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Online Resources 

Online resources and data are available to aid your study and help you for 

further understanding and in-depth learning. 
Check it out and test yourself!
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Preface 

Don’t You Know the Statistics? Don’t be Afraid and Enter 

In science we try to build up a picture of the world. With the advancement of science, 
certainty has been isolated day by day and dark clouds have cast doubt on its beauty 
and radiance, and the certainty of Holy Grails turned upside down. Scientists have 
worked hard to push certainty out of the heart of mathematics. This effort was not 
very successful, and the advancement of science did not only increase human 
knowledge of phenomena but also expanded our knowledge of the limitations of 
scientific knowledge. 

It shook the body of certain scientific principles, and the use of most of the tools 
of world representation have been shown to be problematic.
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x Preface

Until the twentieth century, science dealt with the certainty of Aristotelian logic. 
Now there was a world in which something could be both A and Not-A. Thus the 
death knell rang for the dominant 2000-year-old Aristotelian thought and instead of a 
comprehensive description of the world by drawing fixed and unique maps whose 
lines were in harmony with the day-to-day world, science made a set of maps, maps 
that were different but which gave a flexible understanding of the world. 

Science is emerging in the postmodern world where scientific reading is not a 
fixed machine, rather it is creative and dynamic and readers create meaning in their 
minds based on thoughtful or lived experiences. Therefore, an author is no longer the 
final reference and refuge of the work or the only true creator. The reader does not 
suffer in passive silence in the ruthless wave of information, rather he is the one who 
gives life to the text. The data is silent and vague, and the mind of the reader ignites 
and speaks to them. In this new scientific worldview, we are not neutral observers of 
phenomena, which is neither possible nor desirable, but have become participants in 
the world. 

Bohr, one of the great thinkers of quantum physics, believes that measurement 
questions the world and that question changes the answers. So what we are seeing 
are not phenomena, but, as Heinberg puts it, the genius of physics. What we see is 
not reality, but reality that is intertwined with the method of studying it. So we can 
say that what we see is the product of the science of measurement. In other words, 
the process of recognizing a phenomenon causes it to occur, but to what extent? We 
do not know. With this view, certainty is slowly receding from the world of science, 
and uncertainty is rising above thought. Psychological scientists, who are skilled in 
crossing the boundaries of science and brain activity, are not spared from this 
dramatic change. They found inadequate behavior and adopted a qualitative meth-
odology for trapping elusive, dynamic, and meaningful phenomena. As we get 
closer to reality, precision decreases and vice versa. 

Although a group with flexibility and scientific breadth combined these two 
methodologies, this hybrid was not inherited certainty at all, and this method gave 
rise to inherent uncertainty of the phenomena, and the struggle between precision 
and reality continued. 

David Appelbaum has written a beautiful book called The Stop, in which he made 
a subtle statement which we express here. In this book, he compares the speed of 
seeing and examining things as experienced by a blind person by touch. Although 
the blind person cannot see, he says that this not-seeing also has its advantages, 
because the blind person sees things that a seeing person does not because he moves 
cautiously and slowly and, as a result, he finds his way through obstacles with a 
different touch and method and gains a new understanding. Perception is a trace of a 
hidden meaning; a perception often deepens, albeit slowly. So it can be said that 
although fast methods of understanding have their advantages, standing and looking 
calmly and evolving perception is also important. More attention should be paid to 
the development of a new methodology and extension of the current one. Therefore, 
it is hoped that mind researchers, psychologists, and all those with a research mindset 
will use multifaceted methods.



Preface xi

Behavioral scientists therefore have a reliable basis for relying and looking at 
psychological phenomena to be able to grasp the pearl of truth, but there is doubt 
about the nature of truth. The transition from classical (nineteenth century) certainty 
to the uncertainty of the present century was necessary as understanding evolved. 
This transition was not straightforward but enabled us to get nearer to the truth. 

Developing theories in quantitative and qualitative research is the main purpose 
of this book. 

We know that researchers’ inference involves probability and uncertainty, so we 
talk about decay of the Holy Grail of perceived truths. It should be said that 
probability is an uncertainty about the existence or non-existence of phenomena, 
while what is examined in this book is a representation of another type of uncer-
tainty, that is, the degree of certainty about existence or non-existence of phenomena 
rather than naively assuming a phenomenon’s non-existence. 

Most of us, however, have the same uncertainty in terms of the likelihood of the 
results obtained by doing research in psychology. We are aware of research findings 
but do not always believe that its results present a true understanding of psycholog-
ical problems. However, the goal is not to reduce their value in any way. Because 
uncertainty is everywhere!! 

Inference was created to model human thought, in order to obtain more dynamic 
and consistent findings with reality by using approximate and fuzzy reasoning. 

The science of psychology is full of linguistic variables that require an approx-
imate, indefinite, and obscure method of their own kind so that we do not fall into 
imitation models in studying the psychological phenomena of these multi-faceted 
concepts. These multi-faceted concepts may be interpreted and examined in different 
ways which is fine. What is annoying, however, is the dominance of a particular 
method or a particular way of thinking and its application to the inference of data in 
research. 

In this book, we have considered the methodology of approximate inference in 
psychological research from a theoretical and practical perspective. Quantitative 
variable-oriented methodology and qualitative case-oriented methods are both 
used to explain the set-oriented methodology which we call fuzzy psychology. As 
stated in the opening sentence of the book, it does not matter if you do not know 
much about mathematics or statistics, because statistical and mathematical intuitions 
are key here and they will be learned through practice. What is important is to 
understand the method and its application to new, dynamic, and elusive phenomena. 

Finally, your comments on this book are very welcome, so please do not hesitate 
to share them with us. 

In the end, remember Montagne’s short but deep saying “What do we know?” 
The human world is indeed full of uncertainty, whose beauty we have not been able 
to define and explain.
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2 1 In Search of a Method

1.1 What Is Artificial Psychology? 

Artificial psychology (AP) is a highly multidisciplinary field of study in psychology. 
AP tries to solve problems that occur when psychologists do research and need a 
robust analysis method. Conventional statistical approaches have deep-rooted lim-
itations. These approaches are excellent on paper but often fail to model the real 
world. Mind researchers have been trying to overcome this by simplifying the 
models being studied. This stance has not received much practical attention recently. 

Promoting and improving artificial intelligence helps mind researchers to find a 
holistic model of mental models. This development achieves this goal by using 
multiple perspectives and multiple data sets together with interactive and realistic 
models. This comprehensive, holistic, and interactive view may lead to a new 
research line in the near future. AP can open up a new horizon for mind researchers 
from clinical to theoretical psychologists to find a more realistic model. This horizon 
is rooted in a multidisciplinary approach updating our view along with the develop-
ment of the related sciences leading to the finding of new results even from old 
datasets and models. AP has some assumptions. Satisfying these assumptions helps 
find a more precise and deeper way of modeling for artificial psychologists. 

The assumptions of AP are discussed here. First, we assume that the mind is filled 
with uncertainty. The uncertainty is the cost we are paying for living in the real 
world. We are usually trying to proceed through this uncertainty by considering the 
most certain fact as a truth. It is important to note that uncertainty not only occurs in 
nature but also in almost all man-made systems. Second, we assume that the mind is 
continuous. In other words, we assume a continuous consciousness in which the 
brain acts holistically and outputs behaviors discretely (Huette et al., 2012); there-
fore, there is not a sharp dividing line between emotion and cognition. The brain is a 
grey matter that constructs mental systems not separated by solid lines. These 
ambiguous areas are the ones mind researchers are trying to handle by the use of



statistical models. The third assumption is that the mind is a complex system; human 
mentality is made up of complicated systems. Even the simplest system and phe-
nomena are complex. This complexity can be captured and interpreted by a dynamic 
model. The fourth assumption is that there is always a proxy between mind and data. 
It is not possible to study mental activities directly. Brain data needs to connect to 
some psychological constructs and behaviors. Therefore, we need to use multiple 
sources of data in a single model at the same time. Conventional statistical tech-
niques use rigorous mathematical models. These models require comprehensive and 
complete data for analysis and prediction. In the real world, we are facing big, 
imperfectly measured data as well as nonlinear relationships in complex systems. 
The fifth assumption is that brain data is highly dimensional data. This implies that 
the dataset has many features even in small sample sizes. This problem commonly 
occurs in psychological research, especially in clinical, cognitive psychology, and 
neuroscience, where we need to deal with P > n. 

1.1 What Is Artificial Psychology? 3

In summary, psychologists need new analysis models to help them model com-
plex mental systems. Artificial psychology uses intelligent models that satisfy these 
assumptions (Fig. 1.1). 

One technique used in applied computing is to emulate the strategies involved in 
the intelligent systems or models for problem-solving. Intelligent models are related 
to the human way of thinking and interpretation. These models use fuzzy logic, 
artificial intelligence, and genetic algorithms both individually or together. 
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Fig. 1.1 Artificial psychology as a multidisciplinary field
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1.2 In Search of a Method 

Science aims to clarify concepts systematically, and its core is replicability. The 
ambient world is full of concepts, some of which are determinable or almost 
determinable, such as country borders and per capita income. Others, however, 
that are more prominent and studied in the social and behavioral sciences are 
different, such as depression, suffering, grief, love, and selective attention. 

There is an infinite set of these concepts and they are very vague, scattered and 
elusive and assume highly diverse intertwined forms. The models designed by 
researchers to acquire an approximate understanding of these concepts represent 
the efforts of science to clarify them. Models are an approximate simplified under-
standing of reality and do not deal directly with reality. Models are always an 
approximation of reality outside of them. These models test theories and hypotheses 
about different concepts. 

If psychological reality is vague and elusive, how should it be examined then? 
Such a reality cannot be understood well by a single method. Therefore, research 

methods must develop like any other science, and there is no harm in employing a 
multitude of methods and, sometimes, methods of other disciplines for more accu-
rate proximity to concepts. 

Perhaps the principles and assumptions of many of the existing methods and 
future ones will probably require revision, even the methods introduced in this book. 
The dominance and hegemony of a particular method is remarkably alarming and 
dangerous.
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It should be borne in mind that methods are not the only means of achieving 
reality, but they are the containers of reality, and the research findings take shape 
from them. Furthermore, these findings from the method occasionally become so 
extreme that they annoy some researchers. 

It is noteworthy that the present book does not attempt to discard, ignore, or 
devalue past or existing methods but to overcome the fear of going beyond them. 
The research psychologists’ shared fear might result in innovation. The aim is to find 
a way in which elusive concepts could be understood more clearly by researchers. 

We know that wrong answers are more harmful than random answers because 
wrong, non-random answers mislead science systematically and significantly. 

From Sigmund Freud’s birth in 1856 until the writing of this book (2022), the 
earth has rotated 60,590 times, and research methods need to rotate as well. We 
know that psychology did not begin from Freud’s birth, but Freud is cited since he 
has been called one of the scientific revolutionaries. 

1.3 From p-value to p-war 

Statistical significance plays a significant role in scientific research by linking data to 
hypothesis testing from the late mid-twentieth century (Gigerenzer et al., 1990). 
Currently, the most commonly used statistical measures in scientific studies, despite 
much criticism of its use, is the p-value (Lyu et al., 2020). In spite of the widespread 
use of the p-value in psychological research, various studies show that most 
researchers and students misinterpret p-values. This misinterpretation is rooted in 
p-value misuse, including the statistical significance hypothesis (Ziliak & McClos-
key, 2008) and p-hacking. These are the main reasons for the confidence crisis and



reproducibility crisis in psychology research. The effect size and confidence inter-
vals (CIS) can be regarded as alternatives to the p-value. Although the CIS can be 
used to improve statistical interpretation and inference, considering it an indicator of 
the effect size variations, its concept has also been misunderstood by researchers and 
its users (Lyu et al., 2020; Harrison et al., 2020; Greenland et al., 2016; Lyu et al., 
2018; Morey et al., 2016; Cumming, 2013). 
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The study carried out by Lyu et al. (2020) on 1479 researchers and students in 
various fields in China revealed difficulty interpreting the p-value and CIS correctly, 
regardless of their academic degree and career stages. That is, 89% of them made at 
least one error in the p-value interpretation, and 93% made at least one error in the 
CIS interpretation. The level of misinterpretation in the significant and nonsignifi-
cant p-values and whether the CIS included zero or not was increased. Moreover, it 
is noteworthy that respondents were generally confident in their (incorrect) 
judgments. 

These results indicate that researchers have misunderstood these crucial indica-
tors of inferential statistics. This misunderstanding causes researchers to misinter-
pret, using classical statistics-based methods (assuming we are pleased with the 
p-value!), and these interpretations flow from different streams into the sea of 
psychological research findings (Harrison et al., 2020). 

These interpretations include the following: 

1.3.1 p-value as Evidence to Confirm or Unconfirm a Null 
Hypothesis 

This issue is what is referred to as the illusion of certainty in Gigerenzer’s research 
(2004, 2018), as it may provoke a crisis of confidence in the psychological research 
findings by encouraging researchers to reach a p-value of ≤0.05 as evidence of the 
existence of an “effect.” One of the primary sources of this crisis is publication bias. 
This bias results from the fact that scientific journals welcome statistically significant 
results (p-value ≤ 0.05). 

Chang et al. (2019) state that a p-value is a probability of obtaining an effect at 
least as extreme as the effect in the sample data, assuming the truth of the null 
hypothesis. Considering the p-value in classical statistics, despite its low statistical 
power in both single studies and meta-analyses, may result in distrust in the actual 
results of psychological research. Given the statistical power in the published 
studies, the frequency of statistical significance in those studies is suspiciously 
high (Francis, 2014). 

Schmidt and Oh (2016) asserted that 90% of the research reports were significant, 
while the average total power was 0.4. What they found is strong evidence that these 
studies are questionable. Test power did not increase in questionable research 
practices until 1962, when Cohen emphasized the “low power” issue. What was 
the reason for this emphasis?
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We know that in classical statistics, the p-value is a function of the effect size and 
the sample size, and the sample size seriously affects the power increase: 

p- valueð Þ= f Effect size, sample sizeð 1:1Þ 

Low power leads to nonsignificant results. Nonsignificant results are as important 
as significant ones, but their nonsignificance made it difficult for researchers to 
publish their papers. This publication bias is called the file drawer problem, with 
studies less likely to reject the null hypothesis ending up unpublished in a file 
drawer. Therefore, researchers have earnestly strived to increase the power of their 
research. Maxwell (2004) has elaborated on this issue extensively. However, it has 
not always been possible to obtain a sufficient sample size, so maybe this is why 
researchers conducted questionable research. In other words, they conducted ques-
tionable research to obtain significant results to avoid the abundance of nonsignif-
icant results due to low statistical power (Harrison et al., 2020). 

1.3.2 Reverse Interpretation of the p-value 

Another consequence of misinterpretation of the p-value, as Lyu (2020) states, is 
replication illusion. Many researchers avoid Bayesian thinking because of classical 
p-value-based statistics, the thinking that is the basis of classical inference. The 
reverse interpretation of the p-value is to consider 1 – p-value as the probability of 
successful replication of the result. 

Despite these problems, the potential consequences of the lack of statistical 
thinking and ritual use of p-values have rarely been mentioned in the psychological 
research results, except in recent years (Lyu et al., 2020). The study of Farahani et al. 
(2021a, b, c) on a sample of 100 postgraduate and Ph.D. psychology students in Iran 
indicated that 95.7% of them make mistakes about the illusion of certainty and the 
replication illusion in the interpretation of the p-value. 

The p-value is not well understood, and most researchers speak about it with a 
wrong mindset and perception. A p-value demonstrates the likelihood that the 
researcher’s data will occur under the null hypothesis. This is obtained by calculat-
ing the likelihood of test statistics gained from the researcher’s data (Indrayan, 
2019). 

It should be noted that the p-value is a ratio and a percentage. The p-value is the 
probability of a test statistic at least as big as the test statistic obtained from the data, 
assuming that the null hypothesis is correct. 

Harison et al. (2020) summarized the shortcomings of using NHST (p-values) as 
follows:
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1. Use of p-values without regarding the effect sizes and confidence intervals is not 
informative. 

2. The potential for the use of “p hacking” by manipulating data and analyses 
deliberately to reduce p-values. 

3. Simplistic dichotomous interpretations of p-values as either significant or 
nonsignificant. 

4. Incorrect interpretation of p > 0.05 as no effect. 
5. Misinterpreting statistical significance and taking it as clinical or practical 

significance. 
6. Committing multiplicity by performing multiple statistical tests without adjusting 

the criterion p-value. 

One way to improve p-value interpretation is to use clinical interpretation, 
practical interpretation, or practical significance. Apart from statistical significance, 
the effect size should be used for practical interpretation. Another point is that 
reporting inconclusive findings and null findings in articles is not harmful but 
valuable and strengthens the scope of scientific theories, but it should be borne in 
mind that what was said at the beginning of this chapter about the world not being 
black and white encourages researchers to choose another way to have accurate yet 
close-to-reality findings. 

To design a different research model, a new conceptual framework is required 
with different measures, which will be discussed in detail in the second chapter.
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2.1 Artificial Psychology 

Artificial psychology was first proposed by Dan Curtis in 1963 as a theoretical 
discipline. Artificial psychology is a combination of psychology and artificial 
intelligence. As a comprehensive definition, psychology can be called the science 
of studying an individual’s mental processes and behaviors. 

Artificial intelligence also has a wide variety of definitions, and it may not be 
possible to provide a comprehensive definition that encompasses all of its dimen-
sions; however, it is a science that deals with the design of intelligent machines and 
systems; systems that can perform tasks requiring human intelligence (Crowder & 
Friess, 2010). 

Here, we return to artificial psychology. The developments in psychology and 
artificial intelligence as of 2022 have addressed the needs of researchers. Here, 
artificial psychology has a theoretical framework or is simply a theory on which 
the artificial psychology presented in this book relies to look at the world of 
psychology. In other words, artificial psychology uses artificial intelligence to 
design, train, test, and ultimately deploy methodological models in the psychological 
context. This representation of artificial psychology is shown in Fig. 2.1. 

This theoretical framework has features borrowed from psychology, artificial 
intelligence, and the psychological contexts in question. As the basis of artificial 
psychology, this theory is interpretable and explainable in artificial intelligence-
based psychology. 

Artificial psychology in this book relies on the above theory for prediction and 
classification to provide robust, interpretable, and explainable models. Here, artifi-
cial psychology refers to the scientific application of this theory.
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Fig. 2.1 Representation of artificial psychology 

2.2 Why Artificial Psychology? 

The question we have to address here is why artificial psychology is significant, as its 
application is becoming increasingly prevalent. 

From the data analysis perspective, psychology mainly aimed to create models to 
infer human behavior for about a century. Researchers in behavioral sciences used 
the null hypothesis test to conclude and find the causality and underlying mecha-
nisms of human behaviors.
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For nearly two decades, machine learning has received increasing attention in 
scholarly studies as a branch of artificial intelligence (Lipkova et al., 2022). Machine 
learning is part of artificial intelligence and perhaps the most essential and practical 
part of artificial intelligence in artificial psychology. There are numerous definitions 
of machine learning, but the definition given by Samuel in 1959 is taken as the 
working definition (Buchanan, 2005). 

Machine learning is a branch of study that enables computers to learn without 
being explicitly programmed. Perhaps the most prominent part of this definition is 
“without being explicitly programmed.” In the case of obvious programming, the 
software receives the input data and generates the output according to the specific 
rules defined by the programmer (Fig. 2.2). 

We know that these rules guarantee the explainability and transparency of the 
system as it is possible to understand exactly what those rules (algorithms) follow. 
Thus, knowledge of the algorithm answers “why,” “what,” and “how” in the model, 
and thus explainability is achieved. We will return to the topic of explainability later. 
The age of algorithms has given way to the age of data. Figure 2.3 indicates the short 
history of machine learning. Machine learning seeks to design models to predict 
unseen data with high accuracy. Fans of inferential statistics should not despair. 
Inferential statistics can still be used to test null hypotheses. These methods are used

Data 

Program 

Computer Output 

Data 

Computer Program 

Output 

Tradi�onal programming Machine learning 

Fig. 2.2 Comparison of conventional programming and machine learning 

Fig. 2.3 Short history of machine learning. (From https://www.algotive.ai/blog/machine-learning-
what-is-ml-and-how-does-it-work)

https://www.algotive.ai/blog/machine-learning-what-is-ml-and-how-does-it-work
https://www.algotive.ai/blog/machine-learning-what-is-ml-and-how-does-it-work


in inferential statistics to infer human behaviors. Behavioral inference means that the 
cause of behaviors and relationships between variables are explained, and the best 
possible insight into human behavior is obtained. These methods have limiting 
assumptions. The most significant limitation is that the generalizability of models 
is questionable.

2.2 Why Artificial Psychology? 13

In behavioral sciences and psychology, statistical inference is mainly based on 
statistical tests on aggregated data. The underlying assumption of these statistical 
tests is that what is estimated from the groups can be generalized to individuals. The 
generalization of group-based findings to single-case levels is interpretable as long 
as the studied process is ergodic. Ergodicity indicates that the studied effects are 
homogeneous among individuals and constant over time (Oliveira & Werlan, 2007). 
However, psychological constructs are organized over time in individuals, and in the 
case of individual exceptions, the group-based generalizability is not ergodic. 

On the other hand, inferential models are utilized for samples and variables that 
are small to medium in size. The lack of multicollinearity is another assumption. 
Yarkoni and Westfall (2017) believe that one reason for choosing classical inferen-
tial statistical methods in psychology is the poor understanding of the tools that make 
successful predictions and the slow deployment rate of these tools after creation. 
Data and AI (Artificial Intelligence) scientists are able to target the limitations of 
classical inferential statistics, such as a large number of assumptions, generalizabil-
ity, complexity, low number of input variables, and poor predictive power. Devel-
opments in recent years have targeted mainly the limitations of classical statistics. 
The models used for prediction create systems that incorporate advanced statistical 
and probabilistic methods. These methods learn from data to detect and extract



hidden patterns in order to predict unseen or out-of-sample data. These AI-based 
predictive models are called machine learning (ML). Machine learning has signifi-
cant advantages over the models used for statistical inference. Machine learning is a 
relief from the cumbersome assumptions of inferential statistics. These assumptions 
work well on paper, but in real life, they are not generally met regarding the data. 
Machine learning is based on minimal a priori assumptions. In ML, there is no need 
to select variables because, in classical inferential statistics, multicollinearity is an 
erosive problem. 
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Machine learning can be utilized for high-dimensional data, where the number of 
rows is less than the number of columns in the dataset file. Highly correlated 
variables and small sample sizes are common problems in cognitive and clinical 
psychology and neuroscience. For example, consider predicting the disorder based 
on EEG-based brain features in people with clinical depression. Large samples and 
extraction of brain features are time-consuming, costly processes. 

Machine learning provides good predictions even if the input variables are 
beyond individuals. It means the models based on machine learning can perform 
well with new data (unseen data) (Xin et al., 2018). 

One of the problems of research and theoretical models in psychological sciences 
is their complexity. This complexity raises serious issues in modeling. Complex 
models involve the selection and use of many variables. Psychological phenomena 
and mental disorders are mainly complex because of their including subsystems 
(models) such as emotion, cognition, memory, behavior, and biology (Borsboom 
et al., 2021a, b). ML enables the building and testing of such models. 

ML gives predictive models the ability to model individuals instead of groups. 
The advanced part of ML, called deep learning, allows one to study complex models 
and systems. The following is a brief description of machine learning types. 

ML makes it possible to make predictions in the case of multiple variables, small 
samples, and complex or even unknown nonlinear relationships between variables to 
find hidden patterns. These unique features raise a new problem at heart: such 
complexities in the ML pose a severe challenge to interpretability, requiring exper-
tise in interpreting these models. 

Statistical and quantitative accuracy precludes qualitative and in-depth interpre-
tation, so even if the accuracy of prediction models performed in the ML is higher 
than classical inferential statistics, the results might still be questionable. For 
instance, if we intend to identify depressed people in image-based deep neural 
networks, and in those images, the depressed people are wearing winter clothes 
and nondepressed people are wearing summer clothes, then the accuracy of predic-
tion in their category is 100. Nevertheless, winter clothes are not related to depres-
sion. This shows that high accuracy is not necessarily a good result. The adage of 
“well-shaped apples are not necessarily tastier” applies here! In recent years, to 
overcome the problem of uninterpretability in ML, a new field has been developed in 
artificial intelligence and ML, which is called explainable artificial intelligence or 
ML (XAI or XML). The ultimate goal of XAI is to provide models to increase 
interpretability, transparency, and fairness.
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The interpretable model is trained by minimizing cost functions such as weighted 
root mean square (RMSE). It should be noted that to achieve an interpretable model 
in ML, the cost function should be minimized to the extent that the complexity and 
fidelity indices allow. Fidelity can be considered the extent to which an interpretable 
model can approximate the original model. Let us take a closer look at these features. 

The purpose of explainable artificial intelligence (XAI) and consequently 
explainable ML (XML), on which, as mentioned, the artificial psychology discussed 
in this book is based, has different features with the aim of attempting to address the 
inherent nature of the ML, which is a black box, to gain a better understanding of the 
decision-making process. 

Adadi and Berrada (2018) state that explainable systems are also interpretable if 
humans understand their operations. This definition indicates that interpretability is 
closely related to the concept of explainability, although Gilpin et al. (2018) consider 
interpretability and fidelity as essential components for the explainability of models. 

They believe a good explanation should be understandable to humans (interpret-
ability) and accurately describe the model behavior in the entire feature space. 
Interpretability may contain features such as transparency and parsimony. Transpar-
ency shows that the explanation is not ambiguous, while parsimony means that the 
explanation is presented in a simple, concise pattern (Rudin, 2019; Zhou & Chen, 
2018). Fidelity has features of completeness and soundness (Zhou et al., 2021). 
Completeness indicates that the given explanation describes the overall dynamics of 
the ML model, while soundness indicates how correct and reliable the explanation is 
(Fig. 2.4). This model is based on Markus et al. (2021). 

Velez and Kim (2017) defined the machine learning environment interpretability 
as “the ability to explain or present in human terms.” This definition may seem 
slightly vague. Let us clarify it in the form of an example. 

Supposing that as the anxiety increases, the individual performance in the maths 
test first improves, then is stable, and finally decreases. Refer to Fig. 2.5. 

Explainibility 

Fidelity 

Clarity Broadness Parsimony Soundness Completeness 

Interpretability 

Fig. 2.4 Definition of ML explainability and related features
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Figure 2.5 shows the nonlinear relationship between test anxiety and maths test 
performance. This relationship is an inverted-U function. 

In this example, interpretability can be understood as how the machine learning 
system predicts test performance by increasing stress scores. The explainability of 
this model refers to the fact that it is based on a theory such as Yerkes-Dadson’s law. 
This general understanding is associated with knowledge discovery (Fig. 2.6). 
Simply put, explainability can be considered the possibility of understanding the 
mechanics of an ML model. 

Figure 2.6 shows that Yerkes-Dadson’s law demonstrates an inverted relationship 
between arousal and memory performance. 

Gianfagna and Di Cecco (2021a, b) reveal that regarding the explainability of the 
machine learning model in practice, we are looking for how much the output will 
change if different values are placed in a feature that was not in the data. 

Explainability requires checking whether the machine learning model is trained 
on a biased dataset. This feature is fairness, which is related to model validation. In 
addition, research models must be debugged to generate and discover knowledge. 
Model debugging ensures reliability and robustness. This debugging refers to 
displaying what is happening behind the scenes by examining the model. A small 
change in input data should not lead to a considerable change in output. This 
examination contributes to the stability and robustness of the model.
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It should be borne in mind that the most complex function of the ML models is to 
acquire and increase a clear understanding of psychological processes, events, and 
systems studied in the psychological sciences. As previously discussed, the discov-
ery of psychological knowledge is the primary purpose of explainable artificial 
psychology and cannot be interpreted by merely predicting and accurately classify-
ing the application of these models in the psychological sciences. Extraction of 
scientific knowledge is not entirely done by prediction. Artificial psychology is 
required to create results with explainability and interpretability. Furthermore, 
another point that emerged in the data age is that the solid line between correlation 
and causality is fading. Correlation deals with the relationship of two or more 
variables that change together, i.e., they have a common variance, but this correla-
tion does not indicate causality. In causality, one variable causes another (cause and 
effect). 

In a town, as the number of storks increased, the number of infants also increased. 
This random association should not be considered a correlation because an illusory 
correlation causes it, and by removing the variable, such a relation would be 
removed as well. Moreover, what is considered a graver mistake is to make a causal 
inference from this phenomenon, meaning that the storks bring the babies to the 
town! 

As noticed, this is a ridiculous interpretation. Therefore, explainability and 
interpretability can play a significant role by creating valid, debugged models to 
help discover scientific knowledge. Consequently, it tests the application of artificial 
intelligence in models with deep, mixed, and multilayered psychology, which is the 
primary purpose of this book and enables the explainability of the models 
(Table 2.1). 

Interpretability, as the other part of the XAI theoretical framework, can be 
performed in three stages of the explainable ML modeling process. This feature 
could be observed in the form of three types or stages (Aslam et al., 2022) (Fig. 2.7). 

Table 2.1 Summary of the types of explanations 

The most important question Type 

(1) How does a model work? (1) Global 
explanations 

(2) Why does a model reach a prediction for a particular input? (Does 
this prediction refer to a specific feature in the data or a specific 
algorithm?) 

(2) Local explanations 

(3) Why does a model make a certain prediction instead of another for a 
particular data? (Why X and not Y?) 

(3) Contrastive 
explanations 

(4) How does an output change by tweaking the data and parameters of a 
model? 

(4) What-if 
explanations 

(5) How can the desired result be achieved by making the least change in 
the model? (regardless of understanding its internal structure) 

(5) Counterfactual 
explanations
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Fig. 2.7 Modern problems require modern solutions 

1. Pre-model Stage 
This type of interpretability has nothing to do with the model and is achieved before 
the implementation of the model and is solely based on data function, generally 
through data visualization and exploratory data mining such as exploratory factor 
analysis (EFA). This data interpretability is implemented prior to the formulation 
and implementation of the explainable ML model and plays a crucial role in 
determining the model. This type of interpretability is related to feature engineering. 
Psychologists are familiar with some of these methods in the form of descriptive 
statistics. 

2. Intrinsic Stage 
This interpretability refers to self-explanatory models that reinforce natural inter-
pretability with their internal structure. Intrinsic models include basic models such as 
decision trees, generalized linear models, logistic models, and clustering models. It 
should be noted that natural interpretability is associated with cost, depending on the 
model’s accuracy.
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3. Post-model Interpretability Stage 
This kind of interpretability can be used for all black box models without the need to 
understand the internal structure. This interpretability can even be used for intrinsic 
models. 

In short, Fig. 2.8 depicts the relationship among artificial intelligence, machine 
learning, and explainable artificial intelligence (Fig. 2.9). 

Let us return to the ML classification, which is at the core of artificial psychology. 
Machine learning systems are generally divided into three categories, which can be 
briefly defined as follows. The basis of this division is the training type. 

1. Supervised Learning 
In this type of machine learning, the system uses data for active learning to map 
inputs to outputs. The reason this type of learning is called supervised is that there is 
a solution. The solution is called the target variable, and in psychological research, it 
is called the criterion (dependent) variable. This variable has a specific label in the 
data (for example, one hundred boys with ADHD and one hundred non-ADHD 
boys) and there are some features as predictors based on which predictions are made; 
for instance, the child’s age, birth rate, and daily caffeine intake. In this example,



since the target variable has a separate label and is already known, supervised 
algorithms such as linear regression, random trees, boosted trees, and neural net-
works (ANNS) are used in data training. This type of learning is the most widely 
used type of ML in the psychological sciences (Vélez, 2021a, b). 
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Farahani et al. (2011) used a supervised learning algorithm in their study. 

2. Unsupervised Learning 
Training data is not labeled in this type of learning. In other words, the solution does 
not already exist, and the system learns to find the hidden pattern in the data (such as 
the PCA, K-means, and auto-encoder clustering algorithm). The target variable 
(criterion) is not determined in this algorithm. This part of machine learning is 
more about general artificial intelligence. An instance of this can be found in the 
brilliant study by Grazioli et al. (2021) to personalize treatment in children with 
ADHD using the clustering algorithm. 

3. Reinforced Learning 
This algorithm differs from the previous two algorithms and their intersection 
(Fig. 2.10). In this algorithm, there is no machine training on the available data. 
There is an agent here performing actions in an environment and receiving a reward 
for each action, and its goal is to find a policy and strategy to maximize the reward. 

Deep learning algorithms should be considered here, which do not fit into these 
three divisions. Deep learning is a type of machine learning that runs with several 
hidden layers and yields the most successful findings and operations. 

As described, there are three types of learning algorithms in the ML and deep 
learning systems, and there is no single solution or set of rules to tell which category 
needs more explainability than the rest. Explainability is associated with the inter-
pretability of the algorithms in that category. 

According to Fig. 2.11, there is a transversal and emerging necessity across the 
various domains of AI. In other words, although data-driven prediction and model-
ing are essential as a new field of artificial intelligence, it should be remembered that 
the principal basis of predictions in machine learning is correlation (Zhou et al., 
2018). Furthermore, knowledge is generated when these predictions, classifications, 
and clusters are interpreted. 

Fig. 2.10 Intersection of 
supervised and 
unsupervised algorithms 
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Fig. 2.11 Comparison of the purpose of machine learning and explainable artificial intelligence 
(XAI) 

In summary, artificial psychology aims to apply explainable and interpretable 
artificial intelligence or, more precisely, explainable and interpretable machine 
learning to discover knowledge. The purpose of this new field of research is to 
study theoretical models using models based on explainable and interpretable 
artificial intelligence to be able to understand internal operations from a human 
point of view. This human-readable model combines accuracy with transparency and 
fidelity, which improves the models’ weaknesses based on ML or AI. As a result, 
artificial psychology will be most helpful whenever models’ ambiguity is reduced 
through using XAI, rule-based systems, and Bayesian models. 

It is important to note that to reduce ambiguity using rule-based systems as well as 
the use of language variables that are most utilized in measuring structures, fuzzy 
inference systems (FIS) can be applied. 

Furthermore, Bayesian Network Analysis (BNA) is an explainable and interpret-
able model based on prior knowledge and information. This prior knowledge helps 
to increase the transparency and fidelity and, thus, the explainability and



interpretability of the model. This is one of the goals of artificial psychology. 
Fig. 2.12 illustrates the artificial psychology subfields. 
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2.3 Artificial Psychology in Practice 

In addition to the theoretical knowledge, to become more familiar with the subfields 
of artificial psychology in this book, it is necessary to have the essential codes to run 
each algorithm of XML algorithms, fuzzy inference system, fuzzy cognitive map, 
and Bayesian network analysis using the R software, Python, and occasionally 
MATLAB. We know this book is not a software guide, but its purpose is to introduce 
the new field of artificial psychology and its sub-fields with examples. 

R Software 
For more than three decades, R (www.r-project.org) and Python (www.python.org) 
have facilitated the use of ML algorithms for everyone, as they are free and open-
source. Recently, Julia (www.julialang.org) has emerged as a powerful and effective 
alternative. Since 1995, R has been a language and environment with various

http://www.r-project.org
http://www.python.org
http://www.julialang.org


statistical and graphical methods for classical statistics, machine learning, clustering, 
and predictive models and is highly expandable. 
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There are several freely available ML, FIS, FCM, and BNA packages in R. See 
the Comprehensive R Archive Network (CRAN) for more information. 

Python Software 
Guida Van Rossum developed Python software in 1991. It is widely used software 
with a high-level, object-oriented programming language. There are various Python 
packages for ML, FIS, FCM, and BNA. 

The practice is further explained in the following. We do not look for coconuts on 
Coconut Island! The aim is to give a novel perspective, a novel function, and novel 
findings in psychological research. 

Main Approaches for Modeling a Phenomenon 
First, artificial psychology researchers must design their model to predict or classify 
the target variable. In this step, the researcher attempts to implement the desired 
model by examining the theory and research background. What are the predictors? 
Why are they chosen? What are the measuring tools? What is work innovation? This 
approach is called the knowledge-based or model-based approach in this book. In 
fact, in this approach, the initial, hypothetical model is designed through multiple 
sources, including a literature review, experience in the field, and interviewing the 
target and the expert group, using qualitative analysis (thematic analysis and content 
analysis) (Fig. 2.13). 

The second approach, also called the data-driven or science-based approach, uses 
data as the model’s source of inspiration. The present age has been called the age of 
data. Although Big Data has always existed, what is seen now is recorded Big Data,

Model-based approach 

Critical literature 
review 

Qualitative research Experience in the field 

Designing modelSupervised algorithm 
Semi-supervised 

Rule-based modelsClassification modelPrediction model 

BNA             FIS            FCM ANFIS 

Fig. 2.13 The implementation process of a knowledge-based approach



and there are various ways to record Big Data. In psychology, data can be obtained 
from multiple sources, from surveys and clinical batteries that measure essential 
dimensions of human behavior using EEG, reaction times, and genetic and omics 
data (Velez, 2021a, b). Data recording through the Internet, national networks, and 
smartphones have led a data explosion that may cause confusion. In this situation, 
the artificial psychologist attempts to reach an explainable and interpretable model 
based on data-driven models. We know that an artificial psychologist can collect data 
for a specific purpose and use the collected data to design the final model, an 
interpretable and explainable model. The following figure shows the data-driven 
model process in detail (Fig. 2.14).
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Fig. 2.14 Data-driven model process 

It is necessary to know that the explainability and interpretability of model-based 
and data-based approaches are particularly important. It should be noted that 
explainability and interpretability are slightly more straightforward in supervised 
models because they occur in a label-bound environment. Moreover, the 
explainability and interpretability of white-box algorithms such as linear regression, 
decision tree, and logistic regression are not essential as their algorithm is quite clear. 

In the following, explainability and interpretability in the knowledge-based and 
data-driven models in artificial psychology are explained in detail.
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Fig. 2.15 An illustration of explainability and interpretability route in models resulting from a 
knowledge-based approach 

2.4 Interpretability and Explainability 
in a Knowledge-Based Approach 

As shown in Fig. 2.15, this explainable artificial psychology approach, which is the 
book’s promised land, is of great importance. 

In this approach, models are designed based on prior knowledge, and in quanti-
tative studies, modern methods based on explainable machine learning, which is part 
of explainable artificial intelligence, are used. It should be noted that in this 
approach, rule-based models, including Bayesian Network Analysis, Fuzzy Infer-
ence System (FIS), Fuzzy Cognitive Map (FCM), and Adaptive Neuro-Fuzzy 
Inference System (ANFIS), are all based on rules obtained through theoretical 
foundations, literature review, and experts’ opinions or raw data. Prior knowledge 
is their basis. Therefore, they are considered white boxes and are explainable and 
interpretable. However, we wish to call fuzzy logic models and fuzzy sets Gray Box 
because fuzzy logic sees gray land as its promised land! Hence, the resulting model 
is explainable (internal explainability). Supervised and black-box algorithms need to 
be explainable and interpretable. Model explainability is a significant criterion for 
performing computational methods. 

Various methods have been proposed to explain the models resulting from black-
box machine learning. According to Jaganathan et al. (2022), these methods are 
of two types: model-explainability-based and instance-explainability-based 
approaches. Model-based and instance-based explainability in relevant texts are 
known, respectively, as global and local explanations. On the other hand, these 
explanatory approaches can be model-specific or model-independent (agnostic). 
Unlike model-specific explanation, the agnostic explanation can be used for any 
ML model, and typically this explanatory model is used as post model or post hoc. 

The Shapley Additive Explanations (SHAP) algorithm can be used for a general 
explanation in any ML model (Fig. 2.16). 

Now it is time to deal with explainable and interpretable methods in models based 
on the second approach of artificial psychology, i.e., the data-driven. Unsupervised 
black-box models are challenging in terms of interpretation as most explainable 
methods in the XAI and XML require labeled data (Crabbe & Schaar, 2022). In other



words, given the supervised algorithms for interpretability and explainability of 
algorithms in the second approach, several ways can be suggested based on the 
summary of one of the related sources. The model can be extracted from data based 
on unsupervised algorithms with a data-driven approach. Then, white-box algo-
rithms (e.g., logistic regression or decision tree) or other supervised black-box 
algorithms or experts’ opinions can be used to explain it on the basis of the target 
variable. The explainability of the result can then be given by, for instance, running 
random forest and/or support vector machine (SVM) and SHAP or feature selection. 
Figure 2.17 represents this process. 
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To sum up, in artificial psychology, test models are extracted and then explained 
and interpreted using two categories of supervised and unsupervised algorithms 
(semi-supervised and reinforced algorithms are not discussed in this book). Predict-
ability and explainability with accuracy, precision, and human readability are the 
prime goals of this research field in psychology. 

2.5 Achilles’ Heel in Psychology 

In recent years, several scholars have claimed that the theoretical foundation of 
psychology is shaky (Fielder et al., 2017; Eronen & Bringmann, 2021). They believe 
that psychological theories in general are of low quality. Therefore, instead of 
focusing on improving statistical methods, researchers should focus on developing 
better theories. In other words, the theory crisis is the Achilles’ heel of psychology, 
and the theory crisis is more significant than the replication crisis. He argued that



although psychologists are interested in developing new theories, these theories are 
not presented in a consistent manner. They are not tested, proven, or disproven. They 
simply “exist” until they are forgotten or set aside. 
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Fig. 2.17 Representation of the SHAP process 

Some believe that this type of theorizing and degradation of theories has led to the 
crisis of reproducibility. 

Theories are undoubtedly the most powerful scientific tools available to psycho-
logical researchers, whether they are grand theories like Freud’s (revolutionary 
views about humans) or small theory-rich bubbles. It can be argued that theories 
are typically developed by a small group of theorists. This problem is referred to by 
Mischel (2008) as the “toothbrush problem,” i.e., psychologists view theories as 
toothbrushes: no one (typically) uses someone else’s toothbrush. It should be 
mentioned that this does not mean that psychology lacks necessary theories. It 
means that psychological sciences lack theorizing and methodologies. 

Researchers have mostly focused on developing hypotheses based on deduction 
and then testing these hypothesis is collecting data and using inductive (statistical) 
methods. In other words, the scientific method has been based on the mixture of 
deductive and inductive approaches. 

Deduction refers to what must be there, while induction refers to what is opera-
tive. In other words, theories are the result of the process of hypothesis-deductive, 
which relies on the assumption that science develops via constant scientific testing. 
This is the underlying assumption of most of the books in psychology. Using 
deduction, induction, and statistics is quite valuable and no one would undermine



its importance and role; however, this approach is limiting and mechanical and the 
process of theorization is more than procedural steps. 
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The aim of this volume is to practically implement a method that, by using Big 
Data, scholars’ views, and interpretable and explainable artificial intelligence, 
encourages psychologists to develop theories. Hopefully, the proposed methods in 
the book would be taken as the input of the abductive approach to generate theories. 
Hopefully, the proposed methods in the book will be taken as the input of the 
abductive approach to generate theories. 

Perhaps this could be called the fourth paradigm in the history of psychological 
science (Fig. 2.18). 

Abduction can be seen as a transition from implausible explainability to plausible 
explainability, and thus plausibility is the main criterion. In deduction and induction, 
validity and uncertain reality are considered the main criteria, respectively. There-
fore, in AP, robust patterns on the web are extracted using XAF, and these patterns 
are then used in the process of theory building using the abductive approach. For 
example, a psychologist assumes that all symptoms of depression are detectable in 
children with autism. Then, among 20 autistic children attending a particular edu-
cational center, there is one child who does not appear to be depressed and is happy. 
Assuming that our 20-child sample is a valid sample, we can inductively say that not 
all autistic children are depressed and deductively we can say that all autistic children 
are depressed. The autistic child who is happy is an anomaly in the population, 
which may lead to some questions regarding the abductive approach: Is the child 
really autistic? Does s/he have a different type of autism? Can s/he be classified in 
another part of the spectrum? Does the child suffer from another disorder? 

Let us take another example. Suppose one wants to predict suicide attempts using 
a multilayer perceptron neural network (or even deep learning) by employing 
features such as emotional schemas, cognitive schemas, and ontological schemas. 
After data collection and model preparation, the output would represent the impor-
tance of each of these features in classification. By, then, using the necessary 
patterns, such as SHAP and LIME, these features become interpretable and



causative. The derived patterns can be used as input for theorizing using an 
abductive approach (Fig. 2.19). 
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Fig. 2.19 Theory building based on XAP 

Is Big Data a new limitation in AP? How is it possible to use small samples and 
wish for development in AP? 

Internet, digitalization, and the ability to store data on different digital platforms 
have made Big Data more accessible. Big Data has always existed, but what we did 
not have was the record of Big Data that makes the fourth paradigm, data explora-
tion, a reality. In psychological research, paper-based questionnaires have changed 
into hyperlinks that can be easily distributed among participants and accessed online 
via smart devices. As technology rapidly evolves, it seems that Big Data is becoming 
much more accessible. On the other hand, some might say that studies with a small 
sample size are not appropriate for theory development because these studies may 
not be transparent and their results may not be replicable (Aguinis & Solarino, 2019; 
Pratt et al., 2019). 

So, can we trust the conclusions? It should be said that, in practice, it is possible to 
find robust patterns in AP using relatively small samples. Unlike classical statistical 
approaches (or inductive approaches) that rely on hypothesis testing, the main 
concern with machine learning is overfitting, which can be easily overcome with 
the methods presented in this book. A review of the literature on machine learning, 
the core of this volume, shows that more than 100 academic papers have been 
written using “-iris data.” This collection of data contains 150 observation cases 
involving five features (Dua & Graff, 2017). We know that in some areas of 
psychological sciences, data are quite expensive. However, there are studies that 
focus on these problems and difficulties and try to solve the problems of studies with 
small samples.
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Chapter 3 
Fuzzy Set Theory and Psychology 

3.1 Fuzzy Set Theory and Psychology: Theoretical View 

Psychology is the scientific study of mental processes and the behavior of individ-
uals. Fuzzy thinking is an approach for studying the mind. This approach makes the 
assumption that the brain is a fuzzy inference engine and the mind is a collection of 
involute fuzzy micro-maps. 

Fuzziness, indeterminacy, and overlapping are the main features of this mind, 
which are generally absent or even rare in classical psychology. Psychology is a 
science, and therefore psychologists try to correctly observe real psycho-systems or 
psychological phenomena, to measure and to assess data, to analyze them using the 
quantitative and qualitative methods, and to interpret results, and if the results have 
the features of replicability and reliability, they establish principles and then intro-
duce an empirical theory. That is to say, to investigate real-world systems or 
phenomena, we connect them with a theoretical structure and basis (Seising, 2008). 
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This is the heart of science since without accepting this assumption we are not 
able to study reality. As Wolfgang Blazer (1982) believed, we create this connection 
between reality and theory and assume that it is possible. Without this vital assump-
tion, it is senseless and meaningless to talk about empirical science. The main goal of 
this approach is to introduce new concepts and methods for studying the mind and 
psychological phenomena under the above assumptions. 

3.2 The Gray World of Mind 

We do not live in the world, but the world is living inside us. This kind of statement 
is not new but dates back many years. Buddha in the eleventh century B.C believed 
that phenomena were not completely black or white, nothing was fixed or perma-
nent, and change was always possible. Based on this view, a problem is not a 
problem; rather, our reaction to that problem is our problem. 

Uncertainty or vagueness is a wide part of human experience, language, and 
perception. Human perception is full of inaccuracy. The real world is not an 
abstraction; it is not perceived, well-defined and precisely calculated (Wierman, 
2010). Vagueness and fuzziness as states of uncertainty are generally considered as a 
realization that our beliefs and representations of the world are unable to accurately 
predict future events in our environment (Mushtaq, et al. 2011). It is important to 
note that uncertainty can be present in many forms. Uncertainty is a cost to be paid 
for living in the real world (Wierman, 2010). Reviewing the related literature 
revealed that individual differences affect our dealing with uncertainty (Mushtaq 
et al., 2011). There are many sources of uncertainty that can impact the research in 
this field. This uncertainty is in clinical decision-making, disorder diagnosis, and in 
the measurement of psychological constructs. Here, it is worthwhile noting that the 
uncertainty is caused by psycho-researchers and participants contributing to the data 
gathering for research because the mind can be regarded as uncertain. Many math-
ematical methods exist for dealing with uncertainty, which is inherent in psycho-
logical research. A more recent class of these methods are called non-probabilistic 
methods. Among such methods, we focus on those from fuzzy set theory. This 
approach in psychological research extends the classical view of the mind (Fig. 3.1). 

More formally, the theoretical systems are called independent systems (Blazer, 
1982). This means that a researcher gathers data and builds a model as a very simple 
picture of the real system. Although it is enough in scientific work, this simplification 
results in a black and white, distorted, and static picture of the world. In other words, 
a researcher is looking for a straightforward and neat picture of a phenomenon, but



this view is not able to hook onto a dynamic and elusive psychological process. 
There is, therefore, a gap between reality and these theoretical systems (Fig. 3.2). 
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The main question which arises here is what the gap is and how to bridge this gap 
with reality. What is missed in this point of view is our perception of reality, which is 
between the empirical level and the theoretical level. In summary, a distinction 
between real systems and perceptions of these entities leads to a modification of 
the structuralism approach, which pertains to the empirical level. This modification 
can be attained utilizing fuzzy set theory. This new approach can change the 
previous model of studying the mental process (see Fig. 3.3).
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In this new perspective, the real layer is maintained, but the former empirical level 
is replaced by a fuzzy layer. We agree with Seising (2008), who believes that the 
fuzzy layer is a subjective structure that is imposed by an observer’s perception. This 
fuzzy layer implies that our perception of reality is vague, ambiguous, and uncertain. 
The fuzzy layer leads to a mind covered by a “fuzzy micro-map.” A fuzzy micro-
map is an individual’s perception of a psychological event. A fuzzy psychologist 
tries to capture this map using a detailed interview with the individuals. A fuzzy 
psychologist draws this map by analyzing the story that has been told by the 
individuals. The main goal of this field is to introduce methods for gathering the 
fuzzy micro-maps and then to combine and aggregate them as a fuzzy combined map 
and make inferences using fuzzy set theory. In other words, “what we observe is not 
nature itself, but nature exposed to our method of questioning.” This statement by 
Heisenberg is one of the most important statements in the history of science. Based 
on this view, the results from research in studying the mind are contaminated by the 
specified thinking which developed them. Our perception of a phenomenon is 
imposed by that thinking. This thinking is called the fuzzy layer, which is the 
foundation of this approach. The fuzzy layer yields imprecise and imperfect infor-
mation, but this information is more dynamic, reasonable, and consistent with the 
real world. The main components of this model are the fuzzy layer and the fuzzy 
micro-map; the fuzzy inference system is produced from the application of the fuzzy 
set theory, and it leads to some innovative methods for making fuzzy inferences 
based on them. This is a consistent feature of this approach. 

3.3 The Fuzzy Logic Under Psychological View 

In a classical view on psychology, we easily see that psychology as a science must 
describe, explain, and predict psychological phenomena. Obtaining this final goal is 
not always easy. In order to achieve this goal and to preserve the scientific nature of 
phenomena in psychology, statistical methods or Fisherian statistics are usually 
employed. Although these methods have influential effects on this science, they do 
not take into account that the mind is an overlapping, dynamic, and integrative map. 
Simply put, there is no sharp line among latent traits or psychological constructs 
because, under the assumption of this approach, the mind is a collection of fuzzy 
integrated overlapping schemas or maps. The boundaries among them are not crisp;



W

they are instead rather fuzzy and ambiguous like a spider’s web. Fuzzy inference 
systems rely on these assumptions. In other words, these difficulties are rooted in the 
nature of a human’s mind. Mentality does not consist of distinct parts but is a 
dynamic, flexible, and complicated whole. 
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Lack of complete information coupled with the imprecise and controversial 
nature of the mental process and its states leads to challenges in psychology, 
diagnosis, research, treatment, prediction, and classification, and in the construction 
of theory. 

The best and most precise descriptions of the psychological states and traits are 
made by individuals’ linguistic terms. These terms are imprecise and vague. A given 
disorder may manifest itself quite differently, depending on its intensity and the 
individual characteristics of the patient. A single symptom may also correspond to 
different disorders (Torres & Nieto, 2006). On the other hand, some disorders are 
considered as non-specific, with, for example, the need for new theories to be 
developed to model mixed emotions. For example, some evidence indicates that 
people can feel happy and sad at the same time (Larsen & McGraw, 2011; see Fang 
et al., 2018a, b). Based on the classical view, normality (nondiseased) and abnor-
mality (diseased) are mutually exclusive and even may be opposites. This view 
originated from Aristotelian logic, which held sway for around 2000 years in human 
reasoning, knowledge, and science. Everything must either be or not be. A predicate 
either belongs or does not belong to a given subject in a given respect at a given time. 
That is either A or ØA. The modern formulation of the above rule is 
8x(A(x) Ø A(x)). 

Accordance with this emotionless view of classification, every proposition or 
state is of only two logical values: true or false (1 or 0). In the real world, however, 
not everything can be classified into either black or white; rather, the real world is 
colored by our perception. Therefore, most of the time, our mind’s view of the world 
is gray. Let us demonstrate this with a simple psychological example using a 
statement that is an item of the Minnesota Multiphasic Personality Inventory 
(MMPI). This test and its different versions are one of the most commonly used 
and important tests in psychological settings and research. The statement “I think 
many people exaggerate their misfortunes to gain the sympathy and help of others”



is partly true and partly false, depending on the “states and situations” of individuals. 
Consider this statement as another example: “I am a famous person.” If you are the 
president of a superpower country, this is true, but if, however, you are a shepherd in 
a small marginal village, then it is false. We are talking here of the relative fame of 
two sorts of people. Everybody is well-known (W) to some extent and unknown 
(N) to some extent. If you are famous, W = 1, and as each of us has just some degree 
of reputation, then W < 1. 
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W þ N = 1 

W þ I þ N = 1 

(I) in the W + I + N = 1 denoted as “I don’t know.” 
Let us pay attention to the diagnostic criteria of the obsessive-compulsive disor-

der in the fifth edition of the Diagnostic and Statistical Manual of Mental Disorders 
(DSM-5). Criterion A states that the presence of obsessions, compulsions, or both 
are defined by the presence of two factors: First, by recurrent and persistent thoughts 
or impulses that are experienced, at some time during the disturbance, as intrusive 
and unwanted, and that in most individuals cause marked anxiety or distress; second, 
by the attempts of the individual to ignore or suppress such thoughts, urges, or 
images or to neutralize them with some other thought or action (i.e., by performing a 
compulsion). Compulsions are defined by the following: 

1. Repetitive behaviors (e.g., hand washing, ordering, checking) or mental acts (e.g., 
praying, counting, repeating words silently) that make the individual feel driven 
to perform in response to an obsession or according to rules that must be applied 
rigidly. 

2. Behaviors or mental acts aimed at preventing or reducing anxiety or distress, or 
preventing some dreaded event or situation; however, these behaviors or mental 
acts are not connected in a realistic way with what they are designed to neutralize 
or prevent or are excessive. Note: Young children may not be able to articulate the 
aims of these behaviors or mental acts. Criterion B states that the obsessions or 
compulsions are time-consuming (e.g., take more than 1 h per day) or cause 
clinically significant distress or impairment in social, occupational, or other 
important areas of functioning. Criterion C states that the obsessive-compulsive 
symptoms are not attributable to the physiological effects of a substance (e.g., a 
drug of abuse, a medication) or another medical condition. Criterion D states that 
the disturbance is not better explained by the symptoms of another mental 
disorder (e.g., excessive worries, as in generalized anxiety disorder, preoccupa-
tion with appearance, as in body dysmorphic disorder, difficulty discarding or 
parting with possessions, as in hoarding disorder, hair pulling, as in trichotillo-
mania (hair-pulling disorder), skin picking, as in excoriation (skinpicking) disor-
der, stereotypies, as in stereotypic movement disorder, ritualized eating behavior, 
as in eating disorders, preoccupation with substances or gambling, as in 
substance-related and addictive disorders, preoccupation with having an illness,
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as in illness anxiety disorder, sexual urges or fantasies, as in paraphilic disorders, 
impulses, as in disruptive, impulse-control, and conduct disorders, guilty rumi-
nations, as in major depressive disorder; thought insertion or delusional pre-
occupations, as in schizophrenia spectrum, and other psychotic disorders or 
repetitive patterns of behavior, as in autism spectrum disorder). For many 
years, this disorder belonged to a bigger disorder class called anxiety disorder, 
but in 2012, it was reclassified. It is obvious that the nature of this disorder has not 
changed; rather, the definition has been changed and this kind of change may 
occur in the future as well. This example implies that the boundaries among 
psychological constructs are not well defined but are instead fuzzy and vague. 
This means that we face a partial inclusion of the categories (where we have at 
least two categories). This is a key component in fuzzy thinking according to 
Wierman (2010). Although fuzzy set theory has been used successfully in many 
fields of science for more than 50 years, there exist just a few research works, 
mostly articles, in psychology using this theory. While the existing approaches do 
not consider any practical aspect or software code that can be easily used by 
psychologists, they can be considered as a theoretical starting point for applying 
the fuzzy set theory in psychology, for example, Smithson (1982), Zetenyi 
(1988), Smithson and Oden (1999), Ragin (2000), Smithson and Verkuilen 
(2006), and Arfi (2010). Some recent examples of fuzzy set theory in psychology 
include the following:

• A fuzzy logical model of perception (see Oden & Massaro, 1978; Massaro, 
1989; Massaro & Cohen, 2000; Martínez-Jiménez et al., 2018)

• Fuzzy set-based theory of memory and attention (Perfilieva & Vajgl, 2015; 
Terziyska et al., 2015)

• Fuzzy decision-making (see Khefacha & Belkacem, 2015)
• Fuzzy psychopathology (see Horowitz & Malle, 1993; Mosoiu et al., 2010; 

Ekong et al. 2013; Reinertsen et al., 2017; Ashish et al., 2018)
• Fuzzy consciousness (see Huette & Spivey, 2012)
• Fuzzy measurement and testing (see Stoklasa et al., 2011; Farahani et al., 

2018, 2019)
• Fuzzy methodology (see Sugeno & Yasukawa, 1993; Stoklasa et al., 2014)
• Fuzzy epistemology (see Seising, 2008)
• Fuzzy clinical diagnosis (see Baig et al., 2011; Erin & Abiyev, 2019) 

3.4 Why Fuzzy Logic Theory? 

According to the literature, it is reasonable to argue that fuzzy logic and its deriv-
atives are helpful to psychologists dealing with the ill-structured and ill-defined 
phenomenon. Many psychological constructs are not well-defined due to their 
nature. For example, categorizing patients into two distinct groups is often difficult 
because overlapping and partial inclusion is not possible. Our mind is continuous 
and full of overlapping fuzzy micro-maps. Thus, it is possible to face many cases,



which may belong to at least two categories. Finding a sharp and crisp line among 
psychological concepts in soft science is very difficult. The nature of continuity of 
mind implies that our mind is much more similar to overlapping cloud cubes in a 
rainy sunset than distinct sand particles on a shore. Categorization is much more 
difficult when we are too close to a threshold. In reality, many of the psychological 
traits such as emotion, cognition, and disorder are mixed and of different magni-
tudes. For example, an extrovert person may have some degrees of introversion and 
vice versa. Depressed persons may have high scores on only some symptoms, and in 
the other symptoms, the scores can be in the middle or low. The concept of the stage 
is important both in the old psychological theories of Piaget or Freud and in new 
theories that are being built and extended in cognitive psychology and neuroscience. 
These stages are not distinct and separate from each other but are instead 
overlapping. This continuity can be accommodated using a fuzzy psychological 
view. Psychological data and linguistic data are the same, and the fuzzy logic theory 
is a powerful tool for quantifying linguistic data. In psychology, information from 
individuals is collected using standardized tests or interviews; therefore, information 
is provided in words. The words are full of imprecise information that needs to be 
quantified. A concept can mean different things to different people. For example, 
when two people tick “very high” as a response to the item “I am happy with my 
life,” they may have different mindsets of very high, although they chose the same 
answer. “Very high” does not represent a universal standard but varies depending 
upon the individual. You may feel like rating it 5 and your friend 10, even though it 
is very high for both of you. 
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Quantitative psychological research mostly relies on classical statistics in which 
testing the null hypothesis is essential. The null hypotheses are tested directly, and 
the alternative or research hypotheses are tested indirectly. In null hypothesis testing, 
the p-value is a criterion for making a statistical decision on acceptance (true) or 
rejection (false) of that null hypothesis. Most psychological researchers analyze their 
obtained quantitative data until a p-value smaller than 0.05 is observed; this may lead 
to an inflation of Type 1 error. Many scientists have criticized p-values (e.g.,



Simmons et al., 2016; Cumming, 2011), and they believe that p-hacking is wide-
spread throughout science (Head et al., 2015a, b) where we increase the significance 
of “just significant results” (Leggett, 2013). This means that psychological 
researchers, like other researchers, are interested in publishing only the significant 
results, and we observe the surge of p-values and the file drawer effect. This means 
what is not significant statistically has been ignored and hidden (see Lakens, 2015). 
These challenging issues threaten the robustness of scientific knowledge. In fuzzy 
inference systems, the extent of alternative hypotheses is tested directly. That helps 
us to capture a more realistic picture of a mental event, process, and phenomenon. 
Fuzzy inference systems aim to rethink psychological theories and find new results 
and try to solve what is called a “crisis of confidence” in psychological research. The 
issue has drawn the attention of Bayesian statisticians (see Marsman & 
Wagenmakers, 2017; Wagenmakers et al., 2018). Clinical decision-making is a 
crucial activity in psychology; how do we make decisions in a clinical setting using 
fuzzy logic? Fuzzy inference systems focus on how a clinical psychologist can build a 
clinical model and make a fuzzy decision. Based on this method, a psychologist is 
capable of considering many factors for diagnosing a disorder or determining the 
efficacy and effectiveness of psychological treatment. In summary, the main goal of a 
fuzzy inference system is to capture the psychological concepts that are reflected in the 
linguistic concepts based on qualitative and quantitative research. 
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This approach bridges the depth of qualitative research and the precision of 
quantitative research. This bridge is interesting and of use in psychology. As we 
have already mentioned two-valued logic cannot adequately model fuzzy systems. 
The history of developing and paying attention to fuzzy thinking and theory is long 
and interesting. This journey represents the development of attempts to model 
“vagueness” in the history of science. What we are aiming to do here is to show 
the necessity of having this view in studying the mind and the need for fuzzy 
inference systems. 

Is fuzzy inference a reasonable field of psychology? Reviewing the literature 
indicates that there are many pieces of research in which cognition and emotion have 
been investigated. Many of them have been done based on classical statistics and, 
therefore, they could test just simple models. For example, we can find that the 
cognitive system has an underlying interactive network (Stephen & Mirman, 2010; 
Spence et al., 2004) with meaningful noise conditions, which are useful in compu-
tation (Kello et al., 2008; Kello & Van Orden, 2009) and top-down constraints on 
perceptual processing (Motter, 1993; Spivey & Spirn, 2000; Gandhi et al., 1999; Ito 
& Gilbert, 1999; Lamme & Roelfsema, 2000). Although these research attempts are 
important and enlightening, opening our eyes to many complicated phenomena, it is 
worthwhile noting that there are still reasons for developing and extending fuzzy 
inference systems as a major research line. Almost all of this research is based on the 
linearity assumption, a condition that simplifies the world and may afford a way to 
reality and yield us a robust model. Huette and Spivey (2012) believe, however, that 
the most difficult part of transitioning to a descriptive and accurate model of 
consciousness is to abandon linear causality. The fuzzy inference system uses 
fuzzy logic to help us more closely represent human thinking and does not make 
an assumption of linear relationships. Huette and Spivey (2012) have extracted some



common points based on reviewing the research literature about consciousness. 
They also coined the term “fuzzy consciousness”. These common principles include 
the following: (a) The everyday experience of consciousness is noisy, imperfect with 
at best partial information. Most of one’s time is spent by moving through a space of 
concepts, percepts, and emotions, never quite fully reaching any pure concept in a 
context-free manner. This means that at any given time, consciousness is defined by 
the many thousands of environmental inputs in a natural environment, the constraints 
of many billions of neurons associated with previous learning experiences and a 
framework equipped with high-dimensional sensation and movement parameters. 
All of these variables combine to form what is reported as consciousness. (b) All 
relevant variables should be considered. This is based on the linearity assumption and 
classical statistics. Even considering all variables, at a given time, we may face some 
thoughts and behaviors that are unusual. For example, suppose that Shannon is a 
postgraduate student and she has been informed that her paper submitted to a journal 
was rejected yesterday and she must revise it and submit it to another journal soon. She 
is divorced and alone and her mother is so sick and her father passed away last year. 
You see her sitting alone and smoking in the door café of your university and you find 
her feeling depressed. These states of her consciousness are expected, but you may 
also see Shannon beginning to laugh suddenly. This is not an expected state of her 
consciousness, given she is depressed, but it is possible that she may have remembered 
a joke just for a millisecond. Under some researchers like Huette and Spivey (2012), 
we believe that a fuzzy consciousness can account for this surprising behavior. 
(c) Evidence for the fuzzy consciousness should be given. This new theory is a 
nonlinear and fuzzy system (Huette & Spivey, 2012). The continuity of the mind, 
which has been argued by Spivey et al. (2005), is a new view for omitting the crisp 
boundaries of the mind. Simply put, the mind acts continuously, but a given behavior 
may be taken as a discrete one, in isolation, by an external observer. 
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There is philosophical evidence for the importance and necessity of the fuzzy view 
of psychology; for example, Taylor (2022) presents a new philosophical view of 
perception and argues that perception is a messy cluster that is supported by mecha-
nisms that don’t always work. There is a fuzzy transition between the nonperceptual 
and the perceptual. This is an entirely new way of thinking about perception, 
completely unexplored in philosophy. There is some neurological evidence for the 
necessity of a fuzzy view on psychology. There is not much evidence in neurological 
research that fuzziness has been considered, although Rayan et al. (2015) indicated that 
there are shared performance impairments in cognitive control among patients with 
mood disorders (MDD and BD) relative to healthy controls. They also showed that the 
neurobiological bases underlying these seemingly shared dimensions of impairment 
are not as clear cut as we would like due to larger more diverse independent groups. 

The nature of fuzzy logic is very close to the real world, due to the capacity of 
quantifying the linguistic variables, which we use for asserting our emotions and 
cognitive reasoning, judgment, and decision-making. It follows that a fuzzy infer-
ence system helps us to solve a “crisis of confidence” in psychological research, 
which is due to the use of classical statistics overlooking more complex relation-
ships. One important assumption of a fuzzy inference system is the fuzzy layer. We



can think of this layer as representing our perception. It is important to note that 
perception is the core of cognition and emotion. Mao (2018) believes that an entity is 
not simple but complex and inter-related with other things. In other words, reality is 
the state of things, past and present, whether or not they are observable or compre-
hensible. Perception is the interpretation of the stimuli based on experiences we may 
have about them. That means that the brain is an active participant in constructing what 
we perceive. The perceptions that the brain creates are the result of an interaction 
between the signals received and what it does to them. To understand perception and 
the knowledge that we acquire through it, we must, therefore, enquire not only into the 
nature of the signals that the brain receives but also into the contribution that the brain 
makes and the limitations that its characteristics impose upon the acquisition of 
knowledge (Kant, 1908; Schopenhauer et al., 1859; as cited in Zeki, 2001). Zeki 
(2003) believes that the brain has evolved as a flexible tool for acquiring knowledge 
about both unambiguous and ambiguous conditions. The ambiguous conditions are 
not rare; rather, we commonly encounter them. The ambiguous condition is the 
condition in which two or more interpretations exist, each one of which has equal 
validity with the others. However, we can only be aware of one interpretation at any 
given moment (Zeki, 2003). This indicates that our perception is what we call a fuzzy 
layer. Based on Mao (2018), usually, a thing (T) is multilateral or complex, and so to 
hold on to its reality is difficult for human beings, where the complexity of the world 
implies the cognitive system on a thing (T) is itself complex, i.e., a system composed 
of many components that may interact with each other. Recently, some research has 
implied that we can experience mixed emotions (see Fang et al., 2018a, b; Keltner 
et al., 2019). Van der Heide et al. (2011) indicated that a human can experience 
(1) mixtures of emotions and/or (2) conflicting emotions, and Mao (2018) describes 
this ambiguity in a mathematical framework. In fuzzy inference, we formulate such a 
framework by applying fuzzy set theory and its derivatives. 
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3.5 What Is the Fuzzy Map? 

Let us take a typical example accounting for the complexity of a cognitive system. It 
is the well-known fable “the blind men with an elephant.” 

This is a famous story in Buddhism, which implies the whole is more than its 
parts but we always tend to focus on the parts. In this story, there are six blind men



who were asked to determine what an elephant looked like by feeling different parts 
of an elephant’s body. The men touched the elephant’s leg, tail, trunk, ear, belly, or 
tusk and they respectively claimed it’s like a pillar, a rope, a tree branch, a hand fan, a 
wall, or a solid pipe. 
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Similarly, Rumi (1207–1273) included it in his approach. In his retelling, “The 
Elephant in the Darkness,” some people bring an elephant to be exhibited in a dark 
room. Many men touched the elephant in the darkness and described whatever they 
happened to touch. This fable is close to the famous statement of Werner Heisenberg 
(1901–1976). He stated that natural science does not simply describe and explain 
nature. It is, instead, part of the interplay between nature and ourselves. In this well-
known fable, the men’s perception of the part of the elephant is akin to a “fuzzy micro-
map.” Although there is a term which is called a cognitive map in the fuzzy literature, 
that is a map captured through experts investigating factors influencing a phenomenon. 
A fuzzy micro-map is a network that is obtained from a cognizant. In a fuzzy inference 
system, a cognizant is a person who produces a fuzzy micro-map of his or her 
perception of a phenomenon. His or her perception of a phenomenon is the same 
fuzzy layer and the theoretical structure as an output of the perception process is the 
fuzzy micro-map. A fuzzy psychologist tries to collect the fuzzy micro-map using a 
data-gathering method from the cognizant’s point of view. In our elephant example, 
each fuzzy micro-map is the name of the part of the elephant mentioned above; 
therefore, all of the fuzzy micro-maps need to be combined into a final testable map. 
It is worth noting that the fuzzy micro-map is obtained from the data given by a 
cognizant. As we have seen, a cognizant is a person who has information and 
experiences of a system (each man touching a part of the elephant). Any human 
being may be a cognizant. The data are obtained using methods including storytelling 
by the cognizant, a transcription of the recorded detailed interview with the cognizant, 
MRI, EEG, QEEG, and EMG. The fuzzy micro-map is a readable mind map of a 
cognizant. After providing all the fuzzy micro-maps, a fuzzy psychologist combines 
them using an expert panel and provides a final map. This final map will be the basis 
for the fuzzy inference. Thus, fuzzy mapping helps us to find a real model of an elusive 
phenomenon. The fuzzy map has higher flexibility, an ability to capture more signif-
icant complex relationships, and more generalizability than traditional approaches. 

The main purpose of research in psychology is to model the mind and define 
normality and abnormality, and these are not usually clearly separated. Most of the 
samples in psychological research are small and non-random; therefore, statistical 
inference is not a robust method for generalizing the results. The use of the P-value 
as the heart of null hypothesis testing in psychological research has been strongly 
criticized. Bayesian statistics require the specification of a prior distribution, which is 
not easy to define. Qualitative research can be an appropriate alternative. Although 
this methodology can be useful, its precision is somewhat vague. A fuzzy inference 
system, on the other hand, is a robust method for capturing and explaining the mind 
and its processes. This approach bridges the depth of qualitative research and the 
breadth of quantitative research and solves many difficulties by using different 
sources of information and integrating them to make inferences in a way that more 
closely resembles the reasoning of the mind.



3.6 Fuzzy Modelling of Psychological Systems 43

3.6 Fuzzy Modelling of Psychological Systems 

Neurosis is the inability to tolerate ambiguity (Sigmund Freud). 

According to fuzzy logic, a concept is hardly ever completely true or completely 
false, but it is rather somewhere in between these two extremes. 

A simple example of this difference is shown in Fig. 3.4 in which instead of a 
singleton number defining the number x’, as we instinctively use in everyday logic, 
the concept of degree of similarity (or degree of truth or degree of membership) is 
introduced, defined by the membership function (mf) A x a: μ (). The interpretation 
of fuzzy sets () has arisen from the generalization of the classical sets to embrace the 
vague notions and unclear boundaries. It may not be always clear, if an element 
x belongs to a set A, or not. Thus, its membership may be measured by a degree, 
commonly known as the membership degree, taking a value from the unit interval by 
agreement. 

Fig. 3.4 A singleton and non-singleton fuzzification
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Consequently, a fuzzy set A over the universe of discourse X is defined by 
function μA that matches each element of the universe of discourse with its mem-
bership degree to the set A 

μA Xð Þ : X → 0, 1½ � ð3:1Þ 

where μA(X) = 0 says that an element x definitely does not belong to a fuzzy set 
A and μA(X) = 1 says that x without any doubt is member of fuzzy set A. Higher 
value of μA(X) indicates the higher degree of membership of an element x to a fuzzy 
set A. Each fuzzy set is defined by one membership function. A membership function 
maps each element of the universal set X into real numbers from the [0, 1] interval. 
We should emphasize that the universal set X is always a crisp set (). A fuzzy set can 
be defined as a set of ordered pairs: 

A= X: μA Xð Þð Þjx 2 X ^ μA xð Þ 2  0:1ð Þf ð3:2Þ 

When the universal set is finite, a fuzzy set constructed on this universal set can be 
expressed by counting the elements and their respective membership degrees: 

A= 
μA  X1ð Þ  
X1 

þ μA X2ð Þ  
X2 

þ . . .þ μA Xnð Þ  
Xn 

ð3:3Þ 

3.7 Properties of Fuzzy Sets 

In this section, properties relevant for the next sections are examined. First, we define 
scalar and relative scalar cardinality. For any fuzzy set A defined on a finite universal 
set X, we  define its scalar cardinality by the formula 

card Að Þ= Aj j= 
X 

μA xð Þ ð3:4Þ 

The scalar cardinality of a fuzzy set is a generalization of classical cardinality. 
Elements of a universal set belong to the fuzzy sets with different membership 

degrees and therefore we cannot count elements of a set A, but their respective 
membership degrees should be summed. Some authors refer to |A| as the sigma count 
of A (Dubois & Prade, 2005). 

The relative scalar cardinality is defined by the formula:

���A
���= 

card Að Þ  
card Xð Þ ð3:5Þ 

where card(A)  is  defined in Dubois and Prade (2005) and card(X) represents the 
number of elements in X. These cardinalities are broadly used in areas such as



•

•

•

linguistic summaries. The third type of cardinality is fuzzy cardinality, expressed as 
an ordered pair defined as the number of elements belonging to a particular α-cut 
when the universal set is finite. Cardinalities are closely examined; e.g., scalar 
cardinality of a fuzzy set can be expressed as the area bounded by the membership 
function of fuzzy set and the x-axis. This approach is demonstrated on the trapezoi-
dal fuzzy set (Dubois & Prade, 2005).
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• Support: The support of a fuzzy set A is the finite set with the following property: 

supp Að Þ= x 2 X j μA xð Þ> 0ð gf ð3:6Þ 

Core: The core of a fuzzy set A is the set with the following property: 

core Að Þ= x 2 X j μA xð Þ= 1ð gf ð3:7Þ 

In the fuzzy sets literature, the term kernel is used as a synonym for the core.

• Height: The height is the highest value of the degree of membership of all 
elements in the considered fuzzy set A: 

h Að Þ= h Að Þ= sup μA xð Þ:x 2 X ð3:8Þ 

Normalized fuzzy set: Fuzzy set A is normalized, if the degree of membership of 
at least one element is equal to 1, i.e., 

∃x 2 X: μA xð Þ= h xð Þ= 1 ð3:9Þ 

Crossover point: The element xcp of a fuzzy set A that has a membership degree 
equal to 0.5 represents the crossover point, i.e., 

xcp= x 2 XjμA xð Þ= 0:5f g ð3:10Þ 

α-cut and strong α-cut: One of the important concepts used in fuzzy sets is the α-cut. 
The α-cut A(α) and its restrictive variant strong α-cut A(α+) are defined in the 
following way: 

A αð Þ= x 2 X j μA xð Þ≥ αf g ð3:11Þ 
A αþð  Þ= x 2 X j μA xð Þ> αð gf ð3:12Þ 

where α 2 [0, 1]. 
The α-cut of a fuzzy set A is a set containing all the elements of set X whose 

membership degrees in A are greater than or equal to the specified value of α. This 
property is used in many areas, e.g., working with elements in a fuzzy set associated



ð

with a high likelihood of membership. A fuzzy set is convex if and only if 
(Pourabdollah et al., 2020) 
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Fuzzy union 
(OR) 

⋁ : { ( ), ( ), ∈ } 

Fuzzy intersection (AND) 

∧ : { ( ), ( ), ∈ } 

Fuzzy union with complement 

≠ ⋁ : { ( ), 1  − ( ), ∈ } 

Fuzzy intersection with complement 

∅ ≠  ⋀ : { ( ), 1  − ( ), ∈ } 

= ∨ = ∧ , ℎ 
⊂ 

⊂ ⊂ 

⊂ ⊂ 

Fig. 3.5 Logical operations on fuzzy sets. The shaded areas represent the result of the operation. 
(Klir & Yuan, 1995a, b) 

μA λxþ 1- λð Þyð Þ≥ min μA xð Þ: μA yð Þð Þ 3:13Þ 

for all x and y 2 X and all λ 2 [0, 1]. Convex and non-convex fuzzy sets are plotted in 
Fig. 3.5. 

3.8 Types of Fuzzy Sets (Membership Functions) 

Membership functions are classified into two main groups: linear and Gaussian or 
curved. All membership functions explained in this section are normalized fuzzy 
sets, i.e., with one element having a degree of membership equal to 1 (Hasan & 
Sobhan, 2020).
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Triangular fuzzy set is defined by its lower limit a, its upper limit b, and the modal 
(highest) value m as 

μA xð Þ  = 

1 for x=m 
x- a 
m- a 

for a< x<m 

b- x 
b-m 

0 

for m< x< b 

for x≤ a 
_ 

x≥ b 

8>>>>>>>< 
>>>>>>>: 

ð3:14Þ 

Gaussian fuzzy set defined by the modal value (center) m and width k as 

μA xð Þ= e- k x-mð Þ  x-mð Þ ð3:15Þ 

The bell of the Gaussian function depends on the value k. If the value k is lower, 
then the bell is narrower. 

Trapezoidal fuzzy set is defined by its lower limit a, its upper limit b, and the flat 
segment [m1, m2] representing the highest value of height (3.16) as  

μA xð Þ  = 

1 for m1 ≤ x≤m2 

x- a 
m1 - a 

for a< x<m1 

b- x 
b-m1 

0 

for m2 < x< b 

for x≤ a 
_ 

x≥ b 

8>>>>>>>< 
>>>>>>>: 

ð3:16Þ 

3.9 Practical Example Using R 

The R programming language began in 1992 as an effort to create a special-purpose 
language for use in statistical applications. More than two decades later, the language 
has evolved into one of the most popular languages used by statisticians, data 
scientists, and business analysts around the world. R gained rapid traction as a 
popular language for several reasons. First, it is available to everyone as a free, 
open-source language developed by a community of committed developers. This 
approach broke the mold of past approaches to analytic tools that relied upon 
proprietary, commercial software that was often out of the financial reach of many 
individuals and organizations. R also continues to grow in popularity because of its
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Fig. 3.6 R results for plotting of each fuzzy set element 

Table 3.1 Fuzzy set para-
meters for linguistic terms 

Linguistic terms (fuzzy set) a b c 

Very low 0 1 2  
Low 2 3 4  
Middle 3 5 6  
High 6 8 9  
Very high 9 10 11  

adoption by the creators of machine learning methods. Almost any new machine 
learning technique created today quickly becomes available to R users in a 
redistributable package, offered as open-source code on the Comprehensive R 
Archive Network (CRAN), a worldwide repository of popular R code. Figure 3.6 
shows the growth of the number of packages available through CRAN over time. As 
you can see, the growth took off significantly over the past decade. it’s also 
important to know that R is an interpreted language, rather than a compiled lan-
guage. In an interpreted language, the code that you write is stored in a document 
called a script, and this script is the code that is directly executed by the system 
processing the code. In a compiled language, the source code written by a developer 
runs through a specialized program called a compiler, which converts the source 
code into executable machine language. 

Suppose, we need to use a fuzzy set for demonstrating the degree of depression in 
a sample of multiple sclerosis (MS) ranged between 1 and 10 (Table 3.1). We 
consider the amount of depression in terms of a triangular fuzzy number for each 
linguistic terms, which may be, for example, responses by clinicians assessing the 
amount of various aspects of depression (denoted in the table as a, b, and c) in an 
individual. 

Fuzzy set parameters of very low to very high for depression 
Based on Table 3.1, we are going to define a triangular distribution for each fuzzy 

set element (ranging from very low to very high) and determine membership degree 
for various numbers. You can see the R codes as below in RStudio, an add-on 
interface to R (Listing 3.1).
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Listing 3.1 R codes for defining a triangular number for each fuzzy set element 

Using plot (very low, xlim = c (0,2)), the plot of the triangular distribution is 
provided for the very low fuzzy set (Fig. 3.6). 

Using the following codes, we can show the distributions of membership degree 
of all elements of the fuzzy set in the same plot (Listing 3.2). 

Listing 3.2 R codes for plotting all of the fuzzy set
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Fig. 3.7 R results of plotting of all elements of the fuzzy set 

Fig. 3.8 The result of the code for middle 

With a simple code, the support and core values can be accessed. The supports for 
very high are 9 and 11, and there are cores, which are 10 and 10 (Fig. 3.7). 

[1] 9 11 

[1] 10 10 

, 
For determining α-cuts, just need to use 

for every fuzzy set A. You can see the 
result of the code for middle (Fig. 3.8). 

cuts <- alphacut(middle, c(0, 0.5, 0.8) 
cuts 

Suppose there is a patient suffering from MS who has a score of 7 on a depression 
scale. We wish to determine the degree to which this patient belongs to each fuzzy 
set element. Let us determine the membership degree for all scores from 1 to 
10, including 7. To do this, we write a simple code using the function, evaluate() 
(Listing 3.3).
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Listing 3.3 R codes for evaluation of the fuzzy membership function 

As you can see, for a score of 7, membership degree is 0.5 only for high and 0 for 
the rest. This shows that there is a 50% chance of someone with a score of 7 on the 
depression scale being given a “high” rating by the clinicians. We can calculate 
membership degree for each of the depression scores between 1 and 10 for people 
rated by the clinicians as highly likely to be depressed. 

3.10 Fuzzy Set Composition 

A suitable tool for interpretation of the “AND” or connective (conjunction) in fuzzy 
logic are triangular norms (or short t-norms) (Nguyen & Walker, 1977). Relevant 
mathematical aspects of t-norms are discussed in depth in (Nguyen & Walker, 1977). 
Theoretically, there are an unlimited number of t-norms. The four basic and com-
monly used t-norms are given below (Wanga et al., 2022). 

Minimum: tm μA1 xð Þ � μA2 xð  Þð Þ  = min μA1 xð Þ � μA2 xð Þð Þ 3:17Þ 
Product: tp μA1 xð  Þ � μA2 xð  Þð Þ= μA1 xð  Þ � μA2 xð  Þ ð3:18Þ
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Łukasiewicz t- norm: tL μA1 xð Þ � μA2 xð Þð Þ= max 0 � μA1 xð Þ þ μA2 xð Þ- 1ð  
ð3:19Þ 

Drastic product: td μA1 xð Þ � μA2 xð Þð Þ= 0 for μA1 xð Þ � μA2 xð Þð 0, 1½ Þ  
min μA1 xð Þ � μA2 xð Þð otherwise 

ð3:20Þ 

where μAi(x), i = 1, 2, denotes the degree of membership of the element x in the i-th 
fuzzy set, Ai. An interesting t-norm is the nilpotent minimum t-norm defined as 

tNm μA1 xð Þ � μA2 xð Þð Þ= 0 for μA1 xð Þ þ  μA2 xð Þ≤ 1 

min μA1 xð Þ � μA2 xð Þð Þ  otherwise
ð3:21Þ 

The s-norm or t-conorm functions define a general class of disjunction operators. 
The following s-norm functions are correspondingly dual to the aforementioned 
t-norms (3.22)–(3.25): 

Maximum: sm μA1 xð Þ � μA2 xð Þð Þ= max μA1 xð Þ � μA2 xð Þð Þ 3:22Þ 
Algebraic sum: sa μA1 xð Þ � μA2 xð Þð Þ= μA1 xð Þ þ  μA2 xð Þ- μA1 xð Þ � μA2 xð Þ  

ð3:23Þ 
Łukasiewicz s- norm: sL μA1 xð Þ � μA2 xð Þð Þ= min 1 � μA1 xð Þ þ  μA2 xð Þð ð3:24Þ 
Drastics- norm: sd μA1 xð Þ � μA2 xð Þð Þ= 1 for μA1 xð Þ � μA2 xð Þð  

2 0:1½ Þmax μA1 xð Þ � μA2 xð Þð Þ  otherwise ð3:25Þ 

where μAi(x), i = 1, 2, denotes the degree of membership of the element x to the 
fuzzy sets Ai. 

3.10.1 Practical Example Using R 

We can illustrate these fuzzy set terms with an example. Let us suppose two experts 
interviewed one MS patient and evaluated him/her as high and very high. If we want 
to quantify these linguistic terms and combine them based on fuzzy logic, we can use 
the following codes using the FuzzyR library (Listing 3.4)
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Listing 3.4 R codes for linguistic terms and composite them based on fuzzy 
logic 

We can use the code below for defuzzification. 

This code defuzzifies scores between 1 and 10 based on a triangular fuzzy number 
using a “centroid.” For aggregating the opinions of the experts in terms of a 
t-conorm, we write the codes as follows: 

[1] 0.0000000 0.0000000 0.3333333 0.6666667 1.0000000 1.0000000 
0.5000000 0.0000000 
[9] 0.0000000 0.0000000 

We conclude that the most prevalent scores are between 3 and 7.
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3.11 Mamdani Fuzzy Inference System 

Mamdani systems have proven to be a very useful tool for function approximation 
and control (Cao et al., 2001) – an aspect that has interesting potential applications in 
the social sciences too, which we will not discuss here. In this section, we analyze 
their potential usefulness as a tool for logical deductive inference to study, via 
simulation, the consequences, and behavior of a model defined by means of 
IF-THEN rules. 

Mamdani systems are most often classified as a form of Approximate Reasoning, 
which has been defined as “the process or processes by which a possible imprecise 
conclusion is deduced from a collection of imprecise premises” (Pal & Mandal, 
1991). This categorization, together with the fact that the core component of a 
Mamdani system is a set of IF-THEN rules, can easily mislead one to believe that 
Mamdani systems can provide the logical implications of the set of rules used to 
build them, even if only approximately. Without pointing at any particular example, 
it is not difficult to find cases in the literature that seem to be taking this assumption 
for granted, either implicitly or explicitly. Specifically, one might be tempted to 
believe that in a Mamdani system the joint truth of the premises guarantees the truth 
of the conclusions. In logics that admit degrees of partial truth, this expectation 
would read that if the inputs of the system are true to some degree (i.e., they satisfy 
the antecedents of the rules to some extent), then the outputs of the system should 
also be true to at least the same degree (i.e., they should satisfy the consequents of the 
rules to at least the same extent). This fallacious interpretation of Mamdani systems 
as truth-preserving inference machines is certainly – and fortunately – not shared by 
everyone, but is reasonably widespread and does permeate many simulation appli-
cations of the technique. 

To be clear, Mamdani systems are not truth-preserving in the sense stated above; 
they can lead to very different results from those obtained if the IF-THEN rules 
embedded within are interpreted as proper logical implications. This fact has already 
been well established in the specialized literature of fuzzy logic – as the quote below 
shows – but, arguably, it does not seem to be so conspicuous in many practical 
applications of the technique. 

The inference rule used by Mamdani systems “is not a logical inference, i.e., a 
procedure aiming at the derivation of new facts from some other known ones using 
formal deduction rules. No logical implication is inside and thus, no modus ponens 
proceeds” (Klawonna & Novák, 1996). 

This section illustrates through several examples why the Mamdani method is not 
appropriate to explore the logical deductive consequences of a set of IF-THEN 
implication premises. More technical discussions of some of the aspects that we 
illustrate in this paper can also be found in the literature (Bodenhofer et al., 2007; 
Dubois & Prade, 1996; Hájek, 2013; Klawonna & Novák, 1996; Novák, 1994). 

Mamdani fuzzy systems were originally designed to imitate the performance of 
human operators in charge of controlling certain industrial processes (Mamdani, 
1974, Mamdani & Assilian, 1975). The aim was to summarize the operator’s
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experience into a set of (linguistic) IF-THEN rules that could be used by a machine 
to automatically control the process. Specifically, using such a set of IF-THEN rules. 
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A Mamdani fuzzy system defines a function f which generates numerical outputs 
y = f(x) from (usually numerical) input values x. Here, we present a reduced and 
simplified exposition of the method. For a more complete and detailed presentation, 
the reader is referred to sections 11.4.1 and 11.4.2 in Zimmermann (2011) or section 
11.4 and chapter 12 in Klir and Yuan (1995a, b). 

Mamdani systems are composed of IF-THEN rules of the form “IF X is A THEN 
Y is B,” such as “IF PRESSURE is HIGH THEN VOLUME is LOW.” The IF part 
“X is A” is called the antecedent of the rule, and the THEN part “Y is B” is called the 
consequent of the rule. For simplicity in the exposition of the method and the 
examples, let us assume that X and Y (PRESSURE and VOLUME, respectively, 
in the example above) are numerical variables defined on real intervals. The exam-
ples we provide can be easily adapted to other input and output spaces, multiple 
inputs, or fuzzy inputs. Thus, henceforth variable X is assumed to be defined in a real 
interval that we call the input interval, whilst variable Y is assumed to be defined in a 
real interval that we call the output interval. Let us use lower-case letters x and y to 
denote specific values of the variables X and Y, respectively. 

The symbols A and B (HIGH and LOW, respectively, in the example above) 
denote linguistic terms that are modeled as fuzzy sets defined on the input and output 
intervals, respectively. Fuzzy set A is defined by a membership function μAthat 
assigns a real value μA(x) between 0 and 1 to each element x in the input interval. 
The value μA(x) is called the degree of membership of element x in fuzzy set A and 
can be interpreted as the extent to which element x belongs to fuzzy set A. If the 
fuzzy set A represents a certain concept (i.e., “HIGH”), μA(x) can also be interpreted 
as the truth value of the proposition “X is  A” whenever X = x (e.g., the truth value of 
“PRESSURE is HIGH” whenever PRESSURE = x), represented as Truth Value 
(X is A j X = x). Likewise, fuzzy set B is defined by a membership function μB that 
assigns a real value μB( y) between 0 and 1 to each real value y in the output interval. 

Most often, Mamdani systems are composed of several IF-THEN rules. Natu-
rally, each of the rules (which we index with subscript k) may use different fuzzy sets 
Ak and Bk. The antecedents and consequents can also be combined propositions that 
include the logical connectives AND or. A standard Mamdani system uses the 
following operations to compute the truth value of combined propositions: 

Truth Value X is C OR X is DjX = xð Þ= max Truth Value X is CjX = xð , 

Truth Value X is DjX = xð Þ= max μC  xð  Þ, μD  xð  Þð Þ  
Truth Value X is C AND X is DjX = xð Þ= min Truth Value X is CjX = xð , 

Truth Value X is DjX = xð Þ= min μC  xð  Þ, μD  xð  Þð Þ  
ð3:26Þ



The logical negation is implemented in a standard Mamdani system as follows:
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Truth Value X is  NOT AjX = xð Þ= 1-Truth Value X is  AjX = xð Þ= 1- μA xð Þ  
ð3:27Þ 

Leaving aside a possible fuzzification step, which is not relevant for our discus-
sion, the algorithm that a Mamdani system uses to compute a numerical output 
y from a numerical input X = x, given a set of rules “IF X is Ak THEN Y is Bk,” 
consists of the following steps: 

1. Compute the degrees of consistency between observations (inputs) and anteced-
ents of each rule. In this step, we evaluate the extent to which the antecedent of 
each IF-THEN rule is satisfied for a given input. The degree of consistency 
between an input or observation X = x and an antecedent “X is  A” is simply 
the degree of membership of x in the fuzzy set A, i.e., μA(x). The result of this step 
is a number μAk(x) for each rule “IF X is Ak THEN Y is Bk” (i.e., the degree of 
consistency between the input and each rule’s antecedent). If μAk(x) > 0, the 
corresponding rule k is said to be “fired.” 

2. Truncate the fuzzy set in the consequent of each rule. The result of this step for 
each rule “IF X is Ak THEN Y is Bk” is the fuzzy set Bk truncated at the 
level μAk(x), i.e., a set μoutputkjx such that 

μoutputkjx yð Þ= min μBk yð Þ, μAk xð Þð Þ ð3:28Þ 

3. Aggregate all the truncated fuzzy sets. In this step, the truncated fuzzy sets 
corresponding to each fired rule are aggregated to provide one single fuzzy set 
μMamdanijx defined by the membership function: 

μMamdanijx yð Þ= max μoutputkjx yð Þ  
h i  

= max min μBk yð Þ, μAk xð Þ½ 3:29Þ 

The equation above clearly shows why Mamdani fuzzy systems are sometimes 
called max–min fuzzy systems.

4. Defuzzify the aggregated fuzzy set. The defuzzification step transforms the 
aggregated fuzzy set μMamdanijx into one single crisp number. Standard Mamdani 
systems use the Centre of Gravity (COG) defuzzification method. This method 
returns the projection (on the horizontal axis) of the center of gravity of the area 
under the membership function μMamdanijx. If some input value is such that no rule 
is fired, the center of gravity for μMamdanijx (y) cannot be calculated. In that case, 
some default output value can be considered, or the system can be readjusted to 
avoid that situation (e.g., by modifying the fuzzy sets Ak or by including new 
rules). 
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Fig. 3.9 Mamdani fuzzy inference system 

Given that the defuzzification step has a large influence on the final function 
that the system provides, we will also consider here two other alternative 
defuzzification methods (Van Leekwijck & Kerre, 1999): 

I. First of Maxima. This method returns the smallest value of y for which the 
membership function μMamdanijx attains its maximum value. 

II. Last of Maxima. This method returns the greatest value of y for which the 
membership function μMamdanijx (y ) attains its maximum value (Izquierdo & 
Izquierdo, 2017) (Fig. 3.9). 

3.11.1 Mamdani Fuzzy System Steps 

A Mamdani fuzzy system consists of different steps, which are explained below. 

Step 1 Determining the case variables based on the research background and 
theoretical foundations of the researcher. 

Step 2 Determining the fuzzy sets, through interviews with experts, theoretical 
logic, or the background of the conducted research. Fuzzy sets such as 
high, medium, low, or very high, high, medium, low, very low, or any 
fuzzy set that is suitable for the desired variables according to the 
researcher’s opinion are determined. Fuzzy sets are linguistic terms. 

Step 3 Determining the fuzzy membership functions, according to the previous 
step, the fuzzy membership function is determined for each fuzzy set.
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In this field, you can get help from experts again; fuzzy membership 
functions are different functions that have been discussed in the previous 
sections. Triangular, trapezoidal, and Gaussian functions are among these 
functions. Each function is specified with parameters, which parameters 
are determined based on the range of variable measurement scores 
according to the researcher’s opinion. 

Step 4 Define IF-Then rules. These are the rules of the antecedent relationship and 
they specify the consequent. There are two solutions to determine the rules; 
one solution is based on the opinion of experts who actually formulate 
rules based on their experience in their work, for example, a health 
psychologist derives this rule based on his studies and professional 
experience. “If depression is high, stress sensitivity is average and life 
expectancy is average, then the quality of life is close to average.” The 
linguistic terms “high,” “average,” and “close to average” are the same 
fuzzy sets; based on their type, the fuzzy membership functions are 
determined. The second solution is to explain the rules based on the data 
set in an exploratory manner. In this situation, Adaptive Neuro Fuzzy 
Inference System (ANFIS) or other algorithms such as Genetic 
Cooperative Classification Learning (GCCL) can be used. This issue is 
explained in detail below. 

Step 5 Weighting the fuzzy rules, the researcher may be interested in assigning 
weights to the fuzzy rules. Weights indicate the degree of importance 
of those rules. It is standard to give all the rules the same weight, i.e., 
1. According to the importance of each rule in the fuzzy system, different 
weights, however, can be determined and attributed to those rules. Weights 
can be obtained in different ways. One method is given in the example 
related to the fuzzy cognitive map (see FCM example section). 

Step 6 In this step, all the truncated fuzzy sets obtained in the previous steps are 
aggregated. In fact, in this step, the shortened fuzzy sets related to the rules 
are aggregated with each other to provide a single fuzzy set. For this 
purpose, various methods are used. Max and Min operators are routinely 
used; that is why, Mamdani-type fuzzy inference systems are sometimes 
called max–min fuzzy systems. 

Step 7 The last step is defuzzification of the aggregated fuzzy set. In this 
step, defuzzification, the aggregated fuzzy set is converted into a single 
crisp number one. There are different methods for defuzzification; 
the Center of Gravity (COG) method is routinely used. Different 
defuzzification methods affect the final function that the system provides. 
Therefore, the opinion of the researcher is important and he must decide on 
this matter.
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Table 3.2 The variable, fuzzy set, membership functions, and parameters to identify cyber shame 

Variable Fuzzy set Membership functions Parameter 

Mental security (MS) Low Triangular (0, 10, 20) 

Medium Trapezoidal (10, 20, 30, 40) 

High Triangular (30, 40, 50) 

Hopelessness (HL) Yes Triangular (0, 18, 20) 

No Triangular (20, 40, 50) 

Self-assertiveness (SA) Low Triangular (0, 10, 20) 

Medium Triangular (10, 25, 40) 

High Triangular (30, 40, 50) 

Cyber shame (CS) Low Triangular (0, 10, 20) 

Medium Trapezoidal (10, 25, 30, 40) 

High Triangular (30, 40, 50) 

3.11.2 Practical Example Using R 

Example 3.1 The artificial psychologist attempts to identify cyber shame based on 
mental security and hopelessness, self-assertiveness, and mental flexibility using the 
Mamdani-type fuzzy inference system (FIS). The psychologist first forms the 
parameter matrix of the fuzzy membership function based on expert opinion. The 
variable, fuzzy set, membership functions, and parameters are demonstrated in 
Table 3.2 (Listings 3.5 and 3.6). 

Listing 3.5 R codes for the Mamdani fuzzy inference system
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Listing 3.6 R codes for the Mamdani fuzzy inference system (continued) 

Figure 3.10 illustrates the rules between the variables in the R output. For instance, 
the first rule is as follows: 

Fig. 3.10 R plot for the Mamdani fuzzy inference system
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Fig. 3.11 R results of the Mamdani fuzzy inference system 

Fig. 3.12 R results of the Mamdani fuzzy inference system (continued) 

“If mental security is low and hopelessness is yes and self-assertiveness is low 
and mental flexibility is low, then cyber shame is high.” 

The Figures 3.11 and 3.12 shows the form of the membership functions. 

Example 3.2 An Artificial psychologist aims to model pain feeling (PF) based on 
childhood trauma (CT) experience and alexithymia (ALX) using the fuzzy inference 
system (FIS) (Fig. 3.13). 

After a careful review of the literature, different variables are evaluated and CT 
and ALX are selected. The artificial psychologist interviewed PF experts and added 
other variables. In fact, a careful literature review and interviews with experts and the
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CT 
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FIS PF 

Fig. 3.13 Hypothetical model 

Theoretical 
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Fig. 3.14 Flow work for developing a hypothetical model 

target population (people with physical pain) are the three primary sources for 
designing and developing the hypothetical model (Fig. 3.14). 

Here, the researcher can use sample data from the target or expert groups to obtain 
the values of variables. In this study, artificial psychologists prepare the CT and ALX 
questionnaires with sufficient validity and reliability. 

PF is measured within 0–30. Assuming that the range of the CT and ALX scales 
is within 0–10 and PF is within 0–30, the range for the first two cases is determined 
by the scores, and skeletal PF is determined by the opinions of relevant researchers. 
Having determined these ranges, an artificial psychologist determines fuzzy sets 
based on researcher and expert opinion (Table 3.3). 

Artificial psychologists then determine the suitable fuzzy membership function 
for the fuzzy set. Selecting and using one of the numerous fuzzy membership 
functions requires practical and theoretical insight. The triangular fuzzy membership 
function is typically appropriate for psychology studies employing 1-, 3-, and 
5-point Likert scales. As mentioned earlier, the triangular function has three param-
eters, namely a, b, c; and the trapezoidal function is also used due to its similarity to 
the triangular function, but instead of only one value from the x axis having a 
membership degree of 1, a range of numbers has the membership function of 
1, giving the trapezoidal function four parameters, namely a, b, c, and d. Table 3.3 
shows the variables, range of scores, fuzzy set, and membership function parameters. 

Figures 3.16, 3.17, and 3.18 demonstrate the membership function after running 
the R codes. After fuzzy sets, membership functions, and their parameters, the next 
step is the fuzzy rule-based inference system (FRBIS). This example uses a 
Mamdani-type fuzzy inference system. Since the number of rules could be large,



Table 3.3 Variables, range of scores, fuzzy set, and membership function parameters 

Variable 
Range of 
scores Fuzzy sets Membership function Parameters 

2 1  
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CT 0–10 Low/middle/high Triangular/triangular/triangular (0,1,2) 

(2,3,7) 

(4,6,10) 

ALX 0–10 Mild/moderate/ 
severe 

Trapezoidal/trapezoidal/ 
trapezoidal/ 

(0,1,2,2) 

(2,3,3,4) 

(5,8,10,11) 

Skeletal 
PF 

Little/tolerate/much Triangular/triangular/triangular/ (0,3,8) 

(8,13,18) 

(18,23,30) 

Table 3.4 Fuzzy inference 
rules 

Rule Average importance Weight 

1 4 0.75 

5

3 2.5 0.4 

Rule 1. If CT is low and ALX is mild, then PF is little (0.75) 
Rule 2. If CT is middle, then PF is tolerable (1) 
Rule 3. If CT is high or ALX is moderate, then PF is much (0.4) 

Table 3.5 Survey of experts to determine the relative importance of each rule 

No. Rules Importance 

Very low (1) Low (2) Moderate (3) High (4) Very high (5) 

the fuzzy inference system can be implemented in several stages, which is also 
known as the hierarchical fuzzy model. 

In this example, an artificial psychologist designs the rules using their own logic 
and assembling a panel of experts. These rules could be considered composite 
hypotheses and are presented in the following example (Table 3.4). Table 3.4 
indicates the rules of the Mamdani-type fuzzy inference system. 

Importance weights can also be determined for rules. With a group of five experts 
on a 5-point Likert scale ((very low: 1), (low: 2), (average: 3), (high: 4), (very high: 
5)), the artificial psychologist aiming to determine the importance of each rule takes 
their average (Table 3.5) and normalizes them into a standard weight. 

There are different ways to normalize the resulting averages, and the following 
equation is a simple solution:
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x= 
X- min 
max- min 

The expert survey to determine the importance and ultimately the weight of each 
rule is as follows: 

After determining the rules, the artificial psychologist is required to specify the 
defuzzification method of the study. As mentioned earlier, there are various 
defuzzification methods. Here, the artificial psychologist employs the centroid 
method to convert the obtained fuzzy number into a crisp number. Listing 3.6 
depicts the R codes of all stages. 

Figure 3.15 shows the output, including the fuzzy system’s specifications. To 
evaluate the model, suppose a person who has experienced skeletal pain responds to 
emotional dyslexia and childhood experience scales with scores of 4 and 5, respec-
tively. According to the Mamdani-type fuzzy inference model, the muscle pain score 
will be 12.997. For a depressed individual with scores of 5 and 7 in ALX and CT, 
muscle pain will be 16.979 (Figs. 3.16 and 3.17). 

The surface plot suggests that higher CT and ALX increase the probability of 
skeletal PF. This graph shows that the rules are designed properly (Listing 3.7). 

Fig. 3.15 R surface plot for the Mamdani fuzzy inference system
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Fig. 3.16 Triangular fuzzy membership of pain feeling 

Fig. 3.17 Triangular fuzzy membership of childhood trauma experience
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Listing 3.7 R codes for the Mamdani fuzzy inference system (continued) 

3.12 Toward Fuzzy Rule Mining 

Basically, there are two different methods to construct fuzzy rule-based systems 
(FRBSs), including classification (FRBCSs) and regression systems (FRBRSs), 
depending on the information. One method or strategy is to obtain information 
from human experts in the field. In this strategy, knowledge is defined by artificial 
psychologists who interview experts in the field to extract and represent their 
knowledge. Although this method is most commonly used, sometimes it is not 
feasible because of the lack of knowledge. The second strategy is to apply learning 
methods for extracting knowledge from data in FRBSs. Some of the strategies are 
used for FRBRSs, and some others are used in FRBCSs. In this section, we try to 
discuss some of both (Figs. 3.18 and 3.19). 

A fuzzy rule-based classification system (FRBCS) or fuzzy rule-based regression 
system consists of two main conceptual elements: (a) the fuzzy rule base (FRB) and 
(b) the fuzzy reasoning method (FRM). The first element provides an association



between the space of pattern features and the space of consequent classes or target. 
The second element provides a mechanism to classify or predict a given pattern or 
values based on the first part (Jiao et al., 2015). 
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Fig. 3.18 Triangular fuzzy membership of alexithymia 

Fig. 3.19 R outputs of the Mamdani fuzzy inference system
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In classification, the outputs are categorized. As a result, in this model the 
antecedent part is linguistic variables, and the consequent part is a class Cj from a 
prespecified class set C = {C1, . . .,CM}, in regression task the target outputs are 
quantitative as values (Riza et al., 2015). 

3.12.1 Adaptive Network-Based Fuzzy Inference System 
(ANFIS) 

Neuro-fuzzy inference systems were developed in 1993 by J.S. Roger Jang. This 
method can be considered as an exploratory fuzzy inference system if we can name 
Mamdani and Takagi–Sugeno–Kang or Sugeno-type (TSK) fuzzy inference systems 
as a confirmatory one. This system will be discussed below. An adaptive network-
based fuzzy inference system (ANFIS) consists of a Takagi–Sugeno–Kang or TSK– 
FRBS model built out of a five-layered network architecture. Both artificial neural 
network and fuzzy logic are used in ANFIS’ architecture (Avcı, 2008; Avcı & 
Akpolat, 2006; Avcı et al., 2005). The “ANFIS” is a learning algorithm that consists 
of two forward and backward processes. The forward stage includes the layers as 
follows (Fig. 3.20). 

Layer 1 The fuzzification process in which crisp values are transformed into 
linguistic values using the Gaussian function (or the other fuzzy 
membership functions) as the shape of the membership function. 

Layer 2 The inference stage using the t-norm operator (the AND operator). 
Layer 3 Calculating the ratio of the strengths of the rules. 
Layer 4 Calculating the parameters for the consequent parts. 
Layer 5 Computing the overall output as the sum of all incoming inputs. 

Layer 1 receives the inputs and transforms them into the fuzzy value using 
membership functions. Layer 2 multiplies the fuzzy signals obtained from Layer 
1 and provides the firing strength of the rule. Layer 3 is the rules layer where all 
outputs from Layer 2 are normalized. Layer 4 provides the inference of rules, and all 
signals are transformed to crisp values. The final layer summarizes all the signals and 
provides the outputted crisp value (Cvetković et al., 2020). 

The backward stage is a process in which the database is estimated. This database 
includes the parameters of the membership functions in the antecedent part and the 
coefficients of the linear equations in the consequent part (the output is not a value
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Fig. 3.20 ANFIS layer



like the Mamdani Inference system). Since the Gaussian function is a membership 
function in this method, therefore, it is expected that mean and variance are opti-
mized as two parameters of this function. In this step, the least squares method is 
used to perform the parameter learning. For the prediction phase, the method 
performs normal fuzzy reasoning of the TSK model (Lala Septem Riza et al., 2015).
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The Takagi–Sugeno fuzzy model is a type 3 fuzzy inference system, where the 
rule outputs are a linear combination of inputs along with a constant like a regres-
sion, and the final output is the weighted average of every rule’s output. For a first 
order of TSK fuzzy model, a typical rule set with base fuzzy if-then rules can be 
expressed as if x is A1 and y is B1, then f 1 = p1x + q1y + c1 (Avcı, 2008; Avcı et al., 
2005, 2007). 

IF-THEN rules for a two-input Takagi–Sugeno (TSK) system are described as 
follows: 

Rule 1: IF x is A1, y is B1, THEN f 1 = p1xþ q1y þ c1: 
Rule 2: IF x is A2, y is B2, THEN f 2 = p2xþ q2y þ c2 
Rule 3: IF x is A3, y is B3, THEN f 3 = p3xþ q3yþ c3 

where x, y are the inputs in the crisp values set, Ai, Bi are the linguistic terms, pi, qi are 
the consequent parameters, and f1, f2, f3 are the linear combination of inputs along 
with a constant (ci). 

In summary, ANFIS consists of IF-THEN rules and pairs of input–output and 
learning algorithms from a neural network (Avcı, 2008; Avcı et al., 2005, 2007; 
Jang, 1993; Turkoglu & Avcı, 2008). During the forward stage, when the inputs are 
provided to the model, the consequent parameters are updated, and the initial 
parameters are kept fixed; using least squares estimation, the consequent parameters 
are updated in Layer 4, and the final output is calculated accordingly. The backward 
stage starts immediately after calculating the final output. In this stage, the error is 
propagated back to Layer 1, and the initial parameters are updated. The consequent 
parameters are kept fixed (Chopra et al., 2021). 

A standard ANFIS has some assumptions. The system is zero-order or a first 
order Sugeno-type inference system. Membership functions of output are the same, 
whether they be constant or linear. Each rule is of a specific membership function for 
each output variable, and all rule weights are 1 (Cvetković et al., 2020) (Fig. 3.21).
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Fig. 3.21 Standard structure of ANFIS. w1, w2, and w3 are the weights of the neurons, and w1, w2, 
and w3 are the normalized weights of the neuron. (Chopra et al., 2021) 

As mentioned, ANFIS is based on a TSK system. In this section, we further 
discuss the Sugeno method. A Sugeno-type method (or Takagi–Sugeno–Kang) 
consists of fuzzy inputs and a crisp output (linear combination of the inputs). It is 
computationally efficient and suitable for optimization and adaptive techniques 
(Sugeno & Kang 1988). The Sugeno method provides fuzzy rules from a given 
input–output database. It changes the consequent (then part) of the Mamdani rule 
with a function (Equation) of the input variables. The T-S style fuzzy rule is: IF x is 
A AND y is B, THEN z is f(x, y), where x, y, and z are linguistic variables, A and B are 
fuzzy sets on a universe of discourses X and Y, and f(x, y) is a mathematical function 
(Du & Zhang, 2008). Sugeno-type FIS uses a weighted average to compute the crisp 
output, while Mamdani-type FIS uses the technique of defuzzification of a fuzzy 
output. The first two parts of the fuzzy inference process, fuzzifying the inputs and 
applying the fuzzy operator, are the same (Du & Zhang, 2008). The main difference 
is that the Sugeno output membership functions are either linear or constant (Du & 
Zhang, 2008). In Fig. 3.22, different types of fuzzy systems are shown. Type two is 
Mamdani FIS with output function based on overall fuzzy output, while type three is 
the Takagi–Sugeno fuzzy inference. 

Practical Example Using R 

An artificial social psychologist aims to examine anxiety based on conscientiousness 
and extroversion with fuzzy modeling. There are two goals: (1) to measure the 
predictive power of the fuzzy model and (2) to extract the fuzzy rules. They wonder 
about the possible fuzzy rules between anxiety, conscientiousness, and extroversion. 
In a heuristic fuzzy model, the psychologist actually seeks to extract the rules based 
on the data from a large sample of high school students. To this end, the Beck
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Fig. 3.22 Different types of fuzzy inference system. (Mehran, 2008) 

Anxiety Inventory and NEO_AC are calculated for a sample of 861 students (ANFF 
file), and the model’s accuracy is measured using ANFIS while also extracting the 
fuzzy rules of the three variables. 

Listing 3.7 depicts the R codes for ANFIS implementation. In this study, the 
artificial social psychologist trains the model with 500 people and 361 people as the 
test sample. The fuzzy set has 5 degrees (very small, small, medium, large, and very 
large) in 5 iterations, the fuzzy membership is Gaussian, and the implication function 
is ZADGH. 

According to Fig. 3.23, the membership function reveals the two variables of 
conscientiousness and extroversion. 

Figure 3.24 illustrates the evaluation of the trained model versus the test data, and 
the test model with real data covering a sample of 361 people. Since the MSE, 
RMSE, and SMAPE values of 202.4, 14.22, and 1.91, respectively, may not satisfy 
the researcher, the number of fuzzy sets and the sample size can be increased, or even 
the fuzzy membership function can be altered. Figure 3.25 indicates R outputs of 
ANFIS implementation. Figure 3.26 demonstrates the extracted fuzzy rules (Listings 
3.8 and 3.9).
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Fig. 3.23 The membership functions of conscientiousness and extroversion 

Fig. 3.24 The result of the evaluation of the trained model
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Fig. 3.25 outputs of ANFIS implementation 

Fig. 3.26 The extracted fuzzy rules
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Listing 3.8 R codes for ANFIS implementation 

Listing 3.9 R codes for ANFIS implementation (continued)
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3.12.2 Genetic Cooperative-Competitive Learning (GCCL) 

This method is based on Ishibuchi et al. (1999) using genetic cooperative-
competitive learning (GCCL) to handle classification problems. In this method, a 
chromosome describes each linguistic IF-THEN rule using integers as its represen-
tation of the antecedent part. In the consequent part of the fuzzy rules, the heuristic 
method is carried out to automatically generate the class. The evaluation is calculated 
for each rule, which means that the performance is not based on the entire rule set. 
The method works as follows: Step 1: Generate an initial population of fuzzy rules. 
Step 2: Evaluate each fuzzy rule in the current population. Step 3: Generate new 
fuzzy rules by genetic operators. Step 4: Replace a part of the current population with 
the newly generated rules. Step 5: Terminate the algorithm if the stopping condition 
is satisfied; otherwise, return to Step 2 (Lala Septem Riza et al., 2015). 

The genetic cooperative-competitive learning (GCCL) algorithm (Ishibuchi et al., 
1999) employs a GA to optimize the rule base while the database is fixed. Thus, a 
computationally effective classifier with an interpretable rule base can be obtained 
using genetic fuzzy systems for rule induction processes. Fuzzy systems have shown 
their usefulness in solving a wide range of problems in different application 
domains. The use of evolutionary algorithms (EAs), and particularly genetic algo-
rithms (GAs), in the design of fuzzy systems allows us to equip them with the 
learning and adaptation capabilities. The result of this hybridization between fuzzy 
logic and GAs leads to genetic fuzzy systems (GFSs) (Throckmorton et al., 2015). 
The most influential aspect of any GFS is the genetic representation of the solutions. 
In this sense, the proposals in the specialized literature follow two approaches in 
order to encode rules within a population of individuals (Throckmorton et al. 2015). 
The “Chromosome = Set of rules” is also called the Pittsburgh approach, in which 
each individual represents a whole rule set. Thrift proposes in Chen et al. (2017) a 
method that follows this approach. In turn, within the “Chromosome = Rule” 
approach, there are three generic proposals: the Michigan approach, the IRL (itera-
tive rule learning), and the GCCL (genetic cooperative-competitive learning) 
approach, in which the complete population or a subset of it codifies the rule base. 
This approach makes it necessary to introduce a mechanism to maintain the diversity 
of the population in order to avoid all individuals in the population converging to the 
same area of search space. 

Practical Example Using R 

The artificial cognitive psychologist seeks to explore fuzzy rules to predict a class 
(duty-oriented, utility-oriented) based on three variables: neuroticism, extroversion, 
and lie. Rules were obtained using GFS-GCC and SLAVE algorithms.
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The different forms of this fuzzy rule-mining are shown in the following figures. 
Listing 3.10 depicts the r codes for running the two algorithms. 

Listing 3.10 R codes for GCCL implementation 

As the output from R software reveals, the artificial cognitive psychologist 
divides people into two categories based on a task: people in direct dilemma 
preferring duty-orientation and the group preferring utility-orientation (utility-ori-
ented: class 1, duty-oriented: class 2). Then, they are all measured in terms of 
extroversion, lie, and neuroticism with valid and reliable scales. 

Then, GFS_GCCL is used for the soft triangular fuzzy membership function ± 
(product), standard s-norm, and implication function equal to ZADEH and a fuzzy 
set of 5 (very small, small, medium, large, and very large). The population created in 
each generation has 5 members with a crossover probability of 0.9 and a mutation 
probability of 0.3. In this study, the maximum number of generations for the genetic 
algorithm is 2 for ease of running. According to the procedure, 80% of the sample 
size (100 out of 125 people) is the training sample, and 20% (245 people) is the test 
sample. 

Figure 3.27 shows the fuzzy classification rules. For example, in rule 5: 
If neuroticism is very large and extroversion is small and the lie is large, then the 

direct dilemma is utility-oriented (class 1). 
According to Fig. 3.27, the certainty factor for the rules indicates that certainty is 

85% for rule 1 and 67% for rule 5. 
The certainty factor indicates trust in rules in rule-based systems.



3.12 Toward Fuzzy Rule Mining 77

Fig. 3.27 The fuzzy classification rules and the certainty factor 

3.12.3 Structural Learning Algorithm on Indefinite 
Environment (SLAVE) 

SLAVE (Structural Learning Algorithms in Vague Environments) is an inductive 
learning algorithm, which was initially proposed in González et al. (1994) and later 
developed in Gonzalez and Perez (1999). The basic element of the SLAVE learning 
algorithm is its rule. IF X1 is  A and Xn is An, THEN Y is B, where each variable Xi has 
a referential set Ui and takes values in a finite domain (term set) Di, i = 1, . . ., n. The 
referential set for Y is V and its domain is F. The value of the variable Y is B, where 
B 2 F and the value of the variable Xi is Ai, where Afi 2 P(Di) and P(Di) denotes the 
set of subsets of Di. 

Slave algorithms have used iterative approaches to discover fuzzy association 
rules. The SLAVE algorithm is one of the fuzzy rules learning algorithms developed 
after 1994. It is used as a benchmark new algorithm (Ishibuchi et al., 1999). Since its 
implementation in 1996, this algorithm has been altered many times. When the 
SLAVE algorithm was first executed in 1994, there were very few algorithms for 
fuzzy rule learning. Significant recommendations were proposed by Wang et al. 
Both algorithms were centered on control rule learning (a regression problem). For 
working with a noise-influenced framework, the SLAVE approach has been discov-
ered where the existing learning approach does not distribute expected outputs in 
some situations (Tsai & Chen, 2010). The algorithm can define the rules which 
describe the system from all the variables proposed (feature selection). The SLAVE 
algorithm mainly uses iterative approaches. Gonzalez and Perez proposed a modified 
initial iterative approach used in SLAVE (Blake, 1998). In this process, their thought 
was to incorporate more data to learn one single rule. This data is merged into the 
iterative methodology over an alternate proposition of calculus to determine the 
positive and negative guide to a rule. A new function and extra genetic operators are



also proposed that can decrease the time required for learning and develop the 
understanding of the rules that are obtained. Gonzalez and Perez further worked 
on the SLAVE algorithm. Later they reduced the time needed for learning processing 
to obtain a complete rule in each iteration (Wang et al., 2015). 
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Practical Example Using R 

The artificial cognitive psychologist repeats the study using the SLAVE algorithm. 
This algorithm, which is very similar to GFS_GCCL, has a probability of crossover 
of 0.9, 5 fuzzy sets, 5 iterations, a maximum of 3 generations, a mutation probability 
of 0.3, an interval of 0.25–0.75 for the threshold of noise, and an epsilon of 0.1. 
Epsilon is a number between 0 and 1 that indicates the covering factor. 

Listing 3.11 illustrates the R codes for implementing this method. Figure 3.28 
shows the R output for this method, which was used to extract 10 rules. Rule 
10 states that 

If neuroticism is very large, extroversion is not care, and the lie is small, then the direct 
dilemma is duty-oriented (class 2). 

Therefore, these two methods can be used for classification-fuzzy rule mining. 

Listing 3.11 R codes of SLAVE implementation
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Fig. 3.28 The R output of SLAVE and the extracted rule
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4.1 Fuzzy Modeling of Human Knowledge: Toward Fuzzy 
Cognitive Maps in Psychology 

Psychology is the study of humans and, in a deeper sense, the study of the mind and 
mental processes filled with many ideas to achieve goals and desires. Individuals 
gain valuable experiences in various situations that contribute greatly to the identi-
fication of relevant determinants. Those who have failed in relationships, individuals 
who have participated in weight loss classes, mothers of autistic children, the 
LGBTQ community, and those who have lived with MS for years are familiar 
with the basic mechanisms of such experiences. Quantitative studies often focus 
on factors or predictors or on the statistical inference of relationships between 
variables (Giabbanelli & Crutzen, 2014); rarely are individuals asked to estimate 
the effects of variables. For example, studies attempt to identify factors that affect the 
potential for addiction and measure the significance of such effects using inferential 
statistics, such as regression. However, these effects are not quantified. Perhaps a 
psychologist who is a proponent of Sigmund Freud believes it is inappropriate to ask 
individuals to estimate the effect of variables. They believe that individuals cannot 
make accurate estimates because people are strongly influenced by the unconscious. 
Other theories, however, take the opposite view. Research has shown that individ-
uals can accurately estimate how variables affect each other based on an internal 
schema of a complex system (Hayes & Andrews, 2020). 

In order to gain knowledge of the human experience, people are asked to share 
their knowledge; they are asked to share their experiences rather than focusing on a 
single experience. 

It can be said that individuals, consciously or unconsciously, reduce complexity 
when they are asked to create models of their experiences; this process can be done 
to avoid information overload and thus reduce mental effort (Vennix, 1996). Several 
studies have shown that this simplification is independent of expertise (Axelord, 
1974), and solutions have been developed to address this challenge (Papageorgiou 
et al., 2020; Apostolopoulos et al., 2021). 

Psychologists tend to come up with simple solutions! The simplest solution is to 
collect a data set rather than a person’s experience. Research has shown that data sets 
are also prone to bias and would not necessarily lead to more accurate results 
(Vennix, 1996). 

The Delphi method was introduced in the 1960s to collect group responses. 
Although it has resulted in accurate responses to a large extent, three major chal-
lenges still need to be addressed: 

1. Conflicts among participants due to the use of majority rule affect the Delphi 
method. 

2. Relationships have different weights, and the process focuses on the most 
influential relationships in a system; however, expressing causal relationships 
(e.g., very high or high) in linguistic terms contains vagueness. Linguistic terms 
are not unambiguous! This is an inherent property of words.
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3. Human knowledge is subject to uncertainty. Uncertainty is the price of living in 
this world. There is no free lunch!! Everything has its price, and uncertainty is the 
price we pay for the understanding of the real world; a not quite unaffordable 
price! 

Thus, individuals’ answers contain uncertainty and they try to express relation-
ships based on their knowledge to a reliable extent. Fuzzy cognitive maps (FCMs) 
provide a technique to deal with such challenges. An FCM is a mathematical model 
that targets such problems, using fuzzy set theory to gather participants’ experiences. 
FCMs were developed to represent uncertainty and vagueness mathematically to 
provide formulated tools for dealing with impressionism in real-world problems 
(Li et al., 2006). An FCM includes linguistic terms and helps participants share their 
experiences. For example, participants may say, “My relationship with my mother 
strongly influences my mentalized affectivity.” The term “strongly affect” has 
different meanings for different people. It is defined by fuzzy set theory based on 
overlapping membership functions. 

Linguistic terms are integrated into an FCM by rules. For example, if 35 out of 
50 alpha women say, “my relationship with my mother has a very strong influence 
on my mentalized affectivity,” and the remaining 15 say, “my relationship with my 
mother has a strong influence on my mentalized affectivity,” the confidence factors 
of the linguistic terms “very strong” and “strong” are calculated as 0.7 and 0.3, 
respectively. This is discussed as a fuzzy implication rule in the development of 
FCMs. The confidence factor represents uncertainty and plays a key role in quanti-
fying participants’ general experiences. 

To model relationships between variables, several approaches have been intro-
duced. Structural equation modeling (SEM) cannot use linguistic variables and 
scenario and feedback analyses. The system dynamics approach requires a mediator 
to resolve vagueness, uncertainty, and conflict among participants. Bayesian net-
works allow inference under uncertainty but classically fail in the study of feedback. 
These shortcomings need to be addressed in FCMs. 

4.2 Modeling Based on Psychological Knowledge 

Where does the psychological knowledge of researchers in the psychology literature, 
which is the modeling engine of artificial intelligence (AI) psychologists, 
come from?
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The knowledge needed in the psychological literature is obtained through qual-
itative and quantitative methods. Psychological researchers attempt to explore the 
mindset of the target group using qualitative schemas, often using content analysis, 
thematic analysis, grounded theory, and phenomenology (phenomenography) in the 
form of nondirective in-depth interviews. For example, a target group may include 
experts, patients, mothers, and couples who can provide the knowledge needed to 
construct the model. 

A researcher is like a bee sitting purposefully on a flower, feeding on nectar and 
producing honey. Researchers seek in-depth, qualitative assessments of phenomena 
that are not precise, but rich in concepts. They search for the gold of facts in the 
minds of informants. After interviewing the target group, the interviews are coded 
using transcription to extract themes and categories. Once the extraction of themes 
and categories is complete and the trustworthiness of the results is assessed, an FCM 
can be developed based on the resulting conceptual model using the principles of 
qualitative methodology. 

In addition, a significant amount of psychological knowledge is obtained through 
quantitative methods based on questionnaires, scales, standard tests, observation 
checklists, smart devices, and archived patient records. In such methods, concepts 
and variables can be extracted by reviewing the literature before implementing a 
statistical model. The resulting coefficients can then be used to create weighted 
matrices for an FCM. Therefore, two FCM models can be developed: (1) the 
thematic tree-based FCM (TTBFCM) and (2) the SEM-based FCM (SEMBFCM).
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Fig. 4.1 The procedure of constructing TTBFCM 

TTBFCMs can be referred to as qualitative or expert-based models (thematic tree-
based models in a more general sense). Themes are extracted from nondirective 
in-depth interviews with the target group and coded using qualitative methods. 
However, psychologists are aware that a qualitative schema must be aligned with 
psychology to extract themes. 

Once theme extraction and the evaluation of the trustworthiness of the themes are 
completed, a tree of themes is created. This is discussed below as the basis of the 
primary FCM models. 

The thematic tree is created in draft form and presented to the expert panel 
(at least ten experts) to be finalized based on the concepts (nodes) or themes, their 
causal relationships, feedbacks, and loops. The experts are also asked to express their 
opinion on the causal relationships linguistically (e.g., very high or high). The 
arrows of the model are labeled. Figure 4.1 illustrates the thematic tree created to 
assess adjustment after self-injury in female adolescents as the primary model of an 
FCM. 

Domain experts sometimes have different views on model concepts. In such a 
case, each causal matrix must be completed by adding new columns and rows with 
zeros for additional concepts. In this way, all causal matrices have the same 
dimension, and the integration of FCMs can yield a comprehensive description of 
a single FCM. For example, experts 1 and 2 propose FCM1 and FCM2 for working 
memory. Then, an integrated FCM can be obtained (Fig. 4.2).
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Fig. 4.2 An integrated FCM using two experts’ FCMs 

The essentiality of FCMs could be determined, as shown in the below table. 

Group Name Essential Not essential 
but useful 

Non-essential Comments 

Then, the CVR was calculated as 

CVR= Ne-N=2ð Þ= N=2ð Þ ð4:1Þ 

where Ne is the number of experts who consider the node necessary, while N is the 
total number of experts (10 in this case). The CVR of each node was compared with 
the Lawshe table, and the nodes whose CVRs were above the Lawshe table remained 
in the model (Ayre & Scally, 2013). 

SEMbFCMs are also a technique for extracting knowledge from questionnaires, 
scales, tests, smart tools, and observational checklists or brain data, e.g., electroen-
cephalography (EEG). A model can be developed by reviewing the literature, 
expertise in the field, and expert opinion on SEMbFCMs. Quantitative techniques 
are used to quantitatively measure the model on a larger scale; the model can then be 
fitted using SEM. Partial least squares (PLS) will be used for small samples (Hair 
et al., 2022). The standardized path coefficients are assumed to be the weights of the 
FCM matrix. 

However, statistical feedback does not exist in SEM and can be obtained from the 
expert perspective (the structural and relational modification of the model). Fig-
ure 4.3 shows the procedure for designing a SEMbFCM model. The FCMs are 
explained in more detail below. 

Axelord (1976) proposed cognitive mapping theory (CMT) to model social 
science knowledge. Kosko (1986) then introduced FCMs as an extension of CMT 
to model and analyze complex systems. FCMs can be considered a knowledge-based 
methodology that simulates dynamic systems. It integrates fuzzy logic, neural 
networks (which will be explained in the next chapters), and cognitive maps to



represent knowledge about systems whose characteristics are uncertainty, causality, 
and complex processes (Papageorgiou, 2013). 
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Fig. 4.3 The procedure for designing a SEMbFCM model 

The FCM is structurally a fuzzy directed graph with feedbacks consisting of 
components known as nodes and causal relationships between components (nodes) 
known as weighted directed edges. The dynamics of such systems are tested by 
simulating their behavior in discrete simulation steps. In general, FCMs can be 
designed based on inputs from domain experts, system data, or a mixture of experts 
and data (i.e., expert-based, data-driven, and hybrid FCMs). 

The node concept is determined based on the activation degree. A degree of 
activation refers to the degree to which the corresponding concept (node) influences 
other nodes in the FCM. Relationships between concepts are defined as positive, 
negative, or zero. Here, Wij represents the relationship between concepts (nodes) Ci 

and Cj. It can be positive, zero, or negative. Its sign (whether positive or negative) 
represents the direction of the effect, while its absolute value represents the intensity 
of the relationship.
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Fig. 4.4 A simple FCM 
including edges and nodes 
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Recently, especially in the last 30 years, FCMs have been of great interest to 
researchers in a variety of fields. They have unique advantages over classical 
models, including the ability to clearly represent relationships between concepts 
(nodes) and the study of latent patterns (relationships) between nodes. In addition, 
their causal semantics can be predicted to analyze, simulate, and test the effects of 
parameters and estimate the behavior of the system (Fig. 4.4). 

As mentioned earlier, there are three approaches in FCM design, namely expert-
based, data-driven, and hybrid approaches. However, since explainability and inter-
pretability are at the core of AI psychology (the title of this book), the expert-based 
approach is said to be the dominant FCM design approach. 

The model was designed based on the expert opinions and then delivered to the 
experts with causal relationships to determine the relationships using linguistic terms 
(e.g., very strong, strong, moderate, weak, very weak). Then, the linguistic terms or 
ratings were converted into numerical weights using fuzzy logic (Mkhitaryan et al., 
2022). These steps are simple and can be performed by AI psychologists. 

Linguistic evaluations are converted into numerical weights in four steps: 

Step 1: Defining Fuzzy Membership Functions 
Fuzzy membership functions or numbers (e.g., triangular, trapezoidal, and Gaussian) 
are used to transfer linguistic terms into a specific numerical interval or universe of 
discourse. The universe of discourse is defined in FCMS in the range (-1, 1) when 
negative causality is possible; otherwise, the range is (0, Y). 

To define a membership function, its form must be determined. As mentioned 
earlier, there are a variety of membership functions; however, triangular membership 
functions are the most commonly used. A triangular membership function has an 
upper bound, a midpoint, and a lower bound (Fig. 4.5). 

Step 2: Applying the Fuzzy Implication Rule 
In order to determine the degree of activation of the linguistic variables representing 
the relationships between certain nodes, it is necessary to determine the extent to 
which the linguistic terms have been verified by the participants. The degree of the 
causal effect of an antecedent on a consequent in terms of linguistic terms is 
determined. Then, the fuzzy implication rule is applied to activate the membership 
functions. In this context, Larsen’s product and Mamdani’s minimum are often used. 
Based on Mamdani’s rule, the membership function is truncated at the verification 
level (Eq. (4.1) and Fig. 4.1). Based on Larsen’s rule, the membership function is 
rescaled (Eq. (4.2) and Fig. 4.2).
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Fig. 4.5 A triangular 
membership function 

Lower bound Center Upper bound 

Table 4.1 Techniques for integrating membership functions 

Argument Option Description Equation 

Method “Algsum” Family algebraic sum x + y - xy 

“Esum” Family Einstein sum xþyð Þ  
1 xxy 

“Hsum” Family Hamacher sum xþy- z�y 
1- x y 

Mamdani’s Minimum: 

HR x, yð Þ= min HA xð Þ,HB yð Þ½ � 4:2Þ 

Larsen’s Product: 

HR x, yð Þ=HA xð Þ:HB yð Þ ð4:3Þ 

The next step after applying the percentage importance in the rule is aggregation. 

Step 3: Integrating the Fuzzy Membership Functions 
The activated fuzzy membership functions are integrated. Several techniques have 
been proposed for integrating membership functions (Table 4.1).where x and y are 
the membership values of the linguistic terms activated in the previous step. 

The last step of FCM is routine defuzzification of the integrated membership 
functions. 

Step 4: Defuzzification 
A number of defuzzification methods have been introduced, including the Center of 
Gravity method. Defuzzification is used to convert the fuzzy FCM values into crisp 
numbers. Several defuzzification methods are available in Python, as shown in 
Table 4.2. 

Simulation is an important aspect of FCMs. The dynamics of an FCM are 
determined by simulating its behavior in discrete simulation steps. The concept 
values are updated in the simulation using inference methods. The FCM expert 
must use the following inference rules:
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Table 4.2 Defuzzification 
methods 

Argument Option Description 

Method “Centroid” Centroid 

“Bisector” Bisector 

“Mom” Mean of maximum 

“Som” Min of maximum 

“Lom” Max of maximum 

Kosko’s activation rule with self-memory (modified Kosko) 
Rescaled activation rule 

At 
j is the value of node j in step t, Wij is the causal effect of concept (node) j on 

concept i, and f(x) is a transfer function. The transfer function is used so that the 
values fall within a certain range – for example, (0, 1) and (-1, 1) for the sigmoid 
and hyperbolic tangent transfer functions, respectively. There are five transfer 
functions:

• Sigmoid ! X is defuzzified value λ is a steepness parameter for the sigmoid 
function

• Saturation function
• Bivalent
• Trivalent
• Hyperbolic 

The simulation runs until one of two discontinuity criteria is met: (1) the concepts 
have a difference in two consecutive steps that is smaller than the threshold differ-
ence so that the network converges at a fixed point, or (2) the predefined maximum 
number of iterations has been completed. 

∃ E1, 2, . . . , t- 1ð Þ  : Atþ1 -A
� �

< threshold ð4:4Þ 

In FCM inference and simulation, the FCM expert defines an initial state vector in 
which the values of the concepts are determined by the FCM expert. An FCM 
weighting matrix, i.e., a connection or adjacency matrix, is also required. Once the 
initial state vector and the FCM weight matrix are multiplied, the system is updated 
until one of the two termination criteria is met. 

4.3 Optimization in FCMs 

An expert-based FCM can converge to undesirable positions, which is a drawback. 
Therefore, such models predict only extreme values. Researchers have proposed a 
number of techniques to circumvent this drawback (Lavin et al., 2018).
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The active Hebbian learning (AHL) and nonlinear Hebbian learning (NHL) 
approaches have been proposed. They are based on the Hebbian learning rule. 
Here, machine learning (ML) and the FCM approach are integrated. These algo-
rithms aim to modify the initial weight matrix so that the selected nodes converge in 
the predefined region. These nodes are referred to as DOCs. Although human 
knowledge is a powerful tool in the design of FCMs, expert opinions may be lacking 
or too subjective and inaccurate in some cases (Papageorgiou, 2011). In addition, 
there may be too large a number of variables/components. Learning algorithms are a 
mechanism to address such challenges. These algorithms increase the accuracy of 
the weights and reduce the dependence of the weights on expert opinions, improving 
the performance of FCM by creating a learned weight matrix (Papakostas et al., 
2011; Papageorgiou, 2011). Overall, learning algorithms cope with the convergence 
problem of FCMs and enable reliable decisions (Papageorgiou et al., 2004). 

Learning algorithms are similar to simulations. However, learning algorithms 
update the values of the concepts (nodes) at each time step, whereas simulations only 
change the concepts (nodes) (Papageorgiou et al., 2004). AHL updates the nodes and 
weights asynchronously based on the activated pattern sequence. It not only opti-
mizes the existing wedges but also creates new weights between nodes that may not 
be desirable. 

Based on such optimization algorithms, the learning process continues until one 
of two termination criteria is met: (1) the fitness function F1 of each DOC decreases 
at each time step, or (2) the DOCs fall within the predefined range. 

The fitness functions of the DOCs are calculated (Eq. (4.5)). For the second 
criterion, it is important to identify whether the DOC is fixed (F2). A threshold is 
defined, which should be (0.001, 0.005). As soon as it is reached, the process is 
terminated. The learning process is terminated as soon as the two termination criteria 
are met. Otherwise, the predefined number of iterations is performed. 

F1 = 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DOCk 

j -
DOCmin 

j -DOCmax 
j 

2

�����

�����
2 

vuut ð4:5Þ 

F2 = DOCkþ1 
j -DOCk 

j

�� ��< e ð4:6Þ 

To implement the AHL and NHL algorithms, the initial weight matrix, initial 
concept values, and DOCs must be determined. In addition, the learning rate, the 
decay coefficient, and the coefficient of the sigmoid function should be determined 
as hyperparameters. The slope and decay rate of NHL and AHD as well as the 
learning rate are usually set to [0.9, 1001], (0.99, 1), (0.01, 0.1), and (0.00, 0.1), 
respectively. It should be noted that population-based search methods exist for 
learning in FCMs used to optimize weights and slopes (Mkhitaryan et al., 2022).
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4.4 Scenario Analysis in FCMs 

The analysis of scenarios and their effects on the model is an advantage of FCMs. A 
scenario can be assumed to be a new FCM factor whose causal effect on the target 
concepts (nodes) is measured (continuous interventions) or that changes the base 
values of the concepts (nodes) to the values of the target concept (nodes) values 
(one-time interventions). 

To evaluate continuous interventions in Python, the name of the intervention, the 
concepts (nodes), the targets, and the effects of the nodes on each other must be 
determined. For one-time short interventions, on the other hand, the name of the 
intervention and new initial states must be determined. It is also proposed to evaluate 
the effectiveness of a given intervention in the range of (0, 1), where 1 is the 
maximum effectiveness. The strength (intensity) of the intervention is intended, 
and the actual value of the change (increase or decrease) after the intervention is 
simply determined (Mkhitaryan et al., 2022). 

Actual effectiveness due to intervention = expected effectiveness * amount of 
effectiveness after intervention. 

To assess explainability, which is the main goal of explainable AI psychology, 
charts are used to measure the changes after each intervention. 

4.4.1 Practical Example Using R 

An artificial psychologist tries to simulate a model based on FCM to explain 
cyberloafing. He derives an initial conceptual model based on an in-depth review 
of the related research background. In this model, he specifies two important vari-
ables C1 and C2 in relation to the target variable (cyberloafing): (smartphone 
addiction = C1) and (loneliness = C2). He then consults with a research team 
who have worked in the field of Cyber Psychology. They also suggest the stress 
variable and the final model is conceptualized as follows, where C3, stress, and C4 
are the target variable, i.e., cyberloafing (Fig. 4.6). 

The assumed model is presented to two experts who work in the field of mental 
health and health psychology, and they are asked to specify the label of each path 
(edge) in an 11-category scale. 

Table 4.3 shows the fuzzy set, the type of fuzzy membership, the parameters, the 
direction (sign), and the size (the degree of influence of each variable). 

Then the experts were asked to specify in the figure if they consider each of the 
fuzzy sets suitable for each edge in the assumed model. The figure shows the opinion 
of expert 1 about the routes. 

Then, using the necessary codes in the software of these comments in the form of 
Fuzzy Logic, it is aggregated and the matrix of weights is formed, or adjacency 
matrix (Table 4.4).
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Fig. 4.6 Hypothetical 
model of FCM 

C1 

C2 

C3 C4 

Table 4.3 The fuzzy set, type of fuzzy membership, and the parameters 

Parameter The type of fuzzy membership functions Fuzzy set 

(-1, -0.75, -0.5) Triangular Very high negative (-VH) 

(-1, -0.75, -0.70) Triangular High negative (-H) 

(-0.75, -0.5, -0.25) Triangular Negative average (-V) 

(-0.5, -0.25, 0) Triangular Negative bottom (-L) 

(-0.25, 0, 0) Triangular Very low negative (-VL) 

(-0.001, 0, 0.001) Triangular Don’t know (NA) 

(0, 0.25, 0.5) Triangular Very low positive (+VL) 

(0.25, 0.75, 0.8) Triangular Positive low (+L) 

(0.5, 0.75, 1) Triangular Medium positive (+M) 

(0.57, 1, 1) Triangular High positive (+H) 

(0.75, 1, 1) Triangular Very high positive (+VH) 

Table 4.4 The adjacency matrix of the FCM 

C1 C2 C3 C4 

C1 0 0.75 0.28 0.92 

C2 0 0 0.79 0.89 

C3 0 0 0 0.90 

C4 

Fig. 4.7 CM model based 
on experts’ opinion 

C3 C4 

C2 

C1
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Fig. 4.8 The fuzzy 
membership function 
showed in Table 4.4 

After 5 iterations, C3 = stress = 0.71 and target variable = cyberloafing = 0.84. 
The diagram is given as Fig. 4.7. In FCM, the initial value determined by the 
artificial psychologist for variables C1 and C2 is called the initial vector or activation 
vector. This vector contains values related to concepts or primary nodes, each of 
which is activated by assigning the number 1 or a number between 0 and 1. The 
weight matrix or adjacency matrix actually shows the normalized relationships 
between concepts or variables, which are usually placed in the distance (0 and 1) 
or (-1 and +1). The number of iterations is the number of times after which the 
values obtained from the simulation do not change more than a certain limit 
(threshold). For fuzzy inference based on FCM, it is necessary to determine the 
rules. In general, Dikopoulou et al., (2018) introduce six different rules for fuzzy 
inference: (1) Kosko, “k,” (2) modified Kosko, “mk,” (3) rescale, “r,” (4) Kosko 
clamped, “ks,” (5) modified Kosko clamped, “mkc,” and (6) rescale clamped, “rc.” 
As a pre-selected default, the inference rule is usually set to Kosko. In this example, 
as specified in the R codes, the artificial psychologist used Kosko’s rule for 
inference. 

Since the output of the vector product in the weights matrix may be a non-fuzzy 
number {out of 0 and 1 or-1 to +1} to convert that number to a number that is in the 
range of 0 to 1 or -1 to +1 The transformation function is used. 

These functions are bivalent, “b,” trivalent, “tr,” sigmoid, “s,” or hyperbolic 
tangent, “t.”. From the function sigmoid, “s” is used. 

To stop the iteration, the value of epsilon (e) is used, which indicates the 
minimum difference between the concepts resulting from the iterations. By default, 
these values are 0.001. In this example, e = 0.001 was considered (Figs. 4.8 and 4.9).
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Fig. 4.9 The plot of the iteration step 

Fig. 4.10 Converging the FCM at iter5 

As explained in the previous section, since the weight matrix or adjacency matrix 
may falsely converge, the AHL and NHL approaches are used for this reason. The 
purpose of these two algorithms is to modify the initial weights matrix so that the 
nodes converge in the preferred area and do not reach an incorrect and premature 
convergence. It is possible to obtain adjusted matrices by using Python software and 
running AHL and NHL and then import them into R for calculation. 

Figure 4.10 shows the output of AHL. In Python software, there is a very good 
library for FCM implementation, which is out of the scope of this book. Based on 
that, more diverse and interesting findings can be achieved with this method. 

Fuzzy sets and their parameters were approved by experts; see the R codes to 
draw the shape of this table and its output in Listings 4.1 and 4.2.
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Listing 4.1 R codes for FCM 

Listing 4.2 R codes for FCM (continued)
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Fig. 4.11 The output for AHL 

Fig. 4.12 The results of the simulation of FCM 

Figure 4.11 shows the output of AHL. In Python software, there is a very good 
library for FCM implementation, which is out of the scope of this book. Based on 
that, more diverse and interesting findings can be achieved with this method. 

The final concept vector is to be C (5) = [0.50, 0.59, 0.71,0.84]. The final values 
of decision concepts are stress = 0.71 and cyberloafing = 0.84 of the decision-
making problem (Fig. 4.12). 

Farahani et al. (2021a, b, c) used FCM for studying psychological well-being. In 
this paper, you can find some computational detail.
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Chapter 5 
Network Analysis in AP 

5.1 Network Analysis in AP 

AP is introduced to improve the quality of analyzing psychological models. Psy-
chological phenomena are not independent from each other as consciousness is a 
dynamic and continuous phenomenon. Human behaviors, however, might seem to 
be discrete and singular but are not. Therefore, in order to understand a phenomenon 
one should study it as a series of complex and interrelated features, viewing them as 
a psychological network. AP, in this sense, could be called the science of psycho-
logical networks, networks of complex and interrelated variables. These networks

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 
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are small or big, simple or complex, visible or invisible and dynamic or static. 
Psychological features in a network could comprise of different types of factors: 
factors showing cause and effect, environmental factors, character-related factors, 
and psychological or physical factors. The relation among the features could be 
negative or positive, directional, unidirectional or reciprocal.
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Borgatti, et al. (2009) believe that networks have influenced all aspects of human 
psychology. In the last decade, network analysis has been viewed as a significant 
analytical approach in psychological research (Hevey, 2018). Network analysis has a 
long history in the field, and in recent years there has been a shift from a latent-based 
approach to a network approach, in order to explain the correlation among variables. 
In this approach, the observed pattern in the form of correlation can be explained by 
a mutualism model, in which features have reinforcing and mutual relations. In the 
network analysis model, the relationship between variables represents the psycho-
logical phenomenon (De Schryver, 2015). 

Therefore, conceptually, network is an acceptable model of psychological phe-
nomena, enabling precise analysis, and statistically it is a method to study the 
relations among variables simultaneously. 

Psychological constructs are inherently complex and therefore the researchers 
have for some years focused on restricting the phenomena studied to that of 
significant variables. Such a reductionism leads to a limiting of our knowledge of 
the phenomena as a whole (Barabasi et al., 2011). 

Network approaches in AP focus on multivariate data to advance several goals. 
Borsboom et al. (2021a, b) elaborated on these goals. First, they can be used to 
explore the structure of high-dimensional data in the absence of strong prior theory 
on how variables are related. Second, in these analyses, psychometric network 
analysis complements existing techniques for the exploratory analysis of



psychological data, such as exploratory factor analysis (which aims to represent 
shared variance due to a small number of latent variables) and multidimensional 
scaling (which aims to represent similarity relations between objects in a 
low-dimensional metric space). The unique focus of psychometric network analysis 
is on the patterns of pairwise conditional dependencies that are present in the data. 
Network representations can be used to communicate multivariate patterns of 
dependency effectively, because they offer powerful visualizations of patterns of 
statistical association. In other words, it enables the discovery of a communal 
structure. Third, network models can be used to generate causal hypotheses, as 
they represent statistical structures that may offer clues to causal dynamics. As stated 
by Pearl (2000), Spirtes et al. (2000), and Haslbeck et al. (2021), networks that 
represent conditional independence relationships form a gateway that connects 
correlations to causal relationships. 
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Fig. 5.1 Structure of psychometric network analysis. (Derived from Borsboom et al., 2021a, b, 
p. 2) 

Many still believe that causality is derived from the theory and not data. To 
illustrate network analysis, Fig. 5.1 could be used. 

5.2 Structural Analysis of Psychological Network 

At an abstract level, a network refers to various structures, consisting of variables. 
These variables are called nodes and the relationships between these nodes are called 
edges. Despite social networks, in which associations between people are directly 
observable (for example friends and enemies), edges in psychological networks 
depend on statistical analyses and partial correlations among nodes, which represent 
the power of associations among them. In visual representation of a network, green 
(or blue) edges represent positive associations and red edges represent negative 
associations. The thickness of each edge shows the power of association (Jones 
et al., 2018). Edges can be either weighted or unweighted. Weighted edges reflect the 
direction and strength among nodes. Alternatively, the edge may be unweighted and 
simply represent the presence vs. absence of a relationship. 

A node can represent a single item from a scale, a sub-scale, or a composite scale. 
The choice of node depends upon the type of data that provide the most appropriate 
and useful understanding of the questions to be addressed. This is along with 
explainability and interpretability, which are the bases of AP. Edges can represent 
different types of relationships, for example, comorbidity of psychological



symptoms or correlations between attitudes (Hevey, 2018). Farahani et al. 
(2021a, b, c) investigated the application of network analysis for capturing comor-
bidity structure in mental disorders. 
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Generally, two types of edges can be present in a network: (1) a directed/ 
directional edge: the nodes are connected in a one-way effect, or (2) an undirected/ 
undirectional edge: the nodes have a mutual relationship. 

A directed network can be cyclic. That is, we can follow the directed edges from a 
given node to end up back at that node or acyclic; i.e., you cannot start at a node and 
end up back at that node again by following the directed edges. 

Pearl (2000) believes that directed networks can represent causal structures and 
therefore cannot be cyclic and are surely acyclic (Epskamp et al., 2018). However, in 
the real world, the cyclic assumption is untenable. In addition, directed networks



suffer from the problem that many equivalent models can account for the pattern of 
relationships found in the data (Bentler & Satorra, 2010). 
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Despite the plausibility of many causal psychopathological symptom pathways in 
networks, there is a need to build a stronger rationale to motivate the causal nature of 
these relationships (Fried and Cramer, 2017). 

Regarding time, networks can be cross-sectional data or time-series data. 

5.3 Steps in Network Analysis 

Estimating a Network 
For a network to be formed, first the edges should be determined. In classical 
statistics, there are several methods to study the relationships between variables 
such as correlations, covariance, partial correlations, regression coefficients, odds 
ratios, and factor loadings. However, in network analysis, the estimation method 
depends on the type of network. Undirected networks occur frequently in psychol-
ogy and a frequently used model in estimating such undirected networks is the 
pairwise Markov Random Field (PMRF), which is a broad class of statistical models. 
A PMRF model is characterized by undirected edges between nodes that indicate 
conditional dependence relations between nodes. An absent edge means that two 
nodes are conditionally independent, given all other nodes in the network. An edge 
indicates conditional dependence given all other nodes in the network. 

Edges are estimated depending upon the type of data. If continuous data are 
multivariate and normally distributed, analyzing the partial correlations using the 
Gaussian graphical model (GGM) is appropriate (Costantini & Perugini, 2016). If 
the continuous data are not normally distributed, then a transformation can be 
applied prior to analysis (Liu et al., 2009). For ordinal data, polychoric correlations 
are used (Epskamp et al., 2018). 

If all the data are binary, the Ising model can be used (van Borkulo et al., 2014). 
All of these models can be coded in R. When the data comprise a mixture of 
categorical and continuous variables, the mixed graphical model can be used to 
estimate the PMRF (Haslbeck & Waldorp, 2018). 

The network complexity requires consideration. The parsimony principle is of 
great importance here. The higher the number of nodes being examined, then the 
higher the number of edges that have to be estimated and so the network is more 
complex. For example, in a network with 10 nodes, 45 edges are estimated. In 
addition, in the case of an Ising model, the number of estimations is more. Moreover, 
due to confounding variables, some of these correlations might be fabricated and an 
increase in the number of nodes can lead to over-fitting and very unstable estimates 
(Babyak, 2004). 

It should be borne in mind that correlations and partial correlations are the bases 
of estimation in undirected weighted networks, and these, like all statistical tech-
niques, are influenced by sample variation and therefore exact zeros will be rarely 
observed. However, weak and spurious correlations may occur. In order to limit the



number of such spurious relationships, along with benefiting from theoretical back-
grounds, a statistical regularization technique is frequently used. A “least absolute 
shrinkage and selection operator” (LASSO) is such a regularization technique, 
introduced by Friedman, Hastie, and Tibshirani in 2008. The estimation of the 
partial correlation networks is done with a tuning parameter set by the researcher. 
Studies (Wu et al., 2013) show that LASSO performs well in the estimation of partial 
correlation networks. LASSO reduces some small weak edge estimates to exactly 
zero, resulting in a sparse network (Tibshirani, 1996). In other words, LASSO yields 
a more parsimonious model by reducing the number of connections between nodes, 
which reflects only the most important empirical relationships in the data. Therefore, 
the absence of an edge does not present evidence that the edge is in fact exactly zero 
(Epskamp et al., 2017). Note that there is also the threat of omitting actual relation-
ships when using LASSO. 
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Among many variants of the LASSO, the graphical LASSO (Friedman, et al., 
2008) is generally used in network analysis, as it is easily implemented in software 
and also it is flexible in terms of data type (Epskamp & Fried, 2018). 

The use of the LASSO requires tuning parameter λ. The higher the λ value, the 
more edges are removed from the network, directly influencing the network struc-
ture. A common method involves estimating a number of networks under different λ. 
These different networks range from a completely full network to a network with no 
edges. The LASSO estimates produce a collection of networks and one needs to 
select the optimal network model. Optimizing is typically achieved by minimizing 
the extended Bayesian information criterion (EBIC). EBIC works well for both the 
Ising model and GGM (Foygel & Drton, 2010). EBIC has been used in psychology 
networks, and it enhances the accuracy of networks (Tibshirani, 1996; Isvoranu 
et al., 2017). 

λ in EBIC is a hyperparameter, which is determined by the researcher and is 
typically set between 0 and 0.5. Its default value is 0.5 in almost all cases. The 
explainability and interpretability are of great importance here. The researcher 
should determine which produced networks are more aligned to theoretical bases. 
After estimating the network, the important questions to be answered are, Which 
node is the most important one? Is the global structure of the network dense or 
sparse? Is the network stable? Do nodes consist of communities or are they singular? 

5.4 Descriptive Statistics of Networks 

Centrality indices are used to study network descriptions. Centrality indices 
(CI) represent the relative importance of a node in the context of the other nodes 
in the network (Borgatti, 2005). 

One of the indices of centrality is node strength. How strongly a node is directly 
connected to other nodes is based on the sum of the weighted number and strength of 
all connections of a specific node relative to all other nodes.
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Another index is closeness, which quantifies the node’s relationship to all other 
nodes in the network by taking into account the indirect connections from that node. 
A node with high closeness will be affected by changes in any part of the network 
and can affect changes in other parts of the network quickly (Borgatti, 2005). 

In addition, there is an index of betweenness. The betweenness index is defined 
by the frequency in which a node lies on the shortest path between two other nodes. 
In other words, this index shows which nodes are bridges. 

Clustering is used to interpret psychological networks. The overall network might 
comprise communities. Each community is a clustering of nodes that are highly 
interconnected among themselves and poorly connected with nodes outside that 
cluster (Havey, 2018). Detecting communities helps researchers to interpret the 
network. Discovering clusters of nodes (communities) helps in interpreting the 
multiplicity of nodes. 

Fried introduces a number of approaches to identify communities. The familiar 
approaches of latent variable models and “exploratory factor analysis” do this. 
Communities are in fact factors. There are also more sophisticated approaches, 
including the Spinglass algorithm. The problem with this algorithm is that it often 
produces different results every time you run it, and it only allows nodes to be part of 
one community. Another approach is the Walktrap algorithm. This algorithm pro-
vides more consistent results but only allows nodes to be part of one community. 
Lastly we have the Clique Percolation Method (CPM), which allows nodes to belong 
to more than one community and fits the needs of psychological research. The last 
approach is applied in this volume (Epskamp & Fried, 2018). 

5.5 Network Accuracy 

Determining the accuracy of network analysis is of great importance. In psycholog-
ical research, the sample size is small, which can limit accuracy. Therefore, looking 
at the accuracy of node centrality and edge strength is important. 

The most common method to estimate the accuracy of edge weights is by 
calculating confidence intervals (e.g., 95% CI). Epskamp et al. (2018) developed a 
method that uses bootstrapping (Efron, 1992). 

In this method, a model is estimated repeatedly under either sampled or simulated 
data, and then estimates the required statistic. The more bootstrap samples, the more 
consistent the results. 

Either a parametric bootstrap or nonparametric bootstrap can be applied for edge 
weights (Bollen & Stine, 1992). Nonparametric bootstrapping could be applied for 
any type of data and therefore Epskamp et al. (2018) recommended using a method 
for unbiased estimates with LASSO regularized edges.
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5.6 Accuracy of Centrality Indices 

The accuracy of the centrality indices can be examined by using different methods. 
The aim is to determine whether or not the order of centrality indices remains the 
same after re-estimating the network with less cases or nodes. Therefore, a bootstrap 
method dropping subsets of cases is applied to assess sensitivity. 

In this method, the correlation stability is calculated. The correlation between the 
original centrality indices (based on the full data) is compared to the correlation 
obtained from the subset of data (representing different percentages). If the correla-
tion changes considerably, then the centrality estimate is problematic. A correlation 
stability coefficient (CS) of at least 0.7 between the original full sample estimate and 
the subset estimates has been suggested by researchers as being a useful threshold to 
examine (Epskampet al., 2021). 

It should be borne in mind that a CS coefficient shows the maximum proportion 
of cases that can be dropped, such that with 95% probability the correlation between 
original centrality indices and subsets is above a threshold. 

Borsboom et al. (2021a, b) suggest that to ensure the accuracy of indices, CS 
should be 0.25 or preferably 0.5. 

5.7 Network Science in Psychology 

We are living in a connected world, being surrounded by complex networked 
systems. Blanken et al. (2021) assert that if one wants to summarize all contempo-
rary studies on human processes and behaviors in a sentence, they would say, “It is 
complicated.”
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The connection between neurons, interrelation of psychological states and social 
relations, and the connection of symptoms and psychological disorders can all be 
considered networks. Network analysis is not a new scientific approach but is 
considered a new one in psychology. In recent studies, Borsboom has tried to 
apply this new approach in psychological research. The literature of applying 
network analysis in psychology is very extensive (for instance, see Fonseca-Pedrero, 
2018; Bringmann et al., 2022). 

5.8 Network Science in Cognitive Psychology 
and Neuroscience 

5.8.1 Complex System 

The features of these systems are neither completely random nor completely regular 
but instead indicate a rather complex organization. In our surroundings, such 
systems range from societies, economies, and ecosystems to infrastructure systems, 
data processing networks, and molecular interactions in biological organisms. 

Despite recent breakthroughs in neuroscience, much remains unknown about the 
brain’s complex functions. Network neuroscience is an interdisciplinary branch of 
science aimed at better understanding these issues. There are two general procedures 
in this field: (1) using new experimental tools and comprehensive maps and record-
ing dynamic patterns in molecules, neurons, brain regions, and social systems; and 
(2) using theoretical and computational tools of modern network science. 

Nowadays, neuroscience is faced with big neural data. “Big data” typically 
represent networks that contain relationships or interconnections that link the 
many elements of large-scale neurobiological systems. These include protein inter-
action and genetic regulatory networks, synaptic connections and anatomical pro-
jections among brain areas, dynamic patterns of neural signaling, and 
communication associated with spontaneous and task-evoked brain activity and 
interactions among brain systems, and the environment in the functioning course 
of behavior. These data have different domains and types (for example, anatomical 
and functional connectivity, genetic patterns and disease states, and activity in 
distributed brain regions in relation to behavioral phenotypes) (Bullmore & Sporns, 
2009; Medaglia, et al., 2015). 

5.8.2 The Brain as a Complex System 

The brain is the most complex network known to humans. The human brain is made 
up of about 100 billion (1011 ) neurons interconnected by about 100 trillion (1014 ) 
synapses, which are anatomically organized at different spatial scales and



functionally interact at different time scales. This enormous system is the biological 
hardware from which all our thoughts, feelings, and behavior emanate (Fornito, 
et al., 2016). 
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Fig. 5.2 Spatial and temporal scales. (From Bassett & Sporns, 2017) 

Network neuroscience entails the analysis of many different networks that are at 
different temporal and spatial scales. These studies start from the smallest elements 
for finding the connection between the data encoded in the relationships between 
genes and biomolecules and continue to higher levels. Network neuroscience is 
aimed at gaining a deeper insight into how neuron-level processes affect the function 
of large-scale circuits, neural systems, and the entire brain’s structure and function. 
However, instead of stopping at the brain, network neuroscience asks how these 
patterns of interconnections in the CNS guide and interact with behavioral patterns: 
how perception and action are interrelated and how brain–environment interactions 
affect cognition. The following figure indicates these spatial and temporal scales 
(Bassett & Sporns, 2017) (Fig. 5.2). 

Research suggests that a small number of mutations or risk factors cannot fully 
explain the biological basics of certain psychiatric diseases. Instead, these psychiat-
ric diseases involve disorders in biological networks. 

In neuroscience, descriptive metrics of local and global features of network 
topology are used in structural and functional data. These analyses rely on 
non-random topological features such as high clustering and short path length, and 
network communities (modules) linked by highly connected hub nodes that are in 
turn densely linked, forming an integrative core or rich club. The descriptive metrics 
in the graph and brain network will be examined in the following.
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5.8.3 Brain Connectome 

The concept of connectome was first introduced by Olaf Sporns, Giulio Tononi, and 
Rolf Kotter and independently (Sporns, et al., 2005). Figure. 5.3 depicts the first 
attempts to obtain the brain’s functional matrix. The concept of connectome origi-
nally represented knowledge about the brain’s cellular wiring diagram. With the

Fig. 5.3 One of the early attempts to systematically create a brain connectivity matrix (Felleman & 
Van Essen 1991) shows the connection of 32 neocortical regions involved in eyesight function of 
the macaque



developments of the last ten years, however, this has expanded to cover more general 
concepts. In fact, the connectome includes the matrix of anatomical connections 
between large-scale brain regions and between neurons, plus the functional matrix 
obtained through MRI (low frequency, <0.1 Hz) or EEG (high frequency, 
>500 Hz).
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Further studies have shown that a person’s connectome is unique and similar to a 
fingerprint. Machine learning can use these neuroimaging-based biomarkers to build 
diagnostic or prognostic instruments. Visualizing and interpreting these models can 
complement statistical analysis to provide insight into the dysfunction of resting-
state patterns in brain disorders. 

5.8.4 Various Scales for Network Analysis of the Brain 

Unfortunately, there is no single technology to measure brain networks at all 
biological scales. This means that considering connectomics at multiple scales 
inevitably requires considering several different measurement methods. However, 
graph theory does not consider the scale and measurement method and presents a 
comprehensive language for understanding brain network topology. 

Connectomics typically makes a distinction between three spatial scales to 
determine nodes: namely microscopic, mesoscopic, and macroscopic, and the spe-
cial techniques used at each scale limit how nodes and edges can be defined. 

I. Microscopic: The microscopic scale refers to features that can only be detected 
using microscopic techniques. In other words, the network consists of neurons 
and synapses. Neural tissue is incredibly dense – rough estimates suggest that 
there are 90,000 to 100,000 neurons, about a billion synapses, and kilometers of 
axons and dendrites embedded within 1 square millimeter of the human cortex. 
Therefore, it is very difficult to find neural structures and imaging devices 
should have sufficient accuracy to examine this structure. From a biological 
perspective, this level is very significant but difficult to examine due to its 
tremendous complexity. 

II. Mesoscopy: The mesoscopic scale bridges the gap between the microscopic and 
the macroscopic scales and combines both methods to precisely understand the 
connections of the entire brain or large parts of it. 

III. Macroscopic: Unlike the microscopic mode, this scale does not need micro-
scopic techniques. In fact, this scale includes analysis of structural and func-
tional interactions in populations of neurons obtained by EEG, MRI, or MEG. 
In the following, macroscopic methods, graph theory, and machine learning at 
this scale will be examined (Fornito, et al., 2016).
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5.8.5 Networks in the Brain 

Building a brain network requires defining nodes and edges. The method commonly 
used for designing predictive models based on functional connectivity has three 
main steps: brain segmentation, estimation of interactions between defined seg-
ments, and finally, application of these connections between brain segments as 
features that enable the classifier to predict behavioral features, emotional metrics, 
and other variables (Fornito, et al., 2016). The defined segmentations act as network 
nodes and their links are considered edges. 

Some segmentation techniques are based on mapping anatomical or functional 
atlases onto an individual’s brain whereas other techniques are more data-driven and 
try to obtain segments based on common features within the data (Fornito, et al., 
2016). The first approach is known as hard segmentation, which includes the use of 
brain atlases, and the second approach uses statistical methods such as independent 
component analysis (ICA), which are unsupervised. (Unsupervised methods are 
discussed in the following sections.) 

This method considers nodes from different brain regions and uses time series 
analysis to create the edges used in functional networks. This method is used widely. 
Then, a functional matrix is created using the correlations between their time series. 
There are many methods to obtain correlation or covariance between brain regions. 
Although the correlation matrix is easy to calculate, it is a fully correlated and dense 
matrix where all the nodes tend to be interconnected and this creates an overly-
dense, clustered, and modular network that has dependencies with no anatomical 
basis. Although partial correlations can somewhat prevent this problem, ultimately, 
data interpretation is difficult (Pervaiz, et al., 2020). 

Typically, there are three categories of brain connectivity: namely structural 
connectivity, functional connectivity, and effective connectivity. 

Structural Connectivity 

Structural connectivity refers to anatomical connections between neurons such as 
microscale axons and synapses or large-scale or macroscopic connections between 
different cortical areas, which typically employ unique methods at each level: the 
electron microscopy method at the micro level, axonal tract-tracing at the meso level, 
and diffusion MRI at the macro level. Since each axon has a source and a destination, 
this connection is inherently directed (Bullmore & Sporns, 2009) (Fig. 5.4) 

Functional Connectivity 

Functional connectivity refers to the statistical dependence between separate neural 
elements that determines which parts of the brain work with each other and which 
work independently. Their interpretation depends on the type of recordings ana-
lyzed. These connections can be directed or undirected.
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Fig. 5.4 Representation of the stages of creating structural and functional networks of the brain. 
(Bullmore & Sporns, 2009) 

Functional connectivity is measured using statistical dependence metrics between 
neural time series, which can be discrete or continuous. 

At this level, the neuron is considered the basic element of the nervous system. It, 
therefore, seems reasonable to conclude that the cellular scale is a natural scale for 
the study of brain connections. This rationale underpinned the first attempt to 
reconstruct the connectome – the nervous system of the nematode C. elegans at 
the neuron and synapse level. This scale of analysis produces an accurate drawing of 
nodes and edges, which seems very useful. However, it has disadvantages such as 
the computational burden, labor-intensive data acquisition and processing, and poor 
scalability for large neural systems. 

In fact, the brain’s BOLD signals detected in fMRI indicate spontaneous oscilla-
tions without any external stimuli. Biswal et al. observed a high degree of correlation 
of spontaneous neural activity between bilateral motor areas during the resting state. 
Since then, cognitive neuroscience research has entered a new era of functional 
connectivity analysis. Due to its simple experimental design, easy operation, and 
easy adoption by patients with neuropsychiatric disorders, rs-fMRI has its own 
unique advantages in the functional study of the human brain. Functional connec-
tivity only shows the synchrony of neural activity of spatially separated brain 
regions. Researchers have proposed a series of functional connectivity analysis



approaches, such as linear correlation analysis, independent component analysis 
(ICA), principal component analysis (PCA), coherence analysis, and cluster analy-
sis. A node-based analysis is the most common approach to linear correlation 
analysis. First, regions of interest (ROIs) are selected as nodal regions according to 
prior knowledge, and then Pearson’s correlation coefficient is calculated as a mea-
sure of functional connectivity between the period of a given nodal region and 
voxels in the brain. By dividing the whole brain into several regions (or defining a 
number of ROIs), region-to-region functional connectivity can be obtained to con-
struct a whole-brain functional connectivity network. There is another approach that 
does not require considering a single node or ROI and network analysis can be 
achieved at the whole-brain level (Hu, & Zeng, 2019) (Fig. 5.5). 
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Fig. 5.5 Producing the functional network of the brain. (Hu & Zeng, 2019) 

Effective Connectivity 

Effective connectivity was initially used to understand the coherence in the spiking 
activity of neurons and was defined as the minimum neuronal circuit model that can 
reproduce the observed signal coherence. Effective connectivity checks if there is a 
flow between different components. Unlike functional connections, the direction of 
these connections is also specified and is consistently directed. This connectivity is 
mainly examined to find causal connections between different brain areas and can 
help researchers in finding the basic mechanisms of neuronal dynamics (Bullmore & 
Sporns, 2009).
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5.8.6 Definition of a Brain Graph 

Network science examines the macroscopic behavior complexity of a system of 
interconnected elements. Given the availability of high-quality datasets, they can be 
considered with respect to graph theory quantities. In other words, complex systems 
show common macroscopic features despite having completely different micro-
scopic features. In many studies, one of these important features, small-world, has 
been seen in the functional and structural networks of the brain of humans and other 
organisms in different dimensions. 

In network science, other topological features of complex systems such as 
modularity, hierarchy, centrality, and the distribution of network hubs can be 
quantified. 

The structural and functional networks of the brain can be investigated using 
graph theory through the following four steps: 

I. Defining nodes using imaging techniques. 
II. Estimating the continuous size of the inter-node connection through spectral 

coherence or Granger causality measures between two magnetoencephalogra-
phy sensors, the probability of connection between two regions of an individual 
diffusion tensor imaging data set, or inter-regional correlations in MRI mea-
surements of the thickness or volume of the cerebral cortex. 

III. Linking all connections between nodes and creating a connectivity matrix 
where a threshold is (usually) applied to each element of this matrix to create 
a binary adjacency matrix or undirected graph. 

IV. Analysis and calculation of network parameters in the brain network and 
comparison with the equivalent parameters of a population of random networks 
(Bullmore & Sporns, 2009). 

Graph Analysis Metrics in the Brain 

1. Node Degree, Distribution Degree, and Assortativity 
The degree of a node is its number of connections with the rest of the network. This 
is one of the most fundamental metrics of the network that other network metrics are 
also related to. In random networks, all connections are equally likely, resulting in a 
Gaussian and symmetric degree distribution. Networks of complex systems usually 
have non-Gaussian degree distributions, which often have long tails toward nodes 
with high degrees. The degree distribution of scale-free networks follows the power 
law. Assortativity is the correlation between the degrees of connected nodes. Posi-
tive clustering indicates that high-degree nodes tend to connect. The following will 
explain assortativity and its application in more detail. 

2. Clustering Coefficient and Motifs 
If a node’s nearest neighbors are also interconnected, a cluster is formed. The 
clustering coefficient is the number of connections between a node’s nearest



neighbors relative to the maximum possible number of connections. Random net-
works have low clustering averages, while complex networks have high clustering 
(related to high local efficiency of information transfer and robustness). 
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The topological motifs of a network are basic building blocks where connections 
between small sets of three or four nodes are repeated in the network with a 
frequency greater than chance. 

3. Path Length and Efficiency 
The path length is the minimum number of edges to be skipped when going from one 
node to another. Random and complex networks have a short average path length 
(high global efficiency of parallel information transfer), while normal networks have 
a long average path length. Efficiency is inversely correlated with path length. 

4. Connection Density or Cost 
Connection density is the actual number of edges in a graph as a ratio of the total 
number of possible edges. It is the simplest estimator of a network’s physical cost. 
For example, in fabricating a computer chip, if each logic gate is assumed to be a 
node and wires to connect them, the amount of wiring between the nodes should be 
minimized to reduce thermal noise and additional costs (Fornito et al., 2016). 

5. Hubs, Centrality, and Robustness 
Hubs are nodes with a high degree or high centrality. A node’s centrality measures 
the number of shortest paths between all pairs of nodes in the network that pass 
through it. Thus, a node with high centrality is essential for efficient communication. 
An individual node’s importance for network efficiency can be evaluated by remov-
ing it and estimating the resulting network’s efficiency. 

Robustness either refers to the network’s structural integrity after node or edge 
removal or the effects of disruption on local or global network states.
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6. Modularity 
Many complex networks are made up of a number of modules. There are various 
algorithms for network modularity estimation, many of which are based on hierar-
chical clustering. Each module includes several densely interconnected nodes, and 
there are relatively few connections between nodes of different modules. Provincial 
hubs typically connect to nodes in their own modules, whereas connector hubs 
connect to nodes in other modules. 

In most cases, correlations, coherence, and mutual information are used to create 
an undirected graph, and correlations, coherence, and mutual information methods 
are used to create directed graphs. 

MRI measurements suggest that centrality and modular organization can be 
significant biomarkers for early diagnosis and prediction of clinical outcomes in 
neurology and psychiatry (Fornito et al., 2016). 

7. Random, Scale-Free, and Small-World Networks 
In random graphs, each pair of nodes has an equal probability of p to be connected 
and a Gaussian distribution, but most of the descriptive graphs in the real world 
deviate from the random graph model. 

The “small-world” feature has high levels of local clustering among the nodes of a 
network and short paths that globally connect all network nodes. In fact, all nodes in 
a large system are connected through relatively few steps. Small-world features are 
between random networks and regular networks. Research on genetics, signaling, 
communication, computing, and the neural network has provided evidence for this



feature. These studies reveal that almost all networks in natural and technological 
systems have non-random/irregular or small-world architectures, and this feature 
reflects their specific performance (Bullmore & Sporns, 2009). 
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5.8.7 Brain Network Identification and Analysis in Graph 

The use of graph theory in brain network analysis dates back to the introduction of 
the “human connectome” (Sporns et al., 2005). Here, there is an N*N matrix (also 
called connectivity matrix or connection matrix) with 0 or non-zero values denoting 
whether or not there is a connection between the two regions. A brain network 
analysis of humans or other animals becomes possible upon obtaining the mentioned 
metrics in this network. 

Generally, there are two calculation methods used in connectivity identification: 
functional connectivity and effective connectivity. As mentioned earlier, functional 
connectivity provides information about temporal coherence between distant 
regions, and effective connectivity is the direct effect of regions on each other. 

Research on functional connectivity studies can be divided into two categories: 
model-based and model-free. The model-based mode employs methods such as 
cross-correlation, coherence analysis, and statistical parametric mapping, whereas 
the model-free mode uses decomposition-based analysis, clustering, and mutual 
information methods. 

The model-based mode considers as seed a region of the brain to check whether 
or not that region is related to other regions. This method needs background 
knowledge for the correct selection of seeds and related areas. In other words, 
there is a need for a hypothesis, which is verified based on experiments. At the 
same time, this method may destroy and fail to examine the useful information in the 
communication neglected by the researcher. 

Meanwhile, the model-free mode does not select any specific region or seed and 
considers the whole brain and its connectivity without a hypothesis. 

As mentioned, there can be two types of criteria for the examination of the brain 
graph: global and local criteria (Fornito et al., 2016). 

Global Criteria 
The global criteria are aimed at finding functional segregation, information flow in 
the brain, functional integration, finding the small-world feature, and checking the 
network’s resilience to failure (Sporns, 2014). 

In fact, segregation means the degree to each element in the brain that is assigned 
to populations. In this case, the clustering coefficient and modularity criteria provide 
good information about segregation. In brain networking, anatomically adjacent 
regions are called modules, and analysis with this mode has shown the small-
world feature in the brain network. Moreover, integration provides insight into the 
efficiency of information connectivity throughout the brain, and the information can 
be measured as the length of the path between regions.
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Fig. 5.6 Local criteria and global criteria. (Hu & Zeng, 2019) 

In general, the small-world feature represents a balance between segregation and 
integration between networks. 

Regarding the resilience feature, the assortative criterion can be put against 
failure. In fact, inter-hub connectivity in a network leads to the coverage of a 
particular hub’s failures, and this criterion is also essential in examining the brain 
network (Fig. 5.6). 

Local Criteria 
In network science, a node with high centrality that greatly affects the network is 
called a hub. There are two types of hubs: namely connector hubs or provincial hubs, 
named based on their participation rate. Connector hubs have a high participation 
rate, and the opposite is true for the provincial hubs. In other words, connector hubs 
are responsible for connecting different modules of the brain while provincial hubs 
are responsible for connectivity between modules. The network’s node degree 
criterion is one of the easiest criteria for finding hubs. Other criteria such as 
centrality, betweenness, and closeness also belong to this category. 

5.8.8 The Brain’s Important Networks 

The first known brain network was the linguistic network discovered by Broca1 and 
Wernicke2 in the nineteenth century. The two separate parts in an interconnected

1 Paul Broca 
2 Carl Wernicke 



network are responsible for the single activity of language. In general, many 
networks of different scales have been identified in the brain. There are seven 
basic brain networks on a large scale: 
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The Sensorimotor Network 

This network receives sensory information from inputs throughout the body and 
converts them into electrical signals in the brain. This network’s responsibilities are 
divided into several categories: processing the brain’s external physical signals, 
internal signals, examining sensations, and producing motor responses. This net-
work is closely related to other networks such as the auditory network, visual 
network, limbic network (for a sense of taste and smell), salience network, and the 
default mode network (DMN). It is considered a transducer in the brain (ten 
Donkelaar, et al., 2020). 

The Visual System 

This network can be considered a spectator and is responsible for visual and vision-
related processing. This system is very complex since it converts light into some-
thing recognizable. Despite the initial assumption that this task is accomplished in 
one area, it was later discovered that there is a system responsible for these 
processes. These processes include visual image enhancement and processing and 
detecting motion, patterns, faces, places, and more (Poggio, et al., 1988). 

Limbic System Network 

As one of the oldest networks in the brain, this system regulates many brain 
functions, such as memory, emotions, learning, and behavior. This network responds 
to stimuli such as smell, sound, and light. It is also responsible for behavior, 
reactions, and associated feelings, as well as memories of experiences or any type 
of learning (Sullivan, 2022). 

The Central Executive Network (CEN) 

Responsible for tasks and decision-making, this network operates at a high cognitive 
level and is considered one of the most important brain networks. Its responsibilities 
cover memory, processing, controlling, and combining information from other areas 
and networks, organizing behavior based on internal motivations, mental prefer-
ences, and choices. This high-level network receives and integrates input from other 
networks to process a variety of information that includes flexibility, working



memory, initiation, and inhibition, which were previously thought to have different 
networks (Dosenbach, et al., 2007). 
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Default Mode Network 

This is one of the most well-known brain networks that is activated when resting, 
daydreaming, or contemplating a new idea. This network is active during sleep and 
rest and becomes more active during inner thinking. These internal thoughts can be 
about reminiscing about childhood memories, planning for the next vacation, or 
hunger and bowel movements, which indicate an active DMN. Given the uncon-
scious analysis and contemplation about oneself and the world, it is considered one 
of the most active and stable brain networks. Many studies on biomarkers use this 
network (Sambataro, et al., 2010). 

Salience Network 

This network accurately considers the outside world and determines the brain’s 
response to stimuli. This network acts as a gear for switching from the executive 
network to the DMN network and back. In other words, it switches between internal 
and external processes. The reason for the existence of this network is that in healthy 
brains, the DMN and CEN networks do not activate simultaneously; the regulation is 
handled by SN (Elton & Gao, 2014). 

The Dorsal Attention Network 

This network supervises human attention and is bidirectional and coherent for 
remaining attentive. DAN is often activated in conjunction with other active net-
works in the brain. DAN directs attention to whichever network (or networks) is the 
most salient and active. The human brain continuously receives sensory input and 
cannot consistently pay equal attention to all sensory signals. Instead, DAN focuses 
the brain’s attention on the most important sensory input at a given moment 
(Corbetta, et al., 1995). 

5.8.9 Applications of Graph in Cognitive and Behavioral 
Science 

Cognition covers neural actions that lead to thinking, feeling, or experiencing and 
includes problem-solving, attention, memory, executive functions, and reasoning 
(Farahani, et al., 2019).
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Intelligence is one area of interest in the connection between the brain network 
and cognition. Human intelligence refers to various functions, including logical 
reasoning, rapid learning, and thinking, and studies examining the structural and 
functional network of the brain have indicated the connection between these net-
works and intelligence. For instance, van den Heuvel et al. (2009), Langer et al. 
(2012), and Hilger et al. (2017) mentioned the relationship between intellect and the 
small-world criterion in the brain’s intrinsic networks. These findings reveal the 
correlation of intellectual performance with the shortness of the feature path and the 
hub centrality value in the salience and integration network between the frontal and 
parietal regions. Also, Wu et al. (2013) showed that IQ is positively correlated with 
nodal features in the attention-related network and negatively correlated with nodal 
features in the default mode, emotions, and language systems. Although these 
findings show that general intelligence is deeply influenced by the functional 
integration of spatially distributed regions, they do not provide sufficient information 
about whether and how human IQ is related to the brain’s modular architecture. 

Another field of graph study concerns brain changes during life. The human brain 
undergoes many functional changes from birth to adulthood. Numerous studies on 
this subject have shown that local efficiency and the rich club coefficient increase 
until adulthood in healthy people and then decrease with age. At the same time, 
regardless of the initial post-birth years, global efficiency remains unchanged (Gao 
et al., 2011). Moreover, the reverse paths between short and long connections 
indicate the gradual change in the brain’s functional network, which likewise causes 
behavioral and cognitive changes in the person. 

There have also been studies on the relationship between working memory and 
brain network. Stanley et al. (2015) showed that local efficiency is less associated 
with better working memory and greater global efficiency is associated with 
improved performance in young people and deficiency in the elderly. 

Another interesting subject is the examination of changes in the person’s daily 
functions in natural environments, on which basis brain function is measured in 
routine environments. For example, Petruo et al. (2018) showed that mental fatigue 
is associated with topological changes in the brain such as a decrease in the small-
world feature and global efficiency and functional changes in the frontoparietal 
network and connected areas in the thalamus and the striatum. 

One of the most significant applications of this science is in the diagnosis of 
biomarkers and mental disorders. These criteria and examination are applied to many 
diseases, including epilepsy, Alzheimer’s disease (AD), multiple sclerosis (MS), 
autism spectrum disorder (ASD), attention-deficit/hyperactivity disorder (ADHD), 
schizophrenia, Parkinson’s disease, insomnia, major depression, obsessive-
compulsive disorder (OCD), borderline personality disorder (BPD), and bipolar 
disorder, and in many, the biomarkers of connections in brain function can be easily 
identified.
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5.8.10 Machine Learning in Analysis of Resting-State fMRI 
(Rs-fMRI) Data 

Most applications of machine learning in the analysis of rs-fMRI data are related to 
unsupervised learning approaches. Contrary to task-driven studies, modeling 
resting-state activity is not straightforward since there is no controlled stimulus to 
justify and drive these fluctuations. Therefore, the analytical methods used to 
describe the spatiotemporal patterns observed in task-based fMRI are typically 
ill-suited for rs-fMRI (Khosla, et al., 2019). 

Unsupervised Learning 
Given the numerous dimensions of fMRI data, it is no surprise that the primary 
analytical approaches are based on decomposition or clustering techniques to pro-
vide better descriptions of spatial and temporal data. Unsupervised learning 
approaches such as ICA accelerated the discovery of so-called resting-state networks 
or RSNs. It was also developed in resting-state brain mapping with the main goal of 
creating brain divisions, that is, the optimal grouping of voxels that functionally 
define coherent spatial sections in the brain. These maps help to better understand the 
brain’s networks and connections. In addition, they serve as a feature reduction 
technique for statistical analysis or supervised machine learning. The literature has 
indicated that functional connectivity in the resting state undergoes significant 
changes during a typical rs-fMRI scan, which interestingly shows the dynamics of 
the brain network. Unsupervised learning techniques demonstrated that resting brain 
network patterns change between multiple states, indicating a diversity of mental 
processes (Khosla, et al., 2019). 

The unsupervised learning approach employs k-means, Gaussian mixture 
models, hierarchical clustering, and graph-based clustering methods, as well as latent 
variable models, decomposition methods, independent component analysis (ICA), 
PCA, and hidden Markov models. 

Applications of unsupervised algorithms in rs-fMRI data include the following: 
Most unsupervised learning approaches in rs-fMRI aim to segment the brain into 

discrete functional subunits akin to atlases. Unlike approaches that use atlases, these 
segmentations are driven by functional data. 

The second set of these applications is an exploration of the dynamics of brain 
networks. Recently, unsupervised learning has been applied to the analysis of the 
dynamic functional connectome with promising results. 

Meanwhile, as mentioned earlier, one application of machine learning in rs-fMRI 
is in the clinical field. These supervised machine-learning applications are used for 
personal-level predictions. As a sensitive biomarker in disorders, many researchers 
have developed an interest in “Connectome,” and many studies have further 
suggested that like fingerprints, these connections and connectomes are unique to 
each individual. Given the importance of deep learning, several new neural network-
based approaches for the analysis of rs-fMRI data have also been developed. Most of 
these approaches extract connectomic features for individual-level prediction. Deep 
learning algorithms (Tzourio-Mazoyer, et al., 2002) will be explored in more detail 
in the following chapter.
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Supervised Learning 
This approach to learning deals with problems that have features and predictions and 
labels with the aim of learning the mapping between the input and target. This allows 
the system to estimate heretofore unseen input data points. An example is the 
prediction of autism through rs-fMRI correlations. Since intrinsic FC reflects inter-
actions between cognitively relevant functional networks, there is a hypothesis that 
systematic changes in resting state patterns could be associated with pathology or 
cognitive features. The promising diagnostic accuracy of supervised algorithms 
using rs-fMRI is strong evidence for this hypothesis. This approach also uses 
methods such as ridge regression, LASSO regression, elastic-net regression, logistic 
regression, SVM, random forest, and deep learning. 

This approach is under intensive development and has been discussed in many 
studies. For instance, the study of brain development and aging is one application of 
using supervised machine learning on rs-fMRI data. In this context, Duesenbach 
et al. used RSFC to predict brain maturity based on the chronological age of 
adolescents. Hence, these activities can be introduced as a valuable tool for 
predicting healthy neurodevelopment. This method can also be used to identify the 
unusual neurodevelopmental changes associated with normal aging (Abraham, et al., 
2017). 

As mentioned, in this field, the machine learning method can also be used for 
identifying biomarkers in mental disorders. The biological basis of psychiatric 
disorders has been unclear, and their diagnosis is currently guided entirely by 
behavioral assessment. rs-fMRI has emerged as a powerful imaging method for 
biomarker extraction for the diagnosis of psychiatric disorders. Supervised learning 
algorithms using RSFC have exhibited promising results for classifying or 
predicting symptom severity in a variety of psychiatric disorders, including schizo-
phrenia, depression, autism spectrum disorder, attention-deficit hyperactivity disor-
der, social anxiety disorder, post-traumatic stress disorder, and obsessive-
compulsive disorder. 

It has also received a tremendous amount of attention in the field of cognitive 
abilities and personality traits. Analysis of functional connectivity can predict 
individual differences in cognition and behavior. Due to its uncontrolled nature, 
resting-state imaging covers a wide range of inherent cognitive states. Currently, 
machine learning models have been used for predicting some individual character-
istics such as fluid intelligence, sustained attention, memory performance, and 
language scores from RSFC-based biomarkers. Also, some studies have used these 
models to identify personality traits such as neuroticism, extroversion, agreeable-
ness, and openness. 

Another important application concerns studies on sleep and fluctuating levels of 
consciousness. Nevertheless, few studies have used machine learning to predict 
levels of consciousness during rs-fMRI scans and have classified levels of con-
sciousness during rs-fMRI.
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Many studies have also implemented this for investigating genetics and inheri-
tance. Understanding the influence of genetics on brain structure and function has 
been a long-standing goal in neuroscience. Research in genetic and environmental 
RSFC is also ongoing in the framework of machine learning. For instance, Miranda-
Dominguez et al. applied an SVM classifier to twin FC with the remarkable result of 
the feasibility of successfully predicting family relationships from resting-state fMRI 
and forming aspects of functional connectivity by unique genetic or environmental 
factors (Khosla, et al., 2019). 

5.9 Designing Conceptual Networks 

An essential first step to use a network model, or any model, involves the choice of 
which variables should be included in the model. The variables are called nodes in 
network analysis. In other words, network analysis starts with network design and 
network design begins with defining and describing variables (nodes) in networks 
(Bringmann et al., 2022). 

To define the variables as nodes of a network, Bringmann et al. (2022) recom-
mend the process of node validity, which involves two steps. The first is node 
selection and the second is node assessment. 

Nodes can be any psychological variables, but clearly the theoretical or clinical 
assumptions of researchers play a key role in selecting a variable as a node in a 
network. That is, the chosen node should be minimally complete. It means that all 
nodes necessary to model the intended phenomena should be contained in the 
network, while excluding superfluous nodes. This feature will differ across contexts. 
The researcher’s insight is of utmost importance. Nodes should be sufficiently 
distinct as well, especially if the researcher’s assumptions are casual. To be suffi-
ciently distinct, nodes should be 

(a) Separately identifiable (i.e., at least in theory, they can be assessed independently 
of one another). 

(b) Independently manipulable (i.e., at least in theory, one should be able to 
intervene on a node without intervening on other nodes). 

More importantly, the validity and reliability of selected nodes should be 
assessed. 

It should be borne in mind that network analysis in this book is cross-sectional, 
and most of network analysis in psychology is of this type (Robinaugh et al., 2020). 

The main aim of these networks is to study between-person differences, and 
sometimes with the aim of generating hypotheses on within-person dynamics. We 
know that cross-sectional analyses do not statistically separate between-person 
variability (for example, typically stable trait-like features) from within-person 
variability (for example, state-like features). Thus, analyses based on cross-sectional 
data may result in networks with edges that reflect a mix of between and within 
effects. Cross-sectional data can usually be directly used to identify within-person



dynamics if stationarity is yielded. This specific circumstance is called ergodicity 
(Molenaar, 2004). It requires that individuals are independent and that the same data-
generating process applies to all individuals (homogeneity). Moreover, the statistical 
characteristics of the data, like means, variances, and auto- and cross-validation, do 
not change over time. In other words, no trends could be detected in the data. 
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We know that in many cases these assumptions are not met and therefore network 
analysis based on time-series data is carried out. This analysis is called temporal 
network analysis, which will not be discussed in this volume. 

In sum, network science provides tools, by which the difference between people 
in the structure of different networks becomes evident. These findings lead to the 
formation of an assumption among artificial psychology researchers: network pro-
cesses are dynamic by nature. 

Network science is quite useful in cognitive psychology particularly and in 
psychological sciences generally in at least three aspects. Siew et al. (2019) sum-
marize these three aspects: 

1. Network science provides a quantitative approach to represent cognitive systems. 
Network science provides an approach to model several cognitive and psycho-
logical networks, such as language, semantic memory, traits, and linguistic 
environment. It enables micro-meso and macroscopic network analysis, leading 
to a new understanding of the structures of psychological networks. 

2. Network science facilitates a deeper understanding of human cognition so that 
researchers consider how network structure and the processes operating on the 
network structure interact to produce behavioral phenomena. 

3. Network science provides a framework to model structural changes in cognitive 
systems on multiple scales. Network science enables the studying of the devel-
opment of cognitive and psychological systems. Thus, researchers might gain a 
deeper understanding of the early and late stages of human life and study the 
structural changes across time. Network science helps to quantify the structural 
and dynamic changes of cognitive systems. 

5.10 Sample Size in Network Analysis 

Advances in the accurate estimation of psychological network structures have been 
considered in psychological advances (William & Rast, 2020). One crucial factor to 
accurately estimate network parameters is the sample size (Epskamp et al., 2018). In 
psychological studies with a limited number of participants, and the convenience 
sampling method, the sample size is of great importance (Shen et al., 2011), as the 
number of parameters to be estimated would be increased if nodes are increased 
(Ryan et al., 2022).
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Ryan et al. (2022) introduced a new method, based on Monte Carlo method, to 
determine the sample size in network analysis. They have used R software, similar to 
G*power software, for sample size recommendations. Examples are provided in this 
chapter. In this context, by utilizing necessary factors, consisting of the number of 
nodes, assumed density, statistic value (similar to statistic power), and measure 
value, one can estimate the sample size necessary for network analysis. The R 
package named powerly is used here. 

5.11 Moderated Psychological Network Analysis 

It should be remembered that an artificial psychologist is a psychologist who 
deepens their analyses with AI-based methods. In psychological studies, the com-
parison of groups and sub-groups is significant. In other words, moderating variables 
are important. Many researchers are interested in studying the structure of a network 
to see whether nodes and edges and centrality indices, depending on the levels of 
moderating variable, change or not. They might also ask if cognitive parameters 
differ in a psychological network for men or women. Answering these questions 
might be of interest to cognitive and evolutionary psychologists. After estimating 
networks, one can compare psychological networks. These comparisons open new 
doors to artificial psychology. Such analysis for cross-sectional data is called 
moderated psychological network analysis. 

In R software, there are libraries named networktoolbox and bootnet, which 
enable this type of analysis. An example is provided below. 

5.11.1 Practical Example Using R 

Example 5.1 
An artificial psychologist first tries to define three networks. This method can be 
considered a confirmatory mode of network analysis. We call it an ad hoc network 
analysis. This definition is based on theoretical foundations. He /she defines three 
networks:
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Fig. 5.7 The network plot of three networks (A, B, and C) 

Network A includes Nodes A1, A2, A3, and A4, which are shown in pink in 
Fig. 5.7 Network B includes Nodes B1, B2, B3, and B4, and Network C includes 
Nodes C1 and C2. Network B in the output plot from the R software is marked in 
green color and network C is marked in blue. R Codes for the ad hoc network 
analysis are in Listing 5.1.
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Listing 5.1 R codes for network analysis (ad hoc network analysis) 

In network analysis diagrams, blue edges show a positive relationship and red edges 
show a negative relationship, and the thickness of each edge shows its strength. 

The result of the analysis of this network in Fig. 5.8 showed that the highest 
strength is related to nodes B1 and B2, which have the most effect in the network and 
show that B4 is the bridge node between network B and network A, and also C1 is 
the node that links network B and C, and C2 is the node that connects network C 
and A. 

In Fig. 5.9, the strongest positive connection in network A is between A1 and A2 
and the strongest negative connection in network B is between B3 and B4 and the 
strongest positive relationship can be seen in that network between B1 and B2. 

The plot in Fig. 5.9 also checks network stability. This graph shows the results of 
the samples obtained by the bootstrapping method from 1000 samples with the 
results of the main sample used in the network analysis and shows that there is 
stability of the edges. The path of red dots (resulting from the original sample) and
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Fig. 5.8 The network plot for centrality indices 

black dots, which are the average edges between nodes in the bootstrapping method, 
corresponds to a great extent, and the gray area around the two lines of the graph 
indicates the 95% confidence interval resulting from bootstrapping. As you can see, 
some edge weights, particularly those in the middle, which are smaller in absolute 
value, are more accurate than other edges. Also, this diagram shows how most of the 
edges are close to zero; that is, most of them intersect the 0 (zero) point in the 
bootstrapping samples.
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Fig. 5.9 The network stability 

Figure 5.10 shows the average correlation of the original sample with 1000 
bootstrap samples between each of the four centrality indices. This graph shows 
the robustness of these correlations to reduced sample size by looking to see whether 
the average correlation between the four centrality indices will be the same and will 
remain constant when dropping cases. This plot suggests the average correlation is 
robust to the sample size.
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Fig. 5.10 R results for the average correlation between each of the four centrality indices and the 
correlation among nodes (a red square signifies a negative node and a blue one shows positive edge) 

Figure 5.11 shows the negative or positive connection of edges between the 
nodes. 

To avoid subjective error in viewing the graph by eye, Epskanp et al. (2018) 
invented a statistical index called a correlation-stability coefficient (c-s), which was 
explained in the previous sections of this chapter. 

This index shows the average percentage of the sample that can be dropped to 
maintain a specified correlation of, for example, r = 0.7 between the central indices 
of the sample and the central indices obtained from Case-dropped bootstraps. r = 0.7 
is not a fixed number and can be changed. If by dropping a large number of cases 
from the main sample, the correlation between the centrality indices is still high, it 
can be said that the network nodes are not affected by the characteristics of the 
sample and it is believed that they will show stability in the population. 

This coefficient should not be below 0.25 and preferably above 0.5 (Epskanp 
et al., 2018). It can be said that the result of this analysis indicates a favorable 
interpretation of centrality indicators, especially for expected influence and strength. 

Fig. 5.12 shows the adjacency matrix for each node in the output of R software. 
This figure represents the covariance of the node, which is considered to be the same 
as the adjacency matrix (Fig. 5.13).
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Fig. 5.11 The correlation among nodes (a red square signifies a negative node and a blue one 
shows a positive edge) 

Fig. 5.12 R results for adjacency matrix
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Fig. 5.13 R results for the correlation stability 

Fig. 5.14 R results for the permutation test 

The correlation shown by the correlation-stability coefficient (c-s) is higher than 
0.5 in the case of the two indicators of closeness and strength, and only the case of 
betweenness is below 0.5. Among these indices, the most important correlation-
stability coefficient (c-s) is the one for strength (Fig. 5.14). 

A permutation test is used to find out if there is a difference between measures 
obtained from a global network and one using centrality indices. For this purpose, 
two samples are needed. In this example, the investigated sample (n = 250) is 
randomly divided into two parts. It is better to choose two different samples from the



(continued)
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same community. The artificial psychologist then decides to compare the most 
important index under investigation, which is strength, in two groups using 1000 
bootstrap iterations. The p-value indicates the difference in this index between the 
two parts of the sample. The results show that there is no significant difference 
between the measures of strength in the two parts of the sample. In this example, the 
investigated network has 10 nodes named from C1 to C10 (Listing 5.2). 

Listing 5.2 R code for permutation test 

Example 5.2 
An artificial psychologist decides to use network analysis to examine the between 
different nodes. She examines many cognitive variables. For this purpose, she 
measures the components of attention, cognitive control, and cognitive regulation 
of emotion in adolescents. She measures cognitive variables including attention and 
response speed. Table 5.1 shows their abbreviations and general descriptions. 

Table 5.1 Abbreviation and general description of the variables 

Abbreviation Description 

AAQ Combination of vigilance, focus, and speed (auditory) 

VAQ Combination of vigilance, focus, and speed (visual) 

QVIA Vigilance 
Measure of inattention as evidenced by two different types of errors of omission 
(auditory) 

QVIV Vigilance 
Measure of inattention as evidenced by two different types of errors of omission 
(visual) 

QFOCA Total variability of mental processing speed for all correct responses during the 
test (auditory)
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Table 5.1 (continued)

Abbreviation Description 

QFOCV Total variability of mental processing speed for all correct responses during the 
test (visual) 

QMNA Average reaction time for all correct responses (auditory) 

QMNV Average reaction time for all correct responses (visual) 

SAAQ Global measure of ability to respond to stimuli under low demand conditions 
accurately, quickly, and reliably (auditory) 

SVAQ Global measure of ability to respond to stimuli under low demand conditions 
accurately, quickly, and reliably (visual) 

ARCQ Combination of prudence, consistency, and stamina (auditory) 

VRCQ Combination of prudence, consistency, and stamina (visual) 

QPRA Measure of impulsivity (auditory) 

QPRV Measure of impulsivity (visual) 

QCONA Measure of ability to stay on task and sustain a reliable effort (auditory) 

QCONV Measure of ability to stay on task and sustain a reliable effort (visual) 

Listing 5.3 R code for post hoc network analysis 

In R software, there are libraries named networktoolbox and bootnet, which 
enable this type of analysis (Listing 5.3). We call this exploratory network analysis 
as post hoc network analysis.
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Fig. 5.15 The relationships of the nodes 

She then estimates the network using the EBicglasso algorithm, which uses the 
LASSO method to produce a parsimonious network (Fig. 5.15). Figure 5.16 shows 
the relationship of each node with other nodes. The centrality indices are shown in 
Fig. 5.17. The three columns show the Closeness, Betweenness and Expected 
influence of each nodes in the network. As seen in this figure, VAQ and AAQ 
have the highest strength in the network. VAQ and AAQ also have relatively large 
numbers of thicker edges linking them to other nodes. The lowest strength is related 
to qPRA. 

This researcher who is interested in artificial psychology decides to compare two 
networks based on the sex of teenagers. It is, therefore, necessary to design a network 
for male teenagers and a separate network for female teenagers. Then, centrality 
indices of the boys’ and girls’ networks are able to be compared using the compare 
centrality command in the R code in Listings 5.4 and 5.5. As can be seen, there is a 
difference between the girls (dashed line graph) and the boys (solid line graph) 
(Fig. 5.18).
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Fig. 5.16 The centrality indices for each node



Fig. 5.17 R results for networks categorized by gender 

Listing 5.4 R code for comparing two network analysis
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Listing 5.5 (Continued) R codes for comparing two network analysis 

Fig. 5.18 R results for networks analysis for discovering the communities
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One of the interesting features of network analysis is finding communities based 
on the relationship between nodes. This is an exploratory method. As the output of 
the software shows, three communities have been extracted in which there are no 
shared nodes, which means that a number of communities are created that are 
independent of each other (Listing 5.6). 

Listing 5.6 R codes for discovering communities using network analysis 

Community1: AAQ, qVSI, qFOCA,qMNA, SAA, ARC, qCONA. 
Community2: VCR, qPRV, qCONV. 
Community3: VAQ, qVIV,qFOCA, qMNV, SVA. 

In this exploratory analysis, which extracts communities based on the connection 
of nodes, there is only one separate node from the rest, qPRA (Fig. 5.19). 

In the network diagram, community 1 is marked in blue, community 2 is marked 
in green, and community 3 is marked in pink, with a single isolated node, which is 
shown in white in the diagram (Fig. 5.20). 

Fig. 5.19 The results of discovering the communities using the network analysis
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Fig. 5.20 The results of discovering the communities (K = 3, I = 0.2) 

To run the clique percolation algorithm for weighted networks, we initially need 
to optimize k and I. In order to do this, the cp threshold function can be used. By 
default, this function provides the communities, shared nodes, and isolated nodes 
with labels as identifiers of the nodes. As we can see, the results indicate that three 
communities have been discovered with qPRA as an isolated node. We run this 
analysis using k equal to 3 and I taking values of 0.20 to 0.01 in steps of 0.005. There 
is no shared node. It is also possible to use the numbers as identifiers of the nodes or 
to restrict the output. The range of I values was chosen based on the mean edge 
weight of the network, and it was set to 0.3 when generating the network. Thus, 
I = 0.40 should allow the artificial network to find a broad range of community sizes. 
However, Farkas et al. (2007) recommended starting the analysis by setting the 
highest tested value of I to the maximum edge weight in the network. 

Example 5.3 
An artificial psychologist is going to determine the sample size for implementing 
network analysis. Based on the initial network, He knows the network has 10 nodes 
and he supposes the density is 0.4. The network density implies the proportion of 
present edges in the network that impact the required sample size (Constantin et al., 
2021). He includes the measure value equal to 0.6. This measure is similar to effect 
size. We use a statistic value of 0.8. This measure is similar to the statistical power. 
Listing 5.7 indicates the R code for determining the appropriate sample size to 
analyze a GGM network with 10 nodes and a density of 0.4.
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Listing 5.7 R codes for determining the appropriate sample size to analyze a 
GGM network 

A higher density value implies that more of these pairwise connections will be 
present in the network. Figure 5.21 shows the results. 

Fig. 5.21 The results of powerly package for determining the appropriate sample size
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Fig. 5.22 The results of Box plot and Statistic value 

The horizontal red dotted line illustrates the desired target for the statistic (0.8), 
and the vertical red dotted line shows the mean (0.8) of the bootstrapped statistics for 
the median sample size of 497. The horizontal blue dashed lines indicate the lower 
and upper bound sample sizes based on the 95% CI. The CI was constructed using 
the percentile method (Diciccio & Romano, 1988) based on 10,000 bootstraps. 

Box plots provide a representation of how much the performance measure varies 
for each sample size based on the number of replications performed. 

Fig. 5.22 shows the performance measure values obtained from the Monte Carlo 
replications (Box plot) and the curve line shows the values for the statistic computed 
on the performance measure values and the monotone spline used to interpolate the 
statistic across the entire candidate range of sample sizes. A sample size of about 
500 is suggested based on both of the above plots.
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Chapter 6 
Deep Neural Network 

6.1 Deep Neural Network (DNN) 

In 1981, Teach and Shortliffe emphasized the importance of explaining decisions in 
decision-making systems. In recent years, XAE has grown in popularity. Explana-
tion and interpretation aim to reduce the opacity of black box models and to improve 
the perception of reasoning in predictive and classification models. This reasoning 
precedes predictions. This makes it possible to promote the explanation and inter-
pretation of transparency in AI/ML-based models; therefore, people will gain more 
confidence in such systems. First, artificial neural networks (ANNs) are analyzed in 
this chapter. 
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6.2 Neural Network 

Neural networks or artificial neural networks) are a data processing system some-
what inspired by the human nervous system. They can also be considered an 
electrical model of the brain’s nervous system. Like the learning mechanism, these 
models are also experiential. However, these models and problems employ different 
methods. This system uses smaller interconnected processors called neurons to 
create a network that is trained using training algorithms (Lawrence, 1993). 

This technique uses the principles of the human brain and its structure to develop 
data processing strategies. The essence of the approach is reflected in the parallel 
processing of data. The procedure by which training is performed is the training 
algorithm. Through this process, the weights of the synapses are systematically 
changed in order to achieve the desired performance of the network. 

Properties of neural network (Milan Milosavljević, 2019):

• Nonlinearity.
• Input–output mapping.
• Adaptability – the ability to change the strength of synaptic connections.
• Evidentiary response.
• Contextual information.
• Failure resistance.
• Possibility of realization in VLSI (very large scale integration) technology.
• Uniformity of analysis and synthesis.
• Neurobiological analogies. 

6.3 Neuron 

As mentioned earlier, the neural network in living organisms and the artificial neural 
network are both based on neurons. In their natural state, neurons have a biological 
structure comprised of dendrites, axons, and somaxfigure (Fig. 6.1). 

Dendrites are the communication appendages of cells responsible for the com-
munication and reception of signals from their surroundings, which are ultimately 
processed in the soma in the center of cells. The axon then sends the output signal to 
other neurons. Despite the greater complexity of the natural neuron model compared 
to this simple computational model, this model is the main basis of artificial neural 
networks (McCulloch & Pitts, 1943). 

In the mathematical model of the artificial neural cell, the processing unit or 
neuron can be shown as follows (Fig. 6.2). 

An artificial neuron is the basic element of a neural network. These neurons 
contain the following (Pamučar, 2010):
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Fig. 6.1 Structure of neuron 
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Fig. 6.2 An artificial neuron structure

• Inputs – xi.
• Synapses (input weighting factor) – wi.
• State of activation – z.
• Output function – f.
• One output – o.
• Threshold – T. 

Here, the inputs acting as dendrites are considered the features of a problem. In 
these models, input signals are multiplied by weight values (each input has its own 
weight). Thus, all inputs can be considered as input vectors, and the corresponding 
weights are the weight vector. The weights are usually adjusted during the training 
phase. Another value that may also be added to this set, the bias parameter, is also



adjusted during training. Finally, the actual output is applied to the input based on 
the Φ activation function. 
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Fig. 6.3 A network of 
neurons 

Input Layer Hidden Layer Output Layer 

The simplest activation function is a binary function. If the total value of inputs 
exceeds the threshold value, the neuron spikes and the output function becomes 
1, which is otherwise 0. 

ϕ xð Þ= 
1 wx þ b> threshold 

0 O:W

�
ð6:1Þ 

A Network of Neurons: The neural network is considered to have a network of 
neurons. A row of neurons is considered a layer, of which there are three in the 
neural network: an input layer, an output layer, and a hidden layer. The network can 
have different structures, and layers and neurons might vary in numbers (Fig. 6.3). 

The neural network consists of the following (Pamučar, 2010):

• The architecture (topology) of the network, i.e., the neuron connection scheme.
• Transmission functions of neurons.
• Laws of learning. 

The architecture of an artificial neural network is represented by the specific 
arrangement and connection of neurons in the form of a network. By architecture, 
neural networks differ according to the number of neural layers. Usually, each layer 
receives inputs from the previous layer and sends its outputs to the next layer. The 
first layer is called input, the last is output, and the other layers are called hidden 
layers. One of the most common neural network architectures is a three-layer 
network. The first layer (input) is the only layer that receives signals from the 
environment. The first layer transmits signals to the next layer (hidden layer), 
which processes this data and extracts features and patterns from the received 
signals. Data that is considered important is sent to the output layer, the last layer 
of the network. The final processing results are obtained at the outputs of the neurons



of the third layer. More complex neural networks can have multiple hidden layers, 
feedback loops, and time delay elements. 
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Learning neural networks boils down to learning from examples, which should be 
as many as possible so that the network can behave more precisely. 

6.4 Artificial Neural Network (ANN) 

Some human inventions have been inspired by nature. In fact, nature is full of 
inspiration, and those who are more prepared than others will benefit from intuition. 

A neural network is a conceptual model based on the human brain, which consists 
of nearly 10 billion neurons and 60 trillion synapses (Shepherd & Koch, 1990). 

The human brain is considered to be a very complicated nonlinear parallel 
information processing system. 

Therefore, scientists have tried to mimic the behavioral pattern of a neuron and 
design an artificial neuron called a perceptron. This chapter does not intend to review 
the history of the perceptron but aims to address its application to explainable 
artificial psychology presented in this book. The idea proposed by Pitts and 
McCulloch in 1943 was used as the basis for artificial neural networks (ANNs). 

An ANN contains a large number of very simple interconnected processors called 
neurons. These artificial neurons serve as biological neurons. They receive inputs 
and provide outputs. 

In ANNs, neurons are connected by links, each of which is given a numerical 
weight. These weights serve as long-term memory in ANNs. They represent the 
strength or importance of each input neuron. With ANNs, learning means nothing 
more than adjusting these weights in an iterative process. 

Table 6.1 draws a brief comparison between a biological neural network and an 
artificial neural network.



Table 6.1 A brief compari-
son between a biological 
neural network and an 
artificial neural network 

Biological neural network ANNs 

Soma Neuron 

Dendrite Input 

Axon Output 

Synapse
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Fig. 6.4 An artificial neuron’s elements 

Figure 6.4 demonstrates an artificial neuron as a computing element of ANNs. 
As already mentioned, the main idea of ANNs in 1943 was based on the seed 

presented by Pitts and McCulloch. They briefly pointed out that the weighted sum of 
the inputs would be calculated by a mathematical formula called neuron and its 
output would be compared to a threshold (θ). If the final value is less than the 
threshold, the neuron output is -1; however, it is +1 if the final value is greater than 
or equal to the threshold. There is an activation function in these sets, which is 
computed as follows: 

Y = Sign 
Xn 
i- 1 

αiwi - θ

" #
ð6:2Þ

�
y= 

þ1 if&x≥ θ

- 1 x< θ
ð6:3Þ 

Nevertheless, the sign function is not the only activation or transfer function. 
There are several active functions, a limited number of which are practically 
applicable. 

nð  Þ= 
1, n< 0 
0, n≥ 0

�
ð6:4Þ
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Fig. 6.5 Threshold 
function 

Fig. 6.6 Sigmoid 
function -1 

This is a widely used function in an artificial neural network. The following are 
two examples of these functions, which are widely used since they are derivable, 
ascending, and continuous (Fig. 6.5). 

ϕ nð Þ= logsig nð Þ= 
1 

1þ e- n ð6:5Þ 

ϕ nð  Þ= tansig nð Þ= 
2 

1 þ e- 2n - 1 ð6:6Þ 

This function uses the simple y = x equation for linear approximation. Its diagram 
is shown in Figs. 6.6, 6.7 and 6.8.
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Fig. 6.7 Sigmoid 
function-2 

Fig. 6.8 Linear activity 
function 

ϕ nð Þ= tribas nð Þ= 
1- nj j, - 1≤ n≤ 1 
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The level and sign functions are also known as hard limit functions, which are 
commonly used for pattern recognition and classification. In addition, the sigmoid 
function can take any input value from -1 to +1 and convert it into a value 
between 0 and 1. This activation function is typically used in backpropagation 
networks (Fig. 6.9). 

In 1958, Frank Rosenblatt presented a training algorithm that can be considered 
the first training method for a simple ANN. 

He named this simple single-neuron network the perceptron, which consisted of a 
single neuron with tunable synaptic weights and a hard limiter. This model was 
based on the idea of Pitts and McCulloch. Over time, this single neuron ANN 
evolved and multilayer neural networks (MLNNs) emerged in scientific fields. 

Classification is very common in psychological studies, and this purpose fully 
justifies and proves the application of explainable AI through the use of MLNNs in 
the psychological sciences.
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Fig. 6.9 Triangular activity 
function 

The multilayer perceptron neural network (MLPNN) is an MLNN in which input 
signals (i.e., input data) propagate in the forward direction layer by layer. This model 
consists of an input layer, a middle or hidden layer, and an output layer. 

In MLPNNs, each layer has its own specific function. The input signals from the 
outside world are fed into the input layer and then redistributed to all the neurons of 
the hidden layer. The input layer either lacks computational neurons or rarely has 
any; therefore, no processing takes place in this layer. The output layer receives the 
output signals from the hidden layer and creates the output pattern of the entire 
network. 

The neurons of the hidden (middle) layer recognize some features and the weights 
of the neurons are considered as features for the hidden layer, which is called hidden 
because it hides the output of interest. In other words, the hidden layer determines its 
desired output. It is possible to increase the number of hidden layers. Deep learning 
is achieved when the network has more than one hidden layer. The number of 
neurons in each hidden layer can range from 10 to 1000 layers. Although it is 
possible to increase the number of hidden layers arbitrarily, this increases the 
computational load. 

Learning is very important in MLNNs and deep learning. There are more than a 
hundred different algorithms for network learning. The most common algorithm is 
the backpropagation method. Learning in a multilayer network resembles a 
perceptron. The network calculates the output pattern. If there is an error (i.e., a 
difference between arbitrary and real output patterns), the weights are adjusted to 
reduce this error. 

The goal of this learning algorithm is to minimize the sum of squared errors. A 
network is said to have converged if the sum of the squared errors in the learning sets 
or in the epoch is sufficiently small. 

Furthermore, learning in an MLNN does not exactly emulate the behavior of a 
biological neuron, for these neurons do not have backpropagation mechanisms.
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6.5 Types of Training 

There are three types of training (Anđelković, 2022):

• Supervised training – Input data and expected output data are presented to the 
network.

• Training by evaluation – The network is not presented with the expected output 
data but, after some time, is presented with the evaluation of the previous work.

• Self-organization – Only input is presented to the network. 

Initially, neural networks were used to model the nervous systems of living 
organisms. Today, neural networks are applied for the following:

• Shape recognition.
• Handwriting recognition.
• Speech recognition.
• Financial and economic models.
• Predicting price movements on the market.
• Systems management.
• Management of production processes.
• Analysis of electric circuits.
• Psychiatric assessments.
• Data compression.
• Oil research.
• Criminological research.
• Analysis of medical tests.
• Examination of EEG and ECG signals.
• Finding the optimal solution.
• Managing robots.
• Analyzing data during pyrolysis and spectroscopy.
• In biocomputer systems.
• Weather forecast in other areas as well. 

Neural networks have been successfully applied in supervised and unsupervised 
learning. Neural network techniques belong to the so-called nonlinear techniques 
that can model complex functions. Generally, they are applied in the fields of 
prediction, classification, or control in a number of fields. 

A key feature of neural networks is related to learning the relationship between 
input and output parameters through the network training process. 

Network training is used to learn behavioral patterns and the main goal of training 
is to find a set of weights between neurons that determine the global minimum of the 
“error function.” This procedure includes decisions in terms of the number of 
training iterations, that is, the point at which training stops (Anđelković, 2022). 

The most famous training algorithm is known as backpropagation. During the 
training phase, the training data is in the input layer. In this algorithm, each node in 
the hidden layer receives input from each node in the input layer, which is multiplied



by the appropriate weights and then summed. The output from the hidden node is a 
nonlinear transformation of the resulting sum. Similarly, each node in the output 
layer receives input from all nodes from the hidden layer, which are multiplied by the 
appropriate weights and then summed. 
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Then, the resulting output values are compared with the target output values. The 
target output values are those values that the neural network is trying to teach. 

Then, the error between the obtained output values and the target values is 
calculated and fed back through the hidden layer. This procedure is called the 
backward procedure through the hidden layer. The error is used to correct the 
strength of the connection between the nodes and the weights between the input 
and hidden layers, and in this way, the hidden and output layers are updated. 

6.6 Usage of Neural Network 

Neural network models can be used for the following:

• Classifications – If the object should be associated with one of the existing, 
predefined groups or classes.

• Predictions – If an object that is not in the set of existing classes is predicted. 

Before using software that includes neural network techniques, it is necessary to 
determine the reliability of the results obtained. Reliability is determined through 
procedures:

• Validation (This procedure provides an answer to the question: “Is the appropri-
ate product made?”)

• Verifications (This procedure answers the question: “Is the product made in the 
right way?”) 

Validation is a process in which the degree of accuracy of the model representa-
tion is determined in relation to the purpose of using the model (AIAA 
G-077-1998 2002). 

Verification provides an evaluation of the accuracy of the model. Also, the 
verification process analyzes the test results and provides results that measure the 
reliability of the system. Verification is the process of determining whether the 
model implementation accurately represents the conceptual description of the 
model as its solution. 

Verification and validation processes include model evaluation using real data. In 
order for the neural network to be successfully applied in real situations, it is 
necessary to evaluate the test results. 

Verification ensures the complete specification and ensures that there are no 
errors in the implementation of the model. However, verification does not ensure 
that the model solves the problem, and that it accurately represents the real processes 
that occur.
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There are several approaches for obtaining information about the quality of 
information obtained through data analysis models (model validation):

• Use of statistical indicators.
• Division of the data set into two parts: a part for training and testing.
• Consulting with experts and reviewing the results obtained to determine whether 

the discovered behavior patterns make sense in the specific use case. 

This procedure is carried out in order to determine the fulfillment of the following 
characteristics of the created model:

• Accuracy.
• Reliability.
• Usefulness. 

6.7 The Artificial Neural Network Structure 

The arrangement of neurons and layers in the network represents the neural net-
work’s structure. An artificial neural network includes layers of one or several 
neurons. Since it is not involved in computations, the first layer is not considered a 
neuronal layer. The parameters of artificial neural networks and neuron behavior will 
be discussed in the following. In terms of the number of layers, there are two types of 
neural networks (Minsky & Papert, 1969). 

1. Single-Layer Networks. 
This network includes a layer of neurons with weighted connections where n 

denotes the number of inputs and m is the number of outputs. 
2. Multilayer Networks. 

These artificial neural networks include one or several hidden layers between 
input and output layers. Compared to single-layer networks, multilayer networks 
can solve more complex problems but are much more difficult to train (Camuñas-
Mesa et al., 2019) (Figs. 6.10 and 6.11). 

Therefore, the number of layers is an important efficiency parameter of neural 
networks. Selecting too few layers may render the network unable to provide a good 
solution, whereas selecting too many layers may significantly increase network 
complexity and training time. The number of neurons in each layer is another 
important parameter requiring careful selection since selecting the wrong number 
of neurons has the same consequences as the number of layers mentioned earlier 
(Ma & Ji, 1999; Camuñas-Mesa et al., 2019).
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Fig. 6.10 Single-layer 
neural network 

Input Layer Output Layer 

Fig. 6.11 Multilayer neural 
network 

Input Layer Hidden Layer Output Layer 

6.8 Modeling an Artificial Neural Network 

As mentioned earlier, the elements of an artificial neural network include activation 
functions, weights, and biases. Generally, since the network’s activation function is 
assumed to be unchangeable and constant, the variables are weights and biases. 
Therefore, the neural network can be generally considered a function with w and b 
parameters as follows (Fig. 6.12):
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Fig. 6.12 Modeling an 
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Fig. 6.13 Diagnosis process and ANN 

y= f xjW ,Bð Þ 6:8Þ 

Now, using a neural network to model a process (any process, for example, the 
diagnosis of a mental disorder by a psychologist, can be considered a process) is 
shown in Fig. 6.13. 

Here, Y is the output and bY is the output the network aims to model in the shared 
input. Ideally, Y = bY and modeling should be accurate. Nevertheless, natural and 
real problems are known to have many parameters that cannot be modeled 
completely. For example, is the parameter of the moon’s size and its angle to the 
earth relevant to determining a person’s mood or activity? Despite its apparent 
irrelevance to the problem, just as the moon’s gravity affects the tides of oceans 
and seas, it also influences the amount of water in the human body and can affect the 
human body and mood. Nonetheless, these parameters are ignored without knowl-
edge of their existence or application and measurement in the model. Thus, Y = bY 
never occurs in normal problems. In this case, the goal is to minimize the error 
between the two outputs (Fig. 6.14): 

Therefore, this is an optimization problem. To find the best model, the bias and 
weight values should be determined such that the value of e or its equivalent, e2 or 
MSE, is minimized. Hence, the problem is as follows: 

min e2 = Y - bY� �2 
ð6:9Þ 

Since bY = f  x  W ,B , we have
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= − 

Fig. 6.14 Minimizing errors in ANN 

min e2 = Y - f xjW ,Bð Þð Þ2 ð6:10Þ 

Here, we are after the correct W and B values, respectively, weights and biases. 
Now, if the input is more than one number and the data covers several patients, 

the sum of errors, which creates the MSE problem, should be considered: 

min 
1 
N

XN 

i= 1 
e2 i ð6:11Þ 

Note that here, all inputs have the same value; if they do not, it is possible to apply 
weights to them. 

Therefore, this is an optimization problem that requires two general optimization 
methods (Agatonovic-Kustrin & Beresford, 2000): 

6.8.1 Classical Optimization Methods 

Although this classification includes numerous methods, one of the best-known is 
arguably the gradient descent method. It is among the most widely used regression 
and classification methods and algorithms. The backpropagation method also uses 
this method and depends on the first-order derivative of the optimization function to 
determine how to change weights to minimize the function. Its advantages include 
ease of calculation, explanation, and implementation, but it is very memory intensive 
and could fall into a local minimum. 

There are several measures used in the validation process of neural networks. The 
most commonly used measures are the following:

• Mean absolute error (MAE).
• Root mean square error (RMSE).
• Relative error (MARE).
• Correlation coefficient (R2). 

Root Mean Square Error (RMSE):
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• RMSE (Harper, 2022) 

RMSE= 
1 
n 

n- 1 

i= 0 
ti - oið Þ2 ð6:12Þ 

where ti is the computed output provided by the network, oi is the desired (actual) 
output for case (input vector) i, and n is the number of cases in the sample. The error 
is averaged according to the number of output variables and in relation to the number 
of cases in the sample on which it is calculated. 

In addition to the mentioned measure, the classification rate is also used in the 
classification problem as a measure of network validation. The classification rate 
shows the percentage or proportion of correctly classified cases. 

6.8.2 Intelligent Optimization Methods 

These methods use intelligent algorithms such as a genetic algorithm, PSO, ISA, and 
DE. Meta-heuristic algorithms can be used to determine the weights of edges and 
biases in neural networks. 

6.9 Types of Data in Machine Learning Algorithms 

Data is very important in machine learning algorithms, which actually extract 
relationships from existing data. In machine learning algorithms, data can be divided 
into three categories. 

1. Training Data 
Used for building the model, these data have known outputs to the model and are 
called learning or training data. 

2. Test Data 
These data are used for model evaluation and their class status is unknown to the 
model. After applying the data, the class status is compared to the predicted class 
status to evaluate the model’s efficiency. 

3. Validation Data 
These data are used for testing various trained models in supervised learning. They 
are taken from training data and used for model evaluation before being returned to 
the model. Testing data are used with the assumption that the algorithm has used a 
series of questions for training, including questions and correct answers, and to test 
whether training was completed. In this case, validation tests are the midterms that 
show progress in education. Sometimes, however, these data are not considered and 
are only divided into test and training groups (Bonaccorso, 2017) (Fig. 6.15).
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Fig. 6.15 Types of data in machine-learning algorithms 
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Fig. 6.16 The impact of alpha in cost function 

6.10 Basic Concepts 

Learning Rate 
As one of the most important hyperparameters in neural networks, learning rate 
helps with the proper adjustment of the neural network. It indicates the magnitude of 
each step in each iteration for network training until the cost function is minimized. 
This concept is usually denoted by alpha, which varies between 0 and 1. Finding the 
optimal operational learning rate is difficult. If too high, that is, the steps are large, 
the algorithm operates faster with the risk of losing the minimum value for the cost 
function since the weights are updated quickly. If low, the calculation will be slower 
and produce results later, and if too low, there is a possibility of getting stuck in the 
local minimum. Thus, its size, which should be between the two states, depends on 
the data and network structure. This concept is shown in the following figure 
(Bengio, 2012) (Fig. 6.16). 

Meanwhile, concepts such as epoch, batch size, or iteration in machine learning and 
deep learning are used when the dataset is very large and all the data cannot be 
entered into the model at once. Hence, the data must be divided (Wang, 2017). 

Epoch: Epoch is when all the data have moved forward or backward once along the 
network. The epoch number is a hyperparameter related to forward and backward 
movement in the network with higher numbers meaning greater accuracy but also 
longer training time and possible network overfitting. A period is an opportunity 
for each sample to change the internal parameters. The number of epochs is
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usually considered high so that the model continues until the error is minimized. 
(The number can be 0 to infinity and even greater than 100 or 1000.) If the epoch 
is too big to be given to the model at once, it will be divided into small batches. 
(Wang, 2017). 

Batch: An epoch consists of one or several batches (batch size is also a 
hyperparameter that determines the number of samples). With this method, the 
model receives the data in batches instead of all at once. 

Iteration: Iteration is the number of batches needed to complete an epoch; that is, the 
number of batches is the number of iterations in each epoch (Wang, 2017). 

Network Operation Modes 
Overfitting: It is one of the modes where machine learning underperforms. In 

overfitting, the model uses too much detail and noise from the training data, 
which negatively affects the model and its future predictions. In this case, model 
error is good for training data but poor for the test and new data, causing a 
generalization problem. The overfitting model is typically a nonlinear and non-
parametric one. Fig. 6.17 clearly illustrates the concept of overfitting. 

Underfitting: Like overfitting, it provides an inappropriate model that should be 
avoided. This model is inappropriate for training data and test data. In this case, 
different learning models should be tested to find the best model for the problem, 
which is shown in Fig. 6.18 (Brownlee, 2016). 

Good Fit: Statistically, fit means the quality with which the model can approximate 
and model the target function. Machine learning algorithms include methods for 
this purpose, such as finding residual errors in supervised algorithms. Ideally, the 
model should be somewhere between overfitting and underfitting, which is a 
challenging goal (Brownlee, 2016) (Fig. 6.19).

Fig. 6.17 Illustration of 
overfitting
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Fig. 6.18 Illustration of 
underfitting 

Fig. 6.19 Illustration of 
good fit

A model error can be measured for analysis. Ideally, training and testing data errors 
while training the network should be reduced together. Now, if training takes too 
long, the model pays too much attention to details and noise, which causes 
overfitting and increases test data error (Brownlee, 2016) (Fig. 6.20). 

Cross-validation: As explained earlier, the model needs to estimate and check the 
parameters for performance evaluation (e.g., to avoid overfitting). In machine 
learning algorithms, the generalization feature, which is very important for inputs, 
is accomplished by cross-validation. Moreover, too many network parameters
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Fig. 6.20 Impact of 
overfitting and underfitting 
on error 
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introduce difficulty in the performance evaluation of the model and necessitate 
cross-validation. Cross-validation is easy to implement and understand, has less 
bias than other methods, and has different methods, such as the holdout method, 
leave-one-out method, leave-P-out method, and k-fold method (Russell, 2010). 

6.11 Types of Artificial Neural Networks 

There are various artificial neural networks for different applications, all inspired by 
the human nervous system. A close examination of learning in the human brain 
reveals a similar process via the weakening or strengthening of the connections 
between brain cells or neurons. In mathematics, these changes are known as weights. 
Some neural networks will be discussed in the following (Fig. 6.21). 

Multilayer Perceptron (MLP) Neural Network 
Considered one of the most basic artificial neural networks, it typically consists of an 
input layer, one or several hidden layers, and an output layer. This neural network 
considers the network behavior of humans and is also known as the feed-forward 
network. Here, neurons receive, process, and transfer signals between each other, 
which ultimately produces a result. This network uses the mean square error (MSE) 
as an efficiency index (Marques, et al., 2014). 

Feed-Forward Neural Network 
This is also one of the older neural networks with several main rules, such as the 
interconnectivity of all nodes, activation from the input layer to the output layer, and 
a hidden layer between input and output. 

Deep feed-forward neural networks have more than one hidden layer, which is 
very time-consuming and impractical.
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Fig. 6.21 Perceptron network 

Radial Basis Function Neural Network 
Despite its structural similarity to MLP, this network has different neuron 
processing. It employs the logistic function for the activation function. Due to its 
easier setup, this network provides faster training and is suitable for classification. 
However, it underperforms with regression. 

Recurrent Neural Networks 
In these networks, the neurons have a recurrent state. Basically, recurrent neural 
networks are used when the “context” is important and when decisions from 
previous iterations or samples can affect current examples. 

Deep Learning 
Generally, a higher number of layers and neurons in the artificial neural network 
make the network deeper and the model more complex. Having over three layers in 
the artificial neural network creates a deep network used for deep learning. In fact, 
deep learning is an artificial neural network with a large number of hidden layers. 
Nonetheless, the difference between deep learning and neural networks lies in the 
fact that deep learning is the learning mode, whereas neural networks are machine 
learning algorithms (Dangeti, 2017). 

6.12 Comparing Multilayer Neural Network 
with Regression 

If an artificial neural network has no hidden layers but has a sigmoid activation layer, 
the neural network is equal to a logistic regression. If it has a linear activation 
function, it is equal to a linear regression. 

An artificial neural network designed for output layer classification has a class 
label.
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In recent years, neural networks have been redesigned in deep learning format, 
often leading to better results (Goodfellow et al., 2016). 

The aim of machine learning (ML) is to develop computing algorithms or 
statistical models that can automatically infer hidden patterns from data. In the latest 
technological wave of ML and AI, deep learning approaches aim to develop an end-
to-end mechanism that can directly map input raw features to outputs and place a 
multilayer network structure between them to capture inputs from hidden patterns. 

There are various deep learning (DL) strategies. This chapter addresses only the 
deep feed-forward neural network. 

As previously mentioned, ANNs aim to mimic how the human brain works. From 
a mathematical point of view, an artificial neuron is viewed as a nonlinear transfor-
mation unit that captures the weighted set of all inputs and feeds the result to an 
activation function (e.g., sigmoid, rectifier (relu), and hyperbolic tangent). 

The simplest ANN is a feed-forward neural network that stacks neurons layer by 
layer in a forward pattern. The first layer is the input layer. Each unit gets one 
dimension of the data vector. The last layer is an output layer that outputs the 
probability. It also assigns an individual to different classes. The middle layer is 
the hidden layer. There are usually several hidden layers, which is why a network is 
called a deep network. 

The input features are considered as an input layer when designing deep artificial 
neural networks (DANNs). The hidden layer is mainly selected as dense or fully 
connected, and each neuron is assigned to another neuron in previous or next layers. 
The network is then trained to find the data pattern. This process results in a model 
that can be used to predict scores or classes (here classes) in the new untrained 
features. In every training process, there is an epoch. An epoch is the number of 
times a model has updated itself. Updating means calculating the error and 
backpropagating its gradient in previous layers. The class weight is a very important 
parameter in the network because it reduces the relative weights of false negatives in 
the total error. 

It is important to manipulate this parameter because researchers often have to deal 
with false positives. Therefore, this ratio must be chosen carefully. The ratio is 
usually chosen as 1:4 because it is usually acceptable (Bailey et al., 2021).
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After the network has been trained, its appropriateness should be tested. For this 
purpose, it is imperative to use the data that has not been used to train the network. 
From a psychological point of view, testing all models would be the test of 
generalization to the untrained. 

To test a model, the prototype is divided into two parts: 70% training and 30% 
testing. 

6.12.1 Practical Example Using R 

Example 6.1 In this research, an artificial psychologist using DNN artificial neural 
network tries to predict emotional competence (EE) based on two other variables. 
This model shows the application of DNN regression. The R codes for DNN are in 
Listings 6.1 and 6.2. In this example, in order to ensure the results, in addition to 
dividing the main sample into two training sample and the test sample, the researcher 
also performs cross-validation with K = 10. He also standardizes the predictor 
variables. 

Listing 6.1 R codes for DNN implementation
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Listing 6.2 R codes for DNN implementation (continued) 

Table 6.2 shows the variable labels and their names. In this analysis, the cost 
function is the loss function and has been used by MAE. Figure 6.22 shows the 
median importance of the features. 

This plot shows that the IS variable has the most relative importance in predicting 
EE and COG has the least importance. 

The chart provides summary information about the behavior of the model. There 
are different models for interpreting features (variables). One of these methods 
proposed by Friedman in 2001 is the partial dependence plot (PDP), which shows 
the marginal effect of variables on the dependent variable(s) in the trained model 
(Listing 6.3). PD shows how much the predicted values change for a change in the 
value of a variable in the model. 

Table 6.2 Abbreviated name 
and description of variables 

Variable name Variable label 

Internalized shame IS 

Childhood trauma T 

Cognitive flexibility COG 

Distress tolerance DIS 

Alexithymia SYO 

Emotional competence EE 

Age Age



6.12 Comparing Multilayer Neural Network with Regression 169

Fig. 6.22 The median importance 

In 2015, Goldstein et al. introduced the individual conditional expectation (ICE) 
plot. This plot shows how the predictions of a fitted model change if only the 
variable in question changes compared to the rest of the variables. One condition 
is that the rest of the variables are fixed based on the value of a sample. 

Listing 6.3 shows the R codes for drawing PDP and Rice. The results are shown 
in Fig. 6.23. In this PDP diagram, they are drawn as yellow curves and ICE curves 
are drawn in black, and the distributions of each variable are shown as short lines on 
the X axis. It can be seen that descending lines like IS and T show a negative 
relationship with EE and a variable like SYO shows a nonlinear relationship. 

In 2016, Alpey introduced a new plot called accumulated local effect (ALE). The 
ALE plot calculates the average effect of predictor variables on model predictions. It 
is faster and more unbiased than PDP. This chart includes the interaction of variables 
even if they are correlated. The ALE plot related to the DNN regression model is 
shown in Fig. 6.24. 

Figure 6.24 indicates that predictor variables have nonlinear relationships with 
EE, which was not easily observed in PDP. 

Figure 6.25 shows feature interaction. This diagram shows a way to show the 
interaction strength between two features. This value was given by Friedman and
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Fig. 6.23 PDP and ICE plot 

Fig. 6.24 ALE plot



varied between 0 and 1. Zero (0) represents no interaction between two variables and 
1 (one) is for when all the effect on the observed values is due to the interaction.
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Fig. 6.25 Interaction plot of the variables 

Fig. 6.26 Interaction plot of the variables 

As the interaction plot in Fig. 6.26 shows, the two variables IS and COG have the 
most interaction with other variables and T the least. 

As discussed, LIME and the Shapley value are used for local interpretation. LIME 
is not used in this example because the package used in this case does not use LIME, 
but we will discuss it in the next example. We use the Shapley value in this example.



The artificial psychologist should keep in mind the importance when using black-
box ML in Interpretability and explainability of findings and results. The Shapley 
value was developed in 1953 based on game theory, which actually shows the 
relative contribution of predictor variables in predictions. In the IML package 
available in R, this indicator is based on a Monte Carlo sampling approximation 
by Strumbelj et al. in 2014. 
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Figure 6.26 shows the average predicted values compared to the actual prediction. 
Using the Shapley value, it is possible to compare actual and average predictions for 
a subset of data and even for a single data point. 

6.13 Hyper-Parameter Tuning 

The model training process involves the use of parameters. Depending on the data 
and the type of problem, parameters are obtained from different data sets. 

However, hyper-parameters are determined by the involvement of a researcher. 
For example, they refer to the number of hidden layers in a DNN or the number of 
trees in a random forest. In general, this process aims to optimize models by reducing 
errors or cost functions and improving accuracy. Two approaches should be con-
sidered by artificial psychology when determining hyper-parameters: (1) a manual 
approach and (2) an automated approach. The former is based on prior knowledge. 
Sometimes an artificial psychologist knows that better results are obtained when 
hyper-parameters are determined by the knowledge-based model. However, the 
second approach does not require prior knowledge. There are various parameters 
in DNNs. They can be manipulated directly. This changes the model architecture or 
the learning rate (Yang & Shami, 2020). 

Hyper-parameters include the number of neurons in a hidden layer, the number of 
epochs, the number of hidden layers, the number of mini-batches, the activation 
function, the cost function, the learning rate, and regularization methods 
(Koutsoukas et al., 2017). 

The first approach consists of some recommendations and approximation tech-
niques that can be used to determine hyper-parameters and observe their impact on 
the model. 

When determining the number of neurons in a hidden layer, one solution is to use 
half of the input data (Heaton, 2015). A better solution is to employ the hyper-
parameter tuning technique. To do this, the training data is split into two halves: 

1. Training set. 
2. Validation set. 

The training set is utilized to train the model while the validation set is only used 
to check the model accuracy. 

In practice, 50% of the data goes into the validation set and the rest goes into the 
training set, so both sets can contain the same amount of data. Therefore, the



accuracy analysis is performed on the validation set rather than the test set, 
preventing overfitting. The optimal model is determined by hyper-parameter tuning 
in the validation set. 
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The random search cross-validation can be used in an automated approach. This 
method can be employed to resolve the opacity in parameter regularization when 
there is no prior knowledge. In this method, a grid of value ranges is determined for 
hyper-parameters, from which some values are then randomly selected and evalu-
ated. In this method, the most important arguments control the number of iterations 
(n-iter) and the number of different combinations tested (usually, it is considered 
100). Undoubtedly, increasing the number of these two arguments will reduce 
overfitting; however, a long time is required to fit the model. 

Therefore, the best post-training hyperparameters can usually be obtained when 
random search CV is implemented. This is considered a major achievement as it 
helps access a smaller range of hyperparameter values. All resulting combinations 
are then analyzed using grid search CV instead of random sampling. The CV random 
search is used to reduce the space of hyper-parameters, while CV grid search is used 
to determine the best parameters. 

After the model has been trained and validated, a new sample is used to check 
generalizability. In other words, 30% of the prototype that was not used for model 
training is now used. 

Sometimes the data may not be enough (i.e., the sample is small). In this case, 
cross-validation can be used. To do this, a single data set is divided into two or more 
approximately equal data sets. They are called folds and are represented as “k,” 
which is usually taken as 10. In this case, the algorithm trains the model in k – 1 folds 
and then tests it on the remaining fold, called the holdout. The number of folds is 
usually considered to be 10 in cross-validation. 

6.14 Evaluation of DNNs 

The confusion matrix is used to evaluate DNNs with the purpose of classifying the 
target variable. This matrix helps determine the classification and misclassification 
rates in the model. Conventionally, the effectiveness and performance are deter-
mined by its accuracy. There are some components in the confusion matrix 
(Table 6.3). 

Table 6.3 Confusion matrix 
layout. “1” for positive class 

1 0  

0 TN FP  

1 FN TP  

TN true negative, FP false positive, FN false negative, 
TP true positive
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The following four metrics are employed to evaluate the performance of a 
classification model: 

1. Accuracy: This metric indicates the total percentage of individuals classified 
correctly. 

Global accuracy= 
TP 
N

ð6:13Þ 

2. Precision: This metric indicates what percentage of individuals having the 
predicted feature actually have that feature. 

Precision= 
TP 

TPþ FP ð6:14Þ 

3. Recall: This metric indicates what percentage of individuals that actually have 
that feature possess the predicted feature correctly. 

Recall= 
TP 

TPþ FN ð6:15Þ 

4. F-Measure or F-Score: This metric is a combination of precision and recall, and 
R indicates the importance of recall over precision. If B = 1, then they are 
equally important. 

F-Measure= 1þ β2
� �

× 
precision � recall 

β2 precisionþ recall ð6:16Þ 

The receiver operating characteristic (ROC) curve is another tool for analyzing 
the performance of classification models. The area under the curve (AUC) of ROC is 
measured for performance analysis. In the ROC curve, the true positive rate (TPR) is 
drawn against the false positive rate (FPR). 

One of the most common metrics is R2, the proportion of variance accounted for 
by the model. Higher R2 values signify higher accuracy. When the residual variance 
(i.e., “sum of squared residuals” in the formula below) is zero, the model makes 
perfect predictions and R2 = 1. If the sum of the residuals is equal to the total 
variance (in the denominator), the model is useless, predicting the mean is equally 
accurate, and R2 = 0. Other metrics focus on the average residual size (instead of 
residual proportion as in R2), with smaller residuals signifying higher prediction 
accuracy. The most common is the mean absolute error (MAE); negative signs of 
residuals are removed and the root means square error (RMSE) residuals are 
squared.



6.15 Interpretability and Explainability in DNNs 175

MAE-
1 
n 
× 
Xn 
i= 1 

yi- byij j ð6:17Þ 
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiv 

RMSE-

Pn 
i= 1 

yi - byið Þ  
n 

uut
ð6:18Þ 

6.15 Interpretability and Explainability in DNNs 

First, it is essential to distinguish interpretation from explanation. In fact, interpre-
tation refers to a model’s ability to interpret the input–output relationship, while 
explanation denotes the ability to explain the model output in human language. 

As a model becomes more complex, it becomes increasingly difficult to introspect 
and understand how that model makes a particular prediction. There are many 
methods to explain black box models. These methods are usually adopted in terms 
of their scope, model dependency or independence, and runtime. 

An artificial psychologist knows that a DNN is a black box model. Although it 
has accurate inputs and outputs, it must analyze these results to determine where to 
find the meaning of features and how to interpret and explain the results. LIME is a 
new modern tool for the model-agnostic technique. It can be applied to any model to 
make the results interpretable and justifiable. LIME was first introduced in 2016 by 
Marco Tulio Riberio, Sameer Singh, and Carlos Guestrin and stands for locally 
interpredictable model-agnostic explanations. They proposed this method in a paper 
entitled, “Why Should I Trust You? Explaining the Predictions of Any Classifier?” 

According to the results reported by the developers of this method, 

1. The explanations of predictions should be understandable; they should be 
explainable in every aspect. 

2. It should be possible to make individual predictions, something which is called 
the local fidelity. 

3. The explaining model should be applicable to all models, something which is 
considered model-agnostic. 

4. The model should be able to provide a general explanation, which means the 
global perspective. 

Therefore, it can be concluded that explanation is very important because we need 
to trust that the model predictions are correct (trust), the model behavior is correctly 
perceived (control), the signs of explanation are sufficient and data meet the expec-
tations (prediction evaluation), and how it is possible to improve and enhance 
classification (improvement and enhancement) (Figs. 6.27, 6.28, 6.29, and 6.30).
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Fig. 6.27 Explainable and interpretable ML models 

Fig. 6.28 Two main types 
of explainable and 
interpretable approach 
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Fig. 6.29 Reverse relationship between interpretability and accuracy of ML models
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Fig. 6.30 The conceptual framework to capture knowledge from the world using models 

In LIME, it is desirable that artificial psychology perceives the relationship 
between the features of a specific sample and the predictions of that model by 
training a more explainable model, such as a linear model driven from samples 
that are slightly different from the original inputs. 

An explanation can be extracted from the coefficients of features that exceed a 
threshold in a linear model. The intuitive logic behind this reasoning is that these 
features of the linear model have the greatest importance in explaining and 
predicting that model. As a result, these local examples can be employed to assess 
the contributions of every feature in the resultant explanation and prediction. In other 
words, LIME creates new datasets that include perturbed samples. Hence, LIME 
trains an interpretable model on these new data. This model is then weighted through 
the proximity of samples taken from the analysis samples. 

A trainable model might be a good approximation of local predictions for 
machine learning; however, it may not necessarily have a global fit.
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Another new method of explaining the predictions of a deep neural network is to 
use Shapley additive explanations abbreviated to SHAP. 

In fact, SHAP is a novel method for making individual predictions obtained from 
a complicated model. The goal of SHAP is to calculate the share of each feature in 
prediction to determine the effect of each input. The origin of the technique of SHAP 
is rooted in the cooperative game theory, the principles of which are used to calculate 
Shapley values. 

As the game theory aims to analyze how the coalitions of some players affect the 
results, SHAP uses the same method to determine how the features contribute to the 
model outputs. In game theory, specific players have key roles in the results. 
Likewise, some features play major roles in model prediction in artificial neural 
networks; therefore, they are more important. 

As mentioned previously, Shapley values are calculated in SHAP. This is the 
average metric for all marginal contributions for all coalitions. In SHAP, the feature-
related data act as the members of a coalition in an instance, and the explanations of 
Shapely values are expressed as a form of an additive approach to a linear model. 

Not only do Shapley values determine the relevance of a feature, but they also 
indicate whether that feature has a positive or negative effect on a prediction. 

6.16 Difference between LIME and SHAP 

In LIME, a set of important features is obtained. However, the size of the role of 
those features in the model is not outputted. In other words, LIME cannot, for 
example, determine the attribution of the exact amount of stress in predicting the 
pain severity in fibromyalgia. It can merely indicate whether a feature is important in 
predicting the pain severity of patients with fibromyalgia. 

However, an output is attributed to a combination of measured features in SHAP. 
In fact, SHAP can be considered as the statistical attribution of a model output to a 
set of inputs. For instance, 4 degrees of the total pain severity are predicted out of a 
possible 10 degrees and then attributed to a 20-degree stress severity in these 
patients. 

6.16.1 Practical Example Using R 

Example 6.2 An artificial psychologist seeks to predict the probability of group 
membership using four emotional variables (A1, A2, A3, and A4). He uses a 
multilayer perceptron artificial neural network. 

Since there is one hidden layer in the model, this example is not classified as deep 
learning. For this purpose, he examined 194 10–12-year-old elementary school boys, 
of whom 97 had high hyperactivity symptoms and 97 had low hyperactivity 
symptoms. He measures a child’s stress level = A1, child’s anxiety = A2, mother’s
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stress = A3, and mother’s anxiety = A4. Then, he considers 80% of the total sample 
as the training sample and 20% as the test sample group. He also considers the 
execution times once for convenience. Also, he uses the CV method to validate the 
model and, if necessary, changes the hyper-parameter of the model to find the best 
model. He has used the grid search method for tuning his model. Also, size and 
decay must be changed in the model. Size is the number of hidden layer nodes and 
the decay parameter controls the amount of decay to change the weights. The 
weights are changed in backpropagation models. In this case, it is said that the 
model learns. The decay parameter takes values from 0.001 to 0.1 depending on the 
model. He has considered the amount of decay in the range of 0–0.1. Weights in an 
artificial neural network are similar to regression coefficients. Using the Garson 
algorithm, the relative importance of each variable in the prediction is determined. 
The process of pooling and scaling of all the weights related to a variable in the 
model creates a single value that is in the range of 0 to 1 to assess the relative 
importance of that variable in prediction. 

Accordingly, the graph from the Garson algorithm shows in order of decreasing 
importance that A4, A3, A1, and A2 are the most important predictor variables 
(Fig. 6.31). 

Figure 6.32 shows that the inputs in the net plot are A1 to  A4, which have a hidden 
back layer with two neurons. Fact or factor is the output variable (group member-
ship). He used LIME to explain the model. 

Fig. 6.31 Importance plot of MLP
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Fig. 6.32 Net plot of MLP 

LIME is an interpretability agnostic method. Agnostic, which is related to the 
black box concept, refers to the fact that it can be used to generate insight into a 
process that is unknown or cannot be known. This method is used to interpret 
complex models. This method creates a qualitative link between input and response 
variables (group membership). In the LIME algorithm, the explain () function is 
used, which is used for new observations (such as children numbers 21–23). In this 
diagram, case refers to the person’s number in the data set, and label refers to the 
observed value of the person on the target variable. Probability refers to the predicted 
probability for that label, and the explanation fit index measures the quality of the 
model used in the explanation. 

The features (variables) marked in blue in the plot are the variables that support 
their label, and the length of the bar in the diagram indicates the weight ratio of a 
characteristic. A facetted heat map style plot shows the feature combinations for 
cases 21–23 (Fig. 6.33). 

The individual number can be seen on the horizontal axis (X) and the features that 
have been categorized can be seen on the vertical axis (Y). The results of running the 
model based on size and decay are shown in Fig. 6.34. 

As can be seen, with a size of 2.0 and decay equal to 0.1, the accuracy of the 
model is maximized and equal to 0.674. 

Figure 6.35 is a facetted heatmap-style visualization of all case-feature combina-
tions for three selected cases. The case numbers are shown on the horizontal axis, 
and categorized features are shown on the vertical axis. 

Example 6.3 An artificial cyber psychologist tries to predict the tendency to cyber 
addiction (low-high) based on 13 early maladaptive schemas that he thinks are 
effective based on the background of the research. Since the criterion variable or 
target is binary, he is trying to predict group membership (categorization). He fits a 
multilayer perceptron artificial neural network (MLP), which uses two hidden layers. 
He considers each hidden layer to consist of 10 neurons. The number of hidden 
layers and their number of neurons are hyper-parameters. By increasing the number 
of hidden layers and the number of neurons, the accuracy of the prediction model
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Fig. 6.33 LIME for cases 21–23 

Fig. 6.34 Size and decay of the model 

(Classification Regression) increases, but the model becomes complicated and its 
execution time becomes longer. The R codes are in the Listing. In this model, high 
group is considered as code 1. First, the quantitative predictor variables (which are 
all quantitative in this example) are standardized, and the cyber addiction variable, 
marked with the AD symbol, is set as the criterion or target variable. To implement 
the model, the researcher will need the necessary specifications in NE.net. Of course, 
these specifications can be changed. A confusion matrix is used to check classifica-
tion accuracy. The R output of this analysis is shown in Fig. 6.36.
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Fig. 6.35 Overall LIME for the cases and feature weight 

In this figure, it can be seen that the accuracy of the model is equal to 0.55, the 
p-value is equal to 0.31, the kappa coefficient is equal to 0.10, and the sensitivity is 
equal to 0.53 with the specificity equal to 0.58, which is indicative of low model 
accuracy. 

Figure 6.37 shows the network plot. The number of neurons in the input layer is 
equal to the number of predictor variables, i.e., 12 variables (the same 12 primary 
maladaptive schemas that the researcher identified among the primary maladaptive 
schemas most related to cyber addiction). The number of hidden layers is 2 layers 
each having 10 neurons, and finally we have the output layer, which is the tendency 
to cyber addiction (high or low). 

As discussed in detail in this chapter, interpretability and explainability are two 
very important features that should be taken into account when using these models. 
The SHAP algorithm has been used for this purpose. In this figure, it can be seen that 
each point is based on the test sample. In the next example, we will examine this 
issue in a clearer way. 

As mentioned, the psychologist uses a multilayer perceptron neural network with 
two hidden layers for classification. For this purpose, out of 194 participants, he 
selects 155 people (80%) as a training sample and 39 people (around 20%) as a test 
sample (Listings 6.3 and 6.4).



Fig. 6.36 The R output of the deep MLP classifier 

Fig. 6.37 Net plot
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Listing 6.3 R codes for deep MLP 

Listing 6.4 R codes for deep MLP (continued)
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Fig. 6.38 SHAP values plot of deep MLP classifier 

Fig. 6.39 The force plot of the model 

Each point of every row is a record of the test dataset. The features are sorted from 
the most important (top) to the less important. We can see that EF is the most 
important feature. The higher and more positive the SHAP value of this feature, the 
more influential the impact on the classification accuracy of the target. The more 
negative this value, the less importance the variables have on classification accuracy 
(Fig. 6.38). 

A very useful plot we can draw is called a force plot. The force plot is an 
explanation of feature importance based on the SHAP values. The force plot 
shows the influence of each feature on the current prediction. Values in red can be 
considered as the values that have a positive influence on the prediction pushing the 
values higher than the average value across all the cases without any variables in the 
model (baseline), whereas values in green have a negative influence on the predic-
tion pushing the prediction lower than the baseline prediction (Fig. 6.39).



Chapter 7 
Feature Selection in AP 

7.1 Feature Selection Problem 

In most real-world problems, a large fraction of the sample features are not useful 
and have a negative impact on model performance. Therefore, in machine learning, it 
is important to identify good features that affect model accuracy. Feature selection 
methods aim to find the smallest possible subset of features that is necessary and 
sufficient for determining the target. In fact, the distribution of the selected features 
should be close to the distribution of the main class (Dash & Liu, 1997). 

Since this is an optimization problem, choosing the right feature selection method 
is in itself a refinement. 
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Advantages of Feature Selection 
Feature selection has several advantages:

• Better classifiers: Since most redundant features generate noise and affect model 
accuracy, the main advantage of feature selection is improved accuracy.

• Better knowledge discovery: Feature selection also provides insights into the 
data. Separating important and influential features from unusable ones can be 
very informative.

• Reducing the cost of data collection: Where data collection is costly, such as in 
medical applications, identifying a minimal set of features for classification saves 
money.

• Computational costs: Identifying appropriate subsets of features simplifies the 
model and reduces computational and implementation costs.

• Dimensionality: Existing theories suggest that a higher number of features expo-
nentially increases the volume of data required to build a classifier (Cunningham 
et al., 2021). 

7.2 Feature Categorization 

In general, features are divided into three subgroups: 

1. Related Features: These features directly affect the output and target and cannot 
be replaced by other features. 

2. Unrelated Features: These features are unrelated to the output and create random 
values in the sample. 

3. Feature Redundancy: In this case, one feature replaces another. Therefore, these 
features do not provide any additional information. 

According to these definitions, feature selection should identify features with 
high correlation, while redundant features should be removed as much as possible 
(Dash & Liu, 1997). 

7.3 General Procedure of Feature Selection 

Typically, there are four stages and functions in the process of feature selection, 
which are shown in relation to each other in the following diagram. 

1. Generation procedure. 
2. Evaluation function. 
3. Stopping criterion. 
4. Validation procedure (Tang et al., 2014) (Fig. 7.1).
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Fig. 7.1 Stages of feature selection with validation 

Generation Procedure 
The generator function is actually a search function that generates various subsets 
and is checked by the evaluation function. In this case, it can start from the initial 
featureless state, with a set of features, or with a random subset. 

Evaluation Function 
After generation, the subset of features is evaluated using different methods. In this 
phase, the goodness of a set is examined and the new subset is compared with the old 
one. If it is better, it replaces the older subset. In this case, finding a suitable subset of 
features depends directly on the evaluation function used because if the evaluation 
function does not provide a suitable subset, the subset of features will never find an 
optimal value. 

Stopping Criterion 
The criterion needed to end and stop the algorithm can be one of the following: 

1. A certain number of features. 
2. A certain number of iterations. 
3. When adding or removing a feature does not result in a better subset. 
4. When the optimal subset is reached based on the evaluation function. 

Validation Function 
Although this function is not part of feature selection, it checks the validity of the 
subsets. The results of the data can be evaluated based on prior knowledge (Ansari, 
2021).
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7.4 Feature Selection Methods 

In many studies, feature selection methods are divided into three categories (Ansari, 
2021): 

1. Wrapper Method: This method is considered a prediction method, and its perfor-
mance is crucial for subset selection. At each stage, a subset of features is 
selected, based on which the performance of the machine learning algorithm is 
evaluated and the performance result is used for feature selection. 

2. Embedded Method: This method simultaneously uses machine learning algo-
rithms with model fitting for feature selection. 

3. Filter Method: This method measures the importance of features without machine 
learning algorithms. In this method, features related to the input are selected to 
obtain the output. The filter method typically employs the ranking method. 
Different features are ranked in the order of their acceptability. Due to its 
simplicity, the ranking strategy can be applied to any application. Before the 
features enter the classification phase, they are ranked, i.e., filtered. Incompatible 
elements are filtered into compatible elements. Each ranked element must have a 
unique feature to identify that class. This method is faster than packing methods, 
but may give poor results if the data is not properly correlated. These methods are 
also used when the spatial dimensions of the feature are large and the computa-
tional cost of the wrapper method is high, so it is more economical to use the filter 
method (Fig. 7.2). 

Fig. 7.2 Classification of feature selection methods. (From Ansari, 2021)
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Genetic algorithm, a wrapper method, will be discussed in detail below. 
This section will first introduce the basics of the genetic algorithm and its feature 

selection stages. 

7.4.1 Practical Example Using R 

An artificial psychologist tries to implement a classification model, but he realizes 
that the number of predictor variables may decrease the accuracy of the model. It 
means some variables may be noisy variables; therefore, he decides to select the 
Feature Selection feature to determine a subset of the most important variables. In 
this model, he decides to first determine the most important features in predicting 
group membership with the Feature Selection algorithm. He wants to determine 
which of the 13 variables A, B, C, D, E, F, G, K, L, M, N, P, and Q are the most 
important variables. He uses the Boruta method. This is a wrapper method based on a 
random forest algorithm. The random forest itself is based on the decision tree 
algorithm. A decision tree is a sequence of steps that are performed in the training 
phase. Random forest is an ensemble of decision tree algorithms. The random forest 
algorithm trains hundreds of decision trees, each of which only has access to a 
random set of columns in the data (variables). 

Boruta is a technique that takes this randomization much further. Based on this 
method, it captures all the features in the data that are related to the target variable 
(Kursa & Rudnicki, 2010). 

Listing 7.1 R codes for feature selection implement 

Listing 7.1 shows the R codes for feature selection implemented using the Boruta 
algorithm. The results are shown in Fig. 7.4. This plot shows that the variables M, Q,
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Fig. 7.3 R output of feature selection using the Boruta algorithm 

Fig. 7.4 R output of feature selection using the Boruta algorithm 

B, N, C, and L are the most important variables in determining group membership, 
respectively. 

Figure 7.3 shows the R output, where meanIMP shows the average importance, 
which is the highest average importance of each predictor to show how it is related to 
group classification. The last column is about making a decision about which 
variable remains in the model or is removed. This column has three options: 
confirmed, rejected, and tentative, which is the last option that includes the variables 
that need further investigation (Fig. 7.4). 

Example 7.1 An artificial psychologist wants to predict the post-corona 
depression rate (y) based on variables A1 to A10. He performs feature 
selection based on the random forest algorithm using the DALEX Package 
in R and prepares the necessary codes (Listing 7.2). This is a powerful 
package. By using the function variable-dropout (), which determines the 
importance of a variable based on a dropout loss, how much loss is imposed 
on the model by removing a variable.
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Listing 7.2 R codes for feature selection implement using random forest 

As the importance plot and the output of the software in Figs. 7.5 and 7.6 show, 
variables A5, A7, A4, A2, and A10 are the five most important variables of Feature 
Selection. 

Fig. 7.5 Importance plot
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Fig. 7.6 Mean dropout – loss of each variable 

Fig. 7.7 Model summary 

Figure 7.6 shows that the mean loss is maximized if variable A5 is dropped from 
the model. This dropout loss is the highest value among the 10 predictor variables 
and is equal to 16.81. 

As Fig. 7.7 indicates, the mean prediction error using this random forest model is 
0.038. 

7.5 Metaheuristic Algorithms 

In general, optimization algorithms are divided into two categories: exact algorithms 
and approximate algorithms. Exact algorithms provide the optimal solution accu-
rately but have exponentially longer resolution times. In approximate algorithms, on



the other hand, the solution is close to the optimum and takes less time for difficult 
problems. 
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Therefore, exact algorithms do not seem to be suitable for many problems. There 
are three types of approximate algorithms, namely heuristic algorithms, 
metaheuristic algorithms, and hyper-heuristic algorithms. In this book, we will 
discuss the genetic algorithm, which is a metaheuristic algorithm (Fraser, 1957). 

In metaheuristic algorithms, the behavior is random, i.e., the search for the 
solution and the optimal value starts at a random point (i.e., from absolute ignorance 
to knowledge). The conceptually simple metaheuristic algorithms can be 
implemented easily and flexibly. In other words, the algorithms can be easily 
modified depending on the problem. The main feature of metaheuristic algorithms 
is their ability to prevent early convergence of algorithms (Golberg, 1989). 

These algorithms have been successfully applied to various engineering and 
scientific problems, e.g., in electrical engineering (to find the optimal solution for 
power generation), industry (planning, transportation, vehicle routing, location deter-
mination), civil engineering (for bridge and building design), communications (radar 
and network design), data mining (classification, prediction, clustering, system model-
ing), and psychology and cognitive science (to reduce feature dimensionality in 
questionnaires and for features obtained from brain imaging) (Engelbrecht, 2007). 

Metaheuristic algorithms are divided into the following two main categories: 

Single Solution-Based Metaheuristic Algorithms: In these techniques, the problem 
typically starts with a solution that is updated in iterations. The problem is that one 
falls into the trap of local optimization and does not fully explore the search space. 

Population (Multiple) Solution-Based Metaheuristic Algorithms: These algorithms 
generate a population of solutions and start the optimization process. The popu-
lation is updated with the number of generations or iterations. These algorithms 
do not suffer from the problem of single solution-based algorithms; i.e., they do 
not fall into the local optima because multiple solutions help each other and there 
are many searches in the search space. Moreover, population-based algorithms 
are used for solving most real-world problems. 

Due to the aforementioned properties, much attention is paid to metaheuristic 
algorithms. These algorithms are classified into four categories based on their 
behavior, namely, evolution-based, swarm intelligence-based, physics-based, and 
human-related algorithms (Agrawal et al., 2021) (Fig. 7.8). 

Metaheuris�c 
Algorithms 

Evolu�on based 
Algorithms 

Swarm intelligence 
based Algorithms 

Physics based 
Algorithms 

Human behavior 
related Algorithms 

Fig. 7.8 Four categories of metaheuristic algorithms



Evolution-Based Algorithms are inspired by natural evolution and start with a
population of random solutions. They combine the best solutions to create new 
individuals through mutation, combination, and selection of the best population. 
The genetic algorithm (GA) based on Darwin’s evolution is the most popular in 
this category. This category also includes other algorithms such as evolution 
strategy, genetic programming, tabu search, and differential evolution (Agrawal 
et al., 2021). 
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Swarm Intelligence-Based Algorithms are inspired by the social behavior of insects, 
animals, fish, or birds, such as the group behavior of birds and how they fly 
around the search space and find their best location. Other swarm intelligence 
algorithms include ant colony optimization, the honey bee swarm optimization 
algorithm, monkey optimization, and more (Agrawal et al., 2021). 

Physics-Based Algorithms: These algorithms are inspired by the laws of physics in 
the world and include simulated annealing (Goldberg & Richardson, 1987), 
harmony search (Higashi & Iba, 2003), and so on. 

Human Behavior-Based Algorithms: These algorithms are purely inspired by human 
behavior. The approaches humans take to various activities affect their perfor-
mance. Popular algorithms include the teaching learning-based optimization 
algorithm (TLBO), the League Championship algorithm, and more (Agrawal 
et al., 2021). 

As mentioned earlier, metaheuristic algorithms mimic the principles of natural 
evolution to search for the optimal solution. The genetic algorithm is a metaheuristic 
algorithm rooted in Darwin’s theory of evolution. In this theory, a better generation 
typically emerges from the combination of chromosomes. In the meantime, possible 
mutations can improve or worsen the generation. The genetic algorithm is explained 
in detail below. 

7.6 An Introduction to the Genetic Algorithm 

Many human inventions are inspired by nature, as its evolution over a long period of 
time means that it always provides the best and most optimal solutions and pro-
cesses. Given the ever-changing environment around us, the ability to change and 
adapt to conditions is necessary for any living thing to survive. Phenomena such as 
natural selection, reproduction, mutation, and symbiosis are involved in this adap-
tation and evolution. Living organisms also rely on chemical elements to store 
information about each organism. DNA contains all the necessary information for 
the reproduction of a living organism and is the known regulator of genetic infor-
mation. In fact, genetics is the alphabet of nature. Hereditary factors and individual 
characteristics exist along the chromosome. The human body usually has four bases



for making chromosomes from DNA, namely bases A1 ,  C2 ,  G3 , and T4 . DNA also 
has four combinations in DNA, namely TA, AT, GC, and CG, which can produce 
different phenotypes. Consequently, there is a one-to-one correspondence between 
each living organism and its gene sequence, which is called coding. 
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Crossover Child Mutation Child 

Fig. 7.9 Illustration of crossover child and mutation child 

The genetic algorithm is a family of “computing models” that are conceptually 
based on evolution. This field in artificial intelligence is inspired by the evolution of 
natural living organisms. The genetic algorithm is based on the principle of survival 
of the fittest and reproduction of the superior. It is often considered a “function 
optimizer”; that is, it is used to optimize the objective functions in problems. In fact, 
however, it has other applications (Fig. 7.9). 

7.7 Basics of the Genetic Algorithm 

Definition of Gene: In the genetic algorithm, a gene is a parameter of the problem and 
the genotype is considered as a bit string with a fixed length. The length, which 
must be specified before optimization, shows the dimensions of the problem and 
can sometimes be considered as a variable or vector (Wang & Jiang, 1994). 

Definition of Chromosome: A set contains all genes that have been valued and 
represent a possible solution to the problem. Answers, suitable or unsuitable, 
are actually a string or sequence of bits that act as natural genes in chromosomes. 
The coding in bits can be binary or n. In nature, a chromosome is a long and 
complex string called “deoxyribonucleic acid” or DNA. 

Genetic Population: A genetic population is a set of chromosomes. Instead of 
focusing on one point or one chromosome, the genetic algorithm operates on a 
population of chromosomes that has more desired features than those of the 
previous stage. The population size indicates the number of chromosomes within 
a generation. If the population size is too small, the algorithm performs poorly; if 
it is too large, it slows down. The population size is usually between 20 and 

1 Adenine 
2 Cytosine 
3 Guanine 
4 Thymine
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30 chromosomes and can be as large as 50–100 depending on the problem. Note 
that increasing the population size beyond a certain limit does not help solve the 
problem faster (Wang & Jiang, 1994). 

Fitness Function: The genetic algorithm has a stage to evaluate the obtained answers 
and determine their value. Namely, the suitability of the answer is checked with 
the fitness function, with more suitable answers having a higher fitness value. 
Suitable solutions with a higher chance of survival have higher fitness values. 
They have a greater probability of producing children and more sequences. 
Therefore, optimal chromosomes have a greater chance of joining with other 
chromosomes. 

Evolutionary Operators 
In genetics, evolutionary operators include reproduction, mutation, and selection. 

Reproduction: This is the reproduction of genetic information between chromo-
somes, which means sharing information between chromosomes. In this operator, 
children inherit the characteristics of their parents, which are then reproduced to 
create a better generation. Reproduction usually occurs between a pair but can 
also occur in several parents. In this case, the traits of more than two parents are 
passed to the child. This operator improves fitness and its implementation is 
related to chromosome coding. 

Mutation: The mutation operator generates and introduces new genetic material and 
contributes to the diversity of the population, which can be achieved by adding a 
random value. In nature, mutation does not usually produce good results, but it is 
necessary for continuous evolution, and the results may eventually include a 
favorable outcome. 

Selection: Selection is the stage of choosing the parents and ideal promotion of the 
good gene. In selecting the best individual, all individuals are included in the 
population based on merit, and individuals with greater fitness are marked and 
selected for the next generation. 

7.8 The Initial Design of the Genetic Algorithm 

Now that we have explained the basics, it is time to implement the genetic algorithm. 
First, the variables should be introduced according to the problem, i.e., the encoded 
chromosomes. Then, a fitness function for the chromosomes is considered based on 
the objective function. This algorithm first generates a population of chromosomes 
(the initial population is randomly selected). Then, the fitness of each chromosome is 
checked and selected according to the following stages.



Stage One: An appropriate number of chromosome pairs are selected for the next
stages based on their fitness. 
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Stage Two: Parents are selected and reproduced to produce a population of children. 
In this stage, the reproduction operator is applied. The chromosomes change 
through the reproduction process. The parent chromosomes are randomly 
exchanged through the crossover process. Therefore, the children have some of 
the characteristics of their parents. 

Stage Three: The members of the population are selected to apply the mutation and 
create the mutation population. As mentioned earlier, there is also the rare process 
of mutation that changes the characteristics of living organisms. For example, 
there could be an error in the chromosome copying process, mitosis. Often 
mutations destroy living organisms, but in the long run they create new and better 
species. Mutation often creates traits that are certainly not possible in reproduc-
tion. In other words, this is the way of entering new information. 

Stage Four: The original population is merged with the population of children and 
mutants to create a new original population. Now the fitness of the new children is 
calculated. 

In stage five, if the stopping conditions are not met, the process is repeated from 
stage two and the new population enters the next stages as the initial population. 
In this case, the generated data structure (chromosomes) is evaluated. The 
chromosomes that can better represent the optimal solution or goal of the problem 
have a greater chance of reproduction than others; i.e., they are given more 
opportunities. 

Stopping Conditions 
1. A threshold or optimal value is considered for the cost function. 
2. There is also a criterion for the number of iterations or one relative to time. 

The stall iteration is stopped if it exceeds a limit. In this case, when changes are 
less than a specified level and the result is not better, the process stops and starts from 
another point (Sahdra et al., 2016) (Figs. 7.10 and 7.11). 

7.9 Feature Selection Using the Genetic Algorithm 

The genetic algorithm is implemented to select optimal features. This is a robust 
machine learning method that limits the number of features without significant loss 
of information. 

Conventional scale abbreviation methods must manually check multiple criteria 
to select elements. However, the genetic algorithm is a fully automatic and complex 
optimization tool. Fortunately, its software implementation is relatively simple (e.g., 
the Precis tool in Python and the GAabbreviate tool in R) (Sahdra, et al., 2016).
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Fig. 7.10 Diagram of 
genetic algorithm 
implementation Initialization 

Individuals test for fitness 

Individuals selection for 
Reproduction 

Reproduction 

Final generation 

Termination 

Yes 

No 

Fig. 7.11 Output of genetic algorithm implementation



7.10 The Genetic Algorithm’s Application in Artificial Psychology 201

7.10 The Genetic Algorithm’s Application in Artificial 
Psychology 

Self-report criteria are a common form of assessment in psychology. Although not 
entirely accurate and appropriate because of substantial bias due to social desirabil-
ity, arbitrary criteria, and interference with these reports, these reports are very 
common, simple, and inexpensive to use. At the same time, many questionnaires 
are long and time-consuming, which leads to people not completing the question-
naires accurately and faithfully. In contrast, with short questionnaires, people are 
more likely to fill them out honestly. In one meta-analysis, the same short and long 
questionnaires were randomly distributed to people, and researchers found that 
participants who received a shorter questionnaire had a greater return rate (Rolstad 
et al., 2011). Another study found an inverse correlation between questionnaire 
length and response rate (Fan & Yan, 2010). 

In addition, shorter questionnaires can help develop science through description, 
prediction, and causal inference. In fact, lower numbers of variables can be useful in 
predicting theories and examining cause and effect. Thus, although short question-
naires are more interesting, in many cases they do not meet psychometric standards. 
In fact, traditional methods of shortening questionnaires require careful consider-
ation of competing factors. This approach requires finding items with high autocor-
relation, low cross-loading, low correlated uniqueness, low chance of missingness, 
high face validity of construct coverage, and high internal consistency of the 
resulting scale. 

Reducing the 15-item questionnaire to 6 items results in over 2500 possible 
permutations that must be considered. Because of this complexity, researchers 
must rely on unwritten heuristics that often result in poor performance. 

One efficient method is to use machine learning to find items that explain the 
greatest diversity. The genetic algorithm has recently been used to shorten question-
naires in several domains, including personality (Yarkoni, 2010), values (Sandy 
et al., 2014), psychopathy (Eisenbarth et al., 2015), experiential avoidance (Sahdra 
et al., 2016), and body image-acceptance (Basarkod et al., 2018). 

In the algorithm, the items are like genes and a set of items that make up a scale 
are like chromosomes. As explained above, the algorithm first generates a sample of 
chromosomes that forms a random set of subscales from the whole. Then, the 
chromosomes compete for fitness. The fitness scale in shortening a questionnaire 
includes chromosomes that explain more variability in the full questionnaire. Then, 
the selection operator is used to remove the chromosomes with the lowest fitness 
from the gene pool and reproduce those with the highest fitness (usually the top 5%) 
to create a new set of chromosomes (Yarkoni, 2010). 

As mentioned in the stages of the genetic algorithm, chromosomes also mutate 
and genes crossover. Mutation replaces random elements in the chromosome. In 
reproduction, the genes of one fit item are exchanged with the genes of another. After 
mutation and reproduction, the new set of chromosomes is generated in terms of 
fitness and examined according to the fitness function. This process is repeated until
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the algorithm finds a stable solution. Items shortened by the genetic algorithm often 
yield scores that are as valid as those derived from traditional psychometric 
approaches (Sandy et al., 2014; Noetel et al., 2019). 

7.10.1 Practical Example Using R 

An artificial psychologist tries to select the best items based on the genetic algorithm 
from a psychological scale for measuring sexual pain that has 20 items with two 
10-item subscales. A classical psychologist with psychometric techniques can select 
the best items based on corrected item-total correlations, factor loadings, and the 
correlation of each item with a criterion or using the discriminant coefficient in Item 
Response Theory (IRT). Although this works, the artificial psychologist seeks to 
select the important items with the genetic algorithm in such a way as to keep the 
cost function to a minimum. The cost function in this case was proposed by Yarkoni 
(2010) and explained in the previous sections of this chapter. The genetic algorithm 
iteratively tries to select and mate strong individuals (solutions) who are more likely 
to survive. 

Listing 7.3 R codes to implement the genetic algorithm 

Listing 7.3 shows the R codes to run the genetic algorithm. Item cost indicates the 
cost of each item, which is equal to 0.05 by default. Max Items is the maximum 
number of items that we want to remain in each subscale or factor in the end. In this 
example, the artificial psychologist considers it to be 3 items, maxIter indicates the 
maximum number of iterations, which in this case is set to 1000 items and if this 
function is not able to find a solution, its number can be increased. Cross-validation



is also done for unbiasedness. If the GA abbreviate function finds the optimal 
solution before the maximum number of iterations, it will stop automatically; 
otherwise, the iteration continues until it reaches an optimal solution. Figure 7.12 
shows which items belong to which dimension of the factor or scale. It is marked 
with $ key in the output. 

7.11 The Genetic Algorithm’s Application in Neural Network Sciences 203

Fig. 7.12 Output of genetic algorithm implementation 

As Fig. 7.12 shows, this algorithm has reached the optimal solution in the 
iteration equal to 0.24, and the GA abbreviate function terminates. 

The output of this method shows that items 2, 5,7, 14, 15, and 19 are selected 
(3 items for each subscale) (Fig. 7.12). 

Figure 7.13 shows a visual summary of the search process using the plot function. 
Diagnostic plots, which are the three graphs on the left, show how the total cost and 
the length of the scale and the average value of R2 change during the search process. 
The middle graph of this figure shows the percentage of explained variance, that is, 
R2 for the best solution, which in this example is excellent and close to 0.9 for each 
subscale. 

And finally, the plot on the right side of the figure shows which items are selected 
during the search process. Items 2, 5, 7, 14, 15, and 19 are the items that were finally 
selected. You can easily see them in this plot (Kursa & Rudnicki, 2010). 

7.11 The Genetic Algorithm’s Application in Neural 
Network Sciences 

In a new approach, there are studies for identifying biomarkers from the functional 
matrix formation strategy (see Chap. 5). Functional matrices are considered a good 
method for diagnosing many mental disorders, such as schizophrenia, autism, and 
MCI. After obtaining the functional matrix, it is necessary to use feature selection 
techniques, one of which is the genetic algorithm discussed here. In fact, rs-fmri data 
are used and a functional matrix is provided based on time series to detect abnormal 
patterns even from a younger age, which can be very beneficial for early diagnosis 
and treatment. 

One of the main challenges in fMRI analysis is the high dimensionality of data. 
Although data from the functional connectivity matrix (FCM) provide



comprehensive information about connections between different regions, the high 
dimensionality of feature space poses several challenges in classification and anal-
ysis. Feature selection is hence considered a critical issue in biomarker detection. 
Feature selection aims to reduce dimensionality, accelerate operation, increase the 
accuracy of classification algorithms, and better understand the results. 
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Fig. 7.13 Plot of the search process 

Mapping the brain’s functional connections is used for determining the function 
and correlation of time series between different brain regions. Brain FCM is deter-
mined based on correlation coefficients between regions. Here, for instance, the 
brain is divided into 116 regions. As a metaheuristic optimization algorithm, the 
genetic algorithm considers a set of feature subsets in each iteration and can find an 
optimal or near-optimal feature subset. 

As mentioned, the reduction of data dimensionality using a genetic algorithm 
includes chromosome coding, selection, reproduction, and mutation. Each chromo-
some represents an array of zeros and ones, i.e., the total number of features (length 
1 × 116). The values 0 and 1, respectively, denote the absence and presence of the 
respective region in the FCM calculation (Sadeghian et al., 2021) (Fig. 7.14). 

A set of the initial population is created and the population’s fitness is evaluated 
based on the fitness function. For example, here, the KNN classifier’s accuracy



based on the selected regions can be considered a fitness function. Reproduction is 
applied to a pair of parents. After producing a member in a new population, some 
genes mutate randomly, which allows for searching the entire feature space and 
escaping the local optima. Finally, the genetic algorithm stops after a specific 
number of iterations, and the solution with the highest classification accuracy 
determines the final feature subset. This method has been implemented for 
distinguishing autism patients from healthy individuals, removing 49 regions to 
improve the genetic algorithm’s diagnostic accuracy by 9%. 
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Fig. 7.14 Binary coding of 
chromosomes. (Sadeghian 
et al., 2021) 

The GAabbreviate uses the GA package (Scrucca, 2013) to efficiently implement 
Yarkoni’s (2010) scale abbreviation cost function: 

cost= Ik þ 
Xs 

i= 1 

wi 1-R2 
i

� � ð7:1Þ 

where I represents a user-specified fixed item cost, k represents the number of items 
retained by the GA (in any given iteration), s is the number of subscales in the 
measure, wi are the weights (by default wi = 1 for any i) associated with each 
subscale (if there are any subsets to be retained), and R2 

i is the amount of variance in 
the ith subscale that can be explained by a linear combination of individual item 
scores. Decreasing or increasing the value of yields longer or shorter measures, 
respectively. When the cost of each individual item retained in each generation 
outweighs the cost of a loss in explained variance, the GA yields a relatively brief 
measure. When the cost of each individual i term is low, the GA yields a relatively 
longer measure maximizing explained variance (Yarkoni, 2010).



Chapter 8 
Bayesian Inference and Models in AP 

8.1 Bayesian Inference and Models in Artificial Psychology 

Bayesian inference includes Bayesian parameter estimation and Bayesian hypothesis 
testing. In recent years, this approach has been proposed as an attractive alternative 
to estimation and hypothesis testing in classical statistics. 

In classic Fisherian or Frequentist statistics, confidence interval and p-value are 
used for estimation and hypothesis testing (Wagenmakers et al., 2018). 
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Fig. 8.1 A boxing analogy of the p-value. (From Wagenmakers et al., 2018) 

The background of psychological research is full of p-value reports (Farahani & 
Azadfallah, 2020). It can be said that the use of p-values causes a crisis of confidence 
in the results of psychological researches that are mainly conducted using classical 
statistics; in other words, p-value hacks the results of psychological research. The 
frequent use of p-value in Null Hypothesis Statistical Testing (NHST) has been 
seriously criticized by a large number of researchers repeatedly from different points 
of view (Wagenmakers et al., 2018) (Fig. 8.1). 

p cjXð Þ= p x1jcð Þ× p x2jcð Þ× . . .  × p xnjcð Þ× p cð Þ ð8:1Þ

8.2 Bayesian Statistics in a Nutshell 

A quick look at Bayesian statistics may help ease the concepts of this section and 
other sections of this chapter. Suppose an artificial psychologist examines 100 boys 
with ADHD and finds that 43 of them are the first child in the family. Therefore, 
the probability that a boy is the first child in the family is equal to 
p first order = 43 100 = 43%. 

Here we can talk about two other terms in probability, and they are dependent and 
independent probabilities. If the occurrence or nonoccurrence of a phenomenon has 
no effect on the occurrence or nonoccurrence of another phenomenon, then the two 
phenomena are independent and p(A \ B) = 0, for example, the probability that a 
child with ADHD is the first child in the family and the probability of catching a



Þ

goldfish in a big river in Hawaii. These two phenomena are completely independent 
of each other because catching a large goldfish in the Hanalei River in Hawaii has no 
effect on the probability of a child having ADHD as a first child, and vice versa. If 
the probability of catching a large goldfish in that river in Hawaii is 10%, then the 
two probabilities must be multiplied together to calculate the coincidence. 
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Table 8.1 Patients’ memory 
problems based on sex in MS 
patients 

Female Male 

Severe 8 12 

Memory problems 

Mild 32 48 

P Að Þ×P Bð Þ= fishing Bð Þ and ADHD child becoming the first child Að Þð
4:3%= 10%× 43% 

ð8:2Þ

If two phenomena are supposed to be dependent, then a different approach is used 
to calculate the probability. Pay attention to this example: suppose that the artificial 
psychologist examines 100 patients with MS, he also examines the memory and 
gender of these 100 people. The results are shown in Table 8.1. 

Based on this table, P = 0.2 12/60 (A│B) = in which (A = severe, B = male) can 
be divided into the intersection of problems, having severe memory of A and the 
gender of the patient being B being male. 

P AjBð Þ= 
p A \ Bð Þ
p Bð Þ ð8:3Þ

Similarly, 

P BjAð Þ= 
p A \ Bð Þ
p Að Þ ð8:4Þ

Bayes’ rule, which is used for NB, can be considered as the result of dividing 
these two expressions. Therefore, Bayes’ rule can be considered as follows: 

AjBð Þ= 
p A \ Bð Þ
p Bð Þ ð8:5Þ

In this formula, P(Evidence│outcome) is obtained from training data. 

P  BjAð Þ= 
p  A \ Bð Þ
p  Að Þ ð8:6Þ
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In this formula, P(outcome│Evidence) is checked, which is used to predict 
test data. 

Bayes Rule 

P BjAð Þ= 
p AjBð Þ � p  Bð Þ

p Að Þ ð8:7Þ

Outcome│Evidence
� �

= 
Likelihood of evidence × Prior 

Probability of evidence
ð8:8Þ

In the above formula, the left part is called the Posterior Probability or simply 
posterior, and the first term is called the likelihood of evidence, which is actually 
the conditional probability for a particular class, and provided that the predicted 
variables are independent, all of them can be multiplied. The likelihood value is 
determined from the training data for Y= c (a specific group) and the second part, the 
prior, shows the overall probability of y = c where c is a class of Y. 

Prior= 
frequency y= cð Þ

n
ð8:9Þ

With this introduction, you can get a general understanding of the necessary terms 
in NB, such as conditional probability, Bayes’ rule, independent and dependent 
probability, and posterior, prior, and likelihood. 

The most important design parameter in NB is the smoothing method. The idea of 
smoothing goes back to the efforts called Cromwell’s rule, and based on that, if the 
estimate of a probability is equal to zero, it should not be used in probabilistic 
reasoning because as discussed, to combine the probabilities, we multiply them 
together and, so, if one of them is zero, regardless of the probabilities of the other 
variables, it will be zero. The most common form of smoothing is called Laplace 
smoothing, in which the number of desirable cases (K ) out of n trial attempts is 
considered as the desirable ratio (k + 1)/(n + 1) and not as k/n. 

Classical statisticians consider smoothing as a form of regularization and Bayes-
ian statisticians consider smoothing as a prior. 

8.3 A Critique on the Use of p-value 

As stated, the classic or Fisherian statistic relies on the central core of the p-value in 
the test hypothesis. p-values are easy to obtain using routine software such as SPSS. 
Interpreting the p-value, however, is challenging. Concluding that p < 0.05 guar-
antees the rejection of the null hypothesis (H0) and thus supports the acceptance of 
the alternative hypothesis (H1) is a misinterpretation. Let’s get a little more specific. 
The p-value indicates the probability of obtaining a result at least as large as the



observed result, provided that the null hypothesis is correct. Therefore, the p-value 
cannot recognize the fact that the data that are unusual under H0 can also be unusual 
under H1. However, the p-value is still of interest to psychologists. Some of the 
reasons for this interest is that most psychologists, like other people, are addicted to 
their own beliefs, so they tend to teach others what they have learned and do not take 
steps to change their statistical knowledge. In addition, it seems incorrect that the 
interpretation of p-value and p < 0.05 is enough to reject H0 and confirm H1. 
Psychologists may also worry about reducing their chances of publishing their 
research articles, if they use new methods. Perhaps these reasons are the general 
reasons why there is resistance to new statistical methods alternatives to the p-value 
(Sharpe, 2013). 

8.3 A Critique on the Use of p-value 211

This book aims to break down this resistance. To overcome the weaknesses of the 
p-value, researchers have made efforts to replace it. One of these attempts is to 
replace the confidence interval (CI) with the p-value. The confidence interval has 
also been criticized, such as the fact that it considers the real value to be estimated as 
a fixed value. 

The 95% confidence interval (CI) for an effect shows that if the confidence 
interval is calculated repeatedly from the data, there is a 95% probability that the 
desired effect or parameter is in a given range. This interpretation is somewhat 
counter-intuitive. In Bayesian statistics, similar to the confidence interval, there is a 
credible interval, which shows that according to the observed data, there is a 95% 
probability that the desired effect falls within this domain. By examining the 
background of the research done on the benefits of Bayesian inference, it can be 
said that this method can be more useful with high dimensional data than the 
classical statistical method, and the information is more reliable. Bayesian 
approaches are more accurate in conditions where there is noisy data and there are 
small samples (Kruschke et al., 2012). Bayesian inference provides two possibilities 
for combining prior knowledge in the final analysis (Andrews & Baguley, 2013; 
Kruschke et al., 2012). Bayesian analysis also gives straightforward, intuitive results 
(Kruschke, 2014; Wagenmakers et al., 2018). Bayesian inference includes a measure 
of evidence that the data additionally provides in favor of H0 versus H1, the Bayes 
factor, which, unlike the p-value, does not have a serious bias against H0 (Edwards, 
1965; Sellke et al., 2001). 

In summary, it can be said that the main focus of classical statistics compared to 
Bayesian statistics is that classical statistics is strongly focused on the statistical test 
of the null hypothesis (NHST) and the misinterpretation of the p-value, and this 
extreme focus causes serious criticisms and accompanying lack of trust in the results 
of psychological research. 

The theoretical framework of Bayesian statistics is based on Bayes theory. In this 
book, our goal is not to focus on the theoretical basis that the reader can follow and 
study elsewhere. What is considered in the theoretical framework of Bayesian 
statistics is different from what is considered in the theoretical framework of 
classical statistics. In the theoretical framework of classical statistics, the focus is 
on hypothesis testing and the p-value, which assumes that the effects are fixed and 
unknown and that the data are random. That is, it is assumed that the unknown



parameter is a unique value that the researcher tries to estimate with statistical 
methods using the data obtained from the sample. In the framework of Bayesian 
statistics, the true effect is not estimated, but instead the probability of different 
effects is calculated according to the data obtained from the sample, which itself 
leads to the posterior distribution, a distribution of possible values for the parame-
ters. In Bayesian statistics, indicators such as the median of the posterior distribution 
and the range of values of that distribution that includes 95% of the most probable 
values, the 95% credible interval, are calculated to model uncertainty in an estimated 
parameter. In classical statistics, point estimation and confidence interval are 
calculated. 
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In Bayesian statistics, using Bayesian sampling algorithms, which will be 
explained later, a possible (posterior) distribution is obtained from an effect that is 
compatible with the observed data. 

It follows that, in Bayesian analysis, based on the resulting data and sometimes 
the prior belief or distribution about the results using Bayesian sampling algorithms, 
a possible distribution is produced called the posterior. For example, suppose we 
assume that the correlation between affective metallization and mental health is 
equal to 0.54 in a sample of 100 people. Based on this distribution, Bayesian analysis 
tells us that the most probable effect (correlation) is 0.54, but the data is consistent 
with the correlations of 0.74–0.85, each of which has specific probabilities. To 
determine the significance of an effect in Bayesian analysis, a p-value is not needed, 
despite it being commonly used in classical statistics, with it, instead, being suffi-
cient to describe the posterior distribution of that effect. One of these very important 
indicators is the credible interval. The credible interval is a key concept in Bayesian 
inference and analysis, whose purpose is to provide a summary of the uncertainty 
related to the estimated parameter. A credible interval in Bayesian statistics is a range 
of the posterior distribution that includes the possible magnitudes of the investigated 
effect with certain probabilities. Instead of a 95% confidence interval that is common 
in classical statistics in Bayesian statistics, McElreath (2020) suggested using a 
threshold of 89% when specifying ranges of a credible region. 

Kruschke in 2014 states that a credible interval with 89% coverage is more stable 
than one with 95% and that to calculate a credible interval with a 95% interval, it is 
necessary that the number of samples in Bayesian sampling is at least 10,000, which 
is routinely the default number. Posterior samples that are used in most Bayesian 
statistics software packages, on the other hand, usually only use 4000 samples. 

In Bayesian analysis, just like classical statistical analysis, there are descriptive 
and analytical indicators that should be taken into account when reporting the results. 

The median, in general, is a more robust index compared to the mean. 
MAP is the maximum posterior probability estimate (MAP). The MAP index in a 

posterior distribution indicates the value that has the highest probability. The peak of 
the posterior distribution can be considered the mode of the posterior distribution. 
The median is more robust compared to this index, but if the distribution has extreme 
skewness, MAP is more appropriate than the median. 

95% or 98% credible intervals (CI) also indicate uncertainty. Generally, a CI is 
calculated based on the highest density interval (HDI). The highest density interval



(HDI) produces an interval containing values that have the highest probability 
density and always contain the most likely value of the parameter value 
corresponding to the mode. 
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8.3.1 Significance or Existence of a Network 

In Bayesian analysis, there is no p-value index, but there is a more interpretable 
index that is more straightforward. It is interpreted as describing the existence of an 
effect. This probability index is called the probability of direction (Pd) and indicates 
the most likely direction (positive or negative) of an effect. In the interpretation of 
this index, it is possible to have a cutoff point like a p-value. A Pd of >97% is 
indicative of a likely effect, a Pd of >99% suggests an effect probably exists, and a 
Pd of >99.9% indicates the effect exists with certainty. Region of Practical Equiv-
alence (Rope) is a region that signifies values of a parameter estimate, such as the 
amount of change in an outcome, corresponding to denoting practically no effect. 
This indicator shows whether or not a parameter is related to, for example, a 
non-negligible change in the outcome. 

This index is a continuous index of significance. It can be said that if Rope covers 
99% of the highest density region (HDI), i.e., Rope covers most of the credible 
values, then H0 can be accepted. If Rope covers 97.5% of the HDI, then the chance 
of the null hypothesis being rejected is probably negligible. If Rope covers between 
2.5 and 97.5 of HDI, no conclusion can be made about significance., If Rope covers 
less than 2.5% of the HDI, it is probably safe to reject the null hypothesis, whereas if 
Rope covers less than 1% of HDI, H0 can be rejected. 

The Bayes factor (BF) index is a multipurpose index that can be used to compare 
different models. BF is a ratio that gives us information about the probability of the 
observed data under the two compared models (model with effect) versus (model 
without effect). Its interpretation depends upon whether the BF is the ratio of the 
posterior probability of the model with the effect to the model without the effect or 
vice-versa. 

BF can be used both in the context of significance and in the context of the 
existence of an effect. To interpret BF based on Jeffreys (1998) criterion, which is 
used by default in R packages, it can be said that 3 < BF ≤10 indicates moderate 
evidence, 10 < BF ≤ 30 strong evidence, 30 < BF ≤ 100 very strong evidence, and 
BF > 100 represents extreme evidence. 

8.3.2 Practical Example Using R 

An artificial school psychologist wants to know whether the level of calm continuity 
of introverted (Class = 1) and extroverted (Class = 2) students is different. In a test, 
he measures the amount of calm persistence (the patience of students when they are



faced with very difficult questions in an exam). By using a t-test, two independent 
samples are compared with Bayesian statistics. The relevant codes are shown in 
Fig. 8.2. 
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Fig. 8.2 Summary of the Bayesian t-test 

The results of the Bayesian t analysis are given in the table. As can be seen, the 
median as the central index of the posterior distribution is equal to 12.5. Group 
membership (extroversion–introversion) shows the median association is positive 
with a probability of 1 (Pd = 100) (Listing 8.1). 

Listing 8.1 
R codes of the Bayesian t-test. 

Rope supports this with the region corresponding to values associated with a 
median of zero, showing that it covers a negligibly small amount of possible values. 
Observation of BF shows moderate evidence in favor of introversion being associ-
ated with calm continuity (BF = 7.37).
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8.4 Naïve Bayes Classifier 

Naïve Bayes models are a family of machine learning models, which attempt to 
classify data into groups allocating to the group with the higher or highest posterior 
probability of group membership based on a set of characteristics. These models 
utilize distributions such as the Bernoulli (classification into two groups) and 
multinomial (classification into more than two groups). 

We use a cross-validation approach using 80% of the data to obtain the classification 
model and the remaining 20% to assess how well it can assign new data into groups. 

An artificial cognitive psychologist tries to check the probability of utilitarian-
duty-oriented group membership with NB based on emotion regulation (E) and (I ) 
introversion and to know how likely it is that an individual, assuming utilitarianism 
(1) has high emotion regulation and high introversion. It was already mentioned that 
the number of predictor variables should be large and independent. Here, for 
illustrative purposes, the number of predictor variables is 2 and they are assumed 
to be independent of each other. In this research, he examines 125 people and, based 
on a cognitive task, separates 94 people as utilitarian and 31 people as task oriented. 
He also uses the Laplace method for smoothing (R codes are shown in the figure). 
Also, 80% of the sample is selected as the training sample and 20% as the test 
sample. The prior for this analysis was equal to 75% (utility oriented) and 25% (task 
oriented) based on the original data (Listing 8.2). 

Listing 8.2 
R codes of the naïve Bayesian classifier.



216 8 Bayesian Inference and Models in AP

Fig. 8.3 Summary of the naïve Bayesian classifier 

The results showed that the accuracy of this analysis is 71% and the Kappa 
coefficient is equal to 0.15, which is a small value. Of course, this is just an example. 
This analysis has a sensitivity and specificity of 0.79 and 0.38, respectively. Based 
on the resulting model, which is also validated with ten-fold cross-validation, for a 
person whose emotional regulation is 8 and whose introversion is 55, the predicted 
probability of his group membership equals 0.66 for the utilitarian group and 0.34 
for the duty-oriented group (Fig. 8.3). 

Plots in Fig. 8.4 show the density of variables E and I in two utilitarian and task-
oriented groups based on Posterior distribution. 

The last diagram shows the shape of the relationship between E and I, separated 
by the duty-oriented and utilitarian groups. The utilitarian group is marked with 
small red circles and the duty-oriented group with small blue circles. It should be 
noted that here the aim is only to use NB in classification. Obviously, the sample size 
is not large enough, and more data is needed (Fig. 8.5).
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Fig. 8.4 Density of posterior of E and I variables 

Fig. 8.5 Relationships of E and I 

8.5 Cross-validation 

The accuracy of the model is 71.14%, the kappa, comparing predicted group 
membership to actual group membership, is weak, and McNemar’s test is not 
significant, suggesting a poor rate of classification. 

Although the hold-out method is very important in obtaining a valid model, it 
may lead to over-fitting or under-fitting; therefore, we should use some other 
methods for this purpose.
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Repeated k-Fold Cross-validation 
The process of splitting the data into k folds can be repeated a number of times. This 
is when the data is split into k groups, with k-1 groups used to estimate the machine 
learning model and the remaining group used to assess its predictive accuracy. This 
is repeated for each of the k groups and called repeated k-fold cross-validation. The 
final model accuracy is the mean of the number of repeats (Listing 8.3). 

8.5.1 A Practical Example Using R 

Listing 8.3 
R codes of the naïve Bayesian classifier (NBC) using CV and LOOCV. 

The mean accuracy for this model is 76.84%. The kappa coefficient comparing 
predicted group with the actual group is low (Fig. 8.6). 

Leave-One-Out Cross-validation 

Leave-one-out cross-validation, or LOOCV, is the cross-validation technique in 
which the size of the fold is “1” with “k” being set to the number of observations 
in the data. This validation is useful when the training data is of limited size, and the 
number of parameters to be tested is not high (Fig. 8.7). 

Fig. 8.6 The R output of NBC using CV 

Fig. 8.7 The R output of NBC using LOOCV
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The mean accuracy for this model is 77.31%. This accuracy in the hold-out 
validation approach is 71.14% (Listing 8.4). 

Listing 8.4 
R codes of the ROC curve of NBC. 

Fig. 8.8 shows that the curve is above 50% and it means the classification 
accuracy is more than chance. Good classification is shown in a ROC curve that 
goes up to the top left hand corner, which is not the case in this example. 

Fig. 8.8 The ROC curve 
for NBC
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8.6 Bayesian Binary Logistic Regression 

We can use prior information for model parameters in a logistic regression specified 
in the example below using the user.prior.density subcommand in the Bayesian 
logistic regression program, MCMClogit, in R. These prior distributions are then 
incorporated with information from the raw data to yield posterior distributions for 
model parameters. The fitting of these models in R is performed using sampling from 
posterior distributions (Monte Carlo) based upon Markov Chains, which can be 
viewed as a network of paths where each path relates the parameters (nodes) in the 
model to one another and to the outcome variable. 

Bayesian regression and Bayesian logistic regression are based on Bayes theory, 
a theory that contains Conditional Probability in its core. Regardless of the mathe-
matical basis and attention to statistical details, the most important distinction 
between traditional Maximum Likelihood models such as logistic regression and 
models based on Bayes theory such as Bayesian regression can be summarized as 
follows: 

1. The regression models have slope, intercept, and sigma parameters and each 
parameter has an associated prior. 

2. The estimated parameters have a normal distribution, while in the classic or 
frequentist-based models, the estimated parameters are fixed and have a proba-
bility distribution function based on the same probability distribution function. 

3. In logistic regression, each parameter is separate and described by a different 
distribution. 

4. In Bayesian regression analysis, the posterior distribution is made from the prior 
distribution and likelihood. The mean or other central indicators of a posterior 
distribution are considered the coefficient of interest of the variable under 
consideration. 

5. In logistic regression analysis, when the posterior distribution is highly skewed or 
bimodal or multimodal, equal tailed credible sets are used, which are defined as 
the outer 0.025 quantiles of the posterior distribution. Credible confidence indi-
cates that there is a 95% probability that this Credible confidence interval includes 
the posterior mean or the true posterior mean of the posterior distribution. 

6. The last main difference is the existence of additional or prior information. The 
posterior distribution that is defined to estimate the parameters in Bayesian 
analysis can be combined with additional or initial information, which is our 
initial knowledge about the variable or parameter, which is separate from the data 
used in the analysis. 

The main formula used in Bayesian analysis is as follows: 

p θjxð Þ= 
p xjθð Þp θð Þ

p xð Þ ð8:10Þ

In this formula, p(x│θ) is the likelihood function and p(θ) represents the prior 
distribution. The denominator of the fraction means that p(x) is the probability of x in 
all x.
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As can be seen in the case of subtraction, the probability and initial distributions are 
multiplied together. Usually, the denominator of the fraction, which is the normaliza-
tion term, is left out of the calculations in such a way that the posterior distribution or a 
predictive model includes the product of likelihood and prior. As mentioned, each 
posterior variable between predictors can have its own posterior distribution. If the 
artificial psychologist finds that there is no important information outside the obtained 
data that has an effect on the prior variables, then a uniform prior is usually considered 
and in this case it is said that the prior in the analysis is noninformative. 

It should be noted that if we consider the prior distribution as having a normal 
distribution with a mean of zero and a very high variance, Bayesian analysis is 
noninformative, and if all predictor variables in the model are noninformative, then 
the result is traditional logistic regression based on maximum likelihood which will 
give the same, or very nearly the same, results as using Bayesian regression. In fact, 
the purpose of the prior distribution is to reflect the information that does not exist in 
the existing data from the sample, and therefore, if the prior information is weak, this 
does not have much effect on the Bayesian analysis. 

It should be noted that the prior information can not only provide significant 
quantitative information but also represents a distribution with parameters that is 
combined with the posterior probability distribution. Markov Chain Monte Carlo 
(MCMC) methods are used to obtain posterior results. MCMC is a set of algorithms 
that are used for various purposes such as optimization, dynamic simulation, and 
sampling. Due to ease of implementation and numerical stability, statisticians prefer 
the MCMC method, although some consider it a black box of sampling and posterior 
estimation (Brooks et al., 2011). After the popularization of Bayesian methods in 
applied problems in the 1990s, the main idea of creating approximate samples from 
the posterior distribution of interest was expanded by the Markov chain. 

MCMC has two traditional approaches, which are called Gibbs sampling 
(GS) and the Metropolis–Hastings (MH) algorithm. It can be said that the Gibbs 
sampling algorithm is a special case of MH and can only be used in some conditions 
such as when the discrete distribution is discrete or normal, while the MH algorithm 
is used in a wide range of distributions and is based on the possible candidate values 
of the proposed sample distribution. To achieve a valid inference from the posterior 
distribution using MCMC, the MCMC chain must converge. 

8.6.1 A Practical Example Using R 

An artificial psychologist tries to predict the probability of marital infidelity based on 
emotion regulation (E) and cyber introversion (I ). He selects a sample of 125 people 
including two groups (a group with experience of marital infidelity (31 people) and a 
group of 94 people without experience) and questionnaires on emotion regulation 
(E) and virtual introversion (I ) implemented on them, then he decides to determine 
the prior distribution by examining the distribution of the variables. He concludes 
that Cauchy considers the prior distribution of these two variables. This distribution 
is similar to the normal distribution (Listing 8.5).
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Listing 8.5 
R codes of Bayesian logistic regression. 

In this example, the result is interpreted with Cauchy’s prior distribution. The 
prior distribution can be considered in a similar way to a normal or t distribution. The 
result showed that the two variables of emotion regulation and cyber introversion 
significantly predict group membership and 95% internal credibility is significant for 
both variables (Fig. 8.9). The R codes are in Listing 8.2. 

Fig. 8.9 The R output of Bayesian logistic regression
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The above figure gives the estimated parameter values from the 2.5% to 97.5% 
quantiles of their posterior distributions providing a 95% credibility interval for each 
variable. Parameters of Introversion (I ) and Extroversion (E) are 0.04585 and -
0.16400, respectively (Fig. 8.9), which are significant at the 5% significance level in 
that their 95% credible regions do not contain zero, which would indicate no 
relationship. 

This index is a proportion of the posterior distribution that has the same sign as its 
median. This index is very similar to a p-value in classical statistics and is known as 
the maximum probability of effect (MPE). This method is especially useful for 
models in which there are a large number of variables and categorical input variables 
have a large number of states and values. This is a simple and interesting method that 
memorizes how each variable in the training phase is related to the outcome and then 
makes a prediction by multiplying the effects of each variable. 

To easily understand this method, let’s consider a nonstatistical and intuitive 
example; suppose we want to predict whether a person is psychologically healthy 
based on his education level, attachment style, and affective mentalization. In Naive 
Bayes, this logic is reversed and a question is asked, if a person is psychologically 
healthy, what is the probability that his emotional metallization is healthy and his 
attachment is secure? 

In short, the question here is that based on the features we have, what is the 
probability that a person with these features is in a certain group? Naive Bayes 
answers this question under a very bold naïve assumption, and that assumption is the 
one that says that all predictor variables are independent of each other. Of course, in 
the real world, such an assumption is difficult to verify; using NB significantly 
reduces the complexity of the model. As we know, NB is also based on Bayes law. 
Bayesian probability is discussed in different parts of this chapter. In short, Bayesian 
statistics is based on the product of probabilities. 

It should be noted that the choice of statistical inference method is not a matter of 
taste, but a direct result of the problem that the artificial psychologist seeks to 
answer. If he is worried about the sensitivity of his statistical results to variation in 
data and modeling procedures, he should use frequentist statistics, but if he is 
worried about the sensitivity of his statistical findings to possible variation in the 
unknown quantity that needs to be modeled, he should take steps in the framework 
of Bayesian statistics. 

The artificial psychologist used the dCauchy function. d is the density indicator. 
The Geweke diagnostic can be used to assess if the parameter estimates have 
converged, and it compares the values at the start of the repeated sampling from 
the posterior distributions with those at the end with a z value less than 2 in absolute 
value indicating no difference. If these values do not differ, the parameter estimates 
are stable and are deemed to have converged. The output shows that the regression 
slopes for both the variables of Introversion (I ) and Extroversion (E) have |z| < 2 
(Fig. 8.10). Z values for Geweke are less than 2, indicating that the MCMC posterior 
distributions of these estimates have converged (Fig. 8.11). 

The probability direction (pd) for cyber introversion is 99.92% and for emotion 
regulation is 98.35% (Fig. 8.12).
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Fig. 8.10 Z values of the Geweke diagnostic comparing two fractions of the data 

Fig. 8.11 Segment plot of iterations 

Fig. 8.12 PD of the predictors
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8.7 Bayesian Network Analysis 

A Bayesian network model is a probabilistic graphical model that represents a set of 
variables and their conditional dependencies via a graph. The edges in the graph 
represent the direction and degree of relationship between pairs of variables (nodes). 
The outputted network is averaged over all possible networks linking the variables 
specified as being in the network (Figs. 8.13 and 8.14). 

The most important concepts of network analysis as an advanced method are 
presented in the chapter on network analysis in this book. In this chapter, network 
analysis using Bayesian statistics and its application is presented. 

A Bayesian network is a combination of a network structure, specifically a 
directed acyclic graph (DAG) and a probability distribution associated with 
it. Therefore, Bayesian networks are graphical methods or models that examine 
nodes with edges in a graphical structure. 

Nodes can be considered psychological variables, symptoms of mental disorders, 
etc., linked by edges or arrows indicating probabilistic dependencies. 

Fig. 8.13 Trace plots of the corresponding posterior estimates of the Intercept, variables via 
Bayesian network
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Fig. 8.14 Posterior plot of 
I and E 

Fig. 8.15 A simple 
Bayesian network 

B 

C 

ED 

A 

The graphic structure G = (V, A) is a Bayesian network of a DAG, where V is a 
node and A is an arc (or edge). DAG can be considered as a factorization of a joint 
probability distribution (nodes). In simpler terms, the Bayesian network is charac-
terized by three components: (1) nodes (which can be an infinite state), (2) a directed 
edge (which links two nodes), and (3) a conditional probability for each variable or 
node. 

Nodes and edges define the structure of a network and here the structure of the 
Bayesian network. The direction of the edges in the form of an arrow (A → B) 
indicates the causal relationship of two variables. The nodes that are placed imme-
diately before a node are called parent, and the nodes that are placed after a node are 
called child. 

In Fig. 8.15, A and B are parents of C, and D and E are children of C.
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In Fig. 8.15, A and B are parents of C, and D and E are children of C. 
Prior information and expert information can be used to build a Bayesian 

network. In Bayesian network analysis, the first step is to determine the network 
structure, which we call structure learning, and the next step is to determine the 
parameters of the Bayesian network structure, which we call parameter learning. 
Methods of structural learning in a Bayesian network may be either constraint-based 
or score-based. In the following, a more detailed examination of these two categories 
of algorithms will be carried out. As already mentioned, the main theoretical core of 
Bayesian networks is based on Bayes’ law, which was presented by Tomas Bayes in 
1720, and that is why it is called a Bayesian network. The term Bayesian network 
was coined by Pearl in 1988, and it has been widely used in various fields ever since. 
In Bayesian networks, if there is a connection between each node and all other nodes 
in the network, it is called a full Bayesian network, and the main and important 
feature of Bayesian networks is that each child node matches its parents from the set 
of nodes and that Non-child and Child nodes are independent. 

The goal of structural learning in the Bayesian network is to find the best structure 
in a way that matches the available data and is optimal in terms of complexity. As 
mentioned, this learning can be constraint-based or score-based. 

Verma and Pearl in 1991 introduced constraint-based algorithms. This algorithm 
provides a theoretical framework for structural learning of causal models. Three 
steps are required: 

Step 1 
In this step, the body of the network, which includes the undirected graph, is learned, 

generally for ease of implementation of the Markov Blanket, a set of nodes that 
contain complete information about one another. It is used for each node, 
including parents, children, and co-nodes that have a common child with that 
particular node. This structure of a Bayesian network is called the Skeleton of a 
DAG. Usually, at this stage, to determine the location of edges, conditional 
independence tests such as X2 and Fisher tests of independence are used. 

Step 2 
In the next step, the edges obtained from the previous step are oriented. For this 

purpose, different algorithms are used such as the Fast Incremental Association 
(fast.iamb), Incremental Association (iamb), Grow-Shrink (gs), and Interleaved 
Incremental Association (inter.iam). And finally, the max–min parents and chil-
dren algorithm (MMPC) is used to identify parents and children in the network. 

In this book, the last algorithm, MMPC, is explained. This algorithm is a forward 
selection method for neighborhood deletion based on the maximization of the 
minimum association value obtained in each subset of nodes selected in previous 
iterations. This algorithm teaches the basic structure of the Bayesian network 
Learn. All rcs are nondirectional, and there is no attempt to direct them. 

It should be noted that if the samples are small or there is a lot of missing data, the 
use of limit-oriented algorithms will cause a lot of errors and these methods cannot
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direct some edges. In these cases, the use of score-based algorithms is suggested. In 
these methods, a measure is used to determine the matching of the networks with the 
available data searching for a network that matches the data the most. This method is 
also done in two steps. 

In the first step, a search method is specified to make DAG so that all possible 
structures of DAG are known, and then in the next step, the matching of each 
structure with the existing data is determined and evaluated with a suitable measure. 
These two steps continue until there is no possible structure that has a better match. 

An important algorithm from the score-based category is the greedy search 
algorithm, called Hill-climbing (HC), which greedily searches the space of directed 
graphs (Daly & Shen, 2007). 

The PC structure learning algorithm is one of the earliest and the most popular 
algorithms, introduced by Spirtes et al. (2000). It uses independences observed in 
data (established by means of classical independence tests) to infer the structure that 
has generated them. 

Another algorithm is Tabu Search, which Glover introduced in 1990. This 
algorithm is a modified HC algorithm that does not stop after the first DAG but 
continues until any addition, deletion, and reversal does not improve the score. 

The structure of the Bayesian network may change during several executions of 
the learning algorithm. Therefore, in cross-sectional data, it is necessary to check the 
stability of the network structure, that is, to obtain a robust set of edges and 
directions. 

For partial correlation networks, bootstrapping methods can be used to evaluate 
the stability of network estimates (see the network analysis chapter). Such a method 
can be used to check the stability of structural learning in Bayesian networks. For 
this reason, the Bayesian network learns the structure from a large set of samples 
obtained from bootstrapping and based on the criteria (Briganti et al., 2022a, b) that 
the edges that can be seen in more than 85% of the networks, that their direction 
appears in more than 50% of networks and that they remain in the network. 

The first criterion is called strength and the second criterion is called minimum 
direction. It is suggested that the number of samples in the bootstrap method be 
100–200 samples. And the proportion of the number of times that the edges are 
entered in the Bayesian network can also be reported (Briganti et al., 2022a, b). It 
should be remembered that after learning the structure, it is necessary to determine 
the intensity of the edges by parameter estimation. The purpose of parameter 
learning is to estimate network parameters. If the structure of the network is 
known and all the variables are observable, Maximum likelihood (ML), Maximum 
a posteriori (MAP), and posterior mean (PM) estimation can be used to estimate the 
network.
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8.7.1 A Practical Example Using R 

The researcher tries to model the exploratory Bayesian network based on variables 
related to marital satisfaction. He measures security (AAIS), avoidance (AAIV), 
ambivalence (AAIAM), positive affect (PANASP), negative affect (PANASN), and 
marital satisfaction (GRIMS) with valid and reliable questionnaires. His sample was 
a sample of 450 married men and women. In this research, he first builds a stable 
network by using bootstrapping with 200 samples, then analyzes the Bayesian 
network by using the structural learning PC algorithm, Tabu and HC, and finally 
estimates the parameters using the average strength of the edges. Listing 33 and the 
figures indicate the R codes for implementing the Bayesian network and the last step 
of bootstrapping with network specifications and finally the Bayesian network 
diagram and intensity of edges based on different methods of network learning. 

The R code for implementing the Bayesian network is in Listing 8.6. Table 8.2 
shows the variable names and labels for running the Bayesian network. 

Listing 8.6 
R codes for Bayesian network implementation. 

Bootstrap re-sampling can also be used to estimate a level of confidence on the 
learned edges. In this case, one network can be learned from each bootstrap sample 
and the resulting PDAGs can be aggregated in a weighted PDAG (WPDAG), where 
the confidence on each edge is estimated as the fraction of bootstrap samples from
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Table 8.2 Variables’ names 
and labels 

Variable name Variable label 

AAIS Secure attachment style 

AAIAv Avoidance attachment style 

AAIAm Ambivalence attachment style 

PANASN Negative affect 

PANASP Positive affect 

GRIMS Marital satisfaction 

Fig. 8.16 Learning the Bayesian network structure using the score-based method (Tabu Search) 

Fig. 8.17 The plot of learning the Bayesian network structure (Tabu search) 

which the edge can be learned. Bnstruct can also infer the estimated probability 
distribution of some variables, given evidence on the values of other observed 
variables. In this case, a junction tree is used. The Expectation–Maximization 
algorithm is also implemented, which exploits a BN structure to iteratively estimate 
conditional probabilities from a dataset with missing values in order to impute these 
missing values. 

As Fig. 8.16 shows, the edge between AAIS and AAIAV has the strongest 
negative connection and GRIMS and PANAS has the weakest negative edge 
based on the obtained Bayesian network using Tabu search (Fig. 8.17).
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Fig. 8.18 Learning the Bayesian network structure using the constraint-based algorithm (PC) 

Fig. 8.19 The nodes and edges of the Bayesian network using PC 

As Fig. 8.18 indicates, AAIs has the strongest negative effect on AAIAv in the 
network obtained using PC (Figs. 8.19 and 8.20). 

As Fig. 8.21 indicates, AAIs have the strongest negative effect on AAIAv in the 
network obtained using Hill-climbing. 

8.8 Bayesian Model Averaging 

Bayesian model averaging (BMA) works out the posterior probabilities associated 
with various competing linear regression models comprising different subsets of 
features and aggregates over them with the models containing features having the 
highest posterior probability being most influential in giving the weighted average of 
parameter estimates representing associations of predictors with life satisfaction.
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Fig. 8.20 Learning the Bayesian network structure using the scored-based Hill-climbing 

Fig. 8.21 The nodes and edges of the Bayesian network using the scored-based Hill-climbing) 

One of the most important points in data analysis and modeling is to find a way to 
choose a better model. Standard statistical analyses ignore model uncertainty. In data 
analysis, a model is usually selected from among a class of models, which leaves this 
approach of uncertainty in model selection. For this reason, this approach leads to 
overconfident inferences. BMA provides a mechanism to consider model uncer-
tainty when deriving parameter estimates. Therefore, in short, this method provides 
the uncertainty of the model that exists in the problem of variable selection by 
averaging the most important models according to the approximate estimation of the 
posterior probability of the model. For this purpose, in this method, competing 
models are examined through two indicators to select the best model (the most 
appropriate model). One of these indicators is the Bayesian Information Criterion
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(BIC) presented by Schwarz in 1978, and the other is the posterior probability of 
each model. The most appropriate model is the model that has the lowest BIC and the 
highest posterior probability. This method is suitable when there are a large number 
of predictor variables to predict an outcome, for example 20, 30, or 40. In this 
method, P! = 0 is calculated for each variable in each model. See the output of the R 
software in the example. P! = 0 indicates how likely it is that the regression 
coefficient for any particular predictor variable is non-zero among the resulting 
models. Also, in the “EV” column, the average of the posterior distribution for 
each coefficient is presented, and SD indicates the standard deviation of the posterior 
distribution for each coefficient. To be precise, only the best five models are 
presented. In the output of each BIC model, the posterior probability, the number 
of variables in each model, P! = 0 and R2 are presented. 

BMA was used to calculate each variable’s relative importance. As can be seen 
from the above Beck Anxiety, Emotional Processing and Emotional Expression 
have posterior densities which are centered away from zero and feature in the 
regression model with the highest posterior probability of occurrence (0.60) and 
lowest Bayesian Inference Criterion (BIC) with lowest being best. The four 
remaining models share almost the same posterior probabilities and BIC, which 
indicates that these competitive models are only slightly different from each other. 
The EV column shows the average of model coefficients. It is worth mentioning that 
if only one model was to be selected, this uncertainty in the model could not be 
justified. The average of all models’ coefficients, which is calculated by the sum of 
posterior probabilities’ weights and mentioned in the p! = 0 columns, can consider 
this uncertainty. Beck Anxiety, Emotional Processing, and Emotional Expression all 
have p! = 0 equal to 100, showing a very high likelihood of association with life 
satisfaction. 

8.8.1 Practical Example Using R 

An artificial psychologist is trying to determine which of the 10 variables (Extra-
version, Conscientiousness, Agreeableness, Openness, Emotional Stability, Anxi-
ety, Emotion recognition, Emotion processing, Emotional tracing, and Emotion 
expression) predicts Life Satisfaction. He uses a sample of 447 male and female 
students, and all of them respond to these variables through the respective scales; 
then, BMA is fitted using the R code in Listing 8.7.
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Listing 8.7 
R codes for BMA implementation. 

Considering the lower BIC and higher posterior probability, it can be said that the 
first model is the appropriate model in which three variables have been selected, 
which explains 29.3% of the variance in life satisfaction (Fig. 8.22). 

Figure 8.22 indicates that anxiety, emotional processing, and emotional expres-
sion are able to predict life satisfaction in model 1, which is the most appropriate 
model. Looking at p! = 0, the percentage of models where the coefficients for all 
three variables are non-zero is 100% in this example. The EV column shows the 
mean of the posterior distribution of the coefficient of each variable, and the SD 
shows the standard deviation of the mean of each EV coefficient. 

Examining the graphs shows that among the density graphs, each variable with 
the least amount of influence has a spike at the zero point; for example, it can be seen 
in the graphs that Extraversion, Agreeableness, Emotional Stability, Openness, 
Emotion recognition, and Emotional tracing have a spike at the zero point and 
have the least effect. These variables have coefficients that are most likely to be 
zero, and the variables of anxiety, emotional processing, and emotion expression and 
of course the constant value of the regression equation play an important role in the 
resulting model (Fig. 8.23). 

As we have seen, there are differences between the strength of different paths 
depending on what algorithm was used to learn the Bayesian network. But in all 
three Bayesian network algorithms, the path in the Bayesian network between secure 
attachment style and very strong avoidance is negative, but the path between 
ambivalence and negative affect is in opposite directions using the Tabu search



8.8 Bayesian Model Averaging 235

Fig. 8.22 R output of BMA of the example 

Fig. 8.23 The density of the variables



algorithm and the PC algorithm. In the former, the ambivalent attachment style is 
affected by negative affect (PANASN→AAIAm), while in the latter, this path is the 
opposite (AAIAm→PANASN). What makes these models acceptable are the theo-
retical foundations and the possibility of a theoretical explanation of the resulting 
findings, and we should not forget that statistical findings support researchers’ 
theories.

236 8 Bayesian Inference and Models in AP

Farahani et al. in 2022 used the BMA method to predict Social-Emotional 
Competence Based on Childhood Trauma, Internalized Shame, Disability/Shame 
Scheme, Cognitive Flexibility, Distress Tolerance, and Alexithymia.
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