuous uniform distribution is a symmetric likelihood distribution, commonly
known as a “rectangular distribution” as it forms a rectangle on a graph. This type of
continuous distribution is a method for describing an experiment whose outcomes
are random and fall within a given range. Minimum and maximum values are spec-
ified via the parameters “a” and “b”, which set the limits. The interval range for this
distribution can be closed, as in [a, b], or open, as in (a, b). Thus, the distribution is
commonly represented as U (a, b), where “U” stands for “uniform distribution.” The
gap between the interval limits determines the length of the interval. All intervals of
the same length are possible on the distribution’s support. It is the probability distri-
bution with the highest entropy for a random variable “x” that is not limited in any
way other than being part of the distribution.

In relation to a continuous uniform distribution, the probability density function
is represented by:

f ðxÞ¼ f ðxÞ¼
8<
:

1

b� a
;For a � x � b;

0;For x < a or x > b

The value of “f ðxÞ” at the two limits a and b are often insignificant since they do
not affect the integrals of “f ðxÞdx” across any interval. Occasionally they are

selected as zero, and sometimes they are selected as “ 1
b�a”. In the situation of esti-

mating using the approach of maximum likelihood, the latte is suitable.

FðxÞ¼

8>>><
>>>:

0; For x < a

x� a

b� a
; For a � x � b

1; For x > b

Cumulative distribution function is represented above for continuous uniform
distribution. The cumulative distribution function is expressed in the notation of
the mean and the variance as:

f ðxÞ¼

8>>><
>>>:

0; For x� m < �s
ffiffiffi
3

p

1

2

�x� m

s
ffiffiffi
3

p þ 1
�
;For � s

ffiffiffi
3

p
� x� m < s

ffiffiffi
3

p

1; For x� m � s
ffiffiffi
3

p

3.6.2.3 Log-normal distribution
A probability distribution with a normally distributed logarithm is called a log-
normal distribution, or Galton distribution. A random variable is lognormally ori-
ented if its logarithm follows the same pattern as the normal distribution. This

58 CHAPTER 3 Statistical methods in bioinformatics



type of distribution often has skewed distributions with minimal mean values,
massive variance, and all positive values. Log(x) only works when x is positive,
so values have to be positive. The mean “m” and the standard deviation “s” tell us
what the probability density function for Log-normal distribution is.

A random variable “X” that is positive is said to have a log-normal distribution if
its natural logarithm has a normal distribution with the mean and the variance.

lnðXÞwN
�
m; s2

�
If “4” represent the probability density function for the distribution Nð0:1Þ, then

it follows that:

fXðxÞ¼4

�
ln x� m

s

�
1

sx

And if “F” represent the cumulative distribution function for the distribution Nð0:1Þ,
then it follows the equation:

FXðxÞ¼F

�ðln xÞ � m

s

�

3.6.2.4 Exponential distribution
The time between events in a Poisson point process, where events occur repeatedly,
autonomously, and at a steady average rate, has an exponential probability distribu-
tion, and this type of distribution is known as an exponential distribution. This is a
special example of the gamma distribution. It’s the continuous version of the geo-
metric distribution, and the most important thing about it is that it doesn’t remember
anything. It is used for more than just studying Poisson point processes.

For an Exponential distribution, Probability distribution function can be defined
as:

f ðx; lÞ¼
(
le�lx; x � 0

0; x < 0

Here, l > 0 is the exponential distribution variable, which is also termed as the
rate parameter. The valid range for this type of distribution is between [0 and infin-
ity). For a random variable “X” having an exponential distribution, then we will
write X w Exp(lÞ and the exponential distribution can be divided into infinite num-
ber of parts.

Cumulative distribution function can be defined as below for an exponential
function.

Fðx; lÞ¼
(
1� e�lx; x � 0

0; x < 0
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3.6.3 Discrete probability function
A discrete distribution reflects the likelihood of occurrence for each discrete random
variable value. For example, let’s take the example of rotten eggs in a tray. The num-
ber of total rotten eggs out of a total number of eggs will be the discrete probability
function. In a discrete probability distribution, each possible value of a random var-
iable is associated with a probability that is positive and greater than zero. Some of
the significant probability distribution functions are discussed below.

3.6.3.1 Binomial distribution
A binomial distribution could be conceived of as the likelihood of a successful or
unsuccessful output in a multi-step investigation or assessment. The binomial distri-
bution is a type of probability distribution that takes into account two different
possible outcomes. It’s a popular approach to evaluating probability distributions
that is utilized in a lot of statistical methods.

In instance, we use Xw B (n, p) if the random variable “X” approaches the bino-
mial distribution for parameters n ˛ N and p ˛ [0,1]. The probability mass function
tells us how likely it is that we will get exactly “k” successes out of “n” separate Ber-
noulli trials:

f ðk; n; pÞ¼ Prðk; n; pÞ¼ PrðX¼ kÞ¼
 
n

k

!
pkð1� pÞn�k

for k ¼ 0, 1, 2, ., n, where

 
n

k

!
¼ n!

k!ðn�kÞ! is the binomial coefficient, that’s why

this distribution is called the binomial distribution. This binomial distribution for-

mula can be explained like this: “k” successes happen with a chance of “pk”, and

“n� k” failures happen with a chance of “ð1� pÞn�k
”. The “k” successes, on the

other hand, can happen anywhere in the “n” trials, and there are “

 
n

k

!
” different

ways to spread them out over the “n” trials.

One possible way to express the cumulative distribution function is as follows:

Fðk; n; pÞ¼ PrðX� kÞ¼
Xbkc
i¼0

 
n

i

!
pið1� pÞn�i

Where, “bkc” is the “floor” under “k”, i.e., the highest integer less than or equal to
“k”.

3.6.3.2 Bernoulli’s distribution
The Bernoulli distribution is a discontinuous likelihood distribution. With probabil-
ity “p” the Bernoulli distributed random variable has the value 1, but with
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probability “q ¼ 1�p”, it has a value of zero. In a less formal context, it can be
regarded as a statistical model for the assortment of probable consequences of
any individual testing that poses a true-or-false questions. These questions result
in boolean-valued responses, where a value is considered “success” or “yes” with
a likelihood of “p” and “failure” or “no” with a likelihood of “q”. It can be used
to epitomize a coin toss, with 1 and 0 signifying “heads” and “tails” and “p” repre-
senting the probability that the coin will drop on “heads” or vice versa. If a coin
wasn’t fair, it would have a probability of “p s 1/2”.

The binomial distribution has several subtypes, including the Bernoulli distribu-
tion that only applies when only one trial is done (so for this type of binomial dis-
tribution, “n” would be 1). Additionally, this is a specific example of the two-point
distribution, in which the potential consequences do not have to be either 0 or 1.

If “X” is a random variable and it follows this distribution, then the following
holds true:

Pr ðX¼ 1Þ¼ p ¼ 1� PrðX¼ 0Þ ¼ 1� q

This distribution’s probability mass function “f” across all potential outcomes k
is:

f ðk; pÞ¼
(

p; k ¼ 1

q ¼ 1� p; k ¼ 1

3.6.3.3 Poisson distribution
The Poisson distribution is an example of a discontinuous likelihood distribution that
is used in probability and statistics. If the rate of events is known to be constant, it
illustrates how likely it is that a certain number of actions or events will arise in a
definite period of time or place, regardless of how long has passed since the last
occurrence. How many events occur in a given distance, area, or volume can be
determined using the Poisson distribution. A poisson distribution possesses positive
skewness, and whenever the average of a range is large, it resembles a normal or
symmetric distribution. A Poisson distribution’s form varies; for instance, a lower
average Poisson distribution shows severe skewness, featuring 0 as its mode. Having
a tail spreading toward the right, every value is forced up against 0.

If “X” a discrete random variable and has a Poisson distribution with the limita-
tion “l > 0”, then the probability mass function for “X” is given by the following
equation:

f ðk; lÞ¼ PrðX¼ kÞ ¼ lke�l

k!

Where, “k” is the number of events (k ¼ 0,1,2 . n), “e” is the Euler’s number hav-
ing a constant value of 2.71828 .
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3.6.4 Normal distribution and normal curve
A normal distribution is a type of symmetrical and balanced likelihood distribution
around the mean that illustrates that data close to the mean occur more frequently
than data far from the mean. On a graph with a Gaussian distribution or a normal
distribution, you will observe a bell curve (discussed earlier in the section on prob-
ability distributions).

Although all normal distributions are symmetrical, not all symmetrical distribu-
tions are normal. The normal distribution’s mean and standard deviation clearly
describe it, demonstrating that it is not biased but rather exhibits kurtosis. As a result,
the distribution is symmetrical and depicted as a bell curve. As long as the standard
deviation is equal to one unity with a skew of zero and kurtosis of 3, then the distri-
bution is considered normal.

3.6.5 Normal curve
With a high number of observations and a narrow class interval, a symmetrical fre-
quency curve is produced by a histogram with the same frequency distribution of
heights. This is known as the normal curve. The frequency distribution is balanced
around a single peak, the mean, median, and mode will coincide in the case of a
normal curve. It rises progressively from the lowest frequencies at the classification’s
extremes to the highest frequencies at the classification’s apex. This graph is a test of
SD to determine whether or not it was computed from a large, random sample repre-
sentative of the universe. The form of a normal distribution or curve is highly practical
and facilitates statistical analysis. It indicates the probability of occurrence by chance
or the frequency with which an observation, as measured by the mean and standard
deviation, can occur ordinarily in a population. By “normal,” we mean normal. A
peculiar finding may have a negative prognosis and also be pathological. The phrases
“normal” and “abnormal” are not used in clinical situations.

3.6.6 Asymmetrical distribution
Distributions of various forms can be observed in nature. We have previously
defined “normal distribution.” It lays the groundwork for how mean and standard de-
viation can be used in real life to measure central tendency and variation.

Certain distributions have asymmetries or skews. Based on whether the long tail
of the curve is to the left or right of the highest frequencies, they may be skewed to
the left or right. Some of them are bimodal, with two peaks, as in the age-based dis-
tribution. In such situations, it is likely that two distinct groups of people are mingled
together in the populace. Therefore, the sample under research is diverse.

3.7 Sampling
It is not practical to enroll every member or sampling unit of the population in a sci-
entific investigation, to examine all of the world’s millions of people to determine
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the prevalence of cancer, or to examine the efficacy of a medicine on every patient
with a certain ailment.

In addition, a large number of investigators are necessary to execute this enor-
mous effort, which may reduce the accuracy of a population-wide survey. Their
consistency and accuracy may vary, and their acquisition will be expensive, time-
consuming, and difficult. Due to these obstacles, we prefer to choose an appropriate
sampling strategy. In medical research, sample data are taken from a suitably large
and representative population, selected using a normal sampling method. Before
drawing a sample, the population must be well-defined. For example, the word “pop-
ulation” can mean a certain group of people, like factory workers, family members,
etc., about whom information is needed.

A parameter is a computed value derived from a specific population, such as the
mean, the standard deviation, or the standard error of the mean. The value is constant
since it applies to the entire population. Statistics, such as mean, standard deviation,
and percentage, are values computed from a sample.

There are two primary aims of sampling:

• The evaluation of parameters of the population (mean, proportion, etc.) based on
sample statistics.

• To test the population-based hypothesis concerning the sample or samples.

A “sample” is any part of a population that is representative of the whole. Even if
a significant number of data samples are gathered from the same group of people, it
is still possible that not every single individual is included in the results. The content
of samples might vary in terms of size, quality, and sampling procedure; thus, their
statistics can also vary. Inferences obtained from a sample pertain solely to the desig-
nated population from which the sample or samples were collected. Such findings
are applied to the entire population, but generalizations are only true if the samples
are sufficiently big and unbiased, i.e., representative of the population from which
they are collected. A statistically representative sample will have parameters that
are almost identical to those of the total population. There will still be a discrepancy
or error of chance, which may be determined from the sample that is representative.
The disparities can be diminished but not abolished. A representative sample pos-
sesses two primary qualities.

• Precision which means the sample size
• unbiased nature

These two characteristics enable us to accomplish the aforementioned sample
objectives. Then, we may determine if observed discrepancies in sample values
are attributable to chance or other causes when compared to population characteris-
tics or another sample’s statistics.

3.8 Probability
Probability is the measure of the average relative frequency or likelihood of an
event’s occurrence. The primary objective of choosing a fair sample group is to
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determine the likelihood (relative frequency) of the occurrence of single or group
observations in the normal distribution of any biological variable. We would also
like to evaluate the likelihood of sample data points (means and proportions)
happening by random chance in order to facilitate the comparison of sample findings
to population outcomes. It is therefore possible to rule out random variation and
derive conclusions about the population. To do all of this, it is obligatory to have
a secure grasp of the probabilities of biological occurrences and events in the pop-
ulation group.

Probability is typically denoted with the sign “p”. It varies between zero and one.
When “p” equals to zero, there is no possibility that an event will occur, or its occur-
rence is unlikely. If “p” equals to one, the probability of an event occurring is 100
percent, i.e., it is unavoidable, such as the death of every living creature.

If the probability of something happening in a population is “p” and the proba-
bility of it not occurring is given by “q”, then

q¼ 1� p or pþ q ¼ 1

The probability “p” or likelihood of a positive event is calculated using the
following formula:

p¼Number of events occurring

Total number of trials

It is crucial to have a thorough understanding of probability, as it serves as the
foundation for all assessments of significance. It is often approximated using the
five laws of probability, the normal curve, and the tables.

3.8.1 Laws of probability
3.8.1.1 Addition law of probability
The concept of mutually exclusive occurrences refers to situations in which the
probability of one event eliminates the possibility of another event or events taking
place at the same time. When flipping a coin, receiving head eliminates the possibil-
ity of obtaining tail. An occurrence will arise in one of the many possible ways.
Thus, occurrences that are mutually exclusive adhere to the addition law of proba-
bility. If the count of mutually exclusive occurrences is “n” and the individual prob-

ability is “p1”, then the overall probability is as follows:

P¼ p1 þ p2;.::þ pn ¼ 1

Whenever addition law is used, the term “or” is present, e.g., birth of Rh-negative
or Rh-positive baby, a medicine will cure or alleviate or have no impact on an
ailment.

3.8.1.2 Multiplication law of probability
This law is used when two or more events happen simultaneously, but they must not
be related, meaning the events should be independent of one another. When two dice
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throws result in an event like 3 and 6 or 6 and 3, the word “and” is used between the
occurrences.

If a dice is tossed twice in a row, what is the likelihood of having 3 and 6 or 6 and
3, with the likelihood of obtaining 3 in the first toss being 1/6 and 6 in the second
being 1/6?

The likelihood of obtaining 3 in the first toss is 1/6 and 6 in the second will be
1/6. So, in first scenario the likelihood of obtaining 3 in the first toss and 6 in the
second is 1/6 � 1/6 ¼ 1/36.

The likelihood of getting 6 on the first toss and 3 on the second would be
1/6 � 1/6 ¼ 1/36 in the second scenario. It demonstrates that order is irrelevant.

The likelihood of obtaining either in two tosses, if the sequences of 3 and 6 or 6
and 3 are ignored, is 1/36 þ 1/36 ¼ 2/36 ¼ 1/18.

In certain situations, it is necessary to use both the addition and multiplication
principles, and the conjunctions “and” and “or” must be employed. For instance,
the Rh factor and birth sex are separate occurrences that can happen to any infant.

3.8.1.3 Binomial law of probability distribution
Binomial law of probability distribution is established by the terms of the expansion

of the binomial expression ðpþ qÞn, where “n” represents the sample size or the
number of events such as births, tosses, or randomly selected individuals for
whom the probability is to be calculated, “p” represents the probability of ’success
or true or 1,’ “q” represents the probability of “failure or false or 0” and ðpþqÞ is
equal to unity.

For instance, when n ¼ 2, the expansion terms of ðpþ qÞ2 are p2, 2pq, and q2.
The values of “p” and “q” are derived from the percentage of population, i.e., the
probability of having a baby boy “p” or a baby girl “q” when just one child is
born is determined by watching a huge number of births in the population. It might
be 51% for boys (p) and 49% for girls (q). Substitute p ¼ 0.51 and q ¼ (1 �
0.51 ¼ 0.49) to determine the probability.

3.8.1.4 Probability (chances) from shape of normal distribution or normal
curve

If the heights of the students in a class follow a normal distribution and the total
number of students in the class, let’s say 200, is considered to be unity, then we
know that 50 percent of the students in the class are taller than the mean and 50
percent of the students are shorter than the mean. The range, mean �1 SD, includes
68% of children, while the mean �2 SD covers 95%. Therefore, the likelihood of
having a height above the mean with þ2 standard deviations is 2.5%, and the prob-
ability of having a height below the mean with �2 standard deviations is also 2.5%.

It is possible to estimate the likelihood of any observation or number of instances
lying above or below the mean at any distance from the mean. Likewise, the whole
area beneath the normal curve is assumed to be unity. The proportionate area under
any piece of the curve for a normally distributed variable indicates the relative fre-
quency or likelihood of observations between any two places on the horizontal scale.
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Similarly, the sampling distribution determines the probability of sample values or
results, such as means and proportions, varying by chance from those of the other
samples or the population. Theoretically, if a sample is fairly representative of a pop-
ulation, its mean should be the same as that of another representative sample or the
population mean. However, this is not what happens in practice. 95% of sample
means fall within the range of a mean �1.96 standard error, according to the sam-
pling distribution. 5% probability of the data being higher or lower than this range
(0.0.5 out of 1).

3.8.1.5 Probability of calculated values from tables
Using the corresponding tables, the probability of computed values occurring by

chance for “t” and “c2” (Chi-square) is obtained. The probabilities or odds of dying
or thriving at any age are derived from life tables based on the mortality experience
of a large sample of the population that is inclusive of both men and women of all
ages. Additionally, modified life table approaches are utilized to determine the prob-
ability of survivability at any given time after a therapeutic intervention or
procedure.

3.9 Comparing the means of two or more data variables or
groups

By comparing means, the t-test compares the mean of a variable in one group to the
mean of the same variable in one, two, or more other sample groups. The null hy-
pothesis is set to zero for the population difference between the two groups. We
test this null hypothesis using population sample data. We can perform a one-
tailed test (lower than or higher than) or a two-tailed test. For instance, we use
one-tailed tests to see if the available data show that the sample mean difference
across groups is lower than (or higher than) zero. In many statistical settings, the
means of two groups or samples must be compared. The method used to compare
means depends on the type of data and how the data is organized (Pereira and Leslie,
2009). These are the four most common ways to compare means for data that is
thought to be normally distributed:

3.9.1 Independent samples t-test
The most commonly used type of t-test is the independent samples t-test, which is
also called the unpaired samples t-test. Examining the means of two independent
sets of sample data can be useful. If two samples are drawn from the same demo-
graphic group for the independent samples t-test, their means may be equivalent.
When samples are collected from two diverse populations, the sample mean may
differ. In this instance, it is employed to form inferences on the means of two pop-
ulations and to determine their relationship. For instance, a t-test makes a compar-
ison between the average test results of men and women in response to the question,
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“Could these differences have happened by chance?” This independent t-test is
applicable in two situations: first, when neither the mean nor the standard deviation
of the sample population are known. Second, when two samples are distinct and un-
related to one another.

There are few assumptions in independent samples t-test:

• Independence assumption: two independent and categorical classes are required
to express an independent variable. In above example, male and females are two
well defined categories and hence, constitutes the independent variables.

• Normality assumption: the dependent variable should have a normal distribution.
Additionally, the dependent variable must be evaluated on a continuous mea-
sure. In above example, average test results are defined as dependent variables.

• Uniformity of Variance Assumption: the variances should be equivalent for the
dependent variables.

3.9.2 One sample t-test
It is a statistical test designed to evaluate if the mean calculated from sample data
obtained from a single group deviates from a value provided by the researcher.
This is an extrinsic value determined for scientific purposes and not obtained
from the sample data itself. Typically, this selected value is a previously determined
demographic mean, a standard value of concern, or a mean suggested from prior
research. The one-sample t-test is like other hypothetical tests in that it checks to
see if there is enough information to reject the null hypothesis “H-0” in favor of
the alternative hypothesis “H-1.” “The population mean is equal to the given
mean value,” is the null hypothesis for a one-sample t-test, while “the population
mean is different from the given mean value,” is the alternative hypothesis.

The one sample t-test differs from the vast majority of statistical hypothesis tests
in that it neither evaluates the association between variables nor compares two
distinct groups. It is a direct measure of comparison between data collected on an
individual variable from a specific solitary population and a researcher-
determined value.

It is possible to do a one-tailed or two-tailed t-test using the one sample t-test,
depending on whether you are looking for a discrepancy from the mean in one di-
rection or in the both directions. An assumption-driven test, the One Sample t-test
requires the following:

• Sample data should be independent.
• Sample data is obtained at random as in case of simple random sampling.
• The sample data should have a normal distribution.

3.9.3 Paired samples t-test
The paired sample t-test, also known as the dependent sample t-test, is a statistical
metric tool for estimating if the mean difference between two sets of observational
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data is equal to zero. In this test, each object or entity is measured twice, resulting in
two sets of observations. The paired sample t-test is widely used in case-control
studies and designs that require repeated measurements. Suppose you wish to deter-
mine the efficacy of a program for training students or groups of patients. Using a
paired sample t-test, you may examine the differences between the performance
of a sample of students or the efficacy of therapy before and after the completion
of the process and then look at the significant differences.

The paired sample t-test employs two contradictory research hypotheses, the null
hypothesis and the alternative hypotheses, just like most statistical procedures. The
null hypothesis states that there is no difference between the mean values of the two
paired datasets. According to this perspective, all visible distinctions are the result of
random variation. It is possible that the real mean difference between the two sam-
ples is not equal to zero, as the alternative hypothesis asserts. The structure of the
alternative hypothesis can vary based on the predicted outcome. A two-tailed hy-
pothesis is utilized when the direction of the difference is irrelevant. Alternately, up-
per- or lower-tailed hypotheses might be used to enhance the validity of the test.
Below are the basic definitions of the hypotheses for the paired sample t-test.

• According to the null hypothesis (H0), the actual mean difference (md) equals 0.

• The alternative hypothesis with two tails (H1) indicates that (md) is not equal to 0.

• The alternative hypothesis with an upper tail (H1) indicates that (md) exceeds 0.

• The alternative hypothesis with a lower tail (H1) indicates that (md) is less than 0.

3.9.4 ANOVA
Analysis of variance (ANOVA) is an ensemble of statistical theories and their cor-
responding estimation procedures (such as “variation across or between groups”)
that are used to determine the differences between means. ANOVA is governed
by the law of total variance, which partitions the observed variance in a variable
into components associated with various sources of variation. In its most funda-
mental form, ANOVA provides a statistical test to evaluate if two or more population
means are equivalent, hence expanding the scope of the t-test beyond two means. In
other words, when two or more populations have different mean values, ANOVA can
be used to determine how significant the difference is.

The assumptions behind the ANOVA test are much the same as underlying for
any parametric test.

• ANOVA can only be performed if the subjects in every sample are unrelated.
This indicates that subjects in the first group can’t be present in the second group
(i.e., independent samples/between-groups).

• The sample sizes of the distinct groups must be equivalent.
• An ANOVA can be performed only if the dependent variable has a normal dis-

tribution, in which the middle values are most prevalent and the extreme values
are rarest.

68 CHAPTER 3 Statistical methods in bioinformatics



• Population variances must be homoscedastic means they should be identical.
Homogeneity of variance indicates that the deviation of values (as measured by
range or standard deviation) is comparable across populations.

There are different types of ANOVA tests. “One-Way” and “Two-Way” are the
most popular types. The distinction between these two categories is controlled by the
number of independent variables in an ANOVA test. A one-way ANOVA consists of
one categorical independent variable (also called a factor) and one normally distrib-
uted continuous dependent variable, for example, testing the effect of a treatment
intervention on the likelihood of anxiety in a clinical sample. But a two-way
ANOVA consists of two or more categorical independent variables and a single nor-
mally distributed continuous dependent variable, for example, employment status is
an example of a factorial two-way ANOVA.

3.9.5 The Chi-square tests
The Chi-square test is a statistical way to compare two sets of data that doesn’t
depend on any assumptions or variable distribution. Despite its uniqueness, the
Chi-square test has a well-defined distribution that makes it a significant tool for sci-
entific research. It is utilized most frequently when data consist of frequencies, such
as the number of responses in two or more population groups. It has three common
but crucial uses in biomedical statistics:

• Proportion
• Interrelation
• Integrity of fit

The Chi-square (c2) test is a valuable tool for comparing experimentally ob-
tained findings to those theoretically predicted by a given hypothesis. Consequently,
the actual difference between the observed and the expected frequencies is captured
by the Chi-square statistic. To understand the discrepancy between theory and reality
in sampling research, a measurement like this is essential to use. According to the
definition, it is as follows:

c2 ¼
X ðO� EÞ

E

where, “O” represents observed frequencies and “E” represents expected
frequencies.

Calculating the standard error of difference between two proportions would
reveal the relevance of large binomial samples with a size greater than 30. Chi-
square test is another extremely helpful test that may be used to determine signifi-
cance in the same type of data, with two additional benefits.

• To compare the results of two binomial samples, even if the samples are small,
fewer than 30.
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• To evaluate and compare the frequencies of two multinomial samples such as
number of diabetic as well as non-diabetic in different weight groups of
individuals.

The Chi-Square test has numerous uses when other parametric tests cannot be
utilized. Some applications of Chi-square test are summarized with examples below:

3.9.6 Test of independence
This test aids in identifying the relationship between two or more features. Suppose
N observations have been classified according to two features. By implementing this
test on the observations (data) provided, we attempt to determine if the features are
associated or independent. This relationship could be good, negative, or nonexistent.
For instance, we can determine whether there is a correlation between punctuality in
class and the percentage of students who pass, and whether paracetamol is success-
ful in reducing fever. The null hypothesis that there is no association is tested to see
if the variables under investigation are linked. To put it another way, the two char-
acteristics are distinct from one another.

Once the value of chi square has been calculated, it is compared to the critical
threshold value for the given degree of freedom at a certain significance level. As
long as the predicted chi-square value is below the critical or threshold table value,
we can accept the null hypothesis and say that two characteristics are not connected.
If the calculated number is higher than the value in the critical or threshold table, the
experiments have shown that the hypothesis is false, so the hypothesis is rejected.

3.9.7 Test of goodness of fit
This is the most valuable application of the Chi Square test. This method is utilized
mostly for checking the goodness of fit. It seeks to establish whether an observed
frequency distribution is distinct from an estimated frequency distribution. When
a normal or other sort of ideal frequency curve is fitted to the data, it is important
to determine how well this curve corresponds to the observed data.

The following steps are taken to attain the aforementioned objective: In relation
to the inquiry, a null and alternative hypothesis are formulated, and a significance
level for rejecting the null hypothesis is chosen. A random observational sample
is drawn from a suitable statistical sample. Probability is used to calculate theoret-
ical or expected frequencies based on actual observations. Typically, this includes
assuming that a particular probability distribution applies to the statistical sample
under study. After that, the observed frequencies are compared to the anticipated
or theoretical frequencies. If the estimated value of the chi-square is less than the
table value at a given level of significance (typically 5%) and for specific degrees
of freedom, the fit is regarded as satisfactory. Thus, the discrepancy between the
observed and predicted frequencies can be attributed to sampling variations. Alter-
natively, if the estimated value of the chi-square is greater than the table value, the fit
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is regarded as inadequate, i.e., it cannot be attributed to the fluctuations of simple
sampling, but rather to the theory’s failure to account for the observed facts.

3.9.8 Correlation and regression
Correlation and regression are the two most involved strategies for investigating the
connection between two quantitative factors. Most of the time, correlation is seen as
the question of whether or not there is a link between two things (“x” and “y”).The
Spearman’s correlation coefficient rho and the Pearson’s product-moment correla-
tion coefficient are the two most renowned correlation coefficients.

Conversely, regression gauges the value of the dependent variable in light of the
observed value of the autonomous/independent variable, considering the typical
measurable statistical connection between at least two factors. There is a lot of
equivocalness in figuring out the thought.

3.9.9 A look into correlation and regression
For example, when one variable changes, the other also changes. As a result, either
directly or indirectly, a shift occurs. It is possible to have uncorrelated variables if
one variable does not move in the same direction as another variable. Calculating
the degree to which two variables are interconnected is done statistically. It’s
possible to have both positive and negative correlations. A rise in one variable leads
to an equal and opposite increase elsewhere; this is a sign that the two variables are
positively linked when they move in the same direction at the same time. As a case
study, profit and investment can be cited. The converse is true when two variables
move in opposite directions, such as when one rises and the other falls. This scenario
is characterized by a negative correlation. Price and demand for a product are excel-
lent examples of this.

When one or more independent variables are altered, Linear Regression can be
used to estimate the change in the dependent variable’s metric as a result of the
change in the average statistically significant association between two or more vari-
ables. Linear regression is a powerful and versatile method for predicting the past,
present, or future based on past or present occurrences that is used in a number of
human activities. An example of this can be found in the following statement:
The profits of a company can be calculated using the company’s previous results.
It is important to note that in a simple linear regression, there are two variables
“x” and “y”, that are dependent on or influenced by each other. In this context,
“y” is referred to as a criterion or dependent variable, whereas “x” is a predictor
or independent variable. Below equation provides the regression line for “y” with
respect to “x”:

y¼ aþ bx

Here, “a” is a constant and “b” is a regression coefficient.
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Correlation and Linear Regression are used when there are two things to mea-
sure, like food quantity and the weight; medicine dose and its impact on blood pres-
sure; temperature of the air and its influence on metabolic rate. Another nominal
variable, like the name of a species, a study, or a location, keeps the two measure-
ments together.

3.10 Platforms employed for statistical analysis
The majority of the processes employ a Linux system in conjunction with R pro-
gramming and integrated development environments (IDEs) such as Rstudio,
Jupyter Notebook, Vim, etc. For analyzing Next Generation Sequencing (NGS)
research, the accessible user interface options are constrained, with Galaxy being
by far the only credible choice. DNAnexus as well as artificial intelligence-based
RNA-seq (AIR) are two cloud software UIs that are both patented and subscriber
based. Massive volumes of genetic data can also be processed using cloud services
like Amazon Web Services and Microsoft Azure, however, these are largely
controller driven.

3.10.1 Downstream analysis and visualization
Multiple downstream assessments can be done once the study to determine substan-
tially expressed profiles is completed for adding biological context against the
described genomes. The two major downstream analysis performed on transcrip-
tome dataset are as follows:

3.11 Gene ontology & pathway analysis
To have a deeper understanding of the biologic systems being investigated in a spe-
cific study, one must first comprehend the role and routes by which a gene is
expressed in that system. The functionality of genes could be classified using
Gene Ontology (GO) categorization methods into 3 groups: cellular components,
molecular functions, and biological processes. The GO study, called gene enrich-
ment analysis (GEA) may alternatively be classified into three groups:

3.11.1 Singular enrichment analysis (SEA)
An entry could be a user-defined gene array taken from any high-throughput NGS/
microarray study. Depending on the user-defined arbitrary standard, genome inputs
are frequently the most important. The genes are classified under the three major
areas mentioned before. Fisher’s exact test and its variations, such as the EASE score
or the Chi-square test, are used in this method to find out if the genotypes are linked
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to the functional classification. SEA is performed using techniques like DAVID,
GoStat, and Bingo.

3.11.2 Gene set enrichment analysis (GSEA)
All genomes within a high-throughput genome study are utilized as inputs for
genome set enrichment analysis, guaranteeing that the assessment is independent
of any possible bias owing to artificial limits like those employed in SEA. Perhaps
genes with minor differentially expressed variations can be evaluated for any further
enrichment analysis as a result of this. The ranking of all genome components inside
an annotating class is used to determine maximum enrichment scores (MESs). These
maximal enrichment scores are evaluated, and the “p-value” is usually found by us-
ing KolmogoroveSmirnov type statistics to compare reported MESs with ones
given in a probability sampling or parameterized statistics to measure fold variations
across trials. Such an assessment can be done with ErmineJ and FatiScan.

3.11.3 Modular enrichment analysis (MEA)
To facilitate phrase linkages, modular enrichment analysis blends SEA type enrich-
ment analysis alongside connectivity search techniques. With this investigation,
Kappa estimates of concordance were employed. Genes that do not appear in
numerous nearby words are removed from study considering the nature of a Kappa
statistic. ADGO, DAVID, as well as GeneCodis, are a few platforms that can execute
this type of research. Such gene ontology categorization methods integrate informa-
tion from a variety of domains, such as KEGG in pathway assessment, Pfam in the
case of protein domains, or TRANSFAC for transcriptional regulation.

3.11.4 Correlation networks
One important insight gained from the genes is whether or not there is any statisti-
cally significant association between the genome list.Even though GEA provides a
humongous amount of information regarding genes having similar functions, pro-
grammes like GeneMania offer information on gene interactions, resulting in a
much more thorough view of the interaction patterns. GeneMania predicts co-
expression, co-localization, as well as physical forces amongst genomes, for its
users. One such resource is the Biological General Repository for Interaction Data-
sets (Biogrid), which contains biochemical, genomic, as well as protein-protein
interaction data based on known test findings and therefore is updated on a frequent
basis. STRING is a library of proteins that interact with each other. It is being used to
learn more about how proteins made by genes work together. Weighted gene corre-
lation network analysis (WGCNA), an R-tool that analyses expression profiles either
using microarrays or RNA-sequencing to build a correlation network among genes
in a specific study, is another option.
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3.12 Future prospects and conclusion
In bioinformatics, statisticians have made a key contribution to the development of
sophisticated modeling and analytic methods that users may employ to derive rele-
vant biological contents from the vast amounts of multi-platform genomic informa-
tion. Their in-depth knowledge of the research methods, along with their
unpredictability and ambiguity, have particularly qualified them to play a key role
in this endeavor. Further research is certainly required in a variety of domains,
and new progress is conceivable. Integrative research is another important field.
This discipline is just getting underway, and the research establishment is in
desperate need of innovative approaches for incorporating data across many systems
in order to acquire a much more comprehensive understanding of the cellular
biology that underpins it. Such techniques must strike a balance between statistical
rigor in constructing links, computing effectiveness in scaling up to massive data en-
vironments, and the understandability of outcomes so that our colleagues can under-
stand them effectively.

The statistical evaluation of omics studies is a rapidly expanding area in which
agreement on the best techniques might be difficult to come by. Validated experi-
mentally for different testing adjustments that are best suited for relevant outcomes
would be created as the study proceeds, and so would improved techniques of data
incorporation across diverse resources and systems. Nevertheless, combining clin-
ical and genetic information and fully evaluating hypotheses so that the final results
are useful to the overall public remains a significant hurdle in biological information
processing. Bioscience and health care have come a long way to where big data is
now a normal part of research and treatment. Because of this, statistics has a unique
chance to make a big difference in the progress of science by giving other re-
searchers tools that need to have important information in them.
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Algorithms in
computational biology 4
4.1 Sequence alignment
In the discipline of bioinformatics known as “sequence alignment,” researchers are
working to create computer-based methods for comparing and locating amino acid
or DNA base pair sequences that are comparable. The most fundamental aspect of
manipulating biological sequences is alignment, which finds use in a variety of con-
texts, including sequence assembly, sequence annotation, structural and functional
predictions for genes and proteins, phylogeny, and evolutionary research. Maybe
in 1966, the edit distance between two strings was defined as the smallest number
of insertions, deletions, and letter swaps needed to change one string into another.
This gave rise to the computer challenge of sequence alignment (Saloom et al.,
2022).

4.1.1 Local alignment
Local alignment is possibly the simplest technique to compare two sequences; it is
the approach that employs the fewest assumptions regarding how the similarity
should be structured: one is tasked with locating any subsequences with a similarity
greater than a predetermined threshold. Finding evolutionarily constrained elements,
all pairs of genes, other repeats, including transposons, as well as any other com-
monalities is rather easy using this approach. Local alignments seem to be more use-
ful when two different sequences are thought to have parts that are the same or have
similar patterns. Local alignments get rid of any parts that don’t match and only
align the parts that stay the same between two sequences. This makes sure that
the mismatched parts don’t show up in the final result.

4.1.2 Global alignment
It is an attempt to align the whole sequences that are similar to some extent and have
approximately the same length, for example, orthologous and paralogous sequences.
In it, the complete sequence of protein and nucleotides is compared from beginning to
end, and vertical bars present between the amino acids represent the identical residues.
The classical technique for global alignment is known as the Needleman-Wunsch
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algorithm and is dependent on dynamic programming. The algorithm is used to
align strings of proteins and nucleotide sequences. The advantages of global align-
ment are: It is easy to understand, provides complete sequence pairing in output,
can examine the small variations between two sequences, and also helps find poly-
morphism between two sequences. The limitation of global alignment is that in
divergent sequences or strings of different length, this method is not capable of
giving an exact result as it fails to identify extremely similar local sites among
two sequences (Sun et al., 2018).

4.1.3 Gap penalty
4.1.3.1 Gaps and gap penalties
Aligning DNA or protein sequences allows us to estimate their distances, which is
useful for inferring molecular function by discovering similarities with known func-
tions. For this reason, a scoring system is required to determine whether an align-
ment is a “good alignment” of sequences. Therefore, we may learn what kinds of
alignments to examine and assess the alignment’s significance by using alignment
scoring. In the scoring system, there are three outcomes: a match, a mismatch,
and a gap (Fig. 4.1). Matches are rewarded with positive values or high scores, while
mismatches are penalized with negative values or low scores. This seems pretty easy
to do when it comes to DNA, but scoring protein sequences is harder because align-
ment scoring has to take into account the physiochemical properties of amino acid
residues.

While the concepts of match and mismatch are simple to comprehend, the notion
of adding gaps is complex. A gap in the sequences indicates the deletion or insertion
of amino acid residues or nucleotide bases. When inserting a gap, the following is-
sues could come up: How many gaps are allowed? How long can they last? How do
you choose where to put them? Supposedly, it can be attempted to enhance the align-
ment score by inserting several gaps, but would this be biologically significant? It
would seem logical that there must be a problem with this strategy. When we

FIG. 4.1

Representation of match, mismatch and gap.
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examine dynamically produced sequence alignments, the number of gaps is always
restricted. It appears that the algorithms are given instructions to limit the frequency
of gaps and their location in the sequence. This directive is referred to as the “gap
penalty.” Every time the algorithm inserts a gap, it generates a penalty score, which
can either lower or raise the alignment’s overall score. Each time an alignment is
performed, the gap penalty can be modified as a separate parameter. The total num-
ber of gaps, their length, and their location in the sequence alignment can all be
altered by changing the value of the gap penalties. The match, mismatch, and gap
penalties are correlated in the following way: The mismatch and match scores can
be used to determine the sequence alignment and its statistical significance if the
gap penalty is higher than those scores. If a significant penalty is assigned for
both gaps and mismatches, then only matches will be evaluated and checked for sig-
nificance. While the longest common subsequence may be determined if the gap
penalty is zero and the match score is much lower than the mismatch, testing the sig-
nificance of this subsequence is typically challenging (Fig. 4.2).

There are three types of gap penalty:
Constant or fixed gap penalty: This is the most common and basic sort of gap

penalty, where a constant negative score is awarded to the gap irrespective of its
length. This kind of gap penalty pushes the algorithm to leave bigger continuous
areas and create fewer, larger gaps. For instance, a sequence has three gaps and
four matches, and the score assigned to all the gaps is �1 rather than being given
individually. In this case, the sequence’s overall alignment score will be 4�1 ¼ 3.

Linear gap penalty: There is an individual score for each gap in this part. The
length (L) of each indel in the sequence is considered by the linear gap penalty. If
the penalty for each indel residue is A and the gap length is L, the total gap penalty
will be the product of the two “AL.” So, using the constant gap penalty as an
example, the total alignment score of the sequences will be 4�3 ¼ 1. Because the
overall score declines with each new gap, this approach is more favorable for se-
quences with gaps that are shorter in length. As we increase the gap penalty, the
score will immediately increase as well, resulting in alterations to the alignment’s
significance.

Affine gap penalty: the most often employed gap penalty that penalizes indels.
The affine gap penalty combines the variables of both linear and constant gap

FIG. 4.2

Gap penalty.
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penalties, yielding the form X þ AL, where L represents the gap length and X and A
represent gap opening and gap extension penalties, respectively. Opening penalty is
assigned when a gap is first introduced in the alignment of the sequence, if this value
is increased, the gaps will be less frequent. The “gap extension penalty” is referred to
as the penalty for whenever the gap is extended by one or more residues after gap
opening. The gaps will become shorter if the extended penalty value is increased.
There will be no penalty for terminal gaps.

The values of A and X are not always obvious since they depend on context. If
the goal is to locate matches that are closely connected to one another, it is correct
approach to employ a greater gap penalty so as to minimize the number of gap open-
ings. On the other side, when the goal is to find a more distanced match, the gap pen-
alty should be decreased. The size of the gap is also impacted by the relationship that
exists between X and A (Fig. 4.3).

4.2 Pair-wise alignment
PSA is a technique to align two sequences that searches for the best and most effi-
cient pairwise alignments of a few query sequences using a database similarity
search tool. The method has found widespread application in the study of sequences
for their functional, evolutionary, and structural properties. When matched se-
quences reveal a high degree of similarity, the two sequences can be considered
members of the same family. Pairwise alignments are used to compare only two se-
quences at once. They are easy to calculate and are usually used for tasks that don’t
require a high level of accuracy.

In order to align anything less than an exact alphabetic match, the algorithm must
be aware of what it is looking for and how to evaluate the significance of what it
finds. In order to do this, “comparison matrices” have been developed, defining a
value for each and every potential match scenariodeffectively a score of how

FIG. 4.3

Description of GAP opening penalty and gap extension penalty.
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well the computational alignment is performing. The algorithm will look for the best
possible score. The total score can only be used for the alignment it creates. It can’t
be used for anything else.

The aim of pairwise sequence alignment is to find the best pairing of two se-
quences. K-tuple method, dot-matrix technique, and dynamic programming are
the three most used approaches for pairwise alignments. All three approaches
have pros and cons, but they all have trouble matching highly repeated sequences
with little relevant information, especially when the number of repetitions in the
two sequences to be aligned is different.

4.3 Dot-matrix method
A dot matrix approach compares two sequences for potential alignment. In this
simplistic approach, the two sequences to be matched are laid out as axes on a
grid, and a dot is added at each position where they are an exact match. The top
of the matrix lists the first sequence, indicated by the letter X, while the left side lists
the second sequence, indicated by the letter Y. Beginning with the first character in
Y, one proceeds across the column while remaining in the first row and adding a dot
in each column when the character in X is the same. The procedure is repeated once
all potential comparisons between X and Y have been performed. The sections of a
matching sequence will then be graphically represented by diagonal lines. Any re-
gion of similarity may be identified with the use of a diagonal line of dot markers.
Dots that aren’t on the diagonal but are otherwise isolated signify random matches.

The dot-matrix technique, which generates a group of alignments for given indi-
vidual sequence sections, is qualitatively and theoretically simple, but evaluating it
on a large scale takes a long time. The dot matrix method is computationally avail-
able as “Emboss DOTMATCHER,” where dot plots can be made as easily as
possible. A dot-matrix plot can be used to visually identify sequence properties
like insertions, deletions, repetitions, and inverted repeats in the absence of noise.
Some implementations change the size or intensity of the dot depending on the de-
gree of similarity between the two characters to accommodate conservative substi-
tutions. The dot plots of closely related sequences will be combined into a single line
along the matrix’s primary diagonal. Filtering out random matches with a sliding
window can make it easier to locate regions that match. It means that more than
one nucleotide or amino acid position can be aligned at the same time, and that a
dot will only be given if a certain number of matches can be made.

Dot plots have drawbacks as a method of displaying information, including
noise, a lack of clarity, unintuitiveness, and difficulties in obtaining information
on match positions and summary statistics for the two sequences. There is a lot of
unused space in dot-plots since they can only display two sequences, and because
the match data is automatically reproduced across the diagonal, noise or empty
space takes up a large portion of the plot’s real size. By comparing each character
using a threshold value and window size, the noise problem may be resolved (the
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size can be assigned according to the requirement). For a dot to be drawn, a certain
number of the matches in the window must be right.

The amount of repetition in a sequence may also be assessed using dot plots.
When plotted against themselves, parts of a sequence with a lot in common appear
as lines off the main diagonal. When a protein contains several similar structural do-
mains, this phenomenon might occur.

The interpretation of dot matrices is as follows: areas of resemblance will show
as diagonal runs of dots; inversions will be indicated by reverse diagonals that are
perpendicular to the diagonal; and palindromes will be indicated by reverse diago-
nals that cross the diagonal (Fig. 4.4).

Dot plots provide several benefits, including the fact that they are quite simple to
implement. Its presentationmakes it simple to comprehend. It illustrates every combi-
nation of aligned pairs that is feasible. It is possible to employ it in conjunction with
other different approaches; it finds inverted and direct repeats, insertions, and deletions
much easier than the other, more automated approaches do. One drawback shared by
most dot matrix computer programmes is that they do not display an actual alignment.
There is no score that is returned to show how ‘optimal’ a certain alignment is (there is
no statistical significance that could be examined) (Rice et al., 2000).

4.4 Dynamic programming
Dynamic programming is a technique for segmenting longer sequences into
manageable chunks, with each transition between pairs of characters in an alignment
accounting for all potential modifications.

FIG. 4.4

The patterns for interpretation of dot plot results.
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In the field of computational biotechnology or bioinformatics, dynamic program-
ming has emerged as the dominant paradigm. Common uses of this information
include protein-DNA binding, protein folding, gene recognition, RNA structure pre-
diction, and sequence alignment. The exon/intron structure of eukaryotic genes is
determined using DP, which is also applied for assembling DNA sequence informa-
tion from the segments provided by automated sequencing.

Dynamic programming is based on the idea that solutions to smaller problems
can be saved and used later in the larger problem. Comparing this solution with
the next solution in the series is normal protocol; the ideal solution will then be
compared with the next solution, and so on, till the entire sequence has been
exhausted. An algorithm for dynamic programming consists of four components:
a recursive formulation of the optimum score; a DP matrix for storing subproblem
optimal scores, a method of filling the matrix from the bottom up by tackling the
most elementary subproblems first; and a method of tracing back through the matrix
to identify the details of the best solution that produced the highest score (Naghib-
zadeh et al., 2021).

The process of matching nucleotides to protein sequences, which is complicated
by the need to take care of frameshift mutations, can be aided by dynamic program-
ming. The method is particularly helpful for sequences with many indels since it
may detect frameshifts offset by any number of nucleotides, which makes it chal-
lenging to align using more effective heuristic techniques. In practice, the approach
requires a system built expressly for dynamic programming or a lot of computing
power. The programmes BLAST and EMBOSS offer fundamental tools for produc-
ing translated alignments. More broad techniques are offered by the open-source
application GeneWise. Given a certain function of scoring, the dynamic program-
ming approach is meant to produce the best alignment; however, selecting a suitable
function of scoring is often an empirical rather than a theoretical procedure. Dy-
namic programming is slow when it has to deal with a lot of sequences or sequences
that are too long, even though it can include more than one sequence.

Two classical algorithms of dynamic programming are:
Needleman andWunsch (1970)dFor global alignment and the result contains all

residues in the alignment (Needleman and Wunsch, 1970).
Smith and Waterman (1981)dFor local alignment and the result contains only

certain parts of our sequences (Smite and Waterman, 1981).

4.4.1 Needleman-Wunsch
A bioinformatics technique called the Needleman-Wunsch approach is used for the
purpose of aligning protein or nucleotide sequences. When comparing biological se-
quences, this was one of the first instances of “dynamic programming.” The method
was developed by Saul B. Needleman and Christian D. Wunsch, and it was first pre-
sented in the year 1970. The approach divides a significant challenge, such as the
whole of the sequence, into a series of more manageable issues, and then makes
use of the solutions found for the more manageable issues to locate an optimal
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response to the significant challenge. It is also known as the optimum matching al-
gorithm and the global alignment approach. Even today, the Needleman-Wunsch
method is frequently utilized, particularly when the quality of the global alignment
must be maintained. The technique gives a score to every possible alignment, and its
goal is to identify all of the alignments that have the greatest significant value.

The first component of Needleman and Wunsch’s ultra-algorithm generates all
possible alignments between any pair of sequences, considering their probabilities
of being similar, distinct, or containing some insertions along with deletions.
When the first phase is complete, a scoring mechanism is implemented to assign
a value to each base pair or nucleic acid combination. For example, if 2 Gs are
aligned, they receive a score of 1 because they are a perfect match; if C and T are
aligned, they receive a value of �1 because they are incompatible; however, if there
is no base pair or amino acid available, it is termed a “gap penalty” and receives a
score of 0.

Following the completion of all of these steps, the total scores need to be
summed in order to select the best alignment possible from among all of the poten-
tial alignments that were generated by the procedure. It is necessary to select the
alignment with the highest possible score.

Creating a two-dimensional (2D) matrix using the penalty scores for the match,
mismatch, and gap is a necessary step in the process. The matrix is solved in three
stages: the first stage is called initialization, the second stage is called matrix filling,
and the third stage is called traceback (Fig. 4.6).

Seq1: ATTAC
Seq2: AATTC

4.4.1.1 Step 1: Initialization table “T”
The first step in the algorithm is the initialization, in which a scoring matrix is made.
The formation of a scoring matrix begins with the placement of sequences, which
are placed on the x and y axes of the matrix.

While Seq1 “ATTAC” will be positioned at the “x” coordinate, Seq2 “AATTC”
will be positioned at the “y” coordinate. The first column and row of the matrix are
initially started from the (0,0) cell, with 0 being the first value in the cell (Fig. 4.6).
The gap score is added to the adjacent cell of rows and columns.

4.4.1.2 Step 2: Filling the matrix
The second and arguably most important stage of the process is filling up the matrix,
beginning in the top-left corner. It is necessary to know the scores of the cells on the
diagonal, left, and right in order to get the maximum score of each cell. Match or
mismatch (assumed) scores are added to the diagonal score. In a similar fashion,
the gap score is added to the values coming from adjacent cells or boxes (horizontal
and vertical). With these three numbers at your disposal, the highest possible score
can be obtained; use that to fill the ith and jth slots.

If a value comes from the diagonal direction or cell, it is determined if the res-
idues are identical or not. They are added based on their alignment match or
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mismatch score. As an outcome, three values come from three independent direc-
tions. However, since maximum match alignment is required, only the highest value
is placed in the cell (Fig. 4.5)

• Scoring method:
1. þ1 score for every match found.
2. �1 score for every mismatch.
3. �1 gap penalty for every insertion and deletion.

4.4.1.3 Step 3: Traceback
After the matrix has been filled in, the final score to be computed is the score of the
best possible alignment of the whole sequences. Nevertheless, the best alignment has
yet to be determined. This is found by a recursive matrix “traceback.” The last and
most important step in the sequence alignment process. Starting with the bottom
right corner cell, the algorithm determines which of the three highest values was
used to fill this cell, and the direction from which that value came is highlighted
or saved with a back arrow, before moving to that cell to find the best path or align-
ment. To fully construct the optimum alignment, the procedure is repeated until the
cell (0,0) is reached.

FIG. 4.5

Function for matrix filling.

FIG. 4.6

Needleman Wunch algorithm steps.
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4.4.2 Smith Waterman algorithm
Temple F. Smith and Michael S. Waterman were the ones who published the strategy
for the first time in 1981. The global alignments are produced via the Smith-
Waterman method. Protein alignments commonly employ a substitution matrix to
provide points for amino acid matches and mismatches, as well as a gap penalty
for connecting an amino acid from one sequence to a gap in another. Although in
practice a positive match score, a negative mismatch score, and a negative gap pen-
alty are more prevalent, a scoring matrix can be utilized in the alignments of DNA
and RNA. However, such results may be explained by altering the procedure. The
application of two distinct gap penalties for opening and extending a gap is a
frequent expansion of standard linear gap expenditures. The former is typically
far higher than the latter; for example, �10 for a gap that is open and �2 for a
gap that is extended. As a result, gaps between residues and gaps in alignments
are often kept to a minimum, which makes biological sense.

Smith-Waterman’s algorithm deals with a segment of the total gene. Rules for
filling the scoring matrix in local alignment are the same as global alignment, except
that instead of putting values in scoring matrices in real values like �3, �1,
�5, þ2, þ4, the program puts values only in binary numbers, i.e., 1 or 0. Any nega-
tive value in the scoring matrix will be represented by a 0, and any positive value will
be represented by a 1.

The sequences were given the following scores: match ¼ þ1, mismatch ¼ �1,
and gap ¼ �1. All the negative resultant values will be represented as zero, such
as in the cells of T1 and G1. However, all the positive values remain the same as
calculated. The next step is trace backing, starting from the highest value and tracing
backing until the value of zero is not obtained in the first row or column. In the given
example, the highest value is “2” in three different cases, the first being C3 and C2,
the next being C3 and T3, and the last being C3 and A4. Three different alignments
can be seen, and the optimal one can be chosen (Fig. 4.7).

4.4.2.1 Limitations
The exponential growth of genetic data puts the many approaches to DNA sequence
alignment that are now in use to the test. In order to fulfill the essential criteria for a
method that is both rapid and trustworthy, real-time parallel processing must be
accomplished using innovative methods. It has been suggested that optical
computing approaches might serve as potential replacements for the electrical
implementations that are now in use. One of these methods, known as OptCAM,
has been shown to be much more efficient than the Smith-Waterman algorithm.

It was assumed that local alignment shows better alignment when compared to
global alignment as they produce patterns that are conserved in whole DNA and
amino acid sequences. Researchers say that local alignment can be used in place
of the Needleman-Wunsch algorithm for making the different DNA and amino
acid sequences, which could consist of a small, matched region or when they are
of different lengths, when they are overlapping, or when one sequence is a subse-
quence of another (Mullan, 2006).
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4.5 Scoring matrices
In dynamic programming, the alignment uses scoring methods to quantify the prob-
ability of one residue being replaced by another in alignment; this method is known
as the substitution matrix. The scoring method for nucleic acid sequence is relatively
simple. A high or positive value is given for a match, and a negative value is assigned
to a mismatch. Because amino acids with the same properties are more likely to
match than those with similar properties, scoring for amino acids is quite complex
due to the influence of physicochemical properties. Substitution of an amino acid
with one having different physicochemical properties is disruptive to the role and
structure of a peptide. For instance, the aromatic amino acids like tryptophan, tyro-
sine, and phenylalanine can easily substitute for each other without any disturbance
because they all have the same chemical properties. The same happens with basic
amino acids like lysine, arginine, and histidine. So, these are more frequent in sub-
stitution. But the amino acid cysteine, which can form a disulfide bond, is interrup-
ted by enzymes and can destabilize protein structure; therefore, this kind of amino
acid substitution does not occur frequently (Pearson, 2013).

4.5.1 Scoring matrices for amino acids
Substitution matrices for amino acids are 20*20. There are basically two kinds of
matrices: first, interchangeable amino acid residues that are feature-dependent.

FIG. 4.7

Smith Waterman algorithm.
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The second is dependent on empirical studies of amino acids. The first method is less
precise than the second approach. The empirical method is the most favored and
accepted method, and it consists of PAM and BLOSUM. These are thoroughly based
on the statistics of substitution probability, and therefore, by analyzing the likeli-
hood, they obtain a score for the particular alignment. If the one with high substitu-
tion scores higher, one of three things can happen: if the score is positive, it means
that the frequency of residue substitution in homologous sequences is higher than
when it happens randomly. If the score is 0, it represents the frequency that has
occurred by chance as being equal to the frequency of substitution in homologous
sequence data. If the score is negative, it means the frequency of substituting homol-
ogous sequence sets is less than the frequency expected by chance.

4.5.2 PAM (point accepted mutation)
PAM was first created by Margaret Dayhoff and his colleagues in the 1970s to
develop substitution matrices of amino acids from related proteins having a mini-
mum of 85% sequence identity. It was used for recreating ancestral groups of 34 su-
perfamilies based on 71 pairs of sequences that were approximately 85% identical
and based on 1572 variations. One unit of PAM is defined as 1% of the amino
acid residue position that has changed, or one amino acid substitution per 100 amino
acids. The family of PAM matrices includes PAM80, PAM120, and PAM250. The
number indicates the basis of the matrix, which is the evolutionary distance between
the pair of sequences. Because they have a greater evolutionary distance, the greater
the digit, the greater the distance. The number of residue replacements used to calcu-
late the PAM1 matrix To deduce the PAM-1 substitution matrix, a class of closely
related strings with mutation frequencies corresponding to PAM-1 is selected. A
phylogenetic tree can be constructed using the parsimony rule. When pam matrices
are compiled, each mutation at the site is independent of any previous change at that
site. PAM matrices are symmetrical because the direction of any change or mutation
cannot be determined at a given region. It is derived from the global alignment
method. It is a linear-space scoring method.

4.5.2.1 PAM score

1. It is a multi-step process that divides the mutational variation that occurred from
the common ancestor for any residue by the total residue of amino acids in an
alignment.

2. Normalizing expected frequencies of residues through random chance.
3. Known as the “log odd score” on a log scale.

4.5.2.2 Example
Assume C and D are two residues that randomly align; the probability that they
aligned together randomly is Pr(C,D). The likelihood that C and D will meet is
related to sequence alignment (orthologs: Po(C,D)).
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Score function ¼ log Po(C,D)/Pr(C,D).
Scoring matrix ¼ S(c,d) ¼ log10(Pcd/PcPd).
By multiplying PAM 1 by itself, you can get other PAMs. For example, you can

get PAM 80 by multiplying PAM 1 by itself 80 times, since PAM is defined as one
mutation per 100 amino acid residues.

Limitation of PAM:

• The proteins studied had only a small amount of variation (85% identity), and
alignment for more divergent sequences was not possible.

• Biased matrix due to its reliance on globular proteins.
• It is only based on one original dataset.

4.5.3 BLOcks SUbstitution matrix (BLOSUM)
This method was given by Henikoff and Henikoff in 1992 (Henikoff and Henikoff,
1992), and it overcomes the limitation of PAMmatrices. It was developed by a group
of around 2000 aligned, ungapped sites from 500 families of proteins and is known
as the “BLOCKS” database. It is basically an ungapped alignment of highly
conserved sites of protein. The presence of each residue pair in each column of
all blocks is counted. Despite the extrapolation function, the actual percentage iden-
tity value of the sequence is used to construct the matrix in this case. It represents the
sequence alignment with no more than 62% identity. It means that in a number sys-
tem, BLOSUM is the opposite of PAM, and the lower the BLOSUM number, the
more different or far apart a sequence is.

4.5.3.1 BLOSUM62
It represents the sequence alignment with no more than 62% identity. In the case of a
numerical system, it means the opposite of PAM; the more divergent or distantly
related a sequence is, the lower the BLOSUM number.

4.5.3.2 BLOSUM score
It is the log ratio of the substitution frequency of the observed amino acid residue to
the expected probability of a specific residue. The log is taken to base 2, the final
value is rounded off to the nearest integer, and then it is written in the substitution
matrix.

Comparison between BLOSUM and PAM
More distant sequence
PAM 100 ¼ BLOSUM90
PAM120 ¼ BLOSUM80
PAM160 ¼ BLOSUM60
PAM200 ¼ BLOSUM52
PAM250 ¼ BLOSUM45
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4.6 Word methods
Though far more effective than dynamic programming, this methoddalso known as
k-tuple methodsddoes not ensure that the optimum alignment solution will be
discovered. These strategies are particularly helpful in large-scale database searches
where a significant portion of candidate sequences are projected to share little in
common with the intended set of query sequences.

The query is divided into a cassette of short, non-overlapping subsequences
(“words”), which are then compared against database sequences. The offset is
derived by subtracting the respective positions of the words in the two sequences be-
ing compared; if several different words provide the same offset, this indicates a re-
gion of alignment. These methods only use more sensitive alignment criteria if this
area is found; as a result, many useless comparisons with sequences with no signif-
icant similarity are skipped. The FASTA and BLAST families of database search
tools are well known for their use of word methods (Altschul et al., 1990).

Software for sequence alignment called FASTA is pronounced “fast A.” David J.
Lipman and William R. Pearson initially presented it in 1985. The software pack-
age’s initial iteration was only intended to compare protein sequences. Programs
for protein:protein, DNA:DNA, protein:translated DNA (including frameshifts),
sorted or unordered peptide searches, among other capabilities, are included in
the most recent edition. For figuring out whether or not something is statistically sig-
nificant, the software has a more advanced way of shuffling.

In the FASTA technique, the user specifies a value k as the word length to search
the database with. The technique is slower but sensitive for smaller values of k, mak-
ing it appropriate for searches with a short query sequence.

The first method to employ a look-up table and the seed searching strategy for
indexing the initial sequence is FASTA. The look-up table is used to find perfect
match seeds of length “k” in both sequences at the start of the process. To locate
all seeds across a diagonal between the two sequences, FASTA employs a “diago-
nal” approach. Different scores are given to seeds depending upon their position;
seeds receive a positive score, and intermediate areas receive a negative score. So,
clusters of high-scoring seeds add more to the score of local diagonals than clusters
of low-scoring seeds. There may be “n” diagonal seeds produced throughout the pro-
cedure, of which FASTA stores the top 10. FASTA determines the maximum score
“init1” as well as “good” diagonals. A diagonal with a score higher than the
threshold is considered to be good. Then, by building a directed weighted graph
around the seeds, all of these diagonals are integrated into a single, space-
allowing, high scoring alignment. The optimum alignment is then identified and
designated as “initn” on the most heavily weighted graph. The following phase of
FASTA constructs a narrow band cantered along init1 with a width of “k.” Next,
FASTA uses the Smith-Waterman method to determine a local alignment that is
best within this band.

The software primarily saves word-to-word matches of length k using a hash ta-
ble pattern search. The software searches the returned word hits for segments
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containing a cluster of neighboring word hits. When the database is searched for all
possible sequences, the software plots the scores of each sequence in a histogram
and determines their statistical significance. The “E-value” quantifies the possibility
that the alignment was caused by random chance alone. The value must be signifi-
cantly less than 0.05. Very low E values in the results indicate that the sequences are
homologs. A long list of steadily decreasing (E) values indicates a large sequence
(gene, protein, or RNA) family. Long areas with intermediate similarity are more
significant than small sections with high similarity.

FASTA has the drawback of only finding the region surrounding init1 while
excluding the area that contributed to initn if the sequences in evaluation include
several homology regions (two optimum diagonals). A seed, which is smaller
than k, could be overlooked. The primary benefit above the optimum algorithm is
its speed.

BLAST is one of the NCBI’s tools. BLAST was designed to be a faster alterna-
tive to FASTA without sacrificing much accuracy. It uses a k-word search like
FASTA, but instead of assessing every word match, it just evaluates the most signif-
icant ones. The default word length in most BLAST implementations is optimized
for the query and database type, and it is only changed in exceptional instances,
such as when searching with repetitive or very short query sequences. If the world
length is approximately 3 amino acids or 11 bases, it would not require identical
words, and if the words are similar, then there will be no alignment. BLAST makes
similarity searches very quickly but also makes errors, e.g., it misses some important
similarities and makes many incorrect matches. Twowebsites to discover implemen-
tations are EMBL FASTA and NCBI BLAST.

4.7 Multiple sequence alignment
Sequence alignment is the alignment of two or more sequences. The alignment of
the sequences is the arrangement of two sequences in relation to one another. Align-
ment is the process of placing two sequences one after the other and looking for sim-
ilarity regions and homology between them (Edgar and Batzoglou, 2006). For
example, if there are two sequences that need to be aligned, one nucleic acid
sequence (like ATCG) and another sequence (like TCA).

From Table 4.1, it can be deduced that there are three ways to align two se-
quences. We attempt to obtain the optimal alignment, which entails aligning two se-
quences in a manner that generates the greatest number of matches. Compare the
homology or similarity between sequence 1 and sequence 2 in Table 4.2. Alignment
is the process of obtaining matches. If there are more matches, then the sequences
are more similar, and if there are fewer matches, then the sequences are less similar.
Therefore, all feasible alignments of these two sequences are shown below.

There are no matches in Table 4.2, but there are three mismatches with one gap.
We are searching for three rules, namely match, mismatch, and gap, to identify se-
quences. Since this sequence is short, there are fewer alignment options. However,
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there are still many ways to align two sequences, such as when the software aligns
500e600 bp of nucleotides to align two sequences.

Consequently, there are two matches in Table 4.1 and one match in Table 4.3, but
none in Table 4.2. As Table 4.1 received the highest number of matches, this indi-
cates that it is the optimal alignment. When we upload data into a computer, it in-
tegrates all of the data and performs every conceivable alignment, looks for the
marks distribution system, analyses the outcome, and then provides marks to each
alignment. It then displays the alignment with the highest marks. When there is at
least some resemblance between two sequences, they can be aligned. It will be
harder to match two sequences from, say, plants and vertebrates. Therefore, the
closely related sequences must be aligned.

Using multiple sequence alignment (MSA) is a crucial first step in any bioinfor-
matics analysis of protein or nucleotide sequences since it allows researchers to deter-
mine how similar their many sample sequences are to one another. It is difficult to
determine the evolutionary connection without using MSA, which is hence required
for phylogenetic analysis. A phylogenetic tree cannot be constructed without it. In
addition to this, it is also used for finding conserved domains (Gotoh, 1999).

4.7.1 Progressive alignment
In comparison to pairwise alignments, multiple sequence alignments are notoriously
difficult to calculate. This method builds a hierarchical cluster of the sequences by

Table 4.1 First pair of three sequences.

A T C G

T C A

Gap Match Match Mismatch

Table 4.2 Second pair of the three sequences.

Sequence 1 A T C G

Sequence 2 T C A

Mismatch Mismatch Mismatch Gap

Table 4.3 Third pair of three sequences.

Sequence 1 A T C G

Sequence 2 T C A

Mismatch Gap Match Mismatch
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iteratively generating pairwise alignments. The sequence is first aligned using dy-
namics programming in progressive alignment. It builds an MSA starting with the
most related sequences and gradually adds less related sequences or groups of se-
quences using the dynamic programming method (Taylor, 1986).

The problem with the progressive alignment method is its dependence on pair-
wise sequence alignment at the initial step for ultimate MSA results. Also, as this
method is based on global alignment, it is not compatible with sequence alignments
of different lengths. CLUSTALW is perhaps the most suitable example of progres-
sive alignment, along with MAFFT, T-COFFEE, and MUSCLE (Fig. 4.8).

4.7.2 Iterative method
Similar in operation to progressive approaches, iterative methods repeatedly realign
the original sequences and add new sequences to the developing MSA. Since pro-
gressive techniques are always included in the final product, and once a sequence
is aligned into the MSA, its alignment is not reevaluated, they are dependent on a
high-quality initial alignment. While increasing efficiency, this approximation com-
promises accuracy. To optimize a generic objective function like producing a high-
quality alignment score, iterative algorithms can, however, refer back to previously
calculated pairwise alignments or subMSAs (Fig. 4.9).

The two software packages PRRN and PRRP are examples of iterative methods.
They utilize a hill-climbing method to maximize its MSA alignment score and
rectify alignment weights and “gappy” sections of the MSA repeatedly. PRRP per-
forms better when revising an alignment created by a faster approach. MUSCLE
(multiple sequence alignment by log-expectation), which is another well-known

FIG. 4.8

Progressive alignment algorithm.
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iterative method, improves progressive methods by using a more accurate distance
metric to figure out if two sequences are linked.

4.7.3 MSA filtering
The MSA approaches have several flaws because they rely on heuristic searches
that are guided by faulty objective roles. As a result, even if their output is excellent
overall, it is invariably polluted with faults. A number of software tools have been
created with the goal of filtering MSAs so that only the most reliable parts remain.
This is accomplished by removing sites, sequences, or remnants (by replacing
them with the gap symbol, “�,” or an ambiguity symbol, “?,” “N,” or “X,”
respectively).

It’s crucial to make certain that filtering doesn’t eliminate both the signal and
the noise created by the improperly aligned sections. The equilibrium present be-
tween noise cutting and signal disappearance is critical in the case of MSA
filtering.

Filtering techniques are mainly separated into two divisions. The very first one
consists of ways for filtering MSA by completely deleting certain regions or se-
quences. These methods simply give the user two options for each region and
sequence: “take it or leave it,” which is why they are known as TILI-filtering tech-
niques. MSA filtering techniques that function by hiding remnants (replacing them
with the gap symbol “�” or a character depicting ambivalence such as “?,” “N,” or
“X,” as per the type of sequence) fall into the second group. These are termed “picky
filtering” techniques because they grab bits of information from a region or sequence
while ignoring the rest.

FIG. 4.9

Iterative alignment algorithm.
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4.7.4 Filtering techniques’ fundamental principles
A. Gaps show locations that are difficult to align and maybe saturated

Sequence alignment involves filling gaps. The number of gaps at a place directly
affects how much effort the alignment approach must make; hence, the procedure
is more likely to cause mistakes. Biologically, insertions and deletions are less prev-
alent in proteins than point substitutions. Several gaps show an aberrant evolutionary
pattern, perhaps owing to an MSA problem. Multiple mutations at the same location
are likely, obscuring the evolutionary signal.

B. Per site, a small number of residues with similar properties are expected

Homologous regions are likely to share traits, notably amino acid sequences. If all
amino acids at one site are the same, they all descend from the same hereditary
amino acid. Second, the protein has remained functional despite the physicochem-
ical properties of the remnant at this point, and at least 19 substitutions have
occurred to do this (which can suggest a site that is saturated). In this situation,
removing this alignment piece would be safer. Hydrophobic or positively charged
residues should be retained. Estimating residual transformation in one spot may
be done in a variety of ways, from easy (a simple count of amino acids found on
the site) to complicated.

C. Similarity in homologous sequences is expected

In most processes, homologous sequences are identified by their similarity. This en-
sures that the sequences that are supposed to be aligned have a minimum value of
total similarity. Despite this, it’s unusual for a portion of one or more sequences
to deviate dramatically from the rest of the alignment. This sequence is unlikely
to be homologous to the remaining area, maybe because it was not properly aligned
and the segment is homologous to a different portion of the alignment or because it
has no homology at all. This latter circumstance can be recognized before sequences
are aligned, and various approaches have been developed. This filtering should be
done before sequence alignment, since long insertions in particular sequences might
hamper the MSA.

D. Orthologous sequences should be consistent across loci (post-filtering)

Alignment filtering algorithms will almost certainly fail to detect a non-orthologous
sequence that is homologous with the remaining sequences. However, in the case of
a phylogenomic setting, it is conceivable to inspect the MSAs for every locus under
consideration. With a high count regarding taxa and genes, it is easier to learn loci,
along with the speed of evolution of taxonomic categories. The OrthoMaM v10 pro-
cess has one basic technique for detecting those sequences that are non-orthologous,
whereas Phylo-MCOA offers a more detailed solution. However, this is not appli-
cable in cases where the study is focused on the evolution of an entire family of
genes (both paralogous and orthologous).
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4.7.5 Programs and methods for multiple sequence alignment
4.7.5.1 Clustal family
MSA’s most well-known program is the Clustal family. There are two programmes
in this family: ClustalX and ClustalW. Clustal family tools are very fast and rela-
tively reliable; they work in the same way as any other progressive alignment tool
by either using PAM250 or BLOSUM62 with global DP for the pairwise alignment
of all the provided sequences.

The pairwise scores are then used by Cluster to generate a neighbor joining tree;
some early versions are used to follow the UPGMA method. The sequence align-
ment is done by following the leaves inward on the tree. Clustal is much more sen-
sitive than other alignment tools as it considers the gap penalties and the short
hydrophilic stretches as an indication of a random coil region so that the gap pen-
alties are reduced for these stretches.

Clustal Omega: The most recent and best-performing webserver in the Clustal
family. It can align around 200,000 sequences with just a single run and give results
in a few hours. In terms of accuracy, it’s very similar to other high-quality web
servers, but on a large scale of sequencing, Clustal Omega is quite good in terms
of both quality and the completion time of alignment. The very first step that this
server follows is pairwise alignment by the k-tuple method. Afterward, the mBed
method is used for clustering along with the K-means clustering method. Then it
is followed by the building of a guide tree with the help of the UPGMA method.
At last, the HHalign package aligns two hidden Markov model profiles and gener-
ates the alignment of multiple sequences.

4.7.5.2 DIAlign
DIAlign combines global and local pairwise alignments. DIAlign has MSA, which is
composed of segments of equal length that have statistical similarity, which is quite
significant. DIAlign is very similar to FASTA alignment.

4.7.5.3 Tree-based consistency objective function for alignment
evaluation (T-coffee)

It is also a progressive multiple sequence alignment tool that uses ClustalW and
LALIGN at the start to obtain a library of primary pairwise sequences that combine
global pairwise sequences from ClustalW and local pairwise sequences from
LALIGN. T-Coffee creates an extended library based on primary library triplets,
where the third sequence aligns the other two sequences and creates a new pairwise
alignment; duplicate pairs are removed completely. This extended library is actually
a list of weighted residue pairs. From this extended library, the final multiple
sequence alignment is generated by performing progressive alignment. 3D-coffee
is a new and improved version of T-coffee. It uses a specialized server to create a
3D structure alignment, which shows a superposition, which is an area where two
structures overlap. This superposition of two sequences is used to increase the
weight of residues in the library (Notredame et al., 2000).
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4.7.5.4 FAlign
FAlign uses a combination of both iterative and progressive algorithms to align mul-
tiple sequences. To use FAlign, users need to identify and define all the regions in all
the sequences where a motif is present. At motif boundaries, all the sequences split,
and the obtained segments are then aligned progressively. These segments are
aligned, and they are properly assembled, which generates an alignment. BLO-
SUM62 is used in FAlign to create a score matrix that gives a sum-of-pair score.
The alignment score is improved by the non-motif and by shifting the gaps itera-
tively and randomly.

4.7.6 Representation and structural inference
To generate multiple sequence alignments, we must first select more than two se-
quences from which to align and find similarity data. So after retrieving the se-
quences from FASTA, they are copied to the Clustal Omega web server box and
run for the results. As it is very rapid, it will generate results within a few seconds.
Using two examples, we will learn about the representation and structural inference
of multiple sequence alignment.

Example 1: Sequences of different species are retrieved to use as input in clustal.
The species were: panther histone, leopard mitochondria, tiger mitochondria, cat
cloning vector, and synthetic cat (Fig. 4.10).

Because the sequences are from different species and have less similarity, there
are no common matches between them. See any colon, semicolon, or star presence
here that states the presence of matches or is very close to matches because the 5
sequences are very different from each other.

Example 2: Another five sequences of different organisms, but from the same
class of species, Synthetic Cat, Cat Cloning Vector ThyA-Cat, Cat Expression Vec-
tor, and Cat Plasmid are the organisms (Fig. 4.11).

From the result, it is observed that there is alignment in the sequence. There are
semicolons present that represent that they are much closer to the matches, and only
1 residue is different. Following that, there are colons, indicating that they are also
close to the matches by the difference of two different residues.

4.8 Phylogenetics
Phylogenetic inference methods use heritable traits like DNA, amino acid se-
quences, or morphology to suggest links based on a trait evolution model. The
outcome is a phylogeny (also known as a phylogenetic tree), a diagram demon-
strating evolutionary links between species. Rooted and unrooted phylogenetic trees
are the two forms of phylogenetic trees. A rooted tree diagram shows the tree’s
ancestry. An unrooted tree diagram (a network) has no assumptions about the ances-
tral line; therefore, it doesn’t illustrate the origin or “root” of the species or the di-
rection of anticipated evolutionary transitions.
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FIG. 4.10

MSA 5 sequences of different species.

FIG. 4.11

MSA results.
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Phylogenetic studies are used not just for their intended purpose of deducing
phylogenetic patterns and taxa but also for the purpose of depicting connections
among individual organisms or gene copies.

4.8.1 Molecular phylogenetics
The technique of inferring evolutionary relationships that develop as a result of mo-
lecular evolution and generating a phylogenetic tree is known as molecular phylo-
genetics. In molecular phylogenetics, genetic and hereditary molecular
distinctions, especially DNA sequences, are analyzed to uncover an organism’s
evolutionary origins. A subset of molecular systematics, which uses molecular
data in taxonomy and biogeography, is molecular phylogenetics. The fields of mo-
lecular phylogenetics and evolutionary biology are inextricably connected.

4.8.2 Phylogenetics trees
A phylogenetic tree, also known as an evolutionary tree or phylogeny, is a branching
diagram that shows the evolutionary relationships between biological species or
other entities based on physical or genetic similarities and differences. The lengths
of the edges in some trees may be interpreted as estimations of the passage of time,
and each node in a rooted phylogenetic tree represents the estimated most recent
common ancestor. A taxonomic unit is a name that is assigned to each node in
the tree. Internal nodes are sometimes called hypothetical taxonomic units because
they are not easy to see.

The ancient idea of a hierarchical ladder connecting all forms of life gave rise to
the modern “tree of life” metaphor. Edward Hitchcock’s “paleontological chart” in
his Elementary Geology book is one of the earliest examples of a “branching” phylo-
genetic tree because it shows the geological links between different species of plants
and animals.

In his landmark essay The Origin of Species, published in 1859, Charles Darwin
produced one of the earliest depictions and promoted the notion of an evolutionary
“tree.” Even though they have been around for almost a century, tree diagrams are
still widely used by evolutionary biologists to convey the idea that speciation hap-
pens through adaptive and semi-random branch splitting. Over time, species classi-
fication has grown increasingly fluid and less rigid.

4.8.3 Properties
A rooted phylogenetic tree is a directed tree that has one node at the root that cor-
responds to the (often accepted) most recent common ancestor of all the organisms
at the tree’s leaves. Despite the fact that it has no parents, the root node in the tree is
the parent of all other nodes. As a result, the root is a node of degree 2, whereas the
remainder of the internal nodes are all at least nodes of degree 3. (The term “degree”
refers to the sum of all incoming and outgoing edges.)
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Unrooted trees do not assume any ancestry and merely illustrate the relationship
between the leaf nodes. If a tree’s root is absent, it may always be created from an
existing, rooted tree. On the other hand, determining an ancestor’s lineage is neces-
sary to infer a tree’s root. Common ways to do this are to include an “outgroup” in
the input data, force the root to be between the “outgroup” and the other species in
the tree, or make extra assumptions about how fast each branch is changing.

Bifurcating and multifurcating branches are possible in both rooted and
unrooted trees. Unrooted bifurcating trees have precisely three neighbors at each
internal node, while rooted bifurcating trees (which form a binary tree) have pre-
cisely two descendants emanating from each inner node. On the other hand, a mul-
tifurcating, unrooted tree may have more than three neighbors. Trees can be
labeled or unlabeled. Labeled trees have values assigned to the nodes, but an
unlabeled tree, also known as a tree form, only depicts the structure of the tree
(Kapli et al., 2020).

4.8.3.1 Phylogenetic trees and networks
Depending on the input data and technique used, computationally produced phylo-
genetic trees might be rooted or unrooted. Evolutionary processes like hybridization
and horizontal gene transfer may be simulated by connecting rooted and unrooted
phylogenetic trees to form rooted and unrooted phylogenetic networks. Dendro-
grams, phylograms, cladograms, and Dahlgren diagrams are only a few examples
of the many tree representations that exist.

4.8.4 Building methods
Computational phylogenetics methods are used to generate phylogenetic trees from
a large number of input sequences. Distance-matrix methods, such as neighbor-
joining or UPGMA, which calculate genetic distance from multiple sequence align-
ments, are the easiest to construct. These methods aren’t based on any sort of
evolutionary theory. Simpler tree-building algorithms are used by several sequence
alignment tools, including ClustalW. Maximum parsimony is another simple way to
figure out phylogenetic trees, but it does require an implicit model of how evolution
works.

4.8.5 Distance matrix method
To classify sequences, distance-matrix methods depend on a metric called “genetic
distance.” The percentage of mismatches at aligned sites is often used to calculate
distance, with gaps either being disregarded or counted as mismatches. The goal of
distance techniques is to create an all-to-all matrix that represents the distance be-
tween each pair of sequences in the sequence query set. A phylogenetic tree is
made when sequences that are very similar to each other are put under the same
inner node and the lengths of the branches are close to the distances between
the sequences.
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4.8.5.1 UPGMA
The UPGMA (Unweighted Pair Group Method with Arithmetic Mean) approach
produces rooted trees and requires a constant-rate assumption, which necessitates
an ultrametric tree with equal distances between root and branch tip. It is the oldest
and simplest distance matrix method. It uses a sequential clustering algorithm and
clusters the two closest species. The process is repeated until all species are grouped.
The main advantage of this approach is that it is fast and is suitable for analyzing
large data sets. There are several models available with many parameters in UPGMA
that improve the distance estimation. However, this method lacks in some aspects, as
a lot of information is lost, and the history of sites can only be investigated through
character-based analyses.

4.8.5.2 Neighbor-joining
Neighbor-joining approaches extend general cluster analysis techniques to sequence
analysis by using genetic distance as a grouping parameter. It is a method of clus-
tering that works from the bottom up, and the term “neighbors” refers to taxa that
are related to one another by a single node in an unrooted tree. The simple
neighbor-joining method produces unrooted trees, but it does not assume that line-
ages evolve at the same pace. Up until the tree is resolved, the closest neighbors are
sequentially linked by a new node. Even for many hundreds of sequences, the NJ
technique is quick. However, the approach lacks accuracy because there is no
attempt to correct for potential bias. NJ also does not examine all possible
topologies.

4.8.5.3 Fitch Margoliash method
The Fitch-Margoliash method groups people based on their genetic distance by us-
ing a weighted least squares algorithm. To account for the higher inaccuracy in
calculating distances between distantly related sequences, the tree-building strategy
gives greater weight to tightly linked sequences. To prevent significant artifacts
when computing relationships between closely and distantly related groups, the dis-
tances employed as the method’s input should be normalized. According to the dis-
tance linearity requirement, the anticipated value of the sum of two branch distances
must be equal to the expected value of the two branch length sums. A substitution
matrix, such as the one produced by the Jukes-Cantor model of DNA evolution, is
used to make this correction. But the distance has to be changed when the branch
rates start to change at different speeds.

Another variant of the strategy has been proven to increase the algorithm’s
effectiveness and robustness, especially in cases involving relatively small dis-
tances. The least-squares criteria for distance measurement is more precise
than neighbor-joining approaches but less time-efficient. At a higher processing
cost, a further improvement can be added to take into account correlations be-
tween distances that come from a number of closely related sequences in the
data set.
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4.8.5.4 Maximum parsimony
Maximum parsimony (MP) is a method for deciding which phylogenetic tree best
reflects the available sequencing data and needs the fewest overall evolutionary
events. In this approach, sequences are aligned in order to build a tree that reduces
the total number of mutations while simultaneously reducing the sum of all branch
lengths. It aligns the sequences directly without making use of a distance matrix or
an evolutionary model, and it entirely overlooks the notion that there may be
numerous mutations. It was first designed to work with morphological characters.
The fundamental idea behind MP is that it estimates the fewest possible replace-
ments for any given topology. Among the benefits of this method are: (a) It is a sim-
ple method that doesn’t make any assumptions and doesn’t depend on any evolution
model. However, if the substitution rates vary extensively between lineages, MP can
also create incorrect topologies.

4.8.5.5 Maximum likelihood
The maximum likelihood approach assigns probabilities to fictitious evolu-
tionary trees by using standard statistical methods for deriving probability distri-
butions. The method calls for a substitution framework to calculate the
probability of certain mutations; typically, a tree is judged to have a lower prob-
ability if it takes more mutations at inner nodes to account for the observed phy-
logeny. Maximum likelihood permits variable evolution rates across locales and
lineages. As a result, this approach offers more statistical flexibility than
maximum parsimony.

The “pruning” technique is frequently used to narrow the search space by more
accurately predicting the likelihood of subtrees. The approach works backward from
a node whose only descendants are leaves to the “bottom” node, estimating the prob-
ability for each site in nested sets in a linear manner. The procedure will only result
in the production of rooted trees if the replacement model is irreversible, which isn’t
usually the case in biology.

This approach offers the most compelling theoretical justification for its use. Ex-
periments using sequence simulation have demonstrated that this approach is supe-
rior to all others in terms of effectiveness in the majority of scenarios. However, this
strategy relies heavily on the use of computers. Because there are so many different
trees to consider, it is almost never possible to examine them all. A preliminary
investigation of potential tree locations is carried out. The mathematical certainty
of generating the tree with the highest probability has been lost.

4.8.6 Bayesian inference
In a manner similar to maximum likelihood methods, phylogenetic trees may be
constructed using Bayesian inference. Bayesian approaches estimate a prior proba-
bility distribution of the potential trees. This can be as simple as the probability of
any one tree out of all the possible trees that can be made from the data, or it can be a
more complicated estimate based on the idea that divergence events like speciation
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are random. The prior distribution that is used in Bayesian inference phylogenetics is
seen differently by different users.

Examples of Bayesian phylogenetics choices include randomly swapping the
descendant subtrees of a random internal node between two interrelated trees and
performing a circular permutation of the leaf nodes of a postulated tree at every
phase. The use of Bayesian approaches in phylogenetics has been met with much
debate as a result of a lack of transparency in previously published research about
the decision-making process for the prior distribution, acceptance criterion, and
move set.

Bayesian procedures use the posterior distribution to reconstruct a tree that de-
picts the most likely clades, whereas likelihood approaches locate the tree with
the highest probability given the data. It is possible, however, for estimates of clade
posterior probability to be quite inaccurate, especially for clades that aren’t
extremely probable. This has led to the introduction of several strategies for esti-
mating the posterior probability.
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Genetic variations 5
5.1 Introduction
Human genetics is the study of the species that the majority of us regard as being the
most significant on planet Earth: Homo sapiens. The desire to have a deeper under-
standing of ourselves is one motive for researching human genetics. The past
20 years have experienced robust human genetic variation. By understanding the
genetic variation of an individual or a group, researchers are able to understand
the organism and how they are able to adapt in a challenging environment. It was
also observed that most of the variations are useless, which means the variation
does not affect the ability to survive or adapt. Not all variations are positive or
neutral; some of them have a negative effect on DNA sequence, which can cause dis-
eases like Huntington’s disease and cystic fibrosis. Finding out how genetic factors
contribute to many human diseases is one of the advantages of studying genetic
variation in humans.

The variations also contribute to molecular genetics, biology, and the biomedical
field, which have exploded due to the number of variations in DNA sequence and
genotypes that have been spawned. The human genetic data has increased the under-
standing of genetic variation patterns that occur in an individual or group, apart from
the online database that is being provided in which genome variants are being
published.

Homo sapiens hasn’t had nearly as much time to build genetic diversity as most
other species on the planet, which mostly predate mankind by vast epochs. The
amount of genetic variationdbiochemical individualitydbetween any two humans
is approximately 0.1%. Any two (diploid) individuals have approximately 6 � 10
different bp, which is a significant factor in developing automated processes for
analyzing genetic variation.

Most of the time, genetic variation is a natural thing that happens when DNA
replication goes wrong. The term “variation” means a change in the genetic
sequence. Due to genetic variations, all humans are different from each other in
terms of hair, color, height, or even the structure of our faces. A group of individuals
from the same species with similar characteristics have differences, these differences
are due to variations. SNPs are the most prevalent form of variation in humans. The
specialty of SNPs is that only one/single nucleotide is being replaced by the other
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nucleotide in the whole DNA sequence. SNPs are dispersed naturally throughout the
DNA of each individual. Approximately 4e5 million SNPs exist in a person’s
genome, since they appear around once every 1000 bases on average. A variant is
deemed to be an SNP if it is present in approximately 1% of the population. Scien-
tists have detected more than 600 million SNPs in global populations. The majority
of SNPs do not impact development or health.

Nonetheless, a number of these genetic differences have been demonstrated to be
crucial for human health research. SNPs assist in predicting a patient’s reaction to
certain treatments, vulnerability to environmental variables like pollution, and sus-
ceptibility to disease. It also helps find out how genetic changes linked to illness are
passed down through families. These variations can be observed in genes, DNA, pro-
teins, chromosomes, and even in the function of proteins. Although all the individ-
uals have 99.9% similar genomes and only 0.1% of the variation in the genome, we
are all different phenotypically. Thus, this small amount of variation accounts for
such a significant difference. This difference may affect how an individual reacts
to a particular drug or a particular environment. Thus, it is necessary to understand
and evaluate the genotype-phenotype associations. Understanding such associations
also helps us to devise therapies according to the patient’s genetic makeup to provide
a better therapeutic effect. Bioinformatics, or computational biology, has aided in
pharmacogenomics and personalized medicine due to the integration of information
available through whole genome sequencing and clinical studies. Several databases
have contributed to the development of the field. These databases include
PharmGKB, DrugBank, OMIM, and other such databases (Lek et al., 2016).

5.2 Types of variations
In humans, genetic variation can take many forms, some of which occur naturally
and others which are influenced by environmental factors. Changes in single nucle-
otides, addition or deletion that causes a change in copy number, which ultimately
changes the copy number variation (CNV), tandem repeats, recombination in ho-
mologous chromosomes, i.e., translocations and inversions (also known as copy
neutral variations) are all examples of variation. The size of variation ranges from
a single nucleotide to a megabase. Restriction fragment length polymorphism
(RFLPs), single nucleotide polymorphism (SNPs), and indel are all types of single
nucleotide substitutions or alterations in which a single nucleotide is changed or
replaced from a specific locus in a DNA sequence (Eichler, 2019).

The chromosome microarray test is done to find out if there are any missing or
extra chromosomes. Any piece of chromosome gained or lost is termed a “copy
number variant.” All humans possess CNVs, most of which are harmless and do
not cause any type of disorder. CNVs are a natural part of the evolution process.
If the CNV in question is small and not linked to any important genes involved in
the disorder, it is considered harmless. Also, CNV inherited from healthy parents
is likely to be harmless. However, if the size of the CNV is large and contains an
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important gene, it can be very harmful. But if the CNV is initiated in the offspring,
then it can be very dangerous, and the person faces intellectual disabilities and mul-
tiple congenital syndromes (Fig. 5.1).

The next type of variation is the SNPs. Each SNP have four allele. The SNPs are
very abundant in number which can help in identifying the variation in the sequence.
SNP is based on the oligonucleotide hybridization analysis which makes the detec-
tion of SNPs very fast and very precise.

Fig. 5.2 shows variations like single nucleotide changes, in which only one
nucleotide is altered or replaced by another single nucleotide. GTAGGCCATGCA
has been taken as the reference DNA sequence for all the variations. In the first
case, single nucleotide substitution has been explained, in which the single nucleo-
tide cytosine is being substituted by adenine. In this, insertion and deletion of single
nucleotides are being observed. The second type of variation is tandem repeats;
these repeats are short sequences of DNA that repeat themselves in whole. The var-
iable number of tandems that repeat represents the total number of repeats in the
whole sequence. The reason for insertion or deletion at a particular position is
unknown.

5.3 Effects of genetic variation
The main effect of any kind of genetic variation is to give a population the flexibility
to deal with environmental challenges. Previous experience has shown that genetic
variation always helps and boosts the organism’s chances of adapting to any type of
challenging environment and prepares the organism for any type of unexpected sit-
uation. The organism reproduces to give birth to its offspring. The formation of
offspring of the same kind is the primary reason for reproduction. However, it is
not possible, to have identical offspring just like the parents, except in the case of
clones, which are genetically identical to their parents. But in almost all cases,
offspring are somewhat different from their parents. It is inevitable that there will
be a difference between the parents and the offspring. Variations refer to the

FIGURE 5.1

Characteristics of variations being harmful and harmless.
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FIGURE 5.2

Systematic representation of single nucleotide change, tandem repeats, and short indels.
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differences that exist between parents and their offspring. And these variations, over
time, cause evolution. Evolution refers to any change in a population that takes years
and improves organism capabilities. It is a very slow process and occurs in popula-
tions depending on environmental factors. The effect of any type of genetic variation
is linked with evolution; the genetic variation is directly proportional to evolution.
The more genetic variation, the more evolution; the less genetic variation, the lower
the chances of evolution (Nei, 1983) (Fig. 5.3).

But still, not all genetic variation causes’ evolution; the variation that will be
passed on to the next generation causes evolution in the population and is called he-
reditary variation. These variations are observed in the egg or sperm cell so as to pass
on the trait to the next generation. The gene variant causes permanent changes in the
sequence of DNA, which will further form the gene. In this type of genetic variation,
it is not mandatory that it will cause a disorder; thus, the “gene variant” term is given
to the permanent changes in the DNA. Gene variants are different from single nucle-
otide polymorphism because they can change more than one nucleotide. In single
nucleotide polymorphism, only one nucleotide changes.

The variants can be passed from parents to offspring and occur over the course of
an individual’s lifetime. If the gene variant is inherited, it is called a hereditary
variant. The variation occurs in the germ cells, i.e., the egg or sperm cells of the par-
ents, and is hence also considered a germline variation. When the egg and sperm
cells containing variants form an embryo; the cells of this embryo will contain all
the variant DNA from the parents and carry those variants through the rest of their
lives. To function effectively, each cell requires hundreds of proteins to do their
assigned jobs at the appropriate times and locations. Gene variations (also known
as mutations) can occasionally compromise the function of one or more proteins.
A variant can cause a protein to malfunction or not be formed at all by modifying
the gene’s instructions for protein synthesis. When a variation affects vitally essen-
tial proteins, it may interfere with normal growth or produce a genetic condition,
generally known as a disease caused by variations in one or more genes. Genes
do not cause disease by themselves. Instead, genetic diseases are caused by changes
that change or take away a gene’s function.

For instance, when individuals refer to “the gene of cystic fibrosis” they are often
referring to a mutation of the CFTR gene that causes the disease. Every individual,
including those without cystic fibrosis, has a variant of the CFTR gene (Studer et al.,
2013).

5.4 Biological database
For the advancement of humanity, biology now incorporates numerous technolog-
ical aspects. This expansion of biology has generated numerous data-rich outcomes
that require compilation and organization. Databases are significant tools for scien-
tists to use in analyzing and explaining a wide range of biological phenomena, from
the structure of biomolecules and their interactions to the entire metabolism of
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FIGURE 5.3

Different offspring’s due to genetic variation.
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organisms and comprehending species evolution. This knowledge aids in the fight
against diseases, the development of drugs, the prediction of specific hereditary dis-
eases, and the discovery of fundamental links between species throughout the his-
tory of life. A database of genetic variants offers information about genetic
variances. Researchers submit data to these databases, which collect, organize,
and publicly document evidence linking a human genetic variant to a disease or con-
dition. Based on the current level of knowledge, these databases may make state-
ments regarding genetic variations, Understanding the relationships between
genotypes (an organism’s genetic code) and diseases or disorders can help in the
diagnosis and treatment of people with genetic problems. A few of the genetic var-
iant’s databases are explained below:

5.4.1 Database of human genetic variation
There are various types of biological databases that help in collecting the data of
various experiment results for further purposes. One of the biological databases is
the Human Genome Variation Database (HGV) (Fredman et al., 2002). Human
Genome Variation maintains a publicly available online collection of genetic varia-
tion as documented in published research reports. Following evaluation by the
editors, a standard range of data about every variation is retrieved from journal-
published articles and added to the library. It’s a free database that may be accessed
and utilized by anyone.

The search bar provides filters like region, mutation type, and zygosity type,
which makes the search more accessible and easier. The HGVDwebsite allows users
to view the number of samples, genotype and allele frequencies, coverages, and
eQTL (expression QTL) significances. The key point of HGV database is that it pro-
vides data reports which have all the short reports regarding the human genome vari-
ation. It also has reports regarding the variability, which has the main role of
describing the disease causing “genomic variants” and also specifies the frequency
of those variants. The data report and HGV database are interlinked with each other.
Every piece of information in the HGV database is organized into “sets” that are
connected to their corresponding data report, which will have a connection to the
corresponding information in the database. The HGV database collects different
types of data, involving OMIM data, de novo/inherited, name of the gene, chromo-
some, protein alteration, mutation type, GenBank accession number, disease, pheno-
type, region, codon base change, genome position, and references (Li et al., 2012)
(Fig. 5.4).

ClinVar is a publicly available database of research detailing the associations be-
tween phenotypes and human variants, along with supporting documentation. It pro-
vides access to and facilitates discussion regarding the stated links between human
variation and recorded health status, as well as the background of this assessment. It
also handles submissions describing variations detected in patients’ specimens, clin-
ical significance claims, submitter information, and any supporting data. As per the
HGVS guideline, the alleles mentioned in submissions are mapped to reference
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sequences and presented. ClinVar then represents the information for interactive
users and those who want to employ it for various purposes and applications. It col-
laborates with interested groups to address the genomics community’s requirements
as effectively and efficiently as feasible. ClinVar is intended to facilitate the
advancement of our understanding of the connection between genotypes and clini-
cally significant phenotypes. By putting together information about variants found in
people with and without phenotypes, the database helps prove the clinical validity of
human variation (Landrum et al., 2016).

dbSNP: NCBI and NHGRI (National Human Genome Research Institute) estab-
lished and operate dbSNP, a publicly available resource documenting genetic vari-
ation within and between species. It comprises a variety of molecular variation,
including SNPs, small insertion and deletion polymorphisms (indels/DIPs), short
tandem repeats (STRs) or microsatellite markers, and heterozygous sequences
(Sherry et al., 2001). Since its establishment in September 1998), dbSNP has func-
tioned as a primary, publicly accessible database for genetic variation. Once these
variants have been detected and cataloged in the database, additional laboratories
will be able to access the sequencing data surrounding polymorphism and experi-
mental settings in future research applications. dbSNP presently classifies nucleotide
sequence variants according to the following categories and percentages:

I. single nucleotide substitutions, 99.77%;
II. short insertion/deletion polymorphisms, 0.21%;

FIGURE 5.4

Workflow of HGV database.
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III. invariant sequence sections, 0.02%;
IV. microsatellite repeats, 0.001%;
V. identified variants, 0.001%; and
VI. uncharacterized heterozygous tests, 0.001%.

The 1000 Genomes Project It was initiated in 2008 and seeks to create the most
comprehensive atlas of human genetic diversity by sequencing around 2500 ge-
nomes from approximately 25 groups worldwide. The genetic variation data pro-
vided by this multinational partnership will aid genome-wide association studies
of complex variables and phenotypes, such as the pharmacogenomic phenotype.
The purpose of a GWAS is to identify genomic areas related to an outcome of inter-
est (e.g., drug response). Frequently, the related variation acts as a marker (tag SNP)
for the true causative variant (the variant that underlies the observed association). To
identify the causative variant(s) and understand the mechanism behind its effects,
more analyses of variations within the candidate area are necessary. In several in-
stances, uncommon variations within the candidate locus contribute to disease sus-
ceptibility or phenotype. But these rare changes aren’t in the HapMap database and
aren’t picked up by existing genotyping technologies, so they aren’t taken into ac-
count in GWASs (Li et al., 2012).

5.4.2 Predicting the clinical significance of human genetic
variation

Any type of testing, diagnosis, or risk assessment of the patient and their family for
any type of genetic disease is called molecular genetic testing. Today, there has been
a robust development in molecular genetic testing that is low-cost, fast, and efficient.
The DNA sequencing technology and computational technologies combined in-
crease the standard of molecular genetic testing, which shows the result that there
is more DNA variants per test due to lifestyle and environmental factors, which
may include pollution and global warming. To determine the pathogenicity of the
DNA variants, various approaches and methods have been organized in a systemic
way that can help overcome this increased number of DNA variants. Initially, the
database provides existing data, which includes publication of internal and public
resources. After that, the statistical analysis is being performed, which includes
the assessment of population and disease. Now, both the in vivo and in vitro exper-
iment data is being evaluated on the basis of computational prediction, which basi-
cally predicts the impact of each variant. Finally, with all the evidence, we can
predict whether the variants will cause the disease or not (Duzkale et al., 2013).

A report suggests that the most common result of molecular genetic testing in-
cludes DNA variants and cystic fibrosis, or a gene that is linked with the disease
and has a sequenced coding region. Next-generation technologies have improved
diagnostic sensitivity while also providing high throughput results at a low cost.
Such technology includes next-generation sequencing (NGS). It is also observed
that the variants with uncertain significance (VUS) have also increased, which
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basically means that the genetic sequence for a particular disease is not clear. The
functionality of the variant identified by the genetic testing is unclear. Identifying
variants also helps us figure out what role a gene plays in a certain disease. Genome
sequencing, on the other hand, adds layers of complexity to the questioning of the
gene.

The molecular genetic testing has had great success in the diagnosis and evalu-
ation of genetic diseases, providing high throughput results at a low cost. However,
protocols, rules, regulations, and ethics are lacking in molecular genetic testing.
When it comes to variant interpretation, there are some guidelines available that
are updated as variant knowledge expands, including the American College of Med-
ical Genetics and Genomics (ACMG). There are three questions that can be used to
figure out what the clinical significance of a variant is for a certain disease.

a. Does genetic variation also change the functionality of a particular disease?
b. Is this variation cause disease?
c. Is there any relation between the associated disease and the present clinical

condition of the patient?

While the interpretation of variant questions 1 and 2 is very important to assess
the variant and its effect, But in some cases, to maximize the benefit to the patient,
one should do the entire set of three questions, which provide a three-dimensional
interpretation of the variant. This is especially true in the case of variants with un-
certain significance (VUS). While testing 21,000e22,000 cases in a case study, it
was discovered that 246 genes are linked to 50e56 human diseases. For clinical
assessment, a systematic framework has been made, and more than 17,000 variants
are being found and about 8000 of them are being recognized in patients.

The Fig. 5.5 shows the systematic representation of variant assessment. The ge-
netic variation is acknowledged by the test which is performed by the labs. After that
the results are being annotated on the basis of publication, internal database and
computational prediction algorithm. The result which are got from annotation in
the form of clinical data are being classified by the expert individual into five sec-
tions, benign, likely to benign, variants with uncertain significance (VUS), patho-
genic, likely to pathogenic (McLaren et al., 2016).

5.5 Phenotype-genotype association
Genotype refers to the entire collection of genes present in an individual. The geno-
type is inherited from both parents and thus governs heredity and the extent of devel-
opment. Sexually reproducing organisms have unique genotypes due to the fusion of
gametes and the process of crossing over during meiosis. The characteristics of an
individual are the phenotype and are governed by the genotype and other factors.
Observable features or physical attributes of an individual or organism are referred
to as their phenotype. Individual phenotypes are the result of a complex interaction
between an individual’s genotype and other factors such as epigenetic modifications
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and environmental factors. The phenotype includes color, height, shape, behavioral
characteristics, biochemical processes, and many more. The phenotype is subjected
to constant change due to ever-changing environmental conditions and the morpho-
logical and physiological changes associated with aging. The environmental factor
influences the expression of the genotype. The association between genotype and
phenotype is complex because, despite having 99.9% similar genomes, all individ-
uals differ phenotypically to a great extent; Fig. 5.6 depicts the complex genotype-
phenotype association.

The phenotype of an organism can be observed through simple, direct observa-
tion, whereas genotyping is done to observe or characterize the genotype. Genotyp-
ing involves various complex procedures, from the extraction of DNA to sequence
analysis. Previously, genotyping of partial sequences was the only option, but with
technological advancements, whole-genome sequencing can now be done quickly.
Partial sequencing does not provide much information because most of the proteins
are encoded by widely spread gene fragments, which may be present at different loci
too. WGS makes it possible to identify the full sequence of a person, which can then

FIGURE 5.5

A typical variant assessment workflow.
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be analyzed and compared to a phenotypic trait (usually to find the cause of a dis-
ease). Fig. 5.7 shows a schematic representation of the WGS workflow. The other
methods used for genotyping include DNA microarrays, PCR, DNA hybridization,
and others.

The understanding of genotype-phenotype association is a developing field of
research, especially in the context of pharmacogenomics. Individual differences
determine how an individual will react to a drug or how susceptible he or she is
to contracting a disease. For example, variations in the CYC450A liver enzyme

FIGURE 5.6

Schematic representation of the complex relationship between genotype and phenotype.

FIGURE 5.7

Schematic representation of the WGS workflow.
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involved in the metabolism of several medicines, can influence a person’s capacity
for metabolizing a certain drug. This information about genetic differences can help
doctors figure out the right amount of the drug to give for effective treatment.

Integrating both genotyping and phenotyping techniques is more adequate for a
diagnosis or association study than genotype tests alone. The integrated approach is
used in pharmacogenomics to identify the disease cause and drug metabolism with
greater accuracy than predicted using genotyping alone. This integration also be-
comes the baseline for the personalized medicine approach. The genotype-
phenotype association can easily be studied using knockout mice.

The field of genomics underwent a drastic transition with elucidating the human
genome sequence and mapping of the SNPs (single nucleotide polymorphism). With
technological advancement, it is now possible to analyze hundreds of SNPs at the
same time. This feasibility in analysis has allowed the genotype-phenotype associ-
ation to establish reproducibly. For example, SNPs of TCF7L2 (transcription factor)
and PPARG (peroxisome proliferator-activated receptor- g) are associated with dia-
betes. Similarly, NOD2 (nucleotide-binding oligomerization domain containing 2)
SNP is associated to Crohn’s disease, and CFH (complement factor H) SNP is asso-
ciated with age-related macular degradation. Genotype-phenotype association
studies are not only relevant for pharmacogenomics but are also essential to study
the evolution of a particular trait. These studies help in the elucidation of genes
responsible for behavioral traits. For most phenotypes, genes responsible are spread
over different parts of the genome, which shape the phenotype differently under
different environmental conditions. Due to this variable spread of genes encoding
a phenotype, genome-wide associations are limited for such phenotypic traits.

Tremendous efforts have been made to link the human genome variations with
the phenotype, and this process has accelerated over the past few decades. These
studies have disclosed various phenotypes/traits affected by the variation present
in the genome. To interpret the phenotypic prediction based on variation, a thorough
understanding of genotype-phenotype association is required.

The various methods used for detection of genetic variation include the Mende-
lian approach of crossing and assessing the phenotype, but this method is not
possible with humans due to the longer generation time. Other approaches include
PCR based methods, FISH, RFLP, sequence analysis, and microarrays. These newer
techniques are fast and precise, allowing multiple detections in a single pass.

5.6 Pharmacogenomics
Pharmacogenomics/pharmacogenetics refers to the study of genetic variations that
cause variability in how different people react to drugs. In 1994, a study published
in the USA presented the statistics that around 2.2 million people were severely
affected by the drug side-effects, and around 100,000 people died due to the side-
effects. According to these statistics, the death rate from drug side effects was higher
than the death rate from viral diseases. Predicting how a patient will react to a
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specific drug will thus be a significant advance in the health sciences (Relling and
Evans, 2015).

The individual’s response to a particular drug depends on the target protein or
enzyme and the receptors responsible for binding the drug and metabolizing it. Var-
iations in such proteins at the genetic level may result in decreased binding or even
the complete absence of drug binding to receptors and an absence of or decreased
drug metabolism. The genetic composition of an individual can affect how the
body reacts to the drug. Some factors that may be affected due to the genetic vari-
ation include:

5.6.1 Drug receptors
Certain drugs are attached to a particular target receptor to function effectively. The
genetic composition determines the type, frequency, and specificity of the receptor,
which may affect the way your body reacts to a particular drug. Depending upon the
genotype an individual possesses, a higher or lower amount of drug may be needed,
or a different drug may also be needed, as depicted in Fig. 5.8. Example: In the case
of some breast cancers, HER2 receptors are overexpressed, which helps in the devel-
opment and progression of cancer. The T-DM1 drug targets the HER2 receptor of the
cancerous cells and eventually kills them. If a person has breast cancer, then the
clinician tests the tumor sample to check whether the samples are HER2 positive
or negative and then decides whether T-DM1 can be used for treatment or not.

5.6.2 Drug uptake
Certain drugs need active uptake inside the target tissues or cells for their practical
function. The genome of an individual affects the uptake of certain drugs. Decreased
permeability toward a drug hinders the cellular uptake of the drug, leading to the
accumulation of the drug at random sites, which may cause side effects. The genetic
makeup of a person affects how efficiently a drug can be taken up by the target cells
and how long it takes to be excreted out of the cells. If the drug is excreted too fast, it
might not create the desired therapeutic effect, as shown in Fig. 5.9. Example: Sta-
tins are a class of drugs that help lower the cholesterol level by acting on the liver.
For statin activity, they must be transported to the liver. This transportation is facil-
itated by a protein encoded by the gene SLCO1B1. A variation in the SLCO1B1
gene causes less uptake of a statin known as simvastatin into the liver. If adminis-
tered at a higher dosage, simvastatin accumulates in the blood, which leads to prob-
lems in the muscles, which include pain and weakness. The clinician usually
recommends the genetic testing of SLCO1B1 before prescribing simvastatin.

5.6.3 Drug breakdown
The genomic construction of an individual may affect the rate at which the drug is
metabolized. If a drug gets metabolized faster than expected, it is excreted from the
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FIGURE 5.8

Variation in response to a particular drug due to genetic variations amongst individuals.
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FIGURE 5.9

Variability in the drug uptake caused due to genetic variation.
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body in a shorter period of time without causing the desired effect. In these cases, the
drug dose needs to be increased or a different drug needs to be used. If the body me-
tabolizes a drug more slowly than expected, a lower dosage is needed, as shown in
Fig. 5.10. Example: The breakdown of amitriptyline, an antidepressant drug, is
controlled by two genes named CYP2D6 and CYP2C19. A psychiatrist, before pre-
scribing amitriptyline, generally recommends a genetic test for both genes. This
testing helps identify the optimum dosage for the drug. If the genes are highly active,
then the drug will breakdown faster, and either a high dosage will be prescribed, or a
different drug will be prescribed. If the drug breakdown is slow, then a lower dosage
will be prescribed.

One of the essential polymorphisms is found in the protein family, cytochrome
P450. The enzyme CYP2D6 is essential for the breakdown/metabolism of about
20%e25% of all the drugs prescribed by physicians. Mutations in the gene encoding
CYP2D6 can affect the rate of drug metabolism. Based on the type of mutation, the
patients are classified as ultrafast drug metabolizers, extensive drug metabolizers,
medium drug metabolizers, and slow drug metabolizers. This suggests that genetic
polymorphism or genetic variation influences a patient’s ability to respond to drugs.
SNPs, being the most widely and frequently found genetic variation, are at the center
of pharmacogenomics, as scientists are focused on determining the SNPs that alter
the drug metabolism in an individual (Mateo et al., 2022).

Pharmacogenomics aims at predicting the unwanted side-effects of drugs used
for therapy in advance. For predicting in advance, diagnostic test development is
one of the prerequisites. This diagnostic test helps the clinician find out if any ge-
netic predispositions are present in the patient and how the patient may react to a
particular drug. Based on the diagnostic tests, the clinician or the geneticist finds
out whether a distinct polymorphism is present in the drug-metabolizing enzymes
or not. Based on the test results, the patients are then classified into various groups,
and a suitable therapy is administered to them based on their genotype, as shown in
Fig. 5.11. This type of therapy is also known as “stratified medicine” because the
therapy is molded or tailored according to patients’ genetic makeup.

Example of “Stratified Medicine”: Mercaptopurine and thioguanine are used as
chemotherapeutic agents to treat acute lymphatic leukemia (ALL). These drugs
incorporate into the DNA of cancerous cells, eventually killing them. Thiopurine-
S- methyltransferase is the enzyme responsible for the metabolism of these drugs.
Genetic polymorphisms may interfere with the activity of this enzyme, leading to
the accumulation of these drugs in blood cells and causing death. In contrast, in pa-
tients with high enzyme activity, high concentrations of drugs are needed. Pharma-
cogenomics also aids in the process of pharmacological research. Before entering
the market, every drug must undergo rigorous clinical trials to prove its safety
and efficacy. Pharmacogenomics helps exclude the cohort that may show no effect
of the drug or may show unapprehensive side-effects before the start of the clinical
trials. This filtering out of the cohort may increase the probability of the drug reach-
ing the market. Pharmacogenomics also helps in the development of drugs for pa-
tients who do not respond to any of the therapies that already exist.
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FIGURE 5.10

Schematic representation of different rates of drug breakdown.
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5.7 Pharmacogenomics and targeted drug development
Drug development using the pharmacogenomics approach focuses on treating the
cause of the disease instead of just treating its symptoms. Some of the clinical dis-
eases are caused by mutations in genes. Different types of mutations can be found in
the same gene, which may have altogether different effects. Some mutations may
cause a protein to lose its function, while other mutations may not lead to protein
synthesis at all. Drugs can be designed based on the types of mutations that affect
the protein. These drugs will be effective only against a specific type of mutation.
Example: Ivacaftor is a drug used for the treatment of cystic fibrosis. A mutation
in the CFTR gene leads to an alteration in the CFTR protein responsible for forming
ion channels. The mutation causes this channel to be permanently closed, thus pre-
venting the movement of particles. Ivacaftor forces the ion channel to open again,
but this drug will be ineffective if the ion channels are not formed at all (Whirl-
Carrillo et al., 2012).

Despite the genetic variation, other factors affecting the response and efficacy
toward a drug include the patient’s age, alcohol consumption, nutrition, the individ-
ual’s microbiome, the presence of other diseases, and the consumption of other
drugs. However, the presence of genetic variation can, but not necessarily will,
lead to variation in metabolic pathways. So, to increase the efficiency of individual
medicines, genetic predispositions and metabolic profiles should be considered.
Thus, an integrated approach that incorporates both pharmacogenomics and
pharmaco-metabolomics results in more tailored medicine.

FIGURE 5.11

Schematic representation of finding genetic predispositions of the patient and tailoring

drugs that would be more effective for treatment.
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5.7.1 Personalized medicine
Personalized medicine (PM) is a relatively new discipline of medicine that examines
a person’s genotype to aid in disease prevention, treatment, diagnosis, and cure. The
genotype of a patient can be utilized to determine the optimal medicine or treatment
option for them. The Human Genome Project’s data is being used to enhance person-
alized treatment. Personalized medicine is a planned, effective, and preventative
structural method for effective health care. To account for inherited predispositions,
PM engages individuals in lifestyle decisions and effective management of health.
PM is now possible and growing at a quicker rate thanks to significant technological
advancements, including as: New methods for sequencing the human genome faster
and more correctly with smaller but more powerful equipment (Whirl-Carrillo et al.,
2012). Large-scale research and sample archives that link genetic variants to disease
across countries and continents (Fig. 5.12).

5.7.2 Personalized medicine drivers
5.7.2.1 Human genome sequencing has been completed
The rise of information and knowledge outlining the causes of disease and patient
heterogeneity, as well as heterogeneity in treatment response, will be the primary
driver for customized medicine. The goal will always be to enhance the benefit-
to- risk ratio associated with the administration of a particular medicine to a specific
patient, as well as to identify newer, more specific, and safer medicines.

The emerging knowledge of medical science reveals that the heterogeneity of
diseases and patients will almost certainly assist in the discovery of new disease-
related objectives and more sensitive and accurate diagnostic tools. A standard, com-
plex, chronic disease is thought to be caused by as many as 10 distinct genes on
average. This should lead to a variety of new and improved therapeutic approaches
as well as earlier interventions. As a result, healthcare practitioners will have a wide
range of pharmacological options to treat patients with various diseases. When di-
agnostics packaged with pharmaceuticals become accessible, they will help health
care providers decide which drug option is best for each patient. The health care pro-
vider will subsequently prescribe correctly. This decision will be based on drug ef-
ficacy, safety, or a combination of the two. Although no one knows when this will be
possible, many, if not all, diseases will undoubtedly be several years away.

5.7.2.2 Molecular characterization of disease
As more information on the disease and patient heterogeneity becomes available,
relevant genomic, genetic, and proteomic data linked to clinical information in
well-characterized people will be collected and thoroughly mined utilizing bioinfor-
matics and statistical methods. High-throughput genotyping, as well as gene and
protein expression approaches, will be used to achieve this. This is already being
done in several diseases, including cancer. It identifies somatic changes in gene
expression and links them to interpatient variability in treatment response, as well
as selecting appropriate therapeutic strategies. As a result of the timing of the
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FIGURE 5.12

Schematic representation of the workflow of Personalized Medicine.
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intervention, this could lead to a plethora of targets, and, eventually, medicines that
will provide the most significant benefit to the illness classification will help to strat-
ify at-risk patient populations further, resulting in early disease detection or preven-
tion, more targeted therapeutics, and markers that can help guide drug therapy
decisions. In some disorders, it may soon be possible to identify the genes and tar-
gets that have a significant role in disease development or penetrance.

Identifying all genes and targets involved in disease penetrance will take several
years. However, using SNP maps, it is now possible to compare genetic differences
between drug responders and non-responders. This could have an impact on how
clinical trials are designed and on drug development for specific disorders. Similarly,
while there is an increasing desire for safer pharmaceuticals, particularly in the treat-
ment of chronic disease, there will be an increasing demand to use drugs in those
who are most likely to benefit from them rather than those who will simply experi-
ence adverse effects. All of this will require the development of a number of markers
and safety correlations that will help find the molecular cause of disease in a specific
person.

5.7.2.3 Search for biomarkers of drug response
The role of environment, the level and complexity of the disease at a given time,
the influence of drug-drug interactions, the person’s overall health, including pri-
mary organ function, and disease complications are the parameters that lead to
heterogeneity. In 1962, the first comprehensive treatment of pharmacogenetics
was published. Because even the most acceptable medicines do not lead to sub-
stantial efficacy or safety in 100% of treated individuals, one option for person-
alized medicine could be to increase efficacy, safety, or both for an approved
treatment. SAEs have been responsible for the withdrawal of drug candidates
during drug development, as well as the removal of authorized pharmaceuticals
after launch, due to genetic variance in drug efficacy. The role of environment,
the level and complexity of the disease at a given time, the influence of drug-
drug interactions, the person’s overall health, including primary organ function,
and disease complications are the parameters that lead to heterogeneity. In 1962,
the first comprehensive treatment of pharmacogenetics was published. Because
even the most acceptable medicines do not lead to substantial efficacy or safety
in 100% of treated individuals, one option for personalized medicine could be to
increase efficacy, safety, or both for an approved treatment. SAEs have been
responsible for the withdrawal of drug candidates during drug development, as
well as the removal of authorized pharmaceuticals after launch, due to genetic
variance in drug efficacy (Fig. 5.13).

Biomarker-associated treatments for a variety of infections are obtainable and
may explain clinical variability, drug response risks, particular doses, dose ap-
proaches, and polymorphic drug targets. The FDA-approved drugs for certain dis-
eases along with their biomarkers are mentioned in Table 5.1. It describes
medication that must be recommended to individuals with biomarker-related
adverse effects. This can be extremely helpful in providing a safe and efficient
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FIGURE 5.13

Factors contributing to the developments in the field of Personalized Medicines.

Table 5.1 Biomarkers of pharmacogenomics for the disease therapy.

Name of
drug

Area of
therapeutics Biomarkers

Referenced
subgroups Efficacy

Afatinib
(or
tyrosine
kinase
inhibitor)

Oncology EGFR EGFR exon 19
deletion or exon
21 substitution
(L858R) positive

Such changes
bring sympathy in
the treatment of
afatinib

Carvedilol Cardiology CYP2D6 CYP2D6 poor
metabolizers

Higher
concentration of
carvedilol plasma,
dosage caution is
needed

Celecoxib Rheumatology CYP2C9 CYP2D6 poor
metabolizers

Lower dosage
recommended

Diazepam Psychiatry CYP2C19 Poor
metabolizers of
CYP2C19

Lower dosage to
rule out extended
sedation

Abacavir Infectious
diseases (like
HIV)

HLA-B Allele carriers of
HLAB5701

Higher risk of
immune mediated
hypersensitivity
reactions
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treatment based on biomarkers. The finding of novel and potential biomarkers asso-
ciated with the infection may play a prominent role in the identification, placement,
and behavior of the treatment itself.

5.7.3 Future aspects of pharmacogenomics in personalized
medicine

Managing the severity of the condition is one of the most difficult aspects of treat-
ment. In the following generation, a considerable number of novel mutations are
observed. Although the relationship between some of these mutations and diseases
is widely understood, the effect of multiple alterations/mutations has yet to be inves-
tigated. In disease forecasting, some changes may have individual or collective im-
plications. Systematic retrieval, retrieval, and analysis are required to keep clinical
data and make decisions. Better disease biomarkers can aid in diagnosis and treat-
ment. Because a better diagnosis of the problem can improve the quality of treat-
ment, there needs to be financial motivation to come up with new diagnoses.

Microbiome research is now possible thanks to advances in DNA sequencing.
Microbiome research focuses on diseases and could lead to more personalized treat-
ments. It is vital to identify the connection between genetic variation and its associ-
ated consequences.

Pharmacogenomics was born out of these organizations, and it no longer focuses
just on clinical validation and application. The clinical utility and cost-effectiveness
of pharmacogenetics tests should be considered. Data and trials relating to pharma-
cogenomics are only available for other medications, but this information isn’t being
turned into medical services on a large scale. However, the clinical use of pharma-
cogenomics testing is limited due to the disparity between its clinical performance
and its use in individuals by health care professionals. Some drugs include
pharmacogenomics-based CPIC dosing guidelines. Some strategic recommenda-
tions have been proposed because primary care practitioners lack adequate criteria
to assure the success of tailored drugs. Some of the suggestions are to use more bio-
markers, make a genetic code that protects privacy and anonymity, make sure drugs
are available to everyone in a fair way, test and document genetic information, make
sure genetic testing is regulated well, and make more people aware of drug-modified
pharmaceuticals.

5.8 Computational biology methods for decision support in
personalized medicine

Understanding studies of various levels and periods, like the incorporation of genetic
information (i.e., genotypes) with a patient’s data on medical history, remains an
issue (i.e., phenotypes). Bioinformatics plays a very significant role in assisting inte-
grative analyses at different levels to draw conclusions in support of more errorless
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detection & its solutions, as well as creating strict patient recommendations with
desirable precautionary therapeutic options. Such strategies would enable health
providers to provide their patients with the “proper information at the right time,
in the correct form, to the correct people.”

Data integration combines laboratory and clinical environments for translational
bioinformatics methodologies, enabling more efficient management and cost reduc-
tions. To increase peculiar patient’s medicine in the medical field, information at
many levels, like cells, genes, proteins, medications, and functional aspects, must
be incorporated within the phenotypic data in EHRs. Also, data incorporation will
lead to the development of large databases to generate new information and skill pro-
ficiency. E.g., a web-based database with data mining and inquiry tools known as the
RNA-SEQ Atlas was created for gene expression profiling. Other practical data-
bases, microarray profiles, signaling pathways, & genetic ontologies are all linked
through the integrative system.

Such comprehensive methods can be beneficial for comparing tissue-specific
expression profiles to uncover trends, as well as correlating tissue functions with ge-
netic modifications to enable other decision-making processes at multiple system
levels. Collecting various origins of data that meet the domain & necessary inspec-
tion is a crucial stage in data integration. Many of these records are disorganized and
include errors, and they must be repaired, cleaned, organized, and updated. Both re-
dundancies and inconsistencies need to be eliminated and addressed, respectively.
One gene, for example, could have numerous entries with various names. To bring
the shared values together, such concerns must be handled using GO (gene
ontology). Other techniques, such as the CABIG (Cancer Biomedical Informatics
Grid), aid in the resolution of such complex problems.

Standardization is a critical step in resolving interoperability issues in several
medical and laboratory settings across a wide range of knowledge domains. For
example, the SNOMED CT (Systematized Nomenclature of Medicine Clinical
Terms) & ICD (International Classification of Diseases) is frequently used for clin-
ical data and billing processes. Clinicians use the Digital Imaging and Communica-
tions in Medicine (DICOM) standards to process imaging data. Rx Norm Resource
is a database of drug terminologies that connects them. KD (knowledge discovery), a
critical element of decision support, can be performed through a reiterative and
dependent process involving data integration and data mining technologies.

These approaches are required for finding successful pharmacological targets
and employing personalized treatments. For systematic studies and vigorous assess-
ments, like chronobiology research, data mining is essential. Data mining techniques
can identify spatiotemporal patterns and develop grouping, association, and depen-
dency models. Neural networks, based on probability graph models like Bayesian
networks, text data mining, and evolutionary design are just a few of the data mining
techniques available. Agent-based modeling may describe complex nonlinear sys-
tems at various different living dimensions, from biological cells to different soci-
eties. For instance, many knowledge discovery and computational biology
mythologies, such as BLAST, MATLAB, and clustering algorithms, are adopted.
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Gene expression in lung tissue can be measured by these methods by inspecting the
patterns of the dark/light circadian cycle. Dynamic thermal analysis (DTA) was
discovered to be very helpful for the recognition and identification of cancer (breast
cancer) using artificial neural networks (ANN). For inspecting the etiology of breast
cancer to designate the multifaceted essence of the disease, an agent-form archetype
of mammary ductal epithelium dynamics was utilized. It depicts the multifaceted
essence of various diseases, which includes both cellular and molecular causes.
Furthermore, semantic Web technologies have been recommended as helping orga-
nize and display pharmacogenomics knowledge related to the generation of various
drugs and decision-making in various medical fields. Such informatics technologies
have the potential to become critical components of CDSSs.

5.8.1 Pharmacogenomics information
In both personalized medical care and the pharmacogenetics field, databases are of
prime importance. The main goal of the field of pharmacogenomics is to find bio-
markers that can predict how toxic a drug will be and how the body will react to
it. This will make patient treatment more personalized and effective.

Some of the pharmacogenomics Web Resources are:

1. PharmGKB (https://www.pharmgkb.org/)
2. CPIC (https://cpicpgx.org/)
3. DrugBank (https://go.drugbank.com/)
4. SCAN (http://www.scandb.org/)
5. PACdb (http://www.pacdb.org/)
6. Human Cytochrome P450 Allele Nomenclature database transitioned to

PharmVar
7. Cytochrome P450 Drug Interaction Table (https://drugninteractions.medicine.iu.

edu/MainTable.aspx)
8. FDA’s pharmacogenetic website (https://www.fda.gov/drugs/scienceresearch/

researchareas/pharmacogenetics/ucm083378.html)

5.8.1.1 Pharmacogenomics knowledgebase (PharmGKB)
The Pharmacogenomics Knowledgebase (Pharm GKB) contains genetic variants,
explication, pharmacological routes, and drug action linkages. The effort is led by
Stanford University and supported by the NIGMS (National Institutes of General
Medical Sciences). PharmGKB has evolved into a crucial infrastructure for direct
treatment over the last 20 years. Pharm GKB seeks to assist researchers in better un-
derstanding how genetic differences in people might influence medication re-
sponses. Pharm GKB seeks to assist researchers in better understanding how
genetic differences in people might influence medication responses. PharmGKB as-
sesses measurement recommendations by releasing dual genetic quotation guide-
lines and tying them to basic evidence on genetic and related medicines. A drug’s
name, generic name, short phrase, full description, including label quotes, and, in
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the case of US labels, whether the label is listed in the FDATable for Pharmacoge-
netic Organizations are all used to define the label. PharmGKB collects data from a
variety of sources, but it is up to the user to choose which data to utilize and how to
administer the drug. The user is responsible for reviewing and drawing conclusions
from all accessible guidelines. The FAIR principles are: available, useable, and
active, and PharmGKB is dedicated to following them. These guidelines ensure
that PharmGKB data is utilized in a way that may be accessed by others in the pre-
sent and future. From top genomic and medication services, we give the names,
chemical compositions, allele waves, geographical information, and variants (e.g.,
NCBI, PubChem, Ensemble, HGNC, dbSNP, gnomAD, etc.).

5.8.1.2 DrugBank
DrugBank is a comprehensive, publicly accessible digital resource that includes
specific drug information, administration, action, and contact information for
FDA-approved pharmaceuticals, including testing drugs produced through the
FDA-approved method. DrugBank has become one of the most extensively used
drug sources in the world due to its extensive, high-quality information. The general
public, teachers, pharmacists, medical pharmacists, pharmacists, and the pharma-
ceutical business all use it regularly. The 2008 release of DrugBank 2.0 covered
pharmacological, medical, and chemical information. DrugBank 3.0, which came
out in 2010, improves medication-drug interactions, drug delivery information,
and pharmacokinetic data. When DrugBank 4.0 came out in 2014, it had a lot of
QSAR (work-related activity size) data, information about how drugs work, and
ADMET statistics.

DrugBank’s purpose is to give a comprehensive collection on pharmaceuticals,
including-biochemical data, mechanisms, and targets, Pharmacological data. It con-
centrates on responses of drug related to changes in the gene of humans or particular
polymorphisms.

DrugBank 5.0 has introduced a number of new data types. This contains in-
formation about the key drugs’ effects on metabolite levels (pharmacometabolo-
mics), genetic levels (pharmaco transcriptomics), and protein synthesis levels
(pharmacoproteomics).

Over the years, we’ve collected and evaluated 27,572 peer-reviewed papers. The
DrugBank blocking team has deleted, checked, and installed data from those sources
that meet the entrance requirements. Many researchers have used this type of infor-
mation to test new medication properties or recover old ones. The number of phase I,
II, and III research pharmaceuticals in PathWhiz, a JavaScript-based picture
rendering application, is used to display all of these ways. The DrugBank prevention
team is also stepping up its efforts to collect more information on drugs, drug usage,
and drug trafficking. Understanding drug pharmacokinetics, availability, and
ADMET symptoms requires this knowledge. Drug linkages with Drug-Bank have
been one of the most significant changes or improvements to current Drug-Bank
5.0 data. Details about drug interactions are critical for patients, doctors, and phar-
macists, particularly when given to the elderly, and older patients.
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5.8.1.3 CPIC
CPIC was formed in 2009 by collaborating with the pharmacogenomics research
network (PRN) and the Pharm GKB. The goal of the CPIC is to offer specific
gene/drug clinical practice recommendations to help integrate pharmacogenetic
research into clinical practice. The CPIC gathers scientific information at all levels,
from biological findings into clinical trials, then analyses and incorporates it into the
standards. These CPIC recommendations will assist physicians in recognizing how a
genetic test can be utilized to enhance medication therapy rather than outlining the
reasons for testing. The CPIC currently comprises 174 drug/gene combinations from
all CPIC levels, containing 63 genes and 132 therapeutics. Each CPIC recommen-
dation has been reviewed by a group of experts and is kept up-to-date and available
to the public on the CPIC website.
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Structural bioinformatics 6
6.1 Introduction
The study of biology is done with the help of computer science and programming in
the discipline of bioinformatics, which is an example of an interdisciplinary field.
The advancement of biological research results in the collection of enormous vol-
umes of biological data, which is difficult to process if one does not have access
to computational capacity. When it comes to manipulating biological components,
bioinformatics has proven to be a very useful tool. A subfield of bioinformatics
known as structural bioinformatics investigates the structure of biological macro-
molecules and micromolecules, including things like protein, DNA, and RNA,
among others. A living object is composed of a significant number of macromole-
cules. Therefore, in order to analyze them, you need to understand how they are con-
structed. The study of structural bioinformatics reveals to us how these components
are assembled, so it assists us in learning more about them. Bioinformatics is an
essential interdisciplinary topic that helps with storing, processing, and analyzing
data in a methodical and comprehensive fashion. This is because there is a lot of bio-
logical data that is being made public. The use of bioinformatics approaches has
made it simpler to manipulate biological data such as DNA sequences and protein
sequences, thanks to the contributions of statistics and algorithms to the field.
When compared to sequential data, biological structures are often more fluid and un-
predictable. Because of this, the field of structural biology presents a more signifi-
cant challenge than the field of bioinformatics.

Another part of structural bioinformatics is predicting the structure of biological
macromolecules. Bioinformatics tools and algorithms can be used to figure out the
structure of a protein. Proteins are the body’s essential structural and functional com-
ponents. Proteins are used to make hormones, which control how metabolism works.
Proteins are also used to make hair, muscle fibers, antibodies, and wool, among other
things. Enzymes are the most important part of all biochemical reactions that happen
inside the body. They also help our bodies fight off infections, turn food into energy,
and help with the replication, transcription, and translation of DNA. In general,
about 60% of a person’s body is made up of water, and 17% is made up of proteins.
To do their jobs, proteins need to be folded into a certain shape and structure. By
breaking down how proteins fold, researchers can better understand what they do
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in the body and might be able to make protein supplements for people who don’t get
enough. Misfolded peptides can give us more information about how diseases
spread. A lot of work is being done to come up with new ways to test how proteins
look in three dimensions. Researchers often use X-ray crystallography and NMR
spectroscopy to deduce the structure of proteins. But the experimental methods
cost a lot of money and take a long time. A protein’s structure can be predicted based
on its sequence or a similar structure.

Structural bioinformatics usually consists of the following steps:

• Collecting of biological data, either high throughput sequencing data or imaging
data.

• Building a computational model can be a structural simulation, optimization, or
alignment.

• Interpreting the model results from structural biology perspectives.
• Providing insights for the next iteration of experimental design.

6.2 Viewing protein structures
Visualization drives a cycle of experimentation, reasoning, speculation, and valida-
tion in many areas of research, particularly structural biology and biophysics. The
use of molecular visualization in particular is now common in a variety of situations,
whether it is to illustrate scientific research articles or to gain understanding of orig-
inal research data. These techniques have long attracted widespread interest and de-
mand. Data transfer from fundamentally three-dimensional objects to a 2D
framework, such as paper or standard computer displays, is a significant challenge.
The computer graphics discipline has made significant contributions to computer
science. Because the field of structural biology requires easily accessible, end-
user focused software tools for effective dissemination, these contributions could
only arrive gradually. The long-standing need for molecular graphics has given
rise to macromolecular structure visualization tools, which are now available to sci-
entists of all backgrounds.

Molecular vaporization has a wide range of applications, from extremely general
needs to specialized ones. A first generic application, for example, is the evaluation
of hypotheses and the representation of scientific papers, such as when correlating
mutational data with structural representations. The next level of application could
be a more detailed visual examination of macromolecular structures and their attri-
butes, potentially in relation to the (spatial) distribution of charges, electrostatic
properties, pockets, and surface complementarities. An even more specialized appli-
cation could be the representation and analysis of data using theoretical chemistry,
computational biology, and bioinformatics methods. One notable example that has
advanced the field is the need to examine increasingly complex molecular dynamics
simulations. This application invariably leads to data analytics, specifically visual
analytics.
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Several molecular visualization software programmes have been in use by the
community for many years and provide powerful visualization features to a large
user base. Popular molecular visualization softwares include Chimera (the most
recent version is called ChimeraX) (Pettersen et al., 2004), JMol (and more recently
JSmol) (Herráez, 2006), PyMol (Yuan et al., 2017), and VMD (Humphrey et al.,
1996). These legacy packages appear to be a safe choice for visualization-based ap-
plications, with a solid codebase and an accessible API. Although not always intu-
itive for beginners, their utility has grown over time, and they are well suited to
molecular visualization tasks. Each tool may have a variety of features and provide
extensions, scripts, and tutorials to improve the user’s experience. Table 6.1 provides
a brief overview of this indispensable set of software tools, while Fig. 6.1 depicts a
visual comparison of a typical workday and the user interfaces of the various pro-
grammes. The Chimera package, originally known as Midas in 1976, provides fea-
tures for visual exploration and the study of molecular structures. It is possible to
examine related descriptive data, particularly cryo-EM datasets with density
maps, molecular dynamics trajectories, and other data. It is easy to make animations
of the systems shown, and there are many different ways to show them visually.

Jmol was founded in 1999. It is a versatile platform that can be used as a stand-
alone viewer as well as in a web environment. Jmol is often used to show structures
in educational applications because it is flexible and easy to add to courseware or use
as a graphical interface for looking into structural databases.

PyMol, as the name implies, was released near the end of 1999 and is based on
the Python scripting language. This tool is especially popular among experimental-
ists due to the properties it provides that are useful for crystallographic and NMR-
derived structures. It generates illustrations suitable for publication and includes
useful molecular editing and atom selection tools. The term VMD, or Visual Molec-
ular Dynamics, refers to the software’s primary focus since its inception in 1993,
which has been the graphical interpretation of molecular dynamics data. It effi-
ciently maintains even large systems and provides a wide range of enhancements,
particularly for sophisticated visual analysis, via plugins.

All of these programmes have the ability to automate and script operations for
easy re-use and bulk deployment, which is a critical feature. Despite their long

Table 6.1 Summary of four commonly used protein visualization tools.

Features/
Tools VMD Pymol Chimera JMol/JsMol

Scripting TCL Python Python Javascript

OS Windows/Mac/Linux Windows/
Mac/Linux

Windows/Mac/
Linux

Web,
Windows/
Marc/Linux

URL https://www.ks.uiuc.
edu/Research/vmd/

https://
pymol.org/2/

https://www.cgl.
ucsf.edu/
chimera/

http://jmol.
sourceforge.
net/
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FIG. 6.1

Various protein visualization tool.
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histories, all of the packages continue to add new features and adapt to changing
hardware innovations, such as those in the graphics card market. Sometimes, as
with ChimeraX, these additions necessitate a significant redesign of the underlying
code.

6.3 Alignment of protein structures
The approach that is based on templates is the most trustworthy method for predict-
ing the structure of macromolecules. At the moment, there are three distinct varieties
of alignment-based strategies: those that are based on sequence, those that are based
on profiles, and those that are based on structures. In most cases, the sensitivity of the
profile-based alignment method is much higher than that of the sequence-based
alignment systems. The structure-based alignment technique, on the other hand, is
more sensitive than the profile-based alignment system. When it comes to matching,
sequence-based tactics provide a higher level of specificity compared to profile-
based strategies. In the same way that structure-based alignment methods are
more particular, profile-based alignment tactics are as well.

When two proteins are identical, the sequence-based techniques will provide a
better alignment than the other options. There are now a number of different tech-
niques being developed, and the primary distinction between them is the operation
of their alignment, gap penalty, and mutation score of amino-alkanoiate algorithms.
Some alignment techniques, such as the Needleman-Wunsch algorithm for global
alignment and the Smith-Waterman algorithm for local alignment, create the align-
ments via the use of dynamic programming. Other alignment strategies, such as the
Smith-Waterman algorithm, generate the alignments locally. FASTA and BLAST
are two examples of additional approaches that make use of alignment algorithms
that are heuristically based. In order to determine the degree of similarity between
two aligned residues, PAM and BLOSUM compares the aminoalkanoic acid substi-
tution matrices that are extensively employed. Therefore, it is possible that two pro-
teins with just a passing resemblance in their sequence would need to have the same
structure in order to be considered homologous. The alignment standard is going to
be strengthened with the help of the operational sequence profile. Multiple sequence
alignment, also known as MSA, was used in the creation of the sequence profile by
utilizing homologous sequences. Not only does it reveal the aminoalkanoic acid
sequence, but it also gives information about other chemical processes. PSI-
BLAST (Jones and Swindells, 2002) can be used to find close homologs of the target
macromolecule in a large set of sequence data, such as the non-redundant NCBI
data, so that an MSA can be built from these homologous elements, and then a
sequence profile can be created from the multiple sequence alignment. PSI-
BLAST can also be used to find close homologs of the target macromolecule in a
large set of sequence data. There are several approaches to aligning the main
sequence with a sequence profile, as well as numerous approaches to aligning two
sequence profiles with one another. The process of matching a primary sequence
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to an HMM profile requires the use of two separate tools called HMMER and SAM
square. The programmes “DIALIGN” (Morgenstern, 1999) and “FFAS” (Jaroszew-
ski et al., 2011) are two further examples of sequences in profile alignment software.
FORTE, HHpred, and Sculptor are examples of software programmes that are
capable of user profile-to-profile alignment. Systems that move from one step to
the next or that go from one step to a profile need to function less poorly than these
ones do. In order to create a profile for a particular sequence of peptides, BLAST-PSI
will be used. A profile-dependent alignment procedure likewise makes use of the
sequence illustration profile as a standard measurement. PSI-BLAST reveals that
a sequence-based profile is either a position-specific scoring matrix (PSSM) or a
position-specific frequency matrix (PSFM). These matrices are heavily utilized in
a variety of tools, such as those used for discovering similarities, determining folds,
and predicting the structural properties of peptides. The length of the peptide
sequence is denoted by N, and each position-specific scoring matrix (PSSM) and
position-specific frequency matrix (PSFM) has 20N dimensions. When a PSFM is
performed, each column maintains a record of the frequency with which 20 amino
acids appear at a certain location in the sequence. Therefore, each column in a PSSM
has the potential to transform into one of 20 unique amino acids in the same place. A
reliable sequence-based profile will incorporate the maximum amount of informa-
tion that can be included within the MSA. A sequence profile’s quality is dependent
not only on the samples it contains but also on factors such as the number of itera-
tions of PSI-BLAST and the E-value cutoff that is used for determining whether or
not two peptides are identical. When converting the frequency of aminoalkanoic
acid to mutation potential, it further requires a method that may include pseudo-
counts of aminoalkanoic acid. Profile Hidden Andrei Markov A different approach
is used when modeling a multiple sequence alignment of homologous peptide se-
quences. The Hidden Andrei Markov Model is superior to the PSFM and PSSM
because it explicitly models gaps in addition to taking into account correlations
between neighboring residues. PSFM and PSSM only take into account correlations
between adjacent residues. When it comes to aligning macromolecules and locating
distant similarities, this indicates that profile HMM is, on average, more sensitive
than PSFM/PSFM. A profile HMM might be in one of three states: match, insert,
or delete. This is the most significant aspect. The “match” status of an MSA column
indicates the likelihood that residues will be permitted to remain in the column once
the analysis has been completed. and the next.

There are numerous tools used for the alignment of protein structure like-
MADOKA (Deng et al., 2019), iPBA (Gelly et al., 2011), protein tertiary structure,
pairwise sequence alignment, multiple sequence alignment, etc. (Figs. 6.2 and 6.3).

6.4 Structural prediction
Through the use of sequence similarity searches, multiple sequence alignments,
identifying and describing domains, predicting secondary structure, predicting
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FIG. 6.2

Image of MADOKA webpage.
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FIG. 6.3

Image of iPBA webpage.
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solvent accessibility, automatically recognizing protein folds, building three-
dimensional models down to the atomic level, and validating models, bioinformatics
can be used to predict structures. Validating models is another application of bioin-
formatics. All of these approaches are not being used in every investigation into the
composition of a protein’s three-dimensional structure. Finding a reliable structural
target from which to infer information about a protein’s three-dimensional shape in
response to a query sequence is an essential aspect of the process of protein structure
prediction. There are three distinct types of schemes, each of which is determined by
how it is carried out. The first step is to implement methods that are standard and
well-known in the industry. In the event that a structural template cannot be found,
the second effort has to make use of procedures that are more difficult. If a target fold
cannot be defined in a reliable manner because many studies of nontrivial data have
yielded varying findings, the design falls into the third category, and it will be very
complicated, if not impossible, to complete with any degree of dependability.

Experiments that scientists do in order to determine the sequence and structure of
proteins have seen a lot of innovation and improvement in the course of the previous
few decades. Since the 1990s, the amount of protein data that has been uploaded to
UniProt2 and the Protein Data Bank (PDB) has increased at a pace that is virtually
exponential. When compared to obtaining the structures of proteins, obtaining their
sequences is a much simpler task. The rapid accumulation of protein sequence data
may be attributed to the advent of more sophisticated technologies for DNA
sequencing. The UniProt/TrEMBL database now contains more than 85 million
different protein sequences. X-ray crystallography and nuclear magnetic resonance
(NMR) spectroscopy are the two primary experimental approaches that are used to
find out how proteins are put together. Both of these methods focus on the structure
of proteins. But both methods require a lot of time and work, and each has its own
technical limitations when it comes to studying the proteins they want to study
(Table 6.2).

6.4.1 Use of sequence patterns for protein structure prediction
The sequences of a genome include a wealth of information on the function of pro-
teins and the ways in which they have evolved through time. This knowledge may be
put to use to discover evolutionary connections between protein residues and to
address the age-old challenge of determining the three-dimensional structure of a
protein based on its amino acid sequence. Recent work on this issue has resulted
in a significant amount of improvement, which can be attributed to the rapidly
increasing number of sequences that are now accessible as well as the use of global
statistical approaches. A better understanding of covariation, in addition to the three-
dimensional structure, may help in the search for functional residues that are
involved in the formation of protein complexes, the binding of ligands, and changes
in conformation. The computer prediction of protein structures, which has been an
issue in molecular biology for more than 40 years, may be able to fill this gap if it can
be done with adequate precision. By comparing the amino acid sequence of interest
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to the sequence of another protein whose three-dimensional structure is known,
several useful and fairly accurate three-dimensional models have been generated
from amino acid sequences. These models may be used to better understand how
proteins work. Building a model using a template, is often known as homology
modeling. It has been proven difficult to produce good de novo predictions from
the sequence when there is no known structure in a protein family. To fold proteins
from scratch, some of the best, most current, and most cutting-edge methods, such as
Rosetta, involve scanning for fragments with similar sequences in databases of
three-dimensional structures and then utilizing empirical intermolecular force fields
to put those fragments together. These kinds of approaches have been shown to be
effective for proteins containing less than 90 amino acids, but in order to analyze
bigger proteins, they need to be paired with the results with iterative tests of predict-
ing structure of small residue patches. Other methods make an effort to generate 3D
structure through predicting residue contacts by combining three-dimensional infor-
mation with machine-learning techniques such as support vector machines, random
forests, and neural networks. Despite these efforts, contact prediction accuracy
remained “still quite low,” and substantial improvements to models were only

Table 6.2 Tools for protein prediction.

Name Used for Description

IntFOLD
(Mcguffin
et al., 2019)

Used for prediction of tertiary
structured3D modeling, domain
prediction

The 3D structure and function may
be predicted from amino acid
sequences using an automated and
integrated workflow.

RaptorX
(Wang et al.,
2016)

Is used for detection of remote
homology

Progressed in predicting 3D
structure whose protein sequence is
without close homologous in PDB

Biskit
(Grünberg
et al., 2007)

3D modeling, template
identification, and alignment

Predicting protein structure using
homology modeling

ESyPred3D
(Lambert
et al., 2002)

Protein design and energy
calculations

Using neural networks, the
technique provides better
alignment. Incorporating, weighting,
and filtering various alignment
processes provides alignments.

Rosetta
(Baek et al.,
2021)

Short fragments of known proteins
are assembled by a Monte Carlo
strategy to yield native-like protein
conformation

De novo protein structure prediction

AlphaFold
(Jumper
et al., 2021)

Protein structure prediction An artificial intelligence program
developed by DeepMind, a
subsidiary of alphabet, which
performs predictions of protein
structure.
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achieved for some small proteins. The issue of de novo structure prediction does not
scale, meaning that the conformational search space grows exponentially as the size
of the protein does. This presents a basic computational hurdle, even for approaches
that are based on fragments of the protein. In this way, the main problem of predict-
ing de novo structures in three dimensions has not been solved satisfactorily.

6.4.2 Prediction of protein secondary structure from the amino acid
sequence

The local structure that is formed by a protein’s polypeptide backbone is referred to
as the protein’s secondary structure. The -helix (H), the -strand (E), and the coil
(C) area are the three different kinds of secondary structures. While states H and
E both exhibit regular behavior, the C state does is disordered. The Dictionary of
Secondary Structure of Proteins (DSSP) (Kabsch and Sander, 1983) was the product
of Sander’s efforts to develop a system for the assignment of secondary structure.
The patterns of hydrogen bonds are used by this approach to automatically catego-
rize the secondary structure into eight different states, which are labeled H, E, B, T,
S, L, and G. Most of the time, these eight states may be further simplified into only
three categories: helix, sheet, and coil. Usually, the helix is referred to by the letters
G, H, and I; the sheet is referred to by the letters B and E, and all other states are
referred to as a coil. The challenge of predicting the secondary structure of a protein
appears as follows: given the sequence of amino acids that make up the protein,
determine whether or not each amino acid is located in the a-helix (H), b-strand
(E), or coil area (C). The prediction of the protein’s secondary structure is often eval-
uated based on its Q3 accuracy. This metric, which evaluates the proportion of res-
idues for three-state secondary structures, determines whether or not the structures
have been successfully predicted.

In 1951, Pauling and Corey made the hypothesis that the backbones of protein
polypeptides might assume helical or sheet-like forms. This was in the days before
the first structure of a protein was discovered. A great number of statistical and ma-
chine learning approaches have been developed in order to determine the secondary
structure. One of the first approaches to predicting the secondary structure of a pro-
tein combined statistical analysis with heuristic analysis. In order to overcome the
issue of correctly forecasting the secondary structure, the GOR technique makes
use of information theory. The position-specific scoring matrix (PSSM), which
comes from PSI-BLAST, shows how proteins have changed over time and what
has caused the biggest changes in how secondary structures of proteins are predicted.
Protein composition is the consideration of a shape along with 3 protein components
from an amino acid seriesdthe prediction of the second and higher structure from
the primary. The prediction of the structure is unique to the ever-changing hassle of
protein formation. Guessing protein composition is one of the most vital dreams pur-
sued by way of laptop biology; and is critical in remedy (for instance, in the manu-
facture of medicine) and biotechnology.
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6.4.3 Chou Fasman method
The Chou-Fasman method (Chou and Fasman, 1978) is a computational method for
predicting the secondary structure of proteins from their primary sequence. Protein
secondary structure refers to the local, regular conformations adopted by the poly-
peptide chain, which are formed by the interactions between the peptide bonds
and the side chains of the amino acids. The main types of secondary structure are
the alpha helix, beta sheet, and random coil. The Chou-Fasman method is based
on the idea that the amino acid sequence of a protein can influence its secondary
structure. Specifically, the method uses statistical analysis to identify patterns in
the distribution of amino acids in known protein structures and then uses these pat-
terns to predict the secondary structure of a protein from its primary sequence.

To perform the prediction, the protein sequence is first divided into overlapping
windows, and the amino acid composition of each window is analyzed. The method
then assigns a score to each amino acid based on its propensity to be found in
different types of secondary structure. For example, amino acids with hydrophobic
side chains, such as leucine and valine, tend to be found in alpha helices, while
amino acids with polar side chains, such as serine and threonine, tend to be found
in beta sheets. The method then uses these scores to calculate the likelihood that
a particular amino acid will be found in a particular type of secondary structure.
This likelihood is expressed as a probability, and the secondary structure with the
highest probability is predicted for each amino acid. One of the advantages of the
Chou-Fasman method is that it can be applied to proteins of any size and is relatively
easy to implement. However, the method has some limitations. First, it relies on sta-
tistical analysis and may not always be accurate. Second, it can only predict the
secondary structure of a protein, not its tertiary structure, which refers to the
three-dimensional shape of the protein as a whole. Finally, the method does not
take into account the effects of the protein’s environment, such as pH and tempera-
ture, which can also influence its secondary structure. Despite these limitations, the
Chou-Fasman method remains a widely used tool in protein structure prediction and
has contributed to our understanding of the relationship between a protein’s primary
sequence and its secondary structure. It has also been used in combination with other
methods, such as hydrogen bonding analysis and structural alignments, to improve
the accuracy of protein structure prediction.

6.4.4 GOR method
The GOR (Gödel, Or, and Roth) (Garnier et al., 1978) method is a widely used
method for predicting the secondary structure of proteins from their amino acid
sequence. It is based on the idea that the local sequence of a protein is related to
its local conformation, and that the conformation of a protein can be predicted by
looking at the sequence of amino acids around it. The GOR method uses a statistical
approach to predict the secondary structure of a protein based on the sequence of its
amino acids. It does this by building a statistical model based on a set of known
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protein structures, and then using this model to make predictions about the second-
ary structure of a given protein. The GOR method begins by dividing the protein into
overlapping segments, called windows, and then looking at the sequence of amino
acids within each window. It then compares the sequence of each window to the se-
quences of windows in known protein structures, and uses this information to predict
the secondary structure of the protein. The GOR method has a number of advan-
tages. One of the main advantages is that it is relatively fast, as it only requires a sin-
gle pass through the protein sequence. Additionally, the GOR method is relatively
accurate, with an average prediction accuracy of around 70%.

There are also a number of limitations to the GOR method. One of the main lim-
itations is that it only predicts the secondary structure of a protein, and does not pro-
vide any information about the tertiary structure or overall folding of the protein.
Additionally, the GORmethod is based on statistical models, and is therefore subject
to the limitations of such models. Finally, the GOR method may not work well for
proteins with unusual or atypical sequences, as it is based on a set of known protein
structures and may not be able to accurately predict the structure of proteins that do
not fit this set. Overall, the GOR method is a useful tool for predicting the secondary
structure of proteins, and has played a significant role in the study of protein struc-
ture and function. It is particularly useful for predicting the secondary structure of
proteins in the early stages of protein structure prediction, and can provide valuable
information about the local conformation of a protein. However, it is important to be
aware of its limitations, and to use it in conjunction with other methods in order to
obtain a more complete picture of protein structure (Fig. 6.4).

6.4.5 Prediction of three-dimensional protein structure
Predicting the three-dimensional (3D) structure of a protein from its amino acid
sequence is a central problem in computational biology. The 3D structure of a pro-
tein plays a critical role in its function, and determining the structure of a protein can
provide insights into how it performs its function, how it may be modified or regu-
lated, and how it may interact with other molecules. There are several experimental
techniques that can be used to determine the 3D structure of a protein, such as X-ray
crystallography and nuclear magnetic resonance (NMR) spectroscopy. However,
these techniques are time-consuming and costly, and may not be feasible for all pro-
teins. In addition, many proteins do not crystallize well or are too large to be studied
by NMR, making it difficult to determine their 3D structure using these techniques.

Computational methods offer a faster and potentially more cost-effective alterna-
tive for predicting the 3D structure of a protein. These methods can be broadly clas-
sified into two categories: homology modeling and de novo prediction. Homology
modeling involves using the 3D structure of a related protein, or “template,” as a
starting point to predict the 3D structure of a protein of interest. This approach relies
on the assumption that proteins with similar amino acid sequences will have similar
3D structures. The protein of interest is first aligned with the template, and the result-
ing sequence alignment is used to build a model of the protein’s 3D structure.
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Homology modeling can be an effective approach for predicting the 3D structure of
a protein if a suitable template is available and the sequence identity between the
protein of interest and the template is high.

De novo prediction, on the other hand, involves predicting the 3D structure of a
protein from scratch without using a template. This approach relies on the physical
and chemical properties of the amino acids and the interactions between them. De
novo prediction methods can be divided into two main categories: physics-based
methods and knowledge-based methods. Physics-based methods use physical prin-
ciples, such as energy minimization, to predict the 3D structure of a protein. These
methods are based on the idea that the protein will adopt a conformation that min-
imizes its energy. Knowledge-based methods, on the other hand, use statistical infor-
mation about the 3D structures of known proteins to predict the 3D structure of a
protein. These methods rely on the assumption that proteins with similar amino
acid sequences will have similar 3D structures. Threading, also known as fold recog-
nition, involves searching for the best fit of the target protein’s amino acid sequence
onto a library of known 3D protein structures. This approach is relatively fast and
can be accurate, but it is limited by the size and quality of the library of known
protein structures.

FIG. 6.4

GOR method.
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There are a number of different algorithms and software tools available for pre-
dicting the 3D structure of a protein using computational methods. Some of the most
commonly used methods include ROSETTA, Modeler, and I-TASSER. These tools
are widely used by researchers in academia and industry to predict the 3D structure
of proteins and to understand their function.

Despite advances in computational methods, predicting the 3D structure of a pro-
tein remains a challenging problem. Accurate prediction of protein structure can
provide valuable insights into the function of a protein and can be useful in drug
design and other applications. However, current methods are often limited in their
accuracy, and further research is needed to improve the prediction of protein struc-
ture. While these methods are not perfect and cannot always accurately predict the
3D structure of a protein, they offer a valuable alternative to experimental techniques
and have the potential to significantly accelerate our understanding of protein struc-
ture and function (Fig. 6.5).

6.4.6 Evaluating the success of structure predictions
Evaluating the success of computational protein structure predictions is an important
aspect of the protein structure prediction field, as it allows researchers to determine
the accuracy and reliability of different prediction methods. There are several
different ways to evaluate the success of protein structure predictions, and the
most appropriate method will depend on the specific goals of the prediction and
the type of data available. One common method for evaluating the success of protein
structure predictions is to compare the predicted structure to the experimentally
determined structure, using a metric known as the root mean square deviation
(RMSD). The RMSD measures the average distance between the atoms in the pre-
dicted and experimental structures, and a lower RMSD indicates a more accurate

FIG. 6.5

3D protein structure prediction.
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prediction. The RMSD can be calculated for all atoms in the protein, or for a subset
of atoms such as the backbone atoms or side chain atoms.

Another metric that is often used to evaluate protein structure predictions is the
precision and recall of the prediction. Precision measures the fraction of predicted
residues that are correctly predicted, while recall measures the fraction of correctly
predicted residues out of all residues in the protein. A high precision and recall in-
dicates a more accurate prediction. Another way to evaluate protein structure predic-
tions is to use a benchmarking dataset, which consists of a set of proteins for which
the experimental structure is known. The prediction method is applied to each pro-
tein in the dataset, and the accuracy of the prediction is compared to the experi-
mental structure. This allows researchers to compare the performance of different
prediction methods on a standardized dataset. In addition to these quantitative mea-
sures, it is also important to consider the biological relevance of the predicted struc-
ture. A prediction that is highly accurate according to the RMSD or precision and
recall metrics may not necessarily be biologically relevant if it does not correctly
capture important features of the protein such as its active site or binding site. Over-
all, evaluating the success of computational protein structure predictions is a com-
plex task that involves considering a range of different metrics and factors. By
carefully considering the accuracy, precision, and biological relevance of the predic-
tion, researchers can determine the effectiveness of different prediction methods and
identify areas for improvement.

EVA (Eyrich et al., 2001) is a web server that evaluates the effectiveness of auto-
mated approaches for predicting the three-dimensional structure of proteins. The
assessment is set to be automatically updated once per week to ensure that it remains
current despite the ever-increasing number of prediction servers and the ever-
shifting methods for making predictions. Every day, the servers connect to the Pro-
tein Data Bank (PDB) to get the sequences of newly discovered protein structures.
Their predictions are then put together.
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High throughput
technology 7
7.1 Omics theory
The flow of genetic information was described in late 1940s as unidirectional where
DNA to RNA and RNA to Protein, However, it was also proposed that DNA comes
from RNA and which is later translated to protein. With a lot of confusion in late 40s,
however, in late 50s Francis crick has proposed that flow of information through
gene to protein but it was found difficult to explain the flow of information from pro-
tein to protein. This information is determination of précis sequence of précis infor-
mation of sequences. Afterward, there were number of different modifications by
Francis crick and others postulated the correct genetic flow and residue by residue
transfer of sequenced information although this information was quite intriguing
but did not satisfy many (Crick, 1970). However other theory, regarding central
dogma was also described by Watson but that was not valid in scientific fraternity.
Finally crick’s theory of Central dogma was accepted and genetic flow is DNA to
RNA, so the process of transcription and RNA to Protein through translation. How-
ever, a modification has been done and that is production of DNA from RNA through
process called Reverse transcription. In the Omics theory and central dogma of life
can be described as (Fig. 7.1):

(1) DNA formation from DNAwith the help of DNA polymerase, process is called
Replication.

(2) Formation of RNA from DNA with the help of RNA polymerase, process is
called transcription.

(3) Conversion of RNA to protein and this process is called translation in ribosome.
(4) Another process where RNA is reversely transcribed to form DNA through

reverse transcription using reverse transcriptase.

7.2 High-throughput technologies
Automation equipment along with the classical methodology of cell biology in order
to target biological questions that were not met using conventional methods. Tech-
niques such as optics, biology, chemistry, and image analysis for much faster parallel
studies of cell functioning, interaction, and diseases caused due to pathogenesis.
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High-throughput srceening includes a large number of samples of cells with model
disease and various compounds extracted from specific sources using a computer for
determining the compound of interest has the desired effect on the samples of cells
(Szyma�nski et al., 2012).

In discovering drugs, Sorafenib (Nexavar) used in medication therapy for treat-
ing different cancers, including renal cell carcinoma in the kidneys, thyroid cancer,
and liver cancer. Sorafenib helps in order to stop the reproduction of cancer cells by
stopping abnormal protein synthesis. High-throughput screening for this drug was
done in 1994 and in 2001 Bayer pharmaceuticals discovered it initially by a
biochemical assay using RAF kinase in which screening of 200,000 different com-
pounds in order to categorize active molecules to counter active RAF kinase. After
three testing trials, its anti-angiogenic effects against cancer were discovered start-
ing the process of stopping the synthesis of new blood vessels. Another discovery
Maraviroc which is an HIV entrance inhibitor by slowing down the process, thus,
preventing the entry of HIV in human cells as well as in the treatment of cancers
by blocking the metastasis of cancer cells when the cancer cells start spreading to
different parts of the body from its port of origin. High-throughput screening of Mar-
aviroc was done in 1997 and in 2005; it was finalized by Pfizer’s global R&D team.

Omics research under which high-throughput biology or screening plays as one
sidedthe link between large scale biology (under which genomic, transcriptomic,
proteomic comes under), technology, and researchers. HTS in cell biology has a
crystal clear focus on cells and different methods that are required in order to access
the cell including imaging, microarrays for studying gene expression and genome-

FIGURE 7.1

Flow chart: Omics theory.
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wide screening. These methods are automated with large scale potential without
altering the quality in terms of the result as well as the sample.

Due to the presence of big data in life sciences, it is very important to run exper-
iments in automation making large-scale recurrence practical. For an instance,
21,000 genes out of which some may be responsible for cell functioning as well
as some for disease in the human genome. So in order to make an idea about how
a single gene works and how it interacts with the rest of the genes, in which genes
are involved in and located at, thus, such methods capturing the whole procedure
from cell to genome. With the decrease in the cost of High-throughput Sequencing
(HTS) experimentation, it has been brought within the capacity of small labora-
tories, providing facilities like production of high-dimensional data sets with HTS
generating 100 Gb of data in 24 h. With big data, processes such as designing,
pre-processing followed by a downstream study of HTS data is noteworthy
(Fig. 7.2).

Furthermore, a number of challenges are present includes collection of sample
and control of quality, choosing HTS method as per requirements followed by
this assimilation of various data sets from different platforms and other technologies.
HTS data itself produces challenges in silico and computationally called “Data
Deluge”, now the emphasis is more on storing the data, accessing that data, and
further analyzing that data successfully. Apart from this, there are data control
and patient privacy association as well, due to the pace of alteration by the applica-
tion of HTS for clinical purposes (Fig. 7.3).

7.3 Genomics
7.3.1 What is DNA?
Deoxyribonucleic acid (DNA) contains all the guidelines required to expand and
guide the functioning in every organism. DNA has two strands in twisting fashion

FIGURE 7.2

General representation of isolation of sequences of interest from in vitro experimentation,

HTS and further study of the sequencing data.
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forming a double helix. Each strand has four bases: adenine (A), thymine (T), gua-
nine (G), and cytosine (C), in which A always makes a double bond with T further-
more G always makes a triple bond with C. The arrangement of As, Ts, Gs, and Cs
helps in guiding the information packed in DNA for bodily functions and various
mechanisms.

Genomics: Genetics involves the study of hereditary or the transmission of
different characteristics of an organism from one generation to another. It involves
studying specific and restricted genes which have certain known important function
such as guiding body’s development, diseases and drug response.

Genomics involves the study of an organism’s whole genome. With the help of a
higher level of computing and algorithms called bioinformatics which is used for
analyzing the genome, thus, researchers study significant quantities of data to

FIGURE 7.3

Summary representation of omics theory related to different techniques, information,

result, methodical concern as well as investigation and clinical purpose. Genome to

transcriptome to proteome to metabolome is represented.
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come across variations that affect our health, diseases, and drug response. For
example, humans going through all 3 billion base pairs in DNA for w23,000 active
genes. Advancement in DNA sequencing and computational biology in the last few
decades has led to this new field of genomics with respect to a much older field of
studying genetics (Fig. 7.4).

DNA sequencing: determination of the actual order of bases in a DNA strand.
There are different types of sequencing methods such as in sequencing by synthesis,
DNA polymerase enzyme generates a new DNA strand from parent strand. The
enzyme adds fluorescently tagged nucleotides into the new DNA strand, an indica-
tion is obtained from each nucleotide that has been previously tagged, and thus, the
signal is detected. Each of four nucleotides produces a different signal reading up to
125 nucleotides successively and billions at a moment Thus, DNA sequencing is
used for various research works including genetic variations or mutations involved
in the development of the disease. Variations are as small as deletions, substitution or
insertion, or deletion of a large number of bases in a row (Mitchelson, 2005).

Human Genome Project: Completed in April 2003 (Powledge, 2003), the NIH
led the HGP which gave sequencing results of human genome which was freely
accessible public databases. Using for studying the genetic variations which in
turn lead to the high risk of specific diseases like cancer. More work in order to un-
derstand the functioning of the genome and genetic source for numerous health and
disease.

The commonly used technologies and tools for functional genome analysis:
Studying variants present within both coding and non-coding in genome in a wide
range from a change in single nucleotide to large aberrations in the chromosome
which can be easily visible using a microscope, causing an enormous impact on
the functioning of the gene. They can be beneficial for example, SNP with no
such negative impact on the phenotype or on the other hand, pathogenic for example,

FIGURE 7.4

Genomics studies the relationship between the genomes of all organisms and

intragenomics.
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a nonsense variant that results in the different disorders and diseases largely depen-
dent on the type of variant and locus. Different genetic methods and tools for the
detection of variants are there. In this segment following topics are discussed:

1. DNA microarray
2. DNA-sequencing:

2.1. Whole Genome sequencing (WGS)
2.2. Whole Exome sequencing (WES)
2.3. Targeted Genomic Sequencing (TS)

3. Single-Cell DNA-sequencing

7.3.2 DNA microarray
Researchers are familiar with that a mutation in a gene may lead to an onset of a
certain disease. Mutations can occur anywhere because most large genes have
many regions, thus, making it difficult to identify mutations (Fig. 7.5). For example,
60% of hereditary in breast as well as ovarian cancers occurs owing to mutations
within the BRAC1 along with BRAC2 genes alone in BRAC1 has 800 different
types of mutations. The DNA microarray is a tool for determining DNA of an indi-
vidual is mutated in genes such as BRAC1 and BRAC2. The microarray chip con-
sists of short, synthesized thousands of ss-DNAwhich as one makes the gene of the

FIGURE 7.5

Graphical representation of workflow of DNA microarray.
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query, and to gene variants that are part of the human population (Gresham et al.,
2008).

Mechanism of DNA microarray: In order to check mutation of a particular dis-
ease, first, sample containing DNA is isolated from the blood of an individual and
from the control sample which is normal for that particular gene. Followed by
this, denaturation of DNA samples occurs, thus, separating the complementary dou-
ble strands and long fragments are cut into smaller fragments, each fragment tagged
fluorescently using green dye, and control with red dye. On the chip, both tagged
DNA are placed on the chip for hybridizing to the synthetic DNA. If sample does
not contain the mutation in the gene, equally red tagged and green tagged samples
attach with sequence without mutation. If the patient contains mutation, patient’s
DNA does not attach properly to synthetic DNA sequences although attach to the
DNA sequence having mutation on the chip.

7.3.2.1 Application of DNA microarray

• Gene expression analysisdFrom the cell of interest, RNA extraction is done and
it’s labeled either directly with labeled complementary DNA or T7 RNA pro-
moter tagged with cDNA which is changed to cRNA. Different methods of
cDNA or cRNA labeling such as, during synthesis nucleotides which are flu-
orescently labeled are incorporated, biotin-labeled nucleotide which are after-
ward stained with streptavidin which is fluorescently labeled, modified
nucleotide which is later tagged with a fluorescent label, and a range of signal
amplification methods. The most commonly used methods for labeling cRNA or
cDNA is fluorescently labeled nucleotides or nucleotide labeled with biotin.

• Transcription factor binding analysisdChromatin immunoprecipitation in
arrangement with microarrays has been used for determining the transcription
factors binding sites. TFs are cross-linked with DNA using formaldehyde, thus,
DNA fragmentation occurs. The TF of interest remains bound with DNA, which
is isolated using antibody against particular TF or through labeling TF using
peptides used for affinity chromatography, for instance, an HA-, FLAG-, HIS-
tag.

• Subsequent to refinement, DNA is removed as of TF which is further amplified
using PCR, labeled, as well as hybridized with the array. This technique is
usually called “ChIP-chip” for on the microarray.

• GenotypingdFor SNP genotyping, microarrays have been in use widely. There
are other alternative approaches for detection of SNP but allele discrimination
through hybridization; allele-specific expansion along with ligation to a barcode
oligonucleotide are most commonly used or other approaches which include
particular nucleotide expansion reaction the arrayed DNA extended along with
SNP.
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Limitations of microarray
High throughput technologies based on hybridization are comparatively inex-

pensive but do have a number of limitations including:

i. Dependency on already existing knowledge about the sequence of the genome
ii. High background noise level due to presence of cross-hybridization
iii. Incomplete variety of recognition because of both background as well as satu-

ration signs
iv. Comparison of expression intensity between diverse range of experiments can

be a tedious task, requiring complex normalization means
v. Data irregularity particularly for genes having low expression levels
vi. Provides zero knowledge about protein’s level of expression and functioning

DNA microarray analysis using bioinformatics tools

a. Qspline used for Affymetrix array data normalization as well as spotted array
data is accessible in the Bioconductor: affy package.

b. ClustArray used for array data clustering.
c. OligoWiz used for spotted arrays for designing oligonucleotide probes.
d. ProbeWiz used for spotted arrays for designing PCR primers.
e. Promoter used in the prediction of promoter sites in a vertebrate.

Other tools such as: ArrayExpress, ArrayTrack, BASE, dchip, EzArray, GeneX
etc.

R packages for analysis: Affy, PLIER, LIMMA, sihPathway, org.Mm.eg.db.

7.3.3 DNA sequencing
1.1. WHOLE GENOME SEQUENCING (WGS): a complete process used for
complete genome analysis. The knowledge which is present at the genomic level
is very important for determining inherited disorders, specifying mutations respon-
sible for the progression of cancer, and tracking disease outbreaks such as the Ebola
virus, etc. With rapid decrease in the cost of sequencing and the capacity of produc-
ing big data with present sequencers making WGS a great tool for research in geno-
mics. With scalability, the flexibility of NGS machinery commonly for human
genome sequencing and further making it useful for sequencing a wide range of spe-
cies such as plants, livestock, and disease-causing microorganisms (Logsdon et al.,
2020). WGS was originally executed for the human genome by using Sanger
sequencing which took more than a decade and $1 billion. Now with a newer tech-
nology called “NGS” with HTT and ability of huge parallel sequencing using both
DNA as well as RNAwhich is very rapid and cheaper than Sanger sequencing with
the cost of $1000. For laboratory identification in metagenomics (studying and
sequencing microbial genomes), for public health inspection during outbreaks, for
example, in cases of E. coli, Campylobacter j., Legionella p., and Mycobacterium
t. disease at global and local epidemics due to influenza, Zika, Ebola, and now
Corona viruses. Used in tracking down the source and spread in order to help in con-
trolling and preventing it at any cost (Fig. 7.6).

160 CHAPTER 7 High throughput technology



Technologies used for sequencing failed to sequence the entire human genome at
once. As a result, the genome is broken down into smaller DNA fragments, followed
by sequencing, and then using bioinformatics tools these sequences are put together
accordingly.

7.3.3.1 Clone-by-clone process
This technique in which the genome is fragmented into smaller parts, copied and
introduced into bacteria, which grows in order to produce identical copies called
“clones” enclosing around 150,000 bps of the genome which is a sequence of inter-
est. Further, each inserted DNA in the clone is again fragmented into smaller frag-
ments with overlapping chunks of 500 bps, followed by sequencing and used for
reassembling the clone. This method was used for human genome sequencing using
the Sanger method although it took the time of a decade and was extremely costly
but was a reliable process.

7.3.3.2 Whole-genome shotgun process
Shotgun sequencing is a technique that breaks DNA into smaller random fragments
for sequencing and reassembly. These are used for cloning into the bacteria for
increasing the number and isolated for further sequencing. Because of random frag-
mentation, these overlapping sequences aids in reassembling into the original DNA
sequence of order, this was originally used by Sanger sequencing and now used in
NGS for rapid genome sequencing at low cost. Although, this method is more effi-
cient for smaller reads and genomes with less repetitive regions for reassembling
based on regions of overlapping and requires reference genome as well as computa-
tional approach for reassembling.

FIGURE 7.6

Graphical summarization of the procedure of WGS.
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7.3.3.3 Assembly of sequencing reads
The varying length of DNA fragments are sequenced, the resultant is put back
together, which is known as “assembly”. Two common methods are: de novo
assemblydthis method is done first by identification of overlapping areas in DNA
sequences, aligning them, and placing them back together to form genome without
comparing it with any kind of reference genome. This is used for sequencing un-
known, new organisms. Moreover, this method gives fewer biased results in compar-
ison to a reference genome.

Whereas, in mapping to a reference genome, in this method, for assembly, the
genome uses another reference genome for aligning new sequencing data. This
method is quite easier and needs less contagious reads, but difficult for new se-
quences. The result depends upon the type of reference genome used and provides
better detection of SNPs, thus, multiple reference genomes have been produced for
different races/ethnicities by multiple institutes and companies for studying SNPs
known to a particular race and ethnicity.

Application of WGS:

• Mutation frequenciesdWGS has been successfully used for studying frequency
of mutation in human genome. The rate of mutation is 70 novel mutations for
every generation of humans that’s a parent to child in the whole genome. In
coding regions of the genome, 0.35 mutations are there which would alter the
protein sequence among generations. Because of genome instability, the fre-
quency of mutation is much higher in cancer depending on a number of factors
such as age, UV exposure, habits like smoking, tobacco.

• Genome-wide association studiesdIn research, WGS is widely used for
GWASda project planned toward establishment of a relationship between
genetic variant or variants with a disease or several new phenotypes.

• Diagnostic usedfor various infectious outbreaks or neurological diseases such
as Alzheimer’s disease.

7.3.4 Whole exome sequencing (WES)
An NGS technique in which coding regions for proteins of the genome are
sequenced. Exome part of the human genome is less than 2% consisting of approx-
imately 85% disease-related variants making it cost-efficient when compared to
WGS (Koch, 2021). WES uses exome enrichment which powerfully identifies cod-
ing variations across a wide array of applications such as genetic disease, cancer
analysis, and population genetics (Fig. 7.7).

Applications of WES: WES is a useful technique for clinical application
because it uses coding regions of the genome for determining variants in exon re-
gions responsible for the disease. There has been a huge increase in WES data; it
has been successfully used in determining gene association with Mendelian pheno-
type, miller syndrome, and various complex disorders. Ever since 2011, it is used as
a diagnostic tool for clinical genetic laboratories. It has been part of 1000 genome
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projects, great efforts by NHLBIdGOESP, and ExAC in order to make a catalog of
rare variants present in the population for identifying diseases. Such efforts bringing
patients with more personalized medicines and treatment approaches as per their
own exome.

TARGETED GENOME SEQUENCING (TS): For analyzing specific muta-
tions of an individual’s sample then targeted gene sequencing is a useful tool
(Burgess, 2020). Panels consist of a selected array of genes or regions of genes hav-
ing a known or questionable relationship with a disease or particular phenotype. TS
having huge scalability pace as well as capacity for estimating targeted genes with a
large multiplicity of samples in parallel which in turn saves time and cost in com-
parison to multiple separate tests. TS is based upon deep sequencing and generate
a more manageable small data set and requires small amount of input in comparison
to WGS, thus, making its analysis easier and faster (Fig. 7.8).

Bioinformatics Tools used for data analysis of WGS, WES, and TS:

• Read AlignmentdBWA, Bowtie
• AnnotationdAnnovar (Qiagen), Variant effect predictor (Ensembl), SNPsift and

SNPeffect, Sift4G,
• NCBI Variant Annotation
• VisualizationdNCBI Variant Viewer, UCSC Genome Browser, ExAC Browser,

Personal Genome Browser, 3D Genome Browser
• Data-warehousingdClinVar, dbSNP, GWAS Catalog, GWAS Central, Cancer

Atlas, RefSeq, PANTHER

FIGURE 7.7

Graphical summarization of the procedure of WES.

7.3 Genomics 163



• AnalyticsdGenome Analysis Toolkit, MuTect, ASEQ, Halvade-RNA, GT-
WGS, KaryoScan

• AI based AnalyticsdExomiser, DeepVariant, Deep Genomics, Lifemap Science

7.3.5 Single cell DNA-SEQ (sc-DNA-seq)
Another NGS technique called Single-cell DNA sequencing (scDNA-seq) is a
resourceful and scalable method for studying genetic heterogeneity in organisms
multi cellular (Gawad et al., 2016). WGS for bulk tissues is used for identifying so-
matic mutations, although, it has limited sensitivity for mutations having low pro-
portion in cells (Fig. 7.9).

Process of sc-DNA-seq:

1. Isolation of single cell
2. Whole genome amplification of isolated cell
3. Library preparation
4. Sequencing
5. Data analysis

FIGURE 7.8

Graphical summarization of the procedure of TS.
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Application of single-cell DNA seq:

• For Tumor cells: The sc-DNA-seq method overcomes all the limitations faced
normally in sequencing techniques. The mapping of tumor cells and the micro-
environment in which tumor cells grow is done by means of detection of het-
erogeneity of tumor cells, it clarifies the cell cluster and finds specific markers,
which eventually explains tumorigenesis and metastasis. Thus, sc-DNA-seq has
been used for studying tumor cells and finding different diagnostic and treat-
ment methods.

• For nervous system: Due to the unique variations within nerve cells which cause
differences among each neuron in the nervous system. Due to this heterogeneity
involved in these neurons, it’s complicated to learn the brain circuits and
resolving these issues related to connectivity. But, the sc-DNA-seq technique
studying different stages of nerve cells and drawing each detail on a map of
single-cell in order to determine diverse kinds of neurons and their connection
with brain.

• For reproductive and embryonic medicine: The sc-cell DNA-seq technique on
single-cell stage sequences and quantifies the genome in germ cells as well as
embryonic cells, eventually assist in the understanding processes such as
screening, diagnosis, and treatment of diseases related to reproduction and
genetics.

• For immunology: due to great heterogeneity among immune cells again analysis
with sc-DNA-seq aids in studying these cells for better diagnosis and treatment
for various diseases.

• For digestive system and urinary system: Studying digestive and urinary system
cells using sc-DNA-seq aids in mapping the machinery of cells such as intestinal
cells sustaining homeostasis plus countering to microorganisms which are
pathogenic is clarified.

FIGURE 7.9

Graphic representation of workflow of single cell genome sequencing.
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7.4 Epigenomics
Epigenetic means “on genetic” sequence, any process by which the gene activity is
altered without making any change in the DNA sequence and leading to alternations
which are passed to daughter cells (Allis and Jenuwein, 2016). Epigenetic means
studying a single locus or pair of loci, whereas, epigenomics means the whole study
of epigenetic modifications in the entire genome. Epigenomics includes the investi-
gation of phenotypic or quality articulation changes brought about by inheritable
systems autonomous of DNA succession, e.g., DNA methylation and histone post-
translational changes. Likewise, noncoding RNA adjustments can be delegated
epigenetic components, as they have been appeared to intervene epigenetic DNA
and histone modifications. Epigenetic marks are progressively being perceived as
significant components hidden phenotypic variety, natural cycles, irritation, and
sicknesses for example, disease, and enormous scope epigenome projects have
been set up trying to make reference human epigenome maps. High-throughput pro-
cedures empowering epigenetic investigation on a genome-wide scale incorporate,
e.g., shotgun bisulfite sequencing and pyrosequencing to dissect DNA methylation,
also, genome-scale chromatin immunoprecipitation with antibodies perceiving
explicit histone changes or DNA methylation, trailed by microarray examination
or high-throughput sequencing. 146, 147 Alternative strategies to inspect DNA
methylation is differential methylation hybridization, which envelops methylation-
touchy DNA limitation followed by microarray examination of the limitation
ensured, hyper-methylated DNA, 148 dab cluster methylation investigation of
bisulfite-treated DNA, 149 and base-explicit cleavage joined with grid helped laser
desorption ionization/season of flight. However, epigenetics is cell-ward and
exposed to ecological components, asking infection explicit investigations to un-
cover epigenetic changes related to the illness. Contrasted and, for instance, malig-
nant growth research, the cardiovascular field is as yet in its early stages of
epigenetic research. Starting considers have tended to vascular aggravation related
epigenetic changes on a worldwide level (inspecting worldwide changes in epige-
netics without linkage to explicit quality advertisers) or have zeroed in on explicit
qualities. For instance, genomic DNA in human atherosclerotic injuries has been
demonstrated to be hypo-methylated, while conflicting outcomes have been ac-
quired infringe blood lymphocytes from patients with cardiovascular sickness.

The classical explanation of Transgenerational epigenetic inheritance includes
environmental factors which strike pregnant person (Fo) cause direct effect not
only in F1 generation, but also on germ cells which signifies the F2 generation.
Thus, only modifications during F3 can be seen entirely because of epigenetic inher-
itance. In male germ line can have an effect only in one generation, with detectable
epigenetic inheritance already in F2 (Fig. 7.10).

Different methods for studying Epigenomics are:

1. ChIP-seq
2. Whole-Genome Shotgun Bisulfite Sequencing
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7.4.1 ChIP-seq
First ChIP was carried out along with DNA microarray (ChIP-chip) of DNA-binding
proteins in genome-wide mapping. ChIP then sequencing is called ChIP-seq which
is a great method used for analyzing histone modifications, proteins, variants, chap-
erons, nucleosomes, chromatin regulators, TFs, and cofactors throughout the
genome (Nakato and Sakata, 2021). Usually, ChIP-seq methodology requires
cross-linking by formaldehyde in order to stick DNA-protein interactions, chromatin
is fragmented into 100e300 bps using sonication or enzymatic digestion, followed
by this, immuno-enrichment of the target of interest using specific antibodies against
it, then cross linking is overturned also ChIP DNA is obtained. For PCR amplifica-
tion, first adaptor ligation afterward single or paired terminal sequencing is carried
out. ChIP-seq is one of the main techniques used for producing reference epigenome
maps in a number of large epigenomics projects. ChIp-seq has been used for disease
epigenetic studies in terms of epigenetic alternations in cancer and noncancerous
diseases and for precision medicine development (Fig. 7.11).

Application of ChIP-seq:
ChIP-seq is used for determining the association between transcription factors

and chromatin-associated proteins that manipulate the phenotype mechanism of
an organism. How proteins associates with DNA in order to control gene expression
for completely understanding biological processes and diseases. This epigenetic
data is corresponding to genotype and analysis of expression. ChIP-seq technology
is presently seen mainly as a substitute for ChIP-chip which involves a hybridization
array.

FIGURE 7.10

Graphical representation of trans-generational epigenetic inheritance.
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Bioinformatics tools used for analyzing ChIP-seq data:

• Short-read alignersdBWA, Bowtie, GSNAP
• Peak CallersdMACS, PeakSeq, ZINBA

7.4.2 Whole-genome shotgun bisulfite sequencing (WGSBS)
In shotgun sequencing, the whole genome is fragmented short which are sequenced
in a parallel fashion. Then these fragments are aligned using computer software in
order to reconstruct the complete sequence (Miura et al., 2012). Most NGS depends
on this, whereas, NG-bisulfate-seq method in which genomic DNA is treated using
sodium bisulfite, then ligation of adapters to both the ends of the fragments for
amplification and followed by sequencing. In WGSBS, bisulfite decreases the
genome from 4 to 3 bases making primer designing for whole-genome difficult.
The library is selected according to size and separated using NG-stage. WGSBS pro-
vides highest resolution and 5 mC level of analysis. Although, WGSBS is quite
expensive and demands a large amount of DNA samples for each run due to because
of bisulfite fragmentation of DNA.

Extraction of genomic DNA from tissue afterward fragmented and both ends are
arranged for universal adapter ligation. Main feature of this process is sodium bisul-
fite alters un-methylated C into U, whereas, after sodium bisulfite treatment methyl-
ated cytosines are left unchanged and thus, in a population of cells, levels of
methylation can be analyzed at a single nucleotide by counting the cytosines number
for ratio of entire amount of examine at that particular nucleotide. Following

FIGURE 7.11

Graphical representation of ChIP-seq.
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acquiring 100 bp reads using Illumina as well as bioinformatics investigation per-
mits determining methylation on single-nucleotide resolution throughout the DNA
sequence (Fig. 7.12).

7.5 Transcriptomics
Transcriptomics is the study of genome-wide RNA expression, using microarray
technology. It is one of the most used techniques for analyzing disease mechanisms
and it has widely used in studying expression profiles in human, rat, mouse, pig, and

FIGURE 7.12

Flowchart of the core steps in WGSBS.
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monkey of atherosclerotic-prone vessels (Quake, 2021). The transcriptome is total
transcripts at a particular stage of development. Analyzing the Transcriptome is
important in order to understand basics of the functional genome as well as enlight-
ening the constituents in cells, tissues at the molecular level for more understanding
of disease development.

The vital points of transcriptomics are: listing whole transcript species, including
mRNAs, non-coding RNAs, and sRNAs; to make the transcriptional mechanism of
genes, as far as their start sites at 50 and ends at 30, type of splicing, and rest of PTMs;
and evaluating varying expression intensity of every transcript throughout develop-
mental and diverse conditions.

Different methods for studying Transcriptomics are:

7.5.1 RNA-seq
As a significant utilization of NGS, RNA-seq is growing quickly from last few de-
cades and has become a significant methodology for transcriptome examination and
quantitative investigation of gene expression in organisms (Wang et al., 2009). The
advancement of high-throughput sequencing innovation set apart by NGS shows the
following qualities: the NGS has progressively massive identification throughput,
small detection time as well as low detection cost. The third-gen sequencing stage
has worked on long fragment sequence analysis, with a broad spectrum of flux
and detection.

Utilizing the RNA-seq to investigate sequencing of the transcriptome of the or-
ganism can supplement the gene database of this particular species, get countless
expressed sequence tags (ESTs) data, and find some new functional genes, which
is advantageous to the resulting gene cloning and significant molecular markers
improvement. RNA-seq can likewise examine the worldly and spatial expression
of a particular tissue or genes of a cell and investigate some obscure sRNAs, which
has been broadly utilized in disease detection, drug screening and drug system and
so on RNA-seq innovation has numerous advantages, for example,

1. High resolution: RNA-seq can precisely recognize single bases, for example,
issues such as background noise and cross-linking due to fluorescence signal
can be easily avoided.

2. High throughput: Through the transcriptome sequencing technique, countless
base arrangements can be acquired, which can essentially cover the entire
transcriptome.

3. High sensitivity: The rare transcripts which are really low are recognized by the
RNA-seq strategy.

4. Convenient to use: This innovation can be utilized to examine the entire tran-
scriptome of different species and needn’t bother with the reference genome or
designing specific probes prior to sequencing. Thus, RNA-seq can easily
analyze the entire transcriptome.
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Initially, long-RNAs are transformed into a library of cDNA fragments.
Sequencing adaptors indicated in color blue are for labeling every cDNA fragment
and a small sequence is acquired against every cDNA utilizing an HTS technique.
The subsequent sequence are lined up against transcriptome, and differentiated
into: exonic, junction, and poly-A end-reads. These are utilized for creating a
base-resolution profile designed for all genes, yeast ORF enclosing one intron
(Fig. 7.13).

FIGURE 7.13

Flowchart of the core steps in RNA-seq.
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RNA-seq Visualization and Advanced Analysis Tools - Software and Resources:
Visualization: Web-based: expVIP, spongeScan, ASCOT, DEIVA, Jbrowse,

ATGC transcriptomics, RNASeqExpressionBrowser, ReadXplorer, SaVanT and
many more.

Stand-alone: Cascade, omicplotR, TRAPR, SpliceDetector and many more.
Gene fusion: Subread, SOAPfusion, STARChip, FusionHunter, and many more.
Pipelines: RSEQREP, DRAP, TRAPR, NGScloud, RUM, FRAMA and many

more.
Other: MINTmap, kissDE, SimBA, KAPAC, GDCRNATools, coseq, bcSeq

(Duke), CPSS, and many more.

7.6 Proteomics
The whole arrangement of proteins that is or can be coded by an organism’ cell at a
specific point. It is the arrangement of expressed proteins in a given sort of cell or
living being, at a given time, under characterized conditions. Proteomics is the anal-
ysis of the proteome. The term proteome has been applied in different biological sys-
tems. A cell proteome are the group of proteins in a specific cell type under
particular environmental surroundings, for example, during hormone stimulation.
It can likewise be valuable to think about an organisms’ whole proteome, which
can be conceptualized as the total arrangement of proteins from the entirety of the
different cell proteomes. This is generally what could be compared to the genome.
The expression “proteome” has likewise been utilized to allude to the group of pro-
teins in certain sub-cellular biological frameworks. For instance, the entirety of the
proteins in an infection can be known as a viral proteome. The entirety of the pro-
teins in a mitochondrion makes up the mitochondrial proteome which has created its
own field of study metaproteomics.

The long-standing worldview in science is that DNA incorporates RNA, which
integrates protein. Customary way of thinking states that the outline for how to
collect a cell is contained in the hereditary code, yet understands that the blocks
and mortar utilized in the structure cycle are transcendently proteins. In this way,
proteins are the particles in cells that are straightforwardly answerable for the up-
keep of right cell work, and thus the reasonability of the creature that contains the
cells. Lately, the concurrent investigation of the entire scope of proteins communi-
cated in a cell at some random time has become a zone of extraordinary premium.
This has prompted the order of another sub discipline of protein science known as
’proteomics’, where a proteome is characterized as the protein supplement commu-
nicated by the genome of a living being or cell type.

The instruments utilized in the investigation of proteins, nonetheless, actually
linger behind the comparable to devices utilized in the examination of DNA and
RNA. It is moderately effortless to embrace the recognizable proof and evaluation
of various DNA or RNA particles in a solitary investigation utilizing an exhibit ar-
ranged from a solitary beginning example. This should be possible utilizing such
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strategies as DNA chips and cDNA microarrays, differential presentation PCR, and
sequential investigation of quality expression. It is essentially impractical to play out
similar sort of investigations at the protein level utilizing two-dimensional gel elec-
trophoresis (2DE), which is the current generally acknowledged innovation here
notwithstanding the way that it experiences a few significant deficiencies. In talking
about scientific techniques to be utilized in proteome examination, thought should
be given to the way that the quantity of proteins communicated at one time in a given
cell framework is commonly in the large numbers or several thousands. Any
endeavor to order and recognize these proteins at the same time should utilize tech-
niques that are pretty much as fast as conceivable to empower fulfillment of the ven-
ture inside a sensible time span. Along these lines, a glorified proteomics innovation
would comprise of a blend of the accompanying highlights: high affectability, high
output, capacity to separate various changed proteins, as well as the capacity to
examine all the proteins present in a sample (Meissner et al., 2022).

DIFFERENT METHODS FOR STUDYING PROTEOMICS ARE:

1. Reverse phase protein microarrays (RPPA)
2. Mass Spectroscopy (LC-MS/MS)

7.6.1 Reverse phase protein microarrays (RPPA)
A protein microarray that permits estimation of protein expression intensity in
countless biological conditions at the same time in a quantitative way when anti-
bodies are free. Actually, infinitesimal measures of (a) cell lysates, from whole cells
(b) fluids extracted from body, for example, a serum, urine, salivation, and so on, are
placed on individual points on microarray further incubated with particular antibody
to distinguish the expression levels of the protein of interest checking numerous ex-
amples. On an individual microarray, as per the aim, can compel thousands of tests
which are imprinted in duplicates. Identification is executed utilizing either primary
or secondary tagged antibodies using chemiluminescent, fluorescent, or colorimetric
techniques. The obtained array is evaluated.

Multiplexing is accomplished by multiple probing of arrays that are spotted with
the same lysate with various antibodies at the same time and can be used as a quan-
titative measure.

APPLICATION OF RPPA: RPPA progressively is utilized for detecting
deregulated signaling pathways of various disease tissues. RPPA is a strategy used
for deciding whether multi-omics therapy at molecular level enhances the clinical
route of patients having metastatic breast disease estimated using the growth mod-
ulation index, it is determined like proportion of period of instances in treatment and
development of primary tumor/metastases. Other than profiling flagging pathways
or whole organizations in disease tissues related to human, normally used techniques
for approval of MS found biomarkers is RPPA.

It is utilized for deciding possible variances of protein intensity. The information
permitted order in protein and phosphor-protein intensity throughout the pre-
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analytical stage in: (1) predictable stable; (2) predictable stable; (3) unpredictable.
As the majority of phosphor-proteins had a place with the last gathering, the creators
suggest tissue obsession or adjustment after specimen assortment immediately.
Consequently, tissue obtainment rules ought to be adjusted. RPPA has likewise
been utilized to investigate the complexity of proteins within a primary tumor as
well as the lymph node metastases of a similar patient. These investigations uncov-
ered a huge complexity of a subset of proteins inside a tumor or between primary
tumor and metastases, proposing molecular determination utilizes numerous tumor
tests from diverse areas instead of examination of one single test ought to be
imagined.

BIOINFORMATICS TOOLS FOR RPPA DATA ANALYSIS: RPPAware,
Supercurve, Normacurve, Rppanalyzer, Rppapipe, Reverse Phase Protein Microar-
ray Analysis Suite, RPPAML/RIMS, and many more.

7.7 Metabolomics
The wide-scale analysis of small molecules or metabolites is called Metabolomics;
these are found in the cell, tissue, biofluids of an organism (Johnson et al., 2016).
Together these metabolites and their interactions with each other in a living system
are described as metabolome. Genomics in which the DNA is studied and transcrip-
tomics in which RNA is studied as well as its expression; Metabolomics study of
metabolite products, all influenced because of genetic and environmental conditions.
Metabolomics is a very important topic of research due to different metabolites and
their interaction with each other, not like the rest of the omics; it directly explains the
fundamentals of biochemical activities inside the cells/tissues. Hence, Metabolo-
mics explains molecular phenotype best.

Practically speaking, metabolomics presents a critical logical test in light of the
fact that, not at all like genomic and proteomic techniques, it intends to quantify
atoms that have dissimilar actual properties (e.g., going in extremity from water-
dissolvable natural acids to nonpolar lipids. Likewise, far-reaching metabolomic
innovation stages normally take the system of isolating the metabolome into subsets
of metabolitesdfrequently dependent on a compound extremity, basic practical
gatherings, or primary comparabilitydand devise explicit example arrangement
and scientific techniques advanced for each. The metabolome is thusly estimated
as an interwoven of results from various insightful strategies. As an arising field
that has been empowered, at any rate to some degree, by the consistent advancement
of scientific instrumentation using new capacities every time, techniques utilized for
metabolomics proceed for more advancement. Notwithstanding, a result of metab-
olomics labs utilizing different strategies that are possibly liable to visit refinement
is that singular research centers will in general have interesting techniques and there
is similarly barely any standard working methodology normally received across
labs. Albeit this variety of advancements is connected to development in the field,
it fits potential difficulties when looking at information between research facilities
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on account of issues like contrasts in the exactness of estimation for selected types of
metabolites. What’s more, the level of assurance in metabolite ID can fluctuate
among techniques, going from metabolite characters thoroughly affirmed utilizing
true reference principles to putative recognizable pieces of proof made utilizing
reference data sets to signals that stay as “questions.” The requirement for normal-
ization in metabolomics has been valued by its experts and has offered to ascend to
various activities toward understanding this point, for example, Metabolomics Stan-
dards proposal to create rules intended for information announcing; ring tests to
evaluate the capacities of a variety of metabolomics strategies as well as labs to
get equal outcomes; and easily accessible vaults for metabolomics outcomes and
associated metadata, for example, the MetaboLights data in Europe (http://www.
ebi.ac.uk/metabolights) and the Metabolomics Workbench (http://www.
metabolomicsworkbench.org) in the United States.

7.7.1 Different methods for studying metabolomics
Mass spectroscopy is used for studying both proteomics and metabolomics anal-
ysis. In this session, I’ve discussed both MS technique for proteomics and
metabolomics.

Among the tool compartment of methods with which proteins can be explored
for an enormous scope, mass spectrometry (MS) has acquired notoriety on account
of its capacity to deal with the complexity related to the proteome. Different strate-
gies, for example, 2D gel electrophoresis, two-hybrid analysis, as well as protein
microarrays neglect in accomplishing in-depth proteome examination observed us-
ing mass spectrometry. The essential utilization of MS in the field of proteomics are
classifying protein expression, characterizing various protein relations among each
other, as well as recognizing sites of alteration in protein. Utilization of MS in the
field of proteomics is not the use of the single application for all analysis but rather
a group of methodologies, each having qualities fit for specific requests. In every MS
analysis, thought ought to be given to the kind of instrumentation, fragmentation
technique, and investigation system most appropriate to an individual example
(Fig. 7.14).

MS-based identification of protein and characterization of its functions, first Pro-
teins removed from samples can be examined using bottom-up or else top-down
techniques. In the bottom-up methodology, proteins found within complex combina-
tions can be isolated prior to enzymatic fragmentation followed by direct peptide
mass estimation obtained or additional to this, the peptide partition along with tan-
dem mass spectrometry. Then again, the proteins can be easily processed into the
fragmentation of peptides which are then isolated by chromatography as well as tan-
dem mass spectrometric study. In the top-down methodology, protein complexes are
fragmented and isolated into only pure proteins or combination of fewer complex-
ities, trailed with a static mixture of the sample into MS for actual mass estimation
of protein. An on-line LC-MS technique can likewise be utilized for huge scope pro-
tein cross-examination (Fig. 7.15).
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FIGURE 7.14

Flowchart of the core steps in MS for proteomics.

FIGURE 7.15

Flowchart of the core steps in MS for metabolomics.



SOFTWARE TO IDENTIFYAND QUANTIFY PROTEINS USING MS DATA:

• De novo sequencing: PepNovo, PEAKS
• Database searching: SEQUEST, Mascot, X!Tandem.
• Peptide identification: PeptideProphet, Precolator.
• Spectral library: SpectraST, X! Hunter.
• AMT and protein quantification: Viper
• De novo sequencing and database searching: TagRecon, InsPecT.
• Protein identification: ProteinProphet, MaxQuant.
• Protein quantification (ICAT): ASAPRatio
• Differential protein detection using peptide ion current area: MSstats
• Differential protein detection using spectral count: QSPEC

SOFTWARE LIST FOR METABOLOMIC MS DATA ANALYSIS:
metaXCMS, XCMS, XCMS2, MeDDL, MetAlign, MAVEN, centWave,

mzMine2, MetabolomeE xpress, Chromaligner, and many more.
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Drug informatics 8
8.1 Introduction
The blending of science of information, data, and technology is Informatics. Drug
informatics is implementing that data, technology, and drug information in clinical
and research settings. Drug informatics is still a young domain in comparison to
another medical disciplines. It is a quickly growing discipline that applies medical
and health data of computing and information technology. Informatics aims to use
technology to assist individuals in performing cognitive activities more efficiently
than creating systems to imitate or substitute human expertise. Drug informatics pro-
motes technology as a vital component for a successful organization, analysis, and
management of the drug use information in patients. It is linked to data science and
characterized as a “medical informatics subset which emphasizes the use of medi-
cation data and advancement for enhancing prescription data.” Other definitions
emphasize the information related to drugs like collection, storage, evaluation, uti-
lization, and distribution of pharmaceutical data (Ou-Yang et al., 2012).

Drug information is extracted from many sources. Primary level sources include
a pharmaceutical company or university research lab and clinical observations done
at a hospital. Secondary level source for drug data is data created using the data
initially obtained for non-clinical objectives, like reimbursement and management
of pharmacy benefits. Tertiary-level sources for information on drugs are databases,
reference books, journal articles, or clinical pathways based on precisely defined
evidence.

The process of drug discovery involves identifying possible novel therapeutic en-
tities using a blend of clinical, experimental, computational, and translational pat-
terns. Although biotechnology has advanced quite a bit and biological systems are
now much understandable, drug discovery is still a long, costly, complex, and inef-
ficient process with a high rate of attrition for the discovery of novel therapeutics. It
is an innovative process for developing novel drugs based on biological objective in-
formation. In the Big Data era, Drug design often depends but not necessarily on bio-
informatics and computer modeling techniques. Development and discovery of
drugs involve animal models and cell-based preclinical research along with clinical
trials on humans, ultimately advancing toward acquiring regulatory authorization to
commercialize the medicine. Drug discovery in modern times includes identifying
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screening hits, optimizing these hits, and medicinal chemistry to maximize selec-
tivity, metabolic stability, affinity, oral availability, and effectiveness. When a mole-
cule has been identified that satisfies every requirement, drug development will
commence before clinical trials. The drug discovery process generally includes
setting up a drug design concept, understanding targets (cell tissues, enzymes) char-
acter related to disease, and optimizing lead compound using SAR (structure-
activity relationship).

Drugs have an essential part in our society, as significant substances in diag-
nosing, preventing, and treating diseases and improving the “quality of life.” They
also allow individuals to lead a life with a disease in accordance with their cultural
and social background. Whenever a drug is produced or discovered, it significantly
affects the quality and overall life.

8.2 Computational drug designing and discovery
The process of drug discovery is exceptionally complicated and requires a multidis-
ciplinary effort to develop effective and financially viable drugs. Computers have an
essential part in medical, pharmaceutical, and other scientific research, including
discovering a novel drug/compound for improved therapeutic agents (Song et al.,
2009). Over the past few decades, there has been an immense increment in compu-
tational power and the accessibility to chemoinformatic data, which have enabled
computational chemistry and biology methodologies to become an essential instru-
ment for drug discovery. Drug development conventional methods are expensive
procedures, extremely time-consuming, with a limited turnover rate of druggable
novel chemical entities. The discovery of new therapeutic drugs is made in combi-
nation with structural biology and rational medicines. A joint effort by several dis-
ciplines is needed to determine new and efficient drugs. So, the CADD center
collaborates and works with computational scientists, biophysicists, and structural
biologists to develop novel drugs. The CADD methodology helps to streamline
the procedure of drug development and discovery through numerous computational
methodologies. It employs cutting-edge technology to enhance the time and cost-
effective workflow of drug development (Fig. 8.1).

It takes several years, approx. 10e15 years for discovering and developing a drug
as it commences with scientific experiments such as specific target receptor determi-
nation, disease determination, active compound determination from a mass of com-
pounds, etc. Hence, the scientific community emphasizes minimizing costs and time
of drug development without negatively impacting the quality. Many advancements
were made during the 1990s by employing high-performance and combinatorial
screening methodologies to expedite the development of the drugs. These ap-
proaches were extensively accepted as they allowed the quick screening and synthe-
sis of huge libraries possible. However, disappointingly, there was no substantial
success, but a somewhat small advancement happened in discovering novel molec-
ular entities. Eventually, the combinatorial approach was introduced, and the term
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Computer-Aided Drug Design (CADD) came into existence for using the computer
in drug development. These advanced tools showed remarkable results, and since
then, practically every phase of the drug discovery computational approach has
been implemented, like identifying leads, target identification, preclinical data gen-
eration, optimization, and development of drugs to the formulation. In drug discov-
ery, CADD has given some of the best results such as - Zanamivir (Neuraminidase
inhibitor), Captopril (Angiotensin-converting enzyme inhibitor), Imatinib
(Tyrosine-kinase inhibitor), Dorzolamide (Carbonic anhydrase inhibitor), Nelfinavir
(HIV-1 protease inhibitors), and Aliskiren (Renin inhibitor). These recent successful
researches demonstrate clearly that CADD offers realistic and practical strategies for
helping biologists and chemists achieve their objective of developing new beneficial
and active compounds while removing toxic, reactive, and inactive compounds.

FIGURE 8.1

Flowchart explaining CADD (computer-aided drug designing).
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CADD is often used in the drug development process for three main reasons:
firstly, for the substantial compound libraries filtration resulting in smaller subsets
with anticipated biological testing activity. Secondly, for the lead compound optimi-
zation into optimal pharmacodynamics and pharmacokinetic properties. Last but not
least, for designing of new drugs by the approach of de novo designing. These are
relatively common approaches and are usually practiced in the development of
the drug.

Computational techniques are founded on the concept that any pharmacologi-
cally active compound interacts with targets such as nucleic acids and proteins.
The main elements governing such molecular interactions among receptor and
drug include hydrophobic interactions, molecular surface, hydrogen bond forma-
tion, and electrostatic force. These are simply characteristics that are evaluated
when the interaction between two molecules is predicted and analyzed. CADD doc-
uments every product and streamlines the production process. The substances to be
studied might come from several natural sources such as animals, plants, microor-
ganisms, and some synthetic ones. Tested drugs after the test can be refused or
approved depending upon the results, such as the presence/absence of carcinogenic-
ity, toxicity, or low efficiency.

CADD can be categorized broadly into two approaches: ligand-based (LBDD)
and structure-based drug design (SBDD).

8.3 Structure based drug designing
It uses protein three-dimensional structure data or target (receptor/enzyme) for
screening/identifying potential hits, following, synthesis action, biological
testing, optimization, and development of novel biologically active compounds.
The foremost prime step of SBDD is identifying the target molecule and structure
determination. The target identified can be an enzyme-linked to a disease/disor-
der of interest. The potential molecules are identified based on determining bind-
ing affinity, which mitigates the target activity with its inhibition. Therefore,
SBDD uses biological target data and discovers potentially novel drugs (Batool
et al., 2019). SBDD embodies the significant progress in computational approaches
used in statistics, biophysics, biochemistry, medicinal chemistry, and various
branches. Scientific and technological advances have led to a considerable number
of protein structure predicting techniques. These cutting-edge technologies allow
structure determination of a wide range of proteins employing nuclear magnetic
resonance, cryo-electron microscopy, Computational approaches such as molecu-
lar dynamics simulation and homology. SBDD may be broadly categorized into
two parts: virtual screening and the De novo approach. The approach of De
novo drug development takes advantage of three-D receptor data in order to
discover tiny fragments which complement the biding site. In contrast, the virtual
screening (VS) approach utilizes compound libraries already available to deter-
mine specific bioactivity hits.
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It is a computational approach used to filter massive molecule datasets, and it has
effectively been utilized to complement High Throughput Screening in Drug devel-
opment. VS mainly aims to offer a cost-efficient and quick assessment of large da-
tabases of a virtual compound to screen efficient leads for synthesis and future
research. In order to identify entities that are likely to bound a molecular target in
interest, a screening using a virtual database can be done to filter huge compound
libraries utilizing computational technology. VS primarily reduces the drug synthe-
sis challenge to a massive extent by using enormous libraries of compounds that are
pre-synthesized.

Now for the De novo approach, various techniques are:

8.3.1 Homology modeling
HOMOLOGY MODELING: another name for it is comparative modeling. It has
focused on the notion that when two sequences share high identity/similarity, they
will have a similar structure. Determination of target molecule structures follows
specific drug target identification. A vast number of protein structure has not been
discovered even after the technology advancement. In this situation, homology
modeling can be helpful as it may be utilized to determine the protein structure using
similar protein data.

With the following steps, protein 3-D structure can be determined using homol-
ogy modeling (i) determining correct template, for query target sequence through
BLAST search, (ii) alignment of sequence (iii) correcting alignments to assure the
alignments of functionally or conserved critical residues (iv) generation of backbone
(v) modeling of loop (vi) modeling of side chains through rotomer libraries (vii)
model optimization through minimization of energy and (viii) model validation
through stereochemical assessment utilizing residues in Ramachandran plot
permitted regions (Fig. 8.2).

Structure predicted by homology modeling is assessed for its quality depending
on the similarity degree between the template sequence and model. Query protein
homology modeling will not produce a significant outcome if there is very low sim-
ilarity. To overcome this obstacle, fold recognition may be used. Few server/methods
for homology modeling are: (i) Modeler-it compares modeling between template
sequences and given target to present protein model, for generating model non-
hydrogen atoms are calculated by it. It can also be used for the optimization of pro-
tein and loop modeling. (ii) I-TASSER-it is an approach for hierarchical protein
modeling, build on continuous execution of threading assembly refining program
and alignment of secondary structure enhanced profile-profile threading (iii)
PRIMO stands for Protein interactive modeling. It is a protein monomers homology
modeling pipeline. It offers features that allow users to model ions and ligands in
association with their target of protein. PyMod, Swiss Model, and MaxMod are
some other recent servers/methods used for homology modeling.

The most precise computational approach for producing a credible structure
model is homology modeling and is used consistently for various biomedical
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applications. In general, computational work takes less than 2 h for a modeling proj-
ect. Though it does not comprise, the need to visualize and interpret the results/
model may vary due to individual working experience and familiarity with protein
structure.

8.3.2 Molecular docking
MOLECULAR DOCKING: It is a computational approach commonly utilized to
quickly predict compounds’ possible binding modes in target binding sites. On the

FIGURE 8.2

Homology modeling process.

184 CHAPTER 8 Drug informatics



basis of complementarity and conformation, it predicts small molecules’ affinities
toward their target molecule. In the field of drug development, this Insilco technique
has attained a significant position. Over the last decades, it has evolved drastically
and has become an essential component/tool for SBDD (Bender et al., 2021). It
has also been known to be more effective/efficient than conventional drug designing
approaches. The enormous increase in availability and accessibility to protein and
small molecules databases and the advancement in computational technology has
tremendously aided molecular docking. These computational advancement and bio-
logical targets 3D structure data availability are set to improve the efficiency and
effectiveness of this technique. These developments will also accelerate its broad
applicability in analyzing protein-ligand binding molecular interactions. Usually,
docking of small molecules can occur in three ways: (i) through RIGID DOCKING
in which ligand and target are viewed as rigid molecules; (ii) through FLEXIBLE
DOCKING, where entities like target and ligand are regarded to be flexible; (iii)
through FLEXIBLE LIGAND DOCKING, where the target is supposed to be stiff
and ligand flexible. Molecular Dockings’ main aim is to discover optimally binding
ligands with receptor binding sites and identifying their strongest poses or binding
orientation, which are energetically recommended. Binding Pose term can be
defined as the ligand’s confirmation/orientation relative to its receptor. It is either
said to be a ligands conformation within target proteins binding site confirmed
experimentally or as a hypothetical conformation modeled computationally. For
identifying ligand-protein interactions, two critical elements required are the scoring
function and search algorithm.

For identifying ligands’ various conformations and poses for a given protein
target, search algorithm is accountable. Whereas selecting the most desirable
ligand/receptor binding modes or estimating generated poses binding affinities along
with ranking them is done by a scoring function. An efficient and quick search al-
gorithm is necessary, and for scoring function, it should be able to identify thermo-
dynamics interactions and molecules’ physio-chemical properties. A wide range of
experiments are carried for finding ligands binding modes and selecting poses which
are favored energetically the most. To achieve this purpose, tools for molecular
docking facilitate sets of binding poses for various ligands and, as a usual scoring
function, will be utilized to estimate generated poses binding affinities to choose
the optimum binding mode. During recent years various tools or programs of molec-
ular docking, including Dock, Surflex, Gold, and AutoDock, have been implemented
and effectively employed in various drug discovery and research projects. The two
essential components separating the diversity of available docking software are the
scoring function and the sampling algorithm.

8.3.2.1 Sampling algorithm
In between two molecules, there is a large no of binding modes, and it would be
time-consuming and expensive to produce all potential modes even with the help
of modern computers’ higher clock speed and advancement in parallel computing.
Thus, the importance of algorithms was seen as they were required to filter out
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the significant conformations from unfruitful ones. In this regard, several algorithms
were constructed, which can be categorized according to the no. of degrees of
freedom they neglect. The simplest algorithm that was proposed evaluated mole-
cules as two rigid entities, decreasing the degree of freedom to 6. DOCK program
is an excellent illustration for this algorithm working. DOCK software was aimed
to identify entities having a broad similarity or resemblance in shape to binding sites
grooves/pockets. The algorithm works on taking a picture of the potential binding
site available on the protein surface. This picture comprises different radii overlap-
ped spheres which interact with just two spots on the macromolecule surface. Li-
gand’s molecules are also seen as a sphere set that can almost pack the occupied
space by ligand. The pairing rule is employed after the relevant ligand and protein
representation as a sphere is finished. The principle of the rule is based on the fact
that protein and ligand spheres can be paired with each other if ligand and protein
spheres have similar internal distances, enabling user-specified tolerance. Hence
permitting the program to determine spheres clusters which are geometrically
similar on ligand and protein site. Other different software developed which uses
the above matching algorithm (MA) consists of - LIDAEUS, SANDOCK, LibDock,
etc. MA-based software has the speed advantage, but also the limitation of molecular
flexibility lacks, etc.

Incremental construction is the following algorithm, which works on the idea of
ligand being fragmented into different segments from rotatable bonds. Out of all,
one specific segment is anchored to the surface of the receptor, and maximum inter-
actions are shown by this anchor at the surface of the receptor being reasonably
rigid. After setting up the anchor, every fragment is joined to each other gradually.
The fragment having hydrogen bond interactions (accurate geometry prediction)
have higher chances of getting first as they are responsible for ligand specificity.
The algorithm becomes extremely robust and quick because, for the next iteration,
most minor energy poses are selected. SLIDE, SKELGEN, and FLOG are some of
the programs which use this algorithm. Limiting to medium size ligands is the only
limitation this algo has.

Another algorithm in the section is the Genetic Algorithm which is utilized for
determining the global minima. Darwin’s Theory of Evolution is the inspiration
for the algo. The genetic Algorithm includes ligands population filtered by scoring
function, and every ligand is a potential hit. Crossover and mutation are used for the
alteration of ligands population. New ligands are formed using a mutation operator
from a single ligand, while information is exchanged between two or more ligands in
the population using a crossover operator. It has been integrated into Autodock 4.0,
GAMBLER, and DARWIN-like programs. Convergence Uncertainty is the
limitation.

The hierarchical method is the approach in which ligands’ low energy conforma-
tions are aligned and pre-computed. Pre-generated ligand conformations clusters are
integrated into a hierarchy so that other similar conformations can be placed along-
side one another in the hierarchy. In the end, this hierarchical information can be
used by docking software after carrying out the ligand’s translation, thus resulting
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in minimization of the outcome. E.g.: a clash between atom close to the ligands rigid
center and protein in the given translation are rejected as conformations below in hi-
erarchy will have descendants with the same clash. The software which uses this
algo is GLIDE.

8.3.2.2 Scoring functions
The algorithm discussed above checks if sampling changes are performed accurately
and rapidly to allow compound evaluation in the set computational period. These al-
gorithms are then complemented by scoring functions. The ranking and evaluation
of a predicted conformation of the ligand are essential. Scoring functions work in
two scenarios; first, if you are interested in finding only how a biomolecule and
ligand bind to each other, the scoring function determines the docked orientation
that represents the intermolecular complex’s true structure most accurately. Whereas
in the other scenario, where you evaluate the various ligands, scoring functions
determine not only the accurate docking pose but also rank ligands relative to
each other.

Many simplifications and assumptions are used by scoring functions for esti-
mating the possible complexes binding energy in a brief period. An adequate bal-
ance can be found between binding energy accurate estimation and computational
time in cases of popular scoring functions. Over the past years, various scoring func-
tions have been designed and can be categorized into three: Force field, empirical
and knowledge base.

Force field scoring functions are formulated on physical atomic interactions
like electrostatic and van der walls interactions, torsions, bond angles, and
bond length. The parameters and functions of force fields are derived from both
quantum mechanical calculations and experimental data. Some of the scoring
functions included in this category are GoldScore, DockScore and HADDOCK
Score, etc.

Empirical Scoring Functions: it is based on the fact that a sum of distinct uncor-
related terms can be used to approximate the binding energies of a complex. During
binding energy calculations, various term coefficients are included, which are
derived employing regression analysis utilizing binding energies which are experi-
mentally obtained or perhaps from structural X-ray data. Compared to force fields,
simpler energy terms are used in empirical functions, making it considerably more
rapid in calculating binding scores. The first-ever software to use the empirical
scoring function for binding free energy determination was LUDI. LigScore,
SCORE2, HINT are other empirical scoring functions developed by including
various empirical energy terms.

Knowledge Base Scoring Functions: These are acquired from structural data
inherent in atomic structures predicted experimentally. Statistical analysis is used
by the functions on complex structures to derive frequencies of interatomic contact
between ligand and protein. The higher the interaction, the higher the occurrence
frequency. MScore, BLEEP, DrugScore, etc., are some of the popular functions
(Fig. 8.3).
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8.3.3 Molecular simulation
MOLECULAR SIMULATION: Throughout mankind history, the research for
novel medication has always been vital. The world population have been challenged
consistently with various pandemics from 1800s, 1900s to the ongoing Covid 19 out-
breaks, including potentially lethal diseases like cancer. Therefore, discovering drug
being Scientifics community major concern. Remarkable collection of biological in-
formation is done on a daily basis recently, ranging from genetic sequence to 3D
structures of protein and drug databases, providing good assistance for SBDD
research. Over last decade, this has increased due to the fast development of quicker
architectures and stronger computational techniques in an economical way. RCSB
PDB is one of the uttermost important resource for MD simulations, and it offers
3D structural data which is experimentally determined (Hollingsworth and Dror,
2018). It is a global repository for managing and distributing macromolecules
(nucleic acid and protein) structure data along with being a crucial asset for biomol-
ecular modeling. It is a method/tool that calculates the system particle movement

FIGURE 8.3

Flowchart of molecular docking.
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over a particular time period and then examines systems evolution. It is also stated as
an approach used for evaluating motion and interaction of molecules. MS is among
the most significant scientific and engineering discovery techniques that may be
widely utilized in fields like material design and drug discovery. It now enables
SBDD approaches which reflect the flexibility of the structure of drug target model
system.

If most significant presumption is to be named, which motivates one to try to

comprehend life, is that all entities are composed of atoms and all things done

by living being is understandable by looking into atoms jiggling’s and wiggling’s.

Richard Feynman (1965, Nobel Prize in Physics).

Biophysicists have dedicated them for the more understanding of these jiggling
and wiggling of the atom. Studying this jiggling and wiggling which is termed as
molecular motion is very relevant to develop drugs. Ligands binding basic theoryd
“lock and key” where a motionless and frozen receptor was considered to incorpo-
rate tiny molecules without any conformational adjustment, is dropped in order to
encourage binding models which account changes in conformations along with li-
gands and receptors random jiggling. General procedure for a molecular simulation
starts with preparing or developing molecular system’s computer model using ho-
mology modeling, crystallographic or NMR data. MD is a technique which works
on the Newton’s equations, (F ¼ m*a). Then estimations of forces working on atoms
in the systems is done. In short, forces originating from interactions among non-
bonded and bonded atoms participate. Modeling of Dihedral angles is an approach
which emulates differences in energy between staggered conformations and eclipsed
using a sinusoidal function, whereas atomic angles and chemical bonds use simple
virtual springs for modeling. These energy terms stated here are parameterized so
that they can fit well in the experimental data and quantum-mechanical calculations.
These parameters collectively are named “force fields” and depict different atomic
forces contribution. These are utilized for evaluating forces among different atoms
interacting and computing the system’s total energy. CHARMM, GROMOS, and
AMBER are few force fields commonly used in simulations. Based on their param-
eterization they differ principally yet similar results are generated by them. Sec-
ondly, newtons motion laws integration in the simulation creates a consecutive
systems configuration which provide trajectories to determine particle velocity
and position over time. Various attributes such as kinetic measure, macroscopic
quantities and free energy can be calculated using these MD trajectories.

The CHARMMMD package is the oldest one developed by Martin Karplus. The
GUI of CHARMM helps in preparing simulations input files by offering web-based
graphics tool. Another package used for MD simulation which is relatively faster
than the other packages is GROMACS (open -source) aka GROningen Machine
for Chemical Simulations. It does not have force fields of its own like CHARMM
and Amber have. Rather, force fields like GROMOS, Amber, OPLS and CHARMM
can be imported in this package. Hence, using these packages, simulation process
can be summarized as: (a) the system is initialized using zero total momentum,
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(b) For each particle field forces are computed, (c) Newton’s motion equation is in-
tegrated, (d) For a specified time, repeat b and c steps.

Even after being a competent technique, two major obstacles continue to restrict
the MD simulation use: further refining of force fields are required and recurring
simulations (>1 ms in length) are prohibited which leads to conformational states
insufficient sampling in many cases. Even though few milliseconds’ simulations
are now feasible, obtaining sufficient statistics and thorough sample for conforma-
tional space are recommended to a number of alternative trajectories. For e.g., Of
the above situation a simulation of a small system (approx. 25,000 atoms) for
1 microsecond, running on several processors requires multiple months for comple-
tion. In addition to the problems of high computational requirement of the simula-
tions, force fields utilized are approximations of quantum-mechanical reality in
atomic domain. Although many significant molecular movements may be predicted
correctly by simulations, they are unsuitable for systems with significant quantum
effects, such as transition metal atoms, engaged in binding. So, the technique is
rigorous even when evaluating a single lead compound. Drug like compounds hav-
ing extended unbinding kinetics have also been commonly found. The conventional
MD approaches cannot still explain those sluggish unbinding events, even if oper-
ating on specialized hardware. This is the primary concern in rapid discovery of
drug program, restricting the usage of MD simulations doing kinetic prediction.
The sampling problem nevertheless has led to the creation of several new algorithms
based on “enhanced sampling approaches.” These accelerate the slow process
description, enhancing the uncommon incidences defined by high free energy states
(Table 8.1).

8.4 Ligand-based drug designing
LIGAND-BASED DRUG DESIGNING Presents an illuminating technique for the
relation in-between physio-chemical and structural properties of ligands along with

Table 8.1 Difference between structure and ligand based drug designing.

S.No. Structure-based drug designing Ligand based drug designing

1. Based on 3D structure of target
protein obtained from NMR, X-ray
crystallography

Based on known ligands of target
protein

2. Receptor structure is known Receptor structure is not known

3. Techniques involved- docking and
molecular dynamics simulation

Techniques involved- QSAR,
pharmacophore models, molecular
similarity approaches

4. Software useddAutoDock Vina,
Glide, Autodock4.0, FlexX, Gold

Software used- MACCS-3D, ROCS,
phase, Catalyst
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their biological activities. It is also known as the Indirect Drug Design technique
(Vázquez et al., 2020). This technique is implemented in the absence of target pro-
teins 3D structural data. The data of ligands and their biological activity provided in
this process is utilized to develop novel possible drug candidates. LBDD relies on
the molecules’ data bound to the active site of the biological target with their inter-
est. These molecules are utilized for extracting an appropriate model that offers the
major structural characteristics of a lead molecule that assists in the target molecule
binding process. The target models are biologically active and are based on binding
molecular information. This approach is made to discover new compounds that can
interact with target molecule which are biologically active.

LBDD is frequently employed in pharmaceutical research. It works on the pre-
sumption that identical structural characterizes of compounds have similar biolog-
ical activity and interacts with target molecules which are common. Molecule
representation is the foundation of the LBDD approach. Numerical values for mol-
ecules physio-chemical and structural properties representation are called Molecular
Descriptors. It is a highly cross-disciplinary field containing several theories.
Ligand-based drug designing has the most popular approaches and can be classified
into two parts: Pharmacophore modeling or Quantitative Structure-Activity Rela-
tionship (QSAR).

Methods of QSAR are founded on the assumption that biological activities are
linked directly to biological activities, hence altering biological activities through
structural or molecular variation. QSAR aims to be a procedure that constructs math-
ematical or computational models using chemometric techniques, which identifies a
strong association between a set of functions and structures. The basic hypothesis for
QSAR states that “similar activities are shown by compounds having similar physio-
chemical and structural properties.” Lead compounds producing expected biological
activities are collected to make a library for finding the possible leads. A model is
then created to determine the quantitative relationship between the biological activ-
ity of a compound and its physicochemical and structural characteristics. In order to
quantitatively optimize the compound sets biological features, along with maxi-
mizing biological activities, a statistical model is constructed using the relations
mentioned earlier.

8.4.1 Pharmacophore modeling
PHARMACOPHORE MODELING: Pharmacophore concept was first presented
by Ehrlich around 1800. He described it as a “molecular framework that conveys
(phoros) significant characteristics responsible for the biological activity of a
drug.” The underlying pharmacophore notion remained constant after a 100 years,
but its deliberate meaning and scope for application were substantially broadened
(Kaserer et al., 2015). IUPAC’s recent definition of a pharmacophore model” is a
group of electronic and steric properties essential for ensuring the effective supramo-
lecular interactions and triggering biological response with a particular biological
goal. The concept of Pharmacophore modeling pre-exists than any electronic
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computer, yet it works as an effective tool in CADD. Molecule units like atoms or
groups with specified characteristics associated with molecular detection can be
turned into a pharmacophore feature. These molecular patterns are characterized
as anionic, cationic, hydrophobic, aromatic, H-bond acceptors and donors, or any
potential combination. Various compounds may be compared at the pharmacophore
level, commonly termed “pharmacophore fingerprinting.” The pharmacophore can
be termed a “query” if only a few pharmacophore characteristics are considered a
3D model. There are some properties grouped in a specific 3D layout in a pharma-
cophore model. Every characteristic is generally described as a sphere. The charac-
teristics may be designated as an individual characteristic or any combination logic
gates: “NOT,” “OR,” and “AND.” Typically, certain pharmacophore properties are
employed for screening compounds’ small-molecule libraries. All compounds exist
as their loweenergy bio-relevant conformations in these libraries. Every conforma-
tion in these libraries is suited to pharmacophore query through alignment with mol-
ecules pharmacophore characteristics, hence composing the query. A molecule is
considered a hit molecule if it can be accommodated in the spheres representing
query characteristics. Sometimes pharmacophore query may become extremely
complex in finding hit molecule from a particular library, and then the partial match
is permitted. In these circumstances, just particular qualities are matched, which are
regarded vital to activity. Diverse ways are available to design pharmacophore
models either manually or via automated algorithms based on the scenario and
type of experiment.

Here we are going to discuss automated algorithms. Generally, the pharmaco-
phore generation involves two steps: construction of ligand conformational space
in training set for representing ligands conformational flexibility, ligand alignment
of many ligands, and determining critical common chemical elements to build
models for pharmacophores. The main problem in pharmacophore modeling and
the significant methodologies are represented by conducting molecular alignment
and management of conformational ligand flexibility. Pharmacophore modeling-
based software’s which are available aredDISCO, PHASE, MOE, and HipHop,
etc. All these software differentiate only on the basis of algorithms they are using
to handle molecule alignment and ligands flexibility.

Even after significant advancement, there are still major challenges in pharma-
cophore modeling that exist. Ligand flexibility is the first challenge for modeling.
There have been two strategies to fix the problem: the pre-enumerating method is
the first where multiple conformations are pre-computed and stored in a database.
This method has a low cost for computing as an advantage for carrying out molec-
ular alignment at the cost of the need for a potential storage capacity. For the second
method, analysis of conformations is done, known as the on-the-fly method. It re-
quires no bulk storage but may require more time on the CPU for performing a
rigorous optimization task. Pre-enumerating approach has been shown to exceed
the on-the-fly calculation method.

The second issue in pharmacophore modeling is molecular alignment. Accord-
ing to the fundamental nature of alignment methods, they can be grouped into
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two sets: property and point-based method. The points may be further divided as
chemical features, fragments, and atoms in a point-based approach. The most signif-
icant constraint related to this technique is the requirement for pre-set anchor points,
as constructing these points can be difficult in different ligands (Fig. 8.4).

Nevertheless, another obstacle is the experimental aspect of correctly choosing
training set compounds. This issue which seems non-technical and easy, usually puz-
zles users, including experienced ones. The ultimate pharmacophore model gener-
ated is affected by the dataset size, ligand molecule type, and diversity of chemistry.

Although the pharmacophore notion has limits, various remedies may be used to
conquer them at any moment. In light of this adaptability, pharmacophore modeling
is predicted to continue to be a significant part of CADD and has so much scope,
advantages, and prospects shortly.

8.5 ADMET
Drug development’s fundamental objective is to obtain a compound that shows
therapeutic effect into a medicine form, which can be used for patient’s dose
(Van de Waterbeemd and Gifford, 2003). The drug is required to be reached at
the site of the problem, employ its pharmacological effects, and get disposed of
promptly. The characterization of ADME features helps analyze and describe
how pharmacokinetics processes occur to give a novel medicine with safety con-
siderations on which risk-based evaluations may be carried out. ADMET is the
method that explains the pharmacokinetics disposal of the drug, or activities are
done to a drug by the human body. In the pipeline of drug development, ADMET
data can be extracted from several stages. Drug developers may apply chemical
changes to drug candidates to maximize ADME qualities in the discovery and opti-
mization process. In vivo and in vitro studies provide crucial data to fulfill regula-
tory requirements, from Drug progression via preclinical development and clinical
phases for pharmacists to make reasoned judgments.

With the development of novel compounds, the requirement for ADMET Infor-
mation begins. Moreover, this information can influence the choice of proceeding
with the synthesis via combinatorial chemistry techniques or with traditional chem-
istry methods. Computer techniques are the only choice for this information,
although prediction at this time is not 100% accurate but still acceptable. More
robust mechanical models are necessary when a molecule series is concentrated
on a lead and further streamlined to a clinical candidate. To develop in-silico models
that enable a rapid assessment of various ADMET features, a comprehensive under-
standing of the links between molecular structure and properties with ADME param-
eters is employed. In addition to this information, other properties can also be
predicted that offer data on frequency and size of the dose, like bioavailability, dis-
tribution volume, oral absorption, and brain penetration. The available experimental
data in academia has led to significant efforts in developing models for the predic-
tion of ADME-related physical-chemical parameters, such as lipophilicity. Even
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FIGURE 8.4

Pharmacophore modeling.
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after the relevance, the determination of pharmacokinetic features such as distrib-
uting volume, clearance, and half-life directly from the molecular structure pro-
gresses less slowly because of the absence of data published. The estimation of
many metabolic and toxicity aspects is also under-developed.

To understand what computational tools are required by ADMET, we need to
consider two aspects: molecular modeling and data modeling consisting of a distinct
toolbox. QSAR methodology is usually used for data modeling. Since the 1960s,
QSAR and QSPR (quantitative structure-property relationship) research has
evolved, involving various physio-chemical and biological data. The research
done by these employs statistical tools for finding associations between provided
features and a range of structural and molecular descriptors of a given molecule.
During the past 40 years, a broad range of descriptors was produced for use in
QSAR analysis. The descriptors subset might be beneficial in determining ADME
Properties. The descriptors include hydrogen bonding and molecular size, while
other descriptors can be quantum-chemical concepts or are merely topological.

In molecular modeling: techniques like protein modeling are involved, quantum
mechanical methodologies are employed for evaluating the possible interaction be-
tween proteins (like p40s) intricated in the ADME process and the small molecules.
For these proteins, 3D structural data is required to be developed by homology
modeling of the associated structures if the structure of a human protein is not
obtainable. An additional technique to analyze the possibility of a small molecule
interacting with a particular protein when there is no structural protein knowledge
is to employ PHARMACOPHORE models constructed on the superposition of
known protein substrate.

For ADMET parameters, finding good predictive models usually depends on
selecting suitable molecular descriptors, appropriate mathematical strategies, and
a suitably huge pool of experimental information for model validation. There is
increasing understanding of which of the descriptors and QSAR techniques avail-
able are most suited, though alternative solutions with the exact prediction capacity
frequently seem to exist. It is crucial to study, in particular, how training set size im-
pacts the model choice.

8.5.1 Adsorption
For a substance to access tissue, it usually has to be carried in the blood circulationd
typically via mucous surfaces in the digestive system, prior to being absorbed by the
target cell. Hence, it is the mechanism through which the drug reaches the blood-
stream. Although there are numerous different pathways, the two most popular
modes of administration are oral and intravenous. The advantage of giving drugs
intravenously is that the drug skips the absorption phase and directly enters circula-
tion. Nevertheless, a lot of medication is prescribed to be taken orally as it allows the
patients to administer it themselves. During the ingestion of Xenobiotic, it passes via
the gastrointestinal tract, and then through the portal circulation, it moves to the
liver, entering systemic circulation, which makes the drug reach its active site.
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More minor compounds often cross membranes in this procedure, sometimes by
passive transport, but commonly through proteins called drug transporters. In several
phases of the pharmacokinetic trip, drug transport might be the primary element of a
drug disposition, and preclinical research must be carried out to offer data on drug
interaction with different transportersdlike inhibitors or substrates.

There are four critical routes of administration:

(a) Injection directly to the bloodstream
(b) Dermal Application
(c) Inhalation
(d) Ingestion via the digestive tract

The drugs have to penetrate through a membrane prior to entering the blood-
stream when administered via dermal contact, inhalation, or ingestion. While in
the case of injection, drugs directly enter the bloodstream. There are specific
ways, four in common, by which a substance can pass a membrane and enter circu-
lation: (a) Active Diffusion: the drug molecules in ATP form need the energy to
cross the membrane. It is an energy-dependent mechanism. (b) Passive Diffusion:
the standard uttermost method by which drug is absorbed. In this, drug molecules
travel from a high concentration area to a low concentration area. (c) Endocytosis:
when a large drug is transported across the membrane through membrane invagina-
tion. (d) Facilitated Diffusion: drug molecule traveling from high concentration area
to low concentration area using carrier proteins in the membrane. Bioavailability is
influenced by the method of delivery, a measure of how many drugs is taken in their
unmodified form. Bioavailability can be found by evaluating the concentration of
drug plasma over time. The only way to achieve bioavailability by 100% is by intra-
venous injection. Reduced availability will be observed in case of other ways of drug
administration. Not every drug molecule will reach the bloodstream. For example,
the drug that is initially consumed goes under metabolism, which excretes some
drug molecules before entering the circulation of blood. Many parameters, including
solubility, molecular weight, ionization, the topological polar surface area, and other
physicochemical features, might influence the absorption of drugs. For evaluating
the potential of drug quantity reaching circulation after oral consumption, absorption
data can be beneficial. After oral absorption, the first-pass impact (with other com-
ponents) determines bioavailability.

8.5.2 Distribution
When the drug gets absorbed, it goes from the absorbing location to various body
tissues like organs, muscles, and generally to various extents. The distribution is usu-
ally achieved via the circulation from one body region to another; however, it can
also happen from cell to cell. The drug compound is submitted to several distribution
procedures which serve to diminish its plasma concentration after entering into the
systemic circulation, whether by absorption from any one of the several extracellular
locations or by intravascular injection. To measure efficacy, the researchers assess
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the rates at which the chemical reaches various places and the extent of the disper-
sion. Certain drugs are easy to transfer, while others are not. The reversible move-
ment of medicine from one region to another can be defined as Distribution.

Polarity, molecule size, regional flow of blood, and serum protein bonding, pro-
ducing a complex, are some elements impacting drug distribution. Some natural bar-
riers, such as the blood-brain barrier, can provide a significant concern. Different
in vitro research might assist in compiling more information about the distribution
of a substance. E.g., Studies of drug transmitters assist in identifying proteins that
are responsible for driving drugs into and out of cells, and permeability testing
can characterize the compound’s potential for entry into cells.

8.5.3 Metabolism
Metabolism of drugs can be defined as the biotransformation of a drug into hydro-
philic metabolites primarily through tissues and organs like skin, liver, digestive
tract, or kidney so drug molecules can be extracted from the body through excretion.
Most of the drug metabolism of a small molecule is performed by the redox enzyme
(cytochrome p450) in the liver. The initial chemical becomes a new substance
termed metabolite when metabolism takes place. It disables the provided dose of
the parent medication when metabolites are pharmacologically inactive and thus
generally lessens the body’s impact. Drug metabolism includes enzymes and
numerous investigations that may be necessary for the identification of key metab-
olites and related metabolic pathways. Chemical metabolism can lead to toxicity, for
example, through the creation of toxic by-products or metabolites. Adverse
Outcome Pathway (AOP) is something researchers draw a drug candidate’s specific
metabolic pathways. It offers information required for determining the drug’s poten-
tial toxicity and safety.

For meeting regulatory submission expectations and validating important actors
in the metabolism of drugs, specific drug metabolism research has been carried out.
The research includes characterization of metabolites, metabolic stability, and iden-
tifying metabolite for the elucidation of metabolites among species and establish
whether any of these is unique to humans or disproportionately greater in humans
compared with preclinical species.

8.5.4 Excretion
The process through which the elimination of metabolized drug compounds occurs
in the body is called excretion, generally done through the kidney. Usually, all me-
tabolites and material related to drugs like parent drugs are ultimately removed from
the body. Characterization of the excretion routes is fundamental; it mainly occurs
from the liver and kidney, as mentioned earlier; however, tears, sweat, and breath
can also be used as excretion doors. Normal metabolism can be impacted adversely
by the foreign substance’s accumulation unless excretion is completed. Scientists are
currently working on finding out about the pathways taken by the drugs to leave the
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body and how promptly the drugs can be excreted while keeping in mind that excre-
tion pathways can be influenced by molecular charge and size.

It is also stated that every drug is not entirely excreted out; adverse effects can
happen when metabolite or chemical by-products accumulate. Research in
“in vivo excretion” can be helpful in both identifying compounds excretion routes
and characterize material clearance related to the drug while surveilling exposure
of metabolite and drug in plasma and different compartments. Radiolabeled mole-
cules are used in animal mass balance research for characterizing the excretion
rate and path of the drug. This research showed the whole scenario of what rated
drug is excreted from the body along with the quantitative evaluation of feces and
urine. Other supporting research may provide further data to study lymphatic parti-
tioning rate, excretion via milk, biliary excretion, and more.

8.5.5 Toxicity
Toxicity accounts for several compounds not making to the market and removing a
considerable number of compounds from the industry that were once approved.
Approx. 20e40% of research drug development failures have been estimated to
be due to toxicity concerns. In silico technologies, which are commercially acces-
sible to predict possible toxicity, may be grouped into two classes. In the first tech-
nique, expert systems are involved, which generate modeling based on codifying and
abstracting knowledge from scientific literature and human experts. The second
strategy is primarily based on the production of chemical structure descriptors
and statistical analyses of correlation between the toxicological endpoint and the de-
scriptors. The crucial aspect of any in silico technique is the data quality used for the
purpose of model development. The restricted accessibility of toxicity data for
the public domain has constrained the toxicology endpoints quantity foreseen by
the commercially accessible system. Mutagenicity and Carcinogenicity are the cen-
tral objectives of modern software packages. Although some programs also incorpo-
rate knowledge bases and models for additional objectives, including sensitization,
irritation, neurotoxicity, immunotoxicology, and teratogenicity.

8.6 Drug repurposing
It is a strategic approach for identifying novel uses for authorized or researched me-
dicinal products outside the initial medical indication scope (Pushpakom et al.,
2018). It has various other names like Drug profiling, drug recycling, drug re-
tasking, therapeutic switching, and drug rescuing. This entails creating novel thera-
peutic applications for drugs already available in the market, including discontinued,
experimental, abandoned, and approved drugs. The traditional method of deter-
mining drugs is a laborious, risky, costly, and time-consuming task.

The new drug repurposing technique can probably be used over the traditional
drug discovery program by reducing greater chance of failure, longer development
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periods, and high monetary costs. This technique offers many benefits over the
development of an entirely novel medicine for a particular indication. First, and
probably most crucial, the chance of failure is decreased as the repurposed drug
has previously been demonstrated to be adequately safe in preclinical models. It
is less likely to fail from the safety viewpoint in later effectiveness studies, at least
if early-stage studies have been completed. Secondly, it is possible to minimize the
time frames for developing the drug, as principal safety evaluation, preclinical
testing, and in few situations, creations of the formulation have already been
done. Thirdly, there is a requirement of less investment; however, this will rely
mainly on repurposing candidates’ development process and stage. In conjunction
with these benefits, there is the prospect that investment in the repurposed drug
development has the potential of resulting in faster and less dangerous approach. Ul-
timately drug recycling might disclose novel pathways and targets which can be
exploited further.

Drug repurposing first example that happened in the 1920s by accidental discov-
ery. Many strategies have developed since a century of advancement, which has
accelerated the drug repositioning process. A Few examples of the best drugs which
are the results of DR are aspirin, sildenafil, methotrexate, valproic acid, and minox-
idil. Sildenafil approach in DR meant that it was primitively developed for hyperten-
sion treatment; however, currently, it is also used for treating erectile dysfunction.

On-target and Off-target are two strategies for Drug repurposing. Drug mole-
cules, known pharmacological methodology, is put on a novel therapeutic indication
in on target strategy. In this strategy, drug molecules’ biological target is similar;
however, there is a difference in disease. The strategy can be demonstrated using
minoxidil example: it works on similar targets but generates two distinct therapeutic
effects. Being an antihypertensive vasodilator, it permits more nutrients, blood, and
oxygen in the follicles of hair, hence helping in treating androgenic alopecia (male
baldness). In the case of the Off-target strategy, there is no knowledge of pharmaco-
logical mechanism. For novel therapeutic indications, drug candidates and drugs
work on novel targets. Hence both indications and targets are new. An example of
an off-target strategy is aspirin; it has been used in treating various inflammatory dis-
orders and pain. It functions as a blood coagulation suppressor, hence employed in
strokes and heart attack treatments.

Drug repurposing also has two approaches: in silico based and experiment-based
approaches. Activity-based repurposing is another name for the experimental-based
approach; it applies to the initial drug screening for novel pharmacological indica-
tions on the basis of experimental studies. Various other approaches included in this
are cell assay, clinical, target screening, and animal model approach. It needs no
structural data of the target protein. Though It has a lower false-positive rate in
screening but it is laborious and time-consuming.

Whereas in silico repurposing virtually screens large chemical/drug libraries of
public databases utilizing cheminformatics/bioinformatics tools and computational
analysis. Potential bioactive molecules are identified based on molecular interaction
between the drug molecular and the target protein. This approach has the advantage
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of It being labor and time-efficient. However, it has higher chances of false-positive
results during screening (Fig. 8.5).

Drug repurposing methodologies can be classified into three major categories ac-
cording to the quality and quantity of biological, toxicological, and pharmacological
activity data. These include: (a) diseases oriented, (b) target-oriented (c) drug-
oriented. In disease-based methodology, drug repurposing is significant when
more disease model data is accessible. Drug repositioning can be led by treatment
or disease on the basis of data accessibility provided by genomics, phenotypic
data, metabolomics, and proteomics data related to the disease process. Hence, there
is a requirement of building a particular disease network, identification of protein
molecules causing diseases, and genetic expression recognition.

The target-based methodology involves virtual high throughput and in silico
screening of compounds or drugs from drug databases like molecular docking of
the drug, followed by high throughput screening in accordance with protein
biomarker or molecule of interest. This methodology has a considerable success
rate for discovering drugs as disease mechanisms and pathways are represented
by most of the biological targets.

Biological activities, toxicities, adverse effects, and drug molecule structure fea-
tures are measured in drug-oriented methodology. It is based on the identification of
molecules having biological effects on animal assays. The drug-oriented methodol-
ogy has drug discovery and traditional pharmacology principles as its basis, where
research is generally done to determine drug molecules’ biological efficacy with un-
known biological targets.

DR provides many pharmaceutical businesses the option to generate lower in-
vestment pharmaceutical products. Its mixed strategy offers more effective and
speedy chances for determining repositioning drugs. From a commercial perspec-
tive, many diseases require treatment from novel medication with possible economic

FIGURE 8.5

Drug repurposing flowchart.
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consequences and market demand. For instance, medicines for uncommon/
neglected diseases can be discovered with a vast potential market. Consequently,
there is a chance to repurpose medications to cure uncommon, neglected, or orphan
diseases or diseases difficult to cure.
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A machine learning
approach to bioinformatics 9
9.1 Introduction to machine learning?
Amachine learning algorithm is a statistical computation method used in software to
detect hidden patterns that are not obvious in a dataset and make reliable statistical
predictions of similar new data. Machine learning techniques attempt to find a
pattern in a particular dataset; using these learned patterns, a similar pattern in a
new dataset is identified. Machine learning processes are somewhat close to statis-
tical modeling and data collection. They look into the data to find trends and accord-
ingly learn the pattern or parameters. We usually know about machine learning
through social media connection suggestions, online shopping product recommen-
dations, spam filters in our email inboxes etc. In the last 30 years, there has been
a surge in the use of machine learning techniques to solve biological problems,
with successes in gene prediction, protein function prediction, cell image recogni-
tion, pathway analysis, protein structure prediction, drug molecule and toxicity pre-
diction, and so on. To solve a problem using a machine learning algorithm, we
require data about the concerned problem, which consists of features or characteris-
tics of problems. For example, the concept of automatic annotating proteins’ func-
tion has become more prevalent in recent years because more and more proteins are
being discovered and identified. In an attempt to comprehend the molecular mech-
anism of biology, it is important to assign the function to large-scale proteins. But
only a tiny percentage of the more than 179 million UniProtKB proteins have exper-
imentally supported gene ontology (GO) annotations. Here, machine learning can be
applied as we have annotated proteins fed as examples to an ML algorithm. The ML
algorithm can learn patterns from examples and help us predict newly discovered
proteins’ functions. Features are used to show examples of an ML algorithm. For
the present case, features may be protein sequence, Position-Specific Scoring Matrix
(PSSM), representing conservation and homology, proteineprotein interaction (PPI)
network data, motifs, domains etc. In simple terms, features are the information
about a particular example under observation (Larrañaga et al., 2006).

Choosing descriptive, discriminating, and autonomous features is an essential
step in training efficient machine learning algorithms. After feature selection, the
next step is to identify the problem’s category, based on which we choose an ML
algorithm. We will discuss the different types of machine learning algorithms in
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the subsequent sections. Then we train the models and evaluate their performance.
According to recent machine learning footprints in life science, it seems to be help-
ing researchers to address a variety of tiresome issues to gain greater understanding
and opportunities for a prosperous future (Greener et al., 2021).

9.2 Types of machine learning systems
Machine learning has evolved from a science fiction fantasy to a widely used method
in our community. It has such a significant impact on the outcome that incorporating
machine learning algorithms into the process has become a deciding factor between
success and failure. These algorithms are challenging to apply, and considerable
effort has been expended in this area to get it to where it is today. It is important
to comprehend what we want our algorithms to accomplish and the benefits they pro-
vide. Certain problems, such as predicting temperature, pH, or pressure, require a
continuous numerical value as an output referred to as regression problems. In com-
parison, some questions require categorization, such as whether they are positive or
negative or warm or cold. Additionally, there are instances where we expect machine
learning models to classify examples based on the similarity and dissimilarity of
their features. Machine learning models are generally classified into three categories
based on their outcomes: supervised learning, unsupervised learning, and reinforce-
ment learning.

9.2.1 Supervised learning
The most frequently used method of machine learning is supervised learning. It’s the
simplest concept to understand and put into practice. It’s similar to using flash cards
to teach a child something. We can feed a supervised algorithm data sequentially in
the form of example-label pairs, allowing the algorithm to evaluate the label for each
example and provide feedback on whether the label was estimated correctly. Finally,
the algorithm will discover how to precisely interpret the relationship between in-
stances and labels. Once thoroughly trained, a supervised learning algorithm will
be capable of observing a new sample that has never been seen before and evaluating
a suitable label for it. As a result, supervised learning is frequently referred to as
task-based. It focuses on a single problem, training the algorithm with ample of ex-
amples until the task can be completed successfully. Additionally, supervision
learning can be classified as regression or classification. Classification is generally
used to predict a label, whereas regression is usually used to predict a quantity.

Regression is a technique for developing models that predict continuous values
based on their input variables. In regression problems, the mathematical mapping
function (f) from the input variable (x) to the output variable (y) is determined. As-
sume we have a dataset containing the mature height, weight, diet, and gender of our
parents. Because height or weight is a continuous variable, training a supervised al-
gorithm on these features to predict the child’s height or weight is referred to as a
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regression problem. Classification, on the other hand, is a technique for identifying a
model that divides input data into a number of distinct classes or labels. In light of
the aforementioned data set of height and weight, the classification task would be to
use the adult height, weight, diet, and gender of the parents to predict the child’s
height as “Above Average” or “Below Average.”

9.2.2 The below are the most commonly used supervised
algorithms

9.2.2.1 Linear regression
Linear regression is a supervised learning algorithm used for the prediction of
continuous variables like sales, age, product price, salary and future weather etc.
Linear regression is represented by a linear equation in which one variable is inde-
pendent (x), and the second one is the dependent variable, or the output (y).

If the input and output variables are linearly related, a line could be drawn with
the data sets to depict the relationship between the variables, as shown in Fig. 9.1.
The equation for a basic linear regression model with a single independent variable
x and a single dependent variable y will be:

y ¼ mx þ b

It is the equation of the line, where “x” is the input variable, y is the output var-
iable, “m” is the slope, and “b” is the y-intercept. Linear regression aims to find the
best values for “m” and “b” based on “x” and “y” data, so that the average difference

FIG. 9.1

Linear regression: Data points and the estimated best-fit regression line.
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between the data points and the line is as small as possible. The difference between
the data points and the line is referred to as an error of the model or the line, and each
data point has its own error. The value obtained as these errors are squared and added
is known as sum squared error, and the average of this sum is known as mean square
error. The total error between all data points and a line is referred to as the mean
square error, which states the model’s efficiency.

Since “m” and “b” may have a wide range of values, regression iteratively finds
the best line by fitting several lines and selecting the one with the lowest mean
squared error (Fig. 9.2B). If there’s more than two variables in a problem, the
same approach is used; this is multivariant linear regression.

When there are more than two variables or more dimensions in the data, the
regression line is a plane (in three dimensions) or hyper-plane (in more than three
dimensions), and the equation is:

y ¼ m1x1 þ m1x1 þ m2x2 þ m3x3 þ . .. mnxn þ b

Here, the dependent variable is y, and the independent variables or features are x.
The coefficients of the features m1, m2, m3, m4, and mn provide an understanding
of each features’s contribution in the measurement of “y”. Finally, the letter “b” is a
bias term. We’ve seen how linear regression can be used to model a continuous var-
iable, but the coefficients can often provide valuable knowledge about the signifi-
cance or function of each feature in the estimation of y. We may also deduce
approximate linear equations for problems, giving us an approximate mathematical
model of the problem (Altman and Krzywinski, 2015).

9.2.3 Logistic regression
Classification problems involve recognizing spam or ham messages, deciding if a
tumor is benign or malignant, determining whether or not a person has a disease,

FIG. 9.2

(A) Best fit line among the various non-optimal lines and (B) Distance (errors) between

the data points and the line.
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and so on. These are regarded as binary classifications since there are just two clas-
ses. In general, two classes are indicated by the letters’ “0” and “1.” For example, a
benign tumor is can be represented as “0,” whereas a malignant tumor can be rep-
resented as “1.” As a consequence, the model has to predict the output values of
“0” or “1.” We cannot use linear regression equations since the output varies from
�(ve) infinity to þ(ve) infinity (Lever et al., 2016). So, for classification, we have
a sigmoid function, which has an “S” shaped curve, as seen in Fig. 9.3.

9.2.4 K-nearest neighbor
The KNN algorithm can be best illustrated by the expression “Aman is known by the
company he keeps.” When a new disease is discovered, the doctor will recall previ-
ous patients who had the same symptoms. As a result, symptoms can be thought of
as features, and labels as diagnostics or treatments for the disease (Parry et al., 2010).
In KNN, the sorted training data set serves as a model representation, and no addi-
tional learning is required. Fig. 9.4 depicts the data points for two groups, blue and
green, respectively. If we use K ¼ 3 to create a new prediction event, the model will
look for the three closest data points before assigning the new instance to the major-
ity class with the highest probability. The diagram shows that the K value is an
important factor in determining the model’s behavior. Low K values reduce model
accuracy because noise has a greater impact on it, whereas high K values make the
KNN algorithm computationally intensive. As a result, for greater accuracy, an
optimal value of k is chosen. It is critical to select the appropriate k value to balance
accuracy and computing power needs.

Various distance measures are used to determine which of the nearest neighbors
is the closest. The most commonly used distance calculation is the Euclidian

FIG. 9.3

The logistic or sigmoid function.
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distance. The Hamming distance is also used, which is the sum of the absolute dif-
ferences between unit vectors. The dimensionality issue arises as the number of fea-
tures increases. The problem in a high-dimensional space is that all points are far
away from one another or their neighbors (Fig. 9.4).

Several advantages of using KNNs include the following: The algorithm is
straightforward and simple to train. Due to its adaptability, the KNN can be used
for both classification and regression. KNN calculates the average value of the k
nearest data points in regression; it is more consistent and reliable when dealing
with a large training set. A few drawbacks of KNNs include the algorithm’s require-
ment for an exponential increase in computing power as the value of k increases. Its
computational cost for predicting new data is quite high. When it comes to categor-
ical features, KNN fails miserably.

9.2.5 Decision trees
The decision tree uses a tree-like hierarchical decision-making model to learn basic
decision-making rules and predict the target variable’s value. It is a general tech-
nique that has applications in a number of real-world contexts, including civil engi-
neering, law and business, and is also widely used in machine learning. Decision
trees are used to accomplish specific goals, such as a flow chart or a series of deci-
sions (Kotsiantis, 2011). Fig. 9.5 shows the standard structure and terminology of the
decision tree. Each node is a test or condition, and the branches are the outcomes of
such tests or conditions (Fig. 9.5).

• Root Node: This is where the entire population or sample is split into two or more
segments.

• Branches: Branches are the result of node choices.

FIG. 9.4

Sinigicae of “K” in K-nearest neighbor algorithm.
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• Decision Node: When a sub-node is divided into additional sub-nodes, the de-
cision node is formed.

• Leaf Node: Leaf nodes, also known as terminal nodes, are the final outcomes of
all chain decisions.

Splitting is the method of separating a node into a number of sub-nodes depend-
ing on the test condition. Decision trees establish test conditions based on the purity
or impurity gain form the decision in the lower subsets. The depth of the decision
tree is increased with the number of decision nodes lead to the over-fitting of the
model. As a result, we must restrict the creation of decision nodes or boundaries
in real-world data while at the same time tolerating minor impurities in leaf nodes.
The technique of deciding the depth of three is called tree pruning.

The following are some of the advantages of decision trees over other supervised
learning algorithms:

1. Visually depicting and easy to understand
2. There is very little or no data processing needed.
3. It can be used for numerical as well as categorical results.

Decision trees, like every other machine learning algorithm, have their own set of
drawbacks, including:

FIG. 9.5

Standard structure and terminology of the decision tree.
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1. Excessive parameter tuning is required to avoid overfitting. Methods such as
pruning and the determination of the minimum number of samples are used to
solve the problem of overfitting.

2. The resulting tree may not be a globally optimal decision tree, because most
decisions are made at individual nodes.

3. Most of the time a single tree is not enough to yield successful results.

To resolve these drawbacks of decision trees, multiple decision trees’ ability is
used. A random forest is a collection of decision trees, as the name implies. A
random forest classifier trains multiple decision trees on small samples of the
training data points. These small samples are selected on a random basis with sub-
stitutes, resulting in a large number of decision trees. Bootstrap sampling is a tool for
the selection of small samples. In order to produce the final result, the random forest
algorithm integrates the contribution of individual decision trees. Since it is a set of
multiple decision trees, the model is also known as the ensemble type model, where
two or more models are used for deducing results. The result of the forecast depends
on the overall observation of all trees, i.e., the majority vote. Random forests are
much more reliable and resilient than single tree species. Random forests are
more accurate than decision trees for two major reasons:

1. The random forests, unlike the decision trees, are not pruned, so the character-
istic space is divided into smaller and smaller areas.

2. Each random forest tree learns from a random array, and each node divides on the
basis of a random set of characteristics resulting in tree diversity.

9.2.6 Support vector machines
The support vector machine are generally used as supervised learning algorithm in
machine learning. In addition to classification they can also be used in regression
problems. In this section we will discuss the application of SVMs for the classifica-
tion task. Support vector machines are linear classifiers, because they make linear
decision boundaries. It aims to find a hyperplane or decision boundary that is the
best fit and separates n-dimensional space into separate classes or groups (Wang
and Lin, 2014). When we place the new instance to a trained SVM, it classifies
the new data point into one of the categories. The optimal decision boundary is
known as a hyperplane. The hyperplane is a flat decision boundary with dimensions
N-1 for an N-dimensional dataset. For 2D data, visually, it will be a line, and for 3D
data, it will be a plane separating two groups. For applying support vector machines,
the data should be linearly classifiable, which means a line or plane should exist
form where the groups or classes can be separated. The objective of SVM is to
find that line of the hyperplane.

In Fig. 9.6Awe can see that the dataset is linearly separable; however, there can
be many lines that can separate the data into different classes. Support Vector Ma-
chine selects the optimal points which help in creating the hyperplane. The optimal
points are the data points that are very similar but fall in different classes. SVM finds
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such points in the space and tries to fit a line or plane, which has a maximum distance
from those datapoints. These points are called support vectors, as they help in
finding the decision boundary, and the algorithm is called a support vector machine.

SVM optimizes the margin of the classifier by using these support vectors, and
any change in these support vectors would change the hyperplane location. An
example dataset is shown in Fig. 9.6. Here, the margins are dividing the points
neatly, and this margin is called hard margin. With real-world data, we use a soft
margin, which allows the SVM to misclassify a few points, while, maximizing the
margin and minimizing the overall error. It is up to the user to decide the degree
of tolerance or the softness of the margin. A sklearn’s support vector machine class
is controlled using a parameter called “C”. For the lower value of “C” the model will
have less tolerance for misclassification, and for the high value of “C” it will have
more tolerance for misclassification.

9.2.6.1 Kernel trick
We have discussed that SVMs can only classify linearly separable data, but datasets
in the real-world may not always be linearly separable. Although up to some extent,
using a soft margin can help us to classify data linearly, even then, the data must have
a linear discriminatory boundary. For datasets that do not have any single linear
boundary, the kernel trick is applied, which aims to map the low dimensional data
to a higher dimension where it is linearly separable. Let us understand it using a
non linearly separable one dimensional data.

Fig. 9.7A is a one-dimensional dataset that has two classes, green and blue. There
is no way a point can differentiate the two classes. One dimensional dataset is a line
only, and the hyperplane will be a point here, as a point has zero dimension. The goal
here is to add an extra feature to the data so that we can differentiate the two classes
using a line in two-dimensional space. Here the new feature is the square of the data

FIG. 9.6

Algorithm behind support vector machines.
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points. Therefore, in Fig. 9.7B, we can see that introduction of this new feature made
the data points linearly separable into the two different classes. Therefore, the
assumption here is that, if an N-dimensional data is not linearly separable, then there
is a dimension greater than N where the datapoints are linearly separable. Kernel
functions are the general functions which generate new features to map these data
point to higher dimensions.

Radial basis function (rbf) is one of the common kernel functions used to
perform kernel trick. “rbf” is used to create new higher dimensional features by
calculating the distance among all other data points to a certain point. The mathe-
matical representation of radial basis function is

k (xi, xj) ¼ exp (-g|| xi - xj ||̂ 2)

where xi and xj are two instances and g (gamma) controls the effect of new features
on the decision boundary. Just as “C”, the regionalization parameter, gamma also
needs to be tuned for optimal performance of the SVMs.

9.2.7 Neural networks
We will now address another commonly used supervised learning algorithm, Artifi-
cial Neural Networks, or ANNs, or Neural Nets, in this section. They were designed
to mimic the neural networks or neurons that comprise the human brain, as the name
implies. They are primarily used for statistical analysis and modeling of gathered
data; their function is viewed as a complement to conventional nonlinear regression
analysis models (Lecun et al., 2015). They are frequently used to solve problems that
can be expressed as regression or classifications. With more than 6 decades of
research behind them, neural networks have found applications in a wide variety
of fields, including speech and image recognition and classification, text recognition,
medical diagnosis, and fraud detection.

FIG. 9.7

Mapping a non linearly separable one-dimensional data to high dimension to classify it

linearly.
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9.2.8 Neural networks architecture
The basic structure of neural networks is shown in Fig. 9.8. It is separated into three
different layers: input, hidden, and output. The input layer is the first layer and it
contains the input features or characteristics. The middle layer is the hidden layer,
the word ’hidden’ referring to the mathematical calculation processes that are not
accessible and are often referred to as the black box. Diverse networks are classified
according to the number of hidden layers they comprise. The ANN with many hid-
den layers is referred to as a deep neural network. The final layer is the output layer,
which contains the network’s output data.

With a large number of weights and activation functions, neural networks can
accommodate both linear and nonlinear datasets. These characteristics of neural net-
works also make them prone to overfitting the training data. As a consequence, they
require rigorous parameter tuning to achieve the best results. We will discuss more
about overfitting toward the end of this chapter.

9.2.9 Convolutional neural network
To train an artificial neural network on image data, we must extract all the pixels
from the image and pass each pixel as a variable to the neural network. Although
individual pixels of an image provide information about it, images become more

FIG. 9.8

Basic structure of neural networks.
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recognizable when local pixels are combined. Convolutional neural networks
(CNNs) are well-known models of deep learning for image or spatial data. CNN
can be used to learn local spatial features, while ANN can be used to learn individual
features. CNN learns through the use of a small window or filter. The picture is
segmented into small sections, and several filters are used to learn various local fea-
tures such as edges and textures. Thus, these individual image pixel features are
combined to form higher-order features such as the boundaries and depths etc.

These filters are composed of convolutional matrices of numbers that can be
trained or modified. With properly trained filters, CNN detects and extracts the
appropriate features from image data (Fig. 9.9). Filters are trained using the back-
propagation method with each iteration. By definition, convolution is a mathemat-
ical operation on two objects that results in the transformation of one object when
it interacts with the other. This is often referred to as feature mapping.

Furthermore, there are two additional layers besides convolution: pooling and
flattening. The pooling method moves a window across an image’s pixels, fusing
local features into a single feature. Pooling can take a variety of forms:

1. Max pooling: when the pixel with the highest intensity is chosen over all other
pixels in the window.

2. Average pooling: where a window returns the average of all the pixels.

Pooling is primarily used to reduce the size of data. At this stage, the model re-
tains significant information about the local pixels, such as the highest intensity or
the average of all pixels, and discards other irrelevant data.

Following extraction of features from images via CNNs and pooling, these fea-
tures should be fed to ANNs for classification. T he flattened layer converts these 2D
features to 1D features, which are then connected to ANNs for further processing.
The basic architecture of a CNN based on artificial neural networks is depicted in
Fig. 9.10.

FIG. 9.9

Feature extraction using CNNs.
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9.2.10 Unsupervised learning
Unsupervised learning differs from supervised learning in that the data that we send
to a computer is not labeled. To put it another way, we’re not feeding the machine by
hand; instead, we’re making it smart enough to interpret the data we’re sending it on
its own. Data points with corresponding features are fed to unsupervised learning
algorithms. The algorithm takes the features of the data and extracts useful bits of
information based on similarities and differences within the data before trying to
deduce trends.

Clustering and discovery of outliers are two extensive applications of unsuper-
vised learning. Clustering is the most popular method of unsupervised machine
learning. Clustering is the act of sorting the data into many groups. Clusters are
the names of the groups segregated by machines and researchers then focus on
the clusters to decipher the segregation. For example, in gene expression analysis,
clustering is used to segregate the genes according to their expression patterns.
Once an unsupervised algorithm group them, bioinformaticians try to understand
their cumulative effects. The computer looks for data points with identical parame-
ters in the whole data set. After that, based on each of these parameters, a data point
is assigned to a special cluster.

Outlier detection, on the other hand, recognizes something that deviates from a
general pattern. If you’ve been seeing white cars on the road for a while, seeing a red
car will attract your attention. The work of the outlier detection systems is carried
out in this way. This technique can be used to diagnose diseases and variations, hu-
man data entry errors, and much more.

9.2.11 K-means clustering
We’ve see examples of supervised learning in the above section so far, where labels
have been used, and classifiers are build using features and labels. Unsupervised
learning, on the other hand, does not have the ladled data (Altman and Krzywinski,
2017). They find hidden patterns in datasets, build clusters based on dataset similar-
ity, and group data points that are more close to each other (called a cluster). K-
Means clustering is a popular unsupervised learning algorithm, it uses the simple

FIG. 9.10

Architecture of a CNN bases neural system.
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iterative rule to separate unlabeled datasets to form clusters. In biology, clustering
has a wide range of applications, including analysis of expression results, drug
repurposing, and categorization of organisms or proteins, among others.

The first step in K-means clustering is to tell the algorithms how any clusters or
groups a user anticipates, i.e., the value of “K”. The algorithm will cluster the data
into “K” number of groups. Selecting the value of K requires knowledge of the
domain or simply one can iterate the clustering process with various number of
Ks and find the most suitable one based on user define parameters.

After determining the value of K, they are referred to as centroids and are
randomly located within the dataset space. The sum of the squared distance between
the data points and the centroid cluster (arithmetic mean of all data points belonging
to that cluster) is the minimum, such that the data points closer to those randomly
scattered centroids are assigned to the cluster.

In the third step, the centroids are moved to the cluster center after assigning
points closer to the k clusters, as seen in Fig. 9.11. The mean of all data points in
the cluster is the cluster nucleus. Closer data points are assigned to k clusters after
the centroids are moved to the cluster mean, and the steps are repeated until the cen-
troids stop moving or the movement is very slow.

Finally, we acquire well-defined k clusters from which we observe similar data
points allocated to clusters to discover secret pathways and derive valuable knowl-
edge from the dataset. Calculation of the coordinates or properties of the data points
generates the nucleus of the cluster.

9.2.12 Reinforcement learning
Reinforcement learning is the process of teaching machine learning models to make
a variety of decisions. The agent learns to accomplish a goal in a static, potentially
tricky environment. Machine learning algorithms face a game-like scenario in rein-
forcement learning to solve the problem, the algorithms employ trial and error
methods. Getting the ML algorithm trained is either rewarded or punished, which
means it gains or loses points for the hits it makes. Its goal is to maximize the total
reward or scores (Collins and Cockburn, 2020).

The idea that the user creates a layout of the game or the environmentdthat is,
the game rulesdprovides the model with no tips or suggestions on how to solve the
game. Starting with fully randomized trials and progressing to more sophisticated
methods, it is up to the model to determine the steps to optimize the rewards. Rein-
forcement learning, which employs rewards and punishments through multiple
testing, is possibly the most effective method for teaching an algorithm creativity.
Unlike humans, artificial intelligence can derive information from thousands of con-
current gameplays if a reinforcement learning algorithm is allowed to run on a robust
computing infrastructure.

Reinforcement Learning is a subset of machine learning that teaches an agent
how to choose an action from an action space in each context to maximize rewards
over time. Reinforcement Learning has four components:
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1. Agent: The ML model
2. Environment: The physical or virtual environment in which the agent operates.
3. Alternatives or steps: The agent’s action that causes a change in the state of the

environment.
4. Choice-based reward system: The evaluation of a particular action, which can be

positive or negative.

The difference between supervised, unsupervised, and reinforcement learning is
their objective and how they are achieving it. Both supervised and unsupervised
learning aims to discover and learn patterns that produce relatively static results.
On the other hand, RL’s goal is to have a plan that tells the agent what action to
take at each stage, which complicates the operation. Reinforcement Learning does
not explicitly provide the correct answer; instead, the agent must learn the answer
through trial and error. The agent’s only metric is the reward received after the pro-
cedure is completed, indicating whether it is progressing.

FIG. 9.11

Steps of K means clustering.

9.2 Types of machine learning systems 217



In contrast, during training in supervised learning, the algorithms are given cor-
rect answers. A Reinforcement Learning agent must strike the right balance between
discovering the correct steps by searching for new sources of rewards and using pre-
viously identified reward sources. Unsupervised and supervised learning systems, on
the other hand, derive the solution directly from training data without considering
alternative solutions. Reinforcement Learning is a multi-decision mechanism that
generates a decision-making sequence based on the amount of time required to com-
plete a task. In contrast, supervised learning is a one-decision process: one event, one
prediction.

9.3 Evaluation of machine learning models
Once models have been trained, it is critical to assess their outputs or see how well
they can perform (Antoniou and Mamdani, 2021). A test set is used to evaluate the
performance of the models better. Typically, the entire data set is divided into two
parts: 80% is used to train the machine and 20% is used to test how well the model
predicts. The model is not shown the test data during training. After the algorithm
has been trained, the previously unseen data is used to assess how well the algorithm
performs in new data. The algorithm predicts the test data outputs, which are then
compared to the original labels. The predicted and actual values are compared in
a confusion matrix to measure how well the model performed (Fig. 9.12).

Various mathematical metrics can evaluate a model using the confusion matrix
values, such as accuracy, precision, and recall.

9.3.1 Accuracy
The number of correctly predicted values divided by the total number of instances in
the test set is the rate of accurate prediction.

FIG. 9.12

Confusion matrix.
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TP þ TN/TP þ FP þ TN þ FN ¼ accuracy

The ratio of true positive to the total number of instances considered positive by
the model is known as precision.

The true positive rate, also known as the sensitivity of the formula, is called
recollection. i.e., the total number of positive instances in the dataset of the survey
divided by the number of true positive instances.

TP/TP þ FN ¼ ranking of R F1

Precision and recall are often specified a single numerical value known as the F1
score. The harmonic mean of precision and recall.

2 * ((Precision * Recall)/(Precision þ Recall) F1 Score F1

9.3.2 Receiver Operating Characteristic (ROC) Curvature
The Receiver Operating Characteristic (ROC) Curve is another method for testing
classifiers. It is a graph showing the difference between the true positive rate
(TPR), also known as sensitivity, and the false positive rate (FPR) (1 - Specificity).

A preferred curve shows the increase in the true positive rate vs. the false positive
rate. The more area there this under the curve, the more accurate the model is
(Fig. 9.13).

The parameters for evaluating the regression model are very different. Since
regression operates with a continuous data set, it requires sophisticated metrics to
test it. Variance, mean squared error, and R squared coefficient are typical parame-
ters for assessing regression models.

FIG. 9.13

Curve of the ROC.
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9.3.3 Cross-validation
Cross-validation is a term used to describe the method of comparing two or more
subjects.

As discuss above, when performing a machine learning project, we divide our
dataset into two sets at random, training and test sets. This approach has a drawback:
if we lose about 20% of our data for testing our model, it may not be able to train
properly for real-world challenges. Some vital information will be skipped as we
split the data set. When the data collection is small, the problem gets worse. To solve
this problem, we use a technique called cross-validation. We divide the dataset into
subsets and then we train and evaluate our model using various combinations of
these subsets (Fig. 9.14). Two of these methods are K-fold validation and Leave
One Out Cross Validation (LOOCV).

9.3.4 Testing and validating
When a large amount of data is available, it can be divided into three parts: training,
validation, and testing sets. While training makes up the majority of the part form
rests and is useful for teaching the model. The validation set is kept separate from
the training data and is used for evaluating the trained model for fine-tuning its pa-
rameters, then train and evaluate again. This cycle is repeated until a model with
consistent accuracy is discovered through permutations and combinations of various
model parameters. The test set is used for the final evaluation because it is still hid-
den from the model and provides an unbiased evaluation result. Testing and

FIG. 9.14

Multiple configurations for training, validating, and testing of models.

220 CHAPTER 9 A machine learning approach to bioinformatics



validation on the same set of data is not recommended because, with each cycle, the
model becomes biased toward the validation set due to favored parameters.

9.4 Optimization of models
Model optimization is a key step in improving the accuracy of the predicted out-
comes. Based on the complexity of an ML algorithm, we can have various hyper pa-
rameters as we have discussed in the above sections. The purpose of fine-tuning a
machine learning algorithm is to choose the best model and parameter values. In
general, models are iteratively configured and validated using a number of parameter
combinations. Continuous training and validation ensure that a model is optimized
and performs well. Here we have discussed a few methods of optimization of ML
models.

9.4.1 Parameter searching
There are two widely used methods for optimizing models by searching parameter:

Grid search is a method for finding the best hyperparameter combination for a
model by scanning the space of all hyperparameter combinations. Depending on
the type of model used, certain hyperparameters are required. Grid search is a tech-
nique for determining the optimal hyperparameters for any machine learning model.
It should be noted that grid searching is computationally intensive and can take a
long time to optimize a model. It iterates through all possible hyperparameter com-
binations and saves a model for each one. This method can be made more effective
with domain knowledge by providing a limited set of parameters to evaluate.

Bergstra and Bengio (2012) proposed the concept of a system’s hyperparameters
being randomly searched. This is a completely different type of search than the grid
approach. Rather than combing through all possible hyperparameter combinations, a
randomized search selects a few sample points from the distribution and performs
the calculations on those points.

9.4.2 Ensemble methods
Two heads are better than one means that when two people work together to solve a
problem, they are more likely to succeed than when one person works alone.
Ensemble methods are a class of techniques that include the development of several
models and their subsequent combination to achieve improved results. Generally,
ensemble models yield more precise solutions than a single model does. Voting
and averaging are two of the most straightforward ensemble techniques. They are
both simple to comprehend and simple to execute. Classification is accomplished
by voting, while regression is performed by averaging. Both methods begin by
developing multiple classification/regression models on a training dataset. Each
base model can be constructed using different splits of the same training dataset
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and the same algorithm, or by combining the same dataset and different algorithms,
or by any other approach.

9.5 Main challenges of machine learning
Machine learning enables us to make more informed, data-driven decisions more
quickly than traditional methods allow. However, machine learning, like any other
system, has its own set of challenges. While machine learning applications in
biology are advancing rapidly, technology as a whole has a long way to go. When
it comes to developing a machine learning solution, there are numerous obstacles
and issues to overcome. With this in mind, let us examine some of the challenges
faced by applied machine learning projects.

9.5.1 Insufficient quantity of training data
Having sufficient data to train the algorithm is critical to the machine learning pro-
ject’s success. Many machine learning programs may fail to approximate the real-
world scenario due to a lack of data. As a result, data collection is the most critical
component of any machine learning project. The amount of data depends on the
complexity of the problem and the chosen ML algorithm. While high throughput
technologies have significantly increased the amount of data available for biological
studies, the integration of divergent types of data remains a limitation for big data in
biology. High-throughput data from transcriptomics, proteomics, metabolomics, and
genomics must be integrated into a meaningful large dataset. It remains a challenge
that, despite the production of astronomical amounts of data in the biological
domain, the overall mechanism of a system such as phenotypes remains difficult
to comprehend due to a lack of data integration.

9.5.2 Non-representative training data
Training data must be a representative sample of the population. A sample data is a
subset of the population’s data points used to train a model. The sample must accu-
rately reflect the population. To generalize the output of a machine learning model, it
must be trained on well-represented data; otherwise, it will encounter a blind spot for
predictions on data with few representations.

Sampling noise, also known as non-representative data, occurs when the sample
size is insufficient, but even large samples can be non-representative if the sampling
procedure is inaccurate. This is frequently referred to as sampling biased. It is crit-
ical to note that when sampling bias is reduced, the variance increases, preventing
the model from generalizing to unseen data; when variance is reduced, the bias in-
creases. This phenomenon also referred to as the bias-variance trade-off; one should
balance these two parameters.
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9.5.3 Quality of data
Machine learning algorithms pose a huge challenge when it comes to data consis-
tency. These systems require high-quality data to prevent over or under estimation
during training and testing cycles. As a result, the consistency of the data used in
any machine learning system has a huge impact on its development. Consequently,
even small variations in the training data can result in major alteration in the algo-
rithm’s output. Complex and dynamic problems require not only large quantities of
data but also diverse and informative data. While curating data sets, the missing,
misinterpreted, and inaccurate values may affect data quality.

9.5.4 Irrelevant features
The independent variables in any machine learning problem are the features. The
output, which is a dependent variable, is predicted using these independent vari-
ables. During training, the majority of machine learning algorithms derive an
approximate function from these features. As a result, it is critical to select relevant
features for inclusion in a machine learning algorithm. Relevant features can be used
to direct the algorithm toward a more desirable output. Inappropriate features
mislead an algorithm, increase the size of the data, and complicate the problem un-
necessarily. In many cases, feature redundancy can also result in an increase in data
size. Two or more highly correlated features have little “value” in terms of training
because the presence of one can always (or almost always) be used to determine the
presence of the other. If this is the case, there is no reason to include both features, as
their combined effect on the predictions will be negligible.

Sometimes the simplest solution is the best. To be more specific, we can use
dimensionality reduction while retaining variance, as in PCA, by using the principal
components as features. Furthermore, because more features introduce more noise,
we can use a variety of methodologies and techniques to select a subset of the feature
space to aid our models in performing better.

We have discussed the difficulties and limitations of machine learning as a result
of the scarcity of useful data thus far. Data has become the new gold as a result of
advancements in machine learning. But there are some limitations in algorithms
themselves, which we will discuss in the next section.

9.5.5 Overfitting or underfitting on training data
Overfitting occurs when a model performs exceptionally well during training but
performs poorly on test data. It takes place when an algorithm acquires an excessive
amount of knowledge about the training data. When a model acquires unnecessary
extra details and noise from training data, it has a negative impact on the model’s
performance on test data. As a result, the model will be incapable of generalizing
the real-world situation. Generally, nonlinear machine learning algorithms with a
large number of parameters overfit the training data. Overfitting can be avoided
by fine-tuning the parameters.
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When a system cannot precisely capture the relationships between features and
output variables, this is referred to as underfitting. This impairs the algorithm’s abil-
ity to decode the data’s underlying pattern. Underfitting is a good indication that the
algorithm is unsuitable for the given dataset. Underfitting is typical in situations
where there is insufficient data to train the algorithm. Fewer data points result in
an inconsistency in the model’s training, which then fails to perform well on the
test dataset. Increasing the amount of data available to the algorithm may be one
way to ensure that it has enough information to identify general trends and patterns.
Another way to tackle underfitting is to look for other algorithms.
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Armañanzas, R., Santafé, G., Pérez, A., Robles, V., 2006. Machine learning in
bioinformatics. Briefings Bioinf. 7, 86e112. https://doi.org/10.1093/BIB/BBK007.

Lecun, Y., Bengio, Y., Hinton, G., 2015. Deep learning. Nature 521 (7553), 436e444. https://
doi.org/10.1038/nature14539.

Lever, J., Krzywinski, M., Altman, N., 2016. Points of significance: Logistic regression. Nat.
Methods 13, 541e542. https://doi.org/10.1038/NMETH.3904.

Parry, R.M., Jones, W., Stokes, T.H., Phan, J.H., Moffitt, R.A., Fang, H., Shi, L.,
Oberthuer, A., Fischer, M., Tong, W., Wang, M.D., 2010. k-Nearest neighbor models
for microarray gene expression analysis and clinical outcome prediction. Pharmacoge-
nom. J. 10 (4), 292e309. https://doi.org/10.1038/tpj.2010.56.

Wang, P.W., Lin, C.J., 2014. Support vector machines. In: Data Classification: Algorithms and
Applications. https://doi.org/10.1201/b17320.

224 CHAPTER 9 A machine learning approach to bioinformatics

https://doi.org/10.1038/NMETH.4299
https://doi.org/10.1038/NMETH.3627
https://doi.org/10.1503/CMAJ.210036/TAB-RELATED-CONTENT
https://doi.org/10.1503/CMAJ.210036/TAB-RELATED-CONTENT
https://doi.org/10.1038/s41583-020-0355-6
https://doi.org/10.1038/s41580-021-00407-0
https://doi.org/10.1038/s41580-021-00407-0
https://doi.org/10.1007/S10462-011-9272-4
https://doi.org/10.1093/BIB/BBK007
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/NMETH.3904
https://doi.org/10.1038/tpj.2010.56
https://doi.org/10.1201/b17320


Systems and network
biology 10
10.1 Introduction
Biological systems exhibit a high degree of complexity, which is achieved through
multiple layers of hierarchy. At the heart of this assembly is the genome, which con-
tains information necessary for the creation of molecules and the execution of a va-
riety of processes. Following the completion of the human genome project, the
genomic aspect of biology has advanced. To make use of the massive amounts of
biological data generated by high-throughput techniques, novel methods for
hypothesis-driven research are being developed. Now, computational methods for
large-scale data analysis, as well as modeling and simulations of complex se-
quences, are being used. One of the most significant outcomes of the Human
Genome Project was the acceleration of scientists’ adoption of a new systems
approach. Systems biology examines the properties and relationships between the
components of a biological system during its process. This data can be combined,
visualized as graphs, and modeled computationally. The Human Genome Project
pioneered a new method of biology called discovery science. This defines the ge-
netic components of humans and other organisms, views biology as a branch of in-
formation science, and provides high-throughput techniques for system
understanding and the development of newer computational techniques. For more
than a century, scientists have studied the individual components of cells and their
functions. Despite its enormous success, it was discovered that a single molecule
is rarely capable of performing a distinct biological function. The majority of the
characteristics of biological systems have been discovered to be the result of com-
plex interactions between various cellular components, including RNA, DNA, pro-
teins, and other molecules. Thus, a significant challenge for biologists in the 21st
century is to comprehend the structural and dynamic properties of this intricate
web of interactions. The development of new high-throughput techniques, such as
microarrays, enables us to monitor the status of cellular components at any time.
Protein chips or yeast two-hybrid screening can reveal how and when these mole-
cules interact (Altaf-Ul-Amin et al., 2014).
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10.2 Network theory
The study of network theory is concerned with the representation of asymmetric or
symmetric relationships between objects in a graph. In mathematics and computer
science, network theory is a subfield of graph theory. Network theory is applied
in a variety of fields, including physics, biology, computer science, and finance.
This theory is applicable to social networks, the internet, and metabolic networks,
among others. As a result of molecular interactions, various types of networks
(e.g., transcription-regulatory, signaling networks) emerge. These networks cannot
exist in isolation. These networks combine to form a “network of networks,” which
determines the cell’s behavior. A significant challenge is to integrate theoretical and
experimental data in order to map, comprehend, and model the characteristics of
various networks that contribute to the behavior of these cells. The theory of com-
plex networks has aided in our understanding of the mechanisms governing the for-
mation and evolution of various social and technological networks. This study
established that the architecture of cellular networks is comparable to that of com-
plex systems such as society, the internet, and computer chips. This similarity
demonstrated that the same laws govern the majority of complex networks found
in nature, ranging from large non-biological systems to cellular systems (Barabási
and Oltvai, 2004; O’Connor, 1992).

10.3 Graph theory
Leonard Euler, a mathematician, introduced graph theory for the first time. It was
used to assist Königsberg in resolving a problem. Seven bridges connected four
islands in this problem. Nobody could find a path that crossed all four islands and
each bridge at the same time. As a result, people believed that no such path existed,
but this could not be mathematically established. Euler found the solution to this
problem by focusing exclusively on the relationship between the land masses and
disregarding the distances and shapes of the paths. Euler demonstrated that such a
path was not possible using topological features and graphs. Euler’s concept serves
as the foundation for graph theory (Fig. 10.1).

In mathematics, graph theory is the study of graphs that are used to generate a
model of the pairwise relationship between objects. These graphs are made up of
vertices called nodes that are connected by edges called links.

Networks can be used to represent a variety of different types of data. These net-
works can contain a variety of different entities, such as genes or proteins. Edges
represent the data associated with the connection between these nodes.
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10.4 Features of biological networks
10.4.1 The various types of network edges
Numerous types of analysis can be performed using the information provided by the
edges.

There are three primary types of edges:

(1) Undirected Edges: These edges represent relationships between nodes but do
not indicate the direction of flow. The relationship merely demonstrates that A
binds B via the evidence. These types of edges are frequently found in net-
works of proteineprotein interactions.

FIG. 10.1

Königsberg’s problem of four islands connected by bridges.

FIG. 10.2

Types of network edges.
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(2) Directed Edges: These edges are useful for hierarchically organizing a network
and depict the direction of signal flow. These types of edges are frequently
found in networks regulating gene expression or metabolism.

(3) Weighted Edges:Weights can be applied to both undirected and directed edges.
These weights can be used to display a variety of values, including sequence
similarity between genes and interaction reliability. Additionally, other topo-
logical features can lend weight to the edges (Fig. 10.2)

10.4.2 Network measures
Network biology generates quantifiable networks for the purpose of characterizing
various biological systems. Some fundamental network measures can be used to
compare and characterize various networks.

Degree (k): A node’s most fundamental property is its degree (also known as
connectivity). The degree of a node indicates the number of connections it has
with other nodes. For instance, Fig. 10.2 illustrates an undirected network with
node A having k ¼ 5. In some networks, each link has a fixed direction. In these net-
works, kin (incoming degree) represents the number of links leading to a particular
node, while kout (outgoing degree) represents the number of links leading away from
a node. For instance, in Fig. 10.2, Node B has a kout of 4 and a kin of 1. For undirected
networks with L links and N nodes, the average degree is equal to 2L=N.

Degree distribution [P(k)]: This attribute indicates the probability that a given
node will have k connections. The degree distribution is calculated by dividing the
total number of nodes N by the number of nodes N(k). P allows for the differentia-
tion of various classes of networks (k).

Scale-free networks: The majority of networks are scale-free, which means that
their degree distribution is roughly equal to that of a power law with exponent. Hubs
with lower values play a more critical role in the network. Hubs with fewer than
three nodes are not considered relevant. Between 2 and 3 hubs, a hierarchy of
hubs can be created. The majority of nodes in these networks are connected to a
small number of neighbors. These networks’ hubs contribute to their high connec-
tivity. The hubs in Fig. 10.3A are highlighted in orange.

Path length is defined as the number of connections between two nodes. In
directed networks, the smallest number of links between nodes B and A differs
from the smallest number of links between nodes A and B. For instance, in
Fig. 10.3B, AB equals three and BA equals one. At times, no direct path between
two nodes may exist. For instance, In Fig. 10.3B, there is no path from A to C,
but there is one from C to A. The average of the path lengths between all the nodes
in a network is referred to as the mean path length, or l>. This metric indicates the
network’s overall navigability.

Coefficient of clustering or transitivity: The clustering coefficient quantifies
clusters (closely linked nodes in a network). In a cluster, nodes are more connected
to one another than in the rest of the network. Fig. 10.3C, illustrates the various clus-
ters. If node X is connected to node Y and node Y is connected to node Z, there is a
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high probability that node X is connected to node Z. This observation can be quan-
tified using the equation CA ¼ 2nAkðk�1Þ, where nA denotes the number of con-
nections between kA neighbors of node A. As a result, CA indicates the total
number of triangles that pass-through node A. The average clustering coefficient,
or C>, can be used to calculate the tendency for cluster formation within a network.
CðkÞ returns the mean clustering coefficient for each node connected by k.

Centralities: A network’s centrality indicates the importance of an edge or node
in terms of information flow or connectivity. Centrality is affected by a variety of
factors, including a node’s degree. Fig. 10.3D, illustrates the centrality of between-
ness. Central nodes are colored differently, and the degree of nodes is determined by
their node size (Table 10.1).

FIG. 10.3

Some network measurements.

Table 10.1 The different measures of a network and their definitions.

Network measure Definition

Degree It indicates the number of connections from a nodes.

Degree distribution The likelihood of a particular node having k connections.

Scale-free networks In these networks degree distribution is approximately equal
to a power law. PðkÞwk�g

Path length The number of links present between two nodes.

Clustering coefficient Clustering coefficient gives a measure of clusters in a
network.

Centralities Centrality of a network predicts the importance of an edge or
a node to the flow of information or to the connectivity.
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10.4.3 Network models
Network models are critical for comprehending complex networks and explaining
their properties. The three most critical biological networks are as follows:

Random Networks: The ER model represents a random network that begins
with N nodes and assigns each pair of nodes a probability p. This generates a graph
with links distributed randomly. The node degrees are then distributed according to a
Poisson distribution, indicating that the majority of nodes are connected by the same
number of nodes. P(k) decreases incrementally in regions with high k values, indi-
cating that the majority of nodes are present near the average value. Because C(k) is
not dependent on the degree of a node, it is represented by a horizontal line as k’s
function. The mean path length of a network increases in logarithmic proportion
to the network’s size.

Scale-free Network models: These are defined by a power-law degree distribu-
tion; the probability of a node having k links can be calculated as follows:

PðkÞwk�g

In this case, the degree exponent equals. When compared to random graphs,
highly connected nodes have a higher probability of being present in these networks.
The properties of these networks are determined by hubs (small numbers of nodes
with a large number of connections). According to Barabásie Albert’s model of a
scale-free network, the network has a power-law degree distribution defined by
the degree exponent ¼ 3. Such models lack inherent modularity; the C(k) here is
not dependent on k. The degree exponents of these networks, which are observed
in networks, are smaller than the degree exponents of random networks.

Hierarchical network models: Hierarchical network models are iterative ap-
proaches for generating networks that may recreate the unique qualities of a
scale-free topology while still exhibiting a high degree of node clustering. These
qualities are abundant in nature, ranging from biology to language to certain social
networks. To justify the presence of modules, it is assumed that clusters integrate in a
repetitive manner, resulting in the formation of hierarchical networks. These net-
works are constructed using small densely connected clusters of nodes. This is fol-
lowed by the generation of duplicate modules, with the external node of each cluster
being connected to the central node of the previous cluster, resulting in the formation
of a large node module. Identical modules are constructed, and then the peripheral
nodes connected to the central node module. Nodes with low connectivity are
concentrated in dense regions of the network in a hierarchical structure. These
densely populated areas are linked by a few hubs (Fig. 10.4).

10.5 Types of biological networks
In a cell model, various forms are utilized to represent various types of information.
The information gathered from nodes and edges varies according to the type of data
utilized to construct the network. Different data types will result in different network
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characteristics, including structure and connectivity. Multiple pieces of information
can be conveyed in these networks via edges and nodes (Fig. 10.5).

The major classifications of biological networks are as follows:

(1) Cell signaling networks
(2) Gene/transcription regulation networks
(3) Genetic interaction networks

FIG. 10.4

Types of network models.

FIG. 10.5

Representation of the different biological processes as a network.
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(4) Metabolic networks
(5) Proteineprotein interaction networks

10.5.1 Cell signaling networks
This network is a complex model of communication that regulates a variety of cell
actions and activities. Immunity, repair, and development are all included. The cell
in this network converts one type of signal to another. Serious diseases (e.g., dia-
betes, cancer) can be triggered by cellular signaling abnormalities. A set of meta-
bolic events occurring within a cell and the alterations are occur as a result of
receptor activation via signaling pathways. Proteins act as nodes in these networks,
which are connected by directed edges.

Significant signaling pathways include the following:
MAPK pathway (mitogen-activated protein kinase): MAPK is a protein ki-

nase enzyme that is capable of phosphorylating a variety of proteins, including tran-
scription factors. For instance, MYC, an oncogene transcription factor, is expressed
in a broad range of human malignancies. MAPK can phosphorylate MYC, hence
altering the cell cycle and gene transcription. The MAPK pathway can be activated
by the EGFR (Epidermal growth factor receptor). Cancer can be caused by abnor-
malities in the expression.

Signaling pathway of the hedgehog: This route is a critical regulator of devel-
opment in animals. From flies to humans, this pathway is retained. This pathway en-
ables the establishment of the flybody plan. During metamorphosis and
development, this route is critical.

Pathway of TGF-beta signaling: This pathway is involved in cell proliferation,
differentiation, and apoptosis.

10.5.2 Gene/transcription regulation networks
These networks serve as a model for the regulation of gene expression. Gene regu-
lation is the process by which instructions contained in genes are transformed to
products (such as RNA or protein). Gene regulation is responsible for the structure
and function of cells. Cell differentiation, for example, can transform a cell into a
specialized form. Through morphogenesis, an organism can acquire a shape.

Gene expression and repression are presented identically in these networks.
Model organisms are examined in order to gain a better understanding of how other
creatures function. D. melanogaster, E. coli, and S. cerevisiae are among these
model organisms.

10.5.3 Genetic interaction networks
Genetic interactions are a cooperative phenomena in which mutations in two or more
genes result in a phenotype that is different than expected when the effects of each
mutation are taken together. These networks do not depict a physical connection
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between the genes, but rather a functional connection. Genes are represented as
nodes, and their interconnections are represented by their edges. It is possible to
deduce the direction of the edges.

10.5.4 Metabolic networks
These are the biological reactions that take place within a cell. These networks are
reconstructed using data from experiments and the genomic sequence. There are net-
works accessible for a wide variety of creatures, from bacteria to people. These net-
works can be used to simulate and analyze metabolism. Metabolism is a collection
of biological events that assist organisms in maintaining their structure, responding
to environmental changes, developing, and multiplying. Metabolic pathways are a
set of chemical events occurring within the cell that are catalyzed by enzymes.
This can result in the formation of a product or can initiate the beginning of further
metabolic pathways. Numerous metabolic pathways coexisting in a cell might form
a metabolic network. Metabolic pathways are the major responses that maintain the
homeostasis of an organism. The paths between the substrates and the enzymes
contain directed edges. As a result, these enzymes and substrates are represented
as nodes in the network, whereas directed edges depict the reactions.

10.5.5 Proteineprotein interaction networks
Proteineprotein interactions are required for the majority of biological functions. As
a result, understanding these PPIs is critical for understanding how cells’ physiology
changes during various disorders. Because drugs have an effect on these PPI net-
works, understanding PPIs is critical for drug development. In general, proteine
protein interactions (PPIs) relate to the physical interactions or binding between pro-
teins. These interactions are very specialized, occur in defined binding areas, and
have a defined function. PPI data can be used to represent both steady and transient
interactions. Protein complexes have stable interactions (e.g., hemoglobin). Modifi-
cations to proteins are temporary interactions (e.g., kinases). The interactome’s dy-
namic component is composed of transient interactions. PPI data can be used to:

• Assign proteins functions
• Recognize minor details regarding signaling pathways
• Determine the relationships between the proteins contained in complexes such as

the proteasome.

Interactome: The interactome is a term that refers to the collection of all PPIs
found in a cell, an organism, or any other environment. The advancement of PPI
screening tools such as the yeast two-hybrid experiment and mass spectrometry
has resulted in a massive rise in the amount of PPI data and the production of
more complex interactomes.
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The properties of PPI networks include the following:
The small world effect in PPI networks shows that there is a high degree of

interaction among the proteins. A network’s diameter (the largest distance between
two nodes) is always small. Between two nodes, the distance is always less than six
steps. This is referred to as the “6� of separation” principle. The degree of connec-
tion is critical biologically, as it enables the rapid and efficient flow of impulses
within a network. Although networks are highly coupled, alterations in a single
gene or protein have little effect on the network due to the network’s resiliency.

Scale-free networks: In these networks, the majority of proteins (nodes) are
connected to only a few other proteins. A few proteins (hubs) are linked to a vast
number of proteins (nodes) in the network. The networks can be structured in a pref-
erential attachment approach. This model is based on the notion that when a network
is built, edges are attached preferentially to nodes with the greatest degrees. This
principle aids in the establishment and expansion of the network.

Due to their scale-free nature, PPI networks exhibit the following characteristics:
Stability:When a random failure occurs, the probability of harming a hub is low

due to the low degree of connection of the majority of proteins. Due to the availabil-
ity of multiple hubs, a network will not lose connectivity if a single hub fails.

Invariant to scale change: Regardless of the amount of nodes or edges in a
network, it will always stay stable. Regardless of the network’s size, hubs produce
small world effects.

Vulnerability to a targeted attack: When a small number of networks in a hub
fail, the network degrades into a collection of isolated graphs. The hubs contain both
lethal and vital genes. For instance, some proteins associated with cancer are hub
proteins (e.g., p53 protein).

Transitivity: Another critical aspect of these networks is their modularity. The
clustering coefficient or transitivity of a network measures the inclination of nodes to
cluster together. A higher transitivity score indicates that a collection of nodes is
highly connected (communities). It is critical to locate these communities within
biological networks, as they can reveal protein complexes and functional modules.
The module is a term that refers to an interchangeable functional unit. These mod-
ules are network contents with known relationships to other network contents. The
critical property of a module is that its internal properties remain constant regardless
of the context in which it is utilized. Modules simplify biological networks by
dividing them into smaller, functional components that may be perceived as a unified
unit. Topological network studies can aid in locating and comprehending these
modules.

A complex of proteins can be thought of as a module with stable interactions be-
tween the proteins that result in a fixed configuration at a particular time and loca-
tion. These complexes are representations of multi-protein models performing
prescribed functions. A broader version of these modules does not require protein
binding, as their functions remain constant when used in a different setting. Addi-
tionally, knowledge of the modules aids in the comprehension of their interactions
with one another and with proteins (Fig. 10.6).
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10.6 Sources of data for biological networks
The data can be obtained from different sources for generating biological networks
such as:

Manual literature curation: Curators or domain experts can review previously
published information and store it in databases. This can result in high-quality, well-
presented data. However, curation takes a significant amount of time and money,
limiting the size of databases.

High-throughput datasets: Experiments such as mass spectrometry identifica-
tion and yeast two-hybrid are generating large volumes of data, such as the PPI data-
sets. Although large, ordered datasets are generated, the approach used introduces
bias, and the quality of these datasets may vary.

Computational techniques: A variety of strategies are used to anticipate
previously unknown associations between items based on current experimental
evidence. For example, if orthologues exist, protein interactions in mice can be
predicted by examining protein interactions in humans. This results in the cre-
ation of a tool for broadening the scope of experimental data. However, the
datasets generated by these methods are noisier than the ones discussed
previously.

Extracting relationships from the literature via text mining: Various machine
learning techniques can be used to extract relationships from the literature. While
this strategy can increase data coverage, NLP is time consuming to process and
the resulting results are frequently noisy.

FIG. 10.6

Classifications of biological networks.

10.6 Sources of data for biological networks 235



10.7 Gene ontology for network analysis
The initial output of genomics experiments is a list of genes that significantly alter
the experimental conditions. The first step in investigating datasets is functional
enrichment analysis. This determines whether the gene list is statistically enriched
for particular biochemical functions and processes. The Gene Ontology (GO) con-
sortium develops a controlled vocabulary of terms that can be used to describe genes
and their products as cellular components, biological processes, and molecular func-
tions. Utilizing the open access tools available on the GO website, an enrichment
analysis could be conducted using GO. These analysis techniques examine a list
of genes for the presence of GO terms that occur more frequently than expected
by chance in the query list. The presence of over-represented terms indicates that
unknown processes are controlled differentially and preferentially in a given condi-
tion. Both GO’s strength and weakness stem from its hierarchical structure. Despite
efforts to comprehend the architecture of GO enrichment analyses, determining the
level of hierarchy that results in statistical enrichment is challenging. By and large,
the major enriched terms encompass broader functional categories that are less use-
ful for comprehending novel functions. Cells have pathways that are biochemical
systems that aid in the conversion of signals to output. Enrichment analysis on the
basis of a pathway provides information that is more pertinent and understandable
in the context of critical processes occurring under a given condition. Numerous
techniques for pathway analysis are available, including DAVID, InnateDB,
KEGG, and Reactome; quantitative techniques rely on gene set enrichment. Current
techniques attempt to take advantage of the fact that not all genes are equally capable
of distinguishing between different pathways. As a result, pathway analysis can pro-
vide us with a wealth of information about previously unknown relationships be-
tween genes or pathways (Yon Rhee et al., 2008).

While pathway analysis tools are extremely powerful, they do have the following
limitations:

• The majority of genes do not have a pathway annotation. For example, more than
85% of human genes in the Ensembl database are not mapped to KEGG
pathways.

• There is a significant bias in favor of the more well-studied pathways.

10.8 Analysis of biological networks and interactomes
Network biology is a rapidly growing field of research that demonstrates that
biochemical processes are not regulated by isolated proteins or straight pathways,
but rather by a complex system of networks of interacting molecules. Understanding
molecular interaction networks can aid in the development of biochemical processes
and identifying the critical topological properties and nodes required for their con-
trol, which are important for explaining the complex symptoms of diseases.
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According to network theory, disease phenotypes are not caused by mutations in sin-
gle genes acting independently, but rather by changes in a gene’s network context.
Thus, understanding disease pathology and developing effective targeted therapeu-
tics requires a thorough understanding of pathologically altered interaction net-
works. Network analysis is a time-efficient technique that is comparable to more
traditional methods. The advantages of this technique are that it is more data inten-
sive and less constrained by the limitations of currently used functional annotations,
as a result of the existence of proteome level interactome maps for various species,
such as humans. Network analyses are less biased toward well-characterized path-
ways and incorporate a broader variety of proteins and genes. The interactome
can be visualized and comprehended by constructing a network or graph in which
each entity (metabolite, miRNA, protein, or gene) is represented by a node and its
interactions with other entities by edges connecting the nodes. Networks can contain
a variety of nodes and edges and are frequently used to visualize and interpret a va-
riety of different types of entities and their relationships concurrently. This can
represent a highly accurate and comprehensive representation of a biological sys-
tem. Attributes of nodes or edges can aid in the integration of biological data asso-
ciated with the node’s edges (e.g., confidence score) or (e.g., gene expression). Two
distinct methods are used to conduct network analysis on a list of genes. The first
method superimposes genomics data (for example, gene expression) on pre-
established interaction networks (e.g., open access PPI data). The second method
is to discover the network using data generated experimentally (Kovács et al., 2019).

10.9 Interaction network construction using a gene list
The type and source of data are critical considerations when constructing interaction
networks. When determining the quality or type of interaction data, researchers must
proceed cautiously. The IMEx (International Molecular Exchange) consortium’s da-
tabases promote manual curation of experimentally generated data from the research
literature. Meta-databases aggregate and repackage data from primary sources and
make it accessible through a portal. A few databases incorporate computational in-
teractions to augment the experimentally generated data. This step is critical for
enriching the experimentally generated sparse interaction network. Researchers
can obtain more accurate results by comparing experimentally generated data to
data generated computationally. Primary interaction databases exhibit a low degree
of overlap in the data they provide. This is done on purpose, as the developers of the
IMEx database wish to avoid duplication in the manual curation method. This also
results in the omission of supportive interaction data when a single database is used
as the source. Researchers can search multiple databases concurrently using web ser-
vices such as PSICQUIC (Aranda et al., 2011).

Prior to conducting network analysis, certain information must be considered.
Extracted interactions can be physical (e.g., PPI), regulatory (e.g., miRNA-
mRNA), or biochemical in nature (e.g., phosphorylations). While combining
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different types of interactions can be beneficial, we should proceed cautiously
because the edges in such a network would vary significantly, and this factor should
be considered when analyzing the data. For example, PPIs typically have undirected
edges and can access information about protein complexes, whereas biochemical in-
teractions are directed and can depict data flow. Another aspect of protein interac-
tions is that they can be detected using Mass Spectrometry and Affinity
Purification, but these techniques are unable to distinguish between indirect and
direct interactions, despite the fact that they are depicted as interactions in open ac-
cess databases. Confidence in a specific interaction varies significantly depending on
the experiment used to determine it. Massive amounts of data about the interactome
could be generated using high-throughput technologies, such as yeast 2-hybrids.
However, this data has a high rate of false negatives and positives. Meanwhile, in-
teractions extracted from the literature inculcate greater confidence but favor
well-characterized biological processes and pathways. Numerous methods have
been developed to generate confidence scores, which are displayed on networks
as edge weights. Interactomes derived from databases are a static representation
of all the interactions associated with a given input list. Certain interactions are
context-dependent (e.g., occurring in a particular type of cell, under certain condi-
tions, or for a particular protein isoform). However, the literature and interaction da-
tabases are deficient in high-throughput interactome data. If this analysis is restricted
to specific contexts, the vast majority of data will be omitted. Researchers are now
integrating multiple types of contextual data, including gene and protein expression,
to identify the most probable edges and nodes in a subnetwork.

10.10 Data analysis tools
10.10.1 The InnateDB
The InnateDB database (Breuer et al., 2013) contains a large number of experimen-
tally verified bovine, mouse, and human interactions and pathway annotations that
were compiled from publicly available interaction and pathway databases. Along
with the integrated data, the InnateDB curation group has annotated a large number
of immune-related reactions through a review of the biomedical literature. The inter-
actions in InnateDB have been curated according to MIMIx standards. Additionally,
InnateDB offers integrated bioinformatics tools such as ontology and pathway anal-
ysis, network analysis and visualization, as well as the ability to take and interpret
user-supplied gene expression data in a pathway or network context. InnateDB also
contains the entire mouse genome. In the first step, a list of genes is chosen. After
that, human Ensembl gene IDs are mapped to selected gene IDs. This can be accom-
plished by selecting the “Data Analysis” menu and then the “Network Analysis” tab.
Following that, we can upload the gene list using the “Upload Data” button. Alterna-
tively, you can upload this data in the form of a spreadsheet or text file. More than 10
different quantities can be used to quantify data associated with genes, which can be
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integrated as different node attributes in a network visualization. InnateDB provides a
variety of filters for locating the interactions in the developed network. The default
option returns all interactions that contain at least one gene from the gene list. This
enables us to identify nodes in networks that have not been identified experimentally
but are capable of interacting with these genes or proteins. The user can choose to
view only interactions between the input genes or interactions within a particular
pathway of interest. One can choose between predicted interactions and manually an-
notated interactions. The user is then presented with a table of reviews for the
uploaded list. After that, the query data can be used to construct networks.

10.10.2 Visualization and download of networks
The networks generated by InnateDB can be viewed using a variety of different
tools. The Innate DB results page is visualized using the CerebralWeb app (Frias
et al., 2015), which layers nodes according to their subcellular location. A Cerebral
plugin can be used to analyze interaction networks. Additionally, third-party soft-
ware such as BioLayout Express 3D and CyOog plugins can be used. BioLayout Ex-
press 3D enables the visualization of large networks in 3D or 2D. The CyOog plugin
analyses and reduces the complexity of networks by utilizing Power Graph.
InnateDB networks can be downloaded in a variety of formats (Fig. 10.7).

10.10.3 Enrichr
Enrichr (Chen et al., 2013) is a web and mobile application that combines gene set
libraries, a novel technique for ranking enriched terms, and multiple methods for
visualizing results. Enricher is an HTML5-based application. Users are able to share

FIG. 10.7

Webpage of InnateDB, Enrichr and PANTHER.
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results and view them in publication-ready formats. Enrichr is a simple web-based
enrichment analysis tool that generates various visualisations for the combined func-
tions of an input gene list (Fig. 10.7).

10.10.3.1 PANTHER
PANTHER (Thomas et al., 2022) integrates pathways, ontologies, gene functions,
and statistical analysis methods to analyze large amounts of data from gene expres-
sion, proteomics, and sequencing experiments. This system utilizes 82 genomes
organized into subfamilies, families, and phylogenetic trees to visualize the relation-
ships between genes, MSA, and HMMmodels. Numerous classification schemes are
used to classify genes, including annotated subfamilies and families, as well as se-
quences associated with pathways. The PANTHER website contains a variety of
tools that enable users to search for and screen gene functions, as well as analyze
experimental data using a variety of statistical methods (Fig. 10.7).

10.10.3.2 GESA
Although RNA expression analysis has become a standard technique in biomedical
research, extracting useful biological information remains a significant challenge.
GSEA is a technique for analyzing and comprehending expression data. This tech-
nique focuses on a group of genes that share a common location, function, or regu-
latory role. GSEA can detect similarities in clinical data collected from patients
across studies, revealing shared pathways. The GSEA technique is an open-source
package that includes a database containing several standard gene sets (Fig. 10.8).

FIG. 10.8

Webpage of GESA, DAVID and Babelomics 5.
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10.10.3.3 DAVID
The DAVID (Huang et al., 2007) bioinformatics resources include a knowledgebase
and tools for mining biological information from large protein or gene lists. DAVID,
a data mining environment, is capable of analyzing gene lists generated during
genomic experiments. This process begins with the upload of a list of genes with
multiple gene identifiers that are analyzed using pathway or text mining tools
such as gene functional classification, functional charts, or tables. This method gives
researchers with biological information contained in gene lists enriched by genome
studies (Fig. 10.8).

10.10.3.4 Babelomics 5
The Babelomics 5 (Medina et al., 2010) tool accepts a list of genes or proteins and
maps them to a reference interactome. The interactome can be constructed using any
user-defined interactome, including human interactomes. Following the list’s map-
ping, Babelomics 5 determines the values of several other parameters using the least
connected networks and interactomes defined by proteins. Comparing separate pro-
tein lists allows for the detection of significant changes in their parameter distribu-
tions (Fig. 10.8).

10.11 Network visualization tools
10.11.1 Cytoscape
Cytoscape (Shannon et al., 2003) is an open access environment for combining,
visualizing, and querying networks. Cytoscape’s main software part gives the ability
to input and output data, integrates interactions, network, data visualization, filtering
and querying tools. Cytoscape’s VizMapper helps give visual mapping to attributes,
controlling visualization of edges and nodes on the basis of their molecular states.
These mappings help to overlay many data types in networks. Cytoscape was created
in Java and distributed as a free software. It has been integrated with other applica-
tions (e.g., geWorkbench) and tools, websites (e.g., network image generator), data-
bases (e.g., BIND, MiMI). Commercial companies like GeneGO, Genespring,
Agilent have utilized this software. The core of Cytoscape can be expanded through
plugin structures, allowing fast modeling, development of analysis and features.
Many third-party programmers are involved in developing plugins for Cytoscape,
due to the popularity of Cytoscape as a free environment. 74 open access plugins
have been produced since 2004, 46 of these plugins are compatible with the latest
versions of Cytoscape (Fig. 10.9).

10.11.2 NAViGaTOR
NAViGaTOR (Brown et al., 2009) is a free package for network visualization. It can
be used as an alternative to cytoscape. It uses openGL to accelerate graphics and al-
lows quick rendering and visualization of huge networks. Options to visualize
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graphs in both 2D and 3D are available and we can combine all nodes into one “meta
node”. NAViGaTOR also contains API for plugins and different data formats. Lasso
selection method and bookmarking to support manual design and other network
analysis operations (Fig. 10.9).

10.11.3 VisANT
VisANT (Hu et al., 2008) is a network visualization tool which can run in the
browser or as a separate program. One of its interesting features is the name resolu-
tion feature, which tries mapping nodes in the network to different gene names,
resulting in each protein coded by a gene to be depicted as a separate entity. This
name-mapping feature is one of the easiest to use and understand as compared to
many of the other software packages available. VisANT has been used on large data-
sets having a large number of nodes. Metagraphs can also be represented using this
tool. In metagraphs, a single node can contain a subgraph. This tool is also integrated
with online databases, containing a large number of interactions (Fig. 10.9).

10.11.4 CellDesigner
This is diagram editor tool used for drawing biochemical networks and gene regu-
latory networks. The user can search or alter networks in the form of process dia-
grams and stock the networks in standard for depicting these networks, known as
systems biology markup language. This editor can connect the network with simu-
lations. Users can see the network dynamics through a GUI (Funahashi et al., 2007).
This editor is implemented in Java and integrated different packages.

FIG. 10.9

Graphical Unser interface of Cytoscape app, NAVIGaTOR and VisANT.
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10.11.5 Pathway Studio
Pathway Studio (Nikitin et al., 2003) is another free tool that uses NLP- based data
extraction for gene-gene and proteineprotein interactions. Pathway Studio contains
databases of cellular pathways and protein interactions. This tool effectively scans
biological words and terms occurring along with them. The database has a large li-
brary of interactions and proteins extracted from literature present on different
organisms.

10.11.6 Gephi
A program that can work on large networks without the requirement of program-
ming skills is Gephi (“Gephi - The Open Graph Viz Platform,” n.d.). Gephi can
handle a large number of nodes and edges. However, this software requires a large
amount of computational power. The advantages of using Gephi are that this soft-
ware is free, can be used on different platforms and can use advanced algorithms
as plugins. The limitation of this software is that it lacks the ability to analyze spe-
cific biological data. This tool can be used for visualizations, statistical analysis and
enumerating.

10.12 Important properties to be inferred from networks
The first step of all network analysis processes is the construction of a network.
Investigation of features in a network and their deviation from our expectations helps
in better understanding the networks. Different computational and mathematical
methods have been generated for the analysis of large networks for identification
of the selected features.

10.12.1 Hubs
Node degree is an informative feature in network analysis. Interaction networks are
usually present in a scale-free topology. In these networks, hub nodes are important
for the functions and structure of these networks.

10.12.2 Bottlenecks
Nodes with high betweenness nodes are known as bottleneck nodes. This means, that
these nodes are present in paths between many different nodes. Bottlenecks play an
important role in the communication in a network, as they help in the flow of informa-
tion among modules (Sub networks with dense connections). These nodes in a
network are present on the major connections. Disturbances in the bottleneck nodes
can lead the network into a disarray, due to presence of a low number of connections
near bottlenecks. Bottleneck nodes aremore important to networks as compared to the
hub nodes, causing these bottleneck nodes to be targeted by pathogens.
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10.12.3 Modules
Networks are modular and have communities in their structure. Specific modules are
usually enriched to perform the usual biological functions. Therefore, detecting
modules present in networks can help understand processes/functions that are not
known in a pathway. Proteins related to a disease or disease having same phenotypes
usually display interactions in modules of the disease. Therefore, we can detect
modules that show enrichment in genes or proteins linked to a disease. Other module
proteins which are not known to be linked to a disease, can be predicted to be asso-
ciated to the disease. This method is now popularly being used to detect disease
modules for a variety of diseases in humans. E.g., A network module controlling
the heart development has been associated with heart disease (Fig. 10.10).

10.12.4 Bioinformatics tools to detect modules, bottlenecks and
hubs

A broad range of tools are currently used for the fast detection of bottlenecks and
hubs. An example is NetworkAnalyst, which can analyze networks based on gene
expression. NeworkAnalyst can take a list of genes given by the user and interactions
involved from InnateDB to find modules, betweenness centralities and degrees in the
network. Cytoscape also contains applications that can help in network analyses. An
example of such application is cytoHubba, which can detect bottlenecks and hubs in
the network given as input to cytoscape. Cytoscape can be utilized along with the
networks produced InnateDB. A wide range of tools have been created to detect
network modules.

NetworkAnalyst has many analytical features that can detect network modules.
NetworkAnalyst utilizes random walk algorithm to detect modules of high fre-
quency nodes. This tool can build an edge weighted network, where node informa-
tion like gene expression can be used to give weights. Cytoscape has many different
applications for detection of modules. One such application is jActiveModules
which detects connected parts of the network that have significant differences in

FIG. 10.10

Figure depicting hub, bottleneck and modules.
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expression of genes. When modules associated with diseases need to be identified,
other algorithms give a better performance, since proteins associated with diseases
are not present in dense regions and nodes associated with diseases may be identified
more accurately through connectivity significance. The DIAMOnD (Disease Mod-
ule Detection) algorithm is a novel method to find disease modules on the basis
of connectivity significance. Incompleteness of the interactome also restricts the dis-
ease modules which can be identified, and the small quantity of known disease
linked proteins which can be used to detect the disease.
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Dopazo, J., 2010. Babelomics: An integrative platform for the analysis of transcriptomics,
proteomics and genomic data with advanced functional profiling. Nucleic Acids Res. 38,
W210. https://doi.org/10.1093/NAR/GKQ388.

Nikitin, A., Egorov, S., Daraselia, N., Mazo, I., 2003. Pathway studiodthe analysis and nav-
igation of molecular networks. Bioinformatics 19, 2155e2157. https://doi.org/10.1093/
BIOINFORMATICS/BTG290.

O’Connor, S.E., 1992. Network theoryda systematic method for literature review. Nurse
Educ. Today 12, 44e50. https://doi.org/10.1016/0260-6917(92)90009-D.

Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N.,
Schwikowski, B., Ideker, T., 2003. Cytoscape: A software environment for integrated
models of biomolecular interaction networks. Genome Res. 13, 2498. https://doi.org/
10.1101/GR.1239303.

Thomas, P.D., Ebert, D., Muruganujan, A., Mushayahama, T., Albou, L.P., Mi, H., 2022.
PANTHER: Making genome-scale phylogenetics accessible to all. Protein Sci. 31,
8e22. https://doi.org/10.1002/PRO.4218.

Yon Rhee, S., Wood, V., Dolinski, K., Draghici, S., 2008. Use and misuse of the gene ontology
annotations. Nat. Rev. Genet. 9 (7), 509e515. https://doi.org/10.1038/nrg2363.

246 CHAPTER 10 Systems and network biology

https://doi.org/10.1093/BIB/BBN020
https://doi.org/10.1093/nar/gkm415
https://doi.org/10.1038/s41467-019-09177-y
https://doi.org/10.1038/s41467-019-09177-y
https://doi.org/10.1093/NAR/GKQ388
https://doi.org/10.1093/BIOINFORMATICS/BTG290
https://doi.org/10.1093/BIOINFORMATICS/BTG290
https://doi.org/10.1016/0260-6917(92)90009-D
https://doi.org/10.1101/GR.1239303
https://doi.org/10.1101/GR.1239303
https://doi.org/10.1002/PRO.4218
https://doi.org/10.1038/nrg2363


Bioinformatics workflow
management systems 11
11.1 Introduction to workflow management systems
In this era of data-driven science, the application of bioinformatics is undergoing a
fundamental transformation. Similar to the development of cosmology and the phys-
ical sciences, genomics has grown to become a significant information science. It is
accompanied by a shift away from local high-performance computing (HPC) facil-
ities and toward circulated networks and, more recently, cloud resources, particu-
larly in large-scale multi-focus cooperative projects. In a similar way, the need to
process more data at a faster rate is driving the development of software that can
automate and speed up the process of looking at data in high-performance
computing environments (Shade and Teal, 2015).

Scientific Workflow Management Systems, often known as WfMSs, are capable
of automating computational studies by merging a variety of data-processing pro-
cedures into a single pipeline. They hide problems associated with coordinating
the processing and transportation of data, managing task dependencies, and assign-
ing resources within the computational infrastructure. There are additional WfMSs
that provide techniques for monitoring the provenance of data, analyzing execution
faults, authenticating users, and ensuring data security. The development of the
Findable, Accessible, Interoperable, and Reproducible (FAIR) principles for scien-
tific tools, workflows, and protocols for sharing datasets was prompted by the
growing use of workflow management systems (WfMSs) in contemporary scientific
research. Currently, containerized software and standard Application Programming
Interfaces (APIs) are being built based on these characteristics in order to facilitate
the creation, distribution, and execution of code in a variety of computer settings
(Perkel, 2019).

The motivation for the development of a WfMS may have an effect on its ease of
use, the functionality and features it provides, and how effectively it operates. The
Common Workflow Language, often known as CWL, is a language specification
that was established by the community of bioinformatics to unify the style, principles,
and standards of coding pipelines in a way that was independent of the hardware being
used. The repeatability of workflows and their portability are at the very top of this
system’s priority list. As a consequence of this, it is necessary to provide detailed
and exact explanations of the parameters, which results in a long paper. Workflow
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Description Language, often known as WDL, is a definition of a language that places
an emphasis on making code easy for humans to comprehend and learn, but at the
price of being less expressive. The combination of a workflow language and an execu-
tion engine is at the heart of the comprehensive solution known as Nextflow. It’s
possible that this WfMS is one of the most developed ones ever made. Nextflow
has features such as easy reading, a compact size, agile, and the ability to track where
the data came from. On the other hand, coding is quite easy to understand, especially
for peoplewho are just beginner at biological computing. The Swift/T system is an all-
encompassing solution in the same way. Swift is the programming language that is
used by Turbine, which is the execution engine. It was designed by engineers and
physicists with the intention of providing short, rapid-fire tasks at exascale in a scal-
able way. As a consequence of this, it is a very low-level language (similar to C) that is
very powerful yet challenging to master. In the following sections, we will explain
how these distinct ways of thinking influence the use of the four WfMS that may
be used in production bioinformatics (Leipzig, 2017).

The most important parts of a typical cloud WFMS are shown in Fig. 11.1.
Creating and describing abstract workflows made up of activities and the interdepen-
dencies between them may be done using the workflow site (Ahmed et al., 2021).
Reading of the abstract workflows is handled by the language parser, which is a
component of the workflow enactment engine. After that, the task dispatcher inves-
tigates the connections between the different jobs and sends the finished work to the
scheduler for processing. The scheduler selects a resource to do the workflow task
based on the scheduling techniques that have been provided. In the next part, we
will go further into the topic of task scheduling and cover it in more depth. The fault
tolerance of the process is taken care of by the enactment engine for the workflow. In
addition to that, it has a function for allocating resources to tasks. This is made
possible through the use of the resource broker.

The resource broker is in charge of communication with the infrastructure layer,
and it gives the enactment engine a comprehensive overview of everything that’s
going on. In order to get the necessary resources, the resource broker will interface
with the computing services. Information on data objects, programs, and computer
resources is stored by the directory and catalog services. This information will be
used by both the enactment engine and the resource broker to come to important
conclusions.

In general, workflow management services provide essential activities that are
necessary for the operation of a workflow management system (WfMS). The authen-
tication process and safe access to the WfMS are both provided by the security and
identity services. Monitoring tools keep a watch on the WFMS’s most important
components and provide warnings whenever they deem it essential to do so. The
database management component offers safe storage space for both the intermediate
and final data outcomes produced by procedures. Execution information, file loca-
tions, input and output information, workflow structure, form, workflow evolution,
and system information are some of the important pieces of data that are recorded
by provenance management systems. Other types of data that are recorded include
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the dynamics of control flows and data as well as how they change. Understanding
the data, figuring out its quality, defining who owns it, generating repeatable outputs,
maximizing efficiency, addressing concerns, and making allowances for faults are
all activities that need provenance.

FIG. 11.1

Workflow management system.
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11.2 Galaxy
Galaxy (Cock et al., 2013) is a platform for scientific workflows that enables the
integration of data, the storage of data, and analyses, as well as publishing. Research
scientists who are not acquainted with programming or system administration will
be able to use computational biology thanks to this project’s goal of making it acces-
sible to them. In spite of the fact that it had its beginnings in genomics research, it is
today being used as a bioinformatics workflow management system for several
different sorts of research.

Functionality: The Galaxy system is a way for researchers to structure their
research and data. These technologies make it possible to conduct computer studies
in stages, much like the steps in a recipe. They often come with a graphical user
interface that gives you the ability to choose the data you want to work with, the ac-
tions you want to take, and the method you want to employ to carry out those tasks.

Galaxy also functions as a database for storing biological information. It enables
users to upload data from a range of online resources, including their desktops,
URLs, and other websites (such as the UCSC Genome Browser, and BioMart). Gal-
axy is able to interact with a wide number of conventional biological data formats as
well as translate between them. Academics can format and alter text without having
to learn how to code, thanks to Galaxy, which gives a web interface to a variety of
text manipulation tools. Galaxy’s capability for manipulating intervals may be used
to carry out set-theoretic operations on the intervals that are being manipulated. The
name of a chromosome or contig, as well as its beginning and ending coordinates,
are examples of the types of genomic interval data that are included in a great num-
ber of biological file formats. This makes it possible to combine these pieces of data.

Galaxy was developed for the purpose of analyzing biological data, namely ge-
nomics. Over the course of time, there has been a massive expansion in the selection
of tools that are at a user’s disposal. Galaxy is presently used for research into a wide
range of life science topics, including gene expression, genome assembly, prote-
omics, epigenomics, and transcriptomics, among others. Because the platform is
not exclusive to any one scientific field, it is open to use in any and all scientific
fields, including cheminformatics. Image classification, combinatorial chemistry,
targeted therapies, cosmology, climate science, social research, and linguistics are
just a few of the fields that may make use of the servers that Galaxy provides.

The Galaxy Tool Shed (https://usegalaxy.org/toolshed) is a central area that al-
lows tool authors to exchange their tool settings as well as “recipes” for installing
dependencies with other tool writers. This makes it easier for different Galaxy in-
stances to share tools with each other.

Interactive analysis and visualization: Interactive analysis and visualization
are two of the features offered by the Galaxy user interface, which makes it possible
for anybody to do complex research. However, in order to conduct a comprehensive
study of genetic data, it is often necessary to create custom scripts or visualizations,
especially at the beginning (data preparation) or the end (data analysis) (data sum-
marizing). Galaxy Interactive Environments, a Galaxy interface with Jupyter
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(RStudio is in progress), a widely used interactive programming environment, was
recently provided in order to meet these particular criteria. This was done so that
Galaxy could fulfill these requirements. Galaxy users can make use of their current
computer infrastructure by using either graphical user interfaces or ad hoc program-
ming, or any combination of the two.

Community: As a consequence of contributions from the community, both the
Galaxy framework and the collection of tools have undergone substantial develop-
ment. Over the course of the last 2 years, 174 engineers have contributed to the effort
to make Galaxy more scalable, functional, and user-friendly. Because of this, there
have been 13,135 contributions, which is a 63% increase compared to January 2016.
The project makes use of the Travis and Jenkins continuous integration (CI) services
in order to do thorough automated testing on each proposed set of code modifica-
tions. This approach lowers the total number of bugs that are introduced into the
codebase while also speeding up the review process.

By using the open-source community and the conventional approach to software
development, the foundation is capable of releasing a stable version of the Galaxy
framework every 4 months. Some of the current directions for the future develop-
ment includes the following: toolshed installation and development upgrades; data
and compute federation; tighter coupling of Interactive Environments with prove-
nance and reuse; continued development of collections, processes, analysis inter-
faces, and historical views; more training materials; better statistical usage
tracking and instrumentation; and a lot more.

Anyone who is interested in contributing to Galaxy is encouraged to read the pro-
ject’s contributing and code of conduct guidelines, search for outstanding issues, and
review the current roadmap, all of which are available on the Galaxy GitHub repos-
itory. Galaxy has been of assistance to tens of thousands of people on a daily basis,
and it has been cited in more than 5700 scientific works. In addition to this, it has
provided over 500 developers with a framework that makes the process of data anal-
ysis straightforward, observable, and re-useable. Galaxy Main (and more than 99
other public Galaxy servers) have been set up in order to make it easier to conduct
research in many fields, including biological research and study in other domains.
During the last 2 years, the Galaxy Project has made great headway in all fields,
which has led to overall improvement (Fig. 11.2).

11.3 Gene pattern
GenePattern (Kuehn et al., 2008) is a piece of computational biology software that
was created at the Broad Institute and is available for free and open-source use. It is
used for the processing the genomic data. GenePattern was originally made available
to the public in 2004, and its primary purpose was to provide academics with a plat-
form on which they could construct, store, and implement genomic analysis algo-
rithms. GenePattern is currently being developed by researchers at the University
of California, San Diego.
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FIG. 11.2

Galaxy interface.
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GenePattern is a repository of hundreds of bioinformatics analysis and visualiza-
tion techniques (referred to as “modules”). It also contains utilities for data format-
ting, preprocessing, and other functions that serve as “glue” between analysis steps.
Simply pointing and clicking will get you through the user interface; no coding is
required. Since 2008, individuals have been authorized to use the public GenePattern
server, which can be found at www.genepattern.org. It has a user base of around
40,000 people and does between 2000 and 5000 analytical activities each week. Pub-
lic servers are also accessible at Indiana University and the Garvan Institute. More
than 17,000 research groups, bioinformatics core centers, and individual scientists
have downloaded and used the software.

GenePattern is software that operates on both a client and server level. Compo-
nents of an application may be operated on a single computer with requirements as
low as those of a laptop, or they can be distributed over several computers, allowing
the server to make use of hardware with a higher processing capacity. The GenePat-
tern server is really the GenePattern engine. It runs the analysis modules and stores
the results of those analyses when they are generated. Both the Web Client and the
Desktop Client are examples of graphical user interfaces that simplify the process of
accessing the server and all of the modules that it contains. A web browser is
required in order to access the Web Client once it has been installed concurrently
with the server. The desktop client is an independent piece of software that must
be downloaded and installed on each individual machine. GenePattern libraries
for the Java, MATLAB, and R programming environments allow you to access
the server and its modules via function calls in addition to providing access to those
environments. The essential protocols described in this part are carried out with the
help of the Web client. However, these protocols may also be carried out with the
assistance of the desktop client or a programming environment (Fig. 11.3).

The majority of transcription profiling studies aim to accomplish at least one of
the following goals: investigate differences in gene expression; find new classes; or
anticipate future classes. The goal of differential expression analysis is to discover
(if any) genes that are expressed differently in distinct groups or kinds of samples.
This may be done by comparing the gene expression levels of a number of different
groups or types of samples. Genes that express themselves in unique ways are
referred to as marker genes, and the process that identifies these genes is referred
to as marker selection. The process of merging genes or samples that have similar
expression profiles into a smaller number of patterns or “classes” is known as class
discovery. This process offers a high-level view of the microarray data. It is possible
to identify common biological processes by categorizing genes according to the de-
gree to which their expression patterns are comparable to one another. It is possible
to identify common biological states or subtypes of diseases by grouping samples
according to the degree to which their expression patterns are comparable to one
another. There are a number of different ways that one may use data on gene expres-
sion to find classes. The goal of research into class prediction is to locate crucial
marker genes whose patterns of expression can correctly categorize unlabeled data.
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C Accessibility: Utilize a point-and-click user interface to run over 200 analysis
and visualization tools, such as data preprocessing, gene expression analysis,
proteomics, single nucleotide polymorphism (SNP) analysis, flow cytometry,
and next-generation sequencing, and develop analytical workflows without the
need for scripting.

C Reproducibility: Any user is able to understand, duplicate, and share the results
of a whole computational research thanks to versioning, automated history
tracking, and provenance monitoring.

C Extensibility: The computational approach, users are able to collaborate and
share their processes and code with one another by using tools that simplify the
generation and combination of such elements.

11.4 KNIME: The Konstanz information miner
The KNIME Analytics Platform (Fillbrunn et al., 2017) is open-source software for
data science, which means that anybody is free to use it. Anyone may do data anal-
ysis and construct data science processes and reusable components with the help of
KNIME since it is user-friendly, open-source, and continually updated with new fea-
tures. The following is a list of some of the features that are included in KNIME
Builds Workflows: Using a simple drag-and-drop user interface, it is possible to
create visual workflows even if you lack writing skills. The user has the ability to
construct workflows, model each step of an inquiry, manage how data flows, and
guarantee that the work is up-to-date by picking from over 2000 nodes that are pro-
vided by KNIME. The software also incorporates other technologies, such as ma-
chine learning, Python or R programming, or Apache Spark connections, into a
single workflow. This is done by integrating KNIME native nodes with these extra
technologies (Fig. 11.4).

FIG. 11.3

GenePattern interface.
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Data that is combined: KNIME allows for the mixing of a variety of data kinds
and formats, including structured and unstructured data types, as well as time-series
data. Some examples of these formats are PDF, CSV, XLS, and JSON. It establishes
connections to Oracle, Microsoft SQL, Apache Hive, and other databases and data
warehouses so that it may aggregate data from those sources. Data comes from many
different places, such as Twitter, AWS S3, Google Sheets, and Azure.

Data on Shapes: performs calculations using statistics such as the mean, quan-
tiles, and standard deviation, or uses statistical tests in order to establish a hypothesis.
Workflows could also incorporate other elements like correlation analysis, cutting
down on the number of dimensions, and other similar things. Data can be collected,
sorted, filtered, and combined on a single workstation, in a database, or in a “big data”
environment where the data is spread out over several workstations and databases.

FIG. 11.4

Knime variant prioritization workflow.
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Machine Learning and Artificial Intelligence: provides machine learning
models for classification, regression, dimension reduction, or clustering utilizing
advanced methodologies such as deep learning, tree-based algorithms, and logistic
regression. These models may be used to analyze large amounts of data. Increasing
the performance of a model may be accomplished in a number of different ways,
such as by adjusting the hyperparameters, boosting, bagging, stacking, or generating
sophisticated ensembles. Performance measures like accuracy, R2, the area under
the curve (AUC), and ROC are used to determine how well a model functions.
Cross-validation is a method that may be used to check whether or not a model is
reliable. For the purpose of describing machine learning models, LIME and Shapley
values are used. The interactive presentation of partial dependency and ICE helps the
tool have a better understanding of the model’s predictions and make forecasts based
on tried-and-true models or the most advanced PMML available, including Apache
Spark.

Insights to Discover and Share: The data is presented via user-customizable
charts that range from straightforward (bar charts, scatter plots) to intricate (parallel
coordinates, sunburst, network graph, heat map). This command will remove any
extraneous information from a KNIME table and show a summary of the statistics
for each column. In order for stakeholders to see the results, reports may be exported
in a variety of formats, including PDF, PowerPoint, and others. The processed data
or the results of the analysis are often saved in a file format or database that is widely
used.

Scale Execution in Response to Demands: develops workflow prototypes in or-
der to allow for the testing of several different approaches to data analysis. Examine
and monitor the intermediate results in order to get rapid feedback and discover orig-
inal ideas. The speed of the workflow may be increased by processing data using
several threads and streaming data in memory. Increases the speed of calculations
by using either the database processing capabilities of Apache Spark or its distrib-
uted computing capabilities.

KNIME Extensions provide access to strong machine learning algorithms as
well as a diverse selection of complex data types. KNIME Analytics Platform and
KNIME Server collaborate with many other open-source projects. Access data
from Apache Hadoop and systems that store Hadoop data, such as Hive and Impala.
You may model and execute Apache Spark jobs in local KNIME configurations to
leverage the potential of scalable analytics. Create a model for generating predic-
tions, then apply it to fresh data, or just use R or Python code inside a KNIME pro-
cess to create various forms of visualization. Deep neural networks may be read,
created, edited, trained, and executed.

HiLiting: KNIME is strongly reliant on the HiLiting system. It gives the user the
ability to choose and highlight a number of rows inside a data table, and those rows
are then highlighted in all of the other views that show the same data table (or at least
the high-lighted rows), Due to the one-to-one relationship that exists between the ta-
bles’ distinct row keys, it is not difficult to implement this sort of highlighting. There
are numerous nodes that change the structure of the input table, but the rows that are
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linked between the input table and the output table do not change. The techniques
used for clustering data are an excellent illustration of a 1:n link. One of the inputs
that the node receives is the training (or test) patterns, and one of the outputs that it
produces is the cluster prototypes. Each cluster is in charge of its own unique collec-
tion of pattern inputs. When one or more clusters in the output table are highlighted,
any input patterns in the input table that relate to those highlighted clusters are also
highlighted. It is possible that other summarizing models, such as the branches and
leaves of a decision tree, common patterns, and discriminative molecular fragments,
may be translated in the same way.

11.5 LINCS tools
The LINCS project (Xie et al., 2022) was established on the idea that if any one of
the several steps of a biological process is altered, the molecular and cellular fea-
tures, behavior, and/or function of the cell will be altered. This idea serves as the
project’s guiding principle. The term for this characteristic is “cellular phenotype.”
By watching how and when different inputs change the phenotype of a cell, scien-
tists may be able to understand more about the underlying mechanisms that lead to
chaos and, ultimately, illness.

A number of data releases were be carried out in order to make the LINCS data
available to the general public as a community resource. Because of this, scientists
are able to work on a wide array of basic research problems, which will make it
easier to discover biological targets for innovative disease treatments. The LINCS
databases include the findings of tests conducted on cultured human cells as well
as primary human cells that were treated with bioactive small compounds, ligands
such as growth factors and cytokines, or genetic changes. These tests were per-
formed on human cells. Assays that measure transcript and protein expression, in
addition to biochemical and imaging readouts that collect data on cell phenotypic
characteristics, are used so that the response of cells may be monitored.

The LINCS project is a two-part study funded by the NIH Common Fund. 2013
was the last year of the pilot phase of the program, which was made up of the
following parts:

• Large-scale signatures of the molecular and cellular modifications that were
produced by the disruption.

• In order to provide users with access to data, databases, data standards, and
public user interfaces are now being developed.

• Developing new computer programs and gathering information.
• Recent advances in inexpensive molecular and cellular phenotyping

11.5.1 The program’s overall goal
By employing an integrative strategy that searches for patterns of common networks
and cellular responses (termed “cellular signatures”) across various types of tissues
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and cells in response to a variety of changes, LINCS is attempting to find a novel
approach to understanding health and illness. This is being done in order to advance
the mission of the organization. The LINCS program is established on the idea that
changing any one of the many stages that make up a biological process may result in
changes to the molecular and cellular characteristics, behavior, and/or function of a
cell. This concept serves as the program’s guiding principle. After that, the pheno-
typic state of a cell might be represented by signatures that were acquired through
similar clinical tests. By examining how and when different stimuli change the
phenotypic characteristics of a cell, scientists may be able to learn more about the
systems that are involved in disruption and, ultimately, sickness.

A collection of data descriptors with decreased dimensionality that may both
shed light on a process and serve as a basis for making predictions is what is meant
to be understood as a cellular signature of a response to a perturbagen. As a conse-
quence of this, significant fingerprints are established based on the assay and the
manner in which a number of tests are combined, either into prediction patterns
or signaling networks that may lead to mechanistic explanations. The results of
many tests need to be normalized and compared before they can be considered rele-
vant. Integration, normalization, and scaling of heterogeneous, multi-parameter
dose-response data is a difficult process that requires both theoretical and practical
considerations.

11.5.2 Test performed under LINCS
The strategy calls for the establishment of six Data and Signature Generation Cen-
ters. The Drug Toxicity Signature Generation Center is comprised of a number of
different centers, including the HMS LINCS Center, the LINCS Center for Tran-
scriptomics, the LINCS Proteomic Characterization Center for Signaling and Epige-
netics, the MEP LINCS Center, and the NeuroLINCS Center, among others. The
Drug Toxicity Signature Generation Center developed assays that measure gene
and protein expression in addition to phenotypic characteristics in order to gain a
better understanding of how differentiated iPSCs react to single and multiple
FDA-approved medication modifications. This was done in order to learn more
about how differentiated iPSCs respond to the changes.

The HMS LINCS Center employs a number of different biochemical, imaging,
and cell biology tests in order to track the responses of cells. Imaging experiments,
transcriptional response tests (done in partnership with the LINCS Center for Tran-
scriptomics), cell viability assays, and direct drug-kinase interactions in cell extracts
are some of the others.

The HMS LINCS Center employs a number of different biochemical, imaging,
and cell biology tests in order to track the responses of cells. Imaging experiments,
transcriptional response tests (done in partnership with the LINCS Center for Tran-
scriptomics), cell viability assays, and direct drug-kinase interactions in cell extracts
are some of the others (Fig. 11.5).
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11.6 Anduril bioinformatics and image analysis
Anduril (Cervera et al., 2019) is a tool for doing process analysis on massive
amounts of data. It comes with ready-to-use tools for conducting analyses in the field
of molecular biology, which may also be put to use for a variety of other tasks.
Anduril makes it easy for people who use analytics to see the results, and it gives
analysts a strong workflow environment in which to work.

The iterative workflow engine is used to run workflows in parallel once they have
been created using Scala 2.11, which is used to generate the workflows. External li-
braries (like R and Python) and tools run from the command line are sometimes
included in workflows. Anduril may be set up on a single computer or over an entire
network of Linux computers and devices.

Software Development: The vast majority of the most famous bioinformatics
frameworks, such as Anduril 2, are able to handle serial and parallel processes,
intricate dependencies, a wide range of software and data file formats, as well as
user-defined parameters and deliverables. Anduril presents the connections between
components in the form of a graph and may automatically combine elements that do
not depend on one another in any way. Because of the universal prefixing of the pro-
cesses, SLURM and Sun Grid Engine may be used in a wide variety of different
ways.

Re-entrancy: When running lengthy and complicated pipelines on enormous
datasets, it is to the user’s advantage to be able to resume execution from the point
where it was stopped. This prevents the user from having to figure out where to start
again or which samples have already been processed, which is a time-consuming
and laborious task. You are free to make changes to the component settings or
add new samples to the process at any point without the unfinished independent
stages being forced to run. As a direct result of this, much less time is needed for
both the calculation and the programming.

Dependency support: Any change to a step, such as an adjustment to a param-
eter, will cause all of the processes that are dependent on that step to begin over from
the beginning. It is possible to annotate the inputs and outputs of a component in or-
der to create artificial connections between them in cases where they are not phys-
ically linked. A component, for example, may not have any outputs, but it could still
be able to change its environment in some way, such as by altering a database, which
would then trigger the execution of another component on which it depends.

Resources in bioinformatics: There are around 400 well-described parts and
functions that may be used to carry out standard tasks for a variety of bioinformatics
research projects. These components can be used. The bulk of third-party software
that is supported by Anduril components comes with its own installer, which makes
it a great deal easier to install the many software packages that are necessary for
standard bioinformatics research. Anduril 2 may utilize either its own installation
or one that the user has specified on their end. Additionally, since the effective
configuration of each component is stored in a bash script, any component may
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be operated outside of Anduril 2 with the same settings and pipeline inputs, provided
it has the same script. Testing is made easier as a result.

Ease of integrating new tools or custom analysis: It is not difficult to include
additional tools in a pipeline since eval-based components may be integrated with
either their own code or the code of a third party. To add a new tool to the component
repository for either private or public use, all you need to do is define its inputs, pa-
rameters, and outputs in an XML file, preferably together with test cases. After that,
the tool will be available for use. For example, Taverna necessitates the use of third-
party software in order to develop plug-ins that may be integrated into pipelines.
Both Galaxy 2 and Anduril 2 make it easy to develop wrappers; however, Anduril
also makes it easy to incorporate custom analysis and software into any pipeline.
Galaxy 2 is the more recent of the two.

11.6.1 Anduril image analysis: ANIMA
The modern microscope generates an enormous quantity of picture data, which then
has to be analyzed and interpreted using techniques specific to computers. In addi-
tion, a single image analysis project may need tens or hundreds of steps of analysis,
beginning with the entry of data and pre-processing, moving on to segmentation and
statistical analysis, and concluding with the visualization and reporting of the re-
sults. Anima is a workflow framework that is modular in nature and is used for orga-
nizing large-scale picture data processing projects.

Digital Image Analysis: The use of high-tech equipment such as X-ray machines,
microscopes, and MRI and CT imaging equipment to produce digital photographs
has been an integral part of our day-to-day lives for quite some time. This includes
the taking of digital photographs with smartphones and their subsequent sharing on
social media. The production and transmission of semantic information from digital
images are referred to as “digital image analysis,” and it is a technique that is in great
demand across a variety of industries and applications.

The Anima workflow system, which is an acronym that stands for ANduril IM-
age Analysis, is a modular system that gives us the ability to analyze images in a
quick and comprehensive manner. By enabling batch processing, Anima has made
high-throughput image analysis very easier to do.

Processing, interoperability, and the freedom to run on any platform are just
some of the perks that come along with this. Anima is mainly geared toward devel-
opers of algorithmic and analytic tools, and it gives these developers the ability to
combine a wide variety of computing tools into a single workflow system. The pri-
mary objective of Anima is to make Rapid Application Development (RAD)
possible as well as the incorporation of new methods without the need of porting
them from their original implementations. Regardless of the computer language
that is being used, Anima gives researchers in the field of image analysis the ability
to experiment with novel methods and integrate their findings into established
procedures.
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Anima’s architecture has a fundamental flaw in that it was designed to be used as
a platform for enhancing the functionality of other apps rather than as a replacement
for such programmes in their entirety. Anima has proven to be a useful tool for a
variety of tasks, including the creation and evaluation of innovative algorithms as
well as the execution of routine analyses. It has a horizontal data flow architecture,
which means that each step, like picture segmentation, can be done at the same time
on all of the images.

Horizontal flow management gives you the ability to make certain that each stage
of processing yields the desired results before moving on to the next phase. Because
Anima is a platform that is adaptable, extensible, and scalable, it is very easy to add
new features to the system while also guaranteeing that those features may be used
effectively several times. You are also able to quantify attributes based on all of the
images using Anima, which you can then use in the process of analysis. Anima is a
really powerful tool.

11.7 NextFlow
Nextflow (di Tommaso et al., 2017) is a reactive workflow architecture and domain-
specific language (DSL) that was developed at the Barcelona Center for Genomic
Regulation by the Comparative Bioinformatics Group (CRG). It lets scientists use
software containers to make scientific procedures that can be scaled up and used
over and over again.

Nextflow may be run either locally or on a dedicated instance of the Amazon
Elastic Compute Cloud. If your procedures require a significant amount of
computing resources, go with the second choice. However, after your procedure is
over, you are required to terminate the instance. The architecture that is shown
here explains how to make the most of AWS Batch in order to run Nextflow in a
way that is both simple and economical to administer.

An RNA-Seq analysis may be carried out by following a sequence of steps
known as the nextflow-core RNA-Seq workflow. This process was developed by
the community. The DNA sequence data will first be converted into the raw FASTQ
file format before undergoing quality control, alignment to the reference genome,
quantification, and differential expression calculation. Over the course of its devel-
opment, this pipeline has seen over 3700 separate changes, all of which can be seen
on GitHub. The procedure, by default, consists of 20 steps and uses a number of
different programs. When compared to starting from scratch, using this strategy
will provide results far more quickly.

Workflows made with Nextflow should be able to handle millions of samples as
long as enough computing resources are available. For instance, 23 and Me uses
NextFlow to handle the genetic data of its customers. However, when biological
data is converted into the structure and size that are generally handled by data engi-
neering procedures, bioinformatics workflow managers may not be the best answer.
Ginkgo Bioworks is a genomics company, whose pipeline processes terabytes of
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sequencing data every single day. Ginkgo uses an Airflow, Celery, and Amazon Web
Services batch process. At industry scale, efficiency is of the utmost importance, and
the solution that Ginkgo has developed was developed by an entire team of data en-
gineers. The majority of biotechnology companies as well as university labs would
benefit more from using Nextflow or another bioinformatics-specific workflow man-
agement system that may be set up by a single scientist.

The capability of isolating the workflow implementation, which specifies the
flow of data and the operations that are to be done on that data, from the configura-
tion parameters that are needed by the execution platform is one of the most impor-
tant aspects of Nextflow. This makes the process portable, so it can run on many
different computer platforms, like an institution’s high-performance computing
(HPC) system or a cloud architecture, without having to change the way the work-
flow is designed (Fig. 11.6).
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Data handling using
Python 12
12.1 Introduction
Data handling is the process of collecting, storing and analyzing data. Data handling
is a key skill for biologists, as understanding and processing data is integral to their
work. Data handling is often associated with statistical analysis, which can be sub-
jective or quantitative (Marx, 2013). Statistical analysis can often be used to answer
questions about what qualifies as statistically significant and how large samples are
necessary for accurate conclusions. Data handling begins with the data producer
defining (1) what the type of data is (e.g., genetic, behavioral) and (2) the question
to answer based on that type of data: for example, how many animals there are in a
population on an island? The next step would be to choose an appropriate sampling
method: random sampling, systematic sampling, or opportunistic sampling. The
data producer then (3) gathers the data, records it in a spreadsheet or database,
and then (4) analyzes and publishes their analysis. Data management is the process
that ensures that raw and processed data can be organized efficiently in order to
investigate specific questions related to the experimental task at hand (Hasija and
Chakraborty, 2021).

In bioinformatics research, a variety of programming languages are often uti-
lized, including Python, R, C, and Java. Python-based bioinformatics research is be-
ing introduced in this project. Guido van Rossum developed this all-purpose
programming language, which was first made available in 1991. Python is a great
language to learn for beginners into coding. Few basic characteristics of Python are:

Interpreted language: So, Python is a Interpreted Language as it itself is a soft-
ware running on the computer. A Python script is just a text file when it is written.
Python program may be instructed to do a variety of tasks on a text file, such as op-
erations on genome’s sequence or creating graphs etc. As opposed to compiled lan-
guages like C, which transforms the code into an executable. Generally speaking,
compiled languages may operate more quickly than interpreted ones. The ability
to quickly test every iteration of a script without having to do an additional compi-
lation step, however, helps speed up the creation of new applications. A tradeoff be-
tween development time spent developing a code time the computer spends actually
running your code. Because the development time is quite lengthy relative to the run
time in many scientific applications where the user base is tiny and new code must be
regularly produced, interpreted languages are often employed.
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High-level language: High level languages include a lot of built-in automated
procedures that take care of various elements of how the code is written is used
by a computer. For instance, Python takes care of allocating memory to keep the
contents of the variable when it is defined, so user don’t have to. In contrast, manual
memory allocation is required for other languages like C. In general, writing a func-
tioning program rapidly in a high-level language is substantially simpler. Low-level
languages, on the other hand, may provide fine-grained control that can aid in the
optimization of extremely computationally demanding applications.

Python has become one of the most popular programming languages in recent
years. Its versatility and ease of use make it a great choice for a wide range of tasks,
including data handling. Python has become the language of choice for data science
and machine learning due to its simple syntax and powerful libraries. These libraries
allow Python to be used for anything from web development to scientific computing.
Python is especially popular in the field of data science. Some of the most popular
Python libraries for data science are Pandas and NumPy. These libraries allow you to
easily manipulate data and perform statistical operations (Ekmekci et al., 2016).

BeOpen Python Labs created the first version of Python 2.0, which was released
in the year 2000. Prior to the formation of the team, Rossum (conceiver of Python)
was in charge of the majority of Python’s new features and bug fixes (van Rossum
and Drake, 2009). He remained hopeful that Python would play a larger role in
increasing computer science “literacy.” Python was designed so that even someone
with no prior knowledge of computers can use it. As a result, the Python Labs team
created Python 2.X to make it less reliant on Rossum’s management and more acces-
sible to community contributions. Python 2.7 was the final and most recent version
of Python 2. The Python 2 was discontinued in 2020. Even though Python 3.0 was
released in 2008, it was more than just a bug-fixing version of Python 2. Instead, it
introduced a significant change that rendered the language incompatible with subse-
quent editions. One purpose of the Python 3 syntax reform was to allow code to
achieve the same thing in multiple ways (“Python 3.0 Release | Python.org,” n.d.).
The purpose of Python 3.X is to ensure that everyone utilizes the same, simple
way. This eliminates the most common issues that novice programmers have
when learning a new language. Python is a community-driven programming lan-
guage that is widely used in the field of data science and machine learning. Because
of its relatively flat learning curve, many experts recommend it as the first program-
ming language to learn for beginners. Primarily, Python has an easy-to-understand
English-like readable syntax.

12.2 Datatypes and operators
12.2.1 Datatypes
Data structures are specialized methods for storing and arranging information while
programming. Each offers various methods of dealing with the data and is best
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suited for certain sorts of data. Gaining proficiency with Python’s data types and un-
derstanding when to utilize each will help you develop into a professional Python
programmer. Among the several datatypes, the four most prevalent are as follows:

• int (integers or whole numbers)
• float (decimal numbers or floating-point numbers)
• bool (Boolean or True/False)
• str (string or a collection of characters like a text)
• list, Tuple, set (Collection of Items

Python has two significant ways of representing numbers: int and float. Decimal
values (floats) such as 1.0, 3.14, and �2.33 may take up more space than integers or
whole numbers such as 1, 3, �4, and 0. Following that, there are Boolean datatype
that is either “True” or “False”; these are utilized to create conditions, discussed in
conditional statements. Finally, the “str” or string datatype is the most frequently
used and encountered by biologists, as the majority of DNA, RNA, protein se-
quences, and names are text or strings. As a result, this chapter contains a distinct
section on strings. It is critical to emphasize here that string data is always enclosed
in quotes, i.e., (“<string data>”). For instance the peptide “MKSGSGGGSP” will
be a Python string.

12.2.2 Operators
There are common operators as used like “þ”, “�”, “*”, “/”, “¼”, and “**” for addi-
tion, subtraction, multiplication, division, assignment and exponent respectively.

Operation on an integer and a float will always produce a float type result, while
operation on two integers will always return an integer type result, with the excep-
tion of division, which will always return a float type result. By employing the in-
tegral division operator, one can obtain an integer type in exchange for division.
i.e., “//”.

12.3 Variables
Variables in Python are analogous to algebraic variables in mathematics. Variables
are composed of two components: a name and a value. Variables names declared and
assigned aname by using the assignment “¼” operator. On the left is the name, and
on the right is the value (Table 12.1).

Variables can be recalled after they have been assigned. As seen in Table 12.2,
variables “weight” in kilogrammes and “height” in meters are assigned and then uti-
lized to calculate BMI, which is subsequently stored in another variable named
“bmi.”

Variables make our programmes readable and reusable. For example, if one is
working with a large protein or nucleotide sequence, it would be imprudent to write
it every time. As a result, it can be saved in a variable and reuse it whenever it is
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required. Variables can be assigned to other variables, reassigned to new values at
any moment, and even assigned to another variable. When a new value is assigned
to a variable, the previous value is lost and cannot be recovered. This reassignment
of a variable is also possible when the data type is not the same. For instance, an
integer variable can be reassigned to a text variable and vice versa. This is not
true for most of the other programming languages. The last sentence assigns values
to two variables in the same statement, which is a feature that is rarely found in any
other programming language. Finally, variable names are case sensitive; for
example, the variable name “gene_symbol” cannot be recall as “Gene Symbol” or
“GENE SYMBOL.”

12.4 Strings
For computer programmers, strings are the collection of characters or, more
commonly, any texts. String manipulation is quite prevalent in bioinformatics inves-
tigations, such as sequence files, pattern discovery in sequences, data mining from
texts, and data processing from a variety of file types. In Python, a string object
can be formed by containing a sequence of characters within a pair of single
quotes/double quotes/triple single quotes/triple-double quotes. While characters

Table 12.1 Assigning variables in Python.

Code Output 

weight = 75 
print(weight) 

 
75 

Table 12.2 Operations with variables.

Code Output

weight = 75
height = 1.5
bmi = weight/height
print(bmi) 50.0
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included in single or double quotation marks can only contain a single line, charac-
ters wrapped in triple single or triple-double quotation marks can contain many
lines. The characters should be enclosed within the same type of quotedusually sin-
gle or double quotes for defining a string datatype. Consider the following example
(Table 12.3).

12.4.1 String indexing
As a string is a collection or sequence of characters, Python allows for the extraction
of individual characters as well as portions of the text via their indexes. To retrieve
the character, the index number must be placed following the string variable inside
the square bracket pair.

The following is an example of using String indexing to print the second char-
acter in the word “PLANT.”

It’s worth noting that the index of any string begins with 0, beginning with the
leftmost character; so, the index of the first character “P” is 0; the index of the second
character “L” is 1, and so on. Backward indexing begins with�1 from the rightmost
character, indicating that the last character “T” has a backward index of �1, the sec-
ond last character “N” has a backward index of �2, and so on.

Another example of character index for Python is shown in Table 12.4, where
first row is the sequence, the second row is the forward index of nucleotides, and
the third row shows the backward index:

Table 12.3 Defining strings in Python.

Code Comments Output

seq_1 = 'MALNSGSPPA'
print(seq_1)

A string  within a pair of 
single quotes MALNSGSPPA

seq_2 = "MALNSGSPPA"
print(seq_2)

A string within a pair of double 
quotes MALNSGSPPA

seq_3 = '''MALNSGSPPA'''
print(seq_3)

A string within a pair of triple 
single quotes MALNSGSPPA

seq_4 = """MALNSGSPPA"""
print(seq_4)

A string within a pair of triple 
double quotes MALNSGSPPA

seq_5 = '''MALNSGSPPA
IGPYYENHGY'''
print(seq_5)

A string within a pair of triple 
single quotes, can have multiple 
lines

MALNSGSPPA

IGPYYENHGY
seq_6 = """IGPYYENHGY
IGPYYENHGY"""
print(seq_6)

A string within a pair of triple 
double quotes, can have multiple 
lines

IGPYYENHGY

IGPYYENHGY
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To take a portion of a text or string, use the annotation “string_name [start: end]”,
where the start is the starting index and the end is the index extending up to but not
including it.

• word[1:3] is “LA”dcharacters starting at index 1 and extending up to but not
including index 3

• word[3:] is “NT”dleaving a blank for either index defaults to the start or end
index of the string

• word[:] is “PLANT”demptying both always gives us a copy of the whole thing.
• word[1:10] is “LANT”dan index that is too big is truncated to string length.
• word[:-2] is “PLA”dselecting up to but not including the last 4 chars.
• word[-2:] is “NT”dstarting with the fourth character from right end to the right

end.

12.4.2 Operations on strings
There are a few ways to concatenate or join strings. The easiest and most common
way to add join strings is to use the plus symbol (þ). i.e., in simplest terms, merely
adding them.

The “þ” operator can be used to combine any number of strings. A critical point
to remember is that when adding strings, all datatypes must be strings; for example,
if users add a string with an integer, such as “PLANT”þ4, an error message indicates
that the “str” type and the “int” type cannot be added. To add a number, it must first
convert it to the “str” type using the str (number) function. While integers and strings
cannot be added, the same string can be printed several times using the “*” operator
and a “int” datatype. For instance, “PLANT”*2 returns the string twice, i.e.,
“PLANTPLANT”.

12.4.3 Methods in strings
Several string handling methods include count (), find (), and len (). Their applica-
tion is outlined below in Table 12.5.

In the above instances, “len ()” is a function that returns the string’s length. There
is a key method called str.split () which is regularly been used to extract data from
delimited text file formats such as CSV, TSV, and others. CSV stands for comma-
separated values, in which each column’s values are separated by a comma, while
TSV means for tab-separated values, in which each column’s values are separated
by a tab delimiter.

Table 12.4 String indexing in Python.

P L A N T

Forward indexing 0 1 2 3 4

Backward indexing �5 �4 �3 �2 �1
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Fig. 12.1 is an example of CSV formatted file where the first row is known as
header row, which consists of column names, and the rest of the rows are instances
having values separated by a comma for each column. The values can be extracted
from each row if each row is considered as a string using str.split () method:

In Table 12.6 the first observation, or the second row of the csv file in Fig. 12.3, is
assigned to a variable named “first row”. Then Python’s many variables assignment
feature was used to establish each column as a variable and the first observations as
its value. The split (“,”) method returns a list of values separated by commas. The
variables named after the CSV file’s columns can be printed. The output also in-
cludes a list of split values. List is a Python data type that will be covered in the
next section. There are additional intriguing methods available for the string data-
type, which can be found in the Python documentation.

12.5 Python lists and tuples
After learning about datatypes like integers, strings, and booleans, this section will
cover Lists.

Lists, like containers, store many values of any type. They’re called data struc-
tures because they store data in a way that makes retrieval easy.

Lists are similar to arrays in other programming languages, but they are more
versatile. List items are called elements. Lists have crucial features like:

• List keeps track of the items inserted and can be accessed later.
• Index accessda list’s objects can be indexed.
• Lists can contain any entitydnumbers, strings, and even other lists.
• Lists can be mutateddNew items can be added, and old ones can be removed or

altered.

Table 12.5 Few methods in strings.

print(peptide.count('A')) 
print(peptide.find('LW')) 
print(len(peptide)) 

2 
2
20

Code Output
peptide = 'TSLWGLLFLSAALSLWPTSG'

FIG. 12.1

Example of a CSV formatted file.
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12.5.1 Accessing values in list
Like strings, list items also have indexes starting with “0” for forward indexing and
“�1” for backward indexing (Fig. 12.2).

The items inside a list can be accessed using brackets [] and indexes.
Slicing a list allows to access a subset of it. The string slice operator can also slice

lists. Similarly, to string, omitting the first index causes the slice to begin at the
beginning. If the second is absent, the slice ends. If both of them are removed,
the slice is a copy of the List (Table 12.7).

The “þ” operator can be used to concatenate two lists and the “*” operator to
repeat a list any specified number of times.

Table 12.6 String’s split () method.

Code Output

#str.split()
first_row = ‘5.1,3.5,1.4,0.2,Iris-setosa’
sepal_length,sepal_width,petal_length,petal_widt
h,species = first_row.split(',')
print(sepal_length)

5.1print(sepal_width)
print(petal_length)
print('---------')
print(first_row.split(','))

3.5
1.4
---------
[‘5.1’,’3.5’,’1.4’,’
0.2’,’Iris-setosa’]

print(sepal_width)
print(petal_length)
print('---------')
print(first_row.split(','))

3.5
1.4
---------
[‘5.1’,’3.5’,’1.4’,
0.2’,’Iris-setosa’]’

FIG. 12.2

Python list indexes.
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12.5.2 Methods with lists
Python provides some in-built methods for List such as:

• count () methods will return the total number of occurrences of an item in the
List.

• index () will give the index of an item.
• append () adds an item at the end of the List.
• remove () will remove the first occurrence of the item in the List.
• pop () will remove the item at index provided by the user.
• min (), max () and sum () will provide the minimum, maximum and sum of the

lists constituting number values.
• len () will provide the total number of items in the List.
• sort () method can be used to sort a list of numerical values in increasing or

decreasing order, or a list of string in A-Z or Z-A order.

12.5.3 Tuples
A “tuple” is one of Python’s four built-in data types for storing collections. Tuples’
components, unlike those of other data types, are both sequential and immutable.
They can be used to keep track of a variety of different items in a single variable,
and they come with a number of useful actions pre-programmed in. There are
numerous parallels between these tuples and lists. Developers who are familiar with
lists, a commonly used data structure, may mistake lists for tuples. Tuples in Python,
like lists, are collections of elements of any data type, but unlike lists, tuples are immu-
table; that is, once assigned, users cannot change the tuple’s contents or the tuple itself.

Table 12.7 List slicing.

Code Output

# not including index 2
print(plants[0:2])
# everything up to index 3
print(plants[:3])
# index 1 to end of list
print(plants[1:])
# Coping whole list
print(plants[:])

['Moss', 'Embryophyte']

['Moss', 'Embryophyte', 'Thallophyte']

['Embryophyte', 'Thallophyte', 'Conifer']

['Moss', 'Embryophyte', 'Thallophyte', 
'Conifer']
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12.6 Dictionary in Python
Dictionaries are data structures in Python that are similar to hash tables or hashmaps
in other computer languages. Each key corresponds to a single value in a dictionary.
The ideal approach to establish a dictionary is to put the key:value pairs inside curly
brackets “{}”. Only “{}” can declare an empty dictionary (Fig. 12.3) (Table 12.8).

The Python dictionary has the following properties:

• Dictionaries are unordereddthe key-value pairs are not sorted.
• Dictionaries are mutable, which means they can be expanded or trimmed as

needed.
• The dictionary values can be access by keys. Indexes can’t be accessed because

key-value pairs aren’t kept in order.
• A dictionary can only contain unique keys. The keys in the dictionary are always

unique.
• Dictionary keys, such as strings, integers, and tuples, should be immutable data

types.

Python dictionary values can be numbers, texts, lists, or even dictionaries. A
nested dictionary is a dictionary inside a dictionary. The key in square bracket re-
trieves the dictionary’s stored values.

FIG. 12.3

Python dictionary key: Value pairs.

Table 12.8 Creating a Python dictionary.

Code Output

crop = {}
crop = 
{'Name':'Wheat','Kingdom':'Plantae','Gen
us':'Triticum','Species':'aestivum'}
print(crop)
print(type(crop))

{'Name': 'Wheat', 'Kingdom': 
'Plantae', 'Genus': 
'Triticum', 'Species': 
'aestivum'}
<class 'dict'>
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12.7 Conditional statements
Until now, the programmes are simple, not clever, and not making decisions. Con-
ditional statements are required to make a program make decisions based on condi-
tions. Computers have only two states, True or False, like a light switch has two
states, On or Off. In Python, these True/False situations are known as booleans.

A condition is always defined by comparison, such as larger than, less than, or
equal. Here are some comparisons with Python operators:

• Equal: a ¼¼ b
• Not Equal: a !¼ b
• Less than: a < b
• Less than or equal to: a <¼ b
• Greater than: a > b
• Greater than or equal to: a >¼ b

All these comparisons result in Boolean values “True” or “False”.

12.7.1 Logical operators
When comparing many conditions, logical operator are used. The logical operators
“and”, “or”, and “not” are the same in Python as in English. Logic operators usually
work on conditions.

“and” operator will only give true if both the conditions are true, “or” will give
true if either of the conditions is true, lastly “not” will give just the opposite condi-
tion, i.e., it will give false for true and true for false.

12.7.2 If and else statements
Often, it is required to execute some statement only if some conditions are true. For
this, “if” and “else” statements are used.

1. “If” Statement: use it to execute a block of code if the specified condition is true.
2. “Else” statement: use with an “if” statement to execute a block of code if the

specified condition is false.

In Python, blocks are defined by indentation after a colon. Indentation is a strict
Python syntax for forming a statement block, which can be commonly encounter. If
the condition is true, an indented block of statements will be executed (see
Fig. 12.4). Let’s see an example of comparing the expression of a gene in a
controlled and treated environment in Table 12.9.

Next example is for comparing the expression of a gene in a controlled and
treated environment, with “If” and “else” statements (Table 12.10).
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FIG. 12.4

Syntax of “if” statement.

Table 12.9 If statements.

Code Output

control_expression = 14
treated_expression = 3.5
if control_expression >
treated_expression:

print(‘downregulated’)

downregulated

Table 12.10 If, else statement.

tuptuOedoC

control_expression = 14 
treated_expression = 3.5 
if control_expression > treated_expression: 
    print('Gene is downregulated') 
else: 
    print('Gene is upregulated') 

Gene is 
downregulated 
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12.8 Loops in Python
When developing code, it is occasionally necessary to repeat a block of code or a
statement until the condition is met or the statement is false (depend on require-
ment). This type of recurring or iterative behavior can be implemented using loops.
These are known as control structures, and programming languages offer a variety of
options to facilitate their implementation.

Generally, there are two type of loop structure:

1. While Loop
2. For Loop

12.8.1 While loop
In Python, a loop is a set of statements that are repeated until a stop condition is met.
The while loop syntax includes a stop condition. Awhile loop works by executing a
set of statements until the stop condition is met (Fig. 12.5). A simple example of
“while” loop is printing numbers from 0 to 5 in shown in Table 12.11.

In the preceding code (Table 12.14), the variable “a” is initialized at 0. While
statements follows with a stop condition of “a” less than 6. While statements
comprise two statements, one for printing “a” and the other for incrementing “a”
by 1. The value of “a” is printed and incremented from 0 to 1 when the block is first
run. The while block’s stop condition is checked before rerunning. The block will
rerun if “a” ¼ 1 is less than 6. When “a” equals 6, the loop condition fails and
the program will stop. In the absence of a stop condition, or a condition that can
never be false, the loop becomes infinite and is executed indefinitely. The Jupyter
notebook’s Python kernel has to be restarted in this scenario. If the asterisk on the
left side of the cell persists, them it may be in an infinite loop.

The comments accompany each statement in the preceding example
(Table 12.14). The stop condition is the last index in the list in this case. The List’s

FIG. 12.5

Syntax of a Python while loop.
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last index in the forward direction is 5 and its length is 6, as it contains that many
members. Thus, the stop condition is satisfied when the final index is increased
by one and equals the length of the ‘total data’ List, i.e. when both are equal to six.

12.8.2 “For” loop
Loops are indefinite loops because they run until a particular condition is false. How-
ever, often users need to loop through words in texts or items in lists or through keys
and values of a dictionary. In such cases, they require definite loops like “for” loop
for doing these tasks of iterating over a sequence datatypes. The “for” loop runs
through each item in a set of items. The syntax of a “for” loop is similar as “while”
loop: there is a “for” statement and a block of code under that statement
(Table 12.12).

The “for” loop iterates over each item in the List and runs the block statements
for all items in the List. In simple English, this for loop can be translated as, run the
block of code under the “for” loop for every plant in the plants list. In the “for” state-
ment, the “plant” is the variable which changes with every.

12.8.3 Breaking a loop
The “break” command in Python is used to exit a loop early. With a “break” com-
mand, the program exits the loop immediately and executes the remaining state-
ments outside the loop block (Table 12.13).

Table 12.11 Simple while loop.

Code Output

a = 0
while a<6:

print(a)
a = a+1

0
1
2
3
4
5

Table 12.12 Simple “for” loop.

Code Output 

plants = ['Moss', 'Embryophyte', 'Thallophyte','Conifer'] 
for plant in plants: 
    print(plant) 

Moss 
Embryophyte 
Thallophyte 
Conifer 
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As the “if” condition is satisfied when “temp” variable equals to “Thallophyte”,
the execution of “break” statement blocks the printing of “Conifer”.

12.9 File handling in Python
Until now, our computer’s primary memory has been accessible while constructing
and executing statements and programmes. Our computer, as previously stated, has
primary and secondary memory, with primary memory being erased when the sys-
tem is turned off. Secondary memory, such as a hard drive, can save data even after
the system has been turned off. Files are often stored on hard drives and have unique
paths allocated to them. Biological data is also saved in files with specialized for-
mats such as PDB, networks, and sequence files. As a result, being able to access
and manipulate files is crucial for a research project. Files are also used to store
and share enormous amounts of data, which is why learning how to read a file in Py-
thon is vital.

The first step in file handling is to use Python’s built-in “open ()” function to open
a file. Then instruct the operating system to identify and verify the presence of the
file by calling the open () function.

Code:

f = open('myfile.txt') # If file is in current directory
f = open('C:\Python33\Scripts\myfile.txt') # opening file with Exact Path

When only the filename is specified, it is assumed that the file is in the same
folder as Python. As illustrated in the second line of code, we may also indicate
the file’s location by its full path.

Table 12.13 Python code snippets showing the breaking a loop before its
ending.

tuptuOedoC

for temp in plants: 
    print(temp) 
    if temp == 'Thallophyte': 
        break 

Moss 
Embryophyte 
Thallophyte 
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12.9.1 Specify file mode
There are eight types of modes for file operation (Table 12.14).

The FASTA file format is used to contain both gene IDs and sequences. After the
identifier, the ID line/first line can have further information. It always starts with a
“>.” The order of the genes is written after the first line. In the example below (Ta-
ble 12.15), The targeted file named “myfile.fasta” was opened and read which is
located in the current directory or folder. The following is the file’s content:

>ID001 (gene abcb1)

GATATGATGCCGTCACTA

GTTTACCGCTGGTAACTG

Here “open ()” is a class which deals with operations of files (Table 12.15). The
“open” mode is initiated with the name or location of the file. This class has a
method called read () which reads all contents of the file. Open handler has a method
for returning the List of all the lines known as readlines (). Users can write within a
file by opening it in write mode and utilizing the handler class open () and write ()
function (Table 12.16).

The new file will be saved and can be found in the current folder or directory. The
contents of the file will be:

>ID002 (gene TLA) 
ATGCTTTGGCCAAATTGG 
GGTTCCATGGTCATGC 
TGCTGATC 

Table 12.14 Modes of file operation in Python.

Character Mode Description

“r” Read (default) Open a file for read only

“w” Write Open a file for write only (overwrite)

“a” Append Open a file for write only (append)

“rþ” Read þWrite Open a file for both reading and writing

“x” Create Create a new file

“t” Text (default) Read and write strings from and to the file.

“b” Binary Read and write bytes objects from and to the file. This
mode is used for all files that don’t contain text (e.g.,
images).
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When a file is opened, it must be closed with the close () methods of the “f”
object. f.close () will close a file.

12.10 Importing functions
A script with the.py extension is a Python module. Python modules can be written
relatively quickly. Create a file containing valid Python code, then give it a name and
the.py extension. Python’s modules make it easier to modularize programming.
When creating Python applications, modules may be accessed by using the “import”
keyword. Program will be more dependable and effective by using modules.

For practically every programming task, including web development, database
construction, image analysis, data science, statistics, machine learning, and more,
Python packages and modules are available. Libraries are a collection of functions,
whereas packages are a collection of modules. Over 227,607 Python packages are
presently available in the Python Package Index (PyPI), which was created to
make life simpler for developers. Using the “pip” installer, we may install any of
the PyPI packages that are offered. Both the “conda” and “pip” installers are
included in the Python anaconda distribution. Open the terminal or command
prompt and run “pip install PackageName” or, for the Anaconda distribution, “conda

Table 12.15 Reading from a file using Python.

Code Output

f = open('my_file.fasta')
print(f.read())

>ID001 (gene abcb1)
GATATGATGCCGTCACTA
GTTTACCGCTGGTAACTG

Table 12.16 Writing inside a file.

Code Output

f = open('my_new_file.fasta', 'w')
f.write('>ID002 (gene TLA)\n’)

lines = ['ATGCTTTGGCCAAATTGG\n', 'GGTTCCATGGTCATGC\n', 'TGCTGATC']
f.writelines(lines)
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install PackageName” to install a package. Numerous preloaded packages for data
science applications are included in the Python Anaconda distribution. Using the
keywords “from” and “import,” we may call the modules once the packages have
been installed.

12.10.1 Running a t-test in Python
The relationship between the means of two groups may be deduced using an infer-
ential statistic known as a t-test. T-tests are used when data sets have a normal dis-
tribution but unknown variances, such as the a set produced by flipping a coin 100
times.

Assume a pharmaceutical company is testing a brand-new medicine. One group
of patients is given the treatment, while another, the “control group,” is given a pla-
cebo. A group is given a placebo, which is a substance that doesn’t work as a drug, to
see how another group reacts to the real drug. After the drug trial, those in the control
group who were given a placebo said their average life expectancy went up by
3 years, while those in the group that got the new therapy said it went up by 4 years.
Initial trials indicate that the drug is effective. The observation may, however, have
been made by chance. T-test can be used to determine if the findings are consistent
across the board.

Assume that we are conducting an experiment in which we expect to accelerate
plant development by changing the concentration of a certain nutrient in one plot
(the “treatment plot”) while maintaining the same concentration in another and
comparing the results between them. To test the difference in plant height between
control and treatment plots, we can measure the height randomly from a few samples
in each plot. Even if our nutrient has no effect on the plants in the treatment plot, we
can still identify random variances in our data (plants never grow at precisely the
same rate). If the differences between the plots are too large to be explained by
chance, we may use the t-test to find out (Table 12.17).

This yields two numbers: a T statistic indicating how different our plant sizes are
between treatments and a P-value indicating the likelihood of obtaining such a large
difference by chance if our treatment was ineffective.

Even though the plants in our treatment plot grew larger on average, this t-test
result indicates that the difference could easily be due to chance. Because P is
around 0.03, there is a 3% chance that this result is a coincidence. Differences
with a less than 5% chance of occurring by chance are considered statistically sig-
nificant. So our difference in this example is statistically significant.

12.10.2 Make a simple scatterplot in matplotlib
To attract mates, male frogs frequently make loud calls. Assume we were studying
frog calls and wanted to see if larger frogs made longer calls than smaller frogs. As-
sume we measured the length and size of several frogs’ calls. We’d like to create a
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graph that depicts the relationship between frog size and call length. A scatterplot,
on the other hand, could be a good way to visualize this data.

A scatterplot of frog sizes and frog call durations may be generated by importing
the appropriate functions, which include labeling the scatterplot, x and y axes form
matplotlib library of python. Matplotlib is a low level and popular graph plotting li-
brary in python (Table 12.18 and Fig. 12.6).

Table 12.17 T-test in Python using scipy library.

Code Output

#Finding the stats module in scipy and 
importing #its ttest function.
from scipy.stats import ttest_ind

# control and treatment plot in centimetres.
control_plant_sizes = [4,7,8,3,4,2,2]

treatment_plant_sizes = [5,4,10,8,5,12,13]

#Run a t-test on the results
ttest_ind(control_plant_sizes,treatment_plant_s
izes)

Ttest_indResult(stat

istic=-

2.35900095298480,

pvalue=0.03611687624

692063)

Table 12.18 Plotting scatter plot in Python using matplotlib library.

Code

from matplotlib.pyplot import scatter, xlabel, 
ylabel

# frog sizes in grams
frog_sizes = [155,475,260,525,300,280,315]

# call lengths of those same frongs, in seconds
frog_call_lengths = [1,5,2,6,3,3,4]
scatter(frog_sizes,frog_call_lengths)
xlabel("Frog Mass")
ylabel("Call Length")
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12.10.3 Running a simple linear regression in Python
The t-test function in the previous section came from the scipy.stats module, which
includes a wide range of statistical analyses. The pearson r function, which performs
Pearson regression, is an example of this. This compares the values of two sets of
numbers to see if there is any relationship between them. Thus, while t-tests can
be used to compare values within a category, Pearson regression can be used to
compare two continuous variables.

We can use a Pearson regression to see if larger frogs have longer calls now that
we know how long their calls are (Table 12.19).

12.11 Data handling
Pandas is a high-level data manipulation and analysis package. It is written in Python
and is available for free to anyone. Python’s pandas library makes it simple to load,
format, edit, and inspect data. It is a popular option among developers and is utilized
for a variety of data science projects. Pandas are fantastic since they are simple to use
and operate quickly. Users can process up to 10 million rows of data without issue. A
pandas Dataframe is simple to modify since one can simply add or delete columns,
slice it, index it, or deal with missing data. Using pandas makes it easy to clean,
modify, and analyze data. One can delve into a dataset stored on their computer
as a comma-separated values (CSV) file. Pandas will read the CSV file and convert
information to a DataFrame, which is similar to a tables in excel from which the user
can perform actions such as:

FIG. 12.6

Scatterplot plotted using matplotlib library of Python, where x denotes is frog mass and y

axis denotes call lengths.
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• Answer queries like “What is the average, median, highest, and lowest value for
each column?” via statistical analysis.

• Is there anything that connects rows A and B?
• How can data in a column frequently come apart?
• Remove any incorrect information and sort the data by selecting which rows or

columns to examine.
• Use Matplotlib to transform the data into something visual. Anything can be

drawn, from lines and bars to bubbles and histograms.
• Return the modified data to a CSV file, a database, or another storage location.

What has been covered in this chapter is only the tip of the iceberg in terms of
what Python can do. In any event, the ideas presented here may inspire everyone
to experiment with one of their own data sets. It’s simple to go to libraries like Mat-
plotlib, seaborn, or scipy from here, which may be used to visualize data, conduct
statistical tests on it, or fit data to mathematical models.

The advancements in the Python language are too numerous to describe in this
brief introduction. Users will need to learn more about algorithms, mathematical
modeling, data visualization, and other topics. Instead of merely undertaking
random programming challenges, if readers want to develop anything important
with the language, it may provide them more drive to stay focused and find all of
the necessary ingredients. Learning to program computers is an important ability
that can help us find better employment and deal with modern time’s issues. Those
interested in learning Python will find a wealth of high-quality resources. Some of
these have already been mentioned, and Table 12.20 shows a list of available
resources.

Table 12.19 Regression analysis using Python.

Code Output

#Import the pearsonr function 
from scipy.stats import pearsonr
#Run pearson regression
R2, pvalue = 
pearsonr(frog_sizes,frog_call_lengths)

#Print the results
print("R2:",R2)
print("pvalue:",pvalue)

R2: 

0.9704929909196073

pvalue: 

0.000282726810601368

7
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Table 12.20 Resources for learning Python.

Source type Address Description

Python https://www.python.org/ Official python website

http://hplgit.github.io/bioinf-py/
doc/pub/html/index.html

Illustrating python via examples
from bioinformatics

Codes of
published
research
articles

https://paperswithcode.com/ Open resource with machine
learning papers, code, datasets,
methods and evaluation tables.

Biopython https://biopython.org/; http://
biopython.org/DIST/docs/
tutorial/Tutorial.html

The Biopython project is an
international collaboration of
scientists working to create open-
source python programmes for use
in computational molecular biology.

Visualization
of Genomic
data

https://gangcaolab.github.io/
CoolBox/index.html

Users can use CoolBox to create
high-quality visualization plots and
analyze their data in a flexible,
customizable, and user-friendly
manner. Molecular computational
biology
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Python, 254
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Quality of data, 223

Quality of life, 180

Quantile-quantile plot (Q-q plot), 48e49

Quantitative Structure-Activity Relationship

(QSAR), 191

Quantitative structure-property relationship

(QSPR), 195

Quartiles, 47e49

R
R programming, 254

Radial basis function (rbf), 212

Random Networks, 230

Random sforests, 210

Rapid Application Development (RAD), 261

Raw data set, 23

Receiver Operation Characteristics

(ROC), 219

Rectangular distribution, 58

Regression, 71

problems, 204

technique, 204e205

Reinforcement learning process, 216e218

Relational database model of databases, 27e28

Relative standard deviation (RSD), 54

Replication process, 153

Reproductive medicine, 165

Resource broker, 248

Restriction fragment length polymorphism
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Reverse phase protein microarrays (RPPA),

173e174

Reverse transcription, 153

RNA-seq, 170e172

RNA-SEQ Atlas, 129

Root mean square deviation (RMSD), 149e150
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SAM square tool, 139e140

Sample Standard deviation, 53

Sample Variance, 52

Sampling algorithm, 185e187

Scale-free Network models, 230, 234

Scientific Workflow Management Systems, 247

SCOP, 33
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functions, 187
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PAM, 88e89
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Scoring (Continued)

scoring matrices for amino acids, 87e88

Second quartile. See Median

Secondary databases, 4, 22e23

Secondary protein databases, 32e34. See also

Primary protein databanks

CATH, 33

prostate, 33e34

SCOP, 33

Sensitivity of formula, 219

Sequence alignment, 77e80, 91. See alsoMultiple

sequence alignment

gap penalty, 78e80

global alignment, 77e78

local alignment, 77

Short tandem repeats (STRs), 112e113

Shotgun sequencing, 161

Silico technologies, 198

Simvastatin into liver, 118

Single cell DNA-SEQ (sc-DNA-seq), 164e165

Single nucleotide polymorphisms (SNPs), 6e7,

106, 117, 254

Single-Cell DNA-sequencing, 158

Singular enrichment analysis (SEA), 72e73

Skewness, 49e50

Smith Waterman algorithm, 86, 139e140

limitations, 86

Sorafenib, 154

Sorangium cellulosum, 39e40

Sorting Intolerant from Tolerant (SIFT), 6e7

Splitting method of separating node, 209

Standard deviation, 52e54

Standard error, 53e54

of mean, 53e54

Statistical methods in bioinformatics

comparing means of two or more data variables or

groups, 66e72

ANOVA, 68e69

chi-square tests, 69e70

correlation and regression, 71

independent samples t-test, 66e67

look into correlation and regression, 71e72

one sample t-test, 67

paired samples t-test, 67e68

test of goodness of fit, 70e71

test of independence, 70

different types of distributions and significance,

55e62

gene ontology & pathway analysis, 72e73

measures of central tendency, 45e49

platforms employed for statistical analysis, 72

downstream analysis and visualization, 72

probability, 63e66

sampling, 62e63

skewness and kurtosis, 49e50

statistics at interface of bioinformatics, 43e45

variability and measures, 50e55

Statistics, 43, 63

Stratified medicine, 121

Structural bioinformatics, 8e9, 135

alignment of protein structures, 139e140

structural prediction, 140e150

Chou Fasman method, 146

evaluating success of structure predictions,

149e150

GOR method, 146e147

prediction of protein secondary structure from

amino acid sequence, 145

prediction of three-dimensional protein struc-

ture, 147e149

use of sequence patterns for protein structure

prediction, 143e145

viewing protein structures, 136e139

Structure based drug designing, 182e190

homology modeling, 183e184

molecular docking, 184e187

molecular simulation, 188e190

Structure databases, 22

Structure predictions, evaluating success of,

149e150

Structure-activity relationship (SAR), 179e180

Structure-based alignment technique, 139

Structure-based drug design (SBDD), 182

Substitution matrix, 87

Sum squared error, 205e206

Supervised algorithms

linear regression, 205e206

used, 205e206

Supervised learning, 204e205

Support vector machines, 210e212

kernel trick, 211e212

Swift/T system, 247e248

Swiss Biotechnology Institute (SBI), 22

SWISS-PROT protein grouping data set, 31e32

System biology, 12e13

Systematized Nomenclature of Medicine Clinical

Terms (SNOMED CT), 129

Systems biology, 225

analysis of biological networks and interactomes,

236e237
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data analysis tools, 238e241

features of biological networks, 227e230

gene ontology for network analysis, 236

graph theory, 226

important properties to be inferred from

networks, 243e245

interaction network construction using gene list,

237e238

markup language, 242

network theory, 226

network visualization tools, 241e243

sources of data for biological networks, 235

types of biological networks, 230e234

T
T-test, 66e67

Targeted drug development

future aspects of pharmacogenomics in person-

alized medicine, 128

personalized medicine drivers, 124e128

pharmacogenomics and, 123e128

PM, 124

Targeted genome sequencing (TS), 158, 163

TCF7L2 transcription factor, 117

Technology, 10

TGF-beta signalling, pathway of, 232

Three-dimension (3D)

prediction of three-dimensional protein structure,

147e149

protein structure, 15

structural data, 188e189

structure, 143e145

Tissue, 174

Traceback, 84e85

Training data

insufficient quantity of, 222

overfitting or underfitting on, 223e224

Transcription

factor binding analysis, 159

process, 153

regulation network, 232

Transcriptomics, 169e172

RNA-seq, 170e172

Transition metal atoms, 190

Translation in ribosome, 153

Tree pruning technique, 209

Tree-based consistency objective function for

alignment evaluation (T-coffee), 96

Tumor cells, 165

Two-dimension (2D), 84

array, 24

matrix, 84

tables, 27e28

Two-dimensional gel electrophoresis (2DE),

172e173

Types of databases, 21e23

U
UGENE software, 15

Undirected edges, 227

Ungrouped data, median for, 46e47

Unsupervised learning, 13, 215

Unweighted Pair Group Method with Arithmetic

Mean (UPGMA), 101

Upper quartile. See Quartiles

User interface (UI), 36

V
Validating models, 140e143

Variability and measure methods, 50e55

CV, 54e55

standard deviation, 52e53

standard error, 53e54

variance, 52

Variance, 52

Variant Effect Predictor (VEP), 6e7

Variants with uncertain significance (VUS),

113e114

Variations, 105e109

types of, 106e107

Viral proteome, 172

Virtual screening approach (vs. approach), 182

VisANT tool, 242

Visual Molecular Dynamics (VMD), 137

Visualization tools, 136

W
Web browser, 253

Weighted edges, 228

Weighted gene correlation network analysis

(WGCNA), 73

Whole Exome sequencing (WES), 158,

162e164

Whole Genome sequencing (WGS), 158, 160

Whole-genome shotgun bisulfite sequencing

(WGSBS), 168e169

Whole-genome shotgun process, 161

Windows, 146e147

Workflow Description Language (WDL),

247e248

Workflow management systems (WfMSs),

247e249
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X
X-ray crystallography, 143, 147

X-ray diffraction, 9

Y
Yeast two hybrid system (Y2H), 12e13

Z
Zanamivir, 180e181
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