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HThe material covered in An Introduction to Database Systems 
is organized into six major parts: 

• Part I (four chapters) provides a broad introduction to the concepts of database 
systems in general and relational systems in particular. It also introduces the 
standard database language, SQL. 

• Part II (six chapters) consists of a detailed and very careful description of the 
relational model, which is not only the theoretical foundation underlying rela¬ 
tional systems but is, in fact, the theoretical foundation for the entire database 
field. 

• Part III (four chapters) discusses the general question of database design. Three 
chapters are devoted to design theory, and the fourth considers semantic model¬ 
ing and the entity/relationship model. 

• Part IV (two chapters) is concerned with transaction management (i.e., recovery 
and concurrency controls). 

• Part V (eight chapters) shows how relational concepts are relevant to a variety of 
further aspects of database technology—security, distributed databases, temporal 
data, decision support, and so on. 

• Part VI (three chapters) describes the impact of object technology on database 
systems. Chapter 25 describes object systems specifically; Chapter 26 considers 
the possibility of a rapprochement between object and relational technologies and 
discusses object/relational systems; and Chapter 27 addresses the relevance to 
databases of XML. 

C. J. DATE is an author, lecturer, researcher, and independent 

consultant specializing in relational database systems. An active 

member of the database community for nearly 35 years, C. J. 

Date devotes the major part of his career to exploring, expanding, 

and expounding the theory and practice of relational technology. 

He enjoys a reputation second to none for his ability to explain 

complex technical material in a clear and understandable fashion. 



“[C. J. Date’s] book is the flag bearer of relational theory and mathematical treat¬ 

ment in general...as well as the runaway leader in discussing the SQL standards. 

It exercises much more respect for careful language and the importance of con¬ 

cepts and principles in gaining mastery of the field." 

—Carl Eckberg, San Diego State University 

“[The] 8th Edition is an excellent and comprehensive presentation of the contem¬ 

porary database field. In particular. Date’s chapters on types, relations, object 

databases, and object-relational databases together provide an exceptionally clear, 

self-contained exposition of the object-relational approach to databases.” 

—Martin K. Solomon, Florida Atlantic University 

“Chris Date is the computer industry’s most respected expert and thinker on data¬ 

base technology, and his book An Introduction to Database Systems continues to 

be the definitive work for those wanting a comprehensive and current guide to 

database systems.” 

—Colin J. White, President, Intelligent Business Strategies 

“This is the best explanation of concurrency that I have seen in literature, and it 

covers the ground quite thoroughly.” 

—Bruce O. Larsen, Stevens Institute of Technology 

“...both an indispensable read and an indispensable reference. No serious informa¬ 

tion systems or database practitioner should be without this book.” 

—Declan Brady, MICS, Systems Architect and Database Specialist, Fujitsu 

“The author's deep insights into the area, informal treatment of profound topics, 

open-ended discussions of critical issues, comprehensive and up-to-date contents, 

as well as rich annotations on bibliography have made the book most popular in 

the database area for more than two decades.” 

—Q. ang Zhu, The University of Michigan, Dearborn 

“[The book’s] appeal is its comprehensiveness and the fact that it is very up-to- 

date with research developments. The latter factor is due mainly to [Date’s] in¬ 

volvement with these developments, which gives him a unique opportunity to 

write about them.” 

—David Livingstone, University of Northumbria at Newcastle 
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As a reader of this database concepts book, you are entitled to six 
months of free access to Database Place! Database Place will be 
a key resource in helping you succeed in your database course. 

This access allows you to use all the student support areas of Database Place, including: 

Interactive tutorial environments for practicing database modelling, normalization 

problems, and writing SQL queries 

Automatically graded practice questions in the areas of Normalization, SQL, database 

modeling, and relational algebra to help you assess your basic understanding of the 

material 

And more! 

To access Database Place for the first time: 
You will need to register online using a computer with an Internet connection and a Web 

browser. The process takes just a couple of minutes and only needs to be completed 

once. 

1) Go to http://www.aw.com/databaseplace 

2) Click Enter Database Place 

3) Click the Register button 

4) Use a coin to scratch off the gray coating below and reveal your student access code*. 
Do not use a knife or other sharp object, which can damage the code. 

Scratch 
Here! 

5) On the registration page, enter your student access code. Do not type the dashes. You can 
use lowercase or uppercase. 

6) Follow the on-screen instructions. If you need help at any time during the online registration 
process, simply click the Need Help? icon. 

7) Once your personal Login Name and Password are confirmed, you can begin using 
Database Place! 

To Log into Database Place After You Register: 
You can access Database Place anytime by going to http://www.aw.com/databaseplace, 

clicking "Enter Database Place," and providing your Login Name and Password when 

prompted. 

important: The Access Code on this page can only be used once to establish a subscription 
to Database Place. This subscription is valid for six months upon activation, and is not transfer¬ 
able. If this access code has already been scratched off, it may no longer be valid. If this is the 
case, you can purchase a subscription by going to http://www.aw.com/databaseplace and click¬ 
ing "Enter Database Place.” 
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This book is dedicated to my wife Lindy 
and to the memory of my mother Rene— 

also to the memory of Ted Codd, who, sadly, 
passed away as this book was going to press 



Those who cannot remember the past 

are condemned to repeat it 

Usually quoted in the form: 

Those who don’t know history are 

doomed to repeat it 

—George Santayana 

I would like to see computer science 

teaching set deliberately 

in a historical framework... 

Students need to understand 

how the present situation has come 

about, what was tried, 

what worked and what did not, and 

how improvements in hardware 

made progress possible. The absence 

of this element in 

their training causes people to 

approach every problem from 

first principles. They are apt to 

propose solutions that 

have been found wanting in the past. 

Instead of standing 

on the shoulders of their precursors, 

they try to go it alone. 

—Maurice V. Wilkes 
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XXVI Preface to the Eighth Edition 

In connection with that same point (the importance of foundations), I have to admit 

that the overall tone of the book has changed over the years. The first few editions were 

mostly descriptive in nature; they described the field as it actually was in practice, “warts 

and all.” Later editions, by contrast, were much more prescriptive; they talked about the 

way the field ought to be and the way it ought to develop in the future, if we did things 

right. And the present edition is certainly prescriptive in this sense (so it is a text with an 

attitude!). Since the first part of that “doing things right” is surely educating oneself as to 

what those right things are, 1 hope this new edition can help in that endeavor. 

Yet another related point: As you might know, I recently published, along with my 

colleague Hugh Darwen, another “prescriptive” book, Foundation for Future Database 

Systems: The Third Manifesto (reference [3.3] in the present book).2 That book, which we 

call The Third Manifesto or just the Manifesto for short, builds on the relational model to 

offer a detailed technical proposal for future database systems; it is the result of many 

years of teaching and thinking about such matters on the part of both Hugh and myself. 

And, not surprisingly, the ideas of the Manifesto permeate the present book. Which is not 

to say the Manifesto is a prerequisite to the present book—it is not; but it is directly rele¬ 

vant to much that is in the present book, and further related information is often to be 

found therein. 

Note: Reference [3.3] uses a language called Tutorial D for illustrative purposes, and 

the present book does the same. Tutorial D syntax and semantics are intended to be more 

or less self-explanatory (the language might be characterized, loosely, as “Pascal-like”), 

but individual features are explained when they are first used if such explanation seems 

necessary. 

A CLOSING REMARK 

1 would like to close these prefatory notes with the following lightly edited extract from 

another preface—Bertrand Russell’s own preface to The Bertrand Russell Dictionary of 

Mind, Matter and Morals (ed., Lester E. Denonn), Citadel Press, 1993, reprinted here by 

permission: 

/ have been accused of a habit of changing my opinions ...lam not myself in any degree 

ashamed of [that habit]. What physicist who was already active in 1900 would dream of 

boasting that his opinions had not changed during the last half century? . .. [The] kind of 

philosophy that I value and have endeavoured to pursue is scientific, in the sense that 

there is some definite knowledge to be obtained and that new discoveries can make the 

admission of former error inevitable to any candid mind. For what I have said, whether 

early or late, 1 do not claim the kind of truth which theologians claim for their creeds. / 

claim only, at best, that the opinion expressed was a sensible one to hold at the time ... I 

should be much surprised if subsequent research did not show that it needed to be modi¬ 

fied. [Such opinions were not] intended as pontifical pronouncements, but only as the best 

I could do at the time towards the promotion of clear and accurate thinking. Clarity, 

above all, has been my aim. 

2 There is a website, too: http://www.thethirdmanifesto.com. See also http://www.dbdebunk.com for much 
related material. 













Part I / Preliminaries 

Fig. 1.1 shows a very small database containing just one file, called CELLAR, which 

in turn contains data concerning the contents of a wine cellar. Fig. 1.2 shows an example 

of a retrieval request against that database, together with the data returned by that 

request. (Throughout this book we show database requests, file names, and other such 

material in uppercase for clarity. In practice it is often more convenient to enter such 

material in lowercase. Most systems will accept both.) Fig. 1.3 gives examples, all more 

or less self-explanatory, of insert, delete, and change requests on the wine cellar data¬ 

base. Examples of adding and removing entire files are given in later chapters. 

Several points arise immediately from Figs. 1.1-1.3: 

1. First of all, the SELECT, INSERT, DELETE, and UPDATE requests (also called 

statements, commands, or operators) in Figs. 1.2 and 1.3 are all expressed in a lan¬ 

guage called SQL. Originally a proprietary language from IBM, SQL is now an inter¬ 

national standard that is supported by just about every database product commercially 

available; in fact, the market is totally dominated by SQL products at the time of writ¬ 

ing. Because of its commercial importance, therefore, Chapter 4 presents a general 

overview of the SQL standard, and most subsequent chapters include a section called 

“SQL Facilities” that describes those aspects of that standard that are pertinent to the 

topic of the chapter in question. 

By the way, the name SQL originally stood for Structured Query Language and 

was pronounced sequel. Now that it is a standard, however, the name is officially just a 

name—it is not supposed to be an abbreviation for anything at all—and it is officially 

pronounced ess-cue-ell. We will assume this latter pronunciation throughout this 

book. 

2. Note from Fig. 1.3 that SQL uses the keyword UPDATE to mean “change” specifically. 

This fact can cause confusion, because the term update is also used to refer to the three 

operators INSERT, DELETE, and UPDATE considered as a group. We will distinguish 

between the two meanings in this book by using lowercase when the generic meaning is 

intended and uppercase to refer to the UPDATE operator specifically. 

Incidentally, you might have noticed that we have now used both the term opera¬ 

tor and the term operation. Strictly speaking, there is a difference between the two 

(the operation is what is performed when the operator is invoked); in informal discus¬ 

sions, however, the terms tend to be used interchangeably. 

3. In SQL, computerized files such as CELLAR in Fig. 1.1 are called tables (for obvi¬ 

ous reasons); the rows of such a table can be thought of as the records of the file, and 

the columns can be thought of as the fields. In this book, we will use the terminology 

of files, records, and fields when we are talking about database systems in general 

(mostly just in the first two chapters); we will use the terminology of tables, rows, 

and columns when we are talking about SQL systems in particular. (And when we get 

to our more formal discussions in Chapter 3 and later parts of the book, we will meet 

yet another set of terms: relations, tuples, and attributes instead of tables, rows, and 

columns.) 
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BIN# WINE PRODUCER YEAR BOTTLES READY 

2 Chardonnay Buena Vista 2001 1 2003 
3 Chardonnay Geyser Peak 2001 5 2003 
6 Chardonnay Simi 2000 4 2002 

12 Joh. Riesling Jekel 2002 1 2003 
21 Fume Blanc Ch. St. Jean 2001 4 2003 
22 Fume Blanc Robt. Mondavi 2000 2 2002 
30 Gewurztraminer Ch. St. Jean 2002 3 2003 
43 Cab. Sauvignon Windsor 1995 12 2004 
45 Cab. Sauvignon Geyser Peak 1998 12 2006 
48 Cab. Sauvignon Robt. Mondavi 1997 12 2008 
50 Pinot Noir Gary Farrell 2000 3 2003 
51 Pinot Noir Fetzer 1997 3 2004 
52 Pinot Noir Dehlinger 1999 2 2002 
58 Merlot Clos du Bois 1998 9 2004 
64 Zinfandel Cline 1998 9 2007 
72 Zinfandel Rafanelli 1999 2 2007 

Fig. 1.1 The wine cellar database (file CELLAR) 

Retrieval: 

SELECT WINE, BIN#, PRODUCER 
FROM CELLAR 
WHERE READY = 2004 ; 

Result (as shown on, e.g., a display screen): 

WINE BIN# PRODUCER 

Cab. Sauvignon 43 Windsor 
Pinot Noir 51 Fetzer 
Merlot 58 Clos du Bois 

Fig. 1.2 Retrieval example 

Inserting new data: 

INSERT 
INTO CELLAR ( BIN#, WINE, PRODUCER, YEAR, BOTTLES, READY ) 
VALUES ( 53, 'Pinot Noir’, 'Saintsbury', 2001, 6, 2005 ) ; 

Deleting existing data: 

DELETE 
FROM CELLAR 
WHERE BIN# = 2 ; 

Changing existing data: 

UPDATE CELLAR 
SET BOTTLES = 4 
WHERE BIN# = 3 ; 

Fig. 1.3 Insert, delete, and change examples 

4. With respect to the CELLAR table, we have made a tacit assumption for simplicity 
that columns WINE and PRODUCER contain character-string data and all other col¬ 

umns contain integer data. In general, however, columns can contain data of arbitrary 
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Data 

Database systems are available on machines that range all the way from the smallest hand¬ 

held or personal computers to the largest mainframes or clusters of mainframes. Needless 

to say, the facilities provided by any given system are determined to some extent by the 

size and power of the underlying machine. In particular, systems on large machines (“large 
systems”) tend to be multi-user, whereas those on smaller machines (“small systems”) 

tend to be single-user. A single-user system is a system in which at most one user can 

access the database at any given time; a multi-user system is a system in which many 

users can access the database at the same time. As Fig. 1.4 suggests, we will normally 

assume the latter case in this book, for generality; in fact, however, the distinction is 

largely irrelevant so far as most users are concerned, because it is precisely an objective of 
multi-user systems in general to allow each user to behave as if he or she were working 

with a single-user system instead. The special problems of multi-user systems are prima¬ 

rily problems that are internal to the system, not ones that are visible to the user (see Part 

IV of this book, especially Chapter 16). 

Now, it is convenient to assume for the sake of simplicity that the totality of data in 
the system is all stored in a single database, and we will usually make that assumption in 

this book, since it does not materially affect any of our other discussions. In practice, 

however, there might be good reasons, even in a small system, why the data should be 

split across several distinct databases. We will touch on some of those reasons later, in 

Chapter 2 and elsewhere. 
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Note: The first six editions of this book used the term operational data in place of 

persistent data. That earlier term reflected the original emphasis in database systems on 
operational or production applications—that is, routine, highly repetitive applications 

that were executed over and over again to support the day-to-day operation of the enter¬ 

prise (for example, an application to support the deposit or withdrawal of cash in a bank¬ 

ing system). The term online transaction processing (OLTP) has come to be used to 

refer to this kind of environment. However, databases are now increasingly used for 

other kinds of applications as well—that is, decision support applications—and the 

term operational data is thus no longer entirely appropriate. Indeed, enterprises nowa¬ 

days frequently maintain two separate databases, one containing operational data and 

one, often called the data warehouse, containing decision support data. The data ware¬ 

house often includes summary information (e.g., totals, averages), where the summary 

information in question is extracted from the operational database on a periodic basis— 

say once a day or once a week. See Chapter 22 for an in-depth treatment of decision sup¬ 

port databases and applications. 

Entities and Relationships 

We now consider the example of a manufacturing company ("KnowWare Inc.”) in a little 

more detail. Such an enterprise will typically wish to record information about the projects 

it has on hand; the parts that are used in those projects; the suppliers who are under con¬ 

tract to supply those parts; the warehouses in which those parts are stored; the employees 

who work on those projects; and so on. Projects, parts, suppliers, and so on, thus constitute 

the basic entities about which KnowWare Inc. needs to record information (the term entity 

is commonly used in database circles to mean any distinguishable object that is to be rep¬ 

resented in the database). Refer to Fig. 1.6. 

Fig. 1.6 Entity/relationship (E/R) diagram for KnowWare Inc. 
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—we cannot (validly!) infer a knowing only b, c, and d. More precisely, if we know b, 

c, and d, then we might be able to infer that Smith supplies monkey wrenches to some 

project (say project Jz), that some supplier (say supplier Sx) supplies monkey 

wrenches to the Manhattan project, and that Smith supplies some part (say part Py) to 

the Manhattan project—but we cannot validly infer that Sx is Smith or Py is monkey 

wrenches or Jz is the Manhattan project. False inferences such as these are examples 

of what is sometimes called the connection trap. 

2. The figure also shows one relationship (PP) involving just one entity type (parts). The 

relationship here is that certain parts include other parts as immediate components 

(the so-called bill-of-materials relationship); for example, a screw is a component of 

a hinge assembly, which is also a part and might in turn be a component of some 

higher-level part such as a lid. Note that this relationship is still binary; it is just that 

the two entity types involved, parts and parts, happen to be one and the same. 

3. In general, a given set of entity types might be involved in any number of distinct 

relationships. In the example in Fig. 1.6, there are two distinct relationships involving 

projects and employees: One (EJ) represents the fact that employees are assigned to 

projects; the other (MJ) represents the fact that employees manage projects. 

We now observe that a relationship can be regarded as an entity in its own right. If we 

take as our definition of entity “any object about which we wish to record information,” 

then a relationship certainly fits the definition. For instance, “part P4 is stored in warehouse 

W8” is an entity about which we might well wish to record information—for example, the 

corresponding quantity. Moreover, there are definite advantages (beyond the scope of the 

present chapter) to be obtained by not making any unnecessary distinctions between enti¬ 

ties and relationships. In this book, therefore, we will tend to treat relationships as just a 

special kind of entity. 

Properties 

As just indicated, an entity is any object about which we wish to record information. It fol¬ 

lows that entities (relationships included) can be regarded as having properties, corre¬ 

sponding to the information we wish to record about them. For example, suppliers have 

locations; parts have weights; projects have priorities; assignments (of employees to 

projects) have start dates; and so on. Such properties must therefore be represented in the 

database. For example, an SQL database might include a table called S representing sup¬ 

pliers, and that table might include a column called CITY representing supplier locations. 

Properties in general can be as simple or as complex as we please. For example, the 

“supplier location” property is presumably quite simple, consisting as it does of just a city 

name, and can be represented in the database by a simple character string. By contrast, a 

warehouse might have a “floor plan” property, and that property might be quite complex, 

consisting perhaps of an entire architectural drawing and associated descriptive text. As 
noted in Section 1.1, in other words, the kinds of data we might want to keep in (for 

example) columns of SQL tables can be arbitrarily complex. As also noted in that same 

section, we will return to this topic later (principally in Chapters 5-6 and 26-27); until 
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base that is in an inconsistent state is capable of supplying incorrect or contradictory 
information to its users. 

Of course, if the given fact is represented by a single entry (i.e., if the redundancy 

is removed), then such an inconsistency cannot occur. Alternatively, if the redundancy 
is not removed but is controlled (by making it known to the DBMS), then the DBMS 

can guarantee that the database is never inconsistent as seen by the user, by ensuring 

that any change made to either of the two entries is automatically applied to the other 
one as well. This process is known as propagating updates. 

Transaction support can be provided. 

A transaction is a logical unit of work (more precisely, a logical unit of database 

work), typically involving several database operations—in particular, several update 

operations. The standard example involves the transfer of a cash amount from one 
account A to another account B. Clearly two updates are required here, one to with¬ 

draw the cash from account A and the other to deposit it to account B. If the user has 

made the two updates part of the same transaction, then the system can effectively 

guarantee that either both of them are done or neither is—even if, for example, the 

system fails (say because of a power outage) halfway through the process. 

Note: The transaction atomicity feature just illustrated is not the only benefit of 

transaction support, but unlike some of the others it is one that applies, at least in prin¬ 

ciple, even in the single-user case. (On the other hand, single-user systems often do 

not provide any transaction support at all but simply leave the problem to the user.) A 

full description of all of the various advantages of transaction support and how they 

can be achieved appears in Chapters 15 and 16. 

Integrity can be maintained. 

The problem of integrity is the problem of ensuring (as far as possible) that the data in 
the database is correct. Inconsistency between two entries that purport to represent the 

same fact is an example of lack of integrity (see the discussion of this point earlier in 

this subsection); of course, this particular problem can arise only if redundancy exists 

in the stored data. Even if there is no redundancy, however, the database might still 

contain incorrect information. For example, an employee might be shown as having 

worked 400 hours in the week instead of 40, or as belonging to a department that does 

not exist. Centralized control of the database can help in avoiding such problems— 
insofar as they can be avoided—by permitting the data administrator to define, and the 

DBA to implement, integrity constraints to be checked when update operations are 

performed. 
It is worth pointing out that data integrity is even more important in a database 

system than it is in a “private files” environment, precisely because the data is shared. 

For without appropriate controls it would be possible for one user to update the data¬ 
base incorrectly, thereby generating bad data and so “infecting” other innocent users 

of that data. It should also be mentioned that most database products are still quite 

weak in their support for integrity constraints (though there have been some recent 

improvements in this area). This fact is unfortunate, given that (as we will see in Chap¬ 

ter 9) integrity constraints are both fundamental and crucially important—much more 

so than is usually realized, in fact. 
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Data independence can most easily be understood by first considering its opposite. 

Applications implemented on older systems—prerelational or even predatabase systems 

—tend to be data-dependent. What this means is that the way the data is physically repre¬ 

sented in secondary storage, and the techniques used to access it, are both dictated by the 

requirements of the application under consideration, and moreover that knowledge of that 

physical representation and those access techniques is built into the application code. For 
example, suppose we have an application that uses the EMPLOYEE file of Fig. 1.5, and 

suppose it is decided, for performance reasons, that the file is to be indexed on its 

“employee name" field (see Appendix D, online). In an older system, the application in 

question will typically be aware of the fact that the index exists, and aware also of the 

sequence of records as defined by that index, and the internal structure of the application 

will be built around that knowledge. In particular, the precise form of the various data 

access and exception-checking routines within the application will depend very heavily on 
details of the interface presented to the application by the data management software. 

We say that an application such as the one in this example is data-dependent, 
because it is impossible to change the physical representation (how the data is physically 

represented in storage) and access techniques (how it is physically accessed) without 

affecting the application, probably drastically. For instance, it would not be possible to 

replace the index in the example by a hashing scheme without making major modifica¬ 

tions to the application code. What is more, the portions of that code requiring alteration 

in such a situation are precisely those portions that communicate with the data manage¬ 

ment software; the difficulties involved are quite irrelevant to the problem the application 

was originally written to solve—that is, they are difficulties introduced by the nature of 

the data management interface. 
In a database system, however, it would be extremely undesirable to allow applications 

to be data-dependent in the foregoing sense, for at least the following two reasons: 

1. Different applications will require different views of the same data. For example, sup¬ 
pose that before the enterprise introduces its integrated database there are two appli¬ 

cations, A and B, each owning a private file that includes the field “customer balance.” 

Suppose, however, that application A stores that field in decimal, whereas application 

B stores it in binary. It will still be possible to integrate the two files, and to eliminate 
the redundancy, provided the DBMS is ready and able to perform all necessary con¬ 

versions between the stored representation chosen (which might be decimal or binary 

or something else again) and the form in which each application wishes to see it. For 

example, if it is decided to store the field in decimal, then every access by B will 

require a conversion to or from binary. 
This is a fairly trivial example of the kind of difference that might exist in a data¬ 

base system between the data as seen by a given application and the data as physically 
stored. We will consider many other possible differences later in this section. 

2. The DBA—or possibly the DBMS—must have the freedom to change the physical 
representation and access technique in response to changing requirements, without 

existing applications having to be modified. For example, new kinds of data might be 

added to the database; new standards might be adopted; application priorities (and 

therefore relative performance requirements) might change; new storage devices 











26 Part I / Preliminaries 

these remarks that today’s SQL systems provide no data independence at all—only that 

they provide much less than relational systems are theoretically capable of.4 In other 

words, data independence is not an absolute; different systems provide it to different 

degrees, and few if any provide none at all. Today's SQL systems typically provide more 

data independence than older systems did, but they are still far from perfect, as we will 

see in the chapters to come. 

1.6 RELATIONAL SYSTEMS AND OTHERS 

We have said that SQL systems have come to dominate the DBMS marketplace, and that 

one important reason for this state of affairs is that such systems are based on the rela¬ 

tional model of data. Informally, indeed, SQL systems are often referred to as relational 

systems specifically.5 In addition, the vast majority of database research over the last 30 

years or so has also been based (albeit a little indirectly, in some cases) on the relational 

model. Indeed, it is fair to say that the introduction of the relational model in 1969-70 was 

the single most important event in the entire history of the database field. For these rea¬ 

sons, plus the fact that the relational model is solidly based on logic and mathematics and 

therefore provides an ideal vehicle for teaching database foundations and principles, the 
emphasis in this book is heavily on relational systems. 

What then exactly is a relational system? It is obviously not possible to answer this 

question properly at this early point in the book—but it is possible, and desirable, to give a 

rough and ready answer, which we can make more precise later. Briefly, then (albeit very 

loosely), a relational system is a system in which: 

1. The data is perceived by the user as tables (and nothing but tables). 

2. The operators available to the user for (e.g.) retrieval are operators that derive “new” 

tables from “old” ones. For example, there is one operator, restrict, which extracts a 

subset of the rows of a given table, and another, project, which extracts a subset of the 

columns—and a row subset and a column subset of a table can both be regarded in 

turn as tables in their own right, as we will see in just a moment. 

So why are such systems called “relational”? The reason is that relation is basically 

just a mathematical term for a table. (Indeed, the terms relation and table—sometimes 

relational table for emphasis—can be taken as synonymous, at least for informal purposes. 

See Chapters 3 and 6 for further discussion.) Please note that the reason is definitely not 

that relation is “basically just a mathematical term for” a relationship in the sense of 
entity/relationship diagrams as described in Section 1.3; in fact, as noted in that section, 

there is very little direct connection between relational systems and such diagrams. 

As promised, we will make the foregoing definitions much more precise later, but 

they will serve for the time being. Fig. 1.8 provides an illustration. The data—see part a of 

the figure—consists of a single table, named CELLAR (in fact, it is a scaled-down version 

4 A striking example of what relational systems are capable of in this respect is described in Appendix A. 

5 Despite the fact that in many respects SQL is quite notorious for its departures from the relational 
model, as we will see. 
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a. Given table: CELLAR WINE YEAR BOTTLES 

Zinfandel 1999 2 
Fume Blanc 2000 2 
Pinot Noir 1997 3 
Zinfandel 1998 9 

b. Operators (examples): 

1. Restrict: Result: 

SELECT WINE, YEAR, BOTTLES 
FROM CELLAR 
WHERE YEAR > 1998 ; 

2. Project: Result: 

SELECT WINE, BOTTLES 
FROM CELLAR ; 

WINE YEAR BOTTLES 

Zinfandel 1999 2 
Fume Blanc 2000 2 

WINE BOTTLES 

Zinfandel 2 
Fume Blanc 2 
Pinot Noir 3 
Zinfandel 9 

Fig. 1.8 Data structure and operators in a relational system (examples) 

of the CELLAR table from Fig. 1.1, reduced in size to make it more manageable). Two 

sample retrievals, one involving a restriction or row-subsetting operation and the other a 
projection or column-subsetting operation, are shown in part b of the figure. The examples 

are expressed in SQL once again. 

We can now distinguish between relational and nonrelational systems. In a relational 

system, the user sees the data as tables, and nothing but tables (as already explained). In a 
nonrelational system, by contrast, the user sees other data structures (either instead of or 

as well as the tables of a relational system). Those other structures, in turn, require other 

operators to access them. For example, in a hierarchic system like IBM’s IMS, the data is 

represented to the user in the form of trees (hierarchies), and the operators provided for 

accessing such trees include operators for following pointers (namely, the pointers that 

implement the hierarchic paths up and down the trees). By contrast, as the examples in 

this chapter have shown, it is precisely an important distinguishing characteristic of rela¬ 

tional systems that they involve no pointers (at least, no pointers visible to the user—i.e., 
no pointers at the model level—though there might well be pointers at the level of the 

physical implementation). 
As the foregoing discussion suggests, database systems can be conveniently catego¬ 

rized according to the data structures and operators they present to the user. According to 

this scheme, the oldest (prerelational) systems fall into three broad categories: inverted 
list, hierarchic, and network systems.6 (Note: The term network here has nothing to do 

6 By analogy with the relational model, earlier editions of this book referred to inverted list, hierarchic, 
and network models (and much of the literature still does). To talk in such terms is a little misleading, 
however, because—unlike the relational model—the inverted list, hierarchic, and network “models” were 
all invented after the fact; that is, commercial inverted list, hierarchic, and network products were imple¬ 
mented first, and the corresponding “models” were defined subsequently by a process of induction (in this 
context, a polite term for guesswork) from those existing implementations. See the annotation to refer¬ 
ence [1.1] for further discussion. 
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with networks in the data communications sense, as described in the next chapter.) We do 

not discuss these categories in detail in this book because—from a technological point of 

view, at least—they must be regarded as obsolete. You can find tutorial descriptions of all 

three in reference [1.5] if you are interested. 
As an aside, we remark that network systems are sometimes called either CODASYL 

systems or DBTG systems, after the committee that proposed them: namely, the Data 

Base Task Group (DBTG) of the Conference on Data Systems Languages (CODASYL). 

Probably the best-known example of such a system is IDMS, from Computer Associates 

International Inc. Like hierarchic systems (but unlike relational ones), such systems all 

expose pointers to the user. 
The first relational products began to appear in the late 1970s and early 1980s. At the 

time of writing, the vast majority of database systems are relational (at least, they support 

SQL), and they run on just about every kind of hardware and software platform available. 

Leading examples include, in alphabetical order, DB2 (various versions) from IBM Corp., 

Ingres II from Computer Associates International Inc., Informix Dynamic Server from 

Informix Software Inc.,7 Microsoft SQL Server from Microsoft Corp., Oracle 9i from 

Oracle Corp., and Sybase Adaptive Server from Sybase Inc. Note: When we have cause to 

refer to any of these products later in this book, we will refer to them (as most of the 

industry does, informally) by the abbreviated names DB2, Ingres (pronounced “ingress”), 
Informix, SQL Server, Oracle, and Sybase, respectively. 

Subsequently, object and object/relational products began to become available— 

object systems in the late 1980s and early 1990s, object/relational systems in the late 

1990s. The object/relational systems are extended versions of certain of the original 

SQL products (e.g., DB2, Informix); the object—sometimes object-oriented—systems 

represent attempts to do something entirely different, as in the case of GemStone from 

GemStone Systems Inc. and Versant ODBMS from Versant Object Technology. Such sys¬ 

tems are discussed in Part VI of this book. (We should note that the term object as used in 

this paragraph has a rather specific meaning, which we will explain when we get to Part 

VI. Prior to that point, we will use the term in its normal generic sense, barring explicit 

statements to the contrary.) 

In addition to the approaches already mentioned, research has proceeded over the 

years on a variety of alternative schemes, including the multi-dimensional approach and 

the logic-based (also called deductive or expert) approach. We discuss multi-dimensional 

systems in Chapter 22 and logic-based systems in Chapter 24. Also, the recent explosive 

growth of the World Wide Web and the use of XML has generated much interest in what 

has become known (not very aptly) as the semistructured approach. We discuss “semi- 

structured” systems in Chapter 27. 

1.7 SUMMARY 

We close this introductory chapter by summarizing the main points discussed. First, a 

database system can be thought of as a computerized record-keeping system. Such a sys- 

The DBMS division of Informix Software Inc. was acquired by IBM Coip. in 2001. 
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tem involves the data itself (stored in the database), hardware, software (in particular 

the database management system or DBMS), and—most important!—users. Users in 

turn can be divided into application programmers, end users, and the database admin¬ 

istrator or DBA. The DBA is responsible for administering the database and database sys¬ 

tem in accordance with policies established by the data administrator or DA. 

Databases are integrated and (usually) shared; they are used to store persistent 

data. Such data can usefully, albeit informally, be considered as representing entities, 

together with relationships among those entities—although in fact a relationship is really 

just a special kind of entity. We very briefly examined the idea of entity/relationship 

diagrams. 

Database systems provide a number of benefits, of which one of the most important is 
(physical) data independence. Data independence can be defined as the immunity of 

application programs to changes in the way the data is physically stored and accessed. 

Among other things, data independence requires that a sharp distinction be made between 

the data model and its implementation. (We remind you in passing that the term data 

model, perhaps unfortunately, has two rather different meanings.) 

Database systems also usually support transactions or logical units of work. One 

advantage of transactions is that they are guaranteed to be atomic (all or nothing), even if 

the system fails in the middle of the transaction in question. 

Finally, database systems can be based on a number of different approaches. Rela¬ 

tional systems in particular are based on a formal theory called the relational model, 

according to which data is represented as rows in tables (interpreted as true proposi¬ 

tions), and operators are provided that directly support the process of inferring additional 

true propositions from the given ones. From both an economic and a theoretical perspec¬ 

tive, relational systems are easily the most important (and this state of affairs is not likely 

to change in the foreseeable future). We have seen a few simple examples of SQL, the 

standard language for relational systems (in particular, examples of the SQL SELECT, 

INSERT, DELETE, and UPDATE statements). This book is heavily based on relational 

systems, although—for reasons explained in the preface—not so much on SQL per se. 

EXERCISES 

1.1 Explain the following in your own words; 

binary relationship 

command-driven interface 

concurrent access 

data administration 

database 

database system 

data independence 

DBA 

DBMS 

menu-driven interface 

multi-user system 

online application 

persistent data 

property 

query language 

redundancy 

relationship 

security 
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1.2 

entity 

entity/relationship diagram 

forms-driven interface 

integration 

integrity 

sharing 

stored field 

stored file 

stored record 

transaction 

What are the advantages of using a database system? What are the disadvantages? 

1.3 What do you understand by the term relational system? Distinguish between relational and 

nonrelational systems. 

1.4 What do you understand by the term data model? Explain the difference between a data model 

and its implementation. Why is the difference important? 

1.5 Show the effects of the following SQL retrieval operations on the wine cellar database of 
Fig. 1.1: 

a. SELECT WINE, PRODUCER 
FROM CELLAR 
WHERE BIN# = 72 ; 

b. SELECT WINE, PRODUCER 
FROM CELLAR 
WHERE YEAR > 2000 ; 

C. SELECT BIN#, WINE, YEAR 
FROM CELLAR 
WHERE READY < 2003 ; 

d. SELECT WINE, BIN#, YEAR 
FROM CELLAR 
WHERE PRODUCER = 'Robt. Mondavi' 
AND BOTTLES > 6 ; 

1.6 Give in your own words an interpretation as a true proposition of a typical row from each of 
your answers to Exercise 1.5. 

1.7 Show the effects of the following SQL update operations on the wine cellar database of Fig. 1.1: 

a. INSERT 
INTO CELLAR ( BIN#, WINE, PRODUCER, YEAR, BOTTLES, READY ) 
VALUES ( 80, ’Syrah', ’Meridian', 1998, 12, 2003 ) ; 

b. DELETE 
FROM CELLAR 
WHERE READY > 2004 ; 

C. UPDATE CELLAR 
SET BOTTLES = 5 
WHERE BIN# = 50 ; 

d. UPDATE CELLAR 
SET BOTTLES = BOTTLES + 2 
WHERE BIN# = 50 ; 

1.8 Write SQL statements to perform the following operations on the wine cellar database: 

a. Get bin number, name of wine, and number of bottles for all Geyser Peak wines. 

b. Get bin number and name of wine for all wines for which there are more than five bottles in 
stock. 

c. Get bin number for all red wines. 
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d. Add three bottles to bin number 30. 

e. Remove all Chardonnay from stock. 

f. Add an entry for a new case (12 bottles) of Gary Farrell Merlot: bin number 55, year 2000, 

ready in 2005. 

1.9 Suppose you have a music collection consisting of CDs and/or minidiscs and/or LPs and/or 

audiotapes, and you want to build a database that will let you find which recordings you have for a 

specific composer (e.g., Sibelius) or conductor (e.g., Simon Rattle) or soloist (e.g., Arthur Grumi- 

aux) or work (e.g., Beethoven’s Fifth) or orchestra (e.g., the New York Philharmonic) or kind of 

work (e.g., violin concerto) or chamber group (e.g., the Kronos Quartet). Draw an entity/relationship 

diagram like that of Fig. 1.6 for this database. 
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2.1 INTRODUCTION 

We are now in a position to present an architecture for a database system. Our aim in pre¬ 

senting this architecture is to provide a framework on which subsequent chapters can 

build. Such a framework is useful for describing general database concepts and for 

explaining the structure of specific database systems—but we do not claim that every sys¬ 

tem can neatly be matched to this particular framework, nor do we mean to suggest that 
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portion of it; thus, there will be many distinct “external views,” each consisting of a more 

or less abstract representation of some portion of the total database, and there will be pre¬ 

cisely one “conceptual view,” consisting of a similarly abstract representation of the data¬ 
base in its entirety. And then there will be precisely one “internal view,” representing the 

database as stored internally. Note that (to use the terminology of Chapter 1) the external 
and conceptual levels are both model levels, while the internal level is an implementation 

level; in other words, the external and conceptual levels are defined in terms of user- 

oriented constructs such as records and fields, while the internal level is defined in terms 
of machine-oriented constructs such as bits and bytes. 

An example will help to make these ideas clearer. Fig. 2.2 shows the conceptual view, 

the corresponding internal view, and two corresponding external views (one for a PL/I user 

and one for a COBOL user1), all for a simple personnel database. Of course, the example 

is completely hypothetical—it is not intended to resemble any real system—and many 
irrelevant details have deliberately been omitted. Explanation: 

1. At the conceptual level, the database contains information concerning an entity type 

called EMPLOYEE. Each individual employee has an EMPLOYEE_NUMBER (six 

characters), a DEPARTMENT_NUMBER (four characters), and a SALARY (five 
decimal digits). 

2. At the internal level, employees are represented by a stored record type called 

STORED_EMP, 20 bytes long. STORED_EMP contains four stored fields: a 6-byte 

prefix (presumably containing control information such as codes, flags, or pointers), 

and three data fields corresponding to the three properties of employees. In addition, 
STORED_EMP records are indexed on the EMP# field by an index called EMPX, 

whose definition is not shown. 

External (PL/I) External (COBOL) 

DCL 1 EMPP, 

2 EMP# CHAR(6), 

2 SAL FIXED BIN(31); 

01 EMPC. 

02 EMPNO PIC X(6). 

02 DEPTNO PIC X(4). 

Conceptual 

CHARACTER(6) 

ER CHARACTER(4) 

DECIMAL(5) 

EMPLOYEE 

EMPLOYEE_NUMBEF 

DEPARTMENT_NUMB 

SALARY 

Internal 

S=20 

S=6,OFFSET=0 

S=6,OFFSET=6,INDEX=EMPX 

S=4,OFFSET=12 

S=4,ALIGN=FULLWORD,OFFSET=l6 

STORED_EMP BYTE 

PREFIX BYTE 

EMP# BYTE 

DEPT# BYTE 

PAY BYTE 

Fig. 2.2 An example of the three levels 

1 We apologize for using such ancient languages as the basis for this example, but the fact is that PL/1 and 
COBOL are both still widely used in commercial installations. 
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(In the interest of accuracy, we should make it clear that PL/I does not in fact include any 

specific database features at the time of writing. The “DML” statements in particular are 

typically just PL/I CALL statements that invoke the DBMS—though those calls might be 

syntactically disguised in some way to make them a little more user-friendly; see the dis¬ 
cussion of embedded SQL in Chapter 4.) 

To return to the architecture: We have already indicated that an individual user will 

generally be interested only in some portion of the total database; moreover, that user’s 

view of that portion will generally be somewhat abstract when compared with the way the 

data is physically stored. The ANSI/SPARC term for an individual user’s view is an exter¬ 

nal view. An external view is thus the content of the database as seen by some particular 
user; to that user, in other words, the external view is the database. For example, a user 

from the Personnel Department might regard the database as a collection of department 

and employee record occurrences, and might be quite unaware of the supplier and part 

record occurrences seen by users in the Purchasing Department. 

In general, then, an external view consists of many occurrences of many types of 

external record {not necessarily the same thing as a stored record).4 The user’s data sub¬ 

language is thus defined in terms of external records; for example, a DML retrieve opera¬ 
tion will retrieve external record occurrences, not stored record occurrences. (Incidentally, 

we can now see that the term logical record used a couple of times in Chapter 1 actually 

referred to an external record. From this point forward, in fact, we will generally avoid the 

term logical record.) 

Each external view is defined by means of an external schema, which consists basi¬ 

cally of definitions of each of the various external record types in that external view 
(again, refer back to Fig. 2.2 for a couple of simple examples). The external schema is 

written using the DDL portion of the user's data sublanguage. (That DDL is therefore 

sometimes referred to as an external DDL.) For example, the employee external record 

type might be defined as a six-character employee number field plus a five-digit (decimal) 

salary field, and so on. In addition, there must be a definition of the mapping between the 
external schema and the underlying conceptual schema (see the next section). We will 

consider that mapping later, in Section 2.6. 

2.4 THE CONCEPTUAL LEVEL 

The conceptual view is a representation of the entire information content of the database, 

again (as with an external view) in a form that is somewhat abstract in comparison with 

the way in which the data is physically stored. It will also be quite different, in general, 

from the way in which the data is viewed by any particular user. Broadly speaking, the 

4 We are assuming here that all information is represented at the external level in the form of records spe¬ 
cifically. However, some systems allow information to be represented in other ways instead of or as well 
as records. For a system using such alternative methods, the definitions and explanations given in this sec¬ 
tion will require suitable modification. Analogous remarks apply to the conceptual and internal levels 
also. Detailed consideration of such matters is beyond the scope of this early part of the book; see Chap¬ 
ters 14 (especially the “References and Bibliography” section) and 25 for further discussion. See also—in 
connection with the internal level in particular—Appendix A. 
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conceptual view is intended to be a view of the data “as it really is,” rather than as users are 

forced to see it by the limitations of (for example) the particular language or hardware they 

might be using. 
The conceptual view consists of many occurrences of many types of conceptual 

record. For example, it might consist of a collection of department record occurrences, 

plus a collection of employee record occurrences, plus a collection of supplier record 

occurrences, plus a collection of part record occurrences, and so on. A conceptual 

record is not necessarily the same as either an external record, on the one hand, or a 

stored record, on the other. 

The conceptual view is defined by means of the conceptual schema, which includes 

definitions of each of the various conceptual record types (again, refer to Fig. 2.2 for a 

simple example). The conceptual schema is written using another data definition lan¬ 

guage, the conceptual DDL. If physical data independence is to be achieved, then those 

conceptual DDL definitions must not involve any considerations of physical representa¬ 

tion or access technique at all—they must be definitions of information content only. 

Thus, there must be no reference in the conceptual schema to stored field representation, 

stored record sequence, indexes, hashing schemes, pointers, or any other storage and 

access details. If the conceptual schema is made truly data-independent in this way, then 

the external schemas, which are defined in terms of the conceptual schema (see Section 

2.6), will a fortiori be data-independent too. 

The conceptual view, then, is a view of the total database content, and the conceptual 

schema is a definition of that view. However, it would be misleading to suggest that the 

conceptual schema is nothing more than a set of definitions much like the simple record 

definitions found in (e.g.) a COBOL program today. The definitions in the conceptual 

schema are intended to include a great many additional features, such as the security and 

integrity constraints mentioned in Chapter 1. Some authorities would go as far as to sug¬ 

gest that the ultimate objective of the conceptual schema is to describe the complete enter¬ 

prise—not just its data per se, but also how that data is used: how it flows from point to 

point within the enterprise, what it is used for at each point, what audit or other controls 

are to be applied at each point, and so on [2.3], It must be emphasized, however, that no 

system today actually supports a conceptual schema of anything approaching this degree 

of comprehensiveness;5 in most existing systems, the “conceptual schema” is little more 

than a simple union of all of the individual external schemas, plus certain security and 

integrity constraints. But it is certainly possible that systems of the future will be much 

more sophisticated in their support of the conceptual level. 

2.5 THE INTERNAL LEVEL 

The third level of the architecture is the internal level. The internal view is a low-level 

representation of the entire database; it consists of many occurrences of many types of 

internal record. Internal record is the ANSI/SPARC term for the construct that we have 

5 Some might argue that the so-called business rule systems come close (see Chapters 9 and 14). 
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Defining the internal schema 

The DBA must also decide how the data is to be represented in the stored database. 

This process is usually referred to as physical database design. Having done the phys¬ 

ical design, the DBA must then create the corresponding stored database definition 
(i.e., the internal schema), using the internal DDL. In addition, he or she must also 

define the associated conceptual/internal mapping. In practice, either the conceptual 

DDL or the internal DDL—most likely the former—will probably include the means 

for defining that mapping, but the two functions (creating the schema and defining the 

mapping) should be clearly separable. Like the conceptual schema, the internal 

schema and corresponding mapping will exist in both source and object form. 

By the way, observe the sequence: Decide what data you want first, then decide 

how to represent it in storage. Physical design should always be done after logical 
design. 

Liaising with users 

It is the business of the DBA to liaise with users to ensure that the data they need is 

available and to write (or help the users write) the necessary external schemas, using 

the applicable external DDL. (As already indicated, a given system might support sev¬ 

eral distinct external DDLs.) In addition, the corresponding extemal/conceptual map¬ 

pings must also be defined. In practice, the external DDL will probably include the 

means for specifying those mappings, but once again the schemas and the mappings 
should be clearly separable. Each external schema and corresponding mapping will 

exist in both source and object form. 
Other aspects of the user liaison function include consulting on application 

design; providing technical education; assisting with problem determination and reso¬ 

lution; and similar professional services. 

Defining security and integrity constraints 

As already explained, security and integrity constraints can be regarded as part of the 

conceptual schema. The conceptual DDL must include facilities for specifying such 

constraints. 

Defining dump/restore schemes 

Once an enterprise is committed to a database system, it becomes critically dependent 

on the successful operation of that system. In the event of damage to any portion of the 

database—caused by human error, say, or a failure in the hardware or operating sys¬ 

tem—it is essential to be able to repair the data concerned with the minimum of delay 
and with as little effect as possible on the rest of the system. For example, the avail¬ 

ability of data that has not been damaged should ideally not be affected. The DBA 

must define and implement an appropriate damage control scheme, typically involving 
(a) periodic unloading or “dumping” of the database to backup storage and (b) reload¬ 

ing or “restoring” the database when necessary from the most recent dump. 
As an aside, we note that the need for quick data repair is one reason why it might 

be a good idea to spread the total data collection across several databases, instead of 

keeping it all in one place; the individual database might very well form the unit for 
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2.10 CLIENT/SERVER ARCHITECTURE 

So far in this chapter we have been discussing database systems from the point of view of 

the so-called ANSI/SPARC architecture. In particular, we gave a simplified picture of 

that architecture in Fig. 2.3. In this section we offer a slightly different perspective on the 
subject. 

The overall purpose of a database system is to support the development and execution 

of database applications. From a high-level point of view, therefore, such a system can be 

regarded as having a very simple two-part structure, consisting of a sender, also called the 

bock end, and a set of clients, also called the front ends (refer to Fig. 2.5). Explanation: 

1. The server is just the DBMS itself. It supports all of the basic DBMS functions dis¬ 
cussed in Section 2.8—data definition, data manipulation, data security and integrity, 

and so on. In other words, “server” in this context is just another name for the DBMS. 

2. The clients are the various applications that run on top of the DBMS—both user- 
written applications and built-in applications (i.e., applications provided by the 

DBMS vendor or some third party). As far as the server is concerned, of course, there 

is no difference between user-written and built-in applications; they all use the same 
interface to the server—namely, the external-level interface discussed in Section 2.3. 

(We note as an aside that, as mentioned in Section 2.5, certain special “utility” appli¬ 

cations might constitute an exception to the foregoing, inasmuch as they might some¬ 
times need to operate directly at the internal level of the system. Such utilities are 

End users 

Clients 

Server 

Database 

Fig. 2.5 Client/server architecture 
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variety of different DBMSs, running on a variety of different machines, supported by a 

variety of different operating systems, and connected by a variety of different communica¬ 

tion networks—where “transparently” means the application operates from a logical point 

of view as if the data were all managed by a single DBMS running on a single machine. 
Such a capability might sound like a pretty tall order, but it is highly desirable from a 

practical perspective, and much effort has been devoted to making such systems a reality. 

We will discuss such systems in detail in Chapter 21. 

2.13 SUMMARY 

In this chapter we have looked at database systems from an architectural point of view. 

First, we described the ANSI/SPARC architecture, which divides a database system into 
three levels, as follows: The internal level is the one closest to physical storage (i.e., it is 

the one concerned with the way the data is stored); the external level is the one closest to 

the users (i.e., it is the one concerned with the way the data is viewed by individual users); 

and the conceptual level is a level of indirection between the other two (it provides a com¬ 

munity view of the data). The data as perceived at each level is described by a schema (or 

several schemas, in the case of the external level). Mappings define the correspondence 
between (a) a given external schema and the conceptual schema, and (b) the conceptual 

schema and the internal schema. Those mappings are the key to the provision of logical 

and physical data independence, respectively. 

Users—that is, end users and application programmers, both of whom operate at the 

external level—interact with the data by means of a data sublanguage, which consists of 

at least two components, a data definition language (DDL) and a data manipulation 

language (DML). The data sublanguage is embedded in a host language. Please note, 
however, that the boundaries (a) between the host language and the data sublanguage and 

(b) between the DDL and the DML are primarily conceptual in nature; ideally they should 

be “transparent to the user.” 

We also took a closer look at the functions of the DBA and the DBMS. Among other 

things, the DBA is responsible for creating the internal schema (physical database 

design); by contrast, creating the conceptual schema (logical or conceptual database 

design) is the responsibility of the data administrator. And the DBMS is responsible, 
among other things, for implementing DDL and DML requests from the user. The DBMS 

is also responsible for providing some kind of data dictionary function. 

Database systems can also be conveniently thought of as consisting of a server (the 
DBMS itself) and a set of clients (the applications). Client and server can and often will 

run on distinct machines, thus providing one simple kind of distributed processing. In 

general, each server can serve many clients, and each client can access many servers. If 

the system provides total “transparency”—meaning that each client can behave as if it 

were dealing with a single server on a single machine, regardless of the overall physical 

state of affairs—then we have a genuine distributed database system. 
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EXERCISES 

2.1 Draw a diagram of the database system architecture presented in this chapter (the ANSI/ 

SPARC architecture). 

2.2 Explain the following in your own words: 

back end 

client 

conceptual DDL. schema, view 

conceptual/internal mapping 

data definition language 

data dictionary 

data manipulation language 

data sublanguage 

DB/DC system 

DC manager 

distributed database 

distributed processing 

external DDL, schema, view 

extemal/conceptual mapping 

front end 

host language 

load 

logical database design 

internal DDL, schema, view 

physical database design 

planned request 

reorganization 

server 

stored database definition 

unload/reload 

unplanned request 

user interface 

utility 

2.3 Describe the sequence of steps involved in retrieving a particular external record occurrence. 

2.4 List the major functions performed by the DBMS. 

2.5 Distinguish between logical and physical data independence. 

2.6 What do you understand by the term metadata? 

2.7 List the major functions performed by the DBA. 

2.8 Distinguish between the DBMS and a file management system. 

2.9 Give some examples of vendor-provided tools. 

2.10 Give some examples of database utilities. 

2.11 Examine any database system that might be available to you. Try to map that system to the 

ANSI/SPARC architecture as described in this chapter. Does it cleanly support the three levels of the 

architecture? How are the mappings between levels defined? What do the various DDLs (external, 

conceptual, internal) look like? What data sublanguage(s) does the system support? What host lan¬ 

guages? Who performs the DBA function? Are there any security or integrity facilities? Is there a 

dictionary? Is it self-describing? What vendor-provided applications does the system support? What 

utilities? Is there a separate DC manager? Are there any distributed processing capabilities? 
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2.5 Odysseas G. Tsatalos, Marvin H. Solomon, and Yannis E. Ioannidis: “The GMAP: A Versatile 

Tool for Physical Data Independence,” Proc. 20th Int. Conf. on Very Large Data Bases, Santiago, 

Chile (September 1994). 



Part I / Preliminaries 

GMAP stands for Generalized Multi-level Access Path. The authors of the paper note correctly 

that today’s database products “force users to frame their queries in terms of a logical schema 

that is directly tied to physical structures,” and hence are rather weak on physical data indepen¬ 

dence. In their paper, therefore, they propose a conceptual/internal mapping language (to use 

the terminology of the present chapter) that can be used to specify far more kinds of mappings 

than are typically supported in products today. Given a particular “logical schema,” the lan¬ 

guage (which is based on relational algebra—see Chapter 7—and is therefore declarative, not 

procedural, in nature) allows the specification of numerous different “physical” or internal 

schemas, all of them formally derived from that logical schema. Among other things, those 

physical schemas can include vertical and horizontal partitioning (or “fragmentation"—see 

Chapter 21), any number of physical access paths, clustering, and controlled redundancy. 

The paper also gives an algorithm for transforming user operations against the logical 

schema into equivalent operations against the physical schema. A prototype implementation 

shows that the DBA can tune the physical schema to “achieve significantly better performance 

than is possible with conventional techniques.” 
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3.1 INTRODUCTION 

As explained in Chapter 1, the emphasis in this book is heavily on relational systems. In 

particular. Part II covers the theoretical foundations of such systems—that is, the relational 

model—in considerable depth. The purpose of the present chapter is to give a preliminary, 

intuitive, and very informal introduction to the material to be addressed in Part II (and to 

some extent in subsequent parts too), in order to pave the way for a better understanding of 

those later parts of the book. Most of the topics mentioned will be discussed much more 

formally, and in much more detail, in those later chapters. 
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Restrict: Result: 

DEPTs where BUDGET > 8M 

DEPT# DNAME BUDGET 

Dl Marketing 10M 
D2 Development 12M 

Project: 

DEPTs over DEPT#, BUDGET 

DEPT# BUDGET 

Dl 10M 
D2 12M 
D3 5M 

Join: 

DEPTs and EMPs over DEPT# 

DEPT# DNAME BUDGET EMP# ENAME SALARY 

Dl Marketing 10M El Lopez 40K 
Dl Marketing 10M E2 Cheng 42K 
D2 Development 12M E3 Finzi 30K 
D2 Development 12M E4 Saito 35K 

Fig. 3.2 Restrict, project, and join (examples) 

the basis of common values in that column. To be specific, a given row from table DEPT 

will join to a given row in table EMP (to yield a row of the result table) if and only if the 

two rows in question have a common DEPT# value. For example, the DEPT and EMP 

rows 

EMP# ENAME DEPT# SALARY 

El Lopez Dl 40K 

DEPT# DNAME BUDGET 

Dl Marketing 10M 

(column names shown for explicitness) join together to produce the result row 

DEPT# DNAME BUDGET EMP# ENAME SALARY 

Dl Marketing 10M El Lopez 4 OK 

because they have the same value, Dl, in the common column. Note that the common 

value appears once, not twice, in the result row. The overall result of the join contains all 

possible rows that can be obtained in this manner, and no other rows. Observe in particular 

that since no EMP row has a DEPT# value of D3 (i.e., no employee is currently assigned 

to that department), no row for D3 appears in the result, even though there is a row for D3 

in table DEPT. 

Now, one point that Fig. 3.2 clearly shows is that the result of each of the three opera¬ 

tions is another table (in other words, the operators are indeed “operators that derive 

tables from tables,” as required). This is the closure property of relational systems, and it 

is very important. Basically, because the output of any operation is the same kind of 

object as the input—they are all tables—the output from one operation can become input 
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own types (as well as being able to make use of system-defined or built-in types, of 

course). For example, we might have user-defined types as follows (Tutorial D syntax 

again; the ellipses denote portions of the definitions that are not germane to the 
present discussion): 

TYPE EMP# ... ; 
TYPE NAME ... ; 
TYPE DEPT# ... ; 
TYPE MONEY ... ; 

Type EMP#, for example, can be regarded (among other things) as the set of all possible 

employee numbers; type NAME as the set of all possible names; and so on. 

Now consider Fig. 3.4, which is basically the EMP portion of Fig. 3.1 expanded to 

show the column data types. As the figure indicates, every relation—to be more precise, 

every relation value—has two parts, a set of column-name:type-name pairs (the heading), 

together with a set of rows that conform to that heading (the body). Note: In practice we 

often ignore the type-name components of the heading, as indeed we have done in all of 

our examples prior to this point, but you should understand that, conceptually, they are 
always there. 

Now, there is a very important (though perhaps unusual) way of thinking about rela¬ 

tions, and that is as follows: 

1. Given a relation r, the heading of r denotes a certain predicate (where a predicate is 

just a truth-valued function that, like all functions, takes a set of parameters). 

2. As mentioned briefly in Chapter 1, each row in the body of r denotes a certain true 

proposition, obtained from the predicate by substituting certain argument values of 

the appropriate type for the parameters of the predicate (“instantiating the predi¬ 

cate”). 

In the case of Fig. 3.4, for example, the predicate looks something like this: 

Employee EMP# is named ENAME, works in department DEPT#, and earns sal- 

ary SALARY 

(the parameters are EMP#, ENAME, DEPT#, and SALARY, corresponding of course to 

the four EMP columns). And the corresponding true propositions are: 

Employee El is named Lopez, works in department Dl, and earns salary 40K 

(obtained by substituting the EMP# value El, the NAME value Lopez, the DEPT# value 

Dl, and the MONEY value 40K for the appropriate parameters); 

EMP# : EMP# ENAME : NAME DEPT# : DEPT# SALARY : MONEY 

El Lopez Dl 40K 

E2 Cheng Dl 42K 

E3 Finzi D2 30K 

E4 Saito D2 35K 

Fig. 3.4 Sample EMP relation value, showing column types 
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3.5 OPTIMIZATION 

As explained in Section 3.2, the relational operators (restrict, project, join, and so on) are 

all set-level. As a consequence, relational languages are often said to be nonprocedural, 
on the grounds that users specify what, not how—that is, they say what they want, without 

specifying a procedure for getting it. The process of “navigating” around the stored data in 

order to satisfy user requests is performed automatically by the system, not manually by 

the user. For this reason, relational systems are sometimes said to perform automatic nav¬ 

igation. In nonrelational systems, by contrast, navigation is generally the responsibility of 

the user. A striking illustration of the benefits of automatic navigation is shown in Fig. 3.5, 
which contrasts a certain SQL INSERT statement with the “manual navigation” code the 

user might have to write to achieve an equivalent effect in a nonrelational system (actually 

a CODASYL network system; the example is taken from the chapter on network databases 

in reference [1.5]). Note: The database is the well-known suppliers-and-parts database. 

See Section 3.9 for further explanation. 

INSERT INTO SP ( S#, P#, QTY ) 
VALUES ( ' S4 ' , 'P3', 1000 ) ; 

MOVE 'S4' TO S# IN S 
FIND CALC S 
ACCEPT S-SP-ADDR FROM S-SP CURRENCY 
FIND LAST SP WITHIN S-SP 
while SP found PERFORM 

ACCEPT S-SP-ADDR FROM S-SP CURRENCY 
FIND OWNER WITHIN P-SP 
GET P 
IF P# IN P < 'P3' 

leave loop 
END-IF 
FIND PRIOR SP WITHIN S-SP 

END-PERFORM 
MOVE 'P3' TO P# IN P 
FIND CALC P 
ACCEPT P-SP-ADDR FROM P-SP CURRENCY 
FIND LAST SP WITHIN P-SP 
while SP found PERFORM 

ACCEPT P-SP-ADDR FROM P-SP CURRENCY 
FIND OWNER WITHIN S-SP 
GET S 
IF S# IN S < 'S4' 

leave loop 
END-IF 
FIND PRIOR SP WITHIN P-SP 

END-PERFORM 
MOVE 1000 TO QTY IN SP 
FIND DB-KEY IS S-SP-ADDR 
FIND DB-KEY IS P-SP-ADDR 
STORE SP 
CONNECT SP TO S-SP 
CONNECT SP TO P-SP 

Fig. 3.5 Automatic vs. manual navigation 
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and so on. To repeat, therefore: Users specify only what data they want, not how to get to 

that data; the access strategy for getting to that data is chosen by the optimizer (“automatic 

navigation”). Users and user programs are thus independent of such access strategies, 

which is of course essential if data independence is to be achieved. 

We will have a lot more to say about the optimizer in Chapter 18. 

3.6 THE CATALOG 

As explained in Chapter 2, the DBMS must provide a catalog or dictionary function. 

The catalog is the place where—among other things—all of the various schemas (exter¬ 

nal, conceptual, internal) and all of the corresponding mappings (external/conceptual, 

conceptual/intemal, external/extemal) are kept. In other words, the catalog contains 

detailed information, sometimes called descriptor information or metadata, regarding the 

various objects that are of interest to the system itself. Examples of such objects are rel- 

vars, indexes, users, integrity constraints, security constraints, and so on. Descriptor 

information is essential if the system is to do its job properly. For example, the optimizer 

uses catalog information about indexes and other auxiliary structures, as well as much 

other information, to help it decide how to implement user requests (see Chapter 18). 

Likewise, the authorization subsystem uses catalog information about users and security 

constraints to grant or deny such requests in the first place (see Chapter 17). 

Now, one of the nice features of relational systems is that, in such a system, the cata¬ 

log itself consists of relvars (more precisely, system relvars, so called to distinguish them 

from ordinary user ones). As a result, users can interrogate the catalog in exactly the same 

way they interrogate their own data. For example, the catalog in an SQL system might 

include two system relvars called TABLE and COLUMN, the purpose of which is to 

describe the tables (or relvars) in the database and the columns in those tables. For the 

departments-and-employees database of Fig. 3.1, the TABLE and COLUMN relvars 

might look in outline as shown in Fig. 3.6.4 
Note: As mentioned in Chapter 2, the catalog should normally be self-describing—that 

is, it should include entries describing the catalog relvars themselves (see Exercise 3.3). 

Now suppose some user of the departments-and-employees database wants to know 

exactly what columns relvar DEPT contains (obviously we are assuming that for some rea¬ 

son the user does not already have this information). Then the expression 

( COLUMN WHERE TABNAME = 'DEPT' ) { COLNAME } 

does the job. 
Here is another example: “Which relvars include a column called EMP#?” 

( COLUMN WHERE COLNAME = 'EMP#' ) { TABNAME } 

4 Note that the presence of column ROWCOUNT in Fig. 3.6 suggests that INSERT and DELETE opera¬ 
tions on the database will cause an update to the catalog as a side effect. In practice, ROWCOUNT might 
be updated only on request (e.g., when some utility is run), meaning that values of that column might not 
always be current. 
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TABNAME COLCOUNT ROWCOUNT 

DEPT 3 3 
EMP 4 4 

COLUMN TABNAME COLNAME 

DEPT DEPT# 
DEPT DNAME 
DEPT BUDGET 
EMP EMP# 
EMP ENAME 
EMP DEPT# 
EMP SALARY 

Fig. 3.6 Catalog for the departments-and-employees database (in outline) 

Exercise: What does the following do? 

( ( TABLE JOIN COLUMN ) 
WHERE COLCOUNT < 5 ) { TABNAME, COLNAME } 

3.7 BASE RELVARS AND VIEWS 

We have seen that, starting with a set of relvars such as DEPT and EMP. together with a 

set of relation values for those relvars, relational expressions allow us to obtain further 

relation values from those given ones. It is time to introduce a little more terminology. The 

original (given) relvars are called base relvars, and their values are called base relations; 

a relation that is not a base relation but can be obtained from the base relations by means 

of some relational expression is called a derived, or derivable, relation. Note: Base rel¬ 

vars are called real relvars in reference [3.3]. 
Now, relational systems obviously have to provide a means for creating the base rel¬ 

vars in the first place. In SQL, for example, this task is performed by the CREATE TABLE 

statement (TABLE here meaning, very specifically, a base relvar, or what SQL calls a base 

table). And base relvars obviously have to be named—for example: 

CREATE TABLE EMP ... ; 

However, relational systems usually support another kind of named relvar also, 

called a view, whose value at any given time is a derived relation (and so a view can be 

thought of, loosely, as a derived relvar). The value of a given view at a given time is 

whatever results from evaluating a certain relational expression at that time; the rela¬ 

tional expression in question is specified when the view in question is created. For exam¬ 

ple, the statement 

CREATE VIEW TOPEMP AS 
( EMP WHERE SALARY > 33K ) { EMP#, ENAME, SALARY > ; 
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EMP# ENAME DEPT# SALARY 

El Lopez D1 4 OK 
E2 Cheng D1 42K 

E3 Finzi D2 30K 
E4 Saito D2 35K 

Fig. 3.7 TOPEMP as a view of EMP (unshaded portions) 

might be used to define a view called TOPEMP. (For reasons that are unimportant at this 

juncture, this example is expressed in a mixture of SQL and Tutorial D.) 

When this statement is executed, the relational expression following the AS—the 

view-defining expression—is not evaluated but is merely remembered by the system in 

some way (actually by saving it in the catalog, under the specified name TOPEMP). To 

the user, however, it is now as if there really were a relvar in the database called TOPEMP, 

with current value as indicated in the unshaded portions (only) of Fig. 3.7. And the user 

should be able to operate on that view exactly as if it were a base relvar. Note: If (as sug¬ 

gested previously) DEPT and EMP are thought of as real relvars, then TOPEMP might be 

thought of as a virtual relvar—that is, a relvar that appears to exist in its own right, but in 

fact does not (its value at any given time depends on the value(s) of certain other rel- 

var(s)). In fact, views are called virtual relvars in reference [3.3]. 
Note carefully, however, that although we say that the value of TOPEMP is the rela¬ 

tion that would result if the view-defining expression were evaluated, we do not mean we 

now have a separate copy of the data; that is, we do not mean the view-defining expres¬ 

sion actually is evaluated and the result materialized. On the contrary, the view is effec¬ 

tively just a kind of “window” into the underlying base relvar EMP. As a consequence, 

any changes to that underlying relvar will be automatically and instantaneously visible 

through that window (assuming they lie within the unshaded portion). Likewise, changes 

to TOPEMP will automatically and instantaneously be applied to relvar EMP, and hence 

be visible through the window (see later for an example). 

Here is a sample retrieval operation against view TOPEMP: 

( TOPEMP WHERE SALARY < 42K ) { EMP#, SALARY > 

Given the sample data of Fig. 3.7, the result will look like this: 

Conceptually, operations against a view like the retrieval operation just shown are han¬ 

dled by replacing references to the view name by the view-defining expression (i.e., the 

expression that was saved in the catalog). In the example, therefore, the original expression 

( TOPEMP WHERE SALARY < 42K ) { EMP#, SALARY } 
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is modified by the system to become 

( ( ( EMP WHERE SALARY > 33K ) { BMP#, ENAME, SALARY } ) 
WHERE SALARY < 42K ) { EMP#, SALARY > 

(we have italicized the view name in the original expression and the replacement text in the 

modified version). The modified expression can then be simplified to just 

( EMP WHERE SALARY > 33K AND SALARY < 42K ) { EMP#, SALARY } 

(see Chapter 18), and this latter expression when evaluated yields the result shown earlier. 

In other words, the original operation against the view is effectively converted into an 

equivalent operation against the underlying base relvar, and that equivalent operation is 

then executed in the normal way (more accurately, optimized and executed in the normal 

way). 

By way of another example, consider the following DELETE operation: 

DELETE TOPEMP WHERE SALARY < 42K ; 

The DELETE that is actually executed looks something like this: 

DELETE EMP WHERE SALARY > 33K AND SALARY < 42K ; 

Now, the view TOPEMP is very simple, consisting as it does just of a row-and- 

column subset of a single underlying base relvar (loosely speaking). In principle, how¬ 

ever, a view definition, since it is essentially just a named relational expression, can be of 

arbitrary complexity (it can even refer to other views). For example, here is a view whose 

definition involves a join of two underlying base relvars: 

CREATE VIEW JOINEX AS 
( ( EMP JOIN DEPT ) WHERE BUDGET > 7M ) { EMP#, DEPT# > ; 

We will return to the whole question of view definition and view processing in Chap¬ 

ter 10. 

Incidentally, we can now explain the remark in Chapter 2, near the end of Section 2.2, 

to the effect that the term view has a rather specific meaning in relational contexts that is 

not identical to the meaning assigned to it in the ANSI/SPARC architecture. At the exter¬ 

nal level of that architecture, the database is perceived as an “external view,” defined by an 

external schema (and different users can have different external views). In relational sys¬ 

tems, by contrast, a view is, specifically, a named, derived, virtual relvar, as previously 

explained. Thus, the relational analog of an ANSI/SPARC “external view” is (typically) a 

collection of several relvars, each of which is a view in the relational sense, and the 

“external schema” consists of definitions of those views. (It follows that views in the rela¬ 

tional sense are the relational model’s way of providing logical data independence, 

though once again it has to be said that today’s SQL products are sadly deficient in this 
regard. See Chapter 10.) 

Now, the ANSI/SPARC architecture is quite general and allows for arbitrary variabil¬ 

ity between the external and conceptual levels. In principle, even the types of data struc¬ 

tures supported at the two levels could be different; for example, the conceptual level 
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3.8 TRANSACTIONS 

Note: The topic of this section is not peculiar to relational systems. We cover it here never¬ 

theless, because an understanding of the basic idea is needed in order to appreciate cer¬ 

tain aspects of the material to come in Part II. However, our coverage at this point is 

deliberately not very deep. 

In Chapter 1 we said that a transaction is a “logical unit of work." typically involving 

several database operations. Clearly, the user needs to be able to inform the system when 

distinct operations are part of the same transaction, and the BEGIN TRANSACTION, 

COMMIT, and ROLLBACK operations are provided for this purpose. Basically, a transac¬ 

tion begins when a BEGIN TRANSACTION operation is executed, and terminates when a 

corresponding COMMIT or ROLLBACK operation is executed. For example (pseudocode): 

BEGIN TRANSACTION ; /* move $$$ from account A to account B */ 
UPDATE account A ; /* withdrawal */ 
UPDATE account B ; /* deposit */ 
IF everything worked fine 

THEN COMMIT ; /* normal end */ 
ELSE ROLLBACK ; /* abnormal end */ 

END IF ; 

Points arising: 

1. Transactions are guaranteed to be atomic—that is, they are guaranteed (from a logi¬ 

cal point of view) either to execute in their entirety or not to execute at all,7 even if 

(say) the system fails halfway through the process. 

2. Transactions are also guaranteed to be durable, in the sense that once a transaction 

successfully executes COMMIT, its updates are guaranteed to appear in the database, 

even if the system subsequently fails at any point. (It is this durability property of 

transactions that makes the data in the database persistent, in the sense of Chapter 1.) 

3. Transactions are also guaranteed to be isolated from one another, in the sense that da¬ 

tabase updates made by a given transaction T1 are not made visible to any distinct 

transaction T2 until and unless Tl successfully executes COMMIT. COMMIT causes 

database updates made by the transaction to become visible to other transactions; 

such updates are said to be committed, and are guaranteed never to be canceled. If the 

transaction executes ROLLBACK instead, all database updates made by the transac¬ 

tion are canceled (rolled back). In this latter case, the effect is as if the transaction 

never ran in the first place. 

4. The interleaved execution of a set of concurrent transactions is usually guaranteed to 

be serializable, in the sense that it produces the same result as executing those same 

transactions one at a time in some unspecified serial order. 

Chapters 15 and 16 contain an extended discussion of all of the foregoing points, and 

much else besides. 

7 Since a transaction is the execution of some piece of code, a phrase such as “the execution of a transac¬ 
tion” is really a solecism (if it means anything at all, it has to mean the execution of an execution). How¬ 
ever, such phraseology is common and useful, and for want of anything better we will use it ourselves in 
this book. 
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now observe might better be called The Principle of Uniform Representation—states that 

the entire information content of a relational database is represented in one and only one 

way, as explicit values in column positions in rows in relations. Equivalently: The only 

variables allowed in a relational database are, specifically, relvars. 

Every relation has a heading and a body; the heading is a set of column-name:type- 

name pairs, the body is a set of rows that conform to the heading. The heading of a given 
relation can be regarded as a predicate, and each row in the body denotes a certain true 

proposition, obtained by substituting certain arguments of the appropriate type for the 

parameters of the predicate. Note that these remarks are true of derived relations as well 

as base ones; they are also true of relvars, mntatis mutandis. In other words, types are (sets 

of) things we can talk about, and relations are (sets of) things we say about the things we 
can talk about. Together, types and relations are necessary and sufficient to represent any 

data we like (at the logical level, that is). 
The optimizer is the system component that determines how to implement user 

requests (which are concerned with what, not how). Since relational systems therefore 

assume responsibility for navigating around the stored database to locate the desired data, 

they are sometimes described as automatic navigation systems. Optimization and auto¬ 

matic navigation are prerequisites for physical data independence. 
The catalog is a set of system relvars that contain descriptors for the various items 

that are of interest to the system (base relvars, views, indexes, users, etc.). Users can inter¬ 

rogate the catalog in exactly the same way they interrogate their own data. 

The original (given) relvars in a given database are called base relvars, and their val¬ 

ues are called base relations; a relation that is not a base relation but is obtained from the 

base relations by means of some relational expression is called a derived relation (collec¬ 

tively, base and derived relations are sometimes referred to as expressible relations). A 

view is a relvar whose value at any given time is such a derived relation (loosely, it can be 

thought of as a derived relvar); the value of such a relvar at any given time is whatever 
results from evaluating the associated view-defining expression at that time. Note, there¬ 

fore, that base relvars have independent existence, but views do not—they depend on the 
applicable base relvars. (Another way of saying the same thing is that base relvars are 

autonomous, but views are not.) Users can operate on views in exactly the same way as 

they operate on base relvars, at least in theory. The system implements operations on 

views by replacing references to the name of the view by the view-defining expression, 

thereby converting the operation into an equivalent operation on the underlying base 

relvar(s). 
A transaction is a logical unit of work, typically involving several database opera¬ 

tions. A transaction begins when BEGIN TRANSACTION is executed and terminates 

when COMMIT (normal termination) or ROLLBACK (abnormal termination) is exe¬ 
cuted. Transactions are atomic, durable, and isolated from one another. The interleaved 

execution of a set of concurrent transactions is usually guaranteed to be serializable. 

Finally, the base example for most of the book is the suppliers-and-parts database. 

It is worth taking the time to familiarize yourself with that example now, if you have not 

done so already; that is, you should at least know which relvars have which columns and 

what the primary and foreign keys are (it is not as important to know exactly what the 

sample data values are!). 
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EXERCISES 

3.1 Explain the following in your own words: 

automatic navigation 

base relvar 

catalog 

closure 

commit 

derived relvar 

foreign key 

join 

optimization 

predicate 

primary key 

projection 

proposition 

relational database 

relational DBMS 

relational model 

restriction 

rollback 

set-level operation 

view 

3.2 Sketch the contents of the catalog relvars TABLE and COLUMN for the suppliers-and-parts 

database. 

3.3 As explained in Section 3.6, the catalog is self-describing—that is, it includes entries for the 

catalog relvars themselves. Extend Fig. 3.6 to include the necessary entries for the TABLE and 

COLUMN relvars themselves. 

3.4 Here is a query on the suppliers-and-parts database. What does it do? What is the predicate for 

the result? 

( ( S JOIN SP ) WHERE P# = P# ('P2') ) { S#, CITY } 

3.5 Suppose the expression in Exercise 3.4 is used in a view definition: 

CREATE VIEW V AS 
( ( S JOIN SP ) WHERE P# = P# ('P2') ) { S#, CITY } ; 

Now consider this query: 

( V WHERE CITY = 'London' ) { S# > 

What does this query do? What is the predicate for the result? Show what is involved on the part of 

the DBMS in processing this query. 

3.6 What do you understand by the terms atomicity, durability, isolation, and serializability as 

applied to transactions? 

3.7 State The Information Principle. 

3.8 If you are familiar with the hierarchic data model, identify as many differences as you can 

between it and the relational model as briefly described in this chapter. 
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To quote: “The demand for computer applications is growing fast—so fast that information 
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systems departments (whose responsibility it is to provide those applications) are lagging fur¬ 

ther and further behind in their ability to meet that demand.” There are two complementary 

ways of attacking this problem: 

1. Provide IT professionals with new tools to increase their productivity. 

2. Allow end users to interact directly with the database, thus bypassing the IT professional 

entirely. 

Both approaches are needed, and in this paper Codd gives evidence to suggest that the neces¬ 

sary foundation for both is provided by relational technology. 

3.2 C. J. Date: "Why Relational?” in Relational Database Writings 1985-1989. Reading, Mass.: 

Addison-Wesley (1990). 

An attempt to provide a succinct yet reasonably comprehensive summary of the major advan¬ 

tages of relational systems. The following observation from the paper is worth repeating here: 

Among all the numerous advantages of “going relational,” there is one in particular that can¬ 

not be overemphasized, and that is the existence of a sound theoretical base. To quote: “Rela¬ 

tional really is different. It is different because it is not ad hoc. Older systems, by contrast, 

were ad hoc; they may have provided solutions to certain important problems of their day, but 

they did not rest on any solid theoretical base. Relational systems, by contrast, do rest on such 

a base . . . which means [they] are rock solid . . . Thanks to this solid foundation, relational 

systems behave in well-defined ways; and (possibly without realizing the fact) users have a 

simple model of that behavior in their mind, one that enables them to predict with confidence 

what the system will do in any given situation. There are (or should be) no surprises. This pre¬ 

dictability means that user interfaces are easy to understand, document, teach, learn, use, and 

remember.” 

3.3 C. J. Date and Hugh Darwen: Foundation for Future Database Systems: The Third Manifesto 

(2d edition). Reading, Mass.: Addison-Wesley (2000). See also http://www.thethirdmanifesto.com, 

which contains certain formal extracts from the book, an errata list, and much other relevant mate¬ 

rial. Reference [20.1] is also relevant. 

The Third Manifesto is a detailed, formal, and rigorous proposal for the future direction of data¬ 

bases and DBMSs. It can be seen as an abstract blueprint for the design of a DBMS and the 

language interface to such a DBMS. It is based on the classical core concepts type, value, vari¬ 

able, and operator. For example, we might have a type INTEGER; the integer “3” might be a 

value of that type; N might be a variable of that type, whose value at any given time is some 

integer value (i.e., some value of that type); and “+” might be an operator that applies to inte¬ 

ger values (i.e., to values of that type). Note: The emphasis on types in particular is brought out 

by the book’s subtitle: A Detailed Study of the Impact of Type Theory on the Relational Model 

of Data, Including a Comprehensive Model of Type Inheritance. Part of the point here is that 

type theory and the relational model are more or less independent of each other. To be more 

specific, the relational model does not prescribe support for any particular types (other than 

type boolean)', it merely says that attributes of relations must be of some type, thus implying 

that some (unspecified) types must be supported. 

The term relvar is taken from this book. In this connection, the book also says this: “The 

first version of this Manifesto drew a distinction between database values and database vari¬ 

ables, analogous to the distinction between relation values and relation variables. It also intro¬ 

duced the term dbvar as shorthand for database variable. While we still believe this distinction 

to be a valid one, we found it had little direct relevance to other aspects of these proposals. We 

therefore decided, in the interest of familiarity, to revert to more traditional terminology.” This 
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decision subsequently turned out to be a bad one ... To quote reference [23.4]: “With hind¬ 

sight, it would have been much better to bite the bullet and adopt the more logically correct 

terms database value and database variable (or dbvar), despite their lack of familiarity.” In the 

present book we do stay with the familiar term database, but we decided to do so only against 

our own better judgment (somewhat). 

One more point. As the book itself says: “We [confess] that we do feel a little uncomfort¬ 

able with the idea of calling what is, after all, primarily a technical document a manifesto. 

According to Chambers Twentieth Century Dictionary, a manifesto is a written declaration of 

the intentions, opinions, or motives of some person or group (e.g., a political party). By con¬ 

trast, The Third Manifesto is ... a matter of science and logic, not mere intentions, opinions, or 

motives.” However, The Third Manifesto was specifically written to be compared and con¬ 

trasted with two previous ones. The Object-Oriented Database System Manifesto [20.2, 25.1] 

and The Third-Generation Database System Manifesto [26.44], and our title was thus effec¬ 

tively chosen for us. 

3.4 C. J. Date: “Great News, The Relational Model Is Very Much Alive!” http://www.dbdebunk.com 

(August 2000). 

Ever since it first appeared in 1969, the relational model has been subjected to an extraordinary 

variety of attacks by a number of different writers. One recent example was entitled, not at all 

atypically, “Great News, The Relational Model Is Dead!” This article was written as a rebuttal 

to this position. 

3.5 C. J. Date: “There’s Only One Relational Model!” http://www.dbdebunk.com (February 2001). 

Ever since it first appeared in 1969, the relational model has been subjected to an extraordinary 

variety of misrepresentation and obfuscation by a number of different writers. One recent 

example was a book chapter titled “Different Relational Models,” the first sentence of which 

read: “There is no such thing as the relational model for databases anymore [sic] than there is 

just one geometry.” This article was written as a rebuttal to this position. 
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Restrict: Result: 

SELECT S#, P#, QTY 
FROM SP 
WHERE QTY < QTY ( 150 ) ; 

Project: Result: 

SELECT S#, CITY 
FROM S ; 

Join: 

SELECT S.S#, SNAME, STATUS, CITY, P#, QTY 
FROM S, SP 
WHERE S.S# = SP.S# ; 

s# SNAME STATUS CITY P# QTY 

SI Smith 20 London PI 300 
SI Smith 20 London P2 200 
SI Smith 20 London P3 400 

S4 Clark 20 London P5 400 

S# CITY 

SI London 
S2 Paris 
S3 Paris 
S4 London 
S5 Athens 

S# p# QTY 

SI 
SI 

P5 
P6 

100 
100 

Fig. 4.2 Restrict, project, and join examples in SQL 

We remark that SQL also supports a shorthand form of the SELECT clause as illus¬ 

trated by the following example: 

SELECT * /* or "SELECT S.*" (i.e., the */ 
FROM S ; /* can be dot-qualified) */ 

The result is a copy of the entire S table; the star or asterisk is shorthand for a “comma- 

list”—see Section 4.6 for a formal explanation of this term—of (a) names of all columns in 

the first table referenced in the FROM clause, in the left-to-right order in which those col¬ 

umns are defined within that table, followed by (b) names of all columns in the second table 

referenced in the FROM clause, in the left-to-right order in which those columns are 

defined within that table (and so on for all of the other tables referenced in the FROM 

clause). Note: The expression SELECT * FROM T, where T is a table name, can be further 
abbreviated to just TABLE T. 

The SELECT statement is discussed at much greater length in Chapter 8, Section 8.6. 
Turning now to update operations: Examples of the SQL INSERT, DELETE, and 

UPDATE statements have already been given in Chapter 1, but those examples deliberately 
involved single-row operations only. Like SELECT, however, INSERT, DELETE, and 

UPDATE are all set-level operations, in general (and some of the exercises in Chapter 1 did 
in fact illustrate this point). Here are some set-level update examples for the suppliers-and- 

parts database: 
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INSERT 
INTO TEMP ( P#, WEIGHT ) 

SELECT P#, WEIGHT 
FROM P 
WHERE COLOR = COLOR ('Red') ; 

This example assumes that we have already created another table TEMP with two 

columns, P# and WEIGHT. The INSERT statement inserts into that table part numbers 

and corresponding weights for all red parts. 

DELETE 
FROM SP 
WHERE P# = P# ('P2') ; 

This DELETE statement deletes all shipments for part P2. 

UPDATE S 
SET STATUS = 2 * STATUS , 

CITY = 'Rome' 
WHERE CITY = 'Paris' ; 

This UPDATE statement doubles the status for all suppliers in Paris and moves those 

suppliers to Rome. 

Note: SQL does not include a direct analog of the relational assignment operation. 

However, we can simulate that operation by first deleting all rows from the target table 

and then performing an INSERT . . . SELECT ... (as in the first example above) into that 

table. 

4.3 THE CATALOG 

The SQL standard does include specifications for a standard catalog called the Informa¬ 

tion Schema. In fact, the conventional terms catalog and schema are both used in SQL, 

but with highly SQL-specific meanings; loosely speaking, an SQL catalog consists of the 

descriptors for an individual database, and an SQL schema consists of the descriptors 

for that portion of that database that belongs to some individual user. In other words, 

there can be any number of catalogs (one per database), each consisting of any number of 

schemas. However, each catalog is required to include exactly one schema called 

INFORMATION_SCHEMA, and from the user’s perspective it is that schema that, as 

already indicated, performs the normal catalog function. 
The Information Schema thus consists of a set of SQL tables whose contents effec¬ 

tively echo, in a precisely defined way, all of the definitions from all of the other schemas 

in the catalog in question. More precisely, the Information Schema is defined to contain a 

set of views of a hypothetical “Definition Schema.” The implementation is not required to 

support the Definition Schema as such, but it is required (a) to support some kind of “Def¬ 
inition Schema” and (b) to support views of that “Definition Schema” that do look like 

those of the Information Schema. Points arising: 

3 In the interest of accuracy, we should also say that there is no such thing as a “database” in the SQL 
standard! Exactly what the collection of data is called that is described by a catalog is implementation- 
defined. However, it is not unreasonable to think of it as a database. 



90 Part I / Preliminaries 

1. The rationale for stating the requirement in terms of two separate constructs as just 

described is as follows. First, existing products certainly do support something akin 

to the "Definition Schema." However, those “Definition Schemas” vary widely from 

one product to another (even when the products in question come from the same ven¬ 

dor). Hence the idea of requiring only that the implementation support certain pre¬ 

defined views of its "Definition Schema” does make sense. 

2. We should really say “an” (not “the”) Information Schema, since as we have seen 

there is one such in every catalog. In general, therefore, the totality of data available 

to a given user will not be described by a single Information Schema. For simplicity, 

however, we will continue to talk as if there were just one. 

It is not worth going into great detail on the content of the Information Schema here; 

instead, we simply list some of the more important Information Schema views, in the 

hope that their names alone will be sufficient to give some idea of what those views 

contain. One point that is worth calling out explicitly, however, is that the TABLES view 

contains information for all named tables, views as well as base tables, while the VIEWS 
view contains information for views only. 

ASSERTIONS 
CHECK_CONSTRAINTS 
COLUMNS 
COLUMN_PRIVILEGES 
COLUMN_UDT_USAGE 
CONSTRAINT_COLUMN_USAGE 
CONSTRAINT_TABLE_USAGE 
KEY_COLUMN_USAGE 
REFERENTIAL_CONSTRAINTS 
SCHEMATA 

TABLES 
TABLE_CONSTRAINTS 
TABLE_PRIVILEGES 
USAGE_PRIVILEGES 
USER_DEFINED_TYPES 
UDT_PRIVILEGES 
VIEWS 
VIEW_COLUMN_USAGE 
VIEW TABLE USAGE 

Reference [4.20] gives more details; in particular, it shows how to formulate queries 

against the Information Schema (which is not quite as simple as you might expect). 

4.4 VIEWS 

Here is an example of an SQL view definition: 

CREATE VIEW GOOD_SUPPLIER 
AS SELECT S#, STATUS, CITY 

FROM S 
WHERE STATUS > 15 ; 

And here is an example of an SQL query against this view: 

SELECT S#, STATUS 
FROM GOOD_SUPPLIER 
WHERE CITY = 'London' ; 

Substituting the view definition for the reference to the view name, we obtain an 

expression that looks something like this (note the subquery in the FROM clause): 

SELECT GOOD_SUPPLIER.S #, GOOD_SUPPLIER.STATUS 
FROM ( SELECT S#, STATUS, CITY 

FROM S 
WHERE STATUS > 15 ) AS GOOD_SUPPLIER 

WHERE GOOD SUPPLIER.CITY = 'London' ; 
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And this expression can then be simplified to something like this: 

SELECT S#, STATUS 
FROM S 

WHERE STATUS >15 
AND CITY = 'London' ; 

This latter query is what is actually executed. 

By way of another example, consider the following DELETE operation: 

DELETE 

FROM GOOD_SUPPLIER 
WHERE CITY = 'London' ; 

The DELETE actually executed looks something like this: 

DELETE 
FROM S 

WHERE STATUS >15 
AND CITY = 'London' ; 

4.5 TRANSACTIONS 

SQL includes direct analogs of the BEGIN TRANSACTION, COMMIT, and ROLL¬ 

BACK statements from Chapter 3, called START TRANSACTION, COMMIT WORK, 

and ROLLBACK WORK, respectively (the keyword WORK is optional). 

4.6 EMBEDDED SQL 

Most SQL products allow SQL statements to be executed both directly (i.e., interactively 

from an online terminal) and as part of an application program (i.e., the SQL statements 

can be embedded, meaning they can be intermixed with the programming language state¬ 
ments of such a program). In the embedded case, moreover, the application program can 

typically be written in a variety of host languages; the SQL standard includes support for 

Ada, C, COBOL, Fortran, Java, M (formerly known as MUMPS), Pascal, and PL/I. In this 
section we consider the embedded case specifically. 

A fundamental principle underlying embedded SQL, which we call the dual-mode 

principle, is that any SQL statement that can be used interactively can also be embedded 
in an application program. Of course, there are various differences of detail between a 

given interactive SQL statement and its embedded counterpart, and retrieval operations in 
particular require significantly extended treatment in the embedded case—see later in this 

section—but the principle is nevertheless broadly true. (Its converse is not, by the way; 

several embedded SQL statements cannot be used interactively, as we will see.) 
Before we can discuss the actual statements of embedded SQL, it is necessary to cover 

a number of preliminary details. Most of those details are illustrated by the program 
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EXEC SQL BEGIN DECLARE SECTION ; 

DCL SQLSTATE CHAR(5) ; 
DCL P# CHAR(6) ; 
DCL WEIGHT FIXED DECIMAL(5,1) ; 

EXEC SQL END DECLARE SECTION ; 

P# = ' P2 ' r / * for example */ 
EXEC SQL SELECT P.WEIGHT 

INTO :WEIGHT 
FROM P 
WHERE P.P# = P# ( :P# ) ; 

IF SQLSTATE = ' 00000' 
THEN ... / /* WEIGHT = retrieved value */ 
ELSE t /* some exception occurred */ 

Fig. 4.3 Fragment of a PL/I program with embedded SQL 

fragment shown in Fig. 4.3. (To fix our ideas we assume the host language is PL/I. Most of 

the ideas translate into other host languages with only minor changes.) Points arising: 

1. Embedded SQL statements are prefixed by EXEC SQL, to distinguish them from 

statements of the host language, and are terminated by a special terminator symbol 
(a semicolon for PL/I). 

2. An executable SQL statement (for the rest of this section we will mostly drop the 

"embedded” qualifier) can appear wherever an executable host statement can appear. 

Note that “executable,” by the way: Unlike interactive SQL, embedded SQL includes 

some statements that are purely declarative, not executable. For example, DECLARE 

CURSOR is not an executable statement (see the subsection “Operations Involving 

Cursors” later), nor are BEGIN and END DECLARE SECTION (see point 5), and 
nor is WHENEVER (see point 9). 

3. SQL statements can include references to host variables; such references must 

include a colon prefix to distinguish them from SQL column names. Host variables 

can appear in embedded SQL wherever a literal can appear in interactive SQL. They 

can also appear in an INTO clause on SELECT (see point 4) or FETCH (again, see 

the subsection “Operations Involving Cursors” later) to designate targets for retrieval 
operations. 

4. Notice the INTO clause on the SELECT statement in Fig. 4.3. The purpose of that 

clause is (as just indicated) to specify the target variables into which values are to be 

retrieved; the zth target variable mentioned in the INTO clause corresponds to the zth 

value to be retrieved, as specified by the SELECT clause. 

5. All host variables referenced in SQL statements must be declared (DCL in PL/I) 

within an embedded SQL declare section, which is delimited by the BEGIN and 
END DECLARE SECTION statements. 

6. Every program containing embedded SQL statements must include a host variable 

called SQLSTATE. After any SQL statement has been executed, a status code is 

returned to the program in that variable; a value of 00000 means the statement exe- 
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cuted successfully, and a value of 02000 means the statement did execute but no data 

was found to satisfy the request (see reference [4.23] for details of other values). In 

principle, therefore, every SQL statement in the program should be followed by a test 

on SQLSTATE, and appropriate action taken if the value is not what was expected. In 
practice, however, such testing can often be implicit (see point 9). 

7. Every host variable must have a data type appropriate to the uses to which it is put. 

For example, a host variable that is to be used as a target (e.g., on SELECT) must 

have a data type that is compatible with that of the expression that provides the value 

to be assigned to that target; likewise, a host variable that is to be used as a source 

(e.g., on INSERT) must have a data type that is compatible with that of the SQL col¬ 
umn to which values of that source are to be assigned. The details are a little compli¬ 

cated, however, and we therefore ignore the issue for the remainder of this chapter 

(for the most part, at any rate), deferring further discussion to Chapter 5, Section 5.7. 

8. Host variables and SQL columns can have the same name. 

9. As already mentioned, every SQL statement should in principle be followed by a test 

of the returned SQLSTATE value. The WHENEVER statement is provided to sim¬ 

plify this process. The WHENEVER statement takes the form: 

EXEC SQL WHENEVER <condition> <action> ; 

Possible <condition>s include NOT FOUND, SQLWARNING, and SQLEXCEP- 

TION (others include specific SQLSTATE values and violation of specified integrity 

constraints); <ciction> is either CONTINUE or a GO TO statement. WHENEVER is 

not an executable statement—rather, it is a directive to the SQL compiler: “WHEN¬ 
EVER <condition> GO TO <lcibel>" causes the compiler to insert a statement of the 

form “IF <condition> THEN GO TO <label> . . .” after each executable SQL state¬ 

ment it encounters; "WHENEVER <condition> CONTINUE” causes it not to insert 
any such statements, the implication being that the programmer will insert appropri¬ 

ate statements by hand. The <condition>s NOT FOUND, SQLWARNING, and 
SQLEXCEPTION are defined as follows: 

NOT FOUND means no data was found 
—SQLSTATE = 02m: 

SQLWARNING means a minor error occurred 
—SQLSTATE = 01 xtv 

SQLEXCEPTION means a major error occurred 
—see reference [4.23] for SQLSTATE 

Each WHENEVER statement the compiler encounters on its sequential scan through 

the program text for a particular condition overrides the previous one it found for that 

condition. 

10. Note finally that, to use the terminology of Chapter 2, embedded SQL constitutes a 

loose coupling between SQL and the host language. 

So much for the preliminaries. In the rest of this section we concentrate on data 
manipulation operations specifically. As already indicated, most of those operations can 

be handled in a fairly straightforward fashion (i.e., with only minor changes to their 
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DELETE: Delete all shipments for suppliers whose city is given by the host variable 
CITY. 

EXEC SQL DELETE 
FROM SP 
WHERE :CITY = 

( SELECT CITY 
FROM S 

WHERE S.S# = SP.S# ) ; 

If no supplier rows satisfy the WHERE condition, SQLSTATE will be set to 02000. 

Again, note the subquery (in the WHERE clause this time). 

UPDATE: Increase the status of all London suppliers by the amount given by the host vari¬ 
able RAISE. 

EXEC SQL UPDATE S 
SET STATUS = STATUS + :RAISE 
WHERE CITY = 'London' ; 

Again SQLSTATE will be set to 02000 if no SP rows satisfy the WHERE condition. 

Operations Involving Cursors 

Now we turn to the question of set-level retrieval—that is, retrieval of a set containing an 

arbitrary number of rows, instead of at most one row as in the singleton SELECT case dis¬ 

cussed in the previous subsection. As explained earlier, what is needed here is a mecha¬ 

nism for accessing the rows in the set one by one, and cursors provide such a mechanism. 

The process is illustrated in outline by the example of Fig. 4.4, which is intended to 

retrieve S#, SNAME, and STATUS information for all suppliers in the city given by the 

host variable Y. 
Explanation: The statement “DECLARE X CURSOR . . defines a cursor called X, 

with an associated table expression (i.e., an expression that evaluates to a table), specified 

by the SELECT that forms part of that DECLARE. That table expression is not evaluated 

at this point; DECLARE CURSOR is a purely declarative statement. The expression is 

EXEC SQL DECLARE X CURSOR FOR /* define the cursor */ 
SELECT S.S#, S.SNAME, S. STATUS 
FROM S 
WHERE S.CITY = :Y 
ORDER BY S# ASC ; 

EXEC SQL OPEN X / /* execute the query */ 
DO for all S rows accessible via X ; 

EXEC SQL FETCH X INTO : S#, :SNAME, : STATUS ; 
/* fetch next supplier */ 

END ; 

EXEC SQL CLOSE X f /* deactivate cursor X * / 

Fig. 4.4 Multi-row retrieval example 
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supports access to the database from an online terminal or something analogous). Typi¬ 

cally, the steps such an application must go through are as follows (in outline): 

1. Accept a command from the terminal. 

2. Analyze that command. 

3. Execute appropriate SQL statements on the database. 

4. Return a message and/or results to the terminal. 

Now, if the set of commands the program can accept in Step 1 is fairly small, as in the 

case of (perhaps) a program handling airline reservations, then the set of possible SQL 

statements to be executed will probably also be small and can be “hardwired” into the 

program. In this case, Steps 2 and 3 will consist simply of logic to examine the input com¬ 

mand and then branch to the part of the program that issues the predefined SQL state¬ 

ments). On the other hand, if there can be great variability in the input, then it might not 

be practicable to predefine and “hardwire” SQL statements for every possible command. 

Instead, what we need to do is construct the necessary SQL statements dynamically, and 

then compile and execute those constructed statements dynamically. The SQL facilities 

described in this section are provided to assist in this process. 

Dynamic SQL 

Dynamic SQL is part of embedded SQL. It consists of a set of “dynamic statements”— 

which themselves ore compiled ahead of time—whose purpose is precisely to support the 

compilation and execution of regular SQL statements that are constructed at run time. 

Thus, the two principal dynamic statements are PREPARE (in effect, compile) and EXE¬ 
CUTE. Their use is illustrated in the following unrealistically simple, but accurate, PL/I 

example. 

DCL SQLSOURCE CHAR VARYING (65000) ; 

SQLSOURCE = 'DELETE FROM SP WHERE QTY < QTY ( 300 )' ; 
EXEC SQL PREPARE SQLPREPPED FROM :SQLSOURCE ; 
EXEC SQL EXECUTE SQLPREPPED ; 

Explanation: 

1. The name SQLSOURCE identifies a PL/I variable (of type “varying length character 

string”) in which, at run time, the program will somehow construct the source form of 

some SQL statement—a DELETE statement, in our particular example—as a charac¬ 
ter string. 

2. The name SQLPREPPED, by contrast, identifies an SQL variable, not a PL/I variable, 

that will be used to hold the compiled form of the SQL statement whose source form 

is given in SQLSOURCE. (The names SQLSOURCE and SQLPREPPED are arbi¬ 

trary, of course.) 

3. The PL/I assignment statement “SQLSOURCE = ...;” assigns to SQLSOURCE the 

source form of an SQL DELETE statement. In practice, the process of constructing 

such a source statement is likely to be much more complex—perhaps involving the 
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“relational” at all! Indeed, as far as this writer is aware, there is no product on the market 

today that supports the relational model in its entirety/’ This is not to say that some parts 

of the model are unimportant; on the contrary, every detail of the model is important, and 

important, moreover, for genuinely practical reasons. Indeed, the point cannot be stressed 
too strongly that the purpose of relational theory is not just “theory for its own sake”; 

rather, the purpose is to provide a base on which to build systems that are 100 percent 

practiced. But the sad fact is that the vendors have not yet really stepped up to the chal¬ 

lenge of implementing the theory in its entirety. As a consequence, the “relational” prod¬ 

ucts of today regrettably all fail, in one way or another, to deliver on the full promise of 
relational technology. 

4.9 SUMMARY 

This concludes our introduction to some of the major features of the SQL standard. We 

have stressed the fact that SQL is important from a commercial perspective, though it is 

sadly deficient from a relational one. 

SQL includes both a data definition language (DDL) component and a data manip¬ 

ulation language (DML) component. The SQL DML can operate at both the external 
level (on views) and the conceptual level (on base tables). Likewise, the SQL DDL can be 

used to define objects at the external level (views), the conceptual level (base tables), and 

even—in most commercial systems, though not in the standard per se—the internal level 

as well (indexes or other auxiliary structures). Moreover, SQL also provides certain data 

control facilities—that is, facilities that cannot really be classified as belonging to either 
the DDL or the DML. An example of such a facility is the GRANT statement, which 

allows users to grant access privileges to each other (see Chapter 17). 

We showed how SQL can be used to create base tables, using the CREATE TABLE 

statement (we also touched on the CREATE TYPE statement in passing). We then gave 
some examples of the SELECT, INSERT, DELETE, and UPDATE statements, showing 

in particular how SELECT can be used to express the relational restrict, project, and join 

operations. We also briefly described the Information Schema, which consists of a set of 

prescribed views of a hypothetical “Definition Schema,” and we took a quick look at the 

SQL facilities for dealing with views and transactions. 
A large part of the chapter was concerned with embedded SQL. The basic idea 

behind embedded SQL is the dual-mode principle—that is, the principle that (insofar as 

possible) any SQL statement that can be used interactively can also be used in an applica¬ 

tion program. The major exception to this principle arises in connection with multi-row 

retrieval operations, which require the use of a cursor to bridge the gap between the set- 

level retrieval capabilities of SQL and the row-level retrieval capabilities of a host 

language such as PL/I. 
Following a number of necessary, though mostly syntactic, preliminaries (including 

in particular a brief explanation of SQLSTATE), we considered those operations— 
singleton SELECT, INSERT, DELETE, and UPDATE—that have no need for cursors. 

6 But see reference [20.1]. 
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Then we turned to the operations that do need cursors, and discussed DECLARE 
CURSOR. OPEN, FETCH, CLOSE, and the CURRENT forms of DELETE and 

UPDATE. (The standard refers to the CURRENT forms of these operators as positioned 

DELETE and UPDATE, and uses the term searched DELETE and UPDATE for the non- 

CURRENT or “out of the blue” forms.) Finally, we introduced the concept of dynamic 
SQL, describing the PREPARE and EXECUTE statements in particular, and we also 

briefly explained the SQL Call-Level Interface, SQL/CLI (we also mentioned ODBC 

and JDBC). 

EXERCISES 

4.1 Fig. 4.5 shows some sample data values for an extended form of the suppliers-and-parts data¬ 

base called the suppliers-parts-projects database.7 Suppliers (S), parts (P), and projects (J) are 

uniquely identified by supplier number (S#), pail number (P#), and project number (J#), respec¬ 

tively. The predicate for SPJ (shipments) is: Supplier S# supplies part P# to project J# in quantity 

QTY (the combination {S#,P#,J#} is the primary key, as the figure indicates). Write an appropriate 

set of SQL definitions for this database. Note: This database will be used as the basis for numerous 

exercises in subsequent chapters. 

s# SNAME STATUS CITY 

SI Smith 20 London 
S2 Jones 10 Paris 
S3 Blake 30 Paris 
S4 Clark 20 London 
S5 Adams 30 Athens 

P# PNAME COLOR WEIGHT CITY 

PI Nut Red 12.0 London 
P2 Bolt Green 17.0 Paris 
P3 Screw Blue 17.0 Oslo 
P4 Screw Red 14.0 London 
P5 Cam Blue 12.0 Paris 
P6 Cog Red 19.0 London 

J# JNAME CITY 

J1 Sorter Paris 
J2 Display Rome 
J3 OCR Athens 
J4 Console Athens 
J5 RAID London 
J6 EDS Oslo 
J7 Tape London 

S# P# J# QTY 

SI PI J1 200 
SI PI J 4 700 
S2 P3 J1 400 
S2 P3 J2 200 
S2 P3 J3 200 
S2 P3 J4 500 
S2 P3 J5 600 
S2 P3 J6 400 
S2 P3 J7 800 
S2 P5 J2 100 
S3 P3 J1 200 
S3 P4 J2 500 
S4 P6 J3 300 
S4 P6 J7 300 
S5 P2 J2 200 
S5 P2 J4 100 
S5 P5 J5 500 
S5 P5 J7 100 
S5 P6 J2 200 
S5 PI J4 100 
S5 P3 J4 200 
S5 P4 J 4 800 
S5 P5 J4 400 
S5 P6 J4 500 

Fig. 4.5 The suppliers-parts-projects database (sample values) 

7 For ease of reference. Fig. 4.5 is repeated (along with Fig. 3.8) on the inside back cover of the book. 
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4.2 In Section 4.2 we described the CREATE TABLE statement as defined by the SQL standard 

per se. Many commercial SQL products support additional options on that statement, however, typi¬ 

cally having to do with indexes, disk space allocation, and other implementation matters (thereby 

undermining the objectives of physical data independence and intersystem compatibility). Investi¬ 

gate any SQL product that might be available to you. Do the foregoing criticisms apply to that prod¬ 

uct? Specifically, what additional CREATE TABLE options does that product support ? 

4.3 Once again, investigate any SQL product that might be available to you. Does that product sup¬ 

port the Information Schema? If not, what does its catalog support look like ? 

4.4 Give SQL formulations for the following updates to the suppliers-parts-projects database: 

a. Insert a new supplier S10 into table S (the name and city are Smith and New York, respectively; 

the status is not yet known). 

b. Delete all projects for which there are no shipments. 

c. Change the color of all red parts to orange. 

4.5 Again using the suppliers-parts-projects database, write a program with embedded SQL state¬ 

ments to list all suppliers in supplier number order. Each supplier should be immediately followed in 

the listing by all projects supplied by that supplier, in project number order. 

4.6 Let tables PART and PART_STRUCTURE be defined as follows: 

CREATE TABLE PART 
( P# P#, DESCRIPTION CHAR(IOO), 

PRIMARY KEY ( P# ) ) ; 

CREATE TABLE PART STRUCTURE 
( MAJOR_P# Pf, MINOR_P# P#, QTY QTY, 

PRIMARY KEY ( MAJOR_P#, MINOR_P# ), 
FOREIGN KEY ( MAJOR_P# ) REFERENCES PART, 
FOREIGN KEY ( MINOR_P# ) REFERENCES PART ) ; 

Table PART_STRUCTURE shows which parts (MAJOR_P#) contain which other parts 

(MINOR_P#) as first-level components. Write an SQL program to list all component parts of a given 

part, to all levels (the so-called part explosion problem). Note: The sample data shown in Pig. 4.6 

might help you visualize this problem. We remark that table PART_STRUCTURE shows how bill- 

of-materials data—see Section 1.3, subsection “Entities and Relationships”—is typically repre¬ 

sented in a relational system. 

PART STRUCTURE 

Fig. 4.6 Table PART STRUCTURE (sample value) 





Chapter 4 / An Introduction to SQL 105 

The name SQL! originally referred to a project to consider possible degrees of integration 

between SQL and Java (a joint effort involving some of the best-known SQL vendors). Part 0 

of that project dealt with embedded SQL in Java programs; Part 1 was concerned with the idea 

of invoking Java from SQL (e.g., calling a stored procedure—see Chapter 21—that is written 

in Java); and Part 2 addressed the possibility of using Java classes as SQL data types (e.g., as a 

basis for defining columns in SQL tables). Part 0 was included in SQL: 1999, and Parts 1 and 2 

will almost certainly be included in SQL:2003 (see the annotation to reference [4.23]). 

4.8 Donald D. Chamberlin: Using the New DB2. San Francisco, Calif.: Morgan Kaufmann (1996). 

A readable and comprehensive description of a state-of-the-art commercial SQL product, by 

one of the principal designers of the original SQL language [4.9—4.11]. Note: The book also 

discusses “some controversial decisions” that were made in the design of SQL—primarily the 

decisions to support (a) nulls and (b) duplicate rows. “My [i.e., Chamberlin’s] purpose ... is 

historical rather than persuasive—I recognize that nulls and duplicates are religious issues . . . 

For the most part, the designers of [SQL] were practical people rather than theoreticians, and 

this orientation was reflected in many [design] decisions.” This position is very different from 

ours! Nulls and duplicates are scientific issues, not religious ones; they are discussed, scientifi¬ 

cally, in this book in Chapters 19 and 6, respectively. As for “practical . . . rather than [theoreti¬ 

cal],” we categorically reject the suggestion that theory is not practical; we have already stated 

in Section 4.8 our position that relational theory, at least, is very practical indeed. 

4.9 Donald D. Chamberlin and Raymond F. Boyce: “SEQUEL: A Structured English Query Lan¬ 

guage,” Proc. 1974 ACM SIGMOD Workshop on Data Description, Access, and Control, Ann Arbor, 

Mich. (May 1974). 

The paper that first introduced the SQL language (or SEQUEL, as it was originally called; the 

name was subsequently changed for legal reasons). 

4.10 Donald D. Chamberlin et al.: “SEQUEL/2: A Unified Approach to Data Definition, Manipula¬ 

tion, and Control,” IBM J. R&D. 20, No. 6 (November 1976). See also the errata in IBM J. R&D. 21, 

No. 1 (January 1977). 

Experience from the early prototype implementation of SEQUEL discussed in reference [4.1] 

and results from certain usability tests led to the design of a revised version of the language 

called SEQUEL/2. The language supported by System R [4.2, 4.3] was basically SEQUEL/2 

(with the conspicuous absence of the so-called “assertion” and “trigger” facilities—see Chapter 

9), plus certain extensions suggested by early user experience [4.11], 

4.11 Donald D. Chamberlin: “A Summary of User Experience with the SQL Data Sublanguage,” 

Proc. Int. Conf. on Databases, Aberdeen, Scotland (July 1980). Also available as IBM Research 

Report RJ2767 (April 1980). 

Discusses early user experience with System R and proposes some extensions to the SQL 

language in light of that experience. Certain of those extensions—EXISTS, LIKE, PREPARE, 

and EXECUTE—were in fact implemented in the final version of System R. They are 

described in Section 8.6 (EXISTS), Appendix B (LIKE), and Section 4.7 (PREPARE and 

EXECUTE). 

4.12 Donald D. Chamberlin et al.: “Support for Repetitive Transactions and Ad Hoc Queries in Sys¬ 

tem R: ACM TODS 6, No. 1 (March 1981). 

Gives some measurements of System R performance in both the ad hoc query and “canned 

transaction” environments. (A “canned transaction” is a simple application that accesses only a 

small part of the database and is compiled prior to execution time. It corresponds to what we 

called a planned request in Chapter 2, Section 2.8.) The paper shows, among other things, that 



106 Part I / Preliminaries 

in a system like System R (a) compilation is almost always superior to interpretation, even for 

cut hoc queries, and (b) as long as appropriate indexes exist in the database, many transactions 

can be executed per second. The paper is notable because it was one of the first to give the lie to 

the claim, frequently heard at the time, that “relational systems will never perform.” Commer¬ 

cial SQL products subsequently achieved transaction rates in the hundreds and even thousands 

of transactions per second. 

4.13 Donald D. Chamberlin et al.\ “A History and Evaluation of System R," CACM 24. No. 10 

(October 1981). 

Describes the three principal phases of the System R project (preliminary prototype, multi-user 

prototype, evaluation), with emphasis on the technologies of compilation and optimization that 

were pioneered in System R. There is some overlap between this paper and reference [4.14]. 

4.14 Donald D. Chamberlin, Arthur M. Gilbert, and Robert A. Yost: "A History of System R and 

SQL/Data System,” Proc. 7th Int. Conf. on Very Large Data Bases, Cannes, France (September 

1981). 

Discusses the lessons learned from the System R prototype and describes the evolution of that 

prototype into the first of IBM’s DB2 product family, SQL/DS (subsequently renamed “DB2 

for VM and VSE"). 

4.15 C. J. Date: “A Critique of the SQL Database Language,” ACM SIGMOD Record 14. No. 3 

(November 1984). Republished in Relational Database: Selected Writings. Reading, Mass.: 

Addison-Wesley (1986). 

As noted in the body of the chapter, SQL is not perfect. This paper presents a critical analysis 

of a number of the language’s principal shortcomings, mainly from the standpoint of formal 

computer languages in general rather than database languages specifically. Note: Certain of this 

paper's criticisms do not apply to SQL: 1999. 

4.16 C. J. Date: “What’s Wrong with SQL?” in Relational Database Writings 1985-1989. Reading, 

Mass.: Addison-Wesley (1990). 

Discusses some additional shortcomings of SQL, over and above those identified in reference 

[4.15], under the headings "What's Wrong with SQL per se," “What’s Wrong with the SQL 

Standard,” and "Application Portability.” Note: Again, certain of this paper's criticisms do not 

apply to SQL: 1999. 

4.17 C. J. Date: “SQL Dos and Don’ts,” in Relational Database Writings 1985-1989. Reading, 

Mass.: Addison-Wesley (1990). 

This paper offers some practical advice on how to use SQL in such a way as (a) to avoid some 

of the potential pitfalls arising from the problems discussed in references [4.15], [4.16], and 

[4.19] and (b) to realize the maximum possible benefits in terms of productivity, portability, 

connectivity, and so forth. 

4.18 C. J. Date: “How We Missed the Relational Boat,” in Relational Database Writings 1991- 

1994. Reading, Mass.: Addison-Wesley (1995). 

A succinct summary of SQL’s shortcomings with respect to its support (or lack thereof) for the 

structural, integrity, and manipulative aspects of the relational model. 

4.19 C. J. Date: “Grievous Bodily Harm” (in two parts), DBP&D 11. No. 5 (May 1998) and No. 6 

(June 1998); “Fifty Ways to Quote Your Query," http://www.dbpd.com (July 1998). 

SQL is an extremely redundant language, in the sense that all but the most trivial of queries can 

be expressed in many different ways. These papers illustrate this point and discuss some of its 
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By the way, it is worth mentioning that, although SQL is widely recognized as the interna¬ 

tional “relational” database standard, the standard document does not describe itself as such; in 

fact, it never actually uses the term relation at all! (As mentioned in a footnote earlier in this 

chapter, it does not use the term database either, come to that.) 

4.24 International Organization for Standardization (ISO): (ISO Working Draft)—Database Lan¬ 

guage SQL—Technical Corrigendum 5, Document ISO/IEC JTC1/SC32AVG3 (December 2, 2001). 

Contains a large number of revisions and corrections to the specifications of reference [4.23], 

4.25 Raymond A. Lorie and Jean-Jacques Daudenarde: SQL and Its Applications. Englewood Chffs, 

N.J.: Prentice-Hall (1991). 

An SQL “how to” book (almost half the book consists of a detailed series of case studies 

involving realistic applications). 

4.26 Raymond A. Lorie and J. F. Nilsson: “An Access Specification Language for a Relational Data 

Base System," IBM J. R&D. 23, No. 3 (May 1979). 

Gives more details on one particular aspect of the System R compilation mechanism [4.12, 

4.27]. For any given SQL statement, the System R optimizer generates a program in an inter¬ 

nal language called ASL (Access Specification Language). ASL serves as the interface 

between the optimizer and the code generator. (The code generator, as its name implies, con¬ 

verts an ASL program into machine code.) ASL consists of operators such as “scan” and 

“insert” on objects such as indexes and stored files. The puipose of ASL is to make the overall 

translation process more manageable, by breaking it down into a set of well-defined subpro¬ 

cesses. 

4.27 Raymond A. Lorie and Bradford W. Wade: “The Compilation of a High-Level Data Language,” 

IBM Research Report RJ2598 (August 1979). 

System R pioneered a scheme for compiling queries ahead of run time and then automatically 

recompiling them if the physical database structure had changed significantly in the interim. 

This paper describes the System R compilation and recompilation mechanism in some detail, 

without however getting into questions of optimization. See reference [18.33] for information 

on this latter topic. 

4.28 Jim Melton and Alan R. Simon: SQL: 1999—Understanding Relational Components. San Fran¬ 

cisco, Calif.: Morgan Kaufmann (2002). 

A tutorial on SQL: 1999 (basics only—advanced topics are deferred to reference [26.32]). Mel¬ 

ton is the editor of the SQL standard at the time of writing. 

4.29 David Rozenshtein, Anatoly Abramovich, and Eugene Birger: Optimizing Transact-SQL: 

Advanced Programming Techniques. Fremont, Calif.: SQL Forum Press (1995). 

Transact-SQL is the dialect of SQL supported by the Sybase and SQL Server products. This 

book presents a series of programming techniques for Transact-SQL based on the use of char¬ 

acteristic functions (defined by the authors as “devices that allow programmers to encode con¬ 

ditional logic as . . . expressions within SELECT. WHERE, GROUP BY, and SET clauses”). 

Although expressed in terms of Transact-SQL specifically, the ideas are actually of wider 

applicability. Note: We should perhaps add that the “optimizing” mentioned in the book’s title 

refers not to the DBMS optimizer component but rather to “optimizations” that can be done by 

users themselves by hand. 
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though of course it is pedagogic in style, but you should not take what follows as the last 

word on the subject. 

To say it again, the relational model is not hard to understand—but it is a theory, and 

most theories come equipped with their own special terminology, and (for reasons 

already explained in Section 3.3) the relational model is no exception in this regard. And 

we will be using that special terminology in this part of the book, naturally. However, it 

cannot be denied that the terminology can be a little bewildering at first, and indeed can 

serve as a barrier to understanding. (This latter fact is particularly unfortunate, given that 

the underlying ideas are not really difficult at all.) So, if you are having trouble in under¬ 

standing some of the material that follows, please be patient; you will probably find that 

the concepts do become very straightforward, once you have become familiar with the 

terminology. 

Now, it has to be said that the chapters that follow are very long (they almost form a 

book in their own right). But the length reflects the importance of the subject matter! It 

would be quite possible to provide an overview of the topic in just one or two pages; 

indeed, it is a major strength of the relational model that its basic ideas can be explained 

and understood very easily. However, a one- or two-page treatment cannot do justice to 

the subject, nor illustrate its wide range of applicability. The considerable length of this 

part of the book should thus be seen, not as a comment on the model’s complexity, but as 

a tribute to its importance and its success as a foundation for numerous far-reaching devel¬ 

opments. Effort invested in fully understanding the material will repay the reader many 

times over in his or her subsequent database activities. 

Finally, a word regarding SQL. We have already said in Part I of this book that SQL 

is the standard “relational” database language, and just about every database product on 

the market supports it (or, more accurately, some dialect of it—see reference [4.22]). As a 

consequence, no modern database book would be complete without extensive coverage of 

SQL. The chapters that follow on various aspects of the relational model therefore do also 

discuss the relevant SQL facilities, where applicable (they build on Chapter 4, which cov¬ 

ers basic SQL concepts). 
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Here by way of example are some sample selector and THE_ operator invocations for 
type POINT: 

CARTESIAN ( 5.0, 2.5 ) 
/* selects the point with x = 5.0, y = 2.5 */ 

CARTESIAN ( XI, Y1 ) 
/* selects the point with x = XI, y = Yl, where */ 
/* XI and Yl are variables of type RATIONAL */ 

POLAR ( 2.7, 1.0 ) 

/* selects the point with r = 2.7, 6 = 1.0 */ 

THE_X ( P ) 

/* denotes the x coordinate of the point in */ 
/* P, where P is a variable of type POINT */ 

THE_R ( P ) 

/* denotes the r coordinate of the point in P */ 

THE_Y ( exp ) 
/* denotes the y coordinate of the point denoted */ 
/* by the expression exp (which is of type POINT) */ 

Note that (a) selectors have the same name as the corresponding possible representa¬ 

tion; (b) THE_ operators have names of the form THE_C, where C is the name of the cor¬ 
responding component of the corresponding possible representation. Note too that selec¬ 

tors—or, more precisely, selector invocations—are a generalization of the more familiar 

concept of a literal (all literals are selector invocations, but not all selector invocations are 

literals; in fact, a selector invocation is a literal if and only if all of its arguments are liter¬ 

als in turn). 

To see how the foregoing might work in practice, suppose the physical representation 

of points is in fact Cartesian coordinates (though there is no need, in general, for a physical 
representation to be identical to any of the declared possible ones). Then the system will 

provide certain highly protected operators, denoted in what follows by italic pseudocode, 

that effectively expose that physical representation, and the type implementer will use those 

operators to implement the necessary CARTESIAN and POLAR selectors. (Obviously the 

type implementer is—in fact, must be—an exception to the general rule that users are not 

aware of physical representations.) For example: 

OPERATOR CARTESIAN ( X RATIONAL, Y RATIONAL ) RETURNS POINT ; 
BEGIN ; 

VAR P POINT ; /* P is a variable of type POINT */ 
X component of physical representation of P := X ; 
Y component of physical representation of P := Y ; 
RETURN ( P ) ; 

END ; 
END OPERATOR ; 

OPERATOR POLAR ( R RATIONAL, 0 RATIONAL ) RETURNS POINT ; 
RETURN ( CARTESIAN ( R * COS ( 6 ), R * SIN ( 0 ) ) ) ; 

END OPERATOR ; 

Observe that the POLAR definition makes use of the CARTESIAN selector, as well 

as the (presumably built-in) operators SIN and COS. Alternatively, the POLAR definition 

could be expressed directly in terms of the protected operators, as follows: 
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OPERATOR POLAR ( R RATIONAL, 0 RATIONAL ) RETURNS POINT ; 

BEGIN ; 
VAR P POINT ; 
X component of physical representation of P 

:= R * COS ( 0 ) ; 
Y component of physical representation of P 

:= R * SIN ( 0 ) ; 
RETURN ( P ) ; 

END ; 
END OPERATOR ; 

The type implementer will also use those protected operators to implement the neces¬ 

sary THE_ operators, thus: 

OPERATOR THE_X ( P POINT ) RETURNS RATIONAL ; 
RETURN ( X component of physical representation of P ) ; 

END OPERATOR ; 

OPERATOR THE_Y ( P POINT ) RETURNS RATIONAL ; 
RETURN ( Y component of physical representation of P ) ; 

END OPERATOR ; 

OPERATOR THE_R ( P POINT ) RETURNS RATIONAL ; 
RETURN ( SQRT ( THE_X ( P ) ** 2 + THE_Y ( P ) ** 2 ) ) ; 

END OPERATOR ; 

OPERATOR THE_0 ( P POINT ) RETURNS RATIONAL ; 
RETURN ( ARCTAN ( THE_Y ( P ) / THE_X ( P ) ) ) ; 

END OPERATOR ; 

Observe that the definitions of THE_R and THE_0 make use of THE_X and THE_Y, 

as well as the (presumably built-in) operators SQRT and ARCTAN. Alternatively, THE_R 

and THE_0 could be defined directly in terms of the protected operators (details left as an 

exercise). 

So much for the POINT example. However, it is important to understand that all of the 

concepts discussed apply to simpler types as well6—for example, type QTY. Here are some 

sample selector invocations for that type: 

QTY ( 100 ) 

QTY ( N ) 

QTY ( N1 - N2 ) 

And here are some sample THE_ operator invocations: 

THE_QTY ( Q ) 

THE_QTY ( Q1 - Q2 ) 

Note: We are assuming in these examples that (a) N, Nl, and N2 are variables of type 

INTEGER, (b) Q, Ql, and Q2 are variables of type QTY, and (c) is a polymorphic 

operator—it applies to both integers and quantities. 

Now, since values are always typed, it is strictly incorrect to say that (e.g.) the quan¬ 

tity for a certain shipment is 100. A quantity is a value of type QTY. not a value of type 

6 Including built-in types in particular, although (partly for historical reasons) the corresponding selectors 
and THE_ operators might deviate somewhat from the syntactic and other rules we have prescribed in this 
section. See reference 13.3) for further discussion. 
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INTEGER! For the shipment in question, therefore, we should more properly say the 
quantity is QTY(IOO), not simply 100 as such. In informal contexts, however, we usually 

do not bother to be quite as precise, thus using (e.g.) 100 as a convenient shorthand for 

QTY(IOO). Note in particular that we have used such shorthands in the suppliers-and- 

parts and suppliers-parts-projects databases (see Figs. 3.8 and 4.5, both repeated on the 
inside back cover). 

We give one further example of a type definition: 

TYPE LINESEG POSSREP { BEGIN POINT, END POINT } ; 

Type LINESEG denotes line segments. The example illustrates the point that a given possi¬ 
ble representation can be defined in terms of user-defined types, not just system-defined 

types as in all of our previous examples (in other words, a user-defined type is indeed a 
type). 

Finally, note that all of our examples in this subsection on possible representations 

and related matters have involved scalar types specifically. However, nonscalar types have 
possible representations, too. We will return to this issue in Section 5.6. 

5.4 TYPE DEFINITION 

New types can be introduced in Tutorial D either by means of the TYPE statement 

already illustrated in several examples in previous sections or by means of some type gen¬ 

erator. We defer discussion of type generators, and the related question of how to define 

nonscalar types, to Section 5.6; in this section, we discuss the TYPE statement specifi¬ 

cally. Here by way of example is a definition for the scalar type WEIGHT: 

TYPE WEIGHT POSSREP { D DECIMAL (5,1) 
CONSTRAINT D > 0.0 AND D < 5000.0 > ; 

Explanation: Weights can possibly be represented by decimal numbers of five digits 
precision with one digit after the decimal point, where the decimal number in question is 

greater than zero and less than 5,000. Note: The foregoing sentence in its entirety consti¬ 

tutes a type constraint for type WEIGHT. In general, a type constraint for type T is, pre¬ 

cisely, a definition of the set of values that make up type T. If a given POSSREP 

declaration contains no explicit CONSTRAINT specification, then CONSTRAINT TRUE 
is assumed by default (in the example, omitting the CONSTRAINT specification would 

thus mean that valid WEIGHT values are precisely those that can be represented by deci¬ 

mal numbers of five digits precision with one digit after the decimal point). 

The WEIGHT example raises another point, however. In Chapter 3, Section 3.9, we 
said part weights were given in pounds. But it might not be a good idea to bundle the type 

notion per se with the somewhat separate units notion (where by the term units we mean 

units of measure). Indeed, following reference [3.3], we can allow users to think of weights 
as being measured either in pounds or in (say) grams, by providing a distinct possible rep¬ 

resentation for each, thus: 
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other things that the order in which the items appear within the commalist is immate¬ 

rial, and implying also that no item can appear more than once). 

4. In general, a <boul exp> (“boolean expression”) is an expression that denotes a truth 

value (TRUE or FALSE). In the context at hand, the <boul exp> must not mention 

any variables, but <pussrep component name>s from the containing <possrep def> 

can be used to denote the corresponding components of the applicable possible repre¬ 

sentation of an arbitrary value of the scalar type in question. Note: Boolean expres¬ 

sions are also called conditional, truth-valued, or logical expressions. 

5. Observe that <t)pe def>s have absolutely nothing to say about physical representa¬ 

tions. Rather, such representations must be specified as part of the conceptual/internal 
mapping (see Chapter 2, Section 2.6). 

6. Defining a new type causes the system to make an entry in the catalog to describe that 

new type (refer to Chapter 3, Section 3.6, if you need to refresh your memory regard¬ 

ing the catalog). Analogous remarks apply to operator definitions also (see Section 
5.5). 

Here for future reference are definitions for the scalar types used in the suppliers- 

and-parts database (except for type WEIGHT, which has already been discussed). 

CONSTRAINT specifications are omitted for simplicity. 

TYPE S# POSSREP { CHAR > ; 
TYPE NAME POSSREP { CHAR > ; 
TYPE P# POSSREP { CHAR } ; 
TYPE COLOR POSSREP { CHAR } ; 
TYPE QTY POSSREP { INTEGER } ; 

(Recall from Chapter 3 that the supplier STATUS attribute and the supplier and part CITY 

attributes are defined in terms of built-in types instead of user-defined ones, so no type def¬ 

initions are shown corresponding to these attributes.) 

Of course, it must also be possible to get rid of a type if we have no further use for it: 

DROP TYPE <type name> ; 

The <type name> must identify a user-defined type, not a built-in one. The operation causes 
the catalog entry describing the type to be deleted, meaning the type in question is no 

longer known to the system. For simplicity, we assume that DROP TYPE will fail if the 

type in question is still being used somewhere—in particular, if some attribute of some rel- 

var somewhere is defined on it. 
We close this section by pointing out that the operation of defining a type does not 

actually create the corresponding set of values; conceptually, those values already exist, 

and always will exist (think of type INTEGER, for example). Thus, all the "define type” 
operation—for example, the TYPE statement, in Tutorial D—really does is introduce a 

name by which that set of values can be referenced. Likewise, the DROP TYPE statement 
does not actually drop the corresponding values, it merely drops the name that was intro¬ 

duced by the corresponding TYPE statement. 
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5.5 OPERATORS 

All of the operator definitions we have seen in this chapter so far have been either for 

selectors or for THE_ operators; now we take a look at operator definitions in general. 

Our first example shows a user-defined operator, ABS, for the built-in type RATIONAL: 

OPERATOR ABS ( Z RATIONAL ) RETURNS RATIONAL ; 
RETURN ( CASE 

WHEN Z > 0.0 THEN +Z 
WHEN Z < 0.0 THEN -Z 

END CASE ) ; 
END OPERATOR ; 

Operator ABS (“absolute value”) is defined in terms of just one parameter, Z, of type 

RATIONAL, and returns a result of that same type. Thus, an invocation of ABS—for exam¬ 

ple, ABS (AMT1 + AMT2)—is, by definition, an expression of type RATIONAL. 

The next example, DIST (“distance between"), takes two parameters of one user- 

defined type (POINT) and returns a result of another (LENGTH): 

OPERATOR DIST ( PI POINT, P2 POINT ) RETURNS LENGTH : 
RETURN ( WITH THE_X ( PI 

THE_X ( P2 
THE_Y ( PI 
THE_Y ( P2 

LENGTH ( SQRT ( 
+ 

END OPERATOR ; 

) AS XI , 
) AS X2 , 
) AS Y1 , 
) AS Y2 : 
( XI - X2 ) ** 2 
( Y1 - Y2 ) ** 2 ) ) ) ; 

We are assuming that the LENGTH selector takes an argument of type RATIONAL. Also, 

note the use of a WITH clause to introduce names for the results of certain subexpressions. 

We will be making heavy use of this construct in the chapters to come. 

Our next example is the required “=” (equality7) comparison operator for type POINT: 

OPERATOR EQ ( PI POINT, P2 POINT ) RETURNS BOOLEAN ; 
RETURN ( THE_X ( PI ) = THE_X ( P2 ) AND 

THE_Y ( PI ) = THE_Y ( P2 ) ) ; 
END OPERATOR ; 

Observe that the expression in the RETURN statement here makes use of the built-in “=” 
operator for type RATIONAL. For simplicity, we will assume from this point forward that 

the usual infix notation “=” can be used for the equality operator (for all types, that is, not 
just type POINT); we omit consideration of how such an infix notation might be specified 

in practice, since it is basically just a matter of syntax. 

Here is the “>” operator for type QTY: 

OPERATOR GT ( Q1 QTY, Q2 QTY ) RETURNS BOOLEAN ; 
RETURN ( THE_QTY ( Q1 ) > THE_QTY ( Q2 ) ) ; 

END OPERATOR ; 

The expression in the RETURN statement here makes use of the built-in “>” operator for 

type INTEGER. Again, we will assume from this point forward that the usual infix nota¬ 

tion can be used for this operator—for all “ordinal types,” that is, not just type QTY. (An 

Our “equality" operator might better be called identity, since v/ = v2 is true if and only if vl and v2 are 
in fact the very same value. 



Chapter 5 / Types 123 

ordinal type is, by definition, a type to which “>” applies. A simple example of a “nonor- 
dinal" type is POINT.) 

Here finally is an example of an update operator definition (all previous examples have 

been of read-only operators, which are not allowed to update anything except possibly 

local variables).s As you can see. the definition involves an UPDATES specification instead 

of a RETURNS specification; update operators do not return a value and must be invoked 
by explicit CALLs [3.3]. 

OPERATOR REFLECT ( P POINT ) UPDATES P ; 
BEGIN ; 

THE_X ( P ) := - THE_X ( P ) ; 
THE_Y ( P ) ;= - THE_Y ( P ) ; 
RETURN ; 

END ; 
END OPERATOR ; 

The REFLECT operator effectively moves the point with Cartesian coordinates (x,y) to the 
inverse position (-.r,-y); it does this by updating its point argument appropriately. Note the 

use of THE_ pseudovariables in this example. A THE_ pseudovariable is an invocation of 

a THE_ operator in a target position (in particular, on the left side of an assignment). Such 

an invocation actually designates—rather than just returning the value of—the specified 

component of (the applicable possible representation of) its argument. Within the 

REFLECT definition, for instance, the assignment 

THE_X ( P ) := ... ; 

actually assigns a value to the X component of (the Cartesian possible representation of) 
the argument variable corresponding to the parameter R Of course, any argument to be 

updated by an update operator—by assignment to a THE_ pseudovariable in particular— 

must be specified as a variable specifically, not as some more general expression. 

Pseudovariables can be nested, as here: 

VAR LS LINESEG ; 

THE_X ( THE_BEGIN ( LS ) ) := 6.5 ; 

We now observe that THE_ pseudovariables are in fact logically unnecessary. Con¬ 

sider the following assignment once again: 

THE_X ( P ) := - THE_X ( P ) ; 

This assignment, which uses a pseudovariable, is logically equivalent to the following one, 

which does not: 

P := CARTESIAN ( - THE_X ( P ), THE_Y ( P ) ) ; 

Similarly, the assignment 

THE_X ( THE_BEGIN ( LS ) ) := 6.5 ; 

is logically equivalent to this one: 

s Read-only and update operators are also known as observers and mutators, respectively, especially in 
object systems (see Chapter 25). Function is another synonym for read-only operator (and is occasionally 
used as such in this book). 
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LS := LINESEG ( CARTESIAN ( 6.5, 
THE_Y ( THE_BEGIN ( LS ) ) ) , 

THE_END ( LS ) ) ; 

In other words, pseudovariables per se are not strictly necessary in order to support 

the kind of component-level updating we are discussing here. However, the pseudovari¬ 

able approach does seem intuitively more attractive than the alternative (for which it can 

be regarded as a shorthand); moreover, it also provides a higher degree of imperviousness 

to changes in the syntax of the corresponding selector. (It might also be easier to imple¬ 

ment efficiently.) 

While we are on the subject of shorthands, we should point out that the only update 

operator that is logically necessary is in fact assignment (“:="); all other update operators 

can be defined in terms of assignment alone (as in fact we already know from Chapter 3, in 

the case of relational update operators in particular). However, we do require support for a 

multiple form of assignment, which allows any number of individual assignments to be 

performed “simultaneously” [3.3]. For example, we could replace the two assignments in 

the definition of the operator REFLECT by the following multiple assignment: 

THE_X ( P ) := - THE_X ( P ) , 
THE_Y ( P ) := - THE_Y ( P ) ; 

(note the comma separator). The semantics are as follows: First, all of the source expres¬ 

sions on the right sides are evaluated; second, all of the individual assignments are then 

executed in sequence as written.y Note: Since multiple assignment is considered to be a 

single operation, no integrity checking is performed “in the middle of' such an assignment; 

indeed, this fact is the major reason why we require multiple assignment support in the first 

place. See Chapters 9 and 16 for further discussion. 

Finally, it must be possible to get rid of an operator if we have no further use for it. For 

example: 

DROP OPERATOR REFLECT ; 

The specified operator must be user-defined, not built in. 

Type Conversions 

Consider the following type definition once again: 

TYPE S# POSSREP { CHAR > ; 

By default, the possible representation here has the inherited name S#, and hence the corre¬ 

sponding selector operator does, too. The following is thus a valid selector invocation: 

s# (•si•) 

(it returns a certain supplier number). Note, therefore, that the S# selector might be 
regarded, loosely, as a type conversion operator that converts character strings to supplier 

11 This definition requires some refinement in the case where two or more of the individual assignments 
refer to the same target variable. The details are beyond the scope of this book; suffice it to say they are 
carefully specified to give the desired result when--as in the example, in fact—distinct individual assign¬ 
ments update distinct parts of the same target variable (an important special case). 
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numbers. Analogously, the P# selector might be regarded as a conversion operator that con¬ 

verts character strings to part numbers; the QTY selector might be regarded as a conversion 
operator that converts integers to quantities; and so on. 

By the same token, THE_ operators might be regarded as operators that perform type 

conversion in the opposite direction. For example, recall the definition of type WEIGHT 
from the beginning of Section 5.4: 

TYPE WEIGHT POSSREP { D DECIMAL (5,1) 
CONSTRAINT D > 0.0 AND D < 5000.0 > ; 

If W is of type WEIGHT, then the expression 

THE_D ( W ) 

effectively converts the weight denoted by W to a DEC1MAL(5,1) number. 

Now, we said in Section 5.2 that (a) the source and target in an assignment must be of 

the same type, and (b) the comparands in an equality comparison must be of the same type. 

In some systems, however, these rules are not directly enforced; thus, it might be possible 

in such a system to request, for example, a comparison between a part number and a char¬ 

acter string—in a WHERE clause, perhaps, as here: 

... WHERE P# = 'P2' 

Here the left comparand is of type P# and the right comparand is of type CHAR; on the face 
of it, therefore, the comparison should fail on a type error (a compile-time type error, in 

fact). Conceptually, however, what happens is that the system realizes that it can use the P# 

“conversion operator” (in other words, the P# selector) to convert the CHAR comparand to 

type P#, and so it effectively rewrites the comparison as follows: 

... WHERE P# = P# ('P2') 

The comparison is now valid. 

Invoking a conversion operator implicitly in this way is known as coercion. However, 
it is well known that coercion can lead to program bugs. For that reason, we adopt the con¬ 

servative position in this book that coercions are not permitted—operands must always be 

of the appropriate types, not merely coercible to those types. Of course, we do allow type 

conversion operators (or “CAST” operators, as they are usually called) to be defined and 

invoked explicitly when necessary—for example: 

CAST_AS_CHAR ( 530.00 ) 

As we have already pointed out, selectors (at least, those that take just one argument) can 

also be thought of as explicit conversion operators, of a kind. 
Now, you might have realized that what we are talking about here is what is known in 

programming language circles as strong typing. Different writers have slightly different 
definitions for this term; as we use it, however, it means, among other things, that (a) every 

value lias a type, and (b) whenever we try to perform an operation, the system checks that 
the operands are of the right types for the operation in question. For example, consider the 

following expressions: 
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DISTINCT type in question. In fact, SQL does not support the "possrep" notion at 

all. One consequence of this omission is that it is not possible to define a DISTINCT 

type—or a structured type, come to that—with two or more distinct possreps. 

4. There is nothing analogous to the Tutorial D CONSTRAINT specification. In the 

case of type WEIGHT, for example, there is no way to specify that for each WEIGHT 

value, the corresponding DECIMAL(5,1) value must be greater than zero (!) or less 
than 5,000. 

5. The comparison operators that apply to the DISTINCT type being defined are pre¬ 

cisely those that apply to the underlying physical representation. Note: Apart from 

assignment (see point 8), other operators that apply to the physical representation do 

not apply to the DISTINCT type. For example, none of the following expressions is 

valid, even if WT is of type WEIGHT: 

WT + 14.7 WT * 2 WT + WT 

6. “Selector" and “THE_” operators are supported. For example, if NW is a host vari¬ 

able of type DECIMAL(5,1), then the expression WEIGHT(:NW) returns the corre¬ 
sponding weight value; and if WT is a column of type WEIGHT, then the expression 

DECIMAL(WT) returns the corresponding DECIMAL(5,1) value.14 Hence, the fol¬ 

lowing are valid SQL statements: 

DELETE 
FROM P 
WHERE WEIGHT = WEIGHT ( 14.7 ) ; 

EXEC SQL DELETE 
FROM P 
WHERE WEIGHT = WEIGHT ( :NW ) ; 

EXEC SQL DECLARE Z CURSOR FOR 
SELECT DECIMAL ( WEIGHT ) AS DWT 
FROM P 
WHERE WEIGHT > WEIGHT ( :NW ) ; 

7. With one important exception (see point 8), strong typing does apply to DISTINCT 

types. Note in particular that comparisons between values of a DISTINCT type and 

values of the underlying representation type are not legal. Hence, the following are 

not valid SQL statements, even if (as before) NW is of type DECIMAL(5,1): 

DELETE 
FROM P 
WHERE WEIGHT = 14.7 ; /* warning — invalid III */ 

EXEC SQL DELETE 
FROM P 
WHERE WEIGHT = :NW ; /* warning — invalid III */ 

EXEC SQL DECLARE Z CURSOR FOR 
SELECT DECIMAL ( WEIGHT ) AS DWT 
FROM P 
WHERE WEIGHT > :NW ; /* warning — invalid 111 */ 

8. The exception mentioned under point 7 has to do with assignment operations. For 

example, if we want to retrieve some WEIGHT value into some DECIMAL(5,1) 

14 Actually DECIMAL(WT) is not syntactically valid in SQL: 1999 but is expected to become so in SQL: 
2003. Note, however, that (unlike Tutorial I)'s THE_ operators) it cannot be used as a pseudovariable. 
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variable, some type conversion has to occur. Now, we can certainly perform that con¬ 

version explicitly, as here: 

SELECT DECIMAL ( WEIGHT ) AS DWT 
INTO :NW 
FROM P 

WHERE P# = P# ( 'PI') ; 

However, the following is also legal (and an appropriate coercion will occur): 

SELECT WEIGHT 
INTO :NW 
FROM P 
WHERE P# = P# ( 1 PI’) ; 

Analogous remarks apply to INSERT and UPDATE operations. 

9. Explicit CAST operators can also be defined for converting to, from, or between 

DISTINCT types. We omit the details here. 

10. Additional operators can be defined (and subsequently dropped) as required. Note: 

The SQL term for operators is routines, and there are three kinds: functions, proce¬ 

dures, and methods. (Functions and procedures correspond very roughly to our read¬ 

only and update operators, respectively; methods behave like functions, but are 

invoked using a different syntactic style.15) So we could define a function—a poly¬ 

morphic function, in fact—called ADDWT (“add weight”) that would allow two val¬ 

ues to be added regardless of whether they were WEIGHT values or DECIMAL(5,1) 

values or a mixture of the two. All of the following expressions would then be legal: 

ADDWT ( WT, 14.7 ) 
ADDWT ( 14.7, WT ) 
ADDWT ( WT, WT ) 
ADDWT ( 14.7, 3.0 ) 

More information regarding SQL routines can be found in references [4.20] and 

[4.28]. Further details are beyond the scope of this book. 

11. The following statement is used to drop a user-defined type: 

DROP TYPE <type name> <behavior> ; 

Here <behavior> is either RESTRICT or CASCADE; loosely, RESTRICT means 

the DROP will fail if the type is currently in use anywhere, while CASCADE means 

the DROP will always succeed and will cause an implicit DROP . . . CASCADE for 

everything currently using the type (!). 

Structured Types 

Now we turn to structured types. Here are a couple of examples: 

CREATE TYPE POINT AS ( X FLOAT, Y FLOAT ) NOT FINAL ; 

CREATE TYPE LINESEG AS ( BEGIN POINT, END POINT ) NOT FINAL ; 

15 They also, unlike functions and procedures, involve some run-time binding (see Chapter 20). Note: 
The term method, and the slightly strange meaning that must be ascribed to it in contexts like the one at 
hand, derive from the world of object orientation (see Chapter 25). 
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(Actually the second example fails because BEGIN and END are reserved words in SQL, 

but we choose to overlook this point.) In its simplest form, then—that is, ignoring a variety 
of optional specifications—the syntax for creating a structured type is: 

CREATE TYPE <type name> AS <representation> NOT FINAL ; 

Points arising: 

1. The required NOT FINAL specification is explained in Chapter 20. Note: SQL:2003 

is expected to allow the alternative FINAL to be specified instead. 

2. The <representation> is an <attribute definition commalist> enclosed in parentheses, 
where an <attribute> consists of an <attribute name> followed by a <type name>. 

Note carefully, however, that those “attributes” are not attributes in the relational 

sense, in part because structured types are not relation types (see Chapter 6). More¬ 

over, that <representation> is the actual physical representation, not just some possi¬ 

ble representation, of the structured type in question. Note: The type designer can ef¬ 

fectively conceal that fact, however—the fact, that is, that the representation is 
physical—by a judicious choice and design of operators. For example, given the fore¬ 

going definition of type POINT, the system will automatically provide operators to 

expose the Cartesian representation (see points 3 and 6), but the type designer could 

provide operators “manually” to expose a polar representation as well. 

3. Each attribute definition causes automatic definition of two associated operators (ac¬ 

tually “methods”), one obseiyer and one mutator, that provide functionality analo¬ 

gous to that of Tutorial D's THE_ operators.16 For example, if LS, P, and Z are of 

types LINESEG, POINT, and FLOAT, respectively, the following assignments are 

valid: 

SET Z = P.X ; /* "observes " X attribute of P */ 
SET P.X = Z ; /* "mutates" X attribute of P */ 
SET X = LS.BEGIN.X ; /* "observes " X attribute of */ 

/* BEGIN attribute of LS */ 
SET LS.BEGIN.X = Z ; /* "mutates" X attribute of */ 

/* BEGIN attribute of LS */ 

4. There is nothing analogous to the Tutorial D CONSTRAINT specification. 

5. The comparison operators that apply to the structured type being defined are specified 

by means of a separate CREATE ORDERING statement. Here are two examples: 

CREATE ORDERING FOR POINT EQUALS ONLY BY STATE ; 

CREATE ORDERING FOR LINESEG EQUALS ONLY BY STATE ; 

EQUALS ONLY means that “=” and ‘V” (or rather, this latter being the SQL 

syntax for “not equals”) are the only valid comparison operators for values of the type 
in question. BY STATE means that two values of the type in question are equal if and 

only if, for all i, their /th attributes are equal. Other possible CREATE ORDERING 
specifications are beyond the scope of this book; suffice it to say that, for example, the 

16 In the interest of accuracy, we should say that SQL’s mutators are not really mutators in the conven¬ 
tional sense of the term (i.e., they are not update operators), but they can be used in such a way as to 
achieve conventional mutator functionality. For example. “SET P.X = Z” (which in fact does not explicitly 
contain a mutator invocation!) is defined to be shorthand for “SET P = P.X(Z)” (which does). 
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semantics of “>” can also be defined for a structured type if desired. Note, however, 

that if a given structured type has no associated “ordering,” then no comparisons at all, 

not even equality comparisons, can be performed on values of that type—a state of 

affairs with far-reaching consequences, as you might imagine. 

6. No selectors are provided automatically, but their effect can be achieved as follows. 

First, SQL does automatically provide what it calls constructor functions, but such 

functions return the same value on every invocation—namely, that value of the type 

in question whose attributes all have the applicable default value.17 For example, the 
constructor function invocation 

POINT () 

returns the point with default X and Y values. Now, however, we can immediately in¬ 

voke the X and Y mutators (see point 3) to obtain whatever point we want from the 

result of that constructor function invocation. Moreover, we can bundle the initial 

“construction” and the subsequent “mutations” into a single expression, as illustrated 
by the following example: 

POINT () . X ( 5.0 ) . Y ( 2.5 ) 

Here is a more complex example: 

LINESEG () . BEGIN ( POINT ().X(5.0).Y(2.5)) 
. END ( POINT ( ) . X ( 7.3 ) . Y ( 0.8 ) ) 

Note: Constructor function invocations can optionally be preceded by the noiseword 

NEW without changing the semantics. For example: 

NEW LINESEG () . BEGIN ( NEW POINT ().X(5.0).Y(2.5)) 
. END ( NEW POINT () - X ( 7.3 ) . Y ( 0.8 ) ) 

7. Strong typing does apply to structured types, except possibly as described in Chapter 
6, Section 6.6 (subsection “Structured Types”). 

8. Operators in addition to those already mentioned can be defined (and subsequently 
dropped) as required. 

9. Structured types and orderings can be dropped. Such types can be “altered," too, via 

an ALTER TYPE statement—for example, new attributes can be added or existing 
ones dropped (in other words, the representation can be changed). 

We will have more to say regarding SQL's structured types in the next chapter (Sec¬ 
tion 6.6) and in Chapters 20 and 26. 

17 The default value for a given attribute can be specified as part of the corresponding attribute definition. 
If no such value is specified explicitly, the default value—the “default default"—will be null. Note: For 
reasons beyond the scope of this book, the default must be null if the type of the attribute is either a row 
type or a user-defined type (like POINT), and it must be either null or empty—specified as ARRAY!I—if 
it is an array type. Thus, for example, the constructor function invocation L1NHSEG() will necessarily 
return the line segment whose BEGIN and END components are both null. 
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Type Generators 

SQL supports three type generators (the SQL term is type constructors): REF, ROW, and 
ARRAY.ix In this chapter we discuss ROW and ARRAY only, deferring REF to Chapter 
26. Here is an example illustrating the use of ROW: 

CREATE TABLE CUST 
( CUST# CHAR(3), 

ADDR ROW ( STREET CHAR(50), 
CITY CHAR(25), 
STATE CHAR(2 ) , 
ZIP CHAR(5) ) 

PRIMARY KEY ( CUST# ) ) ; 

STREET, CITY, STATE, and ZIP here are the fields of the generated row type. In 
general, such fields can be of any type, including other row types. Field-level references 

make use of dot qualification, as in the following example (the syntax is <exp>.<field 

name>, where the <exp> must be row-valued): 

SELECT CX.CUST# 
FROM CUST AS CX 
WHERE CX.ADDR.STATE = 'CA' ; 

Note: CX here is a correlation name. Correlation names are discussed in detail in Chapter 

8 (Section 8.6); here we simply note that SQL requires explicit correlation names to be 

used in field references, in order to avoid a certain syntactic ambiguity that might otherwise 

occur. 
Here now is an INSERT example: 

INSERT INTO CUST ( CUST#, ADDR ) 
VALUES ( '666', ROW ( '1600 Pennsylvania Ave.', 

'Washington', 'DC', '20500' ) ) ; 

Note the row literal in this example (actually, that should be “row literal,” in quotes—for¬ 

mally, there is no such thing as a row literal in SQL, and the expression in the example is a 

row value constructor). 

One more example: 

UPDATE CUST AS CX 
SET CX.ADDR.STATE = 'TX' 
WHERE CUST# = '999' ; 

Note: In fact the standard does not currently permit field-level updating as in this example, 

but the omission looks like an oversight. 
The ARRAY type generator is somewhat similar. Here is an example: 

CREATE TABLE ITEM_SALES 
( ITEM# CHAR(5), 

SALES INTEGER ARRAY [12], 
PRIMARY KEY ( ITEM# ) ) ; 

IK SQL:2003 is likely to add MULTISET. 
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Types generated by means of ARRAY are always one-dimensional; the specified ele¬ 

ment type (INTEGER in the example) can be anything except another array type.19 Let a 

be a value of some array type. Then a can contain any number n of elements (n > 0), up to 

but not greater than the specified upper bound (12 in the example). If a contains exactly n 

elements (/? > 0), then those elements are precisely—and can be referenced as—a[ 1], a[2], 

a[n]. The expression CARDINALITY(a) returns the value n. 

Here now are some examples that use the ITEM_SALES table. Note the array literal (or 

“array literal,” rather—officially, it is an array value constructor) in the second example. 

SELECT ITEM# 
FROM ITEM SALES 
WHERE SALES [3] > 10 ; 

INSERT INTO ITEM SALES ( ITEM#, SALES ) 
VALUES ( 'X4320', 

ARRAY [0,0, 

o
 

o
 

o
 

o
 

o
 

o
 

UPDATE ITEM SALES 
SET SALES [3] = 10 
WHERE ITEM# = 1 Z0564' r 

We close this section by noting that assignment and equality comparison operators do 

apply, for both ROW and ARRAY types—unless the ROW or ARRAY type in question 

involves an element type for which equality comparision is not defined, in which case it is 

not defined for the ROW or ARRAY type in question either. 

5.8 SUMMARY 

In this chapter we have taken a comprehensive look at the crucial notion of data types 

(also known as domains or simply types). A type is a set of values; namely, the set of all 

values that satisfy a certain type constraint (specified in Tutorial D by a POSSREP 

clause, including an optional CONSTRAINT specification). Every type has an associated 

set of operators (both read-only and update operators) for operating on values and vari¬ 

ables of the type in question. Types can be as simple or as complex as we like; thus, we 

can have types whose values are numbers, or strings, or dates, or times, or audio record¬ 

ings, or maps, or video recordings, or geometric points (etc.). Types constrain opera¬ 

tions, in that the operands to any given operation are required to be of the types defined for 

that operation (strong typing). Strong typing is a good idea because it allows certain logi¬ 

cal errors to be caught, and caught moreover at compile time instead of run time. Note that 

strong typing has important implications for the relational operations in particular (join, 

union, etc.), as we will see in Chapter 7. 

19 This restriction is likely to be removed in SQL:2003. In any case, the element type can be a row type, 
and that row type can include a field of some array type. Thus (e.g.) the following is a legal variable defini¬ 
tion: 

VX ROW (FX INTEGER ARRAY [12]) ARRAY [12] 

And then (e.g.) VX[3].FX[5] refers to the fifth element of the array that is the sole field value within the 
row that is the third element of the array that is the value of the variable VX. 
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Wc also discussed the important logical difference between values and variables, and 
pointed out that the essentia! property of a value is that it cannot be updated. Values and 

variables are always typed; so also are (relational) attributes, (read-only) operators, 

parameters, and more generally expressions of arbitrary complexity. 

Types can be system- or user-defined; they can also be scalar or nonscalar. A scalar 

type has no user-visible components. (The most important no/iscalar types in the rela¬ 

tional model are relation types, which are discussed in the next chapter.) We distinguish 

carefully between a type and its physical representation (types are a model issue, physi¬ 

cal representations are an implementation issue). However, we do require that every type 

have at least one declared possible representation (possibly more than one). Each such 

possible representation causes automatic definition of one selector operator and, for each 

component of that possible representation, one THE_ operator (including a THE_ 

pseudovariable). We support explicit type conversions but no implicit type coercions. 

We also support the definition of any number of additional operators for scalar types, and 

we require that equality comparison and (multiple) assignment be defined for every 

type. 

We also discussed type generators, which are operators that return types (ARRAY is 

an example). The constraints and operators that apply to generated types are derived from 

the generic constraints and operators that are associated with the applicable type generator. 
Finally, we sketched SQL’s type facilities. SQL provides a variety of built-in 

types—BOOLEAN, INTEGER, DATE, TIME, and so on (each with its associated set of 

operators, of course)—but supports only a limited form of strong typing in connection 

with those types. It also allows users to define their own types, which it divides into 

DISTINCT types and structured types, and it supports certain type generators 

(ARRAY and ROW, also REF). We offered an analysis of all of this SQL functionality in 

terms of the ideas presented earlier in the chapter. 

EXERCISES 

5.1 State the type rules for the assignment (“:=”) and equality comparison (“=”) operators. 

5.2 Distinguish; 

value vs. variable 
type vs. representation 
physical representation vs. possible representation 
scalar vs. nonscalar 
read-only operator v.v. update operator 

5.3 Explain the following in your own words: 

coercion 
generated type 
literal 
ordinal type 
polymorphic operator 

pseudovariable 
selector 
strong typing 
THE_ operator 
type generator 
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5.4 Why are pseudovariables logically unnecessary? 

5.5 Define an operator that, given a rational number, returns the cube of that number. 

5.6 Define a read-only operator that, given a point with Cartesian coordinates x and y, returns the 

point with Cartesian coordinates/^) and g(y), where/and g are predefined operators. 

5.7 Repeat Exercise 5.6 but make the operator an update operator. 

5.8 Give a type definition for a scalar- type called CIRCLE. What selectors and THE_ operators 

apply to this type? Also: 

a. Define a set of read-only operators to compute the diameter, circumference, and area of a given 

circle. 

b. Define an update operator to double the radius of a given circle (more precisely, to update a 

given CIRCLE variable in such a way that its circle value is unchanged except that the radius is 

twice what it was before). 

5.9 Give some examples of types for which it might be useful to define two or more distinct possi¬ 

ble representations. Can you think of an example where distinct possible representations for the 

same type have different numbers of components? 

5.10 Given the catalog for the departments-and-employees database shown in outline in Fig. 3.6 in 

Chapter 3, how could that catalog be extended to take account of user-defined types and operators? 

5.11 What types are the catalog relvars themselves defined on? 

5.12 Give an appropriate set of scalar type definitions for the suppliers-parts-projects database (see 

Fig. 4.5 on the inside back cover). Do not attempt to write the relvar definitions. 

5.13 We pointed out in Section 5.3 that it is strictly incorrect to say that (e.g.) the quantity for a 

certain shipment is 100 (“a quantity is a value of type QTY, not a value of type INTEGER”). As a 

consequence, Fig. 4.5 is rather sloppy, inasmuch as it pretends that it is correct to think of, for exam¬ 

ple, quantities as integers. Given your answer to Exercise 5.12, show the correct way of referring to 

the various scalar values in Fig. 4.5. 

5.14 Given your answer to Exercise 5.12, which of the following scalar expressions are legal? For 

the legal ones, state the type of the result; for the others, show a legal expression that will achieve 

what appears to be the desired effect. 

a. J.CITY = P.CITY 

b. JNAME I I PNAME 

C. QTY * 100 

d. QTY + 100 

e. STATUS + 5 

f. J .CITY < S . CITY 

g. COLOR = P.CITY 

h. J.CITY = P.CITY || 'burg' 

5.15 It is sometimes suggested that types are really variables too, like relvars. For example, legal 

employee numbers might grow from three digits to four as a business expands, so we might need to 

update “the set of all possible employee numbers.” Discuss. 
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5.16 Give SQL analogs of all type definitions from Sections 5.3 and 5.4. 

5.17 Give an SQL answer to Exercise 5.12. 

5.18 In SQL: 

a. What is a DISTINCT type? What are values of a DISTINCT type called generically? Is there 

such a thing as an indistinct type? 

b. What is a structured type? What are values of a structured type called generically? Is there such 

a thing as an unstructured type? 

5.19 Explain the terms observer, mutator, and constructor function as used in SQL. 

5.20 What are the consequences of the “=” operator not being defined for some given type? 

5.21 A type is a set of values, so we might define the empty type to be the (necessarily unique) type 

where the set in question is empty. Can you think of any uses for such a type? 

5.22 “SQL has no formal row or array literals.” Explain and justify this observation. 

5.23 Consider the SQL type POINT as defined in the subsection “Structured Types” in Section 5.7. 

That type has a representation involving Cartesian coordinates X and Y. What happens if we replace 

that type by a revised type POINT with a representation involving polar coordinates R and 0 instead? 

5.24 What is the difference between the SQL COUNT and CARDINALITY operators? Note: 

COUNT is discussed in Chapter 8, Section 8.6. 
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VAR PART_STRUCTURE ... 
RELATION { MAJOR_P# P#, MINOR_P# P#, QTY QTY > ... ; 

(We have omitted irrelevant portions of this definition for simplicity.) In general, the 

RELATION type generator takes the same form as the TUPLE type generator, except for 

the appearance of RELATION in place of TUPLE. The relation type produced by a spe¬ 

cific invocation of the RELATION type generator—for example, the one just shown in the 

definition of relvar PART_STRUCTURE—is, of course, a generated type. 

Every relation type has an associated relation selector operator. We have already seen 

an example of a selector invocation for the relation type just illustrated. The relation 

denoted by that selector invocation could be assigned to the relvar PART_STRUCTURE, 

or tested for equality with another relation of the same type. Note in particular that, in 

order for two relations to be of the same type, it is necessary and sufficient that they have 

the same attributes. Note too that the attributes of a given relation type can be of any type 

whatsoever (they can even be of some tuple type or some other relation type). 

6.4 RELATION VALUES 

Now we can begin to take a more detailed look at relations as such (relation values, that 

is). The first point to note is that relations satisfy certain properties, all of them immediate 

consequences of the definition of relation given in the previous section, and all of them 

very important. We first state the properties in question, then discuss them in detail. They 

are as follows. Within any given relation: 

1. Every tuple contains exactly one value (of the appropriate type) for each attribute. 

2. There is no left-to-right ordering to the attributes. 

3. There is no top-to-bottom ordering to the tuples. 

4. There are no duplicate tuples. 

We use the suppliers relation from Fig. 3.8 (see the inside back cover) to illustrate 

these properties. For convenience we show that relation again in Fig. 6.1, except that now 

we have expanded the heading to include the type names. Note: By rights we should have 

expanded the body, too, to include the attribute and type names. For example, the S# entry 

for supplier SI should really look something like this: 

s# s# S#(’SI’) 

S# : S# SNAME : NAME STATUS : INTEGER CITY : CHAR 

SI Smith 20 London 
S2 Jones 10 Paris 
S3 Blake 30 Paris 
S4 Clark 20 London 
S5 Adams 30 Athens 

Fig. 6.1 The suppliers relation from Fig. 3.8 
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For simplicity, however, we have left the body as originally shown in Fig. 3.8. 

1. Relations Are Normalized 

As we know from Section 6.2, every tuple contains exactly one value for each of its 

attributes; thus, it certainly follows that every tuple in every relation contains exactly one 

value for each of its attributes. A relation that satisfies this property is said to be normal¬ 
ized, or equivalently to be in first normal form, INF/*' The relation of Fig. 6.1 is nor¬ 
malized in this sense. 

Note: This first property might seem very obvious, and indeed so it is—especially 
since, as you must have realized, all relations are normalized according to the defini¬ 

tion! Nevertheless, the property does have some important consequences. See the sub¬ 

section "Relation-Valued Attributes” later in this section, also Chapter 19 (on missing 
information). 

2. Attributes Are Unordered, Left to Right 

We already know that the components of a tuple have no left-to-right ordering, and the 
same is true for the attributes of a relation (for essentially the same reason—namely, that 

the heading of a relation involves a set of attributes, and sets in mathematics have no 
ordering to their elements). Now, when we represent a relation as a table on paper, we are 

naturally forced to show the columns of that table in some left-to-right order, but you 

should ignore that order if you can. In Fig. 6.1, for example, the columns could just as 

well have been shown in (say) the left-to-right order SNAME, CITY, STATUS, S#—the 
figure would still have represented the same relation, at least as far as the relational model 

is concerned.6 Thus, there is no such thing as “the first attribute” or “the second attribute” 

(etc.), and there is no “next attribute” (i.e., there is no concept of “nextness”); attributes 

are always referenced by name, never by position. As a result, the scope for errors and 

obscure programming is reduced. For example, there is no way to subvert the system by 

somehow “flopping over” from one attribute into another. This situation contrasts with 

that found in many programming systems, where it often is possible to exploit the physi¬ 
cal adjacency of logically discrete items, deliberately or otherwise, in a variety of subver¬ 

sive ways. 

3. Tuples Are Unordered, Top to Bottom 

This property follows from the fact that the body of the relation is also a set (of tuples); to 

say it again, sets in mathematics are not ordered. When we represent a relation as a table 
on paper, we are forced to show the rows of that table in some top-to-bottom order, but 

again you should ignore that order if you can. In Fig. 6.1, for example, the rows could just 

as well have been shown in reverse order—the figure would still have represented the 

same relation. Thus, there is no such thing as "the first tuple” or "the fifth tuple” or “the 
97th tuple” of a relation, and there is no such thing as "the next tuple”; in other words, 

5 So called because certain "higher” normal forms—second, third, and so on—can also be defined (see 
Chapters 12 and 13). 

6 For reasons that need not concern us here, relations in mathematics, unlike their counterparts in the 
relational model, do have a left-to-right order to their attributes (and likewise for tuples, of course). 
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there is no concept of positional addressing, and there is no concept of “nextness.” Note 

that if we did have such concepts, we would need certain additional operators as well— 

for example, “retrieve the nth tuple,” “insert this new tuple here," “move this tuple from 

here to there," and so on. It is a very strong feature of the relational model (and a direct 

consequence of Codd’s Information Principle) that, because there is one and only one 

way to represent information in that model, we need one and only one set of operators to 

deal with it. 

To pursue this latter point a moment longer: In fact, it is axiomatic that if we have N 

different ways to represent information, then we need N different sets of operators. And if 

N > 1, then we have more operators to implement, document, teach, learn, remember, and 

use. But those extra operators add complexity, not power! There is nothing useful that can 

be done if N > 1 that cannot be done if N = 1. We will revisit this issue in Chapter 26 (see 

references [26.12-26.14] and [26.17]), and it will crop up again in Chapter 27. 

Back to relations specifically. Of course, some notion of top-to-bottom tuple order¬ 

ing—and of left-to-right attribute ordering too, come to that—is required in the interface 

between the database and a host language such as C or COBOL (see the discussion of 

SQL cursors and ORDER BY in Chapter 4). But it is the host language, not the relational 

model, that imposes that requirement; in effect, the host language requires unordered rela¬ 

tions to be converted into ordered lists or arrays (of tuples), precisely so that operations 

such as “retrieve the nth tuple” can have a meaning. Likewise, some notion of tuple order¬ 

ing is also needed when results of queries are presented to the end user. However, such 

notions are not part of the relational model as such; rather, they are part of the environ¬ 
ment in which the relational implementation resides. 

4. There Are No Duplicate Tuples 

This property also follows from the fact that the body of the relation is a set; sets in math¬ 

ematics do not contain duplicate elements (equivalently, the elements are all distinct). 

Note: This property serves yet again to illustrate the point that a relation and a table are 

not the same thing, because a table might contain duplicate rows (in the absence of any 

discipline to prevent such a possibility), whereas a relation, by definition, never contains 

any duplicate tuples. 

As a matter of fact, it is (or should be) obvious that the concept of “duplicate tuples” 

makes no sense. Suppose for simplicity that the relation of Fig. 6.1 had just two attributes, 

S# and CITY, with the intended interpretation—see Section 6.5—“Supplier S# is located 

in city CITY," and suppose the relation contained a tuple showing that it is a “true fact” 

that supplier SI is located in London. Then if the relation contained a duplicate of that 

tuple (if that were possible), it would simply be informing us of that same “true fact" a 

second time. But if something is true, saying it twice does not make it more true! 

Extended discussions of the problems that duplicate tuples cause can be found in ref¬ 

erences [6.3] and [6.6]. 
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paper, of such an abstract object. They are not (to repeat) quite the same. Of course, they 

are very similar . . . and in informal contexts, at least, it is usual, and perfectly acceptable, 

to say they are the same. But when we are trying to be precise—and right now we are try¬ 

ing to be precise-—then we do have to recognize that the two concepts are not exactly iden¬ 

tical. 

That said, it is worth pointing out too that in fact it is a major advantage of the rela¬ 

tional model that its basic abstract object, the relation, does have such a simple representa¬ 

tion on paper. It is that simple representation that makes relational systems easy to use and 

easy to understand, and makes it easy to reason about the way relational systems behave. 

Nevertheless, it is unfortunately also the case that that simple representation does suggest 

some things that are not true (e.g., that there is a top-to-bottom tuple ordering). 

Relation-Valued Attributes 

As noted in Section 6.3, any type whatsoever can be used as the basis for defining rela¬ 

tional attributes, in general. It follows that relation types in particular, since they are cer¬ 

tainly types, can be used as the basis for defining attributes of relations; in other words, 

attributes can be relation-valued, meaning we can have relations with attributes whose 

values are relations in turn. In other words, we can have relations that have other relations 

nested inside themselves. An example of such a relation is shown in Fig. 6.2. Observe with 

respect to that relation that (a) attribute PQ is relation-valued; (b) the cardinality and 

degree are both five; and in particular (c) the empty set of parts supplied by supplier S5 is 

represented by a PQ value that is an empty set (more precisely, an empty relation). 

The main reason we mention the possibility of relation-valued attributes here is that, 

historically, such a possibility has usually been regarded as illegal. Indeed, it was so 

regarded in earlier editions of this book. For example, here is a lightly edited excerpt from 

the sixth edition: 

s# SNAME STATUS CITY PQ 

si Smith 20 London 

S2 Jones P# QTY 

PI 
P2 

300 
400 

S5 Adams 30 Athens P# QTY 

Fig. 6.2 A relation with a relation-valued attribute 
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Note that all column values are atomic . . . That is, at every row-and-column position [.v/c] 

in every table [s/'c] there is always exactly one data value, never a group of several values. 

Thus, for example, in table EMP, we have 

DEPT# EMP# 

D1 El 
D1 E2 

* * • ' 

instead of 

DEPT# EMP# 

D1 E1,E2 

Column EMP# in the second version of this table is an example of what is usually called a 

repeating group. A repeating group is a column . . . that contains several values in each 

row (different numbers of values in different rows, in general). Relational databases do 

not allow repeating groups; the second version of the table above would not be permitted 

in a relational system. 

And later in the same book, we find: “Domains (i.e., types) contain atomic values 

only . . . [Therefore,] relations do not contain repeating groups. A relation satisfying this 

condition is said to be normalized, or equivalently to be in first normal form . . . The term 

relation is always taken to mean a normalized relation in the context of the relational 

model.” 

These remarks are not correct, however (at least not in their entirety): They arose 

from a misunderstanding on this writer’s part of the true nature of types (domains). For 

reasons to be discussed in Chapter 12 (Section 12.6), it is unlikely that this mistake will 

have caused any very serious errors in practice; nevertheless, apologies are still due to 

anyone who might have been misled. At least the sixth edition was correct when it said 

that relations in the relational model are always normalized! Again, see Chapter 12 for 

further discussion. 

Relations with No Attributes 

Every relation has a set of attributes; and, since the empty set is certainly a set, it follows 

that it must be possible for a relation to have the empty set of attributes, or in other words 

no attributes at all. (Do not be confused: We often talk about “empty relations,” meaning 

relations whose body is an empty set of tuples, but here, by contrast, we are talking about 

relations whose heading is an empty set of attributes.) Thus, relations with no attributes 

are at least respectable from a mathematical point of view. What is perhaps more surpris¬ 

ing is that they turn out to be extremely important from a practical point of view as well! 

In order to examine this notion more closely, we first need to consider the question of 

whether a relation with no attributes can contain any tuples. The answer (again perhaps 

surprisingly) is yes. To be more specific, such a relation can contain at most one tuple: 



154 Part II / The Relational Model 

namely, the O-tuple (i.e., the tuple with no components; it cannot contain more than one 

such tuple, because all 0-tuples are duplicates of one another). There are thus precisely 

two relations of degree zero—one that contains just one tuple, and one that contains no 

tuples at all. So important are these two relations that, following Darwen [6.5], we have 

pet names for them: We call the first TABLE_DEE and the other TABLE_DUM, or DEE 

and DUM for short (DEE is the one with one tuple, DUM is the empty one). Note: It is 

hard to draw pictures of these relations! Thinking of relations as conventional tables 

breaks down, somewhat, in the case of DEE and DUM. 

Why are DEE and DUM so important? There are several more or less interrelated 

answers to this question. One is that they play a role in the relational algebra—see Chap¬ 

ter 7—that is akin, somewhat, to the role played by the empty set in set theory or zero in 

ordinary arithmetic. Another has to do with what the relations mean (see reference [6.5]); 

essentially, DEE means TRUE, or yes, and DUM means FALSE, or no. In other words, 

they have the most fundamental meanings of all. (A good way to remember which is 

which is that the “E"s in DEE match the “e” in yes.) 

In Tutorial D, the expressions TABLE_DEE and TABLE_DUM can be used as short¬ 

hand for the relation selector invocations 

RELATION { } { TUPLE { > > 

and 

RELATION { > { > 

respectively. 

It is not possible to go into more detail on this topic at this juncture; suffice it to say 

that you will encounter DEE and DUM many times in the pages ahead. For further discus¬ 

sion, see reference [6.5], 

Operators on Relations 

We mentioned the relational selector, assignment, and equality comparison operators 

briefly in Section 6.3. Of course, the comparison operators “<” and “>” do not apply to 

relations; however, relations are certainly subject to other kinds of comparisons in addi¬ 

tion to simple equality, as we now explain. 

Relational comparisons: We begin by defining a new kind of <bool exp>, <relation 

comp>, with syntax as follows: 

<relation exp> <relation comp op> <relation exp> 

The relations denoted by the two <relation exp>s must be of the same type, and <relation 

comp op> must be one of the following: 

= (equals) 

* (not equals) 

c (subset of) 

c (proper subset of) 

D (superset of) 

D (proper superset of) 
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Then we allow a <relation comp> to appear wherever a <bool exp> is expected—for exam¬ 

ple, in a WHERE clause. Here are a couple of examples: 

1. s { city > = p { city > 

Meaning: Is the projection of suppliers over CITY equal to the projection of parts over 

CITY? 

2. S { S# } D SP { s# > 

Meaning (considerably paraphrased): Are there any suppliers who supply no parts at 

all? 

One particular relational comparison often needed in practice is a test to see whether 

a given relation is equal to an empty relation of the same type (i.e., one that contains no 

tuples). It is useful to have a shorthand for this particular case. We therefore define the 

expression 

IS_EMPTY ( <relation exp> ) 

to return TRUE if the relation denoted by the <relation exp> is empty and FALSE otherwise. 

Other operators: Another common requirement is to be able to test whether a given tuple 

t appears in a given relation r: 

ter 

This expression returns TRUE if t appears in r and FALSE otherwise (“e” is the set 

membership operator; the expression t e r can be pronounced “t belongs to r" or “r is a 

member of r” or, more simply, just “t [is] in r”). 

We also need to be able to extract the single tuple from a relation of cardinality one: 

TUPLE FROM r 

This expression raises an exception if r does not contain exactly one tuple; otherwise, it 

returns just that one tuple. 

In addition to the operators discussed so far, there are also all of the generic opera¬ 

tors—join, restrict, project, and so on—that go to make up the relational algebra. We defer 

detailed treatment of these operators to the next chapter. 

Relation type inference: Just as the tuple type naming scheme described in Section 6.2 

facilitates the task of determining the type of the result of an arbitrary tuple expression, so 

the relation type naming scheme described in Section 6.3 facilitates the task of determining 

the type of the result of an arbitrary relational expression. Chapter 7 goes into detail on this 

issue; here we content ourselves with one simple example. Given the suppliers relvar S, the 

expression 

S { S#, CITY } 

yields a result (a relation) whose type is: 

RELATION { S# S#, CITY CHAR > 

Analogous remarks apply to all possible relational expressions. 
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VAR P BASE RELATION 

{ P# P#, 
PNAME NAME, 

COLOR COLOR, 
WEIGHT WEIGHT, 
CITY CHAR } 

PRIMARY KEY { P# > ; 

VAR SP BASE RELATION 
{ S# S#, 

P# P#, 
QTY QTY } 

PRIMARY KEY { S#, P# } 
FOREIGN KEY { S# > REFERENCES S 
FOREIGN KEY { P# } REFERENCES P ; 

Explanation: 

1. These three base relvars have (relation) types as follows: 

RELATION { S# S#, SNAME NAME, STATUS INTEGER, CITY CHAR } 

RELATION { P# P#, PNAME NAME, COLOR COLOR, 
WEIGHT WEIGHT, CITY CHAR } 

RELATION { S# S#, P# P#, QTY QTY } 

2. The terms heading, body, attribute, tuple, degree (and so on) previously defined for 

relation values are all interpreted in the obvious way to apply to relvars as well. 

3. All possible values of any given relvar are of the same relation type—namely, the 

relation type specified (indirectly, if the given relvar is a view) in the relvar defini¬ 

tion—and therefore have the same heading. 

4. When a base relvar is defined, it is given an initial value that is the empty relation of 

the applicable type. 

5. Candidate key definitions are explained in detail in Chapter 9. Prior to that point, we 

will simply assume that each base relvar definition includes exactly one <candidate 

key def>, of the following particular form: 

PRIMARY KEY { <attribute name commalist> } 

6. Foreign key definitions are also explained in Chapter 9. 

7. Defining a new relvar causes the system to make entries in the catalog to describe that 

relvar. 

8. As noted in Chapter 3, relvars, like relations, have a corresponding predicate: 

namely, the predicate that is common to all of the relations that are possible values of 

the relvar in question. In the case of the suppliers relvar S, for example, the predicate 

looks something like this: 

The supplier with supplier number S# is under contract, is named SNAME, has status 

STATUS, and is located in city CITY 

9. We assume that a means is available for specifying default values for attributes of 

base relvars. The default value for a given attribute is a value that is to be placed in 

the applicable attribute position if the user does not provide an explicit value when 

inserting some tuple. Suitable Tutorial D syntax for specifying defaults might take 
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the form of a new clause on the base relvar definition, DEFAULT { <default spec 

commalist> } say, where each <default spec> takes the form <attribute name> 

<default>. For example, we might specify DEFAULT { STATUS 0, CITY " } in the 

definition of the suppliers relvar S. Note: Candidate key attributes will usually, 

though not invariably, have no default (see Chapter 19). 

Here is the syntax for dropping an existing base relvar: 

DROP VAR crelvar name> ; 

This operation sets the value of the specified relvar to “empty” (i.e., it deletes all tuples in 

the relvar, loosely speaking); it then deletes all catalog entries for that relvar. The relvar is 

now no longer known to the system. Note: For simplicity, we assume the DROP will fail 

if the relvar in question is still being used somewhere—for example, if it is referenced in 

some view definition somewhere. 

Updating Relvars 

The relational model includes a relational assignment operation for assigning values 

to—that is, updating—relvars (base relvars in particular). Here, slightly simplified, is the 

Tutorial D syntax: 

<relation assignment> 
::= <relation assign commalist> ; 

<relation assign> 
::= <relvar naine> := <relation exp> 

The semantics are as follows:7 First, all of the <relation exp>s on the right sides of 

the <relation assign>s are evaluated; second, the <relation assign>s are executed in 

sequence as written. Executing an individual <relation assign> involves assigning the 

relation resulting from evaluation of the <relation exp> on the right side to the relvar iden¬ 

tified by the <relvar name> on the left side (replacing the previous value of that relvar). 

Of course, the relation and relvar must be of the same type. 

By way of example, suppose we are given two further base relvars S’ and SP' of the 

same types as the suppliers relvar S and the shipments relvar SP, respectively: 

VAR S' BASE RELATION 
{ S# S#, SNAME NAME, STATUS INTEGER, CITY CHAR } ... ; 

VAR SP' BASE RELATION 
{ S# S#, P# P#, QTY QTY > ... ; 

Here then are some valid examples of <relation assignment: 

1. S' := S , SP' := SP ; 

2. S' := S WHERE CITY = 'London' ; 

3. S' := S WHERE NOT ( CITY = 'Paris' ) ; 

Note that each individual <relation assign> can be regarded as both (a) retrieving the 

relation specified on the right side and (b) updating the relvar specified on the left side. 

7 Except as noted in footnote 9 in Chapter 5. 
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Now suppose we change the second and third examples by replacing relvar S' on the 

left side by relvar S in each case: 

2. S := S WHERE CITY = 'London' ; 

3. S := S WHERE NOT ( CITY = 'Paris' ) ; 

Observe that these two assignments are both effectively updates to relvar S—one effec¬ 

tively deletes all suppliers not in London, the other effectively deletes all suppliers in Paris. 

For convenience Tutorial D does support explicit INSERT, DELETE, and UPDATE oper¬ 

ations, but each of these operations is defined to be shorthand for a certain <relation 

assign>. Here are some examples: 

1. INSERT S RELATION { TUPLE { S# S# ('S6’), 
SNAME NAME ('Smith'), 
STATUS 50, 
CITY 'Rome' > > ; 

Assignment equivalent: 

S := S UNION RELATION { TUPLE { S# S# ('S6’), 
SNAME NAME ('Smith’), 
STATUS 50, 
CITY 'Rome' } > ; 

Note, incidentally, that this assignment will succeed if the specified tuple for supplier 

S6 already exists in relvar S. In practice, we might want to refine the semantics of 

INSERT in such a way as to raise an exception if an attempt is made “to insert a tuple 

that already exists.” For simplicity, however, we ignore this refinement here. Analo¬ 

gous remarks apply to DELETE and UPDATE also. 

2. DELETE S WHERE CITY = 'Paris' ; 

Assignment equivalent: 

S := S WHERE NOT ( CITY = 'Paris' ) ; 

3. UPDATE S WHERE CITY = 'Paris' 
{ STATUS := 2 * STATUS, 

CITY := ’Rome' } ; 

Assignment equivalent: 

S := WITH ( S WHERE CITY = 'Paris’ ) AS T1 , 
( EXTEND T1 ADD ( 2 * STATUS AS NEW_STATUS, 

'Rome' AS NEW_CITY ) ) AS T2 , 
T2 { ALL BUT STATUS, CITY > AS T3 , 
( T3 RENAME ( NEW_STATUS AS STATUS, 

NEW_CITY AS CITY ) ) AS T4 : 

( S MINUS T1 ) UNION T4 ; 

As you can see, the assignment equivalent is a little complicated in this case—in fact, 

it relies on several features that will not be explained in detail until the next chapter. 

For that reason, we omit further discussion here. 

For purposes of reference, here is a slightly simplified summary of the syntax of 

INSERT, DELETE, and UPDATE: 

INSERT <relvar name> <relation exp> ; 

DELETE <relvar name> [ WHERE <bool exp> ] ; 
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UPDATE <relvar name> [ WHERE <bool exp> ] 

{ <attribute update commalist> > ; 

An <attribute update> in turn takes the form 

<attribute name> := <exp> 

Also, the <bool e.\p> in DELETE and UPDATE can include references to attributes of the 

target relvar, with the obvious semantics. 

We close this subsection by stressing the point that relational assignment, and hence 

INSERT, DELETE, and UPDATE, are all set-level operations.8 UPDATE, for example, 

updates a set of tuples in the target relvar, loosely speaking. Informally, we often talk of 

(e.g.) updating some individual tuple, but it must be clearly understood that: 

1. We are really talking about updating a set of tuples, a set that just happens to have 

cardinality one. 

2. Sometimes updating a set of tuples of cardinality one is impossible! 

Suppose, for example, that the suppliers relvar is subject to the integrity constraint 

(see Chapter 9) that suppliers SI and S4 must have the same status. Then any “single¬ 

tuple" UPDATE that tries to change the status of just one of those two suppliers must fail. 

Instead, both must be updated simultaneously, as here: 

UPDATE S WHERE S# = S# ('SI') OR S# = S# ('S4') 
{ STATUS := some value } ; 

To pursue the point a moment longer, we should now add that to talk (as we have just 

been doing) of “updating a tuple”—or set of tuples—in a relvar is really rather sloppy. 

Like relations, tuples are values and cannot be updated, by definition. Thus, what we 

really mean when we talk of (for example) “updating tuple t to t'" is that we are replacing 

the tuple t (the tuple value t. that is) by another tuple t' (which is, again, a tuple value)/ 

Analogous remarks apply to phrases such as “updating attribute A" within some tuple. In 

this book, we will continue to talk in terms of “updating tuples” and “updating attributes 

of tuples”—the practice is convenient—but it must be understood that such usage is only 

shorthand, and rather sloppy shorthand at that. 

Relvars and Their Interpretation 

We conclude this section with a reminder to the effect that (as explained in Chapter 3, Sec¬ 

tion 3.4) (a) the heading of any given relvar can be regarded as a predicate, and (b) the 

tuples appearing in that relvar at any given time can be regarded as true propositions, 

obtained from the predicate by substituting arguments of the appropriate type for the 

s In passing, we note that, by definition, the CURRENT forms of DELETE and UPDATE in SQL—see 
Section 4.6—are tuple-level (or row-level, rather), and are therefore contraindicated. 

y Of course, none of this is to say that we cannot update tuple variables. As explained in Section 6.2, 
however, the notion of a tuple variable is not part of the relational model, and relational databases do not 
contain such variables. 
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parameters of that predicate (“instantiating the predicate”). We can say that the predicate 

corresponding to a given relvar is the intended interpretation, or meaning, for that rel- 
var, and the propositions corresponding to tuples of that relvar are understood by conven¬ 

tion to be true ones. In fact, the Closed World Assumption (also known as the Closed 

World Interpretation) says that if an otherwise valid tuple—that is, one that conforms to 

the relvar heading—does not appear in the body of the relvar, then we can assume the cor¬ 

responding proposition is false. In other words, the body of the relvar at any given time 

contains all and only the tuples that correspond to true propositions at that time. We will 
have considerably more to say on such matters in Chapter 9. 

6.6 SQL FACILITIES 

Rows 

SQL does not support tuples, as such, at all; instead, it supports rows, which have a left- 
to-right ordering to their components. Within a given row, the component values—which 

are called column values if the row is immediately contained in a table, or field values oth¬ 

erwise—are thus identified primarily by their ordinal position (even when they also have 

names, which is not always the case). Row types have no explicit row type name. A row 

value can be “selected” (the SQL term is constructed) by means of an expression—actu¬ 
ally a <row value constructor>—of the form: 

[ ROW ] ( <exp commalist> ) 

The parentheses can be omitted if the commalist contains just one <exp>\ the keyword 

ROW must be omitted in this case, and is optional otherwise. The commalist must not be 

empty (SQL does not support a “0-row”). Here is an example: 

ROW ( P#('P2'), P#('P4'), QTY(7) ) 

This expression denotes a row of degree three. 

As we saw in Chapter 5, SQL also supports a ROW type constructor (its counterpart to 
the Tutorial D TUPLE type generator) that can be invoked in the definition of, for example, 

some table column or some variable.10 Here is an example of the latter case: 

DECLARE ADDR ROW ( STREET CHAR(50), 
CITY CHAR(25), 
STATE CHAR(2), 
ZIP CHAR(5) ) ; 

Row assignments and comparisons are supported, with the caveat that the only strong 

typing that applies is the limited form described in Chapter 5, Section 5.7. Note in particu¬ 
lar, therefore, that the fact that rl = r2 is true does not imply that rows rl and r2 are the 

same row. Moreover, “<” and “>” are legal row comparison operators! The details of such 
comparisons are complicated, however, and we omit them here; see reference [4.20] for 

further discussion. 

10 Do not be confused: SQL’s “row value constructor” is basically a tuple selector, while its “row type 
constructor” is basically the TUPLE type generator (speaking very loosely!). 
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SQL does not support row versions of any of the regular relational operators (“row 

project,” “row join,” etc.), nor does it provide direct counterparts to WRAP and 

UNWRAP. It also does not support any “row type inferencing”—but this latter point is 

perhaps unimportant, given that SQL supports almost no row operators anyway. 

Table Types 

SQL does not support relations, as such, at all; instead, it supports tables. The body of a 

table in SQL is not a set of tuples but a bag of rows instead (a bag, also known as a 

multiset, is a collection that like a set has no ordering, but unlike a set permits duplicate 

elements); thus, the columns of such a table have a left-to-right ordering, and there can be 

duplicate rows. (Throughout this book, however, we will apply certain disciplines to guar¬ 

antee that duplicate rows never occur, even in SQL contexts.) SQL does not use the terms 
heading or body. 

Table types have no explicit table type name. A table value can be “selected” (once 

again, the SQL term is constructed) by means of an expression—actually a <table value 

constructor—of the form; 

VALUES <row value constructor commalist> 

(where the commalist must not be empty). Thus, for example, the expression 

VALUES ( P#('P1'), P#('P2'), QTY(5) ) , 
( P#('PI'), P#('P3'), QTY(3) ) , 
( P#('P2'), P#(’P3'), QTY(2) ) , 
( P#(1P2'), P#('P4'), QTY(7) ) , 
( P#('P3'), P#(1P51), QTY(4) ) , 
( P#('P4'), P#(1P6'), QTY(8) ) 

evaluates to a table looking something like the relation shown in Section 6.3, except that it 
has no explicit column names. 

SQL does not really support an explicit counterpart to the RELATION type generator 

at all. It also does not support an explicit table assignment operator (though it does support 

explicit INSERT, DELETE, and UPDATE statements). Nor does it support any table com¬ 

parison operators (not even “=”). However, it does support an operator for testing whether 
a given row appears in a given table: 

<row value constructor IN <table exp> 

It also supports a counterpart to the TUPLE FROM operator: 

( <table exp> ) 

If such an expression appears where an individual row is required, and if the <table exp> 

denotes a table that contains exactly one row, then that row is returned; otherwise, an 

exception is raised. Note: We remark in passing that <table name> is not a valid <table 

exp> (!). 
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Now, row types in SQL are similar to Tutorial D’s tuple types in the foregoing respect. 

But structured types are different; there is an explicit “define structured type” operator, and 

structured types do have additional explicit names. By way of example, consider the fol¬ 
lowing SQL definitions: 

CREATE TYPE POINT1 AS ( X FLOAT, Y FLOAT ) NOT FINAL ; 

CREATE TYPE POINT2 AS ( X FLOAT, Y FLOAT ) NOT FINAL ; 

DECLARE VI POINT1 ; 

DECLARE V2 POINT2 ; 

Note carefully that variables VI and V2 are of different types. Thus, they cannot be 

compared with one another, nor can either one be assigned to the other. 

6.7 SUMMARY 

In this chapter we have taken a comprehensive look at relations and related matters. We 

began by defining tuples precisely, stressing the points that (a) every tuple contains 

exactly one value for each of its attributes, (b) there is no left-to-right ordering to the 

attributes, and (c) every subset of a tuple is a tuple, and every subset of a heading is a head¬ 
ing. And we discussed the TUPLE type generator, tuple selectors, tuple assignment and 

equality, and other generic tuple operators. 

Then we turned to relations (meaning, more specifically, relation values). We gave a 
precise definition, and pointed out that every subset of a body is a body, and (as with 

tuples) every subset of a heading is a heading. We discussed the RELATION type gener¬ 

ator and relation selectors, and we observed that the attributes of a given relation type can 

be of any type whatsoever, in general. 

Note: It is worth elaborating on this last point briefly, since there is so much confu¬ 

sion surrounding it in the industry. You will often hear claims to the effect that relational 

attributes can only be of very simple types (numbers, strings, and so forth). The truth is, 

however, that there is absolutely nothing in the relational model to support such claims. 

As noted in Chapter 5, in fact, types can be as simple or as complex as we like, and so we 

can have attributes whose values are numbers, or strings, or dates, or times, or audio 

recordings, or maps, or video recordings, or geometric points (etc.). 
The foregoing message is so important—and so widely misunderstood—that we state 

it again in different terms: 

The question of what data types are supported is orthogonal to the 
question of support for the relational model. 

Back to our summary. Next, we went on to state certain properties that all relations 

satisfy: 

1. They are always normalized. 

2. They have no left-to-right ordering to their attributes. 
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3. They have no top-to-bottom ordering to their tuples. 

4. They never contain any duplicate tuples. 

We also identified some of the main differences between relations and tables; we dis¬ 

cussed relation-valued attributes; and we briefly considered TABLE_DEE and 

TABLE_DUM, which are the only possible relations with no attributes at all. We 

described relational comparisons in some detail, and we took a quick look at certain 
other operators on relations (including ORDER BY in particular). 

In connection with operators on relations, by the way, you might have noticed that we 

discussed the question of user-defined operators for scalar types in some depth in Chapter 

5, but did not do the same for relation types. The reason is that most of the relational oper¬ 

ators we need—restrict, project, join, relational comparisons, and so forth—are in fact 

built into the relational model itself and do not require any "user definition." (What is 

more, those operations are generic, in that they apply to relations of all types, loosely 

speaking.) However, there is no reason why those built-in operators should not be aug¬ 

mented with a set of user-defined ones, if the system provides a means for defining them. 

We remind you that the heading of any given relation can be regarded as a predicate 

and the tuples of that relation can be regarded as true propositions, derived from that pred¬ 

icate by supplying argument values of the appropriate types for the parameters of the 
predicate. 

Next, we went on to consider base relvars, pointing out that, like relations, relvars 

have predicates. The Closed World Assumption says we can assume that if an otherwise 

valid tuple does not appear in the body of the relvar, then the corresponding proposition is 
false. 

Next, we discussed relational assignment (and the INSERT, DELETE, and 

UPDATE shorthands) in some detail. We emphasized the point that relational assignment 

was a set-level operation; we also noted that it was not really correct to speak of "updat¬ 
ing tuples” or "updating attributes.” 

Finally, we sketched the SQL counterparts to the foregoing ideas, where applicable. 

An SQL table is not a set of tuples but a bag of rows (also, SQL uses the same term table 

for both table values and table variables). Base tables can be “altered” by means of 

ALTER TABLE. They can also be defined in terms of structured types, a possibility that 

we will be considering in much more detail later in this book (in Chapter 26). 

EXERCISES 

6.1 What do you understand by the term cardinality? 

6.2 Define as precisely as you can the terms tuple and relation. 

6.3 State as precisely as you can what it means for (a) two tuples to be equal; (b) two tuple types to 

be equal; (c) two relations to be equal; (d) two relation types to be equal. 

6.4 Write (a) a set of predicates and (b) a set of Tutorial I) relvar definitions for the suppliers- 

parts-projects database of Fig. 4.5 (see the inside back cover). 

6.5 Write tuple selector invocations for a typical tuple from each of the relvars in the suppliers- 

parts-projects database. 
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6.6 Define a local tuple variable into which an individual tuple could be retrieved from the ship¬ 
ments relvar in the suppliers-pai ts-projects database. 

6.7 What do the following Tutorial D expressions denote? 

a. RELATION { S# S#, P# P#, J# J#, QTY QTY > { } 

b. RELATION { TUPLE { S# S#('S1'), P# P#('P1'), 

J# J#('J1'), QTY QTY(200) > } 

C. RELATION { TUPLE { } } 

d. RELATION { } { TUPLE { > > 

e. RELATION { } { > 

6.8 What do you understand by the term first normal form? 

6.9 List as many differences as you can think of between relations and tables. 

6.10 Give an example of your own of a relation with (a) one relation-valued attribute and (b) two 

such attributes. Also, give two more relations that represent the same information as those relations 

but do not involve relation-valued attributes. 

6.11 Write an expression that returns TRUE if the current value of the parts relvar P is empty and 

FALSE otherwise. Do not use the IS_EMPTY shorthand. 

6.12 In what respects is ORDER BY a rather unusual operator? 

6.13 State the Closed World Assumption 

6.14 It is sometimes suggested that a relvar is really just a traditional computer file, with “tuples” 

instead of records and “attributes” instead of fields. Discuss. 

6.15 Give Tutorial D formulations for the following updates to the suppliers-parts-projects data¬ 
base: 

a. Insert a new shipment with supplier number SI, part number PI, project number J2, quantity 

500. 

b. Insert a new supplier S10 into table S (the name and city are Smith and New York, respectively; 

the status is not yet known). 

c. Delete all blue parts. 

d. Delete all projects for which there are no shipments. 

e. Change the color of all red parts to orange. 

f. Replace all appearances of supplier number S1 by appearances of supplier number S9 instead. 

6.16 We have seen that data definition operations cause updates to be made to the catalog. But 

the catalog is only a collection of relvars, just like the rest of the database; so could we not use the 

regular update operations INSERT, DELETE, and UPDATE to update the catalog appropriately? 

Discuss. 

6.17 In the body of the chapter, we said that any type whatsoever can be used as the basis for defin¬ 

ing relational attributes, in general. That qualifier "in general” was there for a reason, however. Can 

you think of any exceptions to this general rule? 

6.18 What do you understand by the SQL terms column, field, and attribute? 

6.19 (Modified version of Exercise 5.23) Consider the SQL type POINT and the SQL table 

POINTS as defined in the subsection "Structured Types" in Section 6.6. Type POINT has a represen¬ 

tation involving Cartesian coordinates X and Y. What happens if we replace that type by a revised 

type POINT with a representation involving polar coordinates R and 0 instead? 
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The ideas advocated in this book are by no means universally accepted, however [6.7, 

6.8]. We comment on one particular issue here. As we saw in Chapter 5, domains (i.e., types) 

constrain comparisons. In the case of suppliers and parts, for instance, the comparison S.S# = 

SP.P# is not valid, because the comparands are of different types; hence, an attempt to join sup¬ 

pliers and shipments over matching supplier and part numbers will fail. Codd therefore pro¬ 

poses “domain check override” (DCO) versions of certain of the relational algebra operations, 

which allow the operations in question to be performed even if they involve a comparison 

between values of different types. A DCO version of the join just mentioned, for example, will 

cause the join to be done even though attributes S.S# and SP.P# are of different types (presum¬ 

ably it will be done on the basis of matching representations instead of matching types). 

But therein lies the problem. The whole DCO idea is based on a confusion between types 

and representations. Recognizing domains for what they are (i.e., types)—with all that such 

recognition entails—gives us the domain checking we want and gives us something like the 

DCO capability as well. For example, the following expression constitutes a valid representa¬ 

tion-level comparison between a supplier number and a part number: 

THE_S# ( S# ) = THE_P# ( P# ) 

(both comparands here are of type CHAR). Thus, it is our claim that the kind of mechanism 

discussed in Chapter 5 gives us all the facilities we want, but does so in a manner that is clean, 

systematic (i.e., not ad hoc), and fully orthogonal. In particular, there is now no need to clutter 

up the relational model with new constructs such as “DCO join” (etc.). 

6.3 Hugh Darwen: “The Duplicity of Duplicate Rows,” in C. J. Date and Hugh Darwen, Relational 
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Nullology is, as Darwen puts it, “the study of nothing at all”—in other words, the study of the 

empty set. (It has nothing to do with SQL-style nulls!) Sets are ubiquitous in relational theory, 

and the question of what happens if such a set happens to be empty is far from a frivolous one. 

In fact, it turns out that very often the empty-set case turns out to be absolutely fundamental. 

Note: As far as the present chapter is concerned, the most immediately applicable portions of 

this paper are Sections 2 (“Tables with No Rows”) and 3 (“Tables with No Columns”). 
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Fig. 7.1 The original eight operators (overview) 

Now, Codd had a very specific purpose in mind, which we will examine in the next 
chapter, for defining just the eight operators he did. But those eight operators are not the 

end of the story; rather, any number of operators can be defined that satisfy the simple 

requirement of “relations in, relations out,” and many additional operators have indeed 

been defined, by many different writers. In this chapter, we will discuss the original eight 
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means we can write nested relational expressions—that is, relational expressions in which 

the operands are themselves represented by relational expressions of arbitrary complexity. 

(There is an obvious analogy between the ability to nest relational expressions in the rela¬ 

tional algebra and the ability to nest arithmetic expressions in ordinary arithmetic; indeed, 

the fact that relations are closed under the algebra is important for exactly the same kinds 

of reasons that the fact that numbers are closed under ordinary arithmetic is important.) 

Now, when we discussed closure in Chapter 3, there was one very significant point 

we deliberately glossed over. Recall that every relation has two parts, a heading and a 

body; loosely speaking, the heading is the attributes and the body is the tuples. The head¬ 

ing for a base relation—where, as you will recall from Chapter 5, a base relation is the 

value of a base relvar—is obviously known to the system, because it is specified as part of 

the relevant base relvar definition. But what about derived relations? For example, con¬ 

sider the expression 

S JOIN P 

(which represents the join of suppliers and parts over matching cities, CITY being the 

only attribute common to the two relations). We know what the body of the result looks 

like—but what about the heading ? Closure dictates that it must have a heading, and the 

system needs to know what it is (in fact the user does too, as we will see in a moment). In 

other words, that result must—of course!—be of some well-defined relation type. If we 

are to take closure seriously, therefore, we need to define the relational operations in such 

a way as to guarantee that every operation produces a result with a proper relation type: in 

particular, with proper attribute names. (We remark in passing that this is an aspect of the 

algebra that has been much overlooked in the literature—and also, regrettably, in the SQL 

language and hence in SQL products—with the notable exception of the treatment found 

in references [7.2] and [7.10], The algebra as presented in this chapter is very much influ¬ 
enced by these two references.) 

One reason we require every result relation to have proper attribute names is to allow 

us to refer to those attributes in subsequent operations—in particular, in operations 

invoked elsewhere within the overall nested expression. For example, we could not sensi¬ 
bly even write an expression such as 

( S JOIN P ) WHERE CITY = 'Athens' 

if we did not know that the result of evaluating the expression S JOIN P had an attribute 
called CITY. 

What we need, therefore, is a set of relation type inference rules built into the alge¬ 

bra, such that if we know the type(s) of the input relation(s) for any given relational opera¬ 

tion, we can infer the type of the output from that operation. Given such rules, it will 

follow that an arbitrary relational expression, no matter how complex, will produce a 

result that also has a well-defined type, and in particular a well-defined set of attribute 
names. 

As a preparatory step to achieving this goal, we introduce a new operator, RENAME, 

whose purpose is (loosely) to rename attributes within a specified relation. More pre¬ 
cisely, the RENAME operator takes a given relation and returns another that is identical to 

the given one except that one of its attributes has a different name. (The given relation is 
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specified by means of a relational expression, possibly involving other relational opera¬ 
tions.) For example, we might write: 

S RENAME CITY AS SCITY 

This expression—please note that it is an expression, not a “command” or statement, 

and hence that it can be nested inside other expressions—yields a relation with the same 

heading and body as the relation that is the current value of relvar S, except that the city 
attribute is named SCITY instead of CITY: 

s# SNAME STATUS SCITY 

SI Smith 20 London 
S2 Jones 10 Paris 
S3 Blake 30 Paris 
S4 Clark 20 London 
S5 Adams 30 Athens 

Important: Please note that this RENAME expression has not changed the suppliers 

relvar in the database! It is just an expression (exactly as, e.g., S JOIN SP is just an 
expression), and like any other expression it simply denotes a certain value—a value that, 

in this particular case, happens to look very much like the current value of the suppliers 

relvar. 
Here is another example (a “multiple renaming” this time): 

P RENAME ( PNAME AS PN, WEIGHT AS WT ) 

This expression is shorthand for the following: 

( P RENAME PNAME AS PN ) RENAME WEIGHT AS WT 

The result looks like this: 

P# PN COLOR WT CITY 

PI Nut Red 12.0 London 

P2 Bolt Green 17.0 Paris 

P3 Screw Blue 17.0 Oslo 

P4 Screw Red 14.0 London 

P5 Cam Blue 12.0 Paris 

P6 Cog Red 19.0 London 

It is worth noting that the availability of RENAME means that the relational algebra, 

unlike SQL, has no need for (and in fact does not support) dot-qualified attribute names 

such as S.S#. 

7.3 THE ORIGINAL ALGEBRA: SYNTAX 

In this section, we present a concrete syntax, based on Tutorial D, for relational algebra 
expressions that use the original eight operators, plus RENAME. The syntax is included 

here primarily for purposes of subsequent reference. A few notes on semantics are also 
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included. Note: Most database texts use a “mathematical” or “Greek” notation for the 

relational operators: a for restriction (“selection”), tc for projection, D for intersection, x 

(“bow tie”) for join, and so on. As you can see, we prefer to use keywords such as JOIN 

and WHERE. Keywords make for lengthier expressions, but we think they also make for 
more user-friendly ones. 

<relation exp> 
::= RELATION { <tuple exp commalist> > 

<relvar name> 
<relation op inv> 
<with exp> 
<introduced name> 
( <relation exp> ) 

A <relcition exp> is an expression that denotes a relation (i.e., a relation value). The 

first format is a relation selector invocation (see Chapter 6); we do not spell out the syntax 

of <tuple exp> in detail here, since examples should be sufficient to give the general idea. 

The <relvar name> and (<relation exp>) formats are self-explanatory; the others are 
explained in what follows. 

<relation op inv> 
::= <project> | <nonproject> 

A relational operator invocation, <relation op inv>, is either a <project> or a <non- 

project.. Note: We distinguish these two cases in the syntax merely for operator prece¬ 

dence reasons (it is convenient to assign a high precedence to projection). 

<proj ect> 
::= <relation exp> 

{ [ ALL BUT ] <attribute name commalist> } 

The <relation exp> must not be a <nonproject>. 

<nonproject> 
::= <rename> | <union> | <intersect> \ <minus> \ <times> 

| <where> | <join> \ <divide> 

<rename> 
::= <relation exp> RENAME ( <renaming commalist> ) 

The <relation exp> must not be a <nonproject>. The individual <renaming>s are 

executed in sequence as written (for the syntax of <renaming>, see the examples in the 

previous section). The parentheses can be omitted if the commalist contains just one 
<renaming>. 

<union> 
::= <relation exp> UNION <relation exp> 

The <relation exp>s must not be <nonproject>s, except that either or both can be 
another <union>. 

<intersect> 
::= <relation exp> INTERSECT <relation exp> 

The <relation exp>s must not be <nonproject>s, except that either or both can be 
another <intersect>. 
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<minus> 
::= <relation exp> MINUS <relation exp> 

The <relation exp>s must not be <nonproject>s. 

<times> 
::= <relation exp> TIMES <relation exp> 

The <relcition exp>s must not be <nonproject>s, except that either or both can be 
another <times>. 

<where> 
::= <relation exp> WHERE <bool exp> 

The <relcition exp> must not be a <nonproject>. The <bool exp> can include refer¬ 

ences to attributes of the relation denoted by the <relation exp>, with the obvious 
semantics. 

<join> 
::= <relation exp> JOIN <relation exp> 

The <relation exp>s must not be <nonproject>s, except that either or both can be 
another <join>. 

<divide> 
::= <relation exp> DIVIDEBY <relation exp> PER <per> 

The <relation exp>s must not be <nonproject>s. 

<per> 
::= <relation exp> | ( <relation exp>, <relation exp> ) 

The <relation exp>s must not be <nonproject>s. 

<with exp> 
::= WITH <name intro commalist> : <exp> 

The <with exp>s we are primarily concerned with in this book are relational expres¬ 
sions specifically, which is why we are discussing them in this chapter. However, scalar 

and tuple <with exp>s are supported too; in fact, a given <with exp> is a <relation exp>, 

a <tuple exp>, or a <scalar exp> according as the <exp> after the colon is a <relation 

exp>, a <tuple exp>, or a <scalar exp> in turn. In all cases, the individual <name intro>s 
are executed in sequence as written, and the semantics of the <with exp> are defined to be 

the same as those of a version of <exp> in which each occurrence of each introduced 

name is replaced by a reference to a variable whose value is the result of evaluating the 
corresponding expression. Note: WITH is not really an operator of the relational algebra 

as such; it is really just a device to help with the formulation of what otherwise might be 

rather complicated expressions (especially ones involving common subexpressions). Sev¬ 

eral examples are given in Section 7.5. 

<name intro> 
::= <exp> AS <introduced name> 

The <introduced name> can be used within the containing <with exp> wherever the 

<exp> (enclosed in parentheses if necessary) would be allowed. 
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7.4 THE ORIGINAL ALGEBRA: SEMANTICS 

Union 

In mathematics, the union of two sets is the set of all elements belonging to either or both 

of the given sets. Since a relation is—or, rather, contains—a set (namely, a set of tuples), it 

is obviously possible to construct the union of two such sets; the result will be a set con¬ 

sisting of all tuples appearing in either or both of the given relations. For example, the 

union of the set of supplier tuples currently appearing in relvar S and the set of part tuples 

currently appearing in relvar P is certainly a set. 

However, although that result is a set, it is not a relation; relations cannot contain a 

mixture of different kinds of tuples, they must be “tuple-homogeneous.” And we do want 

the result to be a relation, because we want to preserve the closure property. Therefore, the 

union in the relational algebra is not the completely general mathematical union; rather, it 

is a special kind of union, in which we require the two input relations to be of the same 

type—meaning, for example, that they both contain supplier tuples, or both part tuples, 

but not a mixture of the two. If the two relations are of the same type, then we can take 

their union, and the result will also be a relation of the same type; in other words, the clo¬ 

sure property will be preserved. Note: Historically, much of the database literature (earlier 

editions of this book included) used the term union compatibility to refer to the notion that 

two relations must be of the same type. This term is not very apt, however, for a variety of 

reasons, the most obvious of which is that the notion does not apply just to union. 

Here, then, is a definition of the relational union operator: Given two relations a and b 

of the same type, the union of those two relations, a UNION b, is a relation of the same 
type, with body consisting of all tuples t such that t appears in a or b or both. 

Example: Let relations A and B be as shown in Fig. 7.2 opposite (both are derived 

from the current value of the suppliers relvar S; A is the suppliers in London, and B is the 

suppliers who supply part PI, intuitively speaking). Then A UNION B (see part 1 of the 

figure) is the suppliers who either are located in London or supply part PI, or both. Notice 

that the result has three tuples, not four; relations never contain duplicate tuples, by defini¬ 

tion (we say, loosely, that union “eliminates duplicates”). We remark in passing that the 

only other operation of the original eight for which this question of duplicate elimination 

arises is projection (see later in this section). 

By the way, observe how the definition of union relies on the concept of tuple equal¬ 

ity. Here is a different but equivalent definition that makes the point very clear (the revised 

text is highlighted): Given two relations a and b of the same type, the union of those two 

relations, a UNION b, is a relation of the same type, with body consisting of all tuples t 
such that t is equal to (i.e., is a duplicate of) some tuple in a or b or both. Analogous 

remarks apply directly to the intersect and difference operations, as you will soon see. 

Intersect 

Like union, and for essentially the same reason, the relational intersection operator 

requires its operands to be of the same type. Given two relations a and b of the same type, 
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A B 

s# SNAME STATUS CITY 

SI Smith 20 London 
S4 Clark 20 London 

S# SNAME STATUS CITY 

SI Smith 20 London 
S2 Jones 10 Paris 

1. Union 
(A UNION B) 

S# SNAME STATUS CITY 

SI Smith 20 London 
S4 Clark 20 London 
S2 Jones 10 Paris 

2. Intersection 
(A INTERSECT B) 

S# SNAME STATUS CITY 

SI Smith 20 London 

3. Difference 
(A MINUS B) 

S# SNAME STATUS CITY 

S4 Clark 20 London 

4. Difference 
(B MINUS A) 

S# SNAME STATUS CITY 

S2 Jones 10 Paris 

Fig. 7.2 Union, intersection, and difference examples 

then, the intersection of those two relations, a INTERSECT b, is a relation of the same 
type, with body consisting of all tuples t such that t appears in both a and b. 

Example: Again, let A and B be as shown in Fig. 7.2. Then A INTERSECT B (see 

part 2 of the figure) is the suppliers who are located in London and supply part FI. 

Difference 

Like union and intersection, the relational difference operator also requires its operands to 

be of the same type. Given two relations a and b of the same type, then, the difference 

between those two relations, a MINUS b (in that order), is a relation of the same type, with 

body consisting of all tuples t such that t appears in a and not b. 

Example: Let A and B again be as shown in Fig. 7.2. Then A MINUS B (see part 3 of 

the figure) is the suppliers who are located in London and do not supply part PI, and B 

MINUS A (see part 4 of the figure) is the suppliers who supply part FI and are not located 
in London. Observe that MINUS has a directionality to it, just as subtraction does in ordi¬ 

nary arithmetic (e.g., “5 - 2” and “2 - 5” are not the same thing). 

Product 

In mathematics, the Cartesian product (product for short) of two sets is the set of all 

ordered pairs such that, in each pair, the first element comes from the first set and the sec¬ 
ond element comes from the second set. Thus, the Cartesian product of two relations 
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would be a set of ordered pairs of tuples, loosely speaking. But again we want to preserve 

the closure property; in other words, we want the result to contain tuples per se, not 

ordered pairs of tuples. Therefore, the relational version of Cartesian product is an 

extended form of the operation, in which each ordered pair of tuples is replaced by the sin¬ 

gle tuple that is the union of the two tuples in question (using "union" in its normal set 

theory sense, not its special relational sense). That is, given the tuples' 

{ A1 al, A2 a2, Am am > 

and 

{ B1 bl, B2 b2, Bn bn } 

the union of the two is the single tuple 

{ Al al, A2 a2, Am am, Bl bl, B2 b2, Bn bn > 

Note: We are assuming for simplicity here that the two tuples have no attribute names in 

common. The paragraph immediately following elaborates on this point. 

Another problem that occurs in connection with Cartesian product is that, of course, 

we require the result relation to have a well-formed heading (i.e., to be of a proper relation 

type). Now, clearly the heading of the result consists of all of the attributes from both of 

the two input headings. A problem will therefore arise if the two input headings have any 

attribute names in common; if we were allowed to form the product, the result heading 

would then have two attributes with the same name and so would not be well-formed. If 

we need to construct the Cartesian product of two relations that do have any such common 

attribute names, therefore, we must use the RENAME operator first to rename attributes 
appropriately. 

We therefore define the (relational) Cartesian product of two relations a and b, a 

TIMES b, where a and b have no common attribute names, to be a relation with a heading 

that is the (set theory) union of the headings of a and b and with a body consisting of the 

set of all tuples t such that t is the (set theory) union of a tuple appearing in a and a tuple 

appearing in b. Note that the cardinality of the result is the product of the cardinalities, 

and the degree of the result is the sum of the degrees, of the input relations a and b. 

Example: Let relations A and B be as shown in Fig. 7.3 opposite (A is all current sup¬ 

plier numbers and B is all current part numbers, intuitively speaking). Then A TIMES 

B—see the lower part of the figure—is all current supplier-number/part-number pairs. 

Restrict 

Let relation a have attributes X and Y (and possibly others), and let 0 be an operator—typ¬ 

ically ‘V”, “<”, and so on—such that the boolean expression X 6 Y is well- 

formed and. given particular values for X and Y, evaluates to a truth value (TRUE or 
FALSE). Then the 0-restriction, or just restriction for short, of relation a on attributes X 

and Y (in that order)— 

a where x 9 Y 

1 Tutorial D would require the keyword TUPLE to appear in front of each of these expressions. 
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s# B P# 

SI PI 
S2 P2 
S3 P3 
S4 P4 
S5 P5 

P6 

Cartesian product (A TIMES B) 

S# p# 

SI PI S2 PI S3 PI S4 PI S5 PI 
SI P2 S2 P2 S3 P2 S4 P2 S5 P2 
SI P3 S2 P3 S3 P3 S4 P3 S5 P3 
SI P4 S2 P4 S3 P4 S4 P4 S5 P4 
SI P5 S2 P5 S3 P5 S4 P5 S5 P5 
SI P6 S2 P6 S3 P6 S4 P6 S5 P6 

• • • • • • • • • • • • • • • • 

Fig. 7.3 Cartesian product example 

—is a relation with the same heading as a and with body consisting of all tuples of a such 

that the expression X 6 Y evaluates to TRUE for the tuple in question. 

Note: The foregoing is essentially the definition of restriction given in most of the lit¬ 

erature (including earlier editions of this book). However, it is possible to generalize it, 

and we will, as follows. Let relation a have attributes X, Y, .... Z (and possibly others), and 

let p be a truth-valued function whose parameters are, precisely, some subset of X, Y, ..., Z. 

Then the restriction of a according to p—- 

a WHERE p 

—is a relation with the same heading as a and with body consisting of all tuples of a such 

that p evaluates to TRUE for the tuple in question. 

The restriction operator effectively yields a “horizontal” subset of a given relation: 

that is, that subset of the tuples of the given relation for which some specified condition is 

satisfied. Some examples (all of them illustrating the generalized version of restriction as 

just defined) are given in Fig. 7.4, overleaf. 

Points arising: 

1. The expression p following the keyword WHERE is, of course, a boolean expression; 

in fact, it is a predicate, in a sense to be discussed in detail in Chapter 9. 

2. We refer to that predicate as a restriction condition. If that condition is such that it 

can be evaluated for a given tuple t without examining any tuple other than t (and 

hence a fortiori without examining any relation other than a), then it is a simple 

restriction condition. All of the restriction conditions in Fig. 7.4 are simple in this 

sense. Here by contrast is an example that involves a nonsimple restriction condition: 
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removed). Instead of saying “project relation P over the P#, PNAME, COLOR, and 

CITY attributes," for example, we might say “project the WEIGHT attribute away 

from relation P," as here: 

P { ALL BUT WEIGHT } 

Further examples are given in Fig. 7.5. Notice in the first one (the projection of sup¬ 

pliers over CITY) that, although relvar S currently contains five tuples, there are only 

three tuples in the result (“duplicates are eliminated”). Analogous remarks apply to the 

other examples also, of course. Note too the reliance on tuple equality once again. 

s { city > CITY 

London 
Paris 
Athens 

P { COLOR, CITY > COLOR CITY 

Red 
Green 
Blue 
Blue 

London 
Paris 
Oslo 
Paris 

( S WHERE CITY = 'Paris' ) { S# > S# 

52 
53 

Fig. 7.5 Projection examples 

Join 

Join comes in several different varieties. Easily the most important, however, is the so- 

called natural join—so much so, in fact, that the unqualified term join is almost always 

taken to mean the natural join specifically, and we adopt that usage in this book. Here then 

is the definition (it is a little abstract, but you should already be familiar with natural join 

at an intuitive level from our discussions in Chapter 3). Let relations a and b have 

attributes 

XI, X2, ..., Xm, Yl, Y2, ..., Yn 

and 

Yl, Y2, ..., Yn, Zl, Z2, ..., Zp 

respectively; that is, the Y attributes Yl, Y2.Yn (only) are common to the two relations, 

the X attributes XI, X2.Xm are the other attributes of a, and the Z attributes Zl, Z2. 

Zp are the other attributes of b. Observe that: 





Chapter 7 / Relational Algebra 187 

requirements for Cartesian product (i.e., they have no attribute names in common); let a 

have an attribute X and let b have an attribute Y; and let X, Y, and 0 satisfy the requirements 

tor 0-restriction. Then the 0-join of relation a on attribute X with relation b on attribute Y 

is defined to be the result of evaluating the expression: 

( a TIMES b ) WHERE X 6 Y 

In other words, it is a relation with the same heading as the Cartesian product of a and b, 

and with a body consisting of the set of all tuples t such that t appears in that Cartesian 
product and the expression X BY evaluates to TRUE for that tuple t. 

By way of example, suppose we wish to compute the greater-than join of relation S 
on CITY with relation P on CITY (so 9 here is since the CITY attributes are defined 

to be of type CHAR, “>” simply means “greater in alphabetic ordering”). An appropriate 
relational expression is as follows: 

( ( S RENAME CITY AS SCITY ) TIMES 
( P RENAME CITY AS PCITY ) ) 

WHERE SCITY > PCITY 

Note the attribute renaming in this example. (Of course, it would be sufficient to 

rename just one of the two CITY attributes; the only reason for renaming both is symme¬ 
try.) The result of the overall expression is shown in Fig. 7.7. 

If 9 is “=”, the 0-join is called an equijoin. It follows from the definition that the 

result of an equijoin must include two attributes with the property that the values of those 

two attributes are equal in every tuple in the relation. If one of those two attributes is pro¬ 

jected away and the other renamed appropriately (if necessary), the result is the natural 
join! For example, the expression representing the natural join of suppliers and parts (over 
cities)— 

S JOIN P 

—is equivalent to the following more complex expression: 

( ( S TIMES ( P RENAME CITY AS PCITY ) ) 
WHERE CITY = PCITY ) 

{ ALL BUT PCITY > 

Note: Tutorial D does not include direct support for the 0-join operator because (a) it 

is not needed very often in practice and in any case (b) it is not a primitive operator (i.e., it 

can be defined in terms of other operators, as we have seen). 

s# SNAME STATUS SCITY P# PNAME COLOR WEIGHT PCITY 

S2 Jones 10 Paris PI Nut Red 12.0 London 
S2 Jones 10 Paris P3 Screw Blue 17.0 Oslo 
S2 Jones 10 Paris P4 Screw Red 14.0 London 
S2 Jones 10 Paris P6 Cog Red 19.0 London 
S3 Blake 30 Paris PI Nut Red 12.0 London 
S3 Blake 30 Paris P3 Screw Blue 17.0 Oslo 

S3 Blake 30 Paris P4 Screw Red 14.0 London 

S3 Blake 30 Paris P6 Cog Red 19.0 London 

Fig. 7.7 Greater-than join of suppliers and parts on cities 
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Divide 

Reference [7.4] defines two distinct "divide” operators that it calls the Small Divide and 

the Great Divide, respectively. In Tutorial D, a <divide> in which the <per> consists of 

just one <relation exp> is a Small Divide, a <divide> in which it consists of a parenthe¬ 

sized commalist of two <relation exp>s is a Great Divide. The description that follows 

applies to the Small Divide only, and only to a particular limited form of the Small Divide 

at that; see reference [7.4J for a discussion of the Great Divide and for further details 
regarding the Small Divide as well. 

We should say too that the version of the Small Divide as discussed here is not the 

same as Codd’s original operator; in fact, it is an improved version that overcomes certain 

difficulties that arose with that original operator in connection with empty relations. It is 

also not the same as the version discussed in the first few editions of this book. 

Here then is the definition. Let relations a and b have attributes 

xi, X2, ..., Xm 

and 

¥1, ¥2, . . ., Yn 

respectively, where no attribute Xi (/' = 1, 2, .... m) has the same name as any attribute Yj 

(j = 1,2,..., n), and let relation c have attributes 

XI, X2, ..., Xm, ¥1, ¥2, ..., Yn 

(i.e., c has a heading that is the union of the headings of a and b). Let us now regard { XI, 

X2, ..., Xm } and { Yl, Y2.Yn } as composite attributes X and Y, respectively. Then the 

division of a by b per c (where a is the dividend, b is the divisor, and c is the “mediator”)— 

a DIVIDEBY b PER c 

—is a relation with heading { X } and body consisting of all tuples { X x } appearing in a 

such that a tuple { X x, Y y } appears in c for all tuples {>''>’} appearing in b. In other 

words, the result consists of those X values from a whose corresponding Y values in c 

include all Y values from b, loosely speaking. Note the reliance on tuple equality yet 
again! 

Fig. 7.8 shows some examples of division. The dividend (DEND) in each case is the 

projection of the current value of relvar S over S#; the mediator (MED) in each case is 

the projection of the current value of relvar SP over S# and P#; and the three divisors 

(DOR) are as indicated in the figure. Notice the last example in particular, in which the 

divisor is a relation containing part numbers for all currently known parts; the result 

(obviously enough) shows supplier numbers for suppliers who supply all of those parts. 
As this example suggests, the DIVIDEBY operator is intended for queries of this general 

nature; in fact, whenever the natural language version of the query contains the word 

"all” in the conditional part ("Get suppliers who supply cdl parts”), there is a strong like¬ 

lihood that division will be involved. (Indeed, division was specifically intended by Codd 

to be an algebraic counterpart to the universal quantifier, much as projection was 

intended to be an algebraic counterpart to the existential quantifier. See Chapter 8 for fur¬ 
ther explanation.) 
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DEND S# 

51 
52 
53 
54 
55 

s# p# 

SI PI 
SI P2 
SI P3 
SI P4 
SI P5 
SI P6 

S2 PI 
S2 P2 
S3 P2 
S4 P2 
S4 P4 
S4 P5 

DOR P# DOR P# 

PI P2 
P4 

DOR P# 

PI 
P2 
P3 
P4 
P5 
P6 

DEND DIVIDEBY DOR PER MED 

S# S# 

SI SI 
S2 S4 

S# 

SI 

Fig. 7.8 Division examples 

In connection with that last example, however, we should point out that queries of 

that general nature are often more readily expressed in terms of relational comparisons. 

For example: 

S WHERE ( ( SP RENAME S# AS X ) WHERE X = S# ) { P# } = P { P# } 

This expression evaluates to a relation containing all and only the supplier tuples for sup¬ 

pliers who supply all currently known parts. Explanation: 

1. For a given supplier, the expression 

( ( SP RENAME S# AS X ) WHERE X = S# ) < P# > 

yields the set of part numbers for parts supplied by that supplier. 

2. That set of part numbers is then compared with the set of all currently known part 

numbers. 

3. If and only if the two sets are equal, the corresponding supplier tuple appears in the 

result. 

Here by contrast is the DIVIDEBY version, now spelled out in detail: 

S JOIN ( S { S# > DIVIDEBY P { P# > PER SP { S#, P# > ) 

You might well feel that the relational comparison version is conceptually easier to deal 

with. In fact, there is some doubt as to whether DIVIDEBY would ever have been defined 

if the relational model had included relational comparisons in the first place—but it did not. 
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7.5 EXAMPLES 

In this section we present a few examples of the use of relational algebra expressions in 

formulating queries. We recommend that you check these examples against the sample 
data of Fig. 3.8 (see the inside back cover). 

7.5.1 Get supplier names for suppliers who supply part P2: 

( ( SP JOIN S ) WHERE P# = P# ('P2') ) { SNAME } 

Explanation: First the join of relations SP and S over supplier numbers is constructed, 

which has the effect, conceptually, of extending each SP tuple with the corresponding 

supplier information (i.e., the appropriate SNAME, STATUS, and CITY values). That join 

is then restricted to just those tuples for part P2. Finally, that restriction is projected over 

SNAME. The final result has just one attribute, called SNAME. 

7.5.2 Get supplier names for suppliers who supply at least one red part: 

( ( ( P WHERE COLOR = COLOR ('Red') ) 

JOIN SP ) { S# } JOIN S ) { SNAME > 

The sole attribute of the result is SNAME again. 

Here by the way is a different formulation of the same query: 

( ( ( P WHERE COLOR = COLOR ('Red') ) { P# } 
JOIN SP ) JOIN S ) { SNAME } 

This example thus illustrates the important point that there will often be several different 

ways of formulating any given query. See Chapter 18 for a discussion of some of the impli¬ 
cations of this point. 

7.5.3 Get supplier names for suppliers who supply all parts: 

( ( S { S# } DIVIDEBY P { P# > PER SP { S#, P# } ) 

JOIN S ) { SNAME } 

Or: 

( S WHERE 
( ( SP RENAME S# AS X ) WHERE X = S# ) { P# } = P { P# } ) 
{ SNAME } 

Once again the result has a sole attribute called SNAME. 

7.5.4 Get supplier numbers for suppliers who supply at least all those parts supplied 
by supplier S2: 

S { S# > DIVIDEBY ( SP WHERE S# = S# (’S2') ) { P# > 

PER SP { S#, P# > 

The result has a sole attribute called S#. 

7.5.5 Get all pairs of supplier numbers such that the suppliers concerned are “colo 
cated” (i.e., located in the same city): 
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<semijoin> 
::= <relation exp> SEMIJOIN <relation exp> 

<semiminus> 
<relation exp> SEMIMINUS <relation exp> 

<extend> 
::= EXTEND <relation exp> ADD ( <extend add commalist> ) 

The parentheses can be omitted if the commalist contains just one <extend add>. 

<extend add> 
::= <exp> AS <attribute name> 

<summarize> 
::= SUMMARIZE <relation exp> PER <relation exp> 

ADD ( <summarize add commalist> ) 

The parentheses can be omitted if the commalist contains just one <summarize cidd>. 

<surmarize add> 
::= <summary type> [ ( <scalar exp> ) ] 

AS <attribute name> 

<summary type> 
= COUNT SUM AVG 

COUNTD SUMD AVGD 
MAX | MIN ALL ANY 

<tclose> 
::= TCLOSE <relation exp> 

The various <relation exp>s mentioned in the foregoing BNF production rules must 
not be <nonproject>s. 

Semijoin 

Let a, b, X, and Tbe as defined in the subsection “Join” in Section 7.4. Then the semijoin 

of a with b (in that order), a SEMIJOIN b, is defined to be equivalent to: 

( a join b ) { x, Y y 

In other words, the semijoin of a with b is the join of a and b, projected over the attributes 

of a. The body of the result is thus, loosely, the tuples of a that have a counterpart in b. 

Example: Get S#, SNAME, STATUS, and CITY for suppliers who supply part P2: 

S SEMIJOIN ( SP WHERE P# = P# ('P2') ) 

We note in passing that many real-world queries that call for the use of join are really 
semijoin queries in disguise—implying that direct support for SEMIJOIN might be desir¬ 

able in practice. An analogous remark applies to SEMIMINUS (see the next subsection). 

Semidifference 

The semidifference between a and b (in that order), a SEMIMINUS b, is defined to be 
equivalent to: 

a MINUS ( a SEMIJOIN b ) 
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s# SNAME STATUS CITY NP 

SI Smith 20 London 6 
S2 Jones 10 Paris 2 
S3 Blake 30 Paris 1 
S4 Clark 20 London 3 
S5 Adams 30 Athens 0 

Fig. 7.10 Another EXTEND example 

a. For a given supplier, the expression 

( ( SP RENAME S# AS X ) WHERE X = S# ) 

yields the set of shipments for that supplier. 

b. The aggregate operator COUNT is then applied to that set of shipments and 

returns the corresponding cardinality (a scalar value). 

Attribute NP in the result thus represents the number of parts supplied by the supplier 
identified by the corresponding S# value. Notice the NP value for supplier S5 in par¬ 

ticular; the set of shipments for supplier S5 is empty, and so the COUNT invocation 

returns zero. 

We elaborate briefly on this question of aggregate operators. The purpose of such an 

operator, in general, is to derive a single scalar value from the values appearing in some 

specified attribute of some specified relation (usually a derived relation). Typical exam¬ 

ples are COUNT, SUM, AVG, MAX, MIN, ALL, and ANY. In Tutorial D, an aggregate 

operator invocation, <agg op inv>—which, since it returns a scalar value, is a special kind 

of <scalar exp>—takes the general form: 

<agg op name> ( <relation exp> [, <attribute name> ] ) 

If the <agg op name> is COUNT, the <attribute name> is irrelevant and must be omitted; 

otherwise, it can be omitted if and only if the <relation exp> denotes a relation of degree 
one, in which case the sole attribute of the result of that <re!ation exp> is assumed by 

default. Here are a couple of examples: 

SUM ( SP WHERE S# = S# ('SI'), QTY ) 

SUM ( ( SP WHERE S# = S# ('SI') ) { QTY > ) 

Note the difference between these two expressions—the first gives the total of all ship¬ 

ment quantities for supplier SI, the second gives the total of all distinct shipment quanti¬ 

ties for supplier SI. 
If the argument to an aggregate operator happens to be an empty set, COUNT (as we 

have seen) returns zero, and so does SUM; MAX and MIN return, respectively, the lowest 

and the highest value of the applicable type; ALL and ANY return TRUE and FALSE, 

respectively; and AVG raises an exception. 
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Here is another example: 

SUMMARIZE ( P JOIN SP ) PER P { CITY } ADD COUNT AS NSP 

The result looks like this: 

CITY NSP 

London 5 
Oslo 1 
Paris 6 

In other words, the result contains one tuple for each of the three part cities (London, 
Oslo, and Paris), showing in each case the number of shipments of parts stored in that city. 

Points arising: 

1. Observe yet again that here we have an operator whose definition relies on the notion 
of tuple equality. 

2. Our syntax allows “multiple SUMMARIZES”—for example: 

SUMMARIZE SP PER P { P# > ADD ( SUM ( QTY ) AS TOTQTY, 
AVG ( QTY ) AS AVGQTY ) 

3. The general form of <summarize> (to repeat) is as follows: 

SUMMARIZE <relation exp> PER <relation exp> 
ADD ( <summarize add commalist> ) 

Each <summarize adcl> in turn takes the form: 

<summary type> [ ( <scalar exp> ) ] AS <attribute name> 

Typical <summary typos are COUNT, SUM, AVG, MAX, MIN, ALL, ANY, 
COUNTD, SUMD, and AVGD. The “D” (“distinct”) in COUNTD, SUMD, and 

AVGD means “eliminate redundant duplicate values before performing the summary.” 

The <scalar exp> can include references to attributes of the relation denoted by the 

<relation exp> immediately following the keyword SUMMARIZE. The <scalar 
exp> and enclosing parentheses can and must be omitted only if the <summary typo 

is COUNT. 
Incidentally, please note that a <summarize add> is not the same thing as an ag¬ 

gregate operator invocation. An <ogg op inv> is a scalar expression and can appear 

wherever a literal of the appropriate type can appear. A <summarize ctdd>, by con¬ 
trast, is merely a SUMMARIZE operand; it is not a scalar expression, it has no mean¬ 

ing outside the context of SUMMARIZE, and in fact it cannot appear outside that con¬ 

text. 
4. As you might have already realized, SUMMARIZE is not a primitive operator—it 

can be simulated by means of EXTEND. For example, the expression 

SUMMARIZE SP PER S { S# > ADD COUNT AS NP 

is defined to be shorthand for the following: 

( EXTEND S { S# } 
ADD ( ( ( SP RENAME S# AS X ) WHERE X = S# ) AS Y, 

COUNT ( Y ) AS NP ) ) 

{ S#, NP } 
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Or equivalently: 

WITH ( S { S# > ) AS Tl, 
( SP RENAME S# AS X ) AS T2, 
( EXTEND Tl ADD ( T2 WHERE X = S# ) AS Y ) AS T3, 
( EXTEND T3 ADD COUNT ( Y ) AS NP ) AS T4 : 

T4 { S#, NP } 

By the way, attribute Y here is relation-valued. Refer to Section 6.4 if you need to 
refresh your memory regarding such a possibility. 

5. Here is another example: 

SUMMARIZE S PER S { CITY > ADD AVG ( STATUS ) AS AVG_STATUS 

Here the PER relation is not just “of the same type as” some projection of the relation 

to be summarized, it actually is such a projection. In such a case, we allow the follow¬ 
ing shorthand: 

SUMMARIZE S BY { CITY } ADD AVG ( STATUS ) AS AVG_STATUS 

(We have replaced PER <relation exp> by BY <attribute name commalist>. The 

attributes named must all be attributes of the relation being summarized.) 

6. Consider the following example: 

SUMMARIZE SP PER SP { > ADD SUM ( QTY ) AS GRANDTOTAL 

In accordance with the previous point, we can alternatively write this expression thus: 

SUMMARIZE SP BY { } ADD SUM ( QTY ) AS GRANDTOTAL 

Either way, the grouping and summarization here are being done on the basis of a rela¬ 

tion that has no attributes at all. Let sp be the current value of relvar SP, and assume for 

the moment that relation sp does contain at least one tuple. Then all of those sp tuples 

have the same value for no attributes at all (namely, the 0-tuple); hence there is just 

one group, and so just one tuple in the overall result (in other words, the aggregate 

computation is performed precisely once for the entire relation sp). The expression 

thus evaluates to a relation with one attribute and one tuple; the attribute is called 

GRANDTOTAL, and the single scalar value in the single result tuple is the total of all 
QTY values in the original relation sp. 

If on the other hand the original relation sp has no tuples at all, then there are no 

groups, and hence no result tuples (i.e., the result relation is empty too). By contrast, 
the following expression— 

SUMMARIZE SP PER TABLE_DEE ADD SUM ( QTY ) AS GRANDTOTAL 

—will “work” (i.e., it will return the correct result, zero) even if sp is empty. More pre¬ 

cisely, it will return a relation with one attribute, called GRANDTOTAL, and one 

tuple, containing the value zero. We therefore suggest that it should be possible to 

omit the PER clause entirely, as here: 

SUMMARIZE SP ADD SUM ( QTY ) AS GRANDTOTAL 

Omitting the PER clause is defined to be equivalent to specifying PER TABLE_DEE. 
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And we explained how the use of WITH could simplify the formulation of complex 

expressions; WITH effectively allows us to introduce names for subexpressions, thereby 

allowing us to formulate those complex expressions one step at a time, and yet does not 
compromise the algebra’s fundamental nonprocedurality. 

We also pointed out that certain of the operators were associative and commutative, 

and we showed certain equivalences (e.g., we showed that any relation R is equivalent to 

a certain restriction of R and a certain projection of R). We also considered what it means 

to perform joins, unions, and intersections on just one relation and on no relations at all. 

EXERCISES 

7.1 Which of the relational operators defined in this chapter have a definition that does not rely on 

tuple equality? 

7.2 Given the usual suppliers-and-parts database, what is the value of the expression S JOIN SP 

JOIN P? What is the corresponding predicate? Warning: There is a trap here. 

7.3 Let r be a relation of degree n. How many different projections of r are there? 

7.4 Union, intersection, product, and natural join are all both commutative and associative. Verify 

these claims. 

7.5 Consider the expression a JOIN b. If a and b have disjoint headings, this expression is equiva¬ 

lent to a TIMES b; if they have the same heading, it is equivalent to a INTERSECT b. Verify these 

claims. What is the expression equivalent to if the heading of a is a proper subset of that of b ? 

7.6 Of Codd’s original set of eight operators, union, difference, product, restrict, and project can be 

considered as primitives. Give definitions of natural join, intersect, and (harder!) divide in terms of 

those primitives. 

7.7 In ordinary arithmetic, multiplication and division are inverse operations. Are TIMES and 

DIVIDEBY inverse operations in the relational algebra? 

7.8 In ordinary arithmetic there are two special numbers, 1 and 0, with the properties that 

n*l = l*n = n 

and 

n * 0 = 0*n = 0 

for all numbers n. What relations (if any) play analogous roles in the relational algebra? Investigate 

the effect of the algebraic operations discussed in this chapter on those relations. 

7.9 In Section 7.2, we said the relational closure property was important for the same kind of rea¬ 

son that the arithmetic closure property was important. In arithmetic, however, there is one unpleas¬ 

ant situation where the closure property breaks down—namely, division by zero. Is there any analo¬ 

gous situation in the relational algebra? 

7.10 Given that intersect is a special case of join, why do not both operators give the same result 

when applied to no relations at all? 

7.11 Which (if any) of the following expressions are equivalent? 

a. SUMMARIZE r PER r { > ADD COUNT AS CT 

b. SUMMARIZE r ADD COUNT AS CT 

C. SUMMARIZE r BY { } ADD COUNT AS CT 



208 Part II / The Relational Model 

d. EXTEND TABLE_DEE ADD COUNT ( r ) AS CT 

7.12 Let r be the relation denoted by the following expression: 

SP GROUP { > AS X 

Show what r looks like, given our usual sample value for SP. Also, show the result of: 

r UNGROUP X 

Query Exercises 

The remaining exercises are all based on the suppliers-parts-projects database. In each case you are 
asked to write a relational algebra expression for the indicated query. (By way of an interesting vari¬ 
ation, you might like to try looking at some of the online answers first and stating what the given 
expression means in natural language.) For convenience, we repeat the structure of the database in 
outline here: 

S 

P 

J 

SPJ 

{ S#, SNAME, 
PRIMARY KEY 
{ P#, PNAME, 
PRIMARY KEY 
{ J#, JNAME, 
PRIMARY KEY 

{ S#, P#, J# 
PRIMARY KEY 
FOREIGN KEY 
FOREIGN KEY 
FOREIGN KEY 

STATUS, CITY > 

{ S# } 
COLOR, WEIGHT, CITY 

{ P# > 
CITY > 

{ J# > 
, QTY > 
{ S#, P#, J# } 
{ S# > REFERENCES S 
{ P# } REFERENCES P 
{ J# > REFERENCES J 

> 

7.13 Get full details of all projects. 

7.14 Get full details of all projects in London. 

7.15 Get supplier numbers for suppliers who supply project J1. 

7.16 Get all shipments where the quantity is in the range 300 to 750 inclusive. 

7.17 Get all part-color/part-city pairs. Note: Here and subsequently, the term “all” means “all cur¬ 
rently represented in the database,” not “all possible.” 

7.18 Get all supplier-number/part-number/project-number triples such that the indicated supplier, 
part, and project are all colocated (i.e., all in the same city). 

7.19 Get all supplier-number/part-number/project-number triples such that the indicated supplier, 
part, and project are not all colocated. 

7.20 Get all supplier-number/part-number/project-number triples such that no two of the indicated 
supplier, part, and project are colocated. 

7.21 Get full details for parts supplied by a supplier in London. 

7.22 Get part numbers for parts supplied by a supplier in London to a project in London. 

7.23 Get all pairs of city names such that a supplier in the first city supplies a project in the second 
city. 

7.24 Get part numbers for parts supplied to any project by a supplier in the same city as that 
project. 

7.25 Get project numbers for projects supplied by at least one supplier not in the same city. 

7.26 Get all pairs of part numbers such that some supplier supplies both the indicated parts. 
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7.27 Get the total number of projects supplied by supplier S1. 

7.28 Get the total quantity of part PI supplied by supplier SI. 

7.29 For each part being supplied to a project, get the part number, the project number, and the cor¬ 
responding total quantity. 

7.30 Get part numbers of parts supplied to some project in an average quantity of more than 350. 

7.31 Get project names for projects supplied by supplier S1. 

7.32 Get colors of parts supplied by supplier SI. 

7.33 Get part numbers for parts supplied to any project in London. 

7.34 Get project numbers for projects using at least one part available from supplier S1. 

7.35 Get supplier numbers for suppliers supplying at least one part supplied by at least one sup¬ 

plier who supplies at least one red part. 

7.36 Get supplier numbers for suppliers with a status lower than that of supplier S1. 

7.37 Get project numbers for projects whose city is first in the alphabetic list of such cities. 

7.38 Get project numbers for projects supplied with part PI in an average quantity greater than the 

greatest quantity in which any part is supplied to project J1. 

7.39 Get supplier numbers for suppliers supplying some project with part PI in a quantity greater 

than the average shipment quantity of part PI for that project. 

7.40 Get project numbers for projects not supplied with any red part by any London supplier. 

7.41 Get project numbers for projects supplied entirely by supplier S1. 

7.42 Get part numbers for parts supplied to all projects in London. 

7.43 Get supplier numbers for suppliers who supply the same part to all projects. 

7.44 Get project numbers for projects supplied with at least all parts available from supplier S1. 

7.45 Get all cities in which at least one supplier, part, or project is located. 

7.46 Get part numbers for parts that are supplied either by a London supplier or to a London 

project. 

7.47 Get supplier-number/part-number pairs such that the indicated supplier does not supply the 

indicated part. 

7.48 Get all pairs of supplier numbers, S.r and Sy say, such that S.t and Sy supply exactly the same 

set of parts each. Note: For simplicity, you might want to use the original suppliers-and-parts data¬ 

base for this exercise, instead of the expanded suppliers-parts-projects database. 

7.49 Get a “grouped” version of all shipments showing, for each supplier-number/part-number 

pair, the corresponding project numbers and quantities in the form of a binary relation. 

7.50 Get an “ungrouped” version of the relation produced in Exercise 7.49. 
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This paper analyzes both (a) Codd’s original divide as defined in reference [7.1] and (b) a gen¬ 

eralization of that operator due to Hall, Hitchcock, and Todd [7.10] that—unlike Codd’s origi¬ 

nal divide—allowed any relation to be divided by any relation (Codd’s original divide was 

defined only for the case where the heading of the divisor was a subset of the heading of the 

dividend). The paper shows that both operators get into difficulties over empty relations, with 

the result that neither of them quite solves the problem it was originally intended for (i.e., nei¬ 

ther of them is quite the counterpart of the universal quantifier it was meant to be). Revised ver¬ 

sions of both operators (the “Small Divide” and the “Great Divide,” respectively) are proposed 

to overcome these problems. Note: As the Tutorial D syntax for these two operators indicates, 

they really are two different operators; that is, the Great Divide is (unfortunately) not quite an 

upward-compatible extension of the Small Divide. The paper also suggests that the revised 

operators no longer merit the name “divide”! In connection with this last point, see Exercise 

7.7. 

For purposes of reference, we give here a definition of Codd’s original divide. Let rela¬ 

tions A and B have headings [XT] and [T], respectively (where X and Y can be composite). 

Then the expression A DIVIDEBY B gives a relation with heading [X] and body consisting of 

all tuples [X x} such that a tuple [X x,Yy) appears in A for all tuples [T y] appearing in B. In 

other words, loosely speaking, the result consists of those X values from A whose correspond¬ 

ing y values (in A) include all Y values from B. 

7.5 C. J. Date: “Quota Queries” (in three parts), in C. J. Date, Hugh Darwen, and David 

McGoveran, Relational Database Writings 1994-1997. Reading, Mass.: Addison-Wesley (1998). 

A quota query is a query that specifies a desired limit on the cardinality of the result—for 

example, the query “Get the three heaviest parts.” This paper discusses one approach to formu¬ 

lating such queries. Using that approach, “Get the three heaviest parts” can be formulated thus: 

P QUOTA ( 3, DESC WEIGHT ) 

This expression is defined to be shorthand for the following: 
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A calculus formulation, by contrast, might state simply: 

Get S# and CITY for suppliers such that there exists a shipment SP with the same 
S# value and with P# value P2. 

In this latter formulation, the user has merely stated the defining characteristics of the 

desired result, and has left it to the system to decide exactly what joins, restrictions, and 

so on, must be executed, in what sequence, in order to construct that result. Thus, we 

might say that—at least superficially—the calculus formulation is descriptive, while the 

algebraic one is prescriptive: The calculus simply describes what the problem is, the alge¬ 

bra prescribes a procedure for solving that problem. Or, very informally: The algebra is 

procedural (admittedly high-level, but still procedural); the calculus is nonprocedural. 

However, we stress the point that the foregoing differences are only superficial. The 

fact is, the algebra and the calculus are logically equivalent: For every algebraic expres¬ 

sion there is an equivalent calculus one, for every calculus expression there is an equiva¬ 

lent algebraic one. There is a one-to-one correspondence between the two. Thus, the dif¬ 

ferences are really just a matter of style: The calculus is arguably closer to natural 

language, the algebra is perhaps more like a programming language. But, to repeat, such 

differences are more apparent than real; in particular, neither approach is truly more non¬ 

procedural than the other. We will examine this question of equivalence in detail in Sec¬ 
tion 8.4. 

Relational calculus is based on a branch of mathematical logic called predicate cal¬ 

culus. The idea of using predicate calculus as the basis for a query language appears to 

have originated in a paper by Kuhns [8.6]. The concept of a specifically relational calcu¬ 

lus—that is, an applied form of predicate calculus specifically tailored to relational data¬ 

bases—was first proposed by Codd in reference [6.1]; a language explicitly based on that 

calculus called “Data Sublanguage ALPHA” was also presented by Codd in another 

paper, reference [8.1]. ALPHA itself was never implemented, but a language called QUEL 

[8.5, 8.10-8.12]—which certainly was implemented and for some time was a serious 

competitor to SQL—was very similar to it; indeed, QUEL was much influenced by 
ALPHA. 

A fundamental feature of the calculus is the range variable. Briefly, a range variable 

is a variable that “ranges over” some specified relation (i.e., it is a variable whose permitted 

values are tuples of that relation). Thus, if range variable V ranges over relation /; then, at 

any given time, the expression “V” denotes some tuple of r. For example, the query “Get 

supplier numbers for suppliers in London” might be expressed in QUEL as follows; 

RANGE OF SX IS S ; 
RETRIEVE ( SX.S# ) WHERE SX.CITY = "London" ; 

The sole range variable here is SX, and it ranges over the relation that is the current 

value of relvar S (the RANGE statement is a definition of that range variable). The 

RETRIEVE statement can thus be paraphrased: “For every possible value of variable SX, 

retrieve the S# component of that value, if and only if the CITY component of that value 
is London.” 

Because of its reliance on range variables whose values are tuples (and to distinguish 

it from the domain calculus—see the next paragraph), the original relational calculus has 
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come to be known as the tuple calculus. The tuple calculus is described in detail in Sec¬ 

tion 8.2. Note: For simplicity, we adopt the convention throughout this book that the terms 

calculus and relational calculus, without a “tuple” or “domain” qualifier, refer to the tuple 
calculus specifically (where it makes any difference). 

Subsequently, Lacroix and Pirotte [8.7] proposed an alternative version of the calcu¬ 

lus called the domain calculus, in which the range variables range over domains (i.e., 

types) instead of relations. (The terminology is illogical: If the domain calculus is so 
called for the reason just stated—which it is—then the tuple calculus ought by rights to be 

called the relation calculus.) Various domain calculus languages have been proposed in 

the literature; probably the best known is Query-By-Example, QBE [8.14] (though QBE 

is really something of a hybrid—it incorporates elements of the tuple calculus as well). 

Several commercial QBE or “QBE-like” implementations exist. We sketch the domain 
calculus in Section 8.7, and discuss QBE briefly in Section 8.8. 

Note: For space reasons, we omit discussion of calculus analogs of certain topics 
from Chapter 7 (e.g., grouping and ungrouping). We also omit consideration of calculus 

versions of the relational update operators. You can find a discussion of such matters in 

reference [3.3], 

8.2 TUPLE CALCULUS 

As with our discussions of the algebra in Chapter 7, we first introduce a concrete syntax— 

patterned after, though deliberately not quite identical to, the calculus version of Tutorial 

D defined in Appendix A of reference [3.3]—and then go on to discuss semantics. The 

subsection immediately following discusses syntax, the remaining subsections consider 

semantics. 

Syntax 

Note: Many of the syntax rules given in prose form in this subsection will not make much 

sense until you have studied some of the semantic material that comes later. However, we 

gather them all here for purposes of subsequent reference. 

It is convenient to begin by repeating the syntax of <relation exp>s from Chapter 7: 

<relation exp> 
::= RELATION { <tuple exp commalist> > 

<relvar name> 
<relation op inv> 
<with exp> 
<introduced name> 
( <relation exp> ) 

In other words, the syntax of <relation exp>s is the same as before; however, one of 

the most important cases, <relation op inv>, which is the only one we discuss in this 

chapter in any detail, now has a very different definition, as we will see. 

<range var def> 
::= RANGEVAR crange var name> 

RANGES OVER <relation exp commalist> ; 
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example, suppose the variable V ranges over the set “Members of the U.S. Senate in 2003,” 
and suppose p is the WFF “V is female” (we are not trying to use our formal syntax here!). 

Then EXISTS V (p) and FORALL V (p) are both valid WFFs, and they evaluate to TRUE 
and FALSE, respectively. 

Look again at the EXISTS example from the end of the previous subsection: 

EXISTS SPX ( SPX.S# = SX.S# AND SPX.P# = P# (’P2') ) 

It follows from the foregoing that we can read this WFF as follows: 

There exists a tuple SPX, say, in the current value of relvar SP such that the 5# 

value in that tuple SPX is equal to the value of SX.S#—whatever that might be— 
and the P# value in that tuple SPX is P2. 

Each reference to SPX here is bound. The single reference to SX is free. 

We define EXISTS formally as an iterated OR. In other words, if (a) r is a relation 
with tuples tl, t2, ..., tm, (b) V is a range variable that ranges over r, and (c) p(V) is a WFF 

in which V occurs as a free variable, then the WFF 

EXISTS v ( p ( v ) ) 

is defined to be equivalent to the WFF 

FALSE OR p ( tl ) OR ... OR p ( tm ) 

Observe in particular that this expression evaluates to FALSE if r is empty (equivalently, if 
m is zero). 

By way of example, suppose relation r contains just the following tuples (we depart 

here from our usual syntax for simplicity): 

( l, 2, 3 ) 

( 1, 2, 4 ) 
( 1, 3, 4 ) 

Suppose the three attributes, in left-to-right order as shown, are called A, B, and C, respec¬ 

tively, and every attribute is of type INTEGER. Then the following WFFs have the indi¬ 
cated values: 

EXISTS V ( V.C > 1 ) : TRUE 
EXISTS V ( V.B > 3 ) : FALSE 
EXISTS V ( V.A > 1 OR V.C = 4 ) : TRUE 

We turn now to FORALL. Here to repeat is the FORALL example from the end of 

the previous subsection: 

FORALL PX ( PX.COLOR = COLOR ('Red') ) 

We can read this WFF as follows: 

For all tuples PX, say, in the current value of relvar P, the COLOR value in that 

tuple PX is Red. 

The two references to PX here are both bound. 
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Just as we define EXISTS as an iterated OR, so we define FORALE as an iterated 

AND. In other words, if /; K and p( V) are as before (in our discussion of EXISTS), then the 
WFF 

FORALL V ( p ( V ) ) 

is defined to be equivalent to the WFF 

TRUE AND p ( ti ) AND ... AND p ( tm ) 

Observe in particular that this expression evaluates to TRUE if r is empty (equivalently, if 

m is zero). 

By way of example, let relation r be as for our EXISTS examples. Then the following 
WFFs have the indicated values: 

FORALL V ( V.A > 1 ) : FALSE 
FORALL V ( V.B > 1 ) : TRUE 
FORALL V ( V.A = 1 AND V.C > 2 ) : TRUE 

Note: We support both quantifiers purely for convenience—it is not logically neces¬ 

sary to support both, because each can be defined in terms of the other. To be specific, the 
equivalence 

FORALL V ( p ) s NOT EXISTS V ( NOT p ) 

(loosely, “all R’s satisfy p" is equivalent to “no V’s do not satisfy p") shows that any WFF 

involving FORALL can always be replaced by an equivalent WFF involving EXISTS 

instead, and vice versa. For example, the (true) statement “For all integers x, there exists an 

integer y such that y > x" (i.e., every integer has a greater integer) is equivalent to the state¬ 

ment “There does not exist an integer x such that there does not exist an integer y such that 

y > x” (i.e., there is no greatest integer). However, some problems are more naturally for¬ 

mulated in terms of FORALL and others in terms of EXISTS; to be more specific, if one of 

the quantifiers is not available, we will sometimes find ourselves having to use double 

negation (as the foregoing example illustrates), and double negation is always tricky. In 
practice, therefore, it is desirable to support both. 

Free and Bound Variable References Revisited 

Suppose x ranges over the set of all integers, and consider the WFF: 

EXISTS x ( x > 3 ) 

Observe now that x here is a kind of dummy—it serves only to link the boolean expression 

inside the parentheses to the quantifier outside. The WFF simply states that there exists 

some integer, x say, that is greater than three. Note, therefore, that the meaning of this 

WFF would remain totally unchanged if all references to x were replaced by references to 

some other variable y. In other words, the WFF 

exists y ( y > 3 ) 

is semantically identical to the one shown previously. 
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8.3 EXAMPLES 

We present a few examples of the use of the calculus in formulating queries. As an exer¬ 

cise, you might like to try giving algebraic solutions as well, for “compare and contrast” 

purposes. In some cases, the examples are repeats of examples from Chapter 7 (and are so 
indicated). 

8.3.1 Get supplier numbers and status for suppliers in Paris with status > 20: 

{ SX.S#, SX.STATUS > 
WHERE SX.CITY = 'Paris' AND SX.STATUS > 20 

8.3.2 Get all pairs of supplier numbers such that the suppliers concerned are colo¬ 

cated (i.e., located in the same city) (Example 7.5.5): 

{ SX.S# AS SA, SY.S# AS SB } 
WHERE SX.CITY = SY.CITY AND SX.S# < SY.S# 

Note that the AS clauses in the proto tuple give names to attributes of the result; those 

names are thus not available for use in the WHERE clause, which is why the second com¬ 

parison in that WHERE clause takes the form SX.S# < SY.S#, not SA < SB. 

8.3.3 Get full supplier information for suppliers who supply part P2 (modified ver¬ 

sion of Example 7.5.1): 

SX WHERE EXISTS SPX ( SPX.S# = SX.S# AND SPX.P# = P# ('P2') ) 

Note the use of a range variable name in the proto tuple here. The overall expression is 

shorthand for the following: 

{ SX.S#, SX.SNAME, SX.STATUS, SX.CITY } 
WHERE EXISTS SPX ( SPX.S# = SX.S# AND SPX.P# = P# (’P2') ) 

8.3.4 Get supplier names for suppliers who supply at least one red part (Example 

7.5.2): 

SX.SNAME 
WHERE EXISTS SPX ( SX.S# = SPX.S# AND 

EXISTS PX ( PX.P# = SPX.P# AND 
PX.COLOR = COLOR ('Red') ) ) 

Or equivalently (but in prenex normal form, in which all quantifiers appear at the front 

of the WFF): 

SX.SNAME 
WHERE EXISTS SPX ( EXISTS PX ( SX.S# = SPX.S# AND 

SPX.P# = PX.P# AND 
PX.COLOR = COLOR ('Red') ) ) 

Prenex normal form is not inherently more or less correct than any other form, but with a 

little practice it does tend to become the most natural formulation in many cases. Further¬ 

more, it raises the possibility of reducing the number of parentheses, as follows. The WFF 

Ol VI ( Q2 V2 ( wff ) ) 
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(where each of Q1 and Q2 is either EXISTS or FORALL) can optionally, and unambigu¬ 

ously, be abbreviated to just: 

Q1 VI Q2 V2 ( wff ) 

Thus we can simplify the calculus expression shown above to just: 

SX.SNAME 
WHERE EXISTS SPX EXISTS PX ( SX.S# = SPX.S# AND 

SPX.P# = PX.P# AND 
PX.COLOR = COLOR ('Red') ) 

For clarity, however, we will continue to show all parentheses explicitly in this section. 

8.3.5 Get supplier names for suppliers who supply at least one part supplied by sup¬ 
plier S2: 

SX.SNAME 
WHERE EXISTS SPX ( EXISTS SPY ( SX.S# = SPX.S# AND 

SPX. P# = SPY.P# AND 
SPY. S# = S# ('S2') ) ) 

8.3.6 Get supplier names for suppliers who supply all parts (Example 7.5.3): 

SX.SNAME WHERE FORALL PX ( EXISTS SPX ( SPX.S# = SX.S# AND 
SPX.P# = PX.P# ) ) 

Or equivalently, but without using FORALL: 

SX.SNAME WHERE NOT EXISTS PX ( NOT EXISTS SPX 
( SPX.S# = SX.S# AND 

SPX.P# = PX.P# ) ) 

8.3.7 Get supplier names for suppliers who do not supply part P2 (Example 7.5.6): 

SX.SNAME WHERE NOT EXISTS SPX 
( SPX.S# = SX.S# AND SPX.P# = P# ('P2') ) 

Notice how readily this solution is derived from the solution to Example 8.3.3. 

8.3.8 Get supplier numbers for suppliers who supply at least all those parts supplied 

by supplier S2 (Example 7.5.4): 

SX.S# WHERE FORALL SPX ( SPX.S# * S# ('S2') OR 
EXISTS SPY ( SPY.S# = SX.S# AND 

SPY.P# = SPX.P# ) ) 

Paraphrasing: “Get supplier numbers for suppliers SX such that, for all shipments SPX, 

either that shipment is not from supplier S2, or if it is, then there exists a shipment SPY of 
the SPX part from supplier SX.” We introduce another syntactic shorthand to help with 

queries such as this one—namely, an explicit syntactic form for the logical implication 

operator. If p and q are WFFs, then the logical implication expression 

IF p THEN q END IF 

is also a WFF, with semantics identical to those of the WFF 

( NOT p ) OR q 
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The example can thus be reformulated as follows: 

SX.S# WHERE FORALL SPX ( IF SPX.S# = S# ('S2') THEN 
EXISTS SPY ( SPY.S# = SX.S# AND 

SPY.P# = SPX.P# ) 
END IF ) 

Paraphrasing: “Get supplier numbers for suppliers SX such that, for all shipments SPX, if 

that shipment SPX is from supplier S2, then there exists a shipment SPY of the SPX part 
from supplier SX.” 

8.3.9 Get part numbers for parts that either weigh more than 16 pounds or are sup¬ 
plied by supplier S2, or both: 

RANGEVAR PU RANGES OVER 
( PX.P# WHERE PX.WEIGHT > WEIGHT ( 16.0 ) ), 
( SPX.P# WHERE SPX.S# = S# ('S2') ) ; 

PU.P# 

The relational algebra analog here would involve an explicit union. 

For interest, we show an alternative formulation of this query. However, this second 

formulation relies (as the first did not) on the fact that every part number in relvar SP also 

appears in relvar P: 

PX.P# WHERE PX.WEIGHT > WEIGHT ( 16.0 ) 
OR EXISTS SPX ( SPX.P# = PX.P# AND 

SPX.S# = S# ('S2 ' ) ) 

8.4 CALCULUS VS. ALGEBRA 

We claimed in the introduction to this chapter that the algebra and the calculus are funda¬ 

mentally equivalent. We now examine that claim in more detail. First, Codd showed in ref¬ 

erence [7.1] that the algebra is at least as powerful as the calculus. He did this by giving an 
algorithm—“Codd’s reduction algorithm"—by which an arbitrary expression of the calcu¬ 

lus could be reduced to a semantically equivalent expression of the algebra. We do not 

present Codd’s algorithm in detail here, but content ourselves with a reasonably complex 

example that illustrates in broad terms how it works.3 

As a basis for our example we use, not the familiar suppliers-and-parts database, but 
the extended suppliers-parts-projects version from the exercises in Chapter 4 and else¬ 

where. For convenience we show in Fig. 8.1 a set of sample values for that database 

(repeated from Fig. 4.5). 

Actually, the algorithm presented in reference [7.1J had a slight flaw in it [8.2]. Furthermore, the ver¬ 
sion of the calculus defined in that paper did not include a full counteipart to the union operator, so in fact 
Codd’s calculus was strictly less powerful than Codd’s algebra. The claim that the algebra and the calcu¬ 
lus, enhanced to include a full union counterpart, are equivalent is nevertheless true, however, as several 
writers have demonstrated; see, for example, Klug [7.11]. 
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s# SNAME STATUS CITY 

SI Smith 20 London 
S2 Jones 10 Paris 
S3 Blake 30 Paris 
S4 Clark 20 London 
S5 Adams 30 Athens 

P# PNAME COLOR WEIGHT CITY 

PI Nut Red 12.0 London 
P2 Bolt Green 17.0 Paris 

P3 Screw Blue 17.0 Oslo 
P4 Screw Red 14.0 London 
P5 Cam Blue 12.0 Paris 
P6 Cog Red 19.0 London 

J# JNAME CITY 

J1 Sorter Paris 
J2 Display Rome 
J3 OCR Athens 
J4 Console Athens 
J5 RAID London 
J6 EDS Oslo 
J7 Tape London 

S# P# J# QTY 

SI PI J1 200 
SI PI J4 700 
S2 P3 J1 400 
S2 P3 J2 200 
S2 P3 J3 200 
S2 P3 J4 500 
S2 P3 J5 600 
S2 P3 J6 400 
S2 P3 J7 800 
S2 P5 J2 100 
S3 P3 J1 200 
S3 P4 J2 500 
S4 P6 J3 300 
S4 P6 J7 300 
S5 P2 J2 200 
S5 P2 J4 100 
S5 P5 J5 500 
S5 P5 J7 100 
S5 P6 J2 200 
S5 PI J4 100 
S5 P3 J4 200 
S5 P4 J4 800 
S5 P5 J4 400 
S5 P6 J4 500 

Fig. 8.1 The suppliers-parts-projects database (sample values) 

Now consider the query “Get names and cities for suppliers who supply at least one 

Athens project with at least 50 of every part.” A calculus expression for this query is: 

{ SX.SNAME, SX.CITY > WHERE EXISTS JX FORALL PX EXISTS SPJX 
( JX.CITY = 'Athens' AND 

JX.J# = SPJX.J# AND 
PX.P# = SPJX.P# AND 
SX.S# = SPJX.S# AND 
SPJX.QTY > QTY ( 50 ) ) 

where SX, PX, JX, and SPJX are range variables ranging over S, P, J, and SPJ, respec¬ 

tively. We now show how this expression can be evaluated to yield the desired result. 

Step 1: For each range variable, retrieve the range (i.e., the set of possible values for that 

variable), restricted if possible. By “restricted if possible,” we mean that there might be a 

simple restriction condition—see Chapter 7 for a definition of this term—embedded 

within the WHERE clause that can be used right away to eliminate certain tuples from all 
further consideration. In the case at hand, the sets of tuples retrieved are as follows: 

SX : All tuples of S 5 tuples 
PX : All tuples of P 6 tuples 

JX : Tuples of J where CITY = 'Athens' 2 tuples 

SPJX : Tuples of SPJ where QTY > QTY(50) 24 tuples 
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merits), and many details have been glossed over in our explanation; nevertheless, the 

example should be adequate to give the general idea of how the reduction works. 

Incidentally, we are now able to explain one of the reasons (not the only one) why 

Codd defined precisely the eight algebraic operators he did: Those eight operators provide 

a convenient target language as a vehicle for a possible implementation of the calculus. 

In other words, given a language such as QUEL that is founded on the calculus, one possi¬ 

ble approach to implementing that language would be to take the query as submitted by 

the user—which is basically just a calculus expression—and apply the reduction algo¬ 

rithm to it, thereby obtaining an equivalent algebraic expression. That algebraic expres¬ 

sion consists of a set of algebraic operators, which are inherently implementable by defi¬ 

nition. (The next step is to go on to optimize that algebraic expression—see Chapter 18.) 

Another point to note is that Codd’s eight algebraic operators also provide a yardstick 

for measuring the expressive power of any given database language. We mentioned this 

issue briefly in Chapter 7, at the end of Section 7.6; we now examine it in a little more 

depth. 

First, a language is said to be relationally complete if it is at least as powerful as the 

calculus—that is, if any relation definable by some expression of the calculus is also 

definable by some expression of the language in question [7.1]. (In Chapter 7 we said that 

“relationally complete” meant as powerful as the algebra, not the calculus, but it comes to 

the same thing, as we will see in a moment. Note that it follows immediately from the 

existence of Codd’s reduction algorithm that the algebra is relationally complete.) 

Relational completeness can be regarded as a basic measure of expressive power for 

database languages in general. In particular, since the calculus and the algebra are both 

relationally complete, they both provide a basis for designing languages that provide this 

power of expressiveness without having to resort to explicit iteration—a particularly 

important consideration in the case of a language that is intended for end users, though it 

is significant for application programmers as well. 

Next, since the algebra is relationally complete, it follows that, to show that any given 

language L is also complete, it is sufficient to show (a) that L includes analogs of each of 

the eight algebraic operators—indeed, it is sufficient to show that it includes analogs of 

the five primitive algebraic operators—and (b) that the operands of any operator in L can 

be represented by arbitrary L expressions (of the appropriate type). SQL is an example of 

a language that can be shown to be relationally complete in this manner (see Exercise 

8.9), and QUEL is another. Indeed, it is often easier in practice to show that a given lan¬ 

guage has equivalents of the algebraic operators than it is to show that it has equivalents of 

the expressions of the calculus, which is why we typically define relational completeness 

in algebraic rather than calculus terms. 

Incidentally, please understand that relational completeness does not necessarily 

imply any other kind of completeness. For example, it is desirable that a language provide 

“computational completeness” also—that is, it should be capable of computing all com¬ 

putable functions. Computational completeness was one of the motivations for the 

EXTEND and SUMMARIZE operators that we added to the original algebra in Chapter 

7. In the next section, we will consider calculus analogs of those operators. 

To return to the question of the equivalence of the algebra and the calculus: We have 

shown by example that any calculus expression can be reduced to an algebraic equivalent, 
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8.5.7 Get part cities that store more than five red parts: 

RANGEVAR PY RANGES OVER P ; 
PX.CITY WHERE COUNT ( PY WHERE PY.CITY = PX.CITY 

AND PY.COLOR = COLOR ('Red') ) > 5 

8.6 SQL FACILITIES 

We said in Section 8.4 that a given relational language could be based on either the rela¬ 

tional algebra or the relational calculus. So which is SQL based on? The answer, regretta¬ 

bly, is partly both and partly neither . . . When it was first designed, SQL was specifically 

intended to be different from both the algebra and the calculus [4.9]; indeed, such a goal 

was the prime motivation for the introduction of the “IN <subquery>” construct (see 

Example 8.6.10 later in this section). As time went by, however, it turned out that certain 

features of both the algebra and the calculus were needed after all, and the language grew 
A 

to accommodate them. The situation today is thus that some aspects of SQL are “algebra¬ 

like,” some are “calculus-like,” and some are neither. This state of affairs explains why we 

said in Chapter 7 that we would defer discussion of the SQL data manipulation facilities to 

the present chapter. We leave it as an exercise to figure out which portions of SQL are 

based on the algebra, which on the calculus, and which on neither. 

An SQL query is formulated as a <table exp> of potentially considerable complexity. 

We do not get into all of that complexity here; rather, we simply present a set of examples, 

in the hope that those examples will highlight some of the most important features. The 

examples are based on the SQL definitions for the suppliers-and-parts database shown in 

Chapter 4 (Fig. 4.1). 

8.6.1 Get color and city for “nonParis” parts with weight greater than 10 pounds: 

SELECT PX.COLOR, PX.CITY 
FROM P AS PX 
WHERE PX.CITY <> 'Paris' 
AND PX.WEIGHT > WEIGHT ( 10.0 ) ; 

Points arising: 

1. Recall from Chapter 5 that “<>” is the SQL syntax for not equals. Less than or 

equals and greater than or equals are written “<=” and “>=”, respectively. 

2. The specification P AS PX in the FROM clause effectively constitutes the definition 

of a (tuple-calculus-style) range variable called PX, with range the current value of 

table P. The name—not the variable!—PX is said to be a correlation name, and its 

scope is, loosely, the table expression in which its definition appears, excluding any 

inner expression in which another range variable is defined with the same name (see, 

e.g.. Example 8.6.12). 

4 One consequence of that growth is that—as noted in the annotation to reference [4.19]. q.v.—the entire 
"IN <subquery>" construct could now be removed from the language with no loss of functionality! This 
fact is ironic, since it was that construct that the “Structured” in the original name “Structured Query Lan¬ 
guage” referred to; indeed, it was that construct that was the original justification for adopting SQL rather 
than the algebra or the calculus in the first place. 
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3. SQL also allows implicit range variables. Thus, the query at hand might alternatively 

be expressed as follows: 

SELECT P.COLOR, P.CITY 
FROM P 
WHERE P.CITY <> 'Paris' 
AND P.WEIGHT > WEIGHT ( 10.0 ) ; 

The basic idea is to allow a table name to be used to denote an implicit range variable 

that ranges over the table with that name, provided no ambiguity results. In the exam¬ 

ple, the FROM clause FROM P can be regarded as shorthand for a FROM clause that 

reads FROM P AS P. In other words, it has to be clearly understood that the qualifying 

name P in (e.g.) the expression P.CITY in the SELECT and WHERE clauses here does 

not stand for table P—it stands for a range variable called P that ranges over the table 

with the same name. 

4. As noted in Chapter 4, we could have used unqualified column names throughout in 

this example, thereby writing: 

SELECT COLOR, CITY 
FROM P 
WHERE CITY <> 'Paris' 
AND WEIGHT > WEIGHT ( 10.0 ) ; 

The broad rule is that unqualified names are acceptable provided they cause no ambi¬ 

guity. In our examples, however, we will usually (but not invariably!) include all qual¬ 

ifiers, even when they are technically redundant. Unfortunately, however, there are 

certain contexts in which column names are explicitly required not to be qualified! 

The ORDER BY clause is a case in point5—see the example immediately following. 

5. The ORDER BY clause, mentioned in connection with DECLARE CURSOR in 

Chapter 4, can also be used in interactive SQL queries. For example: 

SELECT P.COLOR, P.CITY 
FROM P 
WHERE P.CITY <> 'Paris' 
AND P.WEIGHT > WEIGHT ( 10.0 ) 
ORDER BY CITY DESC ; /* note unqualified column name */ 

6. We remind you of the “SELECT *” shorthand, also mentioned in Chapter 4. For 

example: 

SELECT * 
FROM P 
WHERE P.CITY <> 'Paris’ 
AND P.WEIGHT > WEIGHT ( 10.0 ) ; 

The star in “SELECT *” is shorthand for a commalist of all column names in the 

table(s) referenced in the FROM clause, in the left-to-right order in which those col¬ 

umn^) are defined within those table(s). The star notation is convenient for interactive 

queries, since it saves keystrokes. However, it is potentially dangerous in embedded 

SQL—that is, SQL embedded in an application program—because the meaning of the 

“*” might change (e.g., if a column is added to or dropped from some table, via 

ALTER TABLE). 

Except as noted in Chapter 4, Section 4.6. 
5 
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7. (Much more important than the previous points!) Note that, given our usual sample 
data, the query under discussion will return four rows, not two, even though three 

of those four rows are identical. SQL does not eliminate redundant duplicate rows 

from a query result unless the user explicitly requests it to do so via the keyword 
DISTINCT, as here: 

SELECT DISTINCT P.COLOR, P.CITY 
FROM P 
WHERE P.CITY <> 'Paris’ 
AND P.WEIGHT > WEIGHT ( 10.0 ) ; 

This query will return just two rows. 

It follows from the foregoing that (as in fact we already know from Chapter 6) the 

fundamental data object in SQL is not a relation—it is, rather, a table, and SQL-style 

tables contain (in general) not sets but bags of rows (and SQL thus violates The Infor¬ 

mation Principle). One important consequence is that the fundamental operators in 

SQL are not true relational operators but bag analogs of those operators. Another is 

that results and theorems that hold in the relational model—regarding the transforma¬ 

tion of expressions, for example [6.6]—do not necessarily hold in SQL. 

8.6.2 For all parts, get the part number and the weight of that part in grams (simpli¬ 

fied version of Example 8.5.1): 

SELECT P.P#, P.WEIGHT * 454 AS GMWT 
FROM P ; 

The specification AS GMWT introduces an appropriate result column name for the “com¬ 

puted column.” The two columns of the result table are thus called P# and GMWT, 

respectively. If the AS clause had been omitted, the corresponding result column would 
effectively have been unnamed. Observe, therefore, that SQL does not actually require the 

user to provide a result column name in such circumstances, but we will always do so in 

our examples. 

8.6.3 Get all combinations of supplier and part information such that the supplier 

and part in question are colocated. 

SQL provides many different ways of formulating this query. We give three of the sim¬ 

plest here: 

1. SELECT S.*, P.P#, P.PNAME, P.COLOR, P.WEIGHT 
FROM S, P 
WHERE S.CITY = P.CITY ; 

2. S JOIN P USING CITY ; 

3. S NATURAL JOIN P ; 

The result in each case is the natural join of tables S and P (on cities).6 
The first of the foregoing formulations—which is the only one that would have been 

valid in SQL as originally defined (explicit JOIN support was added in SQL: 1992)—merits 

further discussion. Conceptually, we can think of that version of the query as being imple¬ 

mented as follows: 

6 SQL:2003 is likely to require the second and third formulations to include a “SELECT * FROM” 

prefix. 
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SELECT SP.P#, SUM ( SP.QTY ) AS TOTQTY 
FROM SP 
GROUP BY SP.P# ; 

The foregoing is the SQL analog of the relational algebra expression 

SUMMARIZE SP BY { P# > ADD SUM ( QTY ) AS TOTQTY 

or the tuple calculus expression 

( SPX.P#, SUM ( SPY WHERE SPY.P# = SPX.P#, QTY ) AS TOTQTY ) 

Observe in particular that if the GROUP BY clause is specified, expressions in the 

SELECT clause must be single-valued per group. 

Here is an alternative (and in some ways preferable) formulation of the same query: 

SELECT P.P#, ( SELECT SUM ( SP.QTY ) 
FROM SP 
WHERE SP.P# = P.P# ) AS TOTQTY 

FROM P ; 

The ability to use a subquery in this way allows us to obtain a result that includes rows for 

parts that are not supplied at all, which the previous formulation, using GROUP BY, did 

not. (The TOTQTY value for such parts will unfortunately be given as null, however, not 

zero.) 

8.6.9 Get part numbers for parts supplied by more than one supplier: 

SELECT SP.P# 
FROM SP 
GROUP BY SP.P# 
HAVING COUNT ( SP.S# ) > 1 ; 

The HAVING clause is to groups what the WHERE clause is to rows; in other words, 

HAVING is used to eliminate groups, just as WHERE is used to eliminate rows. Expres¬ 

sions in a HAVING clause must be single-valued per group. 

8.6.10 Get supplier names for suppliers who supply part P2 (Example 7.5.1): 

SELECT DISTINCT S.SNAME 
FROM S 
WHERE S.S# IN 

( SELECT SP.S# 
FROM SP 
WHERE SP.P# = P# ('P2') ) ; 

Explanation: This example makes use of a subquery in the WHERE clause. Loosely 

speaking, a subquery is a SELECT - FROM - WHERE - GROUP BY - HAVING expres¬ 

sion that is nested inside another such expression. Subqueries are used among other things 

to represent the set of values to be searched via an IN condition, as the example illus¬ 

trates. The system evaluates the overall query by evaluating the subquery first (at least 

conceptually). That subquery returns the set of supplier numbers for suppliers who supply 

part P2: namely, the set {S1 ,S2,S3,S4}. The original expression is thus equivalent to the 
following simpler one: 
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SELECT DISTINCT S.SNAME 
FROM S 

WHERE S.S# IN ( S#('SI)', S#('S2'), S#('S3'), S#('S4') ) ; 

By the way, it is worth pointing out that the original problem (“Get supplier names 

for suppliers who supply part P2”) can equally well be formulated by means of a join— 
for example, as follows: 

SELECT DISTINCT S.SNAME 
FROM S, SP 
WHERE S.S# = SP.S# 
AND SP.P# = P# ('P2') ; 

8.6.11 Get supplier names for suppliers who supply at least one red part (Example 
8.3.4): 

SELECT DISTINCT S.SNAME 
FROM S 
WHERE S.S# IN 

( SELECT SP.S# 
FROM SP 
WHERE SP.P# IN 

( SELECT P.P# 
FROM P 

WHERE P.COLOR = COLOR ('Red') ) ) ; 

Subqueries can be nested to any depth. Exercise: Give some equivalent join formulations of 

this query. 

8.6.12 Get supplier numbers for suppliers with status less than the current maxi¬ 
mum status in the S table: 

SELECT S.S# 
FROM S 
WHERE S.STATUS < 

( SELECT MAX ( S.STATUS ) 
FROM S ) ; 

This example involves two distinct implicit range variables, both denoted by the same 
symbol “S” and both ranging over the same table S. 

8.6.13 Get supplier names for suppliers who supply part P2. Note: This example is 

the same as Example 8.6.10; we show a different solution, in order to introduce another 
SQL feature. 

SELECT DISTINCT S.SNAME 
FROM S 
WHERE EXISTS 

( SELECT * 
FROM SP 
WHERE SP.S# = S.S# 
AND SP.P# = P# ('P21) ) ; 

Explanation: The SQL expression “EXISTS (SELECT... FROM ...)“ evaluates to TRUE 

if and only if the result of evaluating the “SELECT . . . FROM . . .” is not empty. In other 

w ords, the SQL EXISTS operator corresponds to the existential quantifier of the tuple cal¬ 
culus (more or less—but see reference [ 19.6J). Note: SQL refers to the subquery in this par¬ 

ticular example as a correlated subquery, since it includes references to a range variable 
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Note: What we would really like to do in the foregoing example is compare two tables, 

thereby expressing the query as follows: 

SELECT DISTINCT S.SNAME /* warning! illegal! */ 
FROM S 
WHERE ( SELECT SP.P# 

FROM SP 
WHERE SP.S# = S.S# ) 

= ( SELECT P.P# 
FROM P ) ; 

SQL does not directly support table comparisons, however, and so we have to resort to the 

trick of comparing cardinalities instead (relying on our own external knowledge that if the 

cardinalities are equal then the tables must be equal too, in the case at hand). See Exercise 

8.11. 

8.6.16 Get part numbers for parts that either weigh more than 16 pounds or are 

supplied by supplier S2, or both (Example 8.3.9): 

SELECT P.P# 
FROM P 
WHERE P.WEIGHT > WEIGHT ( 16.0 ) 

UNION 

SELECT SP.P# 
FROM SP 
WHERE SP.S# = S# ('S2’) ; 

Redundant duplicate rows are always eliminated from the result of an unqualified UNION, 

INTERSECT, or EXCEPT (EXCEPT is the SQL analog of our MINUS). However, SQL 

also provides the qualified variants UNION ALL, INTERSECT ALL, and EXCEPT 

ALL, where duplicates if any are retained. We deliberately omit examples of these variants. 

8.6.17 Get the part number and the weight in grams for each part with weight > 
10,000 grams (Example 8.5.1): 

SELECT P.P#, P.WEIGHT * 454 AS GMWT 
FROM P 
WHERE P.WEIGHT * 454 > WEIGHT ( 10000.0 ) ; 

Recall now the WITH clause, which we introduced in Chapter 5 and used in connec¬ 

tion with the relational algebra in Chapter 7.9 The purpose of WITH is, loosely, to intro¬ 

duce names for expressions. SQL also has a WITH clause, though its use is limited to 

table expressions only. In the example, we can use such a clause to avoid having to write 
the expression P.WEIGHT * 454 out twice: 

WITH T1 AS ( SELECT P.P#, P.WEIGHT * 454 AS GMWT 
FROM P ) 

SELECT Tl.P#, Tl.GMWT 
FROM T1 
WHERE Tl.GMWT > WEIGHT ( 10000.0 ) ; 

Note, incidentally, that entries in a WITH clause—what we called <name intro>s in 

the previous chapter—take the form <name> AS (<e.xp>) in SQL, whereas in Tutorial D 

9 It can be used in connection with the relational calculus too, of course. 





Chapter 8 / Relational Calculus 241 

Here then are some examples of domain calculus expressions: 

sx 

SX WHERE S { S# SX > 

SX WHERE S { S# SX, CITY 'London' > 

{ SX, CITYX > WHERE S { S# SX, CITY CITYX > 
AND SP { S# SX, P# P#('P2') > 

{ SX, PX > WHERE S { S# SX, CITY CITYX } 
AND P { P# PX, CITY CITYY } 
AND CITYX * CITYY 

Loosely speaking, the first of these expressions denotes the set of all supplier num¬ 

bers; the second denotes the set of all supplier numbers in relvar S; the third denotes that 

subset of those supplier numbers for which the city is London. The next is a domain cal¬ 

culus representation of the query “Get supplier numbers and cities for suppliers who sup¬ 

ply part P2” (note that the tuple calculus version of this query required an existential 

quantifier). The last is a domain calculus representation of the query "Get supplier- 

number/part-number pairs such that the supplier and part are not colocated.” 

We give domain calculus versions of some of the examples from Section 8.3 (some of 
them modified slightly here). 

8.7.1 Get supplier numbers for suppliers in Paris with status > 20 (simplified version 

of Example 8.3.1): 

SX WHERE EXISTS STATUSX 
( STATUSX >20 AND 

S { S# SX, STATUS STATUSX, CITY 'Paris' > ) 

This first example is somewhat clumsier than its tuple calculus counterpart (observe in par¬ 

ticular that an explicit quantifier is still needed). On the other hand, there are also cases 

where the reverse is true; see especially some of the more complex examples later in this 

section. 

8.7.2 Get all pairs of supplier numbers such that the suppliers concerned are colo¬ 

cated (Example 8.3.2): 

{ SX AS SA, SY AS SB } WHERE EXISTS CITYZ 
( S { S# SX, CITY CITYZ } AND 

S { S# SY, CITY CITYZ > AND 
SX < SY ) 

8.7.3 Get supplier names for suppliers who supply at least one red part (Example 

8.3.4): 

NAMEX WHERE EXISTS SX EXISTS PX 
( S { S# SX, SNAME NAMEX } 

AND SP { S# SX, P# PX > 
AND P { P# PX, COLOR COLOR('Red') } ) 

8.7.4 Get supplier names for suppliers who supply at least one part supplied by sup¬ 

plier S2 (Example 8.3.5): 
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NAMEX WHERE EXISTS SX EXISTS PX 
( S { S# SX, SNAME NAMEX } 

AND SP { S# SX, P# PX } 
AND SP { S# S#('S2'), P# PX } ) 

8.7.5 Get supplier names for suppliers who supply all parts (Example 8.3.6): 

NAMEX WHERE EXISTS SX ( S { S# SX, SNAME NAMEX > 
AND FORALL PX ( IF P { P# PX > 

THEN SP { S# SX, P# PX > 
END IF ) 

8.7.6 Get supplier names for suppliers who do not supply part P2 (Example 8.3.7): 

NAMEX WHERE EXISTS SX ( S { S# SX, SNAME NAMEX > 
AND NOT SP { S# SX, P# P#(’P2') > ) 

8.7.7 Get supplier numbers for suppliers who supply at least all those parts supplied 

by supplier S2 (Example 8.3.8): 

SX WHERE FORALL PX ( IF SP { S# S#('S2'), P# PX } 
THEN SP { S# SX, P# PX } 
END IF ) 

8.7.8 Get part numbers for parts that either weigh more than 16 pounds or are sup¬ 

plied by supplier S2, or both (Example 8.3.9): 

PX WHERE EXISTS WEIGHTX 
( P { P# PX, WEIGHT WEIGHTX } 

AND WEIGHTX > WEIGHT ( 16.0 ) ) 
OR SP { S# S#('S2'), P# PX > 

The domain calculus, like the tuple calculus, is formally equivalent to the relational 

algebra (and so it is relationally complete). For proof see, for example, Ullman [8.13]. 

8.8 QUERY-BY-EXAMPLE 

The best-known example of a language based on the domain calculus is Query-By- 

Example, QBE [8.14], (Actually QBE incorporates aspects of both the domain and the 

tuple calculus, but the emphasis is on the former.) Its syntax, which is attractive and intu¬ 

itively very simple, is based on the idea of making entries in blank tables. For example, a 

QBE formulation of the query “Get supplier names for suppliers who supply at least one 

part supplied by supplier S2" might look like this: 

s s# SNAME SP S# p# SP S# P# 

SX P. NX SX PX S2 PX 

Explanation: The user asks the system to display three blank tables on the screen, one 

for suppliers and two for shipments, and makes entries in them as shown. Entries begin¬ 

ning with a leading underscore are example elements (i.e., domain calculus range vari¬ 
ables); other entries are literal values. The user is asking the system to present (“P.”) sup¬ 

plier names (_NX) such that, if the supplier number is _SX, then supplier _SX supplies 
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some part _PX, and part _PX in turn is supplied by supplier S2. If you compare this QBE 

formulation with a tuple or domain calculus equivalent (see Examples 8.3.5 and 8.7.4), 

you will see that it differs from those other formulations in that it involves no explicit 

quantification10—another reason why QBE is intuitively easy to understand. It is worth 

comparing the QBE version with an SQL formulation, too (exercise for the reader). 

We now present a series of examples in order to illustrate some of the major features 

of QBE. As an exercise, you might like to try comparing and contrasting these QBE 
examples with their pure domain calculus counterparts. 

8.8.1 Get supplier numbers for suppliers in Paris with status > 20 (Example 8.7.1): 

s s# SNAME STATUS CITY 

p. > 20 Paris 

Note how easy it is to express the “>” and “=” comparisons. Note too that there is no need 

to specify an example element explicitly if it is not referenced anywhere else (though an 

explicit example element, as in P._SX, would not be wrong). Note finally that character 

string values such as Paris can be specified without being enclosed in quotes (it would not 

be wrong to supply the quotes, however, and sometimes they are required—e.g., if the 

string includes any spaces). 
It is also possible to specify “P.” against the entire row-—for example, as follows: 

S s# SNAME STATUS CITY 

P. > 20 Paris 

This example is equivalent to specifying “P.” in every column position in the row, thus: 

S S# SNAME STATUS CITY 

p. P. P. >20 P.Paris 

One last point arising from this example: The system will provide facilities to allow 

blank tables to be edited on the screen by the addition or removal of columns and rows 

and by the widening and narrowing of columns. Tables can thus be tailored to fit the 
requirements of whatever operation the user is trying to formulate; in particular, columns 

that are not needed for the operation in question can be eliminated. For example, in the 

first QBE formulation of the example under discussion, the SNAME column could have 

been eliminated, to yield: 

S S# STATUS CITY 

P. > 20 Paris 

10 An analogous remark applies to QUEL, incidentally (see, e.g., reference [8.5]). 
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In what follows, therefore, we will often omit columns that are not needed for the query 

under consideration. 

8.8.2 Get part numbers for all parts supplied, with redundant duplicates eliminated: 

SP S# P# QTY 

UNQ. P. 

UNQ. stands for unique (it corresponds to DISTINCT in SQL). 

8.8.3 Get supplier numbers and status for suppliers in Paris, in ascending supplier 

number order within descending status order: 

S S# STATUS CITY 

P.AO(2) . P.DO(1) . Paris 

“AO.” stands for ascending order, “DO.” for descending order. The integers in parentheses 

indicate the major-to-minor sequence for ordering columns; in the example, STATUS is 
the major column and S# the minor column. 

8.8.4 Get supplier numbers and status for suppliers who either are located in Paris 

or have status > 20, or both (modified version of Example 8.8.1). 

Conditions specified within a single row are considered to be “ANDed” together 

(see, e.g., Example 8.8.1). To “OR" two conditions, they must be specified in different 
rows, as here: 

S S# STATUS CITY 

P. Paris 

P. > 20 

Another approach to this query makes use of what is known as a condition box, thus: 

S s# STATUS CITY 

p. _ST _SC 

CONDITIONS 

_SC = Paris OR _ST > 20 

In general, a condition box allows the specification of conditions that are too complex to 

be expressed within a single column of a blank table—for example, comparisons involv¬ 

ing two distinct columns, or comparisons involving an aggregate operator. 

8.8.5 Get parts whose weight is in the range 16 to 19 inclusive: 

P P# WEIGHT WEIGHT 

P. >= 16.0 <= 19.0 
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8.8.6 For all parts, get the part number and the weight of the part in grams (Exam¬ 
ple 8.6.2): 

p p# WEIGHT GMWT 

p. _PW P. PW * 454 

8.8.7 Get supplier names for suppliers who supply part P2 (Example 7.5.1): 

S s# SNAME SP S# p# 

SX P. SX P2 

The row in table SP here is implicitly existentially quantified. The query can be para¬ 
phrased: 

Get supplier names for suppliers SX such that there exists a shipment showing 

supplier SX supplying part P2. 

QBE thus does implicitly support EXISTS (and note that the implicit range variable ranges 

over a relation, not a domain, which is why we said earlier that QBE involves some aspects 

of the tuple calculus). However, it does not support NOT EXISTS.11 As a consequence, 

certain queries—for example, “Get supplier names for suppliers who supply all parts” 

(Example 8.7.5)—cannot be expressed in QBE, and QBE is not relationally complete. 

8.8.8 Get all supplier-number/part-number pairs such that the supplier and part 

concerned are “colocated” (modified version of Example 8.6.3): 

s s# CITY P P# CITY 

SX CX PX CX 

Three blank tables are needed for this query, one each for S and P (only relevant columns 

shown) and one for the result. Notice how example elements are specified to link these 

three tables together. The entire query can be paraphrased: 

Get supplier-number/part-number pairs, SX and PX say, such that SX and PX are both 

located in the same city CX. 

8.8.9 Get all pairs of supplier numbers such that the suppliers concerned are colo¬ 

cated (Example 8.6.5): 

s s# CITY 

SX 
SY 

CZ 
CZ 

P. _sx _SY 

11 At least, not properly; it does support it partially. Originally, in fact, it supported it “completely,” but 
the support was always troublesome. The basic problem was that there was no way to specify the order in 
which the various implicit quantifiers were to be applied, and unfortunately the order is significant when 
any NOTs are involved. As a result, certain QBE expressions were ambiguous. A detailed discussion of 
this point can be found in reference (8.3). See also Exercise 8.2. 
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A condition box could be used if desired to specify the additional condition _SX < _SY. 

8.8.10 Get the total quantity of part P2 supplied: 

SP s# p# QTY 

P2 _QX P.SUM._QX 

QBE supports the usual aggregate operators. 

8.8.11 For each part supplied, get the part number and the total shipment quantity 
(Example 8.6.8): 

SP s# p# QTY 

G.P. _QY P.SUM._QY 

“G.” causes grouping (it corresponds to GROUP BY in SQL). 

8.8.12 Get part numbers for all parts supplied by more than one supplier: 

SP S# p# CONDITIONS 

sx G.P. CNT. SX >1 

8.8.13 Get part numbers for parts that either weigh more than 16 pounds or are 
supplied by supplier S2, or both (Example 8.7.8): 

P P# WEIGHT SP S# P# 

_PX > 16.0 S2 _PY P. 
P. 

PX 
PY 

8.8.14 Insert part P7 (city Athens, weight 24, name and color at present unknown) 

into table P: 

P P# PNAME COLOR WEIGHT CITY 

I. P7 24.0 Athens 

Note that “I.” applies to the entire row and so appears beneath the table name. Note: Of 

course, inserting new tuples is not a relational calculus (or relational algebra) operation at 

all; it is an update operation, not a read-only one. We include the example here for com¬ 

pleteness. Analogous remarks apply to the next three examples also. 

8.8.15 Delete all shipments with quantity greater than 300: 

SP S# P# QTY 

D. > 300 

The “D.” appears beneath the table name. 
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8.8.16 Change the color of part F2 to yellow, increase the weight by 5, and set the 
city to Oslo: 

p p# PNAME COLOR WEIGHT WEIGHT CITY 

P2 U.Yellow _WT U._WT + 5 U.Oslo 

8.8.17 Set the shipment quantity to five for all suppliers in London: 

SP S# QTY S S# CITY 

_sx U. 5 _sx London 

8.9 SUMMARY 

We have described the relational calculus, an alternative to the relational algebra. Super¬ 
ficially, the two look very different—the calculus is descriptive where the algebra is pre¬ 

scriptive—but at a deep level they are the same, because any expression of the calculus 

can be converted into a semantically equivalent expression of the algebra and vice versa. 

The calculus comes in two versions, tuple calculus and domain calculus. The key 

difference between them is that the range variables of the tuple calculus range over rela¬ 
tions, while the range variables of the domain calculus range over domains. 

An expression of the tuple calculus consists of a proto tuple and an optional 

WHERE clause containing a boolean expression or VVFF (“well-formed formula”). That 
WFF is allowed to contain quantifiers (EXISTS and FORALL), free and bound variable 

references, boolean operators (AND, OR, NOT, etc.), and so on. Every free variable men¬ 

tioned in the WFF must also be mentioned in the proto tuple. Note: We did not explicitly 

discuss the point in the body of the chapter, but expressions of the calculus are intended to 

serve essentially the same purposes as expressions of the algebra (see Chapter 7, Section 
7.6). 

We showed by example how Codd’s reduction algorithm can be used to convert an 

arbitrary expression of the calculus to an equivalent expression of the algebra, thus paving 

the way for a possible implementation strategy for the calculus. And we mentioned once 

again the issue of relational completeness, and discussed briefly what is involved in 

proving that some given language is complete in this sense. 

We also considered the question of including computational capabilities (analogous 
to the capabilities provided by EXTEND and SUMMARIZE in the algebra) in the tuple 

calculus. Then we presented an overview of the relevant features of SQL. SQL is a kind 

of hybrid of the algebra and the tuple calculus; for example, it explicitly supports both the 

JOIN and UNION operators of the algebra and the range variables and the existential 
quantifier of the calculus. 

An SQL query consists of a table expression—frequently just a single select expres¬ 

sion. but various kinds of explicit join expressions are also supported, and join expressions 
and select expressions can be combined in various ways using the UNION, INTERSECT, 
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8.2 Let p(x,y) be an arbitrary WFF with free variables x and y. Which of the following statements 

are valid? 

a. EXISTS x EXISTS y ( p(x,y) ) = EXISTS y EXISTS x ( p(x,y) ) 

b. FORALL x FORALL y ( p(x,y) ) = FORALL y FORALL x ( p(x,y) ) 

C. FORALL x ( p(x,y) ) NOT EXISTS x ( NOT p(x,y) ) 

d. EXISTS x ( p(x,y) ) s NOT FORALL x ( NOT p(x,y) ) 

e. EXISTS x FORALL y ( p(x,y) ) s FORALL y EXISTS x ( p(x,y) ) 

f. EXISTS y FORALL x ( p(x,y) ) => FORALL x EXISTS y ( p(x,y) ) 

8.3 Let p(.v) and g(y) be arbitrary WFFs with free variables x and y, respectively. Which of the fol¬ 

lowing statements are valid? 

a. EXISTS x ( p(x) ) AND EXISTS y ( q(y) ) s 
EXISTS x EXISTS y ( p(x) AND g(y) ) 

b. EXISTS x ( IF p(x) THEN g(x) END IF ) s 
IF FORALL x ( p(x) ) THEN EXISTS x ( g(x) ) END IF 

8.4 Consider once again the query “Get supplier numbers for suppliers who supply at least all 

those parts supplied by supplier S2." A possible tuple calculus formulation is: 

SX.S# WHERE FORALL SPY ( IF SPY.S# = S# ('S2') THEN 
EXISTS SPZ ( SPZ.S# = SX.S# AND 

SPZ.P# = SPY.P# ) 
END IF ) 

(SPZ here is another range variable that ranges over shipments.) What will this query return if sup¬ 

plier S2 currently supplies no parts at all? What difference would it make if we replaced SX by SPX 

throughout? 

8.5 Here is a sample query against the suppliers-parts-projects database (the usual conventions 

apply regarding range variable names): 

{ PX.PNAME, PX.CITY > WHERE FORALL SX FORALL JX EXISTS SPJX 
( SX.CITY = 'London' AND 

JX.CITY = 'Paris' AND 
SPJX.S# = SX.S# AND 
SPJX.P# = PX.P# AND 
SPJX.J# = JX.J# AND 
SPJX.QTY < QTY ( 500 ) ) 

a. Translate this query into natural language. 

b. Play DBMS and “execute” Codd’s reduction algorithm on this query. Can you see any improve¬ 

ments that might be made to that algorithm? 

8.6 Give a tuple calculus formulation of the query “Get the three heaviest parts.” 

8.7 Consider the bill-of-materials relvar PART_STRUCTURE of Chapter 4, Exercise 4.6. The 

well-known part explosion query “Get part numbers for all parts that are components, at any level, 

of some given part, say part PI”—the result of which, PART_B1LL say, is certainly a relation that 

can be derived from PART_STRUCTURE—cannot be formulated as a single expression of the orig¬ 

inal relational algebra, nor of the calculus as described in this chapter. In other words, PART_BILL 

is a derivable relation that nevertheless cannot be derived by means of a single expression of the 

original algebra or calculus. Why is this? 

8.8 Suppose the suppliers relvar S were to be replaced by a set of relvars LS, PS, AS, and so on 

(one for each distinct supplier city; the LS relvar, for example, contains just the supplier tuples for 

the suppliers in London). Suppose too that we are unaware of exactly what supplier cities exist, and 

are therefore unaware of exactly how many such relvars there are. Consider the query “Is supplier SI 
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represented in the database?” Can this query be expressed in the calculus (or the algebra)? Justify 

your answer. 

8.9 Show that SQL is relationally complete. 

8.10 Does SQL have equivalents of the relational EXTEND and SUMMARIZE operators? 

8.11 Does SQL have equivalents of the relational comparison operators? 

8.12 Give as many different SQL formulations as you can think of for the query “Get supplier 

names for suppliers who supply part P2." 

Query Exercises 

The remaining exercises are all based on the suppliers-parts-projects database. In each case you are 

asked to write an expression for the indicated query. (By way of an interesting variation, you might 

like to try looking at some of the online answers first and stating what the given expression means in 

natural language.) 

8.13 Give tuple calculus solutions to Exercises 7.13-7.50. 

8.14 Give SQL solutions to Exercises 7.13-7.50. 

8.15 Give domain calculus solutions to Exercises 7.13-7.50. 

8.16 Give QBE solutions to Exercises 7.13-7.50. 
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9.1 INTRODUCTION 

The integrity part of the relational model is the part that has changed the most over the 

years (perhaps we should say evolved rather than changed). The original emphasis was on 

primary and foreign keys specifically (“keys” for short). Gradually, however, the impor¬ 

tance—indeed, the crucial importance—of integrity constraints in general began to be bet¬ 

ter understood and more widely appreciated; at the same time, certain awkward questions 

regarding keys in particular began to be raised. The structure of this chapter reflects this 

shift in emphasis, inasmuch as it deals with integrity constraints in general first, at some 
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considerable length, and then goes on to discuss keys (which do continue to be of major 

pragmatic importance) subsequently. 

Loosely, then, an integrity constraint is a boolean expression that is associated with 

some database and is required to evaluate at all times to TRUE. Such a constraint can be 

regarded as the formal expression of some “business rule” [9.15]—though business rules in 

turn, which we assume for the sake of this chapter are always expressed in natural lan¬ 

guage, are also sometimes referred to as integrity constraints. Be that as it may, here are a 

few examples, all based on the suppliers-and-parts database: 

1. Every supplier status value is in the range 1 to 100 inclusive. 

2. Every supplier in London has status 20. 

3. If there are any parts at all, at least one of them is blue. 

4. No two distinct suppliers have the same supplier number. 

5. Every shipment involves an existing supplier. 

6. No supplier with status less than 20 supplies any part in a quantity greater than 500. 

We will be making extensive use of these examples throughout this chapter. 

Clearly, constraints must be formally declared to the DBMS, and the DBMS must then 

enforce them. Declaring them is simply a matter of using the relevant features of the data¬ 

base language; enforcing them is a matter of the DBMS monitoring updates that might vio¬ 

late the constraints and rejecting those that do. Here is a formal declaration of the first of 

our examples in Tutorial D: 

CONSTRAINT SCI 
IS_EMPTY ( S WHERE STATUS < 1 OR STATUS >100 ) ; 

To enforce this constraint, the DBMS will have to monitor all operations that attempt to 

insert a new supplier or change an existing supplier’s status [9.5], 

Of course, when a constraint is initially declared, the system must check that the data¬ 

base currently satisfies it. If it does not, the constraint must be rejected; otherwise, it is 

accepted—that is, saved in the system catalog—and enforced from that point forward. By 

the way, note the constraint name SCI (“suppliers constraint one”) in the example. 

Assuming this constraint is accepted by the DBMS, it will be registered in the catalog 

under that name, and that name will then appear in diagnostic messages produced by the 

system in response to attempts to violate it. 

Here are two more possible formulations of Example 1, now using a calculus-based 

version of Tutorial D (SX here is a range variable ranging over suppliers); 

CONSTRAINT SCI 
NOT EXISTS SX ( SX.STATUS < 1 OR SX.STATUS > 100 ) ; 

CONSTRAINT SCI 
FORALL SX ( SX.STATUS > 1 AND SX.STATUS <100 ) ; 

All three formulations are equivalent, of course. In this chapter, however, we use the calcu¬ 

lus rather than the algebra as the basis for most of our discussions, for reasons that should 

become clear as we proceed. As an exercise, you might like to try giving algebraic versions 

of our calculus-based examples. 
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Of course, we also need a way of getting rid of existing constraints if they are no 
longer needed: 

DROP CONSTRAINT <constraint name> ; 

9.2 A CLOSER LOOK 

Integrity constraints in general are constraints on the values some variable or combination 

of variables is permitted to assume.1 Thus, the fact that a given variable is of some given 

type represents an a priori constraint on the variable in question (the values that can be 

assumed by that variable must obviously be values of that type). And it follows immedi¬ 

ately—indeed, it is just a special case—that the fact that each attribute of a given relvar is 

of some given type represents an o priori constraint on the relvar in question. For example, 

relvar S (suppliers) is constrained to contain values that are relations in which every S# 

value is a supplier number (a value of type S#), every SNAME value is a name (a value of 

type NAME), and so on. 

However, these simple a priori constraints are certainly not the only ones possible; in 

fact, none of the six examples in Section 9.1 was an a priori constraint in this sense. Con¬ 

sider Example 1 once again: 

1. Every supplier status value is in the range 1 to 100 inclusive. 

Here is a slightly more precise way of saying the same thing: 

If 5 is a supplier, then 5 has a status value in the range 1 to 100 inclusive. 

And here is a more precise (or more formal) way still: 

FORALL s# e S#, sn e NAME, st e INTEGER, sc e CHAR 
( IF { S# s#, SNAME sn, STATUS st, CITY sc } e S 

THEN st > 1 AND st < 100 ) 

This formal expression can be read as follows (in rather stilted English): 

For all supplier numbers s#, all names sn, all integers st, and all character strings 

sc, if a tuple with S# s#, SNAME sn, STATUS st, and CITY sc appears in the sup¬ 

pliers relvar, then st is greater than or equal to 1 and less than or equal to 100. 

Perhaps you can now see why we gave that alternative natural language version of 

Example 1 a few moments back. The fact is, that alternative version, the corresponding 

formal expression, and the stilted English analog all have a certain overall “shape” (as it 

were) that looks something like this: 

IF a certain tuple appears in a certain relvar, THEN that tuple satisfies a certain 

condition. 

1 As this remark indicates, integrity constraints do apply (at least in principle) to variables of all kinds. 
For obvious reasons, however, our main focus in this book is on relation variables specifically. 

' Please note that the syntax used in these formal examples is not Tutorial D (Tutorial D versions of the 
examples are given later). Nor is it exactly the syntax we defined for relational calculus in Chapter 8, 
though it is close (especially to the domain version). 
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This “shape” is an example of a logical implication (sometimes called a material implica¬ 

tion). We have met this construct before, in Chapter 8; it takes the general form 

IF p THEN q 

where p and q are boolean expressions, called the antecedent and the consequent, respec¬ 

tively. The overall expression—that is, the implication—is false if p is true and q is false, 

and true otherwise; in other words, IF p THEN q is itself a boolean expression, and it is log¬ 

ically equivalent to (NOT p) OR q. 

By the way, note how the foregoing shape tacitly includes the necessary FORALL 

quantification—“IF a certain tuple appears” means, tacitly, “FORALL tuples that do 

appear.” 

We now proceed to analyze Examples 2-6 similarly (omitting the stilted English for¬ 

mulations, however). Note: The formulations that follow are not unique, nor are they nec¬ 

essarily the simplest ones possible, but they are at least correct. Note too that each example 

does illustrate at least one new point. 

2. Every supplier in London has status 20. 

FORALL s# e S#, sn e NAME, st e INTEGER, sc e CHAR 
( IF { S# s#, SNAME sn, STATUS st, CITY sc > e S 

THEN ( IF sc = 'London' 
THEN st = 20 ) ) 

In this example, the consequent of the implication is itself an implication. 

3. If there are any parts at all, at least one of them is blue. 

IF 
EXISTS p# e P#, pn e NAME, pi e COLOR, pw e WEIGHT, pc e CHAR 

( { P# p#, PNAME pn, COLOR pi, WEIGHT pw, CITY pc > e P ) 
THEN 
EXISTS p# e P#, pn e NAME, pi e COLOR, pw e WEIGHT, pc e CHAR 

( { P# p#, PNAME pn, COLOR pi, WEIGHT pw, CITY pc } e P 
AND pi = COLOR ('Blue') ) 

Note that we cannot just say “at least one part is blue”—we have to worry about the 

case where there are no parts at all. Note: Although it might not be obvious, this exam¬ 

ple does conform to the same general shape as the previous two. Here is an alternative 

formulation that makes the point clear: 

FORALL p# e P#, pn e NAME, pi e COLOR, pw e WEIGHT, pc e CHAR 
( IF { P# p#, PNAME pn, COLOR pi, WEIGHT pw, CITY pc > e P 

THEN EXISTS g# e P#, qn e NAME, ql e COLOR, 
qw e WEIGHT, qc e CHAR 

( { P# g#, PNAME qn, COLOR ql, 
WEIGHT qw, CITY gc } e P 

AND ql = COLOR ('Blue') ) ) 

4. No two distinct suppliers have the same supplier number. 

FORALL x# e S#, xn e NAME, xt e INTEGER, xc e CHAR, 
y# e S#, yn e NAME, yt e INTEGER, yc e CHAR 

( IF { S# x#, SNAME xn, STATUS xt, CITY xc } e S AND 
{ S# y#, SNAME yn, STATUS yt, CITY yc > e S 

THEN ( IF x# = y# 
THEN xn = yn AND xt = yt AND xc - yc ) ) 

This expression is just a formal statement of the fact that {S#} is a candidate key—or a 

superkey, at any rate—for suppliers; thus, key constraints are just a special case of con- 
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straints in general. The Tutorial D syntax KEY {S#} might be regarded as shorthand 

for the foregoing more longwinded expression. (Note the braces, incidentally: Keys are 

always sets of attributes—even if the set in question contains just a single attribute— 

and so we always show key attributes enclosed in braces, at least in formal contexts.) 

Note: Both candidate keys and superkeys are discussed in detail in Section 9.10. 
By the way, observe that this example takes the overall shape: 

IF certain tuples appear in a certain relvar, THEN those tuples satisfy a cer¬ 

tain condition. 

Compare Examples 2 and 3, which both take the same shape as Example 1 (as does 

Example 5, as we will see in a moment). By contrast, Example 6 takes the overall 

shape: 

IF certain tuples appear in certain relvars, THEN those tuples satisfy a cer¬ 

tain condition. 

This latter shape is the one that applies to integrity constraints in general (the first two 

can be regarded as special cases of this most general case). 

5. Every shipment involves an existing supplier. 

FORALL s# e S#, p# e P#, q e QTY 
( IF { S# s#, P# p#, QTY q } e SP 

THEN EXISTS sn e NAME, st e INTEGER, sc e CHAR 
( { S# s#, SNAME sn, STATUS st, CITY sc } e S ) ) 

This expression is a formal statement of the fact that {S#} is a foreign key for ship¬ 

ments, matching the candidate key {S#} for suppliers; thus, foreign key constraints 

too are just a special case of constraints in general (again, see Section 9.10 for further 

discussion). Note that this example involves two distinct relvars, SP and S, while Ex¬ 

amples 1^1 all involve just one.3 

6. No supplier with status less than 20 supplies any part in a quantity greater than 500. 

FORALL s# e S#, sn e NAME, st e INTEGER, sc e CHAR, 
p# e P#, q s QTY 

( IF { S# s#, SNAME sn, STATUS St, CITY sc } e S AND 
{ S# s#, P# p#, QTY q } e SP 

THEN St > 20 OR q < QTY ( 500 ) ) 

This example also involves two distinct relvars, but it is not a foreign key constraint. 

Tutorial D Examples 

We close this section with (calculus-based) Tutorial D versions of Examples 2-6. We 

adopt our usual conventions regarding range variable names. 

2. Every supplier in London has status 20. 

CONSTRAINT SC2 
FORALL SX ( IF SX.CITY = 'London' 

THEN SX.STATUS =20 END IF ) ; 

3 The previous edition of this book used the terms relvar constraint for a constraint involving exactly one 
relvar and database constraint for a constraint involving more than one. As we will see in Section 9.9, 
however, the importance of this distinction is more a matter of pragma than it is of logic, and we will have 
little to say about it in what follows. 
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Note that logical implications (IF/THEN expressions) include an “END IF” termina¬ 
tor in Tutorial D. 

3. If there are any parts at all, at least one of them is blue. 

CONSTRAINT PC3 
IF EXISTS PX ( TRUE ) 
THEN EXISTS PX ( PX.COLOR = COLOR ('Blue') ) END IF ; 

4. No two distinct suppliers have the same supplier number. 

CONSTRAINT SC4 
FORALL SX FORALL SY (IF SX.S# = SY.S# 

THEN SX.SNAME = SY.SNAME 
AND SX.STATUS = SY.STATUS 
AND SX.CITY = SY.CITY 
END IF ) ; 

5. Every shipment involves an existing supplier. 

CONSTRAINT SSP5 

FORALL SPX EXISTS SX ( SX.S# = SPX.S# ) ; 

6. No supplier with status less than 20 supplies any part in a quantity greater than 500. 

CONSTRAINT SSP6 
FORALL SX FORALL SPX 

( IF SX.S# = SPX.S# 
THEN SX.STATUS > 20 OR SPX.QTY < 500 END IF ) ; 

9.3 PREDICATES AND PROPOSITIONS 

Consider once again the formal version of Example 1 (“every supplier status value is in 

the range 1 to 100 inclusive”): 

FORALL s# e S#, sn e NAME, st e INTEGER, sc e CHAR 
( IF { S# s#, SNAME sn, STATUS st, CITY sc > e S 

THEN st > 1 AND st < 100 ) 

This formal version is a boolean expression. Note, however, that it involves a variable: 

namely, the suppliers relvar S.4 Thus, we cannot say what the value of the expression is— 

that is, we cannot say what truth value it yields—until we substitute a value for that vari¬ 

able (indeed, different substitutions will yield different truth values, in general). In other 

words, the expression is a predicate, and the variable S is a parameter to that predicate; 

and when we want to “instantiate” that predicate—which is to say, when we want to check 
the constraint—we provide as argument the relation that is the current value of relvar S 

(relvar S being the sole parameter), and the expression can then be evaluated. 

Now, when we do instantiate that predicate—in effect replacing the sole parameter by 

some argument—we wind up with a truth-valued expression that involves no variables at 

all, only values. Analogous remarks apply to constraints involving two, three, four, or any 

number of relvars; in all cases, when we want to evaluate the expression (i.e., when we 

want to check the constraint), we replace each parameter by the relation that is the current 

value of the applicable relvar, and what we wind up with is a truth-valued expression that 

4 It also involves several range variables, but as we saw in Chapter 8 range variables are not variables in 
the programming language sense—and we take the term variable throughout this chapter to mean a vari¬ 
able in the programming language sense specifically (baiting explicit statements to the contrary). 
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Now let D be a database,6 and let D contain relvars RI, R2, ...Rn (only). Let the relvar 

predicates for those relvars be RP1, RP2.RPn, respectively. Then the database predi¬ 

cate for D, DP say, is the conjunction of all of those relvar predicates: 

DP = RPl AND RP2 AND ... AND RPn 

And here is the extended (more general, and in fact final) version of The Golden Rule: 

No update operation must ever assign to any database a value that causes its 

database predicate to evaluate to FALSE. 

Of course, a database predicate will evaluate to FALSE if and only if at least one of 

its constituent relvar predicates does so too. And a relvar predicate will evaluate to FALSE 

if and only if at least one of its constituent constraints does so too. Note: As we have seen, 

two distinct relvar predicates RPi and RPj (i t- j) might have certain constituent constraints 

in common. It follows that the very same constraint might appear many times over in the 

database predicate DP. From a logical point of view, there is no harm in this state of 

affairs, because if c is a constraint, then c AND c is logically equivalent to just c. Thus, 

although it is obviously desirable in such a situation that the system evaluate c once and 

not twice, the issue is one of implementation, not of the model. 

9.5 CHECKING THE CONSTRAINTS 

This section addresses two topics, one to do with implementation and one to do with the 

model, and both to do with the question of actually checking the constraints as declared. 

First, the implementation issue. Consider Example 1 once again, which as we know effec¬ 

tively states that if a certain tuple appears in relvar S, then that tuple has to satisfy a 

certain condition {viz., “status in the range 1 to 100”). Observe in particular that the con¬ 
straint talks about tuples in the relvar. Apparently, therefore, if we try to insert a new sup¬ 

plier tuple with status (say) 200, the sequence of events has to be: 

1. Insert the new tuple. 

2. Check the constraint. 

3. Undo the update (because the check fails). 

But this is absurd! Clearly, we would like to catch the error before the insert is done in the 

first place. So what the implementation clearly has to do is use the formal expression of the 

constraint to infer the appropriate check(s) to be performed on tuples presented for inser¬ 

tion before the insert is actually done. 

In principle, that inference process is fairly straightforward. To be specific, if the data¬ 
base predicate includes a constraint of the form 

IF { S# s#, SNAME sn, STATUS st, CITY sc > e S 
THEN ... 

6 D is a variable, of course (see the annotation to reference [3.3]), and therefore subject to integrity con¬ 
straints. 
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—that is, if the antecedent in some implication within the overall predicate is of the form 

"Some tuple appears in S”—then the consequent in that implication is essentially a con¬ 

straint on tuples that are presented for insertion into relvar S. Note: As an aside, we remark 

that if the database is designed in accordance with The Principle of Orthogonal Design (see 

Chapter 13)—and assuming the DBMS is aware of the pertinent constraints—then any 

given tuple will have to be checked against at most one relvar predicate, because it will be 
a plausible INSERT candidate for at most one relvar. 

Now we turn to the model issue (which is more fundamental, of course). Consider The 
Golden Rule once again: 

No update operation must ever assign to any database a value that causes its 

database predicate to evaluate to FALSE. 

Although we did not make the point explicitly in Section 9.4, you might have real¬ 

ized that this rule as stated implies that all constraint checking is immediate. Why? 

Because it talks in terms of update operations and not in terms of transactions (see next 

paragraph). In effect, therefore, The Golden Rule requires integrity constraints to be sat¬ 

isfied at statement boundaries,7 and there is no notion of “deferred” or COMMIT-time 

integrity checking at all. 

Now, you might already be aware that the position just articulated—that all checking 

must be immediate—is a very unorthodox one; most of the literature (including earlier 

editions of this book) argues, or simply assumes, that “the unit of integrity” is the transac¬ 

tion and that at least some checking has to be deferred until end-of-transaction (i.e., 

COMMIT time). However, there are good reasons why transactions are inadequate as that 

“unit of integrity” and statements have to be that unit instead. Unfortunately, it is not pos¬ 

sible to explain those reasons properly without first going into a certain amount of back¬ 

ground regarding the transaction concept in general. We therefore defer detailed discus¬ 

sion to Chapter 16; prior to that chapter, we merely assume, without attempting to justify 

our position further, that immediate checking is the logically correct thing to do. (How¬ 

ever, one important argument in favor of our position can be found in the annotation to 

reference [9.16] at the end of the chapter.) 

9.6 INTERNAL VS. EXTERNAL PREDICATES 

We have seen that each relvar has a relvar predicate and that the overall database has a 

database predicate. Of course, the predicates in question are all ones that are “understood 

by the system”: They are stated formally (they are part of the database definition, in fact), 

and they are enforced by the system, too. For such reasons, it is convenient to refer to the 
predicates in question, on occasion, as internal predicates specifically—principally 

7 We really need to be a bit more precise here, but making matters more precise depends in part on the 
particular language we happen to be dealing with. For present purposes, suffice it to say that constraints 
must be satisfied at the end of each and every statement that contains no other statement syntactically 
nested inside itself. Or, loosely: Constraints must be satisfied at semicolons. 
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because relvars and databases also have external predicates, which we now proceed to 
o 

discuss. 

The first and most significant point is that, while internal predicates are a formal con¬ 

struct, external predicates are an informal construct merely. Internal predicates are 

(loosely) wluit the data means to the system; external predicates, by contrast, are what the 

data means to the user. Of course, users have to understand the internal predicates as well 

as the external ones, but, to repeat, the system has to understand—indeed, can only under¬ 

stand—the internal ones. In fact, we might say, loosely, that a given internal predicate is 
the system's approximation to the corresponding external predicate. 

Let us concentrate on relvars specifically, until further notice. As just indicated, then, the 
external predicate for a given relvar is basically what that relvar means to the user. In the case 

of the suppliers relvar S, for example, the external predicate might look something like this: 

The supplier with the specified supplier number (S#) is under contract, has the 

specified name (SNAME) and the specified status (STA TUS), and is located in the 

specified city (CITY). Moreover, the status value is in the range I to 100 inclusive, 

and must be 20 if the city is London. Also, no two distinct suppliers have the same 

supplier number. 

For the sake of the discussion that follows, however, let us replace this predicate by 
the following simpler one: 

Supplier S# is under contract, is named SNAME, has status STATUS, and is 

located in CITY. 

(After all, the external predicate is only informal, so we are at liberty to make it as simple 

or as complex as we please—within reason, of course.) 

Now, note that the foregoing statement is indeed a predicate: It has four parameters 

(S#, SNAME, STATUS, and CITY) corresponding to the four attributes of the relvar,and 

when arguments of the appropriate types are substituted for those parameters, we obtain a 

proposition (i.e., something that is categorically either true or false). Thus, each tuple 

appearing in relvar S at any given time can be regarded as denoting such a proposition, 

obtained by instantiating that predicate. And—very important!—those particular proposi¬ 

tions (i.e., the ones currently represented by tuples of S) are ones that are understood by 
convention to be true at that time. For example, if the tuple 

{ S# S#('S1'), SNAME NAME('Smith'), STATUS 20, CITY 'London' > 

does indeed appear in relvar S at some given time, then we are to understand that it is a 

“true fact" that there does exist at that time a supplier under contract with supplier number 

SI, named Smith, with status 20, and located in London. More generally: 

K They were discussed previously in Chapters 3 and 6, hut there they were called just predicates. In fact, 
we have been using the term predicate throughout this book so far, tacitly, to mean an external predicate 
specifically. The only major exception was in the discussion of the restrict operation in Chapter 7, where 
we said a restriction condition is a predicate; so it is, but it is not an external one. 

l) The term parameter is being used here in a sense slightly different from the sense in which it was used 
in Sections 9.3 and 9.4. In those sections, parameters (and corresponding arguments) denoted whole rela¬ 
tions; now they denote individual attribute values. 
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More succinctly: Correct implies consistent (but not the other way around), and inconsis¬ 

tent implies incorrect (but not the other way around)—where by correct we mean the 

database is correct if and only if it fully reflects the true state of affairs in the real world. 

9.8 INTEGRITY AND VIEWS 

It is important to understand that almost all of our discussions in this chapter so far apply 

to relvars in general, not just to base ones; in particular, they apply to views (which are 

virtual relvars). Thus, views too are subject to constraints, and they have relvar predicates, 

both internal and external. For example, suppose we define a view by projecting the sup¬ 

pliers relvar over attributes S#, SNAME, and STATUS (thereby effectively removing 

attribute CITY). Then the external predicate for that view looks something like this: 

There exists some city CITY such that supplier S# is under contract, is named 

SNAME, has status STATUS, and is located in CITY. 

Observe that, as required, this predicate does have three parameters, not four, corre¬ 

sponding to the three attributes of the view (CITY is now no longer a parameter but a 

bound variable instead, thanks to the fact that it is quantified by the phrase “there exists 

some city”). Another, perhaps clearer, way of making the same point is to observe that the 

predicate as stated is logically equivalent to this one: 

Supplier S# is under contract, is named SNAME, has status STATUS, and is 

located in some city. 

This version of the predicate very clearly has just three parameters. 

What about the internal predicate? Here again are our usual six examples: 

1. Every supplier status value is in the range 1 to 100 inclusive. 

2. Every supplier in London has status 20. 

3. If there are any parts at all, at least one of them is blue. 

4. No two distinct suppliers have the same supplier number. 

5. Every shipment involves an existing supplier. 

6. No supplier with status less than 20 supplies any part in a quantity greater than 500. 

Suppose the view under discussion (the projection of suppliers over S#, SNAME, and 

STATUS) is called SST. Then Example 3 is clearly irrelevant as far as view SST is con¬ 

cerned, since it has to do with parts, not suppliers. As for the others, each of them does 

also apply to view SST, but in a slightly modified form. Here, for example, is the modified 

form of Example 5: 

FORALL s# e S#, p# e P#, q e QTY 
( IF { S# s#, P# p#, QTY q > e SP 

THEN EXISTS sn e NAME, st e INTEGER 
( { S# s#, SNAME sn, STATUS st } e SST ) ) 
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Meaning: Legal values of type WEIGHT are precisely those that can possibly be repre¬ 

sented by decimal numbers of five digits precision with one digit after the decimal point, 

where the decimal number in question is greater than zero and less than 5,000. 

Now, it should be clear that, ultimately, the only way any expression can yield a value 

of type WEIGHT is by means of some WEIGHT selector invocation. Hence, the only way 

any such expression can violate the WEIGHT type constraint is if the selector invocation in 

question does so. It follows that type constraints can always be thought of, at least concep¬ 

tually, as being checked during the execution of some selector invocation. For example, 

consider the following selector invocation for type WEIGHT: 

WEIGHT ( 7500.0 ) 

This expression will raise an exception at run time (“WEIGHT type constraint violation: 

value out of range”). 

As a consequence of the foregoing, we can say that type constraints are always 

checked immediately, and hence in particular that no relvar can ever acquire a value for 

any attribute in any tuple that is not of the appropriate type (in a system that supports type 
constraints properly, of course!). 

Since type constraints are essentially just a specification of the values that make up 

the type in question, in Tutorial D we bundle such constraints with the definition of the 

applicable type, and we identify them by means of the applicable type name. It follows 
that a type constraint can be dropped only by dropping the type itself. 

Attribute Constraints 

Attribute constraints are basically what we called a priori constraints in Section 9.2; in 
other words, an attribute constraint is basically just a declaration to the effect that a speci¬ 

fied attribute of a specified relvar is of a specified type. For example, consider the suppli¬ 
ers relvar definition once again: 

VAR S BASE RELATION 
{ S# S#, 

SNAME NAME, 
STATUS INTEGER, 
CITY CHAR } ... ; 

In this relvar, values of attributes S#, SNAME, STATUS, and CITY are constrained to 
be of types S#, NAME, INTEGER, and CHAR, respectively. In other words, attribute con¬ 

straints are part of the definition of the attribute in question, and they can be identified by 

means of the corresponding attribute name. It follows that an attribute constraint can be 

dropped only by dropping the attribute itself (which in practice will usually mean dropping 

the containing relvar). Note: In principle, any attempt to introduce an attribute value into 
the database (via an INSERT or UPDATE operation) that is not a value of the relevant type 

will simply be rejected. In practice, however, such a situation should never arise, as long as 

the system in fact enforces type constraints as described in the previous subsection. 
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Relvar and Database Constraints 

Relvar and database constraints are what we have been concentrating on throughout the 

bulk of this chapter so far; the difference between them is that a relvar constraint involves 

exactly one relvar, while a database constraint involves two or more relvars. As noted in 

Section 9.2, however, the difference is not very important from a theoretical point of view 

(though it might be useful from a pragmatic one). 

One point we have not touched on so far, however, is that some relvar or database con¬ 

straints can be transition constraints. A transition constraint is a constraint on the legal 

transitions that a given variable—in particular, a given relvar or a given database—can 

make from one value to another;12 for example, a person’s marital status can change from 

“never married” to “married,” but not the other way around. Provided we have a way to 

refer within a single expression to both (a) the value of the variable in question before an 

arbitrary update and (b) the value of that same variable after that same update, then we have 

the means to formulate any desired transition constraint. Here is an example (“no supplier’s 
status should ever decrease”): 

CONSTRAINT TRC1 

FORALL SX' FORALL SX ( SX'.S# * SX.S# OR 
SX'.STATUS < SX.STATUS ) ; 

Explanation: We introduce the convention that a primed range variable name, such as SX' 

in the example, is understood to refer to the corresponding relvar as it was prior to the 

update under consideration. The constraint in the example can thus be understood as fol¬ 

lows: If SX' is a supplier tuple before the update, then there does not exist a supplier tuple 

SX after the update with the same supplier number as SX' and with a status value smaller 

than that in SX'. 

Observe that Constraint TRC1 is a relvar transition constraint (it applies to just a sin¬ 

gle relvar, relvar S). Here by contrast is a database transition constraint (“the total quantity 

of any given part, taken over all suppliers, should never decrease”): 

CONSTRAINT TRC2 
FORALL PX 

SUM ( SPX’ WHERE SPX'.P# = PX.P#, QTY ) < 
SUM ( SPX WHERE SPX .P# = PX.P#, QTY ) ; 

The concept of transition constraints does not apply to type or attribute constraints. 

9.10 KEYS 

As noted in Section 9.1, the relational model has always stressed the concept of keys, 

though as we have seen they are really just a special case—albeit a pragmatically impor¬ 

tant one—of a more general phenomenon. In this section, we consider keys specifically. 

12 Constraints that are not transition constraints are sometimes called state constraints. 
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VAR S BASE RELATION 
{ S# S#, 

SNAME NAME, 
STATUS INTEGER, 
CITY CHAR > 

KEY { S# } ; 

Note: In previous chapters, we have shown this definition with a PRIMARY KEY 

clause, not an unqualified KEY clause. See the subsection “Primary and Alternate Keys” 

later in this section for further discussion and explanation. 

VAR SP BASE RELATION 
{ S# S#, 

P# P#, 
QTY QTY > 

KEY { S#, P# } . . . ; 

This example shows a relvar with a composite candidate key (i.e., one involving two 

or more attributes). A simple candidate key is one that is not composite. 

VAR ELEMENT BASE RELATION { NAME NAME, 
SYMBOL CHAR, 
ATOMIC# INTEGER > 

KEY { NAME > 
KEY { SYMBOL > 
KEY { ATOMIC# > ; 

This example shows a relvar with several distinct candidate keys, all of which are 

simple. 

VAR MARRIAGE BASE RELATION { HUSBAND NAME, 
WIFE NAME, 
DATE /* of marriage */ DATE > 

/* assume no polyandry, no polygyny, and no husband and */ 
/* wife marry each other more than once ... */ 

KEY { HUSBAND, DATE > 
KEY { DATE, WIFE } 
KEY { WIFE, HUSBAND > ; 

This example shows a relvar with several distinct candidate keys, all of which are 

composite. Note too the overlap among those keys. 

Of course, as pointed out in Section 9.2, a candidate key definition is really just short¬ 

hand for a certain relvar constraint. The shorthand is useful for a variety of reasons, one of 

which is simply that candidate keys are important from a pragmatic point of view. In par¬ 

ticular, they provide the basic tuple-level addressing mechanism in the relational model; 

that is, the only system-guaranteed way of pinpointing some specific tuple is by means of 

some candidate key value. For example, the expression 

S WHERE S# = S# (1 S3•) 

is guaranteed to yield at most one tuple (more precisely, it yields a relation containing at 

most one tuple). By contrast, the expression 

S WHERE CITY = 'Paris' 

yields (a relation containing) an unpredictable number of tuples, in general. It follows that 

candidate keys are just as fundamental to the successful operation of a relational system as 







Chapter 9 / Integrity 273 

4. An FK value represents a reference to the tuple containing the matching CK value 

(the referenced tuple). The constraint that values of FK must match values of CK is 

known as a referential constraint. Relvar R2 is the referencing relvar and relvar R1 

is the referenced relvar. The problem of ensuring that the database does not include 

any invalid foreign key values is the referential integrity problem (see point 12). 

5. Consider suppliers and parts once again. We can represent the referential constraints 

on that database by means of the following referential diagram: 

s <— sp -> p 

Each arrow means there is a foreign key in the relvar from which the arrow emerges 

that refers to some candidate key in the relvar to which the arrow points. Note: For 

clarity, it is sometimes a good idea to label each arrow in a referential diagram with 

the name(s) of the attribute(s) that constitute the relevant foreign key.16 For instance: 

s# P# 
S i- SP -» P 

In this book, however, we will show such labels only when omitting them might lead 

to confusion or ambiguity. 

6. A given relvar can be both referenced and referencing, as in the case of R2 here: 

R3 -» R2 -» R1 

More generally, let relvars R/z, R(/z-l), ..., R2, R1 be such that there is a referential 

constraint from Rn to R(/z-l), a referential constraint from R(/z-l) to R(zz-2),and a 

referential constraint from R2 to R1: 

Rn -> R(n-1) -* R( n-2) -* ... -> R2 -> R1 

Then the chain of arrows from R/z to R1 represents a referential path from R/z to R1. 

7. Note that relvars R1 and R2 in the foreign key definition are not necessarily distinct. 

That is, a relvar might include a foreign key whose values are required to match the 

values of some candidate key in that same relvar. By way of example, consider the 
following relvar definition (we will explain the syntax in a few moments, but in any 

case it should be fairly self-explanatory): 

VAR EMP BASE RELATION 
{ EMP# EMP#, MGR_EMP# EMP#, ... > 

KEY { EMP# } 
FOREIGN KEY { RENAME MGR_EMP# AS EMP# > REFERENCES EMP ; 

Here attribute MGR_EMP# represents the employee number of the manager of the 

employee identified by EMP#; for example, the EMP tuple for employee E4 might 

include a MGR_EMP# value of E3, which represents a reference to the EMP tuple for 

employee E3. (As promised under point 1, we have here an example in which some 
explicit attribute renaming is required.) A relvar such as EMP is sometimes said to be 

self-referencing. Exercise: Invent some sample data for relvar EMP. 

8. Self-referencing relvars actually represent a special case of a more general situation: 

namely, there can exist referential cycles. Relvars R/z, R(/z—1), R(/z-2), ..., R2, R1 

form such a cycle if R/z includes a foreign key referring to R(/z— 1), R(zz-l) includes a 

16 Alternatively (and perhaps preferably), we could name the foreign keys and then use those names to 
label the arrows. 
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(see the self-referencing relvar EMP under point 7 for an example of the RENAME case). 

Examples have already been given at many earlier points in this book (see, e.g., Fig. 3.9 in 

Chapter 3). Of course, as pointed out in Section 9.2, a foreign key definition is really just 

shorthand for a certain database constraint (or a certain relvar constraint, in the case of a 

self-referencing relvar)—unless the foreign key definition is extended to include certain 

“referential actions,” in which case it becomes more than just an integrity constraint per se. 

See the subsection “Referential Actions” immediately following. 

Referential Actions 

Consider the following Tutorial D statement: 

DELETE S WHERE S# = S# ('SI') ; 

Assume this DELETE does exactly what it says—that is, it deletes the supplier tuple for 

supplier SI, no more and no less. Assume too that (a) the database does include some ship¬ 

ments for supplier SI and (b) the application does not delete those shipments. When the 

system checks the referential constraint from shipments to suppliers, then, it will find a vio¬ 

lation, and an exception will be raised. 

However, an alternative approach is possible, one that might be preferable in some 

cases, and that is for the system to perform an appropriate compensating action that will 

guarantee that the overall result does still satisfy the constraint. In the example, the obvious 

compensating action would be for the system to delete the shipments for supplier SI “auto¬ 

matically.” We can achieve this effect by extending the foreign key definition as indicated 

here: 

VAR SP BASE RELATION { ... > ... 
FOREIGN KEY { S# > REFERENCES S 

ON DELETE CASCADE ; 

The specification ON DELETE CASCADE defines a delete rule for this particular foreign 

key, and the specification CASCADE is the referential action for that delete rule. The 

meaning of these specifications is that a DELETE operation on the suppliers relvar will 

“cascade” to delete matching tuples (if any) in the shipments relvar as well. 

Another common referential action is RESTRICT (nothing to do with the restrict 

operator of the relational algebra). In the case at hand, RESTRICT would mean that 

DELETE operations are “restricted” to the case where there are no matching shipments 
(they are rejected otherwise). Omitting a referential action for a particular foreign key is 

equivalent to specifying NO ACTION, which means what it says: The DELETE is per¬ 

formed exactly as requested, no more and no less. (If NO ACTION is specified in the case 

at hand, and a supplier that has matching shipments is deleted, we will subsequently get a 

referential integrity violation, so the net effect is very similar to that of RESTRICT.) Points 

arising: 

1. DELETE is not the only operation for which referential actions make sense. For ex¬ 

ample, what should happen if we try to update the supplier number for a supplier for 

which there exists at least one matching shipment? Clearly, we need an update rule as 
well as a delete rule. In general, there are the same possibilities for UPDATE as there 

are for DELETE: 
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9.11 TRIGGERS (A DIGRESSION) 

It should be clear from everything we have said in this chapter so far that we are specifi¬ 

cally concerned with declarative integrity support. And although the situation has 

improved in recent years, the fact is that few products if any provided much in the way of 

such support when they first appeared. As a consequence, integrity constraints were often 

implemented procedurally, using triggered procedures, which are precompiled proce¬ 

dures that are stored along with (possibly in) the database and invoked automatically 

whenever some specified event occurs. For example, we might implement Example 1 

(“status values must be in the range 1 to 100 inclusive”) by means of a triggered proce¬ 

dure that (a) is invoked whenever a tuple is inserted into relvar S, (b) examines that newly 

inserted tuple, and (c) deletes it again if the status value is out of range. In this section, we 

take a brief look at triggered procedures, on the grounds that they are of considerable 

pragmatic importance. Please note immediately, however, that: 

1. Precisely because they are procedures, triggered procedures are not the recommended 

way to implement integrity constraints. Procedures are harder for humans to under¬ 

stand and harder for the system to optimize. Note too that declarative constraints are 

checked on all relevant updates, whereas triggered procedures are executed only 

when the specified event—for example, inserting a tuple into relvar S—occurs. 

2. The applicability of triggered procedures is not limited to the integrity problem that is 

the topic of the present chapter. Indeed, given the remarks under point 1, it is the fact 

that they can serve other useful purposes that is their true raison d’etre. Examples of 

those “other useful purposes” include: 

a. Alerting the user if some exception occurs (e.g., issuing a warning if the quantity 

on hand of some part goes below the danger level) 

b. Debugging (e.g., monitoring references to, and/or state changes in, designated 

variables) 

c. Auditing (e.g., tracking who performed what updates to which relvars when) 

d. Performance measurement (e.g., timing or tracing specified database events) 

e. Carrying out compensating actions (e.g., cascading the deletion of a supplier tuple 

to delete the corresponding shipment tuples as well)19 

and so on. This section is thus, as its title indicates, something of a digression. 

Consider the following example. (The example is based on SQL, not Tutorial D, 

because reference [3.3] does not prescribe—nor does it proscribe—any triggered proce¬ 

dure support; in fact, it is based on a commercial product, not the SQL standard, because 

ls Note that declarative constraint specifications do not explicitly tell the DBMS when the integrity 
checks are to be done. Nor do we want them to: first, because it would require extra work on the part of 
the user declaring the constraints if they did; second, because the user might get it wrong. Rather, we 
want the system to decide for itself when to do the checks (see the annotation to reference [9.5]). 

19 Indeed, cascade delete is a simple example of a triggered procedure. Note, however, that it is declara- 
tively specified! We do not mean to suggest that referential actions are a bad idea just because they are 
"triggered.” 
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SQL also has no direct support for transition constraints, though such constraints can 

be implemented procedurally via triggers. It also has no explicit concept of a relvar (or 

table) predicate, a point that will turn out to be significant in the next chapter. 

Base Table Constraints 

SQL base table constraints are specified on either CREATE TABLE or ALTER TABLE. 

Each such constraint is a candidate key constraint, a foreign key constraint, or a check 

constraint. We discuss each in turn. Note: Definitions of any of these constraints can 

optionally be preceded by the specification CONSTRAINT <constraint name>, thereby 

providing a name for the constraint. We ignore this option for brevity (though we note that 

it is probably a good idea to name all constraints in practice). We also ignore certain short¬ 

hands—for example, the ability to define a candidate key “inline” as part of a column def¬ 

inition—for the same reason. 

Candidate keys: An SQL candidate key definition takes one of the following two forms: 

PRIMARY KEY ( <column name commalist> ) 

UNIQUE ( <column name commalist> ) 

The Kcolumn name commalist> must not be empty in either case. A given base table can 

have at most one PRIMARY KEY specification but any number of UNIQUE specifica¬ 

tions. In the case of PRIMARY KEY, each specified column is additionally assumed to be 

NOT NULL, even if NOT NULL is not specified explicitly (see the discussion of check 
constraints below). 

Foreign keys: An SQL foreign key definition takes the form 

FOREIGN KEY ( <column name commalist> ) 
REFERENCES <base table name> [ ( <column name commalist> ) ] 

[ ON DELETE <referential action> ] 
[ ON UPDATE <referential action> ] 

where <referenticil action> is NO ACTION (the default), RESTRICT, CASCADE, SET 

DEFAULT, or SET NULL.21 We defer discussion of SET DEFAULT and SET NULL to 

Chapter 19; the other options are as described in Section 9.10. The second <column name 

commalist> is required if the foreign key references a candidate key that is not a primary 

key. Note: The foreign-to-candidate-key matching is done on the basis not of column 
names but of column position (left to right) within the commalists. 

Check constraints: An SQL check constraint takes the form: 

CHECK ( <bool exp> ) 

20 See Exercise 9.10. 

21 We observe in passing that support for certain of the referential action>% (CASCADE in particular) 
implies that, under the covers at least, the system has to support some kind of multiple relational assign¬ 
ment!—despite the fact that no such operator is suppoited by SQL as such. 
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Let CC be a check constraint for base table T. Then T is considered to violate CC if and only 

if it currently contains at least one row—see the final paragraph in this subsection—and the 

current value of T makes the <bool exp> for CC evaluate to FALSE. Note: In general, SQL 

<bool exp>s can be arbitrarily complex; even in the context at hand, they are explicitly not 

limited to referring just to base table T, but can instead refer to any accessible portion of the 
database. 

Here then is a CREATE TABLE example that illustrates base table constraints of all 
three kinds: 

CREATE TABLE SP 
( S# S# NOT NULL, P# P# NOT NULL, QTY QTY NOT NULL, 

PRIMARY KEY ( S#, P# ), 
FOREIGN KEY ( S# ) REFERENCES S 

ON DELETE CASCADE 
ON UPDATE CASCADE, 

FOREIGN KEY ( P# ) REFERENCES P 
ON DELETE CASCADE 
ON UPDATE CASCADE, 

CHECK ( QTY > QTY ( 0 ) AND QTY < QTY ( 5000 ) ) ) ; 

We are assuming here that S# and P# have been explicitly defined to be the primary 

keys for tables S and P, respectively. Also, we have made use of the shorthand by which a 

check constraint of the form 

CHECK ( <column name> IS NOT NULL ) 

can be replaced by a simple NOT NULL specification in the definition of the column in 

question. In the example, we have thus replaced three slightly cumbersome check con¬ 

straints by three NOT NULL specifications. 

We close this subsection by repeating the point that an SQL base table constraint is 

always considered to be satisfied if the base table in question happens to be empty—even 

if the constraint is of the form (say) “1 = 2” (or even, come to that, if it is of the form “this 

table must not be empty”!). 

Assertions 

We now turn to SQL’s general constraints or assertions. Such constraints are defined by 

means of CREATE ASSERTION—syntax: 

CREATE ASSERTION <constraint name> 
CHECK ( <bool exp> ) ; 

And here is the syntax of DROP ASSERTION: 

DROP ASSERTION <constraint name> ; 

Note that, unlike most other forms of the SQL DROP operator (e.g., DROP TYPE, DROP 
TABLE. DROP VIEW), DROP ASSERTION does not offer a RESTRICT vs. CASCADE 

option. 
Here are the six examples from Section 9.1, expressed in the form of SQL assertions. 

By way of an exercise, you might like to try formulating these examples as base table con¬ 

straints instead. 
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1. Every supplier status value is in the range 1 to 100 inclusive. 

CREATE ASSERTION SCI CHECK 
( NOT EXISTS ( SELECT * FROM S 

WHERE S.STATUS < 0 
OR S.STATUS > 100 ) ) ; 

2. Every supplier in London has status 20. 

CREATE ASSERTION SC2 CHECK 
( NOT EXISTS ( SELECT * FROM S 

WHERE S.CITY = 'London' 
AND S. STATUS =^20) ) ; 

3. If there are any parts at all, at least one of them is blue. 

CREATE ASSERTION PC3 CHECK 
( NOT EXISTS ( SELECT * FROM P ) 

OR EXISTS ( SELECT * FROM P 

WHERE P.COLOR = COLOR ('Blue') ) ) ; 

4. No two distinct suppliers have the same supplier number. 

CREATE ASSERTION SC4 CHECK 

( UNIQUE ( SELECT S.S# FROM S ) ) ; 

UNIQUE here is an SQL operator that takes a table as argument and returns TRUE if 

that table contains no duplicate rows and FALSE otherwise. 

5. Every shipment involves an existing supplier. 

CREATE ASSERTION SSP5 CHECK 
( NOT EXISTS 

( SELECT * FROM SP 
WHERE NOT EXISTS 

( SELECT * FROM S 
WHERE S.S# = SP.S# ) ) ) ; 

6. No supplier with status less than 20 supplies any part in a quantity greater than 500. 

CREATE ASSERTION SSP6 CHECK 
( NOT EXISTS ( SELECT * FROM S, SP 

WHERE S.STATUS <20 
AND S.S# = SP.S# 
AND SP.QTY > QTY ( 500 ) ) ) ; 

We briefly consider one further example. Recall this view definition from the previ¬ 
ous section: 

CREATE VIEW LONDON_SUPPLIER 
AS SELECT S#, SNAME, STATUS 

FROM S 
WHERE CITY = 'London' ; 

We already know that we cannot include a specification of the form 

UNIQUE ( S# ) 

in this view definition. Strangely, however, we ccm specify a general constraint of the fol¬ 
lowing form: 

CREATE ASSERTION LSK CHECK 
( UNIQUE ( SELECT S# FROM LONDON_SUPPLIER ) ) ; 
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Deferred Checking 

SQL’s constraints also differ from ours with respect to when the checking is done. In our 

scheme, all constraints are checked immediately. In SQL, by contrast, they can be defined to 

be DEFERRABLE or NOT DEFERRABLE;22 if a given constraint is DEFERRABLE, it 

can further be defined to be INITIALLY DEFERRED or INITIALLY IMMEDIATE, which 

defines its state at the beginning of each transaction. NOT DEFERRABLE constraints are 

always checked immediately, but DEFERRABLE constraints can be dynamically switched 

on and off by means of the statement 

SET CONSTRAINTS <constraint name commalist> <option> ; 

where <option> is either IMMEDIATE or DEFERRED. Here is an example: 

SET CONSTRAINTS SSP5, SSP6 DEFERRED ; 

DEFERRABLE constraints are checked only when they are in the IMMEDIATE state. Set¬ 

ting a DEFERRABLE constraint into the IMMEDIATE state causes that constraint to be 

immediately checked; if the check fails, the SET IMMEDIATE fails. COMMIT forces a 

SET IMMEDIATE for all DEFERRABLE constraints; if any integrity check then fails, the 

transaction is rolled back. 

Triggers 

The SQL CREATE TRIGGER statement looks like this; 

CREATE TRIGGER <trigger name> 
<before or after> <event> ON <base table name> 

[ REFERENCING <naming commalist> ] 
[ FOR EACH <row or statement> ] 
[ WHEN ( <bool exp> ) ] <action> ; 

Explanation: 

1. The <before or after> specification is either BEFORE or AFTER (the SQL standard 

does not support INSTEAD OF, though some products do). 

2. The <event> is INSERT, DELETE, or UPDATE. UPDATE can be further qualified 

by the specification OF <column name commalist>. 

3. Each <naming> is one of the following; 

OLD ROW AS <name> 
NEW ROW AS <name> 
OLD TABLE AS <name> 
NEW TABLE AS <name> 

4. The <row or statement specification is either ROW or STATEMENT (STATEMENT 

is the default). ROW means the trigger fires for each individual row affected by the 

triggering statement; STATEMENT means the trigger fires just once for the statement 

taken as a whole. 

22 Certain constraints are required to be NOT DEFERRABLE, however. For example, if FK is a foreign 
key, then the candidate key constraint for the matching candidate key must be NOT DEFERRABLE. 
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5. If a WHEN clause is specified, it means the <action> is to be executed only if the 

<bool exp> evaluates to TRUE. 

6. The <action> is a single SQL statement (that single statement can be compound, 

however, meaning, loosely, that it can consist of a sequence of statements bracketed 

by BEGIN and END delimiters). 

Finally, here is the syntax of DROP TRIGGER: 

DROP TRIGGER <trigger name> ; 

Like DROP ASSERTION, DROP TRIGGER docs not offer a RESTRICT v.v. CASCADE 
option. 

9.13 SUMMARY 

In this chapter we have discussed the crucial concept of integrity. The integrity problem is 

the problem of ensuring that the data in the database is correct (or as correct as possible, at 

any rate; sadly, the best we can really do is ensure that the data is consistent). Naturally, 

we arc interested in declarative solutions to that problem. 

We began by showing that integrity constraints take the general form: 

IF certnin tuples appear in certain relvars, THEN those tuples satisfy a certain 

condition. 

(Type constraints are a little different—see subsequent discussion.) We gave a syntax for 

stating such constraints, based on the calculus version of Tutorial I), and pointed out that 

that syntax did not include any way for the user to tell the DBMS when to do the checking; 

rather, we want the DBMS to determine for itself when to do that checking. And we 

claimed (without yet justifying our position, however) that all constraint checking must be 

immediate. 

Next, we explained that a constraint as stated is a predicate, but when it is checked 

(i.e., when current relation values are substituted for the relvars mentioned in that predi¬ 

cate) it becomes a proposition. The logical AND of all predicates that apply to a given rel- 

var is the relvar predicate for that relvar, and the logical AND of all relvar predicates that 

apply to a given database is the database predicate for that database. And The Golden 

Rule states: 

No update operation must ever assign to any database a value that causes its 

database predicate to evaluate to FALSE. 

Next, we distinguished between internal and external predicates. Internal predicates 

are formal: They are understood by the system, and they are checked by the DBMS (the 
relvar and database predicates referred to in the previous paragraph are internal predi¬ 

cates). External predicates, by contrast, are only informal: They are understood by the 

user but not by the system. The Closed World Assumption applies to external predicates 

but not to internal ones. 

Incidentally, as you might have reali/.ed by now, what is usually called “integrity” in 

database contexts really means semantics: It is the integrity constraints (in particular, the 
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b. The only legal supplier numbers are ones that can be represented by a character string of at least 

two characters, of which the first is an “S” and the remainder denote a decimal integer in the 

range 0 to 9999. 

c. All red parts must weigh less than 50 pounds. 

d. No two projects can be located in the same city. 

e. At most one supplier can be located in Athens at any one time. 

f. No shipment can have a quantity more than double the average of all such quantities. 

g. The highest-status supplier must not be located in the same city as the lowest-status supplier. 

h. Every project must be located in a city in which there is at least one supplier. 

i. Every project must be located in a city in which there is at least one supplier of that project. 

j. There must exist at least one red part. 

k. The average supplier status must be greater than 19. 

l. Every London supplier must supply part P2. 

m. At least one red part must weigh less than 50 pounds. 

n. Suppliers in London must supply more different kinds of parts than suppliers in Paris. 

o. Suppliers in London must supply more parts in total than suppliers in Paris. 

p. No shipment quantity can be reduced (in a single update) to less than half its current value. 

q. Suppliers in Athens can move only to London or Paris, and suppliers in London can move only 
to Paris. 

9.4 For each of your answers to Exercise 9.3, (a) state whether the constraint is a relvar constraint 
or a database constraint; (b) state the operations that might cause the constraint to be violated. 

9.5 Using the sample suppliers-parts-projects data values from Fig. 4.5 (see the inside back cover), 
say what the effect of each of the following operations is: 

a. UPDATE project J7, setting CITY to New York. 

b. UPDATE part P5, setting P# to P4. 

c. UPDATE supplier S5, setting S# to S8, if the applicable referential action is RESTRICT. 

d. DELETE supplier S3, if the applicable referential action is CASCADE. 

e. DELETE part P2, if the applicable referential action is RESTRICT. 

f. DELETE project J4, if the applicable referential action is CASCADE. 

g. UPDATE shipment S1-P1-J1, setting S# to S2. 

h. UPDATE shipment S5-P5-J5, setting J# to J7. 

i. UPDATE shipment S5-P5-J5, setting J# to J8. 

j. INSERT shipment S5-P6-J7. 

k. INSERT shipment S4-P7-J6. 

l. INSERT shipment S\-P2-jjj (where jjj stands for a default project number). 

9.6 The body of the chapter discussed foreign key delete and update rules, but it did not mention 
any foreign key “insert rule.” Why not? 

9.7 An education database contains information about an in-house company education training 
scheme. For each training course, the database contains details of all prerequisite courses for that 
course and all offerings for that course; for each offering, it contains details of all teachers and all 
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student enrollments for that offering. The database also contains information about employees. The 

relevant relvars are as follows, in outline: 

COURSE 
PREREQ 
OFFERING 
TEACHER 
ENROLLMENT 
EMPLOYEE 

{ COURSE#, TITLE > 
{ SUP_COURSE#, SUB_COURSE# > 
{ COURSE#, OFF#, OFFDATE, LOCATION } 
{ COURSE#, OFF#, EMP# } 
{ COURSE#, OFF#, EMP#, GRADE } 
{ EMP#, ENAME, JOB } 

The meaning of the PREREQ relvar is that the superior course (SUP_COURSE#) has the subordi¬ 

nate course (SUB_COURSE#) as an immediate prerequisite; the others should be self-explanatory. 

Draw a referential diagram for this database. Also give the corresponding database definition (i.e., 

write an appropriate set of type and relvar definitions). 

9.8 The following two relvars represent a database containing information about departments and 

employees: 

DEPT { DEPT#, ..., MGR_EMP#, ... } 
EMP { EMP#, ..., DEPT#, ... } 

Every department has a manager (MGR_EMP#); every employee has a department (DEPT#). Again, 

draw a referential diagram and write a database definition for this database. 

9.9 The following two relvars represent a database containing information about employees and 

programmers: 

EMP { EMP#, ..., JOB, ... } 
PGMR { EMP#, ..., LANG, ... } 

Every programmer is an employee, but the converse is not the case. Once again, draw a referential 

diagram and write a suitable database definition. 

9.10 Candidate keys are defined to be sets of attributes. What happens if the set in question is 

empty (i.e., contains no attributes)? Can you think of any uses for such an “empty” (or “nullary”) 

candidate key? 

9.11 Let R be a relvar of degree n. What is the maximum number of candidate keys R might 

possess? 

9.12 Let A and B be two relvars. State the candidate key(s) for each of the following: 

a. A where ... 

b. A (...) 

C. A TIMES B 

d. A UNION B 

e. A INTERSECT B 

f. A MINUS B 

g. A JOIN B 

h. EXTEND A ADD exp AS Z 

i. SUMMARIZE A PER B ADD exp AS Z 

j. A SEMIJOIN B 

k. A SEMIMINUS B 

Assume in each case that A and B meet the requirements for the operation in question (e.g., they are 

of the same type, in the case of UNION). 

9.13 Repeat Exercise 9.10, replacing the word candidate by the word foreign (twice). 

9.14 Give SQL solutions to Exercise 9.3. 

9.15 Give SQL database definitions for Exercises 9.1-9.9. 
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9.16 We have seen that every relvar (and in fact every relation) corresponds to some predicate. Is 
the converse true? 

9.17 In a footnote in Section 9.7, we said that if the values SI and London appeared together in 
some tuple, then it might mean (among many other possible interpretations) that supplier SI does 
not have an office in London. Actually, this particular interpretation is extremely unlikely. Why? 
Hint: Remember the Closed World Assumption. 
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10.1 INTRODUCTION 

As we saw in Chapter 3, a view in the relational model is essentially just a named expres¬ 

sion of the relational algebra (or something with the expressive power of the relational 

algebra). Here is a Tutorial D example: 

VAR GOOD_SUPPLIER VIEW 
( S WHERE STATUS >15 ) { S#, STATUS, CITY } ; 

When this statement is executed, the specified algebraic expression—which is the 

view-defining expression—is not evaluated but is merely “remembered” by the system 

(actually by saving it in the catalog, under the specified name GOOD_SUPPLIER). To the 

user, however, it is now as if there really were a relvar in the database called 
GOOD_SUPPLIER, with tuples and attributes as indicated in the unshaded portions of 

Fig. 10.1 (we assume our usual sample data values). In other words, the name 

GOOD_SUPPLIER denotes a derived (and virtual) relvar, whose value at any given time 

is the relation that would result if the view-defining expression were actually evaluated at 

that time. 
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Incidentally, it is worth pointing out that the substitution process just outlined—that 
is, the process of substituting the view-defining expression for the view name—works pre¬ 

cisely because of relational closure. Closure implies, among many other things, that wher¬ 

ever a simple relvar name R can appear within an expression, a relational expression of 

arbitrary complexity can appear instead (just as long as it evaluates to a relation of the 

same type as R). In other words, views work precisely because of the fact that relations 

are closed under the relational algebra—yet another illustration of the fundamental impor¬ 

tance of the closure property. 

Update operations are treated in a similar manner. For example, the operation 

UPDATE GOOD_SUPPLIER WHERE CITY = 'Paris' 
{ STATUS := STATUS + 10 } ; 

is effectively converted into 

UPDATE S WHERE STATUS > 15 AND CITY = 'Paris' 
{ STATUS := STATUS + 10 > ; 

INSERT and DELETE operations are handled analogously. 

Further Examples 

Here are some more examples, illustrating a variety of points: 

1. VAR REDPART VIEW 
( P WHERE COLOR = COLOR ('Red') ) { ALL BUT COLOR > 

RENAME WEIGHT AS WT ; 

View REDPART is a projection of a restriction (plus an attribute renaming) of the 

parts relvar. It has attributes P#, PNAME, WT, and CITY, and contains tuples for red 

parts only. 

2. VAR PQ VIEW 
SUMMARIZE SP PER P { P# } ADD SUM ( QTY ) AS TOTQTY ; 

View PQ is a kind of statistical summary or compression of the underlying data. 

3. VAR CITY_PAIR VIEW 
( ( S RENAME CITY AS SCITY ) JOIN SP JOIN 

( P RENAME CITY AS PCITY ) ) { SCITY, PCITY > ; 

View CITY_PAIR joins suppliers, parts, and shipments over supplier numbers and 

part numbers and then projects the result over SNAME and PNAME. Loosely speak¬ 

ing, a pair of city names (x,y) appears in the result if and only if a supplier located in 

city x supplies a part stored in city y. For example, supplier SI supplies part PI; sup¬ 

plier SI is located in London and part PI is stored in London; so the pair (London, 

London) appears in the view. 

4. VAR HEAVY_REDPART VIEW 
REDPART WHERE WT > WEIGHT ( 12.0 ) ; 

This example shows one view defined in terms of another. 
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Defining a snapshot is much like executing a query, except that: 

1. The result of the query is kept in the database under the specified name (P2SC in the 

example) as a read-only relvar (read-only, that is, apart from the periodic refresh— 

see point 2). 

2. Periodically (EVERY DAY in the example) the snapshot is refreshed—that is, its 

current value is discarded, the query is executed again, and the result of that new exe¬ 
cution becomes the new snapshot value. 

Thus, snapshot P2SC represents the relevant data as it was at most 24 hours ago. (So what 

is the predicate?) 

The rationale for snapshots is that many applications—perhaps even most—can toler¬ 

ate, or might even require, data “as of’ some particular point in time. Reporting and 

accounting applications are a case in point; such applications typically require the data to 

be frozen at an appropriate moment (e.g., the end of an accounting period), and snapshots 

allow such freezing to occur without preventing other transactions from performing 

updates on the data in question (that is, on “the real data”). Similarly, it might be desirable 

to freeze large amounts of data for a complex query or read-only application, again with¬ 

out locking out updates. Note: This idea becomes particularly attractive in a distributed 

database or decision support environment—see Chapters 21 and 22, respectively. We 

remark that snapshots represent an important special case of controlled redundancy (see 

Chapter 1), and “snapshot refresh” is the corresponding update propagation process 

(again, see Chapter 1). 

In general, then, a snapshot definition might look something like this: 

VAR <relvar name> SNAPSHOT <relation exp> 
<candidate key def list> 
REFRESH EVERY <now and then> ; 

where <now and then> might be, for example, MONTH or WEEK or DAY or HOUR or n 

MINUTES or MONDAY or WEEKDAY. Note in particular that a specification of the form 

REFRESH [ON] EVERY UPDATE might be used to keep the snapshot permanently in 

synch with the relvar(s) from which it is derived. 

Here is the syntax of the corresponding DROP: 

DROP VAR <relvar name> ; 

where the <relvar name> refers to a snapshot specifically. Note: We assume that an 
attempt to drop a snapshot will fail if some other relvar definition currently refers to it. 

Alternatively, we might consider extending the snapshot definition to include some kind of 

“RESTRICT vs. CASCADE” option once again. We do not consider this latter possibility 

further here. 
A note on terminology: At the time of writing, snapshots have come to be known— 

almost exclusively, in fact—not as snapshots at all but rather as materialized views6 (see 

the “References and Bibliography” section in Chapter 22). However, this terminology is 

6 Some writers—not all—reserve the term materialized view to mean a snapshot that is guaranteed to be 
always up to date (i.e., one for which REFRESH ON EVERY UPDATE applies). 
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unfortunate in the extreme, and in this writer’s opinion should be resisted, firmly. Snap¬ 

shots are not views. The whole point about views is that they are not materialized, at least 

as far as the model is concerned. (Whether they are in fact materialized under the covers is 

an implementation issue and has nothing to do with the model.) As far as the model is 

concerned, in other words, materialized view is a contradiction in terms—and yet (all too 

predictably) materialized view has become so ubiquitous that the unqualified term view 

has come to mean, almost always, a “materialized view” specifically! And so we no 

longer have a good term to use when we want to refer to a view in the original sense. Cer¬ 

tainly we run a severe risk of being misunderstood when we use the unqualified term view 

for that purpose. In this book, however, we choose to take that risk; to be specific, we will 

not use the term materialized view at all (except when quoting from other sources), keep¬ 

ing the term snapshot for the concept in question, and we will always use the unqualified 

temr view in its original relational sense. 

10.6 SQL FACILITIES 

In this section we summarize SQL’s support for views (only—SQL does not support snap¬ 

shots at the time of writing). First, the syntax of CREATE VIEW (omitting a variety of 

options and alternatives in the interest of brevity, such as the ability to define a view to be 

“of’ some structured type) is as follows: 

CREATE VIEW <view name> AS <table exp> 
[ WITH [ <qualifier> ] CHECK OPTION ] ; 

Explanation: 

1. The <table exp> is the view-defining expression. 

2. WITH CHECK OPTION, if specified, means that INSERTS and UPDATES on the 

view will be rejected if they violate any integrity constraint implied by the view¬ 

defining expression. Observe, therefore, that such operations will fail only if WITH 

CHECK OPTION is specified—by default, they will not fail. You will realize from 

Section 10.4 that we regard such behavior as logically incorrect; we would therefore 

strongly recommend that WITH CHECK OPTION always be specified in practice7 

[10.5], 

3. The <qualifier> is either CASCADED or LOCAL, and CASCADED is the default 

(and indeed the only sensible option, as explained in detail in reference [4.20]; we 

omit further discussion of LOCAL for this reason). 

Here are SQL analogs of the view definitions from Section 10.1: 

1. CREATE VIEW GOOD_SUPPLIER 
AS SELECT S.S#, S.STATUS, S.CITY 

FROM S 
WHERE S.STATUS >15 

WITH CHECK OPTION ; 

7 If the view is updatable, that is. As we will see later, views in SQL are often not updatable, and WITH 
CHECK OPTION is illegal if the view is not updatable according to SQL. 
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2. CREATE VIEW REDPART 
AS SELECT P.P#, P.PNAME, P.WEIGHT AS WT, P.CITY 

FROM P 
WHERE P.COLOR = 'Red' 

WITH CHECK OPTION ; 

3. CREATE VIEW PQ 
AS SELECT P.P#, ( SELECT SUM ( SP.QTY ) 

FROM SP 
WHERE SP.P# = P.P# ) AS TOTQTY 

FROM P ; 

SQL does not regard this view as updatable, so WITH CHECK OPTION must be 

omitted. 

4. CREATE VIEW CITY_PAIR 
AS SELECT DISTINCT S.CITY AS SCITY, P.CITY AS PCITY 

FROM S, SP, P 
WHERE S.S# = SP.S# 
AND SP.P# = P.P# ; 

Again SQL does not regard this view as updatable, so WITH CHECK OPTION must 

be omitted. 

5. CREATE VIEW HEAVY_REDPART 
AS SELECT RP.P#, RP.PNAME, RP.WT, RP.CITY 

FROM REDPART AS RP 
WHERE RP.WT > 12.0 

WITH CHECK OPTION ; 

An existing view can be dropped by means of DROP VIEW—syntax: 

DROP VIEW <view name> <behavior> ; 

where (as usual) <beluivior> is either RESTRICT or CASCADE. If RESTRICT is speci¬ 

fied and the view is currently in use anywhere (e.g., in another view definition or in an 

integrity constraint), the DROP will fail; if CASCADE is specified, the DROP will suc¬ 

ceed, and will cause an implicit DROP . . . CASCADE for everything currently using the 

view. 

View Retrievals 

As indicated in Section 10.3, all retrievals against all views are guaranteed to work cor¬ 

rectly in the current version of the SQL standard. The same is unfortunately not true for 

certain current products, nor for versions of the standard prior to SQL: 1992. 

View Updates 

SQL’s support for view updating is limited. It is also extremely difficult to understand!— 

in fact, the standard is even more impenetrable in this area than it usually is.x Here is a 

typical excerpt from that standard (edited just slightly here): 

[The] <query expression> QE1 is updatable if and only if for every <query expression> or 

<query specification> QE2 that is simply contained in QE1: 

8 To quote reference [10.11]: “The SQL standard has been and continues to be a barrier to developing (let 
alone implementing) approaches for general view updating.” 
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a. QE1 contains QE2 without an intervening <non join query expression> that specifies 

UNION DISTINCT, EXCEPT ALL, or EXCEPT DISTINCT.9 

b. If QE1 simply contains a <non join query expression> NJQE that specifies UNION 

ALL, then: 

i. NJQE immediately contains a <query expression> LO and a <query term> RO such 

that no leaf generally underlying table of LO is also a leaf generally underlying table 

of RO. 

ii. For every column of NJQE, the underlying columns in the tables identified by LO 
and RO, respectively, are either both updatable or not updatable. 

c. QE1 contains QE2 without an intervening <non join query term> that specifies 

INTERSECT. 

d. QE2 is updatable. 

Note that (a) the foregoing is just one of the many rules that have to be taken in combina¬ 

tion in order to determine whether a given view is updatable; (b) the rules in question are 

not all given in one place but are scattered over many different parts of the document; and 

(c) all of those rules rely on a variety of additional concepts and constructs—for example, 

updatable columns, leaf generally underlying tables, <non join query term>s—that are in 

turn defined in still further parts of the document. 

Because of such considerations, we do not even attempt to give a precise characteriza¬ 

tion here of just which views are updatable in SQL. Loosely speaking, however, we can say 

that SQL regards the following views as updatable: 

1. Views defined as a restriction and/or projection of a single base table 

2. Views defined as a one-to-one or one-to-many join of two base tables (in the one-to- 

many case, only the “many” side is updatable)10 

3. Views defined as a UNION ALL or INTERSECT of two distinct base tables 

4. Certain combinations of Cases 1-3 

What is more, even these limited cases are treated incorrectly, thanks to SQL’s lack 

of understanding of predicates, and in particular to the fact that SQL permits duplicate 

rows. And the picture is complicated still further by the fact that SQL identifies four dis¬ 

tinct cases; to be specific, a given view can be updatable, potentially updatable, simply 

updatable, or insertable into11 (where “updatable” refers to UPDATE and DELETE and 

9 We did not mention the point in Chapter 8, but SQL: 1999 added the ability to specify an explicit 
DISTINCT qualifier as an alternative to ALL on UNION, INTERSECT, and EXCEPT. Analogously, 
an explicit ALL qualifier can be specified as an alternative to DISTINCT on SELECT as well. Note, 
however, that DISTINCT is the default for UNION, INTERSECT, and EXCEPT, while ALL is the default 
for SELECT. 

10 In connection with one-to-one joins, we remark on the following oddity. SQL quite correctly requires 
updates on such joins to be all or nothing. But this requirement (like the requirement that updates in gen¬ 
eral are all or nothing, even if they involve referential actions such as cascade delete) implies that, under 
the covers at least, the system has to support some kind of multiple relational assignment—despite the 
fact that SQL includes no explicit support for any such operator. 

11 The standard defines these terms formally but gives no insight into their intuitive meaning or why they 
were chosen. Note the violation of Principles 9 and 10 from the subsection ‘Toward a View-Updating 
Mechanism" in Section 10.4. 
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“insertable into” refers to INSERT, and a view cannot be insertable into unless it is 
updatable). 

Regarding Case 1, however, we can be a little more precise. To be specific, an SQL 
view is certainly updatable if the following eight conditions are all satisfied: 

1. The view-defining table expression is a simple select expression (that is, it does not 

contain any of the keywords JOIN, UNION, INTERSECT, or EXCEPT). 

2. The SELECT clause of that select expression does not contain the DISTINCT key¬ 
word. 

3. Every select item in that SELECT clause (after any necessary expansion of “asterisk- 

style” select items) consists of a possibly qualified column name (optionally accom¬ 

panied by an AS clause), representing a simple reference to a column of the underly¬ 

ing table (see condition 5), and no such column reference appears more than once. 

4. The FROM clause of that select expression contains exactly one table reference. 

5. That table reference identifies either a base table or a view that satisfies conditions 1- 

8. Note: The table identified by that table reference is said to be the underlying table 

for the updatable view in question (see condition 3). 

6. That select expression does not include a WHERE clause that includes a subquery 

that includes a FROM clause that includes a reference to the same table as is refer¬ 
enced in the FROM clause mentioned in condition 4. 

7. That select expression does not include a GROUP BY clause. 

8. That select expression does not include a HAVING clause. 

10.7 SUMMARY 

A view is essentially a named relational expression; it can be regarded as a derived, vir¬ 

tual relvar. Operations against a view are normally implemented by a process of substitu¬ 

tion—that is, references to the name of the view are replaced by the expression that 

defines the view—and this substitution process works precisely because of closure. For 
retrieval operations, the substitution process works 100 percent of the time (at least in the¬ 

ory, though not necessarily in practice). For update operations, it also works 100 percent 

of the time (again in theory, though definitely not in practice); in the case of some views, 

however (e.g., views defined in terms of summarize), updates will usually fail because of 
some integrity constraint violation. We presented an extensive set of principles that the 

updating scheme must satisfy, and we showed in detail how the updating scheme worked 

for views defined in terms of the union, intersection, difference, restrict, project, join, 

and extend operators. For each of these operators, we explained the corresponding predi¬ 

cate inference rules. 
We also examined the question of views and logical data independence. There are 

two aspects to such independence, growth and restructuring. Other benefits of views 

include (a) their ability to hide data and thus to provide a certain measure of security, and 

(b) their ability to act as a shorthand and thus to make life easier for the user. We went on 
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to explain two important principles, The Principle of Interchangeability (which implies 

among other things that we must be able to update views) and The Principle of Database 

Relativity. 

We also digressed for a few moments to give a brief discussion of snapshots (also 

known as materialized views, though this term is deprecated). Finally, we sketched the rel¬ 

evant aspects of SQL. 

EXERCISES 

10.1 Define a view for suppliers in London. 

10.2 Define a view consisting of supplier numbers and part numbers for suppliers and parts that are 

not colocated. 

10.3 Define relvar SP of the suppliers-and-parts database as a view of relvar SPJ of the suppliers- 

parts-projects database. 

10.4 Define a view over the suppliers-parts-projects database consisting of all projects (project 

number and city attributes only) that are supplied by supplier S1 and use part P1. 

10.5 Given the view definition— 

VAR HEAVYWEIGHT VIEW 
( ( P RENAME ( WEIGHT AS WT, COLOR AS COL ) ) 

WHERE WT > WEIGHT ( 14.0 ) ) { P#, WT, COL > ; 

—show the converted form after the substitution procedure has been applied for each of the follow¬ 

ing expressions and statements: 

a. HEAVYWEIGHT WHERE COL = COLOR ('Green') 

b. ( EXTEND HEAVYWEIGHT ADD ( WT + WEIGHT ( 5.3 ) ) AS WTP ) 
{ P#, WTP } 

C. INSERT HEAVYWEIGHT 
RELATION { TUPLE { P# P# ('P99'), 

WT WEIGHT ( 12.0 ), 
COL COLOR ('Purple') } } ; 

d. DELETE HEAVYWEIGHT WHERE WT < WEIGHT ( 10.0 ) ; 

e. UPDATE HEAVYWEIGHT WHERE WT = WEIGHT ( 18.0 ) 
{ COL := 'White' > ; 

10.6 Suppose the HEAVYWEIGHT view definition from Exercise 10.5 is revised as follows: 

VAR HEAVYWEIGHT VIEW 
( ( ( EXTEND P ADD ( WEIGHT * 454 ) AS WT ) 

RENAME COLOR AS COL ) WHERE WT > WEIGHT ( 6356.0 ) ) 
{ P#, WT, COL } ; 

(i.e., attribute WT now denotes weights in grams rather than pounds). Now repeat Exercise 10.5. 

10.7 Give calculus-based analogs of the algebraic view definitions in Section 10.1. 

10.8 ORDER BY makes no sense in a view definition (despite the fact that at least one well-known 

product permits it!). Why not? 

10.9 In Chapter 9 we suggested that it might sometimes be desirable to be able to declare candidate 

keys—or possibly a primary key—for a view. Why might such a facility be desirable? 

10.10 What extensions are needed to the system catalog to support views? What about snapshots? 
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10.11 Suppose a given base relvar R is replaced by two restrictions A and B such that A UNION B 

is always equal to R and A INTERSECT B is always empty. Is logical data independence achievable? 

10.12 If A and B are of the same relation type, A INTERSECT B is equivalent to A JOIN B (this 

join is one-to-one. but not strictly so, because there might exist tuples in A without counterparts in B 

and vice versa). Are the updatability rules given in Section 10.4 for intersection and join views con¬ 

sistent with this equivalence? 

10.13 A INTERSECT B is also equivalent to A MINUS (A MINUS B) and to B MINUS (B MINUS 

A). Are the updatability rules given in Section 10.4 for intersection and difference views consistent 

with these equivalences? 

10.14 One of the principles we laid down in Section 10.4 was that INSERT and DELETE should 

be inverses of each other, to the fullest extent possible. Do the rules given in that section for updating 

union, intersection, and difference views abide by this principle? 

10.15 In Section 10.2 (in our discussion of logical data independence), we discussed the possibility 

of restructuring the suppliers-and-parts database by replacing base relvar S by two of its projections 

SNC and ST. We also observed that such a restructuring was not a totally trivial matter. What are the 

implications? 

10.16 Investigate any SQL product that might be available to you. (a) Can you find any examples 

of view retrievals that fail in that product? (b) What are the rules regarding view updates in that prod¬ 

uct? Note that they are probably somewhat different from those given for SQL: 1999 in Section 10.6. 

10.17 Consider the suppliers-and-parts database, but ignore the parts relvar for simplicity. Here in 

outline are two possible designs for suppliers and shipments: 

a. S { S#, SNAME, STATUS, CITY > 
SP { S#, P#, QTY } 

b. SSP { S#, SNAME, STATUS, CITY, P#, QTY > 
XSS { S#, SNAME, STATUS, CITY } 

Design a is as usual. In Design b, by contrast, relvar SSP contains a tuple for every shipment, giving 

the applicable part number and quantity and full supplier details, and relvar XSS contains supplier 

details for suppliers who supply no parts at all. (Note that the two designs are information-equivalent 

and that the two designs therefore illustrate The Principle of Interchangeability.) Write view defini¬ 

tions to express Design b as views over Design a and vice versa. Also, show the applicable database 

constraints for each design (see Chapter 9 if you need to refresh your memory regarding database 

constraints). Does either design have any obvious advantages over the other? If so, what are they? 

10.18 Give SQL solutions to Exercises 10.1-10.4. 

10.19 The algorithm given in Section 10.4 for updating join views in particular is sometimes criti¬ 

cized on the grounds that (e.g.) deleting a tuple from the join of suppliers and shipments should 

surely be understood to mean that the corresponding shipment, only, is to be deleted from relvar 

SP—that is, the supplier should not be deleted from relvar S. Discuss. 

10.20 As the final (important!) exercise in this pail of the book, revisit the definition of the relational 

model given at the end of Section 3.2 in Chapter 3, and make sure you understand it thoroughly. 

REFERENCES AND BIBLIOGRAPHY 

10.1 Michel Adiba: “Derived Relations: A Unified Mechanism for Views, Snapshots, and Distrib¬ 

uted Data," Proc. 1981 Int. Conf. on Very Large Data Bases, Cannes, France (September 1981). See 



326 Part II / The Relational Model 

also the earlier version, "Database Snapshots,” by Michel E. Adiba and Bruce G. Lindsay, IBM 

Research Report RJ2772 (March 7, 1980). 

The paper that first proposed the snapshot concept. Semantics and implementation are both dis¬ 

cussed. Regarding implementation, note in particular that various kinds of “differential refresh” 

or incremental maintenance are possible under the covers—it is not always necessary for the 

system to reexecute the original query in its entirety at refresh time. 

10.2 H. W. Buff: “Why Codd’s Rule No. 6 Must Be Reformulated.” ACM S1GMOD Record 17, No. 

4 (December 1988). 

In 1985, Codd published a set of 12 rules to be used as “part of a test to determine whether a 

product that is claimed to be fully relational is actually so” [10.3]. His Rule No. 6 required that 

“all views that are theoretically updatable” in fact be updatable by the system. In this short 

paper. Buff criticizes that rule and claims that the general view-updatability problem is unde- 

cidable—that is, no general algorithm exists to determine the updatability or otherwise of an 

arbitrary view. (According to McGoveran [10.11], this paper “has been the dominant and most 

serious barrier to investigation of the problem of updating views.”) But any real relational 

implementation will be subject to a variety of finite limits (e.g., on the maximum length of an 

expression), with the consequence that Buff’s results do not apply to that particular system. To 

quote McGoveran again: “Buff [does not consider] those limited implementations of the rela¬ 

tional algebra [that] are necessary to reduce the relational model to practice on physical com¬ 

puters; instead, his paper considers solely the pure mathematics for abstract, theoretical algo¬ 

rithms” [10.11], 

10.3 E. F. Codd: “Is Your DBMS Really Relational?” and “Does Your DBMS Run by the Rules?” 

Computerworld (October 14 and 21, 1985). 

10.4 Donald D. Chamberlin, James N. Gray, and Irving L. Traiger: “Views, Authorization, and 

Locking in a Relational Data Base System,” Proc. NCC 44, Anaheim. Calif. Montvale, N.J.: AFIPS 

Press (May 1975). 

Includes a brief rationale for the approach adopted to view updating in System R (and hence in 

SQL/DS, DB2, the SQL standard, etc.). See also reference [10.12], which performs the same 

function for University Ingres. 

10.5 Hugh Darwen: “Without Check Option,” in C. J. Date and Hugh Darwen, Relational Database 

Writings 1989-1991. Reading, Mass.: Addison-Wesley (1992). 

10.6 C. J. Date and David McGoveran: “Updating Union, Intersection, and Difference Views” and 

“Updating Joins and Other Views,” in C. J. Date, Relational Database Writings 1991-1994. Read¬ 

ing, Mass.: Addison-Wesley (1995). 

These two papers present an informal introduction to the view updating scheme described in 

some detail in Section 10.4. One of the authors (McGoveran) has prepared a formal description 

of the scheme and is pursuing a U.S. patent claim based on that description [10.11]. 

10.7 Umeshwar Dayal and Philip A. Bernstein: “On the Correct Translation of Update Operations 

on Relational Views,” ACM TODS 7, No. 3 (September 1982). 

An early formal treatment of the view update problem (for restriction, projection, and join 

views only). Predicates are not considered. 

10.8 Antonio L. Furtado and Marco A. Casanova: “Updating Relational Views,” in reference [18.1 ]. 

There are two broad approaches to the view update problem. One—the only one discussed in 

any detail in this chapter—attempts to provide a general mechanism that works regardless of 

the specific database involved; it is driven purely by the definitions of the views in question 



Chapter 10 / Views 327 

(i.e.. by system-understood semantics). The other, less ambitious, approach requires the DBA 

to specify, for each view, exactly what updates are allowed and what their semantics are, by (in 

effect) writing the procedural code to implement those updates in terms of the underlying base 

relvars. This paper surveys work on each of the two approaches as of 1985. An extensive set of 

references to earlier work is included. 

10.9 Nathan Goodman: “View Update Is Practical,” InfoDB 5, No. 2 (Summer 1990). 

A very informal discussion of the problem of view updating. Here is a slightly paraphrased 

excerpt from the introduction: “Dayal and Bernstein [10.7] have proved that essentially no 

interesting views can be updated; Buff [10.2] has proved that no algorithm exists that can 

decide whether an arbitrary view is updatable. There seems little reason for hope. [However,] 

nothing could be further from the truth. The fact is, view update is both possible and practical.” 

And the paper goes on to give a variety of ad hoc view update techniques. The crucial notion of 

predicates is not mentioned, however. 

10.10 Arthur M. Keller: “Algorithms for Translating View Updates to Database Updates for Views 

Involving Selections, Projections, and Joins,” Proc. 4th ACM SIGACT-SIGMOD Symposium on 

Principles of Database Systems, Portland, Ore. (March 1985). 

Proposes a set of five criteria that should be satisfied by view-updating algorithms—no side 

effects, one-step changes only, no unnecessary changes, no simpler replacements possible, and 

no DELETE-INSERT pairs instead of UPDATES—and presents algorithms that satisfy those 

criteria. Among other things, the algorithms permit the implementation of one kind of update 

by another; for example, a DELETE on a view might translate into an UPDATE on the under¬ 

lying base relvar (e.g., a supplier could be deleted from the “London suppliers” view by chang¬ 

ing the CITY value to Paris). As another example (beyond the scope of Keller’s paper, how¬ 

ever), a DELETE on V (where V = A MINUS B) might be implemented by means of an 

INSERT on B instead of a DELETE on A. Note that we explicitly rejected such possibilities in 

the body of this chapter, by virtue of our Principle 6. 

10.11 David O. McGoveran: “Accessing and Updating Views and Relations in a Relational Data¬ 

base,” U.S. Patent Application 10/114,609 (April 2, 2002). 

10.12 M. R. Stonebraker; “Implementation of Views and Integrity Constraints by Query Modifica¬ 

tion," Proc. ACM SIGMOD Int. Conf. on Management of Data, San Jose, Calif. (May 1975). 

See the annotation to reference [10.4], 













AT 

CHAPTER 
-*pr-m-- 
L&..'.' 

Functional Dependencies 

11.1 Introduction 

11.2 Basic Definitions 

11.3 Trivial and Nontrivial Dependencies 

11.4 Closure of a Set of Dependencies 

11.5 Closure of a Set of Attributes 

11.6 Irreducible Sets of Dependencies 

11.7 Summary 

Exercises 

References and Bibliography 

11.1 INTRODUCTION 

In this chapter, we examine a concept that has been characterized (by Hugh Darwen, in a 

private communication) as “not quite fundamental, but very nearly so”—viz., the concept 
of functional dependence. This concept turns out to be crucially important to a number of 

issues to be discussed in later chapters, including in particular the database design theory 

described in Chapter 12. Please note immediately, however, that its usefulness is not lim¬ 

ited to that purpose alone; indeed, this chapter could well have been included in Part II of 

this book instead of Part III. 
A functional dependency (FD for short) is basically a many-to-one relationship from 

one set of attributes to another within a given relvar. In the case of the shipments relvar 

SP, for example, there is a functional dependency from the set of attributes {S#,P#} to the 
set of attributes {QTY}. What this means is that within any relation that is a legal value 

for that relvar: 

333 
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1. For any given value for the pair of attributes S# and P#, there is just one correspond¬ 

ing value of attribute QTY.1 

2. However, any number of distinct values of the pair of attributes S# and P# can have 

the same corresponding value for attribute QTY (in general). 

Observe that our usual sample SP value (see Fig. 3.8 on the inside back cover) does sat¬ 

isfy both of these properties; observe too that once again we have a concept whose defini¬ 

tion relies on the concept of tuple equality. 

In Section 11.2, we define the notion of functional dependence more precisely, dis¬ 

tinguishing carefully between those FDs that happen to be satisfied by a given relvar at 

some particular time and those that are satisfied by that relvar at all times. As already 

mentioned, it turns out that FDs provide a basis for a scientific attack on a number of 

practical problems. And the reason they do so is because they possess a rich set of inter¬ 

esting formal properties, which make it possible to treat the problems in question in a 

formal and rigorous manner. Sections 11.3-11.6 explore some of those formal properties 

in detail and explain some of their practical consequences. Finally, Section 11.7 presents 

a brief summary. 

Note: This is the most formal chapter in the book, and you might like to skip portions 

of it on a first reading. Indeed, most of what you need in order to understand the material 

of the next three chapters is covered in Sections 11.2 and 11.3; you might therefore prefer 

to give the remaining sections a “once over lightly” reading for now, and come back to 

them later when you have assimilated the material of the next three chapters. 

A small point regarding terminology: The terms functional dependence and func¬ 

tional dependency are used interchangeably in the literature. Normal English usage would 

suggest that the term dependence be used for the FD concept per se and would reserve the 

term dependency for “the thing that depends.” But we very frequently need to refer to FDs 

in the plural, and “dependencies” seems to trip off the tongue more readily than “depen¬ 

dences”; hence our use of both terms. 

11.2 BASIC DEFINITIONS 

In order to illustrate the ideas of the present section, we make use of a slightly revised ver¬ 

sion of the shipments relvar, one that includes, in addition to the usual attributes S#, P#, 
and QTY, an attribute CITY, representing the city for the relevant supplier. We will refer to 

this revised relvar as SCP to avoid confusion. A sample value is shown in Fig. 11.1. 

Now, it is very important in this area—as in so many others!—to distinguish clearly 

between (a) the value of a given relvar at a given point in time and (b) the set of all possible 

values that the given relvar might assume at different times. In what follows, we first define 

1 Note that this rather formal statement is true precisely because a certain "business rule" is in effect (see 
Chapter 9)—namely, that there is at most one shipment at any given time for a given supplier and a given 
part. Loosely speaking, in other words, FDs are a matter of semantics (what the data means), not a fluke 
arising from the particular values that happen to appear in the database at some particular point in time. 
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In other words, the statement that (e.g.) “every shipment for a given supplier involves the 

same quantity” does happen to be true for the particular SCP relation value shown in Fig. 

11.1, but it is not true for all possible legal values of the SCP relvar. 

We now observe that if X is a candidate key for relvar R, then all attributes Y of relvar 

R must be functionally dependent on X. (We mentioned this important fact in passing in 

Chapter 9, Section 9.10. It follows from the definition of candidate key.) For the parts relvar 
P, for example, we necessarily have: 

P# -> { P#, PNAME, COLOR, WEIGHT, CITY > 

In fact, if relvar R satisfies the FD A —» B and A is not a candidate key," then R will neces¬ 

sarily involve some redundancy. In the case of relvar SCP, for example, the FD 

S# —» CITY implies that the fact that a given supplier is located in a given city will appear 
many times in that relvar, in general (see Fig. 11.1 for an illustration of this point). We 

will take up this question of redundancy and discuss it in detail in the next chapter. 
Now, even if we restrict our attention to FDs that hold for all time, the complete set of 

FDs for a given relvar can still be very large, as the SCP example suggests. {Exercise: 

State the complete set of FDs satisfied by relvar SCP.) What we would like is to find some 

way of reducing that set to a manageable size—and, indeed, most of the remainder of this 

chapter is concerned with exactly this issue. 

Why is this objective desirable? One reason is that (as already stated) FDs represent 

certain integrity constraints, and we would thus like the DBMS to enforce them. Given a 

particular set S of FDs, therefore, it is desirable to find some other set T that is (ideally) 

much smaller than S and has the property that every FD in S is implied by the FDs in T. If 

such a set T can be found, it is sufficient that the DBMS enforce just the FDs in T, and the 

FDs in S will then be enforced automatically. The problem of finding such a set T is thus 

of considerable practical interest. 

11.3 TRIVIAL AND NONTRIVIAL DEPENDENCIES 

Note: In the remainder of this chapter, we will occasionally abbreviate “functional depen¬ 

dency” to just “dependency.” Similarly for “functionally dependent on,” “functionally de¬ 

termines, ” and so on. 

One obvious way to reduce the size of the set of FDs we need to deal with is to elimi¬ 

nate the trivial dependencies. A dependency is trivial if it cannot possibly fail to be satis¬ 

fied. Just one of the FDs shown for relvar SCP in the previous section was trivial in this 

sense—viz., the FD: 

{ s#, p# > -» s# 

In fact, an FD is trivial if and only if the right side is a subset (not necessarily a proper 

subset) of the left side. 

: And if the FD is not trivial (see Section 11.3) and A is not a superkey (see Section 11.5) and R contains 
at least two tuples (!). 
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As the name implies, trivial dependencies are not very interesting in practice; we are 

usually more interested in practice in nontrivial dependencies (which are, of course, pre¬ 

cisely the ones that are not trivial), because they are the ones that correspond to “genuine” 

integrity constraints. When we are dealing with the formal theory, however, we have to 

account for all dependencies, trivial ones as well as nontrivial. 

11.4 CLOSURE OF A SET OF DEPENDENCIES 

We have already suggested that some FDs might imply others. As a simple example, 

the FD 

{ S#, P# } -> { CITY, QTY } 

implies both of the following: 

{ S#, P# > CITY 
{ S#, P# } -» QTY 

As a more complex example, suppose we have a relvar R with attributes A, B, and C, 

such that the FDs A —» B and B —> C both hold for R. Then it is easy to see that the FD 

A —> C also holds for R. The FD A —> C here is an example of a transitive FD—C is said 

to depend on A transitively, via B. 

The set of all FDs that are implied by a given set S of FDs is called the closure of S, 

written S"1- (nothing to do with closure in the relational algebra sense, please note). Clearly 

we need an algorithm that will allow us to compute S+ from S. The first attack on this prob¬ 

lem appeared in a paper by Armstrong [11.2], which gave a set of inference rules (more 

usually called Armstrong’s axioms) by which new FDs can be inferred from given ones. 

Those rules can be stated in a variety of equivalent ways, of which one of the simplest is as 

follows. Let A, B, and C be arbitrary subsets of the set of attributes of the given relvar R, and 

let us agree to write (e.g.) AB to mean the union of A and B. Then we have: 

1. Reflexivity: If B is a subset of A, then A —> B. 

2. Augmentation: If A —> B, then AC —> BC. 

3. Transitivity: If A —> B and B —» C, then A —> C. 

Each of these three rules can be directly proved from the definition of functional 

dependency (the first is just the definition of a trivial dependency, of course). Moreover, 

the rules are complete, in the sense that, given a set S of FDs, all FDs implied by S can be 

derived from S using the rules. They are also sound, in the sense that no additional FDs 

(i.e., FDs not implied by S) can be so derived. In other words, the rules can be used to 

derive precisely the closure S+. 

Several further rules can be derived from the three already given, the following among 

them. These additional rules can be used to simplify the practical task of computing S+ 

from S. (In what follows, D is another arbitrary subset of the set of attributes of R.) 

4. Self-determination: A —> A. 
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5. Decomposition: If A —» BC, then A —> B and A —» C. 

6. Union: If A —> B and A —> C, then A —> BC. 

7. Composition: If A —» and C -> D, then AC —» 5D. 

And in reference [11.7], Darwen proves the following rule, which he calls the General 

Unification Theorem: 

8. If A -» B and C -» D, then AU(C-B)-) BD 

(where “U” is union and is set difference). The name "General Unification Theorem” 

refers to the fact that several of the earlier rules can be seen as special cases [ 11.71. 

Example: Suppose we are given a relvar R with attributes A, B, C, D. E. F, and the FDs: 

A —* BC 
B -» E 
CD -> EF 

Observe that we are extending our notation slightly, though not incompatibly, by writing, 

for example, BC for the set consisting of attributes B and C (previously BC would have 

meant the union of B and C, where B and C were sets of attributes). Note: If you would 

prefer a more concrete example, take A as employee number, B as department number, C 

as manager’s employee number, D as project number for a project directed by that man¬ 

ager (unique within manager), E as department name, and F as percentage of time spent 

by the specified manager on the specified project. 

We now show that the FD AD —» F holds for R and is thus a member of the closure of 

the given set: 

1. A -> BC (given) 

2. A -» C (1, decomposition) 

3. AD -4 CD (2, augmentation) 

4. CD -> EF (given) 

5. AD -> EF (3 and 4, transitivity) 

6. AD —» F (5, decomposition) 

11.5 CLOSURE OF A SET OF ATTRIBUTES 

In principle, we can compute the closure S+ of a given set S of FDs by means of an algo¬ 

rithm that says “Repeatedly apply the rules from the previous section until they stop pro¬ 

ducing new FDs.” In practice, there is little need to compute the closure per se (which is 
just as well, because the algorithm just mentioned is hardly very efficient). In this section, 

however, we will show how to compute a certain subset of the closure: namely, that subset 

consisting of all FDs with a certain (specified) set Z of attributes as the left side. More pre¬ 

cisely, we will show how, given a relvar R. a set Z of attributes of R, and a set S of FDs that 

hold for R, we can determine the set of all attributes of R that are functionally dependent 
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CLOSURE!Z,S] := Z ; 
do "forever" ; 

for each FD X —» Y in S 
do ; 

if X C CLOSURE[Z, S] 
then CLOSURE[Z,S] := CLOSURE[Z,S] U Y ; 

end 
if CLOSURE[Z,S] did not change on this iteration 
then leave the loop ; /* computation complete */ 

end ; 

Fig. 11.2 Computing the closure Z+ of Z under S 

on Z—the closure Z+ of Z under S.3 A simple algorithm for computing that closure is 

given in pseudocode in Fig. 11.2. Exercise: Prove that algorithm is correct. 

Example: Suppose we are given a relvar R with attributes A, B, C, D. E, F, and FDs: 

A BC 
E -» CF 
B -» E 
CD -» EF 

We now compute the closure {A,B}+ of the set of attributes {A,B} under this set of FDs. 

1. We initialize the result CLOSUREfZ.S] to {A,B}. 

2. We now go round the inner loop four times, once for each of the given FDs. On the 

first iteration (for the FD A —> BC), we find that the left side is indeed a subset of 

CLOSURE[Z,S] as computed so far, so we add attributes (B and) C to the result. 

CLOSURE[Z,S] is now the set {A,B,C}. 

3. On the second iteration (for the FD E —> CF), we find that the left side is not a subset 

of the result as computed so far, which thus remains unchanged. 

4. On the third iteration (for the FD B —> E), we add E to CLOSURE[Z,S], which now 

has the value [A,B,C,E). 

5. On the fourth iteration (for the FD CD —» EF), CLOSURE[Z,S] remains unchanged. 

6. Now we go round the inner loop four times again. On the first iteration, the result 

does not change; on the second, it expands to {A,B,C,E,F}\ on the third and fourth, it 

does not change. 

7. Now we go round the inner loop four times again. CLOSURE[Z,S] does not change, 

and so the whole process terminates, with {A,B}+ = {A,B,C,E,F}. 

Note that if (as stated) Z is a set of attributes of relvar R and 5 is a set of FDs that hold 

for R, then the set of FDs that hold for R with Z as the left side is the set consisting of all 

FDs of the form Z —> Z\ where Z' is some subset of the closure Z+ of Z under S. The 

3 Note that we now have two kinds of closure: closure of a set of FDs, and closure of a set of attributes 
under a set of FDs. Note too that we use the same “superscript plus" notation for both of them. We trust 
that this dual usage on our part will not prove confusing. 
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closure S+ of the original set 5 of FDs is then the union of all such sets of FDs, taken over 
all possible attribute sets Z 

An important corollary of all of the foregoing is as follows: Given a set 5 of FDs, we 

can easily tell whether a specific FD X —> Y follows from 5, because that FD will follow if 

and only if Y is a subset of the closure X+ of X under 5. In other words, we now have a 

simple way of determining whether a given FD X —> Y is in the closure 5+ of 5, without 
actually having to compute that closure 5+. 

Another important corollary is the following. Recall from Chapter 9 that a superkey 

for a relvar R is a set of attributes of R that includes some candidate key of R as a subset (not 

necessarily a proper subset). Now, it follows immediately from the definition that the 

superkeys for a given relvar R are precisely those subsets K of the attributes of R such that 
the FD 

K -> A 

holds true for every attribute A of R. In other words, K is a superkey if and only if the 

closure K+ of K—under the given set of FDs—is precisely the set of all attributes of R 
(and K is a candidate key if and only if it is an irreducible superkey). 

11.6 IRREDUCIBLE SETS OF DEPENDENCIES 

Let SI and S2 be two sets of FDs. If every FD implied by SI is implied by S2—that is, if 

Sl+ is a subset of S2+—we say that 52 is a cover for 57.4 What this means is that if the 

DBMS enforces the FDs in 52, then it will automatically be enforcing the FDs in 57. 

Next, if 52 is a cover for 57 and 57 is a cover for 52—that is, if 57+ = 52+—we say 

that 57 and 52 are equivalent. Clearly, if 57 and 52 are equivalent, then if the DBMS 

enforces the FDs in 52 it will automatically be enforcing the FDs in 57, and vice versa. 

Now we define a set 5 of FDs to be irreducible5 if and only if it satisfies the following 

three properties: 

1. The right side (the dependent) of every FD in 5 involves just one attribute (i.e., it is a 

singleton set). 

2. The left side (the determinant) of every FD in 5 is irreducible in turn—meaning that 

no attribute can be discarded from the determinant without changing the closure 5+ 

(i.e., without converting 5 into some set not equivalent to 5). We call such an FD left- 

irreducible. 

3. No FD in 5 can be discarded from 5 without changing the closure 5+ (i.e., without 

converting 5 into some set not equivalent to 5). 

With regard to points 2 and 3 here, by the way, note carefully that it is not necessary 

to know exactly what the closure 5+ is in order to tell whether it will be changed if some¬ 

thing is discarded. For example, consider the familiar parts relvar P. The following FDs 

(among others) hold for that relvar: 

4 Some writers use the term cover to mean what we will be calling (in just a moment) an equivalent set. 

5 Usually called minimal in the literature. 
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2. Next, attribute C can be eliminated from the left side of the FD AC —» D, because we 

have A —» C, so A —» AC by augmentation, and we are given AC —> D, so A —> D by 

transitivity; thus the C on the left side of AC —» D is redundant. 

3. Next, we observe that the FD AB —> C can be eliminated, because again we have 
A —» C, so A5 —> CB by augmentation, so AB —» C by decomposition. 

4. Finally, the FD A —> C is implied by the FDs A —> and B —» C, so it can also be 
eliminated. We are left with: 

A —¥ B 
B -» C 
A D 

This set is irreducible. 

A set / of FDs that is irreducible and equivalent to some other set S of FDs is said to 

be an irreducible equivalent of S. Thus, given some particular set S of FDs that need to 

be enforced, it is sufficient for the system to find and enforce the FDs in an irreducible 

equivalent I instead (and, to repeat, there is no need to compute the closure S+ in order to 

compute an irreducible equivalent /). We should make it clear, however, that a given set of 

FDs does not necessarily have a unique irreducible equivalent (see Exercise 11.12). 

11.7 SUMMARY 

A functional dependency (FD) is a many-to-one relationship between two sets of 

attributes of a given relvar (it is a particularly common and important kind of integrity 

constraint). More precisely, given a relvar R, the FD A —> B (where A and B are subsets of 

the set of attributes of R) is said to hold for R if and only if, whenever two tuples of R have 

the same value for A, they also have the same value for B. Every relvar necessarily satisfies 

certain trivial FDs; an FD is trivial if and only if the right side (the dependent) is a subset 

of the left side (the determinant). 

Certain FDs imply others. Given a set S of FDs, the closure S+ of that set is the set of 

all FDs implied by the FDs in S. S* is necessarily a superset of S. Armstrong’s inference 
rules provide a sound and complete basis for computing 5+ from S (usually, however, we 

do not actually need to perform that computation). Several other useful rules can easily be 

derived from Armstrong’s rules. 

Given a subset Z of the set of attributes of relvar R and a set S of FDs that hold for R, 

the closure Z+ of Z under S is the set of all attributes A of R such that the FD Z —> A is a 

member of S+. If Z+ consists of all attributes of R, Z is said to be a superkey for R (and a 
candidate key is an irreducible superkey). We gave a simple algorithm for computing Z+ 

from Z and S, and hence a simple way of determining whether a given FD X —» Y is a 

member of S+ (X —» Y is a member of S+ if and only if Y is a subset of X+). 

Two sets of FDs SI and S2 are equivalent if and only if they are covers for each 

other, implying that Sl+ = S2+. Every set of FDs is equivalent to at least one irreducible 
set. A set of FDs is irreducible if (a) every FD in the set has a singleton right side, (b) no 

FD in the set can be discarded without changing the closure of the set, and (c) no attribute 

can be discarded from the left side of any FD in the set without changing the closure of 
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the set. If / is an irreducible set equivalent to S, enforcing the FDs in / will automatically 

enforce the FDs in S. 

In conclusion, we note that many of the foregoing ideas can be extended to apply to 

integrity constraints in general, not just to FDs. For example, it is true in general that: 

1. Certain constraints are trivial. 

2. Certain constraints imply others. 

3. The set of all constraints implied by a given set can be regarded as the closure of the 

given set. 

4. The question of whether a specific constraint is in a certain closure—that is, whether 

the specific constraint is implied by certain given constraints—is an interesting prac¬ 

tical problem. 

5. The question of finding an irreducible equivalent for a given set of constraints is an 

interesting practical problem. 

What makes FDs in particular much more tractable than integrity constraints in general is 

the existence of a sound and complete set of inference rules for FDs. The “References and 

Bibliography” sections in this chapter and Chapter 13 give references to publications 

describing several other specific kinds of constraints—MVDs, JDs, and INDs—for which 

such sets of inference rules also exist. In this book, however, we choose not to give those 

other kinds of constraints so extensive and so formal a treatment as the one we have just 

given FDs. 

EXERCISES 

11.1 (a) Let R be a relvar of degree n. What is the maximum number of functional dependencies R 
can possibly satisfy (trivial as well as nontrivial)? (b) Given that A and B in the FDA —» B are both 

sets of attributes, what happens if either is the empty set? 

11.2 What does it mean to say that Armstrong’s inference rules are sound? Complete? 

11.3 Prove the reflexivity, augmentation, and transitivity rules, assuming only the basic definition 

of functional dependence. 

11.4 Prove that the three rules of the previous exercise imply the self-determination, decomposi¬ 

tion, union, and composition rules. 

11.5 Prove Darwen’s “General Unification Theorem.” Which of the rules of the previous two exer¬ 

cises did you use? Which rules can be derived as special cases of the theorem? 

11.6 Define (a) the closure of a set of FDs; (b) the closure of a set of attributes under a set of FDs. 

11.7 List the FDs satisfied by the shipments relvar SP. 

11.8 Relvar R{A,B,C,D,E,F,G} satisfies the following FDs: 

A —» B 
BC -> DE 
AEF -> G 

Compute the closure (A.C)+ under this set of FDs. Is the FD ACF —> DG implied by this set? 

11.9 What does it mean to say that two sets SI and S2 of FDs are equivalent? 
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11.10 What does it mean to say that a set of FDs is irreducible? 

11.11 Here are two sets of FDs for a relvar R{A,B, C,D,E}. Are they equivalent? 

1. A —> B AB C D —> AC £> -> S 

2. A -> BC D —> AE 

11.12 Relvar R{A,B.C,D,E,F} satisfies the following FDs: 

AB C 
C A 
BC —> D 
ACD —> B 
BE —> C 
CE —» FA 
CF BD 
D EF 

Find an irreducible equivalent for this set of FDs. 

11.13 A relvar TIMETABLE is defined with the following attributes: 

D Day of the week (1 to 5) 

P Period within day (1 to 6) 

C Classroom number 

T Teacher name 

L Lesson name 

Tuple (d,p,c,t,I) appears in this relvar if and only if at time (d,p) lesson l is taught by teacher t in 

classroom c (using the simplified notation for tuples introduced in Section 10.4). You can assume 

that lessons are one period in duration and that every lesson has a name that is unique with respect to 

all lessons taught in the week. What functional dependencies hold in this relvar? What are the candi¬ 

date keys? 

11.14 A relvar NADDR is defined with attributes NAME (unique), STREET, CITY, STATE, and 

ZIP. Assume that (a) for any given zip code, there is just one city and state; (b) for any given street, 

city, and state, there is just one zip code. Give an irreducible set of FDs for this relvar. What are the 

candidate keys? 

11.15 Do the assumptions of the previous exercise hold in practice? 

11.16 Let relvar R have attributes A, B, C, D, E, F, G, H, /, and J, and suppose it satisfies the fol¬ 

lowing FDs: 

ABD -» E 
AB —» G 
B —» F 
C —» J 
CJ -> I 
G —» H 

Is this an irreducible set? What are the candidate keys? 
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12.1 INTRODUCTION 

Throughout this book so far we have made use of the suppliers-and-parts database as a 

running example, with logical design as follows (in outline): 

S { S#, SNAME, STATUS, CITY > 
PRIMARY KEY { S# } 

P { P#, PNAME, COLOR, WEIGHT, CITY > 
PRIMARY KEY { P# > 

SP { S#, P#, QTY } 
PRIMARY KEY { S#, P# } 
FOREIGN KEY { S# } REFERENCES S 
FOREIGN KEY { P# > REFERENCES P 

Note: As these definitions suggest, we assume in this chapter (until further notice) that rel- 

vars always have a primary key specifically. 
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Now, this design does have a feeling of rightness about it: It is “obvious” that three 

relvars S, P, and SP are necessary, and it is also “obvious” that the supplier CITY attribute 

belongs in relvar S, the part COLOR attribute belongs in relvar P, the shipment QTY 

attribute belongs in relvar SP, and so on. But what is it that tells us these things are so? 

Some insight into this question can be gained by seeing what happens if we change the 

design in some way. Suppose, for example, that we move the supplier CITY attribute out 

of the suppliers relvar and into the shipments relvar (intuitively the wrong place for it, 

since “supplier city” obviously concerns suppliers, not shipments). Fig. 12.1, a variation 

on Fig. 11.1 from Chapter 11, shows a sample value for this revised shipments relvar. 

Note: In order to avoid confusion with our usual shipments relvar SP, we will refer to this 

revised version as SCP, as we did in Chapter 11. 

A glance at Fig. 12.1 is sufficient to show what is wrong with this design: redun¬ 

dancy. To be specific, every SCP tuple for supplier S1 tells us S1 is located in London, 

every SCP tuple for supplier S2 tells us S2 is located in Paris, and so on. More generally, 

the fact that a given supplier is located in a given city is stated as many times as there are 

shipments for that supplier. This redundancy in turn leads to several further problems. For 

example, after an update, supplier S1 might be shown as being located in London accord¬ 

ing to one tuple and in Amsterdam according to another.1 So perhaps a good design prin¬ 

ciple is “one fact in one place” (i.e., avoid redundancy). The subject of further normaliza¬ 

tion is essentially just a formalization of simple ideas like this one—a formalization, 

however, that does have very practical application to the problem of database design. 

Of course, relation values are always normalized as far as the relational model is 

concerned, as we saw in Chapter 6. As for relation variables (relvars), we can say that 

s# CITY P# QTY 

SI London PI 300 
SI London P2 200 
SI London P3 400 
SI London P4 200 
SI London P5 100 
SI London P6 100 
S2 Paris PI 300 
S2 Paris P2 400 
S3 Paris P2 200 
S4 London P2 200 
S4 London P4 300 
S4 London P5 400 

Fig. 12.1 Sample value for relvar SCP 

1 Throughout this chapter and the next, it is necessary to assume (realistically enough!) that relvar predi¬ 
cates are not being fully enforced—for if they were, problems such as this one could not possibly arise (it 
would not be possible to update the city for supplier SI in some tuples and not in others). In fact, one way 
to think about the normalization discipline is as follows: It helps us structure the database in such a way 
as to make more single-tuple updates logically acceptable than would otherwise be the case (i.e., if the 
design were not fully normalized). This goal is achieved because the predicates are simpler if the design is 
fully normalized than they would be otherwise. 
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they are normalized too as long as their legal values are normalized relations; thus, rel- 

vars are always normalized too as far as the relational model is concerned. Equivalently, 

we can say that relvars (and relations) are always in first normal form (abbreviated 

INF). In other words, “normalized” and “INF” mean exactly the same thing—though 

you should be aware that the term normalized is often used to mean one of the higher 

levels of normalization (typically third normal form, 3NF); this latter usage is sloppy but 

very common. 

Now, a given relvar might be normalized in the foregoing sense and yet still possess 

certain undesirable properties. Relvar SCP is a case in point (see Fig. 12.1). The principles 

of further normalization allow us to recognize such cases and to replace the relvars in 

question by ones that are more desirable in some way. In the case of relvar SCP, for exam¬ 

ple, those principles would tell us precisely what is wrong with that relvar, and they would 

tell us how to replace it by two “more desirable” relvars, one with attributes S# and CITY 

and the other with attributes S#, P#, and QTY. 

Normal Forms 

The process of further normalization—hereinafter abbreviated to just normalization—is 

built around the concept of normal forms. A relvar is said to be in a particular normal 

form if it satisfies a certain prescribed set of conditions. For example, a relvar is said to be 

in second normal form (2NF) if and only if it is in INF and also satisfies another condi¬ 

tion, to be discussed in Section 12.3. 

Many normal forms have been defined (see Fig. 12.2). The first three (INF, 2NF, 3NF) 

were defined by Codd in reference [11.6]. As Fig. 12.2 suggests, all normalized relvars are 

in INF; some INF relvars are also in 2NF; and some 2NF relvars are also in 3NF. The moti¬ 

vation behind Codd’s definitions was that 2NF was more desirable (in a sense to be 

explained) than INF, and 3NF in turn was more desirable than 2NF. Thus, the database 

designer should generally aim for a design involving relvars in 3NF, not ones that are 

merely in 2NF or INF. 

INF (normalized) relvars 

2NF relvars 

3NF relvars 

BCNF relvars 

4NF relvars 

5NF relvars 

Fig. 12.2 Levels of normalization 
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Reference [11.6] also introduced the idea of a procedure, the normalization proce¬ 

dure, by which a relvar that happens to be in some given normal form, say 2NF, can be 

replaced by a set of relvars in some more desirable form, say 3NF. (The procedure as 

originally defined only went as far as 3NF, but it was subsequently extended all the way 

to 5NF, as we will see in the next chapter.) We can characterize that procedure as the suc¬ 

cessive reduction of a given collection of relvars to some more desirable form. Note that 

the procedure is reversible; that is, it is always possible to take the output from the pro¬ 

cedure (say the set of 3NF relvars) and map it back to the input (say the original 2NF rel¬ 

var). Reversibility is important, because it means the normalization process is nonloss or 

information-preserving. 

To return to the topic of normal forms per se: Codd’s original definition of 3NF as 

given in reference [11.6] turned out to suffer from certain inadequacies, as we will see in 

Section 12.5. A revised and stronger definition, due to Boyce and Codd, was given in ref¬ 

erence [12.2]—stronger, in the sense that any relvar that was in 3NF by the new definition 

was certainly in 3NF by the old, but a relvar could be in 3NF by the old definition and not 

by the new. The new 3NF is now usually referred to as Boyce/Codd normal form (BCNF) 

in order to distinguish it from the old form. 

Subsequently, Fagin [12.8] defined a new “fourth’- normal form (4NF—“fourth” 

because at that time BCNF was still being called “third”). And in reference [12.9] Fagin 

defined yet another normal form, which he called projection-join normal form (PJ/NF, 

also known as “fifth” normal form or 5NF). As Fig. 12.2 shows, some BCNF relvars are 

also in 4NF, and some 4NF relvars are also in 5NF. 

By now you might well be wondering whether there is any end to this progression, 

and whether there might be a 6NF, a 7NF, and so on ad infinitum. Although this is a good 

question to ask, we are obviously not yet in a position to give it detailed consideration. We 

content ourselves with the rather equivocal statement that there are indeed additional nor¬ 

mal forms not shown in Fig. 12.2, but 5NF is the “final” normal form in a special (but 

important) sense. We will return to this question in Chapter 13. 

Structure of the Chapter 

The aim of this chapter is to examine the concepts of further normalization, up to and 

including Boyce/Codd normal form (we leave the others to Chapter 13). The plan of the 

chapter is as follows. Following this lengthy introduction. Section 12.2 discusses the basic 

concept of nonloss decomposition, and demonstrates the crucial importance of functional 

dependence to this concept (indeed, functional dependence forms the basis for Codd’s 

original three normal forms, as well as for BCNF). Section 12.3 then describes the original 

three normal forms, showing by example how a given relvar can be carried through the 

normalization procedure as far as 3NF. Section 12.4 digresses slightly to consider the 

question of alternative decompositions—that is, the question of choosing the “best” 

decomposition of a given relvar, when there is a choice. Next, Section 12.5 discusses 

BCNF. Finally, Section 12.6 provides a summary and offers a few concluding remarks. 
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Caveat: You are warned that we make little attempt at rigor in what follows; rather, 

we rely to a considerable extent on plain intuition. Indeed, part of the point is that con¬ 

cepts such as nonloss decomposition, BCNF, and so on, despite the somewhat esoteric ter¬ 

minology, are essentially very simple and commonsense ideas. Most of the references 

treat the material in a much more formal and rigorous manner. A good tutorial can be 

found in reference [12.5]. 

Two final introductory remarks: 

1. As already suggested, the general idea of normalization is that the database designer 

should aim for relvars in the “ultimate” normal form (5NF). However, this recom¬ 

mendation should not be construed as law; occasionally—very occasionally!—there 

might be good reasons for flouting the principles of normalization (see, e.g., Exercise 

12.7 at the end of the chapter). Indeed, this is as good a place as any to make the point 

that database design can be an extremely complex task. Normalization is a useful aid 

in the process, but it is not a panacea; thus, anyone designing a database is certainly 

advised to be familiar with normalization principles, but we do not claim that the de¬ 

sign process should be based on those principles alone. Chapter 14 discusses a num¬ 

ber of other aspects of design that have little or nothing to do with normalization as 

such. 

2. As already indicated, we will be using the normalization procedure as a basis for in¬ 

troducing and discussing the various normal forms. However, we do not mean to sug¬ 

gest that database design is actually done by applying that procedure in practice; in 

fact, it probably is not—it is much more likely that some top-down scheme will be 

used instead (see Chapter 14). The ideas of normalization can then be used to verify 

that the resulting design does not unintentionally violate any of the normalization 

principles. Nevertheless, the normalization procedure does provide a convenient 

framework in which to describe those principles. For the purposes of this chapter, 

therefore, we adopt the useful fiction that we are indeed carrying out the design pro¬ 

cess by applying that procedure. 

12.2 NONLOSS DECOMPOSITION AND FUNCTIONAL 
DEPENDENCIES 

Before we can get into the specifics of the normalization procedure, we need to examine 

one crucial aspect of that procedure more closely: namely, the concept of nonloss (also 

called lossless) decomposition. We have seen that the normalization procedure involves 

decomposing a given relvar into other relvars, and moreover that the decomposition is 

required to be reversible, so that no information is lost in the process; in other words, the 

only decompositions we are interested in are ones that are indeed nonloss. As we will see, 

the question of whether a given decomposition is nonloss is intimately bound up with the 

concept of functional dependence. 
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s# STATUS CITY 

S3 30 Paris 
S5 30 Athens 

(a) SST S# STATUS 

S3 30 
S5 30 

SC S# CITY 

S3 
S5 

Paris 
Athens 

(b) SST S# STATUS 

S3 30 
S5 30 

STC STATUS CITY 

30 
30 

Paris 
Athens 

Fig. 12.3 Sample value for relvar S and two corresponding decompositions 

By way of example, consider the familial' suppliers relvar S, with attributes S#, 

STATUS, and CITY (for simplicity, we ignore attribute SNAME until further notice). Fig. 

12.3 shows a sample value for this relvar and—in the parts of the figure labeled a and b— 

two possible decompositions corresponding to that sample value. 

Examining the two decompositions, we observe that: 

1. In Case a, no information is lost; the SST and SC values still tell us that supplier S3 

has status 30 and city Paris, and supplier S5 has status 30 and city Athens. In other 

words, this first decomposition is indeed nonloss. 

2. In Case b, by contrast, information definitely is lost; we can still tell that both suppli¬ 

ers have status 30, but we cannot tell which supplier has which city. In other words, 

the second decomposition is not nonloss but lossy. 

What exactly is it here that makes the first decomposition nonloss and the other 

lossy? Well, observe first that the process we have been referring to as “decomposition" is 

actually a process of projection; SST, SC, and STC in the figure are each projections of 

the original relvar S. So the decomposition operator in the normalization procedure is 

projection. Note: As in Part II of this book, we often say things like “SST is a projection 

of relvar S” when what we should more correctly be saying is “SST is a relvar whose 

value at any given time is a projection of the relation that is the value of relvar S at that 

time.” We hope these shorthands will not cause any confusion. 

Observe next that when we say in Case a that no information is lost, what we mean, 

more precisely, is that if we join SST and SC back together again, we get back to the origi¬ 

nal S. In Case b, by contrast, if we join SST and SC together again, we do not get back the 

original S, and so we have lost information.* 1 2 In other words, “reversibility” means, pre- 

2 To be more specific, we get back all of the tuples in the original S, together with some additional "spuri¬ 
ous” tuples; we can never get back anything less than the original S. (Exercise: Prove this statement.) 
Since we have no way in general of knowing which tuples in the result are spurious and which genuine, 
we have indeed lost information. 
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{ S#, P# > -> CITY 

However, attribute P# on the left side here is redundant for functional dependency pur¬ 

poses; that is, we also have the FD 

S# -» CITY 

(CITY is also functionally dependent on S# alone). This latter FD is left-irreducible, 

but the previous one is not; equivalently, CITY is irreducibly dependent on S#, but 

not irreducibly dependent on {S#,P#}.4 Left-irreducible FDs and irreducible depen¬ 

dencies will turn out to be important in the definition of the second and third normal 

forms (see Section 12.3). 

2. FD diagrams: Let R be a relvar and let I be some irreducible set of FDs that apply to 

R (again, refer to Chapter 11 if you need to refresh your memory regarding irreduc¬ 

ible sets of FDs). It is convenient to represent the set / by means of a functional de¬ 

pendency diagram (FD diagram). FD diagrams for relvars S, SP, and P—which 

should be self-explanatory—are given in Fig. 12.4. We will make frequent use of 

such diagrams throughout the rest of this chapter. 

Now, you will observe that every arrow in Fig. 12.4 is an arrow out of a candidate 

key (actually the primary key) of the relevant relvar. By definition, there will always be 

arrows out of each candidate key,'S because, for one value of each candidate key, there 

is always one value of everything else; those arrows can never be eliminated. It is if 

there are any other arrows that difficulties arise. Thus, the normalization procedure 

can be characterized, very informally, as a procedure for eliminating arrows that are 

not arrows out of candidate keys. 

3. FDs are a semantic notion: As noted in Chapter 11, FDs are really a special kind of 

integrity constraint. As such, they are definitely a semantic notion (in fact, they are 

Fig. 12.4 FD diagrams for relvars S, SP, and P 

4 Left-irreducible FD and irreducibly dependent are our preferred terms for what are more usually called 
“full FD" and “fully dependent” in the literature (and were so called in the first few editions of this book). 
These latter terms have the merit of brevity but are less descriptive and less apt. 

' More precisely, there will always be arrows out of superkeys. If the set / of FDs is irreducible as stated, 
however, all FDs (or “arrows”) in / will be left-irreducible. 
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(Note that “no transitive dependencies” implies no mutual dependencies, in the sense of 

that term explained near the beginning of this section.) 

Relvars SC and CS are both in 3NF (the primary keys are {S#} and {CITY}, respec¬ 

tively). Relvar SECOND is not in 3NF. A relvar that is in second normal form and not in 

third can always be reduced to an equivalent collection of 3NF relvars. We have already 

indicated that the process is reversible, and hence that no information is lost in the reduc¬ 

tion; however, the 3NF collection can contain information, such as the fact that the status 

for Rome is 50, that could not be represented in the original 2NF relvar.* 

To summarize, the second step in the normalization procedure is to take projections to 

eliminate transitive dependencies. In other words, given relvar R as follows— 

R { a, b, c > 
PRIMARY KEY { A > 
/* assume B —> C holds */ 

—the normalization discipline recommends replacing R by its two projections R1 and R2, 

as follows; 

R1 { b, c > 
PRIMARY KEY { B } 

R2 { A, B } 
PRIMARY KEY { A > 
FOREIGN KEY { B } REFERENCES R1 

R can be recovered by taking the foreign-to-matching-primary-key join of R2 and RI. 

We conclude this section by stressing the point that the level of normalization of a 

given relvar is a matter of semantics, not merely a matter of the value that relvar happens 

to have at some particular time. In other words, it is not possible just to look at the value at 

a given time and to say whether the relvar is in (say) 3NF—it is also necessary to know 

the dependencies before such a judgment can be made. Note too that even knowing the 

dependencies, it is never possible to prove by examining a given value that the relvar is in 

3NF. The best that can be done is to show that the value in question does not violate any 

of the dependencies; assuming it does not, then the value is consistent with the hypothesis 

that the relvar is in 3NF, but that fact does not guarantee that the hypothesis is valid. 

12.4 DEPENDENCY PRESERVATION 

It is frequently the case that a given relvar can be nonloss-decomposed in a variety of dif¬ 

ferent ways. Consider the relvar SECOND from Section 12.3 once again, with FDs S# —> 

CITY and CITY —» STATUS and therefore also, by transitivity, S# —> STATUS (refer to 

Fig. 12.11, in which the transitive FD is shown as a broken arrow). We showed in Section 

12.3 that the update anomalies encountered with SECOND could be overcome by replac¬ 

ing it by its decomposition into the two 3NF projections: 

sc { s#, city > 

x It follows that, just as the SECOND-SP combination was a slightly better representation of the real 
world than the INF relvar FIRST, so the SC-CS combination is a slightly better representation than the 
2NF relvar SECOND. 
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CS { CITY, STATUS } 

Let us refer to this decomposition as Decomposition A. Here by contrast is an alterna¬ 

tive decomposition (Decomposition B): 

SC { S#, CITY } 
SS { S#, STATUS } 

(projection SC is the same in both cases). Decomposition B is also nonloss, and the two pro¬ 

jections are again both in 3NF. But Decomposition B is less satisfactory than Decomposition 

A for a number of reasons. For example, it is still not possible in B to insert the information 

that a particular city has a particular status unless some supplier is located in that city. 

Let us examine this example a little more closely. First, note that the projections in 

Decomposition A correspond to the solid arrows in Fig. 12.11, whereas one of the projec¬ 

tions in Decomposition B corresponds to the broken arrow. In Decomposition A, in fact, 

the two projections are independent of one another, in the following sense: Updates can 

be made to either one without regard for the other.9 Provided only that such an update is 

legal within the context of the projection concerned—which means only that it must not 

violate the primary key uniqueness constraint for that projection—then the join of the two 

projections after the update will always be a valid SECOND (i.e., the join cannot possibly 

violate the FD constraints on SECOND). In Decomposition B, by contrast, updates to 

either of the two projections must be monitored to ensure that the FD CITY —> STATUS 

is not violated (if two suppliers have the same city, then they must have the same status; 

consider, for example, what is involved in Decomposition B in moving supplier SI from 

London to Paris). In other words, the two projections are not independent of each other in 

Decomposition B. 

The basic problem is that, in Decomposition B, the FD CITY —> STATUS has 

become—to use the terminology of Chapter 9—a database constraint that spans two rel- 

vars (implying, incidentally, that in many of today’s products it will have to be maintained 

by procedural code). In Decomposition A, by contrast, it is the transitive FD S# —> 

STATUS that has become the database constraint, and that constraint will be enforced auto¬ 

matically if the two relvar constraints S# —» CITY and CITY —» STATUS are enforced. 

And enforcing these two latter constraints is very simple, of course, involving as it does 

nothing more than enforcing the corresponding primary key uniqueness constraints. 

CITY 
1 

s# 

STATUS 

Fig. 12.11 FDs for relvar SECOND 

Except for the referential constraint from SC to CS. 9 
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Nevertheless, there is an efficient way of testing whether a given decomposition is 

dependency-preserving. Details of the algorithm are beyond the scope of this chap¬ 

ter; see, for example, reference [8.13] for the specifics. 

Here for purposes of future reference is a nine-step algorithm by which an arbitrary 

relvar R can be nonloss-decomposed, in a dependency-preserving way, into a set D of 

3NF projections. Let the set of FDs satisfied by R be S. Then: 

1. Initialize D to the empty set. 

2. Let / be an irreducible cover for S. 

3. Let X be a set of attributes appearing on the left side of some FD X —» Y in 7. 

4. Let the complete set of FDs in I with left side X be X —> Yl, X —> Y2, .... X —> Yn. 

5. Let the union of Yl, Y2, ..., Yn be Z. 

6. Replace D by the union of D and the projection of R over X and Z. 

7. Repeat Steps 4 through 6 for each distinct X. 

8. Let Al, A2, ..., An be those attributes of R (if any) still unaccounted for (i.e., still not 

included in any relvar in D)\ replace D by the union of D and the projection of R over 

Al, A2, ..., An. 

9. If no relvar in D includes a candidate key of R, replace D by the union of D and the 

projection of R over some candidate key of R. 

12.5 BOYCE/CODD NORMAL FORM 

In this section we drop our assumption that every relvar has just one candidate key and 

consider what happens in the general case. The fact is, Codd’s original definition of 3NF 

in reference [11.6] did not treat the general case satisfactorily. To be precise, it did not 

adequately deal with the case of a relvar that 

1. Had two or more candidate keys, such that 

2. The candidate keys were composite, and 

3. They overlapped (i.e., had at least one attribute in common). 

The original definition of 3NF was therefore subsequently replaced by a stronger def¬ 

inition, due to Boyce and Codd, that catered for this case also [12.2]. However, since that 

new definition actually defines a normal form that is strictly stronger than the old 3NF, it 

is better to use a different name for it, instead of just continuing to call it 3NF; hence the 

name Boyce/Codd normal form (BCNF).10 Note: The combination of conditions 1, 2, and 
3 might not occur very often in practice. For a relvar where it does not, 3NF and BCNF 

are equivalent. 
In order to explain BCNF, we first remind you of the term determinant, introduced in 

Chapter 11 to refer to the left side of an FD. We also remind you of the term trivial FD, 

1,1 A definition of “third" normal form that was in fact equivalent to the BCNF definition was first given 
by Heath in 1971 (12.4]; “Heath normal form” might thus have been a more appropriate name. 
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s# STATUS 

SNAME CITY 

Fig. 12.12 FDs for relvar S if (SNAME) is a candidate key (and CITY —» STATUS does not 
hold) 

not attempt to choose one of the candidate keys as the primary key in any of the examples 

that follow. We will therefore also not mark any columns with double underlining in our 

figures in this section. 

For our first example, we suppose again that supplier names are unique, and we con¬ 

sider the relvar: 

SSP { S#, SNAME, P#, QTY } 

The candidate keys are {S#,P#} and {SNAME,P#}. Is this relvar in BCNF? The answer is 

no, because it contains two determinants, S# and SNAME, that are not candidate keys for 

the relvar ({S#} and {SNAME} are both determinants because each determines the other). 

A sample value for this relvar is shown in Fig. 12.13. 

As the figure shows, relvar SSP involves the same kind of redundancies as relvars 

FIRST and SECOND of Section 12.3 (and relvar SCP of Section 12.1) did, and hence suf¬ 

fers from the same kind of problems as those relvars did. For example, changing the name 

of supplier S1 from Smith to Robinson leads, once again, either to search problems or to 

possibly inconsistent results. Yet SSP is in 3NF by the old definition, because that defini¬ 

tion did not require an attribute to be irreducibly dependent on each candidate key if it 

was itself a component of some candidate key of the relvar; thus, the fact that SNAME is 

not irreducibly dependent on {S#,P#} was ignored. Note: By “3NF” here we mean 3NF as 

originally defined by Codd in reference [11.6], not the simplified version as defined in 

Section 12.3. 
The solution to the SSP problems is to break the relvar down into two projections, in 

this case the projections: 

SS { S#, SNAME > 
SP { S#, P#, QTY > 

S# SNAME P# QTY 

SI Smith PI 300 
SI Smith P2 200 
SI Smith P3 400 
SI Smith P4 200 

• • . • • . . . 

Fig. 12.13 Sample value (partial) for relvar SSP 
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Fig. 12.15 FDs for relvar SJT 

taught by several teachers tells us that the FD J —> T does not hold. So the FD diagram is 
as shown in Fig. 12.15. 

Again we have two overlapping candidate keys, {S,J} and {S,T}. Once again the rel¬ 

var is in 3NF and not BCNF, and once again the relvar suffers from certain update anoma¬ 

lies; for example, if we wish to delete the information that Jones is studying physics, we 

cannot do so without at the same time losing the information that Professor Brown teaches 

physics. Such difficulties are caused by the fact that attribute T is a determinant but not a 

candidate key. Again we can get over the problems by replacing the original relvar by two 

BCNF projections, in this case the projections: 

ST { S, T > 
TJ { T, J } 

It is left as an exercise to show the values of these two relvars corresponding to the data of 
Fig. 12.14, to draw a corresponding FD diagram, to prove that the two projections are 

indeed in BCNF (what are the candidate keys?), and to check that the decomposition does 

in fact avoid the anomalies. 

There is another problem, however. The fact is, although the decomposition into ST 

and TJ does avoid certain anomalies, it unfortunately introduces others! The trouble is, the 

two projections are not independent, in Rissanen’s sense (see Section 12.4). To be specific, 

the FD 

{ S, J } —> T 

cannot be deduced from the FD 

T —» J 

(which is the only FD represented in the two projections). As a result, the two projections 
cannot be independently updated. For example, an attempt to insert a tuple for Smith and 

Prof. Brown into relvar ST must be rejected, because Prof. Brown teaches physics and 

Smith is already being taught physics by Prof. Green; yet the system cannot detect this fact 

without examining relvar TJ. We are forced to the unpleasant conclusion that the twin 

objectives of (a) decomposing a relvar into BCNF components, and (b) decomposing it into 

independent components, can occasionally be in conflict—that is, it is not always possible 

to satisfy both of them at the same time. 
To elaborate on the example for a moment longer: In fact, relvar SJT is atomic in Ris¬ 

sanen’s sense (see Section 12.4), even though it is not in BCNF. Observe, therefore, that 
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3. Let X —» Y be an FD for T that violates the requirements for BCNF. 

4. Replace T in D by two of its projections: that over X and Y and that over all attributes 
except those in Y. 

12.6 A NOTE ON RELATION-VALUED ATTRIBUTES 

In Chapter 6, we saw that it is possible for a relation to include an attribute whose values 

are relations in turn (an example is shown in Fig. 12.17). As a result, relvars can have 

relation-valued attributes too. From the point of view of database design, however, such 

relvars are usually contraindicated, because they tend to be asymmetric11—not to mention 
the fact that their predicates tend to be rather complicated!—and such asymmetry can lead 

to various practical problems. In the case of Fig. 12.17, for example, suppliers and parts 

are treated asymmetrically. As a consequence, the (symmetric) queries 

1. Get S# for suppliers who supply part PI 

2. Get P# for parts supplied by supplier S1 

have very different formulations: 

1. ( SPQ WHERE TUPLE { P# P# ('PI') } e PQ { P# } ) { S# } 

2. ( ( SPQ WHERE S# = S# ('SI') ) UNGROUP PQ ) { P# > 

(SPQ here is assumed to be a relvar whose values are relations of the form indicated by Fig. 

12.17.) Note, incidentally, that not only do these two formulations differ considerably, but 
they are both much more complicated than their SP counterparts. 

SPQ s# 

SI 

S2 

S5 

PQ 

p# QTY 

PI 300 
P2 200 

P6 100 

P# QTY 

PI 300 
P2 400 

• • . . . 
P# QTY 

Fig. 12.17 A relation with a relation-valued attribute 

11 Historically, in fact, such relvars were not even legal—they were said to be unnormalized, meaning 
they were not even regarded as being in INF (see Chapter 6). 
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Matters are even worse for update operations. For example, consider the following two 

updates: 

1. Create a new shipment for supplier S6, part P5, quantity 500. 

2. Create a new shipment for supplier S2, part P5, quantity 500. 

With our usual shipments relvar SP. there is no qualitative difference between these 

two updates—both involve the insertion of a single tuple into the relvar. With relvar SPQ. 

by contrast, the two updates differ in kind significantly (not to mention the fact that, again, 

they are both much more complicated than their SP counterpart): 

1. INSERT SPQ RELATION 
{ TUPLE { S# S# ( ' S6 ' ) , 

PQ RELATION { TUPLE { P# P# ('P5'), 
QTY QTY ( 500 ) > > } > ; 

2. UPDATE SPQ WHERE S# = S# ('S2') 
{ INSERT PQ RELATION { TUPLE { P# P# ('P5'), 

QTY QTY ( 500 ) > } } ; 

Relvars—at least, base relvars—without relation-valued attributes are thus usually to 

be preferred, because the fact that they have a simpler logical structure leads to corre¬ 

sponding simplifications in the operations we need to perform on them. Please under¬ 

stand, however, that this position should be seen as a guideline only, not as an inviolable 

law. In practice, there might well be cases where a relation-valued attribute does make 

sense, even for a base relvar. For example, Fig. 12.18 shows (part of) a possible value for 

RVK RVNAME CK 

S ATTRNAME 

S# 

SP ATTRNAME 

S# 
P# 

MARRIAGE 

MARRIAGE 

MARRIAGE 

ATTRNAME 

HUSBAND 
DATE 

ATTRNAME 

DATE 
WIFE 

ATTRNAME 

WIFE 
HUSBAND 

Fig. 12.18 Sample value for catalog relvar RVK 
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a catalog relvar RVK that lists the relvars in the database and their candidate keys. 

Attribute CK in that relvar is relation-valued. It is also a component of the sole candidate 
key for RVK! A Tutorial D definition for RVK might thus look something like this: 

VAR RVK BASE RELATION 
{ RVNAME NAME, CK RELATION { ATTRNAME NAME } } 

KEY { RVNAME, CK } ; 

Note: Exercise 12.3 at the end of the chapter asks you to consider what is involved in 

eliminating relation-valued attributes, if (as is usually the case) such elimination is consid- 
1 9 ered desirable. 

12.7 SUMMARY 

This brings us to the end of the first of our two chapters on further normalization. We have 

discussed the concepts of first, second, third, and Boyce/Codd normal form. The vari¬ 

ous normal forms (including those to be discussed in the next chapter) constitute a total 

ordering, in the sense that every relvar at a given level of normalization is automatically at 

all lower levels also, whereas the converse is not true—there exist relvars at each level that 

are not at any higher level. Furthermore, BCNF (and indeed 5NF) is always achievable; 

that is, any given relvar can always be replaced by an equivalent set of relvars in BCNF (or 

5NF). And the purpose of such reduction is to avoid redundancy, and hence to avoid cer¬ 

tain update anomalies. 

The normalization process consists of replacing the given relvar by certain projec¬ 
tions, in such a way that joining those projections back together again gives us back the 

original relvar; in other words, the process is reversible (equivalently, the decomposition 
is nonloss). We also saw the crucial role that functional dependencies play in the pro¬ 

cess; in fact, Heath’s theorem tells us that if a certain FD is satisfied, then a certain 

decomposition is nonloss. This state of affairs can be seen as further confirmation of the 

claim made in Chapter 11 to the effect that FDs are “not quite fundamental, but very 

nearly so.” 
We also discussed Rissanen’s concept of independent projections, and suggested 

that it is better to decompose into such projections rather than into projections that are not 

independent, when there is a choice. A decomposition into such independent projections 

is said to be dependency-preserving. Unfortunately, we also saw that the objectives of 
nonloss decomposition to BCNF and dependency preservation can sometimes be in con¬ 

flict with one another. 

12 And is possible! Note that it is not possible in the case of RVK, at least not directly (i.e., without the 
introduction of some kind of CKNAME—’’candidate key name”—attribute). 
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12.6 (Modified version of Exercise 11.13) Relvar TIMETABLE has the following attributes: 

D Day of the week (1 to 5) 

P Period within day (1 to 6) 

C Classroom number 

T Teacher name 

5 Student name 

L Lesson name 

Tuple (id,p,c,t,s,l) appears in this relvar if and only if at time (d.p) student s is attending lesson I, 

which is being taught by teacher t in classroom c. You can assume that lessons are one period in 

duration and that every lesson has a name that is unique with respect to all lessons taught in the 

week. Reduce TIMETABLE to a more desirable structure. 

12.7 (Modified version of Exercise 11.14) Relvar NADDR has attributes NAME (unique), 

STREET, CITY. STATE, and ZIP. Assume that (a) for any given zip code, there is just one city and 

state; (b) for any given street, city, and state, there is just one zip code. Is NADDR in BCNF? 3NF? 

2NF? Can you think of a better design? 

12.8 Let SPQ be a relvar whose values are relations of the form indicated by Fig. 12.17. State the 

external predicate for SPQ. 
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Section 13.4 then reviews the entire normalization procedure and makes some addi¬ 

tional comments on it. Next, Section 13.5 briefly discusses the notion of ^normalization. 

Section 13.6 then describes another important, and related, design principle called orthog¬ 

onal design. Finally, Section 13.7 briefly examines some recent developments and possi¬ 

ble directions for future research in the normalization field, and Section 13.8 presents a 

summary. 

13.2 MULTI-VALUED DEPENDENCIES AND FOURTH NORMAL FORM 

Suppose we are given a relvar HCTX—H for hierarchic—containing information about 

courses, teachers, and texts, in which the attributes corresponding to teachers and texts are 

relation-valued (see Fig. 13.1 for a sample HCTX value). As you can see, each HCTX 

tuple consists of a course name, plus a relation containing teacher names, plus a relation 

containing text names (two such tuples are shown in the figure). The intended meaning of 

such a tuple is that the specified course can be taught by any of the specified teachers and 

uses all of the specified texts as references. We assume that, for a given course c, there can 

be any number m of corresponding teachers and any number n of corresponding texts 

(m > 0, n > 0). Moreover, we also assume—perhaps not very realistically!—that teachers 

and texts are quite independent of one another; that is, no matter who actually teaches any 

particular offering of a given course, the same texts are used. Finally, we also assume that 

a given teacher or a given text can be associated with any number of courses. 

Now suppose that (as in Chapter 12, Section 12.6) we want to eliminate the relation¬ 

valued attributes. One way to do this—probably not the best way, though, a point we will 

come back to at the end of this section—is simply to replace relvar HCTX by a relvar 

CTX with three scalar attributes COURSE, TEACHER, and TEXT, as indicated in Fig. 

13.2. As you can see from the figure, each HCTX tuple gives rise to m * n CTX tuples, 

where m and n are the cardinalities of the TEACHERS and TEXTS relations in that 

HCTX tuple. Note that the resulting relvar CTX is “all key” (the sole candidate key for 

HCTX 

Fig. 13.1 Sample value for relvar HCTX 
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COURSE TEACHER TEXT 

Physics 
Physics 
Physics 
Physics 
Math 
Math 
Math 

Prof. Green 
Prof. Green 
Prof. Brown 
Prof. Brown 
Prof. Green 
Prof. Green 
Prof. Green 

Basic Mechanics 
Principles of Optics 
Basic Mechanics 
Principles of Optics 
Basic Mechanics 
Vector Analysis 
Trigonometry 

Fig. 13.2 Value for relvar CTX corresponding to the HCTX value in Fig. 13.1 

HCTX, by contrast, was just {COURSE}). Exercise: Give a relational expression by 

which CTX can be derived from HCTX. 

The meaning of relvar CTX is basically as follows: A tuple (c,t,x)—simplified nota¬ 

tion—appears in CTX if and only if course c can be taught by teacher t and uses text rasa 

reference. Observe that, for a given course, all possible combinations of teacher and text 

appear; that is, CTX satisfies the (relvar) constraint 

if tuples (c,tl,xl) and (c,t2,x2) both appear 

then tuples (c,tl,x2) and (c,t2,xl) both appear also 

Now, it should be apparent that relvar CTX involves a good deal of redundancy, lead¬ 

ing as usual to certain update anomalies. For example, to add the information that the 

physics course can be taught by a new teacher, it is necessary to insert two separate tuples, 

one for each of the two texts. Can we avoid such problems? Well, it is easy to see that the 

problems in question are caused by the fact that teachers and texts are completely inde¬ 

pendent of one another. It is also easy to see that matters would be improved if CTX were 

decomposed into its two projections—let us call them CT and CX—on {COURSE, 

TEACHER} and {COURSE,TEXT}, respectively (see Fig. 13.3). 

To add the information that the physics course can be taught by a new teacher, all we 

have to do given the design of Fig. 13.3 is insert a single tuple into relvar CT. (Note too 

that relvar CTX can be recovered by joining CT and CX back together again, so the 

decomposition is nonloss.) Thus, it does seem reasonable to suggest that there should be a 

way of further normalizing a relvar like CTX. 

CT cx 

COURSE TEXT 

Physics 
Physics 
Math 
Math 
Math 

Basic Mechanics 
Principles of Optics 
Basic Mechanics 
Vector Analysis 
Trigonometry 

COURSE TEACHER 

Physics 
Physics 
Math 

Prof. Green 
Prof. Brown 
Prof. Green 

Fig. 13.3 Values for relvars CT and CX corresponding to the CTX value in Fig. 13.2 
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As an aside, we remark that Rissanen’s work on independent projections [12.6], 

though couched in terms of FDs, is applicable to MVDs also. Recall that a relvar 

/?{/4,Z?,C} satisfying the FDs A —> B and B —» C is better decomposed into its projections 

on (A,B) and \B,C) rather than into those on [A.B] and {A.C}. The same holds true if we 

replace the FDs A —> B and B —> C by the MVDs A —> B and B —» C, respectively. 

We conclude this section by returning, as promised, to the question of eliminating 

relation-valued attributes (RVAs for short). The point is this: If we start with a relvar like 

HCTX that involves two or more independent RVAs, then, instead of simply replacing 

those RVAs by scalar attributes (as we did earlier in this section) and then performing 

nonloss decomposition on the result, it is better to separate the RVAs first. In the case of 

HCTX, for example, it is better to replace the relvar by its two projections HCT 

{COURSE,TEACHERS} and HCX {COURSE,TEXTS} (where TEACHERS and 

TEXTS are still RVAs). The RVAs in those two projections can then be replaced by scalar 

attributes and the results reduced to BCNF (actually 4NF) in the usual way if necessary, 

and the “problem” BCNF relvar CTX will simply never arise. But the theory of MVDs 

and 4NF gives us a formal basis for what would otherwise be a mere rule of thumb. 

13.3 JOIN DEPENDENCIES AND FIFTH NORMAL FORM 

So far in this chapter (and throughout the previous chapter) we have tacitly assumed that 

the sole operation necessary or available in the normalization process is the replacement of 

a relvar in a nonloss way by exactly two of its projections. This assumption has success¬ 

fully carried us as far as 4NF. It comes perhaps as a surprise, therefore, to discover that 

there exist relvars that cannot be nonloss-decomposed into two projections but can be 

nonloss-decomposed into three or more. To coin an ugly but convenient term, we will say 

a relvar (or a relation) is “//-decomposable” if it can be nonloss-decomposed into // projec¬ 

tions but not into m, where 1 < m and m < n. Note: The phenomenon of //-decomposability 

for n > 2 was first noted by Aho, Beeri, and Ullman [13.1]. The particular case n = 3 was 

also studied by Nicolas [13.26]. 

Consider relvar SPJ from the suppliers-parts-projects database (but ignore attribute 

QTY for simplicity); a sample value is shown at the top of Fig. 13.4. That relvar is all key 

and involves no nontrivial FDs or MVDs at all, and is therefore in 4NF. Note too that Fig. 

13.4 also shows: 

a. The three binary projections SP, PJ, and JS corresponding to the SPJ relation value 

shown at the top of the figure 

b. The effect of joining the SP and PJ projections (over P#) 

c. The effect of joining that result and the JS projection (over J# and S#) 

Observe that the result of the first join is to produce a copy of the original SPJ relation plus 

one additional (“spurious”) tuple, and the effect of the second join is then to eliminate that 

additional tuple, thereby getting us back to the original SPJ relation. In other words, that 

original SPJ relation is 3-decomposable. Note: The net result is the same whatever pair of 

projections we choose for the first join, though the intermediate result is different in each 

case. Exercise: Check this claim. 
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s# P# J# 

SI PI J2 
SI P2 Jl 
S2 PI Jl 
SI PI Jl 

Fig. 13.4 Relation SPJ is the join of all three of its binary projections but not of any two 

Now, the example of Fig. 13.4 is expressed in terms of relations, not relvars. However, 

the 3-decomposability of SPJ could be a more fundamental, time-independent property— 

that is, a property satisfied by all legal values of the relvar—if the relvar satisfies a certain 

time-independent integrity constraint. To understand what that constraint must be, observe 

first that the statement “SPJ is equal to the join of its three projections SP, PJ, and JS” is 

precisely equivalent to the following statement: 

if the pair (si,pi) 

and the pair (plfl) 

and the pair (jl,sl) 

then the triple (si,plfl) 

appears in SP 

appears in PJ 

appears in JS 

appears in SPJ 

because the triple (si,plfl) obviously appears in the join of SP, PJ, and JS. (Note: The con¬ 

verse of this statement—that if (si,plfl) appears in SPJ then (sl.pl) appears in projection 

SP, etc.—is clearly true for any degree-3 relation SPJ.) Since (sl.pl) appears in SP if and 

only if (si,pif2) appears in SPJ for some j2, and similarly for (plfl) and (jl,sl), we can 

rewrite the foregoing statement as a constraint on SPJ: 

if (sl,pl,j2), (s2,plfl), and (sl,p2,jl) appear in SPJ 

then (si,plfl) appears in SPJ also 

And if this statement is true for all time—that is, for all possible values of relvar SPJ—then 

we do have a time-independent constraint on the relvar (albeit a rather bizarre one). Notice 

the cyclic nature of that constraint ("if si is linked to pi and pi is linked to jl and jl is 
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b. The join dependency * { A, B, ..., Z } on R is implied by the candidate key(s) of 

R if and only if each of A, B.Z is a superkey for R. 

Relvar SPJ is not in 5NF; it satisfies a certain join dependency. Constraint 3D, that is 

certainly not implied by its sole candidate key (that key being the combination of all of its 

attributes). To state this differently, relvar SPJ is not in 5NF, because (a) it can be 3- 

decomposed and (b) that 3-decomposability is not implied by the fact that the combina¬ 

tion {S#,P#,J#} is a candidate key. By contrast, after 3-decomposition, the three projec¬ 

tions SP, PJ, and JS are each in 5NF, since they do not involve any nontrivial JDs at all. 

Note that any relvar in 5NF is automatically in 4NF also, because as we have seen an 

MVD is a special case of a JD. What is more, Fagin shows in reference [13.15] that any 

MVD that is implied by a candidate key must in fact be an FD in which that candidate key 

is the determinant. Fagin also shows in that same paper that any given relvar can be 

nonloss-decomposed into an equivalent collection of 5NF relvars; that is, 5NF is always 

achievable. 

Let us take a closer look at the question of what it means for a JD to be implied by 

candidate keys. Consider our familiar suppliers relvar S once again. That relvar satisfies 

several join dependencies—this one, for example: 

* { { S#, SNAME, STATUS >, { S#, CITY > > 

That is, relvar S is equal to the join of its projections on {S#,SNAME,STATUS} and 

[S#,CITY], and hence can be nonloss-decomposed into those projections. (This fact does 

not mean it should be so decomposed, only that it could be.) This JD is implied by the fact 

that {S#} is a candidate key; in fact, it is implied by Heath’s theorem [12.4], 

Suppose now (as we did in Chapter 12, Section 12.5) that relvar S has a second candi¬ 

date key, {SNAME}. Then here is another JD that is satisfied by that relvar: 

* { { S#, SNAME }, { S#, STATUS >, { SNAME, CITY > } 

This JD is implied by the fact that {S#} and {SNAME} are both candidate keys. 

Both of these examples illustrate the fact that the JD * {A, B,Z) is implied by can¬ 

didate keys if and only if each of A, B.Z is a superkey for the relvar in question. Thus, 

given a relvar R, we can tell if R is in 5NF as long as we know all candidate keys and all 

JDs in R. However, discovering all of those JDs might itself be a nontrivial exercise. That 

is, whereas it is relatively easy to identify FDs and MVDs (because they have a fairly 

straightforward real-world interpretation), the same cannot be said for JDs—JDs, that is, 

that are not MVDs and therefore not FDs—because the intuitive meaning of JDs might 

not be obvious. Hence, the process of determining when a given relvar is in 4NF but not 

5NF, and so could probably be decomposed to advantage, is still somewhat unclear. Expe¬ 

rience suggests that such relvars are likely to be rare in practice. 

In conclusion, we note that it follows from the definition that 5NF is the ultimate 

normal form with respect to projection and join (which accounts for its alternative name, 

projection-join normal form). That is, a relvar in 5NF is guaranteed to be free of anoma¬ 

lies that can be removed by taking projections. (Of course, this remark does not mean it is 

free of anomalies; it just means, to repeat, that it is free of anomalies that can be removed 

by taking projections.) For if a relvar is in 5NF, the only join dependencies are those that 
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What Is Denormalization? 

To review briefly, normalizing a relvar R means replacing R by a set of projections RI, 

R2. Rn, such that R is equal to the join of RI, R2. Rn; the objective is to reduce 

redundancy, by making sure that each of the projections RI, R2, ..., Rn is at the highest 

possible level of normalization. 

In order to define denormalization, then, let RI, R2, Rn be a set of relvars. Then 
denormalizing those relvars means replacing them by their join R. such that for all 

i (i= 1, 2, ..., n) projecting R over the attributes of Ri is guaranteed to yield Ri again. The 

objective is to increase redundancy, by ensuring that R is at a lower level of normalization 

than the relvars RI, R2.Rn. More specifically, the objective is to reduce the number of 

joins that need to be done at run time by (in effect) doing some of those joins ahead of 

time, as part of the database design. 

By way of an example, we might consider denormalizing parts and shipments to 
A 

produce a relvar PSQ as indicated in Fig. 13.6. Observe that relvar PSQ is in INF and 

not in 2NF. 

Some Problems 

The concept of denormalization suffers from a number of well-known problems. One 

obvious one is that once we start denormalizing, it is not clear where we should stop. With 

normalization, there are clear logical reasons for continuing until we reach the highest 

possible normal form; do we then conclude that with denormalization we should proceed 

until we reach the lowest possible normal form? Surely not; yet there are no established 

logical criteria for deciding exactly where to stop. In choosing to denormalize, in other 

words, we are backing off from a position that does at least have some solid science and 

theory behind it, and replacing it by one that is purely pragmatic in nature, and subjective. 

The second obvious point is that there are redundancy and update problems, precisely 

because we are dealing once again with relvars that are less than fully normalized. We have 

already discussed these problems at length. What is less obvious, however, is that there can 

be retrieval problems too; that is, denormalization can actually make certain queries harder 

p# PNAME COLOR WEIGHT CITY S# QTY 

PI Nut Red 12.0 London SI 300 
PI Nut Red 12.0 London S2 300 
P2 Bolt Green 17.0 Paris SI 200 

|P6J 
c°9" 

Red 19.0 London SI 100 

Fig. 13.6 Denormalizing parts and shipments 

4 There is a problem with denormalizing suppliers and shipments, given our usual sample data, because 
supplier S5 is lost in the join. For such reasons, some people might argue that we should use “outer" joins 
in the denormalization process. But outer joins have problems of their own. as we will see in Chapter 19. 
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2. This version of the principle subsumes the original version, because one nonloss 

decomposition that is always available for relvar R is the identity projection (i.e., the 

projection of R over all attributes). 

Further Observations 

We offer a few additional remarks concerning the orthogonal design principle. 

1. First of all, the term orthogonality' derives from the fact that what the design principle 

effectively says is that base relvars should have mutually independent meanings. The 

principle is common sense, of course, but formalized common sense (like the princi¬ 

ples of normalization). 

2. Suppose we start with the usual suppliers relvar S, but decide for design purposes to 

break that relvar down into a set of restrictions. Then the orthogonal design principle 

tells us that the restrictions in that breakdown should all be disjoint, in the sense that 

no supplier tuple can ever appear in more than one of them. (Also, of course, the 

union of those restrictions must give us back the original relvar.) We refer to such a 

breakdown as an orthogonal decomposition. 

3. The overall objective of orthogonal design is to reduce redundancy and thereby to 

avoid update anomalies (again like normalization). In fact, it complements normaliza¬ 

tion, in the sense that—loosely speaking—normalization reduces redundancy within 

relvars, while orthogonality reduces redundancy across relvars. 

4. Orthogonality might be common sense, but it is often flouted in practice (indeed, 

such flouting is sometimes even recommended). Designs like the following one, from 

a financial database, are all too common: 

ACTIVITIES_2001 { ENTRY#, DESCRIPTION, AMOUNT, NEW_BAL } 
ACTIVITIES_2002 { ENTRY#, DESCRIPTION, AMOUNT, NEW_BAL } 
ACTIVITIES_2003 { ENTRY#, DESCRIPTION, AMOUNT, NEW_BAL } 
ACTIVITIES_2004 { ENTRY#, DESCRIPTION, AMOUNT, NEW_BAL } 
ACTIVITIES_2005 { ENTRY#, DESCRIPTION, AMOUNT, NEW_BAL > 

In fact, encoding meaning into names—of relvars or anything else—violates The 

Information Principle, which says (just to remind you) that all information in the data¬ 

base must be cast explicitly in terms of values, and in no other way. 

5. If A and B are base relvars of the same type, adherence to the orthogonal design prin¬ 

ciple implies that: 

A UNION B : Is always a disjoint union 

A INTERSECT B : Is always empty 

A MINUS B : Is always equal to A 

13.7 OTHER NORMAL FORMS 

Back to normalization per se. Recall from the introduction to Chapter 12 that there do 

exist other normal forms, over and above those discussed in that chapter and this one so 
far. The fact is, the theory of normalization and related topics—now usually known as 

dependency theory—has grown into a considerable field in its own right, with a very 
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In conclusion, we should perhaps point out that research into issues such as those we 

have been discussing is very much a worthwhile activity. The reason is that the field of 

further normalization, or rather dependency theory as it is now more usually called, 

does represent a small piece of science in a field (database design) that is regrettably still 

far too much of an artistic endeavor—that is, it is still far too subjective and lacking in 

solid principles and guidelines. Thus, any further successes in dependency theory research 

are very much to be welcomed. 

EXERCISES 

13.1 Relvars CTX and SPJ as discussed in the body of the chapter—see Figs. 13.2 and 13.4 for 

some sample values—satisfied a certain MVD and a certain JD, respectively, that was not implied by 

the candidate keys of the relvar in question. Express that MVD and that JD as integrity constraints, 

using the Tutorial D syntax of Chapter 9. Give both calculus and algebraic versions. 

13.2 Let C be a certain club, and let relvar R{A,B} be such that the tuple (a,b) appears in R if and 

only if a and h are both members of C. What FDs, MVDs, and JDs does R satisfy? What normal 

form is it in? 

13.3 A database is to contain information concerning sales representatives, sales areas, and prod¬ 

ucts. Each representative is responsible for sales in one or more areas; each area has one or more 

responsible representatives. Similarly, each representative is responsible for sales of one or more 

products, and each product has one or more responsible representatives. Every product is sold in 

every area; however, no two representatives sell the same product in the same area. Every representa¬ 

tive sells the same set of products in every area for which that representative is responsible. Design a 

suitable set of relvars for this data. 

13.4 In Chapter 12, Section 12.5, we gave an algorithm for nonloss decomposition of an arbitrary 

relvar R into a set of BCNF relvars. Revise that algorithm so that it yields 4NF relvars instead. 

13.5 (Modified version of Exercise 13.3) A database is to contain information concerning sales 

representatives, sales areas, and products. Each representative is responsible for sales in one or more 

areas; each area has one or more responsible representatives. Similarly, each representative is 

responsible for sales of one or more products, and each product has one or more responsible repre¬ 

sentatives. Finally, each product is sold in one or more areas, and each area has one or more products 

sold in it. Moreover, if representative R is responsible for area A, and product P is sold in area A, and 

representative R is responsible for product P, then R sells P in A. Design a suitable set of relvars for 

this data. 

13.6 Suppose we represent suppliers by the following two relvars SX and SY (as in Fig. 13.8 in 

Section 13.6): 

SX { S#, SNAME, STATUS > 
SY { S#, SNAME, CITY } 

Does this design conform to the normalization guidelines described in this chapter and its predeces¬ 

sor? Justify your answer. 
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14.1 INTRODUCTION 

Semantic modeling has been a subject of research ever since the late 1970s. The general 

motivation for that research—that is, the problem the researchers have been trying to 

solve—is this: Database systems typically have only a very limited understanding of what 

the data in the database means; they typically “understand” certain simple data values, and 
perhaps certain simple constraints that apply to those values, but very little else (any more 

sophisticated interpretation is left to the human user). And it would be nice if systems 

could understand a little more,1 so that they could respond a little more intelligently to 

user interactions, and perhaps support more sophisticated (higher-level) user interfaces. 

For example, it would be nice if the system understood that part weights and shipment 

1 Needless to say. it is our position that a system that supported predicates as discussed in Chapter 9 
would "understand a little more”; in other words, we would argue that such predicate support is the right 
and proper foundation for semantic modeling. Sadly, however, most semantic modeling schemes are not 
based on any such solid foundation but are instead quite ad hoc (the proposals of references [ 14.22— 
14.24] are an exception). This state of affairs might be about to change, though, thanks to the increasing 
awareness in the commercial world of the importance of business rules [9.21, 9.22]; the external predi¬ 
cates of Chapter 9 are basically just “business rules” in this sense [ 14.14]. 
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And so on. But note carefully that all of these terms (entity instance, entity type, prop¬ 

erty, relationship, etc.) are not precisely or formally defined—they are “real-world 

concepts,” not formal ones. Step 1 is not a formal step. Steps 2-4, by contrast, are for¬ 

mal. 

2. Next, we try to devise a set of corresponding symbolic (i.e., formal) objects that can 

be used to represent the foregoing semantic concepts. (Note: We are not using the 

term object here in any loaded sense!) For example, the extended relational model 

RM/T [14.7] provides some special kinds of relations called E- and P-relations. 

Roughly speaking, E-relations represent entities and P-relations represent properties; 

however, E- and P-relations have formal definitions, whereas (as already explained) 

entities and properties do not. 

3. We also devise a set of formal, general integrity rules (or “metaconstraints” to use 

the terminology of Chapter 9) to go along with those formal objects. For example, 

RM/T includes a rule called property integrity, which says that every entry in a P- 

relation must have a corresponding entry in an E-relation (to reflect the fact that every 

property must be a property of some entity in the database). 

4. Finally, we also develop a set of formal operators for manipulating those formal 

objects. For example, RM/T provides a PROPERTY operator, which can be used to 

join together an E-relation and all of its corresponding P-relations, regardless of how 

many there are and what their names are, thus allowing us to collect together all of 

the properties for an arbitrary entity. 

The objects, rules, and operators of Steps 2-4 together constitute an extended data 

model (“extended,” that is, if those constructs are truly a superset of those of one of the 

“basic” models—e.g., the relational model—but there is not really a clear distinction in 

this context between what is extended and what is basic). In particular, please note care¬ 

fully that the rules and operators are just as much part of the model as the objects are 

(just as they are in the relational model, of course). On the other hand, it is probably fair to 

say that the operators are less important than the objects and rules from the point of view 

of database design; the emphasis in the rest of this chapter is therefore on objects and 

rules rather than on operators, though we will offer a few comments regarding operators 

on occasion. 
To return to Step 1: That step, to repeat, involves an attempt to identify a set of 

semantic concepts that seem to be useful in talking about the world. A few such con¬ 

cepts—entity, property, relationship, subtype—are shown in Fig. 14.1, along with infor¬ 

mal definitions and a few examples. Note that the examples are deliberately chosen to 

illustrate the point that the very same object in the real world might legitimately be 

regarded as an entity by some people, as a property by others, and as a relationship by still 

others. (This observation shows why it is impossible to give terms such as entity' a precise 

definition, by the way.) It is a goal of semantic modeling—by no means fully achieved as 

yet—to support such flexibility of interpretation. 

' Except inasmuch as the operators are needed to formulate the rules. 
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Concept Informal definition Examples 

ENTITY A distinguishable object Supplier, Part, Shipment 
Employee, Department 
Person 
Composition, Concerto 
Orchestra, Conductor 
Purchase order, 

Order line 

PROPERTY A piece of information 
that describes an entity 

Supplier number 
Shipment quantity 
Employee department 
Person height 
Concerto type 
Purchase order date 

RELATIONSHIP An entity that serves 
to interconnect two or 
more other entities 

Shipment (supplier-part) 
Assignment (employee- 

department) 
Recording (composition- 

orchestra- 
conductor) 

SUBTYPE Entity type Y is a subtype 
of entity type X if and only 
if every Y is necessarily 
an X 

Employee is a subtype 
of Person 

Concerto is a subtype 
of Composition 

Fig. 14.1 Some useful semantic concepts 

By the way, note that there are likely to be clashes between (a) terms such as those 

illustrated in Fig. 14.1 that are used at the semantic level and (b) terms used in some under¬ 

lying formalism such as the relational model. For example, many semantic modeling 

schemes use the term attribute in place of our property’—but it does not necessarily follow 

that such an attribute is the same thing as, or maps to, an attribute at the relational level. As 
another (important!) example, the entity type concept as used in (e.g.) the E/R model is not 

at all the same thing as the type concept discussed in Chapter 5. To be more specific, such 

entity types will probably map to relvars in a relational design, so they certainly do not cor¬ 

respond to relational attribute types (domains). But they do not fully correspond to relation 

types either, because: 

1. Some base relation types will probably correspond to relationship types, not entity 

types, at the semantic level. 

2. Some derived relation types might not correspond to anything at all at the semantic 

level (though others might). 
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Confusion over levels—in particular, confusion arising from such terminological con¬ 

flicts—has led to some expensive mistakes in the past, and continues to do so to this day 

(see Chapter 26, Section 26.2). 

One final remark to close this section: We pointed out in Chapter 1 that relationships 

are best regarded as entities in their own right and that we would generally treat them as 

such in this book. And we pointed out in Chapter 3 that one advantage of the relational 

model was precisely that it represented all entities, including relationships, in the same 

uniform way: namely, by means of tuples in relations. Nevertheless, the relationship con¬ 

cept (like the entity concept) does seem to be intuitively useful in talking about the world; 

moreover, the approach to database design to be discussed in Sections 14.3-14.5 does rely 

heavily on the “entity vs. relationship” distinction. We therefore adopt the relationship ter¬ 

minology for the purposes of the next few sections. However, we will have more to say on 

this issue in Section 14.6. 

14.3 THE E/R MODEL 

As indicated in Section 14.1, one of the best-known semantic modeling approaches—cer¬ 

tainly one of the most widely used—is the so-called entity/relationship (E/R) approach, 

based on the entity/relationship model introduced by Chen in 1976 [14.6], and refined in 

various ways by Chen and numerous others since that time (see, e.g., references [14.18] 

and [14.45-14.47]). The bulk of this chapter is therefore devoted to a discussion of the E/R 

approach. (We must stress, however, that the E/R model is very far from being the only 

“extended” model—many, many others have been proposed. See, for example, references 

[14.6], [14.18], [14.30], [14.37], and especially [14.24] for introductions to several others; 

see also references [14.27] and [14.36] for tutorial surveys of the field.) 

The E/R model includes analogs of all of the semantic objects listed in Fig. 14.1. We 

will examine them one by one. First, however, we should note that reference [14.6] not 

only introduced the E/R model per se, it also introduced a corresponding diagramming 

technique (“E/R diagrams”). We will discuss E/R diagrams in some detail in the next sec¬ 

tion, but a simple example of such a diagram, based on a figure from reference [14.6], is 

shown in Fig. 14.2, and you might find it helpful to study that example in conjunction 

with the discussions of the present section. The example represents the data for a simple 

manufacturing company (it is an extended, though still incomplete, version of the E/R dia¬ 

gram given for the company Know Ware Inc. in Fig. 1.6 in Chapter 1). 

Note: Most of the ideas to be discussed in the following subsections will be fairly 

familiar to anyone who knows the relational model. However, there are certain differences 

in terminology, as you will see. 

Entities 

Reference [14.6] begins by defining an entity as “a thing which can be distinctly identi¬ 
fied.” It then goes on to classify entities into regular entities and weak entities. A weak 

entity is an entity that is existence-dependent on some other entity, in the sense that it can- 
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VAR DEPT BASE RELATION 
{ DEPT# ..., ... > 
PRIMARY KEY { DEPT# > ; 

The other four relvars are left as an exercise. Note: The types or “value sets” need to 

be pinned down too, of course. We omit detailed discussion of this aspect here, since as 
already mentioned value sets are not shown in the E/R diagram. 

Many-to-Many Relationships 

The many-to-many (or many-to-many-to-many, etc.) relationships in the example are as 
follows: 

PROJ_WORK (involving employees and projects) 
SUPP_PART (involving suppliers and parts) 
SUPP_PART_PROJ (involving suppliers, parts, and projects) 
PART_STRUCTURE (involving parts and parts) 

Each such relationship also maps into a base relvar. We therefore introduce four more 

base relvars corresponding to these four relationships. Let us focus on the SUPP_PART 
relationship; the relvar for that relationship is SP (the usual shipments relvar). We defer 

for a moment the question of the primary key for this relvar, and concentrate instead on 

the matter of the foreign keys that are necessary in order to identify the participants in the 

relationship: 

VAR SP BASE RELATION SP 
{ S# ... , P# ... , ... > 

FOREIGN KEY { S# } REFERENCES S 
FOREIGN KEY { P# ) REFERENCES P ; 

Clearly, the relvar must include two foreign keys (S# and P#) corresponding to the 

two participants (suppliers and parts), and those foreign keys must reference the corre¬ 

sponding participant relvars S and P. Furthermore, an appropriate set of foreign key 

rules—that is, a delete rule and an update rule—must be specified for each of those for¬ 

eign keys, perhaps as follows. Note: The specific rules shown are only by way of illustra¬ 
tion (they are not the only possible ones). More important, note that whatever rules do 

apply are not derivable from or specified by the E/R diagram. 

VAR SP BASE RELATION SP 
{ S# ... , P# ... , ... > 

FOREIGN KEY { S# } REFERENCES S 
ON DELETE RESTRICT 
ON UPDATE CASCADE 

FOREIGN KEY { P# > REFERENCES P 
ON DELETE RESTRICT 
ON UPDATE CASCADE ; 

What about the primary key for this relvar? One possibility would be to take the com¬ 

bination of the participant-identifying foreign keys (S# and P#, in the case of SP)—if (a) 
that combination has a unique value for each instance of the relationship (which might or 

might not be the case, but usually is), and //(b) the designer has no objection to composite 

primary keys (which might or might not be the case). Alternatively, a new noncomposite 
surrogate attribute, “shipment number” say, could be introduced to serve as the primary 
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the same topics by the present writer in reference [14.9], Additional analysis and com¬ 

mentary can be found in the annotation to many of the references in the “References 
and Bibliography" section at the end of the chapter. 

The E/R Model as a Foundation for the Relational Model? 

We begin by considering the E/R approach from a slightly different perspective. It is 

probably obvious to you that the ideas of the E/R approach, or something very close 

to those ideas, must have been the informal underpinnings in Codd’s mind when he 

first developed the formal relational model. As explained in Section 14.2, the overall 

approach to developing an “extended” model involves four broad steps, as follows: 

1. Identify useful semantic concepts. 

2. Devise formal objects. 

3. Devise formal integrity rules (“metaconstraints”). 

4. Devise formal operators. 

But these same four steps are applicable to the design of the relational model 

also (and indeed to any formal data model), not just to “extended” models such as 

the E/R model. In other words, in order for Codd to have constructed the (formal) 

relational model in the first place, he must have had some (informal) “useful seman¬ 

tic concepts” in his mind, and those concepts must basically have been those of the 
E/R model, or something very like them. Indeed, Codd’s own writings support this 

contention. In his very first paper on the relational model (the 1969 version of refer¬ 

ence [6.1]), we find the following: 

The set of entities of a given entity type can be viewed as a relation, and we shall call such 

a relation an entity type relation . . . The remaining relations ... are between entity types 

and are .. . called inter-entity relations ... An essential property of every inter-entity rela¬ 

tion is that [it includes at least two foreign keys that] either refer to distinct entity types or 

refer to a common entity type serving distinct roles. 

Here Codd is clearly proposing that relations be used to represent both “entities” 

and “relationships.” But—and it is a very big but—the point is that relations are for¬ 

mal objects, and the relational model is a formal system. The essence of Codd’s contri¬ 

bution was that he found a good formal model for certain aspects of the real world. 
In contrast to the foregoing, the entity/relationship model is not (or, at least, not 

primarily) a formal model. Instead, it consists primarily of a set of informal concepts, 

corresponding to Step 1 (only) of the four steps under discussion. (Furthermore, what 

formal aspects it does possess do not seem to be significantly different from the corre¬ 
sponding aspects of the relational model—see the further discussion of this point in 

the next subsection.) And while it is unquestionably useful to have an armory of 

“Step 1” concepts at one’s disposal for database design purposes among others, the 
fact remains that database designs cannot be completed without the formal objects 

and rules of Steps 2 and 3, and numerous other tasks cannot be carried out at all with¬ 

out the formal operators of Step 4. 
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14.7 SUMMARY 

We opened this chapter by presenting a brief introduction to the general idea of semantic 

modeling. There are four broad steps involved, of which the first is informal and the rest 

are formal: 

1. Identify useful semantic concepts. 

2. Devise corresponding symbolic objects. 

3. Devise corresponding integrity rules (“metaconstraints”). 

4. Devise corresponding operators. 

Some useful semantic concepts are entity, property, relationship, and subtype. Note: 

We also stressed the points that (a) there will very likely be terminological conflicts 

between the (informal) semantic modeling level and the underlying (formal) support sys¬ 

tem level, and (b) such conflicts can cause confusion! Caveat lector. 

The ultimate objective of semantic modeling research is to make database systems a 

little more intelligent. A more immediate objective is to provide a basis for a systematic 

attack on the problem of database design. We described in some detail the application of 

one particular “semantic” model, Chen’s entity/relationship (E/R) model, to the design 

problem. We remind you that the original E/R paper [14.6] actually contained two dis¬ 

tinct, and more or less independent, proposals: It proposed the E/R model per se, and it 

also proposed the E/R diagramming technique. And we claimed in Section 14.4 that the 

popularity of the E/R model can probably be attributed more to the existence of that dia¬ 

gramming technique than to any other cause. But it is not necessary to adopt all of the 

ideas of the model in order to use the diagrams; it is quite possible to use E/R diagrams as 

a basis for any design methodology—perhaps an RM/T-based methodology, for example 

[14.7]. Arguments regarding the relative suitability of E/R modeling and some other 

approach as a basis for database design often seem to miss this point. 

Let us also contrast the ideas of semantic modeling (and of the E/R model in particu¬ 

lar) with the normalization discipline as described in Chapters 12 and 13. The normaliza¬ 

tion discipline involves reducing large relvars to smaller ones; it assumes that we have 

some small number of large relvars as input, and it processes that input to produce a large 

number of small relvars as output—that is, it maps large relvars into small ones (we are 

speaking very loosely here!). But the normalization discipline has absolutely nothing to say 

about how we arrive at those large relvars in the first place. Top-down methodologies such 

as the one described in the present chapter, by contrast, address exactly that problem: They 

map the real world into large relvars. In other words, the two approaches (top-down design 

and normalization) complement each other. The overall design procedure might thus go 

something like this: 

1. Use the E/R approach—or something analogous9—to generate “large” relvars repre¬ 

senting regular entities, weak entities, and so on. 

y Our own preferred approach would be (a) to write down the external predicates that describe the 
enterprise and then (b) to map those predicates straightforwardly into internal predicates as described in 
Chapter 9. 
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2. Use the ideas of further normalization to break those “large” relvars down into 

“small” ones. 

However, you will have realized from the quality of the discussions in the body of 

this chapter that semantic modeling in general is not nearly as rigorous or clear-cut as the 

further normalization discipline discussed in Chapters 12 and 13. The reason for this state 

of affairs is that (as indicated in the introduction to this part of the book) database design 

is still very much a subjective exercise, not an objective one; there is comparatively little 
by way of really solid principles that can be brought to bear on the problem (the few prin¬ 

ciples that do exist being, basically, the principles discussed in the previous two chapters). 

The ideas of the present chapter can be regarded as more in the way of rules of thumb, 

albeit ones that do seem to work reasonably well in practical situations. 

There is one final point that is worth calling out explicitly. Although the whole field is 

still somewhat subjective, there is one specific area in which semantic modeling ideas can 

be very relevant and useful today: namely, the data dictionary area. The data dictionary 

can be regarded in some respects as “the database designer’s database”; it is after all a 

database in which database design decisions are recorded, among other things [14.2]. The 

study of semantic modeling can thus be useful in the design of the dictionary system, 

because it identifies the kinds of objects the dictionary itself needs to support and “under¬ 

stand”—for example, entity categories (such as the E/R model’s regular and weak enti¬ 

ties), integrity rules (such as the E/R model’s notion of total vs. partial participation in a 

relationship), entity supertypes and subtypes, and so forth. 

EXERCISES 

14.1 What do you understand by the term “semantic modeling”? 

14.2 Identify the four broad steps involved in defining an “extended” model such as the E/R model. 

14.3 Explain the following E/R concepts in your own words: 

entity 

inheritance 

key property 

property 

regular entity 

relationship 

supertype, subtype 

type hierarchy 

value set 

weak entity 

14.4 Suppose the E/R diagram for suppliers and parts specifies that the participation of parts in 

shipments is “total” (i.e., every part must be supplied by at least one supplier). How can this con¬ 

straint be specified in (a) Tutorial D, (b) SQL? 

14.5 Give examples of: 

a. A many-to-many relationship in which one of the participants is a weak entity 

b. A many-to-many relationship in which one of the participants is another relationship 

c. A many-to-many relationship that has a subtype 

d. A subtype that has an associated weak entity that does not apply to the supertype 
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14.6 Draw an E/R diagram for the education database from Exercise 9.7 in Chapter 9. 

14.7 Draw an E/R diagram for the company personnel database from Exercise 12.3 in Chapter 12. 

Use that diagram to derive an appropriate set of base relvar definitions. 

14.8 Draw an E/R diagram for the order-entry database from Exercise 12.4 in Chapter 12. Use that 

diagram to derive an appropriate set of base relvar definitions. 

14.9 Draw an E/R diagram for the sales database from Exercise 13.3 in Chapter 13. Use that dia¬ 

gram to derive an appropriate set of base relvar definitions. 

14.10 Draw an E/R diagram for the revised sales database from Exercise 13.5 in Chapter 13. Use 

that diagram to derive an appropriate set of base relvar definitions. 
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15.1 INTRODUCTION 

As noted in the introduction to this part of the book, the topics of recovery and concurrency 

are very much intertwined. From a pedagogic point of view, however, it is desirable to keep 

them separate as much as possible; thus, our primary focus in this chapter is on recovery 

specifically, and we leave concurrency to Chapter 16 (though references to concurrency 

will inevitably creep into this chapter from time to time, especially in Section 15.4). 
Recovery in a database system means, primarily, recovering the database itself: that 

is, restoring the database to a correct state after some failure has rendered the current state 
incorrect, or at least suspect. (We will elaborate on what we mean by “a correct state of 

the database” in the next section.) And the underlying principle on which such recovery is 

based is quite simple, and can be summed up in one word: redundancy. (Redundancy, 

that is, at the physical level; we do not want such redundancy to show through to the logi¬ 
cal level, naturally, for reasons discussed in detail elsewhere in this book.) In other words, 
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the way to make sure the database is recoverable is to make sure that any piece of infor¬ 

mation it contains can be reconstructed from some other information stored, redundantly, 

somewhere else in the system. 

Before going any further, we should make it clear that the ideas of recovery (indeed, 

the ideas of transaction processing in general) are largely independent of whether the 

underlying system is relational or otherwise—though it is true that most of the theoretical 

work on transaction processing has historically been done, and continues to be done, in a 

relational context specifically. We should also make it clear that this is an enormous sub¬ 

ject!—all we can hope to do here is introduce some of the most important ideas. See the 

“References and Bibliography” section for some suggestions for further reading. Refer¬ 

ence [15.12] is particularly recommended. 

The plan of the chapter is as follows. Following this introductory section. Sections 

15.2 and 15.3 explain the fundamental notion of a transaction and the associated idea of 

transaction recovery (i.e., recovering after some individual transaction has failed). Section 

15.4 then goes on to expand the foregoing ideas into the broader realm of system recovery 

(i.e., recovering after some kind of system crash has caused all current transactions to fail 

simultaneously). Section 15.5 takes a slight detour into the question of media recovery 

(i.e., recovering after the database has been physically damaged in some way—e.g., by a 

head crash on the disk). Section 15.6 then introduces the crucially important concept of 

two-phase commit, and Section 15.7 discusses savepoints. Section 15.8 describes the rele¬ 

vant facilities of SQL. Finally, Section 15.9 presents a summary and a few concluding 

remarks. 

One last preliminary note: We assume throughout this chapter that we are in a “large” 

(shared, multi-user) database environment. “Small” (nonshared, single-user) DBMSs typi¬ 

cally provide little or no recovery support; instead, recovery in such a system is typically 

regarded as the user’s responsibility, implying that the user has to make periodic backup 

copies of the database and redo work manually if a failure occurs. 

15.2 TRANSACTIONS 

A transaction is a logical unit of work; it begins with the execution of a BEGIN TRANS¬ 

ACTION operation, and ends with the execution of a COMMIT or ROLLBACK opera¬ 

tion. Consider Fig. 15.1, which shows pseudocode for a transaction whose purpose is to 

transfer the sum of $100 from account 123 to account 456. As you can see, what is pre¬ 

sumably intended to be a single atomic operation—“transfer money from one account to 

another”—in fact involves two separate updates on the database. Moreover, the database is 

in an incorrect state between those two updates, in the sense that it does not reflect a valid 

state of affairs in the real world; clearly, a real-world transfer from one account to another 

must not affect the total number of dollars in the accounts concerned, but in the example 

the sum of $100 temporarily goes missing (as it were) between the two updates. Thus, the 

logical unit of work that is a transaction does not necessarily involve just a single database 

operation. Rather, it involves a sequence of several such operations, in general, and the 
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The system now works backward through the log, undoing the transactions in the 
UNDO list; then it works forward again, redoing the transactions in the REDO list. Note: 

Restoring the database to a correct state by redoing work is sometimes called forward 

recovery. Similarly, restoring it to a correct state by undoing work is sometimes called 

backward recovery. Note that forward recovery redoes updates in the order in which they 

were originally done, while backward recovery undoes updates in the reverse of that 
order. 

Finally, when all such recovery activity is complete, then (and only then) the system 
is ready to accept new work. 

ARIES 

Of course, the foregoing description of the system recovery procedure is very much sim¬ 

plified.7 Observe in particular that it shows “undo” operations being done before “redo” 
operations. Early systems did work that way, but for efficiency reasons modern systems 

typically do things the other way around; in fact, most systems today use a scheme called 

ARIES [15.20], or something very close to that scheme, which does indeed do redo opera¬ 
tions first. ARIES operates in three broad phases: 

1. Analysis: Build the REDO and UNDO lists. 

2. Redo: Start from a position in the log determined in the analysis phase and restore the 

database to the state it was in at the time of the crash. 

3. Undo: Undo the effects of transactions that failed to commit. 

Note that “redo before undo” implies redoing work for transactions that failed to 

commit, work that will subsequently be undone again. Partly for this reason, the ARIES 

redo phase is often said to be repeating history [15.21]. Note too that ARIES logs the 

operations it performs during the undo phase, so that if the system crashes again during 

the restart procedure—an all-too-likely eventuality—then updates that have already been 

undone will not be undone again on the next restart. 

The name ARIES stands for “Algorithms for Recovery and Isolation Exploiting 
Semantics.” 

15.5 MEDIA RECOVERY 

Note: Media recovery is somewhat different in kind from transaction and system recovery. 

We cover it here for completeness. 

To repeat from Section 15.4, a media failure is a failure—such as a disk head crash 

or a disk controller failure—in which some portion of the database has been physically 

destroyed. Recovery from such a failure basically involves reloading or restoring the 

7 Among other things, it assumes recovery is possible! If transactions never run concurrently, then they 
are recoverable (fairly obviously); however, the possibility of concurrent execution introduces certain 
complicating factors, and we must be careful not to let them do anything to undermine recoverability. We 
will revisit this issue in the next chapter. 
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database from a backup copy or dump, and then using the log—both active and archive 

portions, in general—to redo all transactions that completed since that backup copy was 

taken (forward recovery). There is no need to undo transactions that were still in 

progress at the time of the failure, since by definition all updates of such transactions 

have been "undone” (actually lost) anyway. 

The need to be able to perform media recovery implies the need for a dump/re store (or 

unload/reload) utility. The dump portion of that utility is used to make backup copies of the 

database on demand. Such copies can be kept on tape or other archival storage; it is not 

necessary that they be on direct access media. After a media failure, the restore portion of 

the utility is used to rebuild the database from a specified backup copy. 

15.6 TWO-PHASE COMMIT 

Note: You might want to skip this section on a first reading. 

In this section we briefly discuss a very important elaboration on the basic commit/ 

rollback concept called two-phase commit. Two-phase commit is important whenever a 

given transaction can interact with several independent “resource managers,” each manag- 
. . .... ft 
ing its own set of recoverable resources and maintaining its own recovery log. For exam¬ 

ple, consider a transaction running on an IBM mainframe that updates both an IMS data¬ 

base and a DB2 database (such a transaction is perfectly legal, by the way). If the 

transaction completes successfully, then all of its updates, to both IMS data and DB2 data, 

must be committed; conversely, if it fails, then all of its updates must be rolled back. In 

other words, it must not be possible for the IMS updates to be committed and the DB2 

updates rolled back, or vice versa—for then the transaction would no longer be atomic (all 

or nothing). 

It follows that it does not make sense for the transaction to issue, say, a COMMIT to 

IMS and a ROLLBACK to DB2; and even if it issued the same instruction to both, the 

system could still crash between the two, with unfortunate results. Instead, therefore, the 

transaction issues a single “global” or system-wide COMMIT (or ROLLBACK). That 

COMMIT or ROLLBACK is handled by a system component called the coordinator, 

whose task it is to guarantee that both resource managers (i.e., IMS and DB2, in the 

example) commit or roll back the updates they are responsible for in unison—and fur¬ 

thermore to provide that guarantee even if the system fails in the middle of the process. 

And it is the two-phase commit protocol that enables the coordinator to provide such a 

guarantee. 

Here is how it works. Assume for simplicity that the transaction has completed its 

database processing successfully, so that the system-wide instruction it issues is COMMIT, 

not ROLLBACK. On receiving that COMMIT request, the coordinator goes through the 

following two-phase process; 

s In particular, it is important in the context of distributed database systems, and for that reason is dis¬ 
cussed in more detail in Chapter 21. 
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ROLLBACK TO <savepoint name> ; 

undoes all updates done since the specified savepoint. And the statement 

RELEASE <savepoint name> ; 

drops the specified savepoint, meaning it is no longer possible to execute a ROLLBACK to 

that savepoint. All savepoints are automatically dropped at transaction termination. 

15.9 SUMMARY 

In this chapter we have presented a necessarily brief introduction to the topic of transac¬ 

tion management. A transaction is a logical unit of work, also a unit of recovery (and a 

unit of concurrency—see Chapter 16). Transactions possess the ACID properties of ato¬ 

micity, correctness (more usually called consistency in the literature), isolation, and 

durability. Transaction management is the task of supervising the execution of transac¬ 

tions in such a way that they can be guaranteed to possess these important properties 

(except for correctness!). In fact, the overall purpose of the system might well be defined 
as the reliable execution of transactions. 

Transactions are initiated by BEGIN TRANSACTION and are terminated by 

either COMMIT (successful termination) or ROLLBACK (unsuccessful termination). 

COMMIT establishes a commit point (updates are recorded in the database); ROLL¬ 

BACK rolls the database back to the previous commit point (updates are undone). If a 

transaction does not reach its planned termination, the system automatically executes a 

ROLLBACK for it (transaction recovery). In order to be able to undo and redo updates, 

the system maintains a recovery log. Moreover, the log records for a given transaction 

must be written to the physical log before COMMIT processing for that transaction can 
complete (the write-ahead log rule). 

If a system crash occurs, the system must (a) redo all work done by transactions that 
completed successfully prior to the crash and (b) undo all work done by transactions that 

started but did not complete prior to the crash. This system recovery activity is carried 

out as part of the system’s restart procedure (sometimes known as the restart/recovery 

procedure). The system discovers what work has to be redone and what undone by exam¬ 

ining the most recent checkpoint record. Checkpoint records are written to the log at pre¬ 
scribed intervals. 

The system also provides media recovery by restoring the database from a previous 

dump and then—using the log—redoing the work completed since that dump was taken. 
Dump/restore utilities are needed to support media recovery. 

Systems that permit transactions to interact with two or more distinct resource man¬ 
agers—for example, two different DBMSs, or a DBMS and a DC manager—must use a 

protocol called two-phase commit (or some variant thereof) if they are to maintain the 

transaction atomicity property. The two phases are (a) the prepare phase, in which the 
coordinator instructs all participants to “get ready to go either way,” and (b) the commit 

phase, in which—assuming all participants responded satisfactorily during the prepare 
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phase—the coordinator then instructs all participants to perform the actual commit (or the 

actual rollback otherwise). 

We concluded with a brief mention of savepoints and a survey of the recovery fea¬ 

tures of SQL; in particular, we described SQL's START TRANSACTION statement, 

which allows the user to specify the transaction access mode and isolation level. 

One last point: We have tacitly been assuming an application programming environ¬ 

ment throughout this chapter. However, all of the concepts discussed apply equally to the 

end-user environment as well (though they might be somewhat more concealed at that 

level). For example, most SQL products allow the end user to enter SQL statements inter¬ 

actively from a terminal. Usually each such interactive SQL statement is treated as a 

transaction in its own right; the system will typically issue an automatic COMMIT on the 

user's behalf after the SQL statement has executed (or an automatic ROLLBACK if it 

failed). However, some systems do allow the user to inhibit those automatic COMMITS 

and hence to execute a whole series of SQL statements (followed by an explicit COMMIT 

or ROLLBACK) as a single transaction. The practice is not generally recommended, how¬ 

ever, since it might cause portions of the database to remain locked, and therefore inacces¬ 

sible to other users, for excessive periods of time (see Chapter 16). In such an environ¬ 

ment, moreover, it is possible for end users to deadlock with one another, which is another 

good argument for prohibiting the practice (again, see Chapter 16). 

EXERCISES 

15.1 Systems do not allow a given transaction to commit changes to databases (or relvars or any 
other unit of data) on an individual basis, that is, without simultaneously committing changes to all 
other databases (or relvars or . ..). Why not? 

15.2 Transactions usually cannot be nested inside one another. Why not? 

15.3 State the write-ahead log rule. Why is the rule necessary? 

15.4 What are the recovery implications of (a) physically writing database buffers at COMMIT; 
(b) never physically writing database buffers prior to COMMIT? 

15.5 State the two-phase commit protocol, and discuss the implications of a failure on the pml of 
(a) the coordinator and (b) some participant during each of the two phases. 

15.6 Using the suppliers-and-parts database, write an SQL program to read and print all parts in 
part number order, deleting every tenth one as you go, and beginning a new transaction after every 
tenth row. You can assume the foreign key delete rule from parts to shipments specifies CASCADE 
(in other words, you can ignore shipments for the purposes of this exercise). Note: We specifically 
ask for an SQL solution here so that you can use the SQL cursor mechanism in your answer. 
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Transaction A Time Transaction B 

- 
:1 UPDATE t 

RETRIEVE t -.2 — 

- :3 ROLLBACK 

Fig. 16.2 Transaction A becomes dependent on an uncommitted change at time t2 

Transaction A Time Transaction B 

:1 UPDATE t 

UPDATE t :2 — 

: :3 ROLLBACK 

Fig. 16.3 Transaction A updates an uncommitted change at time t2, and loses that update 
at time t3 

result of a system crash. (And transaction A might already have terminated by that time, in 

which case the crash would not cause a rollback to be issued for A also.) 

The second example (Fig. 16.3) is even worse. Not only does transaction A become 

dependent on an uncommitted change at time t2, but it actually loses an update at time 

t3—because the rollback at time t3 causes tuple t to be restored to its value prior to time 

tl. This is another version of the lost update problem. 

The Inconsistent Analysis Problem 

Consider Fig. 16.4, which shows two transactions A and B operating on account (ACC) 

tuples: Transaction A is summing account balances, transaction B is transferring an 

amount 10 from account 3 to account 1. The result produced by A. 110, is obviously incor¬ 

rect; if A were to go on to write that result back into the database, it would actually leave 

the database in an inconsistent state.1 In effect, A has seen an inconsistent state of the data¬ 

base and has therefore performed an inconsistent analysis. Note the difference between 

1 Regarding this possibility (i.e., writing the result back into the database), it is naturally necessary to 
assume there is no integrity constraint in place to prevent such a write. 
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Fig. 16.5 Compatibility matrix for lock types X and S 

These rules can be conveniently summarized by means of a lock type compatibility 

matrix (Fig. 16.5). That matrix is interpreted as follows: Consider some tuple t; suppose 

transaction A currently holds a lock on t as indicated by the entries in the column headings 

(dash = no lock); and suppose some distinct transaction B issues a request for a lock on t 

as indicated by the entries down the left side (for completeness we again include the “no 

lock” case). An “N” indicates a conflict (B's request cannot be immediately granted), a 

“Y” indicates compatibility (B's request can and will be immediately granted). The 

matrix is obviously symmetric. 

Next, we introduce a data access protocol or locking protocol that makes use of X 

and S locks as just defined to guarantee that problems such as those described in Section 

16.2 cannot occur: 

1. A transaction that wishes to retrieve a tuple must first acquire an S lock on that tuple. 

2. A transaction that wishes to update a tuple must first acquire an X lock on that tuple. 

Alternatively, if it already holds an S lock on the tuple, as it will in a RETRIEVE- 

UPDATE sequence, then it must promote or upgrade that S lock to X level. 

Note: We interrupt ourselves at this point to explain that requests for locks are 

usually implicit—a “tuple retrieve” operation implicitly requests an S lock on the rel¬ 

evant tuple, and a “tuple update” operation implicitly requests an X lock (or implicitly 

requests promotion of an existing S lock to X level) on the relevant tuple. Also, we 

take the term update, as always, to include INSERTS and DELETES as well as 

UPDATES per se, but the rules require some refinement to take care of INSERTS and 

DELETES. We omit the details here. 

3. If a lock request from transaction B cannot be immediately granted because it con¬ 

flicts with a lock already held by transaction A, B goes into a wait state. B will wait 

until the lock request can be granted, which at the earliest will not be until A's lock is 

released. Note: We say “at the earliest” because when As lock is released, another 

request for a lock on the pertinent tuple can be granted, but it might not be granted to 

B—there might be other transactions waiting by then. Of course, the system must 

guarantee that B does not wait forever (a possibility referred to as livelock or starva¬ 

tion). A simple way of providing such a guarantee is to service lock requests on a 

first-come/first-served basis. 

4. X locks are released at end-of-transaction (COMMIT or ROLLBACK). S locks are 

normally released at that time also (at least, we will assume so until we get to Sec¬ 

tion 16.8). 



472 Part IV / Transaction Management 

The foregoing protocol is called strict two-phase locking. We will discuss it in more 

detail—in particular, we will explain why it has that name—in Section 16.6. 

16.4 THE THREE CONCURRENCY PROBLEMS REVISITED 

Now we are in a position to see how the strict two-phase locking protocol solves the three 

problems described in Section 16.2. Again we consider them one at a time. 

The Lost Update Problem 

Fig. 16.6 is a modified version of Fig. 16.1, showing what would happen to the interleaved 

execution of that figure under the strict two-phase locking protocol. Transaction A’s 

UPDATE at time t3 is not accepted, because it is an implicit request for an X lock on t, and 

such a request conflicts with the S lock already held by transaction B; so A goes into a wait 

state. For analogous reasons, B goes into a wait state at time t4. Now both transactions are 

unable to proceed, so there is no question of any update being lost. We have thus solved 

the lost update problem by reducing it to another problem!—but at least we have solved 

the original problem. The new problem is called deadlock. It is discussed in Section 16.5. 

Transaction A Time Transaction B 

RETRIEVE t :1 
- 

(acquire S lock on t) — 

— .2 RETRIEVE t 

— (acquire S lock on t) 

UPDATE t :3 — 

(request X lock on t) - 

wait — 

wait t4 UPDATE t 

wait (request X lock on t) 
wait wait 

wait wait 

wait wait 

Fig. 16.6 No update is lost, but deadlock occurs at time t4 

The Uncommitted Dependency Problem 

Figs. 16.7 and 16.8 are, respectively, modified versions of Figs. 16.2 and 16.3, showing 

what would happen to the interleaved executions of those figures under the strict two- 

phase locking protocol. Transaction A’s operation at time /2 (RETRIEVE in Fig. 16.7, 

UPDATE in Fig. 16.8) is not accepted in either case, because it is an implicit request for a 
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Transaction A Time Transaction B 

- 

A UPDATE t 

— (acquire X lock on t) 

RETRIEVE t _ 
(request S lock on t) — 

wait — 

wait t3 COMMIT / ROLLBACK 
wait (release X lock on t) 

resume : RETRIEVE t 14 
(acquire S lock on t) 

’ 

Fig. 16.7 Transaction A is prevented from seeing an uncommitted change at time f2 

Transaction A Time Transaction B 

- 

11 UPDATE t 

~ (acquire X lock on t) 

UPDATE t .2 _ 
(request X lock on t) — 

wait — 

wait tJ COMMIT / ROLLBACK 

wait (release X lock on t) 
resume : UPDATE t t4 
(acquire X lock on t) 

Fig. 16.8 Transaction A is prevented from updating an uncommitted change at time f2 

lock on t, and such a request conflicts with the X lock already held by B; so A goes into a 

wait state. It remains in that wait state until B reaches its tennination (either COMMIT or 

ROLLBACK), when B’s lock is released and A is able to proceed; and at that point A sees 

a committed value (either the pre-R value, if B is rolled back, or the post-R value other¬ 

wise). Either way, A is no longer dependent on an uncommitted update, and so we have 

solved the original problem. 

The Inconsistent Analysis Problem 

Fig. 16.9 is a modified version of Fig. 16.4, showing what would happen to the interleaved 

execution of that figure under the strict two-phase locking protocol. Transaction R’s 
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ACC 1 ACC 2 ACC 3 

40 50 30 

Transaction A Time Transaction B 

RETRIEVE ACC 1 : t1 
(acquire S lock on ACC 1) 

sum = 40 

RETRIEVE ACC 2 : t2 
(acquire S lock on ACC 2) 

sum = 90 

t3 

14 

t5 

t6 

RETRIEVE ACC 3 : t7 

(request S lock on ACC 3) 

wait 

wait 

RETRIEVE ACC 3 

(acquire S lock on ACC 3) 

UPDATE ACC 3 

(acquire X lock on ACC 3) 
30—- 20 

RETRIEVE ACC 1 

(acquire S lock on ACC 1) 

UPDATE ACC 1 
(request X lock on ACC 3) 

wait 

wait 

wait 

wait 

wait 

Fig. 16.9 Inconsistent analysis is prevented, but deadlock occurs at time t7 

UPDATE at time t6 is not accepted, because it is an implicit request for an X lock on ACC 

1, and such a request conflicts with the S lock already held by A; so B goes into a wait 

state. Likewise, transaction A’s RETRIEVE at time t7 is also not accepted, because it is an 

implicit request for an S lock on ACC 3, and such a request conflicts with the X lock 

already held by B; so A goes into a wait state also. Again, therefore, we have solved the 

original problem (the inconsistent analysis problem, in this case) by forcing a deadlock. 

Again, deadlock is discussed in Section 16.5. 

16.5 DEADLOCK 

We have now seen how locking—more precisely, the strict two-phase locking protocol— 

can be used to solve the three basic concurrency problems. Unfortunately, however, we 

have also seen that locking can introduce problems of its own, principally the problem of 

deadlock. Two examples of deadlock were given in the previous section. Fig. 16.10 shows 
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Transaction A Time Transaction B 

LOCK rl EXCLUSIVE -.1 

— 

- .2 LOCK r2 EXCLUSIVE 

LOCK r2 EXCLUSIVE :3 _ 
wait — 

wait 14 LOCK rl EXCLUSIVE 

wait wait 

wait wait 

Fig. 16.10 An example of deadlock 

a slightly more general version of the problem; rl and r2 in that figure are intended to rep¬ 

resent any lockable resources, not necessarily just database tuples (see Section 16.9), and 

the “LOCK . . . EXCLUSIVE” statements are intended to represent any operations that 

request X locks, either explicitly or implicitly. 

In general, then, deadlock is a situation in which two or more transactions are in a 

simultaneous wait state, each of them waiting for one of the others to release a lock before 

it can proceed. Fig. 16.10 shows a deadlock involving two transactions, but deadlocks 

involving three, four, or more transactions are also possible, at least in principle. However, 

experiments with System R suggest that deadlocks almost never do involve more than two 

transactions in practice [16.9]. 

If a deadlock occurs, it is desirable that the system detect it and break it. Detecting 

the deadlock involves detecting a cycle in the Wait-For Graph (i.e., the graph of “who is 

waiting for whom”—see Exercise 16.4). Breaking the deadlock involves choosing one of 

the deadlocked transactions (i.e., one of the transactions in the cycle in the graph) as the 

victim and rolling it back, thereby releasing its locks and so allowing some other transac¬ 

tion to proceed. Note: In practice, not all systems do in fact detect deadlocks; some just 

use a timeout mechanism and simply assume that a transaction that has done no work for 

some prescribed period of time is deadlocked. 

Observe, incidentally, that the victim has “failed” and been rolled back through no 

fault of its own. Some systems automatically restart such a transaction from the begin¬ 

ning, on the assumption that the conditions that caused the deadlock in the first place will 

probably not arise again. Other systems merely send a “deadlock victim” exception code 

back to the application; it is then up to the application to deal with the situation in some 

graceful manner. The first of these two approaches is clearly preferable from the applica¬ 

tion programmer’s point of view. But even if the programmer does sometimes have to get 

involved, it is always desirable to conceal the problem from the end user, for obvious 

reasons. 

2 Deadlock is also referred to in the literature, somewhat colorfully, as deadly embrace. 
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We justify this definition as follows: 

1. Individual transactions are assumed to be correct; that is, they are assumed to transform 

a correct state of the database into another correct state, as discussed in Chapter 15. 

2. Running the transactions one at a time in any serial order is therefore also correct 

(“any” serial order because individual transactions are assumed to be independent of 

one another). 

3. It is thus reasonable to define an interleaved execution to be correct if and only if it is 

equivalent to some serial execution (i.e., if and only if it is serializable). Note that 

“only if’! The point is, a given interleaved execution might be nonserializable and yet 

still produce a result that happens to be correct, given some specific initial state of the 

database—see Exercise 16.3—but that would not be good enough; we want correct¬ 

ness to be guaranteed (i.e., independent of particular database states), not a matter of 

mere happenstance. 

Referring back to the examples of Section 16.2 (Figs. 16.1-16.4), we can see that the 

problem in every case was precisely that the interleaved execution was not serializable— 

that is, it was never equivalent to running either A-then-fi or 5-then-A. And a study of Sec¬ 

tion 16.4 shows that the effect of the strict two-phase locking protocol is precisely to force 

serializability in every case. In Figs. 16.7 and 16.8, the interleaved execution is equivalent 

to fi-then-A. In Figs. 16.6 and 16.9, a deadlock occurs, implying that one of the two trans¬ 

actions will be rolled back (and presumably run again later). If A is the one rolled back, 

then the interleaved execution again becomes equivalent to 5-then-A. 

Terminology: Given a set of transactions, any execution of those transactions, inter¬ 

leaved or otherwise, is called a schedule. Executing the transactions one at a time, with no 

interleaving, constitutes a serial schedule; a schedule that is not serial is an interleaved 

schedule (or simply a nonserial schedule). Two schedules are said to be equivalent if and 

only if, no matter what the initial state of the database, they are guaranteed to produce the 

same result as each other. Thus, a schedule is serializable, and correct, if and only if it is 

equivalent to some serial schedule. 

Note that two different serial schedules involving the same transactions might well 

produce different results, and hence that two different interleaved schedules involving 

those same transactions might also produce different results, and yet both be correct. For 

example, suppose transaction A is of the form “Add 1 to x” and transaction B is of the 

form “Double x" (where x is some item in the database). Suppose also that the initial 

value of x is 10. Then the serial schedule A-then-fi gives x = 22, whereas the serial sched¬ 

ule fi-then-A gives x = 21. These two results are equally correct, and any schedule that is 

guaranteed to be equivalent to either A-then-fi or fi-then-A is likewise correct. 

The concept of serializability was first introduced (although not by that name) by 

Eswaran et al. in reference [16.6], That same paper also proved an important theorem, 

called the two-phase locking theorem, which we can state as follows:4 

If all transactions obey the two-phase locking protocol, then all possible inter¬ 

leaved schedules are serializable. 

4 Two-phase locking has nothing to do with two-phase commit—they just have similar names. 
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Transaction A Time Transaction B 

- - 

— :1 UPDATE t 

RETRIEVE t :2 - 

COMMIT :3 - 

:4 ROLLBACK 

Fig. 16.11 An unrecoverable schedule 

they are allowed to run interleaved. In fact, the uncommitted dependency problem dis¬ 

cussed in Section 16.2 can cause recoverability problems, as we now show. 

Assume for the moment that—as in Section 16.2—no locking protocol is in effect, 

and hence in particular that transactions never have to wait to acquire a lock. Now con¬ 

sider Fig. 16.11, which is a modified version of Fig. 16.2 (the difference is that transaction 

A now commits before transaction B rolls back). The problem here is that, in order to 

honor B’s ROLLBACK request and make it as if B never executed, we need to roll A back 

too, because A has seen one of B's updates. But rolling back A is impossible, because A 

has already committed. Thus, the schedule shown in the figure is unrecoverable. 

A sufficient condition for a schedule to be recoverable is as follows [15.2]: 

If A sees any of B's updates, then A must not commit before B terminates. 

Clearly, we want our concurrency control mechanism—that is, our locking protocol, if 

locking is what we are using—to guarantee that all schedules are recoverable in this sense. 

However, the foregoing is not the end of the story. Suppose now that we do have a 

locking protocol in place, and the protocol in question is the nonstrict form of two-phase 

locking, according to which a transaction can release locks before it terminates. Now con¬ 

sider Fig. 16.12, which is a modified version of Fig. 16.11 (the differences are that trans¬ 

action A now does not commit before transaction B's termination, but transaction B 

releases its lock on t “early”). As in Fig. 16.11, in order to honor B’s ROLLBACK request 

and make it as if B never executed, we need to roll A back too, because A has seen one of 

B's updates. What is more, we can roll A back too, because A has not yet committed. But 

cascading rollbacks in this way is almost certainly undesirable; in particular, it is clear 

that if we permit the rollback of one transaction to cascade and cause the rollback of 

another, then we need to be prepared to deal with such “cascade chains” of arbitrary 

length. In other words, the trouble with the schedule shown in the figure is that it is not 

cascade-free. 

A sufficient condition for a schedule to be cascade-free is as follows [15.2]: 

If A sees any of B's updates, then A must not do so before B terminates. 
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Transaction A Time Transaction B 

— 11 UPDATE t 

- (acquire X lock on t) 

RETRIEVE t :2 — 

(request S lock on t) - 

wait - 

wait — 

wait t3 (release lock on t) 

wait - 

resume : RETRIEVE t 14 - 

(acquire S lock on t) — 

(forced rollback) :5 ROLLBACK 

Fig. 16.12 A schedule involving cascaded rollback 

Strict two-phase locking will guarantee that all schedules are cascade-free, which is why 

that protocol is the one used in the vast majority of systems.5 Also, it is easy to see that a 

cascade-free schedule must necessarily also be a recoverable schedule, as we defined that 

term previously. 

16.8 ISOLATION LEVELS 

Serializability guarantees isolation in the ACID sense. One direct and very desirable con¬ 

sequence is that if all schedules are serializable, then the application programmer writing 

the code for a given transaction A need pay absolutely no attention at all to the fact that 

some other transaction B might be executing in the system at the same time. However, it 

can be argued that the protocols used to guarantee serializability reduce the degree of con¬ 

currency or overall system throughput to unacceptable levels. In practice, therefore, sys¬ 

tems usually support a variety of levels of “isolation” (in quotes because any level lower 

than the maximum means the transaction is not truly isolated from others after all. as we 

will soon see). 

The isolation level that applies to a given transaction might be defined as the degree 

of interference the transaction in question is prepared to tolerate on the part of concurrent 

transactions. Now, if serializability is to be guaranteed, the only amount of interference 

that can possibly be tolerated is obviously none at all! In other words, the isolation level 

should be the maximum possible—for otherwise correctness, recoverability, and cascade- 

Actually, strict two-phase locking is slightly too strict; there is no need to keep S locks until end-of- 
transaction, just as long as transactions are still two-phase. 
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Immediate Constraint Checking 

We begin with what might look like a digression: a justification for our position, first 

articulated in Chapter 9, that all integrity constraints must be checked immediately (i.e., at 

end-of-statement), not deferred to end-of-transaction. We have at least four reasons for 

adopting this position, which we now proceed to explain. 

1. As we know, a database can be regarded as a collection of propositions (assumed by 

convention to be true ones). And if that collection is ever allowed to include any 

inconsistencies, then all bets are off. We can never trust the answers we get from an 

inconsistent database; in fact, we can get absolutely any answer whatsoever from 

such a database (a proof of this fact appears in the annotation to reference [9.16] in 

Chapter 9). While the isolation or "I" property of transactions might mean that no 

more than one transaction will ever see any particular inconsistency, the fact remains 

that that particular transaction does see the inconsistency and can therefore produce 

wrong answers. Indeed, it is precisely because inconsistencies cannot be tolerated, 

not even if they are never visible to more than one transaction at a time, that the con¬ 

straints need to be enforced in the first place. 

2. In any case, it cannot be guaranteed that a given inconsistency (assuming such a thing 

is permitted) will be seen by just one transaction. Only if they follow certain proto¬ 

cols—certain unenforced (and in fact unenforceable) protocols—can transactions 

truly be guaranteed to be isolated from one another. For example, if transaction A 

sees an inconsistent state of the database and so writes inconsistent data to some file 

F, and transaction B then reads that same information from file F. then A and B are not 

really isolated from each other (regardless of whether they run concurrently or other- 

wise). In other words, the “I” property of transactions is suspect, to say the least. 

3. The previous edition of this book stated that relvar constraints were checked immedi¬ 

ately but database constraints were checked at end-of-transaction (a position that 

many writers concur with, though they usually use different terminology). But The 

Principle of Interchangeability (of base and derived relvars—see Chapter 9) implies 

that the very same real-world constraint might be a relvar constraint with one design 

for the database and a database constraint with another! Since relvar constraints must 

obviously be checked immediately, it follows that database constraints must be 

checked immediately too. 

4. The ability to perform “semantic optimization” requires the database to be consistent 
at all times, not just at transaction boundaries. Note: Semantic optimization is a tech¬ 

nique for using integrity constraints to simplify queries in order to improve perfor¬ 

mance. Clearly, if the constraints are not satisfied, then the simplifications will be 

invalid. For further discussion, see Chapter 18. 

Of course, the “conventional wisdom” is that database constraint checks, at least, 

surely have to be deferred. As a trivial example, suppose the suppliers-and-parts database 

is subject to the constraint “Supplier SI and part PI are in the same city.” If supplier SI 

s In fact the problem arises even if A does not see an inconsistent state of the database; it is still possible 
that A might write inconsistent data to some file that is subsequently read by B. 
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moves, say from London to Paris, then part PI must move from London to Paris as well. 

The conventional solution to this problem is to wrap the two updates up into a single 

transaction, like this: 

BEGIN TRANSACTION ; 
UPDATE S WHERE S# = S# ('SI') { CITY := 'Paris' } ; 
UPDATE P WHERE P# = P# ('PI') { CITY := 'Paris' } ; 
COMMIT ; 

In this conventional solution, the constraint is checked at COMMIT, and the database 

is inconsistent between the two UPDATE operations. Note in particular that if the transac¬ 

tion performing the UPDATES were to ask the question “Are supplier SI and part PI in 

the same city?” between the two UPDATE operations, it would get the answer no. 

Recall, however, that we require support for a multiple assignment operator, which lets 

us carry out several assignments as a single operation (i.e., within a single statement), with¬ 

out any integrity checking being done until all of the assignments in question have been 

executed. Recall too that INSERT, DELETE, and UPDATE are just shorthand for certain 

assignment operations. In the example, therefore, we should be able to perform the desired 

updating as a single operation, thus: 

UPDATE S WHERE S# = S# ('SI') { CITY := 'Paris' > , 
UPDATE P WHERE P# = P# ('PI') { CITY := 'Paris' > ; 

Now no integrity checking is done until both UPDATES have been done (i.e., “until we 

reach the semicolon"). Note too that there is now no way for the transaction to see an incon¬ 

sistent state of the database between the two UPDATES, because the notion of “between the 

two UPDATEs” now has no meaning. 

It follows from this example that if multiple assignment were supported, there would 

be no need for deferred checking in the traditional sense (i.e., checking that is deferred to 

end-of-transaction). 

Now we turn to the ACID properties per se. However, it suits our purposes better to 

discuss them in the order C-I-D-A. 

Correctness 

We have already given our reasons (in Chapter 15) for preferring the term correctness 

here over the more usual consistency. In fact, however, the literature usually seems to 

equate the two concepts. Here, for example, is a quote from the glossary in the book by 

Gray and Reuter [15.12]: 

Consistent. Correct. 

And the same book defines the consistency property of transactions thus: 

Consistency. A transaction is a correct transformation of the state. The actions taken as a 

group do not violate any of the integrity constraints associated with the state. This requires 

that the transaction be a correct program [s/c]. 

But if integrity constraints are always checked immediately, the database is always consis¬ 

tent—not necessarily correct!—and transactions always transform a consistent state of the 

database into another consistent state a fortiori. 
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Isolation level Dirty read Nonrepeatable read Phantom 

READ UNCOMMITTED Y Y Y 
READ COMMITTED N Y Y 
REPEATABLE READ N N Y 
SERIALIZABLE N N N 

Fig. 16.15 SQL isolation levels 

if any of the other three is specified, the implementation is free to assign some higher level, 

where “higher” is defined in terms of the ordering SERIALIZABLE > REPEATABLE 
READ > READ COMMITTED > READ UNCOMMITTED. 

If all transactions execute at isolation level SERIALIZABLE (the default), then the 

interleaved execution of any set of concurrent transactions is guaranteed to be serializable. 
However, if any transaction executes at a lesser isolation level, then serializability can be 

violated in a variety of different ways. The standard defines three kinds of violations— 

dirty read, nonrepeatable read, and phantoms (the first two of these were explained in 

Section 16.2 and the third was explained in Section 16.8)—and the various isolation levels 

are defined in terms of the violations they permit.14 They are summarized in Fig. 16.15 
(“Y” means the violation can occur, “N” means it cannot). 

We close this section by reminding you that the REPEATABLE READ of the SQL 

standard and the “repeatable read” (RR) of DB2 are not the same thing. In fact, DB2’s RR 
is the same as the standard’s SERIALIZABLE. 

16.12 SUMMARY 

We have examined the question of concurrency control. We began by looking at three 

problems that can arise in an interleaved execution of concurrent transactions if no such 
control is in place: the lost update problem, the uncommitted dependency problem, 

and the inconsistent analysis problem. All of these problems arise from schedules that 

are not serializable—that is, not equivalent to some serial schedule involving the same 

transactions. 
The most widespread technique for dealing with such problems is locking. There are 

two basic types of locks, shared (S) and exclusive (X). If a transaction has an S lock on 

an object, other transactions can also acquire an S lock on that object, but not an X lock; if 

a transaction has an X lock on an object, no other transaction can acquire a lock on the 
object at all, of either type. Then we introduce a protocol for the use of these locks to 

ensure that the lost update and other problems cannot occur: Acquire an S lock on every¬ 

thing retrieved, acquire an X lock on everything updated, and keep all locks until end-of- 
transaction. This protocol guarantees serializability. 

14 But see references [16.2] and [16.14]. 
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The protocol just described is a strict form of the two-phase locking protocol. It can 

be shown that if all transactions obey this protocol, then all schedules are serializable— 

the two-phase locking theorem. A serializable schedule implies that if A and B are any 

two transactions involved in that schedule, then either A can see B's output or B can see 

As. The two-phase locking also guarantees recoverability and cascade-free schedules; 

unfortunately, it can also lead to deadlocks. Deadlocks can be resolved by choosing one 

of the deadlocked transactions as the victim and rolling it back (thereby releasing all of its 

locks). 
Anything less than full serializability cannot be guaranteed to be safe (in general). 

However, systems typically allow transactions to operate at a level of isolation that is 

indeed unsafe, with the aim of reducing resource contention and increasing transaction 

throughput. We described one such “unsafe” level, cursor stability (this is the DB2 term; 

the SQL standard term is READ COMMITTED). 

Next we briefly considered the question of lock granularity and the associated idea 

of intent locking. Basically, before a transaction can acquire a lock of any kind on some 

object, say a database tuple, it must first acquire an appropriate intent lock (at least) on the 

“parent” of that object (e.g., the containing relvar, in the case of a tuple). In practice, such 

intent locks will usually be acquired implicitly, just as S and X locks on tuples are usually 

acquired implicitly. However, explicit LOCK statements of some kind should be pro¬ 

vided in order to allow a transaction to acquire stronger locks than the ones acquired 

implicitly (though the SQL standard provides no such mechanism). 

Next, we took another look at the so-called ACID properties of transactions, con¬ 

cluding that matters are not nearly as clear-cut in this area as is commonly supposed. 

Finally, we outlined SQL’s concurrency control support. Basically, SQL does not provide 

any explicit locking capabilities at all; however, it does support various isolation levels— 

SERIALIZABLE, REPEATABLE READ, READ COMMITTED, and READ 

UNCOMMITTED, which the DBMS will probably implement by means of locking 

behind the scenes. 

EXERCISES 

16.1 Explain serializability in your own words. 

16.2 State (a) the two-phase locking protocol; (b) the two-phase locking theorem. Explain exactly 

how two-phase locking deals with RW, WR, and WW conflicts. 

16.3 Let transactions Tl, T2, and T3 be defined to perform the following operations: 

77 : Add one to A 

T2 : Double A 

T3 : Display A on the screen and then set A to one 

(where A is some numeric item in the database). 

a. Suppose transactions 77, 72, T3 are allowed to execute concurrently. If A has initial value zero, 

how many possible correct results are there? Enumerate them. 
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b. Suppose the internal structure of 77. 72, T3 is as indicated in the following pseudocode. If the 

transactions execute without any locking, how many possible schedules are there? 

T1 T2 T3 

Rl: RETRIEVE A 
INTO al ; 

al := al + I ; 
Ul: UPDATE A 

FROM al ; 

R2: RETRIEVE A 
INTO a2 ; 

a2 := a2 * 2 ; 
U2: UPDATE A 

FROM a2 ; 

R3: RETRIEVE A 
INTO a3 ; 

display a3 ; 
U3: UPDATE A 

FROM 1 ; 

c. If again A has initial value zero, are there any interleaved schedules that in fact produce a cor¬ 

rect result and yet are not serializable? 

d. Are there any schedules that are in fact serializable but could not be produced if all three trans¬ 

actions obeyed the two-phase locking protocol? 

16.4 The following represents the sequence of events in a schedule involving transactions 77, 

72, T12. A, B.H are items in the database. 

time tO . 
time tl (T1) RETRIEVE A 
time t2 (T2) RETRIEVE B 

(Tl) RETRIEVE C 
(T4) RETRIEVE D 
(T5) RETRIEVE A 
(T2) RETRIEVE E 
(T2) UPDATE E ; 
(T3) RETRIEVE F 
(T2) RETRIEVE F 
(T5) UPDATE A ; 
(Tl) COMMIT ; 
(T6) RETRIEVE A 
(T5) ROLLBACK ; 
(T6) RETRIEVE C 
(T6) UPDATE C ; 
(Tl) RETRIEVE G 
(T8) RETRIEVE H 
(T9) RETRIEVE G 
(T9) UPDATE G ; 
(T8) RETRIEVE E 

(Tl) COMMIT ; 
(T9) RETRIEVE H 
(T3) RETRIEVE G 
(T10) RETRIEVE A 
(T9) UPDATE H ; 
(T6) COMMIT ; 
(Til) RETRIEVE C 
(T12) RETRIEVE D 
(T12) RETRIEVE C 
(T2) UPDATE F ; 
(Til) UPDATE C ; 
(T12) RETRIEVE A 
(T10) UPDATE A ; 
(T12) UPDATE D ; 
(T4) RETRIEVE G 

time t36 

Assume that RETRIEVE i (if successful) acquires an S lock on i, and UPDATE i (if successful) pro¬ 

motes that lock to X level. Assume also that all locks are held until end-of-transaction. Draw a Wait- 

For Graph (showing who is waiting for whom) representing the state of affairs at time t36. Are there 

any deadlocks at that time? 
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As the title of the paper suggests, timestamping was originally introduced in the context of 

a distributed system (where it was felt that locking imposed intolerable overheads, because of 

the messages needed to test and set locks, etc.). It is almost certainly not appropriate in a non- 

distributed system. Indeed, there is considerable skepticism as to its practicality in distributed 

systems also. One obvious problem is that each tuple has to carry the timestamp of the transac¬ 

tion that last retrieved it (as well as the timestamp of the transaction that last updated it), which 

implies that every read becomes a write! Another problem is that B must not see any of A’s 

updates until A commits, implying that (in effect) A’s updates are “locked exclusive” until com¬ 

mit anyway. In fact, reference [15.12] claims that timestamping schemes are really just a 

degenerate case of optimistic concurrency control schemes [16.16], which in turn suffer from 

problems of their own. 

Note: A notion much discussed in the literature, “Thomas’s write rule” [16.22], is effec¬ 

tively a refinement on the foregoing scheme; it is based on the idea that certain updates can be 

skipped because they are already obsolete (the user-level request is honored but no physical 

update is done). 

16.4 M. W. Blasgen, J. N. Gray, M. Mitoma, and T. G. Price; “The Convoy Phenomenon,” ACM 

Operating Systems Review 13, No. 2 (April 1979). 

The convoy phenomenon is a problem encountered with high-traffic locks, such as the lock 

needed to write a record to the log, in systems with preemptive scheduling. (“Scheduling" here 

refers to the problem of allocating machine cycles to transactions, not to the interleaving of data¬ 

base operations from different transactions as discussed in the body of this chapter.) The prob¬ 

lem is as follows. If a transaction T is holding a high-traffic lock and is preempted by the system 

scheduler—that is, forced into a wait state, perhaps because its timeslice has expired—then a 

convoy of transactions will form, all waiting for their turn at the high-traffic lock. When T comes 

out of its wait state, it will soon release the lock, but (precisely because the lock is high-traffic) it 

will probably rejoin the convoy before the next transaction has finished with the resource, will 

therefore not be able to continue processing, and so will go into a wait state again. 

The root of the problem is that the scheduler is usually part of the underlying operating 

system, not the DBMS, and is therefore based on different design assumptions. As the authors 

observe, a convoy, once established, tends to be stable; the system is in a state of “lock thrash¬ 

ing,” most of the machine cycles are devoted to process switching, and not much useful work is 

being done. A suggested solution—barring the possibility of replacing the scheduler—is to 

grant the lock not on a first-come/first-served basis but instead in random order. 

16.5 Stephen Blott and Henry F. Korth: “An Almost-Serial Protocol for Transaction Execution in 

Main-Memory Database Systems,” Proc. 28th Int. Conf. on Very Large Data Bases, Hong Kong 

(August 2002). 

Proposes a serializability mechanism for main-memory systems that avoids the use of locks 

entirely. 
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Predicate Locks in a Data Base System,” CACM 19, No. 11 (November 1976). 
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ing,” ACM TODS 10, No. 1 (March 1985). 
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High Contention Environments,” ACM TODS 17, No. 2 (June 1992). 
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16.15 Henry F. Korth and Greg Speegle: “Formal Aspects of Concurrency Control in Long-Duration 

Transaction Systems Using the NT/PV Model,” ACM TODS 19, No. 3 (September 1994). 

As noted elsewhere (see, e.g., references [15.3], [15.9], [15.16], and [15.17]), serializability is 

often considered too demanding a condition to impose on certain kinds of transaction process¬ 

ing systems, especially in newer application areas that involve human interaction and hence 

transactions of long duration. This paper presents a new transaction model called NT/PV 

(“nested transactions with predicates and views”) that addresses such concerns. Among other 

things, (a) it shows that the standard model of transactions with serializability is a special case, 

(b) it defines “new and more useful correctness classes,” and (c) it claims that the new model 

provides “an appropriate framework for solving long-duration transaction problems.” 

16.16 H. T. Kung and John T. Robinson: “On Optimistic Methods for Concurrency Control,” ACM 

TODS 6, No. 2 (June 1981). 

Locking schemes can be described as pessimistic, inasmuch as they make the worst-case 

assumption that every piece of data accessed by a given transaction might be needed by some 

concurrent transaction and had therefore better be locked. By contrast, optimistic schemes— 

also known as certification or validation schemes—make the opposite assumption that con¬ 

flicts are likely to be quite rare in practice. Thus, they operate by allowing transactions to run to 

completion completely unhindered, and then checking at commit time to see whether a conflict 

did in fact occur. If it did, the offending transaction is simply started again from the beginning. 

No updates are ever written to the database prior to successful completion of commit process¬ 

ing, so such restarts do not require any updates to be undone. 

A subsequent paper [16.7] showed that, under certain assumptions, optimistic methods 

enjoy certain inherent advantages over traditional locking methods in terms of the expected 

level of concurrency (i.e., number of simultaneous transactions) they can support, suggesting 

that optimistic methods might become the technique of choice in systems with large numbers 

of parallel processors. (By contrast, reference [15.12] claims that optimistic methods in general 
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system must provide a special new kind of update statement (e.g., “decrement by*, if and only 
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if the current value is greater than y"). It can then perform the update by placing the decrement 

amount a: “in escrow,” taking it out of escrow at end-of-transaction (and committing the change 

if end-of-transaction is COMMIT, or adding the amount back into the original total if end-of- 

transaction is ROLLBACK). 

The paper describes a number of cases in which the escrow method can be used. One 

example of a commercial product that supports the technique is the Fast Path version of IMS, 
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17.2 DISCRETIONARY ACCESS CONTROL 

To repeat from the previous section, most DBMSs support either discretionary control or 

mandatory control or both. In fact it would be more accurate to say that most systems sup¬ 

port discretionary control, and some systems support mandatory control as well; discretion¬ 

ary control is thus more likely to be encountered in practice, and so we deal with it first. 

As already noted, we need a language in which to define (discretionary) security con¬ 

straints. In practice, however, it is easier to state what is allowed rather than what is not 

allowed; security languages therefore typically support the definition, not of security con¬ 

straints as such, but rather of authorities, which are effectively the opposite of security 

constraints (if something is authorized, it is not constrained). We therefore begin by 

briefly describing a hypothetical language for defining authorities.2 Here first is a simple 

example: 

AUTHORITY SA3 
GRANT RETRIEVE { S#, SNAME, CITY }, DELETE 
ON S 
TO Jim, Fred, Mary ; 

This example is intended to illustrate the point that (in general) authorities have four 

components, as follows: 

1. A name (SA3—“suppliers authority three”—in the example) 

2. A set of privileges, specified by means of the GRANT clause 

3. The relvar to which the authority applies, specified by means of the ON clause 

4. A set of “users” (more accurately, user IDs) who are to be granted the specified privi¬ 

leges on the specified relvar, specified by means of the TO clause 

Here then is the general syntax: 

AUTHORITY <authority name> 
GRANT <privilege commalist> 
ON <relvar name> 
TO <user ID commalist> ; 

Explanation: The <authority name>, <relvar name>, and <user ID commalist> are 
self-explanatory (except that we regard ALL, meaning all known users, as a legal “user 

ID” in this context). Each <privilege> is one of the following: 

RETRIEVE [ { <attribute name commalist> } ] 
INSERT [ { <attribute name commalist> ) ] 
DELETE 
UPDATE [ { <attribute name commalist> } ] 
ALL 

RETRIEVE (unqualified), INSERT (unqualified), DELETE, and UPDATE (unquali¬ 

fied) are self-explanatory (well, perhaps not quite; the RETRIEVE privilege is also 

needed just to mention the relevant object—e.g., in a view definition or an integrity con¬ 

straint—as well as for retrieval per se). If a commalist of attribute names is specified with 

2 Tutorial D as currently defined [3.3] deliberately does not include any authority definition facilities, but 
the hypothetical language of the present section can be regarded as being in the spirit of Tutorial D. 
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RETRIEVE, then the privilege applies only to the attributes specified; INSERT and 

UPDATE with a commalist of attribute names are defined analogously. The specification 

ALL is shorthand for all privileges: RETRIEVE (all attributes), INSERT (all attributes), 

DELETE, and UPDATE (all attributes). Note: For simplicity, we ignore the question of 

whether any special privileges are required in order to perform general relational assign¬ 

ments. Also, we deliberately limit our attention to data manipulation operations; in prac¬ 

tice, however, there would be many other operations that we would also want to be subject 

to authorization checking, such as the operations of defining and dropping relvars—and 

the operations of defining and dropping authorities themselves, come to that. We omit 

detailed consideration of such operations here for space reasons. 

What should happen if some user attempts some operation on some object for which 

that user is not authorized? The simplest option is obviously just to reject the attempt (and 

to provide a suitable error message, of course); such a response will surely be the one 

most commonly required in practice, so we might as well make it the default. In more sen¬ 

sitive situations, however, some other action might be more appropriate; for example, it 

might be necessary to terminate the program or lock the user’s keyboard. It might also be 

desirable to record such attempts in a special log (“threat monitoring”), in order to permit 

subsequent analysis of attempted security breaches and also to serve in itself as a deterrent 

against illegal infiltration (see the discussion of audit trails at the end of this section). 

Of course, we also need a way of dropping authorities: 

DROP AUTHORITY <authority name> ; 

For simplicity, we assume that dropping a given relvar will automatically drop any 

authorities that apply to that relvar. 

Here are some further examples of authorities, most of them fairly self-explanatory. 

1. AUTHORITY EX1 
GRANT RETRIEVE { P#, PNAME, WEIGHT > 
ON P 
TO Jacques, Anne, Charley ; 

Users Jacques, Anne, and Charley can see a “vertical subset” of base relvar P. The 
example is thus an example of a value-independent authority. 

2. AUTHORITY EX2 
GRANT RETRIEVE, DELETE, UPDATE { SNAME, STATUS > 
ON LS 
TO Dan, Misha ; 

Relvar LS here is the “London suppliers” view from Fig. 10.4 in Chapter 10. Users 

Dan and Misha can thus see a “horizontal subset” of base relvar S. This example is an 

example of a value-dependent authority. Note too that although users Dan and Misha 

can DELETE certain supplier tuples (via view LS), they cannot INSERT them, and 

they cannot UPDATE attributes S# or CITY. 

3. VAR SSPPO VIEW 
( S JOIN SP JOIN ( P WHERE CITY = 'Oslo' ) { P# } ) 

{ ALL BUT P#, QTY > ; 

AUTHORITY EX3 
GRANT RETRIEVE 
ON SSPPO 
TO Lars ; 
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This is another value-dependent example: User Lars can retrieve supplier information, 

but only for suppliers who supply some part stored in Oslo. 

4. VAR SSQ VIEW 
SUMMARIZE SP PER S { S# > ADD SUM ( QTY ) AS SQ ; 

AUTHORITY EX4 
GRANT RETRIEVE 
ON SSQ 
TO Fidel ; 

User Fidel can see total shipment quantities per supplier, but not individual shipment 

quantities. User Fidel thus sees a statistical summary of the underlying base data. 

5. AUTHORITY EX5 
GRANT RETRIEVE, UPDATE { STATUS } 
ON S 
WHEN DAY () IN { 'Mon', 'Tue', 'Wed', 'Thu', ’Fri 

AND NOW () > TIME '09:00:00' 
AND NOW () <, TIME '17:00:00' 

TO ACCOUNTING r 

Here we are extending our AUTHORITY syntax to include a WHEN clause to specify 

certain “context controls”; we are also assuming that the system provides two niladic 

operators—that is, operators that take no explicit operands—called DAY() and 

NOW(), with the obvious interpretations. Authority EX5 guarantees that supplier sta¬ 

tus values can be changed by the user ACCOUNTING (presumably meaning anyone 

in the accounting department) only on a weekday, and only during working hours. 

This is thus an example of what is sometimes called a context-dependent authority, 

because a given access request will or will not be allowed depending on the context— 

here the combination of day of the week and time of day—in which it is issued. 

Other examples of built-in operators that the system probably ought to support 

anyway and could be useful for context-dependent authorities include: 

TODAY() : Value = the current date 
USER() : Value = the ID of the current user 
TERMINAL() : Value = the ID of the originating terminal 

for the current request 

By now you have probably realized that, conceptually speaking, authorities are all 

“ORed” together. In other words, a given access request (meaning, to repeat, the combina¬ 

tion of requested operation plus requested object plus requesting user) is acceptable if and 

only if at least one authority permits it. Note, however, that if, for example, (a) one author¬ 

ity lets user Nancy retrieve part colors and (b) another lets her retrieve part weights, it 

does not follow that she can retrieve part colors and weights together (a separate authority 

would be required for the combination). 

Finally, we have implied, but never quite said as much, that users can do only the 

things they are explicitly allowed to do by the defined authorities. Anything not explicitly 

authorized is implicitly outlawed! 

Request Modification 

In order to illustrate some of the ideas introduced in this section so far, we now briefly 

describe the security aspects of the University Ingres prototype and its query language 
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QUEL, since they adopt an interesting approach to the problem. Basically, any given 

QUEL request is automatically modified before execution in such a way that it cannot 

possibly violate any security constraints. For example, suppose user U is allowed to 
retrieve parts stored in London only: 

DEFINE PERMIT RETRIEVE ON P TO U 
WHERE P.CITY = "London" 

(see later for details of the DEFINE PERMIT operation). Now suppose user U issues the 
QUEL request: 

RETRIEVE ( P.P#, P.WEIGHT ) 
WHERE P.COLOR = "Red" 

Using the specified “permit” for the combination of relvar P and user U as stored in 

the catalog, the system automatically modifies this request so that it looks like this: 

RETRIEVE ( P.P#, P.WEIGHT ) 
WHERE P.COLOR = "Red" 
AND P.CITY = "London" 

And this modified request cannot possibly violate the security constraint. Note, inciden¬ 

tally, that the modification process is “silent”: User U is not informed that the system has 
in fact executed a statement that is somewhat different from his or her original request, 

because that fact in itself might be sensitive (user U might not even be allowed to know 
there are any non-London parts). 

The process of request modification just outlined is actually identical to the tech¬ 

nique used for the implementation of views [10.12] and also (in the case of the Ingres pro¬ 

totype specifically) integrity constraints [9.23]. So one advantage of the scheme is that it 

is very easy to implement—much of the necessary code exists in the system already. 

Another is that it is comparatively efficient—the security enforcement overhead occurs at 

compile time instead of run time, at least in part. Yet another advantage is that some of the 
awkwardnesses that can occur with the approach described earlier when a given user 

needs different privileges over different portions of the same relvar do not arise (see Sec¬ 

tion 17.6 for a specific illustration of this point). 
One disadvantage is that not all security constraints can be handled in this simple 

fashion. As a trivial counterexample, suppose user U is not allowed to access relvar P at 

all. Then no simple “modified” form of the original RETRIEVE can preserve the illusion 

that relvar P does not exist. Instead, an explicit error message along the lines of “You are 

not allowed to access this relvar” must necessarily be produced. Or the system could sim¬ 

ply lie and say “No such relvar exists.” Or, better yet, it could say “Either no such relvar 

exists or you are not allowed to access it.” 

Here then is the syntax of DEFINE PERMIT: 

DEFINE PERMIT <operation name commalist> 
ON <relvar name> [ ( <attribute name commalist> ) ] 
TO <user ID> 

[ AT <terminal ID commalist> ] 
[ FROM <time> TO <time> ] 
[ ON <day> TO <day> ] 
[ WHERE <bool exp> ] 









Chapter 17 / Security 513 

s# SNAME STATUS CITY LEVEL 

SI Smith 20 London 2 
S2 Jones 10 Paris 3 
S3 Blake 30 Paris 2 
S4 Clark 20 London 4 
S5 Adams 30 Athens 3 

Fig. 17.1 Relvar S with classification levels (example) 

The system will modify this request so that it looks like this: 

S WHERE CITY = 'London' AND LEVEL < user clearance 

Analogous considerations apply to update operations. For example, user U3 is not 
aware that the tuple for S4 exists. To that user, therefore, the following INSERT seems 

reasonable: 

INSERT S RELATION { TUPLE { S# S# ( ' S4' ) , 
SNAME NAME ('Baker'), 
STATUS 25, 
CITY 'Rome' } > ; 

The system must not reject this INSERT, because to do so would effectively tell user U3 

that supplier S4 does exist after all. So it accepts it, but modifies it to: 

INSERT S RELATION { TUPLE { S# S# ('S4'), 
SNAME NAME ('Baker’), 
STATUS 25, 
CITY 'Rome', 
LEVEL 3 > > ; 

Observe, therefore, that the primary key for suppliers is not just {S#}, it is the combina¬ 

tion {S#,LEVEL}. Note: We are assuming here for simplicity that there is just one candi¬ 

date key, which we can therefore regard, harmlessly, as the primary key. 
More terminology: The suppliers relvar is an example of a multi-level relvar. The fact 

that "the same” data looks different to different users is called polyinstantiation. Follow¬ 

ing the INSERT just discussed, for example, a request to retrieve supplier S4 returns one 

result to a user U4 with top secret clearance, another to user U3 (with secret clearance), 

and yet another to user U2 (with confidential clearance). 
DELETE and UPDATE are treated analogously; we omit the details here, but several 

of the references at the end of the chapter discuss such issues in depth. A question: Do 

you think the ideas discussed in this subsection constitute a violation of The Information 

Principle? Justify your answer! 

17.4 STATISTICAL DATABASES 

In the present context, a statistical database is a database that permits queries that 

derive aggregated information—for example, sums or averages—but not queries that 
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derive individual information. For example, the query “What is the average employee 

salary?” might be permitted, while the query “What is the salary of employee Mary?” 

would not be. 
The problem with such databases is that sometimes it is possible to make inferences 

from legal queries to deduce the answers to illegal ones. As reference [17.8] puts it: 

“Summaries contain vestiges of the original information; a snooper might be able to 

(re)construct this information by processing enough summaries. This is called deduction 

of confidential information by inference.” We remark that this problem is likely to become 

more and more significant as the use of data warehouses increases (see Chapter 22). 
Here is a detailed example. Suppose the database contains just one relvar, STATS (see 

Fig. 17.2). Assume for simplicity that all attributes contain either character strings or 

numbers. Suppose further that some user U is authorized to perform statistical queries 

(only) and is intent on discovering Alf’s salary. Suppose finally that U knows that Alf is a 

programmer and is male. Now consider the following queries: 

1. WITH ( STATS WHERE SEX = 'M' AND 
OCCUPATION = 'Programmer' ) AS X : 

COUNT ( X ) 

Result: 1. 

2. WITH ( STATS WHERE SEX = 'M' AND 
OCCUPATION = 'Programmer' ) AS X : 

SUM ( X, SALARY ) 

Result: 50K. 

The security of the database has clearly been compromised, even though user U has 

issued only legitimate statistical queries. As the example illustrates, if the user can find a 

boolean expression that identifies some individual, then information regarding that indi¬ 

vidual is no longer secure. This fact suggests that the system should refuse to respond to a 

query for which the cardinality of the set to be summarized is less than some lower bound 

NAME SEX CHILDREN OCCUPATION SALARY TAX AUDITS 

Alf M 3 Programmer 50K 10K 3 

Bea F 2 Physician 130K 10K 0 

Cyn F 0 Programmer 56K 18K 1 

Dee F 2 Builder 60K 12K 1 

Ern M 2 Clerk 44K 4K 0 

Fay F 1 Artist 30K OK 0 

Guy M 0 Lawyer 190K OK 0 

Hal M 3 Homemaker 44K 2K 0 

Ivy F 4 Programmer 64K 10K 1 

Joy F 1 Programmer 60K 20K 1 

Fig. 17.2 Relvar STATS (sample value) 

1 To save writing, the queries in this section are all expressed in an abbreviated form of Tutorial I). The 
expression COUNT(X) in Query 1, for example, should more properly be EXTEND TABLE_DEE ADD 
COUNT(X) AS RESULT1 (say). 



Chapter 17 / Security 515 

b. It also suggests that the system should refuse to respond if that cardinality is greater 

than the upper bound n - b (where n is the cardinality of the containing relation), because 
the foregoing result could equally well be obtained as follows: 

3. COUNT ( STATS ) 

Result: 12. 

4. WITH ( STATS WHERE NOT ( SEX = 'M' AND 
OCCUPATION = 'Programmer' ) ) AS X : 

COUNT ( X ) 

Result: 11; 12- 11 = 1. 

5. SUM ( STATS, SALARY ) 

Result: 728K. 

6. WITH ( STATS WHERE NOT ( SEX = 'M' AND 
OCCUPATION = 'Programmer' ) ) AS X : 

SUM ( X, SALARY ) 

Result: 678K; 728K - 678K = 50K. 

Unfortunately, it is easy to show that simply restricting queries to those for which the 

set to be summarized has cardinality c in the range b < c < n - b is inadequate to avoid 

compromise, in general. Consider Fig. 17.2 again, and suppose b = 2; queries will be 
answered only if c is in the range 2 < c < 8. The boolean expression 

SEX = 'M' AND OCCUPATION = 'Programmer' 

is thus no longer admissible. But consider the following queries: 

7. WITH ( STATS WHERE SEX = 'M' ) AS X : 
COUNT ( X ) 

Result: 4. 

8. WITH ( STATS WHERE SEX = 'M' AND NOT 
( OCCUPATION = 'Programmer' ) ) AS X : 

COUNT ( X ) 

Result: 3. 

From Queries 7 and 8, user U can deduce that there exists exactly one male program¬ 
mer, who must therefore be Alf (since U already knows this description fits Alf). Alf’s sal¬ 

ary can thus be discovered as follows: 

9. WITH ( STATS WHERE SEX = ’M' ) AS X : 
SUM ( X, SALARY ) 

Result: 328K. 

10. WITH ( STATS WHERE SEX = 'M' AND NOT 
( OCCUPATION = 'Programmer' ) ) : 

SUM ( X, SALARY ) 

Result: 278K; 328K - 278K = 50K. 

The boolean expression SEX = 'M' AND OCCUPATION = 'Programmer' is called an 

individual tracker for Alf [17.8], because it enables the user to track down information 
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concerning the individual Alf. In general, if the user knows a boolean expression BE that 

identifies some specific individual /, and if BE can be expressed in the form BE1 AND 

BE2, then the boolean expression BE1 AND NOT BE2 is a tracker for 7 (provided that 

BE1 and BE1 AND NOT BE2 are both admissible—that is, they both identify result sets 

with cardinality c in the range b < c < n - b). The reason is that the set identified by BE is 

identical to the difference between the set identified by BE1 and the set identified by BE1 

AND NOT BE2: 

{ x : BE > a { x : BE1 AND BE2 > 
a {x : BE1 > MINUS { x : BE1 AND NOT BE2 } 

See Fig. 17.3. 
Reference [17.8] generalizes the foregoing ideas and shows that, for almost any sta¬ 

tistical database, a general tracker (as opposed to a set of individual trackers) can always 
be found. A general tracker is a boolean expression that can be used to find the answer to 

any inadmissible query—that is, any query involving an inadmissible expression. (By 

contrast, an individual tracker works only for queries involving some specific inadmissible 

expression.) In fact, any expression with result cardinality c in the range 2b < c < n - 2b is 
a general tracker (b must be less than nl4, which it typically will be in any realistic situa¬ 

tion). Once such a tracker is found, a query involving an inadmissible expression BE can 
be answered as illustrated by the following example. (For definiteness we consider the 

case where the result set cardinality corresponding to BE is less than b. The case where it 

is instead greater than n - b is handled analogously.) Note that it follows from the defini¬ 

tion that T is a general tracker if and only if NOT T is also a general tracker. 
Example: Assume again that b = 2; then a general tracker is any expression with 

result set cardinality c in the range 4 < c < 6. Suppose again that user U knows that Alf is a 
male programmer—-that is, the inadmissible boolean expression BE is (as before) 

SEX = 'M' AND OCCUPATION = 'Programmer' 

—and suppose that U wishes to discover Alf's salary. We will use a general tracker twice, 

first to ascertain that BE in fact identifies Alf uniquely (Steps 2-4), and then to determine 

Alf s salary (Steps 5-7). 

Set identified by BE1 

Set identified by 

AND 
NOT 
BE2 

Set identified 
by BE1 AND BE2 
- i.e., { I > 

Set identified by BE2 

Fig. 17.3 The individual tracker BE1 AND NOT BE2 
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Step 1: Make a guess at a tracker, T. As our guess we choose T to be the expression: 

AUDITS = 0 

Step 2: Get the total number of individuals in the database, using the expressions T and 
NOT T: 

WITH ( STATS WHERE AUDITS = 0 ) AS X : 
COUNT ( X ) 

Result: 5. 

WITH ( STATS WHERE NOT ( AUDITS = 0 ) ) AS X : 
COUNT ( X ) 

Result: 5; 5 + 5 = 10. 

It can now easily be seen that our guess T is indeed a general tracker. 

Step 3: Get the result of adding (a) the number of individuals in the database plus (b) the 

number satisfying the inadmissible expression BE, using the expressions BE OR T and BE 
OR NOT T: 

WITH ( STATS WHERE ( SEX = 'M' AND 
OCCUPATION = 'Programmer' ) 

OR AUDITS = 0 ) AS X : 
COUNT ( X ) 

Result: 6. 

WITH ( STATS WHERE ( SEX = 'M' AND 
OCCUPATION = 'Programmer' ) 

OR NOT ( AUDITS = 0 ) ) AS X : 
COUNT ( X ) 

Result: 5; 6 + 5 = 11. 

Step 4: From the results so far, we have that the number of individuals satisfying BE is 
one (result of Step 3 minus result of Step 2); that is, BE designates Alf uniquely. 

Now we repeat (in Steps 5 and 6) the queries of Steps 2 and 3, but using SUM instead 

of COUNT. 

Step 5: Get the total salary of individuals in the database, using the expressions T and 

NOT T: 

WITH ( STATS WHERE AUDITS = 0 ) AS X : 
SUM ( X, SALARY ) 

Result: 43 8 K. 

WITH ( STATS WHERE NOT ( AUDITS = 0 ) ) AS X : 
SUM ( X, SALARY ) 

Result: 290K; 438K + 290K = 728K. 

Step 6: Get the sum of Alf s salary and the total salary, using the expressions BE OR T 

and BE OR NOT T: 
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WITH ( STATS WHERE ( SEX = 'M' AND 
OCCUPATION = 'Programmer' ) 

OR AUDITS = 0 ) AS X : 
SUM ( X, SALARY ) 

Result: 488K. 

WITH ( STATS WHERE ( SEX = 'M' AND 
OCCUPATION = 'Programmer' ) 

OR NOT ( AUDITS = 0 ) ) AS X : 
SUM ( X, SALARY ) 

Result: 290K; 488K + 290K = 778K. 

Step 7: Get Alf’s salary by subtracting the total salary (found in Step 5) from the result of 

Step 6. 

Result: 50K. 

Fig. 17.4 illustrates the general tracker: 

{ x : BE } m ( { x : BE OR T > UNION { x : BE OR NOT T > ) 
MINUS { x : T OR NOT T > 

If the initial guess was wrong (i.e., T turns out not to be a general tracker), then one or 

both of the expressions (BE OR T) and (BE OR NOT T) might be inadmissible. For 

example, if the result set cardinalities for BE and T are p and q, respectively, where p < b 

and b < q < 2b, then it is possible that the result set cardinality for (BE OR NOT T) is 

greater than n - b. In such a situation it is necessary to make another guess at a tracker and 

try again. Reference [17.8] suggests that the process of finding a general tracker is not dif¬ 

ficult in practice. In our particular example, the initial guess is a general tracker (its result 

set cardinality is 5), and the queries in Step 3 are both admissible. 

To sum up: A general tracker “almost always” exists, and is usually both easy to find 

and easy to use; in fact, it is often possible to find a tracker quickly just by guessing 

[17.8]. Even in those cases where a general tracker does not exist, reference [17.8] shows 

that specific trackers can usually be found for specific queries. It is hard to escape the con¬ 

clusion that security in a statistical database is a real problem. 
So what can be done? Several suggestions have appeared in the literature, but none of 

them seems totally satisfactory. For example, one possibility is “data swapping"—that is, 

swapping attribute values among tuples in such a way that overall statistical accuracy is 

maintained, so that even if a specific value (say a specific salary) is identified there is no 

Set identified by T Set identified by NOT T 

Set identified by BE — i.e., 

{ I > 

Fig. 17.4 The general tracker T 
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way of knowing which particular individual that value belongs to. The difficulty with this 

approach lies in finding sets of entries whose values can be swapped in such a fashion. 

Similar limitations apply to most other suggested solutions. For the present, therefore, it 

seems hard to disagree with the conclusions of reference [17.8]: “Compromise is straight¬ 
forward and cheap. The requirement of complete secrecy of confidential information is 

not consistent with the requirement of producing exact statistical measures for arbitrary 

subsets of the population. At least one of these requirements must be relaxed before assur¬ 
ances of secrecy can be believed.” 

17.5 DATA ENCRYPTION 

We have assumed so far in this chapter that any would-be infiltrator will be using the nor¬ 

mal system facilities to access the database. We now turn our attention to the case of a 
“user” who attempts to bypass the system (e.g., by physically removing a disk or tapping 

into a communication line). The most effective countermeasure against such threats is 

data encryption: that is, storing and transmitting sensitive data in encrypted form. 

In order to discuss some of the concepts of data encryption, we need to introduce 

some more terminology. The original (unencrypted) data is called the plaintext. The 
plaintext is encrypted by subjecting it to an encryption algorithm, whose inputs are the 

plaintext and an encryption key; the output from this algorithm—the encrypted form of 

the plaintext—is called the ciphertext. The details of the encryption algorithm are made 

public, or at least are not specially concealed, but the encryption key is kept secret. The 

ciphertext, which should be unintelligible to anyone not holding the encryption key, is 
what is stored in the database or transmitted down the communication line. 

Example: Let the plaintext be the string 

AS KINGFISHERS CATCH FIRE 

(we assume for simplicity that the only data characters we have to deal with are uppercase 

letters and blanks). Let the encryption key be the string 

ELIOT 

and let the encryption algorithm be as follows: 

1. Divide the plaintext into blocks of length equal to that of the encryption key: 

AS + KI NGFIS HERS+ CATCH +FIRE 

(blanks now shown explicitly as “+”). 

2. Replace each character of the plaintext by an integer in the range 00-26, using blank 

= 00, A = 01,Z = 26: 

0119001109 1407060919 0805181900 0301200308 0006091805 

3. Repeat Step 2 for the encryption key: 

0512091520 
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4. For each block of the plaintext, replace each character by the sum modulo 27 of its 

integer encoding and the integer encoding of the corresponding character of the 
encryption key: 

0119001109 1407060919 0805181900 0301200308 0006091805 
0512091520 0512091520 0512091520 0512091520 0512091520 

0604092602 1919152412 1317000720 0813021801 0518180625 

5. Replace each integer encoding in the result of Step 4 by its character equivalent: 

FDIZB SSOXL MQ + GT HMBRA ERRFY 

The decryption procedure for this example is straightforward, given the key. (Exer¬ 

cise: Decrypt the ciphertext just shown.) The question is, how difficult is it for a would-be 

infiltrator to determine the key without prior knowledge, given matching plaintexts and 

ciphertexts? In our simple example, the answer is, fairly obviously, “not very”; but, 

equally obviously, much more sophisticated schemes can easily be devised. Ideally the 

scheme employed should be such that the work involved in breaking it far outweighs any 

potential advantage to be gained in doing so. (In fact, a remark along the same general 

lines applies to all aspects of security: The aim should always be to make the cost of 

breaking the system significantly greater than the potential payoff.) The accepted ultimate 

objective for such schemes is that the inventor of the scheme, holding matching plaintext 

and ciphertext, should be unable to determine the key, and hence unable to decipher 

another piece of ciphertext. 

The Data Encryption Standard 

The foregoing example made use of a substitution procedure: An encryption key was 

used to determine, for each character of the plaintext, a ciphertext character to be substi¬ 

tuted for that character. Substitution is one of the two basic approaches to encryption as 

traditionally practiced; the other is permutation, in which plaintext characters are simply 

rearranged into some different sequence. Neither of these approaches is particularly secure 

in itself, but algorithms that combine the two can provide quite a high degree of security. 

One such algorithm is the Data Encryption Standard (DES), which was developed by 

IBM and adopted as a U.S. federal standard in 1977 [17.20]. 

To use the DES, plaintext is divided into 64-bit blocks and each block is encrypted 

using a 64-bit key (actually the key consists of 56 data bits plus 8 parity bits, so there are 

not 264 but only 256 possible keys). A block is encrypted by applying an initial permuta¬ 

tion to it, then subjecting the permuted block to a sequence of 16 complex substitution 

steps, and finally applying another permutation, the inverse of the initial permutation, to 

the result of the last of those steps. The substitution at the ith step is not controlled directly 

by the original encryption key K but by a key Ki that is computed from the values K and i. 
For details, see reference [17.20], 

The DES has the property that the decryption algorithm is identical to the encryption 

algorithm, except that the Ki’s are applied in reverse order. 

As computers have grown in speed and capacity, however, the DES has increasingly 

been criticized for its reliance on comparatively small (56-bit) keys. In 2000, therefore, 
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the U.S. federal government adopted a new standard, the Advanced Encryption Stan¬ 

dard (AES), based on the so-called Rijndael algorithm [17.5], which uses keys of 128, 

192, or 256 bits. Even 128-bit keys mean the new standard is considerably more secure 
than the old one; according to reference [26.34], if '‘we could build a computer fast 

enough to crack DES in one second, then that computer would compute for about 149 tril¬ 
lion years to crack a 128-bit AES key” (slightly reworded). For further details, see refer¬ 

ence [17.5]. 

Public-Key Encryption 

We have already indicated that the DES might not be truly secure; the AES is better, but 

many people nevertheless feel that such schemes might be broken by brute force, if by no 

more intelligent means. Many people also feel that the various public-key encryption 
schemes render such approaches technologically obsolete anyway. In a public-key 

scheme, both the encryption algorithm and the encryption key are made freely available; 

thus, anyone can convert plaintext into ciphertext. But the corresponding decryption key 

is kept secret (public-key schemes involve two keys, one for encryption and one for 

decryption). Furthermore, the decryption key cannot feasibly be deduced from the encryp¬ 

tion key; thus, even the person performing the original encryption cannot perform the cor¬ 

responding decryption if not authorized to do so. 

The original idea of public-key encryption is due to Diffie and Heilman [17.9]. We 

describe the best-known specific approach—due to Rivest, Shamir, and Adleman 

[17.17]—to show how such a scheme typically works in practice. Their approach (now 

usually referred to as the RSA scheme, from the initials of its inventors) is based on the 

following two facts: 

1. There is a known fast algorithm for determining whether a given number is prime. 

2. There is no known fast algorithm for finding the prime factors of a given composite 

(i.e., nonprime) number. 

Reference [17.12] gives an example in which determining (on a typical machine of 

the time) whether a given number of 130 digits was prime took about seven minutes, 

whereas finding the two prime factors (on the same machine) of a number obtained by 

multiplying two primes of 63 digits each would take about 40 quadrillion years (one qua¬ 

drillion = 1,000,000,000,000,000).4 

The RSA scheme works as follows: 

1. Choose, randomly, two distinct large primesp and q, and compute the product r-p*q. 

2. Choose, randomly, a large integer e that is relatively prime to—that is, has no factors 
other than unity in common with—the product (p-1) * (c/-l). The integer e is the 

4 Even so, there are questions about the security of the RSA scheme. Reference [17.12] appeared in 1977. 

In 1990, Lenstra and Manasse successfully factored a 155-digit number [17.24]; they estimated that the 

amount of computation involved, which was spread over some 1,000 computers, was equivalent to execut¬ 

ing a million instructions a second on a single machine for a period of 273 years. The 155-digit number in 

question was the ninth Fermat number 2512 + 1 (note that 512 = 2y). See also reference [17.14], which 

reports on a completely different—and successful!—approach to breaking RSA encryption. 
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encryption key. Note: Choosing e is straightforward; for example, any prime greater 

than both p and q will do. 

3. Take the decryption key d to be the unique “multiplicative inverse" of e modulo {p-1) 

* (t/-l); that is, 

d * e = 1 modulo (p-1) * (g-1) 

The algorithm for computing d given e, p, and q is straightforward and is given in ref¬ 

erence [17.17]. 

4. Publish the integers r and e but not d. 

5. To encrypt a piece of plaintext P (which we assume for simplicity to be an integer 

less than r), replace it by the ciphertext C, computed as follows: 

C - Pe modulo r 

6. To decrypt a piece of ciphertext C, replace it by the plaintext P, computed as follows: 

P = Cd modulo r 

Reference [17.17] proves that this scheme works—that is, that decryption of C using 

d does in fact recover the original P. However, computation of d knowing only r and e 

(and not p or q) is infeasible, as claimed earlier. Hence, anyone can encrypt plaintext, but 

only authorized users (holding d) can decrypt ciphertext. 

We give a trivial example to illustrate the foregoing procedure. For obvious reasons 

we restrict ourselves to very small numbers throughout. 

Example: Let p = 3, q = 5; then r = 15, and the product (p-1) * (q-1) = 8. Let e = 11 

(a prime greater than both p and q). To compute d, we have 

d * 11 = 1 modulo 8 

whence d = 3. 

Now let the plaintext P consist of the integer 13. Then the ciphertext C is given by: 

C = Pe modulo r 
= 1311 modulo 15 
= 1,792,160,394,037 modulo 15 
= 7 

Now the original plaintext P is given by: 

P = Cd modulo r 
= 73 modulo 15 
= 343 modulo 15 
= 13 

Because e and d are inverses of each other, public-key schemes also permit encrypted 

messages to be “signed" in such a way that the recipient can be certain the message origi¬ 

nated with the person it purports to have done (i.e., “signatures” cannot be forged). Sup¬ 

pose A and B are two users who wish to communicate with each other using a public-key 
scheme. Then A and B will each publish an encryption algorithm (including in each case 

the corresponding encryption key), but will keep the decryption algorithm and key secret, 

even from each other. Let the encryption algorithms be ECA and ECB (for encrypting 

messages to be sent to A and B, respectively), and let the corresponding decryption algo- 
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rithms be DCA and DCB, respectively. ECA and DCA are inverses of each other, as are 
ECB and DCB. 

Now suppose A wishes to send a piece of plaintext P to B. Instead of simply comput¬ 

ing ECB(P) and transmitting the result, A first applies the decryption algorithm DCA to P, 

then encrypts the result and transmits that as the ciphertext C: 

c = ECB ( DCA ( P ) ) 

Upon receipt of C, user B applies the decryption algorithm DCB and then the encryp¬ 

tion algorithm ECA, producing the final result P: 

ECA ( DCB ( c ) ) 
= ECA ( DCB ( ECB ( DCA ( P ) ) ) ) 
= ECA ( DCA ( P ) ) /* because DCB and ECB cancel */ 
= P /* because ECA and DCA cancel */ 

Now B knows the message did indeed come from A, because ECA will produce P 

only if the algorithm DCA was used in the encryption process, and that algorithm is 

known only to A. No one, not even B, can forge A’s signature. 

17.6 SQL FACILITIES 

SQL supports discretionary access control only. Two more or less independent SQL fea¬ 

tures are involved: the view mechanism, which can be used to hide sensitive data from 

unauthorized users, and the authorization subsystem itself, which allows users having 

specific privileges selectively and dynamically to grant those privileges to other users, and 

subsequently to revoke those privileges, if desired. Both features are discussed in what 

follows. 

Views and Security 

To illustrate the use of views for security purposes in SQL, we first give SQL analogs of 

the view examples (Examples 2-4) from Section 17.2. 

2. CREATE VIEW LS AS 
SELECT S.S#, S.SNAME, S.STATUS, S.CITY 
FROM S 
WHERE S.CITY = 'London' ; 

The view defines the data over which authorization is to be granted. The granting itself 

is done by means of the GRANT statement—for example: 

GRANT SELECT, DELETE, UPDATE ( SNAME, STATUS ) 

ON LS 
TO Dan, Misha ; 

Note that, perhaps because they are defined by means of a special GRANT statement 

and not by some hypothetical “CREATE AUTHORITY" statement, authorities are 

unnamed in SQL. (Integrity constraints, by contrast, do have names, as we saw in 

Chapter 9.) 
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3. CREATE VIEW SSPPO AS 
SELECT S.S#, S.SNAME, S.STATUS, S.CITY 
FROM S 
WHERE EXISTS 

( SELECT * FROM SP 
WHERE EXISTS 

( SELECT * FROM P 
WHERE S.S# = SP.S# 
AND SP.P# = P.P# 
AND P.CITY = ‘Oslo’ ) ) ; 

Corresponding GRANT: 

GRANT SELECT ON SSPPO TO Lars ; 

4. CREATE VIEW SSQ AS 
SELECT S.S#, ( SELECT SUM ( SP.QTY ) 

FROM SP 
WHERE SP.S# = S.S# ) AS SQ 

FROM S ; 

Corresponding GRANT: 

GRANT SELECT ON SSQ TO Fidel ; 

Example 5 from Section 17.2 involved a context-dependent authority. SQL supports a 

variety of niladic built-in operators—CURRENT_USER. CURRENT_DATE, CURRENT, 

TIME, and so on—that can be used among other things to define context-dependent views; 

however, it does not support an analog of the DAY() operator we used in our original Exam¬ 

ple 5. We therefore simplify the example somewhat here: 

CREATE VIEW S_NINE_TO_FIVE AS 
SELECT S.S#, S.SNAME, S.STATUS, S.CITY 
FROM S 
WHERE CURRENTJTIME > TIME '09:00:00' 
AND CURRENTJTIME < TIME '17:00:00' ; 

Corresponding GRANT: 

GRANT SELECT, UPDATE ( STATUS ) 
ON S_NINE_TO_FIVE 
TO ACCOUNTING ; 

Note, however, that S_NINE_TO_FlVE is rather an odd kind of view!—its value 

changes over time, even if the underlying data does not. (What is the corresponding predi¬ 

cate?) Furthermore, a view whose definition involves the built-in operator CURRENT, 

USER might even (in fact, probably will) have different values for different users. Such 

views are really different in kind from views as normally understood—in effect, they are 

parameterized. It might be preferable, at least conceptually, to allow users to define their 

own (potentially parameterized) relation-valued functions, and then treat views like 

S_NINE_TO_FIVE as just special cases of such functions. 

Be that as it may, the foregoing examples illustrate the point that the view mechanism 

provides an important measure of security “for free” (“for free" because the mechanism is 

included in the system for other purposes anyway). What is more, many authorization 

checks, even value-dependent ones, can be done at compile time instead of run time, a 
significant performance benefit. However, the view-based approach to security does suffer 

from some slight awkwardness on occasion—in particular, if some user needs different 
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2. The legal <object>s are TYPE <type name>, TABLE <table name>, and (for 

EXECUTE) something called a <specific routine designator, details of which are 

beyond the scope of this book. Note: In this context—unlike most others in SQL— 

the keyword TABLE (which is in fact optional) includes views as well as base tables. 

3. The <user ID commalist> can be replaced by the special keyword PUBLIC, meaning 

all users known to the system. Note: SQL also supports user-defined roles; an exam¬ 

ple might be ACCOUNTING, meaning everyone in the accounting department. Once 

created, a role can be granted privileges, just as if it were a regular user ID. Further¬ 

more, roles themselves can be granted, like privileges, either to a user ID or to 

another role. In other words, roles are SQL’s mechanism for supporting user groups 

(see Section 17.1). 

4. WITH GRANT OPTION, if specified, means that the specified users are granted the 

specified privileges on the specified object with grant authority—meaning, as 

already indicated, that they can go on to grant those privileges on that object to some 

other user(s). Of course, WITH GRANT OPTION can be specified only if the user 

issuing the GRANT statement has the necessary grant authority in the first place. 

Next, if user A grants some privilege to some other user B, user A can subsequently 

revoke that privilege from user B. Revoking privileges is done by means of the REVOKE 

statement—syntax: 

REVOKE [ GRANT OPTION FOR ] <privilege commalist> 
ON <object> 
FROM <user ID commalist> 
<behavior> ; 

Here (a) GRANT OPTION FOR means that grant authority (only) is to be revoked; (b) 

<privilege commalist>, <object>, and <user ID commalist> are as for GRANT; and (c) 
<behcivior> is either RESTRICT or CASCADE (as usual). Examples: 

1. REVOKE SELECT ON S FROM Jacques, Anne, Charley RESTRICT ; 

2. REVOKE SELECT, DELETE, UPDATE ( SNAME, STATUS ) 
ON LS FROM Dan, Misha CASCADE ; 

3. REVOKE SELECT ON SSPPO FROM Lars RESTRICT ; 

4. REVOKE SELECT ON SSQ FROM Fidel RESTRICT ; 

Now, regarding RESTRICT vs. CASCADE: Suppose p is some privilege on some 

object, and user A grants p to user B. who in turn grants it to user C. What should happen 
if A now revokes p from B1 Suppose for a moment that the REVOKE succeeds. Then the 

privilege p held by C would be “abandoned”—it would be derived from a user, B, who no 

longer holds it. The purpose of the RESTRICT vs. CASCADE option is to avoid the pos¬ 

sibility of abandoned privileges. To be specific, RESTRICT causes the REVOKE to fail if 

it would lead to any abandoned privileges; CASCADE causes such privileges to be 

revoked as well. 

Finally, dropping a type, table, column, or routine automatically revokes all privileges 

on the dropped object from all users. 
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17.7 SUMMARY 

We have discussed various aspects of the database security problem. We began by con¬ 

trasting security and integrity’: Security means ensuring users are allowed to do the things 

they are trying to do; integrity means ensuring the things they are trying to do are “cor¬ 
rect." Security, in other words, means protecting data against unauthorized access. 

Security is enforced by the DBMS's security subsystem, which checks all access 

requests against the security constraints (or authorities, more likely) stored in the system 

catalog. First we considered discretionary schemes, in which access to a given object is at 

the discretion of the object's owner. Each authority in a discretionary scheme has a name, a 

set of privileges (RETRIEVE, INSERT, etc.), a corresponding relvar (i.e., the data to 

which the authority applies), and a set of users. Such authorities can be used to provide 
value-dependent, value-independent, statistical summary, and context-dependent con¬ 

trols. An audit trail can be used to record attempted security breaches. We took a brief 

look at an implementation technique for discretionary schemes known as request modifi¬ 

cation (a technique that was pioneered by the Ingres prototype in connection with the 
QUEL language). 

Next we discussed mandatory controls, in which each object has a classification 
level and each user has a clearance level. We explained the rules for access under such a 

scheme. We also summarized the security classification scheme defined by the U.S. 

Department of Defense in the Orange and Lavender books, and briefly discussed the ideas 
of multi-level relvars and polyinstantiation. 

Next we discussed the special problems of statistical databases. A statistical data¬ 

base is a database that contains a lot of individually sensitive items of information but is 

supposed to supply only statistical summary information to its users. We saw that the 

security of such databases is easily compromised by means of trackers—a fact that 

should be the cause for some alarm, given the increasing level of interest in data ware¬ 

house systems (see Chapter 22). 
We then examined data encryption, touching on the basic ideas of substitution and 

permutation, explaining what the Data Encryption Standard (DES) and Advanced 

Encryption Standard (AES) are, and describing in outline how the public-key schemes 

work. In particular, we gave a simple example of the RSA prime number scheme. We also 

discussed the concept of digital signatures. 
We also briefly described the security features of SQL—in particular, the use of 

views to hide information, and the use of GRANT and REVOKE to control which users 

have which privileges over which objects (primarily base tables and views). 
In conclusion, the point is worth emphasizing that it is no good the DBMS providing 

an extensive set of security controls if it is possible to bypass those controls in some way. 

In DB2, for example, the database is physically stored as operating system files; thus, 

DB2’s security mechanism would be almost useless if it were possible to access those 
files from a conventional program using conventional operating system services. For this 

reason, DB2 works in harmony with its various companion systems—the underlying 

operating system in particular—to guarantee that the total system is secure. The details 

are beyond the scope of this chapter, but the message should be clear. 
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EXERCISES 

17.1 Let base relvar STATS be as in Section 17.4: 

STATS { NAME, SEX, CHILDREN, OCCUPATION, SALARY, TAX, AUDITS > 
KEY { NAME > 

Using the hypothetical language introduced in Section 17.2, define authorities as necessary to give: 

a. User Ford RETRIEVE privileges over the entire relvar 

b. User Smith INSERT and DELETE privileges over the entire relvar 

c. Each user RETRIEVE privileges over that user's own tuple (only) 

d. User Nash RETRIEVE privileges over the entire relvar and UPDATE privileges over the 

SALARY and TAX attributes (only) 

e. User Todd RETRIEVE privileges over the NAME, SALARY, and TAX attributes (only) 

f. User Ward RETRIEVE privileges as for Todd and UPDATE privileges over the SALARY and 

TAX attributes (only) 

g. User Pope full privileges (RETRIEVE. INSERT, DELETE, UPDATE) over tuples for preachers 

(only) 

h. User Jones DELETE privileges over tuples for people in a nonspecialist occupation, where a 

nonspecialist occupation is defined as one belonging to more than ten people 

i. User King RETRIEVE privileges for maximum and minimum salaries per occupation 

17.2 Consider what is involved in extending the syntax of AUTHORITY definitions to include 

control over operations such as defining and dropping base relvars, defining and dropping views, 

defining and dropping authorities, and so on. 

17.3 Consider Fig. 17.2 once again. Suppose we know that Hal is a homemaker with at least two 

children. Write a sequence of statistical queries that will reveal Hal’s tax figure, using an individual 

tracker. Assume as in Section 17.4 that the system will not respond to queries with a result set cardi¬ 

nality less than 2 or greater than 8. 

17.4 Repeat Exercise 17.3, but use a general tracker instead of an individual tracker. 

17.5 Decrypt the following ciphertext, which was produced in a manner similar to that used in the 

“AS KINGFISHERS CATCH FIRE” example in Section 17.5, but using a different five-character 

encryption key: 

F N w A L 
j p v J c 
F P E X E 
A B W N E 
A Y E I P 
S U S V D 

17.6 Work through the RSA public-key encryption scheme with p = 7, q = 5, and e = 17 for plain¬ 

text P = 3. 

17.7 Can you think of any implementation problems or other disadvantages that might be caused 

by encryption? 

17.8 Give SQL solutions to Exercise 17.1. 

17.9 Write SQL statements to drop the privileges granted in your solution to the previous exercise. 
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18.1 INTRODUCTION 

Optimization represents both a challenge and an opportunity for relational systems: a chal¬ 

lenge, because optimization is required if the system is to achieve acceptable performance; 

an opportunity, because it is precisely one of the strengths of such systems that relational 
expressions are at a sufficiently high semantic level that optimization is feasible in the first 

place. In a nonrelational system, by contrast, where user requests are expressed at a lower 

semantic level, any “optimization” has to be done manually by the human user (“optimiza¬ 

tion” in quotes, because the term is usually taken to mean automatic optimization); in 

other words, it is the user in such a system who decides what low-level operations are 

needed and what sequence they need to be executed in. And if the user makes a bad deci¬ 
sion, there is nothing the system can do to improve matters. Note too the implication that 

the user must have some programming expertise; this fact by itself puts the system out of 

reach for many who could otherwise benefit from it. 
The advantage of automatic optimization is not just that users do not have to worry 

about how best to state their queries (i.e., how to phrase their requests in order to get the 
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zation, called query> decomposition, in some detail. Section 18.7 then addresses the ques¬ 

tion of how the relational operators (join and so on) are actually implemented, and briefly 
considers the use of the statistics discussed in Section 18.5 to perform cost estimation. 

Finally, Section 18.8 presents a summary of the entire chapter. 

One final introductory remark: It is usual to refer to this topic as query optimization 

specifically. This term is slightly misleading, however, inasmuch as the expression to be 

optimized—the “query”—might have arisen in some context other than interactive inter¬ 
rogation of the database (in particular, it might be part of an update operation instead of a 

query per se). What is more, the term optimization itself is somewhat of an overclaim, 

since there is usually no guarantee that the implementation strategy chosen is truly opti¬ 
mal in any measurable sense; it might in fact be so, but usually all that is known for sure is 

that the “optimized” strategy is an improvement on the original unoptimized version. (In 

certain cases, however, it might be possible to claim legitimately that the chosen strategy 

is indeed optimal in a very specific sense; see, for example, reference [18.30]. See also 
Appendix A.) 

18.2 A MOTIVATING EXAMPLE 

We begin with a simple example—an elaboration of one already discussed briefly in 
Chapter 7, Section 7.6—that gives some idea of the dramatic improvements that are possi¬ 

ble. The query is “Get names of suppliers who supply part P2.” An algebraic formulation 

of this query is: 

( ( SP JOIN S ) WHERE P# = P# ('P2') ) { SNAME } 

Suppose the database contains 100 suppliers and 10,000 shipments, of which only 50 

are for part P2. Assume for simplicity that relvars S and SP are represented directly on the 
disk as two separate stored files, with one stored record per tuple. Then, if the system 

were simply to evaluate the expression as stated—that is, without any optimization at 

all—the sequence of events would be as follows: 

1. Join SP and S (over S#): This step involves reading the 10,000 shipments; reading 

each of the 100 suppliers 10,000 times (once for each of the 10,000 shipments); con¬ 

structing an intermediate result consisting of 10,000 joined tuples; and writing those 

10,000 joined tuples back out to the disk. (For the sake of the example, we assume 

there is no room for this intermediate result in main memory.) 

2. Restrict the result of Step 1 to just the tuples for part P2: This step involves reading 
the 10,000 joined tuples back into memory again, but produces a result consisting of 

only 50 tuples, which we assume is small enough to be kept in main memory. 

3. Project the result of Step 2 over SNAME: This step produces the desired final result 

(50 tuples at most, which can stay in main memory). 

The following procedure is equivalent to the one just described, in the sense that it 

necessarily produces the same final result, but is clearly much more efficient; 
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1. Restrict SP to just the tuples for part P2: This step involves reading 10,000 tuples but 

produces a result consisting of only 50 tuples, which we assume will be kept in main 

memory. 

2. Join the result of Step 1 to S (over S#): This step involves reading the 100 suppliers 
(once only, not once per P2 shipment) and produces a result of 50 tuples again (still in 

main memory). 

3. Project the result of Step 2 over SNAME (same as Step 3 before): The desired final 

result (50 tuples at most) stays in main memory. 

The first of these two procedures involves a total of 1,030,000 tuple I/O’s, whereas 

the second involves only 10,100. It is clear, therefore, that if we take “number of tuple 

I/O’s” as our performance measure, then the second procedure is a little over 100 times 

better than the first. It is also clear that we would like the implementation to use the sec¬ 

ond procedure rather than the first! Note: In practice, it is page I/O’s that matter, not tuple 

I/O’s, so let us assume for simplicity that each stored tuple occupies its own page. 

So we see that a very simple change in the execution algorithm—doing a restriction 

and then a join, instead of a join and then a restriction—has produced a dramatic (hun¬ 

dredfold) improvement in performance. And the improvement would be more dramatic 

still if shipments were indexed or hashed on P#—the number of shipment tuples read in 
Step 1 would be reduced from 10,000 to just 50, and the new procedure would then be 

nearly 7,000 times better than the original. Likewise, if suppliers were also indexed or 

hashed on S#, the number of supplier tuples read in Step 2 would be reduced from 100 to 

50, so that the procedure would now be over 10,000 times better than the original. What 

this means is, if the original unoptimized query took three hours to run, the final version 

will run in a fraction over one second. And of course numerous further improvements are 

possible. 
The foregoing example, simple though it is, should be sufficient to show the need for 

optimization and the kinds of improvement that are possible. In the next section, we will 

present an overview of a systematic approach to the optimization task; in particular, we 

will show how the overall problem can be divided into a series of more or less indepen¬ 

dent subproblems. That overview provides a convenient framework within which individ¬ 

ual optimization strategies and techniques such as those discussed in subsequent sections 

can be explained and understood. 

18.3 AN OVERVIEW OF QUERY PROCESSING 

We can identify four broad stages in query processing, as follows (refer to Fig. 18.1); 

1. Cast the query into internal form. 

2. Convert to canonical form. 

3. Choose candidate low-level procedures. 

4. Generate query plans and choose the cheapest. 

We now proceed to amplify each stage. 
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Parsing, view 
processing, 
translating 

Relational 
algebra expression 

Expression 
transformation, 
cost estimation, etc. 

Optimized code 

Execution 

Fig. 18.1 Query processing overview 

Stage 1: Cast the Query into Internal Form 

The first stage involves the conversion of the original query into some internal represen¬ 

tation that is more suitable for machine manipulation, thus eliminating purely external 

considerations (such as quirks of the concrete syntax of the query language under consid¬ 

eration) and paving the way for subsequent stages in the overall process. Note: View pro¬ 

cessing—that is, the process of replacing references to views by the applicable view¬ 
defining expressions—is also performed during this stage. 

An obvious question is: What formalism should the internal representation be based 

on? Whatever formalism is chosen, it must be rich enough to represent all possible queries 

in the external query language. It should also be as neutral as possible, in the sense that it 
should not prejudice subsequent choices. The internal form typically chosen is some kind 

of abstract syntax tree or query tree. For example. Fig. 18.2 shows a possible query tree 

representation for the example from Section 18.2 (“Get names of suppliers who supply 
part P2”). 





Chapter 18 / Optimization 537 

A note regarding “canonical form The notion of canonical form is central to many 
branches of mathematics and related disciplines. It can be defined as follows. Given a set 

Q of objects (say queries) and a notion of equivalence among those objects (say the notion 

that queries ql and q2 are equivalent if and only if they are guaranteed to produce the 

same result), subset C of Q is said to be a set of canonical forms for Q under the stated 

definition of equivalence if and only if every object q in Q is equivalent to just one object 

c in C. The object c is said to be the canonical form for the object q. All “interesting” 
properties that apply to the object q also apply to its canonical form c; thus, it is sufficient 

to study just the small set C, not the large set Q, in order to prove a variety of “interesting” 
results. 

To revert to the main thread of our discussion: In order to transform the output from 

Stage 1 into some equivalent but more efficient form, the optimizer makes use of certain 

transformation rules or laws. Here is an example of such a law: The expression 

( A JOIN B ) WHERE restriction on A 

can be transformed into the equivalent but more efficient expression 

( A WHERE restriction on A ) JOIN B 

We have already discussed this transformation briefly in Chapter 7, Section 7.6; in 
fact, it was the one we were using in our introductory example in Section 18.2, and that 

example showed clearly why such a transformation is desirable. Many more such laws are 

discussed in Section 18.4. 

Stage 3: Choose Candidate Low-Level Procedures 

Having converted the internal representation of the query into some more desirable form, 

the optimizer must then decide how to execute the transformed query represented by that 

converted form. At this stage considerations such as the existence of indexes or other 

physical access paths, distribution of data values, physical clustering of stored data, and so 

on, come into play (note that we paid no heed to such matters in Stages 1 and 2). 
The basic strategy is to consider the query expression as specifying a series of “low- 

level” operations,3 with certain interdependencies among them. An example of such an 

interdependency is the following: The code to perform a projection will typically require 

its input tuples to be sorted into some sequence, to allow it to perform duplicate elimina¬ 
tion, which means that the immediately preceding operation in the series must produce its 

output tuples in that same sequence. 
Now, for each possible low-level operation (and probably for various common com¬ 

binations of such operations also), the optimizer will have available to it a set of pre¬ 
defined implementation procedures. For example, there will be a set of procedures for 

implementing the restriction operation: one for the case where the restriction is an equal¬ 

ity comparison, one where the restriction attribute is indexed, one where it is hashed, and 

! Level is clearly a relative concept! The operators referred to as “low-level” in this context are basically 
the operators of the relational algebra (join, restrict, summarize, etc.), which are more usually regarded as 
high-level. 
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so on. Examples of such procedures are given in Section 18.7 (see also references [18.7, 

18.12]). 

Each procedure will also have a (parameterized) cost formula associated with it, 

indicating the cost—typically in terms of disk l/O’s, though some systems take CPU4 uti¬ 

lization and other factors into account also—of executing that procedure. These cost for¬ 

mulas are used in Stage 4 (see the next subsection). References [18.7-18.12] discuss and 

analyze the cost formulas for a number of different implementation procedures under a 

variety of different assumptions. See also Section 18.7. 

Next, therefore, using information from the catalog regarding the current state of the 

database (existence of indexes, current cardinalities, etc.), together with the pertinent 

interdependency information, the optimizer will choose one or more candidate procedures 

for implementing each of the low-level operations in the query expression. This process is 

sometimes referred to as access path selection (see reference [18.33]). Note: Actually, 

reference [18.33]) uses the term access path selection to cover both Stage 3 and Stage 4, 

not just Stage 3. Indeed, it might be difficult in practice to make a clean separation 

between the two—Stage 3 does flow more or less seamlessly into Stage 4. 

Stage 4: Generate Query Plans and Choose the Cheapest 

The final stage in the optimization process involves the construction of a set of candidate 

query plans, followed by a choice of the best (i.e., cheapest) of those plans. Each query 

plan is built by combining a set of candidate implementation procedures, one such proce¬ 

dure for each of the low-level operations in the query. Note that there will normally be 

many possible plans—probably embarrassingly many—for any given query. In practice, in 

fact, it might not be a good idea to generate all possible plans, since there will be combina- 

torially many of them, and the task of choosing the cheapest might well become prohibi¬ 

tively expensive in itself; some heuristic technique for keeping the generated set within 

reasonable bounds is highly desirable, if not essential (but see reference [18.53]). "Keep¬ 

ing the set within bounds” is usually referred to as reducing the search space, because it 

can be regarded as reducing the range (“space”) of possibilities to be examined 

(“searched”) by the optimizer to manageable proportions. 

Choosing the cheapest plan obviously requires a method for assigning a cost to any 

given plan. Basically, the cost for a given plan is just the sum of the costs of the individ¬ 

ual procedures that make up that plan, so what the optimizer has to do is evaluate the cost 

formulas for those individual procedures. The problem is, those cost formulas will 

depend on the size of the relation(s) to be processed; since all but the simplest queries 

involve the generation of intermediate results during execution (at least conceptually), 

the optimizer might therefore have to estimate the size of those intermediate results in 
order to evaluate the formulas. Unfortunately, those sizes tend to be highly dependent on 

actual data values. As a consequence, accurate cost estimation can be a difficult problem. 
References [18.2, 18.3] discuss some approaches to that problem and give references to 

other research in the area. 

4 CPU stands for central processing unit. 
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18.4 EXPRESSION TRANSFORMATION 

In this section we describe some transformation laws or rules that might be useful in Stage 

2 of the optimization process. Producing examples to illustrate the rules and deciding 

exactly why they might be useful are both left (in part) as exercises. 

Of course, you should understand that, given a particular expression to transform, the 

application of one rule might generate an expression that can then be transformed in 

accordance with some other rule. For example, it is unlikely that the original query will 

have been directly expressed in such a way as to require two successive projections—see 

the second rule in the subsection “Restrictions and Projections” immediately following— 

but such an expression might arise internally as the result of applying certain other trans¬ 

formations. (An important case in point is provided by view processing; consider, for 
example, the query “Get all cities in view V,” where view V is defined as the projection of 

suppliers on S# and CITY.) In other words, starting from the original expression, the opti¬ 

mizer will apply its transformation rules repeatedly until it finally arrives at an expression 

that it judges—according to some built-in set of heuristics—to be “optimal” for the query 

under consideration. 

Restrictions and Projections 

Here first are some transformation rules involving restrictions and projections only: 

1. A sequence of restrictions on the same relation can be transformed into a single 

(“ANDed”) restriction on that relation. For example, the expression 

( A WHERE pi ) WHERE p2 

is equivalent to the expression 

A WHERE pi AND p2 

This transformation is desirable because the original formulation implies two passes 

over A, while the transformed version requires just one. 

2. In a sequence of projections against the same relation, all but the last can be ignored. 

For example, the expression 

( A { acll > ) { acl2 > 

(where acll and acl2 are commalists of attribute names) is equivalent to the expression 

A { acl2 } 

Of course, acl2 must be a subset of acll for the original expression to make sense in 

the first place. 

3. A restriction of a projection can be transformed into a projection of a restriction. For 

example, the expression 

( A { acl } ) WHERE p 

is equivalent to the expression 

( A WHERE p ) { acl > 
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It is generally a good idea to do restrictions before projections, because the effect of 

the restriction will be to reduce the size of the input to the projection, and hence to 

reduce the amount of data that might need to be sorted for duplicate elimination 

purposes. 

Distributivity 

The transformation rule used in the example in Section 18.2 (transforming a join followed 

by a restriction into a restriction followed by a join) is actually a special case of a more 

general law called the distributive law. In general, the monadic operator / is said to dis¬ 

tribute over the dyadic operator O if and only if 

f ( A o B ) = f ( A ) o f ( B ) 

for all A and B. In ordinary arithmetic, for example, SQRT (square root, assumed nonnega¬ 

tive) distributes over multiplication, because 

SQRT ( A * B ) s SQRT (A ) * SQRT ( B ) 

for all A and B. Thus, an arithmetic expression optimizer can always replace either of these 

expressions by the other when doing arithmetic expression transformation. As a counterex¬ 

ample, SQRT does not distribute over addition, because the square root of A + B is not 

equal to the sum of the square roots of A and B, in general. 

In relational algebra, restriction distributes over union, intersection, and difference. It 

also distributes over join, if and only if the restriction condition consists, at its most com¬ 

plex, of two simple restriction conditions21 ANDed together, one for each of the two join 

operands. In the case of the example in Section 18.2, this requirement was indeed satis¬ 

fied—in fact, the condition was a simple restriction condition on just one of the oper¬ 

ands—and so we could use the distributive law to replace the overall expression by a more 

efficient equivalent. The net effect was that we were able to “do the restriction early.” 

Doing restrictions early is usually a good idea, because it serves to reduce the number of 

tuples to be scanned in the next operation in sequence, and probably reduces the number 

of tuples in the output from that next operation too. 

Here are a couple more specific cases of the distributive law, this time involving pro¬ 

jection. First, projection distributes over union and intersection but not difference: 

( A UNION B ) { acl } = A { acl > UNION S { acl } 

( A INTERSECT B ) { acl }= A { acl > INTERSECT B { acl > 

A and B here must be of the same type, of course. 

Second, projection also distributes over join, as long as the projection retains all of the 

join attributes, thus: 

( A JOIN B ) { acl } S ( A { acll } ) JOIN ( B { acl2 } ) 

Here acll is the union of the join attributes and those attributes of acl that appear in A only, 

and acl2 is the union of the join attributes and those attributes of acl that appear in B only. 

5 See Chapter 7, Section 7.4, subsection “Restrict," for an explanation of the term simple restriction 
condition. 



Chapter 18 / Optimization 541 

These laws can be used to “do projections early,” which again is usually a good idea 
for reasons similar to those given previously for restrictions. 

Commutativity and Associativity 

Two more important general laws are the laws of commutativity and associativity. First, 
the dyadic operator O is said to be commutative if and only if 

A O B s BOA 

for all A and B. In arithmetic, for example, multiplication and addition are commutative, 
but division and subtraction are not. In relational algebra, union, intersection, and join are 

all commutative, but difference and division are not. So, for example, if a query involves a 

join of two relations A and B. the commutative law means it makes no logical difference 

which of A and B is taken as the “outer” relation and which the "inner.” The system is there¬ 

fore free to choose (say) the smaller relation as the "outer” one in computing the join (see 
Section 18.7). 

Turning to associativity: The dyadic operator O is said to be associative if and only if 

A o ( B o C ) = ( A o B ) o c 

for all A, B. C. In arithmetic, multiplication and addition are associative, but division and 

subtraction are not. In relational algebra, union, intersection, and join are all associative, 
but difference and division are not. So, for example, if a query involves a join of three rela¬ 

tions A. B, and C, the associative and commutative laws together mean it makes no logical 

difference in which order the relations are joined. The system is thus free to decide which 

of the various possible sequences is most efficient. 

Idempotence and Absorption 

Another important general law is the law of idempotence. The dyadic operator O is said 

to be idempotent if and only if 

A O A s A 

for all A. As might be expected, the idempotence property can also be useful in expression 
transformation. In relational algebra, union, intersection, and join are all idempotent, but 

difference and division are not. 
Union and intersection also satisfy the following useful absorption laws: 

A UNION ( A INTERSECT B )= A 

A INTERSECT ( A UNION B ) = A 

Computational Expressions 

It is not just relational expressions that are subject to transformation laws. For instance, 

we have already indicated that certain transformations are valid for arithmetic expres¬ 

sions. Here is a specific example: The expression 

A * B + A * C 
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can be transformed into 

A * ( B + C ) 

by virtue of the fact that distributes over A relational optimizer needs to know 

about such transformations because it will encounter such expressions in the context of the 

extend and summarize operators. 
Note, incidentally, that this example illustrates a slightly more general form of distrib- 

utivity. Earlier, we defined distributivity in terms of a monadic operator distributing over a 

dyadic operator; in the case at hand, however, and “+” are both dyadic operators. In 

general, the dyadic operator S is said to distribute over the dyadic operator O if and only 

if 

A S ( B O C ) = ( A 8 B ) O ( A 8 C ) 

for all A, B, C (in the arithmetic example, take S as “*” and O as 

Boolean Expressions 

We turn now to boolean expressions. Suppose A and B are attributes of two distinct rela¬ 

tions. Then the boolean expression 

A > B AND B > 3 

is clearly equivalent to (and can therefore be transformed into) the following: 

A > B AND B > 3 AND A > 3 

The equivalence is based on the fact that the comparison operator “>” is transitive. Note 

that this transformation is certainly worth making, because it enables the system to perform 

an additional restriction (on A) before doing the greater-than join implied by the compari¬ 

son “A > B". To repeat a point made earlier, doing restrictions early is generally a good 

idea; having the system infer additional “early” restrictions, as here, is also a good idea. 

Note: This technique is implemented in several commercial products, including, for exam¬ 

ple, DB2 (where it is called “predicate transitive closure”) and Ingres. 

Here is another example: The expression 

A > B OR ( C = D AND E < F ) 

can be transformed into 

( A > B OR C = D ) AND ( A > B OR E < F ) 

by virtue of the fact that OR distributes over AND. This example illustrates another general 

law—viz., any boolean expression can be transformed into an equivalent expression in 

what is called conjunctive normal form (CNF). A CNF expression is an expression of the 

form 

Cl AND C2 AND ... AND Cn 

where each of Cl, C2. Cn is, in turn, a boolean expression (called a conjunct) that 

involves no ANDs. The advantage of CNF is that a CNF expression is true only if every 
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conjunct is true; equivalently, it is false if any conjunct is false. Since AND is commutative 

(A AND B is the same as B AND A), the optimizer can evaluate the individual conjuncts in 

any order it likes; in particular, it can do them in order of increasing difficulty (easiest first). 

As soon as it finds one that is false, the whole process can stop. Furthermore, in a parallel¬ 

processing system, it might even be possible to evaluate all of the conjuncts in parallel 

[ 18.56-18.58J. Again, as soon as one is found that is false, the whole process can stop. 

It follows from this subsection and its predecessor that the optimizer needs to know 

how general properties such as distributivity apply not only to relational operators such as 
join, but also to comparison operators such as “>”, boolean operators such as AND and 

OR. arithmetic operators such as and so on. 

Semantic Transformations 

Consider the following expression: 

( sp join s ) { p# > 

The join here is aforeign-to-matching-candidate-key join; it matches a foreign key in SP 
with a corresponding candidate key in S. It follows that every SP tuple does join to some S 

tuple, and every SP tuple therefore does contribute a P# value to the overall result. In other 
words, there is no need to do the join!—the expression can be simplified to just: 

SP { p# } 

Note carefully, however, that this transformation is valid only because of the seman¬ 
tics of the situation. In general, each of the operands in a join will include some tuples that 

have no counterpart in the other (and hence some tuples that do not contribute to the over¬ 

all result), and transformations such as the one just illustrated will not be valid. In the case 

at hand, however, every tuple of SP does have a counterpart in S, because of the integrity 

constraint (actually a referential constraint) that says every shipment must have a supplier, 

and so the transformation is valid after all. 
A transformation that is valid only because a certain integrity constraint is in effect is 

called a semantic transformation [18.25], and the resulting optimization is called a 

semantic optimization. Semantic optimization can be defined as the process of trans¬ 

forming a specified query into another, qualitatively different, query that is nevertheless 

guaranteed to produce the same result as the original one, thanks to the fact that the data is 

guaranteed to satisfy a certain integrity constraint. 
It is important to understand that, in principle, any integrity constraint whatsoever can 

be used in semantic optimization (the technique is not limited to referential constraints as 

in the example). For instance, suppose the suppliers-and-parts database is subject to the 

constraint “All red parts are stored in London,” and consider the query: 

Get suppliers who supply only red parts and are located in the same city as at least one of 

the parts they supply. 

This is a fairly complex query! By virtue of the integrity constraint, however, it can be 

transformed into the much simpler form: 

Get London suppliers who supply only red parts. 
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supplier numbers in attribute SP".S# will be the set {SI ,S2,S4}. Each of these three values 

will be substituted for SP".S# in turn. Query Q4 will therefore be evaluated as if it had 

been written as follows: 

RETRIEVE ( S'.SNAME ) WHERE S'.S# = ”S1" 
OR S'.S# = "S2" 
OR S' .S# = "S4" 

Reference [18.34] gives algorithms for breaking the original query down into smaller 

queries and choosing variables for tuple substitution. It is in that latter choice that much of 

the actual optimization resides; reference (18.34] includes heuristics for making the cost 

estimates that drive the choice (Ingres will usually—but not always—choose the relation 

with the smallest cardinality as the one to do the substitution on). The principal objectives 

of the optimization process as a whole are to avoid having to build Cartesian products and 

to keep the number of tuples to be scanned to a minimum at each stage. 

Reference [18.34] does not discuss the optimization of one-variable queries. However, 

information regarding that level of optimization is given in the Ingres overview paper 

[8.11]. Basically, it is similar to the analogous function in other systems, involving as it 

does the use of statistical information kept in the catalog and the choice of a particular 

access path (e.g., a hash or index) for scanning the data as stored. Reference [18.35] pre¬ 

sents experimental evidence—measurements from a benchmark set of queries—that sug¬ 

gests that the Ingres optimization techniques sketched in this section are basically sound 

and in practice quite effective. Some specific conclusions from that paper are the following: 

1. Detachment is the best first move. 

2. If tuple substitution must be done first, then the best choice of variable to be substi¬ 
tuted for is a join variable. 

3. Once tuple substitution has been applied to one variable in a two-variable query, it is 

an excellent tactic to build an index or hash “on the fly,” if necessary, on the join 
attribute in the other relation (Ingres in fact often applies this tactic). 

18.7 IMPLEMENTING THE RELATIONAL OPERATORS 

We now present a short description of some straightforward methods for implementing 

certain of the relational operators, join in particular. Our primary reason for including this 

material is simply to remove any remaining air of mystery that might possibly still sur¬ 

round the optimization process. The methods to be discussed correspond to what we called 

“low-level procedures” in Section 18.3. Note: More sophisticated techniques are described 

in the annotation to some of the references at the end of the chapter. See also Appendix A. 

We assume for simplicity that tuples and relations are physically stored as such. The 

operators we consider are project, join, and summarize—where we take “summarize” to 
include both of the following cases: 

1. The PER operand specifies no attributes at all ("PER TABLE_DEE"). 

2. The PER operand specifies at least one attribute. 
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Case 1 is straightforward: Basically, it involves scanning the entire relation over 

which the summarizing is to be done—except that, if the attribute to be aggregated hap¬ 
pens to be indexed, it might be possible to compute the result directly from the index, 

without having to access the relation itself at all. For example, the expression 

SUMMARIZE SP ADD SUM ( QTY ) AS TQ 

can be evaluated by scanning the QTY index (assuming such an index exists) without 

touching the shipments per se at all. An analogous remark applies if SUM is replaced by 

COUNT or AVG (for COUNT, any index will do). As for MAX and MIN, the result can be 

found in a single access to the last index entry (for MAX) or the first (for MIN), assuming 
again that an index exists for the relevant attribute. 

For the rest of this section we take “summarize” to mean Case 2 specifically. Here is an 

example of Case 2: 

SUMMARIZE SP PER P { P# ) ADD SUM ( QTY ) AS TOTQTY 

From the user’s point of view, project, join, and summarize (Case 2) are very differ¬ 

ent from one another. From an implementation point of view, however, they do have cer¬ 

tain similarities, because in every case the system needs to group tuples on the basis of 

common values for specified attributes. In the case of projection, such grouping allows the 
system to eliminate duplicates: in the case of join, it allows it to find matching tuples; and 

in the case of summarize, it allows it to compute the individual aggregate values for each 

group. There are several techniques for performing such grouping: 

1. Brute force 

2. Index lookup 

3. Hash lookup 

4. Merge 

5. Hash 

6. Combinations of 1-5 

Figs. 18.4-18.8 give pseudocode procedures for the case of join specifically (project 

and summarize are left as an exercise). The notation used in those figures is as follows: R 

and S are the relations to be joined; C is their (possibly composite) common attribute. We 

assume it is possible to access the tuples of each of R and S one at a time in some 

sequence, and we denote those tuples, in that sequence, by R[ 1], /?[2]./?[»»] and S[l], 

S[2], ..., S[/i], respectively. We use the expression /?[i] * S[/] to denote the joined tuple 
formed from the tuples R[i] and S[/]. Finally, we refer to R and S as the outer and inner 

relation, respectively (because they control the outer and inner loop, respectively). 

Brute Force 

Brute force is what might be termed “the plain case,” in which all possible tuple combina¬ 
tions are inspected (i.e., every tuple of R is examined in conjunction with every tuple of S, 

as indicated in Fig. 18.4). Note: Brute force is often referred to as “nested loops” in the lit¬ 

erature, but this name is misleading because nested loops are in fact involved in all of the 

algorithms. 
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subsections). Reference [18.35] supports this idea, as mentioned at the end of the previous 
section. 

Index Lookup 

We now consider the case in which there is an index X on attribute C of the inner relation S 

(refer to Fig. 18.5). The advantage of this technique over brute force is that for a given 

tuple of the outer relation R we can go “directly” to the matching tuples of the inner rela¬ 

tion S. The total number of tuple reads on relations R and S is thus simply the cardinality 

of the joined result; making the worst-case assumption that every tuple read on S is in fact 

a separate page read, the total number of page reads is thus (mlpR) + ((m * n)/dCS). 

/* assume index X on S.C */ 

do i := 1 to m ; /* outer loop */ 
/* let there be k index entries X[l], . .., X[k] with */ 
/* indexed attribute value = f?[i].C */ 
do j := 1 to k ; /* inner loop */ 

/* let tuple of S indexed by X[j] be Slj) */ 
add joined tuple i?[i] * S[j] to result ; 

end ; 
end ; 

Fig. 18.5 Index lookup 

If relation S happens to be stored in sequence by values of the join attribute C, how¬ 

ever, the page-read figure reduces to (m/pR) + ((m * n)/dCS)/pS. Taking the same sample 
values as before (m = 100, n = 10,000, pR = 1, pS - 10), and assuming dCS = 100, the two 

formulas evaluate to 10,100 and 1,100, respectively. The difference between these two fig¬ 

ures clearly points up the importance of keeping stored relations in a “good” physical 

sequence [18.7], 
However, we must include the overhead for accessing the index X itself. The worst- 

case assumption is that each tuple of R requires an “out of the blue” index lookup to find 

the matching tuples of S, which implies reading one page from each level of the index. For 

an index of x levels, this will add an extra m * x page reads to the overall page-read figure. 
In practice, x will typically be 3 or less (moreover, the top level of the index will very 

likely reside in main memory throughout processing, thereby reducing the page-read fig¬ 

ure still further). 

Hash Lookup 

Hash lookup is similar to index lookup, except that the “fast access path” to the inner rela¬ 

tion S on the join attribute S.C is a hash instead of an index (refer to Fig. 18.6). Derivation 

of cost estimates for this case is left as an exercise. 
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Hash 

Like the merge technique just discussed, the hash technique requires a single pass over 

each of the two relations (refer to Fig. 18.8). The first pass builds a hash table for relation 

S on values of the join attribute S.C; the entries in that table contain the join-attribute 

value—possibly other attribute values also—and a pointer to the corresponding tuple on 

the disk. The second pass then scans relation R and applies the same hash function to the 

join attribute R.C. When an R tuple collides in the hash table with one or more S tuples, the 

algorithm checks to see that the values of R.C and S.C are indeed equal, and if so generates 

the appropriate joined tuple(s). The great advantage of this technique over the merge tech¬ 

nique is that relations R and S do not need to be stored in any particular order, and no sort¬ 

ing is necessary. 

As with the hash-lookup technique, we leave the derivation of cost estimates for this 

approach as an exercise. 

/* build hash table H on S.C */ 

do j := 1 to n ; 
k := hash (S[j],C) ; 
add S[j] to hash table entry H[k] ; 

end ; 

/* now do hash lookup on R */ 

Fig. 18.8 Hash 

18.8 SUMMARY 

Optimization represents both a challenge and an opportunity for relational systems. In 

fact, optimizability is a strength of such systems, for several reasons; a relational system 

with a good optimizer might well outperform a nonrelational system. Our introductory 

example gave some idea of the kind of improvement that might be achievable (a factor of 
over 10,000 to 1 in that particular case). The four broad stages of optimization are: 

1. Cast the query into some internal form (typically a query tree or abstract syntax 

tree, but such representations can be thought of as just an internal form of the rela¬ 

tional algebra or relational calculus). 

2. Convert to canonical form, using various laws of transformation. 

3. Choose candidate low-level procedures for implementing the various operations in 

the canonical representation of the query. 

4. Generate query plans and choose the cheapest, using cost formulas and knowledge 

of database statistics. 

Next, we discussed the general distributive, commutative, and associative laws and 

their applicability to relational operators such as join (also their applicability to arith¬ 

metic, logical, and comparison operators), and we mentioned the idempotence and 
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TPC stands for the Transaction Processing Council, which is an independent body that has pro¬ 

duced several industry-standard benchmarks over the years. TPC-C (which is modeled after an 

order/entry system) is a benchmark for measuring OLTP performance. TPC-H and TPC-R are 

decision support benchmarks; they are designed to measure performance on a cl hoc queries 

(TPC-H) and planned reports (TPC-R), respectively. TPC-W is designed to measure perfor¬ 

mance in an e-commerce environment. See http://www.tpc.org for further information, includ¬ 

ing numerous actual benchmark results. 

18.6 Dina Bitton. David J. DeWitt, and Carolyn Turbyfill: "Benchmarking Database Systems: A 

Systematic Approach,” Proc. 9th Int. Conf. on Very Large Data Bases, Florence, Italy (October/ 

November 1983). 

The first paper to describe what is now usually called “the Wisconsin benchmark” (since it was 

developed by the authors of the paper at the University of Wisconsin). The benchmark defines a 

set of relations with precisely specified attribute values, and then measures the performance of 

certain precisely specified algebraic operations on those relations (for example, various projec¬ 

tions, involving different degrees of duplication in the attributes over which the projections are 

taken). It thus represents a systematic test of the effectiveness of the optimizer on those funda¬ 

mental operations. 

18.7 M. W. Blasgen and K. P. Eswaran: “Storage and Access in Relational Databases,” IBM Sys. J. 

16, No. 4 (1977). 

Several techniques for handling queries involving restriction, projection, and join operations 

are compared on the basis of their cost in disk I/O. The techniques in question are basically 

those implemented in System R [18.33]. 

18.8 T. H. Merrett: “Why Sort/Merge Gives the Best Implementation of the Natural Join,” ACM 

S1GMOD Record 13, No. 2 (January 1983). 

Presents a set of intuitive arguments to support the position statement of the title. The argument 

is essentially that: 

a. The join operation itself will be most efficient if the two relations are each sorted on values of 

the join attribute (because in that case, as we saw in Section 18.7, merge is the obvious tech¬ 

nique, and each data page will be retrieved exactly once, which is clearly optimal). 

b. The cost of sorting the relations into that desired sequence, on a large enough machine, is 

likely to be less than the cost of any scheme for getting around the fact that they are not so 

sorted. 

However, the author does admit that there could be some exceptions to his somewhat con¬ 

tentious position. For instance, one of the relations might be sufficiently small—that is, it might 

be the result of a previous restriction operation—that direct access to the other relation via an 

index or a hash could be more efficient than sorting it. References [18.9-18.11] give further 

examples of cases where sort/merge might not be the best technique in practice. 

18.9 Giovanni Maria Sacco: “Fragmentation: A Technique for Efficient Query Processing,” ACM 

TODS 11, No. 2 (June 1986). 

Presents a divide-and-conquer method for performing joins by recursively splitting the rela¬ 

tions to be joined into disjoint restrictions (“fragments”) and performing a series of sequential 

scans on those fragments. Unlike sort/merge, the technique does not require the relations to be 

sorted first. The paper shows that the fragmentation technique always performs better than 

sort/merge in the case where sort/merge requires both relations to be sorted first, and usually 

performs bettei in the case where sort/merge requires just one relation (the larger) to be sorted 
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the maximum and minimum values, HIGH and LOW say, of S.CITY are determined. Then the 

restriction 

LOW < P.CITY AND P.CITY < HIGH 

can be used to reduce the number of parts that need to be inspected in building the join. 

18.21 Hamid Pirahesh, Joseph M. Hellerstein, and Waqar Hasan: “Extensible Rule Based Query 

Rewrite Optimization in Starburst,” Proc. 1992 ACM SIGMOD Int. Conf. on Management of Data, 

San Diego, Calif. (June 1992). 

As noted in Section 18.1, “query rewrite” is expression transformation by another name. The 

authors claim that, rather surprisingly, commercial products do little in the way of such trans¬ 

formation (at least as of 1992). Be that as it may, the paper describes the expression transfor¬ 

mation mechanism of the IBM Starburst prototype (see references [18.48], [26.19], [26.23], 

and [26.29, 26.30]). Suitably qualified users can add new transformation rules to the system at 

any time (hence the “extensible” of the paper's title). 

18.22 Inderpal Singh Murnick, Sheldon J. Finkelstein, Hamid Pirahesh, and Raghu Ramakrishnan: 

"Magic Is Relevant,” Proc. 1990 ACM SIGMOD Int. Conf. on Management of Data, Atlantic City, 

N.J. (May 1990). 

The infelicitous term magic refers to an optimization technique originally developed for use 

with queries—especially ones involving recursion—expressed in Datalog (see Chapter 24). 

The present paper extends the approach to conventional relational systems, claiming on the 

basis of experimental measurements that it is often more effective than traditional optimization 

techniques (note that the query does not have to be recursive for the approach to be applicable). 

The basic idea is to decompose the given query into a number of smaller queries that define a 

set of “auxiliary relations” (somewhat as in the query decomposition approach discussed in 

Section 18.6), in such a way as to filter out tuples that are irrelevant to the problem at hand. The 

following example (expressed in relational calculus) is based on one given in the paper. The 

original query is: 

{ EX.ENAME > 
WHERE EX.JOB = 'Clerk' AND 

EX.SAL > AVG ( EY WHERE EY.DEPT# = EX.DEPT#, SAL ) 

(“Get names of clerks whose salary is greater than the average for their department”). If this 

expression is evaluated as written, the system will scan the employees tuple by tuple and hence 

compute the average salary for any department that employs more than one clerk several times. 

A traditional optimizer might therefore break down the query into the following two smaller 

queries: 

WITH { EX.DEPT#, 
AVG ( EY WHERE 

EY.DEPT# = EX.DEPT#, SAL ) AS ASAL } AS T1 : 

{ EMP.ENAME > WHERE EMP.JOB = 'Clerk' AND 
EXISTS T1 ( EMP.DEPT# = Tl.DEPT# AND 

EMP.SALARY > Tl.ASAL ) 

Now no department’s average will be computed more than once, but some irrelevant averages 

will be computed—namely, those for departments that do not employ clerks. 

The “magic” approach avoids both the repeated computations of the first approach and the 

irrelevant computations of the second, at the cost of generating extra “auxiliary” relations: 

/* first auxiliary relation : name, department, and salary */ 
/* for clerks */ 
WITH ( { EMP.ENAME, EMP.DEPT#, EMP.SAL } 

WHERE EMP.JOB = 'Clerk' ) AS T1 : 





564 Part V I Further Topics 

not an integrity constraint per se (employees can be older than 50), it might well be the case 

that no current employee is in fact older than 50. 

This paper describes the architecture for a system that addresses the foregoing issues. 

18.28 Upen S. Chakravarthy, John Grant, and Jack Minker: “Logic Based Approach to Semantic 

Query Optimization,” ACM TODS 15, No. 2 (June 1990). 

To quote from the abstract: “In several previous papers [the authors have] described and 

proved the correctness of a method for semantic query optimization . . . This paper consolidates 

the major results of those papers, emphasizing the techniques and their applicability for opti¬ 

mizing relational queries. Additionally, [it shows] how this method subsumes and generalizes 

earlier work on semantic query optimization. [It also indicates] how semantic query optimiza¬ 

tion techniques can be extended to [recursive queries] and integrity constraints that contain dis¬ 

junction, negation, and recursion.” 

18.29 Qi Cheng et al.: “Implementation of Two Semantic Query Optimization Techniques in DB2 

Universal Database,” Proc. 25th Int. Conf. on Very Large Data Bases, Edinburgh, Scotland (Septem¬ 

ber 1999). 

18.30 A. V. Aho, Y. Sagiv, and J. D. Ullman: “Efficient Optimization of a Class of Relational 

Expressions,” ACM TODS 4, No. 4 (December 1979). 

The relational expressions referred to in the title of this paper involve only equality restrictions 

(“selections”), projections, and natural joins: so-called SPJ-expressions. SPJ-expressions corre¬ 

spond to calculus queries in which the <bool exp> in the WHERE clause involves only equal¬ 

ity comparisons, ANDs, and existential quantifiers. The paper introduces tableaus as a means 

of symbolically representing SPJ-expressions. A tableau is a rectangular array, in which col¬ 

umns correspond to attributes and rows to conditions: specifically, to membership conditions, 

which state that a certain (sub)tuple exists in a certain relation. Rows are logically connected 

by the appearance of common symbols in the rows concerned. For example, the tableau 

S# STATUS CITY P# COLOR 

fl 

bl fl London — suppliers 
bl b2 — shipments 

b2 Red — parts 

represents the query “Get status (fl) of suppliers (bl) in London who supply some red part 

(b2)T The top row of the tableau lists all attributes mentioned in the query, the next row is the 

“summary” row (corresponding to the proto tuple in a calculus query or the final projection in 

an algebraic query), and the remaining rows (as already stated) represent membership condi¬ 

tions. We have tagged those rows in the example to indicate the relevant relations (or relvars, 

rather). Notice that the “b"s refer to bound variables and the “f's to free variables; the sum¬ 

mary row contains only ‘/”s. 

Tableaus represent another candidate for a canonical formalism for queries (see Section 

18.3), except that they are not general enough to represent all possible relational expressions. 

(In fact, they can be regarded as a syntactic variation on Query-By-Example, one that is how¬ 

ever strictly less powerful than QBE.) The paper gives algorithms for reducing any tableau to 

another, semantically equivalent tableau in which the number of rows is reduced to a minimum. 

Since the number of rows (not counting the top two, which are special) is one more than the 

number of joins in the corresponding SPJ-expression, the converted tableau represents an opti¬ 

mal form of the query—optimal, in the very specific sense that the number of joins is mini- 
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mized. (In the example, however, the number of joins is already the minimum possible for the 

query, and such optimization has no effect.) The minimal tableau can then be converted if 

desired into some other representation for subsequent additional optimization. 

The idea of minimizing the number of joins has applicability to queries formulated in 

terms of join views (in particular, queries formulated in terms of a “universal relation”—see the 

“References and Bibliography” section in Chapter 13). For example, suppose the user is pre¬ 

sented with a view V that is defined as the join of suppliers and shipments over S#, and the user 
issues the query: 

v { p# > 

A straightforward view-processing algorithm would convert this query into the following: 

( SP JOIN s ) { P# > 

As pointed out in Section 18.4, however, the following query produces the same result, and 

does not involve a join (i.e., the number of joins has been minimized): 

SP { P# > 

Note therefore that, since the algorithms for tableau reduction given in the paper take into 

account any explicitly stated functional dependencies among the attributes, those algorithms 

provide a limited example of a semantic optimization technique. 

18.31 Y. Sagiv and M. Yannakakis: “Equivalences Among Relational Expressions with the Union 

and Difference Operators,” JACM 27, No. 4 (October 1980). 

Extends the ideas of reference [18.30] to include queries that make use of union and difference 

operations. 

18.32 Alon Y. Levy, Inderpal Singh Mumick. and Yehoshua Sagiv: “Query Optimization by Predi¬ 

cate Move-Around,” Proc. 20th Int. Conf. on Very Large Data Bases, Santiago, Chile (September 

1994). 

18.33 P. Griffiths Selinger el al.: “Access Path Selection in a Relational Database System,” Proc. 

1979 ACM SIGMOD Int. Conf.on Management of Data, Boston, Mass. (May/June 1979). 

This seminal paper discusses the optimization techniques used in System R. A query in System 

R is an SQL statement and thus consists of a set of “SELECT - FROM - WHERE” blocks 

{query blocks), some of which might be nested inside others. The System R optimizer first 

decides on an order in which to execute those query blocks; it then seeks to minimize the total 

cost of the query by choosing the cheapest implementation for each individual block. Note that 

this strategy (choosing block order first, then optimizing individual blocks) means that certain 

possible query plans will never be considered; in effect, it amounts to a technique for “reducing 

the search space” (see the remarks on this subject near the end of Section 18.3). Note: In the 

case of nested blocks, the optimizer effectively just follows the nested order as specified by the 

user—that is, the innermost block will be executed first, loosely speaking. See references 

[18.37-18.43] for criticism and further discussion of this strategy. 

For a given query block, there are basically two cases to consider (the first of which can be 

regarded as a special case of the second): 

1. For a block that involves just a restriction and/or projection of a single relation, the opti¬ 

mizer uses statistical information from the catalog, together with formulas (given in the 

paper) for estimating intermediate result sizes and low-level operation costs, to choose a 

strategy for performing that restriction and/or projection. 

2. For a block that involves two or more relations to be joined together, with (probably) local 

restrictions and/or projections as well, the optimizer (a) treats each individual relation as in 
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Case 1 and (b) decides on a sequence for performing the joins. The two operations a and h 

are not independent of one another; for example, a given strategy—using a certain index, 

say—for accessing an individual relation A might well be chosen precisely because it pro¬ 

duces tuples of A in the order in which they are needed to perform a subsequent join of A 

with some other relation B. 

Joins are implemented by sort/merge, index lookup, or brute force. The paper stresses the 

point that, in evaluating (for example) the nested join (A JOIN B) JOIN C, it is not necessary to 

compute the join of A and B in its entirety before computing the join of the result and C; on the 

contrary, as soon as any tuple of A JOIN B has been produced, it can immediately be passed to 

the process that joins such tuples with tuples of C. Thus, it might never be necessary to materi¬ 

alize the relation “A JOIN B " in its entirety at all. (This general pipelining idea was discussed 

briefly in Chapter 3. Section 3.2. See also references [18.16] and [18.58].) 

The paper also includes a few observations on the cost of optimization. For a join of two 

relations, the cost is said to be approximately equal to the cost of between 5 and 20 database 

retrievals, a negligible overhead if the optimized query will subsequently be executed a large 

number of times. (Note that System R is a compiling system—in fact, it pioneered the compil¬ 

ing approach—and hence an SQL statement might be optimized once and then executed many 

times, perhaps many thousands of times.) Optimization of complex queries is said to require 

“only a few thousand bytes of storage and a few tenths of a second” on an IBM System 370 

Model 158. “Joins of eight tables have been optimized in a few seconds.” 

18.34 Eugene Wong and Karel Youssefi: "Decomposition—A Strategy for Query Processing,” ACM 

TODS 1, No. 3 (September 1976). 

18.35 Karel Youssefi and Eugene Wong: “Query Processing in a Relational Database Management 

System,” Proc. 5th Int. Conf. on Very Large Data Bases. Rio de Janeiro, Brazil (September 1979). 

18.36 Lawrence A. Rowe and Michael Stonebraker: “The Commercial Ingres Epilogue.” in refer¬ 

ence [8.10], 

“Commercial Ingres” is the product that grew out of the “University Ingres” prototype. Some 

of the differences between the University and Commercial Ingres optimizers are as follows: 

1. The University optimizer used “incremental planning”—that is, it decided what to do first, 

did it, decided what to do next on the basis of the size of the result of the previous step, and 

so on. The Commercial optimizer decides on a complete plan before beginning execution, 

based on estimates of intermediate result sizes. 

2. The University optimizer handled two-variable (i.e., join) queries by tuple substitution, as 

explained in Section 18.6. The Commercial optimizer supports a variety of preferred tech¬ 

niques for handling such queries, including in particular the sort/merge technique described 

in Section 18.7. 

3. The Commercial optimizer uses a much more sophisticated set of statistics than the Univer¬ 

sity optimizer. 

4. The University optimizer did incremental planning, as noted under point 1. The Commer¬ 

cial optimizer does a more exhaustive search. However, the search process stops if the time 

spent on optimization exceeds the current best estimate of the time required to execute the 

query (for otherwise the overhead of doing the optimization might well outweigh the 

advantages). 

5. The Commercial optimizer considers all possible index combinations, all possible join 

sequences, and "all available join methods—sort/merge, partial sort/merge, hash lookup, 

ISAM lookup, B-tree lookup, and brute force” (sec Section 18.7). 
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18.37 Won Kim: “On Optimizing an SQL-Like Nested Query,” ACM TODS 7, No. 3 (September 
1982). 

See the annotation to reference [18.41]. 

18.38 Werner Kiessling: “On Semantic Reefs and Efficient Processing of Correlation Queries with 

Aggregates,” Proc. 11th Int. Conf. on Very Large Data Bases, Stockholm, Sweden (August 1985). 

See the annotation to reference [18.41], 

18.39 Richard A. Ganski and Harry K. T. Wong: “Optimization of Nested SQL Queries Revisited,” 

Proc. 1987 ACM S1GMOD Int. Conf. on Management of Data, San Francisco, Calif. (May 1987). 

See the annotation to reference [18.41], 

18.40 Gunter von Btiltzingsloewen: “Translating and Optimizing SQL Queries Having Aggregates,” 

Proc. 13th Int. Conf. on Very Large Data Bases, Brighton, UK (September 1987). 

See the annotation to reference [18.41]. 

18.41 M. Muralikrishna: “Improved Unnesting Algorithms for Join Aggregate SQL Queries,” Proc. 

18th Int. Conf. on Very Large Data Bases, Vancouver, Canada (August 1992). 

The SQL language includes the concept of a “nested subquery”—that is, a SELECT - FROM - 

WHERE block that is nested inside another such block, loosely speaking (see Chapter 8). This 

construct has caused implemented much grief. Consider the following SQL query (“Get names 

of suppliers who supply part P2”), which we will refer to as Query QI: 

SELECT S.SNAME 
FROM S 
WHERE S.S# IN 

( SELECT SP.S# 
FROM SP 
WHERE SP.P# = P# ('P2') ) ? 

In System R [18.33], this query is implemented by (a) evaluating the inner block first to yield a 

temporary table, T say, containing supplier numbers for the required suppliers, and then (b) 

searching table S one row at a time, and, for each such row, searching table T to see if it con¬ 

tains the corresponding supplier number. This strategy is likely to be quite inefficient (espe¬ 

cially as table T will not be indexed). 

Now consider the following query (Query Q2): 

SELECT S.SNAME 
FROM S, SP 
WHERE S.S# = SP.S# 
AND SP.P# = P# ('P2') ; 

This query is readily seen to be semantically identical to the previous one, but System R will 

now consider additional implementation strategies for it. In particular, if tables S and SP hap¬ 

pen to be physically stored in supplier number sequence, it will use a merge join, which will be 

very efficient. And given that (a) the two queries are logically equivalent but (b) the second is 

more immediately susceptible to efficient implementation, the possibility of transforming que¬ 

ries of type Q1 into queries of type Q2 seems worth exploring. That possibility is the subject of 

references [18.37-18.43]. 

Kim [18.37] was the first to address the problem. Five types of nested queries were identi¬ 

fied and corresponding transformation algorithms described. Kim’s paper included some exper¬ 

imental measurements that showed that the proposed algorithms improved the performance of 

nested queries by (typically) one to two orders of magnitude. 

Subsequently, Kiessling [18.38] showed that Kim’s algorithms did not work correctly if a 

nested subquery (at any level) included a COUNT operator in its SELECT list (it did not prop¬ 

erly handle the case where the COUNT argument evaluated to an empty set). The “semantic 
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reefs” of the paper’s title referred to the SQL awkwardnesses and complexities that users have 

to navigate around in order to get correct answers to such queries. Furthermore, Kiessling also 

showed that Kim's algorithm was not easy to fix (“there seems to be no uniform way to do 

these transformations efficiently and correctly under all circumstances”). 

The paper by Ganski and Wong [18.39] provides a fix to the problem identified by 

Kiessling, by using an outer join (see Chapter 19) instead of the regular inner join in the trans¬ 

formed version of the query. (The fix is not totally satisfactory, in the present writer’s opinion, 

because it introduces an undesirable ordering dependence among the operators in the trans¬ 

formed query.) The paper also identifies a further bug in Kim’s original paper, which it fixes in 

the same way. However, the transformations in this paper contain additional bugs of their own, 

some having to do with the problem of duplicate rows (a notorious “semantic reef’) and others 

with the flawed behavior of the SQL EXISTS quantifier (see Chapter 19). 

The paper by von Biiltzingsloewen [18.40] represents an attempt to put the entire topic on 

a theoretically sound footing (the basic problem being that, as several writers have observed, 

the behavior—both syntactic and semantic—of SQL-style nesting and aggregation is not well 

understood). It defines extended versions of both the relational calculus and the relational alge¬ 

bra (the extensions having to do with aggregates and nulls), and proves the equivalence of those 

two extended formalisms (using, incidentally, a new method of proof that seems more elegant 

than those previously published). It then defines the semantics of SQL by mapping SQL into 

the extended calculus just defined. However, it should be noted that: 

1. The dialect of SQL discussed, though closer to the dialect typically supported in commer¬ 

cial products than that of references [18.37-18.39], is still not fully orthodox: It does not 

include UNION, it does not directly support operators of the form “=ALL” or “>ALL” (see 

Appendix B), and its treatment of unknown truth values—see Chapter 19—is different from 

(actually better than) that of conventional SQL. 

2. The paper omits consideration of matters having to do with duplicate elimination “for tech¬ 

nical simplification.” But the implications of this omission are not clear, given that (as 

already indicated) the possibility of duplicates has significant consequences for the validity 

or otherwise of certain transformations [6.6], 

Finally, Muralikrishna [18.41] claims that Kim’s original algorithm [18.37], though incor¬ 

rect, can still be more efficient than “the general strategy” of reference [18.39] in some cases, 

and therefore proposes an alternative correction to Kim’s algorithm. It also provides some addi¬ 

tional improvements. 

18.42 Lars Baekgaard and Leo Mark: “Incremental Computation of Nested Relational Query 

Expressions,” ACM TODS 20, No. 2 (June 1995). 

Another paper on the optimization of queries involving SQL-style subqueries, especially corre¬ 

lated ones. The strategy is (1) to convert the original query into an unnested equivalent and then 

(2) to evaluate the unnested version incrementally. “To support step (1), we have developed a 

very concise algebra-to-algebra transformation algorithm . . . The [transformed] expression 

makes intensive use of the [MINUS] operator. To support step (2), we present and analyze an 

efficient algorithm for incrementally evaluating [MINUS operations].” The term incremental 

computation refers to the idea that evaluation of a given query can make use of previously com¬ 

puted results. 

18.43 Jun Rao and Kenneth A. Ross: “Using Invariants: A New Strategy for Correlated Queries,” 

Proc. 1998 ACM SIGMOD Int. Conf. on Management of Data, Seattle, Wash. (June 1998). 

Yet another paper on the optimization of queries involving SQL-style subqueries. 
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step, thereby translating a given calculus expression directly into an optimal algebraic equiva¬ 

lent. This scheme is claimed to be “more effective and more promising . . . because it seems 

quite difficult to optimize complicated algebraic expressions.” The translation process makes 

use of certain heuristic transformations, incorporating human knowledge regarding the equiva¬ 
lence of certain calculus and algebraic expressions. 

18.50 Kyu-Young Whang and Ravi Krishnamurthy: "Query Optimization in a Memory-Resident 

Domain Relational Calculus Database System,” ACM TODS 15, No. 1 (March 1990). 

The most expensive aspect of query processing (in the specific main-memory environment 

assumed by this paper) is shown to be the evaluation of boolean expressions. Optimization in 

that environment is thus aimed at minimizing the number of such evaluations. 

18.51 Johann Christoph Freytag and Nathan Goodman: “On the Translation of Relational Queries 
into Iterative Programs,” ACM TODS 14, No. 1 (March 1989). 

Presents methods for compiling relational expressions directly into executable code in a lan¬ 

guage such as C or Pascal. Note that this approach differs from the approach discussed in the 

body of the chapter, where the optimizer effectively combines prewritten (parameterized) code 
fragments to build the query plan. 

18.52 Kiyoshi Ono and Guy M. Lohman: “Measuring the Complexity of Join Enumeration in Query 

Optimization,” Proc. 16th Int. Conf. on Very Large Data Bases, Brisbane, Australia (August 1990). 

Given that join is basically a dyadic operation, the optimizer has to break down a join involving 

n relations (n > 2) into a sequence of dyadic joins. Most optimizers do this in a strictly nested 

fashion; that is, they choose a pair of relations to join first, then a third to join to the result of 

joining the first two, and so on. In other words, an expression such as A JOIN B JOIN C JOIN 

D might be treated as, say, ((D JOIN B) JOIN Cj JOIN A, but never as, say, (A JOIN D) JOIN 

(B JOIN C). Further, traditional optimizers are usually designed to avoid Cartesian products if 

at all possible. Both of these tactics can be seen as ways of “reducing the search space” (though 

heuristics for choosing the sequence of joins are still needed, of course). 

The present paper describes the relevant aspects of the optimizer in the IBM Starburst pro¬ 

totype (see references [18.21], [18.48], [26.19], [26.23], and [26.29, 26.30]). It argues that both 

of the foregoing tactics can be inappropriate in certain situations, and hence that what is needed 

is an adaptable optimizer that can use, or be instructed to use, different tactics for different 

queries. 

18.53 Bennet Vance and David Maier: “Rapid Bushy Join-Order Optimization with Cartesian Prod¬ 

ucts,” Proc. 1996 ACM SIGMOD Int. Conf. on Management of Data, Montreal, Canada (June 1996). 

As noted in the annotation to reference [18.52], optimizers tend to “reduce the search space” by 

(among other things) avoiding plans that involve Cartesian products. This paper shows that 

searching the entire space “is more affordable than has been previously recognized” and that 

avoiding Cartesian products is not necessarily beneficial (in this connection, see the discussion 

of “star join” in Chapter 22). According to the authors, the paper’s main contributions are in (a) 

fully separating join-order enumeration from predicate analysis and (b) presenting “novel 

implementation techniques” for addressing the join-order enumeration problem. 

18.54 Yannis E. Ioannidis, Raymond T. Ng, Kyuseok Shim, and Timos K. Sellis: “Parametric Query 

Optimization,” Proc. 18th Int. Conf. on Very Large Data Bases, Vancouver, Canada (August 1992). 

Consider the following query: 

EMP WHERE SALARY > salary 

(where salary is a run-time parameter). Suppose there is an index on SALARY. Then: 
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null,” or of that WEIGHT value as “being null,” and indeed we often talk in such terms in 

practice. But it should be clear that such talk is only informal, and indeed not very accu¬ 

rate; to say that the WEIGHT component of some tuple “is null” is really to say that the 

tuple contains no WEIGHT value at all. That is why the expression “null value,” which is 

heard very frequently, is deprecated: The whole point about nulls (or a large part of the 

point, at any rate) is precisely that they are not values—they are, to repeat, marks or flags. 

Now, we will see in the next section that any scalar comparison in which one of the 

comparands is null evaluates to the unknown truth value, instead of to true or false.1 The 

justification for this state of affairs is the intended interpretation of null as “value 

unknown”: If the value of A is unknown, then obviously it is unknown whether, for exam¬ 

ple, A > B. regardless of the value of B (even—perhaps especially—if the value of B is 

unknown as well). Note in particular, therefore, that two nulls are not considered to be 

equal to one another; that is, the comparison A = B evaluates to unknown, not true, if A 

and B are both null. (They are not considered to be unequal, either; that is, the comparison 

A ^ B evaluates to unknown as well.) Hence the term three-valued logic: The concept of 

nulls, at least as that term is usually understood, inevitably leads us into a logic in which 

there are three truth values {true, false, and unknown). 

Before we go any further, we should make it very clear that in our opinion (and in 

that of many other writers too, we hasten to add), nulls and 3VL are and always were a 

serious mistake and have no place in the relational model. For example, to say that a cer¬ 

tain part tuple contains no WEIGHT value is to say, by definition, that the tuple in ques¬ 

tion is not a part tuple after all; equivalently, it is to say that the tuple in question is not an 

instantiation of the applicable predicate. In fact, the “tuple” in question is simply not a 

tuple!—as can easily be seen by reference to the definition of the term tuple in Chapter 6. 

The truth is, the very act of trying to state precisely what the nulls scheme is all about is 

(or should be) sufficient to show why the idea is not exactly coherent. As a consequence, it 

is hard to explain it coherently, too. To quote reference [11.10]: “It all makes sense if you 

squint a little and don’t think too hard.” 

Be that as it may, it would not be appropriate to exclude a discussion of nulls and 

3VL entirely from a book of this nature; hence the present chapter. 

The plan of the chapter, then, is as follows. Following this introduction, in Section 

19.2 we suspend disbelief for a while and describe as best we can the basic ideas behind 

nulls and 3VL, without offering much in the way of criticism of those ideas. (It is obvi¬ 

ously not possible to criticize the ideas properly or fairly without first explaining what 

those ideas are.) Then in Section 19.3 we discuss some of the more important conse¬ 

quences of those ideas, in an attempt to justify our own position that nulls are a mistake. 
Section 19.4 considers the implications of nulls for primary and foreign keys. Section 

19.5 digresses to consider an operation commonly encountered in the context of nulls and 

3VL, called outer join. Section 19.6 very briefly considers an alternative approach to 

missing information, using special values. Section 19.7 sketches the relevant aspects of 
SQL. Finally, Section 19.8 presents a summary. 

1 Elsewhere in this book we set truth values in all uppercase. In this chapter, by contrast, we set them in 
lowercase italics (mainly for consistency with other publications by this author on the same topic). 
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One last preliminary remark: There are many reasons why we might be unable to put 
a genuine data value in some position within some tuple—“value unknown” is only one 

such reason. Others include “value not applicable,” “value does not exist,” “value unde¬ 

fined," “value not supplied," and so on [19.5].2 Indeed, in reference [6.2] Codd proposes 

that the relational model should be extended to include not one but two nulls, one mean¬ 

ing “value unknown" and the other “value not applicable,” and further proposes that 

DBMSs should therefore deal in terms of not three- but/onr-valued logic. We have argued 

against such a proposal elsewhere [19.5]; in this chapter we limit our attention to a single 
kind of null only, the value-unknown null, which for definiteness we will henceforward 
often—but not invariably—refer to as UNK (for unknown). 

19.2 AN OVERVIEW OF THE 3VL APPROACH 

In this section we briefly describe the principal components of the 3VL approach to miss¬ 
ing information. We begin by considering (in the two subsections immediately following) 

the effect of nulls—meaning UNKs specifically—on boolean expressions. 

Boolean Operators 

We have already said that any scalar comparison in which either of the comparands is 

UNK evaluates to the unknown truth value, instead of true or false, and hence that we are 
dealing with three-valued logic (3VL). Unknown (which we will henceforward often—but 

not invariably—abbreviate to just unk) is “the third truth value.” Here then are the 3VL 

truth tables for AND, OR, and NOT (t = true, f = false, u - unk): 

AND t u f OR t u f NOT 

t t u f t t t t t f 
u u u f u t u u u u 
f f f f f t u f f t 

For example, suppose A = 3, B = 4, and C is UNK. Then the following expressions 

have the indicated truth values: 

A > B AND B > C 
A > B OR B > C 
A < B OR B < C 
NOT ( A = C ) 

false 
unk 
true 
unk 

2 We remark, however, that there is no missing information, as such, in these other cases. For example, if 
we say that the commission for employee Joe is “not applicable,” we are saying, quite explicitly, that the 
property of earning a commission does not apply to Joe; no information is missing here. (It is still the 
case, however, that if, for example, Joe’s “employee tuple” “contains” a not-applicable null in the com¬ 
mission position, then that tuple is not an employee tuple—that is, it is not an instantiation of the 
“employee” predicate: in fact, it is not a tuple at all.) 
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AND, OR, and NOT are not the only boolean operators we need, however 119.11]; 

another important one is MAYBE [19.5], with truth table as follows: 

MAYBE 

t f 
u t 
f f 

To see why MAYBE is desirable, consider the query “Get employees who may be— 

but are not definitely known to be—programmers born before January 18, 1971, with a 

salary less than $50,000.” With the MAYBE operator, the query can be stated quite suc¬ 

cinctly as follows:3 

EMP WHERE MAYBE ( JOB = 'Programmer' AND 

DOB < DATE ('1971-1-18') AND 
SALARY < 50000.00 ) 

(We have assumed that attributes JOB, DOB, and SALARY of relvar EMP are of types 

CHAR, DATE, and RATIONAL, respectively.) Without the MAYBE operator, however, 
the query has to look something like this: 

EMP WHERE ( JOB = 'Programmer' 
OR IS_UNK ( JOB ) ) 

AND ( DOB < DATE ('1971-1-18') 
OR IS_UNK ( DOB ) ) 

AND ( SALARY < 50000.00 
OR IS_UNK ( SALARY ) ) 

AND NOT ( JOB = 'Programmer' AND 
DOB < DATE ('1971-1-18') AND 
SALARY < 50000.00 ) 

We have assumed the existence of another truth-valued operator called IS_UNK, which 

takes a single scalar operand and returns true if that operand evaluates to UNK and false 

otherwise. (As an aside, we note that a version of IS_UNK would be needed for nonscalars 

too. We make no attempt to define such a thing here, however, because the complexities 

involved are too daunting, and we do not really believe in 3VL support anyway.) 

Incidentally, the foregoing should not be construed to mean that MAYBE is the only 

new boolean operator needed for 3VL. In practice, for example, a TRUE_OR_MAYBE 

operator (returning true if its operand evaluates to true or unk, false otherwise) might be 

useful [19.5]. See the annotation to reference [19.11] in the “References and Bibliogra¬ 
phy” section. 

Quantifiers 

Despite the fact that we use the algebra rather than the calculus as a basis for most of our 

examples, we do need to consider the implications of 3VL for EXISTS and FORALL. As 
explained in Chapter 8, we define these quantifiers as iterated OR and AND, respectively. 

Ii is necessary to pretend for the sake of examples in this chapter that Tutorial I) includes support for 
UNKs and 3 VL. In fact, of course, it does not. 
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In other words, if (a) r is a relation with tuples tl, t2, tin, (b) V is a range variable that 

ranges over r, and (c) p(V) is a boolean expression in which V occurs as a free variable, 

then the expression 

EXISTS V ( p ( V ) ) 

is defined to be equivalent to: 

false OR p ( tl ) OR ... OR p ( tm ) 

Likewise, the expression 

FORALL V ( p ( V ) ) 

is defined to be equivalent to 

true AND p ( tl ) AND ... AND p ( tm ) 

So what happens if p(ti) evaluates to unk for some i? By way of example, let relation 

r contain exactly the following tuples: 

(l# 2, 3 ) 
( 1, 2, UNK ) 
( UNK, UNK, UNK ) 

For simplicity, assume that the three attributes, in left-to-right order as shown, are called 

A, B, and C, respectively, and every attribute is of type INTEGER. Then the following 

expressions have the indicated values: 

EXISTS V ( v.c > 1 ) true 
EXISTS V ( V.B > 2 ) unk 
EXISTS V ( MAYBE ( V.A > 3 ) ) true 
EXISTS V ( IS_UNK ( V.C ) ) true 

FORALL V ( V.A > 1 ) false 
FORALL V ( V.B > 1 ) unk 
FORALL V ( MAYBE ( V.C > 1 ) ) false 

Other Scalar Operators 

Consider the numeric expression 

WEIGHT * 454 

where WEIGHT represents the weight of some part. What if the weight in question hap¬ 

pens to be UNK?—what then is the value of the expression? The answer is that it too must 

be considered to be UNK. In general, in fact, any numeric expression is considered to 

evaluate to UNK if any of the operands of that expression is itself UNK. Thus, for exam¬ 

ple, if WEIGHT happens to be UNK, then all of the following expressions also evaluate to 

UNK: 

WEIGHT +454 
WEIGHT - 454 
WEIGHT * 454 
WEIGHT / 454 

454 + WEIGHT + WEIGHT 
454 - WEIGHT - WEIGHT 
454 * WEIGHT 
454 / WEIGHT 
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Note: Perhaps we should point out right away that the foregoing treatment of numeric 

expressions does give rise to certain anomalies. For example, the expression WEIGHT - 

WEIGHT, which should clearly yield zero, actually yields UNK, and the expression 

WEIGHT / 0, which should clearly raise a “zero divide” error, also yields UNK (assuming 

in both cases that WEIGHT is UNK in the first place). We ignore such anomalies until 

further notice. 

Analogous considerations apply to all other scalar types and operators, except for (a) 

the boolean operators (see the two previous subsections), (b) the operator IS_UNK dis¬ 

cussed earlier, and (c) the operator IF_UNK discussed in the next paragraph. Thus, for 

example, the character-string expression A \ \ B returns UNK if A is UNK or B is UNK or 

both. (Again there are certain anomalous cases, details of which we omit here.) 

The IF_UNK operator takes two scalar operands and returns the value of the first op¬ 

erand unless that operand evaluates to UNK, in which case it returns the value of the second 

operand instead (in other words, the operator effectively provides a way to convert an UNK 

to some nonUNK value). For example, suppose UNKs are permitted for the suppliers 

CITY attribute. Then the expression 

EXTEND S ADD IFJJNK ( CITY, ’City unknown' ) AS SCITY 

yields a result in which the SCITY value is “City unknown” for any supplier whose city is 

given as UNK in S. 

Note, incidentally, that IF_UNK can be defined in terms of IS_UNK. To be specific, 

the expression 

IF_UNK ( expl, exp2 ) 

(where expressions expl and exp2 must be of the same type) is defined to be equivalent to 

the expression 

IF IS_UNK ( expl ) THEN exp2 ELSE expl END IF 

UNK Is Not unk 

It is important to understand that UNK (the value-unknown null) and unk (the unknown 

truth value) are not the same thing.4 Indeed, this state of affairs is an immediate conse¬ 

quence of the fact that unk is a value (a truth value, to be precise), whereas UNK is not a 

value at all. But let us be a little more specific. Suppose X is a variable of type BOOLEAN. 

Then X must have one of the values true, false, or unk. Thus, the statement “X is unk" 

means, precisely, that the value of X is known to be unk. By contrast, the statement “X is 

UNK” means that the value of X is not known. 

Can a Type Contain an UNK? 

It is also an immediate consequence of the fact that UNK is not a value that no type can 

contain an UNK (types are sets of values). Indeed, if it were possible for a given type to 

4 SQL thinks they are, though (see Section 19.7). 
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will return employee El if “optimized ” in the foregoing sense and will not do so otherwise 

(in fact, of course, the “optimization” is not valid). Thus we see that certain optimizations 

that are perfectly valid, and useful, under conventional 2VL are no longer valid under 3 VL. 

Note the implications of the foregoing for extending a 2VL system to support 3VL: 

At best, such an extension is likely to require some reengineering of the existing system, 

since portions of the existing optimizer code are likely to be invalidated; at worst, it will 

introduce bugs. More generally, note the implications for extending a system that supports 

/i-valued logic to support (/i+l)-valued logic instead, for any n greater than one; analogous 

difficulties will arise for every discrete value of n. 

The Interpretation Issue 

Now let us examine the departments-and-employees example a little more carefully. Since 

employee El does have some corresponding department in the real world, the UNK does 

stand for some real value, say d. Now, either d is D1 or it is not. If it is, then the original 

expression 

DEPT.DEPT# = EMP.DEPT# AND EMP.DEPT# = DEPT# ('D1’) 

evaluates (for the given data) to false, because the first term evaluates to false. Alternatively, 

if d is not Dl, then the expression also evaluates (for the given data) to false, because the 

second term evaluates to false. In other words, the original expression is always false in the 

real world, regardless of what real value the UNK stands for. Thus, the result that is correct 

according to three-valued logic and the result that is correct in the real world are not the 

same! In other words, three-valued logic does not behave in accordance with the way the 

real world behaves; that is, 3VL does not seem to have a sensible interpretation in terms of 

how the real world works. 

Note: This question of interpretation is very far from being the only problem arising 

from nulls and 3VL (see references [19.1-19.11] for an extensive discussion of many oth¬ 

ers). It is not even the most fundamental (see the next subsection). However, it is perhaps 

the one of greatest pragmatic significance; in this writer’s opinion, in fact, it is a show- 

stopper. 

Predicates Again 

Suppose the relation that is the current value of the EMP relvar contains just two tuples, 

(E2,D2) and (El,UNK). The first corresponds to the proposition “There is an employee 

identified as E2 in the department identified as D2.” The second corresponds to the propo¬ 

sition “There is an employee identified as El.” (Remember that to say that a tuple “con¬ 

tains an UNK” is really to say that the tuple in fact contains nothing at all in the applicable 

position; thus, the tuple (El,UNK)—setting aside for the moment the question of whether 

it is even a tuple at all—should effectively be considered as being of the form just (El).) In 

other words, the two tuples are instantiations of two different predicates, and the “relation” 

is not a relation at all but instead a kind of union (not a relational union!) of two different 

relations with, in particular, two different headings. 
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1. First of all, it is often thought that the entity integrity rule says something along the 

lines of “Primary key values must be unique,” but it does not. (It is true that primary 

key values must be unique, but that requirement is implied by the basic definition of 

the primary key concept per se.) 

2. Next, note that the rule applies explicitly to primary' keys; by implication, therefore, 

alternate keys can apparently allow nulls. But if AK is an alternate key that allows 

nulls, then AK could not have been chosen as the primary key, because of the entity 

integrity rule—so in what sense exactly was AK a “candidate” key in the first place? 

Alternatively, if we have to say that alternate keys cannot allow nulls either, then the 

entity integrity rule applies to all candidate keys, not just to the primary key. Either 

way, there seems to be something wrong with the rule as stated. 

3. Finally, note that the entity integrity rule applies only to base relvars; other relvars 

can apparently have a primary key that does allow nulls. As a trivial and obvious ex¬ 

ample, consider the projection of a relvar R over any attribute A that allows nulls. The 

rule thus violates The Principle of Interchangeability (of base and derived relvars). In 

our opinion, this would be a strong argument for rejecting it even if it did not involve 

nulls (a concept we reject anyway). 

Now, suppose we agreed to drop the whole idea of nulls and used special values6 

instead to represent missing information (just as we do in the real world, in fact—see Sec¬ 

tion 19.6, later). Then we might want to retain a modified version of the entity integrity 

rule—“No component of the primary key of any base relvar is allowed to accept such spe¬ 

cial values”—as a guideline, but not as an inviolable law (much as the ideas of further 

normalization serve as guidelines, but not as inviolable laws). Fig. 19.2 gives an example 

of a base relvar called SURVEY for which we might want to violate that guideline; it rep¬ 

resents the results of a salary survey, showing the average, maximum, and minimum sal¬ 

ary by birth year for a certain sample population (BIRTHYEAR is the primary key). And 

the tuple with the special BIRTHYEAR value "????" represents people who declined to 

answer the question “When were you born?” 

BIRTHYEAR AVGSAL MAXSAL MINSAL 

1960 85K 130K 33K 
1961 82K 125K 32K 
1962 77K 99K 32K 
1963 78K 97K 35K 

1970 29K 35K 12K 
???? 56K 117K 20K 

Fig. 19.2 Base relvar SURVEY (sample value) 

6 Often inappropriately called default values [19.12], 
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19.5 OUTER JOIN (A DIGRESSION) 

In this section we digress briefly to discuss an operation known as outer join (see refer¬ 

ences [19.3, 19.4], [ 19.7], and [19.14-19.16]). Outer join is an extended form of the regu¬ 

lar or inner join operation. It differs from the inner join in that tuples in one relation hav¬ 

ing no counterpart in the other appear in the result with nulls in the other attribute 

positions, instead of simply being ignored as they normally are. It is not a primitive opera¬ 

tion; for example, the following expression could be used to construct the outer join of 

suppliers and shipments on supplier numbers (assuming for the sake of the example that 

“NULL” is a legal scalar expression): 

( s JOIN SP ) 
UNION 

( EXTEND ( ( S { S# > MINUS SP { S# } ) JOIN S ) 
ADD ( NULL AS P#, NULL AS QTY ) ) 

The result includes tuples for suppliers who supply no parts, extended with nulls in the P# 

and QTY positions. 

Let us examine this example a little more closely. Refer to Fig. 19.3. In that figure, 

the top portion shows some sample data values for relvars S and SP, the middle portion 

shows the regular inner join, and the bottom portion shows the corresponding outer join. 

As the figure indicates, the inner join “loses information”—speaking very loosely!—for 

suppliers who supply no parts (supplier S5, in the example), whereas the outer join “pre¬ 

serves” such information; indeed, exactly that distinction is the whole point of outer join. 

Now, the problem that outer join is intended to solve—that is, the fact that inner join 

sometimes “loses information”—is certainly an important problem. Some writers would 

therefore argue that the system should provide direct, explicit support for outer join, instead 

s# SNAME STATUS CITY 

S2 Jones 10 Paris 
S5 Adams 30 Athens 

S# P# QTY 

S2 
S2 

PI 
P2 

300 
400 

Regular (inner) join: 

S# SNAME STATUS CITY P# QTY 

S2 Jones 10 Paris PI 300 
S2 Jones 10 Paris P2 400 

"Loses" 

information for 

supplier S5 

Outer join: 

"Preserves" 

information fo 

supplier S5 

Fig. 19.3 Inner vs. outer join (example) 
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if the actual value is unknown for some reason.4 Thus, the general idea is simply to use an 

appropriate special value, distinct from all regular values of the attribute in question, when 

no regular value can be used. Note that the special value must be a value of the applicable 

type; in the “hours worked” example, therefore, the type of the HOURS_WORKED 

attribute is not just integers, but integers plus whatever the special value is. (A nice anal¬ 

ogy here: For many card games, the type TRUMPS contains five values, not four— 

“hearts,” “clubs,” “diamonds,” “spades,” and “no trumps.”) 

Now, we would be the first to admit that the foregoing scheme is not very elegant, but 

it does have the overwhelming advantage of nor undermining the logical foundations of 

the relational model. In subsequent chapters, therefore, we will simply ignore the possi¬ 

bility of null support (except in certain SQL-specitic contexts, where occasional refer¬ 

ences to nulls are unavoidable). See reference [19.12] for a detailed description of the spe¬ 

cial values scheme. 

19.7 SQL FACILITIES 

SQL's support for nulls and 3VL follows the broad outlines of the approach described in 

previous sections. Thus, for example, when SQL applies a WHERE clause to some table T. 

it eliminates all rows of T for which the expression in that WHERE clause evaluates to 

either false or unk (i.e., not to true). Likewise, when it applies a HAVING clause to some 

“grouped table" G, it eliminates all groups of G for which the expression in that HAVING 

clause evaluates either to false or unk (i.e., not to true).n) In what follows, therefore, we 

merely draw your attention to certain 3VL features that are specific to SQL per se. instead 

of being an intrinsic part of the 3VL approach as previously discussed. 

Note: The full implications and ramifications of SQL’s null support are very complex; 

in fact, although we just said that SQL follows three-valued logic in broad outline, the 

truth is that it also manages to make a variety of mistakes in its support for that logic, as 

we will soon see. For additional information, we refer you to the official standard specifi¬ 

cation 14.23] or the detailed tutorial treatment in reference [4.20], 

Data Types 

As we saw in Chapter 4. SQL includes the built-in type BOOLEAN (it was added to the 

standard in 1999, though few products if any yet support it). The usual boolean operators 

AND. OR, and NOT are available, and boolean expressions can appear wherever scalar 

expressions in general can appear. As we know, however, there are now three truth values, 
not two (the corresponding literals are TRUE, FALSE, and UNKNOWN); this fact not¬ 

withstanding, type BOOLEAN includes just two values, not three—the unknown truth 

value is represented, quite incorrectly, by null! Here are some consequences of this fact: 

g Observe that the one thing we do not do is use a null for this purpose. There is no such thing as a null in 
the real world [19.12], 

10 A grouped table in SQL is what is produced when a GROUP BY (possibly implicit) is executed. Such 
a table is reduced to a regular “ungrouped” table when the accompanying SELECT is executed. 
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19.2 Let relation r contain exactly the following tuples: 

(6, 5, 4 ) 
( UNK, 5, 4 ) 
( 6, UNK, 4 ) 
( UNK, UNK, 4 ) 
( UNK, UNK, UNK ) 

Assume as in the body of the chapter that the three attributes, in left-to-right order as shown, are 

called A, B, and C, respectively, and every attribute is of type INTEGER. If Vis a range variable that 

ranges over r, state the truth values of the following expressions: 

a. EXISTS V ( V.B > 5 ) 

b. EXISTS V ( V.B > 2 AND V.C > 5 ) 

C. EXISTS V ( MAYBE ( V.C > 3 ) ) 

d. EXISTS V ( MAYBE ( ISJJNK (V.C ) ) ) 

e. FORALL V ( V.A > 1 ) 

f. FORALL V ( V.B > 1 OR ISJJNK ( V.B ) ) 

g. FORALL V ( MAYBE ( V.A > V.B ) ) 

19.3 Strictly speaking, the IS_UNK operator is unnecessary. Why? 

19.4 In reference [14.7], Codd proposes “maybe” versions of some (not all) of the relational alge¬ 

bra operators. For example, maybe-restrict differs from the normal restrict in that it returns a relation 

whose body contains just those tuples for which the restriction condition evaluates to unk instead of 

true. However, such operators are strictly unnecessary. Why? 

19.5 In two-valued logic (2VL), there are exactly two truth values, true and false. As a conse¬ 

quence, there are exactly four possible monadic (single-operand) logical operators: one that maps 

both true and false into true, one that maps them both into false, one (NOT) that maps true into false 

and vice versa, and one that leaves them both unchanged. And there are exactly 16 possible dyadic 

(two-operand) operators, as indicated by the following table: 

A B 

t t t t t t t t t t f f f f f f f f 

t f t t t t f f f f t t t t f f f f 
t t t t f f t t f f t t f f t t f f 

t f t f t f t f t f t f t f t f t f 

Prove that in 2VL all four monadic operators and all 16 dyadic operators can be formulated in terms 

of suitable combinations of NOT and either AND or OR (and hence that it is not necessary to support 

all 20 operators explicitly). 

19.6 How many logical operators are there in 3VL? What about 4VL? More generally, what about 

nVL? 

19.7 The truth table for the 2VL operator NOR (also known as the Sheffer stroke and usually writ¬ 

ten as a single vertical bar, “I”) is as follows: 

t f 

t f f 
f ft 

As the truth table suggests, p I q is equivalent to NOT p AND NOT q (it can be thought of as “neither 

nor”—“neither the first operand nor the first operand is true"). Show that the 20 2VL operators can 
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all be formulated in terms of this operator. Note: NOR is thus a “generating” operator for the whole 

of 2VL. Can you find an operator that performs an analogous function for 3VL ? 4VL? nVL? 

19.8 (Taken from reference [19.5].) Fig. 19.5 represents some sample values for a slight variation 

on the usual suppliers-and-parts database (the variation is that relvar SP includes a new shipment 

number attribute SHIP#, and attribute P# in that relvar now has “UNKs allowed”; relvar P is irrele¬ 

vant to the exercise and has been omitted). Consider the relational calculus query 

S WHERE NOT EXISTS SP ( SP.S# = S.S# AND 
SP.P# = P# ('P2') ) 

(where S and SP are implicit range valuables). Which of the following (if any) is a correct interpreta¬ 

tion of this query? 

a. Get suppliers who do not supply P2. 

b. Get suppliers who are not known to supply P2. 

c. Get suppliers who are known not to supply P2. 

d. Get suppliers who are either known not or not known to supply P2. 

S SP 

s# SNAME STATUS CITY 

SI Smith 20 London 
S2 Jones 10 Paris 
S3 Blake 30 Paris 
S4 Clark 20 London 

SHIP# S# P# QTY 

SHIP1 SI PI 300 
SHIP2 S2 P2 200 
SHIP3 S3 UNK 400 

Fig. 19.5 A variation on suppliers and parts 

19.9 Design a physical representation scheme for SQL base tables in which columns are permitted 

to contain nulls. 

19.10 Define the SQL EXISTS, UNIQUE, and IS DISTINCT FROM operators. Are any of these 

operators primitive, in the sense that they cannot be expressed in terms of other operators? Is there 

an IS NOT DISTINCT FROM operator? Give an example of a query involving (a) EXISTS, (b) 

UNIQUE, that produces the “wrong” answer. 
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20.1 INTRODUCTION 

Note: This chapter relies heavily on material first discussed in Chapter 5. If you originally 

gave that chapter a “once over lightly” reading, therefore, you might want to go back and 

revisit it now before studying the present chapter in any depth. 

We touched on the idea of subtypes and supertypes—more specifically, entity subtypes 

and supertypes—in Chapter 14, where we observed that (e.g.) if some employees are 

programmers and all programmers are employees, then we might regard entity type 

PROGRAMMER as a subtype of entity type EMPLOYEE, and entity type EMPLOYEE as 

a supertype of entity type PROGRAMMER. However, we did also say in that chapter that 

an “entity type” was not a type in any very formal sense of the term (partly because the term 

entity itself is not very formally defined). In this chapter, we will examine subtypes and 
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Analogous remarks apply to subtypes, of course. Thus: 

4. A subtype of a subtype is a subtype; for example, SQUARE is a subtype of POLYGON. 

5. Every type is a subtype of itself; for example, ELLIPSE is a subtype of ELLIPSE. 

6. If B is a subtype of A and B and A are distinct, then B is a proper subtype of A; that 

is, SQUARE is a proper subtype of POLYGON. And if B is a proper subtype of A, 

then B must also be a proper subset of A. 

Moreover: 

7. If A is a supertype of B and there is no type C that is both a proper subtype of A and 

a proper supertype of B, then A is an immediate supertype of B, and B is an imme¬ 

diate subtype of A; for example, RECTANGLE is an immediate supertype of 

SQUARE, and SQUARE is an immediate subtype of RECTANGLE. Note, there¬ 

fore, that in our Tutorial D syntax the keyword IS means, quite specifically, “is an 

immediate subtype of.” 

8. A root type is a type with no proper supertype; for example, PLANE_FIGURE is a 

root type. Note: We do not assume there is just one root type. If there are two or 

more, however, we can always invent some kind of “system” type that is an immedi¬ 

ate supertype for all of them, so there is no loss of generality in assuming just one. 

9. A leaf type is a type with no proper subtype; for example, CIRCLE is a leaf type. 

Note: This definition is slightly simplified, but it is adequate for present purposes (it 

needs a tiny extension to deal properly with multiple inheritance [3.3]). 

10. Every proper subtype has exactly one immediate supertype. Note: Here we are just 

making explicit our assumption that we are dealing with single inheritance only. As 

already noted, the effects of relaxing this assumption are explored in detail in refer¬ 

ence [3.3]. 

11. As long as (a) there is at least one type and (b) there are no cycles—that is, there is no 

sequence of types 77, 72, 72.Tn such that 77 is an immediate subtype of 72, 72 is 

an immediate subtype of 72.and Tn is an immediate subtype of 77—then at least 

one type must be a root type. Note: In fact, there cannot be any cycles (why not?). 

The Disjointness Assumption 

We make one further simplifying assumption, as follows: If 77 and 72 are distinct root 

types or distinct immediate subtypes of the same supertype (implying in particular that 

neither is a subtype of the other), then we assume they are disjoint—that is, no value is of 

both type 77 and type 72. For example, no value is both an ellipse and a polygon. 

The following further points are immediate consequences of this assumption: 

12. Distinct type hierarchies are disjoint. 

13. Distinct leaf types are disjoint. 

14. Every value has exactly one most specific type. For example, a given value might be 

“just an ellipse” and not a circle, meaning its most specific type is ELLIPSE (in the 
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real world, some ellipses are not circles). In fact, to say that the most specific type of 
some value v is T is to say, precisely, that the set of types possessed by v is the set of 
all supertypes of T (a set that includes T itself, by definition). 

One reason the disjointness assumption is desirable is that it avoids certain ambigu¬ 
ities that might otherwise occur. For example, suppose some value v could be of two types 

77 and T2, neither of which is a subtype of the other. Suppose further that an operator 

named Op has been defined for type 77 and another operator with the same name Op has 

been defined for type T2 (in other words, Op is overloaded—see Section 20.3). Then an 
invocation of Op with argument v would be ambiguous. 

Note: The disjointness assumption is reasonable as long as we limit our attention to 

single inheritance only, but it does need to be relaxed for multiple inheritance. See refer¬ 
ence [3.3] for a detailed discussion. 

A Note on Physical Representation 

Although we are primarily concerned with a model of inheritance, not with implementa¬ 
tion matters, there are certain implementation issues that you do need to understand to 

some extent in order to understand the overall concept of inheritance properly—and now 
we come to one such: 

15. The fact that B is a subtype of A does not imply that the hidden physical representa- 
tion of B values is the same as that of A values. For example, ellipses might physi¬ 

cally be represented by their center and semiaxes, while circles might physically be 

represented by their center and radius (though there is no requirement, in general, that 

a physical representation be the same as any of the declared possible ones). This point 
will turn out to be important in several of the sections that follow. 

20.3 POLYMORPHISM AND SUBSTITUTABILITY 

In this section we discuss two crucial concepts, polymorphism and substitutability, that 
together provide the basis for achieving the code reuse benefit mentioned briefly in Sec¬ 

tion 20.1. We note immediately that these two concepts are really just different ways of 
looking at the same thing. Be that as it may, we begin with polymorphism. 

Polymorphism 

The very notion of inheritance implies that if T' is a subtype of T, then all operators that 

apply to values of type T apply to values of type T as well. For example, if AREA(e) is 

3 In fact, there is no logical reason why all values of the same type have to have the same physical repre¬ 
sentation. For example, some points might be physically represented by Cartesian coordinates and some 
by polar coordinates; some temperatures might be physically represented in Celsius and some in Fahren¬ 
heit; some integers might be physically represented in decimal and some in binary; and so on. Of course, 
the system will have to know how to convert between physical representations in such cases in order to be 
able to implement assignments, comparisons, and so on properly. 
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legal, where e is an ellipse, then AREA(c), where c is a circle, must be legal as well. Note, 
therefore, that we need to be very careful over the logical difference between the parame¬ 

ters in terms of which a given operator is defined, with their declared types, and the corre¬ 

sponding arguments to a given invocation of that operator, with their most specific types. 

For example, the operator AREA is defined in terms of a parameter of declared type 

ELLIPSE—see Section 20.2—but the most specific type of the argument in the invocation 
AREA(c) is CIRCLE. 

Recall now that ellipses and circles, at least as we defined them in Section 20.2, have 

different possible representations: 

TYPE ELLIPSE ... 
POSSREP { A ..., B ..., CTR ... > ; 

TYPE CIRCLE ... 
POSSREP { R ..., CTR ... } ; 

It is conceivable, therefore, that two different versions of the AREA operator might exist 

under the covers, one that makes use of the ELLIPSE possible representation and one that 

makes use of the CIRCLE possible representation. To repeat, it is conceivable—but it is 

not necessary. For example, the code for ellipses might look like this: 

OPERATOR AREA ( E ELLIPSE ) RETURNS AREA ; 
RETURN ( 3.14159 * THE_A ( E ) * THE_B ( E ) ) ; 

END OPERATOR ; 

(The area of an ellipse is nab.) And this code obviously works correctly if it is invoked with 

a circle instead of a more general ellipse since, for a circle. THE_A and THE_B both return 

the radius /: However, the person responsible for defining type CIRCLE might prefer, for a 

variety of reasons, to implement a distinct version of AREA that is specific to circles and 

invokes THE_R instead of THE_A and THE_B. Note: In fact, it might be desirable for rea¬ 

sons of efficiency to implement two versions of the operator anyway, even if the possible 

representations are the same. Consider polygons and rectangles, for example. The algo¬ 

rithm that computes the area of a general polygon will certainly work for a rectangle, but 

for rectangles a more efficient algorithm—multiply the height by the width—is available. 

Note, however, that the code for ellipses will certainly not work for circles if it is 

written in terms of the physical ELLIPSE representation instead of a possible one and the 

physical representations for types ELLIPSE and CIRCLE differ. The practice of imple¬ 

menting operators in terms of physical representations is generally not a good idea. Code 
defensively!4 

Anyway, if AREA is not reimplemented for type CIRCLE, then we get code reuse 

(for the AREA implementation code, that is). Note: We will encounter a more important 
kind of reuse in the next subsection. 

From the point of view of the model, of course, it makes no difference how many ver¬ 

sions of AREA exist under the covers: As far as the user is concerned, there is just one 

1 In fact, our own recommendation would be that access to physical representations be limited just to the 
code that implements those operators—selectors, THE_ operators, and so forth—ilia! are prescribed by 
the model. (What is more, many of those operators are likely in practice to have system-provided imple¬ 
mentations anyway.) 
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Explanation: DISPLAY here is a polymorphic operator. The implementation version 

of DISPLAY that works for values of type T will be specified when type T is defined and 

will be made known to the system at that time. At run time, then, when the system 

encounters the DISPLAY invocation with argument x, it will have to determine the most 

specific type of x and then invoke the version of DISPLAY appropriate to that type—a 

process known as run-time binding.^ In other words, polymorphism effectively means 

that CASE expressions and CASE statements that otherwise would have had to appear in 

the user's source code are moved under the covers: The system effectively performs those 

CASE operations on the user’s behalf. 

Note the implications of the foregoing for program maintenance in particular. Sup¬ 

pose, for example, that a new type TRIANGLE is defined as another immediate subtype of 

POLYGON, and hence that the diagram to be displayed can now additionally include tri¬ 

angles. Without polymorphism, every program that contains a CASE expression or state¬ 

ment like the one in the example will now have to be modified to include code of the form: 

WHEN IS_TRIANGLE ( x ) THEN CALL DISPLAY_TRIANGLE ... ; 

With polymorphism, however, no such source code modifications are necessary. 

Because of examples like the foregoing, polymorphism is sometimes characterized, a 

little colorfully, as implying that “old code can invoke new code”; that is, a program P can 

effectively invoke some version of some operator that did not even exist (the version, that 

is) at the time P was written. So here we have another—and more important—example of 

code reuse: The very same program P might be usable on data that is of a type T that, to 

repeat, did not even exist at the time P was written. 

Substitutability 

As already mentioned, the concept of substitutability is really just the concept of polymor¬ 

phism looked at from a slightly different point of view. We have seen, for example, that if 

AREA(e) is legal, where e is an ellipse, then AREA(c), where c is a circle, must be legal 

too. In other words, wherever the system expects an ellipse, we can always substitute a cir¬ 

cle instead. More generally, wherever the system expects a value of type T, we can always 

substitute a value of type T' instead, where T is a subtype of T—The Principle of Value 
Substitutability. 

Note in particular that this principle implies that if some relation r has an attribute A 

of declared type ELLIPSE, some of the A values in r might be of type CIRCLE instead of 

just type ELLIPSE. Likewise, if some type T has a possible representation that involves a 

component C of declared type ELLIPSE, then for some values v of type T the operator 

invocation THE_C(v) might return a value of type CIRCLE instead of just type ELLIPSE. 

Finally, we observe that, since it is really just polymorphism in another guise, substi¬ 

tutability too is a logical consequence of inheritance: If we have inheritance, we must have 

substitutability; otherwise, we do not have inheritance. 

Run-time binding is an implementation issue, of course, not a model issue. It is another of those imple¬ 
mentation issues that you do have to appreciate to some extent in order to understand the overall concept 
of inheritance properly. 
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to v(X). Note: Reference [3.3] also defines a generalized form of TREAT DOWN that 

allows one operand to be “treated down" to the type of another, instead of to some explic¬ 
itly named type. 

20.5 SPECIALIZATION BY CONSTRAINT 

Consider the following example of a selector invocation for type ELLIPSE: 

ELLIPSE ( LENGTH ( 5.0 ), LENGTH ( 5.0 ), POINT ( ... ) ) 

This expression returns an ellipse with equal semiaxes. But in the real world an ellipse with 

equal semiaxes is in fact a circle; so does this expression return a result of most specific 
type CIRCLE, rather than most specific type ELLIPSE? 

Much controversy has raged in the literature—and in fact still does [20.6]—over 
questions like this one. In our own model, we decided, after much careful thought, to 

insist that the expression does return a result of most specific type CIRCLE. More gener¬ 

ally, if type T' is a subtype of type T, and a selector invocation for type T returns a value 

that satisfies the type constraint for type T\ then (in our model) the result of that selector 

invocation is of type T. Now, few if any of today’s commercial products actually behave 

this way at the time of writing, but we regard this fact as a failing on the part of those 
products; reference [3.3] shows that, as a consequence of this failing, those systems are 

forced to support “noncircular circles,” “nonsquare squares,” and similar nonsenses—a 

criticism that does not apply to our approach. Note: See also the discussion of The Sec¬ 
ond Great Blunder in Chapter 26. 

It follows from the foregoing that (at least in our model) no value of most specific 

type ELLIPSE ever has a = b; in other words, values of most specific type ELLIPSE cor¬ 

respond precisely to real-world ellipses that are not circles. By contrast, values of most 

specific type ELLIPSE in other inheritance models correspond to real-world ellipses that 
might or might not be circles. We thus feel our model is a little closer to being “a good 

model of reality.” 
Finally, the idea that, for example, an ellipse with a = b must be of type CIRCLE is 

known as specialization by constraint [3.3]—though we should warn you that other 

writers use this term, or something very close to it, to mean something completely differ¬ 

ent (see, e.g., references [20.10, 20.14]). 

THE_ Pseudovariables Revisited 

Recall from Chapter 5 that THE_ pseudovariables provide a way of updating one compo¬ 

nent of a variable while leaving the other components unchanged (“components” here 

referring to components of some possible representation, not necessarily a physical repre¬ 
sentation). For example, let variable E be of declared type ELLIPSE, and let the current 

value of E be an ellipse with (say) a five and b three. Then the assignment 

THE_B ( E ) := LENGTH ( 4.0 ) ; 

updates the b semiaxis of E to four without changing its a semiaxis or its center. 
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Now, as also noted in Chapter 5, THE_ pseudovariables are logically unnecessary— 

they are really just shorthand. For example, the assignment just shown, which uses aTHE_ 

pseudovariable, is equivalent to the following one, which does not: 

E := ELLIPSE ( THE_A ( E ), LENGTH ( 4.0 ), THE_CTR ( E ) ) ; 

So consider the following assignment: 

THE_B ( E ) := LENGTH ( 5.0 ) ; 

By definition, this assignment is equivalent to the following one: 

E := ELLIPSE ( THE_A ( E ), LENGTH ( 5.0 ), THE_CTR ( E ) ) ; 

Specialization by constraint therefore comes into play (because the expression on the right 

side returns an ellipse with a = b), and the net effect is that after the assignment MST(E) is 
CIRCLE, not ELLIPSE. 

Next, consider the assignment: 

THE_B ( E ) := LENGTH ( 4.0 ) ; 

Now E contains an ellipse with a five and b four, and MST(E) becomes ELLIPSE once 

again—an effect that we refer to as generalization by constraint. 

Note: Suppose (as we did near the end of Section 20.4) that type CIRCLE has a proper 

subtype 0_CIRCLE (where an “O-circle” is a circle with center the origin): 

TYPE 0_CIRCLE 
IS CIRCLE 

CONSTRAINT THE_CTR ( CIRCLE ) = POINT ( 0.0, 0.0 ) 
POSSREP { R = THE_R ( CIRCLE ) } ; 

Then the current value of variable E at some given time might be of most specific type 

0_CIRCLE instead of just CIRCLE. Suppose it is, and consider the following sequence 

of assignments:7 

THE_A ( E ) := LENGTH ( 7.0 ) ; 
THE_B ( E ) := LENGTH ( 7.0 ) ; 

After the first of these assignments, E contains “just an ellipse,” thanks to generalization by 

constraint. After the second, however, it contains a circle again—but is it an O-circle spe¬ 

cifically or “just a circle”? Obviously, we would like it to be an O-circle specifically. And 

indeed so it is, precisely because it satisfies the constraint for type 0_CIRCLE (including 

the constraint inherited by that type from type CIRCLE). 

Changing Types Sideways 

Once again, let E be a variable of declared type ELLIPSE. We have seen how to change 

the type of E “down” (e.g., if its current most specific type is ELLIPSE, we have seen how 

to update it so that its current most specific type becomes CIRCLE); we have also seen 

how to change the type of E “up” (e.g., if its current most specific type is CIRCLE, we 

have seen how to update it so that its current most specific type becomes ELLIPSE). But 

If multiple assignment were supported, we would be able to perform the sequence as a single operation. 
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course, if the compile-time type check were not done, we would get a run-time type error 

instead as soon as we encountered a tuple in which the A value was just an ellipse and not 

a circle.) Clearly, what we need to do is eliminate the tuples in which the A value is just an 

ellipse before we even attempt to check the radius. And that is exactly what happens with 

the following formulation: 

R : IS_CIRCLE ( A ) WHERE THE_R ( A ) > LENGTH ( 2.0 ) 

This expression is defined (loosely) to return those tuples in which the A value is a circle 

with radius greater than two. More precisely, it returns a relation with: 

a. A heading the same as that of R, except that the declared type of attribute A in that 

result is CIRCLE instead of ELLIPSE 

b. A body consisting of just those tuples of R in which the A value is of type CIRCLE 

and the radius for the circle in question is greater than two 

In other words, we propose a new relational operator of the form 

R : IS_T ( A ) 

where R is a relational expression and A is an attribute of the relation—r, say—denoted by 

that expression. The value of the overall expression is defined to be a relation with: 

a. A heading the same as that of r, except that the declared type of attribute A in that 

heading is T 

b. A body consisting of those tuples of r in which attribute A contains a value of type T, 

except that the declared type of attribute A in each of those tuples is T 

Note: Reference [3.3] defines generalized forms of both of the operators introduced 

in this subsection—for example, a generalized form of IS_T that tests whether one op¬ 

erand is of the same type as another, instead of just testing whether it is of some explicitly 

named type. 

20.7 OPERATORS, VERSIONS, AND SIGNATURES 

Recall from Section 20.3 that a given operator can have many different implementation 

versions under the covers. That is, as we travel down the path from some supertype T to 

some subtype T in the type hierarchy, we must (for a variety of reasons) at least be 

allowed to reimplement type T operators for type T'. By way of example, consider the 

following: 

OPERATOR MOVE ( E ELLIPSE, R RECTANGLE ) RETURNS ELLIPSE 
VERSION ER_MOVE ; 
RETURN ( ELLIPSE ( THE_A ( E ), THE_B ( E ), 

R_CTR ( R ) ) ) ; 
END OPERATOR ; 

Operator MOVE “moves” ellipse E, loosely speaking, so that it is centered on the center of 
rectangle R—or, more precisely, it returns an ellipse just like the argument ellipse corre¬ 

sponding to parameter E, except that it is centered on the center of the argument rectangle 
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regardless of whether that first argument is of most specific type ELLIPSE or most spe¬ 

cific type CIRCLE; in other words, an explicit implementation version for circles is no 

longer needed.11 Thus, one advantage of update operators in general is that they might 

save us from having to write out certain implementation versions explicitly. Note the 

implications for program maintenance in particular; for example, what happens if we sub¬ 
sequently introduce 0_CIRCLE as a subtype of CIRCLE? (Answer: Invoking MOVE 

with an argument variable of declared type ELLIPSE or CIRCLE but current most spe¬ 
cific type 0_CIRCLE will work just fine. However, invoking it with an argument variable 
of declared type 0_CIRCLE will not work, in general.) 

Changing Operator Semantics 

The fact that it is always at least legal to reimplement operators as we go down the type 

hierarchy has one very important consequence: It opens up the possibility of changing 

the semantics of the operator in question. In the case of AREA, for example, it might be 

the case that the implementation for type CIRCLE actually returns the circumference of 

the circle in question, say, instead of the area. (Careful type design can help to alleviate 
this problem somewhat; for example, if operator AREA is defined to return a result of 

type AREA, obviously the implementation cannot return a result of type LENGTH 
instead. It can, however, still return the wrong area!) 

Surprising as it might seem, it can even be claimed—in fact, it has been claimed— 

that changing semantics in this way can be desirable. For example, let type TOLL_ 
HIGHWAY be a proper subtype of type HIGHWAY, and let TRAVEL_TIME be an opera¬ 

tor that computes the time it takes to travel between two specified points on a specified 

highway. For a toll highway, the formula is (d/s) + (n*t), where d = distance, s = speed, n 
= number of tollbooths, and t = time spent at each tollbooth. For a nontoll highway, by 

contrast, the formula is just d/s. 

By way of a counterexample—that is, an example of a situation in which a semantic 

change is surely undesirable—consider ellipses and circles once again. Presumably we 

would like the AREA operator to be defined in such a way that a given circle has the same 
area, regardless of whether we consider it as a circle specifically or just as an ellipse. In 

other words, suppose the following sequence of events occurs: 

1. We define type ELLIPSE and a corresponding version of the AREA operator. Assume 

for simplicity that the AREA code does not make use of the physical representation 

for ellipses. 

2. We define type CIRCLE as a subtype of ELLIPSE but do not (yet) define a separate 

implementation version of AREA for circles. 

3. We invoke AREA on some specific circle c to obtain a result, al say. That invocation 

makes use of the ELLIPSE version of AREA (since that is the only version that cur¬ 

rently exists). 

4. We now define a separate implementation version of AREA for circles. 

11 As noted in Footnote 10, such a version was not really needed in the read-only case either—we intro¬ 
duced it purely for the sake of the example. 
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Note in particular that ellipses and circles have different declared possible representa¬ 

tions. However, the possible representation for ellipses is—necessarily, albeit implicitly— 

a possible representation for circles too, because circles are ellipses. That is, circles can 

certainly be “possibly represented’’ by their a and b semiaxes (and their center), even 

though in fact their a and b semiaxes are both the same. Of course, the converse is not 

true; that is, a possible representation for circles is not necessarily a possible representa¬ 
tion for ellipses. 

It follows that we might regard possible representations, like operators and con¬ 

straints, as further “properties” that are inherited by circles from ellipses, or more gener¬ 

ally by subtypes from supertypes.13 But (reverting now to the case of circles and colored 

circles) it should be clear that the declared possible representation for type CIRCLE is not 

a possible representation for type COLORED_CIRCLE, because there is nothing in it that 
is capable of representing the color! This fact strongly suggests that colored circles are not 

circles in the same sense that, for example, circles are ellipses. 

So What Do Subtypes Really Mean? 

The next argument is related (somewhat) to the previous one, but is in fact stronger (logi¬ 

cally stronger, that is). Here it is: There is no way to obtain a colored circle from a circle 

via specialization by constraint. 

In order to explain this point, we go back once again to the case of ellipses and circles. 

Here again are the type definitions, now shown complete: 

TYPE ELLIPSE 
IS PLANE_FIGURE 

POSSREP { A LENGTH, B LENGTH, CTR POINT 
CONSTRAINT A > B } ; 

TYPE CIRCLE 
IS ELLIPSE 

CONSTRAINT THE_A ( ELLIPSE ) = THE_B ( ELLIPSE ) 
POSSREP { R = THE_A ( ELLIPSE ) , 

CTR = THE_CTR ( ELLIPSE ) > ; 

As we know, thanks to specialization by constraint, the CONSTRAINT specification 

for type CIRCLE guarantees that an ellipse with a = b will automatically be specialized 

to type CIRCLE. But—switching back to circles and colored circles—there is no 

CONSTRAINT specification we can write for type COLORED_CIRCLE that will analo¬ 

gously cause a circle to be specialized to type COLORED_CIRCLE; in other words, there 

is no type constraint we can write such that if it is satisfied by some given circle, it means 

the circle in question is really a colored circle. 
Again, therefore, it seems much more reasonable to regard COLORED_CIRCLE 

and CIRCLE as completely different types, and to regard type COLORED_CIRCLE in 

13 We do not regard them in this way in our formal model—that is, we do not regard such inherited possi¬ 
ble representations as declared ones—because to say they were declared ones would lead to a contradic¬ 
tion. To be specific, if we said that type CIRCLE inherits a possible representation from type ELLIPSE, 
then reference [3.3] would require assignment to THE_A or THE_B for a variable of declared type 
CIRCLE to be legal, and of course we know it is not. Thus, to say that type CIRCLE inherits a possible 
representation from type ELLIPSE is only a manner of speaking—it carries no formal weight. 
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And here by way of example are possible SQL definitions for the types PLANE_ 
FIGURE, ELLIPSE, and CIRCLE: 

CREATE TYPE PLANE_FIGURE 
NOT INSTANTIABLE 
NOT FINAL ; 

CREATE TYPE ELLIPSE UNDER PLANE_FIGURE 
AS ( A LENGTH, B LENGTH, CTR POINT ) 

INSTANTIABLE 
NOT FINAL ; 

CREATE TYPE CIRCLE UNDER ELLIPSE 
AS ( R LENGTH ) 

INSTANTIABLE 
NOT FINAL ; 

Points arising (some repeated from Chapter 5): 

1. NOT INSTANTIABLE means the type in question has no “instances,” where the 

term instance means—presumably—a value whose most specific type is the type in 
question.1'' In other words, the type in question is what we have called a union type. 

INSTANTIABLE means the type in question does have at least one “instance”; that 
is, it is not a union type, and there does exist at least one value whose most specific 

type is the type in question. In our example, type PLANE_FIGURE is NOT 

INSTANTIABLE, while types ELLIPSE and CIRCLE are INSTANTIABLE (the de¬ 

fault is INSTANTIABLE). 

2. As noted in Chapter 5, NOT FINAL must be specified (though SQL:2003 will proba¬ 

bly allow the alternative FINAL to be specified instead). NOT FINAL means the type 

in question is allowed to have proper subtypes; FINAL, if supported, would mean the 
opposite. 

3. The UNDER specification identifies this type’s immediate supertype (or direct super¬ 

type, in SQL terms), if any. Thus, for example, CIRCLE is a “direct subtype” of 

ELLIPSE, and properties that apply to ellipses in general are inherited, uncondition¬ 

ally, by circles in particular. Note, however, that: 

a. “Properties” here does not mean (as it does in our inheritance model) operators and 
constraints, it means operators and structure (or representation). In other words, 

SQL supports both behavioral inheritance and structural inheritance, because the 

internal structure of “structured types” is explicitly exposed to the user. See point 5. 

b. “Operators” here does not mean (as it does in our inheritance model) just read-only 
operators, it means all operators. In other words, SQL does not adequately distin¬ 

guish between values and variables, and it requires unconditional inheritance of 

update operators as well as read-only ones—with the consequence that, for exam¬ 
ple, circles might not be circular, squares might not be square, and so on. (To pur¬ 

sue the point a moment longer: In our model, if some value v is of most specific 

type ELLIPSE, then it is definitely an ellipse that is not a circle, and if it is of most 
specific type CIRCLE, then it is definitely an ellipse that is a circle, in real-world 

terms. In SQL, by contrast, if v is of most specific type ELLIPSE, it might in fact 

15 Reference [4.23] defines an instance to be “a physical representation of a value" (?). 
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be a circle, and if it is of most specific type CIRCLE, it might in fact be an ellipse 

that is not a circle—again in real-world terms.) 

c. The operators in question fall into three categories: functions, procedures, and 

methods. As noted in Chapter 5, functions and procedures correspond roughly to 

our read-only and update operators, respectively; methods behave like functions, 

but are invoked using a different syntactic style. Also, functions and procedures are 

specified via separate CREATE FUNCTION and CREATE PROCEDURE state¬ 

ments, but methods are specified inline as part of the relevant CREATE TYPE 

statement, as the CREATE TYPE syntax indicates (we omitted method specifica¬ 

tions from our examples for simplicity). Compile-time binding—that is, binding 

on the basis of declared types only—applies to functions and procedures; run-time 

binding applies to methods, but it is done on the basis of just one of the arguments 

involved (as is also the case, typically, in object systems—see Chapter 25). 

4. The SQL term for root type is maximal supertype: thus, PLANE_FIGURE in our 

example is a maximal supertype. (Oddly, the SQL term for leaf type is not minimal 

subtype but leaf type, so CIRCLE in our example is a leaf type.) 

5. The <representation>, if specified, consists of an <attribute definition commalist> 

enclosed in parentheses, where an <attribute> consists of an <attribute name> fol¬ 

lowed by a <type name>. Note, however, that such a <representation> is the actual 

physical representation—not a “possrep”—for values of the type in question (and so 

those physical representations are exposed to the user, as already noted under point 

3). Observe in particular that it is not possible to specify two or more distinct <repre¬ 

sentations for the same type. Note: As mentioned in Chapter 5, however, the type 

designer can effectively conceal the fact that the <representation> is physical by a 

judicious choice and design of operators. 

6. Each <attribute> has an observer method and a mutator method, which are provided 

automatically and together can be used to achieve functionality analogous, somewhat, 

to that of Tutorial D’s THE_ operators (see Chapter 5 for some examples). There are 

no automatically provided selector operators, but each type does have an automati¬ 

cally provided constructor function that when invoked returns that unique value of 

the type for which each and every attribute takes the applicable default value—which 

as we saw in Chapter 5 must be null for any attribute that is itself of a user-defined 

type in turn. Thus, for example, the expression 

ELLIPSE ( ) 

returns the “ellipse” with A and B both “the null length” and CTR “the null point” 

(not to be confused with the point whose X and Y components are both null, of 

course). And the expression 

ELLIPSE () . A ( LENGTH () . L ( 4.0 ) ) 
. B ( LENGTH () . L ( 3.0 ) ) 
. CTR ( POINT () .X(0.0) .Y(0.0) ) 

returns the ellipse with a four, b three, and center the origin. (We have assumed that 

type LENGTH has a representation consisting of just one attribute, L, of type 

FLOAT.) 
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there are any structured types involved, there is no guarantee that SQL will support joins, 

unions, intersections, and differences properly. Note too that this criticism applies regard¬ 

less of whether there is any type inheritance involved. 

Inheritance or Delegation? 

Now we need to confess that our discussions in this section so far might have been mis¬ 

leading in one important respect. The fact is, SQL’s type inheritance mechanism—unlike 

our own inheritance model—is almost certainly not designed to support the idea that sub- 

types are obtained by constraining supertypes. Consider ellipses and circles once again: 

CREATE TYPE ELLIPSE UNDER PLANE_FIGURE 
AS ( A LENGTH, B LENGTH, CTR POINT ) ... ; 

CREATE TYPE CIRCLE UNDER ELLIPSE 
AS ( R LENGTH ) ... ; 

With these definitions, type CIRCLE has attributes A, B, CTR (inherited from type 

ELLIPSE), and R (specified for type CIRCLE only). And if it is true that the specified 

attributes constitute the physical representation, then any given circle will be physically 

represented by a collection of four values, three of which will normally all be the same! 

For this reason, it is likely that the definition of type CIRCLE would actually not specify 

any <representation> of its own at all; instead, it would simply inherit the representation 

specified for type ELLIPSE. On the other hand, if the representation for type CIRCLE has 

no R (“radius”) component, there will be no automatically provided observer and mutator 

methods for the radius. And then on the third hand ... If the representation does have an 

R component, and we “mutate” it, we will wind up with a “noncircular circle”—that is, a 

“circle” for which the A, B, and R values are not all the same after all. 

For one reason or another, therefore, it might be argued that “ellipses and circles” is 

not a good example to use as a basis for illustrating SQL’s type inheritance functionality. 

Certainly it is true that SQL does not deal with that example very well. So let us switch to 

a different one: 

CREATE TYPE CIRCLE 
AS ( R LENGTH, CTR POINT ) 

INSTANTIABLE 
NOT FINAL ; 

CREATE TYPE COLORED_CIRCLE UNDER CIRCLE 
AS ( COL COLOR ) 

INSTANTIABLE 
NOT FINAL ; 

This example is exactly the one we were deprecating earlier, in Section 20.9, where 

we claimed that “colored circles are not circles in the same sense that, for example, circles 

are ellipses.” But if we are talking about inheriting, and possibly extending, representa¬ 

tions, then the example makes a little more sense. Certainly it is reasonable to think of a 

colored circle as being represented by a radius, a center, and a color. Note further that if 

we say that type COLORED_CIRCLE is “UNDER” type CIRCLE, then it is also reason¬ 

able to think of operators that work for circles in general—for example, an operator to get 

the radius—as applying to colored circles in particular (colored circles can be substituted 
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type on assignment to variables of less specific declared type—and hence a variable of 

declared type T can have a value whose most specific type is any subtype of T. (Likewise, 

if operator Op is defined to have a result of declared type T, the actual result of an invoca¬ 

tion of Op can be a value whose most specific type is any subtype of type T.) We therefore 

model a variable V—or, more generally, an arbitrary expression—as an ordered triple of 

the form <DT,MST,v>, where DT is the declared type, MST is the current most specific 

type, and v is the current value. We introduced the TREAT DOWN operator to allow us 

to operate in ways that would otherwise give rise to a compile-time type error on expres¬ 

sions whose most specific type at run time is some proper subtype of their declared type. 

(Run-time type errors can still occur, but only within the context of TREAT DOWN.) 

Next we took a closer look at selectors. We saw that invoking a selector for type T 

will sometimes yield a result of some proper subtype of T (at least in our model, though 

not—typically—in today’s commercial products): specialization by constraint. We then 

took a closer look at THE_ pseudovariables; since they are really just shorthand, both 

specialization and generalization by constraint can occur on assignment to a THE_ 

pseudovariable. 
We then went on to discuss the effects of subtypes and supertypes on equality com¬ 

parisons and certain relational operations (join, union, intersection, and difference). We 

also introduced a number of type testing operators (IS_T and so on). Then we considered 

the question of read-only vs. update operators, operator versions, and operator signa¬ 

tures, pointing out that the ability to define different versions of an operator opens the 

door to changing the semantics of the operator in question (but our model prohibits such 

changes). 
Next, we examined the question “Are circles really ellipses?” That examination led us 

to the position that inheritance applies to values, not variables. More precisely, read¬ 

only operators (which apply to values) can be inherited 100 percent without any problem, 

but update operators (which apply to variables) can be inherited only conditionally. (Our 

model is at odds with most other approaches here. Those other approaches typically 

require update operators to be inherited unconditionally, but they then suffer from a vari¬ 

ety of problems having to do with “noncircular circles” and the like.) It is our opinion that 

specialization by constraint is the only logically valid way of defining subtypes. 
We also briefly discussed the concept of delegation, which is related to inheritance 

but logically distinct from it (it too has code reuse as a goal). And we sketched the SQL 
inheritance mechanism, concluding that the mechanism in question was really aimed at 

solving the delegation problem rather than the inheritance problem. We remind you that 

we will have more to say regarding SQL-style inheritance in Chapter 26. 

EXERCISES 

20.1 Explain the following in your own words: 

code reuse 

delegation 

generalization by constraint 

proper subtype 

root type 

run-time binding 
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immediate subtype 

inheritance 

leaf type 

polymorphism 

signature 

specialization by constraint 

substitutability 

union type 

20.2 Explain the TREAT DOWN operator. 

20.3 Distinguish: 

argument vs. parameter 

declared type vs. current most specific type 

inclusion polymorphism vs. overloading polymorphism 

version signature vs. specification signature 

vs. invocation signature 

read-only operator vs. update operator 

value vs. variable 

(Regarding the last two of these, see also Exercise 5.2.) 

20.4 With reference to the type hierarchy of Fig. 20.1, consider a value e of type ELLIPSE. The 

most specific type of e is either ELLIPSE or CIRCLE. What is the least specific type of el 

20.5 Any given type hierarchy includes several subhierarchies that can be regarded as type hierar¬ 

chies in their own right. For example, the hierarchy obtained from that of Fig. 20.1 by deleting types 

PLANE_FIGURE, ELLIPSE, and CIRCLE (only) can be regarded as a type hierarchy in its own 

right, and so can the one obtained by deleting types CIRCLE, SQUARE, and RECTANGLE (only). 

On the other hand, the hierarchy obtained by deleting ELLIPSE (only) cannot be regarded as a type 

hierarchy in its own right (at least, not one that can be derived from that of Fig. 20.1), because type 

CIRCLE “loses some of its inheritance,” as it were, in that hierarchy. How many distinct type hierar¬ 

chies are there altogether in Fig. 20.1? 

20.6 Using the syntax sketched in the chapter, give type definitions for types RECTANGLE and 

SQUARE. Assume for simplicity that all rectangles are centered on the origin, but do not assume 

that all sides are either vertical or horizontal. 

20.7 Given your answer to Exercise 20.6, define an operator to rotate a specified rectangle through 

90 degrees about its center. Also define an implementation version of that operator for squares. 

20.8 Here is a repeat of an example from Section 20.6: “Relvar R has an attribute A of declared 

type ELLIPSE, and we want to query R to get those tuples where the A value is in fact a circle and 

the radius of that circle is greater than two.” We gave the following formulation of this query in Sec¬ 

tion 20.6: 

R : IS_CIRCLE ( A ) WHERE THE_R ( A ) > LENGTH ( 2.0 ) 

a. Why could we not simply express the type test in the WHERE clause?—for example: 

R WHERE IS_CIRCLE ( A ) AND THE_R ( A ) > LENGTH ( 2.0 ) 

b. Another putative formulation is: 

R WHERE CASE 
WHEN IS_CIRCLE ( A ) THEN 

THE_R ( TREAT_DOWN_AS_CIRCLE ( A ) ) 
> LENGTH ( 2.0 ) 

WHEN NOT ( IS_CIRCLE ( A ) ) THEN FALSE 

END CASE 

Is this one valid ? If not, why not? 
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and inheritance are only concepts, and . . . they do not have a universal objective meaning 

. . . This [fact] implies that how inheritance is to be incorporated into a specific system is up 

to the designers ot [that] system, and it constitutes a policy decision that must be imple¬ 

mented with the available mechanisms." In other words, there is no model! 

However, we disagree with the foregoing conclusions, as this chapter makes clear. 

Note: This reference appears again as reference [25.1] in Chapter 25, where further com¬ 
mentary on it can be found. 

20.3 Kenneth Baclawski and Bipin Indurkhya: Technical Correspondence, CACM 37, No. 9 (Sep¬ 
tember 1994). 

20.4 Luca Cardelli and Peter Wegner: “On Understanding Types, Data Abstraction, and Polymor¬ 

phism,” ACM Comp. Surv. 17, No. 4 (December 1985). 

20.5 J. Craig Cleaveland: An Introduction to Data Types. Reading, Mass.: Addison-Wesley (1986). 

20.6 C. J. Date: “Is a Circle an Ellipse?” http://www.dhdebunk.com (July 2001). 

There seems to be virtual unanimity in the industry that the answer to the question of this 

paper’s title is no. The paper quotes some authorities on the issue and attempts to deconstruct 

their arguments. Note: When it was first published, this paper attracted a huge amount of online 

commentary and criticism, most of which can also be found on http://www.dhdebunk.com. 

20.7 C. J. Date: “What Does Substitutability Really Mean?” http://www.dbdebunk.com (July 2002). 

A careful analysis and criticism of reference [20.9]. 

20.8 You-Chin Fuh et al.: “Implementation of SQL3 Structured Types with Inheritance and Value 

Substitutability,” Proc. 25th Int. Conf. on Very Large Data Bases, Edinburgh, Scotland (September 

1999). 

To quote from the abstract: “This paper presents the DB2 approach . . . First, values of struc¬ 

tured types are represented in a self-descriptive manner and manipulated only through system¬ 

generated observer/mutator methods, minimizing the impact on the low-level storage manager. 

Second, the value-based semantics of mutators is implemented efficiently through a compile¬ 

time copy avoidance algorithm. Third, values of structured types are stored inline or out-of-line 

dynamically.” Note: The expression “the value-based semantics of mutators” refers to the fact 

that SQL mutators are actually read-only operators (the desired “mutation" effect is achieved 

by invoking the mutator on the desired target, T say, and then assigning the result of that invo¬ 
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As noted in Section 20.9, we take the view that specialization by constraint is the only logically 

valid way of defining subtypes. It is interesting to observe, therefore, that the object world takes 

exactly the opposite position!—or, at least, some occupants of that world do. To quote Rum- 

baugh: “Is SQUARE a subclass of RECTANGLE? . . . Stretching the x-dimension of a rectan¬ 

gle is a perfectly reasonable thing to do. But if you do it to a square, then the object is no longer 

a square. This is not necessarily a bad thing conceptually. When you stretch a square you do get 

a rectangle . . . But. . . most object-oriented languages do not want objects to change class . . . 

All of this suggests [a] design principle for classification systems: A subclass should not be 

defined by constraining a superclass" (italics in the original). Note: The object world often uses 

the term class to mean what we mean by the term type (see Chapter 25). 

We find it striking that Rumbaugh apparently takes the position he does simply because 

object-oriented languages “do not want objects to change class.” We would rather get the 

model right first before worrying about implementations. (In any case, we believe we do know 

how to implement specialization by constraint efficiently, and we have documented some of 

our ideas in this connection in reference [3.3].) 

20.13 Andrew Taivalsaari: “On the Notion of Inheritance,” ACM Comp. Surv. 28, No. 3 (September 

1996). 

20.14 Stanley B. Zdonik and David Maier: “Fundamentals of Object-Oriented Databases,” in refer¬ 
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21.1 INTRODUCTION 

We touched on the subject of distributed databases at the end of Chapter 2, where we said 

that (to quote) “full distributed database support implies that a single application should 

be able to operate “transparently” on data that is spread across a variety of different data¬ 

bases, managed by a variety of different DBMSs, running on a variety of different 

machines, supported by a variety of different operating systems, and connected by a vari¬ 

ety of different communication networks—where “transparently” means the application 

operates from a logical point of view as if the data were all managed by a single DBMS 

running on a single machine.” We are now in a position to examine these ideas in some 

detail. To be specific, in this chapter we will explain exactly what a distributed database 

is, why such databases are becoming increasingly important (think of the World Wide 

Web in particular—see Chapter 27), and what some of the technical problems are in this 

field. 
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New York 

Los Angeles 

Fig. 21.1 A typical distributed database system 

London 

San Francisco 

Note: In order to simplify the exposition, we will assume until further notice that the 
system is homogeneous, in the sense that each site is running a copy of the same DBMS: 

the strict homogeneity assumption. We will explore the possibility of relaxing this 
assumption in Section 21.6. 

Advantages 

Why are distributed databases desirable? The basic answer to this question is that enter¬ 
prises are usually distributed already, at least logically (into divisions, departments, work¬ 

groups, etc.), and very likely physically too (into plants, factories, laboratories, etc.)— 
from which it follows that data is usually distributed already as well, because each organi¬ 
zational unit within the enterprise will naturally maintain data that is relevant to its own 



650 Part V / Further Topics 

operation. The total information asset of the enterprise is thus splintered into what are 

sometimes called islands of information. And what a distributed system does is provide 

the necessary “bridges” to connect those islands together. In other words, it enables the 

structure of the database to mirror the structure of the enterprise—local data can be kept 

locally, where it most logically belongs—while at the same time remote data can be 

accessed when necessary. 

An example will help clarify the foregoing. Consider Fig. 21.1 once again. For sim¬ 

plicity, suppose there are only two sites, Los Angeles and San Francisco, and suppose the 

system is a banking system, with account data for Los Angeles accounts kept in Los 

Angeles and account data for San Francisco accounts kept in San Francisco. Then the 

advantages are surely obvious: The distributed arrangement combines efficiency of pro¬ 

cessing (the data is kept close to the point where it is most frequently used) with 

increased accessibility (it is possible to access a Los Angeles account from San Fran¬ 

cisco and vice versa, via the communications network). 

Allowing the structure of the database to mirror the structure of the enterprise is, as 

just explained, probably the most significant benefit of distributed systems. Numerous 

additional benefits do also accrue, of course, but we will defer discussion of them to 

appropriate points later in the chapter. However, we should mention that there are some 

disadvantages too, of which the biggest is the fact that distributed systems are complex, at 

least from a technical point of view. Ideally, that complexity should be the implementer’s 

problem, not the user’s, but it is likely—to be pragmatic—that some aspects of it will 

show through to users, unless very careful precautions are taken. 

Sample Systems 

For purposes of subsequent reference, we briefly mention some of the better-known dis¬ 

tributed DBMS implementations. First, prototypes. Out of numerous research systems, 
three of the best known are (a) SDD-1, which was built in the research division of Com¬ 

puter Corporation of America in the late 1970s and early 1980s [21.32]; (b) R* (“R star”), 

a distributed version of the System R prototype, built at IBM Research in the early 1980s 

[21.37];' and (c) Distributed Ingres, a distributed version of the Ingres prototype, also 

built in the early 1980s at the University of California at Berkeley [21.34], 

As for commercial implementations, most of today’s SQL products offer some kind 

of distributed database support (with varying degrees of functionality). Some of the best 

known are (a) Ingres/Star, the distributed database component of Ingres; (b) the distrib¬ 

uted database option of Oracle; and (c) the distributed data facility of DB2. 

Note: Vendors have a habit of changing product names with great frequency, and we 

do not guarantee that the foregoing names (or possibly even products, in some cases) are 

still in current use. Also, the product and prototype lists are not meant to be exhaustive— 

they are just meant to identify systems that either have been particularly influential for one 

reason or another, or else have some special intrinsic interest. But it is at least worth point¬ 

ing out that all of the systems mentioned, both prototypes and products, are relational sys- 

1 The star is the so-called Kleene operator—“R*" means “zero or more [System] R’s.” 
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terns specifically (at least, they all support SQL). In fact, there are several reasons why, for 

a distributed database system to be successful, that system must be relational; relational 

technology is a prerequisite to (effective) distributed technology [15.6]. We will see some 
of the reasons for this state of affairs as we proceed through the chapter. 

A Fundamental Principle 

Now we can state what might be regarded as the fundamental principle of distributed 
database [21.13]: 

To the user, a distributed system should look exactly like a nondistributed system. 

In other words, users in a distributed system should be able to behave exactly as if the 

system were not distributed. All of the problems of distributed systems are—or should 

be—internal or implementation-level problems, not external or user-level problems. 

Note: The term users in the foregoing paragraph refers specifically to users (end users 

or application programmers) who are performing data manipulation operations; all such 

operations should remain logically unchanged. Data definition operations, by contrast, 

will require some extension in a distributed system—for example, so that a user (perhaps 

the DBA) at site X can specify that a given base relvar be divided into “fragments” that are 

to be stored at sites Y and Z (see the discussion of fragmentation in the next section). 

The foregoing fundamental principle leads to certain subsidiary rules or objectives, 

twelve in number, which will be discussed in the next section. For reference, we list those 

objectives here: 

1. Local autonomy 

2. No reliance on a central site 

3. Continuous operation 

4. Location independence 

5. Fragmentation independence 

6. Replication independence 

7. Distributed query processing 

8. Distributed transaction management 

9. Hardware independence 

10. Operating system independence 

11. Network independence 

12. DBMS independence 

2 Rules was the term used in the paper [21.13] in which they were first introduced (and the “fundamental 
principle” was referred to as Rule Zero). However, objectives is really a better term—rules is too dog¬ 
matic. We will stay with the milder term objectives in this chapter. 
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Please understand that these objectives are not all independent of one another, nor are 

they necessarily exhaustive, nor are they all equally significant (different users will attach 

different degrees of importance to different objectives in different environments; indeed, 

some of them might be totally inapplicable in some situations). However, the objectives 

are useful as a basis for understanding distributed technology in general and as a frame¬ 

work for characterizing the functionality of specific distributed systems. We will therefore 

use them as an organizing principle for the bulk of the chapter. Section 21.3 presents a 

brief discussion of each objective; Section 21.4 then homes in on certain specific issues in 

more detail. Section 21.5 (as previously mentioned) discusses client/server systems. Sec¬ 

tion 21.6 examines the specific objective of DBMS independence in depth. Finally, Sec¬ 

tion 21.7 addresses the question of SQL support, and Section 21.8 offers a summary and a 

few concluding remarks. 

One final introductory point: It is desirable to distinguish true, generalized, distrib¬ 

uted database systems from systems that merely provide some kind of remote data access 

(which is all that client/server systems really do, incidentally). In a remote data access 

system, the user might be able to operate on data at a remote site, or even on data at sev¬ 

eral remote sites simultaneously, but “the seams show”; that is, the user is definitely 

aware, to a greater or lesser extent, that the data is remote and has to behave accordingly. 

In a true distributed database system, by contrast, the seams are hidden. (Much of the rest 

of this chapter is concerned with what it means in this context to say that the seams are 

hidden.) Throughout what follows, we will use the term distributed system to refer to a 

true, generalized, distributed database system specifically (as opposed to a simple remote 

data access system), barring explicit statements to the contrary. 

21.3 THE TWELVE OBJECTIVES 

1. Local Autonomy 

The sites in a distributed system should be autonomous. Local autonomy means that all 

operations at a given site are controlled by that site; no site X should depend on some 

other site Y for its successful operation—for otherwise the fact that site Y is down might 

mean that site X is unable to run even if there is nothing wrong with site X itself, obvi¬ 

ously an undesirable state of affairs. Local autonomy also implies that local data is locally 

owned and managed, with local accountability; all data “really” belongs to some local 

database, even if it is accessible from other sites. Such matters as integrity, security, and 

physical storage representation of local data thus remain under the control and jurisdiction 

of the local site. 

Actually, the local autonomy objective is not wholly achievable; it turns out there are 

some situations in which a given site X must relinquish a certain degree of control to some 

other site Y. The autonomy objective would thus more accurately be stated: Sites should be 
autonomous to the maximum extent possible. See the annotation to reference [21.13] for 

more specifics on this point. 
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Note: Doubtless you will have realized already that location independence is just an 

extension to the distributed case of the familiar concept of (physical) data independence. 

In fact—to jump ahead of ourselves for a moment—every objective in our list that has 

“independence” in its name can be regarded as an extension of data independence, as we 

will see. We will have a little more to say regarding location independence specifically in 

Section 21.4 (subsection “Catalog Management”). 

5. Fragmentation Independence 

A system supports data fragmentation if a given base relvar can be divided into pieces or 

fragments for physical storage purposes, and distinct fragments can be stored at different 

sites. Fragmentation is desirable for performance reasons: Data can be stored at the loca¬ 

tion where it is most frequently used, so that most operations are local and network traffic 

is reduced. For example, consider a base relvar EMP (“employees”), with sample value as 

shown in the top portion of Fig. 21.2. In a system that supports fragmentation, we might 

define two fragments thus: 

FRAGMENT EMP AS 
N_EMP AT SITE 'New York' WHERE DEPT# = DEPT# ('D1') 

OR DEPT# = DEPT# ('D3') , 
L_EMP AT SITE 'London' WHERE DEPT# = DEPT# (•D2') ; 

(refer to the lower portion of Fig. 21.2). Note: We are assuming that EMP tuples map to 

physical storage in some fairly direct manner, and that D1 and D3 are New York depart - 

Fig. 21.2 An example of fragmentation 
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even from one site to another), if the updated tuple no longer satisfies the predicate for the 
fragment it previously belonged to. 

6. Replication Independence 

A system supports data replication if a given base relvar-—or, more generally, a given 

fragment of a given base relvar—can be represented in storage by many distinct copies or 
replicas, stored at many distinct sites. For example: 

REPLICATE N_EMP AS 
LN_EMP AT SITE 'London' ; 

REPLICATE L_EMP AS 
NL_EMP AT SITE 'New York' ; 

(see Fig. 21.3). Note the system’s internal replica names NL_EMP and LN_EMP. 

Replication is desirable for at least two reasons: First, it can mean better performance 

(applications can operate on local copies instead of having to communicate with remote 

sites); second, it can also mean better availability (a given replicated object remains avail¬ 

able for processing—at least for retrieval—as long as at least one copy remains available). 

The major disadvantage of replication is that when a given replicated object is updated, all 

copies of that object must be updated: the update propagation problem. We will have 

more to say regarding this problem in Section 21.4. 

We remark in passing that replication in a distributed system represents a specific 

application of the idea of controlled redundancy as discussed in Chapter 1. 

Now, replication, like fragmentation, ideally should be “transparent to the user.” In 

other words, a system that supports data replication should also support replication inde¬ 

pendence (also known as replication transparency)—that is, users should be able to 

behave, at least from a logical standpoint, as if the data were in fact not replicated at all. 

Replication independence (like location independence and fragmentation independence) 
is desirable because it simplifies application programs and end-user activities; in particu¬ 

lar, it allows replicas to be created and destroyed at any time in response to changing 

requirements, without invalidating any of those programs or activities. 

New York 

N EMP 

EMP# DEPT# SALARY 

El D1 40K 
E2 D1 42K 
E5 D3 48K 

EMP# DEPT# SALARY 

E3 D2 30K 

E4 D2 35K 

NL_EMP (L_EMP replica) 

L EMP 

London 

EMP# DEPT# SALARY 

E3 D2 30K 
E4 D2 35K 

EMP# DEPT# SALARY 

El D1 40K 
E2 D1 42K 
E5 D3 48K 

LN EMP (N EMP replica) 

Fig. 21.3 An example of replication 
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agents, where an agent is the process performed on behalf of a given transaction at a 

given site. And the system clearly needs to know when two agents are part of the same 
transaction; for example, two agents that are part of the same transaction must obviously 
not be allowed to deadlock with each other. 

Turning now to recovery specifically: In order to ensure that a given transaction is 
atomic (all or nothing) in the distributed environment, the system must clearly ensure that 

the set of agents for that transaction either all commit in unison or all roll back in unison. 

This effect can be achieved by means of the two-phase commit protocol, already dis¬ 
cussed, though not in the distributed context, in Chapter 15. We will have more to say 

regarding two-phase commit for a distributed system in Section 21.4. 

As for concurrency: Concurrency control in most distributed systems is typically 

based on locking, just as it is in nondistributed systems. (Some products use multi-version 

controls instead [16.1], but conventional locking still seems to be the technique of choice 
in most systems.) We will discuss this topic also in a little more detail in Section 21.4. 

9. Hardware Independence 

There is really not much to be said on this topic—the heading says it all. Real-world com¬ 

puter installations typically involve a multiplicity of different machines—IBM machines, 
Fujitsu machines, HP machines, PCs and workstations of various kinds, and so on—and 

there is a real need to be able to integrate the data on all of those systems and present the 

user with a “single-system image” [21.9], Thus, it is desirable to be able to run the same 

DBMS on different hardware platforms, and furthermore to have those different machines 
all participate as equal partners in a distributed system. 

10. Operating System Independence 

This objective is partly a corollary of the previous one, and also does not really require 
much discussion here. It is obviously desirable, not only to be able to run the same DBMS 

on different hardware platforms, but also to be able to run it on different operating system 

platforms as well—including different operating systems on the same hardware—and 

have (e.g.) an OS/390 version and a UNIX version and a Windows version all participate 

in the same distributed system. 

11. Network Independence 

Once again there is not much to say; if the system is to be able to support many disparate 

sites, with disparate hardware and disparate operating systems, it is obviously desirable to 

be able to support a variety of disparate communication networks also. 

12. DBMS Independence 

Under this heading, we consider what is involved in relaxing the strict homogeneity 

assumption. That assumption is arguably a little too strong: All that is really needed is that 
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supplier. Each of these checks will involve two messages; again, the transmission 

time for these messages will be small compared with the access delay. 

T4 - 2 seconds approx. 

5. Join suppliers and shipments at site A, restrict the result to London suppliers, project 

the result over S# and P#, and move the result to site B. Complete the processing at 

site B. 

T5 = 0.1 + ( 100000 * 200 ) / 50000 
= 400 seconds approx. (6.67 minutes) 

6. Restrict parts at site B to those that are red and move the result to site A. Complete 

the processing at site A. 

T6 = 0.1 + ( 10 * 200 ) / 50000 
= 0.1 second approx. 

Fig. 21.4 summarizes the foregoing results. Points arising: 

Strategy Technique Communication time 

1 Move P to A 6.67 mins 
2 Move S and SP to B 1.12 hrs 
3 For each London shipment, 

check if part is red 
5.56 hrs 

4 For each red part, 
check if a London supplier exists 

2.00 secs 

5 Move London shipments to B 6.67 mins 
6 Move red parts to A 0.10 secs (best) 

Fig. 21.4 Distributed query processing strategies (summary) 

1. The overall variation in communication time is enormous (the slowest is two million 

times slower than the fastest). 

2. Data rate and access delay are both important factors in choosing a strategy. 

3. Computation and I/O times are likely to be negligible compared with communication 

time for the poor strategies. Note: Actually, for the better strategies this might or 

might not be the case [21.33], It also might not be the case on a fast LAN. 

In addition, some strategies permit parallel processing at the two sites; thus, the 

response time to the user might actually be less than in a centralized system. Note, how¬ 

ever, that we have ignored the question of which site is to receive the final result. 

Catalog Management 

In a distributed system, the system catalog will include not only the usual catalog data 

regarding base relvars, views, integrity constraints, authorizations, and so on, but also all 

the necessary control information to enable the system to provide the desired location, 

fragmentation, and replication independence. The question arises: Where and how should 

the catalog itself be stored? Here are some possibilities: 

1. Centralized: The total catalog is stored exactly once, at a single central site. 

2. Fully replicated: The total catalog is stored in its entirety at every site. 
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As already indicated, users normally refer to objects by their printname. A printname 

consists of a simple unqualified name—either the “local name” component of the system- 

wide name (STATS in the foregoing example) or a synonym for that system-wide name, 

defined by means of the special R* statement CREATE SYNONYM. Here is an example: 

CREATE SYNONYM MSTATS FOR MARILYN @ NEWYORK . STATS @ LONDON ; 

Now the user can say either (e.g.) 

SELECT ... FROM STATS ... ; 

or 

SELECT ... FROM MSTATS ... ; 

In the first case (using the local name), the system infers the system-wide name by 

assuming all the obvious defaults: namely, that the object was created by this user, it was 

created at this site, and it was initially stored at this site. We note in passing that one con¬ 

sequence of these default assumptions is that old System R applications will run 

unchanged on R* (once the System R data has been redefined to R*, that is). 

In the second case (using the synonym), the system determines the system-wide name 

by interrogating the relevant synonym table. Synonym tables can be thought of as the 

first component of the catalog; each site maintains a set of such tables for each user 

known at that site, mapping the synonyms known to that user to their corresponding 

system-wide names. 

In addition to the synonym tables, each site maintains: 

1. A catalog entry for every object born at that site 

2. A catalog entry for every object currently stored at that site 

Suppose the user issues a request referring to the synonym MSTATS. First, the sys¬ 

tem looks up the corresponding system-wide name in the appropriate synonym table (a 

purely local lookup). Now it knows the birthsite—London in the example—and so it can 

interrogate the London catalog (which we assume for generality to be a remote lookup, so 

this is the first remote access). The London catalog will contain an entry for the object, by 

virtue of point 1. If the object is still at London, it has now been found. However, if the 

object has migrated to (say) Los Angeles, then the catalog entry in London will say as 

much, and so the system can now interrogate the Los Angeles catalog (second remote 

access). And the Los Angeles catalog will contain an entry for the object, by virtue of 

point 2. So the object has been found in at most two remote accesses. 

Furthermore, if the object migrates again, say to San Francisco, then the system will: 

1. Insert a San Francisco catalog entry. 

2. Delete the Los Angeles catalog entry. 

3. Update the London catalog entry to point to San Francisco instead of Los Angeles. 

The net effect is that the object can still be found in at most two remote accesses. And this 

is a completely distributed scheme—there is no central catalog site, and no single point of 
failure within the system. 
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We close this subsection with a few further observations on the delayed propagation 
approach: 

1. The concept of replication in a system with delayed update propagation can be thought 

of as an application of the idea of snapshots as discussed in Chapter 10. Indeed, it 

would have been better to use a different term for this kind of replication; then we 

could have kept the term replica to mean what it is usually understood to mean in ordi¬ 

nary discourse (namely, an exact copy). Note, however, that snapshots are supposed to 

be read-only (apart from the periodic refreshing), whereas some systems do allow 

users to update “replicas” directly—see, for example, reference [21.18]. Of course, 
this latter capability constitutes a violation of replication independence. 

2. We do not mean to suggest that delayed propagation is a bad idea—it is clearly the 

right thing to do in appropriate circumstances, as we will see in Chapter 22, for exam¬ 

ple. The point is, however, that delayed propagation means the “replicas” are not true 

replicas (it is possible for a given data value at the logical level to be represented by 

two or more stored values at the physical level, and furthermore for those stored values 

to be different!), and the system is not a true distributed database system. 

3. One reason (perhaps the major reason) why many products implement replication 

with delayed propagation is that the alternative—that is, updating all replicas prior to 

COMMIT—requires two-phase commit support (see the next subsection), which can 

be costly in performance. This state of affairs explains the articles sometimes encoun¬ 

tered in the trade press with mystifying titles along the lines of “Replication vs. Two- 

Phase Commit”—mystifying, because on the surface they appear to be comparing the 

merits of two totally different things. 

Recovery 

As explained in Section 21.3, recovery in distributed systems is typically based on two- 

phase commit, or some variant thereof. Two-phase commit is required in any environment 

in which a single transaction can interact with several autonomous resource managers; 

however, it is particularly important in a distributed system, because the resource manag¬ 

ers in question—that is, the local DBMSs—are operating at distinct sites and are hence 
very autonomous. Points arising: 

1. The objective of “no reliance on a central site” dictates that the coordinator function 

must not be assigned to one distinguished site in the network, but instead must be 

performed by different sites for different transactions. Typically it is handled by the 

site at which the transaction in question is initiated; thus, each site must be capable of 

acting as the coordinator site for some transactions and as a participant site for others 

(in general). 

4 Of course, if all integrity checking is immediate (see Chapters 9 and 16), then such a state of affairs can¬ 
not arise. Even if such checking is deferred until COMMIT—a possibility we regard as logically incor¬ 
rect, but one that is found in some systems—it still cannot arise. In a sense, therefore, delayed 
propagation can be regarded as “even more logically incorrect” than deferred checking (if it makes any 
sense to talk in terms of degrees of correctness). 
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the failure case (for presumed rollback). In order to explain the two schemes, we note first 

that the basic mechanism as already described requires the coordinator to remember its 

decision until it has received an acknowledgment from every participant. The reason is 

that if a participant crashes while it is “in doubt,” it will have to interrogate the coordina¬ 

tor on restart in order to discover what the coordinator’s decision was. Once all acknowl¬ 

edgments have been received, however, the coordinator knows that all participants have 
done what they were told, and so it can “forget” the transaction. 

We focus now on presumed commit. Under this scheme, participants are required to 

acknowledge “rollback” (“undo it”) messages but not “commit” (“do it”) messages, and 
the coordinator can forget the transaction as soon as it has broadcast its decision, provided 

that decision is “commit.” If an in-doubt participant crashes, then on restart it will (as 

always) interrogate the coordinator. If the coordinator still remembers the transaction (i.e., 

the coordinator is still waiting for the participant’s acknowledgment), then the decision 
must have been “rollback”; otherwise, it must have been “commit.” 

Presumed rollback is the opposite, of course: Participants are required to acknowl¬ 

edge “commit” messages but not “rollback” messages, and the coordinator can forget the 
transaction as soon as it has broadcast its decision, as long as that decision is “rollback.” If 

an in-doubt participant crashes, then on restart it will interrogate the coordinator. If the 

coordinator still remembers the transaction (i.e., the coordinator is still waiting for the par¬ 

ticipant’s acknowledgment), then the decision was “commit”; otherwise, it was “rollback.” 

Interestingly, and somewhat counterintuitively, presumed rollback seems to be prefer¬ 

able to presumed commit (we say “counterintuitively” because surely most transactions 
succeed, and presumed commit reduces the number of messages in the success case). The 

problem with presumed commit is as follows. Suppose the coordinator crashes in Phase 1 

(i.e., before it has made its decision). On restart at the coordinator site, then, the transac¬ 

tion is rolled back (since it did not complete). Subsequently, some participant interrogates 

the coordinator, asking for its decision with respect to this transaction. The coordinator 

does not remember the transaction, and so presumes “commit”—which is incorrect. 
In order to avoid such “false commits,” the coordinator (if it is following presumed 

commit) must force a log entry to its own physical log at the start of Phase 1, giving a list 

of all participants in the transaction. (If the coordinator now crashes in Phase 1, then on 

restart it can broadcast “rollback” to all participants.) And this physical I/O to the coordi¬ 
nator log is on the critical path for every transaction. Thus, presumed commit is not quite 

as attractive as it might appear at first sight. In fact, it is probably fair to say that presumed 

rollback is the de facto standard in implemented systems at the time of writing. 

Concurrency 

As stated in Section 21.3, concurrency control in most distributed systems is based on 
locking, just as it is in most nondistributed systems. In a distributed system, however, 

requests to test, set, and release locks become messages (assuming that the object under 

consideration is at a remote site), and messages mean overhead. For example, consider a 
transaction T that needs to update an object for which there exist replicas at n remote sites. 

If each site is responsible for locks on objects stored at that site (as it will be under the 
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local autonomy assumption), then a straightforward implementation will require at least 

5/i messages: 

n lock requests 

n lock grants 

n update messages 

n acknowledgments 

n unlock requests 

Of course, we can easily improve on the foregoing by “piggybacking” messages—for 

example, the lock request and update messages can be combined, and so can the lock 

grant and acknowledgment messages—but even so, the total time for the update could still 

be orders of magnitude greater than it would be in a centralized system. 

The usual approach to this problem is to adopt the primary copy strategy already 

described in the subsection “Update Propagation.” For a given object A, the site holding 

the primary copy of A will handle all locking operations involving A (remember that pri¬ 

mary copies of different objects will be at different sites, in general). Under this strategy 

the set of all copies of an object can be considered as a single object for locking purposes, 

and the total number of messages will be reduced from 5n to 2n + 3 (one lock request, one 

lock grant, n updates, n acknowledgments, and one unlock request). But notice once again 

that this solution entails a (severe) loss of autonomy—a transaction can now fail if a pri¬ 

mary copy is unavailable, even if the transaction is read-only and a local copy is available. 

(Note that not only update operations, but also retrieval operations, need to lock the pri¬ 

mary copy [15.6], Thus, an unpleasant side-effect of the primary copy strategy is to 

reduce performance and availability for retrievals as well as for updates.) 

Another problem with locking in a distributed system is that it can lead to global dead¬ 

lock, or in other words a deadlock involving two or more sites. For example (refer to Fig. 

21.6): 

1. The agent of transaction T2 at site X is waiting for the agent of transaction 77 at site X 

to release a lock. 

2. The agent of transaction 77 at site X is waiting for the agent of transaction 77 at site Y 

to complete. 

3. The agent of transaction 77 at site Y is waiting for the agent of transaction T2 at site Y 

to release a lock. 

4. The agent of transaction 72 at site Y is waiting for the agent of transaction 72 at site X 

to complete: Deadlock! 

The problem with a deadlock such as this one is that neither site can detect it using 

only information that is internal to that site. In other words, there are no cycles in the 

local Wait-For Graphs, but a cycle will appear if those two local graphs are combined to 

form a global graph. It follows that global deadlock detection incurs further communica¬ 

tion overhead, because it requires individual local graphs to be brought together somehow. 
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SITE X 

SITE Y 

Fig. 21.6 An example of global deadlock 

An elegant distributed scheme for detecting global deadlocks is described in the R* 

papers (see, e.g., reference [21.37]). Note: As pointed out in Chapter 16, not all systems 

do in fact detect deadlocks in practice—some just use a timeout mechanism instead. For 

reasons that should be obvious, this remark is particularly true of distributed systems. 

21.5 CLIENT/SERVER SYSTEMS 

As mentioned in Section 21.1, client/server systems can be regarded as a special case of 
distributed systems in general. More precisely, a client/server system is a distributed sys¬ 

tem in which (a) some sites are client sites and some are server sites, (b) all data resides at 

the server sites, (c) all applications execute at the client sites, and (d) “the seams show" 

(full location independence is not provided). Refer to Fig. 21.7 (a repeat of Fig. 2.6 from 

Chapter 2). 
In the late 1980s and early to mid 1990s there was quite a lot of commercial interest 

in client/server systems and comparatively little in true general-purpose distributed sys¬ 
tems. This picture has recently changed somewhat, as we will see in the next section, but 

client/server systems are still important; hence the present section. 
First of all, then, recall that the term client/server refers primarily to an architecture, 

or logical division of responsibilities; the client is the application (also known as the front 

end), and the server is the DBMS (also known as the back end). Precisely because the 

overall system can be so neatly divided into two parts, however, the possibility arises of 
running the two on different machines. And this latter possibility is so attractive (for so 
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and Oracle both supported the official SQL standard—no more and no less!—then it 

might be possible to get them to behave as equal partners in a heterogeneous distributed 

system; indeed, such a possibility has always been one of the arguments in favor of the 
SQL standard in the first place, and we therefore examine it in detail. Note: We base our 

discussion on the specific products Ingres and Oracle merely to make matters a little more 
concrete. The concepts are generally applicable, of course. 

Gateways 

Suppose we have two sites X and Y running Ingres and Oracle, respectively, and suppose 

some user U at site X wishes to see a single distributed database that includes data from 
the Ingres database at site X and data from the Oracle database at site Y. By definition, user 

U is an Ingres user, and the distributed database must therefore be an Ingres database as 

far as that user is concerned. The onus is thus on Ingres, not Oracle, to provide the neces¬ 

sary support. What must that support consist of? 

In principle, it is quite straightforward: Ingres must provide a special program—at one 

time called a gateway, now more usually called a wrapper, though neither term is very 

precisely defined—whose effect is “to make Oracle look like Ingres.” Refer to Fig. 21.8.6 
The gateway might run at the Ingres site or the Oracle site or (as the figure suggests) at 

some special site of its own between the other two; no matter where it runs, however, it 

must clearly provide at least all of the functions in the following list. Observe that several 

of these functions present implementation problems of a very nontrivial nature. However, 

the RDA and DRDA standards discussed in Section 21.5 do address some of those prob¬ 

lems, as does XML (see Chapter 27). 

Fig. 21.8 A hypothetical Ingres-provided gateway to Oracle 

6 For obvious reasons, the term three-tier system is sometimes used to refer to the kind of arrangement 
illustrated in the figure (as well as to other software configurations similarly involving three components; 
see in particular the discussion of “middleware” in the next subsection). 
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InfoHub from Sybase Inc. By way of illustration, we briefly describe the DataJoiner prod¬ 

uct [21.6]. 
There are several different ways to characterize DataJoiner (see Fig. 21.9). From the 

point of view of an individual client, it looks like a regular database server (i.e., a DBMS); 

it stores data, supports SQL queries, provides a catalog, does query optimization, and so 

forth (in fact, the heart of DataJoiner is the AIX version of IBM’s DBMS product DB2). 

However, the data is stored, mostly, not at the DataJoiner site (though that capability is 

available), but rather at any number of other sites behind the scenes, under the control of a 

variety of other DBMSs, or even file managers such as VSAM. DataJoiner thus effectively 

provides the user with a virtual database that is the union of all of those “behind the 

scenes” databases and/or files; it allows queries to span those databases and/or files, and 

uses its knowledge of the capabilities of the systems behind the scenes (and of network 

characteristics) to decide on “globally optimal” query plans. Note: DataJoiner also 

includes the ability to emulate certain DB2 SQL features on systems that do not support 

those features directly. An example might be the WITH HOLD option on a cursor declara¬ 

tion (see Chapter 15). 

Fig. 21.9 DataJoiner as data access middleware 

s Emphasis on “queries”; update capabilities are necessarily somewhat limited, especially—but not 
solely—when the system behind the scenes is, say, IMS or some other nonSQL system (again, see refer¬ 
ence [21.14]). 
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Now, the system as described thus far is not a full distributed database system, 
because the various sites behind the scenes are unaware of one another’s existence (i.e., 

they cannot be considered equal partners in a cooperative venture). However, when any 

new “behind the scenes” site is added, that new site can also behave as a client site and 

hence issue queries via DataJoiner that access any or all of the other sites. The overall sys¬ 

tem thus constitutes what is sometimes called a federated system, also known as a multi¬ 

database system [21.17]. A federated system is a distributed system, usually heteroge¬ 
neous, with close to full local autonomy; in such a system, purely local transactions are 

managed by the local DBMSs, though global transactions are a different matter [21.7]. 

Internally, DataJoiner includes a driver component—in effect a point-to-point gate¬ 
way or wrapper in the sense of the previous subsection—for each of the “behind the 

scenes” systems. (Those drivers typically make use of ODBC to access the remote sys¬ 

tem.) It also maintains a global catalog, which is used among other things to tell it what to 

do when it encounters semantic mismatches among those systems. 

We remark that products like DataJoiner can be useful to third-party software ven¬ 

dors, who can develop generic tools (e.g., report writers, statistical packages, and so on) 
without having to worry too much about the differences among the different DBMS prod¬ 

ucts against which those tools are supposed to run. Finally, we note that IBM has recently 

incorporated DataJoiner technology into its DBMS product DB2; the intent is clearly to 

evolve DB2 to become the “only true interface”—at least, the only true IBM interface—to 

stored data in all of its forms (at the time of writing, it supports access to data stored in 
Informix, Oracle, SQL Server, and Sybase, among other systems). In other words, DB2, 

with DataJoiner technology, represents IBM’s attack on what has become known as the 

information integration problem [21.9]. 

A Final Word 

There are clear technical difficulties in trying to provide full DBMS independence, even 
when all of the participating DBMSs are SQL systems specifically. However, the potential 

payoff is huge, even if the solutions are less than perfect; for this reason, several data 

access middleware products already exist, and more are likely to appear in the near future. 

However, be warned that the solutions will necessarily be less than perfect—vendor 

claims to the contrary notwithstanding. Caveat emptor. 

21.7 SQL FACILITIES 

SQL currently provides no support at all for true distributed database systems.l) Of course, 
no support is required in the area of data manipulation—the whole point of a distributed 

database (at least as far as the user is concerned) is that data manipulation operations 

9 Part 9 of the standard, SQL/MED (Management of External Data) [4.23], does provide support tor fed¬ 
erated systems, however. The details are beyond the scope of this book; a tutorial can be found in refer¬ 

ence [26.32]. 
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should remain unchanged. However, data definition operations such as FRAGMENT, 

REPLICATE, and so on, are required [15.6] but are not currently provided. 

On the other hand, SQL does support certain client/server capabilities, including in 

particular CONNECT and DISCONNECT operations for making and breaking client/ 

server connections. In fact, an SQL application must execute a CONNECT operation to con¬ 

nect to the server before it can issue any database requests at all (though that CONNECT 

might be implicit). Once the connection has been established, the application—that is, the 

client—can issue SQL requests in the usual way, and the necessary database processing will 

be carried out by the server. 

SQL also allows a client that is already connected to one server to connect to another. 

Establishing that second connection causes the first to become dormant; subsequent SQL 

requests are processed by the second server, until such time as the client either (a) 

switches back to the previous server (via another new operation, SET CONNECTION) 

or (b) connects to yet another server, which causes the second connection to become dor¬ 

mant as well (and so on). At any given time, in other words, a given client can have one 

active connection and any number of dormant connections, and all database requests 

from that client are directed to, and processed by, the server on the active connection. 

Note: The SQL standard also permits (but does not require) the implementation to sup¬ 

port multi-server transactions. That is, the client might be able to switch from one server to 

another in the middle of a transaction, so that part of the transaction is executed on one 

server and part on another. Note in particular that if update transactions are permitted to 

span servers in this way, the implementation must presumably support some kind of two- 

phase commit in order to provide the transaction atomicity that the standard mandates. 

Finally, every connection established by a given client (whether currently active or 

currently dormant) must eventually be broken via an appropriate DISCONNECT opera¬ 

tion (though that DISCONNECT, like the corresponding CONNECT, might be implicit in 

simple cases). 

For further information—in particular, for details of the SQL facilities for writing 

stored procedures—refer to the SQL standard itself [4.23, 4.24] or the tutorial treatment in 

reference [4.20]. 

21.8 SUMMARY 

In this chapter, we have presented an introduction to distributed database systems. We 

used the “twelve objectives” for distributed database systems [21.13] as a basis for struc¬ 

turing the discussion, though we stress the point once again that not all of those objectives 
will be relevant in all situations. We also briefly examined certain technical problems aris¬ 

ing in the areas of query processing, catalog management, update propagation, recov¬ 

ery, and concurrency. In particular, we discussed what is involved in trying to satisfy the 

DBMS independence objective (the discussion of gateways, data access middleware, 

and federated systems in Section 21.6). We also took a closer look at client/server pro¬ 

cessing, which can be regarded as an important special case of distributed processing in 

general. Finally, we summarized those aspects of SQL that are relevant to client/server 

processing, and we stressed the point that users should avoid record-level code (cursor 
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two-phase commit 

global optimization 

21.5 Describe the R* naming scheme. 

21.6 Successful implementation of a point-to-point gateway depends on reconciling the interface 

differences between the two DBMSs involved (among many other things). Take any two SQL sys¬ 

tems you might be familiar with and identify as many interface differences between them as you can. 

Consider both syntactic and semantic differences. 

21.7 Investigate any client/server system that might be available to you. Does that system support 

explicit CONNECT and DISCONNECT operations? Does it support SET CONNECTION or any 

other “connection-type” operations? Does it support multi-server transactions? Does it support two- 

phase commit? What formats and protocols does it use for client/server communication? What net¬ 

work environments does it support? What client and server hardware platforms does it support? 

What software platforms (operating systems, DBMSs) does it support? 

21.8 Investigate any SQL DBMS that might be available to you. Does that DBMS support stored 

procedures? If so, how are they created? How are they invoked? What language are they written in? 

Do they support the whole of SQL? Do they support conditional branching (IF - THEN - ELSE)? Do 

they support loops? How do they return results to the client? Can one stored procedure invoke 

another? At a different site? Does the stored procedure execute as part of the invoking transaction? 
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22.1 INTRODUCTION 

Note: David McGoveran of Alternative Technologies was the original author of this chapter. 

Decision support systems are systems that help in the analysis of business informa¬ 

tion. Their aim is to help management “spot trends, pinpoint problems, and make . . . 

intelligent decisions’’ [22.9]. The roots of such systems—operations research, behavioral 

and scientific theories of management, and statistical process control—can be traced back 

to the late 1940s and 1950s, well before computers became generally available. The basic 

idea was, and of course still is, to collect business operational data (see Chapter 1) and 

reduce it to a form that can be used to analyze the behavior of the business and modify 

that behavior in an intelligent manner. For obvious reasons, the extent to which the data 

was reduced in those early days was fairly minimal, however, typically involving little 

more than the generation of simple summary reports. 

In the late 1960s and early 1970s, researchers at Harvard and MIT began promoting 

the use of computers to help in the decision-making process [22.26]. At first, such use was 
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mostly limited to automating the task of report generation, although rudimentary analyti¬ 

cal capabilities were sometimes provided as well [22.6-22.8], Those early computer sys¬ 

tems were initially known as management decision systems; later they also became known 

as management information systems. We prefer the more modem term decision support 

systems, however, since a good case can be made that cdl information systems—including, 

for example, OLTP systems (OLTP = online transaction processing)—can or should be 

regarded as “management information systems” (after all, they are all involved in, and 

affect, the management of the business). We will stay with the more modern term in what 

follows. 

The 1970s also saw the development of several query languages, and a number of 

custom (in-house) decision support systems were built around such languages. They were 

implemented using report generators such as RPG or data retrieval products such as 

Focus, Datatrieve, and NOMAD. Those systems were the first to allow suitably skilled 

end users to access computer data stores directly; that is, they allowed such users to for¬ 

mulate business-related queries against those data stores and execute those queries 

directly, without having to wait for assistance from the IT department. 

Of course, the data stores just mentioned were mostly just simple files—most busi¬ 

ness data at the time was kept in such files, or possibly in nonrelational databases (rela¬ 

tional systems still lay in the realm of research). Even in the latter case, the data usually 

had to be extracted from the database and copied to files before it could be accessed by a 

decision support system. It was not until the early 1980s that relational databases began to 

be used in place of simple files for decision support purposes (in fact, decision support, ad 

hoc query, and reporting were among the earliest commercial uses of relational technol¬ 

ogy). And even though SQL products are now widely available, the idea of extract pro¬ 

cessing—that is, copying data from the operational environment to some other environ¬ 

ment for subsequent processing—continues to be very important; it allows users to 

operate on the extracted data in whatever manner they desire, without interfering further 

with the operational environment. And the reason for performing such extracts is very 

often decision support. 

It should be clear from the foregoing brief history that decision support is not really 

part of database technology per se. Rather, it is a use of that technology (albeit an impor¬ 

tant one)—or, to be more precise, it is several such uses, distinct but intertwined. The uses 

in question fall under the headings of data warehouse, data mart, operational data store, 

online analytical processing (OLAP), multi-dimensional databases, and data mining, 

among others. Of course, we will explain all of these concepts in the pages to come; how¬ 

ever, we remark immediately that one thing they all have in common is that good logical 

design principles are rarely followed in any of them! The practice of decision support is, 

regrettably, not as scientific as it might be; often, in fact, it is quite ad hoc. In particular, it 

tends to be driven by physical considerations much more than by logical ones—indeed, it 

tends to blur the logical v.v. physical distinction considerably. Partly for such reasons, in 

this chapter we use SQL, not Tutorial D, as the basis for our examples, and we use the 

“fuzzier” terminology of rows, columns, and tables in place of our preferred terminology 

of tuples, attributes, and relation values and variables (relvars). Also, we use the terms 

logical schema and physical schema as synonyms for what in Chapter 2 we called the 

conceptual schema and the internal schema, respectively. 
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going tend to be ad hoc and often lead to insurmountable difficulties in trying to balance 

correctness, maintainability, performance, scalability, and usability requirements. 

22.3 DATABASE DESIGN FOR DECISION SUPPORT 

As stated earlier in this book (see the introduction to Part III), it is our position that data¬ 

base design should always be done in two stages, logical then physical: 

a. The logical design should be done first. In this stage, the focus is on relational cor¬ 

rectness: Tables must represent proper relations, thereby guaranteeing that relational 

operations work as advertised and do not produce surprising results. Types (domains) 

are specified, columns defined on them, and dependencies among columns (FDs, etc.) 

identified. From this information, normalization can proceed and further integrity 

constraints defined as appropriate. 

b. Second, the physical design should be derived from the logical design. In this stage, 

the focus is on storage efficiency and performance. In principle, any physical arrange¬ 

ment of the data is permissible, as long as there exists an information-preserving trans¬ 

formation, expressible in the relational algebra (see reference [2.5]), between the 

logical and physical schemas. Note in particular that the existence of such a transfor¬ 

mation implies that there exist relational views of the physical schema that make it 

look like the logical schema and vice versa. 

Of course, the logical schema might subsequently change (e.g., to accommodate new 

kinds of data or new—or newly discovered—dependencies), and such a change will natu¬ 

rally require a corresponding change to the physical schema as well. Such a possibility 

does not concern us here. What does concern us is the ability to make a change to the 

physical schema without having to make a corresponding change to the logical schema. 

For example, suppose joining tables SP (shipments) and P (parts) is the dominant access 

pattern. Then we might wish to “prejoin” the SP and P tables at the physical level, thereby 

reducing I/O and join costs. However, the logical schema must remain unchanged if phys¬ 

ical data independence is to be achieved. (Of course, the query optimizer will need to be 

aware of the existence of the stored “prejoin,” and use it appropriately, in order to obtain 

the desired performance benefits.) Furthermore, if the access pattern subsequently 

changes to one dominated by individual table accesses instead of joins, we should be able 

to change the physical schema again so that the SP and P tables are physically separated, 

again without any impact at the logical level. 

It should be clear from the foregoing that the problem of providing physical data 

independence is basically the same as the problem of supporting views—except that, as 

with the fragment update problem discussed in Chapter 21, it manifests itself at a different 

point in the overall system architecture. In particular, we need to be able to update those 

views. To be specific, if (a) we think of the base tables at the logical level as views and the 

stored versions of those “views” at the physical level as base tables, then (b) the physical 

schema has to be such that the DBMS can implement updates on those “views” in terms 

of those “base tables.” 
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SP s# P# MID MONTH_QTY MID QTY 

SI PI 3 1 200 
SI PI 5 2 600 
SI P2 1 3 300 
SI P3 7 4 100 
SI P4 1 5 100 
SI P5 5 6 200 
SI P6 4 7 400 
S2 PI 3 8 200 
S2 P2 9 9 400 
S3 P2 6 10 100 
S3 P2 8 11 400 
S4 P2 1 12 50 
S4 P4 8 
S4 P5 7 
S4 P5 11 

Fig. 22.2 Normalized counterpart of Fig. 22.1 

it should therefore be further normalized as indicated in Fig. 22.2. Unfortunately, de¬ 

cision support designers rarely bother to take such issues into account. Again, see 

Chapter 23 for further discussion. 

Physical Design 

We said in Section 22.2 that decision support databases tend to be large and heavily 

indexed, and tend to involve various kinds of controlled redundancy. In this subsection 

and the next two we briefly elaborate on these physical design issues. 

First we consider partitioning (also known as fragmentation). Partitioning represents 

an attack on the database size problem; it divides a given table into a set of disjoint parti¬ 

tions or fragments for physical storage purposes (see the discussion of fragmentation in 

Chapter 21). Such partitioning can significantly improve the manageability and accessibil¬ 

ity of the table in question. Typically, each partition is assigned its own more or less dedi¬ 

cated hardware resources (e.g., disk, CPU), thereby minimizing competition for such 

resources among partitions. Tables are partitioned horizontally4 by means of a partition¬ 

ing function, which takes values of selected columns (the partition key) as arguments and 

returns a partition number or address. Such functions typically support range, hash, and 

round-robin partitioning, among other kinds (see the annotation to reference [18.56] in 

Chapter 18). 

Now we turn to indexing. Of course, it is well known that using the right kind of index 

can dramatically reduce I/O. Most early SQL products provided just one kind of index, the 

B-tree, but several other kinds have become available over the years, especially in connec¬ 

tion with decision support databases; they include bitmap, hash, multi-table, boolean, and 

functional indexes, as well as B-tree indexes per se. We comment briefly on each. 

4 Vertical partitioning, though possibly advantageous, is not much used, since few products support it. 











Chapter 22 / Decision Support 701 

example, A JOIN (B JOIN C) and (A JOIN B) JOIN C (see Chapter 7); sometimes 

they are equivalent only because there is some integrity constraint in effect that 

makes them so (see Chapter 18); and sometimes they are not equivalent at all! As an 

example of the last case, suppose tables A, B, and C are such that A and B have a 

common column KAB, B and C have a common column KBC, and A and C have a 

common column KAC; then joining A and B over KAB and then joining the result to 

C over KBC is certainly not the same as joining A and C over KAC. 

It is clear that users can become confused in such cases and be unsure as to 

which expression to use and whether or not there will be any difference in the result. 

Part of this problem can only be solved by proper user education, of course. Another 

part can be solved if the optimizer does its job properly. However, yet another part is 

due to designers allowing redundancies in the logical schema and/or letting users 

access the physical schema directly, and that part of the problem can only be solved 

by proper design practice. 

In sum, we believe that many of the design difficulties allegedly arising from decision 

support requirements can be addressed by following a disciplined approach. Indeed, many 

of those difficulties are caused by not following such an approach (though it is only fair to 

add that they are often aggravated by problems with SQL). 

22.4 DATA PREPARATION 

Many of the issues surrounding decision support concern the tasks of obtaining and pre¬ 

paring the data in the first place. The data must be extracted (from various sources), 

cleansed, transformed and consolidated, loaded into the decision support database, and 

then periodically refreshed. Each of these operations involves its own special consider¬ 

ations.6 We examine each in turn, then wrap up the section with a brief discussion of oper¬ 

ational data stores. 

Extract 

Extract is the process of capturing data from operational databases and other sources. 

Many tools are available to help in this task, including system-provided utilities, custom 

extract programs, and commercial (general-purpose) extract products. The extract pro¬ 

cess tends to be I/O-intensive and thus can interfere with mission-critical operations; for 

this reason, it is often performed in parallel (i.e., as a set of parallel subprocesses) and at 

a physical level. Such “physical extracts” can cause problems for subsequent processing, 

however, because they can lose information—especially relationship information—that 

is represented in some physical manner (e.g., by pointers or physical contiguity). For this 

reason, extract programs sometimes provide a means of preserving such information by 

introducing sequential record numbers and replacing pointers by what are in effect for¬ 

eign keys. 

6 We remark in passing that these operations could often benefit from the set-level capabilities of rela¬ 
tional systems, though in practice they rarely do. 
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Cleansing 

Few data sources control data quality adequately. As a result, data often requires cleans¬ 

ing (which is usually done in batch) before it can be entered into the decision support 

database. Typical cleansing operations include filling in missing values, correcting typo¬ 

graphical and other data entry errors, establishing standard abbreviations and formats, 

replacing synonyms by standard identifiers, and so on. Data that is known to be in error 

and cannot be cleansed is rejected. Note: Information obtained during the cleansing pro¬ 

cess can sometimes be used to identify the cause of errors at the source and hence to 

improve data quality over time. 

Transformation and Consolidation 

Even after it has been cleansed, the data will probably still not be in the form the decision 

support system requires, and so will need to be transformed appropriately. Usually the 

required form will be a set of files, one for each table identified in the physical schema; as 

a result, transforming the data might involve splitting and/or combining source records 

along the lines discussed in Chapter 1 (Section 1.5). For performance reasons, transforma¬ 

tion operations are often performed in parallel. They can be both I/O- and CPU-intensive. 

Note: Data errors that were not corrected during cleansing are sometimes found during 

the transformation process. As before, any such incorrect data is generally rejected. Also 

as before, information obtained as part of this process can sometimes be used to improve 

the quality of the data source. 

Transformation is particularly important when several data sources need to be 

merged, a process called consolidation. In such a case, any implicit relationships among 

data from distinct sources need to be made explicit (by introducing explicit data values). 

In addition, dates and times associated with the business meaning of the data need to be 

maintained and correlated among sources, a process called “time synchronization” [sic/]. 

We remark in passing that time synchronization can be a difficult problem. For exam¬ 

ple, suppose we want to find average customer revenue per salesperson per quarter. Sup¬ 

pose customer vs. revenue data is maintained by fiscal quarter in an accounting database, 

while salesperson vs. customer data is maintained by calendar quarter in a sales database. 

Clearly, we need to merge data from the two databases. Consolidating the customer data is 

easy—it simply involves matching customer IDs. However, the time synchronization 

issue is much more difficult; we can find customer revenues per fiscal quarter (from the 

accounting database), but we cannot tell which salespersons were responsible for which 

customers at that time, and we cannot find customer revenues per calendar quarter at all. 

Load 

DBMS vendors have placed considerable importance on the efficiency of load operations. 

For present purposes, we consider “load operations” to include (a) moving the trans¬ 

formed and consolidated data into the decision support database, (b) checking it for con¬ 

sistency (i.e., integrity checking), and (c) building any necessary indexes. We comment 

briefly on each step. 
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a. Moving the data: Modern systems usually provide parallel load utilities. Sometimes 
they will preformat the data to the internal physical format required by the target 

DBMS prior to the actual load. An alternative technique that delivers much of the 

efficiency of preformatted loads is to load the data into work tables that mirror the 

target schema. The necessary integrity checking can be done on those work tables— 

see paragraph h—and set-level INSERTS can then be used to move the data from the 
work tables to the target tables. 

b. Integrity checking: Most integrity checking on the data to be loaded can be done prior 

to the actual load without reference to data already in the database. However, certain 

constraints cannot be checked without examining the existing database; for example, 

a uniqueness constraint will generally have to be checked during the actual load (or in 
batch after the load is completed). 

c. Building indexes: The presence of indexes can slow the load process dramatically, 

since most products update indexes as each row is inserted into the underlying table. 

For this reason, it is sometimes a good idea to drop indexes before the load and then 

to create them again subsequently. However, this approach is not worthwhile when 

the ratio of new data to existing data is small, because the cost of creating an index 

does not scale with the size of the table to be indexed. Also, creating a large index can 

be subject to unrecoverable allocation errors (and the larger the index the more likely 

such errors are to occur). Note: Most DBMS products support parallel index creation 

in an effort to speed the load and index build processes. 

Refresh 

Most decision support databases require periodic refreshing of the data in order to keep it 

reasonably current. Refresh generally involves a partial load, although some decision sup¬ 

port applications require dropping everything in the database and completely reloading it. 

Refresh involves all of the problems associated with load, but might also need to be per¬ 

formed while users are accessing the database (implying further problems). 

Operational Data Stores 

An operational data store (ODS) is a “subject-oriented, integrated, volatile (i.e., updat¬ 

able), current or near current collection of data” [22.20]. In other words, it is a special 
kind of database. The term subject-oriented means the data in question has to do with 

some specific subject area (e.g., customers or products). An operational data store can be 
used (a) as a staging area for the physical reorganization of extracted operational data, (b) 

to provide operational reports, and (c) to support operational decisions. It can also serve 

(d) as a point of consolidation, if operational data comes from several sources. ODSs thus 

serve many purposes. Note: Since they do not accumulate historical data, they do not 
grow very large (usually); on the other hand, they are typically subject to very frequent or 

even continuous refresh from operational data sources. Asynchronous replication from the 
operational data sources to the ODS is sometimes used for this purpose (in this way, the 

data can often be kept current to within a few minutes). Time synchronization problems— 
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see the earlier subsection “Transformation and Consolidation”—can be successfully 

addressed within an ODS, if refresh is frequent enough. 

22.5 DATA WAREHOUSES AND DATA MARTS 

Operational systems usually have strict performance requirements, predictable workloads, 

small units of work, and high utilization. By contrast, decision support systems typically 

have varying performance requirements, unpredictable workloads, large units of work, 

and erratic utilization. These differences can make it very difficult to combine operational 

and decision support processing within a single system—conflicts arise over capacity 

planning, resource management, and system performance tuning, among other things. For 

such reasons, operational system administrators are usually reluctant to allow decision 

support activities on their systems; hence the familiar dual-system approach. 

Note: We remark as an aside that matters were not always thus; early decision support 

systems were indeed run on operational systems, but at low priority or during the so- 

called batch window. Given sufficient computing resources, there are several advantages 

to this arrangement, perhaps the most obvious of which is that it avoids all of the possibly 

expensive data copying, reformatting, and transfer (etc.) operations required by the dual¬ 

system approach. In fact, the value of integrating operational and decision support activi¬ 

ties is becoming increasingly recognized (see reference [21.9]). Further details of such 

integration are beyond the scope of this chapter, however. 

The previous paragraph notwithstanding, the fact remains that, at least at the time of 

writing, decision support data usually needs to be collected from a variety of operational 

systems (often disparate systems) and kept in a data store of its own on a separate plat¬ 

form. That separate data store is a data warehouse. 

Data Warehouses 

Like an operational data store (and like a data mart—see the next subsection), a data 

warehouse is a special kind of database. The term seems to have originated in the late 

1980s [22.15, 22.18], though the concept is somewhat older. Reference [22.19] defines a 

data warehouse as “a subject-oriented, integrated, nonvolatile, time-variant data store in 

support of management’s decisions” (where the term nonvolatile means that, once 
inserted, data cannot be changed, though it might be deleted). Data warehouses arose for 

two reasons: first, the need to provide a single, clean, consistent source of data for deci¬ 

sion support purposes; second, the need to do so without impacting operational systems. 

By definition, data warehouse workloads are decision support workloads and hence 

query-intensive (with occasional intensive batch insert activities); also, data warehouses 

themselves tend to be quite large (often many terabytes, and growing by as much as 50 

percent a year or even more). As a result, performance tuning is hard, though not impossi¬ 

ble. Scalability can be a problem, though. Contributors to that problem include (a) data¬ 

base design errors (discussed in the final subsection of Section 22.3); (b) inefficient use of 
relational operations (mentioned briefly in Section 22.2); (c) weaknesses in the DBMS 
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The last two approaches both suffer from possible semantic mismatch problems. 

Independent data marts are particularly susceptible to such problems, since there is no 

obvious way to check for semantic mismatches if databases are designed independently. 

Consolidation of data marts into a data warehouse generally fails unless a single logical 

schema for the data warehouse is constructed first and the schemas for the individual data 

marts then derived from that warehouse schema. (Of course, the warehouse schema can 

evolve—assuming good design practice is followed—to include the subject matter of each 
new data mart as it is needed.) 

An important decision to be made in the design of any decision support database is 

the database granularity. The term granularity here refers to the lowest level of data 

aggregation that will be kept in the database. Now, most decision support applications 

require access to detail data sooner or later, so for the data warehouse the decision is easy. 

For a data mart, it can be more difficult. Extracting large amounts of detail data from the 

data warehouse and storing it in the data mart can be very inefficient if that level of detail 

is not needed very often. On the other hand, it is sometimes hard to state definitively just 

what the lowest level of aggregation needed actually is. In such cases, detail data can be 

accessed directly from the data warehouse if and when needed, with data that is somewhat 

aggregated being maintained in the data mart. At the same time, full aggregation of the 

data is generally not done, because the very many ways in which the data can be aggre¬ 

gated will generate very large amounts of summary data. This point is discussed in more 

detail in Section 22.6. 

One further point: Because data mart users often employ certain analytical tools, the 

physical design is often dictated, in part, by the specific tools to be used (see the discus¬ 

sion of “ROLAP vs. MOLAP” in Section 22.6). This unfortunate circumstance can lead to 

“dimensional schemas” (discussed next), which do not abide by good relational design 
practice. 

Dimensional Schemas 

Suppose we wish to collect a history of business transactions for analysis purposes. As 
noted in Section 22.1, early decision support systems would typically keep that history as 

a simple file, which would then be accessed via sequential scan. As the data volume 

increases, however, it becomes more and more desirable to support direct access lookup to 

the file from a number of different perspectives. For example, it might be useful to be able 

to find all business transactions involving a particular product, or all occurring within a 
particular time interval, or all pertaining to a particular customer. 

One method of organization that supported this type of access was called a “multi¬ 

catalog” database.7 Continuing with our example, such a database would consist of a large 

central data file containing the business transaction data, together with three individual 

“catalog” files for products, time intervals, and customers, respectively. Such catalog files 

resemble indexes in that they contain pointers to records in the data file, but (a) entries can 

be placed in them explicitly by the user (“catalog maintenance”), and (b) they can contain 

Nothing to do with database catalogs in the modern sense of the term. 



Chapter 22 / Decision Support 707 

supplemental information (e.g., customer address) that can then be removed from the data 
file. Note that the catalog files are usually small compared to the data file. 

This organization is more efficient in terms of both space and I/O than the original 

design (involving just a single data file). Note in particular that the product, time interval, 
and customer information in the central data file now reduces to just product, time inter¬ 
val, and customer identifiers. 

When this approach is mimicked in a relational database, the catalog files and data 

file become tables (images of the corresponding files); the pointers in the catalog files 

become keys in the catalog-file image tables; and the identifiers in the data file become 

foreign keys in the data-file image table. Typically, those various keys are all indexed. In 

such an arrangement, the data-file image is called a fact table, and the catalog-file images 

are called dimension tables. The overall structure is referred to as a dimensional schema 
or—owing to the way it looks when drawn as an entity/relationship diagram, with the fact 

table being surrounded by and connected by “spokes” or “rays” to the dimension tables— 

a star schema. Note: The reason for the “dimensional” terminology is explained in Sec¬ 

tion 22.6. 

By way of illustration, let us modify the suppliers-and-parts database once again, this 

time to show for each shipment the particular time interval in which that shipment 

occurred. We identify time intervals by a time interval identifier (TI#), and we introduce 
another table TI to relate those identifiers to the corresponding time intervals per se. Then 

the revised shipments table SP and the new time intervals table TI might look as shown in 

Fig. 22.3.8 In star schema terminology, table SP is the fact table and table TI is a dimen¬ 

sion table (so too are the suppliers table S and the parts table P—see Fig. 22.4). Note: We 

remind you once again that the general question of handling time interval data will be dis¬ 

cussed in detail in Chapter 23. 

TI# FROM TO 

Til ta tb 
TI2 tc td 

TI3 te tf 
TI4 tg th 
TI5 ti tj 

Fig. 22.3 Sample fact table (SP) and dimension table (TI) 

8 The FROM and TO columns in table TI contain data of some timestamp type. For simplicity, we do not 
show actual timestamp values in the figure, but instead represent them symbolically. 
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Fig. 22.4 Star schema for suppliers-and-parts (with time intervals) 

Querying a star schema database typically involves using the dimension tables to find 

all foreign key combinations of interest, and then using those combinations to access the 

fact table. Assuming the dimension table accesses and subsequent fact table access are all 

bundled up into a single query, the best way to implement that query is usually by means 

of what is called a star join. “Star join” is a specific join implementation strategy; it dif¬ 

fers from the usual strategies in that it deliberately begins by computing a Cartesian prod¬ 

uct—namely, the Cartesian product of the dimension tables. Now, we saw in Chapter 18 

that query optimizers usually try to avoid computing Cartesian products; in the case at 

hand, however, forming the product of the much smaller dimension tables first and then 

using the result to perform index-based lookups on the fact table is almost always more 

efficient than any other strategy. Many commercial optimizers have been extended to sup¬ 

port star joins. 
Now, at this point you might be wondering what the difference is between a star 

schema and what we would regard as a proper relational design. In fact, a simple star 

schema like the one in Fig. 22.4 can look very similar (even identical) to a good relational 

design. Unfortunately, however, there are several problems with the star schema approach 

in general. Here are some of them: 

1. First of all, it is ad hoc—it is based on intuition rather than principle. This lack of dis¬ 

cipline makes it difficult to change the schema in a proper fashion when (for exam¬ 

ple) new types of data are added to the database or constraints change. In fact, star 

schemas are often constructed by simply editing a previous design, and that previous 

design in turn is often constructed by trial and error. 

2. Star schemas are really physical, not logical, though they are usually talked about as 

if they were logical. The problem is that there is really no concept of logical design, 

as distinct from physical design, in the star schema approach. 

3. The star schema approach does not always result in a legitimate physical design (i.e., 

one that preserves all of the information in a relationally correct logical design). This 
shortcoming becomes more apparent the more complex the schema becomes. 

4. Because there is little discipline, designers often include several different types of 

facts in the fact table. As a consequence, the rows and columns of the fact table typi¬ 

cally do not have a uniform interpretation. What is more, certain columns then typi- 
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cally apply only to certain types of facts, implying that the columns in question must 

permit nulls. As more and more types of facts are included, the table becomes more 

and more difficult to maintain and understand, and access becomes less and less effi¬ 

cient. For example, we might decide to modify the shipments table to track part pur¬ 
chases as well as part shipments. We will then need some kind of “flag” column to 

show which rows correspond to purchases and which to shipments. By contrast, a 

proper design would create a distinct fact table for each distinct type of fact. 

5. Again because of the lack of discipline, the dimension tables too can become nonuni¬ 

form. This error typically occurs when the fact table is used to maintain data pertain¬ 
ing to differing levels of aggregation. For example, we might mistakenly add rows to 

the shipments table that show the total part quantities for each day, each month, each 

quarter, each year, and even the grand total to date. Notice first that this change 

causes the time interval identifier (TI#) and quantity (QTY) columns in the table to 

have different meanings in different rows. Suppose now that the FROM and TO col¬ 

umns in the dimension table TI are each replaced by a combination of YEAR, 

MONTH, DAY, and other columns. Then those YEAR, MONTH, DAY, and other col¬ 

umns must now all permit nulls. Also, a flag column will probably be needed too, in 
order to indicate the type of the applicable time interval. 

6. The dimension tables are often less than fully normalized.9 The desire to avoid joins 

often leads designers to bundle distinct information together in those tables that 

would better be kept separate. In the extreme case, columns that simply happen to be 

accessed together are kept together in the same dimension table. It should be clear 

that following such an extreme, and nonrelational, “discipline” will almost certainly 

lead to uncontrolled—and possibly uncontrollable—redundancy. 

We remark finally that a variant of the star schema is the snowflake schema, which 

normalizes the dimension tables. Again, the name is derived from the way the schema 

looks when drawn as an entity/relationship diagram. The terms constellation schema and 

blizzard (or snowstorm) schema have also been heard, with the obvious (?) meanings. 

22.6 ONLINE ANALYTICAL PROCESSING 

The term OLAP (“online analytical processing”) was coined in a white paper written for 

Arbor Software Corp. in 1993 [22.11], though, as with the term data warehouse, the con¬ 

cept is much older. It can be defined as “the interactive process of creating, managing, 

analyzing, and reporting on data”—and it is usual to add that the data in question is per¬ 

ceived and manipulated as though it were stored in a “multi-dimensional array.” However, 
we choose to explain the ideas in terms of conventional SQL-style tables first, before get¬ 

ting into the issue of multi-dimensional representation per se. 

9 In this connection, consider this advice from a book on data warehouses [22.24]: “[Resist] normaliza¬ 
tion ... Efforts to normalize any of the tables in a dimensional database solely in order to save disk space 
[jic/] are a waste of time . . . The dimension tables must not be normalized . . . Normalized dimension 
tables destroy the ability to browse.” 
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The first point is that analytical processing invariably requires some kind of data 

aggregation, usually in many different ways, or in other words according to many different 

groupings. In fact, it is precisely one of the problems of analytical processing that the num¬ 

ber of possible groupings quickly becomes very large indeed, and yet users need to con¬ 

sider all of them (or most of them). Now, the SQL standard does support such aggregation, 

but any given SQL query produces just one table as its result, and—at least prior to 

SQL: 1999—all rows in that result table are of the same form and have the same kind of 

interpretation.10 Thus, to obtain n distinct groupings requires n distinct queries and pro¬ 

duces n distinct result tables. For example, consider the following queries on the usual 

suppliers-and-parts database: 

1. Get the total shipment quantity. 

2. Get total shipment quantities by supplier. 

3. Get total shipment quantities by part. 

4. Get total shipment quantities by supplier and part. 

(Of course, the “total” quantity for a given supplier and given part is just the actual quantity 

for that supplier and part. The example would be more realistic if we used the suppliers- 

parts-projects database instead. However, we stay with the simpler database here.) 

Suppose now that there are just two parts, PI and P2, and the shipments table looks 

like this: 

s# P# QTY 

SI PI 300 
SI P2 200 
S2 PI 300 
S2 P2 400 
S3 P2 200 
S4 P2 200 

Here then are SQL formulations of the four queries and the corresponding results. 

Note: SQL: 1999 allows—as SQL: 1992 did not—(a) GROUP BY operands to be enclosed 
in parentheses and (b) a GROUP BY with no operands at all (this latter is equivalent to 

omitting the GROUP BY clause entirely). 

1. SELECT SUM(QTY) AS TOTQTY 
FROM SP 
GROUP BY ( ) ; 

2. SELECT S#, 
SUM(QTY) AS TOTQTY 

FROM SP 
GROUP BY (S#) ; 

TOTQTY 

1600 

10 Unless that result table includes any nulls (see Chapter 19, Section 19.3, subsection "Predicates 
Again"). In fact, the SQL: 1999 constructs to be described in this section can be characterized as “taking 
advantage of’ this highly deprecated feature of SQL (?); in effect, they capitalize on the fact that distinct 
appearances of null can have distinct meanings, and thereby allow many distinct predicates to be bundled 
up into a single table (as we will see). 
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3. SELECT P#, 

SUM(QTY) AS TOTQTY 
FROM SP 
GROUP BY (P#) ; 

4. SELECT S#, P#, 

SUM(QTY) AS TOTQTY 
FROM SP 
GROUP BY (S#,P#) ; 

P# TOTQTY 

PI 
P2 

600 
1000 

S# P# TOTQTY 

SI PI 300 
SI P2 200 
S2 PI 300 
S2 P2 400 
S3 P2 200 
S4 P2 200 

The drawbacks to this approach are obvious: Formulating so many similar but dis¬ 

tinct queries is tedious for the user, and executing all of those queries (in particular, pass¬ 

ing over the same data over and over again) is likely to be quite expensive in execution 

time. It thus seems worthwhile to try to find a way of requesting several levels of aggrega¬ 

tion in a single query, thereby (a) making life easier for the user and (b) offering the 

implementation the opportunity to compute all of those aggregations more efficiently (i.e., 

in a single pass). Such considerations are the motivation behind the GROUPING SETS, 

ROLLUP, and CUBE options on the GROUP BY clause. Note: Such options have been 

supported in commercial products for several years. They were added to the SQL standard 

in 1999. 

The GROUPING SETS option allows the user to specify exactly which particular 

groupings are required. For example, the following SQL statement represents a combina¬ 
tion of Queries 2 and 3: 

SELECT S#, P#, SUM ( QTY ) AS TOTQTY 
FROM SP 

GROUP BY GROUPING SETS ( ( S# ), ( P# ) ) ; 

The GROUP BY clause here is effectively asking the system to execute two queries, one in 

which the grouping is by S# and one in which it is by P#. Note: The inner parentheses are 

not actually required in this example (because each of the “grouping sets” involves just one 
column), but we show them for clarity. 

Now, the idea of bundling several distinct queries into a single statement in such a 

manner might be unobjectionable in itself (though we have to say that we would prefer to 

see this very general issue attacked in a more general, systematic, and orthogonal way). 
Unfortunately, however, SQL goes on to bundle the results of those logically distinct que¬ 

ries into a single result table! In the example, that result table looks something like this: 
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Now, this result might perhaps be thought of as a table (an SQL-style table, at any 

rate), but it is hardly a relation. Note that the supplier rows (those with nulls in the P# 

position) and the part rows (those with nulls in the S# position) have very different inter¬ 

pretations, and the meaning of TOTQTY values varies according to whether they appear 

in a supplier row or a part row. So what is the predicate for this “relation”? (In fact, the 

result table in this example can be regarded as an “outer union”—an extremely bizarre 

form of outer union, too—of the results from Queries 2 and 3. It should be clear from 

Chapter 19 that, even in its least bizarre form, “outer union” is not a respectable relational 

operation.) 

We remark too that the nulls in the result table constitute yet another kind of “missing 

information.” They certainly do not mean either “value unknown” or “value not applica¬ 

ble,” but exactly what they do mean is very unclear. Note: SQL does at least provide a way 

of distinguishing those new nulls from other kinds, but the details are tedious and effec¬ 

tively force the user into a kind of row-at-a-time thinking. You can get some idea of what is 

involved from the following example (which indicates what the GROUPING SETS exam¬ 

ple shown earlier might actually have to look like in practice): 

SELECT CASE GROUPING ( S# ) 
WHEN 1 THEN '??' 
ELSE S# 

AS S#, 
CASE GROUPING ( P# ) 

WHEN 1 THEN 'l!' 
ELSE P# 

AS P#, 
SUM ( QTY ) AS TOTQTY 

FROM SP 
GROUP BY GROUPING SETS ( ( S# ), ( P# ) ) ; 

With this revised formulation, the nulls in column S# of the result will be replaced by 

a pair of question marks and the nulls in column P# will be replaced by a pair of exclama¬ 

tion points, thus: 

Back to GROUP BY specifically. The other two GROUP BY options, ROLLUP and 

CUBE, are both shorthands for certain GROUPING SETS combinations. First, ROLLUP. 

Consider the following query: 

SELECT S#, P#, SUM ( QTY ) AS TOTQTY 
FROM SP 
GROUP BY ROLLUP ( S#, P# ) ; 
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The GROUP BY clause here is logically equivalent to the following one: 

GROUP BY GROUPING SETS ( ( S#, P# ), ( S# ), ( ) ) 

In other words, the query is a bundled SQL formulation of Queries 4, 2, and 1. The result 
looks like this: 

s# P# TOTQTY 

SI PI 300 
SI P2 200 
S2 PI 300 
S2 P2 400 
S3 P2 200 
S4 P2 200 
SI null 500 
S2 null 700 
S3 null 200 
S4 null 200 
null null 1600 

The term ROLLUP derives from the fact that (in the example) the quantities have been 

“rolled up” for each supplier (i.e., rolled up “along the supplier dimension”—see the sub¬ 

section “Multi-dimensional Databases,” later). In general, GROUP BY ROLLUP {A, B, 

Z)—loosely, “roll up along the A dimension”—means “group by all of the following com¬ 
binations”: 

( A, B, ..., Z ) 
( A, B, ... ) 

( A, B ) 
( A ) 

( ) 

Note that there are many distinct “rollups along the A dimension,” in general (it depends 

what other columns are mentioned in the ROLLUP commalist). Note too that GROUP BY 

ROLLUP (A, B ) and GROUP BY ROLLUP ( B, A ) have different meanings—that is, 

GROUP BY ROLLUP (A, B ) is not symmetric in A and B. 

Now we turn to CUBE. Consider the following query: 

SELECT S#, P#, SUM ( QTY ) AS TOTQTY 
FROM SP 
GROUP BY CUBE ( S#, P# ) ; 

The GROUP BY clause here is logically equivalent to the following one: 

GROUP BY GROUPING SETS ( ( S#, P# ), ( S# ), ( P# ), ( ) ) 

In other words, the query is a bundled SQL formulation of all four of our original Queries 

4, 3, 2, and 1. The result looks like this: 
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s# P# TOTQTY 

SI PI 300 
SI P2 200 
S2 PI 300 
S2 P2 400 
S3 P2 200 
S4 P2 200 
SI null 500 
S2 null 700 
S3 null 200 
S4 null 200 
null PI 600 
null P2 1000 
null null 1600 

The unhelpful term CUBE derives from the fact that in OLAP (or at least multi¬ 

dimensional) terminology, data values can be perceived as being stored in the cells of a 

multi-dimensional array or hypercube. In the case at hand, (a) the data values are quanti¬ 

ties; (b) the “cube” has just two dimensions, a suppliers dimension and a parts dimension 

(and so that “cube” is rather flat!); and of course (c) those two dimensions are of unequal 

sizes (so the “cube” is not even a square but rather a nonsquare rectangle). Anyway, 

GROUP BY CUBE ( A. B.Z ) means “group by all possible subsets of the set { A, 

B.Z 

A given GROUP BY clause can include any mixture of GROUPING SETS, 

ROLLUP, and CUBE specifications. 

Cross Tabulations 

OLAP products often display query results not as SQL-style tables but as cross tabula¬ 

tions (“crosstabs” for short). Consider Query 4 once again (“Get total shipment quantities 

by supplier and part”). Here is a crosstab representation of the result of that query. Inci¬ 

dentally, note that we show the quantities of part PI for suppliers S3 and S4 (correctly) as 

zero; SQL, by contrast, would say those quantities should be null (see Chapter 19). In 
fact, the table that SQL produces in response to Query 4 contains no rows for (S3,P1) or 

(S4,P1)!—as a consequence of which, producing the crosstab from that table is not 
entirely trivial. 

PI P2 

SI 300 200 
S2 300 400 
S3 0 200 
S4 0 200 

This crosstab is arguably a more compact and readable way of representing the Query 

4 result. What is more, it does look a little like a relational table. However, observe that 

the number of columns in that “table" depends on the actual data; to be specific, there is 

one column for each kind of part (and so the structure of the crosstab and the meaning of 

the rows both depend on the actual data). Thus, a crosstab is not a relation but a report: to 

be more specific, a report that is formatted as a simple array. (A relation has a predicate 
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that can be deduced from the predicates for the relations from which it is derived; by con¬ 

trast, the ‘‘predicate” for a crosstab—if such a thing can even be said to exist, in general— 

cannot be derived from the predicates for the relations from which it is derived, since as 
we have just seen it depends on actual data values.) 

Crosstabs like the one just shown are said to have two dimensions, in this case suppli¬ 

ers and parts. Dimensions are treated as though they were independent variables; the 

intersection “cells” then contain values of the corresponding dependent variable(s). See 
the subsection “Multi-dimensional Databases” for further explanation. 

Here is another crosstab example, representing the result from the CUBE example 
shown earlier; 

PI P2 Total 

SI 300 200 500 
S2 300 400 700 
S3 0 200 200 
S4 0 200 200 

Total 600 1000 1600 

The rightmost column contains row totals (i.e., totals for the indicated supplier across 

all parts), and the bottom row contains column totals (i.e., totals for the indicated part 
across all suppliers). The bottom right cell contains the grand total, which is the row total 

of all column totals and the column total of all row totals. 

Multi-dimensional Databases 

So far, we have been assuming that our OLAP data is stored in a conventional SQL data¬ 

base (although we have touched on the terminology and concepts of “multi-dimensional” 

databases a couple of times). In fact, we have tacitly been describing what is sometimes 

called ROLAP (“relational OLAP”). However, many people believe that MOLAP (“multi¬ 

dimensional OLAP”) is a better way to go. In this subsection we take a closer look at 
MOLAP. 

MOLAP involves a multi-dimensional database, which is a database in which the 

data is conceptually stored in the cells of a multi-dimensional array. (Note: We say “con¬ 
ceptually stored,” but in fact the physical organization in MOLAP tends to be very close 

to the logical organization.) The supporting DBMS is called a multi-dimensional DBMS. 

As a simple example, the data might be represented as an array of three dimensions, cor¬ 

responding to products, customers, and time intervals, respectively; each individual cell 

value might then represent the total quantity of the indicated product sold to the indicated 

customer in the indicated time interval. As already noted, the crosstabs of the previous 

subsection can also be regarded as such arrays. 
Now, in a well-understood body of data, all relationships would be known, and the 

“variables” involved (not variables in the usual programming language sense) could then 

be classified, loosely, as either dependent or independent. In terms of the foregoing 
example, for instance, product, customer, and time interval would be the independent vari¬ 

ables and quantity the sole dependent variable. More generally, independent variables are 
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variables whose values together determine the values of dependent variables (much as, in 

relational terms, a candidate key is a set of columns whose values determine the values of 

other columns). The independent variables thus form the dimensions of the array by 

which the data is organized and form an addressing scheme for that array,11 and depen¬ 

dent variable values—which constitute the actual data—can then be stored in the cells of 

that array. Note: The distinction between values of independent or “dimensional” vari¬ 

ables and values of dependent or “nondimensional” variables is sometimes characterized 

as location vs. content. 

Unfortunately, the foregoing characterization of multi-dimensional databases is 

somewhat too simplistic, because most bodies of data are not well understood. Indeed, it 

is for this very reason that we want to analyze the data in the first place: to obtain a better 

understanding. Often the lack of understanding is severe enough that we do not know 

ahead of time which variables are independent and which dependent—independent vari¬ 

ables are often chosen based on current belief (i.e., hypothesis) and the resulting array 

then tested to see how well it works (see Section 22.7). Such an approach is clearly going 

to involve a lot of iteration and trial and error. For such reasons, the system will typically 

permit dimensional and nondimensional variables to be swapped, an operation known as 

pivoting. Other operations supported will include array transpose and dimensional reor¬ 

dering. There will also be a way to add dimensions. 

By the way, it should be clear from the foregoing description that array cells will 

often be empty (and the more dimensions there are, the truer this statement will be). In 

other words, arrays will often be sparse. For example, suppose product p was not sold to 

customer c at all in time interval t; then cell [c,p,t] will be empty (or, at best, contain a 

zero). Multi-dimensional DBMSs support various techniques for storing sparse arrays in 

some more efficient (compressed) form.12 More to the point, those empty cells correspond 

to “missing information,” and systems therefore need to provide some computational sup¬ 

port for them—and they do so, typically, in a manner similar to SQL (unfortunately). Note 

that the fact that a given cell is empty might mean the information is unknown, or has not 

been captured, or is not applicable, or a whole host of other things (see Chapter 19 once 
again). 

The independent variables are often related in hierarchies, which determine ways in 

which dependent data can be aggregated. For example, there is a temporal hierarchy relat¬ 

ing seconds to minutes to hours to days to weeks to months to years. As another example, 

there might be a hierarchy relating parts to assembly kits to components to boards to prod¬ 

ucts. Often the same data can be aggregated in many different ways (i.e., the same inde¬ 

pendent variable can belong to many different hierarchies). The system will provide oper¬ 

ators to “drill up” and “drill down” in such hierarchies; drill up means going from a lower 

level of aggregation to a higher, drill down means the opposite. Numerous other opera- 

11 Array cells are thus addressed symbolically instead of by the numeric subscripts more conventionally 
associated with arrays. 

12 Observe the contrast here with relational systems. In a proper relational analog of the example, we 
would not have a (c,p,t) row with an empty quantity “cell"—we would simply not have a (c.p.t) row. The 
concept of “sparse arrays” in the multi-dimensional sense (or “sparse tables,” rather) thus does not arise, 
and there is no need for clever compression techniques to deal with them. 
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tions will also be provided for dealing with such hierarchies (e.g., an operation to rear¬ 
range the hierarchic levels). 

Note: There is a subtle difference between "drill up" and “roll up,” as follows: "Roll 

up" is the operation of creating the desired groupings and aggregations; “drill up” is the 

operation of accessing those aggregations. As for “drill down,” an example might be: 

Given the total shipment quantity, get the total quantities for each individual supplier. Of 

course, the more detailed data must be available (or computable) in order for the system to 
be able to respond to such a request. 

Multi-dimensional products generally also provide a variety of statistical and other 

mathematical functions to help in formulating and testing hypotheses (i.e., hypothesized 

relationships). Visualization and reporting tools are also provided to help in these tasks. 

Unfortunately, however, there is as yet no standard multi-dimensional query language, 

although research is under way to develop a calculus on which such a standard might be 

based [22.31], There is also nothing analogous to normalization theory that could serve as 

a scientific basis for the design of multi-dimensional databases. 

We close this section by noting that some products combine the ROLAP and MOLAP 

approaches: HOLAP (“hybrid OLAP”). There is considerable controversy over which of 

the three approaches is “best,” and little can be said here to help resolve that contro- 
1 -3 

versy. Generally speaking, however, MOLAP products provide faster computation but 

support smaller amounts of data than ROLAP products (becoming less efficient as the 

amount of data increases), while ROLAP products provide scalability, concurrency, and 

management features that are more mature than those of MOLAP products. In addition, 
the SQL standard has recently been extended to include numerous statistical and analyti¬ 

cal functions (see Section 22.8), implying that ROLAP products can now provide consid¬ 

erably extended functionality as well. 

22.7 DATA MINING 

Data mining can be described as “exploratory data analysis.” The aim is to look for 

interesting patterns in the data-—patterns that can be used to set business strategy or iden¬ 
tify unusual behavior (for example, a sudden increase in credit card activity could mean a 

card has been stolen). Data mining tools apply statistical techniques to large quantities of 

stored data in order to look for such patterns. Note: The word large needs to be empha¬ 

sized here. Data mining databases are often extremely large, and it is important that algo¬ 

rithms be scalable. 

13 There is one thing that does need to be said, however, and that is the following. It is often claimed that 
“tables are flat” (i.e., two-dimensional) while “real data is multi-dimensional,” and hence that relations 
are inadequate as a basis for OLAP. But to argue thus is to confuse tables and relations! As we saw in 
Chapter 6, tables are only pictures of relations, not relations as such. And while it is true that those pic¬ 
tures are two-dimensional, relations are not; rather, they are n-dimensional, where n is the degree. To be 
more precise, each tuple in a relation with n attributes represents a point in n-dimensional space, and the 
relation as a whole represents a set of such points. 
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Consider the—not very large!—SALES table shown in Fig. 22.5, which gives infor¬ 

mation regarding a certain retail business’s sales transactions.14 The business would like to 

perform market basket analysis on this data (where the term market basket refers to the set 

of products purchased in a single transaction), thereby discovering, for example, that a cus¬ 

tomer who buys shoes is likely to buy socks as well as part of the same transaction. This 

correlation between shoes and socks is an example of an association rule; it can be 

expressed (a little loosely) as follows: 

FORALL tx ( Shoes e tx => Socks e tx ) 

Here “Shoes e tx” is the rule antecedent, “Socks e tx” is the rule consequent, and tx 

ranges over all sales transactions. 

We introduce some terminology. The set of all sales transactions in the example is 

called the population. Any given association rule has a support level and a confidence 

level. The support is the percentage of the population that satisfies the rule; and if the per¬ 

centage of the population in which the antecedent is satisfied is s, then the confidence is 

that percentage of s in which the consequent is also satisfied. (Note that the antecedent and 

consequent can each involve any number of different products, not necessarily just one.) 

By way of example, consider this rule: 

FORALL tx ( Socks e tx =* Tie e tx ) 

Given the sample data of Fig. 22.5, the population is the set of four transactions, the support 

is 50 percent, and the confidence is 66.67 percent. 

More general association rules might be discovered from appropriate aggregations of 

the given data. For example, grouping by customer would enable us to test the validity of 

TX# CUST# TIMESTAMP PRODUCT 

TX1 Cl dl Shoes 
TX1 Cl dl Socks 
TX1 Cl dl Tie 
TX2 C2 d2 Shoes 
TX2 C2 d 2 Socks 
TX2 C2 d 2 Tie 
TX2 C2 d2 Belt 
TX2 C2 d2 Shirt 
TX3 C3 d2 Shoes 
TX3 C3 d2 Tie 
TX4 C2 d 3 Shoes 
TX4 C2 d3 Socks 
TX4 C2 d 3 Belt 

Fig. 22.5 The SALES table 

14 Note that (a) the key is (TX#,PRODUCT); (b) the table satisfies the FDs TX# -> CUST# and TX# -> 
TIMESTAMP and is thus not in BCNF; (c) a version of the table in which column PRODUCT is relation¬ 
valued (and TX# is the key) would be in BCNF and might well be better suited to the kind of exploration 
involved in the case at hand (but it would probably not be suitable for other kinds). 
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22.9 SUMMARY 

We have offered an overview of the use of database technology for the purpose of deci¬ 

sion support. The basic idea is to collect operational data and reduce it to a form that can 

be used to help management understand and modify the behavior of the enterprise. 

First we identified certain aspects of decision support systems that set them apart 

from operational systems. The key point is that the database is primarily (though not 

totally) read-only. Decision support databases tend to be very large and heavily indexed 

and to involve a lot of controlled redundancy (especially in the form of replication and 

precomputed summary tables)', keys tend to involve a temporal component; and queries 

tend to be complex. As a consequence of such considerations, there is an emphasis on 

designing for performance; we understand this requirement, but believe it should not be 

allowed to interfere with good design discipline. The problem is that, in practice, decision 

support systems usually do not distinguish adequately between logical and physical con¬ 

siderations. 

Next, we discussed what is involved in preparing operational data for decision sup¬ 

port. We looked at the tasks of extraction, cleansing, transformation, consolidation, 

load, and refresh. We also briefly mentioned operational data stores, which can be used 

(among other things) as a staging area during the data preparation process. They can also 

be used to provide decision support services on current data. 

We then considered data warehouses and data marts; a data mart can be regarded as 

a specialized data warehouse. We explained the basic idea of star schemas, in which data 

is organized as a large central fact table and several much smaller dimension tables. In 

simple situations a star schema is indistinguishable from a classical normalized schema; 

in practice, however, star schemas depart from classical design principles in a variety of 

ways, always for performance reasons. (The problem, again, is that star schemas are really 

more physical than logical in nature.) We also mentioned the join implementation strategy 

known as star join and a variant of the star schema called the snowflake schema. 

Next we turned our attention to OLAP. We discussed the SQL GROUPING SETS, 

ROLLUP, and CUBE features (all of which are options on the GROUP BY clause and 

provide ways of requesting several distinct aggregations within a single SQL query). We 

noted that SQL—unfortunately, in our opinion—bundles the results of those distinct 

aggregations into a single “table” containing many nulls. We also suggested that, in prac¬ 

tice, OLAP products might convert such “tables” into crosstabs (simple arrays) for dis¬ 

play purposes. Then we took a look at multi-dimensional databases, in which the data is 

stored (conceptually) not in tables but in a multi-dimensional array or hypercube. The 

dimensions of such an array represent independent variables (at least hypothetically), 
and the cells contain values of the corresponding dependent variables. The independent 

variables are usually related in various hierarchies, which determine the ways in which 

the dependent data can sensibly be grouped and aggregated. 

Next, we briefly considered data mining. The basic idea here is that decision support 

data is often not well understood, and we can use the power of the computer to help us 

discover patterns in that data and hence to understand it better. We briefly considered vari- 
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ous kinds of rules—association, classification, and sequence correlation rules—and dis¬ 

cussed the associated notions of support and confidence levels. 

Finally, we very briefly sketched the facilities of the SQL: 1999 OLAP amendment. 

EXERCISES 

22.1 What are some of the major points of difference between decision support and operational 

databases? Why do decision support and operational applications typically use different data stores? 

22.2 Summarize the steps involved in preparing operational data for decision support. 

22.3 Distinguish between controlled and uncontrolled redundancy. Give some examples. Why is 

controlled redundancy important in the context of decision support ? What happens if the redundancy 

is uncontrolled instead? 

22.4 Distinguish between data warehouses and data marts. 

22.5 What do you understand by the term star schema? 

22.6 Star schemas are usually not fully normalized. What is the justification for this state of 

affairs? Explain the methodology by which such schemas are designed. 

22.7 Explain the difference between ROLAP and MOLAP. 

22.8 How many ways could data be summarized if it is characterized by four dimensions, each of 

which belongs to a three-level aggregation hierarchy (e.g., city, county, state)? 

22.9 Using the suppliers-parts-projects database, express the following as SQL queries: 

a. Get the number of shipments and average shipment quantities for suppliers, parts, and projects 

considered pairwise (i.e., for each S#-P# pair, each P#-J# pair, and each J#-S# pair). 

b. Get the maximum and minimum shipment quantities for each project, each project/part combi¬ 

nation, and overall. 

c. Get total shipment quantities rolled up “along the supplier dimension” and “along the part 

dimension” (there is a trap here!). 

d. Get average shipment quantities by supplier, by part, by supplier/part combinations, and overall. 

In each case, show the result SQL would produce given the sample data of Fig. 4.5 (see the inside 

back cover). Also show those results as crosstabs. 

22.10 Near the beginning of Section 22.6, we showed a simple version of table SP containing just 

six rows. Suppose that table additionally included the following row (meaning—perhaps!—that sup¬ 

plier S5 exists but currently supplies no parts): 

S5 null null 

Discuss the implications for all of the various SQL queries shown in Section 22.6. 

22.11 Does the term dimensional mean the same thing in the phrases “dimensional schema” and 

“multi-dimensional database”? Explain your answer. 

22.12 Consider the market basket analysis problem. Sketch an algorithm by which association 

rules having support and confidence levels greater than specified thresholds might be discovered. 

Hint: If some combination of products is “uninteresting” because it occurs in too few sales transac¬ 

tions, the same is true for all supersets of that combination of products. 



722 Part V / Further Topics 

REFERENCES AND BIBLIOGRAPHY 

Note: The “views” mentioned in the titles of references [22.3-22.5], [22.10], [22.12], [22.16], 
[22.25], [22.28], [22.30], and [22.35] are not views but snapshots. Annotation to those references 

talks in terms of snapshots, not views. 

22.1 Brad Adelberg, Hector Garcia-Molina, and Jennifer Widom: “The STRIP Rule System for Effi¬ 

ciently Maintaining Derived Data,” Proc. 1997 ACM SIGMOD Int. Conf. on Management of Data, 

Tucson, Ariz. (May 1997). 

STRIP is an acronym for STanford Real-time Information Processor. It uses “rules” (here mean¬ 

ing what would more usually be called triggers) to update snapshots (here called derived data) 

whenever changes occur to the underlying base data. The problem with such systems in general 

is that if the base data changes very frequently, the computation overhead in executing the rules 

can be excessive. This paper describes the STRIP techniques for reducing that overhead. 

22.2 Pieter Adriaans and Dolf Zantinge: Data Mining. Reading, Mass.: Addison-Wesley (1996). 

Although advertised as an executive-level overview, this book is actually a fairly detailed (and 

good) introduction to the subject. 

22.3 Foto N. Afrati, Chen Li, and Jeffrey D. Ullman: “Generating Efficient Plans for Queries Using 

Views,” Proc. 2001 ACM SIGMOD Int. Conf. on Management of Data, Santa Barbara, Calif. (May 

2001). 

22.4 D. Agrawal, A. El Abbadi, A. Singh, and T. Yurek: “Efficient View Maintenance at Data Ware¬ 

houses,” Proc. 1997 ACM SIGMOD Int. Conf. on Management of Data, Tucson, Ariz. (May 1997). 

As noted in the annotation to reference [22.12], snapshots can be maintained incrementally, 

and such incremental maintenance is desirable for performance reasons. However, incremental 

maintenance can lead to problems if the snapshots are derived from several distinct databases 

that are all being updated at the same time. This paper offers a solution to this problem. 

22.5 Sanjay Agrawal, Surajit Chaudhuri, and Vivek Narasayya: “Automated Selection of Material¬ 

ized Views and Indexes for SQL Databases,” Proc. 26th Int. Conf. on Very Large Data Bases, Cairo, 

Egypt (September 2000). 

22.6 S. Alter: Decision Support Systems: Current Practice and Continuing Challenges. Reading, 

Mass.: Addison-Wesley (1980). 

22.7 J. L. Bennett (ed.): Building Decision Support Systems. Reading, Mass.: Addison-Wesley 

(1981). 

22.8 R. H. Bonczek, C. W. Holsapple, and A. Whinston: Foundations of Decision Support Systems. 

Orlando, Fla.: Academic Press (1981). 

One of the first texts to promote a disciplined approach to decision support systems. The roles 

of modeling (in the general sense of empirical and mathematical modeling) and management 

science are emphasized. 

22.9 Charles J. Bontempo and Cynthia Maro Saracco: Database Management: Principles and Prod¬ 

ucts. Upper Saddle River, N.J.: Prentice Hall (1996). 

22.10 Rada Chirkova. Alon Y. Halevy, and Dan Suciu: “A Formal Perspective on the View Selection 

Problem,” Proc. 27th Int. Conf. on Very Large Data Bases, Rome, Italy (September 2001). 

22.11 E. F. Codd, S. B. Codd, and C. T. Salley: “Providing OLAP (Online Analytical Processing) to 

User-Analysts: An IT Mandate,” available from Arbor Software Corp. (1993). 



Chapter 22 / Decision Support 723 

The source of the term OLAP (though not the concept, as noted in Section 22.6). Note: Near 

the beginning, the paper states categorically that "The need which exists is NOT for yet another 

database technology, but rather for robust . . . analysis tools.” It then goes on to describe, and 

argue for, yet another database technology!—with a new conceptual data representation, new 

operators (for update as well as retrieval), multi-user support (including security and concur¬ 

rency features), new storage structures, and new optimization features: in other words, a new 

data model, and a new DBMS. 

22.12 Latha S. Colby et al.: “Supporting Multiple View Maintenance Policies,” Proc. 1997 ACM 

SIGMOD Int. Conf. on Management of Data, Tucson, Ariz. (May 1997). 

There are three broad approaches to snapshot maintenance: immediate (every update to any 

underlying relvar immediately triggers a corresponding update to the snapshot), deferred (the 

snapshot is refreshed only when it is queried), and periodic (the snapshot is refreshed at speci¬ 

fied intervals—e.g., every day). The purpose of snapshots in general is to improve query per¬ 

formance at the expense of update performance, and the three maintenance policies represent a 

spectrum of trade-offs between the two. This paper investigates issues relating to the support of 

different policies on different snapshots in the same system at the same time. 

22.13 C. J. Date: “We Don't Need Composite Columns,” in C. J. Date, Hugh Darwen, and David 

McGoveran, Relational Database Writings 1994-1997. Reading, Mass.: Addison-Wesley (1998). 

Section 22.3 mentioned the concept of composite columns; this short paper examines that con¬ 

cept in some detail. The title refers to the fact that flawed attempts have been made in the past 

to introduce composite column support without basing it on user-defined type support. If 

proper user-defined type support is provided, composite columns “come out in the wash.” 

22.14 Barry Devlin: Data Warehouse from Architecture to Implementation. Reading, Mass.: 

Addison-Wesley (1997). 

22.15 B. A. Devlin and R T. Murphy: “An Architecture for a Business and Information System,” 

IBM Sys. J. 27, No. 1 (1988). 

The first published article to define and use the term information warehouse. 

22.16 Jonathan Goldstein and Per-Ake Larson: “Optimizing Queries Using Materialized Views: A 

Practical, Scalable Solution,” Proc. 2001 ACM SIGMOD Int. Conf. on Management of Data, Santa 

Barbara, Calif. (May 2001). 

22.17 Jim Gray, Adam Bosworth, Andrew Layman, and Hamid Pirahesh: "Data Cube: A Relational 

Aggregation Operator Generalizing Group-By, Cross-Tab, and Sub-Totals,” Proc. 12th IEEE Int. 

Conf. on Data Engineering, New Orleans, La. (February 1996). 

The paper that first suggested adding options such as CUBE to the SQL GROUP BY clause. 

22.18 W. H. Inmon: Data Architecture: The Information Paradigm. Wellesley, Mass.: QED Infor¬ 

mation Sciences (1988). 

Discusses the genesis of the data warehouse concept and what a data warehouse would look 

like in practice. The term data warehouse first appeared in this book. 

22.19 W. H. Inmon: Building the Data Warehouse. New York, N.Y.: John Wiley & Sons (1992). 

The first book devoted to data warehouses. It defines the term and discusses the key problems 

involved in developing a data warehouse. It is concerned primarily with justifying the concept 

and with operational and physical design issues. 

22.20 W. H. Inmon and R. D. Hackathorn: Using the Data Warehouse. New York, N.Y.: John Wiley 

& Sons (1994). 



724 Part V / Further Topics 

A discussion for users and administrators of the data warehouse. Like other books on the topic, 

it concentrates on physical issues. The operational data store concept is discussed in some 

detail. 

22.21 International Organization for Standardization (ISO): SQL/OLAP, Document ISO/IEC 9075- 

1:1999/Amd. 1:2000(E). 

A tutorial on the material of this document can be found in reference [26.32]. 

22.22 P. G. W. Keen and M. S. Scott Morton: Decision Support Systems: An Organizational Per¬ 

spective. Reading, Mass.: Addison-Wesley (1978). 

This classic text is one of the earliest, if not the earliest, to address decision support explicitly. 

The orientation is behavioral and covers analysis, design, implementation, evaluation, and 

development of decision support systems. 

22.23 Werner Kiessling: “Foundations of Preferences in Database Systems” and “Preference 

SQL—Design, Implementation, Experiences,” Proc. 28th Int. Conf. on Very Large Data Bases, 

Hong Kong (August 2002). 

Preferences allow the user to formulate “fuzzy queries” (e.g., “Find me a good Szechuan res¬ 

taurant, not too expensive, downtown preferred”). 

22.24 Ralph Kimball: The Data Warehouse Toolkit. New York, N.Y.: John Wiley & Sons (1996). 

A how-to book. As the subtitle “Practical Techniques for Building Dimensional Data Ware¬ 

houses” suggests, the emphasis is on pragmatic issues, not theoretical ones. A tacit assumption 

throughout is that there is essentially no difference between the logical and physical levels of 

the system. 

22.25 Yannis Kotidis and Nick Roussopoulos: “A Case for Dynamic View Management,” ACM 

TODS 26, No. 4 (December 2001). 

22.26 M. S. Scott Morton: “Management Decision Systems: Computer-Based Support for Decision 

Making,” Harvard University, Division of Research, Graduate School of Business Administration 

(1971). 

This is the classic article that introduced the concept of management decision systems, bring¬ 

ing decision support clearly into the realm of computer-based systems. A specific “manage¬ 

ment decision system” was built to coordinate production planning for laundry equipment. It 

was then subjected to scientific test, with marketing and production managers as users. 

22.27 K. Parsaye and M. Chignell: Intelligent Database Tools and Applications. New York, N.Y.: 

John Wiley & Sons (1993). 

This book appears to be the first to be devoted to the principles and techniques of data mining 

(though it refers to the subject as “intelligent databases”). 

22.28 Rachel Pottinger and Alon Levy: “A Scalable Algorithm for Answering Queries Using 

Views,” Proc. 26th Int. Conf. on Very Large Data Bases, Cairo, Egypt (September 2000). 

22.29 Dalian Quass and Jennifer Widom: “On-Line Warehouse View Maintenance,” Proc. 1997 

ACM SIGMOD Int. Conf. on Management of Data, Tucson, Ariz. (May 1997). 

Presents an algorithm for snapshot maintenance that allows the maintenance transactions to run 

simultaneously with queries against the snapshots. 

22.30 Kenneth Salem, Kevin Beyer, Bruce Lindsay, and Roberta Cochrane: “How to Roll a Join: 

Asynchronous Incremental View Maintenance,” Proc. 2000 ACM SIGMOD Int. Conf. on Manage¬ 

ment of Data, Dallas, Tex. (May 2000). 



Chapter 22 / Decision Support 725 

22.31 Erik Thomsen: OLAP Solutions: Building Multi-Dimensional Information Systems (2d ed.). 

New York, N.Y.: John Wiley & Sons (2002). 

One of the first books on OLAP and perhaps the most comprehensive. The focus is on under¬ 

standing the concepts and methods of analysis using multi-dimensional systems. A serious 

attempt to inject some discipline into a confused subject. 

22.32 R. Uthurusamy: “From Data Mining to Knowledge Discovery: Current Challenges and 

Future Directions,” in U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy (eds.): 

Advances in Knowledge Discovery and Data Mining. Cambridge, Mass.: AAAI Press/MIT Press 

(1996). 

22.33 Patrick Valduriez: “Join Indices,” ACM TODS 12, No. 2 (June 1987). 

22.34 Markos Zaharioudakis et al“Answering Complex SQL Queries Using Automatic Summary 

Tables,” Proc. 2000 ACM SIGMOD Int. Conf. on Management of Data, Dallas, Tex. (May 2000). 

22.35 Yue Zhuge, Hector Garcia-Molina, Joachim Hammer, and Jennifer Widom: “View Mainte¬ 

nance in a Warehousing Environment,” Proc. 1995 ACM SIGMOD Int. Conf. on Management of 

Data, San Jose, Calif. (May 1995). 

When it is informed of an update to some underlying data, the data warehouse site might need 

to issue a query to the base data site before it can carry out the necessary snapshot mainte¬ 

nance, and the time lag between such a query and the original base data update can lead to 

anomalies. This paper presents an algorithm for dealing with such anomalies. 





— W .U • 'if 

Temporal Databases 

CHAPTER 
' " ' TT”':- 

23.1 Introduction 

23.2 What Is the Problem? 

23.3 Intervals 

23.4 Packing and Unpacking Relations 

23.5 Generalizing the Relational Operators 

23.6 Database Design 

23.7 Integrity Constraints 

23.8 Summary 

Exercises 

References and Bibliography 

23.1 INTRODUCTION 

A temporal database can be defined, loosely, as a database that contains historical data1 

as well as or instead of current data (data warehouses provide an obvious example—see 
Chapter 22). Conventional or nontemporal databases contain current data only; their cur¬ 

rency is maintained by updating them as soon as the propositions they represent become 

untrue. Temporal databases, by contrast, are updated only rarely—possibly not at all, 

apart from the INSERTS that are needed to populate them in the first place. For example, 

consider the suppliers-and-parts database. Given our usual sample values, that database 
shows among other things that the status (i.e., the status “right now”) for supplier SI is 20. 

But a temporal version of that database might show not only that supplier S1 ’s status is 

currently 20 but also that it has been 20 ever since July 1st last year, and perhaps that it 

was 15 from April 5th to June 30th last year, and so on. 

1 Temporal databases can contain data regarding the future as well as the past, and the term historical 

must be understood as including this possibility. 
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useful, however, we need to pin their meanings down very precisely (much more precisely 
than we do in normal discourse!). To be specific: 

1. We take since to mean ever since and not immediately before the specified point in 

time. Thus, when we say that supplier SI has been under contract since July 1, 2003, 

we mean that (a) supplier SI has been under contract ever since July 1, 2003, up to 

and including the date today—whatever that date might happen to be—and further¬ 
more that (b) supplier SI was not under contract on June 30, 2003. 

2. We take during to mean throughout and not immediately before or immediately 

after the specified interval. Thus, when we say that supplier SI was under contract 

during the interval from May 1, 2002, to April 30, 2003, we mean that (a) supplier SI 

was under contract throughout the interval from May 1, 2002, to April 30, 2003, 

inclusive,-’ and furthermore that (b) supplier SI was not under contract on April 30, 
2002, or May 1,2003. 

We used the boldface forms since and during in the propositions and predicates shown 

earlier in order to emphasize the fact that we were using the terms in the foregoing 

extremely precise senses. However, we will drop the boldface from this point forward. 

Some Fundamental Assumptions 

We have already mentioned both intervals and points in time; now it is time to explain 

them—or, at least, to explain some of the fundamental assumptions on which such notions 
rest. First of all, we assume that time itself can be thought of as a timeline, consisting of a 

finite sequence of discrete, indivisible time quanta, where a time quantum in turn is the 

smallest time unit the system is capable of representing. In other words, even if time in the 

real world is continuous and infinite, we represent it in our model as discrete and finite 

instead. Note: There is an obvious parallel here with the way our usual model of computa¬ 

tion represents real numbers by rationals. 
Next, we distinguish carefully between (a) time quanta as such, which as just 

explained are the smallest time units the system is capable of representing, and (b) the 

time units that are relevant for some particular purpose, which might be days or months or 

milliseconds (etc.). For example, in the examples discussed earlier regarding suppliers, we 

were clearly interested only in times that were accurate to the day. We call the time units 

that are relevant for some particular purpose time points {points for short), in order to 
stress the fact that for that purpose they too are considered to be indivisible. Now, we 

might say, informally, that a time point is “a section of the timeline,” meaning the set of 

time quanta between one “boundary” quantum and the next (e.g., between midnight on 

one day and midnight on the next). We might therefore say, again informally, that time 

points have a duration (one day, in our example). Formally, however, time points are 
indeed points—they are indivisible, and the concept of duration strictly does not apply. 

3 Throughout this chapter we adopt what is called the closed-closed interpretation of intervals, according 
to which the interval from b to e is regarded as including both the "begin point” b and the “end point” e. 
We note without further comment that other interpretations can be found in the literature. 
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immediately before day 4. Clearly, what we would like is for those two SI tuples to be 

combined into a single tuple with FROM = d02 and TO = dlO. 

Now, you might have guessed already that this idea of combining tuples is going to 

turn out to be very important. Indeed, not combining the two tuples in the foregoing 

example would be almost as bad as permitting duplicates! Duplicates amount to “saying 

the same thing twice.” And those two tuples for supplier SI with overlapping FROM-TO 

intervals do indeed “say the same thing twice”; to be specific, they both say supplier SI 

was under contract on days 4, 5, and 6. Indeed, if those two tuples did both appear, then 

relvar S_FROM_TO would be in violation of its own predicate. We will revisit this issue 

and discuss it in detail in Section 23.7. 

Next, the fact that {S#,FROM} is a candidate key for S_FROM_TO is also insuffi¬ 

cient to prevent the appearance of an “abutting” S1 tuple with (say) FROM = d02 and TO 

= d03, indicating again that S1 was under contract on the day immediately before day 4. 

As before, what we would like is for the two tuples in question to be combined into one— 

for otherwise, again, relvar S_FROM_TO would be in violation of its own predicate. 

Again, we will revisit this issue and discuss it in detail in Section 23.7. 

Here then is a constraint that does prohibit such overlapping and abutting: 

CONSTRAINT XFT1 
IS_EMPTY 

( ( ( S_FROM_TO RENAME ( FROM AS FI, TO AS T1 ) ) JOIN 
( S_FROM_TO RENAME ( FROM AS F2, TO AS T2 ) ) ) 

WHERE ( Tl > F2 AND T2 > FI ) ) OR 
( F2 = Tl+1 OR FI = T2+1 ) ) ; 

Now we really begin to see the problem! This constraint is quite complex—not to mention 

the fact that we have taken the gross liberty of writing (e.g.) Tl+1 to designate the imme¬ 

diate successor of the day denoted by Tl, a point we will come back to in the next section. 

Moreover, given a fully temporal database like that of Fig. 23.3, we will probably have to 

state many constraints of the same general nature as Constraint XFT1, and again we will 

surely wish we had some good shorthand for the purpose. Note: In fact, there is yet 

another problem with Constraint XFT1 as stated: namely, what happens to the expression 

Tl + 1 if Tl happens to denote “the end of time”? 

Next, note that the attribute combination {S#,FROM} in relvar SP_FROM_TO is not 

a foreign key from that relvar to relvar S_FROM_TO (even though it does involve the same 

attributes as the primary key of relvar S_FROM_TO). However, we certainly need to 

ensure that if a given supplier is represented in relvar SP_FROM_TO, then that same sup¬ 

plier is represented in relvar S_FROM_TO as well: 

CONSTRAINT XFT2 
SP_FROM_TO { S# } C S_FROM_TO { S# > ; 

This constraint is an example of an inclusion dependency [11.4]. Inclusion dependencies 

can be regarded as a generalization of referential constraints, as we know from Chapter 

11. And it should be clear that any temporal database like that of Fig. 23.3 is likely to 

involve a large number of such dependencies, at least implicitly. 

Constraint XFT2 is still not enough, however—we also need to ensure that if relvar 
SP_FROM_TO shows some supplier as being able to supply any parts at all during some 
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Explanation: T1 here is the relation that is the current value of relvar SP_DURING, 

except that attributes S# and DURING are renamed as X# and XD, respectively; relation 

T2 is the same, except that the new attribute names are Y# and YD instead. Relation T3 is 
the join of T1 and T2 over part numbers. Relation T4 is the restriction of T3 to just those 

tuples where the XD and YD intervals overlap (meaning the suppliers were not only able 

to supply the same part but in fact were able to supply the same part at the same time, as 

required). Relation T5 is the restriction of T4 to just those tuples where supplier number 

X# is less than supplier number Y# (compare Example 7.5.5 in Chapter 7). The final pro¬ 

jection over X# and Y# produces the desired result. 

As a third example, suppose we want to get, not just pairs of suppliers who were able 

to supply the same part at the same time, but also the parts and times in question. Here then 

is a possible formulation: 

WITH ( SP DURING RENAME ( S# AS X#, DURING AS XD ) ) AS Tl 

( SP DURING RENAME ( S# AS Y#, DURING AS YD ) ) AS T2 

( Tl JOIN T2 ) AS T3 r 

( T3 WHERE XD OVERLAPS YD ' 1 AS T4 , 

( T4 WHERE X# < Y# ) AS T5 / 

( EXTEND T5 ADD ( XD INTERSECT YD ) AS ; DURING ) AS T6 
T6 { X#, Y#, P#, DURING > 

Explanation: Relations Tl, T2, T3, T4, and T5 are exactly as in the previous example. The 

EXTEND then computes the relevant intervals, and the final projection produces the 

desired result. 

23.4 PACKING AND UNPACKING RELATIONS 

In this section we introduce two new (and extremely important) relational operators called 

PACK and UNPACK. As a stepping-stone on the way to those operators, however, we first 
need to digress briefly and discuss two simpler analogs of them called COLLAPSE and 

EXPAND, respectively. For pedagogic reasons, moreover, we discuss these latter opera¬ 

tors in the inverse order. 

EXPAND and COLLAPSE 

EXPAND and COLLAPSE as we describe them here7 both take as sole operand a unary 

relation in which the tuples contain intervals and produce another such relation as their 

result. For example, suppose relation r looks like this: 

7 More general versions of the operators are described in reference [23.4]. 
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where T1 is the specified projection. However, we will build up to that point one small 

step at a time. The first step is: 

WITH SP_DURING { S#, DURING } AS T1 : 

This step yields the required projection (in effect, it just “projects away” part numbers, 

which are irrelevant to the query at hand). In terms of our usual sample data values, T1 
looks like this: 

S# DURING 

SI [d04:dl0] 
SI [d05:dlO] 
SI [dO9:dlO] 
SI [d06:dlO] 
S2 [d02:d04] 
S2 [d08:dl0] 
S2 [d03:d03] 
S2 [d09:dlO] 
S3 [d08:dlO] 
S4 [d06:d09] 
S4 [d04:d08] 
S4 [d05:d!0] 

Observe that this relation contains redundant information; for example, we are told no 

fewer than three times that supplier S1 was able to supply something on day 6 (the desired 

result, by contrast, contains no such redundancy). 

The next step is as follows: 

WITH ( T1 GROUP { DURING > AS X ) AS T2 : 

T2 looks like this: 

s# 

SI 

S2 

S3 

S4 

DURING 

[d04:dl0] 
[d05:dl0] 
[d09:dlO] 
[d06:d!0] 

DURING 

[d02:d04] 
[d08:dlO] 
[d03:d03] 
[d09:d!0] 

DURING 

[d08:d!0] 

DURING 

[d06:d09] 
[d04:d08] 
[d05:d!0] 
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Attribute X of T2 is relation-valued, and so we can apply the COLLAPSE operator to 

the unary relations that are values of that attribute: 

WITH ( EXTEND T2 ADD COLLAPSE ( X ) AS Y ) 

{ ALL BUT X } AS T3 : 

T3 looks like this (note that attribute X has been projected away, thanks to the specifica¬ 

tion “(ALL BUT X}”): 

Finally, we ungroup: 

T3 UNGROUP Y 

This expression yields the desired result. In other words, now showing all of the steps 

together (and simplifying slightly), that result is obtained by evaluating the following 
overall expression: 

WITH SP_DURING { S#f DURING } AS T1 , 
( T1 GROUP { DURING > AS X ) AS T2 , 
( EXTEND T2 ADD COLLAPSE ( X ) AS Y ) { ALL BUT X } AS T3 : 

T3 UNGROUP Y 

Now we can define our PACK operator (which is shorthand, of course). The syntax is: 

PACK r ON A 

Here r is a relational expression and A is an interval attribute of the relation denoted by that 

expression. The semantics are defined by obvious generalization of the grouping, extension, 
projection, and ungrouping operations by which we obtained RESULT from Tl: 

PACK r ON A s WITH ( r GROUP { A } AS X ) AS R1 , 
( EXTEND R1 ADD COLLAPSE ( X ) AS Y ) 

{ ALL BUT X } AS R2 : 
R2 UNGROUP Y 
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Working through this expression in detail, step by step, is left as an exercise. Given the 

sample data of Fig. 23.4, however, the overall result—let us call it U1—looks like this: 

s# DURING 

SI [d04:d04] 
SI [d05:d05] 
SI [d06:d06] 
SI [d07:d07] 
SI [d08:d08] 
SI [ d09 : d09 ] 
SI [dlO-.dlO] 
S2 [dO2:dO2] 
S2 [dO3:d03] 
S2 [d04:d04] 
S2 [d07:d07] 
S2 [d08:d08] 
S2 [d09:d09] 
S2 [dlO:dlO] 
S3 [d03:d03] 
S3 [d04:d04] 
S3 [d05:d05] 
S3 [d06-.d06] 
S3 [d07:d07] 
S3 [d08:d08] 
S3 [d09:d09] 
S3 [dlO:dlO] 
S4 [d04:d04] 
S4 [d05:d05] 
S4 [d06:d06] 
S4 [d07:dO7] 
S4 [d08:d08] 
S4 [ d09 : d09 ] 
S4 [dlO-.dlO] 
S5 [ d02 : dO2 ] 
S5 [d03:d03] 
S5 [d04:d04] 
S5 [d05:d05] 
S5 [d06:d06] 
S5 [d07:d07] 
S5 [d08:d08] 
S5 [d09:d09] 
S5 [dlO-.dlO] 

Of course, the right operand (i.e., S#-DURING pairs that appear in or are implied by 

SP_DURING) is obtained in like fashion: 

UNPACK SP_DURING { S#, DURING } ON DURING 
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The result of this expression—let us call it U2—looks like this: 

s# DURING 

SI [d04:d04] 
SI [d05:d05] 
SI [d06:d06] 
SI [d07:dO7] 
SI [d08:d08] 
SI [d09:d09] 
SI [dlOidlO] 
S2 [d02:d02] 
S2 [d03:d03] 
S2 [ d04 : d04 ] 
S2 [d08:d08] 
S2 [d09:d09] 
S2 [dlO-.dlO] 
S3 [d08:d08] 
S3 [d09:d09] 
S3 [dlO:dlO] 
S4 [d04:d04] 
S4 [d05:d05] 
S4 [d06:d06] 
S4 [d07:d07] 
S4 [d08:d08] 
S4 [d09:d09] 
S4 [dlO:d!0] 

Now we can apply the difference operator: 

Ul MINUS U2 

The result of this expression, U3 say, looks like this: 

S# DURING 

S2 [d07:d07] 
S3 [ d03 : d03 ] 
S3 [ d04 : d04 } 
S3 [d05:d05] 
S3 [d06:d06) 
S3 [d07:d07] 
S5 [dO2:d02] 
S5 [d03:d03] 
S5 [d04:d04] 
S5 [d05:d05] 
S5 [d06:d06] 
S5 [d07:d07] 
S5 [d08:d08] 
S5 [d09:d09] 
S5 [dlO-.dlO] 

Finally, we pack U3 to obtain the desired overall result: 

PACK U3 ON DURING 
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For example, suppose the relvar currently includes the following tuple: 

s# SNAME STATUS CITY SINCE 

SI Smith 20 London d04 

Suppose too that today is day 10 and that, effective from today, the status of supplier SI is 

to be changed to 30, and so we replace the tuple just shown by this one: 

S# SNAME STATUS CITY SINCE 

SI Smith 30 London dlO 

Now we have lost (among other things) the information that supplier S1 has been located 

in London since day 4. More generally, it should be clear that this design is incapable of 

representing any information about a current supplier that predates the time of the most 

recent update to that supplier (speaking somewhat loosely). Informally, the problem is 

that the timestamp attribute SINCE “timestamps too much”; in effect, it timestamps a 

combination of four different propositions (supplier is under contract, supplier has name, 

supplier has status, supplier has city), instead of just a single proposition. In our preferred 

design, by contrast, each proposition has its own timestamp. 

Vertical Decomposition 

Of course, even with the four separate “since” attributes, relvar S_SINCE is only semi¬ 

temporal, which is why we need the “during” relvars as well, in order to represent histori¬ 

cal information. But why is vertical decomposition necessary for that historical informa¬ 

tion? In order to examine this question, suppose, contrariwise, that we had just one 

“during” relvar that looked like this: 

S_DURING { S#, SNAME, STATUS, CITY, DURING > 

Here is the predicate: 

During interval DURING, all four of the following were true: 

a. Supplier S# was under contract. 

b. Supplier S# was named SNAME. 

c. Supplier S# had status STATUS. 

d. Supplier S# was located in city CITY. 

As with the version of relvar S_SINCE with just one “since” attribute in the previous 
subsection, it should be immediately clear from this predicate that the relvar is not very 

well designed. For suppose it currently includes the following tuple: 

S# SNAME STATUS CITY DURING 

S2 Jones 10 Paris [d02:d04] 
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Suppose too that we now learn that (a) the status of supplier S2 was indeed 10 on days 2 

and 3 but became 15 on day 4, and (b) supplier S2 was indeed in Paris on days 3 and 4 but 

should have been in London on day 2. Then we have to make a rather complicated set of 

updates to the relvar in order to reflect these real-world changes. To be specific, we have to 
replace the existing tuple by three tuples that look like this: 

s# SNAME STATUS CITY DURING 

S2 Jones 10 London [d02:d02] 

S# SNAME STATUS CITY DURING 

S2 Jones 10 Paris [ d03 : dO3 ] 

S# SNAME STATUS CITY DURING 

S2 Jones 15 Paris [ d04 : d04 ] 

Observe now that we are taking two separate tuples instead of one to say that the status 

was 10 during the interval [d02:d03], and two separate tuples instead of one to say that the 

city was Paris during the interval [d03:d04\. 

As this example suggests, the task of updating relvar S_DURING to reflect real-world 

changes is, in general, not entirely straightforward. Again the problem is basically that the 

timestamp attribute (now DURING) “timestamps too much”; again, in fact, it timestamps 

a combination of four different propositions. The solution is to separate the four proposi¬ 

tions out into four separate relvars, thus: 

S_DURING { S#, DURING > 
KEY { S#, DURING > 

S_NAME_DURING { S#, SNAME, DURING > 
KEY { S#, DURING > 

S_STATUS_DURING { S#, STATUS, DURING } 
KEY { S#, DURING > 

S_CITY_DURING { S#, CITY, DURING > 
KEY { S#, DURING } 

Relvar S_DURING shows which suppliers were under contract when; relvar S_NAME_ 

DURING shows which suppliers had which name when; relvar S_STATUS_DURING 

shows which suppliers had which status when; and relvar S_CITY_DURING shows 

which suppliers were located in which city when. 

Sixth Normal Form 

The foregoing vertical decomposition is very reminiscent, in both rationale and effect, of 

classical normalization, and it is worth taking a moment to examine the similarities in a 

little more depth. In fact, of course, vertical decomposition is exactly what classical nor¬ 
malization theory has always been concerned with; the decomposition operator in that 

theory is projection (which is a vertical decomposition operator by definition), and the 
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It is immediate from this definition that every relvar that is in 6NF is also in 5NF. It is 

also immediate that a given relvar is in 6NF if and only if it is irreducible in the sense 
explained earlier. 

Now, the version of relvar S_DURING that had attributes S#, SNAME, STATUS, 
CITY, and DURING is not in 6NF by this definition, because: 

a. It satisfies the generalized join dependency USING DURING * {SND,STD,SCD} 

(where the name “SND” refers to the set of attributes {S#,SNAME,DURING}, and 
similarly for the names “STD” and “SCD”). 

b. That join dependency is definitely nontrivial. 

We therefore recommend that it be decomposed into 6NF projections as discussed in the 
previous subsection. 

Note: You might have noticed in the foregoing example that it would be sufficient to 

decompose into just three 6NF relvars, not four—relvar S_DURING, with attributes S# 

and DURING, is strictly unnecessary in the decomposition, since it is at all times equal to 

the (generalized) projection on S# and DURING of any of the other three relvars. Never¬ 

theless, we still prefer to include S_DURING in our overall design, partly just for reasons 

of completeness, and partly because such inclusion avoids a certain degree of awkward¬ 
ness and arbitrariness that would otherwise occur [23.4], 

"The Moving Point Now" 

We return briefly to the question of horizontal decomposition (i.e., the separation into 

“since” and “during” relvars). We obviously cannot have “since” relvars only, because 

such relvars are merely semitemporal and cannot represent historical information. How¬ 

ever, we could have “during” relvars only—but only if we have no objection to our data¬ 

base telling lies, as we now explain. 

Consider the case of a supplier whose contract has not yet terminated. Of course, it is 
possible that we know when that contract is supposed to terminate; more generally, how¬ 

ever, all we can say is that the contract is open-ended (think of a typical employment con¬ 

tract, for example). In a “during” relvar, therefore, whatever we specify as the END 
(DURING) value for such a supplier is likely to be incorrect. Of course, we could, and 

probably would, adopt the convention that such END(DURING) values should be speci¬ 

fied as the last day (i.e., the value returned by LAST_DATE() ).10 But note that this 

scheme means that if “the last day” appears in the result of a query, then the user will 
probably have to interpret that value as until further notice, not as the last day per se. In 

other words, to say that END(DURING) for such a supplier is “the last day” is almost cer¬ 

tainly a lie. 
Precisely in order to avoid having to tell such lies, some writers—see, for example, 

reference [23.2]—have proposed the use of a special “NOW marker" to denote what in 

Section 23.1 we called the moving point now (in other words, to stand for until further 

notice). The basic idea is to permit that special marker to appear wherever both (a) a value 

10 Of course, we can replace that artificial value by the true value when the true value later becomes 
known. 
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We now proceed to examine, in the next three subsections, three general problems that 

can occur with temporal relvars like this one. We refer to those problems as the redun¬ 

dancy problem, the circumlocution problem, and the contradiction problem, respectively. 

The Redundancy Problem 

The KEY constraint for relvar S_STATUS_DURING, though logically correct, is inade¬ 

quate in a sense. To be specific, it fails to prevent the relvar from containing, for example, 
both of the following tuples at the same time: 

s# STATUS DURING 

S4 25 [d05:d06] 

S# STATUS DURING 

S4 25 [d06:d07] 

As you can see, these two tuples display a certain redundancy, inasmuch as the sta¬ 

tus for supplier S4 on day 6 is effectively stated twice. Clearly, it would be better to 

replace them by the following single tuple: 

S# STATUS DURING 

S4 25 [d05:d07] 

Observe now that if the two original tuples were the only tuples in some two-tuple 

relation and we packed that relation on DURING, we would wind up with a one-tuple 

relation containing the single tuple just shown. Loosely speaking, therefore, we might say 

the tuple just shown is a “packed” tuple, obtained by packing the two original tuples on 

attribute DURING (we say “loosely speaking” because packing really applies to relations, 

not tuples). So what we want to do is replace those two original tuples by that “packed” 

tuple. In fact, as pointed out in Section 23.2, not performing that replacement—that is, 

permitting both original tuples to appear—would be almost as bad as permitting duplicate 

tuples to appear (duplicate tuples, if allowed, would also constitute a kind of redundancy). 
Indeed, if both original tuples did appear, the relvar would be in violation of its own pred¬ 

icate! For example, the tuple on the right says among other things that supplier S4 did not 

have status 25 on the day immediately before day 6. But then the tuple on the left says 

among other things that supplier S4 did have status 25 on day 5, and of course day 5 is the 

day immediately before day 6. 

The Circumlocution Problem 

The KEY constraint for relvar S_STATUS_DURING is inadequate in another way also. 

To be specific, it fails to prevent the relvar from containing, for example, both of the fol¬ 

lowing tuples at the same time: 

S# STATUS DURING 

S4 25 [d06:d07] 

S# STATUS DURING 

S4 25 [d05:d05] 
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Here there is no redundancy as such, but there is a certain circumlocution, inasmuch 

as we are taking two tuples to say what could be better said with just a single “packed” 

tuple (the same one as before, in fact): 

s# STATUS DURING 

S4 25 [d05:d07] 

Indeed, not replacing the two original tuples by that “packed” tuple would mean, 

again, that the relvar would be in violation of its own predicate, as can easily be confirmed. 

Fixing the Redundancy and Circumlocution Problems 

It should be clear that, in order to avoid redundancies and circumlocutions like those we 

have been discussing, what we need to do is enforce a constraint—let us call it Constraint 

A—along the following lines: 

Constraint A: If at any given time relvar S_STATUS_DURING contains two dis¬ 

tinct tuples that are identical except for their DURING values il and z'2, then il 

MERGES z2 must be false. 

Recall that, loosely speaking, MERGES is the logical OR of OVERLAPS and MEETS: 

Replacing it by OVERLAPS in Constraint A gives the constraint we need to enforce in 

order to avoid the redundancy problem, and replacing it by MEETS gives the constraint 

we need to enforce in order to avoid the circumlocution problem. 

It should be clear too that there is a very simple way to enforce Constraint A: namely, 

by keeping the relvar packed at all times on attribute DURING. Let us therefore invent a 

new PACKED ON constraint that can appear in a relvar definition, as here: 

VAR S STATUS_DURING BASE RELATION 
{ S? S#, STATUS INTEGER, DURING INTERVAL_DATE } 
PACKED ON DURING 
KEY { S#, DURING } ; 

PACKED ON DURING here is a constraint—a relvar constraint, in fact, in terms of 

the classification scheme described in Chapter 9—on relvar S_STATUS_DURING. It is 

interpreted as follows: Relvar S_STATUS_DURING must at all times be kept packed on 

DURING. This special syntax thus suffices to solve the redundancy and circumlocution 

problems; in other words, it solves the problem exemplified by the constraint we referred 

to as Constraint XFT1 in Section 23.2. 

The Contradiction Problem 

The PACKED ON and KEY constraints are still not fully adequate, even when taken 

together. To be specific, they fail to prevent the relvar from containing, for example, both 

of the following tuples at the same time: 

S# STATUS DURING 

S4 10 [d04:d06] 

S# STATUS DURING 

S4 25 [d05:d07] 
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U_keys 

There is much more that could be said about KEY, PACKED ON, and WHEN/THEN con¬ 

straints [23.4]; for space reasons, however, we content ourselves with the following. First, 

we propose that the definition of any given relvar R be allowed to include a shorthand 

specification of the form: 

USING ( ACL ) KEY { K > 

ACL and K here are both commalists of attribute names, where every attribute mentioned 

in ACL must also be mentioned in K (and, as usual, the parentheses can be omitted if ACL 

contains just one attribute name). The specification is defined to be shorthand for the com¬ 

bination of the following three constraints: 

PACKED ON ( ACL ) 
WHEN UNPACKED ON ( ACL ) THEN KEY { K } 
KEY { K } 

We refer to {K} as a “U_key” for short (but see later). Using this shorthand, the definition 

of relvar S_STATUS_DURING, for example, can be simplified to just: 

VAR S STATUS_DURING BASE RELATION 
{ S? S#, STATUS INTEGER, DURING INTERVAL_DATE } 
USING DURING KEY { S#, DURING > ; 

Suppose now that within the U_key specification for relvar R the commalist of 

attribute names ACL is empty, thus: 

USING ( ) KEY { JC } 

By definition, this specification is shorthand for the combination of constraints: 

PACKED ON ( ) 
WHEN UNPACKED ON ( ) THEN KEY { K } 
KEY { K > 

In other words: 

1. Relvar R must be kept packed on no attributes at all. But packing a relation r on no at¬ 

tributes at all simply returns r, so the implicit PACKED ON specification has no effect. 

2. Relvar R must be such that if it is unpacked on no attributes at all, then {K} is a candi¬ 

date key for the result. But unpacking a relation r on no attributes at all simply returns 

r, so the implicit WHEN/THEN specification simply means that {K) is a candidate key 

for R, and the implicit KEY constraint is thus redundant. 

It follows that we can take a regular KEY constraint of the form KEY {K} to be 

shorthand for a certain U_key constraint: namely, one of the form USING () KEY {K}. In 

other words, regular KEY constraints are essentially just a special case of our proposed 

new syntax! So if we redefine the syntax of a regular KEY constraint thus— 

[ USING ( ACL ) ] KEY { K > 
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Reference [23.4] analyzes these nine requirements in depth and shows how they can be 

formulated in a relationally complete language like Tutorial D. We omit further discus¬ 

sion here. 

23.8 SUMMARY 

There is a growing requirement for databases (especially “data warehouses”) to contain 

temporal data. Temporal data can be regarded as an encoded representation of time- 

stamped propositions. The propositions in question make use of the prepositions since 

(for current data) and during (for historical data), and we assigned very precise meanings 

to those two terms. To be specific, we take since to mean ever since and not immediately 

before the specified point in time, and during to mean throughout and not immediately 

before or immediately after the specified interval. 

Next, we introduced a very simple running example (suppliers and shipments) and 

proceeded (a) to semitemporalize it by adding SINCE attributes and then (b) to temporal- 

ize it fully by adding FROM and TO attributes. And we saw that both of those designs led 

to considerable complexity in the formulation of constraints and queries. We therefore 

introduced the idea of dealing with intervals as values in their own right. To be specific, 

we defined the concept of a point type and an INTERVAL type generator, and we dis¬ 

cussed the corresponding interval selector and BEGIN and END operators. We then 

went on to define many more operators for points and intervals, including Allen’s opera¬ 

tors and interval UNION, INTERSECT, and MINUS operators. 

Next, we defined two extremely important relational operators called PACK and 

UNPACK (using two simpler operators on unary relations called COLLAPSE and 

EXPAND as a stepping-stone on the way). EXPAND and UNPACK allow us to focus on 

the information content of their relational argument at an atomic level, without having to 

worry about the many different ways in which that information might be bundled into 

“clumps.” Similarly, COLLAPSE and PACK allow us to focus on the information content 

of their relational argument in a compressed (“clumped”) form, without having to worry 

about the possibility that distinct “clumps” might meet or overlap. We showed how PACK 

and UNPACK can be used to simplify the formulation of temporal queries. We also used 

them as a basis for defining generalized or “U_” versions of the familiar relational opera¬ 

tors (U_J01N, U_MINUS, U_project, and so on). And we showed that those familiar rela¬ 

tional operators are in fact all just special cases of the generalized versions. 

Next, we examined certain database design issues and recommended (a) horizontal 

decomposition in order to separate current and historical information and (b) vertical 

decomposition in order to separate information regarding different “properties” of the 

same “entity” (speaking very loosely). In fact, we defined a new normal form, 6NF. 

Then we considered certain problems that temporal data might suffer from in the 

absence of appropriate integrity constraints—to be specific, the redundancy, circumlo¬ 

cution, and contradiction problems—and we showed how the PACKED ON and 

WHEN/THEN constraints could be used to address those problems. We defined a gener¬ 
alized version of the familiar KEY constraint called U_key constraints, and then showed 

that the familiar KEY constraint is in fact just a special case of the generalized version. 
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24.1 INTRODUCTION 

In the mid 1980s or so, a significant trend began to emerge in the database research com¬ 
munity toward database systems that are based on logic. Expressions such as logic data¬ 

base, inferential DBMS, expert DBMS, deductive DBMS, knowledge base, knowledge base 

management system (KBMS), logic as a data model, recursive query processing, and so 

on, began to appear in the research literature. However, it is not always easy to relate such 
terms and the ideas they represent to familiar database tenns and concepts, nor to under¬ 

stand the motivation underlying the research from a traditional database perspective; in 

other words, there is a clear need for an explanation of all of this activity in terms of con¬ 

ventional database ideas and principles. This chapter is an attempt to meet that need. Our 

aim is to explain what logic-based systems are all about from the viewpoint of someone 
who is familiar with traditional database technology but perhaps not so much with logic as 

such. As each new idea from logic is introduced, therefore, we will explain it in conven¬ 

tional database terms, where possible or appropriate. (Of course, we have discussed cer¬ 

tain ideas from logic in this book already, especially in our description of relational 
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calculus in Chapter 8. Relational calculus is directly based on logic. However, there is 

more to logic-based systems than just the relational calculus, as we will see.) 

The structure of the chapter is as follows. Following this introductory section, Section 

24.2 provides a brief overview of the subject, with a little history. Sections 24.3 and 24.4 

then provide an elementary (and very much simplified) treatment of propositional calcu¬ 

lus and predicate calculus, respectively. Next, Section 24.5 introduces the so-called proof- 

theoretic view of a database, and Section 24.6 builds on the ideas of that section to explain 

what is meant by the term deductive DBMS. Section 24.7 then discusses some approaches 

to the problem of recursive query processing. Finally, Section 24.8 offers a summary and 

a few concluding remarks. 

24.2 OVERVIEW 

Research on the relationship between database theory and logic goes back to the late 

1970s, if not earlier—see, for example, references [24.3], [24.4], and [24.8]. However, the 

principal stimulus for the recent considerable expansion of interest in the subject seems to 

have been the publication in 1984 of a landmark paper by Reiter [24.10]. In that paper, 

Reiter characterized the traditional perception of database systems as model-theoretic— 

by which he meant, loosely, that: 

a. The database at any given time can be seen as a set of explicit (i.e., base) relations, 

each containing a set of explicit tuples. 

b. Executing a query can be regarded as evaluating some specified formula (i.e., boolean 

expression) over those explicit relations and tuples. 

Note: We will define the term model-theoretic more precisely in Section 24.5. 

Reiter then went on to argue that an alternative proof-theoretic view was possible, and 

indeed preferable in certain respects. In that alternative view (again loosely speaking): 

a. The database at any given time is seen as a set of axioms (“ground” axioms, corre¬ 

sponding to values in domains' and tuples in base relations, plus certain “deductive” 

axioms, to be discussed). 

b. Executing a query is regarded as proving that some specified formula is a logical con¬ 

sequence of those axioms—in other words, proving it is a theorem. 

Note: We will define the term proof-theoretic more precisely in Section 24.5 also—though 

it might help to point out right away that the proof-theoretic view is very close to our own 

characterization of a database as a collection of true propositions. 

An example is in order. Consider the following relational calculus query against the 

usual suppliers-and-parts database: 

SPX WHERE SPX.QTY > 250 

1 For consistency with other writings in this field, we use the term domain rather than our preferred term 
type in this chapter. 
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Here f g, and h are arbitrary boolean expressions. 

Now we turn to logic per se. Logic can be defined as a formal method of reasoning. 

Because it is formal, it can be used to perform formal tasks, such as testing the validity of 

an argument by examining just the structure of that argument as a sequence of steps (i.e., 

without paying any attention to the meaning of those steps). In particular, because it is for¬ 

mal, it can be mechanized—that is, it can be programmed, and thus applied by the 
machine. 

Propositional calculus and predicate calculus are two special cases of logic in general 
(in fact, the former is a subset of the latter). The term calculus, in turn is just a general 

term that refers to any system of symbolic computation; in the particular cases at hand, 
the kind of computation involved is the computation of the truth value—TRUE or 

FALSE—of certain formulas or expressions. 

Terms 

We begin by assuming that we have some collection of objects, called constants, about 

which we can make statements of various kinds. In database parlance, the constants are 

the values in the underlying domains, and a statement might be, for example, a boolean 

expression such as “3 > 2”. We define a term as a statement that involves such constants^ 

and: 

a. Either does not involve any boolean operators (see the next subsection) or is enclosed 

in parentheses 

b. Evaluates unequivocally to either TRUE or FALSE 

For example, “Supplier SI is located in London,” “Supplier S2 is located in London,” and 

“Supplier SI supplies part PI” are all terms (they evaluate to TRUE, FALSE, and TRUE, 

respectively, given our usual sample data values). By contrast, “Supplier SI supplies part 

p" (where p is a variable) and “Supplier S5 will supply part PI at some time in the future” 
are not terms, because they do not evaluate to either TRUE or FALSE unequivocally. 

Formulas 

Next, we define the concept of a formula. Formulas of the propositional calculus—and, 

more generally, of the predicate calculus—are used in database systems in the formulation 

of queries (among many other things). 

<formula> 
: := <term> 

NOT <term> 
<term> AND <formula> 
<term> OR <formula> 
<term> => <formula> 

<term> 
::= <atomic formula> 

| ( <formula> ) 

2 More accurately, names of such constants, or in other words literals. The distinction is blurred in much 
of the literature. 
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Formulas are evaluated in accordance with the truth values of their constituent terms and 

the usual truth tables for the boolean operators (AND, OR, etc.). Points arising: 

1. An <atomic formula> is a boolean expression that involves no boolean operators and 

is not contained in parentheses. 

2. The symbol “=»” represents the boolean operator known as logical implication. The 

expression / => g is defined to be logically equivalent to the expression (NOT /) OR 

g. Note: We used “IF . . . THEN . . . END IF” for this operator in Chapter 8 and other 

earlier chapters. 

3. We adopt the usual precedence rules for the boolean operators (NOT, then AND, then 

OR, then =>) in order to reduce the number of parentheses needed to express a 

desired order of evaluation. 

4. A proposition is just a <formula> as already defined (we use the term formula for 

consistency with the next section). 

Rules of Inference 

Now we come to the rules of inference for the propositional calculus. Many such rules 

exist. Each is a statement of the form 

b f => 9 

(where/and g are formulas, and the symbol b can be read as it is always the case that; 

note that we do need some such symbol in order to be able to make metastatements, i.e., 

statements about statements). Here are some examples of inference rules: 

1. b ( f AND g ) => f 

2. b f => ( f OR g ) 

3. b ( ( f => g ) and ( g => h ) ) => ( f =» A ) 

4. b ( f AND ( f => g ) ) =» g 

Note: This one is particularly important. It is called the modus ponens rule. Infor¬ 

mally, it says that if/is true and/implies g, then g must be true as well. For example, 

given the fact that formulas a and b are both true— 

a. I have no money. 

b. If I have no money then I will have to wash dishes. 

—then we can infer that formula c is true as well: 

c. I will have to wash dishes. 

To continue with the inference rules: 

5. \= ( f => ( g => h ) )=>( (f AND g ) => h ) 

6. b ( ( f OR g ) AND ( NOT g OR h ) ) => ( f OR h ) 
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Note: This is another particularly important one. It is called the resolution rule. We 

will have more to say about it under “Proofs” immediately following, and again in 
Section 24.4. 

Proofs 

We now have the necessary apparatus for dealing with formal proofs (in the context of the 

propositional calculus). The problem of proof is the problem of determining whether 

some given formula g (the conclusion) is a logical consequence of some given set of for¬ 
mulas//, f2 fn (the premises3)—in symbols: 

fl, f2, . . ., fn \- g 

(read as g is deducible from//,/?, observe the use of another metalinguistic symbol, 

(-). The basic method of proceeding is known as forward chaining. Forward chaining con¬ 

sists of applying the rules of inference repeatedly to the premises, and to formulas deduced 

from those premises, and to formulas deduced from those formulas, and so on, until the 

conclusion is deduced; in other words, the process “chains forward” from the premises to 
the conclusion. However, there are several variations on this basic theme: 

1. Adopting a premise: If g is of the form p => q, adopt p as an additional premise and 

show that q is deducible from the given premises plus p. 

2. Backward chaining: Instead of trying to prove p => q, prove the contrapositive 

NOT q => NOT p. 

3. Reductio ad absurdum: Instead of trying to prove p => q directly, assume that p and 

NOT q are both true and derive a contradiction. 

4. Resolution: This method uses the resolution inference rule (Rule 6 in the list given 

earlier). 

We discuss the resolution technique in some detail, since it is of wide applicability (in 

particular, it generalizes to the case of predicate calculus also, as we will see in Section 

24.4). 
Note first that the resolution rule is effectively a rule that allows us to cancel subfor¬ 

mulas—that is, given the two formulas 

f OR g and NOT g OR h 

we can cancel g and NOT g to derive the simplified formula: 

f or h 

In particular, given/ OR g and NOT g (i.e., taking h as TRUE), we can derive/. 
Observe, therefore, that the rule applies in general to a conjunction (AND) of two for¬ 

mulas, each of which is a disjunction (OR) of two formulas. In order to apply the resolu¬ 

tion rule, therefore, we proceed as follows. (To make our discussion a little more concrete, 

we explain the process in terms of a specific example.) Suppose we wish to determine 

whether the following putative proof is in fact valid: 

A => ( B => C ) , NOT DORA, B |- D => c 

3 Also spelled premisses (singular premiss). 
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(where A, B, C, and D are formulas). We start by adopting the negation of the conclusion as 

an additional premise and then writing each premise on a separate line, as follows: 

A => ( B => C ) 
NOT D OR A 
B 
NOT ( D => C ) 

These four lines are implicitly all “ANDed” together. 

We now convert each individual line to conjunctive normal form, that is, a form con¬ 

sisting of one or more formulas all ANDed together, each individual formula containing 

(possibly) NOTs and ORs but no ANDs (see Chapter 18). Of course, the second and third 

lines are already in this form. In order to convert the other two lines, we first eliminate all 

appearances of “=>" (using the definition of that operator in terms of NOT and OR); we 

then apply the distributive laws and De Morgan’s laws as necessary (see the beginning of 

this section). We also drop redundant parentheses and pairs of adjacent NOTs (which can¬ 

cel out). The four lines become: 

NOT A OR NOT B OR C 
NOT D OR A 
B 
D AND NOT C 

Next, any line that includes any explicit ANDs we replace by a set of separate lines, 

one for each of the individual formulas ANDed together (dropping the ANDs in the pro¬ 

cess). In the example, this step applies to the fourth line only. The premises now look like 

this: 

NOT A OR NOT B OR C 
NOT D OR A 
B 
D 
NOT C 

Now we can start to apply the resolution rule. We choose a pair of lines that can be 

resolved, that is, a pair that contain some particular formula and the negation of that for¬ 

mula, respectively. Let us choose the first two lines, which contain NOT A and A, respec¬ 

tively, and resolve them, giving: 

NOT D OR NOT B OR C 
B 
D 
NOT C 

Note: In general we also need to keep the two original lines, but in this particular example 

they will not be needed any more. 
Now we apply the rule again, again choosing the first two lines (resolving NOT B and 

B), giving: 

NOT D OR C 
D 
NOT C 
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We choose the first two lines again (NOT D and D)\ 

c 
NOT C 

And once again (C and NOT C); the final result is the empty set of propositions (usu¬ 

ally represented thus: []), which is interpreted by convention as a contradiction. By reduc- 

tio ad absurdum, therefore, the desired result is proved. 

24.4 PREDICATE CALCULUS 

We now turn our attention to the predicate calculus. The big difference between proposi¬ 

tional calculus and predicate calculus is that the latter allows formulas to contain vari¬ 

ables4 and quantifiers, which makes it much more powerful and of much wider applicabil¬ 

ity. For example, the statement “Supplier SI supplies part p" and “Some supplier s 

supplies part p" are not legal formulas of the propositional calculus, but they are legal for¬ 

mulas of the predicate calculus. Hence, predicate calculus provides us with a basis for 

expressing queries such as “Which parts are supplied by supplier SI?” or “Get suppliers 

who supply some part” or even “Get suppliers who do not supply any parts at all.” 

Predicates 

As explained in Chapter 3, a predicate is a boolean function, that is, a function that, given 

appropriate arguments for its parameters, returns either TRUE or FALSE. For example, 

“>(x,y)”—more conventionally written “x > y”—is a predicate with two parameters, x and 

y; it returns TRUE if the argument corresponding to x is greater than the argument corre¬ 

sponding to y and FALSE otherwise. A predicate that takes n arguments (i.e., equivalently, 

one that is defined in terms of n parameters) is called an n-place or n-adic predicate. A 

proposition (i.e., a formula in the sense of Section 24.3) can be regarded as a zero-place or 

niladic predicate—it has no parameters and evaluates to TRUE or FALSE, unequivocally. 

It is convenient to assume that predicates corresponding to “>”, and so on, 

are built in (i.e., they are part of the formal system we are describing) and that expressions 
using them can be written in the conventional manner. However, users should be able to 

define their own predicates as well, of course. Indeed, that is the whole point: The fact is, 

in database terms, a user-defined predicate corresponds to a user-defined relvar (as we 
already know from earlier chapters). The suppliers relvar S, for example, can be regarded 

as a predicate with four parameters S#, SNAME, STATUS, and CITY. Furthermore, the 

expressions S(SI,Smith,20,London) and S(S6,White,45,Rome)—to adopt an obvious 

shorthand notation—represent “instances” or “instantiations” or “invocations” of that 

predicate that (given our usual sample set of values) evaluate to TRUE and FALSE, 
respectively. Informally, we can regard such predicates—together with any applicable 

integrity constraints, which are also predicates—as defining what the database “means,” 

as explained in earlier parts of this book (in Chapter 9 in particular). 

4 More accurately, names of variables. The variables in question are logic variables, not programming 
language variables. You can think of them as range variables in the sense of Chapter 8. 



784 Part V / Further Topics 

Well-Formed Formulas 

The next step is to extend the definition of formula. In order to avoid confusion with the 

formulas of the previous section (which are actually a special case), we now switch to the 

term well-formed formula (WFF, pronounced “weff’) from Chapter 8. Here is a simplified 

syntax for WFFs: 

<wff> 
: : = <term> 

NOT ( <wff> ) 
( <wff> ) AND ( <wff> ) 
( <wff> ) OR ( <wff> ) 
( <wff> ) => ( <wff> ) 
EXISTS <var name> ( <wff> ) 
FORALL <var name> ( <wff> ) 

<term> 
: := [ NOT ] <pred name> [ ( <argument commalist> ) ] 

Points arising: 

1. A <term> is simply a possibly negated “predicate instance” (if we think of a predicate 

as a boolean function, then a predicate instance is an invocation of that function). 

Each <argument> must be a constant, a variable name, or a function invocation, 

where each argument to a function invocation in turn is a constant or variable name or 

function invocation. The <argument commalist> and (optionally) the corresponding 

parentheses are omitted for a zero-place predicate. Note: Functions (over and above 

the boolean functions that are the predicates, that is) are permitted in order to allow 

WFFs to include computational expressions such as “+(jc,y)”—more conventionally 

written “x + y”—and so forth. 

2. As in Section 24.3, we adopt the usual precedence rules for the boolean operators 

(NOT, then AND, then OR, then =>) in order to reduce the number of parentheses 

needed to express a desired order of evaluation. 

3. You are assumed to be familiar with the quantifiers EXISTS and FORALL. Note: We 

are concerned here only with the first-order predicate calculus, which basically 

means that (a) there are no “predicate variables” (i.e., variables whose permitted val¬ 

ues are predicates), and hence that (b) predicates cannot themselves be subjected to 

quantification. See Exercise 8.8 in Chapter 8. 

4. De Morgan’s laws can be generalized to apply to quantified WFFs, as follows: 

NOT ( FORALL x ( f ) ) = EXISTS x ( NOT ( f ) ) 
NOT ( EXISTS x ( f ) ) s FORALL x ( NOT ( f ) ) 

This point was also discussed in Chapter 8. 

5. To repeat yet another point from Chapter 8: Within a given WFF, each reference to a 

variable is either free or bound. A reference is bound if and only if (a) it appears 

immediately following EXISTS or FORALL (i.e., it denotes the quantified variable) 

or (b) it lies within the scope of a quantifier and denotes the applicable quantified 

variable. A variable reference is free if and only if it is not bound. 

6. A closed WFF is one that contains no free variable references (in fact, it is a proposi¬ 

tion). An open WFF is a WFF that is not closed. 
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set of WFFs. This would be the case with the two different definitions of “>” in our exam¬ 

ple if the WFF “2 > 1” were omitted. 

Note, incidentally, that all of the WFFs we have been discussing in this subsection so 

far have been closed WFFs. The reason is that, given an interpretation, it is always possible 

to assign a specific truth value to a closed WFF, but the truth value of an open WFF will 

depend on the values assigned to the free variables. For example, the open WFF 

x > 3 

evaluates, obviously enough, to TRUE if the value of x is greater than 3 and FALSE other¬ 

wise (whatever “greater than” and “3” mean in the interpretation). 

Now we define a model of a set of (necessarily closed) WFFs to be an interpretation 

for which all WFFs in the set evaluate to TRUE. The two interpretations we gave for the 

four WFFs 

2 > l 
2 > 3 
EXISTS x ( x > 2 ) 
FORALL x ( x > 2 ) 

in terms of the integers 0 to 5 were not models for those WFFs, because some of the WFFs 
evaluated to FALSE under that interpretation. By contrast, the first interpretation (in which 

“>” was defined “properly”) would have been a model for the set of WFFs: 

2 > l 
3 > 2 
EXISTS x ( x > 2 ) 
FORALL x ( x > 2 OR NOT ( x > 2 ) ) 

Note finally that, since a given set of WFFs can admit several interpretations in which 

all of the WFFs are true, it can therefore have several models (in general). Thus, a database 

can have several models (in general), since—in the model-theoretic view—a database is 

just a set of WFFs. See Section 24.5. 

Clausal Form 

Just as any propositional calculus formula can be converted to conjunctive normal form, so 

any predicate calculus WFF can be converted to clausal form, which can be regarded as 

an extended version of conjunctive normal form. One motivation for making such a con¬ 
version is that (again) it allows us to apply the resolution rule in constructing or verifying 

proofs, as we will see. 

The conversion process proceeds as follows (in outline; for more details, see reference 

[24.6]). We illustrate the steps by applying them to the following WFF: 

FORALL x ( p ( x ) AND EXISTS y ( FORALL z ( q ( y, z ) ) ) ) 

Here p and q are predicates and x, y, and z are variables. 

1. Eliminate “=>” symbols as in Section 24.3. In our example, this first transformation 

has no effect. 

2. Use De Morgan’s laws, plus the fact that two adjacent NOTs cancel out, to move 
NOTs so that they apply only to terms, not to general WFFs. (Again this particular 

transformation has no effect in our particular example.) 
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3. Convert the WFF to prenex normal form by moving all quantifiers to the front (sys¬ 
tematically renaming variables if necessary): 

FORALL x ( EXISTS y ( FORALL z ( p ( x ) AND q ( y, z ) ) ) ) 

4. Note that an existentially quantified WFF such as 

EXISTS v ( r ( v ) ) 

is equivalent to the WFF 

r ( a ) 

for some unknown constant a; that is, the original WFF asserts that some such a cer¬ 
tainly does exist, even if we do not know its value. Likewise, a WFF such as 

FORALL u ( EXISTS v ( s ( u, v ) ) ) 

is equivalent to the WFF 

FORALL u(s(u, f(u) ) ) 

for some unknown function/of the universally quantified variable u. The constant a 

and the function/in these examples are known, respectively, as a Skolem constant 

and a Skolem function, after the logician T. A. Skolem. {Note: A Skolem constant is 

really just a Skolem function with no arguments.) So the next step is to eliminate exis¬ 

tential quantifiers by replacing the corresponding quantified variables by (arbitrary) 
Skolem functions of all universally quantified variables that precede the quantifier in 

question in the WFF: 

FORALL x ( FORALL z ( p ( x ) AND q(f(x),z) ) ) 

5. All variables are now universally quantified. We can therefore adopt a convention by 
which all variables are implicitly universally quantified and so drop the explicit 

quantifiers: 

P ( X ) AND q ( f ( x ), z ) 

6. Convert the WFF to conjunctive normal form, that is, to a set of clauses all ANDed 

together, each clause involving possibly NOTs and ORs but no ANDs. In our exam¬ 

ple, the WFF is already in this form. 

7. Write each clause on a separate line and drop the ANDs: 

p ( x ) 
q ( f ( x ), z ) 

This is the clausal form equivalent of the original WFF. 

Note: It follows from the foregoing procedure that the general form of a WFF in 

clausal form is a set of clauses, each on a line of its own, and each of the form 

NOT A1 OR NOT A2 OR ... OR NOT Am OR B1 OR B2 OR ... OR Bn 

where the A’s and B’s are all nonnegated terms. We can rewrite such a clause, if we like, as: 

A1 AND A2 AND ... AND Am => B1 OR B2 OR ... OR Bn 

If there is at most one B (n = 0 or 1), the clause is called a Horn clause, after the logician 

Alfred Horn. 
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Using the Resolution Rule 

Now we are in a position to see how a logic-based database system can deal with queries. 

We use the example from the end of Section 24.2. First, we have a predicate 

MOTHER_OF, which involves two parameters representing mother and daughter, respec¬ 

tively, and we are given the following two terms (predicate instances): 

1. MOTHER_OF ( Anne, Betty ) 

2. MOTHER_OF ( Betty, Celia ) 

We are also given the following WFF (the “deductive axiom”): 

3. MOTHER_OF ( x, y ) AND MOTHER_OF ( y, z ) => 
GRANDMOTHER_OF ( x, z ) 

(note that this is a Horn clause). In order to simplify the application of the resolution rule, 

let us rewrite the clause to eliminate the “=>” symbol: 

4. NOT MOTHER_OF ( x, y ) OR NOT MOTHER_OF ( y, z ) 
OR GRANDMOTHER_OF ( x, z ) 

We now proceed to prove that Anne is the grandmother of Celia—that is, we show 

how to answer the query “Is Anne Celia’s grandmother?” We begin by negating the con¬ 

clusion that is to be proved and adopting it as an additional premise: 

5. NOT GRANDMOTHER_OF ( Anne, Celia ) 

Now, to apply the resolution rule, we must systematically substitute values for vari¬ 

ables in such a way that we can find two clauses that contain, respectively, a WFF and its 

negation. Such substitution is legitimate because the variables are all implicitly univer¬ 

sally quantified, and hence individual (nonnegated) WFFs must be true for each and every 

legal combination of values of their variables. Note: The process of finding a set of substi¬ 

tutions that make two clauses resolvable in this manner is known as unification. 
To see how the foregoing works in the case at hand, note first that lines 4 and 5 contain 

the terms GRANDMOTHER_OF (x,z) and NOT GRANDMOTHER_OF (Anne,Celia), 

respectively. So we substitute Anne for* and Celia for z in line 4 and resolve, to obtain: 

6. NOT MOTHER_OF ( Anne, y ) OR NOT MOTHER_OF ( y, Celia ) 

Line 2 contains MOTHER_OF (Betty,Celia). So we substitute Betty for y in line 6 

and resolve, to obtain: 

7. NOT MOTHER_OF ( Anne, Betty ) 

Resolving line 7 and line 1, we obtain the empty set of clauses []: Contradiction. 

Hence the answer to the original query is “Yes, Anne is Celia’s grandmother.” 
What about the query “Who are the granddaughters of Anne?” Observe first of all that 

the system does not know about granddaughters, it only knows about grandmothers. We 

could add another deductive axiom to the effect that z is the granddaughter of x if and only 

if x is the grandmother of z (no males are allowed in this database). Alternatively, we could 

rephrase the question as “Who is Anne the grandmother of?” Let us consider this latter for¬ 

mulation. The premises are (to repeat): 
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1. MOTHER_OF ( Anne, Betty ) 

2. MOTHER_OF ( Betty, Celia ) 

3. NOT MOTHER_OF ( x, y ) OR NOT MOTHER_OF ( y, z ) 
OR GRANDMOTHER_OF ( x, z ) 

We introduce a fourth premise, as follows: 

4. NOT GRANDMOTHERJDF ( Anne, r ) OR RESULT ( r ) 

Intuitively, this new premise states that either Anne is not the grandmother of anyone, or 

alternatively there is some person r who belongs in the result (because Anne is the grand¬ 

mother of that person /•)• We wish to discover the identity of all such persons r. We proceed 
as follows. 

First, substitute Anne for x and r for z and resolve lines 4 and 3, to obtain: 

5. NOT MOTHER OF ( Anne, y ) OR NOT MOTHER OF ( y, z ) 
OR RESULT ( z~) 

Next, substitute Betty for v and resolve lines 5 and 1, to obtain: 

6. NOT MOTHER_OF ( Betty, z ) OR RESULT ( z ) 

Now substitute Celia for z and resolve lines 6 and 2, to obtain: 

7. RESULT ( Celia ) 

Hence Anne is the grandmother of Celia. 

Note: If we had been given an additional term, as follows— 

MOTHER_OF ( Betty, Delia ) 

—then we could have substituted Delia for z in the final step (instead of Celia) and obtained: 

RESULT ( Delia ) 

The user expects to see both names in the result, of course. Thus, the system needs to apply 

the unification and resolution process exhaustively to generate oil possible result values. 
Details of this refinement are beyond the scope of the present chapter. 

24.5 A PROOF-THEORETIC VIEW OF DATABASES 

As explained in Section 24.4, a clause is an expression of the form 

A1 AND A2 AND ... AND Am => B1 OR B2 OR ... OR Bn 

where the A’s and B's are all terms of the form: 

r ( xl, x2, ..., xt ) 

(Here r is a predicate and xl, x2.xt are the arguments to that predicate.) Following ref¬ 

erence [24.7], we now consider two important special cases of this general construct: 

1. m = 0, n = 1 

In this case the clause can be simplified to just 

=> B1 
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P ( PI, Nut, Red, 12, London ) 
etc. 

SP ( SI, PI, 300 ) 
etc. 

Note: We are not seriously suggesting that the extensional database will be created by 

explicitly listing all of the ground axioms as just indicated; rather, traditional data defini¬ 

tion and data entry methods will be used. In other words, deductive DBMSs will typically 

apply their deductions to conventional databases that already exist and have been con¬ 

structed in the conventional manner. Note, however, that it now becomes more important 

than ever that the extensional database not violate any of the declared integrity con¬ 

straints!—because a database that does violate any such constraints represents (in logical 

terms) an inconsistent set of axioms, and it is well known that absolutely any proposition 

whatsoever can be proved to be “true” from such a starting point (in other words, contra¬ 

dictions can be derived, as we showed in the annotation to reference [9.16]). For exactly 

the same reason, it is also important that the stated set of integrity constraints be consistent. 

Now for the intensional database. Here are the attribute constraints: 

S ( s, sn, st, sc ) => S# ( s ) AND 
NAME ( sn ) AND 
INTEGER ( st ) AND 
CHAR ( sc ) 

P ( p, pn, pi, pw, pc ) => P# ( p ) AND 
NAME ( pn ) AND 
COLOR ( pi ) AND 
WEIGHT ( pw ) AND 
CHAR ( pc ) 

etc. 

Candidate key constraints; 

S ( s, snl, stl, scl ) AND S ( s, sn2, st2, sc2 ) 
=* snl = sn2 AND 

stl = st2 AND 
scl = sc2 

etc. 

Foreign key constraints: 

SP { s, p, q ) => S ( s, sn, st, sc ) AND 

P ( P, pn, pi, pw, pc ) 

And so on. Note: We assume for the sake of the exposition that variables appearing on the 

right of the implication symbol and not on the left (sn, st, etc., in the example) are existen¬ 

tially quantified. (All others are universally quantified, as explained in Section 24.4.) Tech¬ 

nically, we need some Skolem functions; sn, for example, should really be replaced by 

(say) SN(s), where SN is a Skolem function. 
Notice, incidentally, that most of the constraints shown in the example are not pure 

clauses in the sense of Section 24.5, because the right side is not just a disjunction of sim¬ 

ple terms. 
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Now let us add some more deductive axioms: 

S ( s, sn, st, sc ) AND st > 15 

=> GOOD_SUPPLIER ( s, st, sc ) 

(compare the GOOD_SUPPLIER view definition in Chapter 10, Section 10.1). 

S ( sx, sxn, sxt, sc ) AND S ( sy, syn, syt, sc ) 

=> SS_COLOCATED ( sx, sy ) 

S ( s, sn, st, c ) AND P ( p, pn, pi, pw, c ) 
=> SP_COLOCATED ( s, p ) 

And so on. 

In order to make the example a little more interesting, let us now extend the database 

to include a “part structure” relvar, showing which parts px contain which parts py as 

immediate (i.e. first-level) components. First a constraint to show that px and py must both 
identify existing parts: 

PART_STRUCTURE ( px, py ) => P ( px, xn, xl, xw, xc ) AND 

p ( py, yn, yl, yw, yc ) 

Some data values: 

PART_STRUCTURE ( PI, P2 ) 
PART_STRUCTURE ( PI, P3 ) 
PART_STRUCTURE ( P2, P3 ) 
PART_STRUCTURE ( P2, P4 ) 
(etc.) 

(In practice PART_STRUCTURE would probably also have a “quantity” argument, 

showing how many py’s it takes to make a px, but we omit this refinement for simplicity.) 
Now we add a pair of deductive axioms to explain what it means for part px to contain 

part py as a component (at any level): 

PART_STRUCTURE ( px, py ) => COMPONENT_OF ( px, py ) 

PART_STRUCTURE ( px, pz ) AND COMPONENT_OF ( pz, py ) 
=> COMPONENT_OF ( px, py ) 

In other words, part py is a component of part px (at some level) if it is either an immediate 

component of part px or an immediate component of some part pz that is in turn a compo¬ 
nent (at some level) of part px. Note that the second axiom here is recursive—it defines the 

COMPONENT_OF predicate in terms of itself. Now, relational systems did not originally 

allow view definitions (or queries or integrity constraints or . . .) to be recursive in such a 

manner; thus, this ability to support recursion is one of the most immediately obvious dis¬ 
tinctions between deductive DBMSs and their classical relational counterparts—although, 

as mentioned in Section 24.5 (and as we saw in Chapter 7, in our discussion of the operator 

TCLOSE), there is no reason why classical relational systems should not be extended to 

support such recursion, and some already have been. We will have more to say regarding 

recursion in Section 24.7. 

Datalog 

From the foregoing discussion, it should be clear that one of the most directly visible por¬ 
tions of a deductive DBMS will be a language in which the deductive axioms (usually 
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called rules) can be formulated. The best-known example of such a language is called (by 

analogy with Prolog) Datalog [24.5]. We present a brief discussion of Datalog in this sub¬ 

section. Note: The emphasis in Datalog is on its descriptive power, not its computational 

power (as in fact was also the case with the original relational model [6.1]). The objective is 

to define a language that ultimately will have greater expressive power than conventional 

relational languages [24.5]. As a consequence, the stress in Datalog—indeed, the stress 
throughout logic-based systems in general—is very heavily on query, not update, though it 

is possible, and desirable, to extend the language to support update also (see later). 

In its simplest form, Datalog supports the formulation of rules as simple Horn clauses 

without functions. In Section 24.4, we defined a Horn clause to be a WFF of either of the 

following two forms: 

A1 AND A2 AND ... AND An 

A1 AND A2 AND ... AND An => B 

(where the A’s and B are nonnegated predicate instances involving only constants and vari¬ 

ables). Following the style of Prolog, however, Datalog actually writes the second of these 

the other way around: 

B <= A1 AND A2 AND ... AND An 

For consistency with other publications in this area, therefore, we will do the same in what 

follows. 

In such a clause, B is the rule head (or conclusion) and the A’s are the rule body (or 

premises or goal; each individual A is a subgoal). For brevity, the ANDs are often 

replaced by commas. A Datalog program is a set of such clauses separated in some con¬ 

ventional manner—for example, by semicolons (in this chapter, however, we will not use 

semicolons but instead will simply start each new clause on a new line). No meaning 

attaches to the order of the clauses within such a program. 

Note that the entire “deductive database” can be regarded as a Datalog program in 

the foregoing sense. For example, we could take all of the axioms shown for suppliers 

and parts (the ground axioms, the integrity constraints, and the deductive axioms), write 

them all in Datalog style, and separate them by semicolons or by writing them on sepa¬ 

rate lines, and the result would be a Datalog program. As explained earlier, however, the 

extensional part of the database will typically not be specified in such a fashion, but 

rather in some more conventional manner. Thus, the primary aim of Datalog is to support 

the formulation of deductive axioms specifically. As already noted, that function can be 
regarded as an extension of the view definition mechanism found in conventional rela¬ 

tional DBMSs today. 
Datalog can also be used as a query language (again, much like Prolog). For example, 

suppose we have been given the following Datalog definition of GOOD_SUPPLIER: 

GOOD_SUPPLIER { s, st, sc ) <= S ( s, sn, st, sc ) 
AND st > 15 

Here then are some typical queries against GOOD_SUPPLIER: 

1. Get all good suppliers: 

? <= GOOD_SUPPLIER ( s, st, sc ) 
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As in classical (i.e., nonrecursive) query processing, the overall problem of imple¬ 

menting a given recursive query can be divided into two subproblems: namely, (a) trans¬ 

forming the original query into some equivalent but more efficient form and then (b) 

actually executing the result of that transformation. The literature contains descriptions of 
a variety of attacks on both of these problems. Here we briefly discuss some of the sim¬ 

pler techniques, showing their application to the query “Explode part PI” on the following 
sample data: 

PX PY 

PI P2 
PI P3 
P2 P3 
P2 P4 
P3 P5 
P4 P5 
P5 P6 

Unification and Resolution 

One possible approach is to use the standard Prolog techniques of unification and resolu¬ 

tion as described in Section 24.4. In the example, this approach works as follows. The 

first premises are the deductive axioms, which look like this (in conjunctive normal form): 

1. NOT PS ( px, py ) OR COMP ( px, py ) 

2. NOT PS ( px, pz ) OR NOT COMP ( pz, py ) OR COMP ( px, py ) 

We construct another premise from the desired conclusion: 

3. NOT COMP ( PI, py ) OR RESULT ( py ) 

The ground axioms form the remaining premises. Consider, for example, the ground 
axiom: 

4. PS ( PI, P2 ) 

Substituting PI for px and P2 for py in line 1, we can resolve lines 1 and 4 to yield: 

5. COMP ( PI, P2 ) 

Now substituting P2 for py in line 3 and resolving lines 3 and 5, we obtain: 

6. RESULT ( P2 ) 

So P2 is a component of PI. An exactly analogous argument will show that P3 is also 

a component of PI. Now we have the additional axioms—or theorems, rather— 

COMP(Pl,P2) and COMP(Pl,P3); we can now apply the foregoing process recursively to 

determine the complete explosion. The details are left as an exercise. 
In practice, however, unification and resolution can be quite costly in performance. It 

will thus usually be desirable to find some more efficient strategy. The remaining subsec¬ 

tions discuss some possible approaches to this problem. 
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Naive Evaluation 

Naive evaluation [24.20] is probably the simplest approach of all. As the name suggests, 

the algorithm is very simple-minded; it can most easily be explained (for our sample 

query) in terms of the following pseudocode: 

COMP := PS ; 
do until COMP reaches a "fixpoint" ; 

COMP := COMP UNION ( COMP « PS ) ; 
end ; 
DISPLAY := COMP WHERE PX = P# ('PI') ; 

Relvars COMP and DISPLAY (like relvar PS) each have two attributes, PX and PY. 

Loosely speaking, the algorithm works by repeatedly forming an intermediate result con¬ 

sisting of the union of the join of PS and the previous intermediate result, until that inter¬ 

mediate result reaches a fixpoint—that is, until it ceases to grow. Note: The expression 

“COMP PS” is shorthand for “join COMP and PS over COMP.PY and PS.PX and 

project the result over COMP.PX and PS.PY”; for brevity, we ignore the attribute renam¬ 

ing operations that our dialect of the algebra would require to make this operation work 

(see Chapter 7). 

Let us step through the algorithm with our sample data. After the first iteration of the 

loop, the value of the expression COMP PS is as shown here (on the left) and the 

resulting value of COMP is as shown on the right (with tuples added on this iteration 

flagged with an asterisk): 

PX PY 

PI P3 
PI P4 
PI P5 
P2 P5 
P3 P6 
P4 P6 

PX PY 

PI P2 
PI P3 
P2 P3 
P2 P4 
P3 P5 
P4 P5 
P5 P6 
PI P4 

PI P5 
P2 P5 
P3 P6 
P4 P6 

After the second iteration, they look like this: 

COMP ss PS COMP 



Chapter 24 / Logic-Based Databases 801 

Note caretully that the computation of COMP a PS in this second step repeats the 

entire computation of COMP 35 PS from the first step but additionally computes some 

extra tuples (actually two extra tuples—(PI,P6) and (P2,P6)—in the case at hand). This is 
one reason why the naive evaluation algorithm is not very intelligent. 

After the third iteration, the value of COMP 35 PS (after more repeated computation) 

turns out to be the same as on the previous iteration; COMP has thus reached a fixpoint, 
and we exit from the loop. The final result is then computed as a restriction of COMP: 

PX PY 

PI P2 
PI P3 
PI P4 
PI P5 
PI P6 

Another glaring inefficiency is now apparent: The algorithm has effectively computed 

the explosion for every part—in fact, it has computed the entire transitive closure of rela¬ 

tion PS—and has then thrown everything away again except for the tuples actually 

required; in other words, again, a great deal of unnecessary work has been done. 

We close this subsection by pointing out that the naive evaluation technique can be 
regarded as an application of forward chaining: Starting from the extensional database 

(i.e., the actual data values), it applies the premises of the definition (i.e., the rule body) 

repeatedly until the desired result is obtained. In fact, the algorithm actually computes the 

minimal model for the Datalog program (see Sections 24.5 and 24.6). 

Seminaive Evaluation 

The first obvious improvement to the naive evaluation algorithm is to avoid repeating the 

computations of each step in the next step: seminaive evaluation [24.23], In other words, 
in each step we now compute just the new tuples that need to be appended on this particu¬ 

lar iteration. Again we explain the idea in terms of the “Explode part PI” example. 

Pseudocode: 

NEW := PS ; 
COMP := NEW ; 
do until NEW is empty ; 

NEW := ( NEW S> PS ) MINUS COMP ; 
COMP := COMP UNION NEW ; 

end ; 
DISPLAY := COMP WHERE PX = P# ('PI') ; 

Let us again step through the algorithm. On initial entry into the loop, NEW and 

COMP are both identical to PS: 

PX PY 

PI P2 
PI P3 
P2 P3 
P2 P4 
P3 P5 
P4 P5 
P5 P6 

NEW COMP 
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At the end of the first iteration, they look like this: 

PX PY 

PI P4 
PI P5 
P2 P5 
P3 P6 
P4 P6 

PX PY 

PI P2 
PI P3 
P2 P3 
P2 P4 
P3 P5 
P4 P5 
P5 P6 
PI P4 
PI P5 
P2 P5 
P3 P6 
P4 P6 

COMP is the same as it was at this stage under naive evaluation, and NEW is just the 

new tuples that were added to COMP on this iteration; note in particular that NEW does 

not include the tuple (P1,P3) (compare the naive evaluation counterpart). 

At the end of the next iteration we have: 

PX PY 

PI 
P2 

P6 
P6 

PX PY 

PI P2 
PI P3 
P2 P3 
P2 P4 
P3 P5 
P4 P5 
P5 P6 
PI P4 
PI P5 
P2 P5 
P3 P6 
P4 P6 
PI P6 
P2 P6 

The next iteration makes NEW empty, and so we leave the loop. 

Static Filtering 

Static filtering is a refinement on the basic idea from classical optimization theory of per¬ 
forming restrictions as early as possible. It can be regarded as an application of backward 
chaining, in that it effectively uses information from the query (the conclusion) to modify 
the rules (the premises). It is also referred to as reducing the set of relevant facts, in that it 
(again) uses information from the query to eliminate useless tuples in the extensional 
database right at the outset [24.24], The effect on our example can be explained in terms 
of the following pseudocode: 

NEW := PS WHERE PX = P# ('PI') ; 
COMP := NEW ; 
do until NEW is empty ; 

NEW := ( NEW £> PS ) MINUS COMP ; 
COMP := COMP UNION NEW ; 

end ; 
DISPLAY := COMP ; 
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Once again we step through the algorithm. On initial entry into the loop, NEW and 
COMP both look like this: 

PX PY 

PI 
PI 

P2 
P3 

PX PY 

PI 
PI 

P2 
P3 

At the end of the first iteration, they look like this: 

PX PY 

Pi 
PI 

P4 
P5 

PX PY 

PI P2 
PI P3 
PI P4 
PI P5 

At the end of the next iteration we have: 

PX PY 

PI P6 

PX PY 

PI P2 
PI P3 
PI P4 
PI P5 
PI P6 

The next iteration makes NEW empty, and so we leave the loop. 

This concludes our brief introduction to recursive query processing strategies. Of 

course, many other approaches have been proposed in the literature, most of them much 
more sophisticated than the simple ones we have been discussing; however, there is insuf¬ 

ficient space in a book of this nature to cover all of the background material that is needed 

for a proper understanding of those approaches. See, for example, references [24.11- 
24.25] for further discussion. 

24.8 SUMMARY 

This brings us to the end of our short introduction to the topic of databases that are based 

on logic. Although the ideas are still restricted for the most part to the research world, a 

few of them have begun to find their way into commercial relational products (this remark 

is especially true of some of the optimization techniques). Overall, the concept of logic- 

based databases does look interesting; several potential advantages were identified at vari¬ 
ous points in the preceding sections. One further advantage, not mentioned explicitly in 

the body of the chapter, is that logic could form the basis of a genuinely seamless integra¬ 
tion between general-purpose programming languages and the database. In other words, 

instead of the “embedded data sublanguage” approach supported by SQL products 
today—an approach that is not particularly elegant, to say the least—the system could 
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Recursive query processing: This is an easy one. Recursive query processing refers to 

the evaluation, and in particular optimization, of queries whose definition is intrinsi¬ 
cally recursive (see Section 24.7). 

Knowledge base: This term is sometimes used to mean what we called the intensional 

database in Section 24.6—that is, it consists of the rules (the integrity constraints and 

deductive axioms), as opposed to the base data, which constitutes the extensional 

database. But then other writers use knowledge base to mean the combination of both 

the intensional and extensional databases—except that, as reference [24.6] puts it, “a 
knowledge base often includes complex objects [as well as] classical relations” (see 

Part VI of this book for a discussion of “complex objects”). Then again, the term has 

another, more specific meaning altogether in natural language systems. It is probably 
best to avoid the term entirely. 

Knowledge: Another easy one! Knowledge is what is in the knowledge base . . . This 

definition thus reduces the problem of defining “knowledge” to a previously unsolved 
problem. 

Knowledge base management system (KBMS): The software that manages the knowl¬ 

edge base. The term is typically used as a synonym for deductive DBMS (see the next 
paragraph). 

Deductive DBMS: A DBMS that supports the proof-theoretic view of databases, and 

in particular is capable of deducing additional information from the extensional data¬ 

base by applying inferential (i.e., deductive) rules that are stored in the intensional 

database. A deductive DBMS will almost certainly support recursive rules and so per¬ 
form recursive query processing. 

Deductive database (deprecated term): A database that is managed by a deductive 

DBMS. 

Expert DBMS: Synonym for deductive DBMS. 

Expert database (deprecated term): A database that is managed by an expert DBMS. 

Inferential DBMS: Synonym for deductive DBMS. 

Logic-based system: Synonym for deductive DBMS. 

Logic database (deprecated term): Synonym for deductive database. 

Logic as a data model: A data model consists of (at least) objects, integrity rules, and 
operators. In a deductive DBMS, the objects, integrity rules, and operators are all rep¬ 

resented in the same uniform way (namely, as axioms in a logic language such as 

Datalog); indeed, as explained in Section 24.6, a database in such a system can be 
regarded, precisely, as a logic program containing axioms of all three kinds. In such a 

system, therefore, we might legitimately say that the abstract data model for the sys¬ 

tem is logic itself. 
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EXERCISES 

24.1 Use the resolution method to see whether the following constitute valid proofs in the proposi¬ 

tional calculus: 

a. A => B, C => B, D => ( A OR C ) , D |- B 

b. ( A => B ) AND ( C => D ) , ( B => E AND D => F ) , 
NOT ( E AND F ) , A => C \- NOT A 

C. ( A OR B ) => D, D => NOT ( E OR F ) , NOT ( B AND C AND E ) 
\- NOT ( G => NOT ( C AND H ) ) 

24.2 Convert the following WFFs to clausal form: 

a. FORALL X ( FORALL y 
( P ( x. y 1 i => EXISTS z ( 9 ( x. 2 ) ) ) ) 

b. EXISTS X ( EXISTS y 
( P ( X, y 1 i => FORALL z ( 9 ( x. 2 ) ) ) ) 

c. EXISTS X ( EXISTS y 
( P ( x. y l i => EXISTS z ( 9 ( X, 2 ) ) ) ) 

24.3 The following is a fairly standard example of a logic database: 

MAN ( Adam ) 
WOMAN ( Eve ) 
MAN ( Cain ) 
MAN ( Abel ) 
MAN ( Enoch ) 

PARENT ( Adam, Cain ) 
PARENT ( Adam, Abel ) 
PARENT ( Eve, Cain ) 
PARENT ( Eve, Abel ) 
PARENT ( Cain, Enoch ) 

FATHER ( 2, y ) PARENT ( 2, y ) AND MAN ( 2 ) 
MOTHER ( 2, y ) <= PARENT ( 2, y ) AND WOMAN ( 2 ) 

SIBLING ( 2, y ) PARENT ( 2, X ) AND PARENT ( 2, 

BROTHER ( 2, y ) SIBLING ( 2, y ) AND MAN ( 2 ) 

SISTER ( 2, y ) <= SIBLING ( 2, y ) AND WOMAN ( 2 

ANCESTOR ( 2, y ) «= PARENT ( 2, y ) 
ANCESTOR ( 2, y ) <= PARENT ( 2, z ) AND ANCESTOR ( 

Use the resolution method to answer the following queries: 

a. Who is the mother of Cain? 

b. Who are Cain’s siblings? 

c. Who are Cain’s brothers? 

d. Who are Cain’s sisters? 

e. Who are Enoch’s ancestors? 

24.4 Explain the terms interpretation and model in your own words. 

24.5 Write a set of Datalog axioms for the definitional portion (only) of the suppliers-parts- 

projects database. 

24.6 Give Datalog solutions, where possible, to Exercises 7.13-7.50. 

24.7 Give Datalog solutions, where possible, to Exercise 9.3. 
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24.7 Herve Gallaire, Jack Minker, and Jean-Marie Nicolas: “Logic and Databases: A Deductive 

Approach,” ACM Comp. Surv 16, No. 2 (June 1984). 

24.8 Veronica Dahl: “On Database Systems Development Through Logic,” ACM TODS 7, No. 1 

(March 1982). 

A good and clear description of the basic ideas underlying logic-based databases, with exam¬ 

ples taken from a Prolog-based prototype implemented by Dahl in 1977. 

24.9 Rakesh Agrawal: “Alpha: An Extension of Relational Algebra to Express a Class of Recursive 

Queries,” IEEE Transactions on Software Engineering 14, No. 7 (July 1988). 

Proposes a new operator called alpha that supports the formulation of “a large class of recur¬ 

sive queries” (actually a superset of linear recursive queries) while staying within the frame¬ 

work of conventional relational algebra. The contention is that the alpha operator is sufficiently 

powerful to deal with most practical problems involving recursion, while at the same time 

being easier to implement efficiently than any completely general recursion mechanism would 

be. The paper gives several examples of the use of the proposed operator; in particular, it shows 

how the transitive closure and “gross requirements” problems (see reference [24.12] and Sec¬ 

tion 24.6, respectively) can both easily be handled. 

Reference [24.14] describes some related work on implementation. Reference [24.13] is 

also relevant. 

24.10 Raymond Reiter: “Towards a Logical Reconstruction of Relational Database Theory,” in 

Michael L. Brodie, John Mylopoulos, and Joachim W. Schmidt (eds.), On Conceptual Modelling: 

Perspectives from Artificial Intelligence, Databases, and Programming Languages. New York, N.Y.: 

Springer-Verlag (1984). 

As mentioned in Section 24.2, Reiter’s work was by no means the first in this area—many 

researchers had investigated the relationship between logic and databases before (see, e.g., ref¬ 

erences [24.3], [24.4], and [24.8])—but it seems to have been Reiter’s “logical reconstruction 

of relational theory” that spurred much of the subsequent activity and current high degree of 

interest in the field. 

24.11 Francois Bancilhon and Raghu Ramakrishnan: “An Amateur’s Introduction to Recursive 

Query Processing Strategies,” Proc. 1986 ACM SIGMOD Int. Conf. on Management of Data, Wash¬ 

ington, D.C. (May 1986). Republished in revised form in Michael Stonebraker (ed.), Readings in 

Database Systems. San Mateo, Calif.: Morgan Kaufmann (1988). 

An excellent overview. The paper starts by observing that there is both a positive and a negative 

side to all of the research on the recursive query implementation problem. The positive side is 

that numerous techniques have been identified that do at least solve the problem; the negative 

side is that it is not at all clear how to choose the technique that is most appropriate in a given 

situation (in particular, most of the techniques are presented in the literature with little or no 

discussion of performance characteristics). Then, after a section describing the basic ideas of 

logic databases, the paper goes on to describe a number of proposed algorithms: naive evalua¬ 

tion, seminaive evaluation, iterative query/subquery, recursive query/subquery, APEX, Prolog, 

Henschen/Naqvi, Aho-Ullman, Kifer-Lozinskii, counting, magic sets, and generalized magic 

sets. The paper compares these different approaches on the basis of application domain (i.e., 

the class of problems to which the algorithm can usefully be applied), performance, and ease of 

implementation. The paper also includes performance figures (with comparative analyses) from 

testing the various algorithms on a simple benchmark. 
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24.12 Yannis E. Ioannidis: “On the Computation of the Transitive Closure of Relational Operators,” 

Proc. 12th Int. Conf. on Very Large Data Bases, Kyoto, Japan (August 1986). 

Proposes a divide-and-conquer algorithm for implementing transitive closure. See also refer¬ 
ences [24.9], [24.13-24.15], and [24.27, 24.28]. 

24.13 H. V. Jagadish, Rakesh Agrawal, and Linda Ness: “A Study of Transitive Closure as a Recur¬ 

sion Mechanism,” Proc. 1987 ACM SIGMOD Int. Conf. on Management of Data, San Francisco, 
Calif. (May 1987). 

To quote from the abstract: “[This paper shows] that every linearly recursive query can be 

expressed as a transitive closure possibly preceded and followed by operations already avail¬ 

able in relational algebra.” The authors therefore suggest that providing an efficient implemen¬ 

tation of transitive closure is sufficient as a basis for providing an efficient implementation of 

linear recursion in general, and hence for making deductive DBMSs efficient on a large class of 
recursive problems. 

24.14 Rakesh Agrawal and H. Jagadish: “Direct Algorithms for Computing the Transitive Closure 

of Database Relations,” Proc. 13th Int. Conf. on Very Large Data Bases, Brighton, UK (September 
1987). 

Proposes a set of transitive closure algorithms that “do not view the problem as one of evaluat¬ 

ing a recursion, but rather obtain the closure from first principles” (hence the term direct). The 

paper includes a useful summary of earlier work on other direct algorithms. 

24.15 Hongjun Lu: “New Strategies for Computing the Transitive Closure of a Database Relation,” 

Proc. 13th Int. Conf. on Very Large Data Bases, Brighton, UK (September 1987). 

More algorithms for transitive closure. Like reference [24.14], the paper also includes a useful 

survey of earlier approaches to the problem. 

24.16 Francois Bancilhon, David Maier, Yehoshua Sagiv, and Jeffrey D. Ullman: “Magic Sets and 

Other Strange Ways to Implement Logic Programs,” Proc. 5th ACM SIGMOD-SIGACT Symposium 

on Principles of Database Systems (1986). 

The basic idea of “magic sets” is to introduce new transformation rules (“magic rules”) into the 

optimization process dynamically. Those rules are used to replace the original query by a mod¬ 

ified version that is more efficient, because it reduces the set of “relevant facts” (see Section 

24.7). The details are a little complex, and beyond the scope of these notes; refer to the paper or 

to Bancilhon and Ramakrishnan’s survey [24.11] or the books by Ullman [24.5] or Gardarin 

and Valduriez [24.6] for more explanation. We remark that numerous variations on the basic 

idea have subsequently been devised—see, for example, references [24.17-24.19]. See also 

references [18.22-18.24]. 

24.17 Catriel Beeri and Raghu Ramakrishnan: “On the Power of Magic,” Proc. 6th ACM SIGMOD- 

SIGACT Symposium on Principles of Database Systems (1987). 

24.18 Domenico Sacca and Carlo Zaniolo: “Magic Counting Methods,” Proc. 1987 ACM SIGMOD 

Int. Conf. on Management of Data, San Francisco, Calif. (May 1987). 

24.19 Georges Gardarin: “Magic Functions: A Technique to Optimize Extended Datalog Recursive 

Programs,” Proc. 13th Int. Conf. on Very Large Data Bases, Brighton, UK (September 1987). 

24.20 A. Aho and J. D. Ullman: “Universality of Data Retrieval Languages,” Proc. 6th ACM Sym¬ 

posium on Principles of Programming Languages, San Antonio, Tex. (January 1979). 
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Given a sequence of relations r, f(r),f(f(r)), . . . (where/is some fixed function), the least fix- 

point of the sequence is defined to be a relation r* derived in accordance with the following 

naive evaluation algorithm (see Section 24.7): 

r* := r ; 
do until r* stops growing ; 

r* := r* UNION f(r*) ; 
end ; 

This paper proposes the addition of a least fixpoint operator to the relational algebra. 

24.21 Jeffrey D. Ullman: “Implementation of Logical Query Languages for Databases,” A CM TODS 

10, No. 3 (September 1985). 

Describes an important class of implementation techniques for possibly recursive queries. The 

techniques are defined in terms of “capture rules” on “rule/goal trees,” which are graphs that 

represent a query strategy in terms of clauses and predicates. The paper defines several such 

rules—one that corresponds to the application of relational algebra operators, two more that 

correspond to forward and backward chaining, respectively, and a “sideways” rule that allows 

results to be passed from one subgoal to another. Sideways information passing later became 

the basis for the so-called magic set techniques [24.16-24.19], 

24.22 Shalom Tsur and Carlo Zaniolo: “LDL: A Logic-Based Data-Language,” Proc. 12th Int. 

Conf. on Very Large Data Bases, Kyoto, Japan (August 1986). 

LDL includes (1) a “set” type generator, (2) negation (based on set difference), (3) data defini¬ 

tion operations, and (4) update operations. It is a pure logic language (there are no ordering 

dependencies among statements) and is compiled, not interpreted. 

24.23 Fran?ois Bancilhon: “Naive Evaluation of Recursively Defined Relations,” in Michael Brodie 

and John Mylopoulos (eds.). On Knowledge Base Management Systems: Integrating Database and 

Al Systems. New York, N.Y.: Springer-Verlag (1986). 

24.24 Eliezer L. Lozinskii: “A Problem-Oriented Inferential Database System,” ACM TODS 11, No. 

3 (September 1986). 

The source of the concept of “relevant facts.” The paper describes a prototype system that 

makes use of the extensional database to curb the otherwise very fast expansion of the search 

space that inferential techniques typically give rise to. 

24.25 Arnon Rosenthal et al.: “Traversal Recursion: A Practical Approach to Supporting Recursive 

Applications,” Proc. 1986 ACM SIGMOD Int. Conf. on Management of Data, Washington, D.C. 

(June 1986). 

24.26 Michael Kifer and Eliezer Lozinskii: “On Compile Time Query Optimization in Deductive 

Databases by Means of Static FilteringACM TODS 15, No. 3 (September 1990). 

24.27 Rakesh Agrawal, Shaul Dar, and H. V. Jagadish: “Direct Transitive Closure Algorithms: 

Design and Performance Evaluation,” ACM TODS 15, No. 3 (September 1990). 

24.28 H. V. Jagadish: “A Compression Method to Materialize Transitive Closure,” A CM TODS 15, 

No. 4 (December 1990). 

Proposes an indexing technique that allows the transitive closure of a given relation to be stored 

in compressed form, such that testing to see whether a given tuple appears in the closure can be 

done via a single table lookup followed by an index comparison. 
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PART 

OBJECTS, RELATIONS, AND XML 

Note: Like Chapter 20, the chapters in this part of the book rely heavily on material first 

discussed in Chapter 5. If you originally gave that chapter a “once over lightly” reading, 

you might want to go back and revisit it now (if you have not already done so) before 

studying these chapters in any depth. 

Object technology is an important discipline in the field of software engineering in 

general. It is therefore natural to ask whether it might be relevant to the field of database 

management in particular, and if so what that relevance might be. While there is less 

agreement on these questions than there might be, some kind of consensus does seem to 

be emerging. When object database systems first appeared, some industry figures claimed 

they would take over the world, replacing relational systems entirely; other authorities felt 

they were suited only to certain very specific problems and would never capture more 

than a tiny fraction of the overall market. While this debate was raging, systems support¬ 

ing a “third way” began to appear: systems, that is, that combined object and relational 

technologies in an attempt to get the best of both worlds. And it now looks as if those 

“other authorities” were right: Pure object systems might have a role to play, but it is a 

niche role, and relational systems will continue to dominate the market for the foreseeable 

future—not least because those “object/relational” systems are really just relational sys¬ 

tems after all, as we will see. 

More recently, one particular kind of object that has attracted a great deal of attention 

is XML documents; the problem of keeping such documents in a database and querying 

and updating them has rapidly become a problem of serious pragmatic significance. 

“XML databases”—that is, databases that contain XML documents and nothing else—are 

possible; however, it would clearly be preferable, if possible, to integrate XML documents 

with other kinds of data in either an object or a relational (or “object/relational”) database. 

The chapters in this part of the book examine such matters in depth. Chapter 25 con¬ 

siders pure object systems; Chapter 26 addresses object/relational systems; and Chapter 

27 discusses XML. 





Object Databases 

CHAPTER 
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25.1 Introduction 

25.2 Objects, Classes, Methods, and Messages 

25.3 A Closer Look 

25.4 A Cradle-to-Grave Example 

25.5 Miscellaneous Issues 

25.6 Summary 

Exercises 

References and Bibliography 

25.1 INTRODUCTION 

There was a great deal of interest in the late 1980s to mid 1990s in object-oriented data¬ 

base systems (object systems for short). Such systems were even regarded in some quar¬ 

ters as serious competitors to relational systems (or SQL systems, at any rate). Few agree 

with that position today; most IT people now feel that, while object systems might well 

have a role to play, that role is a comparatively limited one [25.33], Nevertheless, such 

systems are still worth studying. In this chapter, therefore, we examine object systems in 

detail; we introduce and explain basic object concepts, analyze and criticize those con¬ 

cepts where appropriate, and offer some opinions regarding the suitability of incorporating 

such concepts into the database systems of the future. 

Why was there so much interest in object systems in the first place? Well, it was cer¬ 

tainly true at the time that SQL products were (and indeed still are) inadequate in a variety 

of ways. Some people even argued that the underlying theory—that is, the relational 

model—was and is inadequate too. And since some of the new features we seemed to 

need in DBMSs had existed for years in object programming languages such as C++ and 

Smalltalk, it was natural to investigate the idea of incorporating those features into data¬ 

base systems. And many researchers, and some vendors, did exactly that. 
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approximation to a CAD/CAM database) concerns rectangles, all of which we assume 

for simplicity are “square on” to the X and Y axes—that is, all of their sides are either 

vertical or horizontal. Any individual rectangle can thus be uniquely identified by the 

coordinates (xl,yl) and (x2,y2) of its bottom left and top right corners, respectively (see 

Fig. 25.1). In SQL: 

CREATE TABLE RECTANGLES 
( XI Y1 X2 Y2 , 

PRIMARY KEY ( XI, Yl, X2, Y2 ) ) ; 

Now consider the query “Get all rectangles that overlap the unit square (0,0,1,1)” (see 

Fig. 25.2). The “obvious” formulation of this query is: 

SELECT 
FROM RECTANGLES 
WHERE ( XI >= 0 AND 

/* 
XI <= 1 AND Yl >= 0 AND Yl <= 1 ) 
bottom left corner inside unit square */ 

OR ( X2 >= 0 AND 
/* 

X2 <= 1 AND Y2 >= 0 AND Y2 <= 1 ) 
top right corner inside unit square */ 

OR ( XI >= 0 AND 
/* 

XI <= 1 AND Y2 >= 0 AND Y2 <= 1 ) 
top left corner inside unit square */ 

OR ( X2 >= 0 AND 
/* 

X2 <= 1 AND Yl >= 0 AND Yl <= 1 ) 
bottom right corner inside unit square */ 

OR ( XI <= 0 AND 
/* 

X2 >= 1 AND Yl <= 0 AND Y2 >= 1 ) 
rectangle totally includes unit square */ 

OR ( XI <= 0 AND 
/* 

X2 >= 1 AND Yl >= 0 AND Yl <= 1 ) 
bottom edge crosses unit square */ 

OR ( XI >= 0 AND 
/* 

XI <= 1 AND Yl <= 0 AND Y2 >= 1 ) 
left edge crosses unit square */ 

OR ( X2 >= 0 AND 
/* 

X2 <= 1 AND Yl <= 0 AND Y2 >= 1 ) 
right edge crosses unit square */ 

OR ( XI <= 0 AND 
/* 

X2 >= 1 AND Y2 >= 0 AND Y2 <= 1 ) ; 
top edge crosses unit square */ 

Fig. 25.1 The rectangle (xl, yl,x2, yl) 

(0,1) (1,1) 

(0,0) (1,0) 

Fig. 25.2 The unit square (0,0,1,1) 
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(Exercise: Convince yourself that this formulation is correct.) 

With a little further thought, however, it can be seen that the query can be more simply 
expressed thus: 

SELECT ... 
FROM RECTANGLES 
WHERE ( XI <= 1 AND Y1 <= 1 

/* bottom left corner is "downwind" of (1,1) */ 
AND X2 >= 0 AND Y2 >= 0 ) ; 

/* top right corner is "upwind" of (0,0) */ 

(Exercise 25.3 at the end of the chapter asks you to convince yourself that this formulation 
is correct too.) 

The question now is: Could the system optimizer transform the original long form of 

the query into the corresponding short form? In other words, suppose the user expresses 

the query in the “obvious”—and obviously inefficient—long form; would the optimizer 

be capable of reducing that query to the more efficient short form before executing it? 
Reference [25.15] gives evidence to suggest that the answer to this question is almost cer¬ 

tainly no, at least as far as today’s commercial optimizers are concerned. 

In any case, although we just described the short form as “more efficient,” perfor¬ 

mance on that short form will still be poor in many products, given the usual storage 

structures—for example, B-tree indexes—supported by those products. (On average, the 

system will examine 50 percent of the index entries for each of XI, Yl, X2, and Y2.) In 

other words, the problem is more than just one of good optimization. 

We see, therefore, that classical SQL products are indeed inadequate in certain 

respects. To be specific, problems like the rectangles problem show clearly that certain 

“simple” user requests (a) are unreasonably difficult to express, and (b) execute with 

unacceptably poor performance, in those products. Such considerations provided much of 

the motivation behind the original interest in object systems. 
Note: We will give a “good” solution to the rectangles problem in the next chapter 

(Section 26.1).1 

25.2 OBJECTS, CLASSES, METHODS, AND MESSAGES 

In this section, we introduce some of the principal concepts of the object approach: 

objects themselves (of course), object classes, methods, and messages. We also relate 
these concepts to more familiar concepts where appropriate. In fact, it is probably helpful 

to show a rough mapping of object terms to traditional terminology right at the outset 

(see Fig. 25.3). 
Caveat: Before we start getting into details, we should warn you not to expect the 

kind of precision in the object world that you are (or should be) accustomed to in the rela¬ 

tional world. Indeed, many object concepts—or the published definitions of those con¬ 

cepts, at any rate—are quite imprecise, and there is very little true consensus and much 

1 That solution involves a user-defined type. SQL did not support user-defined types when object systems 
first came on the market; now it does. In fact, SQL now includes several features that make it somewhat 
more “object-like”; however, we deliberately defer discussion of such features to the next chapter. 
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Object term Traditional term 

immutable object value 
mutable object variable 
object class type 
method operator 
message operator invocation 

Fig. 25.3 Object terminology (summary) 

disagreement, even at the most basic level (as a careful comparative reading of, e.g., refer¬ 

ences [25.10], [25.39], and [25.42] will show). In particular, there is no abstract, formally 

defined “object data model,” nor is there even consensus on an informal model. (For such 

reasons we usually place phrases such as “the object model” in quotes in this chapter.) In 

fact, there seems, rather surprisingly, to be much confusion over levels of abstraction: spe¬ 

cifically, over the crucial distinction between model and implementation, as we will see. 

You should also be warned that, as a consequence of the foregoing state of affairs, the 

definitions and explanations presented in this chapter are not universally agreed upon and 

do not necessarily correspond 100 percent to the way any given system actually works. 

Indeed, just about every one of those definitions and explanations could be challenged by 

some other writer in this field, and probably will be. 

An Overview of Object Technology 

Question: What is an object? Answer: Everything! 

It is a basic tenet of the object approach that “everything is an object” (sometimes 

“everything is a first-class object”). Some objects are immutable; examples might be 

integers (e.g., 3, 42) and character strings (e.g., “Mozart”, “Hayduke Lives!”). Other 

objects are mutable; examples might be the department and employee objects mentioned 

near the beginning of Section 25.1. In traditional terminology, therefore, immutable 

objects correspond to values and mutable objects to variables—where the values and 

variables in question can be of arbitrary complexity (i.e., they can make use of any or all 

of the usual programming language types and type generators: numbers, strings, lists, 

arrays, stacks, etc.). Note: In some systems the term object is reserved for the mutable 

case only, the term value—sometimes literal (!)—then being used for the immutable case. 

Even in those systems where the term object does strictly refer to both cases, you should 

be aware that it is common in informal contexts to take the term to mean a mutable object 

specifically, barring explicit statements to the contrary. 

Every object has a type (the object term is class). Individual objects are sometimes 

referred to as object instances specifically (also just as instances), in order to distinguish 

them from the corresponding object type or class. Also, please note that we are using the 

term type here in its usual programming language sense (as in Chapter 5); in particular, 

: Note, however, that the unqualified term variable is typically used in object contexts to mean, very spe¬ 
cifically, a variable—either a local variable or an “instance variable”—that holds an object ID (see later in 
this section). 
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in this sense. As a consequence, it is necessary in practice to distinguish between public 

and private instance variables; private ones truly are hidden, but public ones are not. 

By way of example, suppose we have an object class of line segments, and suppose 

line segments are physically represented by their BEGIN and END points (we used a sim¬ 

ilar example in Chapter 5, as you might recall). Then the system will typically allow the 
user to write expressions of the form A.BEGIN and Is.END to “get” the BEGIN and END 

points for a given line segment Is. Thus, BEGIN and END are public instance variables 

(note that, by definition, access to public instance variables must be via some special syn¬ 

tax—typically dot qualification, as our example suggests). And if the physical representa¬ 

tion of line segments is now changed—say to the combination of MIDPOINT, LENGTH, 

and SLOPE—then any program that includes expressions such as Is.BEGIN and A.END 
will now break. In other words, we have lost data independence. 

Observe now that public instance variables are logically unnecessary. Suppose we 

define methods GET_BEGIN, GET_END, GET_MIDPOINT, GET_LENGTH, and 

GET_SLOPE for line segments. Then the user can “get” the begin point, the end point, 

the midpoint, and so on, for line segment Is by means of appropriate method invocations: 

GET_BEGIN(/s), GET_END(/s), GET_MIDPOINT(/s), and so on. And now it makes no 

difference what the physical representation of line segments is!—just as long as the vari¬ 

ous GET_ methods are implemented appropriately, and reimplemented appropriately if 

that physical representation changes. Furthermore, there would be nothing wrong in 

allowing the user to abbreviate, for example, GET_BEGIN(/s) to just /s.BEGIN as a 

shorthand; note that the availability of that shorthand would not make BEGIN into a pub¬ 

lic instance variable. Sadly, however, real systems do not usually operate in this manner; 

usually, public instance variables really do expose the physical representation (or part of 
it, at any rate, though there might be some additional instance variables that truly are pri¬ 

vate and hidden). In accordance with common practice, therefore, we will assume in what 

follows, until further notice, that objects typically do expose certain public instance vari¬ 

ables, even though such exposure is logically unnecessary. 

There is another point that needs to be made here. Suppose certain arguments— 

which the user might well think of, loosely, as “instance variable” arguments—happen to 

be required in order to create objects of some particular class.5 Then it does not follow 
that those same “instance variables” can be used for arbitrary purposes. For example, sup¬ 

pose that in order to create a line segment we have to specify the applicable BEGIN and 

END points. Then it does not follow that (for example) we can get all line segments with a 

given BEGIN point; rather, such a request will be possible only if a suitable method has 

been defined. 

Finally, note that some systems support a variation on private instance variables 
called protected instance variables. If objects of class C have a protected instance vari¬ 

able P, then P is visible to the code that implements the methods defined for class C (of 

course) and to the code that implements the methods defined for any subclass (at any 

level) of class C. See the end of Section 25.3 for a brief discussion of subclasses. 

> The objects in question must necessarily be mutable ones, by the way (why?). 
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Object Identity 

Every object has a unique identifier called its object ID or OID. Immutable objects like 

the integer 42 are self-identifying; that is, they serve as their own OIDs. By contrast, muta¬ 

ble objects have (conceptual) addresses as their OIDs, and those addresses can be used 

elsewhere in the database as (conceptual) pointers to the objects in question. While the 

actual values of such addresses will probably not be directly exposed to the user, they can 

nevertheless be assigned to program variables and to instance variables within other 

objects. See Sections 25.3 and 25.4 for further discussion. 

We remark in passing that it is sometimes claimed that it is an advantage of object 

systems that two distinct objects can be identical in all user-visible respects—that is, be 

duplicates of one another—and yet be regarded as distinct precisely because they have 

distinct OIDs. To this writer, however, this claim seems specious. For how can the user 

distinguish between two such objects, externally? See references [6.3], [6.6], and (espe¬ 

cially) [25.17] for further discussion of this issue. 

25.3 A CLOSER LOOK 

We now take a closer look at some of the ideas introduced in the previous section. Sup¬ 
pose we wish to define two object classes, DEPT (departments) and EMP (employees). 

Suppose also that the user-defined classes MONEY and JOB have already been defined 

and the class CHAR is built in. Then the necessary class definitions for DEPT and EMP 

might look somewhat as follows (hypothetical syntax): 

CLASS DEPT 
PUBLIC ( DEPT# CHAR, 

DNAME CHAR, 
BUDGET MONEY, 
MGR OID ( EMP ), 
EMPS OID ( SET ( OID ( EMP 

METHODS ( HIRE EMP ( OID ( EMP ) ) code , 
FIRE EMP ( OID ( EMP ) ) code , 

CLASS EMP 
PUBLIC ( EMP# CHAR, 

ENAME CHAR, 
SALARY MONEY, 
POSITION OID ( JOB ) ) 

METHODS ( ... ) ... t 

Points arising: 

1. We have chosen to represent departments and employees by means of a containment 

hierarchy, in which EMP objects are conceptually contained within DEPT objects. 

Thus, objects of class DEPT include a public instance variable called MGR, represent¬ 

ing the given department’s manager, and another one called EMPS, representing the 

given department’s employees. More precisely, objects of class DEPT include a public 

instance variable called MGR whose value is a pointer to (i.e., the OID of) an em¬ 

ployee, and another one called EMPS whose value is a pointer to a set of pointers to 
employees. We will elaborate on the containment hierarchy notion in a few moments. 
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DEPT: DEPT#: DO 1 

DNAME: Mktg 

BUDGET: $1,000,000 

MGR: EMP#: E001 

ENAME: Smith 

SALARY: 

POSITION: 

$50,000 

: job 

EMPS: 

EMP#: E001 

ENAME: Smith 

SALARY: 

POSITION: 

$50,000 

: job 

Fig. 25.5 Sample DEPT and EMP instances as a containment hierarchy 

The representation shown in Fig. 25.5 is certainly more consistent with the contain¬ 

ment hierarchy interpretation. However, it obscures the important fact that (as already 

explained) objects usually contain not other objects as such but rather OIDs of—that is, 

pointers to—other objects. For example, Fig. 25.5 clearly suggests that the DEPT object 

for department D01 includes the EMP object for employee E001 twice (implying among 
other things that employee E001 might be represented, inconsistently, as having two dif¬ 

ferent salaries in its two different appearances). This sleight of hand is the source of much 

confusion, which is why we prefer pictures like that of Fig. 25.4. 

As an aside, we note that real object class definitions often increase the confusion, 

because they often do not define instance variables as “OIDs” (as our hypothetical syntax 

does) but instead directly reflect the containment hierarchy interpretation. Thus, for exam¬ 
ple, instance variable EMPS in object class DEPT might be defined not as OID(SET 

(OID(EMP))) but just as SET(EMP). Though cumbersome, we prefer our style of defini¬ 

tion, for clarity and accuracy. 
It is worth pointing out too that all of the old criticisms of hierarchies in general as 

found in, for example, IMS apply to containment hierarchies in particular. Space does not 

permit detailed consideration of those criticisms here; suffice it to say that the overriding 

issue is lack of symmetry. In particular, hierarchies do not lend themselves well to the 

representation of many-to-many relationships. Consider suppliers and parts, for instance: 
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Do the suppliers contain the parts, or vice versa? Or both? What about suppliers, parts, 

and projects? 

Actually matters are more confused than we have been pretending so far. On the one 

hand, it is claimed (as previously explained) that objects are hierarchies, which means they 

are subject to the usual criticisms of hierarchies, as already noted. On the other hand, how¬ 

ever, it is clear from figures like Fig. 25.4 that objects are not really hierarchies at all but 

tuples—where the tuple components can be any of the following: 

1. Immutable “subobjects” (i.e., self-identifying values such as integers or money 

amounts) 

2. OIDs of mutable “subobjects” (i.e., pointers to other, possibly shared, mutable 

objects) 

3. Sets, lists, arrays,... of 1, 2, or 3 

plus certain hidden components. Note point 3 in particular: Object systems typically sup¬ 

port several “collection” type generators—for example, SET, LIST, ARRAY, BAG, and so 

on (though usually not RELATION!)—and those generators can be combined in arbitrary 

ways. For example, an array of lists of bags of arrays of pointers to integer variables might 

constitute a single object in appropriate circumstances. See the subsection “Class vs. 

Instance vs. Collection,” later in this section, for further discussion. 

Object IDs Revisited 

Relational DBMSs typically rely on user-defined, user-controlled keys—“user keys” for 

short—for entity identification and referencing purposes. (In fact, pointer-style OIDs are 

expressly prohibited in relational databases, as we know from Chapters 1 and 3; see also 

further discussion in Chapter 26.) It is well known, however, that user keys do suffer from 

a number of problems; references [ 14.11] and [14.21] discuss such problems in detail and 

argue that relational DBMSs should support system-defined keys (“surrogates”) instead, at 

least as an option. And the argument in favor of OIDs in object systems is similar, some¬ 

what, to the argument in favor of surrogates in relational systems. (Do not, however, make 

the mistake of equating the two: Surrogates are regular values and are visible to the user, 

while OIDs are addresses—at least conceptually—and are hidden from the user. See ref¬ 

erence [25.17] for an extensive discussion of these distinctions and related issues.) Points 
arising: 

1. First, note that OIDs do not avoid the need for user keys, as we will see in Section 

25.4. To be more precise, user keys are still needed for interaction with the outside 

world, even if all object cross-referencing inside the database is done via OIDs. 

2. What is the OID for a derived object?—for example, the “join” of a given EMP and 

the corresponding DEPT, or the “projection” of a given DEPT over BUDGET and 

MGR ? (This question of derived objects is an important one, by the way, but we have 

to defer it for now. See Section 25.5.) 

3. OIDs are the source of the often-heard criticisms to the effect that object systems 
look like “CODASYL warmed over”—where, as explained in Chapter 1, the term 





828 Part VI / Objects, Relations, and XML 

OID is given in the program variable E to the (previously empty) set of OIDs 

whose OID is given in the EMP_COLL object whose OID is given in the program 

variable ALL_EMPS. 

After the foregoing sequence of operations, we can say, loosely, that the variable 

ALL_EMPS denotes a collection of EMPs that currently contains just one EMP (viz., 

employee E001). By the way, note the need to mention a user key in this latter sentence! 

Naturally, we can have any number of distinct, and possibly overlapping, “sets of 

employees” at any given time: 

PROGRAMMERS := EMP_COLL NEW ( ) ; 

PROGRAMMERS ADD ( E ) ; 

HIGHLY_PAID := EMP_COLL NEW ( ) ; 

HIGHLY_PAID ADD ( E ) ; 

and so on. Contrast the state of affairs in SQL systems. For example, the SQL statement 

CREATE TABLE EMP 
( EMP# . NOT NULL, 

ENAME . NOT NULL, 
SALARY .NOT NULL, 
POSITION ... NOT NULL ) ... ; 

creates a type and a collection simultaneously; the type is defined by the table heading, and 

the (initially empty) collection is the table body. Likewise, the SQL statement 

INSERT INTO EMP (...) VALUES ( ... ) ; 

creates an individual EMP row—we assume for simplicity that the INSERT is indeed 

inserting just a single row—and adds it to the EMP collection simultaneously. In SQL, 

therefore: 

1. There is no way for an individual EMP “object” to exist without being part of some 

“collection”: in fact, exactly one “collection” (but see subsequent discussion, and 

note in any case that thinking of an EMP row as an “object” is somewhat suspect, as 

we will see in Chapter 26). 

2. There is no direct way to create two distinct “collections” of the same “class” of EMP 

“objects” (but see subsequent discussion). 

3. There is no direct way to share the same “object” across distinct “collections” of 

EMP “objects” (but see subsequent discussion). 

At least, the foregoing are claims that are sometimes heard. But they do not stand up 

to close scrutiny. First, the foreign key mechanism can be used to achieve an analogous 

effect in each case; for example, we could define two more base tables called 
PROGRAMMERS and HIGHLY_PAID, each of them containing just the employee num¬ 

bers for the relevant employees. Second (and much more important), the view mechanism 

can also be used to achieve a similar effect. For example, we could define PROGRAMMERS 

and HIGHLY PAID as views of the EMP base table: 
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CREATE VIEW PROGRAMMERS 
AS SELECT EMP#, ENAME, SALARY, POSITION 

FROM EMP 
WHERE POSITION = 'Programmer' ; 

CREATE VIEW HIGHLY PAID 
AS SELECT EMP#, ENAME, SALARY, POSITION 

FROM EMP 
WHERE SALARY > some threshold ; 

And now it is perfectly possible for the very same EMP “object” to belong to two or more 

“collections” simultaneously. What is more, membership in those collections that happen 

to be views is handled automatically by the system, not manually by the programmer. 

We close this discussion by noting that there is an illuminating parallel between the 

mutable objects of object systems and the explicit dynamic variables of certain program¬ 

ming language systems (PL/I’s BASED variables are a case in point). Like mutable objects 

of a given class, there can be any number of distinct explicit dynamic variables of a given 

type, the storage for which is allocated at run time by explicit program action. Furthermore, 

those distinct variables, again like individual mutable objects, have no name, and thus must 

be addressed via pointers. In PL/I, for example, we might write: 

DCL XYZ INTEGER BASED ; /* XYZ is a BASED variable */ 
DCL P POINTER ; /* P is a pointer variable */ 

ALLOCATE XYZ SET ( P ) ; /* create a new XYZ instance */ 
/* and set P to point to it */ 

P -> XYZ = 3 ; /* assign the value 3 to the XYZ */ 
/* instance pointed to by P */ 

(and so on). This PL/I code bears a striking resemblance to the object code shown earlier; 

in particular, the declaration of the BASED variable is akin to the creation of an object 

class, and the ALLOCATE operation is akin to the creation of a NEW instance of that class. 

We can thus see that the reason OIDs are necessary in the object model is precisely 

because, in general, the objects they identify do not possess any other unique name—just 

like BASED variable instances in PL/I. 

Class Hierarchies 

No treatment of basic object concepts would be complete without some mention of class 

hierarchies (not to be confused with containment hierarchies). However, the “class hierar¬ 

chy” concept in the object world is analogous to the type hierarchy concept, already dis¬ 

cussed at length in Chapter 20; we therefore content ourselves here with a few brief 

definitions (paraphrased from Chapter 20, for the most part) and a few pertinent observa¬ 

tions. Note: We remind you that there is little consensus—in the object world or anywhere 
else—on an abstract inheritance model, and different inheritance systems therefore differ 

from one another considerably at the detail level. 
First of all, object class Y is said to be a subclass of object class X—equivalently, 

object class X is said to be a superclass of object class Y—if and only if every object of 

class Y is necessarily an object of class X (“T ISA X"). Objects of class Y then inherit the 
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public instance variables and methods that apply to class X.l) Inheriting instance variables 

is called structural inheritance, inheriting methods is called behavioral inheritance. In a 

pure system, there is only behavioral inheritance, no structural inheritance—at least for 

scalar or fully encapsulated objects—because there is no structure to inherit (no structure 

visible to the user, that is). In practice, however, object systems are typically not pure and 

do support some degree of structural inheritance (meaning, to stress the point, inheritance 

of public instance variables). Note: If a subclass has additional public instance variables, 

over and above the ones it inherits from its (immediate) superclass, it is said to extend that 

superclass. 

If class Y is a subclass of class X, the user can always use an object of class Y wher¬ 

ever an object of class X is permitted (e.g., as an argument to various methods)—this is 

the principle of substitutability—and thereby obtain code reuse. Because object systems 

often do not clearly distinguish between values and variables, however—that is, between 

immutable and mutable objects—they tend to run into trouble over the distinction 

between value and variable substitutability (see Chapter 20 for further discussion). Be that 

as it may, the ability to apply the same method to objects of class X and class Y is referred 

to as polymorphism. 

The system will come equipped with certain built-in class hierarchies. In OPAL, for 

example (see Section 25.4), every class is considered to be a subclass at some level of the 

built-in class OBJECT (because “everything is an object”). Built-in subclasses of 

OBJECT include BOOLEAN, CHAR, INTEGER, COLLECTION, and so on; COLLEC¬ 

TION in turn has a subclass called BAG, and BAG has another called SET, and so on. 

(But surely COLLECTION, BAG, and SET are not classes as such but “class genera¬ 

tors”—like RELATION in Tutorial D? There seems to be some confusion here.) 

One important point is that object systems typically do not allow objects to change 

their class (see the annotation to reference [20.12]). As a consequence, object systems do 

not support specialization or generalization by constraint; hence, such systems cannot 

support what we would regard as a “good” model of inheritance. We will elaborate on this 

point in the next chapter (in Section 26.3). 

Finally, some object systems do support some form of multiple inheritance in addi¬ 

tion to single inheritance. However, no object system known to this writer supports tuple 

or relation inheritance (either single or multiple) in the sense of reference [3.3]. 

25.4 A CRADLE-TO-GRAVE EXAMPLE 

We have now introduced the basic concepts of object systems. In this section we show 

how those concepts fit together by presenting a “cradle-to-grave” example—that is, we 

show how an object database can be defined, how it can be populated, and how retrieval 

and update operations can be performed on it. Our example is based on the GemStone 

product from GemStone Systems Inc. and its language OPAL [25.13]; OPAL in turn is 

based on Smalltalk [25.23]. Note: Smalltalk is one of the earliest and purest of the object 

9 They will probably inherit the private instance variables as well, but we regard such inheritance as an 
implementation matter, not part of the model. 
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languages, which is why we use it here, but it is only fair to mention that in products and 

applications it seems to have been largely supplanted by C++ and, increasingly, Java. 

The example involves a simplified version of the education database from Exercise 9.7 
in Chapter 9. The database contains information about an in-house company education 

training scheme. For each training course, the database contains details of all offerings of 

that course; for each offering it contains details of all student enrollments and all teachers 

for that offering. The database also contains information about employees. A relational ver¬ 
sion of the database looks (in outline) something like this: 

COURSE { COURSE#, TITLE > 
OFFERING { COURSE#, OFF#, OFFDATE, LOCATION > 
TEACHER { COURSE#, OFF#, EMP# > 
ENROLLMENT { COURSE#, OFF#, EMP#, GRADE > 
EMP { EMP#, ENAME, SALARY, POSITION > 

Fig. 25.6 is a referential diagram for this database. 

Fig. 25.6 Referential diagram for the education database 

Data Definition 

We now proceed to show a set of OPAL definitions for this database. Here first is the defi¬ 

nition for an object class called EMP (the lines are numbered for purposes of subsequent 

reference): 

1 OBJECT SUBCLASS : 'EMP' 
2 INSTVARNAMES : #[ 'EMP#', 'ENAME', 'POSITION' ] 
3 CONSTRAINTS : #[ #[ #EMP#, STRING ] , 
4 [ #ENAME, STRING ] , 
5 [ #POSITION, STRING ] ] . 

Explanation: Line 1 defines an object class called EMP, a subclass of the built-in 
class OBJECT. (In OPAL terms, line 1 is sending a message to the OBJECT object, ask¬ 

ing it to invoke the SUBCLASS method; INSTVARNAMES and CONSTRAINTS spec¬ 

ify arguments to that method invocation. Defining a new class—like everything else in 
OPAL—is thus done by sending a message to an object.) Line 2 states that objects of class 

EMP have three private instance variables called EMP#, ENAME, and POSITION, 
respectively, and lines 3-5 constrain those instance variables each to contain objects of 
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class STRING. Note: Throughout this section we omit discussion of purely syntactic 

details (such as the ubiquitous “#” signs) that are irrelevant to our main purpose. 

To repeat, instance variables EMP#, ENAME, and POSITION are private to class 

EMP; they can thus be accessed by name solely within the code that implements methods 

for that class. Here, for example, are definitions of methods to “get and set”—that is, 

retrieve and update—employee numbers (the symbol “A” can be read as “return”): 

METHOD : EMP 
GET_EMP# 

AEMP# 
% 

METHOD : EMP 
SET_EMP# : EMP#_PARM 

EMP# := EMP#_PARM 
% 

We will have more to say regarding methods in the next subsection. Meanwhile, here 

is the definition of the COURSE class: 

OBJECT SUBCLASS 
INSTVARNAMES 
CONSTRAINTS 

'COURSE' 
#[ 'COURSE#', ’TITLE’, 
#[ #[ #COURSE#, STRING 

[ #TITLE, STRING ] 
[ #OFFERINGS, OSET 

'OFFERINGS' ] 

] ) 

Explanation: Line 5 here specifies that the private instance variable OFFERINGS 

will contain the OID of an object of class OSET (a class we will define in a few 

moments). Informally, OFFERINGS will denote the set of all offerings for the course in 

question; in other words, we have chosen to model the course/offerings relationship as a 

containment hierarchy, in which offerings are conceptually contained within the corre¬ 
sponding course. 

Next the OFFERING class: 

OBJECT SUBCLASS 
INSTVARNAMES 

CONSTRAINTS 

•OFFERING' 
#[ 'OFF#', 'ODATE', 'LOCATION' 

'ENROLLMENTS'- ’TE£ 
#[ #[ #OFF#, STRING , , 

[ #ODATE, DATETIME ] , 
[ #LOCATION, STRING ] , 
[ #ENROLLMENTS, NSET ] 
[ #TEACHERS, TSET ) ] . 

TEACHERS' ] 

Explanation: Line 7 specifies that the private instance variable ENROLLMENTS will 
contain the OID of an object of class NSET; informally, ENROLLMENTS will denote the 

set of all enrollments for the offering in question. Likewise, TEACHERS will denote the 

set of all teachers for the offering in question. Again, therefore, we are adopting a contain¬ 

ment hierarchy representation. See later for the NSET and TSET definitions. 

Next the ENROLLMENT class: 

1 OBJECT SUBCLASS 
2 INSTVARNAMES 
3 CONSTRAINTS 
4 

'ENROLLMENT' 
#[ 'EMP’, 'GRADE' ] 
#[ #[ #EMP, EMP ] , 

[ #GRADE, STRING ] ] 
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Explanation: The private instance variable EMP (line 3) will contain the OID of an 

object of class EMP, representing the individual employee to whom this enrollment per¬ 

tains. Note: We have placed the EMP object “inside” the corresponding ENROLLMENT 

object in order to continue with the containment hierarchy representation. But notice the 

asymmetry: Enrollments are a many-to-many relationship, but the participants in that 
relationship, employees and offerings, are being treated quite differently. 

Finally, teachers. For the sake of the example, we depart slightly from the original rela¬ 

tional version of the database and treat teachers as a subclass of employees: 

1 EMP SUBCLASS : 'TEACHER' 
2 INSTVARNAMES : #( 'COURSES' ] 
3 CONSTRAINTS : #[ #[ #COURSES, CSET ] ] . 

Explanation: Line 1 defines an object class called TEACHER, a subclass of the user- 
defined class EMP (in other words, TEACHER “ISA" EMP). Thus, each individual 

TEACHER object has private instance variables EMP#, ENAME, and POSITION (all 

inherited from EMP10), plus COURSES, which will contain the OID of an object of class 

CSET; that CSET object will denote the set of all courses this teacher can teach. Each 

TEACHER object also inherits all EMP methods. 

As already noted, the foregoing class definitions assume the existence of several col¬ 

lection classes (ESET, CSET, OSET, NSET, and TSET). Here now are the definitions of 

those classes: 

1 SET SUBCLASS s 'ESET' 
2 CONSTRAINTS : EMP . 

Explanation: Line 1 defines an object class ESET, a subclass of the built-in class 
SET. Line 2 constrains objects of class ESET to be sets of OIDs of objects of class EMP. 

In general, there could be any number of objects of class ESET, but we will create just one 

(see the next subsection), which will be the set of OIDs of all EMP objects that currently 

exist in the database. Informally, that single ESET object can be regarded as the object 

counterpart of the EMP base relvar in the relational version of the database. 

The CSET, OSET, NSET, and TSET definitions are analogous. In each of these cases, 

however, we will definitely have to create several objects of the relevant collection class, 
not just one; for example, there will be a separate OSET collection object for each individ¬ 

ual COURSE object. 

SET SUBCLASS 
CONSTRAINTS 

CSET’ 
COURSE 

SET SUBCLASS 
CONSTRAINTS 

OSET' 
OFFERING 

SET SUBCLASS 
CONSTRAINTS 

NSET' 
ENROLLMENT 

SET SUBCLASS 
CONSTRAINTS 

'TSET' 
TEACHER 

10 Note that it is the private representation (i.e., the physical implementation) that is being inherited here. 
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Populating the Database 

Now we consider what is involved in populating the database. We consider each of the 

five basic object classes (EMP, COURSE, etc.) in turn. First, employees. Recall that we 

intend to collect the OIDs of all currently existing EMP objects in an ESET object, so first 

we need to create that ESET object: 

OID_OF_SET_OF_ALL_EMPS := ESET NEW . 

The expression on the right side of this assignment returns the OID of a new, empty 

instance of class ESET (i.e., an empty set of EMP OIDs); the OID of that new instance is 

then assigned to the program variable OID_OF_SET_OF_ALL_EMPS. Very informally, 

we will say that 01D_0F_SET_0F_ALL_EMPS denotes “the set of all employees.” 

Now, every time we create a new EMP object we want the OID of that object to be 

inserted into the ESET object identified by the OID just saved in the variable OID_OF_ 

SET_OF_ALL_EMPS. We therefore define a method for creating such an EMP object and 

inserting its OID into that ESET object. (Alternatively, we could write an application pro¬ 

gram to perform the same task.) Here is that method: 

1 METHOD : ESET 
2 ADDJEMP# : EMP#_PARM 
3 ADD_ENAME : ENAME_PARM 
4 ADD_POS : POS_PARM 
5 | EMP_OID | 
6 EMP_OID ;= EMP NEW . 
7 EMP_OID SET_EMP# : EMP#_PARM ; 
8 SET_ENAME : ENAME_PARM ; 
9 SET_POS : POS_PARM , 

10 SELF ADD: EMP_OID . 
11 % 

Explanation: 

1. Line 1 defines the code that follows (up to the terminating percent sign in line 11) to 

be a method that applies to objects of class ESET. (In fact, exactly one object of class 

ESET will exist in the system at run time.) 

2. Lines 2-4 define three parameters, with external names ADD_EMP#, ADD_ 

ENAME, and ADD_POS. These names are used in messages that invoke the method. 

The corresponding internal names EMP#_PARM, ENAME_PARM, and POS_PARM 

are used in the code that implements the method. 

3. Line 5 defines EMP_OID to be a local variable, and line 6 then assigns to that vari¬ 

able the OID of a new, uninitialized EMP instance. 

4. Lines 7-9 send a message to that new EMP instance; the message specifies three 

methods to be invoked (SET_EMP#, SET_ENAME, and SET_POS) and passes one 

argument to each of them (EMP#_PARM to SET_EMP#, ENAME_PARM to SET_ 

ENAME, and POS_PARM to SET_POS). Note: We are assuming here that methods 

SET_ENAME and SET_POS—analogous to the method SET_EMP# shown ear¬ 

lier—have also been defined already. 

5. Line 10 sends a message to SELF, which is a special symbol that denotes the object to 

which the method being defined is currently being applied at run time (i.e., the current 

" anonymous! " 
" parameters " 

" local variable " 
" new employee " 
" initialize " 

" insert 
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target object). The message causes the built-in method ADD to be applied to that 

object (ADD is a method that is understood by all collections); the effect in the case at 

hand is to insert the OID of the object identified by EMP_OID into the object identi¬ 

fied by SELF (which will be the ESET object containing the OIDs for all EMP objects 

that currently exist). Note: The reason the special variable SELF is required is that the 
parameter corresponding to the target object has no name of its own (see line 1). 

6. Note that—as pointed out in the comment in line 1—the method being defined is 

likewise unnamed. In general, in fact, methods do not have names in OPAL, but 

instead are identified by their signature (defined in OPAL to be the combination of 

the name of the class to which they apply and the external names of their parameters). 

This convention can lead to awkward circumlocutions, as can be seen. Note too 

another slightly unfortunate implication: namely, that if two methods both apply to 

the same class and take the same parameters, those parameters must be given arbi¬ 
trarily different external names in the two methods. 

Now we have a method for inserting new EMPs into the database, but we still have 

not actually inserted any. So let us do so: 

OID_OF_SET_OF_ALL_EMPS ADD_EMP# : 'E009' 
ADD_ENAME : 'Helms' 
ADD_POS : 'Janitor' . 

This statement creates an EMP object for employee E009 and adds the OID of that EMP 

object to the set of OIDs of all currently existing EMP objects. 

Note, incidentally, that the built-in NEW method must now never be used on class 

EMP other than as part of the method we have just defined—for otherwise we might cre¬ 

ate some dangling EMP objects, that is, employees who are not represented in the ESET 

object containing the OIDs for all EMP objects that currently exist. Note: We apologize 

for the burdensome repetition of awkward circumlocutions like “the method we have just 
defined” and “the ESET object containing the OIDs for all EMP objects that currently 

exist,” but it is hard to talk concisely about things that have no name. 
Now, employees really represent the simplest possible case, since they correspond to 

“regular entities” (to use the terminology of the E/R model), and moreover do not contain 

other objects embedded within themselves (apart from immutable ones). We now move on 

to consider the more complex case of courses, which—although still “regular entities”—do 
conceptually include other mutable objects embedded within them. In outline, the steps we 

must go through are as follows: 

1. Apply the NEW method to class CSET to create an initially empty “set of all 

courses” (actually COURSE OIDs). 

2. Define a method for creating a new COURSE object and adding its OID to “the set of 

all courses.” That method will take a specified COURSE# and TITLE as arguments 
and will create a new COURSE object with the specified values. It will also apply the 

NEW method to class OSET to create an initially empty set of OFFERING OIDs, 

and will then place the OID of that empty set of offering OIDs into the OFFERINGS 

position within the new COURSE object. 

3. Invoke the method just defined for each individual course in turn. 
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Points arising: 

1. We have obviously lost the possibility of the system determining for itself when to do 

the integrity checking. 

2. How do we ensure that all necessary methods include all necessary enforcement 

code? 

3. How do we prevent the user from (e.g.) bypassing the "create shipment” method and 

using the built-in method NEW directly on the shipment object class, thereby bypass¬ 

ing the integrity check? 

4. If the constraint changes, how do we find all methods that need to be rewritten? 

5. How do we ensure that the enforcement code is correct? 

6. How do we do transition constraints? 

7. How do we query the system to find all constraints that apply to a given object or 

combination of objects? 

8. Will the constraints be enforced during load and other utility processing? 

9. What about semantic optimization (i.e., using integrity constraints to simplify que¬ 

ries, as discussed in Chapter 18)? 

10. What are the implications of all of the foregoing points for productivity, both during 

application creation and subsequent application maintenance? 

Relationships 

Object products and the object literature typieally use the term relationships to mean, spe¬ 
cifically, relationships that would be represented by foreign keys in a relational system. 

And they then typically provide special-case support for this special kind of integrity con¬ 

straint, as follows. Consider departments and employees once again. In a relational sys¬ 

tem, employees would normally have a foreign key referencing departments, and that 

would be the end of the matter. In an object system, by contrast, there are at least these 

three possibilities: 

1. Each employee can include a pointer (OID) to the corresponding department. This 

possibility is similar to the relational approach but not identical (OIDs and foreign 

keys are not the same thing). 

2. Each department can include a set of pointers to the corresponding employees. This 

possibility corresponds to the containment hierarchy approach as described in Sec¬ 

tion 25.3. 

3. Approaches 2 and 3 can be combined as indicated here: 

CLASS EMP . . . 
( ... DEPT OID ( DEPT ) INVERSE DEPT.EMPS ) ... ; 

CLASS DEPT . . . 
( ... EMPS 

OID ( SET ( OID ( EMP ) ) ) INVERSE EMP.DEPT ) ... ; 

Note the INVERSE specifications on the instance variables EMP.DEPT and 

DEPT.EMPS. These two instance variables are said to be inverses of each other; 
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Feature Preferred term Remarks 

object class type scalar & nonscalar? 
possibly user-defined 

immutable object value scalar & nonscalar 
mutable object variable scalar & nonscalar 
method operator including selectors, 

THE_ ops, ":=", "=", 
& type test operators 

message operator invocation no "target" operand 

More succinctly, we might say that the sole good idea of object systems in general is 
proper data type support; everything else—including in particular the notion of user- 

i n 

defined operators—follows from that one idea. But that idea is hardly new! 

EXERCISES 

25.1 Explain the following in your own words: 

class 

class hierarchy 

class-defining object 

constructor function 

containment hierarchy 

encapsulation 

instance 

inverse variables 

message 

method 

object 

object ID 

object instance 

private instance variable 

protected instance variable 

public instance variable 

25.2 What are the advantages of OIDs? What are the disadvantages? How might OIDs be imple¬ 

mented? 

25.3 In Section 25.2 we gave two SQL formulations of the query “Get all rectangles that overlap 

the unit square.” Prove those two formulations are equivalent. 

25.4 Investigate any object system that might be available to you. What programming language(s) 

does that system support? Does it support a query language? If so, what is it? In your opinion, is it 

more or less powerful than SQL? What does the catalog look like? How does the user interrogate the 

catalog? Is there any view support? If so, how extensive is it? (For example, what about view updat¬ 

ing?) How is “missing information” handled? 

25.5 Design an object version of the suppliers-and-parts database. Note: This design will be used 

as a basis for Exercises 25.6-25.8. 

25.6 Write a set of OPAL data definition statements for your object version of suppliers and parts. 

25.7 Sketch the details of the necessary “database-populating” methods for your object version of 

suppliers and parts. 

25.8 Write OPAL code against your object version of suppliers and parts to (a) get all London sup¬ 

pliers; (b) get all red parts. 

1 s Some might claim that type inheritance is a good idea, too. We agree, but stand by our position that 
support for inheritance is orthogonal to support for objects per se. 
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25.9 Consider the education database once again. Show what is involved in (a) deleting an enroll¬ 

ment; (b) deleting an employee; (c) deleting a course; (d) dropping the enrollments class; (e) drop¬ 

ping the employees class. You can assume that the OPAL-style garbage-collection process applies. 

State any assumptions you make regarding such matters as cascade delete and so on. 

25.10 Suppose an object version of the suppliers-parts-projects database is to be represented by 

means of a single containment hierarchy. How many possible such hierarchies are there? Which one 

is best? 

25.11 Consider a variation on the suppliers-parts-projects database in which, instead of recording 

that certain suppliers supply certain parts to certain projects, we wish to record only that (a) certain 

suppliers supply certain parts, (b) certain parts are supplied to certain projects, and (c) certain 

projects are supplied by certain suppliers. How many possible object designs are there now (with or 

without containment hierarchies)? 

25.12 Consider the performance factors discussed briefly in Section 25.5. Are any of them truly 

object-specific? Justify your answer. 

25.13 Object systems typically support integrity constraints in a procedural fashion, via methods; 

the main exception is that referential constraints are typically supported (at least in part) declara- 

tively. What are the advantages of procedural support? Why do you think referential constraints are 

handled differently? 

25.14 Explain the concept of inverse variables. 
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26.1 INTRODUCTION 

In the late 1990s. several vendors released "object/relational" DBMS products, also 

known as universal seners. Examples include the Universal Database version of DB2. the 

Universal Data Option for Informix Dynamic Server, and the Oracle Universal Server 

(other names are also used). The broad idea in even case was that the product should sup¬ 

port both object and relational capabilities: in other words, the products in question repre¬ 

sent attempts at a rapprochement between the two technologies. 

Now, it is this writer’s strong opinion that any such rapprochement should be firmly 

based on the relational model (which is after all the foundation of modem database tech¬ 

nology in general, as explained in Part II of this book). Thus, what we want is for relational 
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systems to evolve1 to incorporate the features—at least, the good features—of objects (we 

surely do not want to discard relational systems entirely, nor do we want to have to deal 

with two separate systems, relational and object, existing side by side). And this opinion is 

shared by many other writers, including the authors of the “Third-Generation Database 

System Manifesto” [26.44] in particular, who state categorically that third-generation 

DBMSs must subsume second-generation DBMSs. (To elaborate briefly: “First-generation 

DBMSs” are the prerelational ones, like IMS; “second-generation DBMSs” are SQL sys¬ 

tems; “third-generation DBMSs” are whatever comes next.) The opinion is apparently not 

shared, however, by some of the object vendors, nor by certain object writers. Here is a typ¬ 

ical quote [26.7]: 

Computer science has seen many generations of data management, starting with indexed 

files, and later, network and hierarchical DBMSs . . . [and] more recently relational 

DBMSs . . . Now, we are on the verge of another generation of database systems . .. [that] 

provide object management, [supporting] much more complex kinds of data. 

Here the writer is clearly suggesting that just as relational systems displaced the older hier¬ 

archic and network systems, so object systems will displace relational systems in turn. 

The reason we disagree with this position is that relational really is different 

[26.17], It is different because it is not ad hoc. The older, prerelational systems were ad 

hoc; they might have provided solutions to certain important problems of their day, but 

they did not rest on any solid theoretical foundation. Unfortunately, relational advocates 

(this writer included) did themselves a major disservice in the early days when they 

argued the relative merits of relational and prerelational systems; such arguments were 

necessary at the time, but they had the unlooked-for effect of reinforcing the idea that 

relational and prerelational DBMSs were essentially the same kind of thing. And this mis¬ 

taken idea in turn supports the position that objects are to relations as relations were to 

hierarchies and networks. 

So what about objects? Are they ad hoc? The following quote from “The Object- 

Oriented Database System Manifesto” [20.2, 25.1] is revealing in this regard: “With 

respect to the specification of the system, we are taking a Darwinian approach: We hope 

that, out of the set of experimental prototypes being built, a fit [object] model will 

emerge.” In other words, the suggestion is apparently that we should write code and build 

systems without any predefined model and see what happens! 

In what follows, therefore, we take it as axiomatic (as most of the major DBMS ven¬ 

dors do, in fact) that what we want to do is enhance relational systems to incorporate the 

good features of object technology. To repeat, we do not want to discard relational tech¬ 

nology; it would be a great pity to walk away from almost 35 years of solid relational 

research and development. 

Now, we argued in Chapter 25—see also the annotation to reference [26.31]—that 

object orientation involves just one good idea: namely, proper data type support (or two 

1 Note that we are definitely interested in evolution, not revolution. By contrast, consider this quote from 
reference [25.11 J: “[Object DBMSs] are a revolutionary rather than an evolutionary development" (ital¬ 
ics added). We do not think the marketplace in general is ready for revolution, nor do we think it need be 
or ought to be—which is one reason why The Third Manifesto [3.3] is very specifically evolutionary, not 
revolutionary, in nature. 
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good ideas, if you count type inheritance separately). So the question becomes: How can 

we incorporate proper data type support into the relational model? And the answer, of 

course, as you have doubtless already realized, is that the support is already there, in the 

shape of domains—which we prefer to call types anyway. In other words, we need do 

nothing to the relational model in order to achieve object functionality in relational sys¬ 

tems: nothing, that is, except implement it, fully and properly, which today’s SQL systems 

have so signally failed to do.2 

Thus, we believe that a relational system that supported domains properly would be 

able to deal with all of those “problem” kinds of data that (it is sometimes claimed) object 

systems can handle and relational systems cannot: multi-media data, time-series data, bio¬ 

logical data, financial data, engineering design data, office automation data, and so on. 

Accordingly, we also believe that a true object/relational system would be nothing more 

nor less than a true relational system—which is to say, a system that supports the rela¬ 

tional model, with all that such support entails. Hence, DBMS vendors should be encour¬ 

aged to do what they are in fact trying to do: namely, extend their systems to include 

proper type support. Indeed, an argument can be made that the whole reason object sys¬ 

tems looked attractive when they first appeared is precisely because the SQL vendors did 

not support the relational model adequately. But this fact should not be seen as an argu¬ 

ment for abandoning relational systems entirely (or at all!). 

By way of example, we now take care of some unfinished business from Chapter 25 

and show a good relational solution to the rectangles problem. (We give that solution in 

Tutorial D; producing an SQL analog is left as an exercise.) First, we define a rectangle 

type: 

TYPE RECTANGLE POSSREP ( XI RATIONAL, Y1 RATIONAL, 
X2 RATIONAL, Y2 RATIONAL ) ... ; 

We assume that rectangles are represented physically by means of one of those storage 

structures that are specifically intended to support spatial data efficiently—quadtrees, R- 

trees, and so on [26.37], 

We also define an operator to test whether two given rectangles overlap: 

OPERATOR OVERLAP ( R1 RECTANGLE, R2 RECTANGLE ) 
RETURNS BOOLEAN ; 

RETURN ( THE XI ( R1 ) < THE X2 ( R2 ) AND 
THE Y1 ( R1 ) < THE Y2 ( R2 ) AND 

THE X2 ( R1 ) > THE XI ( R2 ) AND 

THE Y2 ( R1 ) > THE Y1 ( R2 ) ) ; 
END OPERATOR ; 

This operator implements the efficient “short” form of the overlaps test (refer to 

Chapter 25 if you need to refresh your memory regarding that short form) against the effi¬ 

cient (R-tree or whatever) storage structure. 

2 In particular, today’s systems have given rise to the all too common misconception that relational sys¬ 
tems can support only a limited number of very simple types. The following quotes are quite typical: 
"Relational . . . systems support a small, fixed collection of data types (e.g., integers, dates, strings)" 
(26.34); “a relational DBMS can support only ... its built-in types [basically just numbers, strings, dates, 
and times]” [25.31]; “object/relational data models extend the relational data model by providing a richer 
type system” [16.21 J; and so on. 
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In fact, the first equation is obviously right, since object classes and domains are both 

just types. Indeed, given that relvars are variables and classes are types, it should be 

immediately obvious too that the second equation is wrong (variables and types are not 

the same thing); for this very reason, reference [3.3] asserts categorically that relvars are 

not domains. Nevertheless, many people, and some products, have in fact embraced the 

second equation—a mistake that we refer to as The First Great Blunder. It is therefore 

instructive to take a very careful look at the second equation, and so we do. Note: Most of 

the rest of this section is taken more or less verbatim from reference [3.3]. 

Why might anyone commit such a blunder? Well, consider the following simple class 

definition, expressed in a hypothetical object language that is similar but deliberately not 

quite identical to that of Section 25.3: 

CREATE OBJECT CLASS EMP 
( EMP# CHAR(5), 

ENAME CHAR(20), 
SAL NUMERIC, 
HOBBY CHAR(20), 
WORKS_FOR CHAR(20) ) ... ; 

(EMP#, ENAME, etc., here are public instance variables. We deliberately define them to 

be of simple built-in types instead of user-defined types; moreover, we will do the same 

throughout our examples in this chapter, for simplicity.) Now consider the following SQL 

“base relvar” definition: 

CREATE TABLE EMP 
EMP# CHAR(5) NOT NULL, 
ENAME CHAR(20) NOT NULL, 
SAL NUMERIC NOT NULL, 
HOBBY CHAR(20) NOT NULL, 
WORKS FOR CHAR(20) NOT NULL ) . . • 

These two definitions certainly look very similar, and the idea of equating them thus 

looks very tempting. And (as already indicated) certain systems, including some commer¬ 

cial products, have effectively done just that. So let us take a closer look. More precisely, 

let us take the CREATE TABLE statement just shown and consider a series of possible 

extensions to it that (some people would argue) serve to make it more “object-like.” Note: 

The discussion that follows is based on a specific commercial product; in fact, it is based 

on an example in that product’s own documentation. We do not identify that product here, 

however, since it is not our intent in this book to criticize or praise specific products. 

Rather, the criticisms we will be making later in this section apply, mutatis mutandis, to 

any system that espouses the “relvar = class” equation. 

The first extension is to permit composite (i.e., tuple-valued) attributes; that is, we 

allow attribute values to be tuples from some other relvar, or possibly from the same relvar 

(?). In the example, we might replace the original CREATE TABLE statement by the fol¬ 

lowing collection of statements (refer to Fig. 26.1): 

CREATE TABLE EMP 
( EMP# CHAR(5) 

ENAME CHAR(20) 
SAL NUMERIC 
HOBBY ACTIVITY 
WORKS FOR COMPANY 

NOT NULL, 
NOT NULL, 
NOT NULL, 
NOT NULL, 
NOT NULL ) ; 
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EMP 

EMP# ENAME SAL HOBBY tuple 

NAME TEAM 

WORKS FOR tuple 

NAME LOCATION tuple 

CITY STATE 

Fig. 26.1 Attributes containing (pointers to) tuples—deprecated 

CREATE TABLE ACTIVITY 

( NAME CHAR(20) NOT NULL, 
TEAM INTEGER NOT NULL ) ; 

CREATE TABLE COMPANY 

( NAME CHAR(20) NOT NULL, 
LOCATION CITYSTATE NOT NULL ) ; 

CREATE TABLE CITYSTATE 

( CITY CHAR(20) NOT NULL, 
STATE CHAR(2) NOT NULL ) ; 

Explanation: Attribute HOBBY in relvar EMP is declared to be of type ACTIVITY. 

ACTIVITY in turn is a relvar of two attributes, NAME and TEAM, where TEAM gives 

the number of players in a team corresponding to NAME; for instance, a possible “activ¬ 

ity” might be (Soccer, 11). Each HOBBY value is thus actually a pair of values, a NAME 

value and a TEAM value (more precisely, it is a pair of values that currently appear as a 

tuple in relvar ACTIVITY). Note: Observe that we have already violated the Third Mani¬ 

festo dictum that relvars are not domains—the “domain” for attribute HOBBY is defined 

to be the relvar ACTIVITY. See later in this section for further discussion of this point. 

Similarly, attribute WORKS_FOR in relvar EMP is declared to be of type COM¬ 

PANY, and COMPANY is also a relvar of two attributes, one of which is defined to be of 

type CITYSTATE, which is another two-attribute relvar, and so on. In other words, relvars 

ACTIVITY, COMPANY, and CITYSTATE are all considered to be types (domains) as 

well as relvars. The same is true for relvar EMP itself, of course. 

This first extension is thus roughly analogous to allowing objects to contain other 

objects, thereby supporting the containment hierarchy concept (see Chapter 25). 

As an aside, we remark that we have characterized this first extension as attributes 

containing tuples because that is the way advocates of the “relvar = class” equation them¬ 

selves characterize it. It would be more accurate, however, to characterize it as “attributes 

containing pointers to tuples”—an issue we will examine more closely in a few moments, 

and more closely still in the next section. (In Fig. 26.1, therefore, we should really replace 

each of the three occurrences of the term tuple by the term pointer to tuple.) 

Remarks analogous to those of the previous paragraph apply to the second extension 

also, which is to allow relation-valued attributes: that is, attribute values are allowed to be 
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EMP 

EMP# ENAME SAL HOBBIES relation 

NAME TEAM 

WORKS FOR tuple 

NAME LOCATION tuple 

CITY STATE 

Fig. 26.2 Attributes containing sets of (pointers to) tuples—deprecated 

sets of tuples from some other relvar, or possibly from the same relvar (?). For example, 

suppose employees can have an arbitrary number of hobbies, instead of just one (refer to 

Fig. 26.2): 

CREATE TABLE EMP 
( EMP# CHAR(5) NOT NULL, 

ENAME CHAR(20) NOT NULL, 
SAL NUMERIC NOT NULL, 
HOBBIES SET OF ( ACTIVITY ) NOT NULL, 
WORKS_FOR COMPANY NOT NULL ) ; 

Explanation: The HOBBIES value within any given tuple of relvar EMP is now (con¬ 

ceptually) a set of zero or more (NAME.TEAM) pairs—that is, tuples—from relvar 

ACTIVITY. This second extension is thus roughly analogous to allowing objects to con¬ 

tain “collection” objects: a more complex version of the containment hierarchy. Note: We 

remark in passing that in the particular product on which our example is based, those col¬ 

lection objects can be sequences or bags as well as sets per se. 

The third extension is to permit relvars to have associated methods (i.e., operators). For 

example: 

CREATE TABLE EMP 
( EMP# CHAR(5) NOT NULL, 

ENAME CHAR(20) NOT NULL, 
SAL NUMERIC NOT NULL, 
HOBBIES SET OF ( ACTIVITY ) NOT NULL, 
WORKS_FOR COMPANY NOT NULL ) 

METHOD RETIREMENT_BENEFITS ( ) : NUMERIC ; 

Explanation: RETIREMENT_BENEFITS is a method that takes a given EMP tuple 

as its argument and produces a result of type NUMERIC. 

The final definitional extension is to permit subclasses. For example (refer to Fig. 

26.3): 

CREATE TABLE PERSON 
( SS# CHAR(9) NOT NULL, 

BIRTHDATE DATE NOT NULL, 
ADDRESS CHAR(50) NOT NULL ) ; 
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Pointers and a Good Model of Inheritance Are Incompatible 

Actually there is another powerful argument against supporting pointers, one that Codd 

could not possibly have been aware of when he was writing reference [6.2], We illustrate 

that argument with a simple example. (We state the example in terms of ordinary program 

variables instead of database relations, in order to focus on the real issue without being 

distracted by irrelevancies.) Consider types ELLIPSE and CIRCLE once again. Let PTR_ 
TO_ELLIPSE and PTR_TO_CIRCLE be associated pointer types; in other words, let val¬ 

ues of types PTR_TO_ELLIPSE and PTR_TO_CIRCLE be (loosely speaking) “pointers 

to ellipses” and “pointers to circles,” respectively. Finally, let ELLIPSE be a proper super¬ 

type of CIRCLE, and hence let PTR_TO_ELLIPSE be a proper supertype of PTR_TO_ 

CIRCLE. Now consider the following code fragment: 

VAR E ELLIPSE ; 
VAR XC PTR_TO_CIRCLE ; 

E := CIRCLE ( LENGTH ( 5.0 ), POINT ( 0.0, 0.0 ) ) ; 

XC := TREAT_DOWN_AS_PTR_TO_CIRCLE ( PTR_TO ( E ) ) ; 

THE_A ( E ) := LENGTH ( 6.0 ) ; 

Explanation: 

1. The two variable declarations are self-explanatory. 

2. After the first assignment (to E), variable E contains a circle of radius five.5 Note the 

appeal to substitutability in this assignment; note too that the most specific type of E 

is now CIRCLE. 

3. PTR_TO, which appears in the expression on the right side of the second assignment, 

is what is usually called the referencing operator: Given a variable V, it returns the 

address of—that is, a pointer to—that variable V. In the example, therefore, it returns 

a pointer value of type PTR_TO_ELLIPSE. However, since the variable that pointer 

value points to has most specific type CIRCLE, that pointer value is in fact of type 

PTR_TO_CIRCLE, not merely of type PTR_TO_ELLIPSE. So the TREAT DOWN 

succeeds, and the assignment thus places in variable XC a pointer to (= the address 

of) variable E. 

4. The third assignment (to THE_A(E)) is the crucial one. What happens? It seems there 

are three possibilities, all of them bad: 

a. A run-time type error occurs, because assignment to THE_A is not supported for 

variables of most specific type CIRCLE. In other words, generalization by con¬ 

straint is not supported—and hence specialization by constraint is not supported 

either, and the inheritance model is therefore bad (certainly it is not “a faithful 

model of reality”—see Chapter 20). In any case, run-time type errors are always 

undesirable. 

5 As in Chapter 20, we assume in this chapter that the Cartesian possible representation for points is 
called POINT instead of CARTESIAN. The second argument to the CIRCLE selector in the example is 
thus an invocation of that POINT selector. 
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b. The assignment “succeeds,” but generalization by constraint does not occur. The 

effect is that variable E now contains a “noncircular circle” (its most specific type 
is still CIRCLE, but that “circle” has semiaxes of different lengths). Again, then, 

the inheritance model is bad (it is not a faithful model of reality), because general¬ 

ization by constraint and specialization by constraint are not supported. What is 

more, not only does variable E now contain a “noncircular circle,” but variable XC 

points to a “noncircular circle” as well. Furthermore, type constraints cannot be 

supported!—for if they were, then “noncircular circles” could not occur. In other 

words, what is arguably the most fundamental kind of integrity constraint of all 

cannot be supported: When we define a type, we cannot specify what values are 

legal for that type. 

We note in passing that this case is SQL: 1999! See Chapter 20 and Section 26.6. 

c. The assignment succeeds and generalization by constraint does occur; that is, vari¬ 
able E now contains “just an ellipse,” and its most specific type is ELLIPSE. But 

then the inheritance model is bad, because the variable XC, whose declared type is 

PTR_TO_CIRCLE, now contains a value of most specific type PTR_TO_ 

ELLIPSE!—implying, again, that type constraints cannot be supported. Note: 

Since the idea of allowing a variable of some declared type T to contain a value of 

most specific type some proper supertype of T is a logical nonsense, it is more 

likely that the original assignment will either fail as under paragraph 1 or “suc¬ 
ceed” without generalization by constraint as under paragraph 2. In other words, 

this third possibility is probably a nonstarter. 

We conclude from this example that if pointers are supported, the inheritance model 

must be bad; in other words, pointers and a good model of inheritance are incompatible. 

Which seems like another very good reason for rejecting pointers. 

Where Did The Second Great Blunder Come From? 

It is hard to find any real justification in the literature for The Second Great Blunder (any 

technical justification, that is—but there is evidence that the justification is not technical at 

all but political). Given the fact that object systems and object languages do all include 
pointers in the form of object IDs, the idea of mixing pointers and relations almost cer¬ 

tainly arises from a desire to make relational systems more “object-like.” However, this 
“justification” merely pushes the problem off to another level; we have already made it 

abundantly clear that—in our opinion—object systems expose pointers to the user pre¬ 

cisely because they fail to distinguish properly between model and implementation. 
We can only conjecture, therefore, that the reason why the idea of mixing pointers and 

relations is being so widely promulgated is because too few people understand why point¬ 

ers were excluded from relations in the first place. As Santayana has it: Those who cannot 

remember the past are condemned to repeat it (usually quoted in the form “Those who 

don’t know history are doomed to repeat it”). On such matters we agree strongly with Mau¬ 

rice Wilkes, when he writes [26.46]: 
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CREATE TYPE DEPT_TYPE 
AS ( DEPT# CHAR(3), 

DNAME CHAR(25), 
BUDGET MONEY ) ... 

REF IS SYSTEM GENERATED ; 

CREATE TABLE DEPT OF DEPT_TYPE 

( REF IS DEPT_ID SYSTEM GENERATED, 
PRIMARY KEY ( DEPT# ) ) ... ; 

Explanation (partly repeated from Chapter 6): 

1. Recall first from Chapter 5 that whenever we create a structured type ST, the system 

automatically generates an associated reference type (“REF type”) called REF(ST); in 

the example, therefore, the reference type REF(DEPT_TYPE) is generated automati¬ 

cally. REF types can be used wherever a data type of any kind can be used; however, 

they can be generated only implicitly, as a side effect of creating a structured type. 

2. Values of type REF(ST) are “references” to—in other words, pointers to or addresses 

of—rows within some base table8 that has been defined to be “OF” type ST (see point 

4). In the example, therefore, values of type REF(DEPT_TYPE) are pointers to rows 
within base table DEPT. (We are assuming here that DEPT is the sole table that has 

been defined to be “OF” type DEPT_TYPE, though this assumption would not al¬ 

ways be valid.) Note: The structured type ST can be used in other contexts, of 

course—for example, as the declared type for some column or some local variable— 

but no REF(5T) values are associated with those other uses. 

3. The specification REF IS SYSTEM GENERATED in a CREATE TYPE statement 

means that values of the associated REF type are provided by the system. (Other op¬ 

tions—for example, REF IS USER GENERATED—are available, but the details are 

beyond the scope of this book.) Note: In fact, REF IS SYSTEM GENERATED is the 

default; in our example, therefore, we could have omitted that specification entirely 

from the definition of type DEPT_TYPE. 

4. A base table can be defined (via CREATE TABLE) to be “OF” some structured type; 

such a table is said to be a typed table or referenceable table. The keyword OF here is 

not really very appropriate, however, because (as explained in Chapter 6) the table is 

not actually “of’ the type in question, and neither are its rows. In fact, the table has 
one column for each attribute of the structured type in question, plus one additional 

column—namely, a column of the applicable REF type—though the syntax for defin¬ 

ing that additional column is not the usual column definition syntax but instead looks 

like this: 

REF IS <column name> SYSTEM GENERATED 

This extra “self-referencing” column, which is first in the left-to-right ordering of col¬ 
umns in the table, is used to contain unique IDs (“references”) for the rows of the base 

table in question (the specifications UNIQUE and NOT NULL are implied). The ID 

8 Or possibly some view. Details of the view case are beyond the scope of this book. 
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for a given row is assigned when the row is inserted, and remains associated with that 

row9 until it is deleted. 

5. A structured type is not regarded as encapsulated when it is used as the basis for de¬ 

fining a base table (although it is so regarded, more or less, in other contexts). In our 

example, therefore, base table DEPT has four columns DEPT_ID, DEPT#, DNAME, 

and BUDGET (in that order), instead of just two as it would have had if DEPT_ 

TYPE were encapsulated. 

6. The default for column DEPT_ID is NULL (as in fact it is for all columns that are de¬ 

fined to be of some REF type, though that default will not make much sense if the 

column in question is additionally specified to be NOT NULL). 

Let us now extend the example to introduce an EMP base table, thus:10 

CREATE TABLE EMP 
( EMP# CHAR(5) NOT NULL, 

ENAME CHAR(25) NOT NULL, 
SALARY MONEY NOT NULL, 
DEPT_ID REF ( DEPTJTYPE ) SCOPE DEPT 

REFERENCES ARE CHECKED 
ON DELETE CASCADE 

NOT NULL, 
PRIMARY KEY ( EMP# ) ) ; 

Normally, base table EMP would include a foreign key column DEPT# that refers to 

departments by department number. Here, however, we have a “reference” column 

DEPT_ID—not explicitly declared to be a foreign key column as such, please note—that 

refers to departments by their “references” instead. SCOPE DEPT specifies the applicable 

referenced table. REFERENCES ARE CHECKED means referential integrity is to be 

maintained (REFERENCES ARE NOT CHECKED would permit “dangling references”; 

it is not clear why it would ever be desirable to specify this option11). ON DELETE . . . 

specifies a delete rule, analogous to the usual foreign key delete rules (the same options 

are supported). There is no analogous ON UPDATE . . . specification. 

Using References 

We now consider a few sample queries and updates on the departments-and-employees 

database as just defined. Here first is an SQL formulation of the query “Get the depart¬ 

ment number for employee El”: 

SELECT DEPT_ID -> DEPT# AS DEPT# 
FROM EMP 
WHERE EMP# = 'El' ; 

9 There seems to be some circularity here: “That row” can only mean “the row that has the particular ID 
in question.” In particular, note the value vs. variable confusion!—if “that row” is to have an address, then 
“that row” has to be a row variable (see Section 26.3). 

10 Note the NOT NULL specifications on the columns of table EMP. Specifying that the columns of table 
DEPT also have nulls not allowed is not so easy! The details are left as an exercise. 

11 And yet the REFERENCES . . . specification is likely to be deleted in SQL:2003, implying that (by 
default) REFERENCES ARE NOT CHECKED will always be specified. 
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Note the dereferencing operator in the SELECT clause (the expression 

DEPT_ID -> DEPT# yields the DEPT# value from the DEPT row that the DEPT_ID 

value in question points to). Note too the need to specify an AS clause; if that clause had 

been omitted, the corresponding result column would effectively have been unnamed. 

Finally, note the counterintuitive nature of the FROM clause—the DEPT# value to be 

retrieved comes from DEPT, not EMP, but DEPTJD values come from EMP, not DEPT 

Incidentally, we cannot resist the temptation to point out that this first query will 

probably perform worse than its conventional SQL counterpart (which would access just 

one table, not two). We make this observation because the usual argument in favor of “ref¬ 

erences” is that they are supposed to improve performance (“following a pointer is faster 
than doing a join”). Of course, to argue thus is to confuse logical and physical issues. 

By way of a second example, suppose the original query had been “Get the deportment 

(instead of just the department number) for employee El.” Now the dereferencing opera¬ 
tion looks rather different: 

SELECT DEREF ( DEPT_ID ) AS DEPT 
FROM EMP 
WHERE EMP# = ’El' ; 

Furthermore, the DEREF invocation here yields, not—as might have been expected—a 

DEPT row value, but an “encapsulated” (scalar) value instead. That value is of type 

DEPT_TYPE and thus has just three attributes, DEPT#, DNAME, and BUDGET (it does 

not include a DEPT_ID attribute).13 Note: To repeat an observation we made in Chapter 6, 

if the declared type of some parameter P to some operator Op is DEPT_TYPE, we cannot 

pass a row from table DEPT as a corresponding argument to an invocation of that operator 

Op. We can now see, however, that we can pass DEREF(DEPT_ID) instead, if DEPT_ID 

contains a reference to a row of table DEPT. 

Here is another example—“Get employee numbers for employees in department D1 ”: 

SELECT EMP# 
FROM EMP 
WHERE DEPT_ID -> DEPT# = 'Dl' ; 

Note the dereferencing in the WHERE clause in this example. 

Here now is an INSERT example (insertion of an employee): 

INSERT INTO EMP ( EMP#, DEPT_ID ) 
VALUES ( 1E5', ( SELECT DEPT_ID 

FROM DEPT 
WHERE DEPT# = 'D2' ) ) ; 

12 Most languages that support dereferencing support a referencing operator as well (see, e.g., the discus¬ 
sion of PTR_TO in Section 26.3), but SQL does not. Moreover, dereferencing usually returns a variable, 
but in SQL it returns a value instead. 

13 It follows from the semantics of DEREF that—although for most purposes columns DEPT#, DNAME, 
and BUDGET of table DEPT behave as regular columns—the system is also required to remember that 
those columns are derived from the structured type DEPT_TYPE. In other words, to use the terminology 
of types and headings from Chapter 6, we might say that table DEPT has a heading (and therefore type) 
with four components in some contexts but a heading (and therefore type) with just two components in 
others. Perhaps “typed tables” might better be called schizophrenic tables? 
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Now, apologists for the constructs we have been discussing (REF types and so forth) 

stress the point that there is no need for concern because “everything is really just short¬ 

hand.” For example, the SQL expression 

SELECT DEPT_ID -> DEPT# AS DEPT# 
FROM EMP 
WHERE EMP# = 'El' ; 

(“Get the department number for employee El,” the first of our examples in this subsec¬ 

tion) is claimed to be shorthand for the following: 

SELECT ( SELECT DEPT# 
FROM DEPT 
WHERE DEPT.DEPT_ID = EMP.DEPT_ID ) AS DEPT# 

FROM EMP 
WHERE EMP# = 'El' ; 

In fact, however, the shorthand claim does not really stand up, because the new syn¬ 

tax—for dereferencing in particular—can be used only in conjunction with data that has 

been defined in a special new way, using a brand new type generator (REF). Moreover, 

those data definitions also make use of a lot of new syntax. Also, the functionality in ques¬ 

tion is provided in a highly unorthogonal manner (among other things, it applies only to 

tables that are defined in that special new way, not to all tables). 

What is more, even if we accept the shorthand claim, we have to ask why the short¬ 

hands are provided anyway. What problem are they supposed to solve? Why is the support 

so unorthogonal? When are we supposed to do things the old-fashioned way, and when 

this strange new way? And so on (this is not an exhaustive list of questions). Note: In this 

connection, see reference [26.15] and the annotation to reference [26.21], 

Subtables and Supertables 

SQL allows base table B to be defined as a “subtable” of base table A only if B and A are 

both “typed tables” and the structured type STB on which B is defined is a subtype of the 

structured type STA on which A is defined. By way of example, consider the following 

structured type definitions: 

CREATE TYPE EMP_TYPE /* employees */ 
AS ( EMP# ..., DEPT# ... ) ... 

REF IS SYSTEM GENERATED ; 

CREATE TYPE PGMR_TYPE UNDER EMP_TYPE /* programmers */ 
AS ( LANG ... ) f 

Note that PGMR_TYPE has no REF IS . . . clause; instead, it effectively inherits such a 

clause from its immediate (“direct”) supertype EMP_TYPE. In other words, a value of type 

REF(EMP_TYPE) can now refer to a row in a table that is defined to be of type 

PGMR_TYPE instead of type EMP.TYPE. 

Now consider the following base table definitions: 

CREATE TABLE EMP OF EMP_TYPE 
( REF IS EMP_ID SYSTEM GENERATED, 

PRIMARY KEY ( EMP# ) ) ... ; 

CREATE TABLE PGMR OF PGMR TYPE UNDER EMP ; 
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More fundamentally, we need to ask what those advantages might be. What do subta¬ 

bles and supertables buy us? The answer seems to be “very little,” at least at the level of 

the model.14 It is true that certain implementation economies might be realized, if the sub¬ 

table and its supertable are physically stored as a single table on the disk; but, of course, 

such considerations should not be allowed to have any effect on the model as such. In 

other words, not only is it unclear, as noted in the previous paragraph, as to why “sub and 

super” tables have to rely on “sub and super” structured types, it is also very unclear as to 

why the feature is supported at all. 

SQL and The Two Great Blunders 

How does the SQL functionality we have been describing relate to the goal of providing 

good object/relational support? Well, if SQL does not quite commit The Two Great Blun¬ 

ders, it certainly sails very close to the wind. And it has to be said that its justification for 

doing so is very unclear, at least to this writer; it seems to be little more than a vague idea 

that the features that give rise to the blunders somehow make SQL more “object-like” 

(well, perhaps they do). 

Regarding The First Great Blunder, it seems likely that the idea of tying typed 

tables to structured types has something to do with the idea of equating tables and classes. 

To be more specific, it seems likely that if typed table TT is defined to be “of’ structured 

type ST, then TT is supposed to contain what is sometimes called the “extent” of type 

ST—that is, the set of all currently existing “instances” of type ST.15 Otherwise, why the 

tight connection between TT and ST? 

That said, there are some problems. One is that it is possible to have two or more 

typed tables “of’ the same structured type; the implications of such an arrangement are 

unclear (except that they almost certainly include a violation of The Principle of Orthogo¬ 

nal Design). Other problems are discussed in Section 6.6. 

As for The Second Great Blunder, it should be clear that SQL does suffer from this 

(major!) defect, even if we agree that its “references” and related features are, as claimed, 
really just shorthand. As noted earlier, if rows can have “references” (addresses), then 

those rows are row variables by definition. In particular, SQL does suffer from the prob¬ 

lem explained in Section 26.3, in the subsection “Pointers and a Good Model of Inherit¬ 

ance Are Incompatible.” We omit the details here, since they are somewhat messy; suffice 

it to say that a REF value that is supposed to reference a row containing a circle might in 

fact reference a row containing a noncircular ellipse instead. 

14 You might be thinking the answer has something to do with the issue of entity subtypes and supertypes 
as discussed in Chapter 14. If so, then we remind you of our own preferred approach to that issue, which 
is based on the use of views. See the example at the very end of Section 14.5. 

15 That “extent” is not automatically maintained, however; rather, “instances” of type ST appear in and 
disappear from table TT only as a result of explicit updates on that table. 
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26.7 SUMMARY 

We have briefly examined the field of object/relational systems. Such systems are, or 

should be, basically just relational systems that support the relational domain concept 
(i.e., types) properly—in other words, true relational systems, meaning in particular sys¬ 

tems that allow users to define their own types. We need do nothing to the relational model 

in order to achieve object/relational functionality, except implement it. 

We then examined The Two Great Blunders. The first is to equate object classes and 

relvars (an equation that is unfortunately all too attractive, at least on the surface). We 

speculated that the blunder arises from a confusion over two quite distinct interpretations 
of the term object. We described in detail what a system might look like that commits The 

First Great Blunder, and we explained some of the consequences of that mistake. One 

major consequence is that it seems to lead directly to committing The Second Great 

Blunder as well!—namely, mixing pointers and relations (though in fact this second 

blunder can be committed without the first, and just about every system on the market 
unfortunately seems to be committing it). It is our position that The Second Great Blun¬ 

der undermines the conceptual integrity of the relational model in numerous ways (in 

fact, the first does too). In particular, it violates both The Information Principle and The 

Principle of Interchangeability (of base and derived relations). 

Next, we briefly examined a few implementation issues. The overriding point is that 
adding a new “type package” affects at least the compiler, optimizer, and storage manager 

components of the system. As a consequence, an object/relational system cannot be 

implemented—at least, not well—by simply imposing a new layer of code (a “wrapper”) 

over an existing relational system; rather, the system needs to be rebuilt from the ground 

up, in order to make each component individually extensible as needed. 
We then took a look at Stonebraker’s DBMS classification matrix, and briefly dis¬ 

cussed the benefits that could accrue from a true rapprochement between object and rela¬ 

tional technologies (where by “true” we mean among other things that the system in ques¬ 
tion does not commit either of The Two Great Blunders). Finally, we examined SQL’s 

support for REF types and subtables and supertables. 

EXERCISES 

26.1 Define the term object/relational. What is “the object/relational model”? 

26.2 The following is a variation on the code used in Section 26.3 to show that pointers and a good 

model of inheritance are incompatible: 

VAR E ELLIPSE ; 
VAR XE PTR_TO_ELLIPSE ; 
VAR XC PTR_TO_CIRCLE ; 

E := CIRCLE ( LENGTH ( 5.0 ), POINT ( 0.0, 0.0 ) ) ; 
XE := PTR_TO ( E ) ; 
XC := TREAT_DOWN_AS_PTR_TO_CIRCLE ( XE ) ; 
THE_A ( DEREF ( XE ) ) := LENGTH ( 6.0 ) ; 

What happens when this code is executed? Note: DEREF here is the conventional dereferencing 

operator, not the SQL operator of the same name (given the address of a variable, it returns that 

variable). 
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26.3 Following on from the previous question: Why does not an analogous problem arise with for¬ 

eign keys in place of pointers? Or does it arise? 

26.4 Do you think SQL’s structured types are encapsulated? Justify your answer. 

26.5 In SQL, does it make sense to declare a local variable to be of some REF type? If so, what are 

the implications? 

26.6 Give an SQL version of the code shown in Exercise 26.2. Note: You will probably need access 

to the SQL standard or the documentation for an SQL product for this exercise. 

26.7 Investigate any object/relational DBMS that might be available to you. Does that system com¬ 

mit either of The Two Great Blunders? If so, what justification does it offer for doing so? 

26.8 Explain the concept of subtables and supertables (a) in general terms, (b) in SQL terms spe¬ 

cifically. 
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27.1 INTRODUCTION 

Note: Nick Tindall of IBM was the original author of this chapter. 

The World Wide Web and XML are hot topics; many books have been written about 

them already, and more are sure to come. Of course, the emphasis in this book is on data¬ 

base matters specifically, and we do not wish to dwell on details of the Web or XML 
except insofar as they relate to that primary concern. In the case of the Web, therefore, we 

give just enough background (in Section 27.2) to provide some context for the discussions 

in later sections. In the case of XML, however, there is rather more that needs to be said, 
and we devote three sections to it: Section 27.3 gives an overview, and Sections 27.4 and 

27.5 cover XML data definition and XML data manipulation, respectively. Section 27.6 
then examines the relationship between XML and databases. Of course, this latter topic is 

the main reason we include this chapter at all!—but we deliberately ignore it (for the most 

part) prior to Section 27.6. Finally, Section 27.7 describes the relevant SQL facilities, and 

Section 27.8 presents a summary. 

895 





Chapter 27 / The World Wide Web and XML 897 

Now, we said earlier that the Web is a giant database. Users perceive that database, 

via a web browser, as being distributed over a set of sites (“websites”), each of which has 
its own web server and is identified by its own URL. Each site contains a set of web 

pages, and each page has an associated root document that specifies among other things 
how that page is to be displayed. Like all documents, that root document typically 

includes URL links to a variety of different kinds of information1 (text, images, audio, 

video, and so forth), at a variety of different sites; to the user, however, it is perceived as 

one integrated whole—the user is probably aware of the URL for the original page at 

most and nothing more. But when the page is displayed, the links are displayed too, and if 
the user clicks on such a link, then the browser displays the corresponding information in 

the same window (or in some additional window). 

Note: For some web pages, users can retrieve further information by filling out forms. 

Search engines provide an important special case. Typically, a search engine takes a speci¬ 

fied search argument—for example, “Camelot”—and returns a list of websites containing 

pertinent information. To be able to do this kind of searching in a reasonable time, the 

search engine uses comprehensive indexes of the keywords that appear in the millions of 
documents stored on the Web. Those indexes are created and maintained by web crawlers 

that run continuously, retrieving web pages and recording their use of potential search 

arguments. 
The information at a given site can be stored in operating system files; increasingly, 

however, it is stored in databases (SQL databases and others), and web servers thus need 
to be able to interact with DBMSs. Sections 27.6 and 27.7 give some idea as to what 

might be involved in such interactions. 

27.3 AN OVERVIEW OF XML 

The name “XML” stands for Extensible—not “extensible”!—Markup Language. An 
XML document is, loosely, a document created using XML facilities. Here is a simple 

example. Note the heavy use of angle brackets “<” and “>” (not to be confused with the 

angle brackets used elsewhere in this book in BNF grammars). 

<?xml version="1.0"?> 
<greeting kind="succinct">Hello, world.</greeting> 

The first line here is an XML declaration (with certain optional features omitted); 

XML documents usually include such a declaration, though they are not required to. The 

second line is an XML element, consisting of a start tag, some character data, and an 
end tag. (More generally, a given element can contain character data or other elements or a 

mixture of both.) The character data is the string “Hello, world.”; the start tag is the 
markup preceding that string, and the end tag is the markup following it. (The unqualified 

term tag is also used, informally, to refer to a start tag and its corresponding end tag taken 

together.) Tags are identified by whatever name they are given by the document definer, 

1 It might also directly embed such additional information. 
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The markup here tells the formatter to space down two lines (“.sp 2”), indent the first line 

of text by three em spaces (“.il 3m”), underscore the word “first” (“.us on” and “.us off’), 
and then break to a new line (“.br”). 

Now, one problem with Script and similar languages was that the markup was quite 

procedural in nature—not to mention the fact that it controlled document formatting only, 

and further was appropriate only for certain kinds of devices (typically monochrome line 

printers). Precisely in order to remedy such deficiencies, three IBM researchers introduced 

the Generalized Markup Language, GML. The key difference between GML and lan¬ 

guages like Script is that the markup in GML is more descriptive, or declarative, than the 

rather procedural markup found in those earlier languages. Here again is our Script exam¬ 
ple, expressed now in GML: 

<p>You should specify the <empl>first</empl> parameter as PRIVATE. 
This specification allows the processor to complete the conversion 
without further input. 

The markup now simply tells the formatter that the text is a paragraph (“<p>”), instead of 
spelling out the detailed layout for such a paragraph (“space down two lines” and so forth). 

It also tells the formatter that “first” is to have the first level of emphasis (“<empl>” and 

“</empl>”), instead of stating specifically that it is to be underscored. Note: We have 

deliberately taken a few liberties with GML in our example; in particular, we have used 

angle brackets for tags, instead of the more usual colon characters (“:”). These departures 

from usual practice are unimportant for present purposes. 

GML markup is thus indeed more descriptive, but it is still focused on presentation or 

text rendering (though it does facilitate certain other tasks, such as counting the number of 
paragraphs). In particular, users are limited to just those tags that are built into the lan¬ 

guage. By contrast, Standard GML (SGML), an extended form of GML, allows users to 

define their own tags and give them whatever meaning they like.4 Using this facility, we 

could extend our example to specify the structure of the data in fine detail—for example: 

<paragraph> 
<sentence> 

<subject>You</subject> 
<verb> should specify</verb> 
<object> the <adjective><empl>first</empl></adjective> 

parameter</object> 

</sentence> 
<sentence> 

</sentence> 
</paragraph> 

Note: We draw your attention to the fact that the “object” element here contains both 

character-string data and another (“adjective”) element. 

The fact that these initials correspond with those of its inventors Charles Goldfarb, Edward Mosher, and 
Raymond Lorie is not a coincidence. 

4 Here is an interesting quote in this connection: “Even in the smallest organization, most conflicts stem 
from a lack of clearly defined and shared meaning for the words we use” [27.4]. 
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Fig. 27.3 XML and XML-related standards and specifications 

27.4 XML DATA DEFINITION 

Like conventional database data, a given XML document usually has some associated 
descriptor information. Such information can be specified by means of either (a) a docu¬ 

ment type definition (DTD), constructed using what we will call the DTD definition lan¬ 

guage [27.25],14 or (b) an XML schema, constructed using a language called, somewhat 
confusingly, XML Schema [27.28], We discuss both languages in the present section. 

14 The name DTD definition language stands for “Document Type Definition definition language” and 
might thus appear to involve some redundancy. But it does not—the two “definitions” refer to different 
things! See the further remarks on this subject in the subsection “XML Derivatives Revisited” at the very 
end of this section. 
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XML Schema 

XML Schema [27.28] is itself an XML derivative (it is not defined as part of the XML 

specification per se, unlike the DTD definition language). Thus, the XML schema corre¬ 

sponding to a given XML document D is itself an XML document, SD say. There is no 

explicit, formally specified link between documents D and SD, but D can use the special 

attribute schemaLocation to provide “hints” regarding the location of SD. 

Typically, an XML schema provides more extensive constraints than a DTD could on 

the XML document(s) it describes. By way of example, here is an XML Schema counter¬ 

part to the PartsRelation DTD shown in the subsection “Document Type Definitions” ear¬ 

lier in this section (the one in which COLOR and CITY are represented by XML attributes 

instead of elements): 

<?xml version="1.0"?> 
<!— XML Schema schema for PartsRelation documents —> 
<!DOCTYPE xsd:schema SYSTEM "http://www.w3.org/2001/XMLSchema.dtd"> 

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"> 

<xsd:element name="NOTE" type="xsd:string"/> 

<xsd:element name="PartsRelation"> 
<xsd:complexType> 

<xsd:sequence> 
<xsd:element ref="NOTE" minOccurs="0"/> 
<xsd:element name="PartTuple" type="PartTupleType" 

minOccurs="0" maxOccurs="unbounded"/> 
</xsd:sequence> 

</xsd:complexType> 
</xsd:element> 

<xsd:complexType name="PartTupleType"> 
<xsd:sequence> 

<xsd:element name="PNUM" type="PartNum"/> 
<xsd:element name="PNAME" type="xsd:string"/> 
<xsd:element name="WEIGHT"> 

<xsd:simpleType> 
<xsd:restriction base="xsd:decimal"> 

<xsd:totalDigits value="5"/> 
<xsd:fractionDigits value="l" fixed="true"/> 
<xsd:minlnclusive value="0.l"/> 

</xsd:restriction> 
</xsd:simpleType> 

</xsd:element> 
<xsd:element ref="NOTE" minOccurs="0"/> 

</xsd:sequence> 
<xsd:attribute name="CITY" type="City"/> 
<xsd:attribute name="COLOR" type="Color" default="Red"/> 

</xsd:complexType> 

<xsd:simpleType name="PartNum"> 
<xsd:restriction base="xsd:string"> 

<xsd:pattern value="P[0-9]{l,3}"/> 
</xsd:restriction> 

</xsd:simpleType> 

<xsd:simpleType name="Color"> 
<xsd:restriction base="xsd:string"> 

<xsd:enumeration value="Red"/> 
<xsd:enumeration value="Green"/> 
<xsd:enumeration value="Blue"/> 

</xsd:restriction> 
</xsd:simpleType> 
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<xsd:simpleType name="City"> 
<xsd:restriction base="xsd:string"> 

<xsd:enumeration value="London"/> 
<xsd:enumeration value="Oslo"/> 
<xsd:enumeration value="Paris"/> 

</xsd:restriction> 
</xsd:simpleType> 

</xsd:schema> 

Now, the foregoing schema is clearly much longer and more complex than its DTD 

counterpart, even though for the most part it specifies just the same constraints as that 

DTD did. The big difference is that the schema additionally imposes certain type con¬ 

straints on elements and attributes. XML Schema provides a set of built-in primitive 

types—boolean, decimal, string, and several others—as well as certain built-in derived 

types (integer, positivelnteger, negativelnteger, and so on), which are defined in terms of 

the primitive ones. It also allows users to define their own types in terms of the built-in 

ones. Types can be either simple or complex; the difference is that elements that are of a 

complex type can contain other elements nested inside themselves, while elements that 
are of a simple type cannot. We illustrate these ideas with reference to the PartsRelation 

schema, which constrains PartsRelation documents as follows: 

1. The root (PartsRelation) element is defined to be of an unnamed complex type, values 
of which are defined inline to consist of an optional NOTE element, followed by a se¬ 

quence of zero or more PartTuple elements, each of which is of type PartTupleType. 

2. Elements that are of type PartTupleType are defined to consist of elements PNUM, 
PNAME, and WEIGHT, in that order, together with attributes CITY and COLOR, of 

which the latter is optional (if omitted, Red is assumed by default). Of these elements 

and attributes, PNAME is defined to be of type string; PNUM, CITY, and COLOR 

are defined to be of types PartNum, City, and Color, respectively (see points 4 and 5); 

and WEIGHT is defined to be of an unnamed type whose definition is given inline 

(see point 3). 

3. The type of WEIGHT elements is defined to be a “restriction” of type decimal, with 

precision five, scale factor one, and minimum value 0.1—which is to say, legal values 

of elements of type WEIGHT are exactly 0.1, 0.2,..., 9999.9. 

4. Type PartNum (a restriction of type string) is defined by means of the regular expres¬ 

sion P[0-9]{ 1,3}, which is interpreted to mean that legal values of type PartNum con¬ 
sist of an uppercase P followed by one, two, or three decimal digits. Note: The 

“regular expression” construct is borrowed from the Perl programming language. 

5. Types Color and City (also restrictions of type string) are defined by enumeration. 

Note: The foregoing discussion notwithstanding, it is important to understand that 

XML Schema “types” are not really types in the sense of Chapter 5. In particular, almost 

no associated operators are defined, as would be required for genuine types. In fact, XML 

Schema “type definitions” are really closer to the PICTURE specifications found in lan¬ 

guages like COBOL and PL/I; that is, all they really do is define certain character-string 

representations for the “types” in question. Partly for such reasons, we have felt free to 
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We conclude our brief discussion of XPath with a remark on the crucial role played 

by the notion of currency in all of the foregoing. We have seen that each step in a given 

path expression is executed with respect to some context node, which acts as “the current 

node.” Now, a very similar notion pervaded the access languages in those early "manual 

navigation” systems (especially hierarchic systems) that dominated the DBMS market¬ 

place before SQL systems appeared on the scene. And it was that notion that was the 

direct cause of much of the complexity—not to mention the coding errors—that such 

systems suffered from; indeed, it was one of the many great contributions of the rela¬ 

tional model that it eliminated the notion of currency entirely. The wisdom of reintroduc¬ 

ing such a notion (and making it such a key feature, moreover) thus surely deserves to be 

questioned. 

XQuery 

One problem with XPath is that it is fundamentally just an addressing mechanism; its path 

expressions can navigate to existing nodes in the hierarchy, but they cannot construct 

nodes that do not already exist. In other words, the XPath language is a little like a “rela¬ 

tional” language—“relational” in quotes because, of course, relational languages are not 

navigational—that supports restrictions and projections but not joins.19 This observation 

provides part of the motivation for XQuery; one of the major extensions provided by 

XQuery over XPath is precisely the ability to construct new nodes. 

This ability is illustrated in our first example. Once again, suppose we have the XML 

document PartsRelation, exactly as in the preceding subsection. Suppose we also have 

analogously structured SuppliersRelation and ShipmentsRelation documents. Here then is 

an XQuery formulation of the query “For every shipment, get the supplier name, part name, 

and shipment quantity”: 

<Result> 
{ for $spx in document("ShipmentsRelation.xml") 

//ShipmentTuple, 
$sx in document("SuppliersRelation.xml") 

//SupplierTuple[SNUM = $spx/SNUM] 
$px in document("PartsRelation.xml") 

//PartTuple[PNUM = $spx/PNUM] 
order by SNAME, PNAME 
return 

<ResultTuple> 
{ $sx/SNAME, $px/PNAME, $spx/QTY } 

</ResultTuple> } 
</Result> 

Explanation: 

1. The expression overall evaluates to (“constructs”) a single Result element, containing 

a sequence of ResultTuple elements. As an aside, we note that if we were to delete the 

19 This statement is slightly oversimplified; XPath does effectively support a kind of Cartesian product 
operation (which is a degenerate case of join, of course). However, it does not support joins in any more 
general form. 
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enclosing Result tags, the expression that remained would still be a legal XQuery 

query, but it would return a result that was not well-formed. 

2. A good way to explain the semantics of the expression overall (ignoring the enclosing 
Result tags) is in terms of the following relational calculus analog: 

{ SX.SNAME, PX.PNAME, SPX.QTY } WHERE SX.SNUM = SPX.SNUM 
AND PX.PNUM = SPX.PNUM 

This expression effectively asks for suppliers, parts, and shipments to be joined as 

specified, and then for the result of that join to be projected over SNAME, PNAME, 

and QTY. Note: We show no analog of the XQuery “order by” step, since “order by” is 
not a relational operation. Also, we adopt our usual conventions regarding range vari¬ 

able names (SX, PX, and SPX are range variables ranging over suppliers, parts, and 

shipments, respectively). Finally, we ignore the fact that the relational expression will 

automatically eliminate duplicate tuples, which the XQuery expression will not. 

3. As the previous paragraph suggests, the XQuery variables $sx, $px, and $spx behave 

a little like range variables in relational calculus. However, the analogy is rather mis¬ 

leading; the XQuery formulation is not really much like the relational one, because it 

is quite procedural in nature, as you can see (in this connection, we draw your atten¬ 
tion to the annotation to reference [27.3]). In fact, the XQuery formulation looks very 

much like the following nested-loop formulation (expressed here in pseudocode, and 

using instead of “/” as a separator): 

do for each shipment $spx ; 
do for each supplier $sx where $sx.snum = $spx.snum ; 

do for each part $px where $px.pnum = $spx.pnum ; 
emit { $sx.SNAME, $px.PNAME, $spx.QTY > ; 

end do ; 
end do ; 

end do ; 

It follows that $sx, $px, and $spx really resemble loop control variables (in the con¬ 
ventional programming sense) much more than they do range variables. What is more, 

observe that we have to iterate over shipments specifically in the outermost loop; that is, 

we have to introduce the loop control variable $spx first, because the other two variables 
are defined in terms of it—a fact that could have some interesting implications for the 

optimizer. By contrast, the other two variables $sx and $px could be introduced in either 

order, though whether the order has any implications for the optimizer could also be an 
interesting question. It is at least relevant to observe that the order in which the variables 

are introduced does have an effect on the order in which result elements are produced 

(see the discussion of the return clause under point 7); thus, the XQuery analogs of the 

expressions A JOIN B and B JOIN A are not equivalent, in general. 
As a consequence of such considerations, it could be argued that XQuery is really 

more of a programming language than it is an end-user query language. 

4. Now we focus on the for clause in particular, and more specifically on the portion of 

that clause that precedes the first comma. The expression 

document("ShipmentsRelation.xml") 

returns the abstract (“parsed”) version of the XML document that is contained in the 

file called ShipmentsRelation.xml, with the overall document node as the context 
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node. The specification “//ShipmentTuple” indicates that we are interested in Ship- 

mentTuple elements in that document. And the specification “for $spx in” indicates 

that the variable $spx is to take on as its value each of those shipment tuples in turn, in 

the order in which they appear in that document. 

5. The next part of the for clause— 

$sx in document("SuppliersRelation.xml") 
//SupplierTuple[SNUM = $spx/SNUM] 

—is analogous, except that the variable $sx “ranges over” only those suppliers whose 

SNUM value is equal to that in the current value of $spx. 

6. The last part of the for clause is analogous again. 

7. The return clause is executed for every combination of values of the variables $sx, 

$px, and $spx, in the order in which those values are produced by the for clause. In 

the example, therefore, the return clause will produce ResultTuple elements in a se¬ 

quence dictated by the rule that $px values change most rapidly, $sx values change 

next most rapidly, and $spx values change least rapidly of all. 

8. The order by clause is more or less self-explanatory. Note, however, that it appears 

before the corresponding return clause. This placement allows the result to be ordered 

on the basis of values that do not actually appear in the result (as in, e.g., the SQL 

query SELECT CITY FROM P ORDER BY WEIGHT). Conceptually, however, it is 

still the case that the return clause needs to be executed first, because the ordering 

cannot be done until there is something to order. 

Here now is a second example (“Get part numbers and total shipment quantity for 

parts supplied by two or more suppliers”): 

for $pnum in 
distinct-values(document("ShipmentsRelation.xml")//PNUM) 

let $spx := document("ShipmentsRelation.xml") 
//ShipmentTuple[PNUM = $pnum] 

where count ( $spx ) > 1 
order by PNUM 
return 

<Result> 
{ $pnum, 

<totqty> { sum ( $spx/qty ) } </totqty> } 
</Result> 

1. This example shows a complete “FLWOR expression” (FLWOR =for + let + where + 

order by + return; it is pronounced “flower”). 

2. Note the use of “distinct-values” to eliminate duplicate part numbers in the for 

clause; $pnum ranges over just the distinct shipment part numbers. 

3. The let clause differs from the for clause in that the specified variable does not iterate 

over the specified sequence of values—rather, it is assigned that sequence of values 

in its entirety. In the example, moreover, the let clause will be evaluated for each 

distinct shipment part number in turn, because it is effectively nested inside the for 

clause. 

4. The where clause then causes the remainder of the expression to be evaluated only 
when the current sequence of shipments (i.e., the sequence of shipments with the cur- 
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Suppose the table contains just the usual rows for parts PI and P2. Then mapping it to 

XML will produce a data document that looks like this: 

<p> 
<row> 

<PNUM>P1</PNUM> 
<PNAME>Nut</PNAME> 
<COLOR>Red</COLOR> 
<WEIGHT>12.0</WEIGHT> 
<CITY>London</CITY> 

</row> 
<row> 

<PNUM>P 2 </PNUM> 
<PNAME>Bolt</PNAME> 
<COLOR>Green</COLOR> 
<WEIGHT>17.0</WEIGHT> 
<CITY>Paris</CITY> 

</row> 
</P> 

It will also produce a schema document that looks like this: 

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"> 

<xsd:simpleType name="CHAR_6"> 
<xsd:restriction base="xsd:string"> 

<xsd:length value="6"/> 
</xsd:restriction> 

</xsd:simpleType> 

<xsd:simpleType name="CHAR_20"> 
<xsd:restriction base="xsd:string"> 

<xsd:length value="20"/> 
</xsd:restriction> 

</xsd:simpleType> 

<xsd:simpleType name="DECIMAL_5_l"> 
<xsd:restriction base="xsd:decimal"> 

<xsd:totalDigits value="5"/> 
<xsd:fractionDigits value="1"/> 

</xsd:restriction> 
</xsd:simpleType> 

<xsd:complexType name= 
<xsd:sequence> 

<xsd:element name= 
<xsd:element name= 
<xsd:element name= 
<xsd:element name= 
<xsd:element name= 

</xsd:sequence> 
</xsd:complexType> 

RowType.P"> 

PNUM" type="CHAR_6"/> 
PNAME" type="CHAR_20"/> 
COLOR" type="CHAR_6"/> 
WEIGHT" type="DECIMAL_5 
CITY" type="CHAR_20"/> 

l"/> 

<xsd:complexType name="TableType.P"> 
<xsd:sequence> 

<xsd:element name="row" type="RowType.P" 
minOccurs="0" 
maxOccurs="unbounded"/> 

</xsd:sequence> 
</xsd:complexType> 

<xsd:element name="P" type="TableType.P"/> 

</xsd:schema> 
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describing the part in question. Then the following UPDATE statement sets the 

COLOR component of that XML document to Green for every part supplied by sup¬ 

plier S4: 

UPDATE SP 
SET PARTDETAIL = XMLUPDATE 

( PARTDETAIL, 
'//PartTuple/COLOR', 'Green' ) 

WHERE SNUM = 'S4' ; 

27.8 SUMMARY 

We have examined the relationship between XML and databases. In order to set the scene 

for that examination, however, we had to begin by explaining a lot of background: first a 

little on the World Wide Web, and then a lot more on XML per se. 

XML grew out of the earlier languages SGML and HTML; the name “XML” stands 

for “Extensible Markup Language,” but (like SGML) XML is really a metalanguage, or 

even a “metametalanguage.” A specific application of XML—that is, an XML deriva¬ 

tive, as we called it earlier in this chapter—is a language for defining XML documents of 

some specific kind (e.g., PartsRelation documents). Originally, XML had nothing to do 

with databases; rather, the idea was simply to allow “generic SGML to be served, 

received, and processed on the Web in the way that is now possible with HTML” [27.25]. 

However, there is a clear need to be able to store XML data in databases and operate on 

it there, and this fact has led some people to advocate XML as (a basis for) a database 

technology as such. 
An XML document consists primarily of a properly nested hierarchic arrangement of 

elements, each of which includes a pair of delimiting tags. A given element can include 

character data, nested elements, or a mixture of both. Empty elements are supported. A 

start tag can optionally include a nonempty set of attributes. We saw that an XML docu¬ 

ment might be used to represent a relation, but it necessarily imposes a top-to-bottom 

ordering on the tuples, and probably a left-to-right ordering on the attributes as well. 

Any given XML document has an abstract structure called an infoset that can be 

operated on via an API called the Document Object Model and queried using XQuery. 

XML documents are also sometimes said to conform to the semistructured data 

model—though in fact XML documents are no more and no less structured than relations 

are; in fact, we see no substantial difference between the semistructured model and the old 

hierarchic model (at least in its structural aspects). 
Any given XML document is well-formed by definition. It might also be valid, 

meaning it conforms to some specified Document Type Definition (DTD). The rules for 

writing DTDs are an intrinsic part of the XML standard (in fact, a given DTD is the defi¬ 

nition of some XML derivative). However, DTDs suffer from a variety of problems; in 

particular, they support very little by way of integrity constraints. XML Schema is a 
metalanguage that supports the creation of XML schemas, which can be used to provide a 

tighter and more detailed description of XML documents (with respect to data types in 
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particular, though the types in question are hardly true types in the sense of Chapter 5). 

The process of checking that a given XML document conforms to a specified XML 
schema is called schema validation. 

Next, we took a look at XQuery and XPath (the second of which is a proper subset 

of the first), which provide read-only access to XML data—or, more precisely, to an 

abstract or parsed form of such data (i.e., an infoset, in effect). We did not attempt to 

define either of these languages in detail, but we did show a few examples in order to give 

some idea of what they can do. We discussed path expressions, which effectively allow 

the user to navigate along some specified path in the infoset to some desired target. We 

also pointed out the crucial role played by currency in such expressions, and questioned 

the desirability of such a feature (certainly it contributes to the overall procedural “look 

and feel” of both XPath and XQuery, an aspect of those languages that we were somewhat 

critical of). Then we observed that, in effect, XPath is just an addressing scheme—it can 

be used to navigate to existing nodes in the hierarchy, but it cannot construct new nodes 
(we need XQuery for that). 

We then presented a series of XQuery examples, illustrating “flower expressions” 

(“FLWOR” = for + let + where + order by + return) in particular. We drew parallels 

between such expressions and (a) expressions of the relational calculus and (b) nested 

loops in a conventional programming language; we then claimed that the second of these 
parallels was closer than the first, and we mentioned a few questions regarding optimiza¬ 

tion. We noted the lack of any explicit join support (as in the original version of SQL). 

Next, we described three ways in which we might store an XML document in a 

database: 

1. “XML column”: We might store the entire document as the value of some attribute 

within some tuple. This approach involves a new data type, say XMLDOC (with op¬ 

erators for dealing with values and variables of that type, of course). 

2. “XML collection”: We might shred the document and represent various pieces of it 

as various attribute values within various tuples within various relations. Note: The 

inverse of shredding—that is, converting nonXML data to XML form—is called 

publishing. Together, shredding and publishing can be regarded as providing XML 

views of nonXML data (publishing supports retrieval, shredding supports update). 

3. We might store the document in a native XML database (i.e., a database that con¬ 
tains XML documents as such, instead of relations). 

We explained some of the pros and cons of these various approaches. 
Finally, we briefly discussed SQL/XML (which will probably be incorporated into the 

SQL standard in 2003). SQL/XML—somewhat inappropriately, in our opinion—supports 

the publication of SQL data in XML form. It also introduces a new data type called XML, 

values of which are XML documents or fragments, thereby allowing XML data to be 

stored in SQL columns, but it provides very few operators on such data. We closed with a 

brief discussion of proprietary XML support, based on the support provided for DB2. 
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EXERCISES 

27.1 Explain the following terms in your own words: 

attribute 
element 
HTML 
HTTP 
Internet 
markup 
search engine 

SGML 
tag 
URL 
web browser 
web crawler 
web page 
web server 

website 
World Wide Web 
XML 
XML derivative 
XML Schema 
XPath 
XQuery 

27.2 How are XML. HTML, and SGML related? 

27.3 Consider the list of contents at the front of this book. Show how you might represent that list 
of contents as an XML document. Include an internal DTD as part of your answer. 

27.4 Revise your answer to Exercise 27.3 to make the DTD external. What are the advantages of 
an external DTD? 

27.5 What does it mean to say that an XML document is (a) well-formed, (b) valid? 

27.6 What is an empty element? 

27.7 Do you think XML documents are containment hierarchies in the sense of Chapter 25? 

27.8 In the subsection “Limitations of DTDs” in Section 27.4, we criticized DTDs on the grounds 
that they themselves were not expressed in XML (“Surely, if XML is really as versatile and powerful 
as it is claimed to be, it ought to be able to describe itself’)- Does an analogous criticism apply to 
data definitions in SQL? Or in the relational model? Justify your answer. 

27.9 Show the projects relation from Fig. 4.5 (see the inside back cover) as an XML document. 
Use XML elements, not attributes, to represent data values. To what extent can uniqueness con¬ 
straints be enforced? 

27.10 Repeat Exercise 27.9 but use XML attributes to represent data values. What are the advan¬ 
tages of using attributes? What are the disadvantages? 

27.11 Suppose the answers to Exercises 27.9 and 27.10 are extended to include suppliers, parts, 
and shipments. To what extent can referential constraints be enforced? 

For Exercises 27.12-27.14, you will probably need to refer to the official XML Schema docu¬ 
mentation [27.28] or some similar reference source (the body of the chapter does not include suffi¬ 
cient detail to answer the exercises fully). 

27.12 Create an XML schema for your answer to Exercise 27.3. 

27.13 Consider the PartsRelation document from Section 27.3. Create an XML schema for docu¬ 
ments of this form that does not impose an ordering on the elements of PartTuple. 

27.14 We claimed in Section 27.4 that XML Schema data types are not really types as normally 
understood. Do you agree? Justify your answer. 

27.15 What do you understand by the term infoset? 

27.16 What is a path expression? 

27.17 What is a “FLWOR expression”? What is the crucial difference between the/or clause and 
the let clause? When should you use a predicate rather than a where clause (and vice versa)? 

Exercises 27.18-27.21 refer to the PartsRelation document from Section 27.4. All results 
should be well-formed. 
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27.18 Write an XQuery expression to list all PartTuple elements that contain a NOTE element. 

27.19 Write an XQuery expression to list all green parts, with each result PartTuple enclosed in a 

GreenPart element. 

27.20 If the following XQuery expression is evaluated on a version of the PartsRelation document 

that represents all six parts P1-P6, what does it yield? 

<Parts> 
{ count(document("PartsRelation.xml")//PartTuple) } 

</Parts> 

27.21 Suppose we are given the SuppliersOverShipments document (see Fig. 27.4) as well as the 

PartsRelation document. Write an XQuery expression to list suppliers who supply at least one blue 

part. 

27.22 If the SuppliersOverShipments document from Exercise 27.21 represents all of the suppliers 

and shipments from Fig. 3.8 (see the inside back cover), what does the following expression yield? 

for $sx in document("SuppliersOverShipments.xml")/ 
Supplier[CITY = 'London'] 

return 
<Result> 

{ $sx/SNUM, $sx/SNAME, $sx/STATUS, $sx/CITY > 
</Result> 

27.23 What is the semantic difference (if any) between the following two return clauses? 

return <Result> { $a, $b } </Result> 

return <Result> { $a > { $b } </Result> 

27.24 How might we consider storing XML data in a database? What are the advantages and dis¬ 

advantages of each approach? 

27.25 Consider the functions described (briefly) in Section 27.6, subsection “Proprietary Support.” 

Do you have any opinions regarding the design of those functions? 

27.26 It is sometimes suggested that an XML document resembles a tuple, as that concept is 

understood in the relational database world. Discuss. 

27.27 It is sometimes said that XML data is “schemaless.” How would you go about querying data 

that has no schema? How would you design a query language for such data? 

27.28 In Section 27.3, we said that what structure an XML document does possess is in large part 

imposed on the data by the document designer. Does an analogous remark apply to relational data? If 

not, why not? Justify your answer. 

27.29 If you are familiar with the hierarchic data model, identify as many differences as you can 

between it and “the semistructured model” as sketched in this chapter. 

27.30 Here is a quote from reference [27.4]: “XML avoids the fundamental question of what we 

should do, by focusing entirely on how we should do it.” Discuss. 
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Step 1: Go to cell [1,1] of the Field Values Table and fetch the value stored there: 

namely, the supplier number SI. That value is the first field value (that is, the S# 

field value) within a certain supplier record in the suppliers file. 

Step 2: Go to the same cell (that is, cell [1,1]) of the Record Reconstruction Table 

and fetch the value stored there: namely, the row number 5. That row number is 

interpreted to mean that the next field value (which is to say, the second or SNAME 

value) within the supplier record whose S# field value is SI is to be found in the 

SNAME position of the fifth row of the Field Values Table—in other words, in cell 

15,2] of the Field Values Table. Go to that cell and fetch the value stored there (sup¬ 

plier name Smith). 

Step 3: Go to the corresponding Record Reconstruction Table cell [5,2] and fetch 

the row number stored there (3). The next (third or STATUS) field value within the 

supplier record we are reconstructing is in the STATUS position in the third row of 

the Field Values Table—in other words, in cell [3,3], Go to that cell and fetch the 

value stored there (status 20). 

Step 4: Go to the corresponding Record Reconstruction Table cell [J,J] and fetch 

the value stored there (which is 3 again). The next (fourth or CITY) field value 

within the supplier record we are reconstructing is in the CITY position in the third 

row of the Field Values Table—in other words, in cell [3,4], Go to that cell and fetch 

the value stored there (city name London). 

Step 5: Go to the corresponding Record Reconstruction Table cell [3,4] and fetch the 

value stored there (/). Now, the “next” field value within the supplier record we are 

reconstructing looks like it ought to be the fifth such value; however, supplier 

records have only four fields, so that “fifth” wraps around to become the first. Thus, 

the “next” (first or S#) field value within the supplier record we are reconstructing is 

in the S# position in the first row of the Field Values Table—in other words, in cell 

[1,1]. But that is where we came in, and the process stops. 

Clearly, the foregoing sequence of operations reconstructs one particular record from 

the suppliers file—to be specific, the one shown as record number 4 in Fig. A.3: 

s# SNAME STATUS CITY 

SI Smith 20 London 

By the way, note how the row-number pointers we followed in the foregoing exam¬ 

ple form a ring—in fact, two isomorphic rings, one in the Field Values Table and one in 
the Record Reconstruction Table (see Fig. A.7). Note: For obvious reasons, the rings are 

also called zigzags, and the reconstruction algorithm is known informally as the zigzag 

algorithm. 
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SELECT S.STATUS, S.CITY, S.S#, S.SNAME 

FROM S 
ORDER BY STATUS ; 

In analogous fashion, if we process the Record Reconstruction Table in sequence by entries 

in the SNAME column, we obtain the suppliers file in ascending supplier name order; like¬ 

wise, if we process it in sequence by entries in the CITY column, we obtain the file in 

ascending city name order. In other words, the Record Reconstruction Table and the Field 

Values Table together represent all of these orderings simultaneously—without (to repeat) 

any need for either indexes or run-time sorting. 

Now consider the following query, which involves a simple equality restriction: 

SELECT S.S#, S.SNAME, S.STATUS, S.CITY 
FROM S 
WHERE S.CITY = 'London' ; 

Since the CITY column (like every column) of the Field Values Table is kept in sorted 

order, a binary search can be used to find the cells containing London. Given the Field Val¬ 

ues Table of Fig. A.6, those cells turn out to be [2,4] and [3,4]. Zigzags can now be con¬ 
structed by following the pointer rings running through cells [2,4] and [3,4] of the Record 

Reconstruction Table. In the example, those zigzags look like this: 

and 

12,4], [4,1], [3,2], [2,3] 

[3,4], [1,1], [5,2], [3,3] 

Superimposing these zigzags on the Field Values Table, we obtain the field values for the 

desired records: 

S# SNAME STATUS CITY 

1 S4 Clark 20 London 

4 SI Smith 20 London 

The Field Values Table and the Record Reconstruction Table together offer direct 

support for many other user-level operations too, in addition to simple ORDER BYs and 

equality restrictions. In fact, most if not all of the fundamental relational operations— 

restrict, project, join, summarize, and others (not to mention the operation of duplicate 

elimination, which is needed internally, even in true relational systems)—have implemen¬ 

tation algorithms that rely on the ability to access the data in some specific sequence. By 

way of example, consider join. We saw in Chapter 18 that sort/merge is a good way to 

implement join. Well, TR lets us do a sort/merge join without having to do the sort!—or, 

at least, without having to do the run-time sort (the sort is done when the Field Values and 

Record Reconstruction Tables are built, which is to say at load time, loosely speaking). 

For example, to join suppliers and parts over city names, we simply have to access each of 

the two Field Values Tables in city name sequence and do a merge-style join. 
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12 3 4 

S# SNAME STATUS CITY 

1 4 3 2 2 
2 5 1 4 1 
3 2 4 1 4 
4 1 5 3 3 
5 3 2 5 5 

Now we can build the Record Reconstruction Table. For example, the first (S#) col¬ 

umn can be built as follows: 

Go to cell [i,7] of the Inverse Permutation Table. Let that cell contain the value r; 

also, let the next cell to the right, cell [i,2], contain the value r\ Go to the /ih row of 

the Record Reconstruction Table and place the value r' in cell [/; 7], 

Executing this algorithm for i = 1, 2, ..., 5 yields the entire S# column of the Record 

Reconstruction Table. The other columns are built analogously. Note: As an exercise, we 

strongly suggest that you work through this algorithm and build the complete Record 

Reconstruction Table. Doing this exercise should give you the insight to understand why 

the algorithm works. Incidentally, note that the Record Reconstruction Table is built 

entirely from the file—the Field Values Table plays no part in the process at all. 

The Record Reconstruction Table Is Not Unique 

In our discussions in the previous subsection, we said (among other things) that the CITY 

permutation for the suppliers file of Fig. A.3 was the sequence 2, 1, 4, 3, 5. Noting, how¬ 

ever, that suppliers SI and S4 are both in the same city, as are suppliers S2 and S3, we 

might equally well have said the city permutation was 2, 4, 1, 3, 5—or 3, 1, 4, 2, 5, or 3, 4, 

1, 2, 5. In other words, the CITY permutation is not unique.2 It follows that the Permuta¬ 

tion Table is not unique, and hence the Record Reconstruction Table is not unique either. 

Given a particular user-level relation, however, it turns out that there are always certain 

Record Reconstruction Tables that are “preferred,” in the sense that they display certain 

desirable properties that Record Reconstruction Tables in general do not. The details are 

beyond the scope of this appendix, however; see reference [A.l] for further discussion. 

A.4 CONDENSED COLUMNS 

Consider Fig. A.8, which shows a possible file corresponding to our usual parts relation; 

Fig. A.9, which shows the corresponding Field Values Table; and Fig. A. 10, which shows a 

corresponding “preferred” Record Reconstruction Table. 

2 The same is true for the STATUS permutation, but not as it happens for the SNAME permutation (and 
obviously not for the S# permutation). 
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1 2 3 4 5 

P# PNAME COLOR WEIGHT CITY 

1 PI Bolt Blue 12.0 London 
2 P2 Cam Green 14.0 Oslo 
3 P3 Cog Red 17.0 Paris 
4 P4 Nut 19.0 
5 P5 Screw 
6 P6 

Fig. A.ll Condensed version of the Field Values Table of Fig. A.9 

2. Field values in condensed columns are effectively shared across records of the parts 

file. For example, the city name London in cell [7,5] is shared by three part records: 

namely, those for parts PI, P4, and P6. One consequence is that update operations, 

especially INSERT, have the potential to run faster than before, because they might be 

able to use field values that already exist, effectively sharing those values with other 

records; for example, consider what happens if the user inserts a part tuple for part P7, 

with part name Nut, color Red, weight 18.0, city London. As noted in Section A.l, 

however, update operations in general are beyond the scope of this appendix. 

3. Condensed columns constitute a kind of data compression, of course (albeit a kind 

not typically found in conventional direct-image implementations)—but notice how 

much compression they can provide. For example, imagine a Department of Motor 

Vehicles relation representing drivers’ licenses, with a tuple for every license issued 

in (say) the state of California, for a total of perhaps 20 million tuples. But there are 

certainly not 20 million different heights, or weights, or hair colors, or expiry dates! 

In other words, the compression ratio might quite literally be of the order of a million 

or so to one. 

Row Ranges 

Back to Fig. A.l 1. Needless to say, we cannot just replace (e.g.) the original three appear¬ 

ances of the city name London by one such appearance, because we would be losing infor¬ 

mation if we did. (The condensed CITY column contains three values, but there are six 

parts. How would we know which part is in which city?) So we need to keep some addi¬ 

tional information that, in effect, allows us to reconstruct the original imcondensed Field 

Values Table from its condensed counterpart. One way to do this is to keep, alongside each 

field value in each condensed column in the Field Values Table, a specification of the 

range of row numbers for rows in the uncondensed version of that table in which that value 
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Fig. A.13 Color histogram (based on Fig. A.12) 

words, we get what we might call a “COLOR permutation” of that file. Thus, we can 

characterize the TR representation of any given set of data, informally, as a set of histo¬ 
grams plus a set of permutations (of the data in question). Such histograms and permuta¬ 

tions are, in essence, what the TR representation is really all about. 

Implications for Record Reconstruction 

Condensing the Field Values Table clearly destroys the one-to-one relationship between 

cells of that table and cells of the Record Reconstruction Table. It follows that the record 

reconstruction algorithm we have been using so far will no longer work. However, it is 

easy enough to fix this problem, thus: 

Consider cell [i,j] of the Record Reconstruction Table. Instead of going to cell [ij] of 

the Field Values Table, go to cell [i',f] of that table, where cell [i'J] is that unique cell 

within column j of that table that contains a row range that includes row i. 

By way of example, consider cell [3,4] of the Record Reconstruction Table of Fig. 
A. 10, which appears (of course) in column 4—the WEIGHT column—of that table. To 

find the corresponding weight value in the Field Values Table of Fig. A. 11, we search the 

WEIGHT column of that table, looking for the unique entry in that column that contains a 

row range that includes row 3. From the figure, we see that the entry in question is cell 

[2,4] (the corresponding range of rows is [5;5]), and the required weight value is 14.0. As 
an exercise, use the Record Reconstruction Table of Fig. A. 10 together with the con¬ 

densed Field Values Table of Fig. A. 12 to reconstruct the parts file in its entirety (start 

with column 5 in order to obtain the result in ascending city name sequence). 

A.5 MERGED COLUMNS 

In the previous section, we discussed condensed columns, which can be characterized as a 

way of sharing field values across records—but the records in question all came from the 

same file. Merged columns, by contrast, can be characterized as a way of sharing field 

values across records where the records in question might or might not all come from the 
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1 2 3 

MAJ OR_P # MINOR_P# QTY 

1 1 2 3 
2 2 6 1 
3 4 3 4 
4 3 1 7 
5 5 9 9 
6 7 4 2 
7 6 8 8 
8 8 7 6 
9 9 5 5 

Fig. A.17 Record Reconstruction Table for the file of Fig. A. 15 

Now we can start our examination of merged columns. Going right back to relation 

MMQ (Fig. A. 14), it is clear that attributes MAJOR_P# and MINOR_P# are of the same 

type, and hence that fields MAJOR_P# and MINOR_P# of the corresponding file are of 

the same type, too. They can therefore be mapped to the same column of the Field Values 

Table. Fig. A. 18 shows what happens. Points arising: 

1. Columns MAJOR_P# and MINOR_P# have been merged into a single column. That 

column contains all of the field values (i.e., part numbers) that previously appeared in 

either column MAJOR_P# or column MINOR_P# in the table before merging. 

Duplicates have been eliminated. 

1 2 

MAJOR_ _P# + MINOR_P# QTY 

1 PI [ 1 3] 1 : ] 1 [1:1] 
2 P2 [4 6] [1:1] 2 [2:2] 
3 P3 [7 8] [2:3] 3 [3:5] 
4 P4 [ 1 [4:6] 4 [6:7] 
5 P5 [9 9] [7:7] 6 [8:8] 
6 P6 [ 1 [8:9] 8 [9:9] 

Fig. A.18 Field Values Table of Fig. A. 16 after merging the first two columns 
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“the /th tuple” of that copy is that unique tuple of relation MMQ that corresponds to 

the /'th record in F2. 

We close this section by repeating the point that the merged-columns idea can be 

used across files as well as within a single file. In the case of suppliers and parts, for 

example, we might have just one Field Values Table (both merged and condensed) for the 

entire database, with one column for supplier numbers (from relvars S and SP), one for 

part numbers (from SP and P), one for city names (from S and P), and so on. As a matter 

of fact, since TR allows us to include values in the Field Values Table that do not actually 

appear at this time in any relation in the database, we might regard TR as a true “domain- 

oriented” representation of the entire database. See reference [A.l] for further discussion. 

A.6 IMPLEMENTING THE RELATIONAL OPERATORS 

In this section, we briefly consider what is involved in using TR to implement certain of the 

relational operators. We base our examples on the relvars S and SPJ from the suppliers- 

parts-projects database (sample values are shown in Fig. A. 19). A merged and condensed 

Field Values Table is shown in Fig. A.20, and “preferred” Record Reconstruction Tables are 

shown in Fig. A.21. 

Restrict 

Consider the restriction query:6 

SPJ WHERE QTY = 200 

To implement this query, we do a binary search on column QTY of the Field Values Table 

(Fig. A.20), looking for a cell containing the value 200; note that such a cell must be unique 

if it exists at all, because the column is condensed. If the search fails, we know immediately 

that the result of the query is empty. In the case at hand, however, the search finds cell [2,7], 

which contains, in addition to the specified QTY value, the row range [3:6]. It follows 

s# SNAME STATUS CITY 

SI Smith 20 London 
S2 Jones 10 Paris 
S3 Blake 30 Paris 
S4 Clark 20 London 
S5 Adams 30 Athens 

S# P# J# QTY 

SI PI J1 200 
SI P3 J2 100 
S2 PI J1 200 
S2 PI J2 500 
S2 P2 J2 500 
S3 PI J1 100 
S3 P2 J2 500 
S3 P3 J1 200 
S3 P3 J2 200 

Fig. A.19 Relvars S and SPJ (sample values) 

6 We use Tutorial I), not SQL, as a basis for all remaining examples in this appendix. 





962 Appendixes 

13,7], [lrl], 
[4.7] , [3,1], 
[5.7] , [8,1], 
[6.7] , [9,1], 

[2.5] , [2,6] 
[3.5] , [3,6] 
[7.5] , [4,6] 
[9.5] , [6,6] 

Following these zigzags through the shipments Record Reconstruction Table and 

accessing the Field Values Table accordingly, we obtain the desired result: 

s# P# J# QTY 

SI PI J1 200 
S2 PI J1 200 
S3 P3 J1 200 
S3 P3 J2 200 

For a second example, consider a query that involves a “<” restriction instead of an 

“=” one: 

SPJ WHERE QTY < 150 

It should be clear that this query too is easily handled, this time by: 

a. Doing a sequential search on column QTY of the Field Values Table 

b. Reconstructing all corresponding records, and hence user-level tuples, for each cell 

encountered during that search 

c. Stopping as soon as we find a cell in column QTY of the Field Values Table that con¬ 

tains a QTY value of 150 or greater 

Result: 

S# P# J# QTY 

SI P3 J2 100 
S3 PI J1 100 

Now consider this example: 

SPJ WHERE S# = S# ('S3') AND QTY = 100 

By means of searches on the S# and QTY columns of the Field Values Table, we discover 

from the applicable row ranges that there are four shipments with supplier number S3 but 

only two with quantity 100. The best strategy is therefore to use the zigzags associated with 

quantity 100 and check during record reconstruction to see whether the supplier number is 

S3, stopping reconstruction of the record in question if not. Result: 

S# P# J# QTY 

S3 PI J1 100 

Finally, we consider the effect of replacing the AND by an OR: 

SPJ WHERE S# = S# ('S3') OR QTY = 100 
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B.2 TABLE EXPRESSIONS 

Here first is a BNF grammar for <table exp>s: 

<table exp> 
::= <with exp> \ <nonwith exp> 

<with exp> 
::= WITH [ RECURSIVE ] 

<table name> [ ( <column name commalist> ) ] ] 
AS ( <table exp> ) 
<nonwith exp> 

<nonwith exp> 
::= <join table exp> | <nonjoin table exp> 

<join table exp> 
::= <table ref> [ NATURAL ] JOIN <table ref> 

[ ON <bool exp> 
| USING ( <column name commalist> ) ] 

<table ref> CROSS JOIN <table ref> 
( <join table exp> ) 

<table ref> 
::= <table name> [ [ AS ] <range var name> 

[ ( <column name commalist> ) ] ] 
( <nonwith exp> ) [ AS ] <range var name> 

[ ( <column name commalist> ) ] 
| <join table exp> 

<nonjoin table exp> 
::= <nonjoin table term> 

| <nonwith exp> UNION [ ALL | DISTINCT ] 
[ CORRESPONDING [ BY ( <column name commalist> ) ] ] 

<table term> 
| <nonwith exp> EXCEPT [ ALL | DISTINCT ] 

[ CORRESPONDING [ BY ( <column name commalist> ) ] ] 
<table term> 

<nonjoin table term> 
::= <nonjoin table primary> 

| <table term> INTERSECT [ ALL | DISTINCT ] 
[ CORRESPONDING [ BY ( <column name commalist> ) ] ] 

<table primary> 

<table term> 
::= <nonjoin table term> \ <join table exp> 

<table primary> 
::= <nonjoin table primary> | <join table exp> 

<nonjoin table primary> 
::= TABLE <table name> 

<table constructor 
<select exp> 
( <nonjoin table exp> ) 

<table constructor 
::= VALUES <row constructor commalist> 

<row constructor 
::= <scalar exp> 

( <scalar exp commalist> ) 
( <table exp> ) 
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The WHERE Clause 

The WHERE clause takes the form: 

WHERE <bool exp> 

Let T be the result of evaluating the immediately preceding FROM clause. Then the 

result of the WHERE clause is a table that is derived from T by eliminating all rows for 

which the <bool exp> does not evaluate to TRUE. If the WHERE clause is omitted, the 
result is simply T. 

The GROUP BY Clause 

The GROUP BY clause takes the form: 

GROUP BY <column name commalist> 

Let T be the result of evaluating the immediately preceding FROM clause and 

WHERE clause (if any). Each <column name> mentioned in the GROUP BY clause 

must be the optionally qualified name of a column of T. The result of the GROUP BY 

clause is a grouped table—that is, a set of groups of rows, derived from T by conceptu¬ 

ally rearranging it into the minimum number of groups such that within any one group 

all rows have the same value for the combination of columns identified by the GROUP 

BY clause. Note carefully, therefore, that the result is thus not a “proper table” (it is, to 

repeat, a table of groups, not a table of rows). However, a GROUP BY clause never 

appears without a corresponding SELECT clause whose effect is to derive a proper table 

from that table of groups, so little harm is done by this temporary departure from the 

“proper table” framework. 

If a <select exp> includes a GROUP BY clause, then every <select item> in the 

SELECT clause (including any that are implied by an asterisk shorthand) must be single- 

valued per group. 

The HAVING Clause 

The HAVING clause takes the form: 

HAVING <bool exp> 

Let G be the grouped table resulting from the evaluation of the immediately preced¬ 

ing FROM clause, WHERE clause (if any), and GROUP BY clause (if any). If there is no 

GROUP BY clause, then G is taken to be the result of evaluating the FROM and WHERE 
clauses alone, considered as a grouped table that contains exactly one group;3 in other 

words, there is an implicit, conceptual GROUP BY clause in this case that specifies no 

grouping columns at all. The result of the HAVING clause is a grouped table that is 

derived from G by eliminating all groups for which the <bool e.xp> does not evaluate to 

TRUE. Points arising: 

! This is what the standard says, though logically it should say at most one group (there should be no 
group at all if the FROM and WHERE clauses yield an empty table). 
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4. HAVING: Groups not satisfying the <bool exp> 

SUM ( SP.QTY ) > QTY ( 350 ) 

are eliminated from the result of Step 3. 

5. SELECT: Each group in the result of Step 4 generates a single result row, as follows. 

First, the part number, weight, color, and maximum quantity are extracted from the 

group. Second, the weight is converted to grams. Third, the two character strings 

“Weight in grams =” and “Max quantity =” are inserted at the appropriate points in 
the row. Note, incidentally, that—as the phrase “appropriate points in the row” sug¬ 

gests—we are relying here on the fact that columns of tables have a left-to-right 

ordering in SQL; the strings would not make much sense if they did not appear at 

those “appropriate points.” 

The final result looks like this: 

p# TEXT1 GMWT COLOR TEXT2 MXQTY 

PI Weight in grams = 5448 Red Max quantity = 300 

P5 Weight in grams = 5448 Blue Max quantity = 400 

P3 Weight in grams = 7718 Blue Max quantity = 400 

Please understand that the algorithm just described is intended purely as a concep¬ 

tual explanation of how a <select exp> is evaluated. The algorithm is certainly correct, 

in the sense that it is guaranteed to produce the correct result. However, it would proba¬ 

bly be rather inefficient if actually executed. For example, it would probably not be a 

very good idea if the system were actually to construct the Cartesian product in Step 1. 

Considerations such as these are exactly the reason why relational systems require an 

optimizer, as discussed in Chapter 18. Indeed, the task of the optimizer in an SQL system 

can be characterized as that of finding an implementation procedure that will produce the 

same result as the conceptual algorithm just described (in outline) but is more efficient 

than that algorithm. 

B.3 BOOLEAN EXPRESSIONS 

As in the previous section, we begin with a BNF grammar. We then go on to discuss <like 

cond>s, <match cond>s, and <all or any cond>s in a little more detail. 

<bool exp> 
::= <bool term> | <bool exp> OR <bool term> 

<bool term> 
s:= <bool factor> | <bool term> AND <bool factor> 

<bool factor> 
::= [ NOT ] <bool primary> 

<bool primary> 
::= <simple cond> | ( <bool exp> ) 
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<simple cond> 
::= <comp cond> | <in cond> \ <like cond> | <match cond> 

<all or any cond> \ <exists cond> \ <unique cond> 
<distinct cond> \ <type cond> 

<comp cond> 
<row constructor <comp op> <row constructor 

<comp op> 

= I < I <= I > I >= I <> 

<in cond> 
::= <row constructor [ NOT ] IN ( <table exp> ) 

| <scalar exp> [ NOT ] IN ( <scalar exp commalist> ) 

<like cond> 
::= <char string exp> [ NOT ] LIKE <pattern> 

[ ESCAPE <escape> ] 

<match cond> 
::= <row constructor MATCH UNIQUE ( <table exp> ) 

<all or any cond> 
::= <row constructor <comp op> ALL ( <table exp> ) 

| <row constructor <comp op> ANY ( <table exp> ) 

<exists cond> 
::= EXISTS ( <table exp> ) 

<unique cond> 
::= UNIQUE ( <table exp> ) 

<distinct cond> 
::= <row constructor IS DISTINCT FROM <row constructor 

<type cond> 
:j= TYPE ( <scalar exp> ) 

IS [ NOT ] OF ( <type spec commalist> ) 

<type spec> 
::= <type name> 

LIKE Conditions 

Like conditions are intended for simple pattern matching on character strings—that is, 

testing a given character string to see whether it conforms to some prescribed pattern. The 

syntax (to repeat) is: 

<char string exp> [ NOT ] LIKE <pattern> [ ESCAPE <escape> ] 

Here <pattem> is an arbitrary character-string expression, and <escape>, if speci¬ 

fied, is a character-string expression that evaluates to a single character. For example: 

SELECT P.P#, P.PNAME 
FROM P 
WHERE P.PNAME LIKE 'C%'; 

(“Get part numbers and names for parts whose names begin with the letter C”). Given our 
usual sample data, the result looks like this: 

p# PNAME 

P5 
P6 

Cam 
Cog 
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(“Get shipments that do not have exactly one matching supplier in the suppliers table”). 

Such a query might be useful in checking the integrity of the database, because, of course, 

there should not be any such shipments if the database is correct. Note, however, that an 

<in cond> could be used to perform exactly that same check. 

Incidentally, the UNIQUE can be omitted from MATCH UNIQUE, but then MATCH 

becomes synonymous with IN (in the absence of nulls). 

All-or-Any Conditions 

An <all or any cond> has the general form 

<row constructor <comp op> <qualifier> ( <table exp> ) 

where the <comp op> is any of the usual set (=, <>, etc.), and the <qualifier> is ALL or 

ANY.4 In general, an <all or any cond> evaluates to TRUE if and only if the corresponding 

comparison without the ALL (respectively, ANY) evaluates to TRUE for all (respectively, 

any) of the rows in the table represented by the <table exp>. (If that table is empty, the ALL 

conditions evaluate to TRUE, the ANY conditions evaluate to FALSE.) Here is an example 

(“Get part names for parts whose weight is greater than that of every blue part”): 

SELECT DISTINCT PX.PNAME 
FROM P AS PX 
WHERE PX.WEIGHT >ALL ( SELECT PY.WEIGHT 

FROM P AS PY 
WHERE PY.COLOR = 'Blue' ) ; 

Given our usual sample data, the result looks like this: 

PNAME 

Cog 

Explanation: The nested <table exp> returns the set of weights for blue parts. The 
outer SELECT then returns the name of those parts whose weight is greater than every 

value in that set. In general, of course, the final result might contain any number of part 

names (including zero). 

Note: A word of caution is appropriate here, at least for native English speakers. The 

fact is, <all or any cond>s are error prone. A very natural English formulation of the fore¬ 

going query would use the word any in place of every, which could easily lead to the 

(incorrect) use of >ANY instead of >ALL. An analogous observation applies to all (any?) 

of the ANY and ALL operators. 

ANY can also be spelled SOME. 4 
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Abbreviations, Acronyms, 
and Symbols 

INF first normal form 

2NF second normal form 

2 PC two-phase commit 

2PL two-phase locking 

2VL two-valued logic 

20C same as 2PC 

20L same as 2PL 

3GL third-generation language 

3NF third normal form 

3VL three-valued logic 

4GL fourth-generation language 

4NF fourth normal form 

4VL four-valued logic 

5NF fifth normal form (same as PJ/NF) 

6NF sixth normal form 

A ALGEBRA 

ACID atomicity-consistency-isolation-durability 

ACM Association for Computing Machinery 

ADT abstract data type 

AES Advanced Encryption System 

ALGEBRA A Logical Genesis Explains Basic Relational Algebra 

ANSI American National Standards Institute 

ANSI/SPARC literally, ANSI/Systems Planning and Requirements Committee; used to refer to the 

three-level database system architecture described in Chapter 2 

API application programming interface 

977 
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ARIES 

AST 

BB 

BCNF 

BLOB 

BNF 

CACM 

CAD/CAM 

CASE 

CDO 

CIM 

CLI 

CLOB 

CNF 

CODASYL 

CPU 

CS 

CWA 

DA 

DB/DC 

DBA 

DBMS 

DBP&D 

DBTG 

DC 

DCO 

DDB 

DDBMS 

DDL 

DES 

DK/NF 

DML 

DNF 

Algorithms for Recovery and Isolation Exploiting Semantics 

automatic summary table 

same as GB 

Boyce/Codd normal form 

binary large object 

Backus-Naur form; Backus normal form 

Communications of the ACM (ACM publication) 

computer-aided design/computer-aided manufacturing 

computer-aided software engineering 

class-defining object 

computer-integrated manufacturing 

Call-Level Interface 

character large object 

conjunctive normal form 

literally, Conference on Data Systems Languages; used to refer to certain 

prerelational (actually network) systems such as IDMS 

central processing unit 

cursor stability (DB2) 

Closed World Assumption 

data administrator 

database/data communications 

database administrator 

database management system 

Database Programming & Design (originally a hardcopy magazine; later online at 

http://www.dbpd.com; superseded by Intelligent Enterprise) 

literally. Data Base Task Group; used interchangeably in database contexts with 

CODASYL 

data communications 

“domain check override” 

distributed database 

distributed DBMS 

data definition language 

Data Encryption Standard 

domain-key normal form 

data manipulation language 

disjunctive normal form 
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DOM Document Object Model (XML) 

DRDA Distributed Relational Database Architecture (IBM) 

DSL data sublanguage 

DSS decision support system 

DTD Document Type Definition (XML) 

DUW distributed unit of work 

E/R entity/relationship 

EB same as XB 

ECA event-condition-action 

EDB extensional database 

EDI Electronic Data Interchange 

EKNF elementary key normal form 

EMVD embedded MVD 

EOT end of transaction 

FD functional dependence 

FLWOR for-let-where-order by-retum (XML) 

FTP File Transfer Protocol (usually “ftp,” all lowercase) 

GB gigabyte (1024MB) 

GIS geographic information system 

GML Generalized Markup Language 

HOLAP hybrid OLAP 

HTML HyperText Markup Language 

HTTP Hypertext Transfer Protocol (usually “http,” all lowercase) 

I/O input/output 

IDB intensional database 

IDMS Integrated Database Management System 

IFIP International Federation for Information Processing 

IEEE 

IMS 

INCITS 

Institute for Electrical and Electronics Engineers 

Information Management System 

ANSI International Committee on Information Technology Standards (formerly 

called NCITS, and before that X3) 

INCITS/H2 INCITS database committee 

IND inclusion dependence 

IS intent shared (lock); information systems 

ISBL 

ISO 

Information System Base Language (PRTV) 

International Organization for Standardization 
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IT 

IX 

JACM 

JD 

JDBC 

K 

KB 

LAN 

LOB 

LSP 

MB 

MLS 

MOLAP 

MQT 

MVD 

NCITS 

NCITS/H2 

NF2 

ODBC 

ODMG 

ODS 

OID 

OLAP 

OLCP 

OLDM 

OLTP 

OMG 

OO 

OODB 

OODBMS 

OOPL 

OQL 

OSI 

OSQL 

PB 

information technology 

intent exclusive (lock) 

Journal of the ACM (ACM publication) 

join dependence 

“Java Database Connectivity” (officially just a name, not an abbreviation for any¬ 

thing at all) 

1024 (sometimes 1000) 

kilobyte (1024 bytes) 

local area network 

large object 

Liskov Substitution Principle 

megabyte (1024KB) 

multi-level secure 

multi-dimensional OLAP 

materialized query table 

multi-valued dependence 

INCITS 

see INCITS/H2 

“NF squared” = NFNF = non first normal form (?) 

Open Database Connectivity 

Object Data Management Group 

operational data store 

object ID 

online analytic processing 

online complex processing 

online decision management 

online transaction processing 

Object Management Group 

object-oriented; object orientation 

object-oriented database (= object database) 

object-oriented DBMS (= object DBMS) 

object-oriented programming language (= object programming language) 

Object Query Language (part of ODMG proposal) 

Open Systems Interconnection 

“Object SQL” 

petabyte (1024TB) 
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PC personal computer 

PJ/NF projection-join normal form 

PODS Principles of Database Systems (ACM conference) 

PRTV Peterlee Relational Test Vehicle 

PSM Persistent Stored Modules (part of the SQL standard) 

PSVI Post Schema Validation Infoset (XML) 

QBE 

QUEL 

RAID 

Query-By-Example 

Query Language (Ingres) 

redundant array of inexpensive disks 

RDA Remote Data Access 

RDB relational database 

RDBMS relational DBMS 

RID record ID; row ID 

ROLAP relational OLAP 

RM/T relational model/Tasmania 

RM/V1 relational model/Version 1 

RM/V2 relational model/Version 2 

RPC remote procedure call 

RR read-read; repeatable read (DB2) 

RSA Rivest-Shamir-Adelman (encryption method) 

RUW remote unit of work 

RVA relation-valued attribute 

S shared (lock) 

SGML Standard GML 

SIGMOD Special Interest Group on Management of Data (ACM special interest group) 

SIX shared intent exclusive (lock) 

SOAP Simple Object Access Protocol 

SPARC see ANSI/SPARC 

SQL (originally) Structured Query Language; sometimes Standard Query Language; 

officially just a name, not an abbreviation for anything at all 

SQL/MM 

SVG 

SQL/Multimedia 

Scalable Vector Graphics 

TB terabyte (1024GB) 

TCB Trusted Computing Base 

TCP/IP Transmission Control Protocol/Internet Protocol 
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C 

C 

D 

D 

e 
0 

—> 

H 
h 

belongs to; is a member of; is contained in; [is] in 

contains 

is a subset of; is included in 

is a proper subset of; is properly included in 

is a superset of; includes 

is a proper superset of; properly includes 

comparison operator (=, <, etc.); polar coordinate 

the empty set 

functionally determines 

multi-determines 

is equivalent to; is identically equal to 

implies (logical connective) 

implies (metalinguistic symbol) 

it is always the case that (metalinguistic symbol) 
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relation value, see relation 
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predicate, 157, 259, 350 

real, 72 

snapshot, see snapshot 

virtual, 295 
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remote unit of work (DRDA), 685 
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RW, (read-write) 470 

conflict, 470 

S lock, 470, 484 
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OPAL, 835 

specification, 627 

version, 628 

Silberschatz. Abraham, 172,463, 

500, 683 

Simeon, Jerome, 937 

Simmen, David, 560 

Simon, Alan R., 108 

simple security property, 511 

SIMULA 67, 854 

simulated annealing, 569 

“since,” 728-729 

Singh, A., 722 

single inheritance, see inheritance 

singleton SELECT (SQL), 94 

single-user system, 7 

SIX lock, 484 

sixth normal form, 400, 761-763 

Skeen, J., 854 

Skolem, T. A., 787 

Skolem constant, 787 

Skolem function, 787 

Small Divide, 188, 210 

Smalltalk, 830-831, 855 

Smith, Diane C. P, 440 

Smith, John Miles, 400, 407, 440, 

560 

Smith, Ken, 530 

snapshot, 318-320, 666, 723, 725 

Snodgrass. Richard T., 772, 773 

soft crash, 453 

Sol, H. G., 439 

Solomon, Marvin H., 57 

sort/merge join, 552, 559 

see also join implementation 

Sowa, John F., 440 

special values, 587, 591-592 

specialization by constraint, 

621-623,634-636 

only way to define subtypes, 636 

speed-up, 572 

Speegle, Greg, 499 

sphere of control, 462 

SQL, 4 

not the same as the relational 

model, 100-101 

pronunciation, 4 

SQL standard, see SQL: 1992; 

SQL: 1999; SQL:2003 

SQL Server, 28 

SQL: 1992, 86 

SQL: 1999, 85 

SQL:2003, 85 

SQL/CLI, see CLI 

SQLEXCEPTION, 93 

SQLJ, 104-105 

SQL/JRT. 107 

SQL/MED, 107, 679 

SQL/MM, 874, 890 

SQL/OLB, see OLB 

SQL/OLAP, 234 

SQL/PSM, see PSM 

SQLSTATE, 92-93 

SQLWARNING, 93 

SQL/XML, 107, 928-930, 937 

Srikant, Ramakrishnan, 529 

Standard GML, see SGML 

star property, 511 

star schema, 706-709 

star join, 708 

Starburst, 562, 570, 886, 889-890, 

891 

START TRANSACTION (SQL), 

91,458 

starvation, see livelock 

state constraint, see integrity 

constraint 

statement 

assertion, 13 

atomicity, see atomicity 

command, 4, 13 

unit of integrity, 261 

static filtering, 802-803 

statistical database, 513 

security, 513-519 

stealing (buffers), 452 

Steams, Richard E., 500 

Stein, Jacob, 853, 858 

Stillger. Michael, 573 

Stirling, Colin, 498 

Stocker, Konrad, 573 

Stoll, Robert R., 807 

Stonebraker, Michael R.. 250, 251, 

293, 327, 566, 684,687,688, 

815,876-877, 892, 893 

storage level, see internal level 

stored database, 41 

stored database definition, 41 

stored field, 22 

stored file, 22 

stored procedure, 674, 845 

stored record, 22 



Index 1-19 

Storey, Veda C., 433, 440, 441 

strict homogeneity assumption, 649 

strict two-phase locking, see two- 

phase locking 

Stmad. Alois J.. 211 

strong entity, see entity 

strong typing, 125 

SQL, 129-130, 131, 134 

“Structured Query Language,” 4 

structured type (SQL), 132-136, 

164-167, 636-639 

subclass, see subtype 

subquery (SQL), 235, 236 

correlated, 237 

implementation, 567-568 

scalar, 595-596 

substitutability, 616, 617. 619. 633, 

634,830 

value, 616 

variable, 634 

substitution (encryption), 520 

substitution (view processing), 296 

vj. materialization, see 

materialization 

sub table, 423, 609 

SQL, 417-418, 423-424, 

882-884 

subtype, 606 

entity, 413,417-418 

immediate, 612 

proper, 612 

successor function, 739 

Suciu, Dan. 722, 935 

Sudarshan. S., 500 

SUM. see aggregate operators 

see also summarize 

SUMD, see summarize 

summarize. 200-202 

relational calculus, 230 

SQL, 250 

SUMMARIZE BY (Tutorial D), 

202 
SUMMARIZE PER (Tutorial D). 

see summarize 

summary table. 699 

Sunderraman, Rajshekhar, 603 

Sundgren, Bo, 441 

superclass, see subtype 

superkey, 271, 341 

supertable, see subtable 

supertype, see subtype 

surrogate, 434, 826 

Swami. Arun, 569 

Swenson, J. R., 440 

swizzling, 845 

Sybase, 28 

symmetric exploitation, 965 

synchpoint, see commit point 

system failure, 453 

System R. 85, 104, 105, 106, 108, 

250. 464. 497, 530, 565, 567, 

890 

table, 5 

SQL, 162-164 

vs. relation, see relation 

vs. relvar, see relvar 

TABLE_DEE, 154 

and TABLE_DUM, 154 

identity with respect to join, 195 

table expression (SQL), 95, 231, 

968-973 

TABLET (SQL), 88 

table value constructor (SQL), 162 

tableau, 564 

“tables and views,” 75 

tables, rows, and columns, 4 

Taivalsaari, Andrew, 646 

Tanca, Letizia, 289 

Tannen, Val, 573 

Tarin, Steve, 941 

Tarin Transfer Method, 942 

Tasker, Dan, 441 

Tatarinov, Igor, 938 

Taylor, Elizabeth, 427 

tclose (relational algebra), see 

transitive closure 

TCLOSE (Tutorial D). see 

transitive closure 

temporal database, 727 

Teorey, Toby J.. 441 

termination (triggers), 288 

Tezuka. M., 561 

Thanisch. Peter, 498 

THE_ operators, 116-118 

THE_ pseudovariables. 123 

shorthand, 123 

theorem (database), 776 

Third Manifesto. The, xxvi. 82-83, 

104, 109. 644, 860, 862. 864, 

890 

“Third-Generation Database System 

Manifesto. The," 860, 891, 893 

third normal form, 351 

informal definitions, 357, 358 

one candidate key, 363 

Zaniolo’s definition. 376 

Thomas, Robert H., 500 

Thomas’s write rule, 496 

Thomasian, Alexander, 496, 500 

Thomsen. Erik, 725 

threat monitoring, 507 

three-tier, 675 

three-valued logic, 576, 577 

interpretation, 585 

Thuraisingham, Bhavani, 530 

time point, 729 

time quantum, 729 

timeline, 729 

TIMES (Tutorial D). see Cartesian 

product 

timestamped proposition, see 

proposition 

timestamping, 495—196 

"time-varying relation,” see relation; 

relvar 

Tindall, Nick, 895 

Todd, Stephen J. P., 210, 211,434, 

435 

tools, 50 

TP monitor, see transaction manager 

TPC, 559 

TR (TransRelational). 941 

Traiger, Irving L.. 326. 496. 498 

transaction, 19, 76 

atomicity, 19 

nested, see nested transaction 

SQL. 91 

unit of concurrency, 451, 490 

unit of integrity, 490 

unit of recovery, 451, 490 

unit of work, 446. 490 



1-20 Index 

transaction manager, 47, 447, 460 

Transaction Processing Council, see 

TPC 

“transaction time,” 773 

transformation rules, see relational 

algebra 

transition constraint, see integrity 

constraint 

transitive closure, 203 

transitive FD, see FD 

TransRelational Model, 941-966 

TREAT DOWN, 619-621 

SQL, 639 

“trigger,” see triggered procedure 

trigger condition, 278 

triggered action, 278 

triggered procedure, 277-279 

triggering event, 278 

trivial FD, see FD 

trivial JD, see JD 

trivial MVD, see MVD 

trusted system, 512 

truth-valued expression, 121 

Tsatalos, Odysseas G., 57 

Tsichritzis, Dionysios C., 57, 858 

TSQL2, 772, 773 

Tsur, Shalom, 810 

tuning, 44 

tuple, 65, 141-142 

nullary, 143 

relvar, 157 

tuple calculus, 215-222 

tuple equality, 144 

TUPLE FROM, 155, 162 

tuple heading, see heading 

tuple join, 144 

tuple ordering, see ORDER BY 

not in relations, 149-150 

QBE, 244 

tuple project, 144-145 

tuple selector, 143-144 

tuple substitution, see query 

decomposition 

tuple type, 142 

inference, 145 

name, 142 

vs. possible representation, 146 

TUPLE type generator, see type 

generator 

tuple value, see tuple 

tuple variable, 143 

not in relational model, 871 

Turbyfill, Carolyn, 559 

Tutorial D, xxvi 

Tuttle, Mark R., 464 

Twine, S. M„ 438 

two-phase commit, 456—157, 

666—669 

improvements, 461 

see also presumed commit; 

presumed rollback 

two-phase locking, 477-478 

strict, 472 

two-phase locking protocol, 478 

two-phase locking theorem, 477 

two-tier, 672 

two-valued logic, 603 

type, see data type 

TYPE (Tutorial D), 119-121 

type constraint, 119, 266-267 

checked during selector 

invocation, 267 

not in SQL, 131, 133, 279 

type constructor 

ARRAY (SQL), 135-136 

MULTISET (SQL), 135 

REF (SQL), see REF type 

ROW (SQL), 135, 161 

see also type generator 

type definition, see TYPE 

type error, 125 

type generator, 127-128 

INTERVAL, 739-742 

OO, 826 

RELATION, 147-148, 156 

SQL, see type constructor 

TUPLE, 143 

type hierarchy, 610 

00,829 

type inheritance, see inheritance 

type package, 874 

“typed table” (SQL), 166 

U. (QBE), 247 

U_ comparisons, 756-757 

U_key, 768-769 

foreign, 769 

Ulock, 481,497 

U_ operators 

U_INTERSECT, 755 

U_JOIN, 755 

U_MINUS, 754 

U_project, 756 

UJJNION, 755 

Ullman, Jeffrey D., 251, 386, 402, 

405, 406, 407, 564, 722, 807, 

809,810, 858, 937 

UML, 431, 433, 439-440 

uncommitted dependency, 467, 470, 

472-173 

UNGROUP (Tutorial D), see 

grouping and ungrouping 

Unicode, 938 

unification, 788, 799 

Unified Modeling Language, see 

UML 

Uniform Resource Locator, see 

URL 

UNIQUE condition (SQL), 595 

UNIQUE constraint (SQL), 280 

unique index vs. candidate key, 271 

union, 180 

interval, 742 

n-adic, 195 

relational calculus, 217, 225 

SQL, 239 

union compatibility, 180 

“union join,” see outer union 

union type, 610, 623, 627 

units of measure, 119 

universal quantifier, 188,218-220 

universal relation, 195, 378, 402, 

405, 406 

universal server, 859 

universe of discourse, 785 

unk, see unknown 

UNK, 577 

effect on relational operators, 

581-582 

effect on update operators, 582 

not in domain, 580-581 

vs. unk, 580 

see also null; three-valued logic 

unknown (truth value), 576, 577 

see also three-valued logic 

unload/reload, 43, 51, 456 



Index 1-21 

UNPACK. 745-753 

unplanned request, see ad hoc query 

UNQ. (QBE), 244 

unwrap, 145 

UPDATE 

CURRENT (SQL), 97, 160 

embedded (SQL), 95 

positioned, 102 

QBE, see U. (QBE) 

QUEL, see REPLACE 

searched, 102 

SQL, 4, 88-89 

Tutorial D. 159-60 

vs. update, 4 

update anomalies 

INF (not 2NF), 359-360 

2NF (not 3NF), 362-363 

3NF (not BCNF), 369 

4NF (not 5NF), 388-389 

5NF (not 6NF), 761 

BCNF (not 4NF), 383 

see also redundancy 

update lock, see U lock 

update operator, see operator 

update propagation, 19 

distributed database, 657, 

665-666 

UPDATE rule, see foreign key rules 

“updating attributes,” 160 

“updating tuples,” 160 

updating views, see view 

URL, 896 

user group, 505 

SQL, 526 

user ID, 506 

user interface, 47 

user key, 826 

user logical level, see external level 

Uthurusamy, R., 725 

utilities, 51 

Valduriez, Patrick, 686, 725, 807 

valid document (XML), 911-912 

“valid time,” 773 

validation concurrency control, 499 

value, 112 

cannot be updated, 113 

relation, see relation 

tuple, see tuple 

typed, 113-114 

vs. variable, 112-113 

value set (E/R), 415 

value store (TR), 966 

van Griethuysen, J. J., 57 

Vance, Bennett, 571 

VAR (Tutorial D) 

relvar (base), 156 

relvar (snapshot), 319 

relvar (view), 298 

scalar, passim 

Vardi, Moshe Y., 405, 406 

variable, 113 

can be updated, 113 

model of (with inheritance), 618 

in OO contexts, 818 

relation, see relvar 

tuple, 143 

typed, 113-114 

vs. value, see value 

Verrijn-Stuart, A. A., 439 

versioning, 852-853 

vertical decomposition (temporal 

database), 760-761 

Vianu, Victor, 345 

victim (deadlock), see deadlock 

view, 12-1A 

materialization, 302 

“materialized,” see snapshot 

parameterized, 524 

QUEL, 509 

retrieval, 302-303 

security, see security 

SQL, 320-323 

substitution, 296 

updating, 303-318 

vs. base relvar, 72 

XML, see XML view 

virtual instance variable, see 

instance variable 

virtual relvar, see derived relvar 

von Biiltzingsloewen, Gunter, 

567-568 

von Eichen, Thorsten, 889 

von Halle, Barbara, 434 

Vossen, Gottfried, 402 

Wade, Bradford W., 108, 529 

Wait-Die, 476 

Wait-For Graph, 475, 670 

Walker, Adrian, 294 

Wand, Yair, 441 

Wang, Haixun, 893 

Warden, Andrew, see Darwen, Hugh 

Warmer, Jos, 441 

Warren, David H. D., 569 

weak entity (E/R), see entity 

Weber, Ron, 441 

Wegner, Peter, 645 

Weikum, Gerhard, 104 

Weinstein, Scott, 937 

Weld, Daniel S., 938 

well-formed document (XML), 911 

well-formed formula, see WFF 

WFF, 266, 784 

see also closed WFF 

Whang, Kyu-Young, 571 

WHENEVER (SQL), 93 

WHEN/THEN (constraint), 767 

WHERE (SQL), 234, 971 

where (XQuery), 922-923 

Whinston, A., 722 

White, Colin J„ 107 

Widom, Jennifer, 288, 289, 294, 

722,724, 725, 937, 938 

Wilkes, Maurice V„ 873, 893 

Wilkinson, W. Kevin, 573 

Williams, Robin, 688 

Wing, Jeannette, 645 

Winslett, Marianne, 530 

Wisconsin benchmark, 559 

WITH 

SQL, 239-240 

Tutorial D. 179, 191 

WITH CHECK OPTION (SQL), 

320 

WITH HOLD (SQL), 458 

WITH GRANT OPTION (SQL), 

526 

Wolf, Ron, 530 



1-22 Index 

Wong, Eugene, 250, 251, 293, 566, 

569,684 

Wong, Harry K. T„ 567, 568 

Wool, Avishai, 682 

World Wide Web, 896 

Consortium (W3C), 900 

Wound-Wait, 476 

WR (write-read), 470 

conflict, 470 

wrap, 145 

wrapper, 675 

object/relational, 885 

write lock, see X lock 

write-ahead log rule, 451, 452 

WW (write-write), 470 

conflict, 470 

X lock, 470, 484 

XML, 897-932 

attribute, 898 

and databases, 925-927, 936 

document structure, 903-904 

element, 897 

infoset, 904 

integrity, see integrity 

schema validity, see schema 

validation 

tag, 897 

validity, see valid document 

well-formedness, see well-formed 

document 

XML and data types 

XML Schema, 915-916 

“XMLDOC,” 925 

XML application, 903 

“XML collection,” 927 

SQL, 928 

“XML column,” 926 

SQL, 930 

XML database, 927 

XML derivative, 903, 916-917 

XML parser, 909 

XML Schema, 914-916 

XML view. 926 

XPath. 918-920 

XQuery, 920-924, 937 

Xu, Yirong, 529 

Yan, Ling Ling, 688 

Yang, Dongqing, 441 

Yannakakis, M., 565 

Yost, Robert A., 106 

Youssefi, Karel, 566 

Yu, Jie-Bing, 889 

Yurek. T„ 722 

Zaharioudakis, Markos, 725 

Zaniolo, Carlo, 376, 380, 809, 810, 

858,893 

Zantinge, Dolf, 722 

Zdonik, Stanley B., 646, 857, 858 

Zhuge, Yue, 725 

Zicari, Roberto, 855 

Zloof, Moshe M„ 252 

Zuzarte, Calisto, 573 















The Information Principle (or The Principle of Uniform Representation): The entire 

information content of the database is represented in one and only one way, as 

explicit values in attribute positions within tuples within relations. 

The Golden Rule: No update operation must ever assign to any database a value that 

causes its database predicate to evaluate to FALSE. 

The Principle of Interchangeability (of base and derived relvars): There are no arbi¬ 

trary and unnecessary distinctions between base and derived relvars. 

The Principle of Database Relativity>: From the user’s point of view, (a) all relvars are 

base relvars, and (b) which database is the “real” one is arbitrary, just as long as the 

possibilities are all information-equivalent. 

The Principles of Normalization: 

1. A non5NF relvar should be decomposed into a set of 5NF projections. 

2. The original relvar should be reconstructable by joining the projections back 

together again. 

3. The decomposition process should preserve dependencies. 

4. Every projection should be needed in the reconstruction process. 

5. (Not as firm as the first four) Stop normalizing as soon as all relvars are in 3NF. 

The Principle of Orthogonal Design: If A and B are distinct base relvars, there must 

not exist nonloss decompositions of A and B such that some projection of A and some 

projection of B in the result have overlapping meanings. 

The Principle of Value Substitutability: Wherever the system expects a value of type 

T, a value of type T' (where T' is a subtype of T) can always be substituted instead. 

The Fundamental Principle of Distributed Database: To the user, a distributed sys¬ 

tem looks exactly like a nondistributed system. 
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Fig. 7.1 The original eight operators (overview) 



s# SNAME STATUS CITY 

SI Smith 20 London 
S2 Jones 10 Paris 
S3 Blake 30 Paris 
S4 Clark 20 London 
S5 Adams 30 Athens 

S# P# QTY 

SI PI 300 
SI P2 200 
SI P3 400 
SI P4 200 
SI P5 100 
SI P6 100 
S2 PI 300 
S2 P2 400 
S3 P2 200 
S4 P2 200 
S4 P4 300 
S4 P5 400 

P# PNAME COLOR WEIGHT CITY 

PI Nut Red 12.0 London 
P2 Bolt Green 17.0 Paris 
P3 Screw Blue 17.0 Oslo 
P4 Screw Red 14.0 London 
P5 Cam Blue 12.0 Paris 
P6 Cog Red 19.0 London 

Fig. 3.8 The suppliers-and-parts database (sample values) 

S# SNAME STATUS CITY 

SI Smith 20 London 
S2 Jones 10 Paris 
S3 Blake 30 Paris 
S4 Clark 20 London 
S5 Adams 30 Athens 

P# PNAME COLOR WEIGHT CITY 

PI Nut Red 12.0 London 
P2 Bolt Green 17.0 Paris 
P3 Screw Blue 17.0 Oslo 
P4 Screw Red 14.0 London 
P5 Cam Blue 12.0 Paris 
P6 Cog Red 19.0 London 

J# JNAME CITY 

J1 Sorter Paris 
J2 Display Rome 
J3 OCR Athens 
J4 Console Athens 
J5 RAID London 
J6 EDS Oslo 
J7 Tape London 

Fig. 4.5 The suppliers-parts-projects database (sample values) 




