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AN INTRODUCTION TO MANY-VALUED AND FUZZY LOGIC

This volume is an accessible introduction to the subject of many-valued and fuzzy
logic suitable for use in relevant advanced undergraduate and graduate courses.
The text opens with a discussion of the philosophical issues that give rise to
fuzzy logic—problems arising from vague language—and returns to those issues
as logical systems are presented. For historical and pedagogical reasons, three-
valued logical systems are presented as useful intermediate systems for studying
the principles and theory behind fuzzy logic. The major fuzzy logical systems—
�Lukasiewicz, Gödel, and product logics—are then presented as generalizations
of three-valued systems that successfully address the problems of vagueness.
Semantic and axiomatic systems for three-valued and fuzzy logics are examined
along with an introduction to the algebras characteristic of those systems. A clear
presentation of technical concepts, this book includes exercises throughout the
text that pose straightforward problems, ask students to continue proofs begun
in the text, and engage them in the comparison of logical systems.

Merrie Bergmann is an emerita professor of computer science at Smith College.
She is the coauthor, with James Moor and Jack Nelson, of The Logic Book.
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Preface

Formal fuzzy logic has developed into an extensive, rigorous, and exciting discipline

since it was first proposed by Joseph Goguen and Lotfi Zadeh in the midtwentieth

century, and it is a wonderful topic for introducing students to the richness and

fascination of formal logic and the philosophy thereof. This textbook grew out of an

interdisciplinary course on fuzzy logic that I’ve taught at Smith College, a course that

attracts philosophy, computer science, and mathematics majors. I taught the course

for several years with only a course reader because the few existing texts devoted

to fuzzy logic were too advanced for my undergraduate audience (and probably for

some graduate audiences as well). Finally, after writing voluminous supplements for

the course, I decided to write an accessible introductory textbook on many-valued

and fuzzy logic. It is my hope that after working through this textbook, students will

have the necessary background to tackle more advanced texts, such as Gottwald

(2001), Hájek (1998b), and Novák, Perfilieva, and Močkoř (1999), along with the rest

of the vast fuzzy literature.

This book opens with a discussion of the philosophical issues that give rise to

fuzzy logic—problems and paradoxes arising from vague language—and returns to

those issues as new logical systems are presented. There is a two-chapter review

of classical logic to familiarize students and instructors with my terminology and

notation, and to introduce formal logic to those who have no prior background.

Three-valued logical systems are introduced as candidate logics for vagueness,

ultimately to be rejected but interesting in their own right and serving as useful

intermediate systems for studying the principles and theory that guide fuzzy log-

ics. The major fuzzy logical systems—�Lukasiewicz, Gödel, and product logics—are

then presented as generalizations of three-valued systems, generalizations that fully

address the problems of vagueness. The text ends with two chapters introducing

further directions for study: extensions of basic fuzzy systems and definitions of

fuzzy membership functions.

Throughout, I have included both semantic and axiomatic systems, along with

introductions to the algebras characteristic of those systems. Many texts that have

a chapter or so on fuzzy logic restrict their attention to semantics, but much of the

interest of fuzzy logic lies in the rich axiomatic systems developed by Jan Pavelka

and in the insights garnered from studying the algebras for these systems.

xi
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xii Preface

I’ve used semantic concepts that aren’t featured in standard presentations of

fuzzy logic, specifically, the concepts of degree-validity and n-degree-validity (these

concepts were proposed in Machina (1976)). Degree-validity occurs when an argu-

ment’s conclusion is guaranteed to be at least as true as the least true premise and

is an obvious generalization of classical validity. N-degree-validity measures the

slippage of truth going from premises to conclusion: how much less true than the

premises can the conclusion of an argument be? The latter concept is particularly

useful in analyzing Sorites arguments, and in comparing the performance of the

three major fuzzy logical systems with respect to these arguments.

There are exercises throughout the text. Some pose straightforward problems

for the student to solve, but many exercises also ask students to continue proofs

begun in the text, to prove results analogous to those in the text, and to compare

the various logical systems that are presented.

This textbook can be used as a complete basis for an introductory course on

formal many-valued and fuzzy logics, at either the upper-level undergraduate or the

graduate level, and it can also be used as a supplementary text in a variety of courses.

There is considerable flexibility in either case. The truth-valued semantic chapters

are independent of the algebraic and axiomatic ones, so that either of the latter

may be skipped. Except for Section 13.3 of Chapter 13, the axiomatic chapters are

also independent of the algebraic ones, and an instructor who chooses to skip the

algebraic material can simply ignore the latter part of 13.3. Finally, �Lukasiewicz fuzzy

logic is presented independently of Gödel and product fuzzy logics, thus allowing

an instructor to focus solely on the former.

I am indebted to my students at Smith College for making this course such a

pleasure to teach, and for the many questions and comments that have informed

my presentations throughout the text. Joseph Goguen and Petr Hájek, the two men

whose work most largely generated my own appreciation of fuzzy logic, generously

answered questions that I e-mailed as I was writing the text. It was with great sadness

that I learned of Professor Goguen’s passing at the age of sixty-five last summer; fuzzy

logic as we know it owes much to his pioneering work.

I also thank my colleague Michael Albertson for a helpful analytic suggestion

that I used in Chapter 14, and two anonymous reviewers of several chapters for their

careful reading and thoughtful suggestions. Any inelegance or errors remain my

responsibility alone. Finally, I thank Smith College for generous sabbatical release

time.

Merrie Bergmann

August 2007
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1 Introduction

1.1 Issues of Vagueness

Some people, like 6′ 7′′ Gina Biggerly, are just plain tall. Other people, like 4′ 7′′ Tina

Littleton, are just as plainly not tall. But now consider Mary Middleford, who is

5′ 7′′. Is she tall? Well, kind of, but not really—certainly not as clearly as Gina is tall.

If Mary Middleford is kind of but not really tall, is the sentence Mary Middleford

is tall true? No. Nor is the sentence false. The sentence Mary Middleford is tall is

neither true nor false. This is a counterexample to the Principle of Bivalence, which

states that every declarative sentence is either true, like the sentence Gina Biggerly

is tall, or false, like the sentence Tina Littleton is tall (bivalence means having two

values).1 The counterexample arises because the predicate tall is vague: in addition

to the people to whom the predicate (clearly) applies or (clearly) fails to apply, there

are people like Mary Middleford to whom the predicate neither clearly applies nor

clearly fails to apply. Thus the predicate is true of some people, false of some other

people, and neither true nor false of yet others. We call the latter people (or, perhaps

more strictly, their heights) borderline or fringe cases of tallness.

Vague predicates contrast with precise ones, which admit of no borderline cases

in their domain of application. The predicates that mathematicians typically use

to classify numbers are precise. For example, the predicate even has no border-

line cases in the domain of positive integers. It is true of the positive integers that

are multiples of 2 and false of all other positive integers. Consequently, for any pos-

itive integer n the statement n is even is either true or false: 1 is even is false; 2 is even

is true; 3 is even is false; 4 is even is true; and so on, for every positive integer. Thus,

even is a precise predicate. (We hasten to acknowledge that there are also vague

predicates that are applicable to positive integers, e.g., large.)

Classical logic, the standard logic that is taught in philosophy and mathematics

departments, assumes the Principle of Bivalence: every sentence is assumed to be

either true or false. Vagueness thus presents a challenge to classical logic, for sen-

tences containing vague predicates can fail to be true or false and therefore such

1 We will italicize sentences and terms in our text when we are mentioning, that is (in the standard
logical vocabulary), talking about them. An alternative convention that we do not use in this
text is to place quotation marks around mentioned sentences and terms. We also italicize for
emphasis; the distinction should be clear from the context.

1
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2 Introduction

sentences cannot be adequately represented in classical logic. “All traditional logic,”

wrote the philosopher Bertrand Russell, “habitually assumes that precise sym-

bols are being employed. It is therefore not applicable to this terrestrial life, but

only to an imagined celestial existence.”2 Fuzzy logic, the ultimate subject of this

text, was developed to accommodate sentences containing vague predicates (as well

as other vague parts of speech). One of the defining characteristics of fuzzy logic is

that it admits truth-values other than true and false; in fact it admits infinitely many

truth-values. Fuzzy logic does not assume the Principle of Bivalence.

Some will say, Why bother? Logic is the study of reasoning, and good reasoning—

whether it be in the sciences or in the humanities—exclusively involves precise terms.

So we are justified in pursuing classical logic alone, tossing aside as don’t-cares any

sentences that contain vague expressions. But as Bertrand Russell pointed out in

1923, vagueness is the norm rather than the exception in much of our discourse.

Max Black concluded in 1937 that vagueness must therefore be addressed in an

adequate logic for studying natural language discourse, whether that discourse

occurs in scientific endeavors or in everyday casual conversations:

Deviations from the logical or mathematical standards of precision are all perva-
sive in symbolism; [and] to label them as subjective aberrations sets an impassable
gulf between formal laws and experience and leaves the usefulness of the formal
sciences an insoluble mystery. . . . [W]ith the provision of an adequate symbolism
[that is, a formal system] the need is removed for regarding vagueness as a defect
of language. The ideal standard of precision which those have in mind who use
vagueness as a term of reproach . . . is the standard of scientific precision. But the
indeterminacy which is characteristic of vagueness is present also in all scientific
measurement. . . . Vagueness is a feature of scientific as of other discourse.3

And vague predicates do abound both within and outside academic discourse:

hot, round, red, audible, rich, and so on. After sitting in my mug for a while, my

previously hot coffee becomes a borderline case of hot; a couple of days before or

after full moon the moon may be a borderline case of round; as we move away from

red in the color spectrum toward either orange or purple we get borderline cases of

red; slowly turning the dial on our stereo we can move from loud (also a vague term)

music to borderline cases of audible; and wealthy people may once have dwelled in

the borderline of rich. Even in the realm of numbers, which we take as the epitome

of precision, we have noted that we may speak of large (and small) ones, employing

predicates as vague as hot and round.

But even if vagueness weren’t pervasive, there are other reasons for develop-

ing logics that can handle vague statements. It is an interesting and informative

exercise to see what adjustments can and need to be made to classical logic when

2 Russell (1923), p. 88.
3 Black (1937), p. 429. Black’s article is a gem, with its appreciation of the pervasiveness and use-

fulness of vague terms and its attempt to formalize foundations for a logic that includes vague
terms.
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1.1 Issues of Vagueness 3

the Principle of Bivalence is dropped, and to explore ways of addressing the logical

challenges posed by vagueness. Consider the classical Law of Excluded Middle, the

claim that every sentence of the form A or not A is true. In classical logic, where

precision is the norm, the Law of Excluded Middle is taken as a given. But while we

may agree that the two sentences Either Gina Biggerly is tall or she isn’t and Either

Tina Littleton is tall or she isn’t are both true, indeed on purely logical grounds, we

may balk when it comes to Mary Middleford. Either Mary Middleford is tall or she

isn’t doesn’t seem to be true, precisely because it’s not true that she’s tall, and it’s

also not true that she’s not tall.

Not surprisingly, there is a close connection between the Principle of Bivalence

and the Law of Excluded Middle. Negation, expressed by not, forms a true sentence

from a false one and a false sentence from a true one. So if every sentence is either

true or false (Principle of Bivalence)—then for any sentence A, either A is true or

not A is true (the latter arising when A is false). And if either A is true or not A is

true then the sentence either A or not A is also true—and this is the Law of Excluded

Middle.4

In addition to challenging fundamental principles of classical logic, vagueness

leads to a family of paradoxes known as the Sorites paradoxes. We’ll illustrate with

a Sorites paradox using the predicate tall. As we noted, Gina Biggerly is tall. That

is the first premise of the Sorites paradox. Moreover, it is clear that 1/8
′′ can’t make

or break tallness; specifically, someone who is 1/8
′′ less tall than a tall person is also

tall. That is the second premise. But then it follows that 4′ 7′′ Tina Littleton is also

tall! For using the two premises we may reason as follows. Since Gina Biggerly is tall,

it follows from the second premise that anyone whose height is 1/8
′′ less than Gina

Biggerly’s is also tall; that is, that anyone who is 6′ 67/8
′′ is tall. But then, using the

second premise again, we may conclude that anyone who is 6′ 66/8
′′ is tall, and again

that anyone who is 6′ 65/8
′′ is tall, and so on, eventually leading us to the conclusion

that Tina Litteleton, along with everyone else who is 4′ 7′′, is tall.5

Sorites is the Greek word for “heap,” and in a heap version of the paradox we

have the premises that a large pile of sand—say, one that is 4′ deep—is a heap and

that if you remove one grain of sand from a heap what is left is also a heap. Iterated

reasoning eventually results in the conclusion that even a single grain of sand is a

heap! (In fact, it looks like no grains of sand will also count as a heap.) The general

pattern of a Sorites paradox, given a vague term T, is:

Premise 1 x is T (where x is something of which T is clearly true).

Premise 2 Some type of small change to a thing that is T results in something

that is also T.

4 It is possible to retain the Law of Excluded Middle while rejecting bivalence; this is the case for
supervaluational logics. For references see footnote 1 to Chapter 5.

5 Indeed, we may replace 1/8
′′ with 1/1000

′′ and conclude that everyone whose height is 6′ 7′′ or
less is tall. In fact, Joseph Goguen (1968–1969) pointed out that we can arrive at an even stronger
conclusion: Certainly anyone who is 1/1000

′′ taller than a tall person is also tall. So we can conclude
that everyone is tall, given the existence of one tall person.
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Conclusion y is T (where y is something of which T is clearly false, but which

you can get to from a long chain of small changes of the sort in

Premise 2 beginning with x).

For any vague predicate, a Sorites paradox can be formed.6 Why are these called

paradoxes? It is because they appear to be valid (truth-preserving) arguments with

true premises, and that means that the conclusions should also be true; but the

conclusions are clearly false. Sorites paradoxes are an additional motivation for

developing logics to handle vague terms and statements—logics that do not lead

us to the paradoxical conclusions of the Sorites paradoxes.7

There is a further troubling feature of the Sorites paradoxes. An obvious way

out of these paradoxes in classical logic is to deny the truth of the second premise,

which is sometimes called the Principle of Charity premise. For the tall version of

the Sorites paradox just given, the classical logician can simply deny the claim that
1/8

′′ can’t make or break tallness. The paradox dissolves, because a valid argument

with false premises need not have a true conclusion. But here’s the trouble: when we

deny a claim, we accept its negation. This means accepting the negation of the claim

that 1/8
′′ can’t make or break tallness, namely, accepting that 1/8

′′ does (at some point)

make a difference. But that can’t be right since it entails that there is some pair of

heights that differ by 1/8
′′, such that one is tall and the other is not. But where would

that pair be? Is it, perhaps, the pair 6′ 2′′ and 6′ 17/8
′′, so that 6′ 2′′ is tall but 6′ 17/8

′′

isn’t? To see how very unacceptable this is, change the second premise to one that

states that 1/1000
′′ doesn’t make a difference. The conclusion, that Tina Littleton is

tall, still follows. But if we deny the second premise we are saying that 1/1000
′′ does

make a difference, that there is some pair of heights differing by 1/1000
′′ such that

one is tall and the other isn’t. That’s ludicrous!

Some react to Sorites paradoxes as if they are jokes. They are not. The same type

of reasoning with vague concepts, because it is so seductive, can be very dangerous

in the world we live in. Consider the population of a country that has a reason-

able living standard, including diet and housing, for all. Should we worry about

population growth? Of course we should, because at some point population may

6 This may seem contentious for the following reason. Some terms exhibit what I shall call multi-
dimensional vagueness. Tall exhibits one-dimensional vagueness insofar as tallness is a function
of a single measure, height. The Sorites argument depends on small adjustments in that single
measure. Other terms’ vagueness turns on several factors. Max Black (1937) asks us to consider
the word chair. There is a multiplicity of characteristics involved in being a chair, including being
made of suitably solid material, being of a suitable size, having a suitable horizontal plane for a
seat, and having a suitable number of legs (a stool is not a chair). In this respect chair exemplifies
multidimensional vagueness. The reader is asked to consider whether Sorites arguments can
always be constructed for terms that exhibit multidimensional vagueness, as claimed in the text,
or whether they arise mainly in the case of one-dimensional vagueness.

7 Some theoreticians, most recently in the school of paraconsistent logics, choose to embrace
Sorites paradoxes by concluding that their conclusions are indeed both true and false. See, for
example, Hyde (1997) and Beall and Colyvan (2001).
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1.2 Vagueness Defined 5

outgrow the sustenance that we can provide. Now, it seems reasonable to say that if

the population currently has an acceptable living standard, then if the population

increases by .01 percent the living standard will still be acceptable. It may also seem

reasonable to say this for any population increase of .01 percent, but clearly this will

eventually lead to an unsustainable situation.

1.2 Vagueness Defined

Max Black defines the vagueness of a term as

the existence of objects [in the term’s field of application] concerning which it is
intrinsically impossible to say either that the [term] in question does, or does not,
apply.8

The field of application of a term is the set of those things that are the sort of thing

that the term applies to. The field of application of the term tall includes people and

buildings, and it excludes integers and colors. People and buildings are the sort of

thing that the term applies to, the sort of thing that could be tall. Integers and colors

are not the sort of thing that could be tall. On the other hand, the field of application

of the term even includes integers and excludes people, colors, and buildings.

It is intrinsically impossible to say that Mary Middleford is tall or that Mary

Middleford is not tall. Intrinsically impossible means that it is not simply a matter

of ignorance—we can know exactly what Mary’s height is and still find it impossible

to say either that tall does or that tall does not apply to her. This contrasts with

cases where our inability is simply a reflection of ignorance. For example, is the

author’s brother Barrie Bergmann tall? You probably can’t say, because you have

no idea what his height is. But Barrie is not in the fringe of this predicate—he is

6′ 31/2
′′ and clearly tall. Your inability was not an intrinsic impossibility, as it is in the

case of Mary Middleford. We call those objects within a term’s field of application

concerning which it is intrinsically impossible to say that the term does or does not

apply borderline cases, and we call the collection of borderline cases the fringe of

the term. Mary is in the fringe of the term tall; Gina, Tina, and Barrie are not.

The opposite of vague is precise. The term exactly 6′ 2′′ tall is precise. Given any

object in its field of application, the term either does or does not apply, and so there

is no intrinsic impossibility in saying whether it does or doesn’t. It applies if the

object is exactly 6′ 2′′ tall and fails to apply otherwise. The term even (as applied to

positive integers) is also precise. Given any positive integer, the term either applies

or fails to apply—it applies if the integer is a multiple of 2 and fails to apply otherwise.

8 Black (1937, p. 430). For the most part we will restrict our attention to terms that are adjectives
(like tall ), common nouns (like chair), and verbs (like tosmile)—terms that can appear in predicate
position in a sentence. Other parts of speech can also be vague; we will return to some of these
in Chapter 16.
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English speakers also use the word vague to describe terms that are not specific

about the properties they connote. We will call such terms general rather than vague.

The term interesting is general in this sense: what does it mean to say, for example,

that a book is interesting? It could mean that the book contains little-known facts,

that the book contains compelling arguments, that the style of writing is unusual,

and so on. The term interesting is not very specific, unlike the term tall, which

specifically connotes a magnitude of height (albeit underdetermined). Generality

is not the source of borderline cases, which are the exclusive domain of vagueness.

This is not to say that a general term cannot also be vague—indeed, this is frequently

the case. For example, interesting is certainly vague as well as general. But it is

important for our purposes to distinguish the two categorizations of terms.

Vagueness is also distinct from ambiguity. A term is ambiguous if it has two or

more distinct meanings or connotations. For example, light is ambiguous: it can

mean light in color or light in weight. When I say that my bicycle is light, I can mean

either that it has a light color like tan or white or that it weighs very little. Note that

my bicycle can be light in both senses, or that it can be light in one sense but not

in the other. Indeed, the philosopher W. V. O. Quine proposed the existence of an

object to which a term both does and doesn’t apply as a test for ambiguity (Quine

1960, Sect. 27). Again, ambiguity is not a source of borderline cases, although an

ambiguous term may also be vague in one or more of its several senses. There are

objects that are borderline cases of being light in color, as well as objects that are

borderline cases of being light in weight.

Finally, vagueness is also distinct from relativity. A term is relative if its applica-

bility is determined relative to, and varies with, subclasses of objects in the term’s

field of application. Vague terms are frequently relative as well. When we say that a

woman is tall, we may mean tall for a woman—in this case the application is relative

to the class of women. In fact, we probably mean more specifically tall for a certain

race or ethnicity of women. The applicability of the term tall thus varies relative to

the class to which it is being applied.

1.3 The Problem of the Fringe

As we have seen, a term is vague if there exists a fringe in its field of applicability.

Max Black noted another logical problem that arises from borderline cases to which

the term neither applies nor fails to apply. Consider the statement that there are

objects in a term’s fringe:

There are objects that are neither tall nor not tall,

or equivalently

There are objects that are both not tall and not not tall.
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The Principle of Double Negation states that a doubly negated expression is equiva-

lent to the expression with both of the negations removed—double negations cancel

out. So not not tall is equivalent to tall, and so the statement that an object is not

not tall is equivalent to the statement that it is tall. But then, we can equivalently

assert that there are objects in the term tall’s fringe as

There are objects that are not tall and also tall.

But this is a contradiction and its truth would violate the Law of Noncontradic-
tion, which says that no proposition is both true and false, and specifically in this

case, that no single object can both have and not have a property.9 It looks as if the

assertion that a term satisfies the criterion for vagueness, that is, the assertion that

there are borderline cases, lands us in contradiction! We will call this the Problem
of the Fringe; it is another issue that needs to be addressed in an adequate logic for

vagueness.

1.4 Preview of the Rest of the Book

This is a text in logic and in the philosophy of logic. We will study a series of logical

systems, culminating in fuzzy logic. But we will also discuss ways to assess systems

of logic, which lands us squarely in the philosophy of logic. Students who have taken

a first course in logic are sometimes surprised to learn that we can question and

critically analyze systems of logic. I hope that the issues and problems that have

been introduced in this chapter make it clear that we can and will do just that: we

will need to analyze systems of logic critically if we are interested in developing a

logic that can handle vague statements. (If, on the other hand, we refuse to develop

such a logic we are also taking a philosophical stand on logical issues—perhaps

by insisting that the purpose of logic is to deal only with reasoning about precise

claims.)

Our first task, in Chapters 2 and 3, is to review classical (bivalent) propositional

logic and classical first-order logic. This will set out a framework for what follows and

will serve to introduce notation and terminology that will be used in subsequent

chapters. In Chapter 4 we introduce Boolean algebras, systems that capture the

“algebraic” structure that classical logic imposes on truth-values. Boolean algebras

are not usually covered in introductory symbolic logic courses, so we do not presume

that the material in this chapter is a review. We include the topic because, as we

will see, algebraic analyses feature prominently in the study of formal fuzzy logic

systems.

9 Actually, the earlier assertion There are objects that are not tall and also not not tall already violates
the Law of Noncontradiction, but we follow Black in removing the double negation in order to
make the point.
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In Chapters 5 and 6 we will present several well-known systems of three-valued

propositional logic, systems in which the Principle of Bivalence is dropped. Chap-

ters 7 and 8 present first-order versions of the three-valued systems. In Chapter 9

we explore algebraic structures for the three-valued systems. We consider three-

valued logical systems as candidates for a logic of vagueness. Some readers may feel

satisfied that three-valued systems are adequate to this purpose, while others will

not. Whichever is the case, the study of three-valued systems will uncover many

principles that generalize very nicely as we turn to fuzzy logic.

Our very brief Chapter 10 introduces two new problems concerning vagueness

that arise in three-valued logical systems. These problems will motivate the move

from three-valued logic to fuzzy logic, in which formulas can have any one of an

infinite number of truth-values.

Finally, Chapters 11 and 12 present fuzzy propositional logic—semantics and

derivation systems; Chapter 13 introduces algebras for fuzzy logics; and Chapters 14

and 15 present fuzzy first-order logic. Chapter 16 examines augmenting fuzzy logic

to include fuzzy qualifiers (like very: how tall is very tall?) and fuzzy “linguistic” truth-

values (when is a statement more-or-less true?), and Chapter 17 addresses issues

about defining membership functions (used in fuzzy logic) for vague concepts.

1.5 History and Scope of Fuzzy Logic

Formal infinite-valued logics, which form the basis for formal fuzzy logic, were first

studied by the Polish logician Jan �Lukasiewicz in the 1920s. �Lukasiewicz developed

a series of many-valued logical systems, from three-valued to infinite-valued, each

generalizing the earlier ones for a greater number of truth-values. Although some of

the most widely studied fuzzy logics are based on �Lukasiewicz’s infinite-valued sys-

tem, �Lukasiewicz’s philosophical interest in his systems was not based on vagueness

but on indeterminism—we will discuss this in Chapter 5.

In 1965 Lotfi Zadeh published a paper (Zadeh (1965)) outlining a theory of

fuzzy sets, sets in which members have varying degrees of membership. Fuzzy

sets contrast with classical sets, to which something either (fully) belongs or (fully)

doesn’t belong. One of Zadeh’s examples of a fuzzy set is the set of tall men, so the

relationship between vague terms and fuzzy sets was clearly established. We’ll talk

more about fuzzy sets as we introduce fuzzy logic. Two years after Zadeh’s paper on

fuzzy sets, Joseph Goguen (1967) generalized Zadeh’s concept of fuzzy set, relating

it to more general algebraic structures, and Goguen (1968–1969) connected fuzzy

sets with infinite-valued logic and presented a formal fuzzy logical analysis of the

Sorites arguments. Goguen’s second article was the beginning of formal fuzzy logic,

also known as fuzzy logic in the narrow sense.

In 1979 Jan Pavelka published a three-part article (Pavelka 1979) that provides

the full framework for fuzzy logic in the narrow sense. Acknowledging his debt to

Goguen, Pavelka developed a (fuzzy) complete and consistent axiomatic system for
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propositional fuzzy logic with “graded” rules of inference: two-part rules that state

that one formula can be derived from others and that define the (minimal) degree

of truth for the derived formula based on the degrees of truth of the formulas from

which it has been derived. Pavelka’s paper contains several important metatheoretic

results as well. In 1990 Vilém Novák (1990) extended this work to first-order fuzzy

logic.10 In 1995–1997 Petr Hájek made significant simplications to these systems

(Hájek 1995a, 1995b), and in 1998 he introduced an axiomatic system BL (for basic

logic) that captures the commonalities among the major formal fuzzy logics along

with a corresponding type of algebra, the BL-algebra (Hájek 1998a). Since the 1990s,

Novák and Hájek have dominated the field of fuzzy logic (in the narrow sense) with

several texts and numerous articles, more of which will be cited later.

In this text we are strictly concerned with fuzzy logic in the narrow sense. But

when many speak of fuzzy logic they often have in mind either fuzzy set theory

or fuzzy logic in the broad sense. Needless to say, although fuzzy set theory is used

in fuzzy logic, it is a distinct discipline. Fuzzy logic in the broad sense originated

in a 1975 article in which Zadeh proposed to develop fuzzy logic as “a logic whose

distinguishing features are (i) fuzzy truth-values expressed in linguistic terms, e.g.,

true, very true, more or less true, rather true, not true, false, not very true and not

very false, etc.; (ii) imprecise truth tables; and (iii) rules of inference whose validity

is approximate rather than exact” (Zadeh 1975, p. 407). It is a stretch to call what

has developed here a logic, at least in the sense in which logicians use that word.

We’ll take a brief look at Zadeh’s linguistic truth-values at the end of this text,

since they may be used to answer at least one philosophical objection to fuzzy

logic. The approximate rules to which Zadeh alludes generate reasoning such as the

following (Zadeh’s example):

a is small

a and b are approximately equal

Therefore, b is more or less small.

As is evident, the logic behind these rules allows us to conclude that if two objects

are “approximately” equal and one has a certain property, then the other object

“more or less” has that property. The rules used in computational systems based on

Zadeh’s fuzzy logic in the broad sense are like rules of thumb, are stated in English,

and are quite useful in contexts such as expert systems. A typical rule for a fuzzy

expert system looks like

IF temperature is high AND humidity is low THEN garden is dry

where temperature and humidity are given as data and high, low, and dry are mea-

sures based on fuzzy sets. Zadeh has also called his version of fuzzy logic linguistic

logic, and perhaps that would be a more appropriate name for this general area of

10 This and further work of Novák’s appears in Novák, Perfilieva, and Močkoř (1999).
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research.11 Ruspini, Bonissone, and Predrycz (1998) is a good introduction to fuzzy

logic in the broad sense.

Finally, we note that certain technologies advertise the use of “fuzzy logic.” Fuzzy

logic rice cookers have been around for a decade or so, cookers that “[do] what a real

cook does, using [their] senses and intuition when [they are] cooking rice, watching

and intervening when necessary to turn heat up or down, and reacting to the kind

of rice in the pot, the volume and the time needed” (Wu 2003, p. E1). And there

are fuzzy logic washing machines, fuzzy logic blood pressure monitors, fuzzy logic

automatic transmission systems in automobiles, and so forth. The “fuzzy logic”

in these cases is the circuit logic built into microchips designed to handle fuzzy

measurements. For more on fuzzy technologies see Hirota (1993).

1.6 Tall People

Visit the Web site http://members.shaw.ca/harbord/heights.html. This is fun and

will get you thinking about what tall means.

1.7 Exercises

SECTION 1.2

1 In his article “Vagueness,” Max Black claimed that all terms whose application

involves use of the senses are vague. For example, we use color words like

green and shape words like round to describe what we see—and both of these

terms are vague. The sea sometimes appears greenish, and this is typically a

borderline case of green—not really green, but not really not green. While the

moon is round when full and not round when in one of its quarters, phases

close to full are borderline cases of round for the moon—it’s not really round,

but also not clearly not round.

Give examples of vague terms whose application involves each of the other

senses: one for hearing, one for smell, one for taste, and one for touch. Show

that your terms are vague by describing one or more borderline cases—cases

of things to which the term does not clearly apply or clearly fail to apply.

2 Show that each of the following terms is vague by giving an example of a bor-

derline case: young, fun, husband, sport, stale, chair, many, flat, book, sleepy.

3 Are any of the terms in question 2 also ambiguous? General? Relative? Give

examples to support your claims.

11 Not only would such a term make clear the distinction between formal fuzzy logic originating
from Goguen’s work and Zadeh’s version of fuzzy logic; its use would also make it clear when
attacks on “fuzzy logic” by logicians (such as Susan Haack [1979]) are targeting the claim that
fuzzy logic “in the broad sense” is logic, rather than work done in formal fuzzy logic.
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SECTION 1.3

4 Produce a version of the Sorites paradox using the term rich.

5 Can Sorites arguments always be constructed for terms that exhibit multidi-

mensional vagueness (defined in footnote 6), or do they arise mainly in the

case of unidimensional vagueness? Defend your position.
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2.1 The Language of Classical Propositional Logic

The basic linguistic units symbolized in propositional logic are (simple) sentences

along with logical connectives that combine them. We’ll use uppercase roman let-

ters (with integer subscripts, if more than twenty-six are needed) as atomic for-

mulas standing for simple sentences, and we’ll symbolize English connectives as

follows:1

English Connective Logical Operation Symbol

not negation ¬
and conjunction ∧
or disjunction ∨
if . . . then conditional →
if and only if biconditional ↔

We say that the negation connective is a unary connective since it applies to a single

formula, and the rest are binary connectives since they combine pairs of formulas.

Here are some examples of symbolized English sentences using these connectives,

where J stands for John is a mathematician, C stands for Christy is a mathematician,

and P stands for Christy is a philosopher:

John is not a mathematician. ¬J

John is a mathematician and so is Christy. J ∧ C

Christy is either a mathematician or a philosopher. C ∨ P

If John is a mathematician, then Christy’s a philosopher. J → P

John is a mathematician if and only if Christy is as well. J ↔ C

The negation connective ¬ has the highest binding priority, with the other

connectives being of equal priority. Giving ¬ the highest binding priority means

that in the absence of parentheses, the negation in the formula ¬J ∨ C applies to

the single formula J, not to J ∨ C. The formula ¬J ∨ C symbolizes Either John isn’t a

mathematician or Christy is. Parentheses are required to override the default priority

1 Some common alternative symbols are ∼, −, ! for negation; &, · for conjunction; |, + for disjunc-
tion; ⊃, ⇒ for the conditional operation; and = , ≡, ⇔ for the biconditional operation.

12
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and to indicate grouping among connectives of the same priority. So, for example,

¬ (J ∨ C) symbolizes It’s not true that John or Christy is a mathematician (i.e., Neither

John nor Christy is a mathematician), and the parentheses are necessary in (J∧C)∨P

to indicate that the formula means: Either John and Christy are both mathematicians

or Christy is a philosopher rather than John is a mathematician and Christy is either

a mathematician or a philosopher. The latter sentence would be symbolized as

J ∧ (C ∨ P). We will always require parentheses to indicate the order of evaluation

for the binary connectives. For example, a set of parentheses is required to indicate

the order of evaluation in J ∨ C ∨ P even though (J ∨ C) ∨ P (one way of placing the

parentheses) is equivalent to J ∨ (C ∨ P).

The rules for forming formulas in the language of classical propositional logic

are as follows:

1. Every uppercase roman letter, with or without an integer subscript, is a formula.

2. If P is a formula, so is ¬P.

3. If P and Q are formulas, so are (P ∧ Q), (P ∨ Q), (P → Q), and (P ↔ Q).2

We call single (possibly subscripted) roman letters A, B, and so on, atomic formu-

las, while formulas formed using one or more connectives are called compound

formulas. The connectives introduced in clauses 2 and 3 are the main connectives

of the formulas so formed. For example, because the formula ((A ∨ B) ∨ C) is formed

from the formulas (A ∨ B) and C by clause 3, the main connective of ((A ∨ B) ∨ C)

is the second disjunction. By convention, we will drop outermost parentheses in

compound formulas—thus ((A ∨ B) ∨ C) may be written as (A ∨ B) ∨ C.

A compound formula is named after the operation symbolized by its main

connective: a compound formula whose main connective is ¬ is called a negation,

and so on. Context will always make it clear whether we are talking about the oper-

ation itself or a formula. The immediate subformulas P and Q of a conjunction

P ∧ Q are called its conjuncts, and the immediate subformulas P and Q of a disjunc-

tion P ∨ Q are called its disjuncts. P is the antecedent of the conditional P → Q and

Q is its consequent. (At times we will also refer to connectives by the name of the

operation they symbolize; e.g., we will call ¬ a negation.)

2.2 Semantics of Classical Propositional Logic

The five logical connectives that we have introduced are truth-functional

connectives: the truth-values of formulas formed with these connectives are

determined by (i.e., are a function of ) the truth-values of the constituent formulas.

2 We use boldface letters P, Q, . . . to stand for arbitrary formulas of the language. This will make it
clear when we are talking about a particular formula (we will use nonboldface letters) and when
we are talking about formulas generally (we will use boldface letters). In this context the boldface
letters are called metavariables.
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The truth-functional operations in classical propositional logic are captured by the

following truth-tables:

P ¬P

T F

F T

P Q P ∧ Q P Q P ∨ Q P Q P → Q P Q P ↔ Q

T T T T T T T T T T T T

T F F T F T T F F T F F

F T F F T T F T T F T F

F F F F F F F F T F F T

where T and F stand for true and false, respectively. The information in these tables

can be used to determine the truth-values of arbitrary formulas on truth-value

assignments. A truth-value assignment is an assignment of truth-values to atomic

formulas of the language, and in classical logic true and false are the only truth-

values. If we have a truth-value assignment on which J is false and C is true, then ¬J

is true, ¬C is false, J ∧ C is false, J ∨ C is true, J → C is true, C → J is false, and C ↔ J

is false.

More generally, a truth-table can be used to display the values that a formula

will have on all truth-value assignments. Here’s a truth-table for the formula

¬J ∧ (C ∨ R):

C J R ¬ J ∧ (C ∨ R)

T T T F T F T T T

T T F F T F T T F

T F T T F T T T T

T F F T F T T T F

F T T F T F F T T

F T F F T F F F F

F F T T F T F T T

F F F T F F F F F

All combinations of truth-values that C, J, and R can have are listed to the left of

the vertical bar. For each of these combinations we list the value of ¬J ∧ (C ∨ R)

and of each of its subformulas to the right of the vertical bar. The truth-value for

an atomic subformula is written immediately below the atomic subformula, and

the truth-value for a compound subformula (as well as for the formula as a whole)

is written under its main connective. Thus, the first F in the first row—under the

negation—tells us that the subformula ¬J is false on any truth-value assignment

that assigns T to C, J, and R, the F under the conjunction tells us that the entire

formula is false on such assignment, while the T under the disjunction tells us that
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C ∨ R is true. The semantics of a language consists in its meaning (or interpretation),

and in the case of classical propositional logic the semantics consists of bivalent

truth-value assignments and the definitions of the truth-functional operations that

can be used to construct a truth-table for any formula.

Logicians sometimes single out some connectives as primitive and introduce

the other connectives as defined ones. One common way of doing this is to take ¬
and ∧ as primitive and then to define the others as follows:

P ∨ Q =def ¬(¬P ∧ ¬Q)

P → Q =def ¬(P ∧ ¬Q)

P ↔ Q =def ¬(P ∧ ¬Q) ∧ ¬(¬P ∧ Q).

The symbol =def means: is defined as. Simple reasoning confirms that these defi-

nitions are correct. For example, a formula ¬(¬P ∧ ¬Q) is true when ¬P ∧ ¬Q is

false, and ¬P ∧ ¬Q is false when either when one or both of ¬P, ¬Q are false, that

is, when one or both of P, Q are true—and that is exactly when a disjunction P ∨ Q

is true. So the preceding definition for disjunction is correct. Alternatively, we can

verify the correctness with a truth-table:

P Q P ∨ Q ¬ (¬ P ∧ ¬ Q)

T T T T T T F T F F T

T F T T F T F T F T F

F T F T T T T F F F T

F F F F F F T F T T F

The column of truth-values under the disjunction is identical to the column under

the second formula’s main connective—the first negation—so the formulas are

equivalent. The correctness of the definitions for the conditional and biconditional

can be verified similarly.

Another common (and similar) way of dividing the connectives into primitive

and defined ones is to take ¬ and ∨ as primitive and then to introduce the others

as:

P ∧ Q =def ¬(¬P ∨ ¬Q)

P → Q =def ¬P ∨ Q

P ↔ Q =def ¬(¬P ∨ ¬Q) ∨ ¬ (P ∨ Q).

The two connectives ¬ and → can also be taken as primitive, as will be confirmed

in an exercise.

Formulas in the language of classical propositional logic that are true on all

truth-value assignments are called tautologies, and formulas that are false on all

truth-value assignments are called contradictions. The truth-values appearing in

the truth-table in the column under a formula’s main connective will indicate

whether that formula is a tautology, a contradiction, or neither. A symbolic version
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of the Law of Excluded Middle is A ∨ ¬A, and this is a tautology in classical

logic:

A A ∨ ¬ A

T T T F T

F F T T F

The column of truth-values under the ∨ contains exclusively Ts, confirming that the

formula A ∨ ¬A is a tautology. Now for a technical point: a truth-value assignment

always assigns truth-values to all atomic formulas of the language. So the truth-table

we have just examined doesn’t show complete truth-value assignments. However,

since each truth-value assignment will have to assign one of the two values T and

F to A, the truth-table shows us that the formula A ∨ ¬A is true on all truth-value

assignments.

The formula A ∧ ¬A is a contradiction, while its negation, which is often called

the Law of Noncontradiction, is a tautology:

A A ∧ ¬ A A ¬(A ∧ ¬ A)

T T F F T T T T F F T

F F F T F F T F F T F

(The main connective of the second formula is the initial negation connective,

and underneath it we see only Ts.) None of our previous formulas symbolizing

claims about John and Christy are tautologies or contradictions. For example, we

have

J ¬ J C J J ∧ C C J C → J

T F T T T T T T T T T T T

F T F T F F F T T F T F F

F T T F F F T F T T

F F F F F F F F T F

and in each case the column under the main connective contains both Ts

and Fs.3

Two formulas of classical propositional logic are equivalent if they have

the same truth-value on each truth-value assignment. The formulas C → J and

¬J → ¬C are equivalent:

C J C → J ¬ J → ¬ C

T T T T T F T T F T

T F T F F T F F F T

F T F T T F T T T F

F F F T F T F T T F

3 For uniformity we always list the atomic constituents of formulas in alphabetical order, even
when that is not the order in which they appear in compound formulas.
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The columns under the main connectives of the two formulas, the conditional

connective in each case, are identical. On the other hand, the formulas C → J and

J → C are not equivalent:

C J C → J J → C

T T T T T T T T

T F T F F F T T

F T F T T T F T

F F F T F F T F

The formulas have different truth-values on truth-value assignments represented

by the second and third rows—truth-value assignments on which C and J have

different values. We note as a special case that all tautologies are equivalent to one

another because they are all true on every truth-value assignment, and all contra-

dictions are equivalent to one another for a similar reason.

A set � (pronounced gamma) of formulas entails a formula P if, whenever all

of the formulas in the set � are true, P is true as well (that is, there is no truth-value

assignment on which all the formulas in � are true and P is false). An argument

consists of one or more formulas, the premises, and an additional formula, the

conclusion. We say that an argument is valid if the set consisting of its premises

entails the argument’s conclusion. We also say that the conclusion of a valid argu-

ment follows from the premises.

The components of an argument are traditionally displayed by writing the

premises, one per line, followed by a separator line and then the conclusion, for

example,

J → C

J

C

This argument is valid, as is shown by the fact that every row in the following

truth-table in which both premises are true also has the conclusion true (there is

only one such row in this case, the first one):

C J J → C J C

T T T T T T T

T F F T T F T

F T T F F T F

F F F T F F F

On the other hand, the argument

J → C

¬J

¬C
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is not valid. In the following table, the premises are both true in the second row

while the conclusion is false, and that is enough to establish invalidity:

C J J → C ¬ J ¬ C

T T T T T F T F T

T F F T T T F F T

F T T F F F T T F

F F F T F T F T F

2.3 Normal Forms

In this section we introduce disjunctive and conjunctive normal forms for formu-

las. Each formula of propositional logic has an equivalent formula in disjunctive

normal form, and an equivalent formula in conjunctive normal form. The normal

forms are used to standardize (normalize) the forms of logical formulas for vari-

ous reasons, such as allowing the use of a computational proof technique known

as resolution (Robinson 1965). We will use normal forms to prove functional com-

pleteness in Section 2.5. More importantly, the normal forms will allow us to make

some semantic connections among classical logic, three-valued logics, and fuzzy

logics.

We’ll begin with disjunctive normal form. First we define literals to include

all atomic formulas and their negations: A, ¬A, B, ¬B, . . . . Next we define what a

phrase is:

1. A literal is a phrase

2. If P and Q are phrases, so is (P ∧ Q)

A phrase is either a single literal, or a conjunction of literals: A, ¬A, B, ¬B, A ∧ A,

A ∧ ¬B, (D ∧ ¬E) ∧ F, and so forth. Finally, we define disjunctive normal form:

1. Every phrase is in disjunctive normal form

2. If P and Q are in disjunctive normal form, so is (P ∨ Q)

So a formula is in disjunctive normal form if it contains at most the three connectives

¬, ∧, and ∨, such that negations only appear in front of atomic formulas and no

subformula that is a conjunct contains a disjunction. Examples are A, A ∨ ¬B,

A ∧ ¬B, (A ∧ ¬B) ∨ B, (A ∧ ¬B) ∧ B, and (C ∧ ¬E) ∨ (D ∨ (E ∧ F)).

We claimed that each formula of classical propositional logic is equivalent to a

formula (at least one) that is in disjunctive normal form. To prove this, we show how

to transform any formula of classical propositional logic into a formula in disjunc-

tive normal form, where each step of the transformation produces an equivalent

formula. The transformation uses the following equivalences:



P1: RTJ
9780521881289c02 CUNY1027/Bergmann 978-0 521 88128 9 November 24, 2007 17:41

2.3 Normal Forms 19

P → Q is equivalent to ¬P ∨ Q (Implication)

P ↔ Q is equivalent to (¬P ∨ Q) ∧ (¬Q ∨ P) (Implication)

¬(P ∧ Q) is equivalent to ¬P ∨ ¬Q (DeMorgan’s Law)

¬(P ∨ Q) is equivalent to ¬P ∧ ¬Q (DeMorgan’s Law)4

¬¬P is equivalent to P (Double Negation)

(P ∨ Q) ∧ R is equivalent to (P ∧ R) ∨ (Q ∧ R) (Distribution)

P ∧ (Q ∨ R) is equivalent to (P ∧ Q) ∨ (P ∧ R) (Distribution)

(Proof that these forms are equivalent is left as an exercise.) We’ll explain the trans-

formation process using the formula

¬(¬(P → Q) ∨ (¬R → (S ↔ T)))

First we use the Implication equivalences to eliminate all conditionals and bicon-

ditionals, producing the formula

¬(¬(¬P ∨ Q) ∨ (¬¬R ∨ ((¬S ∨ T) ∧ (¬T ∨ S))))

Next we use DeMorgan’s Laws to move negations deeper into the formula until all

negations appear in front of atomic formulas. In our example we use the second

DeMorgan Law first to obtain

¬¬(¬P ∨ Q) ∧ ¬(¬¬R ∨ ((¬S ∨ T) ∧ (¬T ∨ S)))

and then

¬(¬¬P ∧ ¬Q) ∧ (¬¬¬R ∧ ¬((¬S ∨ T) ∧ (¬T ∨ S))

Next we can use the first DeMorgan Law twice to obtain

(¬¬¬P ∨ ¬¬Q) ∧ (¬¬¬R ∧ (¬(¬S ∨ T) ∨ ¬(¬T ∨ S)))

and then the second Law twice more to obtain

(¬¬¬P ∨ ¬¬Q) ∧ (¬¬¬R ∧ ((¬¬S ∧ ¬T) ∨ (¬¬T ∧ ¬S)))

Now Double Negation eliminates all double negations:

(¬P ∨ Q) ∧ (¬R ∧ ((S ∧ ¬T) ∨ (T ∧ ¬S))).

We’re almost done, but note that this is a conjunction, and some of the conjuncts

are disjunctions, so the formula is not yet in disjunctive normal form (if all of the

conjuncts were themselves conjunctions, it would be in disjunctive normal form).

We can use the first Distribution equivalence to convert the overall formula into a

disjunction, with ¬P in place of P, Q in place of Q, and (¬R ∧ ((S ∧ ¬T) ∨ (T ∧ ¬S)))

in place of R:

(¬P ∧ (¬R ∧ ((S ∧ ¬T) ∨ (T ∧ ¬S)))) ∨ (Q ∧ (¬R ∧ ((S ∧ ¬T) ∨ (T ∧ ¬S)))).

4 These two laws are named after the nineteenth-century mathematician Augustus DeMorgan,
who stated these laws set-theoretically. According to one historian, these laws did not actually
originate with DeMorgan but “were known in scholastic times and probably even in antiquity”
(Delong 1970, p. 106).
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Next we can apply the second Distribution equivalence to both occurrences of the

subformula (¬R ∧ ((S ∧ ¬T) ∨ (T ∧ ¬S)), with ¬R in place of P, (S ∧ ¬T) in place of

Q, and (T ∧ ¬S) in place of R, to obtain

(¬P ∧ ((¬R ∧ (S ∧ ¬T)) ∨ (¬R ∧ (T ∧ ¬S)))) ∨
(Q ∧ ((¬R ∧ (S ∧ ¬T)) ∨ (¬R ∧ (T ∧ ¬S))))

This formula is in disjunctive normal form, and it is equivalent to the original

formula

¬(¬(P → Q) ∨ (¬R → (S ↔ T)))

because each step of the transformation produces an equivalent formula.

This series of steps will convert any formula to an equivalent formula in disjunc-

tive normal form—we first get rid of conditional and biconditional connectives, then

we use the DeMorgan Laws to move negations in as far as they will go, and we use

Double Negation to eliminate all double negations. At this point all negations occur

in front of atomic formulas, and the binary connectives are either conjunctions or

disjunctions. The Distribution laws enable us to convert the result to disjunctive

normal form by replacing each conjunction with a disjunctive conjunct into a dis-

junction of conjunctive disjuncts. In Section 2.5 we will see another way to produce

formulas in disjunctive normal form.

In contrast, formulas in conjunctive normal form are conjunctions of disjunc-

tions, rather than disjunctions of conjunctions. We define a clause as:

1. A literal is a clause

2. If P and Q are clauses, so is (P ∨ Q)

and conjunctive normal form as:

1. Every clause is in conjunctive normal form

2. If P and Q are in conjunctive normal form, so is (P ∧ Q)

Any formula of classical propositional logic can be converted to an equivalent for-

mula in conjunctive normal form by following the same steps as we did for disjunc-

tive normal form, but using the following Distribution equivalences at the end:

A formula (P ∧ Q) ∨ R is equivalent to (P ∨ R) ∧ (Q ∨ R) (Distribution)

A formula P ∨ (Q ∧ R) is equivalent to (P ∨ Q) ∧ (P ∨ R) (Distribution)

Let us call a pair of literals complementary if one is the negation of the other; for

instance, S and ¬S are a complementary pair of literals. We now state two important

general results:

Result 2.1: A clause C of classical propositional logic is a tautology if and only

if C contains a complementary pair of literals.

Proof: If a clause C is a tautology then C must be a disjunction (since no

literal is a tautology), and on each truth-value assignment at least one dis-

junct is true. But then C must contain a complementary pair of literals, because
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if it doesn’t, then the truth-values of all the literals are independent of one

another and there will therefore be a truth-value assignment on which they are

all false. (For example, P ∨ (((Q ∨ Q) ∨ (¬R ∨ ¬S)) ∨ T) is false when P, Q, and T

are false and R and S are true). Conversely, if C contains a complementary pair

of literals, then on each truth-value assignment one of these literals will be true

(they can’t both be false) and hence the disjunctive formula C will be true as

well.

Result 2.2: A phrase P of classical propositional logic is contradictory if and

only if P contains a complementary pair of literals.

Proof: Left as an exercise.

As a consequence of 2.1 and 2.2 we have

Result 2.3: A formula P of classical logic that is in conjunctive normal form is

a tautology if and only if each clause in P contains a complementary pair of

literals.

Proof: A formula P in conjunctive normal form is either a clause or a conjunc-

tion. If P is a clause, then, by Result 2.1, P is a tautology if and only if P contains

a complementary pair of literals. If P is a conjunction, then P is a tautology if

and only if each conjunct in P is a tautology, and this is the case if and only

if the clauses from which the conjunctions in P are built are tautologies. By

Result 2.1, each of these clauses is a tautology if and only if each clause contains

a complementary pair of literals.

Result 2.4: A formula P of classical logic that is in disjunctive normal form is a

contradiction if and only if each phrase in P contains a complementary pair of

literals.

Proof: Left as an exercise.

2.4 An Axiomatic Derivation System for Classical Propositional Logic

Alongside semantic means of assessing formulas and evaluating arguments, deriva-

tion systems may be used. There are several types of derivation systems, including

axiomatic systems and natural deduction systems. Axiomatic systems are the norm

in the field of fuzzy logic, and so we shall use axiomatic derivation systems through-

out this text.5 In an axiomatic derivation system we have a set of formulas pro-

claimed to be axioms along with a set of rules to derive new formulas from previous

ones. There are many axiomatic systems that have been studied for classical propo-

sitional logic. The axiomatic system that we present here was developed by the

Polish logician Jan �Lukasiewicz (1930, 1934) to simplify a system proposed by the

5 For examples of natural deduction derivation systems see Bergmann, Moor, and Nelson (2004).
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German logician Gottlob Frege (Frege 1879). We have chosen the Frege-�Lukasiewicz

system—which we will designate as CLA (for classical propositional logic axiomatic

system)—because some simple modifications will serve to axiomatize three-valued

and fuzzy logics that were also developed by �Lukasiewicz. CLA contains three axiom

schemata:

CL1. P→ (Q → P)

CL2. (P → (Q → R)) → ((P → Q) → (P→ R))

CL3. (¬P → ¬Q) → (Q → P)

and the single inference rule MP, which is short for the rule’s traditional name,

Modus Ponens:

MP (Modus Ponens). From P and P→ Q, infer Q.

An axiom schema stands for infinitely many axioms, namely, all formulas that have

the overall form exemplified by the schema. We call such formulas instances of the

axiom schema. We can define an instance of an axiom schema to be any formula

that results from uniform substitution of formulas of the language (not necessarily

distinct) for each of the letters P, Q, and R. By uniform substitution we mean that in

a given instance, the same formula must be substituted for every occurrence of P,

and similarly for Q and R. So, for example, the following formulas are all instances

of the axiom schema CL1:

P → (Q → P) Substituting P for P and Q for Q

Q → (P → Q) Substituting Q for P and P for Q

P → (P → P) Substituting P for P and P for Q

(A ∧ B) → ((F ↔ (G ∨ H)) → (A ∧ B)) Substituting (A ∧ B) for P and

(F ↔ (G ∨ H)) for Q

Note that each of the axiom schemata has the form of a tautology. For example, here

is the truth-table for CL2:

P Q R (P→(Q → R)) → ((P→Q) →(P→R))

T T T T T T T T T T T T T T T T

T T F T F T F F T T T T F T F F

T F T T T F T T T T F F T T T T

T F F T T F T F T T F F T T F F

F T T F T T T T T F T T T F T T

F T F F T T F F T F T T T F T F

F F T F T F T T T F T F T F T T

F F F F T F T F T F T F T F T F

It is left as an exercise to verify that the other two axiom schemata also have tau-

tologous forms. In addition, the rule Modus Ponens is a truth-preserving rule—a

rule that when applied to true formulas results in a true formula: if P and P → Q are

both true, then Q must be true as well.
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A derivation is a sequence of formulas each of which is designated as an assump-

tion, or is an instance of an axiom schema, or can be derived from earlier formulas

in the sequence using the derivation rule MP. In addition, the formulas designated

as assumptions must begin the derivation. (This last stipulation is not theoreti-

cally necessary but will make rules in later chapters easy to state, with no loss of

derivational power.) Here is an example of a derivation annotated in a standard way:

1 A Assumption

2 (B → A) → (A → M) Assumption

3 A → (B → A) CL1, with A / P, B / Q

4 B → A 1,3 MP

5 A → M 2,4 MP

6 M 1,5 MP

We have derived the conclusion M from the assumptions A and (B → A) →
(A → M). We have numbered each of the formulas in the sequence constituting

the derivation and have added annotations. Each line of the displayed derivation is

annotated to indicate the justification for entering that formula in the derivation:

either as an assumption (lines 1 and 2), as an instance of an axiom schema (line 3;

the annotation indicates that axiom schema CL1 has been used, with A substituted

for P and B for Q), or by virtue of being derived from earlier formulas (lines 4–6;

each annotation indicates to which formulas the rule MP was applied). When a

formula appears in a derivation that begins with a set of assumptions, we say that

the formula is derived from those assumptions. So each of the formulas on lines

1–6 is derived from the assumptions on lines 1 and 2. If a formula can be derived

from a set of assumptions, we also say that the formula is derivable from any set

containing those assumptions. So the preceding derivation shows that the formula

M is derivable from any set that contains both A and (B → A) → (A → M). As another

example, the following derivation shows that A → B is derivable from ¬A:

1 ¬A Assumption

2 ¬A → (¬B → ¬A) CL1, with A / P, B / Q

3 ¬B → ¬A 1,2 MP

4 (¬B → ¬A) → (A → B) CL3, with B / P, A / Q

5 A → B 3,4 MP

Some formulas, namely, the tautologies of classical logic, can be derived without

using any assumptions. For example, A → A is a tautology and we can derive it

without any assumptions as follows:

1 A → ((A → A) → A) CL1, with A / P, A → A / Q

2 A → ((A → A) → A)) → ((A → (A → A)) → (A → A)) CL2, with A / P, A → A / Q, A / R

3 (A → (A → A)) → (A → A) 1,2 MP

4 A → (A → A) CL1, with A / P, A / Q

5 A → A 3,4 MP
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A derivation that does not contain any assumptions is called a proof, and a formula

is called a theorem if there is a proof ending with that formula. The proof just given

establishes that A → A is a theorem. We may call the proof a proof of that theorem.

Another theorem is ¬A → (A → B). Before presenting a proof, we draw the

reader’s attention to the relation between this theorem and the fact that (as we have

shown) A → B is derivable from ¬A, namely: the consequent and the antecedent of

the theorem are the two formulas in question. It turns out that whenever a formula

Q is derivable from a formula P in CLA there is a corresponding theorem P → Q in

CLA, and vice versa. This general fact is known as the Deduction Theorem:6

Result 2.5 (The Deduction Theorem for Classical Propositional Logic): Q is deriv-

able from P in CLA if and only if P → Q is a theorem in CLA.

Proof: The if part—if P → Q is a theorem then Q is derivable from P—is easy to

establish. If P → Q is a theorem then there is a proof of P → Q in CLA. We can

add P to this proof as an assumption and then use Modus Ponens to derive Q

from P and P → Q.

For the only if part we will explain how to convert any derivation of Q from

the assumption P into a proof of P → Q, thus establishing the theoremhood

of the latter. (We’ll then illustrate the method by converting our derivation of

A → B from ¬A into a proof of ¬A → (A → B).) The strategy is to show how,

given a derivation of Q from the assumption P—a derivation consisting of the

sequence P, R1, R2, . . . , Rn–1, Rn where Rn is Q—we can produce a derivation in

which each of the formulas P → P, P → R1, P → R2, . . . , P → Rn–1, P → Rn occurs

as a theorem. The last theorem in this sequence is the desired theorem for this

result. The formulas will all be theorems because the new derivation will not

include the assumption P or any other assumption.

We begin the derivation by deriving the first new formula P → P exactly as

we derived A → A on the previous page, using P in place of A. Now, each of R1,

R2, . . . , Rn–1, Rn either was an instance of an axiom schema or followed from

previous formulas in the derivation by MP. For each one of these formulas Ri,

if Ri is an instance of an axiom schema we can add the following lines to derive

P → Ri in the new derivation:

m Ri {by relevant axiom schema}
m+1 Ri → (P → Ri) CL1, with Ri / P, P / Q

m+2 P → Ri m+1, m+2 MP

If Ri followed by MP from earlier formulas Rk and Rk → Ri in the sequence R1,

R2, . . . , Ri–1, Rn, then we already have P → Rk and P → (Rk → Ri) in the new

derivation, say, on lines m and n, and three additional lines will derive P → Ri:

6 There is also a semantic version of the Deduction Theorem: the set {P} entails Q if and only if
P → Q is a tautology. This is easy to prove directly, but we also note that the semantic version
follows from Result 2.5 and the fact that CLA is sound and complete for classical propositional
logic (see p. 26).
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m P → Rk

. . .

n P → (Rk → Ri)

. . .

p (P → (Rk → Ri)) → ((P → Rk) → (P → Ri)) CL2, with P / P, Rk / Q, Ri / R

p+1 (P → Rk) → (P → Ri) n, p MP

p+2 P → Ri m, p+1 MP

Using the method described in the proof of the Deduction Theorem and the earlier

derivation

1 ¬A Assumption

2 ¬A → (¬B → ¬A) CL1, with A / P, B / Q

3 ¬B → ¬A 1,2 MP

4 (¬B → ¬A) → (A → B) CL3, with B / P, A / Q

5 A → B 3,4 MP

we construct the following derivation establishing the theoremhood of¬A→ (A→B)

(to the left of the lines containing the conditionals whose consequents are formulas

from the earlier derivation we write the line numbers from that derivation):

1 ¬A → ((¬A → ¬A) → ¬A) CL1, with ¬A / P, ¬A → ¬A / Q

2 ¬A → ((¬A → ¬A) → ¬A)) →
((¬A → (¬A → ¬A)) → (¬A → ¬A))

CL2, with ¬A / P, ¬A → ¬A / Q, ¬A / R

3 (¬A → (¬A → ¬A)) → (¬A → ¬A) 1,2 MP

4 ¬A → (¬A → ¬A) CL1, with ¬A / P, A /Q

1. 5 ¬A → ¬A 3,4 MP

6 ¬A → (¬B → ¬A) CL1, with ¬A / P, ¬B /Q

7 (¬A → (¬B → ¬A)) → (¬A → (¬A → (¬B → ¬A))) CL1, with ¬A → (¬B → ¬A) / P, ¬A / Q

2. 8 ¬A → (¬A → (¬B → ¬A)) 6,7 MP

9 ¬A → (¬A → (¬B → ¬A)) →
((¬A → ¬A) → (¬A → (¬B → ¬A)))

CL2, with ¬A / P, ¬A / Q, ¬ A → ¬B / R

10 (¬A → ¬A) → (¬A → (¬B → ¬A)) 8,9 MP

3. 11 ¬A → (¬B → ¬A) 5,10 MP

12 (¬B → ¬A) → (A → B) CL3, with B / P, A / Q

13 ((¬B → ¬A) → (A → B)) →
(¬A → ((¬B → ¬A) → (A → B)))

CL1, with (¬B → ¬A) → (A → B) / P, ¬A / Q

4. 14 ¬A → ((¬B → ¬A) → (A → B)) 12,13 MP

15 (¬A → ((¬B → ¬A) → (A → B))) →
((¬A → (¬B → ¬A)) → (¬A → (A → B)))

CL2, with ¬A / P, ¬B → ¬A / Q, A → B / R

16 (¬A → (¬B → ¬A)) → (¬A → (A → B)) 14,15 MP

5. 17 ¬A → (A → B) 11,16 MP
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Shorter derivations are certainly possible—for example, in this case we did not

need to derive the formula on line 11 since it already appears on line 6; our point

here was to illustrate the mechanical conversion procedure introduced in the proof

of the Deduction Theorem, a procedure that shows that we can always convert a

derivation of Q from P into a proof of P → Q.

A derivation system is said to be sound for classical propositional logic if (a) all

theorems are tautologies and (b) whenever a formula P is derivable from a set � of

formulas, then P is also entailed by the set �. The system CLA is sound. For example,

we have already noted that the theorem A → A is a tautology of classical logic, and

so is the theorem ¬A → (A → B). The arguments corresponding to our other two

derivations:

A

(B → A) → (A → M)

M

and

A

¬A → ¬B

are both valid (as can be confirmed by truth-tables). CLA is a sound derivation

system precisely because the axioms are tautologies and the single rule is truth-

preserving.

A derivation system is said to be weakly complete for classical propositional

logic if every tautology of classical logic is a theorem in the system (the converse of

what goes into soundness) and it is said to be strongly complete, or just complete,

if in addition whenever a set � of formulas entails a formula P, P is also derivable

from � within the system (again, the converse of soundness). CLA is complete as

well as sound for classical propositional logic, and when a system has both of these

properties we say that it is adequate for classical propositional logic.7 Simply put,

soundness and completeness mean that you can derive everything you should be

able to derive (the system is complete), and nothing you shouldn’t (the system is

sound).

We point out that there is prima facie (“at first sight”) something fishy about the

claim that CLA is complete for classical propositional logic: completeness means

that for every entailment or tautology there is a corresponding derivation in the sys-

tem, but it is unclear that there is any derivation for entailments or tautologies whose

validity depends on connectives other than ¬ and →, because no other connectives

appear in either the axioms or the derivation rule MP. As an example, M ∨ (M → S) is

a tautology, but how can it be derived in CLA? The answer is that when we want to use

CLA to produce derivations for formulas containing the connectives ∧, ∨, and ↔,

7 See Hunter (1971) for several completeness proofs for the system CLA (called PS in Hunter), along
with a soundness proof.
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we first rewrite the formulas to contain only ¬ and →, using some standard set of

definitions. For this purpose we’ll use the definitions

P ∨ Q =def ¬P → Q

P ∧ Q =def ¬(P → ¬Q)

P ↔ Q =def (P → Q) ∧ (Q → P), which turns into ¬((P → Q) → ¬(Q → P))

and then produce derivations for the rewritten formulas. To show that M ∨
(M → S) is a theorem we first convert the formula to ¬M → (M → S) using the

preceding definition for disjunction, then we construct a derivation for the latter

formula (caution: do not spend too much time reading through this derivation; we

will shorten it momentarily):

1 ¬M → (¬S → ¬M) CL1, with ¬M / P, ¬S / Q

2 (¬S → ¬M) → (M → S) CL3, with S / P, M / Q

3 ((¬M → ((¬S → ¬M) → (M → S))) →
((¬M → (¬S → ¬M)) → (¬M → (M → S)))) →

(((¬S → ¬M) → (M → S)) →
((¬M → ((¬S → ¬M) → (M → S))) →

((¬M → (¬S → ¬M)) → (¬M → (M → S)))))

CL1, with (¬M → ((¬S → ¬M) → (M → S))) →
((¬M → (¬S → ¬M)) → (¬M → (M → S))) / P,

(¬S → ¬M) → (M → S) / Q

4 (¬M → ((¬S → ¬M) → (M → S)) →
((¬M → (¬S → ¬M)) → (¬M → (M → S)))

CL2, with ¬M / P, ¬S → ¬M / Q, M → S / R

5 ((¬S → ¬M) → (M → S)) →
((¬M → ((¬S → ¬M) → (M → S))) →

((¬M → (¬S → ¬M)) → (¬M → (M → S))))

3,4 MP

6 (((¬S → ¬M) → (M → S)) →
((¬M → ((¬S → ¬M) → (M → S))) →

((¬M → (¬S → ¬M)) → (¬M → (M → S))))) →
((((¬S → ¬M) → (M → S)) →

(¬M → ((¬S → ¬M) → (M → S)))) →
(((¬S → ¬M) → (M → S)) →

((¬M → (¬S → ¬M)) →
(¬M → (M → S)))))

CL2, with (¬S → ¬M) → (M → S) / P,

¬M → ((¬S → ¬M) → (M → S)) / Q,

(¬M → (¬S → ¬M)) → (¬M → (M → S)) / R

7 (((¬S → ¬M) → (M → S)) →
(¬M → ((¬S → ¬M) → (M → S)))) →

(((¬S → ¬M) → (M → S)) →
((¬M → (¬S → ¬M)) →

(¬M → (M → S))))

5,6 MP

8 ((¬S → ¬M) → (M → S)) →
(¬M → ((¬S → ¬M) → (M → S)))

CL1, with (¬S → ¬M) → (M → S) / P, ¬M / Q

9 ((¬S → ¬M) → (M → S)) →
((¬M → (¬S → ¬M)) →

(¬M → (M → S)))

7,8 MP

10 (¬M → (¬S → ¬M)) → (¬M → (M → S)) 2,9 MP

11 ¬M → (M → S) 1,10 MP

We may conclude that M ∨ (M → S) is a theorem of CLA.
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At this point it is probably (frighteningly) clear that it can be difficult to design

derivations in CLA – and to follow them; that is why we added the previous caution.

Why, you may ask, would anyone propose such a terse system, with merely three

axioms and a single rule to choose from? Wouldn’t it be better to have more axioms

and rules? The reason for terse axiomatic systems is that authors of these systems

strive for elegance, usually in the form of a very small set of axioms and rules, which

in turn can make it easier to prove things about the system.8

But when we put axiomatic systems to action, terseness ceases to look like

a virtue. In order to make derivations less difficult to construct or to follow, it is

common to introduce derived axiom schemata and/or derived rules. For example,

we can introduce P → P as a derived axiom schema:

CLD1. P → P

The D is short for derived. We are justified in introducing P → P as a derived axiom

schema because we have already presented a proof of A → A, and it is clear that

this proof can be converted into a proof of any instance of the schema P → P

simply by substituting any other formula for A. In general, once we have proved a

formula to be a theorem we may present the formula, with metavariables uniformly

substituted for the formula letters, as a derived axiom schema. We can then use the

derived schema in subsequent derivations, as we do in the following derivation of

B → (C → C):

1 C → C CLD1, with C / P

2 (C → C) → (B → (C → C)) CL1, with C → C / P, B / Q

3 B → (C → C) 1,2 MP

Using CLD1 we can also construct a short simple derivation showing that A ∨ ¬A

is a theorem. First, we rewrite the formula as ¬A → ¬A so that it contains only the

negation and conditional symbols. Here’s the derivation!

1 ¬A → ¬A CLD1, with ¬A / P

Now let’s return to the derivation of the theorem ¬M → (M → S). The sole

purpose of lines 3–11 of the derivation is to derive ¬M → (M → S) from ¬M →
(¬S → ¬M) and (¬S → ¬M) → (M → S). Examining these formulas we see that

they are instances of a general inference pattern that derives a formula of the

form P → R from formulas having the form P → Q and Q → R. We may intro-

duce this inference pattern, commonly called hypothetical syllogism, as a derived

rule:

HS (Hypothetical Syllogism). From P → Q and Q → R, infer P → R.

8 Claims about a derivation system are part of what is called the metatheory of logic. The claim
that an axiomatic system is sound, or that it is complete, is a metatheoretic claim.
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To justify HS we first introduce the derived axiom

CLD2. (Q → R) → ((P → Q) → (P → R))

This axiom is justified as follows (compare with lines 3–9 of the previous derivation

of M ∨ (M → S):

1 ((P → (Q → R)) → ((P → Q) → (P → R))) →
((Q → R) → ((P → (Q → R)) → ((P → Q) → (P → R))))

CL1, with (P → (Q → R)) →
((P → Q) → (P → R)) / P, Q → R / Q

2 (P → (Q → R)) → ((P → Q) → (P → R)) CL2, with P / P, Q / Q, R / R

3 (Q → R) → ((P → (Q → R)) → ((P → Q) → (P → R))) 1,2 MP

4 ((Q → R) → ((P → (Q → R)) → ((P → Q) → (P → R)))) →
(((Q → R) → (P → (Q → R))) →

((Q → R) → ((P → Q) → (P → R))))

CL2, with Q → R / P, P → (Q → R) / Q,

(P → Q) → (P → R) / R

5 ((Q → R) → (P → (Q → R))) →
((Q → R) → ((P → Q) → (P → R)))

3,4 MP

6 (Q → R) → (P → (Q → R)) CL1, with Q → R / P, P / Q

7 (Q → R) → ((P → Q) → (P → R)) 5,6 MP

and the following derivation justifies HS (compare lines 3–5 with lines 9–11 of the

longer dervivation):

1 P → Q Assumption

2 Q → R Assumption

3 (Q → R) → ((P → Q) → (P → R)) CLD2, with P / P, Q / Q, R / R

4 (P → Q) → (P → R) 2,3 MP

5 P → R 1,4 MP

This derivation shows that if we already have P → Q and Q → R, whether or not

they are assumptions, we can derive P → R. Using HS, we can seriously shorten the

previous derivation of ¬M → (M → S):

1 ¬M → (¬S → ¬M) CL1, with ¬M / P, ¬S / Q

2 (¬S → ¬M) → (M → S) CL3, with S / P, M / Q

3 ¬M → (M → S) 1,2 HS

Another useful derived rule is

TRAN (Transposition). From P → (Q → R) infer Q → (P → R).

The rule is called Transposition because it transposes antecedents. The following

derivation, which uses both CLD2 and HS, justifies TRAN:
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1 P → ( Q → R) Assumption

2 ((P → Q) → (P → R)) → ((Q → (P → Q)) → (Q → (P → R))) CLD2, with Q / P, P → Q / Q, P → R / R

3 (((P → Q) → (P → R)) → ((Q → (P → Q)) → (Q → (P → R)))) →
(((P → Q) → (P → R)) → (Q → (P → Q))) →

(((P → Q) → (P → R)) → (Q → (P → R)))

CL2, with (P → Q) → (P → R) / P,

Q → (P → Q) / Q, Q → (P → R) / R

4 ((P → Q) → (P → R)) → (Q → (P → Q))) →
(((P → Q) → (P → R)) → (Q → (P → R))

2,3 MP

5 Q → (P → Q) CL1, with Q / P, P / Q

6 (Q → (P → Q)) → (((P → Q) → (P → R)) → (Q → (P → Q))) CL1, with Q → (P → Q) / P,

(P → Q) → (P → R) / Q

7 ((P → Q) → (P → R)) → (Q → (P → Q)) 5,6 MP

8 ((P → Q) → (P → R)) → (Q → (P → R)) 4,7 MP

9 (P → (Q → R)) → ((P → Q) → (P → R)) CL2, with P / P, Q / Q, R / R

10 (P → (Q → R)) → (Q → (P → R)) 8,9 HS

11 Q → (P → R) 1,10 MP

Two additional useful derived axiom schemata are

CLD3. ¬¬P → P

CLD4. P → ¬¬P

Here is a derivation justifying CLD3:

1 ¬¬P → (¬¬¬¬P → ¬¬P) CL1, with ¬¬P / P, ¬¬¬¬P / Q

2 (¬¬¬¬P → ¬¬P) → (¬P → ¬¬¬P) CL3, with ¬¬¬P / P, ¬P / Q

3 ¬¬P → (¬P → ¬¬¬P) 1,2 HS

4 (¬P → ¬¬¬P) → (¬¬P → P) CL3, with P / P, ¬¬P / Q

5 ¬¬P → (¬¬P → P) 3,4 HS

6 (¬¬P → (¬¬P → P)) → ((¬¬P → ¬¬P) → (¬¬P → P)) CL2, with ¬¬P / P, ¬¬P / Q, P / R

7 (¬¬P → ¬¬P) → (¬¬P → P) 5,6 MP

8 ¬¬P → ¬¬P CLD1, with ¬¬P / P

9 ¬¬P → P 7,8 MP

and we may use CLD3 to justify CLD4:

1 ¬¬¬P → ¬P CLD3, with ¬P / P

2 (¬¬¬P → ¬P) → (P → ¬¬P) CL3, with ¬¬P / P, P / Q

3 P → ¬¬P 1,2 MP

With the help of these derived axioms and rule, we can also derive

CLD5. (P → Q) → (¬Q → ¬P)
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which is the converse of CL3:

1 (Q → ¬¬Q) → ((P → Q) → (P → ¬¬Q)) CLD2, with P / P, Q / Q, ¬¬Q / R

2 Q → ¬¬Q CLD4, with Q / P

3 (P → Q) → (P → ¬¬Q) 1,2 MP

4 (P → ¬¬Q) → ((¬¬P → P) → (¬¬P → ¬¬Q)) CLD2, with ¬¬P / P, P / Q, ¬¬Q / R

5 (¬¬P → P) → ((P → ¬¬Q) → (¬¬P → ¬¬Q)) 4, TRAN

6 ¬¬P → P CLD3, with P / P

7 (P → ¬¬Q) → (¬¬P → ¬¬Q) 5,6 MP

8 (P → Q) → (¬¬P → ¬¬Q) 3,7 HS

9 (¬¬P → ¬¬Q) → (¬Q → ¬P) CL3, with ¬P / P, ¬Q / Q

10 (P → Q) → (¬Q → ¬P) 8,9 HS

Another useful rule:

MT (Modus Tollens). From P → Q and ¬Q, infer ¬P

is readily derived using CLD5:

1 P → Q Assumption

2 ¬Q Assumption

3 (P → Q) → (¬Q → ¬P) CLD5, with P / P, Q / Q

4 ¬Q → ¬P 1,3 MP

5 ¬P 2,4 MP

As a final example, with the help of our derived axioms and rules we can show

that the argument

If the economy is sound, then either the unemployment rate is low or

spending is high.

If the unemployment rate is low, most people are well off.

If spending is high, most people are well off.

It’s not true that most people are well off.

The economy isn’t sound.

is valid. First we symbolize the argument:

E → (U ∨ S)

U → W

S → W

¬W

¬E
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and we rewrite the first premise as E → (¬U → S). Here is a derivation:

1 E → (¬U → S) Assumption

2 U → W Assumption

3 S → W Assumption

4 ¬W Assumption

5 ¬U 2,4 MT

6 ¬S 3,4 MT

7 (¬U → S) → (¬S → ¬¬U) CLD5, with ¬U / P, S / Q

8 ¬S → ((¬U → S) → ¬¬U) 7, TRAN

9 (¬U → S) → ¬¬U 6,8 MP

10 ((¬U → S) → ¬¬U) → (¬¬¬U →¬ (¬U → S)) CLD5, with ¬U → S / P, ¬¬U / Q

11 ¬¬¬U → ¬ (¬U → S) 9,10 MP

12 ¬U → ¬¬¬U CLD4, with ¬U / P

13 ¬¬¬U 5,12 MP

14 ¬(¬U → S) 11,13 MP

15 ¬E 1,14 MT

We stress that these derived axiom schemata and rules are a convenience for

constructing derivations; the set of axiom schemata CL1–CL3 alone with the single

rule MP form a complete derivation system for classical propositional logic, and so

the additional axioms and rules do not add to the power of the system. Nor do they

affect its soundness, since they are all derivable within a system that was sound to

begin with.

2.5 Functional Completeness

In Section 2.2 we pointed out that we could take one of several pairs of connectives

as primitive and define the rest in terms of these. In Section 2.4 we took advantage of

this fact: the axiomatic system CLA uses only two connectives, since formulas con-

taining the other connectives can be rewritten using the two connectives ¬ and →
that appear in CLA.

There is an important related theoretical issue to which we now turn. First, we

formally define the concept of a truth-function: a truth-function is a function that

maps truth-values to truth-values. More specifically, a truth-function is always a

function of a given finite number of arguments: one, two, three, whatever; it is a

function that maps each sequence of the appropriate number of truth-values to

a truth-value. The negation truth-function is a truth-function of one argument as

specified by the following truth-table template:

T F

F T
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This function maps the single truth-value T (more precisely, the single-membered

sequence<T>) to the truth-value F, and it maps the single truth-value F (<F>) to the

truth-value T. The conditional truth-function is a truth-function of two arguments:

T T T

T F F

F T T

F F T

It maps the sequence <T, F> to the truth-value F, and all other sequences of two

truth-values to the truth-value T.

We say that a formula P of propositional logic expresses a truth-function of

n arguments if the truth-table for P specifies that truth-function; that is, the val-

ues under P’s main connective are the values to which the function maps each

sequence of n truth-values listed to the left of the vertical line. So, for example,

and by design, ¬P expresses the negation truth-function, and P → Q expresses

the conditional truth-function (other formula letters may be used). Other truth-

functions may require more complicated formulas. For example, the neither-nor

truth-function, captured in the following truth-table template,

T T F

T F F

F T F

F F T

is expressed by the formula ¬(P ∨ Q) or equivalently by ¬P ∧ ¬Q.

Here is the theoretical issue: can every classical truth-function be expressed

by a formula of classical propositional logic using only the five connectives ¬, ∧,

∨, →, and/or ↔? The answer is yes. We shall show how, given any truth-function,

to construct a formula that expresses exactly that truth-function. To facilitate the

proof we shall assume that the function in question has been laid out in a truth-

table template as previously, and that n is the number of arguments that the truth-

function operates on.

First, we choose n atomic formulas P1, . . . , Pn, one corresponding to each argu-

ment place. These will head the columns to the left of the vertical line in the truth-

table template. Next, for each row of the truth-function template we form a cor-

responding conjunction conjoining the atomic formulas that have the value T in

that row along with the negations of the atomic formulas that have the value F—in

the terminology of Section 2.3, each such conjunction is a phrase. So, for example,

phrases corresponding to the four rows of the neither-nor function template are,

respectively, P ∧ Q, P ∧ ¬Q, ¬P ∧ Q, and ¬P ∧ ¬Q. Note that each of these phrases

is true exactly when P and Q have the truth-values in its corresponding row. Next

we form a disjunction of the phrases corresponding to the rows that have T to the

right of the vertical line, thus producing a formula in disjunctive normal form. In

the case of the neither-nor function there is one such row, the fourth, so we form the
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“disjunction” of the single phrase for that row: ¬P ∧ ¬Q. (A “disjunction” of a single

formula is simply the formula.) This formula expresses the function captured in the

neither-nor truth-table template.

As a more complicated example consider the function of three arguments:

T T T T

T T F T

T F T T

T F F F

F T T F

F T F F

F F T T

F F F F

Assuming that we have chosen the atomic formulas P, Q, and R, a disjunction

of phrases corresponding to the rows with T to the right of the vertical line is

((((P ∧ Q) ∧ R) ∨ ((P ∧ Q) ∧ ¬R)) ∨ ((P ∧ ¬Q) ∧ R)) ∨ ((¬P ∧ ¬Q) ∧ R). This formula

expresses the truth-function specified in the truth-table template, as the reader may

easily confirm.

We must add two special cases. In one we have a truth-function of one argument,

such as,

T T

F T

In this case the phrase corresponding to a row is a single atomic formula or its

negation: P for the first row and ¬P for the second. Since both rows contain T to the

right of the vertical line, the disjunction P ∨ ¬P of these two phrases expresses the

truth-function. In the other case there are no Ts to the right of the vertical line. In

this case we may simply conjoin the phrase corresponding to the first (or any other)

row with its negation. So for the truth-function

T F

F F

we have the formula P ∧ ¬P, and for the truth-function

T T F

T F F

F T F

F F F

we have the formula (P ∧ Q) ∧ ¬(P ∧ Q).

Note that there are other formulas—in fact infinitely many other formulas—

that express these same truth-functions, so it is important to keep in mind that we

are only showing that, given any truth-function, there is at least one formula using

the five connectives that expresses it. Now, we’ve claimed that our procedure will
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always work—but how do we know this? It’s rather simple. Each phrase correspond-

ing to a row of a truth-function template is true on the truth-value assignments

represented by that row that is false on all other truth-value assignments. Thus a

disjunction of the phrases corresponding to rows that have a T to the right of the

vertical line will be true on the truth-value assignments represented by those rows

and false on all other truth-value assignments. In the case where there are no Ts to

the right of the vertical line we produce a contradictory formula of the general form

P ∧ ¬P, which is always false. Conclusion: we’ve specified a way to construct, for

any classical truth-function, a formula that exactly expresses that truth-function.

When a set of connectives is sufficient to express every truth-function, we say

that the set of connectives is functionally complete. Thus, we have proved

Result 2.6: The set of connectives {¬, ∧, ∨} is functionally complete,

since these are the only connectives we have used in formulas to express any truth-

function. From this it follows that the full set {¬, ∧, ∨, →, ↔} is also functionally

complete—since we are not required to use all of the connectives in the candidate

formulas expressing the various truth-functions. But since we know that there are

three subsets consisting of only two of our connectives that are sufficient to define

the others, we may also conclude that those three subsets, {¬, ∧}, {¬, ∨}, and

{¬, →}, are truth-functionally complete.9

2.6 Decidability

Classical propositional logic has a desirable property that isn’t shared by all logical

systems: its set of tautologies is decidable. A set � of formulas is decidable if there

is a decision procedure for membership in the set, that is, a mechanical procedure

that will, given any formula, correctly decide after a finite number of steps whether

that formula is a member of �.10

The set of tautologies of classical logic is decidable because there exist mechan-

ical procedures for testing whether a formula is a tautology. We’ve already seen one

such procedure: given any formula we can construct a truth-table for that formula

and examine the column of truth-values under the formula’s main connective. If

that column consists solely of Ts then the formula is a tautology; otherwise it is not.

Clearly truth-tables can be constructed mechanically, and just as clearly the con-

struction and examination of the relevant column of truth-values take only a finite

number of steps. Similarly, the set of contradictions of classical propositional logic

9 These are the only sets consisting of two of the five connectives that are truth-functionally com-
plete. First, we note that we need the negation connective, for without it we can never produce a
formula that is false when all of its atomic components are true. Second, we note that negation
and the biconditional won’t suffice because, for example, every formula constructed from two
atomic formulas using only these two connectives will have an even number of Ts and an even
number of Fs in its truth-table (proof is left as an exercise).

10 Sets that contain things other than formulas can also be said to be decidable, but that is not our
interest here.
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is decidable. We can use an analogous decision procedure, except that here we are

looking for a column of truth-values containing only Fs. There are other mechanical

procedures to test whether a formula is a tautology in classical propositional logic,

for example, resolution and semantic tableaux.11

The set of theorems in our axiomatic system for classical propositional logic,

CLA, is also decidable. To be sure, we haven’t shown how to construct proofs as a

mechanical method to test for theoremhood, but we don’t need to. Because CLA is

sound and complete for classical propositional logic, truth-tables afford a mechan-

ical procedure for testing for theoremhood! Given a formula we use the truth-table

procedure for determining whether or not it is a tautology. If it is, then it is also a

theorem of CLA because CLA is complete. If the formula isn’t a tautology, then it

isn’t a theorem either because CLA is sound. It is possible to produce a mechani-

cal method for proving theorems in CLA: given a formula that is a theorem such a

method can be used to generate a proof. But a mechanical method for constructing

proofs of theorems does not constitute a decision procedure if it does not also yield

negative results telling us of nontheorems that they are nontheorems. Truth-tables

can correctly test for negative as well as positive results.

2.7 Exercises

SECTION 2.2

1 Produce truth-tables for the following formulas, and state whether each formula

is a tautology, a contradiction, or neither.

a. P ↔ ¬P

b. (A ∧ B) → (A ∨ B)

c. ¬ (A ∧ B) → ¬ (A ∨ B)

d. (A → B) ∨ (B → A)

e. (A → B) ∨ (¬A → ¬B)

f. (A → B) → ¬ (B → A)

g. ((P → Q) → R) ↔ ((P ∧ Q) → R)

h. (P → Q) ∧ (P → ¬(Q ∨ R))

2 Produce truth-tables for each of the following pairs of formulas, to confirm that

they are equivalent:

a. P ∨ Q, ¬P → Q

b. P ∧ Q, ¬(P → ¬Q)

c. P ↔ Q, (P → Q) ∧ (Q → P)

3 Produce truth-tables for each of the following arguments, and state whether

each of the arguments is valid or invalid:

a. (P → ¬P) → ¬P

¬P

11 Smullyan (1968) is an excellent reference for semantic tableaux.
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b. (P ↔ ¬Q) → R

P

¬R

¬Q

c. (A ∨ B) ∧ (A ∨ ¬B)

A

d. P → (Q → R)

Q

P → R

e. P ∨ Q

P → R

Q → R

R

SECTION 2.3

4 Produce truth-tables to verify the following:
a. P → Q is equivalent to ¬P ∨ Q (Implication)

b. P ↔ Q is equivalent to (¬P ∨ Q) ∧ (¬Q ∨ P) (Implication)

c. ¬(P ∧ Q) is equivalent to ¬P ∨ ¬Q (DeMorgan’s Law)

d. ¬(P ∨ Q) is equivalent to ¬P ∧ ¬Q (DeMorgan’s Law)

e. P is equivalent to ¬¬P (Double Negation)

f. (P ∨ Q) ∧ R is equivalent to (P ∧ R) ∨ (Q ∧ R) (Distribution)

g. P ∧ Q) ∨ R is equivalent to (P ∨ R) ∧ (Q ∨ R) (Distribution)
(The other two distribution laws are trivial variations of f and g.)

5 Convert each of the formulas in problem 1 to disjunctive normal form.

6 Convert each of the formulas in problem 1 to conjunctive normal form.

7 a. Prove Result 2.2.

b. Prove Result 2.4.

SECTION 2.4

8 Produce truth-tables to verify that the forms of axiom schemata CL1 and CL3

of system CLA are both tautologies of classical propositional logic.

9 Produce derivations in CLA showing that

a. M is derivable from M ∧ S

b. S is derivable from M ∧ S

c. (P → Q) →((Q → R) → (P→ R)) is a theorem

d. The conclusion of the following argument is derivable from its premises:

P → (Q → R)

Q

P → R

In each case you may use derived axioms and rules and derive your own axioms

and/or rules if convenient.
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SECTION 2.5

10 Prove that there are infinitely many formulas of propositional logic that express

any given truth-function.

11 Explain why every formula constructed from two atomic formulas using only

negation and the biconditional will have an even number of Ts and an even

number of Fs in its truth-table. Hint: construct a variety of such truth-tables

and look for this pattern. What is causing it?
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3.1 The Language of Classical First-Order Logic

First-order logic (sometimes called predicate logic) includes all of the connectives

of propositional logic. Unlike propositional logic, however, first-order logic ana-

lyzes simple sentences into terms and predicates. We use uppercase roman letters

as predicates, lowercase roman letters a through t as (individual) constants, and

lowercase roman letters u through z as (individual) variables. Predicates, constants,

and variables may be augmented with subscripts if necessary, thus guaranteeing

an infinite supply of each.

Constants function like names in English, and variables function like pronouns.

Together constants and variables count as terms. Predicates have arities, where an

arity is the number of terms to which a predicate applies. In English, for example,

the arity of the predicate runs in John runs is 1—it combines with a single term,

John in this case—while the arity of the predicate loves in John loves Sue is 2—it

combines with two terms. Atomic formulas are formed by writing predicates in

initial position followed by an appropriate number of terms (determined by the

predicate’s arity). John runs and John loves Sue might thus be symbolized as Rj

and Ljs.

There are two standard quantifiers in first-order logic, the universal and the

existential quantifiers. We’ll use ∀ as the universal quantifier symbol and ∃ as the

existential quantifier symbol.1 The universal quantifier is used to symbolize claims

made about everything (usually everything of such-and-such a type), while the exis-

tential quantifier symbolizes claims about some things (again, usually some things

of such-and-such a type). Variables are used along with quantifiers to mark quan-

tified positions with respect to predicates. We might symbolize Everything runs as

( ∀x)Rx—every x is such that x runs, and Some things run as ( ∃x)Rx. We can use

any other variable in place of x as long as we are consistent, for example, ( ∀y)Ry

or ( ∀z)Rz but not ( ∀y)Rz. Position-marking has an important function in formulas

whose predicates have arity greater than 1. For example, if j symbolizes John and Lxy

1 Alternative symbols are a large ∧ for the universal quantifier and a large ∨ for the existential
quantifier.

39
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symbolizes x loves y, then ( ∀x)Ljx symbolizes John loves everything (every x is such

that John loves x) while ( ∀x)Lxj symbolizes Everything loves John (every x is such

that x loves John). We can read ( ∀x)( ∀y)Lxy as Everything (every x) loves everything

(every y) and ( ∀x)( ∀y)Lyx as Everything (every x) is loved by everything (every y). The

sentences Something runs, John loves something, Everything loves something, and

Something loves everything are similarly symbolized as ( ∃x)Rx, ( ∃x)Ljx, ( ∀x)( ∃y)Lxy,

and ( ∃x)( ∀y)Lxy. Note that the existential quantifier ( ∃x), which we informally read

as some x, more specifically will mean: at least one x, so a formula like ( ∃x)Rx will

signify that at least one thing runs.

Here are the rules for forming formulas of classical first-order logic:

1. Every predicate of arity n followed by n terms is a formula.

2. If P is a formula, so is ¬P.

3. If P and Q are formulas, so are (P ∧ Q), (P ∨ Q), (P → Q), and (P ↔ Q).

4. If P is a formula, so are (∀x)P and (∃x)P.

Formulas formed in accordance with clause 1 are atomic formulas, and the oth-

ers are compound formulas. Formulas formed in accordance with 2 and 3 are,

respectively, called (as they are in propositional logic) negations, conjunctions, dis-

junctions, conditionals, and biconditionals. (∀x) is called a universal quantifier and

(∀x)P is called a universally quantified formula or a universal quantification. Simi-

larly, (∃x) is called an existential quantifier, and a compound formula (∃x)P is called

an existentially quantified formula or an existential quantification.

In what follows we’ll need the concepts of free and bound occurrences of vari-

ables. Each separate appearance of a variable in a formula counts as a separate

occurrence: the variable x has one occurrence in Faxy and in Bx → By but two

occurrences in both Fxax and Bx → Bx. If P is an atomic formula (like Faxy or

By), every occurrence of every variable in P is free. So the single occurrences of x

and y in Faxy are both free, and both occurrences of x in Dxx are free. If an occur-

rence of a variable x is free in P and Q, then it is also free in ¬P, (P ∧ Q), (P ∨ Q),

(P → Q), and (P ↔ Q); and all free occurrences of variables in a formula P other

than the variable x are also free in the quantified formulas (∀x)P and (∃x)P. Thus,

for example, all occurrences of x and y are free in Faxy, By → By, ¬Faxy, and Faxy ∧
(By → By); and the single occurrence of x is free in both ( ∀y)Faxy and ( ∀y)Faxy ∧ ( ∀y)

(By → By).

On the other hand, all occurrences of y in each of the formulas ( ∀y)Faxy,

( ∀y)(By → By), and ( ∀y)Faxy ∧ ( ∀y)(By → By) are bound. Every free occurrence

of a variable x in P is bound by the quantifier (∀x) in (∀x)P and by the quantifier

(∃x) in (∃x)P, as is the occurrence of x within the quantifier, and these occurrences

of x are also bound in any formula of which (∀x)P or (∃x)P is a subformula. A vari-

able can occur both free and bound in a single formula: the first occurrence of y in

Faxy ∧ ( ∀y)(By → By) is free while the remaining three occurrences are bound.
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We note two unusual but allowable cases. First, ( ∃y)Fxaxa is a legal formula

although the quantifier ( ∃y) doesn’t bind any variable other than the y occur-

ring within the quantifier, because there is no y in the subformula Fxaxa. Second,

( ∃y)( ∀y)Fxaxy is also a legal formula although no occurrence of y in the subformula

( ∀y)Fxaxy is free in that subformula—that means that in this case as well the quan-

tifier ( ∃y) doesn’t bind any variable other than the y occurring in the quantifier. We

usually say that the quantifier ( ∃y) is trivial in both of these cases; it’s not doing any

useful work—each formula with a trivial occurrence of a quantifier will turn out to

be equivalent to the formula with the trivial occurrence removed.

We can now define a closed formula to be a formula in which every occurrence

of a variable is bound. ( ∀x)( ∀y)Lxy is a closed formula, since both x and y are bound

in all of their occurrences, but ( ∀y)Lxy is not a closed formula, since the single

occurrence of x is not bound. We will be interested in closed formulas when we

symbolize English and when we define the first-order versions of semantic concepts

such as tautology and entailment as well as in our axiomatic systems.

In our earlier examples we read the quantifiers as referring to everything and

something rather than, say, everyone and someone. Of course, we frequently want

to talk about every thing or some thing of such-and-such a kind, for example,

everything that is a person. In this case, we may do one of two things. First, we

may state explicitly that we are only talking of people, and then do the symboliza-

tions. In this case, we call the restricted group to which we refer the domain. If we

stipulate that the domain includes all and only people, then formulas like ( ∀x)Rx

and ( ∀x)( ∀y)Lxy may be read as everyone runs and everyone loves everyone. In the

absence of an explicit stipulation, we assume that the domain includes everything.

But even in this case, we can symbolize universal and existential claims about peo-

ple by making explicit qualifications within our quantified formulas. For example,

if we let Px symbolize x is a person, then Everyone runs might be symbolized as

( ∀x)(Px → Rx): everything is such that if it is a person, then it runs; that is, everyone

runs. We can symbolize Someone runs as (∃x)(Px ∧ Rx)—something both is a person

and runs. Everyone loves someone can be symbolized as ( ∀x)(Px → ( ∃y)(Py ∧ Lxy)—

every x is such that if x is a person then there is some y that is a person and that x

loves.

Some other examples of symbolized English sentences (using an unrestricted

domain) are:

If John runs, then everyone runs Rj → (∀x)(Px → Rx)

If John runs, then everyone loves him Rj → (∀x)(Px → Lxj)

Everyone who loves John runs (∀x)((Px ∧ Lxj) → Rx)

If someone runs, everyone runs (∃x)(Px ∧ Rx) → (∀x)(Px → Rx)

Everyone loves everyone who runs (∀x)(Px → (∀y)((Py ∧ Ry) → Lxy))

Everyone loves someone who runs (∀x)(Px → (∃y)((Py ∧ Ry) ∧ Lxy))
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In each case, alternative (equivalent) symbolizations are possible. For example, the

universal quantifiers in the first two formulas could be placed at the very beginning:

(∀x)(Rj → (Px → Rx))

(∀x)(Rj → (Px → Lxj))

There are two especially important equivalences involving quantifiers. Every-

thing is such-and-such is equivalent to nothing is not such-and-such: that is, a uni-

versal quantifier (∀x) can always be replaced with ¬(∃x)¬, and vice versa. Similarly,

an existential quantifier (∃x) is interchangeable with ¬(∀x)¬. Thus Everyone runs,

which we have symbolized as ( ∀x)(Px → Rx), can equivalently be symbolized as

¬( ∃x)¬(Px → Rx) or, owing to the equivalence of ¬(Px → Rx) and (Px ∧ ¬Rx), as

¬( ∃x) (Px ∧ ¬Rx)—there’s no person who doesn’t run. Someone runs, which is most

naturally symbolized as ( ∃x) (Px ∧ Rx), can also be symbolized as ¬( ∀x)¬(Px ∧ Rx).

Since ¬(Px ∧ Rx) is equivalent to (Px →¬Rx), the formula ( ∃x) (Px ∧ Rx) is equivalent

to ¬( ∀x)(Px → ¬Rx)—it’s not true that every person doesn’t run.

We can now symbolize the Sorites argument from Chapter 1. To simplify matters,

we’ll assume that the domain consists of heights and we’ll restate the argument as:

6′ 7′′ is tall.

Any height that is 1/8
′′ less than a tall height is also tall.

Therefore 4′ 7′′ is tall.

We let s stand for 6′ 7′′ and f for 4′ 7′′, and we symbolize x is tall and x is 1/8
′′ less than

y as Tx and Exy. The symbolized argument is:

Ts

(∀x)(∀y)((Tx ∧ Eyx) → Ty)

Tf

(A common equivalent way of symbolizing the second premise is ( ∀x)(Tx →
( ∀y)(Eyx→ Ty)).) In Chapter 1 we introduced Max Black’s way of saying that the

term tall has borderline cases: There are heights that are neither tall nor not tall. We

can now symbolize this as

(∃x) (¬Tx ∧ ¬¬Tx)

which, in the present context, we will read as: at least one height is not tall and also

not not tall. To evaluate the Sorites argument and Black’s Problem of the Fringe we

must first present the semantics for first-order logic.

3.2 Semantics of Classical First-Order Logic2

The basis for the semantics for first-order logic, an interpretation, tells us what we

are quantifying over, as well as what our constants and predicates stand for:

2 We present a version of so-called satisfaction semantics, which was first developed by Tarski
(1936).
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An interpretation I consists of

1. A nonempty set D, called the domain

2. An assignment of a (possibly empty) set of n-tuples of members of D to each

predicate P of arity n:

I(P)⊆ Dn

3. An assignment of a member of D to each individual constant a:

I(a) ∈ D

An n-tuple is an ordered set of n items. We use angle brackets when listing the

members of an n-tuple. For example, the 2-tuple, or ordered pair, consisting of Gina

Biggerly and Tina Littleton in that order is written as<Gina Biggerly, Tina Littleton>.

The idea behind clause 2 is that the sets of entities that stand in the relation denoted

by a predicate P (or that have the property denoted by the predicate, if its arity is 1)

will constitute the n-tuples in I(P). For example, if R is to mean runs then I(R) consists

of all 1-tuples of runners, and if L is to mean loves then I(L) consists of all ordered

pairs of entities such that the first member of the pair loves the second one. If John

runs and John loves Gina and himself, then <John> will be a member of I(R) and

<John, John> and <John, Gina> will be members of I(L).

As an example of how the semantics works, we’ll use the following interpreta-

tion I:

D: set of positive integers

I(P) = {<i>: i ∈ D and i is prime}
(i.e., {<1>, <2>, <3>, <5>, <7>, <11>, . . . })

I(E) = {<i>: i ∈ D and i is even}
(i.e., {<2>, <4>, <6>, <8>, <10>, <12>, . . . })

I(G) = {<i, j>: i ∈ D, j ∈ D, and i is greater than j}
(i.e., {<2,1>, <3,1>, <3,2>, <4,1>, <4,2>, <4,3>, <5,1>, <5,2>,

<5,3>, <5,4>, . . . })

I(a) = 1

I(b) = 2

I(c) = 3

I(d) = 4

Actually, this is only part of an interpretation, since an interpretation must assign

an extension to every predicate and every constant in the language. But it will

do, because the values assigned to other predicates and constants won’t affect the

truth-values of the formulas we’ll look at.

We call I(P) and I(a) the interpretations of P and of a or, to use some well-

entrenched philosophical jargon, the extensions of P and of a. Note that we do

not assign extensions to variables. This is because a variable is like a pronoun.

She, unlike Gina Biggerly, does not by itself denote any particular individual. But

we may use a quantifier phrase to indicate which “she” we are talking about, for
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example, every woman has the property that John loves her (here, we are talking

about every “she”). To specify how variables are used in conjunction with quan-

tifiers, we first need to define a variable assignment: a variable assignment v is

a function that assigns to each individual variable x a member of the domain

D: v(x) ∈ D.

Our truth-conditions are given in terms of satisfaction by a variable assignment

on an interpretation:

1. An atomic formula Pt1 . . . tn is satisfied by a variable assignment v on an inter-

pretation I if <I*(t1), . . . ,I*(tn)> ∈ I(P), where I*(ti) is I(ti) if ti is a constant and

is v(ti) if ti is a variable.

2. A formula ¬P is satisfied by a variable assignment v on an interpretation I if P

is not satisfied by v on I.

3. A formula P ∧ Q is satisfied by a variable assignment v on an interpretation I if

both P and Q are satisfied by v on I.

4. A formula P ∨ Q is satisfied by a variable assignment v on an interpretation I if

either P or Q (or both) is satisfied by v on I.

5. A formula P → Q is satisfied by a variable assignment v on an interpretation I if

either P is not satisfied by v on I or Q is satisfied by v on I (or both).

6. A formula P ↔ Q is satisfied by a variable assignment v on an interpretation I if

either both P and Q are satisfied by v on I, or neither P nor Q is satisfied by v on I.

For the following clauses we need one more definition: an x-variant v′ of a variable

assignment v is an assignment v′ that assigns the same values as v, except that it

may assign a different value to x—that is, for any variable y other than x, v′(y) = v(y)

but v′(x) may be any member of the domain. Do note that any variable assignment

v is itself included among its x-variants.

7. A formula (∀x)P is satisfied by a variable assignment v on I if P is satisfied by

every x-variant of v on I.

8. A formula (∃x)P is satisfied by a variable assignment v on I if P is satisfied by at

least one x-variant of v on I.

Finally, a formula P is true on an interpretation I if P is satisfied by every variable

assignment v on I, and P is false on I if P is satisfied by no variable assignment v

on I. It turns out that every closed formula is, according to our definitions, either

true or false on any given interpretation because every closed formula will either

be satisfied by all variable assignments or be satisfied by none. On the other hand,

formulas that aren’t closed may fail to be true or false by virtue of being satisfied by

some, but not all, variable assignments.

Using our earlier interpretation I, the formulas Pa, Pb, Pc, and Pd, respectively,

may be read as: 1 is prime, 2 is prime, 3 is prime, and 4 is prime. The formulas Pb and

Pc are both true on this interpretation. Consider Pb. It is true if satisfied by every

variable assignment on this interpretation. By clause 1, a variable assignment v will

satisfy Pb if <I(b)> ∈ I(P)—that is, if <2> ∈ I(P), since I(b) = 2. <2> is a member of
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I(P), and so every variable assignment will satisfy Pb, making the formula true on

this interpretation. Note that in this case, and in the case of all other formulas that

don’t contain variables, we can bypass looking at variable assignments and simply

check values assigned by the interpretation—because the assignments made by a

variable assignment only matter when a formula contains variables. The formula

Pd is false on this interpretation because I(d), which is <4>, is not a member of I(P).

The formulas Gab and Gba may be read as 1 is greater than 2 and 2 is greater than 1.

Gab is false on this interpretation because <I(a), I(b)>, that is, <1,2>, is not a

member of I(G), while the formula Gba is true because <I(b), I(a)>, that is, <2,1>,

is a member of I(G). Gaa, which may be read as 1 is greater than 1, is false because

<I(a), I(a)>, that is, <1,1>, is not a member of I(G).

The compound formulas ¬Pa, ¬Pb, ¬Pc, and ¬Gba are all false on this inter-

pretation, while ¬Pd, ¬Gab, and ¬Gaa are all true. The formula Ec ∧ Pc (3 is an even

prime) is false because Ec is false (<I(c)>, that is, <3>, is not a member of I(E)); while

Ec ∨ Pc (3 is even or prime) is true because Pc is true. The formula Ec ∨ ¬Ec—which

may be read as Either 3 is even or it isn’t—is true, as is every formula like this one but

with a different constant in place of c. This is because the formula’s truth requires

only that each variable assignment satisfy either Ec or ¬Ec, and we know that that

will always be the case no matter what I(c) and I(E) may be.

The formula ( ∃x)Px, which may be read as At least one positive integer is prime,

is satisfied by every variable assignment and is therefore true. We may show this

by beginning with an arbitrary variable assignment, say, the variable assignment v

that assigns the integer 4 to every variable:

u v x y z u1 v1 x1 y1 z1 . . .

v: 4 4 4 4 4 4 4 4 4 4 . . .

According to clause 8, this assignment v satisfies ( ∃x)Px if at least one x-variant of v

satisfies Px. We may display these variant assignments schematically thus; they are

the assignments that assign the value 4 to every variable besides x and that assign

any value to x (including 4, as v itself does):

u v x y z u1 v1 x1 y1 z1 . . .

v: 4 4 4 4 4 4 4 4 4 4 . . .

v1: 4 4 1 4 4 4 4 4 4 4 . . .

v2: 4 4 2 4 4 4 4 4 4 4 . . .

v3: 4 4 3 4 4 4 4 4 4 4 . . .

v4: 4 4 5 4 4 4 4 4 4 4 . . .

v5: 4 4 6 4 4 4 4 4 4 4 . . .

. . .

Now, clearly v itself doesn’t satisfy Px because v(x), which is 4, is not a member of

I(P). But the variable assignment v2 that assigns 2 to x, does satisfy Px—as do v3 and

v4 and every other variable assignment that assigns a prime number to x. So because

at least one of the x-variants of v satisfies Px, v satisfies the existential quantification
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( ∃x)Px. All variable assignments other than v satisfy ( ∃x)Px for the same reason: for

each such assignment there is at least one x-variant that assigns a prime positive

integer to x, thus satisfying Px. We can summarize the reason for the truth of ( ∃x)Px

thus: the extension I(P) is nonempty; at least one integer is prime.

The formula ( ∀x)Px, which may be read as Every positive integer is prime, is

false on I because it is satisfied by no variable assignment v on I. Consider again,

for example, the assignment v displayed earlier. According to clause 7, ( ∀x)Px will

be satisfied by v only if Px is satisfied by every x-variant of v. But assignment v itself,

for example, is one of these variants and v(x) /∈ I(P)—4 is not prime—so v doesn’t

satisfy Px (nor does v1 or v5). The existence of nonsatisfying x-variants entails that v

doesn’t satisfy ( ∀x)Px. Nor will any other variable assignment satisfy ( ∀x)Px, for the

same reason: some members of the domain, members which may be assigned to x,

are not in the extension of P. We conclude that there is no variable assignment that

satisfies the universally quantified ( ∀x)Px and therefore that the formula is false on

interpretation I.

The reader may wonder why a variable assignment assigns values to every

variable, since the values assigned to variables that do not occur free in a partic-

ular formula can be ignored when determining the truth-value of that formula.

The answer is, at bottom, perspicuity: by requiring that every variable assignment

assign a value to every variable, we make it easier to define the semantics. Having

said that, we need consider only the values assigned to free variables when we eval-

uate formulas. In particular, when we ask whether a closed formula is true, that is,

satisfied by every variable assignment v, we can speak complete generally about an

arbitrary variable assignment v, ignoring altogether any actual values that v may

assign. Specific values will matter only as quantifiers are stripped and alternative

variable assignments are examined.

The formula ( ∀x)( ∃y)Gyx is true on interpretation I. A variable assignment v

will satisfy this formula if every x-variant v′ of v satisfies the subformula ( ∃y)Gyx,

and ( ∃y)Gyx will be satisfied by an x-variant v′ if at last one assignment v′′ that is

a y-variant of v′ satisfies Gxy. So we have: v satisfies ( ∀x)( ∃y)Gyx if for each value

that can be assigned to x (by an x-variant v′) there is a value that can be assigned

to y (by a y-variant v′′) such that Gyx is satisfied. That is, the overall formula is

satisfied if for each positive integer i there is at least one positive integer j such that

<j, i>∈ I(G). This condition is met—for each positive integer i there is at least one

positive integer j that is greater than i—and so ( ∀x)( ∃y)Gyx is true.

On the other hand, the formula ( ∃y)( ∀x)Gyx—where the order of the quantifiers

has been reversed—is false on interpretation I. A variable assignment v can satisfy

( ∃y)( ∀x)Gyx only if at least one y-variant v′ of x satisfies ( ∀x)Gyx. But if ( ∀x)Gyx is to

be satisfied by a y-variant v′ it must be the case that Gyx is satisfied by every x-variant

v of v′. In sum: an assignment v satisfies ( ∃y)( ∀x)Gyx if there is at least one value i

that can be assigned to y such that for every value j that can be assigned to x, Gyx

is satisfied, that is, if there is at least positive integer i such that for every positive
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integer j, <i, j> ∈ I(G). But there is no single positive integer i that is greater than

every positive integer j, so the formula ( ∃y)( ∀x)Gyx is false on I.

As a final example, the formula ( ∀x)(Ex → ( ∃y)(Py ∧ Gyx))—which may be read

as Every even positive integer is smaller than at least one prime positive integer—is

true on interpretation I. A variable assignment v satisfies ( ∀x)(Ex → ( ∃y)(Py ∧ Gyx))

if every x-variant satisfies Ex → ( ∃y)(Py ∧ Gyx), and such an assignment v′ will satisfy

Ex → ( ∃y)(Py ∧ Gyx) on the condition that if v′ satisfies Ex then v′ also satisfies

( ∃y)(Py ∧ Gyx). Every x-variant v′ that does not satisfy Ex will thus trivially satisfy

Ex → ( ∃y)(Py ∧ Gyx). Now consider an x-variant v′ that does satisfy Ex; in this case

v′(x) ∈ I(E) and so v′(x) must be an even integer. Such an assignment v′ will also

satisfy the consequent ( ∃y)(Py ∧ Gyx) if there is at least one y-variant v′′ of v′ that

satisfies Py ∧ Gyx, that is, if v′′(y) ∈ I(P) and <v′′(y), v′′(x)> = <v′′(y), v′(x)> ∈ I(G).

So the question now is, for each even positive integer i (v′(x)), is there at least one

positive integer j (v′′(y)) that both is prime and is greater than i? The answer is yes,

so we may conclude that Ex → ( ∃y)(Py ∧ Gxy) is satisfied no matter what value is

assigned to x and therefore that(∀x)(Ex →(∃y)(Py∧Gxy)) is true on interpretation I.

Earlier we explained that the formula Ec ∨ ¬Ec, along with every formula that

is like this one but has a different constant in place of c, is true on interpreta-

tion I. Our reasoning was in fact sufficient to show that the formula is true on every

interpretation; it is a tautology in classical first-order logic. A closed formula is a tau-

tology if it is true on every interpretation, and a closed formula is a contradiction if

it is false on every interpretation.3 (Note that these are the analogues in first-order

logic of the concepts of tautologies and contradictions in propositional logic.) How

do we know that Ec ∨ ¬Ec is true on every interpretation? We showed that its truth

on an interpretation depended on Ec being either satisfied or not satisfied by any

variable assignment on that interpretation. But this will always be the case—no

matter what the interpretations of E and c are. We can extend the reasoning slightly

to show that the universally quantified ( ∀x)(Ex ∨ ¬Ex)—an instance of the Law of

Excluded Middle—is also logically true. For this formula is true on an interpretation

if satisfied by all variable assignments on that interpretation, as will be the case

3 Anticipating the first-order axiomatic systems in this text, we have chosen to designate only
closed formulas as tautologies or contradictions—since only closed formulas will play a role in
the axiomatic systems and we want, for example, all tautologies to turn out to be theorems. Other
authors allow open formulas to be tautologies true and to be theorems—in such cases, the open
formulas have implicit universal quantifiers binding all of their free variables.

The logics resulting from these different policies are “equivalent” in the sense that an open
formula is true on every interpretation if and only if the closed formula obtained by prefixing the
formula with universal quantifiers for its free variables is true on every interpretation. (The truth
of an open formula on every interpretation requires satisfaction by every variable assignment
on every interpretation, and the truth of the formula that results from prefixing the formula with
universal quantifiers binding all of its variables requires the same thing, given the satisfaction
clause for universally quantified formulas.) Given this equivalence it follows that if a universally
quantified formula is a tautology by our account, then it as well as the formula(s) that results
from removing the initial quantifier(s) will be a tautology on the alternative account, and vice
versa. Similar comments apply to other semantic concepts.
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if Ex ∨ ¬Ex is satisfied by all variable assignments. Clearly this is true, because for

each variable assignment will either satisfy Ex or fail to satisfy Ex and in the latter

case it will satisfy ¬Ex. We may also conclude that, since the extension of the pred-

icate E doesn’t figure in this reasoning, a formula expressing the Law of Excluded

Middle using any unary predicate (as well as any variable) will turn out to be a

tautology in classical first-order logic.

Black’s formula asserting that there are borderline cases of tall, ( ∃x)

(¬Tx ∧ ¬¬Tx), is a contradiction in classical first-order logic—it is false on every in-

terpretation. No matter what I(T) is, no variable assignment can satisfy ¬Tx ∧ ¬¬Tx

because no variable assignment can satisfy both ¬Tx and ¬¬Tx.

A set � of closed formulas of classical first-order logic entails a closed formula

P if, whenever all of the formulas in � are true P is true as well. An argument of

first-order logic is valid if the set consisting of its premises entails the argument’s

conclusion. We repeat here the symbolized Sorites argument from Section 3.1:

Ts

(∀x) (∀y) ((Tx ∧ Eyx) → Ty)

Tf

This argument, as presented, is not valid in classical first-order logic because

there is at least one interpretation on which the premises are true and the conclusion

false. Here is one such interpretation:

D: set of positive integers4

I(T) = {<u>: u ∈ D and u is even}
I(E) = {<u1,u2>: u1 ∈ D, u2 ∈ D, and u1 evenly divides u2

(i.e., u1 goes into u2 without remainder)}
I(s) = 2

I(f) = 3

The formula Ts is true on this interpretation since I(s) ∈ I(T)—the number 2 is even.

The formula ( ∀x)( ∀y)((Tx ∧ Eyx) → Ty) is also true, since no matter what values a

variable assignment v may assign to x and y, if <v(x)> ∈ I(T) and <v(x), v(y)> ∈ I(E),

then it is also the case that <v(y)> ∈ I(T). That is, if some positive integer is even

and evenly divides a second positive integer, then the second integer must be even

as well. But the conclusion Tf is false since I(f ) /∈ I(T)—the number 3 is not even.

Yet we have the feeling that the Sorites argument

6′ 7′′ is a tall height.

Any height that is 1/8
′′ less than a tall height is also tall.

4′ 7′′ is a tall height.

4 The set of positive integers turns out to be a convenient domain for examples; that is why we
are using it again. Other domains would also work here. In proving invalidity we always choose
clear-cut cases, like those involving crisp predicates applied to positive integers, to make the
point.
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is valid. What has happened?!!? Well, our feeling is based on an implicit additional

premise—that you can get from 6′ 7′′ to 4′ 7′′ by repeatedly subtracting 1/8
′′. Without

this premise, we can only conclude that 6′ 7′′ is tall, since there might not be a height

that is 1/8
′′ less than 6′ 7′′. Logically might not, that is, since we know that there is

in fact such a height.5 To expedite matters, we will add not one premise but 192

premises: 6′ 67/8
′′ is 1/8

′′ less than 6′ 7′′; 6′ 66/8
′′ is 1/8

′′ less than 6′ 67/8
′′; 6′ 65/8

′′ is 1/8
′′

less than 6′′ 66/8
′′; . . . ; 4′ 71/8

′′ is 1/8
′′ less than 4′ 72/8

′′; and 4′ 7′′ is 1/8
′′ less than 4′ 71/8

′′.
Using s1 to represent 6′ 7′′, s2 to represent 6′ 67/8

′′, . . . , down to s193 representing

4′ 7′′, the Sorites argument augmented to state the implicit premise explicitly is

Ts1

(∀x)(∀y)((Tx ∧ Eyx) → Ty)

Es2s1

Es3s2

Es4s3

. . .

Es193s192

Ts193

The augmented argument is valid in classical first-order logic. On any interpre-

tation on which all the premises are true, so is the conclusion. Here’s why: Assuming

that all of the premises are true we will be able to infer that Ts2 is true, then that

Ts3 is true, and so on, until we finally infer that the conclusion Ts193 is true. We’ll

just show the first step; the rest are similar. From the truth of the first and third

premises it must be the case that <I(s1)> ∈ I(T) and that <I(s2), I(s1)> ∈ I(E). From

the truth of the second premise, we know that whatever v(x) and v(y) may be, if

Tx ∧ Eyx is satisfied by v then so is Ty. In particular, this holds when v(x) = I(s1) and

v(y) = I(s2). Because Tx ∧ Eyx is satisfied by v in this case, so is Ty—that is, <I(s2)>

(which is <v(y)>) is a member of I(T). This means that Ts2 must be true. Repeating

this reasoning we’ll conclude that Ts193 must be true as well.

3.3 An Axiomatic Derivation System for Classical First-Order Logic

By adding two axiom schemata and one rule to the axiomatic derivation sys-

tem CLA for classical propositional logic we can produce a sound and complete

axiomatic system for classical first-order logic.6 We call the system CL∀A. We

5 OK, I guess we’d better quibble here. Some view mathematics as a branch of logic, and since it
is a matter of mathematics that for any positive measure of height in feet and inches there is
another measure that is 1/8” less, those people would say that what we are entertaining is not a
logical possibility. So to be more specific: it is not a matter of classical first-order logic that there
is a height that is 1/8

′′ less than 6′ 7′′.
6 The rule and axioms are from Stoll (1961, pp. 388–390). Stoll says that they are essentially the

philosopher Bertrand Russell’s rule and axioms. Chapter 9 of Stoll proves the soundness and
completeness of the resulting system.
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stipulate that only closed formulas may occur as assumptions or instances of axiom

schemata in derivations in CL∀A (as suggested in footnote 3, some axiomatic sys-

tems allow open as well as closed formulas in derivations). Our rules preserve

closure, so it follows that every formula in a derivation will be closed as long as

assumptions and instances of axiom schemata that occur in derivations are all

closed.

We will now refer to the axiom schemata CL1–CL3 from CLA as CL∀1–CL∀3:

CL∀1. P→ (Q → P)

CL∀2. (P → (Q → R)) → ((P → Q)→ (P→ R))

CL∀3. (¬P → ¬Q) → (Q → P)

while Modus Ponens retains its name:

MP. From P and P → Q, infer Q.

We’ll take the existential quantifier to be defined in terms of the universal quantifier:

(∃x)P =def ¬(∀x)¬P

so the additional axiom schemata and rules for first-order logic will mention only

the universal quantifier. The first new axiom schema is

CL∀4. (∀x)(P → Q) → (P → (∀x)Q)

where P is a formula in which x does not occur free

That is, as long as the initial quantifier isn’t quantifying over anything in the

antecedent of the conditional P → Q, the quantifier may be moved to the con-

sequent. Here’s an example of a derivation using this axiom schema:

1 (∃x)Hx Assumption

2 (∀y)((∃x)Hx → Py) Assumption

3 (∀y)((∃x)Hx → Py) → ((∃x)Hx → (∀y)Py) CL∀4, with (∀y)((∃x)Hx → Py) / (∀x)(P → Q)

4 (∃x)Hx → (∀y)Py 2,3 MP

5 (∀y)Py 1,4 MP

The second axiom schema states that a universally quantified formula implies any

one of its instances:

CL∀5. (∀x)P → P(a/x)

where a is any individual constant and the expression P(a/x) means: the

result of substituting the constant a for the variable x wherever x occurs free

in P
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We call P(a/x) a substitution instance of P. So, for example, if P is Bby, a is c, and x is y,

then P(a/x) (or Bby(c/y)) is Bbc. Using CL∀5 we can continue the previous derivation

to derive the formula Pa (or any other substitution instance of the formula on

line 5):

6 (∀y)Py → Pa CL∀5, with (∀y)Py / (∀x)Px, a / a

7 Pa 5,6 MP

Every instance of each of the two new axiom schemata is a tautology in classical

first-order logic.

The new rule in CL∀A is

UG (Universal Generalization). From P(a/x) infer (∀x)P

where x is any individual variable, provided that no assumption contains

the constant a and that P itself does not contain the constant a.

The first part of the condition ensures that we can derive a universally quan-

tified formula from one of its substitution instances only if we have not made

any assumptions involving the constant in that substitution instance. It rules out,

for example, inferring ( ∀x)Rx from the assumption Ra—if we assume that Ann is

Romanian it doesn’t follow that everyone is Romanian! The second part of the con-

dition rules out generalizations that are not truly general. Without it, we could have

derivations like

1 (∀x)Lxx Assumption

2 (∀x)Lxx → Laa CL∀5, with (∀x)Lxx / (∀x)P, a / a

3 Laa 1,3 MP

4 (∀x)Lxa 3, UG MISTAKE!

5 (∀x) (∀y)Lxy 4, UG

This derivation is not truth-preserving: from the assumption that everything stands

in the relation L to itself it does not follow that everything stands in the relation L

to everything! Line 4 violates the second half of the condition for correct use of

the rule UG, since the formula Lxa retains an occurrence of the variable a that was

generalized on. With the condition that P does not contain the constant a, however,

the new rule UG is truth-preserving. A correct use of UG would produce the formula

( ∀x)Lxx on line 4, and this is clearly acceptable since it’s the assumption we started

with! Of course, we cannot then go on to infer the formula on line 5 since there’s no

constant in ( ∀x)Lxx to generalize upon.
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The following derivation illustrates the combined uses of CL∀5 and UG:

1 (∀x)(Fx → Gx) Assumption

2 (∀x)Fx Assumption

3 (∀x)(Fx → Gx) → (Fa → Ga) CL∀5, with (∀x)(Fx → Gx) / (∀x)P, a / a

4 Fa → Ga 1,3 MP

5 (∀x)Fx → Fa CL∀5, with (∀x)Fx / (∀x)P, a / a

6 Fa 2,5 MP

7 Ga 4,6 MP

8 (∀x)Gx 7, UG

UG has been correctly used on line 8 because a does not occur in either of the

assumptions, nor does it occur in ( ∀x)Gx.

We can use UG to derive a quantified version of the Law of the Excluded Middle,

( ∀x)(Ax ∨ ¬Ax), which is converted to ( ∀x)(¬Ax → ¬Ax) when the disjunction is

eliminated:

1 ¬Aa → ¬Aa CL∀D1, with ¬Aa / P

2 (∀x) (¬Ax → ¬Ax) 1, UG

Although the constant a occurs in the formula on the first line, that formula is an

instance of an axiom schema rather than an assumption, and so the use of UG on

the second line is legitimate. Note that in our derivations we may use derived axioms

and rules from Chapter 2 since the axioms and rules of CLA are also axioms and

rules of CL∀A. We add ∀ to the names of the derived axioms, to make clear that we

are now working within the first-order axiomatic system.

To show that ( ∀x)Gx → ( ∃x)Gx, which is a tautology, is a theorem we first rewrite

the existential quantifier using its definition to obtain ( ∀x)Gx → ¬( ∀x)¬Gx. We can

derive the rewritten formula with the help of derived axiom schemata and rules as

follows:

1 (∀x)Gx → Ga CL∀5, with (∀x)Gx / (∀x)P, a / a

2 ((∀x)Gx → Ga) → (¬Ga → ¬(∀x)Gx) CL∀D5,with (∀x)Gx / P, Ga / Q

3 ¬Ga → ¬(∀x)Gx 1,2 MP

4 (∀x)¬Gx → ¬Ga CL∀5, with (∀x)¬Gx / (∀x)P, a / a

5 (∀x)¬Gx → ¬(∀x)Gx 3,4 HS

6 ¬¬(∀x)¬Gx → (∀x)¬Gx CL∀D3, with (∀x)¬Gx / P

7 ¬¬(∀x)¬Gx → ¬(∀x)Gx 5,6 HS

8 (¬¬(∀x)¬Gx → ¬(∀x)Gx) → ((∀x)Gx → ¬(∀x)¬Gx) CL∀3, with ¬(∀x)¬Gx / P, (∀x)Gx / Q

9 (∀x)Gx → ¬(∀x)¬Gx 7,8 MP



P1: RTJ
9780521881289c03 CUNY1027/Bergmann 978-0 521 88128 9 November 24, 2007 16:10

3.3 An Axiomatic System for Classical First-Order Logic 53

We may also derive new axiom schemata and rules that are specific to first-order

logic. The last formula in the preceding derivation is quite useful, so we will gener-

alize to the derived axiom schema:

CL∀D6. (∀x)P → ¬(∀x)¬P

(We use 6 to number this derived axiom because we already have five derived axioms

from Chapter 2.) The preceding derivation justifies this axiom schema since we can

replace ( ∀x)Gx with any formula (∀x)P and Ga with any substitution instance P(a/x)

of (∀x)P, and the result (with corresponding changes made throughout) will still be

a legal derivation. Another derived axiom schema, related to CL∀D6, is

CL∀D7. P(a/x) → ¬(∀x)¬P

(The formula is P(a/x) → (∃x)P when we substitute the defined existential quanti-

fier.) Proof that this schema can be derived is left as an exercise.

Max Black’s fringe formula ( ∃x) (¬Tx ∧ ¬¬Tx) is a contradiction in classical

first-order logic, so we know that ¬( ∃x) (¬Tx ∧ ¬¬Tx) is a tautology in classical

first-order logic. It should therefore be a theorem of CL∀A, and indeed it is. We leave

it as an exercise to construct a derivation that shows this.

Finally, we would like to derive the conclusion of the Sorites argument

Ts1

(∀x) (∀y) ((Tx ∧ Eyx) → Ty)

Es2s1

Es3s2

Es4s3

. . .

Es193s192

Ts193

from its premises. A useful derived rule for this purpose is

UI (Universal Instantiation). From (∀x)P infer P(a/x).

This rule is justified as follows:

1 (∀x)P Assumption

2 (∀x)P → P(a/x) CL∀5, with (∀x)P / (∀x)P, a / a

3 P(a/x) 2,3 MP

This rule will shorten our next derivation considerably. We use the definition of ∧
to rewrite the second premise as the formula ( ∀x) ( ∀y) (¬(Tx →¬ Eyx) → Ty). Here

is the derivation:
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1 Ts1 Assumption

2 (∀x) (∀y) (¬(Tx →¬ Eyx) → Ty) Assumption

3 Es2s1 Assumption

4 Es3s2 Assumption

5 Es4s3 Assumption

. . . . . .

194 Es193s192 Assumption

195 (∀y)(¬(Ts1 → ¬ Eys1) → Ty) 2, UI

196 ¬(Ts1 → ¬Es2s1) → Ts2 195, UI

197 (Ts1 → ¬Es2s1) → (Ts1 → ¬Es2s1) CL∀D1, with Ts1 → ¬Es2s1 / P

198 Ts1 → ((Ts1 → ¬Es2s1) → ¬Es2s1) 197, TRAN

199 (Ts1 → ¬Es2s1) → ¬Es2s1 1,198 MP

200 ((Ts1 → ¬Es2s1) → ¬Es2s1) →
(¬¬Es2s1 → ¬(Ts1 → ¬Es2s1))

CL∀D5, with Ts1 → ¬Es2s1 / P, ¬Es2s1 / Q

201 ¬¬Es2s1 → ¬(Ts1 → ¬Es2s1) 199, 200 MP

202 Es2s1 → ¬¬Es2s1 CL∀D4, with Es2s1 / P

203 ¬¬Es2s1 3,202 MP

204 ¬(Ts1 → ¬Es2s1) 201,203 MP

205 Ts2 196,204 MP

206 (∀y)(¬(Ts2 →¬ Eys2) → Ty) 2, UI

207 ¬(Ts2 → ¬Es3s2) → Ts3 206, UI

208 (Ts2 → ¬Es3s2) → (Ts2 → ¬Es3s2) CL∀D1, with Ts2 → ¬Es3s2 / P

209 Ts2 → ((Ts2 → ¬Es3s2) → ¬Es3s2) 208, TRAN

210 (Ts2 → ¬Es3s2) → ¬Es3s2 205,209 MP

211 ((Ts2 → ¬Es3s2) → ¬Es3s2) →
(¬¬Es3s2 → ¬(Ts2 → ¬Es3s2))

CL∀D5, with Ts2 → ¬Es3s2 / P, ¬Es3s2 / Q

212 ¬¬Es3s2 → ¬(Ts2 → ¬Es3s2) 210,211 MP

213 Es3s2 → ¬¬Es3s2 CL∀D4, with Es3s2 / P

214 ¬¬Es3s2 4,213 MP

215 ¬(Ts2 → ¬Es3s2) 212,214 MP

216 Ts3 207,215 MP

. . . . . .{repeating 195–205 with appropriate substitutions we end with}
2090 Ts193 2081,2089 MP

Given the soundness of the axiomatic system CL∀A, we have now demonstrated the

validity of the Sorites argument in classical first-order logic in a second way (the

first was the semantic argument in Section 3.2).

A final note about first-order classical logic: unlike the case in propositional

logic, the set of theorems of CL∀A (or of any other adequate derivation system

for first-order classical logic) is undecidable. Equivalently, given the soundness

and completeness of CLA, the set of tautologies of classical predicate logic is
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undecidable. For neither theoremhood nor tautologousness in classical predicate

logic is it possible to devise a mechanical test that is guaranteed to yield, for any for-

mula, a correct yes-or-no classification in a finite number of steps. On the other

hand, first-order tautologousness (and hence theoremhood) is semi-decidable:

there are for example mechanical tests based on resolution or semantic tableaux

that will, after a finite number of steps, always yield a correct yes classification for

any first-order formula that is a tautology. But such tests do not yield full decidabil-

ity because they may fail to yield any answer within a finite number of steps for

formulas that are not tautologies.7

3.4 Exercises

SECTION 3.2

1 Determine the truth-value of each of the following formulas on an interpretation

that makes the following assignments:

D: set of positive integers

I(O) = {<u>: u ∈ D and u is odd}
I(S) = {<u1, u2>: u1 ∈ D, u2 ∈ D, and u1 squared is u2}
I(E) = {<u1, u2>: u1 ∈ D, u2 ∈ D, and u1 evenly divides u2}
I(a) = 1

I(b) = 2

I(c) = 3

a. Oa ∧ Oc

b. Oa → Ob

c. (∀x)Ox

d. (∀x)Exx

e. (∀x)¬Sxx

f. (∃x)Sxb

g. (∀x) (∀y)((Ox ∧ Oy) → Exy)

h. (∀x)(∀y)(Exy ∨ Eyx)

i. (∃x)( ∀y)(¬Ox ∧ Exy)

j. ( ∀x)( ∀y)(Sxy → Exy)

k. (∃x)(∃y)(Sxy ∧ Syx)

l. ( ∀x)(Ox → (∃y)(∃z)(Sxy ∧ Syz))

m. ( ∀x)(∃y)Sxy

n. (∃y)( ∀x)Sxy

7 Church (1936) proved that theoremhood in first-order logic is undecidable. See Part 4 of Hunter
(1971) for a general proof of undecidability in various first-order systems. A semi–decision pro-
cedure for first-order classical logic based on semantic tableaux is presented in Smullyan (1968,
pp. 59–60).
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SECTION 3.3

2 a. Prove that every instance of the axiom schemata CL∀4 is a tautology in

classical first-order logic.

b. Prove that every instance of the axiom schemata CL∀5 is a tautology in

classical first-order logic.

3 Construct a derivation that justifies derived axiom schema CL∀D7.

4 Construct a derivation that shows that ¬( ∃x) (¬Tx ∧ ¬¬Tx) is a theorem of

CL∀A. You will first need to use the definitions of the existential quantifier and

conjunction to write the formula without those operators.

5 Show that the following rule can be derived in CL∀A:

EG (Existential Generalization). From P(a/x) infer (∃x)P

where x is any individual variable

6 Construct derivations to show that the following formulas are theorems of CL∀A

(rewriting each formula to obtain a formula that contains only negation, the

conditional, and the universal quantifier as operators):

a. (∀x)( ∀y)Lxy → (∃x)(∃y)Lxy

b. (∃x)(Fa → Gx) → (Fa → (∃x)Gx)

c. (∃x)( ∀y)Lxy → (∀y)(∃x)Lxy

d. (∃x)( ∀y)Lxy → (∃x)Lxx
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4 Alternative Semantics for Truth-Values
and Truth-Functions: Numeric Truth-Values
and Abstract Algebras

4.1 Numeric Truth-Values for Classical Logic

We’ve been using the letters T and F to stand in for the truth-values true and false.

We could just as well use the numerals 1 and 0 to stand for true and false, recasting

truth-tables using these two numerals, for example,

P ¬P

1 0

0 1

More interesting, though, is using the integers 1 and 0, rather than the numerals that

name these integers, as the truth-values of formulas in classical logic. A propositional

truth-value assignment will consist in the assignment of one of these values to

each atomic formula, and we can then numerically define the values for complex

formulas rather than simply listing these values in truth-tables. Letting V(P) mean

the value of P on a (numeric) truth-value assignment V, the following definitions

will do the job:

1. V(¬P) = 1 – V(P)

2. V(P ∧ Q) = min (V(P), V(Q)) (i.e., the minimum of these two values)

3. V(P ∨ Q) = max (V(P), V(Q)) (i.e., the maximum of these two values)

4. V(P → Q) = max (1–V(P), V(Q))

5. V(P ↔ Q) = min (max (1–V(P), V(Q)), max (1–V(Q), V(P)))

Clause 1 “reverses” the value for a negated formula—since (looking at the right-hand

side of the formula) 1 − 1 is 0 and 1 − 0 is 1. Clause 2 indicates that a conjunction is

only as true as its least true conjunct. By contrast, clause 3 indicates that a disjunction

is as true as its most true disjunct. Clause 4 is based on the equivalence of P → Q and

¬P ∨ Q, using clauses 1 and 3 to define the truth-conditions for the latter. Clause 5

is based on the equivalence of P ↔ Q and (P → Q) ∧ (Q → P). If we had instead used

the equivalence of P ↔ Q and (P ∧ Q) ∨ (¬P ∧ ¬Q) to capture the truth-conditionals

for biconditionals, the right-hand side of clause 5 would have been written as

max (min (V(P), V(Q)), min (1–V(P), 1–V(Q))). This is equivalent to the right-hand

side that we have chosen to use for clause 5 (and is left as an exercise to verify).

57
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Clauses 1–5 produce truth-tables that look exactly like our previous classical

truth-tables, except that we now have 1 in place of T and 0 in place of F:

P ¬P

1 0

0 1

P Q P ∧ Q P Q P ∨ Q P Q P → Q P Q P ↔ Q

1 1 1 1 1 1 1 1 1 1 1 1

1 0 0 1 0 1 1 0 0 1 0 0

0 1 0 0 1 1 0 1 1 0 1 0

0 0 0 0 0 0 0 0 1 0 0 1

Note that conjunction could equivalently be defined in terms of multiplication as

V(P ∧ Q) = V(P) · V(Q). This will become important when we turn to fuzzy logic,

where truth-values are always defined numerically. And disjunction is almost like

addition, except in the case where both disjuncts have the value 1, so an alternative

clause for disjunction is V(P ∨ Q) = min (1, V(P) + V(Q)).

Having substituted 1 and 0 for true and false in clauses defining the values

of complex formulas, we need to make the same substitutions in other semantic

definitions: a tautology of classical propositional logic is a formula that always has

the value 1; a contradiction is a formula that always has the value 0; an argument is

valid if its conclusion has the value 1 whenever its premises have the value 1; and so

on. Thus we will arrive at the same set of tautologies as we had based on the values

true and false, and other semantic results also remain the same. The difference is

that now we can compute values for formulas numerically rather than simply refer-

ring to truth-tables. For example, we can show that A ∨ ¬A is a tautology of classical

propositional logic as follows: V(A ∨ ¬A) = max (V(A), 1–V(A)), and when V(A) = 1

the maximum is V(A), that is, 1, while when V(A) = 0 the maximum is 1 – V(A), that

is, 1. Thus the formula always has the value 1 and is therefore a tautology.

We can similarly define numerical values for formulas of classical first-order

logic. Instead of talking about a variable assignment satisfying or not satisfying a

formula, we may talk instead about formulas having the value 1 or 0 on variable

assignments. We’ll designate the value that a formula P has on a variable assignment

v on an interpretation I with the notation Iv(P):

1. Iv(Pt1 . . . tn) = 1 if <I*(t1), . . . ,I*(tn)> ∈ I(P), where I*(ti) is I(ti) if ti is a constant

and is V(ti) if ti is a variable, and IV(Pt1 . . . tn) = 0 otherwise.

2. Iv(¬P) = 1 – Iv(P).

3. Iv(P ∧ Q) = min(Iv(P), Iv(Q))

4. Iv(P ∨ Q) = max(Iv(P), Iv(Q))

5. Iv(P → Q) = max(1 – I(P), Iv(Q))

6. Iv(P ↔ Q) = min(max(1 – Iv(P), Iv(Q)), max(1 – Iv(Q), Iv(P)))

7. Iv((∀x)P) = min{Iv′ (P): v′ is an x-variant of v}
8. Iv((∃x)P) = max{Iv′ (P): v′ is an x-variant of v}
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The notation min{Iv′ (P): v′ is an x-variant of v} means: the minimum value that P

has on any x-variant of v, and similarly for max{Iv′ (P): v′ is an x-variant of v}. Thus a

universally quantified formula has the value 1 only if the formula being quantified

over has the value 1 for every value of x, and an existentially quantified formula will

have the value 1 if the formula being quantified over has the value 1 for at least one

value of x. Note that the use of the maximum and minimum functions in clauses

7 and 8 reflects our understanding of the two quantifiers, respectively, in terms of

conjunction (min) and disjunction (max).

4.2 Boolean Algebras and Classical Logic

We will be interested in numeric values in the following chapters, but we will also

be interested in more abstract characterizations of the semantic structures for our

logics, particularly in the case of fuzzy logics. The semantics for classical logic can

be studied abstractly using Boolean algebras.

To motivate this abstraction, we point out it’s possible to use yet other pairs of

values for classical propositional logic in place of true and false or 1 and 0 as long as

we define operations for the propositional connectives that preserve the structure

of the classical values. As another example, we could use the set {5} in place of

true and the empty set Ø in place of false and then define the values for complex

formulas of classical propositional logic as follows, based an assignment V of one

or the other of these values to each atomic formula:

1. V(¬P) = {5} – V(P)

where − is set-theoretic difference, that is, X−Y is the set consisting of all the mem-

bers of X that are not members of Y; so that V(¬P) is Ø if V(P) is {5}, and V(¬P) is

{5} when V(P) is Ø.

2. V(P ∧ Q) = V(P)
⋂

V(Q),

where
⋂

is set-theoretic intersection: X
⋂

Y is the set consisting of all items that are

members of both X and Y. Thus V(P ∧ Q) = {5} if both V(P) and V(Q) are {5}, and

Ø otherwise.

3. V(P ∨ Q) = V(P)
⋃

V(Q))

where
⋃

is set-theoretic union: X
⋃

Y is the set consisting of all items that are mem-

bers of X or of Y or both. So V(P ∨ Q) is {5} if V(P) or V(Q) is, and Ø otherwise.

4. V(P → Q) = {5} if V(P) ⊆ V(Q), and Ø otherwise

where ⊆ is set-theoretic inclusion: X ⊆ Y if (and only if) every member of X is also a

member of Y—so the only case in which V(P → Q) is Ø occurs when V(P) is {5} and

V(Q) is Ø.

5. V(P ↔ Q) = (left as an exercise).
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The structure imposed on truth-values by the semantic operations of classi-

cal propositional logic—a structure mirrored in the interpretations based on 1 and

0 and on {5} and Ø—yields a Boolean algebra.1 A Boolean algebra <B, ∪, ∩, ′,
unit, zero> consists of a set B (the domain of the Boolean algebra) that contains at

least two elements designated as the unit and zero elements, binary operations ∪
and ∩ (respectively called join and meet),2 and a unary operation ′ (called com-

plementation), such that the following conditions are satisfied for all members

x, y, z of B:

i. x ∪ y = y ∪ x, and x ∩ y = y ∩ x (commutation)

ii. x ∪ (y ∪ z) = (x ∪ y) ∪ z, and x ∩ (y ∩ z) = (x ∩ y) ∩ z (association)

iii. x ∪ x = x, and x ∩ x = x (idempotence)

iv. x ∪ (x ∩ y) = x, and x ∩ (x ∪ y) = x (absorption)

v. x ∪ (y ∩ z) = (x ∪ y) ∩ (x ∪ z), and x ∩ (y ∪ z) = (x ∩ y) ∪ (x ∩ z) (distribution)

vi. x ∪ zero = x, and x ∩ unit = x (identity for join and

meet)

vii. x ∪ x′ = unit, and x ∩ x′ = zero. (complementation)

Condition i stipulates that the meet and join operations are commutative; con-

dition ii stipulates that they are associative; and condition iii stipulates that they

are idempotent. Condition iv specifies absorption laws, while condition v stipu-

lates that each of the two binary operations distributes over the other. Condition

vi stipulates that the zero element and unit elements are, respectively, identity ele-

ments for the join operation ∪ and the meet operation ∩, and condition vii specifies

complementation laws.

We’ll describe the Boolean algebra based on the numeric values 1 and 0. The

domain B is the set {1, 0}, where 1 is the unit member and 0 is the zero member. The

maximum and minimum operations—which define disjunction and conjunction—

serve as the algebra’s meet (∪) and join (∩) operations; and the negation operation

1−, which produces 1−x when applied to x, serves as complementation. It is straight-

forward to verify that the seven conditions on a Boolean algebra’s operations are

met for the structure <{1,0}, max, min, 1−, 1, 0>, that is, for all x, y, z ∈ {1, 0}:

i. Commutation: max (x, y) = max (y, x), and min (x, y) = min (y, x)

Proof: Obviously true.

ii. Association: max (x, max (y, z)) = max (max (x, y), z), and min (x, min (y, z)) =
min (min (x, y), z)

Proof: Obviously true.

1 Our definition of Boolean algebras and of lattices (introduced later) follows MacLane and
Birkhoff (1999). Alternative (equivalent) definitions of Boolean algebras appear in various places
in the literature. These algebras are named after the mathematician George Boole, who first
developed them to study logic.

2 The join and meet symbols are standardly used to denote set-theoretic union and intersection—
but in the context of Boolean algebras they are used to denote any operations, set-theoretic or
otherwise, that meet the specified conditions.
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iii. Idempotence: max (x, x) = x, and min (x, x) = x.

Proof: Obviously true.

iv. Absorption: max (x, min (x, y)) = x, and min (x, max (x, y)) = x.

Proof of first equation: For any x, y ∈ {1, 0} there are two possibilities: either

x ≥ y, or x < y. If x ≥ y, then max (x, min (x, y)) = max (x, y) = x. If x < y,

then max (x, min (x, y)) = max (x, x) = x. Either way, the equation holds.

Proof of second equation: Left as an exercise.

v. Distribution: max (x, min (y, z)) = min (max (x, y), max (x, z)), and

min (x, max (y, z)) = max (min (x, y), min (x, z)).

Proof of first equation: We’ll consider the different orderings that x, y, and

z can have, as three cases:

a. If x ≥ y and x ≥ z, then max (x, min (y, z)) = x = min (x, x)

= min (max (x, y), max (x, z)) because max (x, y) = max (x, z) = x

b. If y ≥ x and z ≥ x, then max (x, min (y, z)) = min (y, z) = min (max (x,

y), max (x, z)) because max (x, y) = y and max (x, z) = z

c. If either y ≥ x ≥ z or z ≥ x ≥ y, then max (x, min (y, z)) = x because

x ≥ min (y, z), and

if y ≥ x ≥ z then min (max (x, y), max (x, z)) = min (y, x) = x while

if z ≥ x ≥ y then min (max (x, y), max (x, z)) = min (x, z) = x

Proof of second equation: Left as an exercise.

vi. Identity for join and meet: max (x, 0) = x, and min (x, 1) = x.

Proof: Obviously true.

vii. Complementation: max (x, 1 – x) = 1, and min (x, 1 – x) = 0.

Proof of first equation: If x = 1, then max (x, 1 – x) = max (1, 0) = 1. If x =
0, then max (x, 1 – x) = max (0, 1) = 1.

Proof of second equation: Left as an exercise.

We can similarly prove that either the values T and F or the values {5} and Ø

taken, respectively, as unit and zero elements, along with the corresponding oper-

ations defining disjunction, conjunction, and negation, form Boolean algebras.

When we interpret formulas of propositional logic based on a two-valued Boolean

algebra by assigning either unit or zero to each atomic formula and using the alge-

bra’s join, meet, and complement operations to define the, respective, values of

disjunctions, conjunctions, and negations, we call this an algebraic interpretation

based on that Boolean algebra and the set of all such interpretations a semantics

based on the Boolean algebra. We will say that a formula of propositional logic is

a tautology of a Boolean algebra (a BA-tautology) if the formula evaluates to unit

under every algebraic interpretation based on that algebra. For every two-valued

Boolean algebra we obtain the same set of tautologies for propositional logic (and

the same entailments, etc.) owing to the following result:

Result 4.1: Every two-valued Boolean algebra BA = <{unit, zero}, ∪, ∩, ′, unit,

zero>generates the following truth-tables for assignments of unit or zero to each
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atomic formula of propositional logic when ∪, ∩, and ′, respectively, define the

disjunction, conjunction, and negation operations:

P ¬P

unit zero

zero unit

P Q P ∧ Q P Q P ∨ Q

unit unit unit unit unit unit

unit zero zero unit zero unit

zero unit zero zero unit unit

zero zero zero zero zero zero

Proof: This follows from the four Boolean algebra conditions

i. x ∪ y = y ∪ x, and x ∩ y = y ∩ x

iii. x ∪ x = x, and x ∩ x = x

vi. x ∪ zero = x, and x ∩ unit = x

vii. x ∪ x′ = unit, and x ∩ x′ = zero

Consider the table for conjunction. By condition iii, unit ∩ unit = unit and

zero ∩ zero = zero. That gives us the first and fourth rows. By condition vi, zero ∩
unit = zero, which gives us the third row. By condition i, unit ∩ zero = zero ∩
unit and so unit ∩ zero = zero as well, which gives us the second row. The reader

will be asked in the exercises to verify that the four conditions also generate the

displayed tables for disjunction and negation.

It turns out that conditions ii, iv, and v defining Boolean algebras (the conditions

that were not used in the proof of Result 4.1) can be derived from the remaining four

conditions when the algebra is two-valued. This will be considerably easier to show

after we prove some additional equations that hold in Boolean logics in Section 4.3,

so we will defer proof to the exercises for that section.

To round out the Boolean operations corresponding to connectives of proposi-

tional logic, we’ll use the definitions P → Q = def ¬P ∨ Q and P ↔ Q = def (P → Q) ∧
(Q → P). As a consequence the Boolean algebraic operations ⇒ and ⇔ correspond-

ing to the conditional and biconditional satisfy the equations x ⇒ y = x′ ∪ y and

x⇔y = (x⇒y)∩ (y⇒x). With these definitions the following is a direct consequence

of Result 4.1:

Result 4.2: For any two-valued Boolean algebra BA, the set of formulas of propo-

sitional logic that are BA-tautologies is exactly the set of classical tautologies

under the standard semantics based on T and F.

Analogously, entailments of propositional logic under any two-valued Boolean

semantics—where a set of formulas � entails a formula P if P evaluates to the
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algebra’s unit element on every algebraic interpretation such that all of the mem-

bers of� evaluate to unit—coincide with entailments under the standard semantics.

Interestingly, we also have the following result:

Result 4.3: The formulas of propositional logic that are tautologies for every

Boolean algebraic semantics are exactly the tautologies under the standard

semantics based on T and F.

Proof: Because the standard semantics based on T and F is a Boolean alge-

braic semantics, every formula that is a tautology for every Boolean algebraic

semantics must therefore be a tautology under the standard semantics.

For the converse, we can draw on the fact that the system CLA presented

in Chapter 2 is a complete axiomatization for propositional logic under the

standard semantics; that is, every tautology under the standard semantics is a

theorem of CLA. Then we shall only need to prove that every theorem of CLA

is a tautology under every Boolean algebraic semantics—and this we can do by

establishing that the three axiom schemata of CLA are tautologous under every

Boolean algebraic semantics and that Modus Ponens preserves this property.

Specifically, we need to establish that x ⇒ (y ⇒ x) = unit in every Boolean

algebra (the left-hand side is the algebraic formula corresponding to CLA1),

and that (x ⇒ (y ⇒ z)) ⇒ ((x ⇒ y) ⇒ (x ⇒ z)) = unit (CLA2) and (x′ ⇒ y′) ⇒
(y ⇒ x) = unit (CLA3)—again, the reader will be asked to prove these equations

in the exercises for Section 4.3, as well as the claim that Modus Ponens preserves

tautologousness in any Boolean algebra.

Apropos of Result 4.3, our only examples of Boolean algebras so far have been

two-valued. As a final and more general example, we note that given any nonempty

set S there is a standard way to generate a Boolean algebra using set-theoretic

operations. Let ∪ and ∩ denote set-theoretic union and intersection, let ′ denote

complementation relative to the set S (i.e., for any subset X of S, X′ will be the set

of elements of S that are not members of X), and let P(S) denote the power set of S,

that is, the set of all subsets of S. The structure <P(S), ∪, ∩, ′, S, Ø> is then a Boolean

algebra. To verify this we need to check that each of conditions i–vii holds for this

structure. For any sets X and Y, X ∪ Y = Y ∪ X and X ∩ Y = Y ∩ X, so condition i is

met. Moving to condition vi, we note that for any set X ⊆ S, X ∪ Ø = X and X ∩ S

= X. The interested reader can verify that all of the other conditions hold as well.

Thus it is not surprising that the two-valued semantics based on {5} and Ø that we

presented for classical logic is a Boolean algebra.

4.3 More Results about Boolean Algebras

Not all of the seven conditions of Section 4.2 are needed to define Boolean algebras.

Conditions ii, iii, and iv are derivable from the others (we explain later why we have
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nevertheless included them in the definition). Here is how the first idempotence

condition (iii) can be derived:

x ∪ x = (x ∪ x) ∩ unit (identity for meet)

= (x ∪ x) ∩ (x ∪ x′) (complementation)

= x ∪ (x ∩ x′) (distribution)

= x ∪ zero (complementation)

= x (identity for join)

To derive the first absorption condition we first derive the law unit ∪ x = unit, which

we call unit consumption:

unit ∪ x = (unit ∪ x) ∩ unit (identity for meet)

= unit ∩ (x ∪ unit) (commutation, twice)

= (x ∪ x′) ∩ (x ∪ unit) (complementation)

= x ∪ (x′ ∩ unit) (distribution)

= x ∪ x′ (identity for meet)

= unit (complementation)

and then we use unit consumption to derive the first absorption condition (iv):

x ∪ (x ∩ y) = (x ∩ unit) ∪ (x ∩ y) (identity for meet)

= x ∩ (unit ∪ y) (distribution)

= x ∩ unit (unit consumption)

= x (identity for meet)

To derive the first association condition we begin with the following, in which

the right-hand side ((x ∪ y) ∪ z) of the formula is associated to (x ∪ (y ∪ z)):3

x ∩ ((x ∪ y) ∪ z) = (x ∩ (x ∪ y)) ∪ (x ∩ z) (distribution)

= x ∪ (x ∩ z) (absorption)

= x (absorption)

= x ∪ (x ∩ (y ∪ z)) (absorption)

= (x ∩ x) ∪ (x ∩ (y ∪ z)) (idempotence)

= x ∩ (x ∪ (y ∪ z)) (distribution)

(Note that we have already shown how to derive idempotence from conditions i and

v–vii on Boolean algebras.) Next we show that the same result can be derived when

we replace x on the left-hand side with its complement:

3 This proof, which admittedly is tricky and not at all the obvious way to go, is based on an outline
in Stoll (1961, p. 253).
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x′ ∩ ((x ∪ y) ∪ z) = (x′ ∩ (x ∪ y)) ∪ (x′ ∩ z) (distribution)

= ((x′ ∩ x) ∪ (x′ ∩ y)) ∪ (x′ ∩ z) (distribution)

= (zero ∪ (x′ ∩ y)) ∪ (x′ ∩ z) (complementation)

= (x′ ∩ y) ∪ (x′ ∩ z) (identity for join)

= x′ ∩ (y ∪ z) (distribution)

= zero ∪ (x′ ∩ (y ∪ z)) (identity for join)

= (x′ ∩ x) ∪ (x′ ∩ (y ∪ z)) (complementation)

= x′ ∩ (x ∪ (y ∪ z)) (distribution)

Because of these identities we can assert

(x ∩ ((x ∪ y) ∪ z)) ∪ (x′ ∩ ((x ∪ y) ∪ z)) = (x ∩ (x ∪ (y ∪ z))) ∪ (x′ ∩ (x ∪ (y ∪ z)))

and from this we can derive

(((x ∪ y) ∪ z) ∩ x) ∪ (((x ∪ y) ∪ z) ∩ x′) = ((x ∪ (y ∪ z)) ∩ x) ∪ ((x ∪ (y ∪ z)) ∩ x′)

by commutation on both sides, then

((x ∪ y) ∪ z) ∩ (x ∪ x′) = (x ∪ (y ∪ z)) ∩ (x ∪ x′)

by distribution, then

((x ∪ y) ∪ z) ∩ unit = (x ∪ (y ∪ z)) ∩ unit

by complementation, and finally

(x ∪ y) ∪ z = x ∪ (y ∪ z)

by identity for meet. This last formula is the first associative condition for Boolean

algebras.

The second idempotence, absorption, and association conditions can be sim-

ilarly derived from conditions i and v–vii and are left as an exercise.

We have included the derivable conditions ii–iv in the definition of Boolean

algebras to make clear the connection between Boolean algebras and another type

of algebraic structure called a lattice. A lattice is a structure <L, ∪, ∩> for which

conditions i–iv of Boolean algebras hold. If condition v also holds, the lattice is

said to be distributed. If the set L contains two elements that can fill the role of

zero and unit in the identity condition vi, then those elements will be the zero and

unit elements and the lattice is accordingly said to be bounded or, alternatively, to

contain zero and unit elements. If in addition corresponding to each member x of

L there is a member y of L such that x ∪ y = unit and x ∩ y = zero, then each such

x and y are called complements (because y functions as x′ in the complementation

condition for Boolean algebras) and the lattice is said to be complemented. So a
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Boolean algebra is a special type of lattice, namely, a complemented distributive

lattice with zero and unit elements.

Each of the conditions defining Boolean algebras is specified by a pair of equa-

tions, where the second equation results from the first by exchanging the meet and

join operations in each formula and exchanging zero and unit. Such pairs are called

duals, and the fact that the conditions come as dual pairs entails that in a Boolean

algebra the dual of any provable equation is also provable (by using the same proof,

except that each formula is replaced by its dual). So for example, since we can show

that unit = zero′ as follows:

unit = zero ∪ zero′ (complementation)

= zero′ ∪ zero (commutation)

= zero′ (identity for join)

we know that zero = unit′ is also provable using the dual formulas:

zero = unit ∩ unit′ (complementation)

= unit′ ∩ unit (commutation)

= unit′ (identity for meet)

The following laws also hold in every Boolean algebra:

Double Negation Law: x′′ = x

DeMorgan’s Laws: (x ∪ y)′ = x′ ∩ y′, and (x ∩ y)′ = x′ ∪ y′

We first derive Double Negation:

x′′ = x′′ ∪ zero (identity for join)

= x′′ ∪ (x ∩ x′) (complementation)

= (x′′ ∪ x) ∩ (x′′ ∪ x′) (distribution)

= (x′′ ∪ x) ∩ (x′ ∪ x′′) (commutation)

= (x′′ ∪ x) ∩ unit (complementation)

= (x′′ ∪ x) ∩ (x ∪ x′) (complementation)

= (x ∪ x′) ∩ (x ∪ x′′) (commutation, twice)

= x ∪ (x′ ∩ x′′) (distribution)

= x ∪ zero (complementation)

= x (identity for join)

To establish the first DeMorgan Law, we will use the

Unique Complement Principle for Boolean Algebras:

If x ∪ y = unit and x ∩ y = zero, then y = x′.
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Proof: Assume that (a) x ∪ y = unit and (b) x ∩ y = zero. Then

y = y ∩ unit (identity for meet)

= y ∩ (x ∪ x′) (complementation)

= (y ∩ x) ∪ (y ∩ x′) (distribution)

= (x ∩ y) ∪ (y ∩ x′) (commutation)

= zero ∪ (y ∩ x′) (by assumption (b))

= (x ∩ x′) ∪ (y ∩ x′) (complementation)

= (x′ ∩ x) ∪ (x′ ∩ y) (commutation, twice)

= x′ ∩ (x ∪ y) (distribution)

= x′ ∩ unit (by assumption (a))

= x′ (identity for meet)

The first DeMorgan Law can now be established as follows:

A. (x ∪ y) ∪ (x′ ∩ y′) = ((x ∪ y) ∪ x′) ∩ ((x ∪ y) ∪ y′) (distribution)

= ((y ∪ x) ∪ x′) ∩ ((x ∪ y) ∪ y′) (commutation)

= (y ∪ (x ∪ x′)) ∩ (x ∪ (y ∪ y′)) (association, twice)

= (y ∪ unit) ∩ (x ∪ unit) (complementation, twice)

= unit ∪ unit (unit consumption, twice)

= unit (idempotence)
B. (x ∪ y) ∩ (x′ ∩ y′) = zero—is left as an exercise.

C. By the Unique Complement Principle, it follows from A and B that

(x ∪ y)′ = x′ ∩ y′.

The second DeMorgan Law has a dual proof, which is left as an exercise.

Once we have characterized the algebra of truth-values corresponding to a logi-

cal system—which is Boolean algebra in the case of classical propositional logic—we

can prove things about that system algebraically rather than by reference to truth-

tables. For example, we know that A ∨ ¬A is a tautology of classical propositional

logic. But now we can prove this fact algebraically. Under any Boolean algebraic

interpretation, the value of A ∨ ¬A is x ∪ x′ if the value of A is x, and complementa-

tion condition vii sets x ∪ x′ = unit. Thus A ∨ ¬A is a tautology under every Boolean

algebraic interpretation and therefore a tautology of classical propositional logic.

As another example, we have shown that the DeMorgan Laws hold true in every

Boolean algebra, and on that basis we may conclude that the formula ¬(A ∨ B) of

classical propositional logic is equivalent to ¬A ∧ ¬B and that ¬(A ∧ B) is equivalent

to ¬A ∨ ¬B. These two equivalences give us the DeMorgan Laws used in Section

2.3 of Chapter 2. Two other equivalences used there, the Distribution equivalences,

are the propositional logic counterparts to distribution in Boolean algebras; and

Double Negation in that section is the propositional logic version of the Double

Negation Law that we have show to hold true in every Boolean algebra.

In Section 4.2 we used the definition P → Q = def ¬P ∨ Q from classical propo-

sitional logic to give us a Boolean algebraic conditional operation ⇒ satisfying the
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equation x ⇒ y = x′ ∪ y. But there is another (equivalent) way to define Boolean

algebraic conditional operations, based on the standard lattice-theoretic ordering

relation. When considering a lattice as such (i.e., an algebra in which conditions

i–iv for Boolean algebras hold), there is a natural ordering relation ≤ on elements

of the lattice defined as

x ≤ y = def x ∩ y = x.

We can also use this definition for Boolean algebras since, as we noted earlier, a

Boolean algebra is a special type of lattice (namely, a complemented distributed

lattice with zero and unit elements). In a Boolean algebra <P(S), ∪, ∩, ′, S, Ø>

(where S is a nonempty set), for example, the ordering relation ≤ so defined turns

out to be the subset relation ⊆—that is, X ⊆ Y if and only if X ∩ Y = X. For the Boolean

algebra <{1,0}, max, min, 1–, 1, 0> the ordering relation ≤ is simply the numeric

ordering relation because here x is less than or equal to y if and only if min(x, y) =
x.

In every lattice the relation ≤ is reflexive (for all x, x ≤ x), antisymmetric (for

all x and y, if x ≤ y and y ≤ x, then x = y), and transitive (for all x, y, and z, if x ≤ y

and y ≤ z, then x ≤ z). To show that the relation is reflexive, we note that for any x,

x ∩ x = x because ∩ is defined to be idempotent in every lattice and so x ≤ x by the

definition of the ordering relation. To show that ≤ is antisymmetric we must prove

that for any x and y, if x ∩ y = x and y ∩ x = y, then x = y. This is straightforward,

since x ∩ y = y ∩ x by the requirement of commutativity in every lattice. It is left as

an exercise to show that the relation ≤ must be transitive in a lattice. We also note

that because x ∩ y = x if and only if x ∪ y = y (see exercises), we also have

x ≤ y if and only if x ∪ y = y.

We can use the lattice ordering ≤ to define conditional operations ⇒ in Boolean

algebras to be operations that satisfy

x ⇒ y = unit if and only if x ≤ y.

In the algebra of classical truth-values, for example, this yields exactly the logical

conditional operation. Consider the classical truth-values under their lattice order-

ing. Because the ordering is reflexive we have T ≤ T and F ≤ F. Moreover, because

zero ∪ unit = unit, we will always have zero ≤ unit and so F ≤ T. However, the

converse (unit ≤ zero) does not hold when unit and zero are distinct. Given this

ordering, the truth-value of a conditional P → Q in classical logic is T if and only if

V(P) ≤ V(Q).

Before closing, we note that in addition to characterizating the semantics for

classical propositional logic there is another important and related way that Boolean

algebras are used to study classical propositional logic. For any logical system

there is a special type of algebra called a Lindenbaum algebra, constructed from

equivalence classes of formulas in the system, and the Lindenbaum algebras for
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classical propositional logics are all Boolean algebras. Lindenbaum algebras are

beyond the scope of this text, so we refer the interested reader to Dunn and Harde-

gree (2001).4

4.4 Exercises

SECTION 4.1

1 Prove that min(max(1–V(P), V(Q)), max(1–V(Q), V(P))), which we used to define

the truth-conditions for conditional formulas is equivalent to the alternative

definition based on the equivalence of P ↔ Q and (P ∧ Q) ∨ (¬P ∧ ¬Q):

max(min(V(P), V(Q)), min(1–V(P), 1–V(Q))).

SECTION 4.2

2 Complete the definition of clause 5:

5. V(P ↔ Q) = . . .

for a semantics in which the values true and false are replaced by {5} and Ø,

respectively, as suggested at the beginning of Section 4.2.

3 Complete the proof that <{1,0}, max, min, 1–, 1, 0> forms a Boolean algebra

by proving that the second equations for absorption, distribution, and comple-

mention hold in this structure.

4 Complete the proof of Result 4.1: show that conditions i, iii, vi, and vi of (two-

valued) Boolean algebras generate the following tables when negation and

disjunction are defined as algebraic complementation and join:

P ¬P

unit zero

zero unit

P Q P ∨ Q

unit unit unit

unit zero unit

zero unit unit

zero zero zero

SECTION 4.3

5 Prove the dual to unit consumption, which we may call zero consumption:

zero ∩ x = zero.

6 Show how to derive the second idempotence, absorption, and association con-

ditions for Boolean algebras from conditions i and v–vii of Boolean algebras.

4 Lindenbaum algebras are named after the logician Adolf Lindenbaum and are sometimes called
Lindenbaum-Tarski algebras after Alfred Tarski as well. These algebras were studied by both
logicians.
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7 Prove that the equality

(x ∪ y) ∩ (x′ ∩ y′) = zero

which was used to establish the first DeMorgan Law holds in every Boolean

algebra.

8 Prove that the second DeMorgan Law holds in every Boolean algebra.

9 Prove that the following formulas are tautologies of classical propositional

logic by showing that they must evaluate to unit under any Boolean algebraic

semantics:

a. ¬(P ∧ ¬P)

b. (P ∧ Q) → (P ∨ Q)

c. ¬P → (P → Q)

10 In Section 4.2 we claimed that Boolean algebra conditions ii, iv, and v can be

derived from the remaining four conditions for every Boolean algebra in which

the domain B contains exactly two elements. Prove this.

Hint: You can derive the the first associativity condition x ∪ (y ∪ z) = (x

∪ y) ∪ z, for example, by looking at four cases that among them will cover all

possible combinations of values for x, y, and z in a two-valued Boolean algebra:

a. x = unit (y and z can each be either unit or zero)

b. y = unit

c. z = unit

d. x = y = z = zero.

For case a, we have unit ∪ (y ∪ z) = unit by unit consumption, and (unit ∪ y)

∪ z = unit ∪ z = unit by the same law, thus establishing the first associativity

condition for case a. The reader can pick up the proof from here.

11 Prove that the lattice ordering relation ≤, defined as

x ≤ y if and only if x ∩ y = x,

is transitive.

12 Prove that in every lattice, x ∩ y = x if and only if x ∪ y = y. Hint: The absorption

condition will prove useful.

13 Complete the proof of Result 4.3 by showing that the following hold in every

Boolean algebra:

a. x ⇒ (y ⇒ x) = unit

b. (x ⇒ (y ⇒ z) ⇒ ((x ⇒ y) ⇒ (x ⇒ z)) = unit

c. (x′ ⇒ y′) ⇒ (y ⇒ x) = unit

d. Modus Ponens preserves tautologousness in any Boolean algebra:

if x = unit and x ⇒ y = unit then y = unit.
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5.1 Kleene’s “Strong” Three-Valued Logic

We began Chapter 1 by noting that sentences concerning borderline cases of vague

predicates pose counterexamples to the Principle of Bivalence. For example, the

sentence Mary Middleford is tall appears to be neither true nor false. We begin

our exploration of logics for vagueness by dropping the Principle of Bivalence and

allowing sentences to be either true (T), false (F), or neither true nor false (N—if

you like, you may also say that N is neutral). This gives rise to three-valued (trivalent)

systems of logic.1 We use the same language as classical propositional logic. Truth-

value assignments can now assign N (as well as T or F) to atomic formulas, and

we’ll use this value to signal the application of a vague predicate to a borderline

case.

How are the truth-functions for the standard propositional connectives defined

over the three values? There are several plausible choices, and the set of truth-

functions we choose will define a specific system of three-valued logic. In this

chapter we present four well-known systems of three-valued logic. Many others

have been developed, but these four systems are sufficient to explore the flavor of

three-valued logics and how they might be used to tackle problems associated with

vagueness.2

We begin with a system developed by the mathematician Stephen Kleene

(Kleene 1938). We’ll call this first system KS
3—the S stands for strong, a term

that Kleene used to distinguish the connectives in this system from those of

another three-valued system he developed (which is identical to Bochvar’s internal

1 There are also systems that admit “truth-value gaps” rather than a third truth-value, for example,
supervaluational logics (introduced in van Fraassen [1966]; for an application to vagueness see
Fine [1975]). We shall ignore “gappy” logics because fuzzy logics are generalizations of trivalent
(three-valued) logics rather than supervaluational ones, and our general objections to trivalent
accounts of vagueness in Chapter 10 also apply to gappy accounts.

2 An excellent introduction to a wide variety of trivalent logics can be found in Rescher (1969).
More advanced material is covered in the also excellent text Gottwald (2001).

71
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system, to be introduced in Section 5.3). The negation truth-function in KS
3 is

defined as

P ¬KP

T F

N N

F T

(We will subscript connectives within nonclassical logical systems to make clear

which system we’re working in.) Note that when P has one of the values T or F (we’ll

call these the classical truth-values), ¬KP is defined as in classical logic. When P has

the value N, reflecting a vague predicate’s application to a borderline case, so does

its negation. If Mary Middleford is tall is neither true nor false, Mary Middleford is

not tall is also neither true nor false.

The truth-functions corresponding to the binary connectives in Kleene’s system

are

P ∧K Q P ∨K Q P →K Q P ↔K Q

P \ Q T N F P \ Q T N F P \ Q T N F P \ Q T N F

T T N F T T T T T T N F T T N F

N N N F N T N N N T N N N N N N

F F F F F T N F F T T T F F N T

In these tables the expression P \ Q means that P has the value in the column listed

below while Q has the value in the row listed to the right. So, for example, each row

beginning with T covers cases where P has the value T, and each column headed

by T covers cases where Q has the value T. The intersection of the T row and the

T column represents the case where both P and Q have the value T. In the table

for conjunction T is listed at this intersecting point—meaning that the conjunction

P ∧K Q has the value T when both P and Q have the value T.

Each of these truth-functions agrees with classical logic when the arguments

are both either T or F. For example, restricting attention to the four corners of the

truth-table for conjunction:

P ∧K Q

P \ Q T N F

T T N F

N N N F

F F F F

we see that the truth-value of a conjunction in these cases is the same as it would

be in classical logic. Connectives with this property are normal:3 a propositional

3 This terminology, along with the technical use of the term uniform a few paragraphs hence, is
from Rescher (1969, pp. 54–57).
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connective in a three-valued logical system is normal if, whenever the connective

combines formulas with classical truth-values, the resulting formula has the same

truth-value as it does in classical logic (dropping the subscripts on the connectives,

of course). We will also say that the truth-function denoted by the connective is

normal.

How are the remaining values in the truth-table determined? Let’s continue to

look at conjunction. A classical conjunction is false whenever at least one conjunct

is false, no matter what the value of the other conjunct. The same is true of Kleene’s

conjunction—the row and column representing the falsity of one of the conjuncts

P and Q uniformly have the value F:

P ∧K Q

P \ Q T N F

T T N F

N N N F

F F F F

We say that a propositional connective in a three-valued system is uniform if, when-

ever the truth-value of a formula formed with that connective is uniquely deter-

mined by the truth-value of one of its constituent formulas in classical logic, the

truth-value of the formula formed with that connective is also uniquely so deter-

mined in the three-valued system. (We will also say that the truth-function denoted

by the connective is uniform.) In classical logic a false conjunct guarantees the

falsehood of a conjunction, and the fact that this is also the case in KS
3 means

that conjunction is uniform in this system. The other connectives are uniform as

well.

Normality and uniformity account for all but three of the values—namely,

the three Ns—in the truth-table for conjunction. Generally, the value N appears

in KS
3 whenever neither normality nor uniformity requires a particular value

for one of the connectives. Owing to normality, these cases always involve N as

one or both of the arguments to the truth function. Thus a conjunction has the

value N when at least one conjunct has this value and neither conjunct has the

value F.

Disjunction in KS
3 is normal and it is also uniform since the truth of one disjunct

is sufficient for the truth of the whole, as is the case in classical logic. The KS
3

conditional and biconditional are both normal and uniform. The conditional is

uniform because it forms a true formula whenever the antecedent is false or the

consequent is true. (Note that in the case of the biconditional, there is no case in

classical logic where the truth-value of a compound formula can be determined by

the truth-value of only one of its immediate components—so the biconditional is

trivially uniform.) Finally, negation in KS
3 is also normal and uniform (the latter in

an uninteresting way since it is a unary rather than binary connective). Moreover,

it is only when neither normality nor uniformity determines a truth-value that one

of these functions will assign the value N.
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Here are truth-tables for some formulas in KS
3:

P P ∨K ¬K P P Q P →K (P →K Q) P Q (P ∧K Q) →K (P ∨K Q)

T T T F T T T T T T T T T T T T T T T T T

N N N N N T N T N T N N T N T N N T T T N

F F T T F T F T F T F F T F T F F T T T F

N T N T N T T N T N N T T N T T

N N N N N N N N N N N N N N N N

N F N N N N F N F N F F T N N F

F T F T F T T F T F F T T F T T

F N F T F T N F N F F N T F N N

F F F T F T F F F F F F T F F F

The first formula, an instance of the Law of Excluded Middle, can have the value N

as well as the value T in KS
3. It shouldn’t be surprising that this classical tautology

can fail to have the value T in KS
3, since we noted in Chapter 1 that the Principle

of Bivalence (which three-valued logic rejects) and the Law of Excluded Middle

are closely (although not necessarily!) related. The third formula is, like the Law of

Excluded Middle, a tautology of classical logic, but it can also have the value N in

KS
3. The second formula, neither a tautology nor a contradiction of classical logic,

can have any of the three values T, F, or N in KS
3.

We have introduced KS
3 as a possible three-valued logic for vagueness, so it is

interesting to note that Kleene’s motivation for presenting this three-valued system

was altogether different. On Kleene’s interpretation, the value N means not defined

rather than simply neither true nor false. Kleene introduced his system in connec-

tion with mathematical functions that may be undefined for certain values (just as

division by 0 is undefined), and of the atomic formulas, only those in which all func-

tions are defined for their arguments would one of the values be T or F. Nevertheless,

athough Kleene’s motivation was different from ours, his system nevertheless turns

out to be one reasonable three-valued logic for vagueness. For example, if P is true

but Q is neither true nor false because it concerns a borderline case, then P ∧K Q is

also neither true nor false—it’s not true, since that would require the truth of both

conjuncts, but it’s also not false, since neither conjunct is false.

We may choose to designate some connectives as primitive and introduce the

others as defined. In fact, any choice of primitive connectives and accompanying

definitions for the others that works in classical logic also works in KS
3. So, for

example, we can take ¬K and ∧K as primitive connectives and introduce the other

ones with the definitions

P ∨K Q = def ¬K (¬KP ∧K ¬KQ)

P →K Q = def ¬K (P ∧K ¬KQ)

P ↔K Q = def ¬K (P ∧K ¬KQ) ∧K ¬K (¬K P ∧K Q)

We leave it as an exercise to explore this claim.

As in classical logic, we define a tautology in a three-valued logical system to

be a formula that always has the value T—there is no assignment on which it has
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either the value F or the value N. We define a contradiction in a three-valued logical

system to be a formula that always has the value F—that is, it never has the value T

or N. It turns out that there are no tautologies or contradictions in KS
3! We’ll prove

this in a moment, but in case the reader is alarmed by this fact we reassure you

that later in the chapter we’ll offer variations on the concepts of tautologies and

contradictions, variations that will not be trivial for KS
3.

Result 5.1: There are no tautologies or contradictions in KS
3.

Proof: Examination of the truth-tables shows that whenever all of the atomic

components of a compound formula have the value N, so does the compound

formula. This means that for any formula, there is at least one truth-value assign-

ment on which it has the value N—so no formula can be either a tautology or a

contradiction in KS
3.

Thus, the Law of Excluded Middle (as we already knew) is not a tautology in KS
3 (nor

is its negation a contradiction), but neither are there any other classical tautologies

that are tautologies in KS
3.

Before turning to entailment and validity in Kleene’s system, we introduce a

lemma to which we shall often refer. Let us call a three-valued truth-value assign-

ment classical if it assigns only the classical values T and/or F to atomic formulas—

that is, it doesn’t make any assignments of N.

Normality Lemma: In a normal three-valued system, a classical truth-value

assignment behaves exactly as it does in classical logic—every formula that is

true on that assignment in the three-valued system is also true on that assign-

ment in classical logic, and every formula that is false on that assignment in the

three-valued system is also false on that assignment in classical logic.

Proof: The lemma follows from the fact that the connectives in a normal system

behave exactly as they do in classical logic whenever they operate on formulas

with classical truth-values.

We will say that a set � of formulas entails a formula P in three-valued logic if,

whenever all of the formulas in � are true P is true as well (there is no truth-value

assignment on which all the formulas in � have the value T while P has the value F or

N), and an argument is valid in three-valued logic if the set of premises of the argu-

ment entails its conclusion. We will use a standard notation for entailment: where

� is a set of formulas, Γ |= P means the set of formulas � entails the sentence P. Since

entailment is within a system, we’ll use unsubscripted |= to indicate entailment in

classical logic and |= K to indicate entailment in KS
3.

Result 5.2: IfΓ |= K P thenΓ |=P (i.e., every entailment in KS
3 is also an entailment

in classical propositional logic).

Proof: Assume that Γ |= K P. It follows from the definition of entailment that on

every classical (and nonclassical) truth-value assignment in KS
3 on which the

formulas in � are all true, P is also true. But then since KS
3 is normal, the same

is true in classical logic by the Normality Lemma. So Γ |= P as well.
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In the opposite direction some, but not all, classical entailments hold in KS
3. An

example of a classically valid argument that is also valid in KS
3 is

P

P → Q

Q

We leave it as an exercise to verify that this argument is indeed valid in KS
3. But not

all classical entailments carry over:

Result 5.3: Not all entailments of classical propositional logic hold in KS
3.

Proof: An example of an argument that is classically valid but not valid in KS
3 is

¬ (P ↔ Q)

(P ↔ R) ∨ (Q ↔ R)

This is classically valid because, for the premise to be true in classical logic, P

and Q must have different truth-values. But then no matter what truth-value

R has, it will be equivalent to one or the other of P and Q since there are only

two truth-values in classical logic—the validity depends crucially on the fact

that classical logic has only two truth-values. So it is not surprising that this

argument isn’t valid in KS
3, where the premise can have the value T while the

conclusion has the value N if P and Q have “opposite” classical values (one has

the value T and the other has the value F) but R has the value N.

5.2 �Lukasiewicz’s Three-Valued Logic

Now we’ll look at a three-valued system originating with the Polish logician Jan

�Lukasiewicz (�Lukasiewicz 1930). This system, which we will call �L3, defines three

of the propositional connectives identically to Kleene’s strong connectives, but the

conditional and biconditional differ from Kleene’s in one truth-table entry each.

This difference, we will see, yields a system that contains both tautologies and con-

tradictions (in the sense defined in the previous section). Here are �L3’s truth-tables:

P ¬LP

T F

N N

F T

P ∧�L Q P ∨�L Q P →�L Q P ↔�L Q

P \ Q T N F P \ Q T N F P \ Q T N F P \ Q T N F

T T N F T T T T T T N F T T N F

N N N F N T N N N T T N N N T N

F F F F F T N F F T T T F F N T

The differences between �Lukasiewicz’s conditional and biconditional and Kleene’s

are in the center of the tables. Each of these two connectives forms a true formula in
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�Lukasiewicz’s system when both of its immediate components have the value N. Why

didn’t �Lukasiewicz assign the compound formula the value N as well in this case?

It’s because he reasoned that any conditional whose antecedent and consequent

are identical, for instance, A →�L A, should be a tautology—as it is in �L3, as can be

verified by examining the diagonal in the truth-table that travels from the upper left

to the lower right:

P →�L Q

P / Q T N F

T T N F

N T T N

F T T T

So even though Mary Middleford is a borderline case of tallness, the sentence If Mary

Middleford is tall, then she’s tall turns out true in �L3 as do the similar conditionals

about Gina Biggerly and Tina Littleton. On the other hand, If Mary Middleford is tall,

then so is Tina Littleton is neither true nor false, and If Mary Middleford is tall, then

so is Gina Biggerly is true. In a similar vein, �Lukasiewicz wanted biconditionals like

A ↔�L A to be tautologies. Note that even though the truth-tables for the two con-

nectives differ from Kleene’s truth-tables, the �L3 connectives are also both normal

and uniform.

Here are �Lukasiewicz’s truth-tables for the formulas that we examined in Sec-

tion 4.1:

P P ∨�L ¬�L P P Q P →�L (P →�L Q) P Q (P ∧�L Q) →�L (P ∨�L Q)

T T T F T T T T T T T T T T T T T T T T T

N N N N N T N T N T N N T N T N N T T T N

F F T T F T F T F T F F T F T F F T T T F

N T N T N T T N T N N T T N T T

N N N T N T N N N N N N T N N N

N F N T N N F N F N F F T N N F

F T F T F T T F T F F T T F T T

F N F T F T N F N F F N T F N N

F F F T F T F F F F F F T F F F

The Law of Excluded Middle behaves as it did in KS
3—not surprising because the

connectives in this formula are defined identically in the two systems. The truth-

table for the second formula makes a conditional true when its antecedent and

consequent both have the value N, unlike Kleene’s tables. And the third formula

always has the value T in �L3, again unlike the treatment of that formula in KS
3.

Having explained �Lukasiewicz’s reason for assigning the value T to a conditional

whose antecedent and consequent both have the value N, a reason that seems rea-

sonable, we add that formulas that are not tautologies that exemplify this assign-

ment strike some as odd. If the unrelated formulas P and Q both have the value N

why should P → Q have the value T rather than the value N as it does in KS
3? The
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assignment of T would seem to make sense when antecedent and consequent are

identical, or related as they are in the formula (P ∧�L Q) →�L (P ∨�L Q) but not when

they are completely unrelated. Some of the oddity is dispelled, however, when we

consider that in the case where P and Q both have the value N, as well as in the other

cases where P → Q has the value T, Q is “at least as true” as P.

�Lukasiewicz, like Kleene, was not motivated by vagueness in constructing his

system, but his motivation differed from Kleene’s. �Lukasiewicz was interested in

the truth-values of so-called future contingent sentences (a concern raised by the

ancient Greek philosopher Aristotle). A future contingent sentence is a sentence

about the future that might turn out to be true and also might turn out to be false—

neither its truth nor its falsehood is necessary. Consider, for example, the sentence

The U.S. president in the year 3000 will be a woman. Such a sentence, according to

�Lukasiewicz’s reasoning, is neither true nor false today—for if it is true, then there

will have to be a female U.S. president in 3000, and if it is false, then there cannot

be a female U.S. president in 3000. But since there doesn’t have to be a female U.S.

president in 3000, although there might be, it follows that the sentence is neither

true nor false today. Given the assumption that future contingent sentences are

neither true nor false �L3 presents a nice logic for such sentences. For example, a

conjunction of a true sentence and a future contingent one such as George Bush

was the U.S. president in 2004 and the U.S. president in 3000 will be a female is

neither true nor false. Despite the contingency of the sentence about the future

presidency, however, the sentence If the U.S. president in 3000 will be a female then

the U.S. president in 3000 will be a female is true in �Lukasiewicz’s system.

Because the truth-tables for the conditional and the biconditional assign T to

a formula whose immediate components both have the value N, these connectives

cannot be defined in �L3 in terms of (any combination of) the other three. The reason

is fairly simple. If you construct a formula using only ¬�L, ∧�L, and ∨�L as connectives,

then whenever the atomic formulas from which it is constructed all have the value

N the compound formula will have the value N as well. But now consider A →�L A

and A ↔�L A. Both formulas have the value T when A has the value N. Since we can’t

form a compound formula that has this property from A, ¬�L, ∧�L, and ∨�L, we cannot

define either →�L or ↔�L in terms of the other three connectives.

�Lukasiewicz in fact took ¬�L and →�L as primitive and used them to define the

other three connectives:

P ∨�L Q = def (P →�L Q) →�L Q

P ∧�L Q = def ¬�L(¬�L P ∨�L ¬LQ)

P ↔�L Q = def (P →�L Q) ∧�L (Q →�L P)

Proof that these definitions produce the correct truth-functions is left as an exer-

cise.4

4 It is also possible to define different conjunction and disjunction operations in �L3 that do support
the classical interdefinability of the five connectives; more on this in Section 5.7.
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Let us now consider various semantic concepts in �L3:

Result 5.4: Every formula that is a tautology in �L3 is also a tautology in classical

logic, and every formula that is a contradiction in �L3 is also a contradiction in

classical logic.

Proof: A formula that is a tautology in �L3 is true in �L3 on every classical truth-

value assignment. Since �L3 is normal, it follows from the Normality Lemma that

the formula is true on every truth-value assignment in classical logic and is

therefore a tautology in classical logic. Similar reasoning holds for contradic-

tions.

Result 5.5: Not every formula that is a tautology in classical logic is also a tau-

tology in �L3, and not every formula that is a contradiction in classical logic is

also a contradiction in �L3.

Proof: Any instance of the Law of the Excluded Middle, for example, A ∨�L ¬LA, is

an example of a classical tautology that does not always have the value T in �L3.

Another example is the formula (P →�L (Q →�L R)) →�L ((P →�L Q) →�L (P →�L R)).

This formula always has the value T in classical logic, but in �L3 it has the value

N when P and Q have the value N and R has the value F. The formula A ∧�L ¬LA,

which is a classical contradiction, is not a contradiction in �L3—it has the value

N when A has the value N.

Note that Result 5.5 does not claim that all classical tautologies fail to be tautolo-

gies of �L3 (nor that all classical contradictions fail to be contradictions of �L3). For

example, A →�L A is a tautology in both systems.

Result 5.6: If � |=�L P then � |= P.

Proof: This follows from the Normality Lemma since �L3 is normal.

Result 5.7: Not every entailment in classical propositional logic holds in �L3.

Proof: The argument and truth-value assignment in Result 5.3 will suffice here

as well.

We note that other classically valid arguments are valid in �L3. For example, the

classically valid

P

P → Q

Q

is valid in �L3 as well as in KS
3.
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5.3 Bochvar’s Three-Valued Logics

The Russian mathematician Dmitri Bochvar proposed two very different systems

of three-valued logic (Bochvar 1937)—different from Kleene’s strong system and

�Lukasiewicz’s system but also different from each other. Bochvar was concerned

with paradoxical sentences like the Liar Paradox, which, in its simplest form, is

This sentence is false.

The paradox begins with the assumption that the sentence is true or false. But now

consider: if the sentence is true, then what it says is the case, and so it is false. So

it can’t be true since that leads to a contradiction. Is it false, then? Well, if it is false

then what it says is not the case and so it must be true. So the sentence can’t be false

either. There’s your paradox. The Liar Paradox has been extensively studied,5 so we

will only note here that Bochvar’s position was that the sentence is meaningless and

hence neither true nor false, since only meaningful sentences can say true or false

things. The third truth-value N represents meaninglessness for Bochvar.

Bochvar’s “internal” three-valued system, which we will designate as BI
3, has

the following truth-tables:

P ¬BIP

T F

N N

F T

P ∧BI Q P ∨BI Q P →BI Q P ↔BI Q

P \ Q T N F P \ Q T N F P \ Q T N F P \ Q T N F

T T N F T T N T T T N F T T N F

N N N N N N N N N N N N N N N N

F F N F F T N F F T N T F F N T

We mentioned earlier that Kleene had a second system of three-valued connectives,

which he called the weak connectives. That system is identical to BI
3. We shall

nevertheless refer to the system as Bochvar’s, as is customary.

Negation in BI
3 is identical to negation in the previous systems, but the

truth-functions for the other connectives are all different. We might say that the

truth-value N is contagious in BI
3—whenever a component of a compound formula

has the value N, so does the compound formula as a whole—regardless of the value

of any other component. If N represents meaninglessness, then it is quite sensible

that this value should be contagious. Just as Thiggledy piggledy is meaningless, so

is Thiggledy piggledy and grass is green. (The expression as a whole is meaningless,

although part of it is meaningful.) Of course, our interest in this text is vagueness

and so the “contagiousness” is that of the value N based on borderline cases. So, for

5 See, for example, Martin (1970, 1984).
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example, even if a disjunction has a true disjunct it is nevertheless vague as a whole

if the other disjunct is vague.

Here are the BI
3 truth-tables for our earlier formulas:

P P ∨BI ¬�L P P Q P →BI (P →BI Q) P Q (P ∧BI Q) →BI (P ∨BI Q)

T T T F T T T T T T T T T T T T T T T T T

N N N N N T N T N T N N T N T N N N T N N

F F T T F T F T F T F F T F T F F T T T F

N T N N N N T N T N N T N N N T

N N N N N N N N N N N N N N N N

N F N N N N F N F N N F N N N F

F T F T F T T F T F F T T F T T

F N F N F N N F N F N N N F N N

F F F T F T F F F F F F T F F F

Neither of the classical tautologies is a tautology here, and the second formula

receives the value N more often than it did in KS
3 or �L3.

The BI
3 connectives are all normal—they agree with the classical tables when

their components are either T or F—but of the binary connectives only the bicondi-

tional is uniform, and that only trivially so. Uniformity of conjunction, for example,

would require that a conjunction be false whenever one of the conjuncts is. But

since the value N is contagious, this is not the case. Similar comments show that

disjunction and the conditional are also not uniform in this system.

As with KS
3, any way of interdefining connectives in classical logic will also

work for BI
3. This is because not only are the connectives normal—so we will get

the desired results for truth-value assignments involving only T and F—but they all

agree on what happens when a formula has a component with the value N (namely,

the compound formula is also assigned the value N).

Also like KS
3, BI

3 has no tautologies. Because N is contagious, every formula

has the value N on at least one truth-value assignment to its atomic components—

namely, on any truth-value assignment that assigns N to at least one atomic com-

ponent. So no formula is true on every truth-value assignment in BI
3. We thus

have

Result 5.8: No formula is a tautology in BI
3, and no formula is a contradiction

in BI
3.

Concerning entailment:

Result 5.9: If � |=BI P then � |= P.

Proof: This follows from the Normality Lemma since BI
3 is normal.

Result 5.10: Not every entailment that holds in classical propositional logic

holds in BI
3 as well.
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Proof: The example argument and truth-value assignment in Result 5.3 suffice

here as well.

There are also significant examples of classically valid arguments that are not valid

in BI
3 but that are valid in both KS

3 and �L3. One example is

Q

P → Q

In BI
3, the premise has the value T but the conclusion has the value N when Q has

the value T and P has the value N.

Bochvar introduced a second system of connectives that together constitute his

external system of three-valued logic, BE
3. In BE

3, the value N acts as if it is actually

the value F:

P ¬BEP

T F

N T

F T

P ∧BE Q P ∨BE Q P →BE Q P ↔BE Q

P \ Q T N F P \ Q T N F P \ Q T N F P \ Q T N F

T T F F T T T T T T F F T T F F

N F F F N T F F N T T T N F T T

F F F F F T F F F T T T F F T T

Bochvar introduced both the internal and external connectives within a single

system; in that system the external connectives were defined connectives, using

the internal connectives and a special external assertion operator a:

P aP

T T

N F

F F

To define the external version of a connective, we apply the internal version of

the connective to externally asserted formulas. Thus, for example, if we apply the

internal ¬BI to aP we get the table for external negation:

P ¬BI aP

T F T

N T F

F T F
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and if we apply the internal ∧BI to aP and aQ we get the table for external conjunc-

tion:

P Q aP∧BI aQ

T T T T T

T N T F F

T F T F F

N T F F T

N N F F F

N F F F F

F T F F T

F N F F F

F F F F F

We may read the external assertion connective as asserting truth: aP means P is true.

This assertion is true if P is true, and is false otherwise. In particular, if P has the

truth-value N then it is false that P is true. Rather than take the external assertion

operator as primitive, however, we will define it using external negation:

aP = def ¬BE¬BEP

Henceforth, for simplicity in comparing systems, when we speak of Bochvar’s exter-

nal connectives we will mean the five connectives other than external assertion. The

external connectives are both normal and uniform.

By introducing the external connectives Bochvar created a system with tautolo-

gies as well as contradictions; indeed, we have the following results:

Result 5.11: The set of formulas that are tautologies in BE
3 is exactly the set of

formulas that are tautologies in classical logic, and the set of formulas that are

contradictions in BE
3 is exactly the set of formulas that are contradictions in

classical logic.

Proof: Since BE
3 is normal, it follows from the Normality Lemma that every

formula that is a tautology in BE
3 is a classical tautology, and similarly for con-

tradictions.

Conversely, we note that every classical tautology is a compound formula.

Since the connectives in BE
3 treat their N components as if they were false,

BE
3 treats the atomic components of any compound formula on a truth-value

assignment where they are N as if they were false—and hence assigns the truth-

value to the formula that classical logic would in that case. So a classical tautol-

ogy must be a tautology in BE
3 as well, and similar reasoning holds for contra-

dictions.

Entailment also behaves classically in BE
3:

Result 5.12: If � |=BE P then � |= P.
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Proof: This follows from the Normality Lemma, since BE
3 is normal.

Result 5.13: If � |= P then � |=BE P.

Proof: We shall show this by contraposition; that is, we’ll show that if an entail-

ment does not hold in BE
3 then it doesn’t hold in classical logic either. So con-

sider a set � and formula P such that � �|=BE P. Then there is some three-valued

assignment on which all the formulas in � have the value T but on which P has

either the value F or the value N. We can convert this to a classical truth-value

assignment by keeping the T and F assignments to atomic formulas but turning

the N assignments (if any) to atomic formulas into F assignments. This classical

truth-value assignment will make the premises of the argument true in classi-

cal logic because compound formulas in BE
3 behave as if their N-valued atomic

components have the value F, and if any of the formulas in � are atomic, then,

since they have the value T on the BE
3 assignment, they will have the value

T on the classical assignment as well. But P has the value F on the classical

truth-value assignment for similar reasons.

Thus tautologousness, contradictoriness, and entailment all coincide for classical

logic and BE
3.

5.4 Evaluating Three-Valued Systems; Quasi-Tautologies
and Quasi-Contradictions

There are several ways in which we can measure the adequacy of a three-valued

system as a logic of vagueness. First, we note that the Principle of Bivalence fails

for three-valued systems, by definition! On this count, all four systems that we have

presented are good candidates for such a logic. However, we note that although BE
3

rejects the Principle of Bivalence it does so only for atomic formulas, and compound

formulas behave exactly as they do in classical logic. So if we believe, for example,

that the Law of Excluded Middle fails for vague sentences, that would be a reason

for rejecting BE
3 as a logic for vagueness.

How else might we evaluate the three-valued systems, and in particular are

there significant criteria that will distinguish among the remaining systems KS
3, �L3,

and BI
3? One way to evaluate different logical systems is to compare their sets of

tautologies and contradictions. We have seen that in each of the three systems, there

are classical tautologies that fail to be tautologies in the three-valued system (and

that a similar situation holds for classical contradictions). This is desirable, at least if

we believe that classical tautologies such as instances of the Law of Excluded Middle

should fail in the case of borderline attributions of vague predicates. But there is a

difference in the sets of classical tautologies that fail for the three systems. KS
3 and

BI
3 have no tautologies. On the other hand, �L3 does have tautologies. If we believe

that the simple classical tautologies A → A and A ↔ A should remain tautologies
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within a three-valued system, that would be a reason for preferring �L3 to KS
3

and BI
3.

But there is a second way to define a tautology-like concept in three-valued logic.

We will say that a formula is a quasi-tautology if it is never false. Note that in classical

logic the concepts of being a tautology and being a quasi-tautology coincide, since

a formula that is never false in classical logic is always true, and vice versa. But the

concepts do not coincide in three-valued systems. For example, although KS
3 and

BI
3 have no tautologies they both have quasi-tautologies; the formula A ∨ ¬A is a

quasi-tautology in each of the two systems (as well as in �L3).

It is common to talk of designated truth-values in connection with tautologies

and their kin: the designated truth-values include T and any other truth-values that

we wish to count as “good” or at least as “not bad.” We can then define tautologies

in terms of designated truth-values: a formula is a tautology if it has a designated

truth-value on every truth-value assignment. If only the value T is designated, we

end up with the definition of tautology that we’ve been using: a formula that always

has the value T. If both the values T and N are designated, we end up with the

definition of quasi-tautologies instead.

Why might we be interested in quasi-tautologies? For one thing, we might be

interested in avoiding falsehood as much as we are interested in embracing truth. If

the former is the case, the set of quasi-tautologies should be of interest. But practical

interests aside, the concept of a quasi-tautology is a second way of generalizing the

classical notion of a tautology—as a formula that is never false rather than as a

formula that is always true—and the concept therefore also has purely theoretical

interest.

As we just noted, there are quasi-tautologies in KS
3 and BI

3 even though there

are no tautologies in either of the systems. In fact, every classical tautology is a

quasi-tautology in both systems, and vice versa. We’ll prove this first for Bochvar’s

system, since that is the simpler of the two proofs.

Result 5.14: The set of BI
3 quasi-tautologies is exactly the set of classical

tautologies.

Proof: Let P be a BI
3 quasi-tautology. Then P does not have the value F on

any truth-value assignment. Since BI
3 is normal, it follows from the Normality

Lemma that P does not have the value F on any classical truth-value assignment

in classical logic and is therefore a tautology of classical logic. So every BI
3 quasi-

tautology is a classical tautology.

Conversely, assume that a formula P is not a BI
3 quasi-tautology. Then P has

the value F on some truth-value assignment in BI
3. This truth-value assignment

must be a classical assignment, since the value N is contagious in BI
3. It follows

from the Normality Lemma that P has the value F on this assignment in classical

logic and therefore is not a classical tautology.
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Although we have the same result for KS
3, the proof in the second direction is

somewhat different:

Result 5.15: The set of KS
3 quasi-tautologies is exactly the set of classical

tautologies.

Proof: The proof that every KS
3 quasi-tautology is a classical tautology follows

from the Normality Lemma.

The converse claim, that a formula P that is not a KS
3 quasi-tautology is

also not a classical tautology, is equivalent to saying that a formula P that has

the value F on some truth-value assignment in KS
3 will also have the value F on

some classical assignment. The restated claim holds trivially if the assignment

on which P has the value F in KS
3 is a classical assignment. So we need to

establish that if a formula P has the value F on some nonclassical truth-value

assignment in KS
3, P will also have the value F on some classical assignment

in KS
3.

In order for P to have the value F in KS
3 on an assignment on which one or

more of its atomic components have the value N, uniformity must have kicked

in at some point to override the Ns in favor of classical truth-values. And at each

point where uniformity kicked in, the same classical value would have resulted

if the N had been a T or an F instead. So if we replace all of the Ns that the

three-valued assignment assigns with either Ts or Fs (it doesn’t matter which),

P will end up having the same value on the resulting classical assignment as it

did on the three-valued assignment.

On the other hand, the quasi-tautologies of �L3 do not coincide with the tautologies

of classical logic:

Result 5.16: Every �L3 quasi-tautology is a classical tautology; every classical

tautology that contains only negation, conjunction, and disjunction is an �L3

tautology; but some classical tautologies containing the conditional or the

biconditional are not �L3 quasi-tautologies.

Proof: The proof that every �L3 quasi-tautology is a classical tautology follows

from the Normality Lemma.

It follows from Result 5.15 that every classical tautology that contains only

negation, conjunction, and disjunction is an �L3 tautology because �L3 negation,

conjunction, and disjunction are defined the same as in KS
3.

An example of a classical tautology containing a conditional that is not a

quasi-tautology in �L3 is ¬(A → ¬A) ∨ ¬(¬A → A). When A has the truth-value

N, this formula is false in �L3 and therefore is not a quasi-tautology. An example

of a classical tautology containing a biconditional that is not a quasi-tautology

in �L3 is ¬(A ↔ ¬A); this formula is also false when A has the value N. (It is easily

verified that these formulas are both classical tautologies.)
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For BE
3, we have

Result 5.17: The set of BE
3 quasi-tautologies coincides with the set of classical

tautologies.

Proof: The only formulas that are not tautologies in BE
3 but might be quasi-

tautologies are atomic formulas, for no other formulas can ever have the truth-

value N in this system. But these formulas are neither classical tautologies nor

quasi-tautologies in BE
3, since they can have the value F. So quasi-tautologies

and tautologies coincide in BE
3, and we have already established that the BE

3

tautologies coincide with the set of classical tautologies.

As a dual to the concept of quasi-tautology, we introduce quasi-contradictions: a

formula is a quasi-contradiction if it is never true; that means that in a three-valued

system it always has the value T or the value N.6 The results concerning quasi-

tautologies in the three-valued systems also hold for quasi-contradictions: namely,

in each of BI
3, BE

3, and KS
3 the set of quasi-contradictions coincides with the set

of classical contradictions; every �L3 quasi-contradiction is a classical contradiction;

and some classical contradictions are not �L3 quasi-contradictions. Proofs of these

claims are left as an exercise.

We also introduce the concept of a quasi-entailment: a set � of formulas quasi-

entails a formula P if there is no truth-value assignment on which each of the

formulas in � has the value T or N while P has the value F; that is, whenever each

formula in � has one of the values T or N so does P. An argument is quasi-valid if

the set consisting of its premises quasi-entails its conclusion. We have

Result 5.18: Every quasi-entailment in each of KS
3, �L3, BI

3, and BE
3 is a classical

entailment.

Proof: If a set of formulas � quasi-entails a formula P in any of the four systems

then there is no classical truth-value assignment in any of these systems on

which all of the formulas in � have the value T (none will have the value N on

a classical truth-value assignment) and P has the value F in that system. Since

these systems are all normal, it follows from the Normality Lemma that the

entailment holds in classical logic.

The converse does not generally hold:

Result 5.19: Not every classical entailment is a quasi-entailment in KS
3, and

ditto for the other three systems �L3, BI
3, and BE

3.

Proof: The argument

A ∧ ¬A

B

6 We may also define contradictions via anti-designated truth-values—truth-values including F
and other values that we wish to single out. The sets of designated and anti-designated truth-
values may overlap—so N can be included in both sets.
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is valid in classical logic. But it fails to be quasi-valid in any of KS
3, �L3, or BI

3

(although it is valid in all three systems). This is because the premise has the

value N and the conclusion has the value F in each of these three systems when

A has the value N and B has the value F.

The classically valid argument

A

A ∨ A

isn’t valid in BE
3. When the premise has the value N, the conclusion is false.

Of course, some classically valid arguments are also quasi-valid in more than

one of the four systems. The argument

P ∧ Q

P

is quasi-valid in KS
3, �L3, and BE

3, and the argument

P

P ∨ Q

is quasi-valid in KS
3, �L3, and BI

3.

There is a third interesting version of entailment (and hence of validity) in

three-valued systems: rather than simply preserving truth (as in entailment proper)

or preserving non-falsehood (as in quasi-entailment), we can rank the three truth-

values and require that the value of P be at least as great as the value of the lowest-

ranked formula in �. We rank the three truth-values as T N F. We will say that a

set of formulas � degree-entails7 a formula P if P’s value can never be less than the

least value of the formulas in �. If all of the formulas in � have the value T, then P

must also have the value T, and if each of the formulas in � has either the value T or

the value N, then P must have either the value T or the value N as well. An argument

is degree-valid in a three-valued system if the set of its premises degree-entails its

conclusion. Not surprisingly, we have

Result 5.20: Every degree-entailment that holds in BI
3, BE

3, KS
3, or �L3 is a clas-

sical entailment.

Proof: Left as an exercise.

In fact, degree-entailment is equivalent to entailment proper plus quasi-entailment

(to be proved in the exercises). So if � fails to entail or to quasi-entail P in any three-

valued system then � will also fail to degree-entail P in that system. Consequently,

we have

7 The name degree-entailment anticipates the concept of degrees of truth to be introduced when
we turn to fuzzy logic.
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Result 5.21: Not every classical entailment is a degree-entailment in KS
3, and

ditto for the other three systems �L3, BI
3, and BE

3.

Proof: For the reason just given, this follows from earlier results.

5.5 Normal Forms

For each of the four systems, we define phrases, clauses, disjunctive normal

form, and conjunctive normal form the same as we did for classical propositional

logic:

A literal is a phrase.

If P and Q are phrases, so is (P ∧ Q).

Every phrase is in disjunctive normal form.

If P and Q are in disjunctive normal form, so is (P ∨ Q).

A literal is a clause.

If P and Q are clauses, so is (P ∨ Q).

Every clause is in conjunctive normal form.

If P and Q are in conjunctive normal form, so is (P ∧ Q).

Recall the equivalences that we used to convert formulas to these normal forms:

P → Q is equivalent to ¬P ∨ Q (Implication)

P ↔ Q is equivalent to (¬P ∨ Q) ∧ (¬Q ∨ P) (Implication)

¬(P ∧ Q) is equivalent to ¬P ∨ ¬Q (DeMorgan’s Law)

¬(P ∨ Q) is equivalent to ¬P ∧ ¬Q (DeMorgan’s Law)

P is equivalent to ¬¬P (Double Negation)

(P ∨ Q) ∧ R is equivalent to (P ∧ R) ∨ (Q ∧ R) (Distribution)

P ∧ (Q ∨ R) is equivalent to (P ∧ Q) ∨ (P ∧ R) (Distribution)

(P ∧ Q) ∨ R is equivalent to (P ∨ R) ∧ (Q ∨ R) (Distribution)

P ∨ (Q ∧ R) is equivalent to (P ∨ Q) ∧ (P ∨ R) (Distribution)

All of these equivalences hold in KS
3 and BI

3. The implication equivalences fail in

�L3, and the Double Negation equivalence fails in BE
3. Proof of these claims is left as

an exercise.

Because all of the equivalences hold in KS
3 and BI

3, we can claim that every

formula in these two systems is equivalent to a formula in disjunctive normal form

and to a formula in conjunctive normal form. Formulas in �L3 that contain the con-

ditional or the biconditional may not be equivalent to formulas in either normal

form. We showed in Section 5.2 that we can’t define either →�L or ↔�L in terms of ¬�L,

∧�L, and ∨�L. It follows that neither P →�L Q nor P ↔�L Q can be equivalent to a formula

in either normal form.

It turns out that each BE
3 formula is equivalent to a formula in disjunctive

normal form and to one in conjunctive normal form, but we can’t claim that this
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follows from the previous equivalences since Double Negation fails for BE
3. However,

we note that the single case where Double Negation fails occurs when the double

negation appears in front of an atomic formula, such as ¬¬S. In this case we can

eliminate the double negation by replacing¬¬P with P∧P, since these two formulas

are equivalent for any atomic formula P. (This would also work where P is a complex

formula but is unnecessary since we can simply eliminate the double negation in

this case.) Then the Distribution equivalences can be applied to produce a formula

in either of the normal forms.

In Chapter 2 we proved that a clause of classical propositional logic is a tautology

if and only if it contains a complementary pair of literals, and that a phrase of classical

propositional logic is contradictory if and only if it contains a complementary pair of

literals. We have shown in this chapter, in Results 5.14, 5.15, and 5.17, that the quasi-

tautologies of KS
3, BI

3, and BE
3 coincide with the classical tautologies. It follows

that

Result 5.22: A clause of KS
3, �L3, BI

3, or BE
3 is a quasi-tautology in that system if

and only if it contains a complementary pair of literals.

(The result holds of �L3 because clauses contain only negation and conjunction, and

in �L3 these connectives are identical to the KS
3 connectives.) In Chapter 2 we also

proved that a phrase of classical propositional logic is contradictory if and only if it

contains a complementary pair of literals. Because the quasi-contradictions of the

three systems in question coincide with classical contradictions, we also have

Result 5.23: A phrase of KS
3, �L3, BI

3, or BE
3 is quasi-contradictory in that system

if and only if it contains a complementary pair of literals.

And, as a consequence of these two results:

Result 5.24: A formula P of KS
3, �L3, BI

3, or BE
3 that is in conjunctive normal

form is a quasi-tautology in that system if and only if each clause in P contains

a complementary pair of literals.

Result 5.25: A formula P of KS
3, �L3, BI

3, or BE
3 that is in disjunctive normal form

is quasi-contradictory in that system if and only if each clause in P contains a

complementary pair of literals.

5.6 Questions of Interdefinability between the Systems
and Functional Completeness

Although we have characterized each of the four systems KS
3, �L3, BI

3, and BE
3 inde-

pendently of the others, there are obviously important connections. For example,

negation is defined identically in KS
3, �L3 and BI

3, and disjunction and conjunction
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are defined identically in the former two systems. This raises the general question,

Which connectives are definable within which systems? We first establish some very

general negative results:

Result 5.26: The binary connectives of KS
3, �L3, and BE

3 are not definable in BI
3.

Proof: None of the connectives in BI
3 produces a formula with a classical truth-

value when any of its immediate components have the value N. But the binary

connectives of the other three systems can produce such, so none of these can

be defined using only the connectives of BI
3.

Result 5.27: None of the connectives of KS
3, �L3, or BI

3 are definable in BE
3.

Proof: The connectives of BE
3 never produce formulas with the value N. Since

each of the connectives in the other systems can produce such formulas, the

result follows.

As a consequence of these two results, we know that neither BI
3 nor BE

3 can express

everything that �L3 can or everything that KS
3 can, nor can either of BI

3 or BE
3 express

everything that the other system can.

We turn now to the expressive powers of KS
3 and �L3. Both systems can express

everything that can be expressed in BI
3:

Result 5.28: All of the connectives of BI
3 are definable in both KS

3 and �L3.

Proof: Negation in BI
3 is identical to negation in the other two systems. We can

define BI
3’s conjunction using the other two system’s conjunction, disjunction,

and negation (these connectives are defined identically in those two systems)

as follows:

P ∧BI Q = def (P ∧K/�L Q) ∨K/�L ((P ∧K/�L ¬K/�L P) ∨K/�L (Q ∧K/�L ¬K/�L Q))

It is left as an exercise to verify this equivalence. We can then define the other

BI
3 connectives in terms of these two, using any of the standard classical equiv-

alences. Alternatively, we can give direct definitions for disjunction and the

conditional analogous to the preceding definition for conjunction:

P ∨BI Q = def (P ∨K/�L Q) ∧K/�L ((P ∨K/�L ¬K/�L P) ∧K/�L (Q ∨K/�L ¬K/�L Q))

P →BI Q = def (¬K/LP ∨K/�L Q) ∧K/�L ((P ∨K/�L ¬K/�L P) ∧K/�L (Q ∨K/�L ¬K/�L Q))

On the other hand, not all of �L3 is expressible within KS
3:

Result 5.29: The �L3 conditional is not definable in KS
3.

Proof: A formula P→�L Q has the value T when both P and Q have the value N. But

every KS
3 connective produces a formula with the value N when its immediate

components (all) have the value N, so no combination of KS
3 connectives can

produce a formula that expresses the �L3 conditional.
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Nor can any BE
3 connectives be expressed within KS

3:

Result 5.30: The BE
3 connectives are not definable in KS

3.

Proof: No KS
3 connective produces a formula that has a classical truth-value

when its immediate components have the value N, so no BE
3 connective can

be defined using KS
3 connectives.

However, it turns out that every connective of the other three systems is definable

in �L3. We have already shown that this is true of BI
3.

Result 5.31: Every KS
3 connective is definable in �L3.

Proof: Since KS
3’s negation, conjunction, and disjunction are identical to those

of �L3, we need only note that the KS
3 conditional and biconditional are definable

using those connectives.

Result 5.32: Every BE
3 connective is definable in �L3.

Proof: It will suffice to show that Bochvar’s external assertion is definable in �L3.

The definition aP = def ¬�L(P →�L ¬LP) produces the table for external assertion:

P aP

T T

F F

N F
All of the other external Bochvar connectives can be defined using external

assertion and Bochvar’s internal connectives, which we have already shown to

be definable in �L3.

Having shown that �L3 is powerful enough to define all of the connectives of

the other three systems, the question arises, Are all possible three-valued truth-

functions definable in �L3? If they are, then �L3 is a functionally complete system.

We showed in Chapter 2 that the classically defined connectives ¬ and ∧ form a

functionally complete system for classical logic—every possible two-valued truth-

function can be defined solely in terms of classical negation and conjunction. Turn-

ing to �L3 we might want to know, for example, whether the connective # with the

truth-table

P # Q

P \ Q T N F

T T N T

N T N N

F F N F

is definable in �L3. The answer is yes, and we leave it as an exercise to produce a

formula that has these truth-conditions—using the algorithm that we are about to

present in Result 5.33. More generally, every regular three-valued truth-function

can be defined in �L3, where a regular truth-function is one that produces classical
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truth-values when (but not necessarily only when) applied exclusively to classical

truth-values:

Result 5.33: All regular three-valued truth-functions are definable in �L3.

Proof: A regular three-valued n-place truth-function can be described by the

truth-table schema

P1 P2 . . . Pn

T T . . . T v1

T T . . . N v2

. . . . . .

F F . . . F v3
n

where each of v1, v2, . . . , v3
n is one of the values T, N, F and where vi is T or F if

all of the values to the left of the vertical bar in row i are classical truth-values.

We will first provide, for each row i of the truth-function’s table that has the

value vi = T, a formula Qi that has the value T in that row and F in all other rows.

We’ll be using the external assertion connective, which we have already shown

to be definable in �L3. For each such row of the table, define the formula Qi to be

P1 ∧�L P2 ∧�L . . . ∧�L Pn where

Pj = aPj if the value of Pj is T in row i,

a¬LPj if the value of Pj is F in row i, and

¬LaPj ∧�L ¬La¬LPj otherwise.

Each of these formulas Pj defined for a particular row i will have the value T

when Pj has the value it has in row i and will have the value F otherwise. So

the conjunction Qi will have the value T in the row i for which it is defined but

will be false in each other row since it will have at least one conjunct with the

value F.

Next we provide, for each row i of the truth-function’s table that has the

value vi = N, a formula Qi that has the value N in that row and F in all other

rows. Because the truth-function that we are considering is regular, at least one

of the Pj must have the value N in such a row. For each such row i, define Qi to

be P1 ∧�L P2 ∧�L . . . ∧�L Pn where

Pj = aPj if the value of Pj is T in row i,

a¬LPj if the value of Pj is F in row i, and

Pj ∧�L ¬LPj otherwise.

Finally, we form a disjunction of the formulas Qi for each row i with vi = T or

vi = N. This disjunction expresses the function defined in the truth-table

schema: the disjunction will have the value vi for each row i such that vi = T or

vi = N,andF for all other rows—thedesiredresult,sinceallotherrowshavevi = F.

Except that there is one special case—if the function produces F in every row,

then that function can be defined in �L3 using aP1 ∧�L ¬LaP1 ∧�L P2 ∧�L . . . ∧�L Pn—

this formula always has the value F.
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In fact we can make a more specific claim than Result 5.33, namely, all and only

regular three-valued truth-functions are definable in �L3. For this we establish

Result 5.34: No nonregular truth-function is definable in �L3.

Proof: All of the �L3 connectives are regular, so it is impossible to produce a

formula that has the value N when all of its constituents have values T or F.

We don’t consider it a bad thing that nonregular truth-functions cannot be

defined in �L3, for it is hard to come up with an example where we would want a

connective to produce a nonclassical value based on classical values alone for its

constituents. However, for the sake of logical theory we note that �L3 can be made

into a functionally complete system with the addition of the nonregular operator

P %P

T N

N N

F N

This operator was introduced by the Polish logician Jerzy �L. Supecki in order to

expand �L3 to a truth-functionally complete system (Supecki 1936).

5.7 �Lukasiewicz’s System Expanded

As we noted in Section 5.2, �Lukasiewicz’s conditional cannot be defined using his

other connectives as can be done in classical logic and in the other three-valued

systems presented in this chapter. It is customary, in the context of fuzzy logic,

to define a second pair of conjunction and disjunction operations for which the

interdefinabilities do hold. These two new operations are called bold conjunction

and disjunction and will be, respectively, symbolized as & and ∇:

P & Q = def ¬�L(P →�L ¬LQ)

P ∇ Q = def ¬LP →�L Q

The bold connectives have the following truth-tables in �L3:

Bold Conjunction Bold Disjunction

P & Q P ∇ Q

P \ Q T N F P \ Q T N F

T T N F T T T T

N N F F N T T N

F F F F F T N F

Note that these differ from the (now called weak) conjunction and disjunction oper-

ators of �L3 in the middle position of the truth-table: weak conjunction and weak

disjunction both have the value N in that position. Rather than define the bold con-

nectives as we did, we could also take them as primitive and define the �L3 conditional
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using either of these connectives: P →�L Q = def ¬�L(P & ¬LQ) or P →�L Q = def ¬LP ∇ Q

(analogous to the classical definitions of the conditional in terms of the other oper-

ators).

Using the bold connectives, we have tautologies that are versions of the Law

of the Excluded Middle and the Law of Noncontradiction in �L3: P ∇ ¬LP and

¬�L(P & ¬LP). Like the weak connectives, the bold connectives meet the minimal

requirements that some have proposed for conjunction and disjunction, namely:

1. Conjunction and disjunction are both associative: P op (Q op R) is equivalent

to (P op Q) op R, where op is a conjunction or disjunction connective.

2. Conjunction and disjunction are both commutative: P op Q is equivalent to Q

op P.

3. Conjunction and disjunction are nondecreasing in both arguments: if the value

of P is less than or equal to the value of R (using the ranking T N F) then the

value of P op Q or Q op P is less than or equal to the value of R op Q or Q op R.8

4. P conj Q (where conj is a conjunction connective) has the value that Q has when

P has the value T.

5. P disj Q (where disj is a disjunction connective) has the value that Q has when

P has the value F.9

In the context of infinite-valued logics conjunction and disjunction operations that

meet these conditions are called, respectively, t-norms and t-conorms (where the

t is short for triangular, terminology that arose because these concepts were first

introduced in connection with probabilistic metric spaces in Menger [1942]). It is left

as an exercise to prove that t-norm and t-conorm operations that satisfy conditions

1–5 will also satisfy conditions 6 and 7:

6. P conj Q has the value F when either P or Q has the value F.

7. P disj Q has the value T when either P or Q has the value T.

These seven conditions uniquely define conjunction and disjunction in classical

logic (proof is left as an exercise), and so it is natural to view them as the minimal

conditions on conjunction and disjunction in other logics.

Now a concluding note. Because we know that all the connectives of the other

three-valued systems we have studied, as well as bold conjunction and disjunction,

can be defined in �L3, we can capture all of these using the single system �L3. If we

think that there are really two important interpretations of the English conditional,

one being Kleene’s and the other being �Lukasiewicz’s, or perhaps that there are two

important types of negation, one being �Lukasiewicz’s and the other being Bochvar’s

external negation, then we can capture both within the system �L3 alone. In the

8 Note that owing to commutativity, if these operations are nondecreasing in either argument they
must be nondecreasing in both. Proof is left as an exercise.

9 Owing to commutativity, conditions 4 and 5, respectively, hold of Q conj P and Q disj P as well.
Proof is similar to the proof of the claim in footnote 8.
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following chapters we shall be focusing on �L3, and in doing so we don’t forfeit any

virtues that the other systems may have.

5.8 Exercises

SECTION 5.1

1 Using truth-tables, determine whether the following pairs of formulas are equiv-

alent (always have the same truth-value) in KS
3:

a. P ∧ Q ¬(¬P ∨ ¬Q)

b. P ¬¬P

c. P → Q ¬Q → ¬P
2 Show that if ¬K and ∧K are taken as primitive connectives and the other ones

are introduced with the definitions

P ∨K Q = def ¬K (¬KP ∧K ¬KQ)

P →K Q = def ¬K (P ∧K ¬KQ)

P ↔K Q = def ¬K (P ∧K ¬KQ) ∧K ¬K(¬KP ∧K Q)

we obtain the correct truth-tables for KS
3. (You may construct truth-tables for

the formulas on the right-hand sides to show this.)

3 Use truth-tables to decide whether the following arguments are valid in KS
3:

a. P

P → Q

Q

b. P ∧ ¬Q

Q → P

c. P → Q

¬Q

¬P

SECTION 5.2

4 Use truth-tables to decide whether each of the following pairs of formulas are

equivalent in �L3:

a. P ∨ Q ¬(¬P ∧ ¬Q)

b. P ¬¬P

c. P P ∧ P

d. P P ∨ P

e. P → Q ¬Q → ¬P

f. P ↔ Q (P ∧ Q) ∨ (¬P ∧ ¬Q)
5 Show that if ¬�L and →�L are taken as primitive connectives and the other ones

are introduced with the definitions

P ∨�L Q = def (P →�L Q) →�L Q

P ∧�L Q = def ¬�L(¬LP ∨�L ¬LQ)

P ↔�L Q = def (P →�L Q) ∧�L (Q →�L P)

we obtain the correct truth-tables for �L3.
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6 Using truth-tables, show that the following pairs of formulas are equivalent

in both �L3 and KS
3, so that the second formula in each pair can be used as a

definition of the first in either system.
a. P ∧ Q ¬(¬P ∨ ¬Q)

b. P ↔ Q (P → Q) ∧ (Q → P)
7 Using a truth-table, show that the following formulas are not equivalent in �L3,

so that the second cannot be used as a definition of the first.

P → Q ¬(P ∧ ¬Q)

8 In Exercise 7 you showed that the following formulas are not equivalent in

�L3, so that the second cannot be used as a definition of the first in that

system:

P → Q ¬(P ∧ ¬Q)

Are they equivalent in Ks
3?

9 Using truth-tables, determine which of the following formulas are tautologies

in �L3 (note: they are all classical tautologies):

a. ¬P → (P → Q)

b. (P → ¬P) → ¬P

c. (P ↔ Q) ∨ (P ↔ ¬Q)

d. (P ∧ Q) → (P ∨ Q)

10 Use truth-tables to decide whether the following arguments are valid in �L3:

a. P

P → Q

Q

b. P ∧ ¬Q

Q → P

c. P → Q
¬Q

¬P

SECTION 5.3

11 Using truth-tables, determine whether the following pairs of formulas are

equivalent (always have the same truth-value) in BI
3, Bochvar’s system of

“internal” connectives:
a. P ∧ Q ¬(¬P ∨ ¬Q)

b. P ¬¬P

c. P → Q ¬Q → ¬P

12 Do the same, using BE
3, Bochvar’s system of “external” connectives, in place of

the internal connectives in 5a–c.

13 Use truth-tables to decide whether the following arguments are valid in BI
3:

a. P

P → Q

Q

b. P ∧ ¬Q

Q → P
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c. P → Q
¬Q

¬P

14 Let us define a third version of Bochvar’s connectives, called the “mixternal”

connectives, defined in terms of Bochvar’s internal connectives and Bochvar’s

external assertion operator a:

Connective Mixternal form

Negation — P = def a¬BIP

Conjunction P • Q = def a(P ∧BI Q)

Disjunction P + Q = def a(P ∨BI Q)

Conditional P ⇒ Q = def a(P →BI Q)

Biconditional P ⇔ Q = def a(P ↔BI Q)

Produce truth-tables for this new set of connectives.

15 In which of the four systems KS
3, �L3, BI

3, and BE
3 are instances of the Law of

NonContradiction, ¬(P ∧ ¬P), tautologies?

SECTION 5.4

16 Prove the following:

a. In each of BI
3, BE

3, and KS
3 the set of quasi-contradictions coincides with

the set of classical contradictions.

b. Every �L3 quasi-contradiction is a classical contradiction.

c. Some classical contradictions are not �L3 quasi-contradictions.

d. Result 5.20.

17 a. Prove that the argument

P ∧ Q

P

is quasi-valid in both KS
3 and �L3, but not in BI

3.

b. Prove that the argument

P

P ∨ Q

is quasi-valid in all three of KS
3, �L3, and BI

3.

c. For each of the three systems, give an example of a classically valid argument

that is degree-valid in that system.

18 Prove that every degree-entailment that holds in BI
3, BE

3, KS
3, or �L3 is a classical

entailment.

19 Prove that degree-entailment is equivalent to entailment proper plus quasi-

entailment.

SECTION 5.5

20 a. Prove that the DeMorgan’s Law equivalences hold in KS
3, �L3, BI

3, and BE
3.

b. Prove that the Distribution equivalences hold in KS
3, �L3, BI

3, and BE
3.

c. Prove that the Double Negation equivalence holds in KS
3, �L3, and BI

3 but

fails in BE
3.
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d. Prove that the Implication equivalences hold in KS
3, BI

3, and BE
3 but fail

in �L3.

SECTION 5.6

21 Using truth-tables, verify that the explicit definitions of the BI
3 conjunction,

disjunction, and conditional in Result 5.28 are correct.

22 Using the algorithm in Result 5.33, produce a formula that can be used to define

the connective # in �L3:

P # Q
P \ Q T N F

T T N T

N T N N

F F N F

SECTION 5.7

23 Using truth-tables, show that both P ∇ ¬P and ¬(P & ¬P) are tautologies in �L3.

24 Prove the claim made in footnote 8, namely, If a (binary) operation is commu-

tative then it must be nondecreasing in both arguments if it is nondecreasing

on one of its arguments.

25 Prove that conditions 6 and 7 for t-norm and t-conorm operations follow from

one or more of conditions 1–5.

26 Prove the claim that the conditions defining t-norms and t-conorms uniquely

define conjunction and disjunction in classical logic, that is, that the conditions

produce the classical truth-tables for these operations.
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6.1 An Axiomatic System for Tautologies and Validity
in Three-Valued Logic

We have introduced three semantic concepts of validity in three-valued logic, valid-

ity proper, quasi-validity, and degree validity, along with the corresponding three

varieties of tautologousness and contradictoriness. Consequently, we may have

different expectations for derivation systems. We’ll begin with a system that estab-

lishes validity (and tautologousness) proper for �L3. Derivation systems have also

been designed specifically for Kleene’s and Bochvar’s three-valued logics,1 but we

restrict our attention to systems for �L3 in this chapter. As we showed in Chapter 5,

Kleene’s and Bochvar’s connectives can all be defined using �Lukasiewicz’s connec-

tives, so we can represent inferences for those systems within �L3 axiomatic systems.

Moreover, we are anticipating fuzzy logic in which the bulk of formal work is based

upon �Lukasiewicz’s infinite-valued generalization of his three-valued system.

Taking ¬ and → as primitive connectives, Mordchaj Wajsberg proved in 1931

that the following axiomatic derivation system—which we will call �L3A (for �L3

axiomatic system)—is sound and complete for �L3 (Wajsberg 1931):2

�L31. P → (Q → P)

�L32. (P → Q) →((Q → R) → (P→ R))

�L33. (¬P → ¬Q) → (Q → P)

�L34. ((P → ¬P) → P) → P

The single derivation rule for this system is Modus Ponens:

MP. From P and P → Q, infer Q.

1 An axiomatic system for BI
3 developed by V. K. Finn appears in Bolc and Borowik (1992), ch. 3.3. A

(natural deduction) derivation system for a first-order version of KS
3 appears in Kearns (1979). We

should note that �L3 and the Bochvar systems also have adequate natural deduction systems—see,
for example, Beall and van Fraassen (2003), Section 11.6; and Baaz, Fermüller, and Zach (1993).

2 Since we present a system only for �L3, we will omit the subscript �L on the connectives. When
we discuss connectives of the other three-valued systems, those connectives will retain their
subscripts.
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The connectives ∨, ∧, and ↔ can be defined as in Section 5.2—so all �L3 formulas

can be expressed using the connectives ¬ and → that appear in the axiom schemata

and rule. Axiom schemata �L31 and �L33 are identical to the schemata CL1 and CL3

presented for classical propositional logic in Chapter 2. The axiom schema CL2,

(P → (Q → R)) → ((P → Q) → (P → R)), is not derivable within �L3A. This is as

it should be since we showed in Section 5.2 that CL2 isn’t a tautology in �L3. (On

the other hand, the new schemata �L32 and �L34 are derivable in CLA, since they are

classical tautologies and the classical system is complete.)

The gist of axiom schema �L34 may not be immediately apparent. Recalling that

a disjunction P ∨ Q can be defined as (P → Q) → Q in �L3, axiom schema �L34 may

be rewritten as (P → ¬P) ∨ P. This formula is closely related to the Law of Excluded

Middle. But the Law of Excluded Middle fails to be a tautology in �L3, while the present

formula is a tautology in �L3. If P has the truth-value T then so does the formula as a

whole since P is the right disjunct, and if P has the truth-value N or the truth-value

F then the left conjunct has the value T, so the disjunction as a whole does as well.

Any derivation in the classical system CLA that doesn’t involve the axiom

schema CL2 counts as a derivation in �L3A, and any axiom that is derivable in CLA

without using CL2 counts as a derived axiom in �L3A. There are also derived axiom

schemata of CLA that are derivable in �L3A but with different derivations than we

used in the classical case. An example is CLD1:

CLD1. P → P

The derivation in CLA used CL2, so that derivation can’t be used here. We’ll produce

a legal �L3A derivation for P → P after introducing some more immediate derived

axiom schemata and rules. Derivations in �L3A can be tricky to construct, so we

introduce plenty of derived help. We begin with the derived axioms

�L3D1. ¬P → (P → Q)

�L3D2. ¬¬P → P

�L3D3. P → ¬¬P

(�L3D2 and �L3D3 are, respectively, CLD3 and CLD4). �L3D1 is justified as follows:3

1 ¬P → (¬Q → ¬P) �L31, with ¬P / P, ¬Q / Q

2 (¬Q → ¬P) → (P → Q) �L33, with Q / P, P / Q

3 (¬P → (¬Q → ¬P)) →
(((¬Q → ¬P) → (P → Q)) → (¬P → (P → Q)))

�L32, with ¬P / P, ¬Q → ¬P / Q,

P → Q / R

4 ((¬Q → ¬P) → (P → Q)) → (¬P → (P → Q)) 1,3 MP

5 ¬P → (P → Q)) 2,4 MP

3 Our derivations of �L3D1–�L3D7, MCD, and �L3D11 are due to Minari (2003)—these are the most
perspicuous (and generally the shortest) derivations we have seen for these derived axioms.
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Note that lines 3–5 yield a formula that is derivable from the formulas on lines 1 and

2 by Hypothetical Syllogism. Since we will follow this pattern often, we introduce

Hypothetical Syllogism (HS) as a derived rule for �L3A:

HS. From P → Q and Q → R, infer P → R.

HS is derivable by virtue of the pattern in the preceding derivation: introduce

an appropriate instance of �L32 and then use MP twice. Here is a justification for

�L3D2:

1 ¬¬P → (¬P → ¬(P → ¬P)) �L3D1, with ¬P / P, ¬(P → ¬P) / Q

2 (¬P → ¬(P → ¬P)) → ((P → ¬P) → P) �L33, with P / P, P → ¬P / Q

3 ¬¬P → ((P → ¬P) → P) 1,2 HS

4 ((P → ¬P) → P) → P �L34, with P / P

5 ¬¬P → P 3,4 HS

�L3D3 is justified as follows:

1 ¬¬¬P → ¬P �L3D2, with ¬P / P

2 (¬¬¬P → ¬P) → (P → ¬¬P) �L33, with ¬¬P / P, P / Q

3 P → ¬¬P 1,2 MP

We can now easily prove CLD1, which we will call

�L3D4. P → P

1 P → ¬¬P �L3D3, with P / P

2 ¬¬P → P �L3D2, with P / P

3 P → P 1,2 HS

�L3D5 will be a useful derived axiom schema for the following proof:

�L3D5. ((P → P) → Q) → Q

1 (P → P) → ((Q → ¬Q) → (P → P)) �L31, with P → P / P, Q → ¬Q / Q

2 P → P �L3D4, with P / P

3 (Q → ¬Q) → (P → P) 1,2 MP

4 ((Q → ¬Q) → (P → P)) → (((P → P) → Q) → ((Q → ¬Q) → Q)) �L32, with Q → ¬Q / P, P → P / Q, Q / R

5 ((P → P) → Q) → ((Q → ¬Q) → Q) 3,4 MP

6 ((Q → ¬Q) → Q) → Q �L34, with Q / P

7 ((P → P) → Q) → Q 5,6 HS

The following axiom is P → (P ∨ Q) when rewritten with �L3 disjunction:

�L3D6. P → ((P → Q) → Q)

(The closely related P → (Q ∨ P) is an instance of �L31 when rewritten with dis-

junction.) Here is a proof of �L3D6, admittedly complicated but justifying a very

useful axiom:
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1 P → ((P → P) → P) �L31, with P / P, P → P / Q

2 ((P → P) → P) → ((P → Q) → ((P → P) → Q)) �L32, with P → P / P, P / Q, Q / R

3 P → ((P → Q) → ((P → P) → Q)) 1,2 HS

4 ((P → Q) → ((P → P) → Q)) → ((((P → P) → Q) → Q) →
((P → Q) → Q))

�L32, with P → Q / P, (P → P) → Q / Q, Q / R

5 P → ((((P → P) → Q)) → Q) → ((P → Q) → Q)) 3,4 HS

6 ((P → P) → Q) → Q �L3D5, with P / P, Q / Q

7 (((P → P) → Q) → Q) → ((P → P) → (((P → P) → Q) → Q)) �L31, with ((P → P) → Q) → Q / P, P → P / Q

8 (P → P) → (((P → P) → Q) → Q) 6,7 MP

9 ((P → P) → (((P → P) → Q) → Q)) →
(((((P → P) → Q) → Q) → ((P → Q) → Q)) →

((P → P) → ((P → Q) → Q)))

�L31, with P → P / P, ((P → P) → Q) → Q / Q,

(P → Q) → Q / R

10 ((((P → P) → Q) → Q) → ((P → Q) → Q)) →
((P → P) → ((P → Q) → Q))

8,9 MP

11 P → ((P → P) → ((P → Q) → Q)) 5,10 HS

12 ((P → P) → ((P → Q) → Q)) → ((P → Q) → Q) �L3D5, with P / P, (P → Q) → Q / Q

13 P → ((P → Q) → Q) 11,12 HS

With �L3D6 in hand it’s straightforward to justify the transposition axiom schema in

�L3A:

�L3D7. (P → (Q → R)) → (Q → (P → R))

1 (P → (Q → R)) → (((Q → R) → R) → (P → R)) �L32, with P / P, Q → R / Q, R / R

2 Q → ((Q → R) → R) �L3D6, with Q / Q, R / R

3 (Q → ((Q → R) → R)) → ((((Q → R) → R) →
(P → R)) → (Q → (P → R)))

�L32, with Q / P, (Q → R) → R / Q,

P → R / R

4 (((Q → R) → R) → (P → R)) → (Q → (P → R)) 2,3 MP

5 (P → (Q → R)) → (Q → (P → R)) 1,4 HS

In addition to deriving theorems corresponding to �L3-tautologies (all of the

derivations justifying derived axiom schemata establish the theoremhood of the

final formulas), we can also derive the conclusions of arguments that are valid in

�L3. For example, ¬B is derivable from B → C and ¬C as follows:

1 B → C Assumption

2 ¬C Assumption

3 ¬¬B → B �L3D2, with B / P

4 (¬¬B → B) → ((B → C) → (¬¬B → C)) �L32, with ¬¬B / P, B / Q, C / R

5 (B → C) → (¬¬B → C) 3,4 MP

6 ¬¬B → C 1,5 MP

7 C → ¬¬C �L3D3, with C / P

8 ¬¬B → ¬¬C 6,7 HS

9 (¬¬B → ¬¬C) → (¬C → ¬B) �L33, with ¬B / P, ¬C / Q

10 ¬C → ¬B 8,9 MP

11 ¬B 2,10 MP
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The pattern of proof on lines 8–10 is common, so we introduce the derived rule

Contraposition to capture the pattern:

CON (Contraposition). From ¬P → ¬Q infer Q → P.

Valid inferences using Kleene’s and Bochvar’s (internal and external) connec-

tives have corresponding derivations in �L3A, provided that we use the �L3 definitions

for rewriting formulas containing those connectives. For example, the argument

P

P →K Q

Q

is valid in KS
3. The conditional P →K Q is equivalent to ¬P ∨ Q in �L3, which is

expressible as (¬P → Q) → Q using only negation and disjunction. The following

derivation establishes the validity of the KS
3 argument:

1 P Assumption

2 (¬P → Q) → Q Assumption

3 P → (¬Q → P) �L31, with P / P, ¬Q / Q

4 ¬Q → P 1,3 MP

5 P → ¬¬P �L3D3, with P / P

6 ¬Q → ¬¬P 4,5 HS

7 ¬P → Q 6, CON

8 Q 2,7 MP

On the other hand, we know that there are no tautologies in KS
3 and so no theorems

of our system correspond to KS
3 formulas.

The inference

P

P →BI Q

Q

is valid in BI
3. We’ll first derive the rule LSIMP in �L3A:

LSIMP (Left Conjunct Simplification). From P ∧ Q infer P

Justification (P ∧ Q is rewritten as ¬((¬P → ¬Q) → ¬Q)):

1 ¬((¬P → ¬Q) → ¬Q) Assumption

2 ¬P → ((¬P → ¬Q) → ¬ Q) �L3D6, with ¬P / P, ¬Q / Q

3 ((¬P → ¬Q) → ¬ Q) → ¬¬((¬P → ¬Q) → ¬ Q) �L3D3, with (¬P → ¬Q) → ¬ Q / P

4 ¬P → ¬¬((¬P → ¬Q) → ¬ Q) 2,3 HS

5 ¬((¬P → ¬Q) → ¬ Q) → P 4, CON

6 P 1,5 MP
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The second premise P →BI Q of the BI
3 argument is equivalent to the �L3 formula

(¬P ∨ Q) ∧ ((P ∨ ¬P) ∧ (Q ∨ ¬Q)). The validity of the BI
3 argument is established by

the following derivation:

1 P Assumption

2 (¬P ∨ Q) ∧ ((P ∨ ¬P) ∧ (Q ∨ ¬Q)) Assumption

3 ¬P ∨ Q 2, LSIMP

4 . . . {the rest of the proof is identical to that for the KS
3 example earlier,

substituting (¬P → Q) → Q for ¬P ∨ Q}

As with KS
3, we know that there are no tautologies in BI

3 and so no formulas of BI
3

are theorems of �L3A.

Finally, the inference

P

P →BE Q

Q

of Bochvar’s external system is also valid in �L3A. The second premise is expressible

in �L3 with the formula ¬(P → ¬P) → ¬(Q → ¬Q). Here’s the derivation:

1 P Assumption

2 ¬(P → ¬P) → ¬(Q → ¬Q) Assumption

3 (Q → ¬Q) → (P → ¬P) 2, CON

4 ((Q → ¬Q) → (P → ¬P)) → (P → ((Q → ¬Q) → ¬P))) �L3D7, with Q → ¬Q / P, P / Q, ¬P / R

5 P → ((Q → ¬Q) → ¬P) 3,4 MP

6 (Q → ¬Q) → ¬P 1,5 MP

7 ¬¬(Q → ¬Q) → (Q → ¬Q) �L3D2, with Q → ¬Q / P

8 ¬¬(Q → ¬Q) → ¬P 6,7 HS

9 P → ¬(Q → ¬Q) 8, CON

10 ¬(Q → ¬Q) 1,9 MP

11 ¬Q → (Q → ¬Q) �L31, with ¬Q / P, Q / Q

12 (Q → ¬Q) → ¬¬ (Q → ¬Q) �L3D3, with Q → ¬Q / P

13 ¬Q → ¬¬(Q → ¬Q) 11,12 HS

14 ¬(Q → ¬Q) → Q 13, CON

15 Q 10,14 MP

The formula P →BE P is a tautology, so we would expect the formula ¬(P → ¬P) →
¬(P → ¬P), which expresses P →BE P in �L3, to be a theorem of �L3A. It is easy to show

that it is, since it is an instance of �L3D4.

It will not have escaped the reader that (as we commented earlier) derivations

in the axiomatic system �L3A can be difficult to design and construct—and that the

addition of derived axioms and rules makes derivations much more manageable.

We will continue using axiomatic systems when we turn to fuzzy logic, so we’ll take

the time here to introduce some further derived axioms and rules—most of which

will carry over to fuzzy logic. (The reader may choose to skim or skip the proofs at this
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point and move on to the last three paragraphs of this section (pp. 113–114), return-

ing to study these proofs when the derived axioms and rules appear in subsequent

derivations.)

First we derive the very general and useful rule

SUB (Substitution). From P → Q, Q → P and a formula R that contains P as

a subformula, infer any formula R* that is the result of replacing one or more

occurrences of P in R with Q.

For example, we’ll use SUB to derive ((¬¬Q → ¬Q) → ¬¬ Q) → Q as follows:

1 ((Q → ¬Q) → Q) → Q �L34, with Q / P

2 Q → ¬¬ Q �L3D3, with Q / P

3 ¬¬Q → Q �L3D2, with Q / P

4 ((¬¬Q → ¬Q) → ¬¬ Q) → Q 1,2,3 SUB

On line 4 we replaced two occurrences of Q in the formula on line 1 with ¬¬Q.

To justify SUB we’ll show that if we can derive reciprocal formulas P → Q and

Q → P, then given any formula R that contains P we can derive both R → R+ and

R+ → R, where R+ is identical to R except that one occurrence of P has been replaced

with Q. It will follow from this that if we can derive R we can also derive R+ by Modus

Ponens (and vice versa). Moreover, we can then replace more than one occurrence

of P in R with Q to obtain any R* by replacing one occurrence at a time—so SUB

will be fully justified.

We will show how we can derive both R → R+ and R+ → R by showing how

to derive larger and larger conditionals reflecting the way that R has been built

up from P, and hence the way that R+ must be built up from Q. When we say

reflecting the way that R has been built up from P here’s what we mean. If R is

(¬(A → P) → (A → B)) → C, then R has been built up from P by combining P with

other formulas and connectives as follows (in accordance with the definition of

well-formed formulas from Chapter 2):

P

A → P

¬(A → P)

¬(A → P) → (A → B)

(¬(A → P) → (A → B)) → C

and so R+ will be built up from Q as follows:

Q

A → Q

¬(A → Q)

¬(A → Q) → (A → B)

(¬(A → Q) → (A → B)) → C
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We will show how to derive the reciprocal conditionals that pair off the formulas in

each row of the two lists, that is, the reciprocal conditionals

P → Q, Q → P

(A → P) → (A → Q), (A → Q) → (A → P)

¬(A → P) → ¬(A → Q), ¬(A → Q) → ¬(A → P)

(¬(A → P) → (A → B)) → (¬(A → Q) → (A → B)),

(¬(A → Q) → (A → B)) → (¬(A → P) → (A → B))

((¬(A → P) → (A → B)) → C) → ((¬(A → Q) → (A → B)) → C),

((¬(A → P) → (A → B)) → C) → ((¬(A → Q) → (A → B)) → C)

where the last pair are the target conditionals R → R+ and R+ → R for our example.

The derivability of P → Q and Q → P is given in the statement of the rule SUB.

Note that for each pair of conditionals S1 → S2 and S2 → S1 in the list of paired

conditionals, the following pair, T1 → T2 and T2 → T1, have S1 as an immediate

component4 of T1, and T2 results from replacing one occurrence of S1 in T1 with S2.5

Given this general pattern for building up the target formulas, we need only show

that given any formulas S1 → S2 and S2 → S1 there is a way to derive T1 → T2 and

T2 → T1 where S1 is an immediate component of T1 and T2 is the result of replacing

one occurrence of S1 in T1 with S2. There are three cases, reflecting the structure of

T1 (and therefore of T2 as well):

Case 1: T1 is S1 → U for some formula U, and T2 is S2 → U. Given S1 → S2 we

can derive T2 → T1, which is (S2 → U) → (S1 → U), as follows:

n S1 → S2 given

n+1 (S1 → S2) → ((S2 → U) → (S1 → U)) �L32, with S1 / P, S2 / Q, U / R

n+2 (S2 → U) → (S1 → U) n,n+1 MP

T1 → T2, which is (S1 → U) → (S2 → U), is similarly derived from S2 → S1.

Case 2: T1 is U → S1 for some formula U, and T2 is U → S2. Given S1 → S2 we

can derive T1 → T2, which is (U → S1) → (U → S2), as follows:

n S1 → S2 given

n+1 (U → S1) → ((S1 → S2) → (U → S2)) �L32, with U / P, S1 / Q, S2 / R

n+2 ((U → S1) → ((S1 → S2) → (U → S2))) →
((S1 → S2) → ((U → S1) → (U → S2))

�L3D7, with U → S1 / P, S1 → S2 / Q,

U → S2 / R

n+3 (S1 → S2) → ((U → S1) → (U → S2)) n+1,n+2 MP

n+4 (U → S1) → (U → S2) n,n+3 MP

T2 → T1, which is (U → S2) → (U → S1), is similarly derived from S2 → S1.

4 That is, T1 is formed from S1 either by prefixing S1 with a negation operator or by combining S1

with another formula with one of the binary connectives.
5 For example, where S1 and S2 are the original P and Q of the example, T1 → T2 and T2 → T1 are

(A → P) → (A → Q), (A → Q) → (A → P). So T1 is (A → P) and T2 is (A → Q). Here P is an immediate
component of (A → P), and (A → Q) results in replacing one occurrence of P in (A → P) with Q.
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Case 3: T1 is ¬S1 and T2 is ¬S2. Given S1 → S2 we can derive T2 → T1, which is

¬S2 → ¬S1, as follows:

n S1 → S2 given

n+1 ¬¬ S1 → S1 �L3D2, with S1 / P

n+2 ¬¬ S1 → S2 n,n+1 HS

n+3 S2 → ¬¬ S2 �L3D3, with S2 / P

n+4 ¬¬ S1 → ¬¬ S2 n+2,n+3 HS

n+5 ¬ S2 → ¬ S1 n+4, CON

T1 → T2, which is ¬S1 → ¬S2, is similarly derived from S2 → S1.

And that completes the justification for SUB, since we can use these sequences to

fill in any proof using that derived rule by replacing one occurrence of P with Q

in successively larger formulas, repeating the process (if necessary) for replacing

additional occurrences of P with Q.

In Case 3 we used a pattern on lines n+1 through n+5 that immediately justifies

MT (Modus Tollens). From ¬P and Q → P derive ¬Q

Here’s the derivation:

m ¬P given

n Q → P given

n+1 ¬¬Q → Q �L3D2, with Q / P

n+2 ¬¬Q → P n,n+1 HS

n+3 P → ¬¬P �L3D3, with P / P

n+4 ¬¬Q → ¬¬P n+2,n+3 HS

n+5 ¬P → ¬Q n+4, CON

n+6 ¬Q m,n+5 MP

As particularly useful special cases of SUB, we also introduce

DN (Double Negation). From any formula R that contains P as a constituent,

infer any formula R* that is the result of replacing one or more occurrences of

P in R with ¬¬P, and vice versa.

TRAN (Transposition). From any formula R that contains P → (Q → S) as a

subformula, infer any formula R* that is the result of replacing one or more

occurrences of P → (Q → S) in R with Q → (P → S).

GCON (Generalized Contraposition). From any formula R that contains P → Q

as a subformula, infer any formula R* that is the result of replacing one or more

occurrences of P → Q in R with ¬Q → ¬P, and vice versa.

Justifications: DN follows from SUB and �L3D2 and �L3D3, and TRAN follows from

SUB and �L3D7. GCON follows from SUB, �L33, and the fact that every formula of

the form (P → Q) → (¬Q → ¬P) is a theorem of �L3A:
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1 (¬¬P → ¬¬Q) → (¬Q → ¬P) �L33, with ¬P / P, ¬Q / Q

2 (P → Q) → (¬Q → ¬P) 1, DN (twice)

Using DN, for example, we can derive an axiom that we’ll need later in this section:

�L3D8. ¬(P → Q) → P

Justification:

1 ¬P → (P → Q) �L3D1, with P / P, Q / Q

2 ¬P → ¬¬(P → Q) 1, DN

3 ¬(P → Q) → P 2, CON

Next we introduce two rules that generalize previous ones. We use the notation

(P1 → (P2 →· · ·→ (Pn−1 → Pn) . . .) to denote a conditional in which each conse-

quent, except possibly Pn, is itself a conditional. As an example, the formula (B →
((C → ¬ D) → (G → (R → H)))) is an instance of (P1 → (P2 →· · ·→ (Pn−1 → Pn) . . .)

in which B is the antecedent P1, (C → ¬D) is the antecedent P2, G is the antecedent

P3, R is the antecedent P4, and H is the consequent P5. The formula also counts an

instance in two other ways because Pn can itself be a conditional—we must take

B to be the antecedent P1 and (C → ¬D) to be the antecedent P2, as before, but

then we can either take (G → (R → H)) to be the consequent P3 or take G to be the

antecedent P3 and (R → H) to be the consequent P4. Here are the rules:

GHS (Generalized Hypothetical Syllogism). From (P1 → (P2 →· · ·→ (Pn−1 →
Pn) . . .) and Pn → Q, infer (P1 → (P2 →· · ·→ (Pn−1 → Q) . . .)

and

GMP (Generalized Modus Ponens). From (P1 → (P2 →· · ·→ (Pn−1 →Pn) . . .) and

one of the antecedents Pi, 1 ≤ i ≤ n − 1, infer the conditional that results from

deleting Pi, the conditional arrow following Pi, and associated parentheses.

Justification of GHS: We start with n = 3, showing how to derive P1 → (P2 → Q)

from P1 → (P2 → P3) and P3 → Q:

1 P1 → (P2 → P3) given

2 P3 → Q given

3 (P2 → P3) → ((P3 → Q) → (P2 → Q)) �L32, with P2 / P, P3 / Q, Q / R

4 (P3 → Q) → ((P2 → P3) → (P2 → Q)) 3, TRAN

5 (P2 → P3) → (P2 → Q) 2,4 MP

6 P1 → (P2 → Q) 1,5 HS
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Given that we have a way to construct the derivation for n = 3 we’ll show how

to construct the derivation when n = 4. The derivation begins as follows:

1 P1 → ((P2 → (P3 → P4)) given

2 P4 → Q given

3 (P3 → P4) → ((P4 → Q) → (P3 → Q)) �L32, with P3 / P, P4 / Q, Q / R

4 (P4 → Q) → ((P3 → P4) → (P3 → Q)) 3, TRAN

5 (P3 → P4) → (P3 → Q) 2,4 MP

The formulas on lines 1 and 5 are, respectively, instances of the first two formulas

of the preceding derivation, with (P3 → P4) in place of P3 and (P3 → Q) in place

of Q, so the steps 3–6 of the previous derivation apply here to yield

9 P1 → ((P2 → (P3 → Q))

in four more steps.

Each subsequent case follows from its previous case in the same way. For

arbitrary n > 3, the derivation begins as

1 P1 → ((P2 → (P3 →· · · → (Pn−1 → Pn) . . .) given

2 Pn → Q given

3 (Pn−1 → Pn) → ((Pn → Q) → (Pn−1 → Q)) �L32, with Pn−1 / P, Pn / Q, Q / R

4 ((Pn →Q) → ((Pn−1 → Pn) → (Pn−1 → Q)) 3, TRAN

5 (Pn−1 → Pn) → (Pn−1 → Q) 2,4 MP

The formulas on lines 1 and 5 are, respectively, instances of the first two formulas

P1 → ((P2 → (P3 →· · ·→ (Pn−2 → Pn−1) . . .) and Pn−1 → Q of the previous case,

with Pn−1 → Pn and Pn−1 → Q, respectively, replacing, Pn−1 and Q, so the steps

of the previous case will eventually yield

k | P1 → ((P2 → (P3 →· · ·→(Pn−1 → Q) . . .)

Justification of GMP: By repeated applications of TRAN the antecedents P1,

. . . , Pn−1 can be permuted in any order. In particular, the antecedent Pi

can be moved to the beginning of the formula, leaving the order of the other

antecedents unchanged. At that point a single application of MP will produce

the target formula with Pi removed.

We’ll use these two rules in subsequent examples.
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In classical logic the inference

P → Q

¬P → Q

Q

is valid and the corresponding rule, traditionally called Constructive Dilemma, is

derivable in any adequate axiomatic system for classical propositional logic such

as CLA. But the inference is not valid in �L3. If P and Q each have the value N,

then the premises of the inference are true but the conclusion is not. However, the

inference

P → Q

(P → ¬P) → Q

Q

is valid in �L3 (left as an exercise), and the corresponding rule is derivable in �L3A:

MCD (Modified Constructive Dilemma). From P → Q and (P → ¬P) → Q,

infer Q.

Justification:

1 P → Q given

2 (P → ¬P) → Q given

3 (P → Q) → ((Q → ¬P) → (P → ¬P)) �L32, with P / P, Q / Q, ¬P / R

4 (Q → ¬P) → (P → ¬P) 1,3 MP

5 (Q → ¬P) → Q 2,4 HS

6 (Q → ¬Q) → ((¬Q → ¬ P) → (Q → ¬P)) �L32, with Q / P, ¬Q / Q, ¬P / R

7 (¬Q → ¬ P) → ((Q → ¬Q) → (Q → ¬P)) 6, TRAN

8 ¬Q → ¬ P 1, GCON

9 (Q → ¬Q) → (Q → ¬P) 7,8 MP

10 (Q → ¬Q) → Q 5,9 HS

11 ((Q → ¬Q) → Q) → Q �L34, with Q / P

12 Q 10,11 MP

On the other hand, the rule

DS (Disjunctive Syllogism). From P ∨ Q, P → R and Q → R infer R

of classical logic is also derivable in �L3A.
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Justification of DS (P ∨ Q has been rewritten as (P → Q) → Q):

1 (P → Q) → Q given

2 P → R given

3 Q → R given

4 ¬(P → Q) → P �L3D8, with P / P, Q / Q

5 ¬(P → Q) → R 2,4 HS

6 (¬¬(P → Q) → ¬¬Q) → (¬Q → ¬(P → Q)) �L33, with ¬(P → Q) / P, ¬Q / Q

7 ((P → Q) → Q) → (¬Q → ¬(P → Q)) 6, DN (twice)

8 ((P → Q) → Q) → (¬Q → P) 4,7 GHS

9 (¬Q → P) → ((P → ¬P) → (¬Q → ¬P)) �L32, with ¬Q / P, P / Q, ¬P / R

10 (¬Q → ¬P) → (P → Q) �L33, with Q / P, P / Q

11 (¬Q → P) → ((P → ¬P) → (P → Q) 9,10 GHS

12 (P → Q) → (((P → Q) → ¬(P → Q)) → ¬(P → Q)) �L3D6, with P → Q / P, ¬(P → Q) / Q

13 (¬Q → P) → ((P → ¬P) → (((P → Q) → ¬(P → Q)) → ¬(P → Q))) 11,12 GHS

14 (¬Q → P) → ((P → ¬P) → (((P → Q) → ¬(P → Q)) → R)) 5,13 GHS

15 ((P → Q) → Q) → ((P → ¬P) → (((P → Q) → ¬(P → Q)) → R)) 8,14 HS

16 ((P → Q) → Q) → (((P → Q) → ¬(P → Q)) → ((P → ¬P) → R)) 15, TRAN

17 ((P → Q) → ¬(P → Q)) → (((P → Q) → Q) → ((P → ¬P) → R)) 16, TRAN

18 ((P → Q) → ¬(P → Q)) → ((P → ¬P) → (((P → Q) → Q) → R)) 17, TRAN

19 (P → Q) → (((P → Q) → Q) → Q) �L3D6, with P → Q / P, Q / Q

20 (P → Q) → (((P → Q) → Q) → R) 3,19 GHS

21 (((P → Q) → Q) → R) → ((P → ¬P) → (((P → Q) → Q) → R)) �L31, with ((P → Q) → Q) → R / P,

P → ¬P / Q

22 (P → Q) → ((P → ¬P) → (((P → Q) → Q) →R)) 20,21 HS

23 (P → ¬P) → (((P → Q) → Q) →R) 18,22 MCD

24 R → (((P → Q) → Q) → R) �L31, with R / P and (P → Q) → Q /R

25 P → (((P → Q) → Q) → R) 2,24 HS

26 ((P → Q) → Q) → R 23,25 MCD

27 R 1,26 MP

Restricting our attention to lines 2–26 of the previous derivation, we have also

justified the rule

DC (Disjunctive Consequence). From P → R and Q → R infer (P ∨ Q) → R

and as a consequence we have

�L3D9. (P ∨ Q) → (Q ∨ P)

Justification (rewriting the formula as ((P → Q) → Q) → ((Q → P) → P)):

1 P → ((Q → P) → P) �L31, with P / P, Q → P / Q

2 Q → ((Q → P) → P) �L3D6, with Q / P, P / Q

3 ((P → Q) → Q) → ((Q → P) → P) 1,2 DC

One more very useful derived axiom is

�L3D10. (P → Q) ∨ (Q → P)



P1: RTJ
9780521881289c06 CUNY1027/Bergmann 978-0 521 88128 9 November 25, 2007 17:27

6.1 An Axiomatic System for Three-Valued Logic 113

Justification: We’ll derive the formula ((P → Q) → (Q → P)) → (Q → P)) in which

the wedge has been rewritten in terms of the conditional. (This is again a fairly

complicated derivation, but the resulting axiom is quite useful.)6

1 ((P → Q) → (Q → P)) → ((Q → P) → P) → ((P → Q) → P)) �L32, with P → Q / P, Q → P / Q, P / R

2 ((P → Q) → Q) → ((Q → P) → P) �L3D9, with P / P, Q / Q

3 ((Q → P) → P) → ((P → Q) → Q) �L3D9, with Q / P, P / Q

4 ((P → Q) → (Q → P)) → ((P → Q) → Q) → ((P → Q) → P)) 1,2,3 SUB

5 (((P → Q) → (Q → P)) → ((P → Q) → Q) → ((P → Q) → P))) →
((((P → Q) → Q) → ((P → Q) → P)) →

((Q → (P → Q)) → (Q → P)) →
(((P → Q) → (Q → P)) → ((Q → (P → Q)) → (Q → P))))

�L32, with (P → Q) → (Q → P) / P,

((P → Q) → Q) → ((P → Q) → P) / Q,

(Q → (P → Q)) → (Q → P) / R

6 (((P → Q) → Q) → ((P → Q) → P)) →
((Q → (P → Q)) → (Q → P)) →

(((P → Q) → (Q → P)) → ((Q → (P → Q)) → (Q → P)))

4,5 MP

7 ((¬Q → ¬(P → Q)) → (¬P → ¬(P → Q))) →
((¬Q → ¬(P → Q)) → (¬P → ¬(P → Q)))

�L3D4, with (¬Q → ¬(P → Q)) →
(¬P → ¬(P → Q)) / P

8 ((¬Q → ¬(P → Q)) → (¬P → ¬(P → Q))) →
(¬P → ((¬Q → ¬(P → Q)) → ¬(P → Q)))

7, TRAN

9 ((¬Q → ¬(P → Q)) → ¬(P → Q)) → ((¬(P → Q) → ¬Q) → ¬Q) �L3D9, with ¬Q / P, ¬(P → Q) / Q

10 ((¬Q → ¬(P → Q)) → (¬P → ¬(P → Q))) →
(¬P → ((¬(P → Q) → ¬Q) → ¬Q))

8,9 GHS

11 ((¬Q → ¬(P → Q)) → (¬P → ¬(P → Q))) →
((¬(P → Q) → ¬Q) → (¬P → ¬Q))

10, TRAN

12 ((P → Q) → Q) → ((P → Q) → P) →
((Q → (P → Q)) → (Q → P))

11, GCON (four times)

13 ((P → Q) → (Q → P)) → ((Q → (P → Q)) → (Q → P)) 4,12 HS

14 (Q → (P → Q)) → (((P → Q) → (Q → P)) → (Q → P)) 13, TRAN

15 Q → (P → Q) �L31, with Q / P, P / Q

16 ((P → Q) → (Q → P)) → (Q → P) 14,15 MP

In closing this section, we note two important general results about �L3A. The

first is that the set of theorems of �L3A is decidable. The reason is similar to that for

the decidability of the axiomatic system for classical propositional logic, CLA: �L3A

is a sound and complete system for �L3, and the set of tautologies in �L3 is decidable

on the basis of the construction of truth-tables.7

The second result is negative: the Deduction Theorem for classical logic—the

metatheorem that states that P → Q is a theorem if and only if Q is derivable from

P—does not hold in �L3A. It is true that if P → Q is a theorem then Q is derivable from

P (by MP), but the converse does not hold. Given the soundness and completeness

6 I owe the outline of this derivation to Meredith (1928, p. 54), where the axiom is derived for
�Lukasiewicz’s infinite-valued logic, a logic that will serve as our first fuzzy logic.

7 The tautologies of other derivation systems for any of our four three-valued propositional logics
are similarly decidable.
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of �L3A, the converse is equivalent to: if Q is true whenever P is then P → Q is a

tautology. This is not the case; for example, whenever P ∧ ((P → Q) ∧ (P → (Q → R)))

is true in �L3 so is R, but (P ∧ ((P → Q) ∧ (P → (Q → R)))) → R isn’t an �L3-tautology.

However, the following Modified Deduction Theorem does hold:

Result 6.1: Q is derivable from P in �L3A if and only if P → (P → Q) is a theorem

of �L3A.8

Given completeness we know that R is derivable from P ∧ ((P → Q) ∧ (P → (Q → R)))

in �L3A, so it follows from the Modified Deduction Theorem that (P ∧ ((P → Q) ∧
(P → (Q → R)))) → ((P ∧ ((P → Q) ∧ (P → (Q → R)))) → R) is a theorem!

We leave proof of the Modified Deduction Theorem as an exercise, but will prove

here a final derived axiom that will be useful when the reader turns to that exercise:

�L3D11. (P → (P → (P → Q))) → (P → (P → Q))

Justification:

1 ¬P → (P → Q) �L3D1, with P / P, Q / Q

2 (P → ¬P) → ((¬P → (P → Q)) → (P → (P → Q))) �L32, with P / P, ¬P / Q, P → Q / R

3 (P → ¬P) → (P → (P → Q)) 1,2 GMP

4 ((P → ¬P) → (P → (P → Q))) → (((P → (P → Q)) → P) →
((P → ¬P) → P))

�L32, with P → ¬P / P, P → (P → Q) / Q,

P / R

5 ((P → (P → Q)) → P) → ((P → ¬P) → P) 3,4 MP

6 ((P → ¬P) → P) → P �L34, with P / P

7 ((P → (P → Q)) → P) → P 5,6 HS

8 (((P → (P → Q)) → P) → P) → ((P → (P → (P → Q))) →
(P → (P → Q)))

�L3D9, with P → (P → Q) / P, P / Q

9 (P → (P → (P → Q))) → (P → (P → Q)) 7,8 MP

6.2 A Pavelka-Style Derivation System for �L3

In this section we anticipate derivation systems for fuzzy logic by developing a

Pavelka-style axiomatic derivation system for �L3.9 In Pavelka-style systems we intro-

duce constant names for truth-values and we annotate formulas in derivations with

truth-values. With this added expressive power we’ll be able to use derivations not

only to establish (given soundness and completeness) tautologousness and validity

but also quasi-tautologousness, quasi-validity, and degree-validity for three-valued

logics.

8 This is called the Stutterer’s Deduction Theorem in Goldberg, LeBlanc, and Weaver (1974).
9 This system is a three-valued restriction of a special type of fuzzy derivation system first developed

by Jan Pavelka (1979).
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We augment the language �L3 with three special atomic formulas t, f, and n with

the stipulation that on every truth-value assignment these formulas, respectively,

have the truth-values T, F, and N. We assume the ordering of truth-values: F < N <

T—that is, F is the least true value and N is truer than F but not as true as T, which

is the most true. Given a truth-value constant v, the formula v → P will then mean:

P has at least the value v. To see why, examine the truth-tables

t P t → P n P n → P f P f → P

T T T N T T F T T

T N N N N T F N T

T F F N F N F F T

The formula in the first table has the value T only when P has the value T, the formula

in the second table has the value T when the value of P is T or N, and the formula in

the third table always has the value T. These entries justify the reading of v → P as P

has at least the value v. On the other hand, the formula P → v means: P has at most

the value v, or: P is no truer than v. This is confirmed by the following truth-tables:

t P P → t n P P → n f P P → f

T T T N T N F T F

T N T N N T F N N

T F T N F T F F T

Combining these, we can see that v P will mean: P has exactly the truth-value v.

The pair [P, v], where P is any formula and v is one of the three truth-values T,

F, or N, is called a graded formula. The value v in the graded formula indicates that

the formula P has at least the value v. We repeat: [P, v] means that the formula P has

at least—but not necessarily exactly—the value v. Thus, as Hjek (1998b, p. 80) notes,

[P, v] is shorthand for the ungraded formula v → P, where v is the constant name

for the truth-value v. Every derivation in a Pavelka-style system consists of graded

formulas.

We add axioms and a new rule involving the truth-value constants to the sys-

tem �L3A to produce a new axiomatic system that we call �L3PA (for �L3 Pavelka-style

axiomatic system). Every axiom will be graded with the value T, and each rule will

specify the grades involved in its application. �L3PA takes �Lukasiewicz’s negation

and conditional as the primitive connectives and consists of the following axioms,

where �L3P1-�L3P4 are graded versions of the axioms of �L3A:

�L3P1. [P → (Q → P), T]

�L3P2. [(P → Q) →((Q → R) → (P → R)), T]

�L3P3. [(¬P → ¬Q) → (Q → P), T]

�L3P4. [((P → ¬P) → P) → P, T]

�L3P5.1.1. [(t → t) → t, T]

�L3P5.1.2. [t → (t → t), T]

�L3P5.2.1. [(t → n) → n, T]
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�L3P5.2.2. [n → (t → n), T]

�L3P5.3.1. [(t → f) → f, T]

�L3P5.3.2. [f → (t → f), T]

�L3P5.4.1. [(n → t) → t, T]

�L3P5.4.2. [t → (n → t), T]

�L3P5.5.1. [(n → n) → t, T]

�L3P5.5.2. [t → (n → n), T]

�L3P5.6.1. [(n → f) → n, T]

�L3P5.6.2. [n → (n → f), T]

�L3P5.7.1. [(f → t) → t, T]

�L3P5.7.2. [t → (f → t), T]

�L3P5.8.1. [(f → n) → t, T]

�L3P5.8.2. [t → (f → n), T]

�L3P5.9.1. [(f → f) → t, T]

�L3P5.9.2. [t → (f → f), T]

�L3P6.1.1. [¬t → f, T]

�L3P6.1.2. [f → ¬t, T]

�L3P6.2.1. [¬n → n, T]

�L3P6.2.2. [n → ¬n, T]

�L3P6.3.1. [¬f → t, T]

�L3P6.3.2. [t → ¬f, T]

�L3P7.1. [t, T]

�L3P7.2. [n, N]

�L3P7.3. [f, F]

The axioms �L3P5 and �L3P6 give truth-conditions for the connectives. �L3P5.1.1

and �L3P5.2.2, for example, say that if the antecedent and the consequent of a con-

ditional both have the value T, then the conditional has at most and at least the

value T; that is, it is true; while �L3P5.2.1 and �L3P5.2.2 together say that a conditional

whose antecedent has the value T and whose consequent has the value N itself has

the value N. �L3P6.1.1 and �L3P6.1.2 say that the negation of a true sentence is false,

while �L3P6.2.1 and �L3P6.2.2 say that the negation of a sentence that has the value

N itself has the value N. The .2 versions of the �L3P5 axioms are in fact not needed,

since they can all be derived—for example, �L3P5.1.2 is derivable by virtue of being an

instance of �L3P1. Nor are all of the �L3P6 axioms needed—for example, �L3P6.3.1 and

�L3P6.3.2 are derivable given �L3P6.1.1 and �L3P6.1.2, and vice versa. These derivations

are all left as exercises.

The �L3P7 axioms reflect the truth-values of the three atomic formulas t, n, and

f by placing lower bounds on those values. The axiom �L3P7.1 is derivable from the

other axioms of �L3PA—again, proof is left as an exercise.

�L3PA contains two graded derivation rules:

MP. From [P, v1] and [P → Q, v2], infer [Q, v3], where v3 is defined in terms of

v1 and v2 as specified in the following table:
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v1 v2 v3

T T T

T N N

T F F

N T N

N N F

N F F

F T F

F N F

F F F

TCI (Truth-value Constant Introduction). From [P, v] infer [v → P, T] where v

is the constant name for the value v.

In MP the idea is to associate with the derived formula Q the least truth-value that

it could have, on the basis of the least values assigned to the conditional and its

antecedent. Thus, the first row reflects the fact that Q must have (at least) the value

T if both P and P → Q have (at least) the value T. The fourth row states that if P has

at least the value N (so it has one of the values T, N) and P → Q has (at least) the

value T, then Q has at least the value N. This is correct, for consider the possibilities

represented by this row: either P has the value N and P → Q has the value T, in

which case Q must have the value N or the value T, or P has the value T and P → Q

has the value T, in which case Q has the value T. Thus, we know that in either case

Q must have at least the value N. (It is left as an exercise to justify the values of

Q represented in the other rows.) The rule TCI allows us to move from a graded

formula P to a formula that states what the graded value is.

Note that all of the axioms that we derived for �L3A in Section 6.1 can be derived

here as well—since the axioms of �L3A are included in �L3PA—and their graded values

will all be T because �L3PA’s axioms are graded with T and when MP is applied to

formulas graded with T it produces another formula with grade T. Thus every for-

mula in the justification for a derived axiom schema will be graded with the value T.

Here we will prefix the derived axiom numbers with �L3P rather than simply �L3, to

emphasize that we are now working within the Pavelka-style system. In addition,

and for the same reasons, all of the rules that we derived for �L3A can be used in �L3PA

to derive formulas graded with T from formulas that are themselves graded with T.

(Later we will derive fully graded versions of those rules.)

All of the formulas in our first derivations illustrating �L3PA will be graded with

T; our emphasis here will be on using the axioms specifying truth-conditions for

complex formulas. First we’ll derive a formula that says that if P has the value T,

then ¬P has the value F. Note that saying that P has the value T is equivalent to

saying that it has at least the value T, which is symbolized as t → P, and saying that

¬P has the value F is equivalent to saying that ¬P has at most the value F, which is

symbolized as ¬P →f. Here’s the derivation:



P1: RTJ
9780521881289c06 CUNY1027/Bergmann 978-0 521 88128 9 November 25, 2007 17:27

118 Derivation Systems for Three-Valued Propositional Logic

1 [(t → P) → (t → P), T] �L3PD4, with t → P / P

2 [(t → P) → (¬P → ¬t), T] 1, GCON

3 [¬t → f, T] �L3P6.1.1

4 [(t → P) → (¬P → f), T] 2,3 GHS

Next we’ll derive a formula that says that if P has the value F, then P → Q has the

value T:

1 [(P → f ) → (P → f ), T] �L3PD4, with P → f / P

2 [t → ¬f, T] �L3P6.3.2

3 [(t → ¬f ) → ((¬f → ¬P) → (t → ¬P)), T] �L3P3, with t / P, ¬f / Q, ¬P / R

4 [(¬f → ¬P) → (t → ¬P), T] 2,3 MP

5 [(P → f ) → (t → ¬P), T] 4, GCON

6 [¬P → (P → Q), T] �L3PD1, with P / P, Q / Q

7 [(P → f ) → (t → (P → Q)), T] 5,6 GHS

Here’s a derivation of a formula that says that if P has at least the value T, then

it has at least the value N:

1 [t → t, T] �L3PD4, with t / P

2 [(t → t) → t, T] �L3P5.1.1

3 [t, T] 1,2 MP

4 [t → (n → t), T] �L3P5.4.2

5 [n → t, T] 3,4 MP

6 [(n → t) → ((t → P) → (n → P)), T] �L3P2, with n / P, t / Q, P / R

7 [(t → P) → (n → P), T] 5,6 MP

And here’s a derivation of a formula that says that P → P is a tautology in �L3; that is,

it is at least true:

1 [P → P, T] �L3PD4, with P / P

2 [(P → P) → (t → (P → P)), T] �L3P1, with P → P / P, t / Q

3 [t → (P → P), T] 1, 2 MP

Now we’ll do some derivations containing formulas graded with values other

than T. We can add graded assumptions to derivations, for example, to derive [¬B, N]

from [B → C, T] and [¬C, N]:

1 [B → C, T] Assumption

2 [¬C, N] Assumption

3 [¬C → ¬B, T] 1, GCON

4 [¬B, N] 2,3 MP

That is, if ¬C has at least the value N, and B → C is true, then ¬B has at least the

value N. Note that we have applied the derived rule GCON only to a formula graded

with T. TCI will then allow us to derive n → ¬B graded with T:

5 [n → ¬B, T] 4, TCI
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The three axiom schemata �L3G7.1–�L3G7.3 guarantee the converse of TCI, that

is, we can go from a graded formula [v → P, T], where v is the name of the truth-value

v, to the graded formula [P, v] as in

1 [n → P, T] given

2 [n, N] �L3P7.2

3 [P, N] 1,2 MP

Obviously there are analogous inferences for t → P and f → P. Here is a derivation

of [P, N] from [P, T]:

1 [P, T] Assumption

2 [t, T] �L3P7.1

3 [t → (n → t), T] �L3P5.4.2

4 [n → t, T] 2,3 MP

5 [t → P, T] 1, TCI

6 [n → P, T] 4,5 HS

7 [n, N] �L3P7.2

8 [P, N] 6,7 MP

The quasi-tautologousness of A ∨ ¬A is expressed by the graded formula

[(A ∨ ¬A), N] or [((A → ¬A) → ¬A), N], which we can derive as follows:

1 [¬A → ((A → ¬A) → ¬A), T] �L3P1, with ¬A / P, A → ¬A / Q

2 [(n → ¬A) →
((¬A → ((A → ¬A) → ¬A)) →

(n → ((A → ¬A) → ¬A))), T]

�L3P2, with n / P, ¬A / Q,

(A → ¬A) → ¬A / R

3 [(n → ¬A) → (n → ((A → ¬A) → ¬A)), T] 1,2 GMP

4 [A → ((A → ¬A) → ¬A), T] �L3PD6, with A / P, ¬A / Q

5 [(n → A) → ((A → ((A → ¬A) → ¬A)) →
(n → ((A → ¬A) → ¬A))), T]

�L3P2, with n / P, A / Q,

(A → ¬A) → ¬A / R

6 [(n → A) → (n → ((A → ¬A) → ¬A)), T] 4,5 GMP

7 [(n → A) ∨ (A → n), T] �L3PD10, with n / P, A / Q

8 [(n → A) ∨ (¬n → ¬A), T] 7, GCON

9 [¬n → n, T] �L3P6.2.1

10 [n → ¬n, T] �L3P6.2.2

11 [(n → A) ∨ (n → ¬A), T] 8,9,10 SUB

12 [n → ((A → ¬A) → ¬A), T] 3,6,11 DS

13 [n, N] �L3P7.2

14 [((A → ¬A) → ¬A), N] 12,13 MP

Whenever we derive a graded formula without making any assumptions, we may

regard the graded formula as a derived axiom. Thus we can have derived axioms

with values other than T; for example, we have just justified

�L3PD12: [P ∨ ¬P, N]
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This in turn allows derivations like

1 [(P ∨ ¬P) → Q, T] Assumption

2 [P ∨ ¬P, N] �L3PD12, with P / P

3 [Q, N] 1,2 MP

Whereas in classical logic the truth of (P ∨ ¬P) → Q would guarantee the truth of Q,

in �L3 the best we can say is that the truth of (P ∨ ¬P) → Q guarantees that Q has at

least the value N, and this derivation reflects that.

We must modify the definitions of theoremhood and entailment for system

�L3PA. First, we will say that a formula P is a theorem to degree v in �L3PA if there

is a proof (a derivation without assumptions) of [P, v] and there is no proof of

[P, w] with w greater than v. We need to add the second condition because it is

possible to have two proofs that give P different values. For example, we can derive

[(P → ¬¬Q) → (¬Q → ¬P), T] as follows:

1 [(P → ¬¬Q) → (P → ¬¬Q), T] �L3PD4, with P → ¬¬Q / P

2 [(P → ¬¬Q) → (P → Q), T] 1, DN

3 [[(P → ¬¬Q) → (¬Q→ ¬P), T] 2, GCON

This derivation is sufficient to establish that the formula (P → ¬¬Q) → (¬Q → ¬P)

is a theorem to degree T, since there is no greater truth-value than T. But note the

following derivation:

1 [t, T] �L3P7.1

2 [t → (¬((P → ¬¬Q) → (¬Q → ¬P)) → t), T] �L3P1, with t / P, ¬((P → ¬¬Q) → (¬Q → ¬P)) / Q

3 [¬((P → ¬¬Q) → (¬Q → ¬P)) → t, T] 1,2 MP

4 [¬t → ¬¬((P → ¬¬Q) → (¬Q → ¬P)), T] 3, GCON

5 [¬t → ((P → ¬¬Q) → (¬Q → ¬P)), T] 4, DN

6 [f → ¬t, T] �L3P6.1.2

7 [f → ((P → ¬¬Q) → (¬Q → ¬P)), T] 5,6 HS

8 [f, F] �L3P7.3

9 [(P → ¬¬Q) → (¬Q → ¬P), F] 7,8 MP

This derivation establishes that the formula (P → ¬¬Q) → (¬Q → ¬P) has at least

the value F—but we certainly don’t want to conclude on the basis of this derivation

that that’s all we can say about (P → ¬¬Q) → (¬Q → ¬P), which is a tautology

of �L3! So we need to consider that there may be—and indeed are, as we showed

previously—other derivations that grade the formula (P → ¬¬Q) → (¬Q → ¬P)

with T. On the other hand, although we will not prove this, there is no proof that

ends with the graded formula [A ∨ ¬A, T]—this formula is only a theorem to degree

N. �L3PA is weakly sound and complete in the following sense: a formula of �L3 is

a tautology if and only if it is a theorem to degree T in �L3PA, and a formula of �L3

is a quasi-tautology if and only if it is a theorem to either degree T or degree N

in �L3PA.
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Second, we will say that a formula Q is derivable to degree v in �L3PA from a

graded set of formulas if there is a derivation of the graded formula [Q, v] from

graded formulas [Pi, vi] where each [Pi, vi] is a member of , and for no value w

that is greater than v is there a derivation of [Q, w] from the graded formulas in .

�L3PA is strongly sound and complete: in addition to weak completeness it is also

the case that a set of formulas of �L3 entails a formula P of �L3 if and only if P is

derivable to degree T from the graded set in which each member of occurs with

the grade T and that quasi-entails P if and only if P is derivable either to degree T

or to degree N from any graded set in which each member of occurs with either

the grade T or the grade N. We will explore the connection between the strong

completeness of �L3A and the strong completeness of �L3PA in an exercise. It follows

from (weak) soundness and completeness that the set of theorems to degree T (or N

or F) of �L3PA is decidable, by virtue of truth-table tests for tautologousness (quasi-

tautologousness, contradictoriness)—remembering that t, n, and f must always be

assigned the values T, N, and F, respectively.

Given soundness and completeness, we can also use �L3PA to establish quasi-

validity and degree-validity in addition to validity proper. For example, the argu-

ment

P

P ∨ Q

is quasi-valid in �L3. That means that given the assumption that P has at least the

value N, we should be able to derive the conclusion that P ∨ Q has at least the value

N. More generally, an argument

P1

P2

. . .

Pn

Q

is quasi-valid if and only if [Q, N] can be derived from [P1, N], [P2, N], . . . , and

[Pn, N]. Here’s a derivation for the preceding argument in which we derive

[(P → Q) → Q, N] from [P, N]:

1 [P, N] Assumption

2 [P → ((P → Q) → Q), T] �L3PD6, with P / P, Q / Q

3 [(P → Q) → Q, N] 1,2 MP

This derivation in conjunction with the following one establishes the degree-validity

of the argument from P to P ∨ Q:

1 [P, T] Assumption

2 [P → ((P → Q) → Q), T] �L3PD6, with P / P, Q / Q

3 [(P → Q) → Q, T] 1,2 MP
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Generally, an argument

P1

P2

. . .

Pn

Q

is degree-valid if and only if it is valid and also quasi-valid, that is, if and only if

[Q, T] can be derived from [P1, T], [P2, T], . . . , and [Pn, T] and, in addition, [Q, N] can

be derived from [P1, N], [P2, N], . . . , and [Pn, N].

Given the definability of the connectives for KS
3, BI

3, and BE
3 in the system �L3,

the expressive power of �L3PA also allows us to prove quasi-tautologousness, quasi-

validity, and degree-validity, along with tautologousness and validity proper, for all

four systems. As an example, we will establish that (A ∨BI ¬BIA) is a quasi-tautology.

This BI
3 formula translates into (A ∨ ¬A) ∧ ((A ∨ ¬A) ∧ (¬A ∨ ¬¬A)) using the

connectives of �L3, so we derive [((A ∨ ¬A) ∧ ((A ∨ ¬A) ∧ (¬A ∨ ¬¬A))), N] to establish

the formula’s quasi-tautologousness. The derivation begins with lines 1–12 of the

previous proof of [((A → ¬A) → ¬A), N]:

1 . . .

. . .

12 [n → ((A → ¬A) → ¬A), T] 3,6,11 DS

13 [((¬(A ∨ ¬A) → ¬(A ∨ ¬A)) → ¬(A ∨ ¬A)) →
((¬(A ∨ ¬A) → ¬(A ∨ ¬A)) → ¬(A ∨ ¬A)), T]

�L3PD4, with (¬(A ∨ ¬A) → ¬(A ∨ ¬A)) →
¬(A ∨ ¬A) / P

14 [¬(A ∨ ¬A) → ¬(A ∨ ¬A), T] �L3PD4, with ¬(A ∨ ¬A) / P

15 [((¬(A ∨ ¬A) → ¬(A ∨ ¬A)) → ¬(A ∨ ¬A)) → ¬(A ∨ ¬A), T] 13,14 GMP

16 [¬¬((¬(A ∨ ¬A) → ¬(A ∨ ¬A)) → ¬(A ∨ ¬A)) → ¬(A ∨ ¬A), T] 15, DN

17 [(A ∨ ¬A) → ¬((¬(A ∨ ¬A) → ¬(A ∨ ¬A)) → ¬(A ∨ ¬A)), T] 16, GCON

(i.e., [(A ∨ ¬A) → ((A ∨ ¬A) ∧ (A ∨ ¬A)), T]—recall that P ∧ Q is definable in �L3 as ¬(¬P ∨ ¬Q)) which in

turn is definable as ¬((¬P → ¬Q) → ¬Q))

18 [¬(A ∨ ¬A) → (¬(A ∨ ¬A) ∨ ¬(A ∨ ¬A)), T] �L3PD6, with ¬(A ∨ ¬A) / P, ¬(A ∨ ¬A) / Q

19 [¬ (¬(A ∨ ¬A) ∨ ¬(A ∨ ¬A)) → ¬¬(A ∨ ¬A), T] 18, GCON

20 [¬ (¬(A ∨ ¬A) ∨ ¬(A ∨ ¬A)) → (A ∨ ¬A), T] 19, DN

(i.e., ((A ∨ ¬A) ∧ (A ∨ ¬A)) → (A ∨ ¬A), T)

21 [n → ((A ∨ ¬A) ∧ (A ∨ ¬A)), T] 12,17,20 SUB

(we have used the that is formulas in making this substitution)

22 [n → ((A ∨ ¬A) ∧ ((A ∨ ¬A) ∧ (A ∨ ¬A))), T] 21,17,20 SUB

23 [n → ((A ∨ ¬A) ∧ ((A ∨ ¬A) ∧ (¬¬A ∨ ¬A))), T] 22, DN

24 [(¬¬A ∨ ¬A) → (¬A ∨ ¬¬A), T] �L3PD9, with ¬¬A / P,¬A / Q

25 [(¬A ∨ ¬¬A) → (¬¬A ∨ ¬A), T] �L3PD9, with ¬A / P,¬¬A / Q

26 [n → ((A ∨ ¬A) ∧ ((A ∨ ¬A) ∧ (¬A ∨ ¬¬A))), T] 23,24,25 SUB

27 [n, N] �L3PD7.2

28 ((A ∨ ¬A) ∧ ((A ∨ ¬A) ∧ (¬A ∨ ¬¬A)), N] 26,27 MP
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So far we have applied rules derived in �L3A only to formulas that are graded

with T. This restriction is inconvenient, so we will now introduce graded versions

of derived rules. The first is

HS. From [P → Q, v1] and [Q → R, v2] infer [P → R, v3] where v3 is defined in

terms of v1 and v2 as specified in the following table:

v1 v2 v3

T T T

T N N

T F F

N T N

N N F

N F F

F T F

F N F

F F F

Justification:

1 [P → Q, v1] given

2 [Q → R, v2] given

3 [(P → Q) → ((Q → R) → (P → R)), T] �L3P2

4 [(Q → R) → (P → R), v1] 1,3 MP

5 [P → R, v3] 2,4 MP

Note that the formula on line 4 is graded with v1, since the value of the con-

ditional on line 3 is T, and in this case the rule MP assigns the same value as

the antecedent to the consequent. The value v3 on line 5 is computed by find-

ing the row in the table for the MP rule with v2 as the value of the antecedent

P (v2 is the value of the formula on line 2), and v1 as the value of the conditional

P → Q (v1 is the value of the conditional on line 4). In this case we end up with

the same table as we did for the rule MP!

The graded version of CON is

CON. From [¬P → ¬Q, v] infer [Q → P, v]

Justification:

1 [¬P → ¬Q, v] given

2 [(¬P → ¬Q) → (Q → P), T] �L3P3

3 [Q → P, v] 1,2 MP

Recall that if a conditional P → Q is true, the graded MP rule assigns to Q the same

value as P. Thus the graded value v is justified given the graded value T for the
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conditional on line 2. The reader will be asked in the exercises to derive graded

versions of other rules. There is, however, one rule that is tricky to derive and so

we’ll do so here.

The rule is Modified Constructive Dilemma: from P → Q and (P → ¬P) → Q

derive Q. If we use the derivation of the ungraded version in Section 6.1 as the basis

for our justification, we will end up with a rule that is not graded as strongly as it

could be:

1 [P → Q, v1] given

2 [(P → ¬P) → Q, v2] given

3 [(P → Q) → ((Q → ¬P) → (P → ¬P)), T] �L3P2, with P / P, Q / Q, ¬P / R

4 [(Q → ¬P) → (P → ¬P), v1] 1,3 MP

5 [(Q → ¬P) → Q, v3] 2,4 HS

where v3 is a function of v1 and v2 as indicated in the table for graded HS

6 [(Q → ¬Q) → ((¬Q → ¬ P) → (Q → ¬P)), T] �L3P2, with Q / P, ¬Q / Q, ¬P / R

7 [(¬Q → ¬ P) → ((Q → ¬Q) → (Q → ¬P)), T] 6, TRAN

8 [¬Q → ¬ P, v1] 1, GCON

9 [(Q → ¬Q) → (Q → ¬P), v1] 7,8 MP

10 [(Q → ¬Q) → Q, v4] 5,9 HS

where v4 is a function of v1 and v3 as indicated in the table for graded HS

11 [((Q → ¬Q) → Q) → Q, T] �L3P4, with Q / P

12 [Q, v4] 10,11 MP

(We have used graded GCON, which is assigned as an exercise; after doing the

exercise the reader may confirm that we have assigned the correct value to the

formula derived on line 8.) The problem with this derivation is that on the basis of

the values v1 and v2 we’ll get the following values for v4:

v1 v2 v4

T T T

T N N

T F F

N T F

N N F

N F F

F T F

F N F

F F F

The value when v1 = N and v2 = T is too low; v4 should be N in this case because (as

the reader can verify with a truth-table) that is the least value that Q can have when

P → Q has the value N and (P → ¬P) → Q has the value T. Generally, the least value
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that Q can have is the minimum of the least values that P → Q and (P → ¬P) → Q

have, and we state this in our derived rule:

MCD (Modified Constructive Dilemma). From [P → Q, v1] and

[(P → ¬P) → Q, v2], infer [Q, min (v1, v2)].

Correct justification:

We begin the derivation as

1 [P → Q, v1] given

2 [(P → ¬P) → Q, v2] given

3 [v1 → (P → Q), T] 1, TCI

4 [v2 → ((P → ¬P) → Q), T] 3, TCI

where v1 stands for the atomic formula that denotes the value v1 and v2 stands

for the atomic formula that denotes the value v2. Now, note that either v1 ≤ v2

or v2 < v1. In the former case, we will continue the derivation with

5 [t → (v1 → v2), T] �L3P5.x.2

{This is axiom �L3G5.x.2 for some value of x, because we are assuming that v1 ≤ v2}

6 [t, T] �L3P7.1

7 [v1 → v2, T] 5,6 MP

8 [v1 → ((P → ¬P) → Q), T] 4,7 HS

Because v1 ≤ v2 in this case, v1 = min (v1, v2). We can therefore rewrite the

derivation so far as

1 [P → Q, v1] given

2 [(P → ¬P) → Q, v2] given

3 [min (v1, v2) → (P → Q), T] 1, TCI

4 [v2 → ((P → ¬P) → Q), T] 2, TCI

5 [t → (min (v1, v2) → v2), T] �L3P5.x.2

6 [t, T] �L3P7.1

7 [min (v1, v2) → v2), T] 5,6 MP

8 [min (v1, v2) → ((P → ¬P) → Q), T] 4,7 HS

(where min (v1, v2) stands for the atomic formula denoting the value min

(v1, v2). In the case where v2 < v1 we begin the derivation with

1 [P → Q, v1] given

2 [(P → ¬P) → Q, v2] given

3 [v1→ (P → Q), T] 1, TCI

4 [min (v1, v2) → ((P → ¬P) → Q), T] 2, TCI

5 [t → (min (v1, v2) → v1), T] �L3P5.x.2

6 [t, T] �L3P7.1

7 [min (v1, v2) → v1), T] 5,6 MP

8 [min (v1, v2) → (P → Q), T] 3,7 HS
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In either case the derivation continues as follows (with {x, y} meaning line x if

we began the first way, and line y if we began the second way):

9 [(P → (min (v1, v2) → Q), T] {3,8} TRAN

10 [(P → ¬P) → (min (v1, v2) → Q), T] {8,4} TRAN

11 [(P → (min (v1, v2) → Q)) →
(((min (v1, v2) → Q) → ¬P) → (P → ¬P)), T]

�L3P2, with P / P, min (v1, v2) → Q / Q,

¬P / R

12 [((min (v1, v2) → Q) → ¬P) → (P → ¬P), T] 9,11 MP

13 [((min (v1, v2) → Q) → ¬P) → (min (v1, v2) → Q), T] 10,12 HS

14 [((min (v1, v2) → Q) → ¬(min (v1, v2) → Q)) →
((¬(min (v1, v2) → Q) → ¬ P) →

((min (v1, v2) → Q)→ ¬P)), T]

�L32, with min (v1, v2) → Q / P,

¬(min (v1, v2) → Q) / Q, ¬P / R

15 [(¬(min (v1, v2) → Q) → ¬ P) →
(((min (v1, v2) → Q) → ¬(min (v1, v2) → Q)) →

((min (v1, v2) → Q) → ¬P)), T]

14, TRAN

16 [¬(min (v1, v2) → Q) → ¬P, T] 9, GCON

17 [((min (v1, v2) → Q) → ¬(min (v1, v2) → Q)) →
((min (v1, v2) → Q) → ¬P), T]

15,16 MP

18 [((min (v1, v2) → Q) → ¬(min (v1, v2) → Q)) →
(min (v1, v2) → Q), T]

13,17 HS

19 [(((min (v1, v2) → Q) → ¬(min (v1, v2) → Q)) →
(min (v1, v2) → Q)) →

(min (v1, v2) → Q), T]

�L3P4, with min (v1, v2) → Q / P

20 [(min (v1, v2) → Q), T] 18,19 MP

21 [min (v1, v2), min (v1, v2)] �L3P7.x

22 [Q, min (v1, v2)] 20,21 MP

Thus, for example, we can derive [P ∨ Q, N] from [(P → ¬P) → (P ∨ Q), N] as follows

1 [(P → ¬P) → (P ∨ Q), N] Assumption

2 [P → (P ∨ Q), T] �L3PD6, with P / P, Q / Q

3 [P ∨ Q, N] 1,2 MCD

because N = min (T, N).

6.3 Exercises

SECTION 6.1

1 Prove that the rule RSIMP is derivable in �L3A:

RSIMP (Right Conjunct Simplification). From P ∧ Q infer Q.

2 Show that the inference

P → Q

(P → ¬P) → Q

Q,

which is captured by the derived rule MCD in �L3A, is valid in �L3.
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3 Produce derivations to show that the following formulas are theorems of �L3A:

a. (P ∨ Q) → (¬P → Q)

b. (P ∧ Q) → (Q ∧ P)

c. ¬(P → Q) → ¬Q

d. ¬(P → Q) → (Q → P)

e. ¬(P → Q) → (P → ¬Q)

f. P → (¬Q → ¬(P → Q))

4 Prove the Modified Deduction Theorem for �L3A in two parts:

a. Show that if P → (P → Q) is a theorem then Q is derivable from P (this part

is pretty easy).

b. Show that if Q is derivable from P then P → (P → Q) is a theorem. You can

show this by proving that if we have a derivation

1 P Assumption

2 R1

3 R2

. . . . . .

n Rn

n+1 Q

in �L3A, where R1, . . . , Rn are the intermediate formulas in the derivation,

then every one of the following formulas is a theorem of �L3A:

P → (P → P)

P → (P → R1)

P → (P → R2)

. . .

P → (P → Rn)

P → (P → Q)

Specifically, show that

i. P → (P → P) is a theorem.

ii. If any of the Ri—or Q—are axioms of �L3A, then P → (P → Ri)

(or P → (P → Q)) is a theorem.

iii. If any of the Ri—or Q—follows from previous formulas Rj and Rk by the

rule MP, then P → (P → Ri) (or P → (P → Q)) follows from P → (P → Rj)

and P → (P → Rk) (although not, of course, by a single application of

MP—you will find �L3D11 useful in this part).

SECTION 6.2

5 a. Show that the rules �L3P5.2.2, �L35.3.2, �L35.4.2, and �L35.7.2 are derivable from

other rules in the system �L3PA, excluding all of the .2 versions of the �L3P5

rules.

b. Show that the rule �L3P5.5.2 is derivable from other axioms in the system

�L3PA, excluding all of the .2 versions of the �L3P5 axioms.
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c. Show that the rule �L3P5.6.2 is derivable from other axioms in the system

�L3PA, excluding all of the .2 versions of the �L3P5 axioms.

d. Show that the rule �L3P5.8.2 is derivable from other axioms in the system

�L3PA, excluding all of the .2 versions of the �L3P5 axioms.

e. Show that the rule �L3P5.9.2 is derivable from other axioms in the system

�L3PA, excluding all of the .2 versions of the �L3P5 axioms.

6 Show that �L3P6.3.1 and �L3P6.3.2 are derivable in �L3PA given �L3P6.1.1 and

�L3P6.1.2, and vice versa.

7 Show that �L3P7.1 is derivable from the other axioms of �L3PA.

8 Justify the truth-values for v3 in each row of the truth-value table for the MP

rule in �L3PA.

9 Derive the following theorems in �L3PA:

a. [(n → P) → (¬P → n), T]

b. [(P → f) → (t → (Q → (P → R))), T]

c. [(n → P) → (n → (Q → P)), T]

d. [(t → P) → ((n → Q) → (n → (P → Q))), T]

e. [(t → (P → Q))→ (P → Q), T]

f. [(t → (P → Q)) → ((t → P) → (t → Q)), T]

10 Derive graded versions of the following rules for �L3PA. In each case, make

sure that you have assigned the strongest possible graded value to the inferred

formula.

a. �LSIMP

b. RSIMP

c. SUB

Note: The graded rule should look like this:

SUB (Substitution). From [P → Q, T], [Q → P, T], and a graded formula

[R, v] such that R contains P as a subformula, infer any graded formula

[R*, x] in which R* is the result of replacing one or more occurrences of

P in R with Q and x is . . .(fill in the blank).

d. MT

e. DN

f. TRAN

g. GCON

h. GHS

i. GMP

j. DS

k. DC

11 Prove that if we can derive a graded formula [Q, v] from some (possible empty)

set of graded assumptions in system �L3PA, then for any value v′ less than v, we

can also derive [Q, v′] from those same graded assumptions.

12 a. Derive [(¬P → n), T] from [P, N] in �L3PA.

b. Derive [Q → P, N] from [P, N] in �L3PA.

c. Derive [t → (P ∨ ¬P), N] in �L3PA.
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13 Given the (weak or strong) completeness of �L3A for �L3, we can prove that if a

formula P (without truth-value constants) is a quasi-tautology of �L3 then [P, N]

is a theorem of �L3PA as follows:

If P is a quasi-tautology of �L3 then the formula ¬P → P is always true (given

that P always has the value T or N) and is therefore a tautology. Because �L3A

is complete, ¬P → P is a theorem of �L3A and so [¬P → P, T] is a theorem of

�L3PA. [(¬P → P) → P, N] is also a theorem:

1 [(¬P → ¬¬P)→ ¬¬P, N] �L3PD12, with ¬P / P

2 [(¬P → P) → P, N] 1, DN

and so we can derive [P, N] from these two theorems by Modus Ponens.

Given the strong completeness of �L3A for �L3, prove that if a set of formulas

� quasi-entails P (where none of the formulas contain truth-value constants)

then [P, N] is derivable in �L3PA from the graded set of formulas �G in which

each member of � has the grade N.
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7 Three-Valued First-Order Logics: Semantics

7.1 A First-Order Generalization of �L3

We now introduce full three-valued first-order logical systems—systems in which

we can evaluate the Sorites paradox and Black’s Problem of the Fringe. In classical

first-order logic, predicates are interpreted simply by defining their extensions. The

extension of a predicate consists of those objects (or tuples of objects) of which

the predicate is true. It’s implicit in classical semantics that all objects (or tuples of

objects) that do not fall within the extension of a predicate are in its counterextension.

The counterextension of a predicate consists of those objects/tuples of objects of

which the predicate is false. In three-valued semantics we draw a finer distinction.

We will now associate with each predicate three sets of objects (tuples of objects):

those of which the predicate is true, those of which the predicate is false, and those

of which the predicate is neither true nor false. Let us call this third set the fringe.

An interpretation I for three-valued first-order logic consists of

1. A nonempty set D (the domain)

2. An assignment of three sets ext(P), cxt(P), and fge(P) (for extension, coun-

terextension, and fringe) to each predicate P of arity n, meeting the following

requirements:
� the three sets, one or two of which may be empty, consist of n-tuples of

members of D:

ext(P) ⊆ Dn, cxt(P) ⊆ Dn, and fge (P)⊆ Dn

� the three sets are mutually exclusive:

ext(P) ∩ cxt(P) = Ø

ext(P) ∩ fge(P) = Ø

cxt(P) ∩ fge(P) = Ø
� the three sets are mutually exhaustive of Dn:

ext(P) ∪ cxt(P) ∪ fge(P) = Dn

3. An assignment of a member of D to each individual constant a:

I(a) ∈ D

We also need variable assignments: as in classical first-order logic, a variable assign-

ment v assigns a member of D to each individual variable x: v(x) ∈ D, and an

130
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x-variant v′ of a variable assignment v is an assignment such that v′(y) = v(y)

for every variable y other than x.

The truth-conditions for formulas on three-valued interpretations are defined

in terms of satisfaction and dissatisfaction by variable assignments. Here are the

truth-conditions for the first-order generalization of L3, which we will call L3∀:1

1. An atomic formula Pt1 . . . tn is
� satisfied by a variable assignment v on an interpretation I if <I*(t1), . . . ,

I*(tn)> ∈ ext(P), where I*(ti) is I(ti) if ti is a constant and is v(ti) if ti is a

variable,
� dissatisfied if <I*(t1), . . . ,I*(tn)> ∈ cxt(P), and
� neither satisfied nor dissatisfied if <I*(t1), . . . ,I*(tn)> ∈ fge(P).

When a formula is neither satisfied nor dissatisfied by a variable assignment, we will

say that it is undetermined by that assignment. Clauses 2–6 reflect the �Lukasiewicz

truth-tables for propositional logic:

2. A formula ¬P is
� satisfied by a variable assignment v on an interpretation I if P is dissatisfied

by v on I,
� dissatisfied if P is satisfied by v on I, and
� undetermined otherwise.

3. A formula P ∧ Q is
� satisfied by a variable assignment v on an interpretation I if both P and Q

are satisfied by v on I,
� dissatisfied if either P or Q is dissatisfied by v on I, and
� undetermined otherwise.

4. A formula P ∨ Q is
� satisfied by a variable assignment v on an interpretation I if either P or Q is

satisfied by v on I,
� dissatisfied if both P and Q are dissatisfied by v on I, and
� undetermined otherwise.

5. A formula P → Q is
� satisfied by a variable assignment v on an interpretation I if P is dissatisfied

by v on I, or Q is satisfied by v on I, or P and Q are both undetermined by v

on I,
� dissatisfied if P is satisfied by v on I and Q is dissatisfied by v on I, and
� undetermined otherwise.

6. A formula P ↔ Q is
� satisfied by a variable assignment v on an interpretation I if either P and Q

are both satisfied by v on I, or P and Q are both dissatisfied by v on I, or P

and Q are both undetermined by v on I,

1 As in Chapter 6, we will omit the subscript �L on the �Lukasiewicz connectives but include them
on the connectives for the other first-order systems.
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� dissatisfied if either P is satisfied by v on I and Q is dissatisfied by v on I or

P is dissatisfied by v on I and Q is satisfied by v on I, and
� undetermined otherwise.

The satisfaction conditions for quantified formulas are based on the idea that a

universally quantified formula is like an extended conjunction and an existentially

quantified formula is like an extended disjunction. That is, if everything is P then

this is P and that is P and . . . , while if something is P then either this is P or that

is P or . . . . Since a conjunction is true in �Lukasiewicz’s three-valued system if both

conjuncts are true, false if at least one conjunct is false, and neither true nor false

otherwise, we will want a universal quantification to be true if what it says is true

of everything, false if what it says is false of at least one thing, and neither true nor

false otherwise. Thus:

7. A formula (∀x)P is
� satisfied by a variable assignment v on I if P is satisfied by every x-variant

of v on I,
� dissatisfied if P is dissatisfied by at least one x-variant of v on I, and
� undetermined otherwise.

A disjunction is true in �Lukasiewicz’s three-valued system if at least one disjunct

is true, false if both disjuncts are false, and neither true nor false otherwise, so we

will want an existentially quantified formula to be true if what it says is true of at

least one thing, false if what it says is false of everything, and neither true nor false

otherwise:

8. A formula (∃x)P is
� satisfied by v on I if P is satisfied by at least one x-variant of v on I,
� dissatisfied if P is dissatisfied by every x-variant of v on I, and
� undetermined otherwise.

Finally, a formula has the value T on I if it is satisfied by every variable assignment

on I, the value F if it is dissatisfied by every variable assignment on I, and the value

N if it is undetermined by every variable assignment on I. Under our definitions,

closed formulas (but not necessarily open ones) will receive one of the three values

T, F, or N on any interpretation.

Here’s an example of an interpretation for �L3∀:

D: set of heights between 4′ 7′′ and 6′ 7′′ by 1/8
′′ increments, inclusive

ext(T) = {<h>: h ∈D and h ≥ 5′ 11′′}
fge(T) = {<h>: h ∈ D and 5′ 3′′ < h < 5′ 11′′}
cxt(T) = {<h>: h ∈ D and h ≤ 5′ 3′′}
ext(V) = Ø

fge(V) = {<h>: h ∈ D and h ≤ 4′ 9′′}
cxt(V) = {<h>: h ∈ D and h > 4′ 9′′}
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ext(N) = {<h1, h2>: h1∈ D, h2 ∈ D, and h1 – h2 ≥ 3′′}
fge(N) = {<h1, h2>: h1∈ D, h2 ∈ D, and 1′′ < h1 – h2 < 3′′}
cxt(N) = {<h1, h2>: h1∈ D, h2 ∈ D, and h1 – h2 ≤ 1′′}
I(a) = 6′

I(b) = 5′ 6′′

I(c) = 4′ 11′′

I(d) = 4′ 10′′

I(e) = 4′ 9′′

We’ll call this interpretation VH, for vague heights. Intuitively, T means is tall; we

have somewhat arbitrarily—but not unreasonably—chosen the cutoff points for

being tall and being not tall. V means very tiny and N means is noticeably taller

than—again, the cutoffs are somewhat arbitrary but seem okay. Note that we’ve

decided that none of the heights in the domain are very tiny. The formula Ta has

the value T on interpretation VH because I(a) is a member of ext(T); Tc, Td, and

Te have the value F since I(c), I(d), and I(e) are members of cxt(T), and Tb has the

value N because I(b) is a member of fge(T). Va, Vb, Vc, and Vd all have the value F

while Ve has the value N. Naa has the value F, while Nab, Nac, Nad, and Nae all have

the value T. Ncd and Nde have the value F, and Nce has the value N.

The truth-values of compound formulas without quantifiers are as expected

for a �Lukasiewicz system; for example, Ta ∨ Tb has the value T on VH, Tb ∨ Tc has

the value N, and Tb ∧ Tc has the value F. Ta → Ta, Tb → Tb, Tc → Tc, Td → Td, and

Te → Te all have the value T. Ta → Tb and Tb → Tc both have the value N, while

Tc → Td and Td → Te both have the value T, as do Tb → Ta, Tc → Tb, Td → Tc,

and Te → Td.

The universally quantified formula ( ∀x)Tx has the value F on interpretation VH

because at least one x-variant of each variable assignment will dissatisfy Tx, namely,

any x-variant that assigns a member of cxt(T) to x. ( ∀x)Vx has the value F for a similar

reason. The existentially quantified formula (∃x)Tx has the value T because at least

one x-variant of each variable assignment does satisfy Tx: any x-variant that assigns

a member of ext(T) to x will do so. But the formula (∃x)Vx has the value N because

no x-variant of any variable assignment satisfies Vx (so (∃x)Vx isn’t true), but not

all x-variants dissatisfy Vx: those that assign a member of fge(V) to x neither satisfy

nor dissatisfy Vx (so (∃x)Vx isn’t false either). (∃x)¬Vx has the value T because the

counterextension of V is nonempty; x-variants that assign members of cxt(V ) to x

will satisfy ¬Vx.

( ∀x)(∃y)Nyx has the value F on interpretation VH, precisely because it’s false

that for every height in the domain you can find one that’s noticeably taller. Consider

any variable assignment v: the x-variant v′ of v that assigns 6′ 7′′ to x dissatisfies the

formula (∃y)Nyx (as do all x-variants that assign any height greater than 6′ 4′′ to x).

v′ dissatisfies this formula because every y-variant v′′ of v′ dissatisfies Nyx: for every

height in the domain that we can assign to y, <v′′(y), v′′(x)> ( = <v′′(y), 6′ 7′′>) is a

member of cxt(N) because v′′(y) – 6′ 7′′ is less than 1′.
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The formula ( ∀x)(¬Vx → (∃y)Nxy), which we may read as every height that isn’t

very tiny is noticeably taller than some height, has the value N on VH. We’ll first show

that for any variable assignment v,

i. the x-variants of v that assign members of cxt(V) to x either satisfy or neither

satisfy nor dissatisfy the formula ¬Vx → (∃y)Nxy, and

ii. the x-variants of v that assign members of fge(V) to x cannot dissatisfy ¬Vx →
(∃y)Nxy.

For (i), consider the x-variants v′ that assign members of cxt(V) to x. These x-variants

will all satisfy ¬Vx. Some of them, those that assign heights ≥ 4′ 10′′, also satisfy

(∃y)Nxy—because each height ≥ 4′ 10′′ is noticeably taller than at least one height

in the domain. But among these heights those that lie strictly between 4′ 9′′ and

4′ 10′′ neither satisfy nor dissatisfy (∃y)Nxy—for each of these heights v′(x) there is

a y-variant v′′ of v′ such that <v′(x), v′′(y)> ∈ fge(N), but there is no y-variant v′′ such

that <v′(x), v′′(y)> ∈ ext(N). So some x-variants that assign members of cxt(V) to

x satisfy the conditional ¬Vx → (∃y)Nxy while others neither satisfy nor dissatisfy

the conditional. For (ii), consider the x-variants that assign members of fge(V) to x:

none of these can dissatisfy ¬Vx → (∃y)Nxy because none of them satisfy ¬Vx.

Finally, there are no x-variants that assign members of ext(V) to x, because ext(V)

is empty, so between (i) and (ii) we have considered all of the x-variants of v, with

the result that some x-variants of v satisfy the conditional ¬Vx → (∃y)Nxy, some

x-variants leave the conditional undetermined, and no x-variants dissatisfy it. Thus

the universally quantified formula ( ∀x)(¬Vx → (∃y)Nxy) has the value N.

The formula ( ∀x)(Tx → Tx) has the value T on interpretation VH, as well as on all

other interpretations for �L3∀. Every variable assignment satisfies the universal quan-

tification because every x-variant will satisfy Tx→ Tx—the identical antecedent and

consequent are either both satisfied or both dissatisfied or both undetermined on

any variable assignment. On the other hand, the tall version of the Law of Excluded

Middle, ( ∀x)(Tx ∨ ¬Tx), has the value N on interpretation VH. This is because

the formula Tx ∨ ¬Tx is undetermined by variable assignments that assign a value

between 5′ 31/8
′′ and 5′ 107/8

′′ (inclusive) to x—so ( ∀x)(Tx ∨ ¬Tx) doesn’t have

the value T, but Tx ∨ ¬T is not dissatisfied by any—so ( ∀x)(Tx ∨ ¬Tx) doesn’t

have the value F. No variable assignment can dissatisfy Tx ∨ ¬Tx because no vari-

able assignment can dissatisfy both disjuncts.

The negation ¬( ∀x)(Tx ∨ ¬Tx) of the Law of Excluded Middle is equivalent to

(∃x)(¬Tx ∧ ¬¬Tx) in �L3∀. This is the formula at issue in Max Black’s Problem of

the Fringe: we would like to affirm that a predicate is vague by stating that there

is at least one object in its fringe, and it would seem that we can express this with

the formula (∃x)(¬Tx ∧ ¬¬Tx): there is at least one object that is neither tall nor

not tall. But by the Principle of Double Negation, which holds in �L3∀ as it does in

classical logic, the formula (∃x)(¬Tx ∧ ¬¬Tx) is equivalent to (∃x)(¬Tx ∧ Tx)—and

that formula seems to be a contradiction. So in claiming that the predicate tall is

vague we would seem to be committed to the truth of a contradiction—that’s the
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problem. In Chapter 3 we noted that the fringe formula is indeed a contradiction of

classical first-order logic.

Neither (∃x)(¬Tx ∧ ¬¬Tx) nor (∃x)(¬Tx ∧ Tx) is a contradiction (i.e., a formula

that always has the value F) in �L3∀; both formulas have the value N on interpretation

VH. We’ll just consider the formula (∃x)(¬Tx ∧ Tx). This formula is undetermined

on every variable assignment v: no x-variant v′ of v can satisfy ¬Tx ∧ Tx, so (∃x)

(¬Tx∧Tx) isn’t satisfied by v; but (∃x)(¬Tx∧Tx) is not dissatisfied by any v, either, be-

cause not every x-variant v′ of v dissatisfies¬Tx∧¬¬Tx (any assignment that assigns

a member of fge(T) to x, for example, neither satisfies nor dissatisfies ¬Tx ∧ Tx).

The formula (∃x)(¬Tx ∧ Tx) therefore has the value N on interpretation VH.

But the fact that (∃x)(¬Tx ∧ ¬¬Tx) isn’t a contradiction in �L3∀ doesn’t address

Black’s problem, because this formula was supposed to affirm the existence of bor-

derline cases and consequently to assert that the predicate T is vague. The formula

has the value N on VH, so it can’t assert the vagueness of the predicate T there, and

more importantly, there is no interpretation on which the formula is true. (Extend-

ing the terminology of Chapter 5, the formula is quasi-contradictory: it can only

have one of the values T, N). So it is impossible for this formula truly to assert the

vagueness of the predicate T.

Does this mean that we have no way within �L3∀ to assert the vagueness of

predicates? Not at all. Recall that Bochvar’s external connectives are all definable in

�L3, and so they are also definable in �L3∀. In particular, external negation is definable

here, where ¬BEP is satisfied by a variable assignment if P is either dissatisfied

or undetermined and ¬BEP is dissatisfied otherwise. We can use the formula (∃x)

(¬BETx ∧ ¬BE¬Tx), in which the first two negations are Bochvar’s external negation

and the third is Lukasiewicz’s negation, to assert that the predicate tall is vague.

If we regard �Lukasiewicz’s negation as expressing the English prefix un, and take

short to mean the same as untall, then this formula asserts: At least one height is

neither tall nor short. Since Tx and ¬Tx are both undetermined on any variable

assignment that assigns a value in fge(T) to x, both ¬BETx and ¬BE¬Tx will be

satisfied by these assignments and the formula (∃x)(¬BETx ∧ ¬BE¬Tx) is therefore

true on interpretation VH.

The Sorites paradox also has a solution in �L3∀. The argument

Ts1

Es2s1

Es3s2

Es4s3

. . .

Es193s192

(∀x) (∀y) ((Tx ∧ Eyx) → Ty)

Ts193

is valid in �L3∀. The proof is exactly like the proof showing that the argument is valid in

classical first-order logic; the key point is that if the premise( ∀x)(∀y)((Tx∧Eyx)→Ty)
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has the value T in �L3∀ then Ty must be satisfied by every variable assignment that

satisfies Tx ∧ Ey. But the validity of the Sorites argument is not enough to generate

the paradox: the paradox depends on the argument’s premises’ actually being true,

for it is only when the premises are in fact true that the conclusion must be true as

well. So let’s determine the truth-values of the premises and conclusion of the

argument on the following interpretation, which we will call VH*:

D: set of heights between 4′ 7′′ and 6′ 7′′ by 1/8
′′ increments, inclusive

ext(T) = {<h>: h ∈ D and h ≥ 5′ 11′′}
cxt(T) = {<h>: h ∈ D and h ≤ 5′ 3′′}
fge(T) = {<h>: h ∈ D and 5′ 3′′ < h < 5′ 11′′}
ext(E) = {<h1,h2>: h1 is 1/8

′′ less than h2}
cxt(E) = {<h1,h2>: h1 is not 1/8

′′ less than h2}
fge (E) = Ø

I(s1) = 6′ 7′′

I(s2) = 6′ 67/8
′′

. . .

I(s193) = 4′ 7′′

The formula Ts1 has the value T on this interpretation, since I(s1) is in ext(T). All of

the premises Esi+1si in this argument have the value T, because each pair <I(si+1),

I(si)> is a member of ext(E). The conclusion of the argument, Ts193, has the value F

since I(s193) is in cxt(T). But the premise ( ∀x) ( ∀y) ((Tx ∧ Eyx) → Ty) is not true on

VH*; it has the value N because it is undetermined by every variable assignment.

Consider any variable assignment v. We will show that

i. some x-variants v′ of v satisfy ( ∀y) ((Tx ∧ Eyx) → Ty), and

ii. some x-variants v′ of v neither satisfy nor dissatisfy ( ∀y) ((Tx ∧ Eyx) → Ty), but

iii. no x-variants v′ of v dissatisfy ( ∀y) ((Tx ∧ Eyx) → Ty).

For (i), consider the x-variant v′ such that v′(x) = 6′ 7′′ (some other x-variants will

work as well). v′ satisfies ( ∀y) ((Tx ∧ Eyx) → Ty) because every y-variant v′′ of v′

satisfies (Tx ∧ Eyx) → Ty. Why? First consider the variant with v′′(y) = 6′ 67/8
′′ (and, of

course, v′′(x) is still 6′ 7′′). v′′ satisfies Tx, Ey, and Ty—and so it satisfies the conditional

(Tx ∧ Eyx) → Ty. Now consider any other y-variant v′′ of v′—these are variants that

assign values other than 6′ 67/8
′′ to y. Such a y-variant must dissatisfy Eyx since no

height in the domain other than 6′ 67/8
′′ is 1/8

′′ less than 6′ 7′′, and so it will also

dissatisfy Tx ∧ Eyx and therefore satisfy (Tx ∧ Eyx) → Ty.

To show (ii), consider the x-variant v′ such that v′(x) = 5′ 11′′. The y-variant v′′

of v′ that assigns 5′ 107/8
′′ to y satisfies both Tx and Eyx but fails to satisfy or dissatisfy

Ty and so it fails to satisfy or dissatisfy (Tx ∧ Eyx) → Ty. Thus v′ doesn’t satisfy

( ∀y) ((Tx ∧ Eyx) → Ty). All other y-variants of v′ satisfy (Tx ∧ Eyx) → Ty because

they dissatisfy Eyx – so v′ doesn’t dissatisfy ( ∀y) ((Tx ∧ Eyx) → Ty) either: v′ neither

satisfies nor dissatisfies ( ∀y) ((Tx ∧ Eyx) → Ty).
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Finally, to show (iii), we note that for no value of x can we dissatisfy ( ∀y)

((Tx ∧ Eyx) → Ty). To dissatisfy the formula there would have to be a value of y

such that Tx and Eyx are satisfied but Ty is dissatisfied. However, there is no pair of

heights h1 and h2 such that h1 is in the extension of T, h2 is 1/8
′′ less than h1, and h2

is in the counterextension of T.

On interpretation VH*, therefore, the Principle of Charity premise is not true.

Despite the Sorites’ semantic validity in �L3∀we are not forced to accept its conclusion

on this interpretation. Moreover, in denying the truth of the Principle of Charity we

have not run afoul of an ancillary problem that we noted in Chapter 1. There we said

that when we deny the Principle of Charity we must accept its negation, which says

that there are two heights, 1/8
′′ apart, such that it is true that one is tall and false that

the other is—a claim that is certainly not true! We may now add that this problem

arises only within the framework of classical logic, where denying the truth of a

claim commits us to its falsity and hence to the truth of its negation. But when the

Principle of Charity has the value N in �L3∀, the principle’s negation will also have the

value N. So this solution to the Sorites paradox in �L3∀ doesn’t endorse the ludicrous

claim that 1/8
′′ can take us from a height that is tall to a height of which it is false that

it is tall.2

Is VH* a reasonable interpretation for the Sorites argument? Well, yes. Even if we

haven’t got the cutoff points for the extension and counterextension of tall exactly

right, the conditions that diffuse the paradox here will undoubtedly be met by any

reasonable interpretation of tall. The paradox is dissolved as long as the premise

( ∀x)( ∀y)((Tx ∧ Eyx) → Ty) can turn out to be neither true nor false, and this will be

the case as long as there is at least one pair of heights x and y such that (Tx∧Eyx)→Ty

is neither satisfied nor dissatisfied but no pair of heights x and y for which the for-

mula is dissatisfied. As long as we have a nonempty fringe along with a nonempty

extension (or a nonempty counterextension) for the predicate T there will be a pair

of heights x and y such that (Tx ∧ Eyx) → Ty is neither satisfied nor dissatisfied—

we naturally assume that the interpretation of E remains the same—and that

seems right for vague predicates. And as long as there are no two consecutive

heights such that one is in the extension of the predicate T while the other is in

its counterextension, a situation also guaranteed by a nonempty fringe, the formula

(Tx ∧ Eyx) → Ty can’t be dissatisfied by any values of x and y.

7.2 Quantifiers Based on the Other Three-Valued Systems

Because conjunction and disjunction are defined in KS
3 in exactly the same way as

in �L3, the quantifier clauses for the two systems are the same. The only difference

2 The astute reader may still worry, however, that here 1/8
′′ can take us from a height that is tall to

a height of which it is neither true nor false that it is tall. We will return to this very legitimate
concern in Chapter 10.
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between KS
3∀ and L3∀ occurs in the satisfaction clauses for conditionals and bicon-

ditionals, which for KS
3∀ will stipulate the satisfaction conditions capturing the

semantics of the KS
3 conditional and biconditional, for example,

5. A formula P →K Q is
� satisfied by v on I if either P is dissatisfied by v on I or Q is satisfied by v on I,
� dissatisfied if P is satisfied by v on I and Q is dissatisfied by v on I, and
� undetermined otherwise.

Black’s formula (∃x)(¬Tx ∧ ¬¬Tx) will have the value N on interpretation VH in

KS
3∀ as it does in �L3∀, and the same holds for the Law of Excluded Middle because

the connectives in these formulas are identical to Lukasiewicz’s. And although the

Kleene conditional differs from Lukasiewicz’s, the Sorites argument remains valid

in KS
3∀ while its Principle of Charity premise has the value N on interpretation VH*

(the reader will be asked in the exercises to explain why).

New pairs of quantifiers occur in the first-order systems BI
3∀ and BE

3∀. Con-

cerning the former, recall that in BI
3∀ the value N is contagious. So if we model

the quantifiers on the truth-conditions for conjunctions and disjunctions in BI
3,

quantified formulas should have the value N whenever there is at least one variable

assignment that fails to satisfy or dissatisfy the formula following the quantifier.

Thus the satisfaction clauses for quantifiers in BI
3∀ are

7. A formula (∀BIx)P is
� satisfied by a variable assignment v on I if P is satisfied by every x-variant of

v on I,
� dissatisfied if P is dissatisfied by at least one x-variant of v on I and there is

no x-variant of v that fails to satisfy or dissatisfy P on I, and
� undetermined otherwise.

8. A formula (∃BIx)P is
� satisfied by v on I if P is satisfied by at least one x-variant of v on I and there

is no x-variant of v that fails to satisfy or dissatisfy P on I,
� dissatisfied if P is dissatisfied by every x-variant of v on I, and
� undetermined otherwise.

The satisfaction clauses for formulas formed with the binary propositional con-

nectives will also differ from those for �L3∀, to reflect the fact that the value N is

contagious for all connectives in Bochvar’s internal system. For example, the clause

for disjunction is:

4. A formula P ∨BI Q is
� satisfied if both P and Q are satisfied, or one is satisfied and the other is

dissatisfied,
� dissatisfied if both P and Q are dissatisfied, and
� undetermined otherwise.
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The universally quantified formula ( ∀BIx)Tx has the value N on interpretation

VH. This is because at least one value that can be assigned to x will cause Tx to

be neither satisfied nor dissatisfied, and that is sufficient for concluding that the

universal quantification has neither the value T nor the value F in BI
3∀. This con-

trasts with L3∀ (and KS
3∀), where ( ∀x)Tx has the value F because there is at least

one value that can be assigned to x that dissatisfies Tx. For a similar reason the

existentially quantified formula (∃BIx)Tx has the value N on interpretation VH in

BI
3∀, whereas in the other two systems the existential quantification (∃x)Tx has the

value T. The Bochvarian internal Law of Excluded Middle ( ∀BIx)(Tx ∨BI ¬BITx) also

has the value N. In fact, any (closed) quantified formula that contains Tx will have

the value N in BI
3∀ on interpretation VH since at least one value of x fails to satisfy

or dissatisfy Tx and this failure is contagious. So the Principle of Charity premise

of the Sorites argument, along with Black’s fringe formula, also have the value N in

BI
3∀ on interpretations VH* and VH (while the Sorites argument remains valid).

In Bochvar’s external system a conjunction is true if both conjuncts are true

and is false otherwise, and a disjunction is true if at least one conjunct is true

and is false otherwise. So a universally quantified formula should be true if every

variable assignment satisfies the formula following the quantifier and should be

false otherwise, while an existentially quantified formula should be true if there is

at least one variable assignment that satisfies the formula following the quantifier

and should be false otherwise. The satisfaction clause for the universal quantifier

in BE
3∀ is thus

7. A formula (∀BEx)P is
� satisfied by a variable assignment v on I if P is satisfied by every x-variant

of v on I,
� dissatisfied otherwise.

The satisfaction clause for the BE
3∀existential quantifier is left as an exercise. Clauses

for formulas formed with the propositional connectives in BE
3∀ will reflect their

truth-conditions in BE
3. For example, the clause for negated formulas is

2. A formula ¬BEP is
� satisfied by a variable assignment v on I if P is not satisfied by v on I, and
� dissatisfied otherwise.

The formula ( ∀BEx)Tx has the value F on interpretation VH since any variable

assignment that assigns to x a height less than 5′ 11′′ will fail to satisfy Tx. The

Law of Excluded Middle formula ( ∀BEx)(Tx ∨BE ¬BETx) has the value T on VH,

since every variable assignment will satisfy Tx ∨BE ¬BETx. Indeed, the Law of

Excluded Middle is true on every interpretation in BE
3∀, since ¬BETx must be satis-

fied by any variable assignment that fails to satisfy Tx. Black’s fringe formula (∃BEx)

(¬BETx ∧BE ¬BE¬BETx) has the value F in BE
3∀ on interpretation VH and indeed

on every interpretation because the external negation clause guarantees that it is
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always the case that one of the two conjuncts is false. The Sorites argument remains

valid in BE
3∀. The Principle of Charity premise is false on interpretation VH*, so its

denial is true, and that—as we have noted—seems to be paradoxical, for the denial

asserts that 1/8
′′ can make a difference.

The four Bochvar quantifiers are definable in �L3∀. It is left as an exercise to

confirm that (∀BIx)P is equivalent to �Lukasiewicz’s (∀x)P ∨ (∃x)(P ∧ ¬P), and since

Bochvar’s internal negation is identical to �L3 negation we can define Bochvar’s inter-

nal existential quantifier in �L3∀ using internal negation and the (defined) universal

quantifier. Bochvar’s external quantifiers can be defined using the external asser-

tion operator (which is definable in �L3∀) and �Lukasiwicz’s quantifiers, for example,

(∀BEx)P = def (∀x)aP. The reader will be asked in the exercises to verify the correct-

ness of these definitions.

7.3 Tautologies, Validity, and “Quasi-”Semantic Concepts

Before introducing first-order semantic concepts we extend the concept of normal-

ity to apply to first-order systems. Let us call a three-valued interpretation classical

if it assigns an empty fringe to every predicate. We will say that a three-valued

first-order system is normal if its propositional subsystem is normal (that is, the

propositional connectives form a normal propositional logic) and, in addition, the

truth-conditions for quantified formulas on classical interpretations are the same

as in classical logic. On such interpretations, every atomic formula is either satisfied

or dissatisfied, and only those parts of the semantic clauses for compound formulas

that involve satisfied or dissatisfied components are applicable. �L3∀ is normal, so

that the following lemma applies:

First-order Normality Lemma: In a normal three-valued first-order system, a

classical interpretation behaves exactly as it does in classical first-order logic—

every formula that is true on that interpretation in the three-valued system

is also true on that interpretation in classical logic, and every formula that

is false on that interpretation in the three-valued system is also false on that

interpretation in classical logic.3

Proof: The lemma follows from the fact that the connectives and quantifiers in

a normal system behave exactly as they do in classical logic whenever a classical

interpretation is used.

It follows that

Result 7.1: Every formula that is a tautology in �L3∀ is also a tautology in clas-

sical first-order logic, and every formula that is a contradiction in �L3∀ is also a

contradiction in classical first-order logic.

3 Recall that the subscripts K, and so on, are not part of the connectives or quantifiers in formulas.
They are merely a notational convention indicating which system we are working in. So it makes
sense to talk of the behavior of the same formulas in the three-valued systems and classical logic.
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Result 7.2: Not every formula that is a tautology in classical first-order logic is

also a tautology in �L3∀, and not every formula that is a contradiction in classical

first-order logic is also a contradiction in �L3∀.4

Result 7.1 holds because �L3∀ is a normal system. An example of a classical tautology

that is also a tautology in �L3∀ is ( ∀x)(Tx → Tx), as discussed earlier. An example of

a classical tautology that is not a tautology in �L3∀ is the Law of Excluded Middle

( ∀x)(Tx ∨ ¬Tx), which we have shown has the value N on some �L3∀ interpretations.

We have seen that the Sorites paradox is semantically valid in �L3∀. Because �L3∀
is normal, any argument that is semantically valid in �L3∀ is also semantically valid

in classical first-order logic. More generally:

Result 7.3: Every entailment that holds in �L3∀ also holds in classical first-order

logic.

But the converse does not hold:

Result 7.4: Not every entailment that holds in classical first-order logic also

holds in �L3∀.

These results just generalize the results for �L3. In fact, all of the semantic results for

the various propositional systems in Chapter 5 generalize for their corresponding

first-order systems.

We define a quasi-tautology in a three-valued first-order system to be a closed

formula that never has the value F on an interpretation, and a quasi-contradiction

to be a closed formula that never has the value T. Because �L3∀ is normal, every

quasi-tautology in �L3∀ is also a tautology in first-order classical logic. On the other

hand, some classical tautologies are not quasi-tautologies in �L3∀; the formula ( ∀x)

(¬(Px →¬Px) ∨¬(¬Px → Px)) is an example (proof that this is not a quasi-tautology

is left as an exercise). Similar results hold for quasi-contradictions:

Result 7.5: Every quasi-tautology in �L3∀ is a tautology in classical first-order

logic, and every quasi-contradiction in �L3∀ is a contradiction in classical first-

order logic.

Result 7.6: Not every formula that is a tautology in classical first-order logic is a

quasi-tautology in �L3∀, and not every formula that is a contradiction in classical

first-order logic is a quasi-contradiction in �L3∀.

A set �of closed first-order formulas quasi-entails a closed first-order formula

P if, whenever each member of � has either the value T or the value N, so does P. A

first-order argument is quasi-valid in a three-valued system if the set consisting of

its premises quasi-entails its conclusion. Here the generalized results are

Result 7.7: Every quasi-entailment in �L3∀ is an entailment in classical first-order

logic.

4 As in Chapter 3, we define the concept of a tautology and a contradiction as well as all other
semantic concepts to apply only to closed formulas.



P1: RTJ
9780521881289c07 CUNY1027/Bergmann 978-0 521 88128 9 November 24, 2007 15:33

142 Three-Valued First-Order Logics: Semantics

Result 7.8: Not every entailment in classical first-order logic is a quasi-

entailment in �L3∀.

Interpretation VH* suffices to show that the Sorites argument is not quasi-valid

in �L3∀. On that interpretation, the premises of the argument all have the value T

except the Principle of Charity premise, which has the value N, but the conclusion

has the value F. So we now have two things that we can say about the Sorites argu-

ment in �L3∀. First, although it is logically valid, there are reasonable interpretations

on which not all of the premises are true—those on which the Principle of Charity

premise has the value N. Second, the argument is not quasi-valid—the conclusion

may be false even if none of the premises are false. Anticipating fuzzy logic, we may

say that the argument isn’t degree-of-truth-preserving; the conclusion can be less

true than the least true premise. Similar comments hold for the first-order versions

of the other three-valued systems.

Interpretation VH* also shows that the Sorites argument isn’t quasi-valid in

K3∀or BI
3∀. In both systems the Principle of Charity premise has the value N, the

remaining premises have the value T, and the conclusion is false. The following

interpretation shows that the argument isn’t quasi-valid in BE
3∀ either (VH* won’t

work here, since the BE
3∀ Principle of Charity premise is false on that interpreta-

tion):

D: set of heights between 4′ 7′′ and 6′ 7′′ by 1/8
′′ increments, inclusive

ext(T) = Ø

cxt(T) = {<h>: h ∈ D and h < 6′ 7′′}
fge(T) = {<h>: h ∈ D and h = 6′ 7′′}

(i.e., {<6′ 7′′>})

ext(E) = {<h1,h2>: h1 is 1/8
′′ less than h2}

cxt(E) = {<h1,h2>: h1 is not 1/8
′′ less than h2}

fge(E) = Ø

I(s1) = 6′ 7′′

I(s2) = 6′ 67/8
′′

. . .

I(s193) = 4′ 7′′

It is obvious that on this interpretation the first premise of the Sorites argument,

Ts1, has the value N, and all of the Esi+1si premises have the value T. The external

Bochvarian Principle of Charity premise also has the value T—every variable assign-

ment dissatisfies Tx ∧BE Eyx (since no variable assignment satisfies Tx) and so the

conditional (Tx ∧BE Eyx) →BE Ty along with its universal generalization are satisfied

by every variable assignment. This establishes that all of the premises have either

the value T or the value N. But the conclusion has the value F on this interpretion,

and that is sufficient to establish that the argument is not quasi-valid in BE
3∀.

Finally, a set � of closed first-order formulas degree-entails the closed first-

order formula P if the rank of P is no lower than the rank of any of the members of
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�, and an argument is degree-valid in a three-valued first-order system if the set

consisting of the premises degree-entails the conclusion in that system. The results

for L3∀ also carry over from the propositional case

Result 7.9: Every degree-entailment in �L3∀ is an entailment in classical first-

order logic.

Result 7.10: Not every entailment in classical first-order logic is a degree-

entailment in �L3∀.

as do the results for the other three-valued first-order systems.

7.4 Exercises

SECTION 7.1

1 Determine the truth-values of the following formulas in �L3∀on an interpretation

that makes the following assignments:

D: set of positive integers

ext(O) = {<i>: i ∈ D and i is odd}
cxt(O) = {<i>: i ∈ D and i is even}
fge(O) = Ø

ext(B) = {<i>: i ∈ D and i ≥ 10,000}
cxt(B) = {<i>: i ∈ D and i ≤ 9}
fge(B) = {<i>: i ∈ D and 9 < i < 10,000}

Read Bx as: x is big

ext(G) = {<i, j>: i ∈ D, j ∈ D, and i ≥ j + 10,000}
cxt(G) = {<i, j>: i ∈ D, j ∈ D, and i ≤ j + 9}
fge(G) = {<i, j>: i ∈ D, j ∈ D, and j + 9 < i < j + 10,000}

Read Gxy as: x is much greater than y

I(a) = 1

I(b) = 2

I(c) = 9

I(d) = 100

I(e) = 10,000

I(f) = 10,001

a. Oa ∧ Ba

b. Oe ∧ Be

c. Of ∧ Bf

d. Oa → Ba

e. Ba → Oa

f. Ba → Ba

g. Bf → ¬Of

h. (∀x)Bx
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i. (∀x)¬Gxx

j. (∃x)Gxb

k. (∃x)Gdx

l. (∃x) (∃y)((Ox ∧ Oy) ∧ Gxy)

m. (∃x) (∃y)((Bx ∧ By) ∧ Gxy)

n. (∀x)(∀y)(Gxy ∨ Gyx)

o. (∃x)(∀y)(¬Bx ∧ Gxy)

p. (∀x)(∀y)(Gxy → ¬Gxy)

q. (∃x)(∃y)(Gxy ∧ Gyx)

r. (∀x)(∃y)Gxy

s. (∃y)(∀x)Gxy

2 Determine the truth-values of the following formulas in �L3∀ on interpretation

VH:

a. (∀x)(Vx → ¬Tx)

b. (∀x)(∀y)(Nxy ∨ Nyx)

c. (∀x)(∀y)(¬Nxy ∨ ¬Nyx)

d. (∃x)(∃y)(Nxy ∧ Nyx)

e. (∀x)((∃y)Nxy → Tx)

f. (∀x)(∀y)((Tx ∧ Vy) → Nxy)

g. (∀x)(∀y)((Tx ∧ ¬Ty) → Nxy)

h. (∀x)(∀y)((Vx ∧ Vy) → ¬Nxy)

3 Justify the following two claims, which were made at the end of Section 7.1,

regarding reasonable alternative interpretations of T on VH*:

a. As long as we have a nonempty fringe along with a nonempty extension for

the predicate T there will be a pair of heights x and y such that (Tx∧Eyx)→Ty

is neither satisfied nor dissatisfied.

b. As long as there are no two consecutive heights such that one is in the

extension of the predicate T while the other is in its counterextension, the

formula (Tx ∧ Eyx) → Ty can’t be dissatisfied by any values of x and y.

SECTION 7.2

4 Explain why the Principle of Charity premise of the Sorites paradox using

Kleene’s rather than �Lukasiewicz’s definition of the conditional will have the

value N on the interpretation VH* of Section 7.1.

5 Produce a correct clause 8 for the definition of satisfaction for existentially

quantified formulas in BE
3∀.

6 Prove that (∀BIx)P is equivalent to �Lukasiewicz’s (∀x)P ∨ (∃x)(P ∧ ¬P).

7 Prove that the definition (∀BEx)P = def (∀x)aP, where the latter universal quan-

tifier is �Lukasiewicz’s, gives the correct satisfaction conditions for Bochvar’s

external universal quantifier. Be sure to include the satisfaction clauses for the

external assertion operator.

8 Show how to define Bochvar’s external existential quantifier in �L3∀, and prove

that your definition gives the correct truth-conditions.
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SECTION 7.3

9 Prove that the formula ( ∀x)(¬ (Px → ¬Px) ∨ ¬ (¬Px → Px)) is not a quasi-

tautology in �L3∀.

10 For each of the following formulas, decide whether it is a tautology and/or a

quasi-tautology in �L3∀, and show that your answer is correct.

a. (∀x)Px → (∃x)Px

b. (∀x)Px ∨ (∃x)¬Px

c. Pa → (∃x)Px

d. (∃x)Px → Pa

e. (∃x)Px ∨ (∃x)¬Px

11 For each of the following arguments, decide whether it is valid and/or quasi-

valid in �L3∀, and show that your answer is correct.

a. (∀x)(Bx → Cx)

¬(∃x)(Bx ∧ ¬Cx)

b. (∃x)Bx ∨ (∃x)Cx

Ga → (∀x)¬Bx

Ga → (∀x)¬Cx

¬Ga

c. (∀x)(∀y)(Tx → Ty)

(∃x)Tx ∧(∃x)¬Tx

d. (∀x)(∃y)Lxy

(∃y)(∀x)Lxy
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8.1 An Axiomatic System for Tautologies and Validity in Three-Valued
First-Order Logic

We can extend the axiomatic systems presented in Chapter 6 for �Lukasiewicz’s three-

valued propositional logics to sound and complete systems for three-valued first-

order logic by adding axioms and rules for the quantifiers. In this section we’ll

develop �L3∀A, an extension of the Wajsberg axiomatic system �L3A in which deriv-

ability coincides with validity proper. We include �L3A’s axioms and rule:

Axiom schemata:

�L3∀1. P → (Q → P)

�L3∀2. (P → Q) →((Q → R) → (P → R))

�L3∀3. (¬P → ¬Q) → (Q → P)

�L3∀4. ((P → ¬P) → P) → P

Derivation rule:

MP. From P and P → Q, infer Q.

and we add the following axioms and rule for the universal quantifier (the same ones

we used for classical quantificational logic) to obtain the full first-order system �L3∀A:

�L3∀5. (∀x)(P → Q) → (P → (∀x)Q)

where P is a formula in which x does not occur free

�L3∀6. (∀x)P → P(a/x)

where a is any individual constant and the expression P(a/x) means: the

result of substituting the constant a for the variable x wherever x occurs free

in P

UG. From P(a/x), infer (∀x)P

where x is any individual variable, provided that no assumption contains

the constant a and that P itself does not contain the constant a.

This system is sound and complete system for �L3∀.1

1 Axioms �L3∀5 and �L3∀5 and the rule UG are sufficient to derive the quantificational axioms of a
system presented in LeBlanc (1977), and so, because that system and �L3∀A are otherwise identical,
the completeness proof in that paper establishes the completeness of �L3∀A as well. As was the

146
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As for CL∀A, we stipulate that only closed formulas occur in derivations. Here’s

a derivation of the formula (∀x)Px → (∃x)Px rewritten as (∀x)Px → ¬(∀x)¬Px (we

define the existential quantifier as (∃x)P = def ¬(∀x)¬P):

1 (∀x)Px → Pa �L3∀6, with (∀x)Px / (∀x)Px, a / a

2 (∀x)¬Px → ¬Pa �L3∀6, with (∀x)¬Px / (∀x)Px, a / a

3 ¬¬(∀x)¬Px → ¬Pa 2, DN

4 Pa → ¬(∀x)¬Px 3, GCON

5 (∀x)Px → ¬(∀x)¬Px 1,4 HS

Because the axioms and rules of �L3A are included in the quantificational system

�L3∀A, all of the derived rules and axioms from Section 6.1 of Chapter 6 carry directly

over to �L3∀A.

A derived axiom schema related to �L3∀5 is

�L3∀D12. (∀x)(P → Q) → ((∀x)P → (∀x)Q)

(We have numbered the derived axiom schema as 12 since we already have eleven

derived axiom schemata from �L3A.)

Justification for �L3∀D12: In this derivation the constant a is chosen to be a

constant that does not occur in P or Q; it is always possible to find such a

constant because the language contains infinitely many constants and each

formula is only finitely long.

1 (∀x)(P → Q) → (P(a/x) → Q(a/x)) �L3∀6, with (∀x)(P → Q) / (∀x)P, a / a

2 P(a/x) → ((∀x)(P → Q) → Q(a/x)) 1, TRAN

3 (∀x)P → P(a/x) �L3∀6, with (∀x)P / (∀x)P, a / a, x / x

4 (∀x)P → ((∀x)(P → Q) → Q(a/x)) 2,3 HS

5 (∀x) ((∀x)P → ((∀x)(P → Q) → Q)) 4, UG

6 (∀x) ((∀x)P → ((∀x)(P → Q) → Q)) →
((∀x)P → (∀x)((∀x)(P → Q) → Q))

�L3∀5, with (∀x) ((∀x)P → ((∀x)(P → Q) → Q)) /

(∀x)(P → Q)

7 (∀x)P → (∀x)((∀x)(P → Q) → Q) 5,6 MP

8 (∀x)((∀x)(P → Q) → Q) →
((∀x)(P → Q) → (∀x)Q))

�L3∀5, with (∀x)((∀x)(P → Q) → Q) /

(∀x)(P → Q)

9 (∀x)P → ((∀x)(P → Q) → (∀x)Q) 7,8 HS

10 (∀x)(P → Q) → ((∀x)P → (∀x)Q) 9, TRAN

On line 1 we anticipated the use of TRAN on line 2 and wrote the consequent

as (P(a/x) → Q(a/x)) rather than (P → Q)(a/x); it is the same formula. On line 5

we were allowed to generalize on the constant a because a does not occur in P

or in Q—and of course there are no assumptions, and hence none involving a,

in the derivation. The instance of axiom schemata �L3∀5 on line 6 is allowable

because it satisfies the constraint that x does not occur free in the antecedent,

(∀x)P, and the instance on line 8 is similarly allowable.

case in classical logic, the set of theorems of �L3∀A, or equivalently, the set of tautologies of �L3∀,
is undecidable.
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We can use �L3∀D12 to show that the formula ((∃x)Px ∨ (∃x)Qx) → (∃x)(Px ∨ Qx) is a

theorem. In the derivation the formula is rewritten without the existential quantifier

as (¬(∀x)¬Px ∨ ¬(∀x)¬Qx) → ¬(∀x)¬(Px ∨ Qx):

1 Pa → (Pa ∨ Qa) �L3∀D6, with Pa / P, Qa / Q

2 ¬(Pa ∨ Qa) → ¬Pa 1, GCON

3 (∀x)(¬(Px ∨ Qx) → ¬Px) 2, UG

4 (∀x)(¬(Px ∨ Qx) → ¬Px) →
((∀x)¬(Px ∨ Qx) → (∀x)¬Px)

�L3∀D12, with (∀x)(¬(Px ∨ Qx) → ¬Px) /

(∀x)(P → Q)

5 (∀x)¬(Px ∨ Qx) → (∀x)¬Px 3,4 MP

6 ¬(∀x)¬Px → ¬(∀x)¬(Px ∨ Qx) 5, GCON

7 Qa → (Pa ∨ Qa) �L3∀1, with Qa / P, Pa → Qa/ Q

On line 7 we have rewritten the formula Qa → ((Pa → Qa) → Qa) using disjunction

8 ¬(Pa ∨ Qa) → ¬Qa 7, GCON

9 (∀x)(¬(Px ∨ Qx) → ¬Qx) 8, UG

10 (∀x)(¬(Px ∨ Qx) → ¬Qx) →
((∀x)¬(Px ∨ Qx) → (∀x) ¬Qx)

�L3∀D12, with (∀x)(¬(Px ∨ Qx) → ¬Qx) /

(∀x)(P → Q)

11 (∀x)¬(Px ∨ Qx) → (∀x) ¬Qx 9,10 MP

12 ¬(∀x)¬Qx → ¬(∀x)¬(Px ∨ Qx) 11, GCON

13 (¬(∀x)¬Px ∨ ¬(∀x)¬Qx) → ¬(∀x)¬(Px ∨ Qx) 6,12 DC

A derived axiom schema similar to �L3∀5 for the existential quantifier is

�L3∀D13. (∃x)(P → Q) → (P → (∃x)Q)

where P is a formula in which x does not occur free

Justification: We derive the formula ¬(∀x)¬(P → Q) → (P → ¬(∀x)¬Q) in which

the existential quantifier is defined in terms of negation and the universal quan-

tifier. On line 1, a is chosen to be a constant that does not occur in P or in Q.

1 P → ((P → Q(a/x)) → Q(a/x)) �L3∀D6, with P / P, Q(a/x) / Q

2 P → (¬Q(a/x) → ¬(P → Q(a/x))) 1, GCON

3 ¬Q(a/x) → (P → ¬(P → Q(a/x))) 2, TRAN

4 (∀x)(¬Q → (P → ¬(P → Q)) 3, UG

5 (∀x)(¬Q → (P → ¬(P → Q)) →
((∀x)¬Q → (∀x)(P → ¬(P → Q)))

�L3∀D12, with (∀x)(¬Q → (P → ¬(P → Q)) /

(∀x)(P → Q)

6 (∀x)¬Q → (∀x)(P → ¬(P → Q)) 4,5 MP

7 (∀x)(P → ¬(P → Q)) → (P → (∀x)¬(P → Q)) �L3∀5, with (∀x)(P → ¬(P → Q)) / (∀x)(P → Q)

8 (∀x)¬Q → (P → (∀x)¬(P → Q)) 6,7 HS

9 P → ((∀x)¬Q → (∀x)¬(P → Q)) 8, TRAN

10 P → (¬(∀x)¬(P → Q) → ¬(∀x)¬Q) 9, GCON

11 ¬(∀x)¬(P → Q) → (P → ¬(∀x)¬Q) 10, TRAN

Note that because by hypothesis x does not occur in P, the formula on line 3 is

(¬Q→ (P →¬(P → Q)))(a/x), which is required for UG on line 4. The conditions

are met for the use of UG on this line since no assumptions have been made,
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about a or anything else, and a does not occur in either P or Q. And the condition

for the use of �L3∀5 on line 7 is met since the condition on �L3∀D13 stipulates that

x does not occur free in P.

We can also derive a rule that introduces a universal quantifier in the consequent

of a conditional:

UGC (Universal Generalization in the Consequent). From P → Q(a/x) infer

P → (∀x)Q

where x is any individual variable, provided that no assumption contains

the constant a and that P itself does not contain the constant a.

Justification: Let P → Q(a/x) be a formula in a derivation that meets the stated

conditions: that is, no assumptions in the derivation contain the constant a, and

the subformula P also doesn’t contain the constant a. Then we may continue

the derivation as follows:

n P → Q(a/x)

n+1 (∀x)(P → Q) n, UG

n+2 (∀x)(P → Q) → (P → (∀x)Q) �L3∀5, with (∀x)(P → Q) / (∀x)(P → Q)

n+3 P → (∀x)Q n+1, n+2 MP

We must be sure that we have met the conditions for the rules used in this

derivation sequence. First, by hypothesis no assumptions contain the constant

a, and by hypothesis P does not contain the constant a, so the conditions for the

use of UG to obtain the formula on line n+1 have been met. Similarly, because

by hypothesis P does not contain the constant a, the condition for using �L3∀5

to generate the formula on line n+2 has also been met.

We noted in Chapter 7 that the formula (∀x)(Tx → Tx) is a tautology in �L3∀.

Given the soundness and completeness of our current axiomatization, we would

therefore expect it to be a theorem and indeed it is:

1 Ta → Ta �L3∀D4, with Ta / P

2 (∀x)(Tx → Tx) 1, UG

On the other hand the formula (∀x)(Tx ∨ ¬Tx), which is not a tautology in �L3∀, isn’t

a theorem of �L3∀A.

The Sorites argument

Ts1

Es2s1

Es3s2

Es4s3

· · ·
Es193s192

(∀x) (∀y) ((Tx ∧ Eyx) → Ty)

Ts193
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is valid in �L3∀A, and therefore its conclusion is derivable from the premises. We’ll

produce a derivation with the aid of a new derived rule (one that is also derivable

in �L3A since it doesn’t use the quantificational axioms or rules):

CI (Conjunction Introduction). From P and Q, infer P ∧ Q

Justification: We will derive the formula ¬((¬P → ¬Q) → ¬Q), in which con-

junction has been rewritten using negation and the conditional, from P and Q:

1 P Assumption

2 Q Assumption

3 ¬¬P 1, DN

4 ¬¬P → (¬P → ¬Q) �L3∀D1, with ¬P / P, ¬Q / Q

5 ¬P → ¬Q 3,4 MP

6 (¬P → ¬Q) → (((¬P → ¬Q) → ¬Q) → ¬Q) �L3∀D6, with ¬P → ¬Q / P, ¬Q / Q

7 ((¬P → ¬Q) → ¬Q) → ¬Q 5,6 MP

8 ¬¬Q → ¬((¬P → ¬Q) → ¬Q) 7, GCON

9 ¬¬Q 2, DN

10 ¬((¬P → ¬Q) → ¬Q) 8,9 MP

Here is the derivation for the Sorites argument:

1 Ts1 Assumption

2 Es2s1 Assumption

3 Es3s2 Assumption

4 Es4s3 Assumption

. . . . . .

193 Es193s192 Assumption

194 (∀x) (∀y)((Tx ∧ Eyx) → Ty) Assumption

195 (∀x) (∀y) ((Tx ∧ Eyx) → Ty) → (∀y) ((Ts1 ∧ Eys1) → Ty) �L3∀6, with (∀x) (∀y) ((Tx ∧ Eyx) → Ty) / (∀x)P, s1 / a

196 (∀y) ((Ts1 ∧ Eys1) → Ty) 194,195 MP

197 (∀y) ((Ts1 ∧ Eys1) → Ty) → ((Ts1 ∧ Es2s1) → Ts2) �L3∀6, with (∀y) ((Ts1 ∧ Eys1) → Ty) / (∀x)P, s2 / a

198 (Ts1 ∧ Es2s1) → Ts2 196,197 MP

199 Ts1 ∧ Es2s1 1,2 CI

200 Ts2 198,199 MP

201 (∀x) (∀y) (Tx ∧ Eyx) → Ty) → (∀y) ((Ts2 ∧ Eys2) → Ty) �L3∀6, with (∀x) (∀y) ((Tx ∧ Eyx) → Ty) / (∀x)P, s2 /a

202 (∀y) ((Ts2 ∧ Eys2) → Ty) 194,201 MP

203 (∀y) ((Ts2 ∧ Eys2) → Ty) → ((Ts2 ∧ Es3s2) → Ts3) �L3∀6, with (∀y) ((Ts2 ∧ Eys2) → Ty) / (∀x)P, s3 / a

204 (Ts2 ∧ Es3s2) → Ts3 202,203 MP

205 Ts2 ∧ Es3s2 3,200 CI

206 Ts3 204,205 MP

. . . . . . {repeating 195–200 with appropriate substitutions we end with}

1346 Ts193 1344,1345 MP

Just as we symbolized formulas from Kleene’s and Bochvar’s three-valued

propositional logics in �L3 and then used the axiomatic system �L3A to derive those for-

mulas, we can do the same for the first-order generalizations of those systems. We’ll

illustrate with Kleene’s system. Since no formulas of Kleene’s system are tautologies,

no translations of these into �L3∀ will be theorems of �L3∀A. But the translations of
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arguments that are valid in Kleene’s system—and there are such arguments—will

be deductively valid in �L3∀A. Recalling that Kleene’s conditional P →K Q can be

expressed as¬P∨Q in �L3∀, and that¬P∨Q is expressible as (¬P→Q)→Q using only

negation and disjunction in �L3∀, Kleene’s Sorites argument is expressed in �L3∀ as

Ts1

Es2s1

Es3s2

Es4s3

. . .

Es193s192

(∀x) (∀y) ((¬(Tx ∧ Eyx) → Ty) → Ty)

Ts193

Recall that Kleene’s quantifiers are semantically identical to �Lukasiewicz’s. The con-

clusion of the Kleene version of the Sorites argument is derivable from the premises

in �L3∀A:

1 Ts1 Assumption

2 Es2s1 Assumption

3 Es3s2 Assumption

4 Es4s3 Assumption

. . . . . .

193 Es193s192 Assumption

194 (∀x) (∀y) ((¬(Tx ∧ Eyx) → Ty) → Ty) Assumption

195 (∀x) (∀y) ((¬(Tx ∧ Eyx) → Ty) → Ty) →
(∀y) ((¬(Ts1 ∧ Eys1) → Ty) → Ty)

�L3∀6, with (∀x) (∀y) ((¬(Tx ∧ Eyx) → Ty) → Ty) /

(∀x)P, s1 / a

196 (∀y) ((¬(Ts1 ∧ Eys1) → Ty) → Ty) 194,195 MP

197 (∀y) ((¬(Ts1 ∧ Eys1) → Ty) → Ty) →
((¬(Ts1 ∧ Es2s1) → Ts2) → Ts2)

�L3∀6, with (∀y) ((¬(Ts1 ∧ Eys1) → Ty) → Ty) /

(∀x)P, s2 / a

198 (¬(Ts1 ∧ Es2s1) → Ts2) → Ts2 196,197 MP

199 Ts1 ∧ Es2s1 1,2 CI

200 (Ts1 ∧ Es2s1) → (¬(Ts1 ∧ Es2s1) → Ts2) �L3∀D1, with Ts1 ∧ Es2s1 / P, Ts2 / Q

201 ¬(Ts1 ∧ Es2s1) → Ts2 199,200 MP

202 Ts2 198,201 MP

203 (∀x) (∀y) ((¬(Tx ∧ Eyx) → Ty) → Ty) →
(∀y) ((¬(Ts2 ∧ Eys2) → Ty) → Ty)

�L3∀6, with (∀x) (∀y) ((¬(Tx ∧ Eyx) → Ty) → Ty) /

(∀x)P, s2 / a

204 (∀y) ((¬(Ts2 ∧ Eys2) → Ty) → Ty) 194,203 MP

205 (∀y) ((¬(Ts2 ∧ Eys2) → Ty) → Ty) →
((¬(Ts2 ∧ Es3s2) → Ts3) → Ts3)

�L3∀6, with (∀y) ((¬(Ts2 ∧ Eys2) → Ty) → Ty) /

(∀x)P, s3 / a

206 (¬(Ts2 ∧ Es3s2) → Ts3) → Ts3 204,205 MP

207 Ts2 ∧ Es3s2 3,202 CI

208 (Ts2 ∧ Es3s2) → (¬(Ts2 ∧ Es3s2) → Ts3) �L3∀D1, with Ts2 ∧ Es3s2 / P, Ts3 / Q

209 ¬(Ts2 ∧ Es3s2) → Ts3 207,208 MP

210 Ts3 206,209 MP

. . . . . .{repeating 195–202 with appropriate substitutions we end with}

1730 Ts193 1726,1729 MP
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Before closing this section we’d like to introduce a modified version of SUB.

This is because although we’ve been using rules like GCON and DN that were jus-

tified with SUB in Chapter 6 we’ve been careful to use them in a restricted way

and the restriction turns out to be eliminable. Consider the statement of DN in

Chapter 6:

DN (Double Negation). From any formula R that contains P as a constituent,

infer any formula R* that is the result of replacing one or more occurrences of

P in R with ¬¬P, and vice versa.

We used this rule, for example, to derive ¬¬(∀x)¬Px → ¬Pa from (∀x)¬Px → ¬Pa in

the first derivation in this chapter. It looks as if DN should also allow us, for example,

to derive ( ∀x)¬¬Px from ( ∀x)Px, and vice versa. But there is, as we shall explain, a

problem: in this case we would be replacing the open (nonclosed) subformula ¬¬Px

with the open subformula Px—whereas in the earlier derivation we replace the closed

subformula ¬¬( ∀x)¬Px with the closed subformula ( ∀x)¬Px. Replacing open sub-

formulas is a problem because the justification for DN in Chapter 6, which uses SUB,

is based on the fact that both P → ¬¬P and ¬¬P → P are derived axiom schemata.

Now, ( ∀x)¬Px → ¬¬( ∀x)¬Px and ¬¬( ∀x)¬Px → ( ∀x)¬Px are indeed derivable in

�L3∀A just as they were in �L3A, so we were justified in using DN in the earlier derivation.

But for DN as proved in Chapter 6 also to license replacing ( ∀x)¬¬Px with ( ∀x)Px,

and vice versa, both Px → ¬¬Px and ¬¬Px →Px would have to be derivable in �L3∀A.

There’s the problem: neither is derivable because they’re not closed formulas, and

derivations, as we’ve defined them, consist entirely of closed formulas.

So we introduce a new version of SUB for the cases where we want to substitute

open formulas one for another. First, a definition: we define the universal closure of a

formula P to be P itself if P is closed, and, in the case that P is open, to be the closed

formula that results by enclosing P in parentheses and prefixing, in alphabetical

order, a universal quantifier for each of the free variables in P. (The alphabetical

order stipulation allows us to talk of the universal closure of a formula rather than

merely a universal closure.) The universal closure of the formula (Pa → ( ∀x)Rxz) →
(¬Px → Qy), for example, is ( ∀x)( ∀y)( ∀z)((Pa → ( ∀x)Rxz) → (¬Px → Qy)). The new

version of SUB for �L3∀A is:

SUB (Substitution). From the universal closure of P → Q, the universal closure

of Q → P, and a formula R that contains P as a subformula, infer any formula

R* that is the result of replacing one or more occurrences of P in R with Q.

The version of SUB derived in Chapter 6 is a special case of this new version, since

every closed formula is its own universal closure. The reader will be asked in the

exercise to justify the revised SUB rule.

With this new version of SUB it’s easy to prove that DN can apply in cases

where a double negation is prefixed to or removed from an open subformula. For

let x1, . . . , xn be the free variables in the open formula P that we want to replace

(with ¬¬P—or vice versa), and let a1, . . . , an be constants that don’t occur in P
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or in the derivation in which P occurs. We know that both P(a1/x1) . . . (an/xn) →
¬¬P(a1/x1) . . . (an/xn) and ¬¬P(a1/x1) . . . (an/xn) → P(a1/x1) . . . (an/xn) are deriv-

able in �L3∀3—they’re instances of �L3∀D3 and �L3∀D4. Because the chosen constants

a1, . . . , an don’t occur in P or earlier in the derivation (and therefore not in

any assumptions), UG can be applied to the conditionals P(a1/x1) . . . (an/xn) →
¬¬P(a1/x1) . . . (an/xn) and ¬¬P(a1/x1) . . . (an/xn) → P(a1/x1) . . . (an/xn) to obtain

the universal closures (∀x1) . . . (∀xn)(P →¬¬P) and (∀x1) . . . (∀xn)(¬¬P → P). These

universal closures can then be used by the new SUB to replace P in any formula

with ¬¬P, and vice versa, as in

1 (∀x)(Px → Qx) Assumption

2 Pa → ¬¬Pa �L3∀D3, with Pa / P

3 (∀x)(Px → ¬¬Px) 2, UG

4 ¬¬Pa → Pa �L3∀D4, with Pa / P

5 (∀x)(¬¬Px → Px) 4, UG

6 (∀x)(¬¬Px → Qx) 1,3,5 SUB

Similar observations justify the use of TRAN and GCON to replace open as well as

closed subformulas.

8.2 A Pavelka-Style Derivation System for �L3∀

We extend the Pavelka-style system �L3PA to a first-order system �L3∀PA with the first-

order axiomatic system �L3∀A (augmented with annotations) as a basis and adding

the Pavelka axioms and rules from �L3PA:

�L3∀P1. [P → (Q → P), T]

�L3∀P2. [(P → Q) →((Q → R) → (P → R)), T]

�L3∀P3. [(¬P → ¬Q) → (Q → P), T]

�L3∀P4. [((P → ¬P) → P) → P, T]

�L3∀P5. [(∀x)(P → Q) → (P → (∀x)Q), T]

where P is a formula in which x does not occur free

�L3∀P6. [(∀x)P → P(a/x), T]

where a is any individual constant and the expression P(a/x) means: the

result of substituting the constant a for the variable x wherever x occurs free

in P
�L3∀P7.1.1. [(t → t) → t, T]

�L3∀P7.1.2. [t → (t → t), T]

�L3∀P7.2.1. [(t → n) → n, T]

�L3∀P7.2.2. [n → (t → n), T]

�L3∀P7.3.1. [(t → f) → f, T]

�L3∀P7.3.2. [f → (t → f), T]
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�L3∀P7.4.1. [(n → t) → t, T]

�L3∀P7.4.2. [t → (n → t), T]

�L3∀P7.5.1. [(n → n) → t, T]

�L3∀P7.5.2. [t → (n → n), T]

�L3∀P7.6.1. [(n → f) → n, T]

�L3∀P7.6.2. [n → (n → f), T]

�L3∀P7.7.1. [(f → t) → t, T]

�L3∀P7.7.2. [t → (f → t), T]

�L3∀P7.8.1. [(f → n) → t, T]

�L3∀P7.8.2. [t → (f → n), T]

�L3∀P7.9.1. [(f → f) → t, T]

�L3∀P7.9.2. [t → (f → f), T]

�L3∀P8.1.1. [¬t → f, T]

�L3∀P8.1.2. [f → ¬t, T]

�L3∀P8.2.1. [¬n → n, T]

�L3∀P8.2.2. [n → ¬n, T]

�L3∀P8.3.1. [¬f → t, T]

�L3∀P8.3.2. [t → ¬f, T]

�L3∀P9.1. [t, T]

�L3∀P9.2. [n, N]

�L3∀P9.3. [f, F]

MP. From [P, v1] and [P → Q, v2], infer [Q, v3], where v3 is defined in terms of

v1 and v2 as specified in the following table:

v1 v2 v3

T T T

T N N

T F F

N T N

N N F

N F F

F T F

F N F

F F F

UG (Universal Generalization). From[P(a/x), v] infer [(∀x)P, v] where x is any

individual variable, provided that no assumption contains the constant a and

that P does not contain the constant a

TCI (Truth-value Constant Introduction). From [P, v] infer [v → P, T] where v

is the constant name for the value v.
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All of the quantificational axiom schemata have been graded with the value T.

The rationale for the graded values in the UG inference rule is this: if P(a/x) has at

least the value v, where a is an arbitrary constant (not occuring in an assumption),

this tells us that the value of P must be at least v for any value of x. If that is the

case, we can infer that the value of the universal quantification must also be at least

v, since the truth-value of the quantified formula is semantically defined to be the

least value that P can have for any value of x.

We’ll illustrate the system with some examples. The formula ( ∀x)(Tx → Tx) is

a tautology in �L3∀ and so, as we would expect, the graded version of this formula

is derivable with the value T (as in Chapter 6, we help ourselves to derived axioms

with the graded value T):

1 [Ta → Ta, T] �L3∀PD4, with Ta / P

2 [(∀x)(Tx → Tx), T] 1, UG

The Law of Excluded Middle ( ∀x)(Tx ∨ ¬Tx) is not a tautology in �L3∀; however, like

its propositional counterpart A ∨ ¬A, it always has at least the value N. We can

derive ( ∀x)(Tx ∨ ¬Tx) with graded value N (and with disjunction rewritten in terms

of negation and the conditional) as follows:

1 [¬Ta → ((Ta → ¬Ta) → ¬Ta), T] �L3∀P1, with ¬Ta / P, Ta → ¬Ta / Q

2 [(n → ¬Ta) → ((¬Ta → ((Ta → ¬Ta) → ¬Ta)) →
(n → ((Ta → ¬Ta) → ¬Ta))), T]

�L3∀P2, with n / P, ¬Ta / Q,

(Ta → ¬Ta) → ¬Ta / R

3 [(n → ¬Ta) → (n → ((Ta → ¬Ta) → ¬Ta)), T] 1,2 GMP

4 [Ta → ((Ta → ¬Ta) → ¬Ta), T] �L3∀PD6, with Ta / P, ¬Ta / Q

5 [(n → Ta) → ((Ta → ((Ta → ¬Ta) → ¬Ta)) →
(n → ((Ta → ¬Ta) → ¬Ta))), T]

�L3∀P2, with n / P, Ta / Q,

(Ta → ¬Ta) → ¬Ta / R

6 [(n → Ta) → (n → ((Ta → ¬Ta) → ¬Ta)), T] 4,5 GMP

7 [(n → Ta) ∨ (Ta → n), T] �L3∀PD10, with n / P, Ta / Q

8 [(n → Ta) ∨ (¬n → ¬Ta), T] 7, GCON

9 [¬n → n, T] �L3∀P6.2.1

10 [n → ¬n, T] �L3∀P6.2.2

11 [(n → Ta) ∨ (n → ¬Ta), T] 8,9,10 SUB

12 [n → ((Ta → ¬Ta) → ¬Ta), T] 3,6,11 DS

13 [n, N] �L3∀P9.2

14 [(Ta → ¬Ta) → ¬Ta, N] 12,13 MP

15 [(∀x)((Tx → ¬Tx) → ¬Tx), N] 14, UG

In Chapter 7 we showed that the formula (∃x)(¬Tx ∧ Tx), figuring in Black’s

Problem of the Fringe, can have the value N in �L3∀—it is a quasi-contradiction. The

formula’s negation ¬(∃x) (¬Tx ∧ Tx) is a quasi-tautology. In �L3∀PA we can produce

a derivation establishing that this latter formula always has at least the value N.

Using only negation, the conditional, and the universal quantifier we rewrite the
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formula as ¬¬( ∀x)¬¬((¬¬Tx → ¬Tx) → ¬Tx). Here we have replaced the existen-

tial quantifier (∃x) with ¬( ∀x)¬, and if we replace the conjunction ¬Tx ∧ Tx with

¬(¬¬Tx ∨ ¬Tx), this latter formula becomes ¬((¬¬Tx → ¬Tx) → ¬Tx) when we

rewrite the disjunction. We begin with the previous derivation of the �Law of Excluded

Middle and add the following line:

16 [¬¬(∀x)¬¬((¬¬Tx → ¬Tx) → ¬Tx), N] 17, DN (three times)

Our next derivation establishes that the formula ( ∀x)(Px →Qx) → ((n → (∃x)Px) →
(n → (∃x)Qx)) always has the value T. We rewrite this formula as ( ∀x)(Px → Qx) →
((n → ¬( ∀x)¬Px) → (n → ¬( ∀x)¬Qx)):

1 [(∀x)(Px → Qx) → (∀x)(Px → Qx), T] �L3∀GD4, with (∀x)(Px → Qx) / P

2 [(∀x)(Px → Qx) → (∀x)(¬Qx → ¬Px), T] 1,GCON

3 [(∀x)(¬Qx → ¬Px) →((∀x)¬Qx → (∀x)¬Px), T] �L3∀PD12, with (∀x)(¬Qx → ¬Px) /

(∀x)(P → Q)

4 [(∀x)(Px → Qx) → ((∀x)¬Qx → (∀x)¬Px), T] 2,3 HS

5 [(∀x)(Px → Qx) → (¬(∀x)¬Px → ¬(∀x)¬Qx), T] 4, GCON

6 [(n → ¬(∀x)¬Px) → ((¬(∀x)¬Px → ¬(∀x)¬Qx) →
(n → ¬(∀x)¬Qx)), T]

�L3∀P2, with n / P, ¬(∀x)¬Px / Q,

¬(∀x)¬Qx / R

7 [(¬(∀x)¬Px → ¬(∀x)¬Qx) → ((n → ¬(∀x)¬Px) →
(n → ¬(∀x)¬Qx)), T]

6, TRAN

8 [((∀x)(Px → Qx) → ((n → ¬(∀x)¬Px) → (n → ¬(∀x)¬Qx)), T] 5,7 HS

Finally, we showed in Chapter 7 that although the Sorites argument is valid in

�L3∀, it is not quasi-valid in �L3∀. So (given the soundness of our system) we cannot

produce a derivation that has the Principle of Charity premise graded with the value

N, the other premises graded with the value T, and the conclusion graded with either

the value T or the value N. For example, if we assign the value N to the Principle

of Charity premise and the value T to all of the other premises, the first Sorites

derivation in Section 8.1 ends up with the value F for the conclusion.

To show this we need a graded version of Conjunction Introduction. If we simply

add grades to the derivation of CI in Section 8.1, we’ll end up with a weaker grade

for the conjunction than is possible; so we’ll justify CI in a different way here to

give us the strongest grade for the inferred conjunction. (Recall that we had to do

something similar to justify the graded version of Modified Constructive Dilemma

in Section 6.2 of Chapter 6.)

CI (Conjunction Introduction). From [P, v1] and [Q, v2], infer [P ∧ Q,

min (v1, v2)].

Justification: We rewrite P ∧ Q as ¬((¬P → ¬Q) → ¬Q). Note first that either

v1 ≤ v2 or v2 < v1. In the case where v1 ≤ v2, we begin the derivation with
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1 [P, v1] Assumption

2 [Q, v2] Assumption

3 [v1 → P, T] 1, TCI

4 [v2 → Q, T] 2, TCI

5 [t → (v1 → v2), T] �L3∀P7.x.2

{This is an instance of �L3∀P7.x.2 because of the assumption in this case that v1 ≤ v2}

6 [t, T] �L3∀P9.1

7 [v1 → v2, T] 5,6 MP

8 [v1 → Q, T] 4,7 HS

where v1 stands for the atomic formula that denotes the value v1 and v2 stands

for the atomic formula that denotes the value v2. Because v1 ≤ v2 in this case,

v1 = min (v1, v2) and so we can rewrite the preceding as

1 [P, v1] Assumption

2 [Q, v2] Assumption

3 [min (v1, v2) → P, T] 1, TCI

4 [v2 → Q, T] 2, TCI

5 [t → (min (v1, v2) → v2), T] �L3∀P7.x.2

6 [t, T] �L3∀P9.1

7 [min (v1, v2) → v2, T] 5,6 MP

8 [min (v1, v2) → Q, T] 4,7 HS

If v2 < v1 we begin the derivation with

1 [P, v1] Assumption

2 [Q, v2] Assumption

3 [min (v1, v2) → Q, T] 2, TCI

4 [v1 → P, T] 1, TCI

5 [t → (min (v1, v2) → v1), T] �L3∀P7.x.2

6 [t, T] �L3∀P9.1

7 [min (v1, v2) → v1, T] 5,6 MP

8 [min (v1, v2) → P, T] 4,7 HS

In either case the derivation continues as follows (with {x, y} meaning line x if

we began the first way, and line y if we began the second way):

9 [¬P → ¬min (v1, v2), T] {3, 8} GCON

10 [¬Q → ¬min (v1, v2), T] {8, 3} GCON

11 [((¬P → ¬Q) → ¬Q) → ¬min (v1, v2), T] 9,10 DC

12 [¬¬((¬P → ¬Q) → ¬Q) → ¬min (v1, v2), T] 11, DN

13 [min (v1, v2) → ¬((¬P → ¬Q) → ¬Q), T] 12, GCON

14 [min (v1, v2), min(v1, v2)] �L3∀P9.x

15 [¬((¬P → ¬Q) → ¬Q), min(v1, v2)] 13,14 MP
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Here’s the graded Sorites derivation:

1 [Ts1, T] Assumption

2 [Es2s1, T] Assumption

3 [Es3s2, T] Assumption

4 [Es4s3, T] Assumption

. . . . . .

193 [Es193s192, T] Assumption

194 [(∀x) (∀y)((Tx ∧ Eyx) → Ty), N] Assumption

195 [(∀x) (∀y) ((Tx ∧ Eyx) → Ty) →
(∀y) ((Ts1 ∧ Eys1) → Ty), T]

�L3∀P6, with (∀x) (∀y) ((Tx ∧ Eyx) → Ty) /

(∀x)P, s1 / a

196 [(∀y) ((Ts1 ∧ Eys1) → Ty), N] 194,195 MP

197 [(∀y) ((Ts1 ∧ Eys1) → Ty) →
((Ts1 ∧ Es2s1) → Ts2), T]

�L3∀P6, with (∀y) ((Ts1 ∧ Eys1) → Ty) /

(∀x)P, s2 / a

198 [(Ts1 ∧ Es2s1) → Ts2, N] 196,197 MP

199 [Ts1 ∧ Es2s1, T] 1,2 CI

200 [Ts2, N] 198,199 MP

201 [(∀x) (∀y) (Tx ∧ Eyx) → Ty) →
(∀y) ((Ts2 ∧ Eys2) → Ty), T]

�L3∀6, with (∀x) (∀y) ((Tx ∧ Eyx) → Ty) /

(∀x)P, s2 / a

202 [(∀y) ((Ts2 ∧ Eys2) → Ty), N] 194,201 MP

203 [(∀y) ((Ts2 ∧ Eys2) → Ty) →
((Ts2 ∧ Es3s2) → Ts3), T]

�L3∀6, with (∀y) ((Ts2 ∧ Eys2) → Ty) /

(∀x)P, s3 / a

204 [(Ts2 ∧ Es3s2) → Ts3, N] 202,203 MP

205 [Ts2 ∧ Es3s2, N] 3,200 CI

206 [Ts3, F] 204,205 MP

. . . . . . {repeating 195–200 with appropriate substitutions we end with}

1346 [Ts193, F] 1344,1345 MP

By the time we get to the intermediate inference of Ts3 the resulting grade says only

that this sentence is at least F—and that will be the case for each inference of a

formula Tsi from that point on. The truth of Ts1 at the outset ensures that we derive

Ts2 with the graded value N, given grade N for the Principle of Charity premise. But

that N subsequently causes the application of Modus Ponens on line 206 to produce

the grade F—again, given the value N for the Principle of Charity premise. This F

together with the N-value of the Principle of Charity premise will continue to cause

F-grades for all of the following inferred formulas Tsi.

Note that this derivation alone is not sufficient to prove that the argument fails

to be quasi-valid in �L3∀, for as we noted in Chapter 6 an argument from P1, . . . , Pn to

Q is quasi-valid if there is at least one derivation of the graded formula [Q, N] from

the graded formulas [Pi, N]. The single derivation above doesn’t establish that there

is no other derivation in which each of the Sorites premises is graded with the value

N and the conclusion is graded with the value N as well. However, the system �L3∀PA

is sound for �L3∀A, and so we can conclude that in fact there is no such derivation.
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8.3 Exercises

SECTION 8.1

1 Construct derivations that show that the following can be introduced as derived

axiom schemata in �L3∀A:

a. P(a/x) → (∃x)P

b. (∀x)(P → Q) → ((∃x)P →(∃x)Q)

2 Show how to derive the following rules in �L3∀A:

a. Universal Generalization in the Antecedent. From P(a/x) → Q infer

(∀x)P → Q

where x is any individual variable.

b. Existential Generalization in the Consequent. From P → Q(a/x) infer

P → (∃x)Q

where x is any individual variable.

c. Existential Generalization in the Antecedent. From P(a/x) → Q infer

(∃x)P → Q

where x is any individual variable, provided that no assumption con-

tains the constant a and that P does not contain the constant a.

3 Construct derivations that show that the following formulas are theorems of

�L3∀A:

a. (∃x)Qx → (∃x)(Pa → Qx)

b. (∃x)Qx → (∃x)(Px → Qx)

c. (∃x)(Pa → Qx) → ((∀x)Px → (∃x)Qx)

d. (Pa ∨ (∃x)Qx) → (∃x)(Pa ∨ Qx)

4 Show that the new SUB:

SUB (Substitution). From the universal closure of P → Q, the universal

closure of Q → P, and a formula R that contains P as a subformula, infer

any formula R* that is the result of replacing one or more occurrences of P

in R with Q.

is indeed derivable in �L3∀A by proving the following:

If formulas P(a/x) → Q(a/x) and Q(a/x) → P(a/x) occur in a derivation,

where a is a constant that does not occur in P, Q, or any assumption, then

both (∀x)P → (∀x)Q and (∀x)Q → (∀x)P can also be derived (this would be

Case 4 of the new proof).

This will do the trick because the new SUB applies when we have already de-

rived the universal closures of P → Q and Q → P, say, (∀x1) . . . (∀xn)(P → Q) and

(∀x1) . . . (∀xn)(Q→P). From these universal closures we can then derive specific

instances (P → Q)(a1/x1) . . . (an/xn) and (Q → P)(a1/x1) . . . (an/xn) using �L3∀6

and MP. Thus as we derive the series of conditionals building up the formulas

described in Chapter 6’s justification of SUB we can use constants a1, a2, . . . , an

that do not occur in the derivation in place of the free variables x1, x2, . . . , xn in

P and Q, reintroducing the free variables along with their universal quantifiers
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at the relevant point as the formulas are built up. Case 4 licenses the necessary

universal quantification.

SECTION 8.2

5 Derive graded versions of the following rules for �L3∀PA (the first was derived in

Section 8.1, and the rest were derived in Exercise 2):

a. Universal Generalization in the Consequent

b. Universal Generalization in the Antecedent

c. Existential Generalization in the Consequent

d. Existential Generalization in the Antecedent

6 Construct derivations (without assumptions) of the following graded formulas

in �L3∀PA:

a. [(n → Pa) → (n → (∃x)Px), T]

b. [(n → Pa) → (∃x)Px, N]

c. [(∀x)(Px → Qx) → ((n → Pa) → (n → Qa)), T]

d. [(∀x)(Px → Qx) → (((∀x)¬Px → n) → (∃x)Qx), N]

e. [(n → (∀x)(Px → Qx)) → ((t → (∀x)Px) → (n → (∃x)Qx)), T]

7 Construct derivations of the conclusions of the following graded arguments

from the graded premises:

a. [n → (∀x)Qx, T]

[(∀x)(n → Qx), T]

b. [(∀x)(n → Qx), T]

[n → (∀x)Qx, T]

c. [(∀x)(∀y)Rxy, N]

[(∀x)(Rxx → Sx), T]

[(∀x)Sx, N]

d. [(∀x)(Px → (Qx → n)), T]

[(∀x)(Px → (Qx → f)), N]
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9.1 Numeric Truth-Values for Three-Valued Logic

In three-valued logic we can use the numeric values 1 and 0 for true and false, as we

did for classical logic, and the value 1/2 for neither true nor false. Chapter 4’s numeric

definitions of truth-values for complex formulas in classical propositional logic,

which we repeat here, produce exactly the truth-conditions for the KS
3 connectives:

1. V(¬P) = 1 – V(P)

2. V(P ∧ Q) = min (V(P), V(Q))

3. V(P ∨ Q) = max (V(P), V(Q))

4. V(P → Q) = max (1−V(P), V(Q))

5. V(P ↔ Q) = min (max (1−V(P), V(Q)), max (1−V(Q), V(P)))

The reader can easily verify that these clauses yield the following truth-tables:

P ¬KP

1 0

0 1
1/2

1/2

P ∧K Q P ∨K Q P →K Q P ↔K Q

P \ Q 1 1/2 0 P \ Q 1 1/2 0 P \ Q 1 1/2 0 P \ Q 1 1/2 0

1 1 1/2 0 1 1 1 1 1 1 1/2 0 1 1 1/2 0
1/2

1/2
1/2 0 1/2 1 1/2

1/2
1/2 1 1/2

1/2
1/2

1/2
1/2

1/2

0 0 0 0 0 1 1/2 0 0 1 1 1 0 0 1/2 1

The fact that the classical numeric clauses from Chapter 4 generate Kleene’s

strong three-valued system raises an important question, namely, Does this show

that KS
3 is the “true” generalization of classical propositional logic, whereas the other

three-valued systems we have studied are not? The answer is no. All that we have

shown is that if we use exactly the clauses for classical logic presented in Section 4.1

and add the third value 1/2 to the classical values, we get Kleene’s system. We have

not shown anything stronger, because there are alternative numeric clauses for

generating classical logic and these alternatives generalize to different three-valued

systems.

161
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For example, we can replace the classical clauses 4 and 5 with

4. V(P → Q) = min (1, 1 – V(P) + V(Q))

5. V(P ↔ Q) = min (1, 1 – V(P) + V(Q), 1 – V(Q) + V(P))

to obtain the propositional system �L3 with the following truth-tables for the condi-

tional and biconditional:

P →�L Q P ↔�L Q

P \ Q 1 1/2 0 P \ Q 1 1/2 0

1 1 1/2 0 1 1 1/2 0
1/2 1 1 1/2

1/2
1/2 1 1/2

0 1 1 1 0 0 1/2 1

Moreover, these clauses also work for classical propositional logic—as they should,

since we know that �L3 is a normal system.

To understand the formulas used for the �L3 conditional and biconditional recall

our comment in Section 4.2 that in classical logic disjunction is almost like addition:

V(P ∨ Q) = V(P) + V(Q), except when both V(P) and V(Q) are 1, so that classical

disjunction can be defined as min(1, V(P) + V(Q)).1 Now, this formula can’t work

for weak disjunction in �L3: min (1, V(P) + V(Q)) is 1 when V(P) and V(Q) are both 1/2,

but �L3
′s weak disjunction has the value 1/2 in this case. However, the formula does

characterize bold disjunction, which produces a true formula when both disjuncts

are neither true nor false. But then, if we think of P →�L Q as ¬�LP ∇ �L Q (we showed in

Chapter 5 that �Lukasiewicz’s conditional could be so defined in terms of negation

and bold disjunction), we get clause 4 for the conditional. Clause 5 results from

defining P ↔�L Q as (P →�L Q) ∧�L (Q →�L P).

There’s another way to look at clause 4 for �Lukasiewicz’s conditional. The for-

mula 1 – V(P) + V(Q) is equivalent to 1 – (V(P) – V(Q)), and V(P) – V(Q) is a kind

of measure of how much “truer” P is than Q. If P is indeed truer than Q, then we

subtract this value from 1, so that the truer P is than Q, the less true the conditional

is. If P is not truer than Q, that is, if it is the same or less true than Q, then the

conditional is simply true.

For Bochvar’s internal connectives we have the numeric clauses

2. V(P ∧BI Q) = 1/2 if V(P) = 1/2 or V(Q) = 1/2

min (V(P), V(Q)) otherwise

3. V(P ∨BI Q) = 1/2 if V(P) = 1/2 or V(Q) = 1/2

max (V(P), V(Q)) otherwise

1 Recall that for classical logic we could also define conjunction in terms of multiplication:
V(P ∧ Q) = V(P) · V(Q). However, we can’t define conjunction this way in three-valued logi-
cal systems because it would be ill-defined—when P and Q both have the value 1/2, the product
of their values is 1/4, which is not a numeric truth-value in our three-valued systems. We’ll revisit
this definition of conjunction, however, when we turn to fuzzy logics.



P1: RTJ
9780521881289c09 CUNY1027/Bergmann 978-0 521 88128 9 November 24, 2007 22:5

9.2 Abstract Algebras for �L3, KS
3, BI

3, and BE
3 163

for conjunction and disjunction. The “otherwise” cases give us a normal system—

Bochvar’s system, like the others, behaves classically when only classical truth-

values are involved. We leave it as an exercise to develop numeric clauses for

Bochvar’s internal conditional and biconditional as well as for his external con-

nectives.

Turning to three-valued first-order logics, we revise numeric clause 1 for clas-

sical first-order logic, assigning 1/2 to formulas that are undetermined:

1. Iv(Pt1 . . . tn) = 1 if <I*(t1), . . . , I*(tn)>∈ ext(P), where I*(ti) is I(ti) if ti is a constant

and is v(ti) if ti is a variable,

0 if <I*(t1), . . . , I*(tn)> ∈ cxt(P), and
1/2 if <I*(t1), . . . , I*(tn)> ∈ fge(P).

If we then use the remaining numeric satisfaction clauses 2–8 for classical first-order

logic, we get KS
3∀. Here are the quantifier clauses:

7. Iv((∀x)P) = min{Iv′ (P): v′ is an x-variant of v}
8. Iv((∃x)P) = max{Iv′ (P): v′ is an x-variant of v}

Clause 7 gives a universal quantification the value 1 if the quantified formula is

satisfied by everything, 0 if it is dissatisfied by at least one thing, and 1/2 otherwise.

Clause 8 gives an existential quantification the value 1 if the quantified formula is

satisfied by at least one thing, 0 if it is dissatisfied by everything, and 1/2 otherwise.

Since the quantifiers have the same definitions in both KS
3 and �L3, the revised clauses

1, 7, and 8 will generate �L3∀ if we add them to the numeric propositional clauses for

�L3, revised to talk of interpretations and variable assignments.

The following clause suffices for the universal quantifier in the first-order gen-

eralization of BI
3:

7. Iv((∀BI x)P) = 1/2 if Iv′ (P) = 1/2 for any x-variant v′ of v

min{Iv′ (P): v′ is an x-variant of v}otherwise.

Again, the “otherwise” cases give us classically defined values when the third truth-

value is ignored. We leave it as an exercise to develop numeric clauses for Bochvar’s

internal existential quantifier and for his external universal and existential quanti-

fiers.

9.2 Abstract Algebras for �L3, KS
3, BI

3, and BE
3

We’ll now explore the abstract algebraic structures characterizing the operations of

three-valued logical systems, whether those operations are defined for T, N, and F

or {1,1/2, 0}. We begin with the algebra induced by �Lukasiewicz’s weak disjunction

and weak conjunction (and hence by Kleene’s strong operations) as defined on the

values {1,1/2, 0}: this algebra is a distributed lattice with domain {1,1/2, 0} in which
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1 and 0 serve, respectively, as unit and zero elements. Recall that conditions i–v from

the definition of Boolean algebras in Chapter 4 define distributed lattices and that

condition vi defines unit and zero elements for a lattice:

i. x ∪ y = y ∪ x, and x ∩ y = y ∩ x (commutation)

ii. x ∪ (y ∪ z) = (x ∪ y) ∪ z, and x ∩ (y ∩ z) = (x ∩ y) ∩ z (association)

iii. x ∪ x = x, and x ∩ x = x (idempotence)

iv. x ∪ (x ∩ y) = x, and x ∩ (x ∪ y) = x (absorption)

v. x ∪ (y ∩ z) = (x ∪ y) ∩ (x ∪ z), and x ∩ (y ∪ z) = (x ∩ y) ∪ (x ∩ z) (distribution)

vi. x ∪ zero = x, and x ∩ unit = x (identity for join and

meet)

The reader will be asked in the exercises to verify that �L3 weak (or KS
3) disjunction

and conjunction satisfy these join and meet conditions for the domain {1,1/2, 0}.

We’ll call the lattice arising from these operations �LKL. If we try to add

�Lukasiewicz-Kleene negation to �LKL as its complementation operation the result

is not a Boolean algebra because the complementation condition vii, x ∪ x′ = unit

and x ∩ x′ = zero, doesn’t hold. When x = 1/2, x ∪ x′ is 1/2 rather than the unit element

1 and x ∩ x′ is 1/2 rather than the zero element 0. It should be no surprise that x ∪ x′

fails to be the unit element, because x ∪ x′ is the algebraic counterpart to the Law

of Excluded Middle, which fails in �L3 (using weak disjunction ∨) and in KS
3. In fact,

for the condition x ∪ x′ = unit to hold for a complementation operation in �LKL we

would have to define both 1/2
′ and 0′ to be 1 since this condition would require that

max (1/2, 1/2
′) = 1 and that max (0, 0′) = 1, and for the condition x ∩ x′ = zero to

hold as well we would have to define both 1/2
′ and 1′ to be 0. But we can’t have 1/2

′ be

both 1 and 0—so it is impossible to define a Boolean complementation operation

for �LKL. We’ll revisit this point in Section 9.3.

Although it is not full complementation, �Lukasiewicz-Kleene negation is an

example of an orthocomplementation operation. An algebraic orthocomplement is

a unary operation′ that satisfies the conditions

vii. zero′ = unit and unit′ = zero

and

viii. x = x′′

for all x in the domain.2 The normality of �Lukasiewicz-Kleene negation clinches

condition vii, while condition viii is the algebraic counterpart to the Law of Double

Negation. A distributive lattice that has unit and zero elements and an orthocom-

plement satisfying conditions vii and viii is called a DeMorgan algebra if it also

satisfies the DeMorgan condition ix:

ix. (x ∪ y)′ = x′ ∩ y′ and (x ∩ y)′ = x′ ∪ y′

2 Definitions of orthocomplementation vary, depending on the type of lattice for which the oper-
ation is being defined. We’ve chosen a definition that’s appropriate for DeMorgan and Kleene
algebras.
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The reader will verify in the exercises that the algebra �LKL′ in which �Lukasiewicz-

Kleene negation has been added to �LKL is a DeMorgan algebra.

More specifically, �LKL′ is a Kleene algebra. To define Kleene algebras we recall

the natural lattice ordering relation ≤ defined as

x ≤ y =def x ∩ y = x.

This produces the natural numeric ordering 0≤ 1/2 ≤1 in �LKL′ because min (0, 1/2)=0

and min (1/2, 1) = 1. A Kleene algebra3 is a DeMorgan algebra that satisfies the

additional condition

x. x ∩ x′ ≤ y ∪ y′

for all x, y in the domain. For the algebra �LKL′ we have min (x, 1−x) ≤ max (y, 1−y)

because for any x in {1, 1/2, 0}, min (x, 1−x) ≤ 1/2 while for any y, 1/2 ≤ max (y, 1−y).

In Section 4.3 of Chapter 4 we used the lattice ordering relation to define a

Boolean algebra conditional operation ⇒ as

x ⇒ y = unit if and only if x ≤ y.

So the question naturally arises, Does �Lukasiewicz’s or Kleene’s strong conditional

operation, or neither, meet this condition? Well, putting this condition together with

the definition of ≤ we have

x ⇒ y = unit if and only if x ∩ y = x

and in the case of �LKL′:

x ⇒ y = unit in �LKL′ if and only if min (x, y) = x.

This is exactly the condition under which a �Lukasiewicz conditional is true, but it

isn’t satisfied by Kleene’s conditional. Given a domain containing more than two

elements, though, the condition doesn’t specify the conditions under which x ⇒ y

evaluates to zero, and so it doesn’t define when a �Lukasiewicz conditional has the

value 1/2 and when it has the value 0. In Section 9.3 we’ll introduce another type of

algebra, which more fully captures the �Lukasiewicz conditional. On the other hand,

a Kleenean conditional operation can be defined for Kleene algebras in the obvious

way, based on KS
3’s definition: x ⇒K y =def x′ ∪ y.

We have a result relating KS
3 and Kleene algebras analogous to a result in Chap-

ter 4 relating classical propositional logic and Boolean algebras. When we use a

three-valued Kleene algebra to interpret formulas of propositional logic by assign-

ing either unit, zero, or the third element to each atomic formula and using the alge-

bra’s join, meet, and orthocomplement operations to define the respective values of

disjunctions, conjunctions, and negations, we call this an algebraic interpretation

based on that Kleene algebra and the set of all such interpretations a semantics

3 Balbes and Dwinger (1974, p. 215).
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based on the Kleene algebra. The following result tells us that the semantics for

propositional logic based on any three-valued Kleene algebra give us KS
3’s truth-

functions for disjunction, conjunction, and negation, with unit, zero, and the third

element, respectively, in place of 1, 0, and 1/2:

Result 9.1: Every three-valued Kleene algebra KA = <{unit, zero, other}, ∪, ∩, ′,
unit, zero> generates the following truth-tables for assignments of unit, zero, or

other to each atomic formula of propositional logic when ∪, ∩, and ′ respectively

define the disjunction, conjunction, and negation operations (we use u, z, and

o to stand for unit, zero, and other):

P ¬P

u z

o o

z u

P ∨ Q P ∧ Q

P \ Q u o z P \ Q u o z

u u u u u u o z

o u o o o o o z

z u o z z z z z

Proof: Left as an exercise.

Because there are no KS
3 tautologies, it follows that no formulas of proposi-

tional logic are tautologies of any three-valued Kleene algebra (where the algebraic

definition of a tautology is analogous to the definition of BA-tautologies in

Chapter 4).

The algebra BIA induced by Bochvar’s internal disjunction and conjunction

isn’t a lattice because lattice condition iv, absorption, doesn’t hold—when x is 1 or

0 the expressions x ∪ (x ∩ 1/2) and x ∩ (x ∪ 1/2) both evaluate to 1/2 in BIA, not x.

Conditions i–iii do hold for BIA, as do conditions v and vi earlier specifying dis-

tributivity and unit and zero elements. The equations involving the join operation

in conditions i–iii define a structure known as a semi-lattice, and so do the equa-

tions involving the meet operation. (It is idempotency condition iv that unifies join

and meet semi-lattices into a single lattice.) Thus we may simply describe BIA as

a distributive dual system of semi-lattices with unit and zero elements. The addi-

tion of Bochvar’s internal negation would give us an orthocomplement for the dual

system. Finally, the algebra BEA defined by Bochvar’s external disjunction and con-

junction is a distributed lattice, but the elements 0 and 1 don’t serve as identity

elements for join and meet as specified by condition vi (1/2 ∪ 0 = 0 in BEA, not
1/2, and 1/2 ∩ 1 = 0, not 1/2). The reader will be asked to discuss these systems, as

well as the algebraic operation corresponding to Bochvar’s external negation, in the

exercises.
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9.3 MV-Algebras

In Section 9.1 we gave �Lukasiewicz’s bold disjunction the numeric truth-condition

V(P ∇ Q) = min(1, V(P) + V(Q)). Bold conjunction can be defined as P & Q =def

¬(¬P ∇ ¬Q), from which it follows that V(P & Q) = max (0, V(P) + V(Q) – 1). The

algebraic structure �L3MV induced by �L3 bold disjunction, bold conjunction, and

negation, that is, the structure <{1, 1/2, 0}, ⊕�L, ⊗�L, 1−, 1, 0> where ⊕�L, ⊗�L, and

1− are �L3 bold disjunction, bold conjunction, and negation, is an MV-algebra.

An MV-algebra is a an algebra <M, ⊕, ⊗, ′, unit, zero> that meets the following

conditions for all x, y, and z in M:4

i. x ⊕ y = y ⊕ x, and x ⊗ y = y ⊗ x (commutation)

ii. x ⊕ (y ⊕ z) = (x ⊕ y) ⊕ z, and x ⊗ (y ⊗ z) = (x ⊗ y) ⊗ z (association)

iii. x ⊕ zero = x, and x ⊗ unit = x (identity for join and meet)

iv. x ⊕ unit = unit, and x ⊗ zero = zero (unit and zero consumption)

v. x ⊕ x′ = unit, and x ⊗ x′ = zero (complementation)

vi. (x ⊕ y)′ = x′ ⊗ y′, and (x ⊗ y)′ = x′ ⊕ y′ (DeMorgan’s Laws)

vii. x = x′′ (Double Negation)

viii. zero′ = unit (duality of zero and unit)

ix. (x′ ⊕ y)′ ⊕ y = (y′ ⊕ x)′ ⊕ x (lattice meet commutation)

(The reason for calling condition ix lattice meet commutation will be explained

later.) We’ll show that bold disjunction and bold conjunction are both commutative

and associative operations on {1, 1/2, 0}, thus meeting the first two conditions on

MV-algebras:

Commutation: x ⊕�L y = x ⊕�L y, and x ⊗�L y = x ⊗�L y

Proof of first equation: For all x, y ∈ {1, 1/2, 0}, min (1, x + y) = min (1, y + x)

since x + y = y + x.

Proof of second equation: Left as an exercise.

Association: x ⊕�L (y ⊕�L z) = (x ⊕�L y) ⊕�L z, and x ⊗�L (y ⊗�L z) = (x ⊗�L y) ⊗�L z

Proof of first equation: For all x, y, z ∈ {1, 1/2, 0}, min (1, x + min (1, y + z)) = min

(1, min (x + 1, x + y + z)) = min (1, x + 1, x + y + z), and since x ≥ 0 it follows

that x + 1 ≥ 1, so min (1, x + 1, x + y + z) = min (1, x + y + z). Similarly, min (1,

min (1, x + y) + z) = min (1, min (1 + z, x + y + z)) = min (1, 1 + z, x + y + z) =
min (1, x + y + z).

Proof of second equation: Left as an exercise.

4 MV-algebras were first developed in Chang (1958b, 1959). MV is short for many-valued.
These are not Chang’s original conditions but are a variation of an equivalent formulation

given in Mangani (1973). An excellent monograph that explores various formulations of MV-
algebras is Cignoli, D’Ottaviano, and Mundici (2000).
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It is also left as an exercise to show that the remaining conditions on MV-algebras

hold for �L3MV.

We noted in Section 9.2 that �Lukasiewicz/Kleene negation cannot serve as a

complementation operation for �LKL because it doesn’t satisfy the complementation

conditions with respect to �LKL’s lattice join and meet. However, as will be verified

in the exercises, �Lukasiewicz/Kleene negation does serve as complementation with

respect to the MV-algebraic join and meet operations⊕�L and⊗�L. This isn’t surprising

since we already knew that the bold disjunction Law of Excluded Middle A ∇¬A is

an �L3-tautology, while the bold conjunction A & ¬A is an �L3-contradiction.

The first complementation condition for MV-algebras isn’t required as a sepa-

rate condition since it can be derived using the other conditions:

x ⊕ x′ = x′ ⊕ x (commutation)

= (x ⊕ zero)′ ⊕ x (identity for join)

= (zero ⊕ x)′ ⊕ x (commutation)

= (zero′′ ⊕ x)′ ⊕ x (Double Negation)

= (x′ ⊕ zero′)′ ⊕ zero′ (lattice meet commutation)

= (x′ ⊕ zero′)′ ⊕ unit (duality of zero and unit)

= unit (unit consumption)

But this equality is so important that we have included it as a separate condition.

We know that we can also derive the second complementation condition from

the other conditions because there is a general principle of duality for MV-algebras

similar to that for Boolean algebras. Each of the conditions i–vi consists of a pair of

equations such that join and meet have been interchanged and so have unit and

zero. We can derive unit′ = zero, the dual to condition viii, from conditions vii and

viii (see Exercise 7 for Section 9.2), and the dual to lattice meet commutation (which

is lattice join commutation) is also derivable from other conditions—this is left as

an exercise.

Every Boolean algebra is an MV-algebra, where the Boolean join ∪ serves as

the MV-algebra join ⊕ and the Boolean meet ∩ serves as the MV-algebra meet ⊗.

We have already shown (in Chapter 4) that most of the conditions for MV-algebras

hold for Boolean algebras; we leave it as an exercise to show that the duality of zero

and unit and lattice meet commutation both hold for Boolean algebras as well. On

the other hand, not all MV-algebras are Boolean algebras. For example, �L3MV is an

MV-algebra but it isn’t a Boolean algebra. In particular, idempotence fails since 1/2

⊕ 1/2 = 1, not 1/2 as would be required by idempotence, and 1/2 ⊗ 1/2 = 0. Distribution

also fails—for example, 1/2 ⊗ (1 ⊕ 1) = 1/2, but (1/2 ⊗ 1) ⊕ (1/2 ⊗ 1) = 1. (If distribution

held then idempotence would hold as well—we showed in Chapter 4 how to derive

idempotence from distribution, complementation, and identity for meet and join,

and the latter conditions both hold in MV-algebras). In fact, an MV-algebra is a

Boolean algebra if and only if idempotence and/or distribution holds for the MV-

algebra’s meet and join.
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There is a natural ordering on MV-algebras defined as

x ≤ y if and only if x′ ⊕ y = unit

Like its lattice counterpart, this ordering is reflexive, antisymmetric, and transitive.

Alternatively, we can define an MV-algebra operation ∩ that satisfies the conditions

defining lattice meet operations:

x ∩ y =def x ⊗ (x′ ⊕ y)

and then define the ordering as we did for lattices:

x ≤ y if and only if x ∩ y = x

It is left as an exercise to prove that when the lattice meet operation ∩ is defined as

x ⊗ (x′ ⊕ y), x ∩ y = x if and only if x′ ⊕ y = unit, so that the two definitions for the

MV-relation ≤ coincide. An operation ∪ satisfying the conditions defining lattice

join operations can also be defined within an MV-algebra, for example, as

x ∪ y =def (x′ ∩ y′)′

MV-algebras are said to contain lattices as substructures because these meet and

join operations ∩ and ∪ together with the MV-algebraic operation ′ form a lattice

over the MV-algebra’s domain. And because of these substructures, the MV-algebra

meet and join operations ⊗ and ⊕ are sometimes called bold meet and join to

distinguish them from the lattice operations.

To prove that the operations ∩ and ∪ as defined in the previous paragraph do

indeed form a lattice, we need to show that lattice conditions i–iv hold, that is, that

these meet and join operations are commutative, associative, and idempotent, and

that the absorption conditions hold. The name for condition ix in the definition

of MV-algebras—lattice meet commutation—refers to the fact that this condition

guarantees that the meet operation ∩ as we have just defined it is a commutative

operation:

x ∩ y = x ⊗ (x′ ⊕ y) (definition)

= (x ⊗ (x′ ⊕ y))′′ (Double Negation)

= (x′ ⊕ (x′ ⊕ y)′)′ (DeMorgan’s Law)

= ((y ⊕ x′)′ ⊕ x′)′ (commutation, twice)

= ((y′′ ⊕ x′)′ ⊕ x′)′ (Double Negation)

= ((x′′ ⊕ y′)′ ⊕ y′)′ (lattice meet commutation)

= ((x ⊕ y′)′ ⊕ y′)′ (Double Negation)

= (y′ ⊕ (y′ ⊕ x)′)′ (commutation, twice)

= (y ⊗ (y ′ ⊕ x))′ ′ (DeMorgan’s Law)

= y ⊗ (y′ ⊕ x) (Double Negation)

= y ∩ x (definition)
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(Note the second half of this derivation reverses the steps of the first half, but on

different operands.) An equivalent derivation without lattice meet commutation

cannot be constructed.

The associativity of ∩ can be derived as follows (we use lattice join commu-

tation, which is the dual of lattice meet commutation, the derivation of which is

left as an exercise). This derivation is tricky to follow, and it may help the reader to

note that once again the second half of the derivation reverses the steps of the first

half:

x ∩ (y ∩ z) = (y ∩ z) ∩ x (lattice commutation, just established)

= (y ⊗ (y′ ⊕ z)) ⊗ ((y ⊗ (y′ ⊕ z))′ ⊕ x) (definition)

= y ⊗ ((y′ ⊕ z) ⊗ ((y ⊗ (y′ ⊕ z))′ ⊕ x)) (association)

= y ⊗ ((y′ ⊕ z) ⊗ ((y′ ⊕ (y′ ⊕ z)′) ⊕ x)) (DeMorgan’s Law)

= y ⊗ ((y′ ⊕ z) ⊗ (((y′ ⊕ z)′ ⊕ y′) ⊕ x)) (commutation)

= y ⊗ ((y′ ⊕ z) ⊗ ((y′ ⊕ z)′ ⊕ (y′ ⊕ x))) (association)

= y ⊗ ((y′ ⊕ z) ⊗ ((y′ ⊕ z)′ ⊕ (y′ ⊕ x))′′) (Double Negation)

= y ⊗ ((y′ ⊕ z) ⊗ ((y′ ⊕ z)′′ ⊗ (y′ ⊕ x)′)′) (DeMorgan’s Law)

= y ⊗ ((y′ ⊕ z) ⊗ ((y′ ⊕ z) ⊗ (y′ ⊕ x)′)′) (Double Negation)

= y ⊗ (((y′ ⊕ x)′ ⊗ (y′ ⊕ z))′ ⊗ (y′ ⊕ z)) (commutation, twice)

= y ⊗ (((y′ ⊕ z)′ ⊗ (y′ ⊕ x))′ ⊗ (y′ ⊕ x)) (lattice join commutation)

= y ⊗ ((y′ ⊕ x) ⊗ ((y′ ⊕ x) ⊗ (y′ ⊕ z)′)′) (commutation, twice)

= y ⊗ ((y′ ⊕ x) ⊗ ((y′ ⊕ x)′′ ⊗ (y′ ⊕ z)′)′) (Double Negation)

= y ⊗ ((y′ ⊕ x) ⊗ ((y′ ⊕ x)′ ⊕ (y′ ⊕ z))′′) (DeMorgan’s Law)

= y ⊗ ((y′ ⊕ x) ⊗ ((y′ ⊕ x)′ ⊕ (y′ ⊕ z))) (Double Negation)

= y ⊗ ((y′ ⊕ x) ⊗ (((y′ ⊕ x)′ ⊕ y′) ⊕ z)) (association)

= y ⊗ ((y′ ⊕ x) ⊗ ((y′ ⊕ (y′ ⊕ x)′) ⊕ z)) (commutation)

= y ⊗ ((y′ ⊕ x) ⊗ ((y ⊗ (y′ ⊕ x))′ ⊕ z)) (DeMorgan’s Law)

= (y ⊗ (y′ ⊕ x)) ⊗ ((y ⊗ (y′ ⊕ x))′ ⊕ z) (association)

= (y ∩ x) ∩ z (definition)

= (x ∩ y) ∩ z (commutation)

We leave it as an exercise to establish the remaining lattice properties for MV-algebra

lattice meet and join operations.

Given the lattice substructure definable in an MV-algebra, it should come as

no surprise that �L3’s weak conjunction and disjunction connectives, corresponding

to the meet and join operations of this lattice substructure, are definable using

negation and the �L3 bold connectives. Of course, we already knew this because we

showed how to use the �L3 bold connectives and negation to define the L3 conditional,

and how to use this conditional and negation to define �L3 weak disjunction and

conjunction, but this shows how algebraic structures can also be used to support

claims about logical systems. Using the definition of lattice meet in MV-algebras,

for example, we conclude that P ∧ Q may be defined as P & (¬P ∇ Q).
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We can also use bold join to define ⇒�L, the algebraic counterpart of the

�Lukasiewicz conditional, completely for any MV-algebra as

x ⇒�L y = x′ ⊕ y

for all x and y, for recall that in �L3 we have V(P → Q) = V(¬P ∇ Q). In �L3MV this gives

us exactly the truth-conditions for a �Lukasiewicz conditional.

We can now relate �L3 tautologies and MV-algebra tautologies. We will say that

a formula of propositional logic is a tautology of an MV-algebra if the formula

evaluates to unit under every algebraic interpretation based on that algebra. First,

we have

Result 9.2: Every three-valued MV-algebra MV = <{unit, zero, other}, ⊕, ⊗, ′,
unit, zero> generates the following truth-tables for assignments of unit, zero, or

other to each atomic formula of propositional logic when⊕,⊗, and ′ respectively

define the bold disjunction, bold conjunction, and negation operations (we use

u, z, and o to stand, respectively, for unit, zero, and other):

P ¬P

u z

o o

z u

P ∇ Q P & Q

P \ Q u o z P \ Q u o z

u u u u u u o z

o u u o o o z z

z u o z z z z z

Proof: Left as an exercise.

Given definitions of the �L3 conditional and biconditional in terms of negation, bold

disjunction, and bold conjunction we therefore have

Result 9.3: For any three-valued MV-algebra BA, the set of formulas of propo-

sitional logic that are MV-tautologies is exactly the set of �L3 tautologies under

the standard semantics {1, 1/2, 0}.

In Chapter 4 we proved a stronger result relating Boolean algebras and classical

propositional logic: that for any Boolean algebra BA, the set of formulas that are

BA-tautologies is exactly the set of classical tautologies. There is not an analogous

result for relating �L3 and MV-algebras, for some �L3 tautologies are not tautologies in

every MV-algebra. This will become clear when we study fuzzy propositional logics

and their algebras in Chapters 11 and 12.
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9.4 Exercises

SECTION 9.1

1 Develop numeric truth-condition clauses for Bochvar’s internal conditional

and biconditional.

2 Develop numeric truth-condition clauses for Bochvar’s external connectives.

3 Develop numeric truth-value clauses for Bochvar’s internal existential quanti-

fier.

4 Develop numeric truth-value clauses for Bochvar’s external quantifiers.

SECTION 9.2

5 Prove that �L3 weak (or KS
3) conjunction and disjunction satisfy distributed lat-

tice meet and join conditions for the domain {1,1/2, 0}, with 1 and 0 serving

respectively as unit and zero elements.

6 Do the �L3 bold conjunction and disjunction operations produce a distributed

lattice structure over {1, 1/2, 0}? Defend your answer.

7 Show that the second part of the orthocomplement condition vii, unit′ = zero,

follows from the first part of condition vii (zero′ = unit) and condition viii,

x′′ = x.

8 Prove that �LKL′ is a DeMorgan algebra.

9 Prove that every Boolean algebra is a DeMorgan algebra, where the Boolean

complement serves as the DeMorgan algebra’s orthocomplement.

10 Prove Result 9.1.

11 Prove that BIA meets conditions v and vi specifying distributivity and unit and

zero elements:

v. x ∪ (y ∩ z) = (x ∪ y) ∩ (x ∪ z), and x ∩ (y ∪ z) = (x ∩ y) ∪ (x ∩ z)

vi. x ∪ zero = x, and x ∩ unit = x.

12 Prove that BEA is a distributed lattice.

13 Is Bochvar’s external negation an orthocomplement for the algebra BEA?

Explain. Is it a complementation operation (such that x ∪ x′ = unit and x ∩ x′ =
zero)? Explain.

14 There does not exist a result analogous to Result 9.1 that relates BI
3’s truth-

tables and three-valued distributive dual systems of semi-lattices with unit and

zero elements and an orthocomplement because every Kleene algebra satis-

fies the conditions of these structures and we know that three-valued Kleene

algebras produce the KS
3 truth-tables. Here’s your task: find one or more con-

ditions that can be added to i–iii, v, vi, vii, and viii that will force a three-

valued algebra to produce the truth-tables for BI
3 disjunction, conjunction, and

negation.

SECTION 9.3

15 Prove that the equation V(P & Q) = max (0, V(P) + V(Q) – 1) correctly defines

the truth-conditions for �Lukasiewicz bold conjunction.
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16 Complete the proofs that the bold disjunction and bold conjunction operations

⊕�L and ⊗�L are both commutative and associative.

17 Prove that conditions iii–ix for MV-algebras hold for �L3MV.

18 Derive lattice join commutation, the dual of lattice meet commutation, from

the conditions defining MV-algebras.

19 Derive the second complementation condition for MV-algebras using the other

conditions defining MV-algebras.

20 Show that the second DeMorgan Law for MV-algebras follows from the first

DeMorgan Law and conditions i–v and vii–ix for MV-algebras.

21 Show that the duality of zero and unit, and lattice meet commutation also hold

for all Boolean algebras.

22 Prove that in an MV-algebra, x ∩ y = x if and only if x′ ⊕ y = unit, where

x ∩ y =def x ⊗ (x′ ⊕ y).

23 Prove that

a. the MV-algebra lattice meet operation ∩ defined as x ∩ y =def x ⊗ (x′ ⊕ y) is

idempotent

b. the MV-algebra lattice join operation ∪ defined as x ∪ y =def (x′ ∩ y′)′ is

commutative, associative, and idempotent

c. these two operations satisfy the lattice absorption conditions x ∪ (x ∩ y) =
x and x ∩ (x ∪ y) = x.

24 Prove Result 9.2.
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10 The Principle of Charity Reconsidered and a New
Problem of the Fringe

It’s time to face two problems that we sidestepped while exploring three-valued

logical systems for vagueness.

Although the Sorites argument is valid in all of the systems we’ve presented,

we claimed that the paradox can nevertheless be dissolved in three-valued logic

because the Principle of Charity premise is not true on any reasonable interpreta-

tion. The first problem concerns the exact nature of the principle’s nontruth. Our

sample interpretations rendered the premise false in Bochvar’s external system,

which didn’t sound right because its negation—which states that 1/8
′′ does make a

difference—must then be true. However, the situation looked more promising in

the other three systems, where the Principle of Charity and its negation were nei-

ther true nor false. But now let us recall that the Principle of Charity is so called by

virtue of the colloquial reading, One-eighth of an inch doesn’t make a difference. Put

that way, the Principle of Charity seems true, or close to it, doesn’t it? If you shrink

a tall person by 1/8
′′, surely that person will still be tall. (If you disagree, change

the shrinking to 1/100
′′—we’ll still get the paradox, but surely 1/100

′′ doesn’t make

a difference.) Three-valued accounts can avoid the paradox by claiming that the

Principle of Charity is either false or neither true nor false, but that leaves another

puzzle: why does the principle seem to be true?

We’ll see that in fuzzy logical systems we can do better: we’ll be able to say that

the Principle of Charity, although not exactly true, is very close to true, because we’ll

allow sentences to have one of infinitely many truth-values—ranging from true at

one end to false at the other, and reflecting various degrees of truth in between.

The alternative, which three-valued theorists can embrace, is to supplement the

logical solution to the paradox with an explanation of why the apparent truth of

the Principle of Charity is in fact illusory.1 So we might say that fuzzy logic takes the

apparent truth at face value.

The second and more serious problem, which we mentioned in footnote 2 to

Chapter 7 and which we will call the New Problem of the Fringe, is that our three-

valued interpretations for vague predicates assume clear cutoff points between the

extension of a predicate and its fringe and between the fringe and the counterex-

tension. This can’t be right. Where is the cutoff between the extension of tall and

1 Kit Fine (1975), for example, takes this route.
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the fringe of tall, for example? Is it 5′ 11′′, as we assumed in our interpretations in

Chapter 7? Or is it 5′ 10′′, or 5′ 9′′, or perhaps 6′? And even if we can agree on where

to make the cutoff, its mere existence shows that an eighth of an inch can make a

difference, contrary to the Principle of Charity. That is, you can go from being tall

to being neither tall nor not tall by shrinking 1/8
′′, and that seems plain wrong.

Indeed, Bertrand Russell recognized that the existence of a fringe seems to

require “higher-order” fringes between a vague predicate’s extension and fringe

and also between the predicate’s fringe and counterextension—to replace the objec-

tionable cutoff points.2 But now if we countenance these higher-order fringes, we

may find that we need yet higher-order fringes to set them off—lest we posit an

exact cutoff between, say, the extension of a predicate and the higher-order fringe

that separates it from the predicate’s fringe. We thus find ourselves going from three

values to five values to nine values to . . . an infinite number of truth-values. And

that is exactly what we have in fuzzy logic, which is a type of infinite-valued logic.

So let’s get fuzzy!

2 Bertrand Russell (1923, p. 87). The term fringe is from Black (1937), not from Russell.
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11 Fuzzy Propositional Logics: Semantics

11.1 Fuzzy Sets and Degrees of Truth

Chapter 10 noted two problems that crop up for three-valued approaches to vague-

ness. The first problem is that the Principle of Charity seems to be, if not completely

true, then at least very close to true: 1/8
′′ doesn’t make a significant difference where

tallness is concerned. Three-valued logic has no obvious way to capture “very close

to true.”1 The other problem is that the three sets used to interpret predicates—

the extension, counterextension, and fringe—require clear cutoff points. Heights

of 5′ 11′′ and greater might be clearly in the extension of tall, heights of 5′ 3′′ or less

might be clearly in the counterextension of tall, and 5′ 7′′ might be clearly in the

fringe—but can we classify all heights in this way? If so, there is a sharp cutoff point

between being tall (the extension of tall) and being neither tall nor not tall (the

fringe of tall), and one between being neither tall nor not tall and being not tall (the

counterextension of tall), something like:

Height

4′ 7′′ 5′ 3′′ 5′ 11′′ 6′ 7′′

} } } }

←------- not tall -------→←neither tall nor not tall→ ← -------- tall -------- →

Or may be the cutoff points are at 5′ 2′′ and 5′ 10′′, or . . .? But wherever we draw them,

it doesn’t seem true to the facts, to wit: there are no sharp cutoff points between an

extension, fringe, and counterextension for our ordinary concept tall (or for any

other vague concepts).2

Rather, there are infinitely many degrees of tallness, which we may indicate

with values between 0 and 1 inclusive. Gina Biggerly, at 6′ 7′′, is tall to degree 1 (i.e.,

clearly tall), while Tina Littleton, at 4′ 7′′, is tall to degree 0 (clearly not tall). Mary

Middleford, at 5′ 7′′, is perhaps tall to degree .5—smack in the middle between being

tall and being not tall; Anne, at 5′ 8′′, is perhaps tall to degree .6: somewhat closer to

1 Unless we use N to stand for very close to true—but then we will have no way also to capture very
close to false, and so forth.

2 The claim here is independent of intersubjective agreement or relativity of concepts. Just consider
your own idea of tallness for some class of people: you’ll find that there are not sharp cutoff points
for the application of that concept; any attempt to fix such points seems arbitrary.
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tall than to not tall. Crystal, at 5′ 2′′, is perhaps tall to degree .1—not as clearly not

tall as Tina, but almost there.

Deciding exactly how to assign degrees of tallness is interesting, and we’ll return

to this issue in Chapter 17. But our logic doesn’t depend on any specific way of

assigning these degrees, so for now we’ll introduce one way this might be done in

order to explore the logic that unfolds. Let’s consider only the heights between 4′ 7′′

and 6′ 7′′ inclusive. We first express the heights on our previous scale as heights in

excess of 4′ 7′′:

Height

4′ 7′′ 5′ 3′′ 5′ 11′′ 6′ 7′′

} } } }

Height in excess of 4′ 7 ′′

0′′ 8′′ 16′′ 24′′

} } } }

That is, 4′ 7′′ is 0 inch greater than 4′ 7′′, while 6′ 7′′ is 24 inches greater than 4′ 7′′.
This gives us a scale ranging from 0 to 24. But we want a scale ranging from 0 to 1,

so we’ll divide these values by 24 to arrive at the degree of tallness for each height:

Height

4′ 7′′ 5′ 3′′ 5′ 11′′ 6′ 7′′

} } } }

Height in excess of 4′ 7 ′′

0′′ 8′′ 16′′ 24′′

} } } }

Degree of tallness

0 (= 0/24) 0.333 . . . (= 8/24) 0.666 . . . (= 16/24) 1 (= 24/24)

} } } }

Thus 4′ 7′′ is tall to degree 0, 5′ 3′′ is tall to degree .333 . . . , 5′ 11′′ is tall to degree

.666 . . . , and 6′ 7′′ is tall to degree 1.

We’ve just described what is known as a fuzzy set: a fuzzy set of heights between

4′ 7′′ and 6′ 7′′. A non-fuzzy (crisp)3 set is a collection of entities, such that each entity

either is or isn’t a member of the set. But with fuzzy sets we don’t have entities either

being or not being a member of the set; rather, we have entities being members of

the set to some degree. More technically, a fuzzy set is defined by a function that

assigns to each entity in its domain a value between 0 and 1 inclusive, representing

the entity’s degree of membership in the set. 4′ 7′′ is a member of our fuzzy set of

heights to degree 0; 5′ 3′′ is a member to degree .333 . . . ; and so on.

We can in fact describe a crisp set in fuzzy terms: it is a set for which the degree

of membership of any entity is either 1 (the entity is in the set) or 0 (the entity is not

in the set). Our three-valued interpretations for vague predicates in earlier chapters

may also be characterized as fuzzy sets: the entities in the extension of the predicate

3 Crisp is the fuzzy community’s term for classical sets, crisp contrasting with fuzzy.
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are members of the fuzzy set corresponding to the predicate to degree 1; the entities

in the counterextension are members to degree 0; and the entities in the fringe are

members to degree .5. So what we have done in this text is to move from two distinct

degrees of set membership (classical logic) to three degrees of membership (three-

valued logic) to an infinite number of degrees of membership in the sets that are

used to interpret predicates.

Just as we used the extension, counterextension, and fringe assigned to predi-

cates to determine the truth-value of simple subject-predicate sentences, we may

now use fuzzy sets assigned to predicates to determine truth-values. Our truth-

values will be values between 0 and 1 inclusive, and in the case of simple sentences

will correspond directly to degrees of membership. If Anne’s height is tall to degree

1, for example, we will assign the value 1 to the sentence Anne is tall. If her height is

tall to degree .2, then we will assign the value .2 to the sentence Anne is tall, and so

on. We call these values degrees of truth. A logical system in which sentences may

have any of an infinite number of degrees of truth (e.g., values between 0 and 1) is

an infinite-valued logical system. When the bases for assigning the degrees of truth

are fuzzy sets, we call the system a fuzzy logic.4

The move to fuzzy logic does more than just settle—or eliminate—the problem

of exact boundaries for the fringe of a vague predicate. With a variety of degrees

of truth we can also address the other major problem that hounds three-valued

accounts of vagueness: we can accommodate the intuition that the Principle of

Charity is very close to true by assigning it a high degree of truth.5

11.2 �Lukasiewicz Fuzzy Propositional Logic

We’ll use fuzzy sets explicitly in fuzzy first-order logics in Chapter 14, but first we

present propositional systems, just as we did for three-valued logic, so that we can

examine some of the logical principles in a simpler setting.

To specify a full fuzzy propositional logic, we begin with an assignment V of fuzzy

truth-values, between 0 and 1 inclusive, to the atomic formulas of the language. We

call the set of real numbers between 0 and 1 inclusive the unit interval, and we

use the notation [0. .1] to designate the unit interval. So we may say that for each

atomic formula P, V(P) is a member of the unit interval, or in more concise notation,

V(P) ∈ [0. .1]. We can then use the same numeric clauses that we presented for

4 There is disagreement in the literature about whether this is enough to call a logic fuzzy (as
opposed to an infinite-valued logic), or whether the logic also needs to include fuzzy semantic
and syntactic concepts like n-degree-validity that will be introduced later in this chapter. Our
logics will be fuzzy in any case since we are introducing these latter concepts.

5 Graham Priest (2001) notes that many Sorites paradoxes involve discrete steps (like the tallness
version in which we subtract 1/8

′′ each time) rather than continuous ones (such as a version that
said that any reduction of height of 1/8

′′ or less can’t take us from a tall person to one who’s not
tall) and that in these cases a finite-valued logic would suffice for a solution to the paradox. But
he adds (and we agree) that “the continuum-valued semantics [the semantics that includes all
real numbers between 0 and 1 as truth-values] is more general, and can be applied to all [S]orites
paradoxes, giving, what is clearly desirable, a uniform account” (p. 214).
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�Lukasiewicz three-valued logic to obtain the �Lukasiewicz fuzzy system Fuzzy�L:6

1. V(¬P) = 1 – V(P)

2. V(P ∧ Q) = min (V(P), V(Q))

3. V(P ∨ Q) = max (V(P), V(Q))

4. V(P → Q) = min (1, 1 – V(P) + V(Q))

5. V(P ↔ Q) = min (1, 1 – V(P) + V(Q), 1 – V(Q) + V(P))

6. V(P & Q) = max (0, V(P) + V(Q) – 1)

7. V(P ∇ Q) = min (1, V(P) + V(Q))

Some of these connectives can be defined using others, as we did in �L3. For example,

in Section 9.3 of Chapter 9 we noted that P ∧ Q is definable as P & (¬P ∇ Q) in �L3,

and V(P & (¬P ∇ Q)) = max(0, V(P)+min(1, 1−V(P)+V(Q))−1)= max(0, min(V(P)+
1−1, V(P)+1−V(P)+V(Q)−1)) = max(0, min(V(P), V(Q)) = min(V(P), V(Q)).

Assuming that V(P) = 1, V(Q) = .75, and V(R) = .5, here are the values of

various compound formulas:

Formula Value

¬P 0

¬Q .25

¬R .5

Q ∧ P .75

Q ∧ R .5

P ∧ ¬P 0

Q ∧ ¬Q .25

Q ∨ R .75

P ∨ ¬P 1

R ∨ ¬R .5

P → Q .75

P → R .5

Q → R .75

Q → Q 1

Q → ¬Q .5

P & Q .75

Q & R .25

Q ∇ ¬Q 0

P ∇ R 1

R ∇ ¬R 1

6 Apropos of footnote 4, �Lukasiewicz developed an infinite-valued logic but his work predated by
a good 40 years the introductions of fuzzy sets and of fuzzy semantic concepts. �Lukasiewicz’s
work on infinite-valued logic is discussed in �Lukasiewicz and Tarski (1930). We also note that
�Lukasiewicz assumed a range of truth-values consisting of the rational numbers, rather than all
of the real numbers, in the unit interval. However, it turns out that the set of tautologies obtained
when the truth-values are restricted to the rationals is identical to the set of tautologies when all
of the real numbers in the unit interval are used as truth-values. See Gottwald (2001, pp. 191–192),
for a concise proof of this equivalence.
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Note that every formula of the form P → P will still (as in �L3) have the value 1, since

min (1, 1−V(P) + V(P)) = 1, no matter what the value V(P) is. Every formula of the

form P ∇ ¬P will have the value 1, since V(P ∇ ¬P) = min (1, V(P) + 1 −V(P)) = min

(1,1). Similarly, every formula of the form ¬(P & ¬P) will always have the value 1.

On the other hand, a formula of the form P ∨ ¬P may have a value as low as .5 (but

no lower)—it has that value when V(P) = .5—and the same holds for formulas of the

form ¬(P ∧ ¬P). Thus the Laws of Excluded Middle and Noncontradiction hold in

Fuzzy�L when expressed using the bold connectives but fail when expressed using

the weak connectives.

We remind the reader of the rationale for the truth-conditions of the �Lukasiewicz

conditional. By the definition in clause 4, whenever V(P) is less than or equal to

V(Q), V(P → Q) = 1. This is obviously as it should be if Q is “truer” than P. Whenever

V(P) is greater than V(Q), V(P → Q) = 1 – V(P) + V(Q), which is 1 – (V(P) – V(Q)).

Thus the value of the conditional is 1 minus the value representing how much

“truer” P is than Q. As Graham Priest explains it: “If A is more true than B, then

there is something faulty about the conditional: its truth value must be less than

1. How much less? The amount that the truth value falls in going from A to B. In

particular, if it falls all the way from 1 to 0, then the value of A → B is 0′′ (Priest 2001,

p. 215).

11.3 Tautologies, Contradictions, and Entailment in Fuzzy Logic

All of the semantic results for �L3 in Chapter 5 except those concerning expressive

power (which we’ll address in Section 11.6) carry over to Fuzzy�L when we consider

weak conjunction and disjunction to be the counterparts of the classical conjunc-

tion and disjunction operators. In this section we consider tautologousness, con-

tradictoriness, and entailment.

First, the system Fuzzy�L is normal, so we have

Result 11.1: Every Fuzzy�L tautology is a classical tautology, and every Fuzzy�L

contradiction is a classical contradiction,

where a tautology is defined to be a formula that always has the value 1 and a

contradiction is defined to be a formula that always has the value 0. If we define

entailment to hold between a set of formulas � and a formula P whenever P has the

value 1 on any fuzzy truth-value assignment on which all the members of � have

the value 1, normality also guarantees that

Result 11.2: Every Fuzzy�L entailment is a classical entailment.

As a consequence of 11.2, every argument that is valid in Fuzzy�L is also classically

valid.
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The converses do not hold:

Result 11.3: Not every classical tautology is a Fuzzy�L tautology, and not every

classical contradiction is a Fuzzy�L contradiction.

Result 11.4: Not every classical entailment is a Fuzzy�L entailment.

The classical tautology P ∨ ¬P isn’t a Fuzzy�L tautology, and the classical contradic-

tion P ∧ ¬P isn’t a FuzzyL contradiction. The classically valid argument

¬ (P ↔ Q)

(P ↔ R) ∨ (Q ↔ R)

fails to be valid in Fuzzy�L. When P has the value 1, Q has the value 0, and R has the

value .5, the premise has the value 1 but the conclusion has the value .5.

Because bold conjunction and disjunction are also normal connectives,

Results 11.1 and 11.2 hold as well when the bold connectives are substituted for

the classical connectives. Moreover, results 11.3 and 11.4 also hold when we substi-

tute bold connectives for the classical ones. Both P → (P & P) and (P ∇ P) → P fail to

be Fuzzy�L tautologies although P → (P ∧ P) and (P ∨ P) → P are classical tautologies.

When P has the value .5, for example, so do both P → (P & P) and (P ∇ P) → P. The

argument

P ∇P

P

is not valid in Fuzzy�L—when P has the value .5, the premise of the argument has the

value 1 while the conclusion has the value .5—but the argument

P ∨ P

P

is classically valid.

Because every truth-value assignment for �L3 is also a truth-value assignment

for Fuzzy�L, we have the following additional result:

Result 11.5: Every Fuzzy�L tautology is an �L3 tautology, and every Fuzzy�L contra-

diction is an �L3 contradiction.

That is, a formula that has the value 1 on every Fuzzy�L assignment must thereby

be true on every �L3 assignment, and similarly for formulas that have the value 0 on

every Fuzzy�L assignment.7 The converse, however, does not hold:

Result 11.6: Not all �L3 tautologies are Fuzzy�L tautologies, and not all �L3 contra-

dictions are FuzzyL contradictions.

7 Note that we cannot replace a bold connective of Fuzzy�L with a weak connective of �L3 and expect
the result to obtain. For example, P ∇ ¬P is a tautology of Fuzzy�L but P ∨ ¬P isn’t a tautology
of �L3. The result does hold whenever we use exactly the same connectives—weak or strong—in
both Fuzzy�L and �L3.
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An example �L3 tautology is the formula (P → ¬P) → P) → P (this can be expressed as

(P → ¬P) ∨ P using disjunction: either P implies ¬P, or P). When V(P) = .7 in Fuzzy�L,

for example, V((P → ¬P) → P) → P) = .7 as well (as the reader can easily verify); so

the formula isn’t a Fuzzy�L tautology. The difference in the formula’s behavior in the

two systems shouldn’t be surprising: the only case where (P → ¬P) isn’t true in �L3,

that is, where P is truer than ¬P, occurs when P has the value T, making the second

disjunct of (P → ¬P) ∨ P true. But in Fuzzy�L, obviously, P will be truer than ¬P

whenever P has a value greater than .5 – so the nontruth of (P → ¬P) doesn’t require

P to be true. Comparison of �L3 and Fuzzy�L entailment is left as an exercise.

We found that the set of tautologies of classical propositional logic as well as the

sets of tautologies in each of our three-valued propositional systems are all decid-

able, because in each case we can construct a truth-table to decide the status of

a formula. We can’t generalize this decision method to fuzzy propositional logics

because it is impossible to produce a truth-table for all fuzzy truth-value assign-

ments. Consider the simple case of the negated atomic formula ¬P: a truth-table

for ¬P in a fuzzy system would have to list the infinitely many values from the unit

interval that can be assigned to P ! So the question arises; Are there other decision

procedures for the sets of tautologies of fuzzy propositional systems? The answer,

interestingly, is yes for Fuzzy�L (and for each of the systems presented in this chap-

ter)—and that means that the set of theorems of the basic axiomatic system for

Fuzzy�L will also be decidable.

Several decision procedures for Fuzzy�L tautologousness are known; we’ll

describe a procedure from Aguzzoli and Ciabattoni (2000).8 First, we define n-valued

�Lukasiewicz propositional logics for each integer n ≥ 3: �Ln is the propositional logic

whose truth-values are the n members of the set{0, 1 / (n − 1), . . ., (n − 2) / (n − 1), 1}
and whose truth-conditions are the clauses 1–7 for �L3 (stated at the beginning of

Section 11.2). Note that when n = 3 the truth-value set is the one we used for �L3 in

Chapter 9: {0, 1/2, 1}.

Second, we define #O(P) to be the number of occurrences of atomic formulas

in P. Thus, #O(B) and #O(¬B) are both 1, while both #O(B ∇ C) and #O(B ∇ B) are 2.

Aguzzoli and Ciabattoni proved that a formula P containing only negation and bold

disjunction as connectives is a tautology of Fuzzy�L if and only if P is a tautology of �Ln

where n = 2#O(P) + 1. Thus, for example, the formula B ∇ ¬B is a tautology of Fuzzy�L

if and only if it is a tautology of �L5, while the formula ¬B ∨ (B ∇¬C) is a tautology of

Fuzzy�L if and only if it is a tautology of �L9.

Now, the set of tautologies in any finite-valued �Lukasiewicz propositional logic

is decidable by using truth-tables. Moreover, every Fuzzy�L formula can be mechani-

cally converted to an equivalent Fuzzy�L formula containing only negation and bold

disjunction (proof is left as an exercise), so we can decide whether a formula P of

8 Actually, Aguzzoli and Ciabattoni only prove the if part; the only if part was established in
Ackermann (1967, pp. 60–63). Another decision procedure for Fuzzy�L is presented in Gottwald
(2001, Section 9.1.4).
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Fuzzy�L is a tautology by converting it to an equivalent formula Q containing only

negation and bold disjunction and then testing Q for tautologousness in �Ln, where

n = 2#O(Q) + 1.

11.4 N-Tautologies, Degree-Entailment, and N-Degree-Entailment

We could introduce fuzzy counterparts to our three-valued concepts of quasi-

tautology, quasi-contradiction, and quasi-entailment by designating all values that

are greater than or equal to .5, that is, all values in [0.5 . . . 1], and anti-designating

all values that are less than or equal to .5, that is, all values in [0 . . . 0.5]. Chapter 5’s

results comparing these quasi-concepts in L3 with classical logic also hold for

Fuzzy�L—for example, every Fuzzy�L quasi-tautology is a classical tautology, but not

vice versa (and the results also hold when we use the Fuzzy�L bold connectives in

place of the classical ones). However, we will not explore this generalization of the

quasi-concepts since it is the custom—and it is also quite illuminating—to intro-

duce a different set of semantic concepts reflecting the greater range of truth-values

in fuzzy logical systems.

First we need some definitions. Relative to any set R of real numbers in [0. .1],

we define the greatest lower bound of R as follows: a real number n in [0. .1] is the

greatest lower bound of R if and only if

a. n is less than or equal to each member of R, and

b. there is no real number m in [0. .1] such that m is also less than or equal to each

member of R but m is greater than n.

We use the expression glb(R) to denote the greatest lower bound of R.9 Condition

(a) specifies that n is a lower bound for R, and (b) specifies that n is the greatest

of the lower bounds. Every set R of real numbers in [0. .1] is guaranteed to have a

greatest lower bound (see, for example, Stoll [1961], Chapter 3.6). If a set R has a

minimum member, then that minimum is glb(R). For example, glb([0. .1]) is 0, and

glb({.2, .3, .8}) is .2. But not every set of real numbers has a minimum member, so

we need the more general notion of greatest lower bound. For example, consider

the set consisting of 1, .5, .25, .125, .0625, and each subsequent real number in this

series—each real that is the result of multiplying the previous one by .5. There is

no smallest member in this series; for each member, you can get a smaller one by

multiplying it by .5. However, there is a greatest lower bound, in this case 0. It is obvi-

ously a lower bound. It is the greatest such because for any real number m greater

than 0, there is a member of the preceding series that is even smaller than m.

We can now define the concept of an n-tautology, where n is any real number in

the unit interval: a formula is an n-tautology in Fuzzy�L if (and only if) n is the greatest

lower bound of the set of truth-values that the formula can have. We must define this

9 The greatest lower bound of R is also called the infimum of R, or inf(R) for short.
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concept in terms of the greatest lower bound of a formula’s possible truth-values,

rather than the minimum such truth-value, because not all sets of fuzzy truth-values

have minimum members. Tautologies per se as we have defined them are then 1-

tautologies. By our definition, we can also have 0-tautologies, perhaps somewhat

oddly called; these are formulas that can only have the value 0 (or values arbitrarily

close to 0).10

The formula P ∨ ¬P is a .5-tautology of Fuzzy�L. We claimed earlier that this

formula has the value .5 when P has the value .5, and that it has no lower value.

This is because V(P ∨ ¬P) = max (V(P), 1 – V(P)). If V(P) = .5, then max (V(P),

1 – V(P)) = .5. If V(P) �= .5, then either V(P) or 1 – V(P) is greater than .5, so max

(V(P), 1 – V(P)) > .5. In fact, we can use normal forms to prove that every classical

tautology involving only the connectives ¬, ∧, and ∨ is at least a .5-tautology in

Fuzzy�L (using the weak connectives for conjunction and disjunction).11

In our proof we will also use the concept of an n-contradiction, for which we

need to define the concept of a least upper bound: a number n in [0. .1] is the least

upper bound of a set R of real numbers in [0. .1] (denoted as lub(R))12 if and only if

(a) n is greater than or equal to each member of R (thus n is an upper bound), and

(b) there is no m in [0. .1] such than m is also greater than or equal to each member

of R but m is less than n (n is the least upper bound). We define a formula of Fuzzy�L

to be an n-contradiction if n is the least upper bound of the set of truth-values that

the formula can have.

The following normal form equivalences hold in Fuzzy�L:

¬(P ∧ Q) is equivalent to ¬P ∨ ¬Q (DeMorgan’s Law)

¬(P ∨ Q) is equivalent to ¬P ∧ ¬Q (DeMorgan’s Law)

P is equivalent to ¬¬P (Double Negation)

(P ∨ Q) ∧ R is equivalent to (P ∧ R) ∨ (Q ∧ R) (Distribution)

P ∧ (Q ∨ R) is equivalent to (P ∧ Q) ∨ (P ∧ R) (Distribution)

(P ∧ Q) ∨ R is equivalent to (P ∨ R) ∧ (Q ∨ R) (Distribution)

P ∨ (Q ∧ R) is equivalent to (P ∨ Q) ∧ (P ∨ R) (Distribution)

(The reader will be asked to verify these in an exercise.) Given these equivalences, it

follows that every Fuzzy�L formula containing only negation, weak conjunction, and

weak disjunction is equivalent to a formula in conjunctive normal form and to one

in disjunctive normal form, where the normal forms are defined as before using the

weak connectives:

A literal is a phrase.

If P and Q are phrases, so is (P ∧ Q).

Every phrase is in disjunctive normal form.

10 Novák, Perfilieva, and Močkoř (1999) also acknowledge this oddity, commenting that it is a con-
sequence of the fuzzy “principle of equal importance of [all] truth-values” (p. 102).

11 This was first proved by Lee and Chang (1971). In particular, Lee and Chang are responsible for
Results 11.7–11.11.

12 The least upper bound of a set is also called the supremum of the set, or sup for short.
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If P and Q are in disjunctive normal form, so is (P ∨ Q).

A literal is a clause.

If P and Q are clauses, so is (P ∨ Q).

Every clause is in conjunctive normal form.

If P and Q are in conjunctive normal form, so is (P ∧ Q).

We now prove

Result 11.7: A clause of Fuzzy�L is a .5-tautology if and only if it contains a com-

plementary pair of literals.

Proof: If a clause C is a .5-tautology, then it must contain a complementary pair

of literals, for if it didn’t then every literal in C could be assigned a value less

than .5 since the literals would have independent truth-conditions, and so C

itself would have a value less than .5. Conversely, if C contains a complementary

pair of literals then on any truth-value assignment at least one of the literals in

the pair will have the value .5 or greater, by the truth-condition for negations.

Thus the disjunction C itself will have at least the value .5. Moreover, if all of

the literals in C have the value .5 on an assignment, then so will C; so .5 is the

greatest lower bound of the values that C can have.

Result 11.8: A phrase of Fuzzy�L is a .5-contradiction if and only if it contains a

complementary pair of literals.

Proof: Left as an exercise.

As a consequence of these two results we have:

Result 11.9: A formula P of Fuzzy�L that is in conjunctive normal form is a .5-

tautology if and only if each clause in P contains a complementary pair of

literals.

Proof: The value of a (weak) conjunction in Fuzzy�L is the minimum of the values

of the conjuncts, so the greatest lower bound of the values the conjunction can

have is the greatest lower bound of the values of its conjuncts. Thus P is a .5-

tautology if and only if all of the conjuncts (clauses) are .5-tautologies (a clause

cannot be greater than a .5-tautology because it will have the value .5 whenever

all of its literals do), and by Result 11.7 all of these clauses will be .5-tautologies

if and only if each of them contains a complementary pair of literals.

Result 11.10: A formula P of Fuzzy�L that is in disjunctive normal form is a .5-

contradiction if and only if each phrase in P contains a complementary pair of

literals.

Proof: Left as an exercise.

In Chapter 2 we proved analogues of Results 11.9 and 11.10 for classical propo-

sitional logic, except that in the classical case the results state that P is, respectively,
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a tautology or a contradiction. Because every formula in classical logic is equiva-

lent to one in either conjunctive or disjunctive normal form, and every formula of

Fuzzy�L that contains only negation, weak conjunction, and/or weak disjunction is

equivalent to a formula in either conjunctive or disjunctive normal form, it follows

that

Result 11.11: A formula of Fuzzy�L that contains only negation, weak conjunc-

tion, and weak disjunction as connectives is a .5-tautology if and only if it is a

classical tautology, and is a .5-contradiction if and only if it is a classical con-

tradiction.

Given Result 5.15 of Chapter 5, it also follows that

Result 11.12: A formula of Fuzzy�L that contains only negation, weak conjunc-

tion, and weak disjunction as connectives is a .5-tautology if and only if it is

a quasi-tautology in L3 and is a .5-contradiction if and only if it is a quasi-

contradiction in L3.

Classical tautologies that contain the conditional or the biconditional can fail to

be at least .5-tautologies in Fuzzy�L. One example is the formula ¬(P ∧ (P → ¬P)).13

The value of the formula is 1 – min (V(P), 2 – (2 ·V(P))), and this is (for example) .4

when V(P) is .6 or .7. It is left to the reader to prove that this formula is specifically

a 1/3-tautology. The classically tautologous formulas ¬(A → ¬A) ∨ ¬(¬A → A) and

¬(A ↔ ¬A), formulas that can have the value F in �L3 as we showed in Chapter 5,

have the value 0 in Fuzzy�L when V(A) = .5. So we have

Result 11.13: Not every formula that is a tautology in classical logic is at least

a .5-tautology in Fuzzy�L; indeed some classical tautologies are 0-tautologies in

Fuzzy�L.

Analogous counterexamples can be found when we substitute the bold connectives

for classical conjunction or disjunction; the reader will be asked to explore these in

an exercise.

We revise the three-valued definition of degree-entailment so that it applies now

to Fuzzy�L: We will say that a set of formulas � degree-entails a formula P if on every

fuzzy truth-value assignment the value of P is greater than or equal to the greatest

lower bound of the values of members of � on that assignment. (In the case where �

is a finite set, this can be restated as: on every fuzzy truth-value assignment, P is at

least as true as the least true member of �—because a finite set has a finite number

of values on a given assignment, and hence there is a minimum member of that set

of values.) An argument is degree-valid in Fuzzy�L if the set of its premises degree-

entails its conclusion. Obviously, every argument that is degree-valid in Fuzzy�L is

13 This example is from Kenton F. Machina (1976). Machina attributes the example to Lawrence
Eggan.
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also valid simpliciter in FuzzyL; but the converse does not hold. For example, the

argument

P

¬(P → ¬P)

is valid simpliciter in Fuzzy�L (and therefore also in classical logic), but it is not

degree-valid in Fuzzy�L since the conclusion has the value 0 when the single premise

has the value .5. More strikingly, the argument

P

P → Q

Q

also fails degree-validity (although it is valid simpliciter). If V(P) = .5 and V(Q) = .4,

for example, then V(P → Q) = .9 and so the least value of the premises is .5 but the

conclusion has the value .4.

On the other hand, of course, some valid arguments in Fuzzy�L are also degree-

valid, for example, the argument

P

P ∨ Q

This is because the value of P ∨ Q is the maximum of the values of P and Q and so

cannot be less than the value of P. Here then are the relevant results:

Result 11.14: Every Fuzzy�L degree-entailment is a classical entailment.

Result 11.15: Not every classical entailment is a Fuzzy�L degree-entailment.

Degree-validity plays an important role in dealing with arguments with vague

premises that may be less than completely true. In such a case (as with the Sorites,

which we will discuss in Chapter 14), we may well be interested in whether the

conclusion is at least as true as the least true premise.

The concept of degree-validity captures whether the conclusion of an argument

preserves the smallest degree of truth of its premises. We can go even further and

ask, If an argument such as

P

P → Q

Q

is not degree-valid, then to what extent does it approximate degree-validity? We

shall measure this as a function of how much truth can be lost going from the

premises to the conclusion. When the difference between the greatest lower bound

of the truth-values of members of a set of formulas � on a fuzzy truth-value assign-

ment V and the truth-value of a formula P on that assignment is greater than 0,

we will call this difference the downward distance between � and P on V. If the
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difference is less than or equal to 0, we will say that the downward distance between

� and P on V is 0. For example, the downward distance between the set of formulas

{P, P → Q} and the formula Q on a fuzzy assignment V such that V(P) = .9 and

V(Q) = .2 is .3 − .2 or .1, since the greatest lower bound of values of formulas in

the set is .3, the value of P → Q. The maximum downward distance between �

and P is the least upper bound of the downward distances between � and P on

any truth-value assignment. Finally, we will say that a set of formulas � n-degree-

entails P if 1 – n is the maximum downward distance between � and P, and that an

argument is n-degree-valid if the set of its premises n-degree-entails its conclusion.

So, for example, if the maximum downward distance between � and P is .3, then

� .7-degree-entails P, but if the maximum downward distance is .7, then � only

.3-degree-entails P. We note that 1-degree-validity and 1-degree-entailment coin-

cide with degree-validity and degree-entailment simpliciter, since by definition the

former cases have a maximum downward distance of 0.

To determine the n-degree-validity of the argument

P

P → Q

Q

in Fuzzy�L, we must find the maximum downward distance between the set of for-

mulas {P, P → Q} and the formula Q. We first note that when the least truth-value

of one of the formulas P and P → Q is 1—that is, when both formulas are true, the

downward distance to the value of Q is 0 since Q must have the value 1 in this case.

More generally, the downward distance must be 0 whenever V(P) ≤ V(Q), trivially.

What is the downward distance when V(P) > V(Q)? Well, in this case V(P → Q) is

1 – V(P) + V(Q), so V(Q) = V(P → Q) – 1 + V(P). Consequently, when V(P) > V(Q) the

gap between the value of the least true of the formulas {P, P → Q} and that of Q is

min (V(P), V(P → Q)) – (V(P → Q) + V(P) – 1) or min (1 – V(P), 1 – V(P → Q)). We

now consider three cases:

a. If V(P) = .5, then 1 – V(P) = .5, V(P → Q) ≥ 5, and 1 – V(P → Q)) ≤ .5. In this case,

then, min (1 – V(P), 1 – V(P → Q)) may be as great as .5 (as will happen when

V(Q) = 0).

b. If V(P) > .5 then 1 – V(P) < .5, and so min (1 – V(P), 1 – V(P → Q)) < .5.

c. If V(P) < .5 then V(P → Q) > .5, so 1 – V(P → Q) < .5 and min (1 – V(P), 1 –

V(P → Q)) < .5.

Thus the greatest downward distance when V(P) > V(Q) is .5. It follows that the

maximum downward distance between the set of formulas {P, P → Q} and the

formula Q in any case is .5 and that the argument

P

P → Q

Q

is therefore (1 − .5)-degree-valid, or .5-degree-valid.
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Interestingly, we have

Result 11.16: Every n-degree-entailment in Fuzzy�L with n > 0 is also a classical

entailment (whether we use the weak or the bold connectives as the counter-

parts to the classical ones).

Proof: If a set � n-degree-entails a formula P with n > 0 then by definition the

downward distance between the (greater lower bound of) values of members

of � and P on any fuzzy assignment V is less than 1. Because Fuzzy�L is normal,

it follows that any classical valuation that makes all of the members of � true

must make P true as well—because if P were false the downward distance in

this case would not be less than 1.

On the other hand, we have

Result 11.17: Some classical entailments are only n-degree-entailments in

Fuzzy�L for very small values of n, including 0.

Proof: An example of a classically valid argument that is 0-degree-valid in

Fuzzy�L is

B

¬ (A → ¬A) ∨ ¬(¬A → A)

The argument is classically valid because the conclusion is a classical tautology.

However, as we saw earlier, the conclusion will have the value in 0 in Fuzzy�L when

V(A) = .5. Since V(B) can be 1 when V(A) = .5, the maximum downward movement

from the truth-value of the single premise in Fuzzy�L to the truth-value of the con-

clusion is 1 and the argument is thus 0-degree-valid.

Another important (for our purposes) example illustrating Result 11.17 is the

classically valid argument

A

A → B

B → C

C → D

D → E

E → F

F → G

G → H

H → I

I → J

J

This argument is .1-degree-valid in Fuzzy�L. When V(A) = .9, V(B) = .8, V(C) = .7, . . .,

V(I) = .1 and V(J) = 0, all of the premises have value .9 but the conclusion has the

value 0. So this argument is at most .1-degree-valid. It is left as an exercise to prove

that it is exactly .1-degree-valid. If we add another conditional premise J → K and
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let K be the conclusion of the new argument, we will have an argument with an

even smaller n-degree-validity. Assigning 10/11 to A, 9/11 to B, 8/11 to C, . . ., 1/11 to J,

and 0 to K, all of the conditional premises will have the value 10/11, as will A, and

so the downward distance from the premises to the conclusion in this case is 10/11

giving the new argument at most 1/11-degree-validity.

More generally, if we increase the number of atomic formulas to m, add corre-

sponding conditional formulas, and set the consequent of the last conditional as the

argument’s conclusion, the resulting argument will be at most 1/m-degree-valid.

We can assign (m − 1)/m to A, (m − 2)/m to B, (m − 3)/m to C, . . . , and 0 to the con-

clusion in which case the conditional premises will all have the value (m − 1)/m. So

the downward distance to the conclusion will also be (m − 1)/m, making the argu-

ment at most 1/m-degree-valid. There is no upper limit on the number of premises

an argument can have, so as we add more atomic formulas the n-degree-validity

of longer arguments of this form will approach (but never reach) 0. Yet every such

argument is classically valid. The astute reader will have noticed the affinity between

this pattern of argument and the Sorites arguments—and hence may surmise that

when we turn to the first-order version of Fuzzy�L, we will find that Sorites arguments

have very low n-degree-validity.

11.5 Fuzzy Consequence

It is customary in fuzzy logic to analyze arguments semantically in yet another

way, using the concept of fuzzy consequence. First, some preliminaries: A fuzzy

truth-value assignment defines a fuzzy set of the formulas of Fuzzy�L, where each

formula’s degree of membership in the set is its degree of truth on that truth-value

assignment. Let us call every fuzzy truth-value assignment that makes each formula

in a fuzzy set � at least as true as its degree of membership in � a consonant truth-

value assignment for the set �. So, for example, for the fuzzy set � that contains

the formula A to degree 1, the formula A ∧ B to degree .3, and all other formulas to

degree 0, the consonant truth-value assignments include all (and only) truth-value

assignments that assign 1 to A, any value ≥ .3 to B, and any combination of values

to the other atomic formulas.14

The fuzzy consequence of a fuzzy set of formulas � is defined to be another

fuzzy set, the fuzzy set in which the degree of membership for a formula P is the

greatest lower bound of the truth-values that P can have on any consonant truth-

value assignment for �. We may summarize this loosely by saying that a formula P

is a member to degree n in the fuzzy consequence of a fuzzy set of formulas � if the

14 Note that some fuzzy sets have no consonant truth-value assignments. For example, any fuzzy
set in which the Fuzzy�L formula ¬(P → P) has a degree of membership greater than 0 does
not have any consonant truth-value assignments since there is no fuzzy truth-value assignment
that will give this formula a value greater than 0. Similarly, there are no consonant truth-value
assignments for any fuzzy set that contains P with a degree of .5 and ¬P with a degree of .6.
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value of P is guaranteed to be at least n given the truth-degrees of the members of

�. We’ll use FC(�) to denote the fuzzy consequence of �.

As an example, consider the fuzzy set � of formulas in which P is a member to

degree 1, P → Q is a member to degree .9, and all other formulas of the language

are members to degree 0. The consonant truth-value assignments for � are those

fuzzy assignments that assign P the value 1 and that assign Q a value between .9

and 1 inclusive. FC(�) is the fuzzy set that assigns to each formula of Fuzzy�L the

greatest lower bound of its truth-values on the consonant truth-value assignments

for �. A formula R that does not contain P or Q will be a member of FC(�) to degree

n if it is an n-tautology. This is because the consonant truth-value assignments for

� are free to assign any combination of values to atomic formulas other than P and

Q, and so they will between them assign all the possible values that R can have on

any truth-value assignment. So, for example, the formula S is a member of FC(�) to

degree 0, and S ∨ ¬S is a member to degree .5. P and P → Q are members of FC(�) to

the degree that they are members of �, namely, 1 and .9. Q is a member of FC(�) to

degree .9 because it has at least that value on any consonant truth-value assignment

for �. P ∧ Q is also a member of FC(�) to degree .9, while P ∧ ¬Q is a member to

degree 0. The latter is because some consonant truth-value assignments for�assign

the value 1 to Q; these assignments give ¬Q (and hence P ∧ ¬Q) the value 0.

A special case of fuzzy consequence occurs when the fuzzy set � has no conso-

nant truth-value assignments. In this case FC(�) is the fuzzy set that contains every

formula to degree 1. This is because the set of values assigned to any formula by the

consonant truth-value assignments is the empty set Ø, and 1 is the greatest lower

bound (in the unit interval) of all the values in the empty set: it is trivially true that

every member of Ø is at least as true as 1, since there are no such members.

Another, more interesting, special case of fuzzy consequence arises when a

fuzzy set � of formulas of Fuzzy�L is crisp, that is, when every formula of Fuzzy�L is a

member of � to either degree 1 or degree 0. The fuzzy consequence of a crisp set is a

fuzzy set in which the formulas that are entailed simpliciter in Fuzzy�L by the (degree

1) members of � have the value 1, and all other formulas have a degree less than 1.

So we may define entailment simpliciter in Fuzzy�L in terms of fuzzy consequence in

Fuzzy�L: a set of formulas � entails the formula P in Fuzzy�L if P is a member to degree

1 of the fuzzy consequence of the crisp set in which the formulas of � are members

to degree 1 and all other formulas are members to degree 0. More generally, degree-

entailment (of which entailment simpliciter is a special case) is definable in terms

of fuzzy consequence: a set of formulas � degree-entails the formula P if for every n

in [0. .1], P is a member to at least degree n of the fuzzy consequence of each fuzzy

set in which the greatest lower bound of the values of members of � is n and all

other formulas of Fuzzy�L have the value 0. N-degree-entailment is also definable in

terms of fuzzy consequence—this is left as an exercise for the reader.

Some theoreticians feature the concept of fuzzy consequence as the centerpiece

of fuzzy logic. But others, as we noted in footnote 4 to Section 11.1, merely require an

infinite number of truth-values. Our graded axiomatic systems for fuzzy logic will
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capture the concept of fuzzy consequence, although we will also have ungraded

axiomatic systems that simply capture the concept of validity simpliciter. In this

book we take an inclusive view of what fuzzy logic is, since in our investigations

of vagueness it is illuminating to study not only fuzzy consequence, but all of the

infinite-valued concepts that we have introduced in this section.

11.6 Fuzzy Generalizations of KS
3, BI

3, and BE
3; the Expressive

Power of Fuzzy�L

In Chapter 5 we saw that the connectives of KS
3 are definable in �L3. The definitions

of the connectives of KS
3 for numerical values generalize to an infinite number

of truth-values, and all of these generalizations are definable in Fuzzy�L. FuzzyKS

negation, conjunction, and disjunction coincide with the Fuzzy�L (weak) versions of

those connectives because the numerical definitions of the connectives coincide in

the three-valued case. The clauses for the FuzzyK conditional and biconditional are

V(P →K Q) = max (1−V(P), V(Q))

V(P ↔K Q) = min (max (1−V(P), V(Q)), max (1−V(Q), V(P)))

and these are the truth-conditions we get when we define these connectives in

Fuzzy�L just as we did in the three-valued case:

P →K Q =def ¬P ∨ Q

P ↔K Q =def ¬(P ∧ ¬Q) ∧ ¬(¬P ∧ Q)15

Unlike Fuzzy�L conditionals, not all conditionals of the form P→K P are 1-tautologies;

their value can drop as low as .5 when P has the value .5 (but no lower; every

conditional of the form P →K P is at least a .5-tautology).

Nicholas Rescher (1969) proposed an infinite generalization of BI
3 in which the

truth-clause for negation is identical to �Lukasiewicz’s infinite-valued negation and

the truth-clauses for the binary connectives are based on the rule that a formula

will have the value .5 if it contains any components with truth-values other than

the classical values 1 and 0. So, for example, the clause for conjunction is

V(P ∧BI Q) = 1/2 if 0 < V(P) < 1 or 0 < V(Q) < 1

min (V(P), V(Q)) otherwise

None of the binary connectives for the resulting system, FuzzyBI, are definable in

Fuzzy�L. This is because the truth-functions for these FuzzyBI connectives are not

continuous.

15 In these definitions as well as everywhere else in this and subsequent chapters we are using the
convention, introduced in Chapter 6, that connectives without subscripts are the �Lukasiewicz
connectives. In this chapter, of course, they are the �Lukasiewicz connectives for fuzzy logic.
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A continuous unary function f (that is, a continuous function of one argument)

over the unit interval meets the intuitively stated criterion that as m approaches n,

for any value n in the unit interval, f(m) approaches f(n). A precise definition tells

us that small changes in m result in small changes in f(m): a unary function f over

the unit interval is continuous if for any ε> 0 there is a δ > 0 (with ε and δ members

of the unit interval) such that whenever }m1 – m2}< δ, }f(m1) – f(m2)}< ε.

The negation function defined as f(m) = 1 – m is continuous: as m approaches

(gets closer to) 1, for example, f(m) approaches 0, and the same is true for any

value n that m may be approaching. But the binary connectives of FuzzyBI are

not continuous. A binary function f over the unit interval is continuous if for any

ε > 0 there is a δ > 0 (with ε and δ members of the unit interval) such that when-

ever }m1 – m3}< δ and }m2 – m4}< δ, }f(m1, m2) – f(m3, m4)}< ε. Intuitively, the

binary FuzzyBI connectives fail to be continuous because as the truth-values of

their arguments approach 1 from anywhere above 0, the functions’ values stay fixed

at .5 and then noncontinuously jump to either 1 or 0 once the arguments have

both reached 1. For example, if the truth-values of P and Q are .1 and .2, then

V(P ∧BI Q) = .5, and if we increase the values of P and Q the value of the conjunction

remains at .5 until the values of P and Q both reach 1, in which case the value of the

conjunction noncontinuously jumps to 1. More technically in this case, consider

the value .5 for ε. Continuity would require that there is some δ > 0 such that when-

ever the values of P and of Q change by less than δ, the value of P ∧BI Q changes by

less than .5. But there is a jump in the value of P ∧BI Q from .5 to 1 when we take any

values of P and Q that are arbitrarily close to 1 and change them to 1, so there can

be no such value.

In 1951 Robert McNaughton proved that a function must at least be continuous

to be definable in Fuzzy�L, so it follows that the binary FuzzyBI functions are therefore

not definable in Fuzzy�L. In fact, McNaughton precisely characterized the functions

definable in Fuzzy�L:

Result 11.18 (McNaughton’s Theorem). For any n ≥ 1, the n-ary truth-functions

definable in Fuzzy�L are exactly the continuous n-ary functions f for which “there

are a finite number of distinct polynomials λ1, . . ., λµ, each λj = bj + m1jx1 +· · ·+
mnjxn, where all the b’s and m’s are integers, such that for every (x1, . . ., xn),

0 ≤ xi ≤ 1, 1 ≤ i ≤ n, there is a j, 1 ≤ j ≤ µ, such that f(x1, . . ., xn) = λj(x1, . . ., xn).”

(McNaughton [1951], p. 3)

See McNaughton’s article for a discussion of this result along his proof, which is

beyond the scope of this text.

In the external system BE
3 the value .5 is treated in the same way as 0; that

suggests that Bochvar’s external connectives should treat all values other than 1

and 0 the same way 0 is treated. So, for example, (external) negation in FuzzyBE

maps 1 to 0 and all other values to 1. This function, like the infinite-valued binary

functions for the internal connectives, is noncontinuous: as m approaches 1 the

negation function remains fixed at 1, but at 1 the function noncontinuously drops
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to 0. The functions for the other external connectives are similarly noncontinuous.

Thus none of the FuzzyBE connectives are definable in Fuzzy�L.

But the infinite-valued generalizations of the Bochvar systems are generally

not very interesting for our purposes (except for the Bochvarian external assertion

and/or negation, which we’ll consider in Section 11.10). They are not very interesting

because the various “degrees” of vagueness end up collapsing into one degree, .5,

in the internal system as soon as we introduce a binary connective, and they end

up disappearing in favor of falsehood for all compound formulas in the external

system. To the extent that the infinitely many degrees of fuzzy logic represent useful

distinctions for a logic for vagueness, Bochvarian fuzzy systems fall short of the

mark. Indeed, if the concept of n-degree-validity is one of the distinctive features of

a fuzzy system then the Bochvarian systems don’t count as very fuzzy at all, since

this concept is indistinguishable from the concepts of validity, quasi-validity, and/or

degree-validity that we studied in Chapter 5 if complex formulas cannot have values

other than 1, .5, and 0.

In light of noncontinuous truth-functions, Fuzzy�L is not functionally complete

even though it can represent, for example, all of the Kleene strong truth-functions.

Nor would we have expected Fuzzy�L to be functionally complete, for at least two

other reasons. First, Fuzzy�L is a normal system, so nonnormal connectives are not

definable. Second, there are uncountably many functions with a finite number of

arguments16 that are definable over the unit interval [0. .1]. A set has uncountably

many members if it cannot be put in 1–1 correspondence with the positive integers,

that is, if you cannot produce a list of the members of the set such that there is a

first member, a second member, and so on, so that each member of the set is the

nth item in the list for some integer n. There are uncountably many truth-values

in the unit interval (see Appendix), and for each truth-value we can define a unary

function that maps that truth-value to 1 and all other truth-values to 0, already

giving us uncountably many unary functions.17 Yet the number of formulas in the

language Fuzzy�L is countable (see the Appendix). So Fuzzy�L can’t contain formulas

expressing each truth-function defined over the unit interval because there aren’t

enough formulas to go around.

11.7 T-Norms, T-Conorms, and Implication in Fuzzy Logic

In Chapter 5 we listed a set of conditions that define the concepts of t-norms and

t-conorms for three-valued logics. Both weak conjunction and bold conjunction

16 For functional completeness here, as in the classical and three-valued systems, we are only
interested in functions with a finite number of arguments because every formula is finitely long,
and obviously no finite formula can express a function with an infinite number of arguments.

17 There are uncountably many binary functions, and so on, as well, but the fact that the unary
truth-functions over the unit interval are uncountable suffices to show that the set of all truth-
functions over the unit interval is uncountable.
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in Fuzzy�L meet infinite-valued t-norm conditions, and both weak disjunction and

bold disjunction in Fuzzy�L meet infinite-valued t-conorm conditions. Indeed, the

t-norm and t-conorm conditions are often taken to be definitive of the concepts of

conjunction and disjunction generally in fuzzy logics; that is, any fuzzy conjunction

is required to be a t-norm and any fuzzy disjunction is required to be a t-conorm.

We restate the “norm” conditions in terms of operations on values in the unit

interval. A binary operation tn defined over [0. .1] is a t-norm if it satisfies the

following four conditions:

1. tn is associative: m tn (n tn p) = (m tn n) tn p for all m, n, p ∈ [0. .1]

2. tn is commutative: m tn n = n tn m for all m, n ∈ [0. .1]

3. tn is nondecreasing in both arguments: if m ≤ n then m tn p ≤ n tn p and

p tn m ≤ p tn n for all m, n, p ∈ [0. .1] (note that if tn is nondecreasing in one

argument it will also be nondecreasing in the other by virtue of commutativity)

4. 1 is the identity element for tn: 1 tn m = m tn 1 = m for all m ∈ [0. .1] (note that

if 1 tn m = m then m tn 1 must also be m by virtue of commutativity)

A binary operation tc defined over [0. .1] is a t-conorm if it satisfies the following

four conditions:

5. tc is associative: m tc (n tc p) = (m tc n) tc p for all m, n, p ∈ [0. .1]

6. tc is commutative: m tc n = n tc m for all m, n ∈ [0. .1]

7. tc is nondecreasing in both arguments: if m ≤ n then m tc p ≤ n tc p and

p tc m ≤ p tc n for all m, n, p ∈ [0. .1]

8. 0 is the identity element for tc: 0 tc m = m tn 0 = m for all m ∈ [0. .1]

Just as in the three-valued case, infinite-valued t-norms and t-conorms have the

following properties as a consequence of the previous ones:

9. m tn n = 0 if m = 0 or n = 0

10. m tc n = 1 if m = 1 or n = 1

As a refresher, the associativity of the operations tells us that the grouping in

an iterated conjunction or disjunction doesn’t affect the truth-conditions, while

commutativity tells us that the order of conjuncts in a conjunction and disjuncts

in a disjunction doesn’t matter. The requirement that these operations be nonde-

creasing in the arguments tells us that a conjunction can’t be made less true by

making one of its conjuncts more true, and similarly for disjunctions. The identity

element conditions tell us that the truth-value of a conjunction with a true conjunct

coincides with the truth-value of the other conjunct, and similarly for a disjunction

with a false disjunct. The last two conditions tell us the falsehood of one conjunct

is sufficient to make a conjunction false and the truth of one disjunct is sufficient

to make a disjunction true.

In addition to the weak and bold conjunction and disjunction operations in

Fuzzy�L, another well-studied t-norm and t-conorm over the unit interval are the
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algebraic product m • n and algebraic sum m + n – (m • n). Subtracting the product

in the algebraic sum ensures, among other things, that the value of the algebraic

sum for any m, n in the unit interval does not exceed 1 (for example, .7 + .8 exceeds

1, but .7 + .8 – (.7 • .8), which is .94, does not). It is left as an exercise to show

that the algebraic product meets conditions 1–4 and that the algebraic sum meets

conditions 5–8.

Each t-norm, t-conorm pair tn, tc that we have considered—weak conjunc-

tion and disjunction, bold conjunction and disjunction, and algebraic product and

algebraic sum—meets the following duality condition:

m tc n = 1− ((1 – m) tn (1 – n)), for all m, n ∈ [0. .1]

For example, for weak conjunction and weak disjunction operations min and max

we have

min (m, n) = 1 – max (1 – m, 1 – n)

When a t-norm and t-conorm are so related, we say that they are a dual t-norm,

t-conorm pair. Note that the operation 1 – m is Fuzzy�L’s negation operation—and so

the duality condition m tc n = 1− ((1 – m) tn (1 – n)) gives us one of the DeMorgan

Laws for both weak and bold connectives: P ∨ Q is equivalent to ¬(¬ P ∧ ¬Q)

in Fuzzy�L, and P ∇ Q is equivalent to ¬(¬P & ¬Q). Conjunction and disjunction

operations in the major fuzzy systems are dual t-norm, t-conorm pairs (although

they may not satisfy the DeMorgan Laws for those systems if the negation is defined

differently from Fuzzy�L).

In Fuzzy�L we have defined two dual t-norm, t-conorm pairs: the weak connec-

tives and the bold connectives. An interesting result that points to the desirability

of including two such pairs in Fuzzy�L is from George J. Klir and Bo Yuan (Klir and

Yuan (1995, pp. 87–88):

Result 11.19: A single dual t-norm, t-conorm pair of operations over the unit

interval cannot satisfy both the Law of Excluded Middle m tc (1 – m) = 1 and

the Distribution Law m tn (n tc p) = (m tn n) tc (m tn p) for all m, n, p in [1. .0].

Proof: If both laws hold then in particular,

1/2 tc (1 – 1/2) = 1 (Excluded Middle)

(i) 1/2 tc 1/2 = 1 (simplification)

and

1/2 tc 1/2 = 1− ((1 – 1/2) tn (1 – 1/2)) (duality condition)
1/2 tc 1/2 = 1− (1/2 tn 1/2) (simplification)
1/2 tn 1/2 = 1− (1/2 tc 1/2) (equivalent)

(ii) 1/2 tn 1/2 = 1 − 1 = 0 (from (i))
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Then from

1/2 tn (1/2 tc 1/2) = (1/2 tn 1/2) tc (1/2 tn 1/2) (Distribution)

we get

1/2 tn 1 = (1/2 tn 1/2) tc (1/2 tn 1/2) (from (i))
1/2 tn 1 = 0 tc 0 (from (ii))
1/2 = 0 tc 0 (tn identity)
1/2 = 0 (tc identity)

which is a clear contradiction.

We have already shown that the Law of Excluded Middle holds for Fuzzy�L’s bold

disjunction but not its weak disjunction; we leave it as an exercise to show that

Distribution holds for Fuzzy�L’s weak disjunction and conjunction but not its bold

disjunction and conjunction.

In addition to determining its dual t-conorm, a t-norm can also be used to

define the conditional operation for a fuzzy system. We call an operation ⇒ on

[0. .1] a residuation operation with respect to the t-norm tn (or, more simply, the

residuum for the t-norm) if it meets the adjointness condition:

m tn n ≤ p if and only if m ≤ n ⇒ p, for all m, n, p ∈ [0. .1]

The logical significance of adjointness is this. If we consider the residuation opera-

tion to be a conditional operation, then the inequality

n tn (n ⇒ p) ≤ p

represents the inference Modus Ponens in the sense that the value p should be at

least the value that results from conjoining the values n and n ⇒ p (that is, P is at

least as true as the conjunction P ∧ (P → Q)). Since every t-norm is commutative the

Modus Ponens inequality is equivalent to (n ⇒ p) tn n ≤ p. Moreover, because every

t-norm is nondecreasing in the first (as well as the second) argument, it follows

from this form of the Modus Ponens inequality that if m ≤ n ⇒ p then m tn n ≤ p,

which is one-half of the adjointness condition. But we want more than just the

earlier the Modus Ponens inequality above. We also want the value n ⇒ p to be the

greatest value q such that n tn q ≤ p (that is, we want to make n ⇒ p as true as it can

be while still satisfying the Modus Ponens inequality). Now, if n ⇒ p is the greatest

value q such that n tn q ≤ p then it follows from commutativity that n ⇒ p is the

greatest value q such that q tn n ≤ p. From the last it follows that if m tn n ≤ p, then

m must be less than or equal to n ⇒ p, and this is the other half of the adjointness

condition.
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Given the adjointness condition there is a unique residuum, which we will call

the adjunct residuum, for any t-norm. The adjunct residuation operations for the

t-norms we consider in this text may be defined thus:18

n ⇒ p =def max {m ∈ [0. .1]: m tn n ≤ p}

(i.e., n ⇒ p is the maximum value m such that m tn n ≤ p). Here are some other

properties of residuation operations:

Residium 1: Every residuum is normal; that is, when n and p are both 1 or 0,

the residuum of n and p coincides with the classical conditional operation on

n and p.

Proof: This is straightforward. For example, let n = p = 1. Then n ⇒ p = max

{m: m tn 1 ≤ 1}, which is 1 since 1 tn 1 ≤ 1. Now let n = 1 and p = 0. Then n ⇒
p = max {m: m tn 1 ≤ 0}, which is 0 since 1 is the identity for t-norms (any value

of m greater than 0 will have m tn 1, which is m, greater than 0). The other two

cases—n = 0 and p = 1, and m = 0 and p = 0—are left as an exercise.

Residium 2: For every residuation operation ⇒, n ⇒ p = 1 when n ≤ p.

Proof: Assume that n ≤ p. Then max {m: m tn n ≤ p}= 1 because 1 tn n = n for

any t-norm (1 is the identity element) and therefore 1 tn n ≤ p.

These additional results underscore the suitability of using the residuum defined

by a t-norm to define the conditional operation in a logical system.

That naturally raises the question, What are the residuation operations cor-

responding to �Lukasiewicz weak conjunction, �Lukasiewicz bold conjunction, and

algebraic product conjunction?

We start with the �Lukasiewicz bold conjunction t-norm ⊗�L. Because m ⊗�L n is

max (0, m + n – 1), the adjunct residuum for this t-norm is defined as

n ⇒⊗�L p =def max {m: max (0, m + n – 1) ≤ p}.

We consider two cases. If n ≤ p, then 1 is the maximum value that m can take

by property Residuum 1. If n > p, then the most that m can be and still satisfy

the condition max (0, m + n – 1) ≤ p is 1 – n + p. Because 1 – n + p > 1 if n ≤ p,

max {m: max (0, m + n – 1) ≤ p} is thus equivalent to min (1, 1− n + p) – which is the

definition of the conditional operation in Fuzzy�L. The role of bold conjunction in

this adjunct t-norm/residuum pair explains why bold conjunction is generally intro-

duced as a primitive, rather than defined, conjunction connective in Fuzzy�L. (This

is not to say it is impossible to define bold conjunction using the other operations—

it’s left as an exercise to show that bold conjunction can be defined using Fuzzy�L’s

negation and conditional.)

18 More generally, residuation is defined to produce the least upper bound of {m: m tn n ≤ p}. But
we use the maximum operation because it is well-defined with respect to the t-norms that we
consider in this text.
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The t-norm that defines weak conjunction in Fuzzy�L is the minimum operation.

In this case the adjunct residuation operation is defined as

n ⇒∧ p =def max {m: min (m,n) ≤ p}.

We consider two cases. If n ≤ p, then by property Residuum 1 the maximum value

that m can take is 1. If n > p, then m can be p but no larger. Thus the value of this

residuation operation is 1 if n ≤ p and is p if n > p. Note that this is not the Fuzzy�L

conditional; it’s the conditional of Gödel fuzzy logic, which will be introduced in

Section 11.8.

Finally, the algebraic product t-norm’s adjunct residuation is defined as:

n ⇒· p =def max {m: m · n ≤ p}.

Once again we consider two cases. If n ≤ p, then m can be as high as 1 by property

Residuum 1. If n > p, then the maximum value m can have is p/n (notice we are not

dividing by 0 in this case, given that n > p). So the truth-value for this residuation

operation is 1 if n ≤ p and is p/n if n > p. This is the conditional of product fuzzy

logic, which will be presented in Section 11.9.

The fuzzy conditional operation that generalizes the KS
3 conditional is called a

Q-implication in fuzzy logic, rather than an R-implication, which is what the three

residuation operations are. The R stands for residuum; the Q stands for quantum. Q-

implications are defined in terms of negation, disjunction, and conjunction thus:

m ⇒Q n =def neg m or (m and n). Using the �Lukasiewicz bold conjunction and

disjunction operations we arrive at the Kleene conditional operation (which we

already know is definable using negation and Kleene/�Lukasiewicz weak disjunction

or disjunction):

m ⇒ K n =def (1 – m) ⊕�L (m ⊗�L n)

For (1 – m) ⊕�L (m ⊗�L n) = min (1, (1 – m) + max (0, m + n – 1)) = min (1, max (1 –

m, n)) = max (1 – m, n).19

11.8 Gödel Fuzzy Propositional Logic

There are three major varieties of fuzzy logic in the literature: �Lukasiewicz fuzzy

logic, Gödel fuzzy logic, and product fuzzy logic. In this text we focus on �Lukasiewicz

fuzzy logic—the most widely studied of the three—for several reasons: along with

providing a satisfactory solution to the Sorites paradox and other issues arising from

vagueness, as we’ll see when we turn to fuzzy first-order logic, Fuzzy�L is the only

one of the three logics for which it is possible to construct Pavelka-style graded

19 Klir and Yuan (1995) contains a good introductory discussion of the varieties of fuzzy R- and
Q-implications.
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derivation systems. But the two other major systems carry some interest as well. We

begin with Gödel fuzzy logic,20 or FuzzyG.

The operations for the major connectives of FuzzyG are defined as follows:

1. V(¬GP) = 1 if V(P) = 0

0 otherwise

2. V(P &G Q) = min (V(P), V(Q))

3. V(P ∇G Q) = max (V(P), V(Q))

4. V(P →G Q) = 1 if V(P) ≤ V(Q)

V(Q) otherwise

5. V(P ↔G Q) = 1 if V(P) = V(Q)

min (V(P), V(Q)) otherwise.

FuzzyG bold conjunction and disjunction, &G and ∇G, are identical to �Lukasiewicz

weak conjunction and disjunction.21

The FuzzyG conditional operation is the residuum for FuzzyG’s bold conjunc-

tion, as discussed in Section 11.7. The biconditional P ↔G Q is defined to be equiv-

alent to (P →G Q) &G (Q →G P). The negation clause is new and unfamiliar. It’s a

general principle in fuzzy logic that the negation for a system should be definable

thus: ¬P =def P → 0, where 0 is a special formula that always has the value 0. Note

that because the implication in a fuzzy system is generally defined via a t-norm,

the negation is also fixed by the t-norm. Given clause 4 for the FuzzyG conditional,

the formula P →G 0 can only have the value 1 when P has the value 0, and in all other

cases P →G 0 has the value 0. There’s an affinity here with the external connectives

of Bochvar’s three-valued logic. Recall that BE
3 negation is definable as:

V(¬BEP) = 0 if V(P) = 1

1 otherwise.

To be sure, in Bochvar’s system, ¬BEP has the value 1 if P has the value 1/2, but in

FuzzyG ¬GP has the value 0 when P has the value .5. The affinity is that negating

a formula always results in one of the two values 1 or 0. We note that Gödel fuzzy

negation is normal, as are the other Gödel connectives.

It’s standard to define weak conjunction in fuzzy logic as

P ∧ Q =def P & (P → Q).

(We noted in Section 11.2 that Fuzzy�L weak conjunction P ∧ Q can be defined as

P & (¬P ∇ Q), and because P → Q is equivalent to ¬P ∇ Q in Fuzzy�L the standard

20 Gödel fuzzy logic is named for the logician Kurt Gödel, who introduced the major operations
used in FuzzyG as operations of finite-valued intuitionistic logics in Gödel (1932).

21 Why, you may wonder, are these the bold connectives in FuzzyG, given that they are weak in
Fuzzy�L? It’s because this t-norm, t-conorm pair is used to define the residuum operation giving
the FuzzyG conditional, and in the fuzzy literature the conjunction and disjunction that play this
role in a logical system are considered to be the bold connectives.
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definition would work there as well.) If we define FuzzyG weak conjunction in this

way:

P ∧G Q =def P &G (P →G Q)

it turns out that weak and bold conjunction are identical in FuzzyG—both give us

the minimum value of the conjuncts. Fuzzy weak disjunction is standardly defined

as

P ∨ Q =def ((P → Q) → Q) ∧ ((Q → P) → P),22

and using this definition FuzzyG weak disjunction is identical to FuzzyG bold dis-

junction. Given these identities, we have not included weak connectives in the

truth-condition clauses.

The conditional P →G P is a tautology of FuzzyG; it always has the value 1.

But some classical tautologies fail to be classical tautologies in FuzzyG when we

replace the classical conjunction and disjunction with Gödel bold conjunction and

disjunction. The Law of Excluded Middle formula A ∇G ¬G A can have any value

other than 0. When the value of A is either 1 or 0, A ∇G ¬G A has the value 1. When A

has any other value other than 1 or 0, the value of ¬G A is 0, and so the value of the

disjunction, which is the maximum of its disjuncts’ values, will be the value of A.

(Compare this with the Fuzzy�L bold Law of Excluded Middle, where the smallest

possible value is 1, and the Fuzzy�L weak Law of Excluded Middle, where the smallest

value is .5.) FuzzyG contains some tautologies that are not Fuzzy�L tautologies, for

instance, ¬GP ∨G ¬G¬GP. By the way that negation is defined in FuzzyG, one of the

two disjuncts will always be true (and the other false). In Fuzzy�L ¬P ∨ ¬¬P has

the same truth-conditions as P ∨ ¬P – its value can be as small as .5 (when P has

the value .5).

The inference Modus Ponens is valid in FuzzyG, but the argument

¬G¬GP

P

isn’t valid because the premise will have the value 1 whenever P has any value other

than 0; that is, it is possible for the premise to have the value 1 when the conclusion

doesn’t have this value. The argument is, however, valid when we replace the Gödel

negation with the classical connective, and it is also valid when Fuzzy�L negation is

substituted. It is thus a significant difference between these systems that the Law

of Double Negation fails in FuzzyG. Finally, because FuzzyG is a normal system, all

FuzzyG tautologies are classical tautologies and all valid arguments of FuzzyG are

classically valid.

22 This definition also works for Fuzzy�L. We don’t generally use negation and weak conjunction to
define weak disjunction in fuzzy systems, because negation is not always defined to be com-
plementation as it is in �Lukasiewicz logics and algebras. In FuzzyG, for example, if we define
P ∨G Q as ¬G(¬GP ∧G ¬GQ) then P ∨G QG can never have a value other than 1 or 0, and that is an
odd weak operation for a logic in which formulas can have any value in the unit interval.
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Like Fuzzy�L, FuzzyG has a decision procedure for tautologies based on truth-

tables for finite-valued logics, in this case finite-valued Gödel logics. We define n-

valued Gödel propositional logics for each integer n ≥ 3: Gn is the propositional logic

whose truth-values are the n members of the set{0, 1 / (n − 1), . . . , (n − 2) / (n − 1), 1}
and whose truth-conditions are the clauses 1–5 for FuzzyG. For any propositional

formula P of FuzzyG, let #A(P) be the number of distinct atomic formulas in P—here

we only count one occurrence of each atomic subformula. Thus, #A(B), #A(¬B), and

#A(B ⊕ B) are all 1, while #A(B ⊕ C) is 2. It turns out that P is a tautology of FuzzyG

if and only if P is a tautology of Gn, where n = #A(P) + 2.23 This gives us a decision

procedure for FuzzyG: to determine whether P is a tautology of FuzzyG just examine

the truth-table for P in the appropriate finite-valued Gödel system.

11.9 Product Fuzzy Propositional Logic

The truth-conditions for formulas formed with the major connectives of product

fuzzy logic,24 or FuzzyP, are

1. V(¬PP) = 1 if V(P) = 0

0 otherwise

2. V(P &P Q) = V(P) · V(Q)

3. V(P ∇P Q) = (V(P) + V(Q)) – (V(P) · V(Q))

4. V(P →P Q) = 1 if V(P) ≤ V(Q)

V(Q) / V(P) otherwise

5. V(P ↔P Q): left as an exercise

6. V(P ∧P Q) = min (V(P), V(Q))

7. V(P ∨P Q) = max (V(P), V(Q))

The negation here, defining ¬PP as P →P 0, is identical to FuzzyG’s negation, and

so the Law of Double Negation also fails for FuzzyP. We’ve already discussed (in

Section 11.7) the rationale behind the algebraic product and algebraic sum that are

used to define product bold conjunction and disjunction, and the way the associ-

ated residuum operation for the product conditional is derived. The reader will be

asked in the exercises to prove that the truth-conditions 6 and 7 for FuzzyP weak

conjunction and disjunction follow from the definitions

P ∧P Q =def P &P (P →P Q)

and

P ∨P Q =def ((P →P Q) →P Q) ∧P ((Q →P P) →P P).

23 See Hájek (1998b, p. 157), for a proof.
24 Goguen (1968–1969) developed product fuzzy logic and studied its application to Sorites para-

doxes. As we noted in Chapter 1, Goguen’s article was the beginning of formal fuzzy logic.
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The conditional P →P P is a tautology of FuzzyP. The Law of Excluded Middle

formula A ∇P ¬P A can have any value other than 0; indeed, it behaves exactly as

it does in FuzzyG. When the value of A is either 1 or 0, A ∇P ¬P A has the value 1.

When A has any other value other than 1 or 0, the value of the disjunction will be the

value of A since we are adding 0, the value of ¬PA, to that value and then subtracting

the product of 0 and that value, which is 0. Thus some classical tautologies are not

FuzzyP tautologies (replacing classical conjunction and disjunction with product

bold conjunction and disjunction—and since FuzzyP weak conjunction and dis-

junction are the same as the FuzzyG weak or bold connectives and the negations are

identical, the negative result also holds when FuzzyP weak connectives are substi-

tuted for the classical ones). As in FuzzyG, ¬PP ∨P ¬P¬PP is a tautology. The Modus

Ponens inference is valid in FuzzyP, but the argument

¬P¬PP

P

isn’t valid in FuzzyP. So not all classically valid arguments are valid in FuzzyP. Owing

to normality, however, all FuzzyP tautologies are classical tautologies and all argu-

ments that are valid in FuzzyP are classically valid.

Our examples so far make FuzzyG and FuzzyP look “logically” identical, but

they most certainly are not. The tautologies of the two systems don’t coincide—for

example, P →G (P &G P) is a tautology but P →P (P &P P) is not; and ¬P¬PP →P

(((Q &P P) →P (R &P P)) →P (Q →P R)) is a tautology but ¬G¬GP →G (((Q &G P) →G

(R &G P)) →G (Q →G R)) is not. Another very significant difference between FuzzyG

and FuzzyP is that the Modus Ponens inference is degree-valid in the former but not

the latter system. Proof of all three claims is left as an exercise.25

The set of tautologies of FuzzyP is decidable, although the procedure is more

complicated than those we presented for Fuzzy�L and FuzzyG. The interested reader

is referred to Baaz, Hájek, Kranı́ček, and Švejda (1998)—the proof is contained in

results leading to their Lemma 9.

11.10 Fuzzy External Assertion and Negation

In Section 11.6 we said we’d have more to say about fuzzy Bochvarian external

assertion and external negation, neither of which is definable in the three major

fuzzy systems. We are particularly interested in these operations because of Black’s

Problem of the Fringe, which we’ll examine again in Chapter 14: we want to be

able to say truly not P when P is vague, and also to say truly not not P in a sense

that is not equivalent to P. To be sure, neither ¬G¬GP nor ¬P¬PP is equivalent to P

(thus Gödel/product negation, like Bochvar’s external negation, is non-involutive,

where an involutive negation is defined to be one that satisfies the Double Negation

25 See Gottwald (2001) for further comparisons between Gödel and product fuzzy logics.
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equivalence), and both double negations (which are identical) are true when P has

any value other than 0, but Gödel/product negation is not fuzzy Bochvarian external

negation. Singly-negated P has the value 0 in the Gödel and product systems when

P has a value strictly between 1 and 0, for example.

The fuzzy versions of Bochvar’s external assertion and negation have the fol-

lowing truth-conditions:

V(�P) = 1 if V(P) = 1

0 otherwise

V(⊥P) = 1 if V(P) �= 1

0 otherwise

Here we have used the symbol ∆ for external assertion because this is the standard

fuzzy symbol, introduced by Matthias Baaz in (1996) (although Baaz did not present

the operation as a generalization of Bochvar’s three-valued external assertion as we

are doing here; he called it 1-projection and the fuzzy community has subsequently

called it the Baaz delta operation). We have used the symbol ⊥ for external nega-

tion to make it clearly distinguishable from the standard negations for our fuzzy

systems.

In Chapter 5 we read Bochvar’s external negation formula aP as: P is true. But

because we now have degrees of truth, we’ll follow Gottwald and Hájek (2005) and

read the fuzzy formula ∆P as P is absolutely true. Similarly, we’ll read the fuzzy

formula ⊥P as P is not absolutely true. Note that these two connectives are inter-

definable in Fuzzy�L using either ∆P =def ¬�L⊥P or ⊥P =def ¬�L∆P. Moreover, they

are interdefinable in the same way using FuzzyG/FuzzyP negation in place of ¬�L. So

we’ll focus on just one of the connectives, fuzzy external assertion.

We have the important result that

Result 11.20: Fuzzy external assertion is not definable in Fuzzy�L, FuzzyG, or

FuzzyP.

Proof: In Section 11.6 we explained that Bochvar’s external connectives aren’t

definable in Fuzzy�L because the external operations are not continuous.

However, both FuzzyG and FuzzyP include noncontinuous operations, so

the same reasoning can’t establish the negative result in these latter cases.

Rather, we’ll use the following facts, each of which can be readily verified, to

prove that external assertion isn’t definable in either of these two systems:

a. ¬GP and ¬PP have the value 0 if and only if P does not have the value 0.

b. P &G Q and P &P Q have the value 0 if and only if at least one of P and Q has

the value 0.

c. P ∇G Q and P ∇P Q have the value 0 if and only if both P and Q have the

value 0.

d. P →G Q and P →P Q have the value 0 if and only if P does not have the value

0 while Q does have the value 0.
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Because the weak conjunction and disjunction in FuzzyG and FuzzyP are defin-

able using the other connectives, we have considered in (a)–(d) all of the oper-

ations in terms of which other operations of these systems are definable.

Now, for fuzzy external negation to be definable in a system it must be

possible to find a formula formed from an atomic formula P and zero or more

connectives that has the value 1 when P has the value 1 and that has the value

0 when P has any value other than 1. In particular, focusing on an arbitrary

value between 1 and 0, say .5, the formula must have the value 1 when P has

the value 1 and must have the value 0 when P has the value .5. We can show

that there is no such formula either FuzzyG or FuzzyP, because every formula

Q formed from the single atomic formula P and zero or more connectives has

the

collapsing property: Q has the value 0 when P has the value .5 if and only if

Q has the value 0 when P has the value 1.

Every atomic formula P obviously has the collapsing property. Moreover, it fol-

lows from facts (a)–(d) earlier that any formula Q built up from P and one of

more of the connectives has the collapsing property if its immediate subformu-

las have that property. For example, if Q has the form ¬R then from fact (a) we

have: ¬R has the value 0 when P has the value .5 if and only if R does not have

the value 0 when P has the value .5. If R has the collapsing property, then R does

not have the value 0 when P has the value .5 if and only if R does not have the

value 0 when P has the value 1. And it follows again from fact (a) that R does not

have the value 0 when P has the value 1 if and only if ¬R has the value 0 when P

has the value 1. Thus in this case Q has the collapsing property as well. Similar

reasoning using facts (b)–(d) establishes that for any other form that Q may

have, Q will have the collapsing property if each of its immediate components

does. It follows, then, that no formula of FuzzyG or Fuzzy�L can express fuzzy

external assertion.

So if we want fuzzy external assertion (and thus fuzzy external negation) in any of

our three fuzzy systems, we explicitly have to add it. Fortunately systems with this

additional connective have been developed in recent years, as we shall see when

we turn to algebras and derivation systems for fuzzy logic. We do, however, note an

interesting positive expressibility result: fuzzy external assertion (and consequently

fuzzy external negation) can be defined in terms of FuzzyG/FuzzyP negation ¬G and

Fuzzy�L negation ¬L: ∆P =def ¬G¬LP. This will be verified in an exercise.

Adding fuzzy external assertion to Fuzzy�L, the formula ¬�P ∧ ¬�¬P captures

the sense of negation needed for a true rendition of Black’s formula P is not true

and P is not not true where P is a vague assertion. This formula is true in Fuzzy�L

(augmented with the new connective) when P has any value other than 0 or 1, and

it is false otherwise. Because of the fact that external assertion always produces 1

or 0 as its value, the formula ¬�P ∧ ¬�¬P is equivalent to ¬�P & ¬�¬P in Fuzzy�L.
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We can also express another logically true version of the Law of Excluded Middle:

�P ∨ ¬�P.

11.11 Exercises

SECTION 11.2

1 Given an interpretation on which

V(P) = 0

V(Q) = 0.3

V(R) = 0.8

V(S) = 0.2

V(T) = 0.5

V(W) = 1

what is the fuzzy value assigned to each of the following Fuzzy�L formulas?

a. P ∧ Q

b. Q ∧ T

c. P ∨ S

d. P → Q

e. Q → P

f. P ∨ ¬P

g. Q ∨ ¬Q

h. R ∨ ¬R

i. R → S

j. S → R

k. W → P

l. W → R

m. W → S

n. S → S

o. P ↔ Q

p. Q ↔ R

q. P & Q

r. Q & S

s. Q & T

t. P ∇ S

u. Q ∇ ¬R

v. S → (R → Q)

w. S → (Q → R)

x. R → (R & R)

y. (R & R) → R

z. (R → S) ∨ (S → R)

z′. (R ↔ T) ∇ (R ↔ ¬T)
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SECTION 11.3

2 Is the argument

P →¬P

¬P

valid in Fuzzy�L? Defend your answer.

3 Is the argument

¬ (P ↔ Q)

(P ↔ R) ∇ (Q ↔ R)

valid in Fuzzy�L? Defend your answer.

4 We noted that P → (P & P) and (P ∇ P) → P are not Fuzzy�L tautologies although

P → (P ∧ P) and P → (P ∨ P) are both tautologies in classical logic. Are the

latter formulas—using weak connectives—tautologies in Fuzzy�L? Defend your

answer.

5 Are the converse formulas (P & P) → P and P → (P ∇ P) tautologies in Fuzzy�L?

Defend your answer.

6 Is the argument

P ∨ P

P

valid in Fuzzy�L? Defend your answer.

7 Compare �L3 and Fuzzy�L entailment: are all Fuzzy�L entailments also �L3 entail-

ments? Does the converse hold? Prove that you are right.

8 Show that the DeMorgan, Double Negation, and Distribution equivalences hold

in Fuzzy�L.

9 Prove that every Fuzzy�L formula can be mechanically converted to an equivalent

Fuzzy�L formula containing only negation and bold disjunction.

10 Use the Aguzzoli-Ciabattoni decision procedure to determine whether the

formula ¬(P & ¬ P) is a tautology of Fuzzy�L.

SECTION 11.4

11 Prove Result 11.8.

12 Prove Result 11.10.

13 a. Give an example of a formula containing conjunction that is a classical

tautology but that is not a 1-tautology of Fuzzy�L when bold conjunction is

used in place of the classical connective.

b. Give an example of a formula containing disjunction that is a classical

tautology but that is not a 1-tautology of Fuzzy�L when bold disjunction is

used in place of the classical connective.

c. Do the DeMorgan, Double Negation, and Distribution equivalences that

are used for converting a formula to normal form hold in Fuzzy�L when

bold conjunction and disjunction are used in place of weak conjunction

and disjunction? For each equivalence that does hold, prove it. For each

equivalence that doesn’t hold, provide a counterexample.
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d. Do Results 11.7 and 11.8 hold when we use bold conjunction and disjunc-

tion in place of the weak connectives? If they do, prove it. If they don’t,

provide counterexamples.

14 Prove that ¬(P ∧ (P → ¬P)) is a 1/3-tautology in Fuzzy�L.

15 Prove that the argument

A

A → B

B → C

C → D

D → E

E → F

F → G

G → H

H → I

I → J

J

is exactly .1-degree-valid in Fuzzy�L. We have already shown that it is at most

.1-degree-valid, so you need to show that we cannot make the gap between

the value of the least true premise and that of the conclusion greater than .9.

Hint: One way to do this is to consider cases as follows: Case 1: V(A) ≤ .9; Case

2: V(A) > .9 and V(B) ≤ .8; Case 3: V(A) > .9, V(B) > .8, and V(C) ≤ .7; and so on.

In each case show that the gap between the value of the least true premise and

that of the conclusion cannot be greater than .9.

SECTION 11.5

16 Consider the fuzzy set of Fuzzy�L formulas � = {P: .4, ¬P: .4, Q: .6, S → Q: .8,

R: 1}, where P: n means that formula P is a member of the set � to degree

n, and each formula not listed between the set brackets is a member of � to

degree 0.

a. Describe the consonant fuzzy truth-value assignments for this set by indi-

cating, for each atomic formula of Fuzzy�L, the least value that that formula

can have on a truth-value assignment that is consonant for �

b. For each of the following formulas, state its degree of membership in the

fuzzy consequence FC(�):

i. P

ii. ¬P

iii. Q

iv. S

v. R → P

vi. P ∨ ¬P

vii. Q → S

viii. R & Q
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ix. S → (Q → P)

x. W

xi. ¬P → W

17 Show how to define n-degree-entailment in terms of fuzzy consequence.

SECTION 11.6

18 The conditional P ↔ ¬P has the value 1 in Fuzzy�L when P has the value .5. What

value does P ↔K ¬P have when P has the value .5?

19 Consider the argument

P

P →K Q

Q

a. Is this argument valid?

b. Is this argument degree-valid?

c. For what value of n is the argument n-degree-valid?

SECTION 11.7

20 a. FuzzyBI conjunction and disjunction do not qualify as a t-norm and t-

conorm. Which conditions for t-norms and t-conorms are violated by the

FuzzyBI operations?

b. FuzzyBE conjunction and disjunction do not qualify as a t-norm and t-

conorm. Which conditions for t-norms and t-conorms are violated by the

FuzzyBE operations?

21 Show that the algebraic product operation meets conditions 1–4 for t-norms

and that the algebraic sum operation meets conditions 5–8 for t-conorms.

22 Show that the condition

m tn n = 1− ((1−m) tc (1−n)), for all m, n ∈ [0. .1]

follows from the duality condition m tc n = 1− ((1 − m) tn (1 − n)), for all m,

n ∈ [0. .1].

23 Show that

a. bold conjunction and bold disjunction meet the condition for being a dual

t-norm, t-conorm pair, and

b. that algebraic product and sum do as well.

24 Show that Distribution holds for Fuzzy�L’s weak disjunction and conjunction but

not its bold disjunction and conjunction.

25 Complete the proof that every residuation operation is normal, that is, prove

the cases where n = 0 and p = 1, and where n = 0 and p = 0.

26 Show that given a dual t-norm, t-conorm pair tn and tc, the residuation opera-

tion ⇒ adjunct to tn satisfies the following equation:

m ⇒ n = (1 – m) tc n, for all m, n ∈ [0. .1].

27 Show how to define bold conjunction using Fuzzy�L’s negation and conditional.
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SECTION 11.8

28 Prove that FuzzyG weak conjunction and disjunction are identical, respectively,

to FuzzyG bold conjunction and disjunction.

29 Using the FuzzyG versions of the connectives, what are the truth-values for

the formulas in problem 1 when the atomic formulas have the indicated

values?

30 a. Prove that V(P ∨ Q) = V(((P → Q) → Q) ∧ ((Q → P) → P)) in Fuzzy�L.

b. Prove that if we define FuzzyG weak disjunction as

V(P ∨G Q) = V(((P →G Q) →G Q) ∧G ((Q →G P) →G P))

then weak and bold conjunction are identical in FuzzyG.

31 Prove that if we were to define P ∨G Q as ¬G(¬GP ∧G ¬GQ), then the value of any

formula P ∨G Q would always be either 1 or 0.

32 Is P →G Q equivalent to ¬P ∇G Q, analogously to Fuzzy�L’s equivalence?

33 Use the decision procedure presented at the end of Section 11.8 to determine

whether ¬G(P & G ¬GP) is a tautology of FuzzyG.

SECTION 11.9

34 If P ↔P Q is defined as (P →P Q) ∧P (Q →P P), what are the truth-conditions for

P ↔P Q?

35 Using the FuzzyP versions of the connectives, what are the truth-values for the

formulas in problem 1 when the atomic formulas have the indicated values?

36 a. Prove that the truth-conditions 6 and 7 for FuzzyP weak conjunction and

disjunction follow from the definitions

P ∧P Q =def P &P (P →P Q)

and

P ∨P Q =def ((P →P Q) →P Q) ∧P ((Q →P P) →P P).

b. What would the truth-conditions for FuzzyP weak disjunction be if it were

defined as

P ∨P Q =def ¬P(¬PP ∧P ¬PQ)?

c. What would the truth-conditions for FuzzyP weak conjunction be if it were

defined as

P ∧P Q =def P &P (¬PP &P Q)?

37 a. Prove that P →G (P &G P) is a tautology but P →P (P &P P) is not.

b. Prove that ¬P¬PP →P (((Q &P P) →P (R &P P)) →P (Q →P R)) is a tautology

but ¬G¬GP →G (((Q &G P) →G (R &G P)) →G (Q →G R)) is not.

c. Find another formula that is a tautology in FuzzyG but not in FuzzyP, and

defend your answer.

d. Find another formula that is a tautology in FuzzyP but not in FuzzyG, and

defend your answer.

e. Prove that the Modus Ponens inference is degree-valid in FuzzyG, but not

in FuzzyP.
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SECTION 11.10

38 a. Can ∆P be defined in Fuzzy�L as ∆P =def ⊥¬LP? Defend your answer.

b. Can ∆P be defined in FuzzyG as ∆P =def ⊥¬GP? Defend your answer.

39 Prove that the definition ∆P =def ¬G¬�LP correctly defines fuzzy external

assertion.

40 a. What is the value of the formula ¬G�P ∧G ¬G�¬GP in FuzzyG when P has

any value other than 1 and 0?

b. What is the value of the formula ¬G�P ∧G ¬G�¬GP in FuzzyG when P has

the value 1? When P has the value 0?

c. What is the value of the formula ¬P�P &P ¬P�¬PP in FuzzyP when P has

any value other than 1 and 0?

d. What is the value of the formula ¬P�P &P ¬P�¬PP in FuzzyP when P has

the value 1? When P has the value 0?
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12 Fuzzy Algebras

12.1 More on MV-Algebras

In Chapter 9 we introduced MV-algebras in connection with �Lukasiewicz’s three-

valued logic. MV-algebras were in fact developed in order to study �Lukasiewicz’s

infinite-valued systems, so it will come as no surprise that they capture the algebraic

structure of Fuzzy�L. Recall that an MV-algebra is an algebraic structure <M, ⊕, ⊗, ′,
unit, zero> (where unit and zero are members of M) that meets the following con-

ditions for all x, y, and z in M:

i. x ⊕ y = y ⊕ x, and x ⊗ y = y ⊗ x (commutation)

ii. x ⊕ (y ⊕ z) = (x ⊕ y) ⊕ z, and x ⊗ (y ⊗ z) = (x ⊗ y) ⊗ z (association)

iii. x ⊕ zero = x, and x ⊗ unit = x (identity for join and meet)

iv. x ⊕ unit = unit, and x ⊗ zero = zero (unit and zero consumption)

v. x ⊕ x′ = unit, and x ⊗ x′ = zero (complementation)

vi. (x ⊕ y)′ = x′ ⊗ y′, and (x ⊗ y)′ = x′ ⊕ y′ (DeMorgan’s Laws)

vii. x = x′′ (Double Negation)

viii. zero′ = unit (duality of zero and unit)

ix. (x′ ⊕ y)′ ⊕ y = (y′ ⊕ x)′ ⊕ x (lattice meet commutation)

It is left as an exercise to prove that the algebra Fuzzy�LMV = <[0. .1],⊕L,⊗L, 1−, 1, 0>,

where ⊕�L, ⊗�L, and 1− are Fuzzy�L’s bold disjunction, bold conjunction, and negation

operations, is an MV-algebra.

The definition

x ⇒ y =def x′ ⊕ y

gives us the Fuzzy�L conditional operation in the algebra Fuzzy �LMV. The lattice meet

operation defined as

x ∩ y =def x ⊗ (x′ ⊕ y)

gives us Fuzzy�L’s weak conjunction operation in Fuzzy�LMV. Lattice join, correspond-

ing to Fuzzy�L’s weak disjunction, can then be defined as

x ∪ y =def (x′ ∩ y′)′

212



P1: RTJ
9780521881289c12 CUNY1027/Bergmann 978-0 521 88128 9 November 23, 2007 19:46

12.1 More on MV-Algebras 213

which, when spelled out, gives

x ∪ y = x ⊕ (x′ ⊗ y)

(proof is left as an exercise).

We noted in Chapter 11 that the Laws of Excluded Middle and Noncontradiction

hold in Fuzzy�L when they are expressed using bold disjunction and conjunction but

fail when expressed with the weak connectives. The bold version of the Law of

Excluded Middle appears in MV-algebras as the first complementation condition

x ⊕ x′ = unit, while the bold version of the Law of Noncontradiction appears as the

equation (x ⊗ x′)′ = zero, which is derivable by complementing both sides of the

second complementation condition and then replacing zero′ with unit by virtue of

condition viii, the duality of zero and unit.

In fact, we have a result relating Fuzzy�L and MV-algebras that is analogous to

Result 4.3 of Chapter 4 relating classical propositional logic and Boolean algebras.

First, some definitions. When we interpret formulas of propositional logic in an

MV-algebra by assigning a member of the algebra’s domain to each atomic for-

mula and using the algebra’s bold join, bold meet, and complement operations

to define the respective values of bold disjunctions, bold conjunctions, and nega-

tions, we call this an algebraic interpretation based on that MV-algebra. We will

say that a formula of propositional logic is a tautology of an MV-algebra (or an

MV-tautology) if the formula evaluates to unit under every algebraic interpreta-

tion based on that algebra. Then, defining the other Fuzzy�L connectives in terms

of bold disjunction, bold conjunction, and negation (as we’ve seen we can do),

we have

Result 12.1: A formula is a tautology of Fuzzy�L if and only if it is an MV-tautology

in every MV-algebra.

Proof of 12.1 is beyond the scope of this text; interested readers may consult Gottwald

(2001) (also for proofs of Results 12.3 and 12.4 later in this chapter).

It is important to note that this result does not say that the set of Fuzzy�L tau-

tologies coincides with the set of MV-tautologies for any MV-algebra. For example,

in Chapter 9 we examined the MV-algebraic structure of �L3. We know that the set

of �L3 tautologies is distinct from the set of Fuzzy�L tautologies, so it follows that the

set of MV-tautologies for any three-valued MV-algebra (which, by Result 9.3, coin-

cides with the set of �L3 tautologies) is different from the set of MV-tautologies for

Fuzzy�LMV. (Moreover, in Section 11.3 of Chapter 11 we introduced �Lukasiewicz log-

ics for all finite sets of truth-values taken from the unit interval. Each one of these

has an MV-algebraic structure but no two have the same set of tautologies, and

each of the tautology sets differs from the set of Fuzzy�L tautologies.) A formula must

be an MV-tautology of every MV-algebra if it is to be a Fuzzy�L tautology, and vice

versa.
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12.2 Residuated Lattices and BL-Algebras

The algebraic structures characterizing FuzzyG and FuzzyP (based on their respec-

tive bold disjunction, bold conjunction, and negation operations) are not MV-

algebras.1 Most notably, neither of those structures satisfies the Double Negation

condition (vii) for MV-algebras. This was to be expected, given the nonvalidity of

the inference

��P

P

in both systems. It is left as an exercise to determine which other conditions on

MV-algebras fail for one or both of these systems.

We’ll present algebras for FuzzyG and FuzzyP that are special cases of resid-

uated lattices (MV-algebras are also special cases of residuated lattices). A resid-

uated lattice is an algebra <L, ∪, ∩, ⊗, ⇒, unit, zero> that meets the following

conditions:2

i. x ∪ y = y ∪ x, and x ∩ y = y ∩ x (lattice commutation)

ii. x ∪ (y ∪ z) = (x ∪ y) ∪ z, and x ∩ (y ∩ z) = (x ∩ y) ∩ z (lattice association)

iii. x ∪ x = x, and x ∩ x = x (lattice idempotence)

iv. x ∪ (x ∩ y) = x, and x ∩ (x ∪ y) = x (lattice absorption)

v. x ∪ zero = x, and x ∩ unit = x (identity for lattice join

and meet)

vi. x ⊗ y = y ⊗ x (bold meet commutation)

vii. x ⊗ (y ⊗ z) = (x ⊗ y) ⊗ z (bold meet association)

viii. x ⊗ unit = x (identity for bold meet)

and, defining x ≤ y if and only if x ∩ y = x,

ix. if x ≤ y, then x ⊗ z ≤ y ⊗ z and z ⊗ x ≤ z ⊗ y (bold meet isotonicity)

x. x ⊗ y ≤ z if and only if x ≤ y ⇒ z. (adjointness)

Recall that conditions i–v define a lattice with zero and unit elements.

Conditions vi–viii define the bold meet ⊗ as a commutative, associative opera-

tion with unit as its identity element. Condition ix states that the bold meet opera-

tion is isotonic, or nondecreasing in both arguments, and condition x states that ⊗
and ⇒ form an adjoint pair. The connection with t-norms and their residuation

operations should be obvious. Conditions vi–ix are the conditions for t-norm oper-

ations, and condition x is the adjointness condition defining the residuum operation

for a t-norm.

1 This section provides just a glimpse of the relations among MV-algebras, residuated lattices, and
BL-algebras. An excellent summary of literature exploring the relations among these algebras
(along with Boolean algebras) appears in Novák, Perfilieva, and Močkoř (1999, pp. 23–33).

2 Residuated lattices were first studied in Dilworth and Ward (1939).
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Negation is defined in a residuated lattice as

x′ =def x ⇒ zero

This should also look familiar from Chapter 11; it is the way that negation is stan-

dardly defined in fuzzy logical systems. Given this operation, a dual operation for

⊗ in residuated lattices is definable as

x ⊕ y =def (x′ ⊗ y′).

If MV = <M, ⊕, ⊗, ′, unit, zero> is an MV-algebra, and we define

x ∩ y =def x ⊗ (x′ ⊕ y)

x ∪ y =def x ⊕ (x′ ⊗ y)

x ⇒ y =def x′ ⊕ y,

as we did for MV-algebras in Section 12.1, then R(MV) = <M, ∪, ∩, ⊗, ⇒, unit, zero>

is a residuated lattice; it is in this sense that we say that MV-algebras are special cases

of residuated lattices.3 For example, we know that x ≤ y if and only if x ∩ y = x in an

MV-algebra, so the definition of inequality required for a residuated lattice holds in

R(MV). We can establish the first part of bold meet isotonicity as follows:

First part of Isotonicity of MV-Algebra Meet : If x ≤ y then x ⊗ z ≤ y ⊗ z.

Proof:

Assume that x ≤ y in an MV-algebra. Then:

x′ ⊕ y = unit (definition of ≤)

(x′ ⊕ y) ⊕ (y′ ⊗ z′) = unit ⊕ (y′ ⊗ z′) (same operation, both sides)

(x′ ⊕ y) ⊕ (y′ ⊗ z′) = unit (unit consumption)

(x′ ⊕ (y ⊕ (y′ ⊗ z′)) = unit (bold meet association)

(x′ ⊕ (z′ ⊕ (z′′ ⊗ y)) = unit (lattice join commutation)

(x′ ⊕ z′) ⊕ (z′′ ⊗ y) = unit (bold meet association)

(x ⊗ z)′ ⊕ (z′′ ⊗ y) = unit (DeMorgan)

(x ⊗ z)′ ⊕ (y ⊗ z) = unit (bold meet commutation, Double Negation)

x ⊗ z ≤ y ⊗ z (definition of ≤)

A complete proof that every MV-algebra is a residuated lattice, many pieces of which

we have already seen by now, is left as an exercise.

The converse does not generally hold; some residuated lattices are not MV-

algebras. One reason is that the conditions defining residuated lattices do not entail

Double Negation, so in some residuated lattices it is not true that x = x′′ for all x in L.

This should come as no surprise since we have stated that the algebraic structures

for FuzzyG and FuzzyP are residuated lattices, and we know that Double Negation

fails in those logical systems.

3 Because Boolean algebras are MV-algebras (this was proved in Chapter 9), it follows that Boolean
algebras are also special cases of residuated lattices.
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The algebraic structure corresponding to FuzzyG is a residuated lattice FuzzyGL

= <[0. .1], ∪G, ∩G, ⊗G, ⇒G, 1, 0>, where ⊗G and ⇒G are FuzzyG’s bold conjunction

and conditional operations (we saw in Section 11.7 of Chapter 11 that ⊗G and ⇒G

form an adjoint pair), and ∪G and ∩G are FuzzyG’s weak disjunction and conjunction

operations (which are identical to FuzzyG’s bold operations). The algebraic structure

FuzzyPL = <[0. .1],∪P,∩P,⊗P,⇒P, 1, 0>corresponding to FuzzyP is also a residuated

lattice. Both of these algebraic structures, along with that of FuzzyL, are special types

of residuated lattices called BL-algebras.4 A BL-algebra is a residuated lattice that

satisfies the additional conditions

xi. x ∩ y = x ⊗ (x ⇒ y)

xii. (x ⇒ y) ∪ (y ⇒ x) = unit

Condition xi should be familiar from the general definition of weak conjunction in

fuzzy logics introduced in Chapter 11:

P ∧ Q =def P & (P → Q)

Condition xii captures the fact that for any formulas P and Q in a t-norm-based

fuzzy logical system, at least one of P → Q or Q → P has the value 1 (to be proved in

the exercises).

Every MV-algebra is a BL-algebra (also to be proved in the exercises). Conversely,

we have

Result 12.2: Every BL-algebra that satisfies Double Negation (x′′ = x) is an MV-

algebra.

Proof: We’ll establish that each of the MV-algebra conditions holds in any BL-

algebra that satisfies Double Negation. We’ll use the following properties, which

hold for all BL-algebras with Double Negation (BL-i through BL-iii hold for

BL-algebras generally, not just those with Double Negation):

(BL-i) if unit ≤ x, then unit = x

Proof: Assume unit ≤ x. Then:
unit ∩ x = unit (BL-algebra definition of ≤)

x ∩ unit = unit (lattice meet commutation)

x = unit (identity for lattice meet)
(BL-ii) x ⊗ (x ⇒ y) = y

Proof: Left as an exercise.

(BL-iii) x ⇒ (y ⇒ z) = (x ⊗ y) ⇒ z

4 BL-algebras were introduced in Hájek (1998a, 1998b) to capture the commonalities of systems
of fuzzy logic based on continuous t-norms (thus including �Lukasiewicz, Gödel, and product
logics). BL stands for basic logic. The definitions later of Gödel and product algebras as special
types of BL-algebras are from Hájek (1998b, pp. 91 and 100).
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Proof:

(x ⇒ (y ⇒ z)) ∩ (x ⇒ (y ⇒ z)) = x ⇒ (y ⇒ z) (lattice meet idempotence)

x ⇒ (y ⇒ z) ≤ x ⇒ (y ⇒ z) (definition of ≤)

x ⊗ (x ⇒ (y ⇒ z)) ≤ x ⊗ (x ⇒ (y ⇒ z)) (bold meet isotonicity)

x ⊗ (x ⇒ (y ⇒ z)) ≤ y ⇒ z (BL-ii)

y ⊗ (x ⊗ (x ⇒ (y ⇒ z))) ≤ y ⊗ (y ⇒ z) (bold meet isotonicity)

y ⊗ (x ⊗ (x ⇒ (y ⇒ z))) ≤ z (BL-ii)

(x ⇒ (y ⇒ z)) ⊗ (x ⊗ y) ≤ z (bold meet association,

commutation)

x ⇒ (y ⇒ z) ≤ (x ⊗ y) ⇒ z (adjointness)

The rest of the proof, that (x ⊗ y) ⇒ z ≤ x ⇒ (y ⇒ z), is left as an exercise.

(BL-iv) x ⇒ y = y′ ⇒ x′

Proof:

x ⇒ y = x ⇒ y′′ (Double Negation)

x ⇒ y = x ⇒ ((y ⇒ zero) ⇒ zero) (definition of complement)

x ⇒ y = (x ⊗ (y ⇒ zero)) ⇒ zero (BL-iii)

x ⇒ y = ((y ⇒ zero) ⊗ x) ⇒ zero (bold meet commutation)

x ⇒ y = ((y ⇒ zero) ⇒ (x ⇒ zero) (BL-iii)

x ⇒ y = y′ ⇒ x′ (definition of complement)

(BL-v) x ⊗ y = (x ⇒ y′)′

Proof:

x ⊗ y = (x ⊗ y)′′ (Double Negation)

x ⊗ y = ((x ⊗ y) ⇒ zero)′ (definition of complement)

x ⊗ y = (x ⇒ (y ⇒ zero))′ (BL-iii)

x ⊗ y = (x ⇒ y′)′ (definition of complement)

(BL-vi) x ⊕ y = x′ ⇒ y

Proof: Left as an exercise.

Now we can establish that all of the conditions defining MV-algebras hold true

in any BL-algebra with Double Negation. We’ll show this for a few of the MV-

algebra conditions; the reader will be asked to establish the remaining condi-

tions in the exercises.

Condition iv:

(i) x ⊕ unit = x′ ⇒ unit (BL-vi)

unit ∩ (x′ ⇒ unit) = x′ ⇒ unit (lattice meet commutation,

identity)

unit ≤ x′ ⇒ unit (definition)

(ii) x′ ⇒ unit = unit (BL-i)

x ⊕ unit = unit (by (i) and (ii))

(Proof that x ⊗ zero = zero is left as an exercise.)
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Condition viii:
unit ⊗ zero = zero (bold meet commutation, identity)

unit ≤ zero ⇒ zero (adjointness)

unit = zero′ (definition of complement, BL-i)

Condition ix:

(x′ ⊕ y)′ ⊕ y = (x′ ⊕ y)′′ ⇒ y (BL-vi)

(x′ ⊕ y)′ ⊗ y = (x′′ ⇒ y)′′ ⇒ y (BL-vi)

(x′ ⊕ y)′ ⊗ y = (x ⇒ y) ⇒ y (Double Negation)

(x′ ⊕ y)′ ⊗ y = (x ⇒ y) ⇒ y′′ (Double Negation)

(x′ ⊕ y)′ ⊗ y = (x ⇒ y) ⇒ ((y ⇒ zero) ⇒ zero) (definition)

(x′ ⊕ y)′ ⊗ y = ((x ⇒ y) ⊗ (y ⇒ zero)) ⇒ zero (BL-iii)

(x′ ⊕ y)′ ⊗ y = ((x ⇒ y) ⊗ (y ⇒ zero))′ (definition)

(x′ ⊕ y)′ ⊗ y = ((x ⇒ y) ⊗ y′)′ (definition)

(x′ ⊕ y)′ ⊗ y = (y′ ⊗ (x ⇒ y))′ (bold meet commutation)

(x′ ⊕ y)′ ⊗ y = (y′ ⊗ (y′ ⇒ x′))′ (BL-iv)

(x′ ⊕ y)′ ⊗ y = (y′ ∩ x′)′ (BL-algebra condition (xi))

(x′ ⊕ y)′ ⊗ y = (x′ ∩ y′)′ (lattice meet commutation)

The rest of this proof reverses the steps leading to (x′ ⊕ y)′ ⊗ y = (y′ ∩ x′)′.

The lattice FuzzyGL exemplifies another special case of BL-algebras: the Gödel-

algebras.5 A Gödel algebra is a BL-algebra that satisfies the additional condition

xiii. (Gödel BL-algebra) x ⊗ x = x.

This condition says that Gödel bold conjunction (identical to Gödel weak conjunc-

tion) is idempotent. Proof that FuzzyGL is a Gödel algebra is left as an exercise. In

addition we have

Result 12.3: A formula is a tautology of FuzzyG if and only if it is a G-tautology

in every Gödel algebra,

where G-tautologies of Gödel algebras are defined in the by now obvious way.

The algebraic structure FuzzyPL = <[0. .1], ∪P, ∩P, ⊗P, ⇒P, 1,0>, where ⊗P

and ⇒P are FuzzyP’s bold conjunction and conditional operations, and ∪P and ∩P

are FuzzyP’s weak disjunction and conjunction operations, is an instance of another

special case of BL-algebras, the product algebras. A product algebra is a BL-algebra

that also satisfies the additional conditions

xiii. (Product BL-algebra) z′′ ≤ ((x ⊗ z) ⇒ (y ⊗ z)) ⇒ (x ⇒ y)

xiv. (Product BL-algebra) x ∩ x′ = zero

where

x′ =def x ⇒ zero.

5 Gödel algebras are identical to so-called Heyting algebras that satisfy the “prelinearity” condition:
(x ⇒ y) ∪ (y ⇒ x) = unit.
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Condition xiv gives us the Law of Noncontradiction for weak conjunction: for any

formula P, at least one of P and �P has the value 0, and so therefore does the weak

conjunction of a formula and its negation. It is left as an exercise to prove that

FuzzyPL is a product algebra, and hence that xiii is characteristic of FuzzyP’s adjoint

bold conjunction and implication operations. Analogously to earlier results, we

have

Result 12.4: A formula is a tautology of FuzzyP if and only if it is a P-tautology

in every product algebra.

12.3 Zero and Unit Projections in Algebraic Structures

Recall that we introduced fuzzy Bochvarian external negation and assertion, known

as 0- and 1-projections in the fuzzy literature, in Section 11.10 of Chapter 11. We

will call the corresponding algebraic operations zero projection and unit projection,

and we will use the symbols ! and α, respectively, to denote these operations. The

following algebraic conditions characterize unit projection in any BL-algebra:6

αi. αx ∪ (αx)′ = unit

αii. α(x ∪ y) ≤ αx ∪ αy

αiii. αx ≤ x

αiv. αx ≤ ααx

αv. αx ⊗ α(x ⇒ y) ≤ αy

αvi. α unit = unit

and we will call a BL-algebra that meets these additional conditions a unit pro-

jection algebra.

Although x and αx are not generally equivalent in a unit projection algebra, αx

and ααx are:

αx = ααx

Proof:

αx ≤ ααx, by αiv, and ααx ≤ αx, by αiii, so αx = ααx.

The expressions x and αx are not generally equivalent because the inequality x ≤ αx

does not hold in all unit projection algebras. This is as it should be, if unit projection

is the algebraic counterpart to fuzzy external assertion: if V(P) = .5, for example,

�P has the value 0.

We can introduce zero projection in a unit projection algebra as the algebraic

counterpart to fuzzy external negation with the definition

!x = def (αx)′.

6 Hájek (1998b) based these algebraic axioms on derivational axioms in Baaz (1996).
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so that, for example,

αx ∪ !x = unit (by αi)

and

!unit = zero

Proof:

α unit = unit (αvi)

(α unit)′ = unit′ (same operation, both sides)

(i) !unit = unit′ (definition)

and
unit ⊗ (unit ⇒ zero) = zero (BL-ii)

unit ⇒ zero = zero (identity for bold meet)

(ii) unit′ = zero (definition)

so
!unit = zero (from (i) and (ii))

Adding the external assertion operator � to Fuzzy�L, the MV-algebraic structure

of Fuzzy�L becomes a unit projection algebra. To establish this, we need to show that

the following hold for all values x and y in [0. .1], where α� stands for the external

assertion operation:

α�i. max (α�x, 1 – α�x) = 1

α�ii. α�(max (x, y)) ≤ max (α�x, α�y)

α�iii. α�x ≤ x

α�iv. α�x ≤ α�α�x

α�v. max (0, α�x + α�(min (1, 1 – x + y)) – 1) ≤ α�y

α�vi. α�1 = 1

For (α�i), it suffices to point out that α�x is always either 1 or 0. For (α�iii), we note

that if x �=1 then α�x = 0 and 0 is less than or equal to any value in the unit interval,

while if x = 1 then α�x = 1 and certainly 1 ≤ 1. We leave the remainder, as well

as the proof that the Gödel and product algebraic structures for FuzzyG and FuzzyP

augmented with the external assertion operator are unit projection algebras, as

exercises.

12.4 Exercises

SECTION 12.1

1 Prove that the algebra Fuzzy�LMV = <[0. .1], ⊕�L, ⊗�L, 1−, 1, 0>, where ⊕�L, ⊗�L, and

1− are Fuzzy�L’s bold disjunction, bold conjunction, and negation operations,

is an MV-algebra.

2 Prove that it follows from the MV-algebra definition x ∪ y =def (x′ ∩ y′)′ that

x ∪ y = x ⊕ (x′ ⊗ y).
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SECTION 12.2

3 Which MV-algebra conditions other than Double Negation, if any, fail to hold

for the algebra defined by FuzzyG’s operations?

4 Which MV-algebra conditions other than Double Negation, if any, fail to hold

for the algebra defined by FuzzyP’s operations?

5 Give a complete proof that every MV-algebra is a residuated lattice in the

sense described in Section 12.2. You are free to cite previous results along

the way.

6 Prove that for any formulas P and Q in a t-norm-based fuzzy logical system, at

least one of P → Q or Q → P has the value 1, by showing that this follows from

the definition of the residuum operation

m tn n ≤ p if and only if m ≤ n ⇒ p, for all m, n, p ∈ [0. .1]

for any t-norm tn. (Hint: consider the case where m = 1 and show that in this

case either 1 ≤ n ⇒ p or 1 ≤ p ⇒ n. You will need to use t-norm properties to

establish this.)

7 Prove that every MV-algebra is a BL-algebra.

8 Prove that

(BL-ii) x ⊗ (x ⇒ y) = y

holds in every BL-algebra.

9 Complete the proof of BL-iii:

a. Show that (x ⊗ y) ⇒ z ≤ x ⇒ (y ⇒ z) in every BL-algebra with Double

Negation.

b. Show that if x ≤ y and y ≤ x in a BL-algebra, then x = y—so that the converse

inequalities in the proof of BL-3 in fact establish an equality.

10 Prove that

(BL-vi) x ⊕ y = x′ ⇒ y

holds in every BL-algebra with Double Negation.

11 Complete the proof of Result 12.2, that every BL-algebra with Double Negation

is an MV-algebra, by showing that the following hold true in every BL-algebra

with Double Negation:

a. condition i of MV-algebras

b. condition ii of MV-algebras

c. condition iii of MV-algebras

d. the second half of condition iv of MV-algebras: x ⊗ zero = zero

e. condition v of MV-algebras

f. condition vi of MV-algebras

g. condition vii of MV-algebras.

12 Prove that FuzzyGL is a Gödel algebra.

13 Prove that FuzzyPL is a product algebra.

14 Why did we not include the condition

xiv. (Gödel BL-algebra) x ⊗ x = x

in the definition of product algebras?
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SECTION 12.3

15 Prove that the following hold in every unit projection algebra:

a. α zero = zero

b. !zero = unit

c. !x = !!!x, for any x

16 Complete the proof that the MV-algebraic structure of Fuzzy�L augmented with

the external assertion operator is a unit projection algebra, by showing that

α�ii, α�iv, α�v, and α�vi all hold.

17 Prove that the Gödel and product algebraic structures FuzzyGL and FuzzyPL

augmented with the external assertion operator are unit projection algebras.
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13.1 An Axiomatic System for Tautologies and Validity in Fuzzy�L

In Chapter 6 we presented an axiomatic system for logical truth and validity in

�Lukasiewicz’s three-valued propositional logic, �L3A. �Lukasiewicz also formulated

an axiomatic system for his infinite-valued logic. We shall call this system F�LA (for

fuzzy �Lukasiewicz axiomatic system). F�LA includes the first three axiom schemata

from L3A, plus one more:1

F�L1. P → (Q → P)

F�L2. (P → Q) → ((Q → R) → (P → R))

F�L3. (¬P → ¬Q) → (Q → P)

F�L4. ((P → Q) → Q) → ((Q → P) → P)

The single rule is Modus Ponens:

MP. From P and P → Q, infer Q.

Axiom schema �L34 from �L3A—((P → ¬P) → P) → P – is not included here

because, as we saw in Result 11.6 of Chapter 11, it’s not a tautologous schema in

Fuzzy�L. On the other hand, simply deleting �L34 would leave the system incomplete

for Fuzzy�L, so the axiom F�L4 is added to give exactly the axiomatic power we need.

Given the definition of disjunction

P ∨ Q =def ((P → Q) → Q)

F�L4 can be written as (P ∨ Q) → (Q ∨ P), which asserts that disjunction is a com-

mutative operation. Recall that we derived this formula in �L3A, as derived axiom

schema �L3D9.

Any derivation in �L3A that does not use axiom �L34 is a legal derivation in F�LA.

So, for example,

�L3D1. ¬P → (P → Q)

1 �Lukasiewicz’s system included a fifth axiom, which was independently shown to be derivable
from the remaining axioms by both Chang (1958a) and Meredith (1928).

223
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is also a derivable axiom schema in F�LA because it was justified using only �L31–�L33

and Modus Ponens. We will henceforth refer to this derived axiom as F�LD1. Similarly,

we may conclude that

HS. From P → Q and Q → R, infer P → R

is a derivable rule in F�LA, since its derivation in �L3A used only axiom schema �L32

and Modus Ponens.

On the other hand, although both

¬¬P → P

and

P → ¬¬P

are derivable as axioms in F�LA, we cannot conclude this from the derivations that

we used in �L3A since those derivations depend on axiom �L34. We will show how to

derive both of these formulas in F�LA, first introducing for convenience the derived

axiom schemata

F�LD2. ((P → Q) → R) → (¬P → R)

F�LD3. P → ((P → Q) → Q)

F�LD4. (((Q → R) → (P → R)) → S) → ((P → Q) → S)

F�LD5. (P → (Q → R)) → ((S → Q) → (P → (S → R)))

F�LD6. (P → (Q → R)) → (Q → (P → R))

F�LD7. P → P

F�LD4 and F�LD5 are complicated formulas and perhaps not “interesting” in them-

selves, but they’ll make subsequent derivations more readable. F�LD2 is justified as

follows:

1 ¬P → (P → Q) F�LD1, with P / P, Q / Q

2 (¬P → (P → Q)) → (((P → Q) → R) → (¬P → R)) F�L2, with ¬P / P, P → Q / Q, R / R

3 ((P → Q) → R) → (¬P → R) 1,2 MP

F�LD3 is justified as follows:

1 P → ((Q → P) → P) F�L1, with P / P, Q → P / Q

2 ((Q → P) → P) → ((P → Q) → Q) F�L4, with Q / P, P / Q

3 P → ((P → Q) → Q) 1,2 HS

F�LD4 is justified as follows:

1 (P → Q) → ((Q → R) → (P → R)) F�L2, with P / P, Q / Q, R / R

2 ((P → Q) → ((Q → R) → (P → R))) →
((((Q → R) → (P → R)) → S) → ((P → Q) → S))

F�L2, with P → Q / P, (Q → R) →
(P → R) / Q, S / R

3 (((Q → R) → (P → R)) → S) → ((P → Q) → S) 1,2 MP
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F�LD5 is justified as follows:

1 ((((Q → R) → (S → R)) → (P → (S → R))) →
((S → Q) → (P → (S → R)))) →

((P → (Q → R)) → ((S → Q) → (P → (S → R))))

F�LD4, with P / P, Q → R / Q, S → R / R,

(S → Q) → (P → (S → R)) / S

2 (((Q → R) → (S → R)) → (P → (S → R))) →
((S → Q) → (P → (S → R)))

F�LD4, with S / P, Q / Q, R / R,

P → (S → R) / S

3 (P → (Q → R)) → ((S → Q) → (P → (S → R))) 1,2 MP

F�LD6 is justified as follows:

1 Q → ((Q → P) → P) F�LD3, with Q / P, P / Q

2 (Q → ((Q → R) → R)) → ((P → (Q → R)) → (Q → (P → R))) F�LD5, with Q / P, Q → R / Q, R / R, P / S

3 (P → (Q → R)) → (Q → (P → R)) 1,2 MP

F�LD7 is justified as follows:

1 (P → (Q → P)) → (Q → (P → P)) F�LD6, with P / P, Q / Q, P / R

2 P → (Q → P) F�L2, with P / P, Q / Q

3 Q → (P → P) 1,2 MP

4 (P → ((Q → (P → P)) → P)) → ((Q → (P → P)) → (P → P)) F�LD6, with P / P, Q → (P → P) / Q, P / R

5 P → ((Q → (P → P)) → P) F�L1, with P / P, Q → (P → P) / Q

6 (Q → (P → P)) → (P → P) 4,5 MP

7 P → P 3,6 MP

Now we can derive

F�LD8. ¬¬P → P

and

F�LD9. P → ¬¬P

as follows:

1 ((¬P → ¬(P → P)) → P) →(¬¬P → P) F�LD2, with ¬P / P, ¬(P → P) / Q, P / R

2 (¬P → ¬(P → P)) → ((P → P) → P) F�L3, with P / P, P → P / Q

3 ((¬P → ¬(P → P)) → ((P → P) → P)) →
((P → P) → ((¬P → ¬(P → P)) → P))

F�LD6, with ¬P → ¬(P → P) / P, P → P / Q,

P / R

4 (P → P) → ((¬P → ¬(P → P)) → P) 2,3 MP

5 P → P F�LD7, with P / P

6 (¬P → ¬(P → P)) → P 4,5 MP

7 ¬¬P → P 1,6 MP

1 ¬¬¬P → ¬P F�LD8, with ¬P / P

2 (¬¬¬P → ¬P) → (P → ¬¬P) F�L3, with ¬¬P / P, P / Q

3 P → ¬¬P 1,2 MP
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We’ll leave it as an exercise to show that other formulas and rules that were derived

in the axiomatic system �L3A in Chapter 6 can also be derived in F�LA.

Recall that �Lukasiewicz bold disjunction and conjunction are definable

thus:

P ∇Q =def ¬P → Q

P & Q =def ¬(P → ¬Q)

The bold version of the Law of Excluded Middle, P ∇ ¬P, is a tautology in Fuzzy�L

and so we would hope to be able to derive it in F�LA, as indeed we can. We rewrite

the formula as ¬P → ¬P:

1 ¬P → ¬P F�LD7, with ¬P / P

The bold version of the Law of Noncontradiction, ¬(P & ¬P), another tautology in

Fuzzy�L, is also derivable (where we rewrite the formula as ¬¬(P → ¬¬ P)):

1 (P → ¬¬ P) → ¬¬(P → ¬¬ P) F�LD8, with P → ¬¬ P / P

2 P → ¬¬ P F�LD8, with P / P

3 ¬¬(P → ¬¬ P) 1,2 MP

The axiomatic system F�LA is sound for Fuzzy�L; that is, every theorem (formula

derived from no assumptions) is a tautology of Fuzzy�L; and if a formula P can be

derived from a set of assumptions �, then � semantically entails P. F�LA is also weakly

complete: every tautology of Fuzzy�L is a theorem of F�LA—so it should come as no

surprise that we were able to derive the previous tautologies. However, the system

is not strongly complete for Fuzzy�L. Strong completeness means that, given any

semantic entailment of a formula P from a set � of formulas, there is a derivation of

P from those formulas in the axiomatic system. But the best that we can say for F�LA

is that corresponding to any semantical entailment of a formula P from a finite set

of formulas in Fuzzy�L there is a derivation in F�LA of P from that set. And it’s not just

the specific system F�LA that has a problem here: no sound system for Fuzzy�L can

be strongly complete. For all such systems, strong completeness fails in the case of

entailments from infinite sets because for some of these there are no corresponding

derivations.

An example of such an entailment in Fuzzy�L goes from the set � consisting of

the formula ¬P → Q and the infinitely many formulas in the series

(¬P → P) → Q

(¬P → (¬P → P)) → Q

(¬P → (¬P → (¬P → P))) → Q

(¬P → (¬P → (¬P → (¬P → P)))) → Q
. . .
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(where the antecedent of each subsequent formula is a conditional whose ante-

cedent is ¬P and whose consequent is the antecedent of the preceding formula)

to the formula Q.2 Q must be true whenever all the formulas in � are true.

To see the entailment, assume that all of the formulas in � are true and consider

the values that P may have. If P has the value 0, then the formula ¬P → Q has a true

antecedent and so Q must have the value 1 as well. If P has any value greater than

or equal to .5, then ¬P → P has the value 1, so the formula (¬P → P) → Q has a

true antecedent and Q must therefore have the value 1. More generally, in Fuzzy�L

the value of the antecedent of the nth member of the infinite series of formulas

(¬P → P) → Q, (¬P → (¬P → P)) → Q, (¬P → (¬P → (¬P → P))) → Q, (¬P → (¬P →
(¬P → (¬P → P)))) → Q, . . . is the minimum of 1 and (n + 1) times the value of P

(proof is left as an exercise). So if the value of P is any m, 0 < m ≤ 1, then for every n

(≥ 1) such that m ≥ 1/(n+1), the value of the antecedent of the nth formula is 1 and

so Q must also have the value 1. Because we can find such an n for any value m > 0

that P may have, and because we have also shown that Q must be true when P has

the value 0, it follows that Q must be true whenever all of the formulas in � are true.

On the other hand, derivations are finite in length and so any single deriva-

tion of Q can include only finitely many formulas from the set �. But no finite

subset 	 of � semantically entails Q in Fuzzy�L. A finite subset 	 can contain only

finitely many members of the infinite series (¬P → P) → Q, (¬P → (¬P → P)) → Q,

(¬P → (¬P → (¬P → P))) → Q, (¬P → (¬P → (¬P → (¬P → P)))) → Q, . . . . If 	 does

not contain the formula ¬P → Q, then Q can be false when all of the formulas in 	

are true: if P has the value 0 then the antecedents of all the formulas in 	 are false

and thus the formulas are all true, even if Q has the value 0. If 	 does contain the

formula ¬P → Q, then let k be the highest number of any member of the series that

appears in 	; that is, the kth member of the series occurs in 	 but no later member

does. Whenever the value of P is greater than 0 but less than 1/(k+ 1), it is possible for

Q to fail to be true while all of the members of 	 are true. Q can fail to be true in this

case since none of the antecedents of the formulas in 	 will be true, and in order

for the conditionals in 	 to all be true, Q only needs to be as true as the antecedent

that is closest to being true.

F�LA is a sound system and so there can be no derivation when there is no entail-

ment. It therefore follows from the fact that Q is not semantically entailed by any

finite subset of � that Q cannot be derived from any finite subset within F�LA. Since

the infinite set � semantically entails Q but there is no corresponding derivation,

F�LA is not strongly complete. Moreover, this reasoning shows that there is no sound

axiomatic system for Fuzzy�L that is strongly complete—because we reasoned gen-

erally about derivations in sound systems rather than specifically about derivations

in F�LA.

The example that we have used to demonstrate that no axiomatic system for

Fuzzy�L can be strongly complete also shows that the semantic entailment relation in

2 This example is a slight modification of an example in Hájek (1998b, p. 75).
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Fuzzy�L is not compact, where compactness means that whenever a semantic entail-

ment holds between an infinite set of premises and a conclusion then entailment

also holds between at least one finite subset of the premises and the conclusion.3

To summarize, we have proved

Result 13.1: Fuzzy�L is not compact

and therefore

Result 13.2: No axiomatic system for Fuzzy�L can be strongly complete.

The situation here contrasts with the classical and three-valued logics that we’ve

studied, where both the propositional and the first-order systems are semantically

compact and have strongly complete axiomatizations.

We also note that the Deduction Theorem fails for F�LA, just as it did for L3A. In

fact, the same counterexample will do: whenever P ∧ ((P → Q) ∧ (P → (Q → R))) has

the value 1 in Fuzzy�L so does R, but the conditional formula (P ∧ ((P → Q) ∧ (P →
(Q → R)))) → R is not a Fuzzy�L tautology. Given soundness and completeness for

arguments with a finite number of premises, this means that R is derivable from

P ∧ ((P → Q) ∧ (P → (Q → R))) in F�LA, but (P ∧ ((P → Q) ∧ (P → (Q → R)))) → R

is not a theorem in this system. However, the following result, yet another Modified

Deduction Theorem, does hold in F�LA:

Result 13.3 (Modified Deduction Theorem, for F�LA): Q is derivable from P in F�LA

if and only if P → (P → (P → ( . . . → (P → Q) . . . ) is a theorem for some finite

number of antecedent P’s.4

Proof: The if part is easy: given the conditional formula we construct a deriva-

tion with P as an assumption, derive the conditional theorem (for which we do

not need any assumptions), and then repeatedly use MP to derive Q.

3 Charles G. Morgan and Francis J. Pelletier (1977) pointed out that (�Lukasiewicz) fuzzy logic
augmented with “J-operators”—operators that state the truth-value of formulas, such as J.5(P),
which means: the truth-value of P is .5—fails to be compact and therefore cannot be axiomatized
by a strongly complete axiomatic system. The example here shows a stronger claim, namely, that
�Lukasiewicz fuzzy logic without J-operators fails to be compact.

We note that compactness is often, equivalently, defined in terms of satisfiability. A set of
formulas of propositional logic is satisfiable if there is at least one truth-value assignment on
which all of the members of the set are true. A logical system is satisfaction compact if and only if
the following holds for every set � of formulas: � is satisfiable if and only if every finite subset of
� is satisfiable. The equivalence of the two definitions follows from the fact, readily confirmable
by the reader, that a set of formulas � semantically entails the formula Q if and only if the set
� ∪ {¬Q} is not satisfiable.

4 Note that this is a straightforward generalization of the Modified Deduction Theorem for �L3A
(Result 6.1 of Chapter 6). The semantic deduction theorem for �Lukasiewicz infinite-valued logic
was proved in Pogorzelski (1964).

We noted in Chapter 2 that axiomatic derivation systems, rather than natural deduction
derivation systems, are the norm in fuzzy logic. We can now say that the lack of a Deduction
Theorem means that standard natural deduction systems, in which conditionals are produced by
assuming the antecedent, deriving the consequent, and then concluding that the corresponding
conditional follows, are not possible in FuzzyL or in any other system for which the Deduction
Theorem fails as it does here.
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To see that the only if part holds in F�LA as well, assume that there is a

derivation of Q from P:

1 P Assumption

2 R1

3 R2

. . .

k+1 Rk

k+2 Q

We’ll show how to construct a new derivation, without assumptions, in which

each of the formulas S from the previous derivation appears in a conditional

P → (P → (P → ( . . . → (P → S) . . . ) with some finite number of antecedent P’s—

for then we can conclude that in particular this holds true for the last formula,

Q. For simplicity, we assume that the given derivation does not use any derived

axioms or rules. We begin our new derivation (which may use derived axioms

and rules) with

1 P → P F�LD7, with P / P

For each of the formulas Ri that is an axiom, we include the following lines in

the new derivation:

j Ri axiom number

j+1 Ri → (P → Ri) F�L1, with Ri / P, P / Q

j+2 P → Ri j, j+1 MP

If a formula Ri was derived using Modus Ponens, then there were earlier for-

mulas Re and Re → Ri in the given derivation from which Ri was derived. In

our new derivation we will already have earlier formulas P → (P → (P → ( . . . →
(P → Re) . . . ) with a finite number m of antecedent P’s and P → (P → (P →
( . . . → (P → (Re → Ri)) . . . ) with a finite number n of antecedent P’s. We use

TRAN n times to derive Re → (P → (P → ( . . . → (P → (P → Ri)) . . . ) from the

latter formula, and then we use GHS to derive P → (P → (P → ( . . . → (P →
Ri) . . . ), with m+n antecedent P’s, from the former formula and this new one

(both TRAN and GHS are shown to be derivable in F�LA in Exercise 1).

13.2 A Pavelka-Style Derivation System for Fuzzy�L

We will now add atomic formulas that stand for truth-values to the language of

Fuzzy�L.5 When we did this for �L3, we included a name for each of the three truth-

values. However, in the case of Fuzzy�L we have an infinite number of truth-values.

5 The resulting system FLPA is formulated as in Novák, Perfilieva, and Močkoř (1999). They use
simplifications of Pavelka’s formulation developed by Hájek (1995a, 1995b).
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Recall that our language already has infinitely many atomic formulas, since we can

subscript our sentence letters with any integer. So adding another infinite supply of

atomic formulas that name truth-values seems unproblematic. However, there is a

complication: there are uncountably many truth-values in the unit interval of truth-

values [0. .1].6 This means that in order to name every truth-value in the unit interval

we would need to add uncountably many atomic formulas to the language. Why

do we care about this? Well, the major issue is that many standard and important

metatheoretic proof techniques for logical systems assume that the language of

those systems is countable.

We will therefore introduce atomic formulas to name only a countably infinite

subset of values in [0. .1]. The standard subset that is used for this purpose is the

set Rat of rational numbers in the unit interval, numbers that can be expressed as

fractions with integral numerators and denominators such as 1/2, 2/5, and 599/6432.

0 and 1 are included here, since 0 is 0/n for any integer n, and 1 is 1/1 (or n/n for

any positive, nonzero n).7 We will call the system that results from adding to the

language of Fuzzy�L an atomic formula that denotes each value in Rat, RFuzzy�L. Our

atomic formulas will be boldface fractional expressions, such as, 1/2 and 599/6432,

except that we will denote 0 and 1 with the boldface numerals 0 and 1. Note that

there are infinitely many fractions that generate each rational number, for example,
1/2 = 2/4 = 3/6 = 4/8 = 5/10 = . . . . We will always use the expression with the smallest

numerator, so for example 1/2 will be the unique atomic formula that we use to

denote 1/2.

The graded axiomatic system F�LPA contains �Lukasiewicz’s axioms F�L1–F�L4, all

with the grade 1 and renamed to reflect the fact that we are now working in a

Pavelka-style system:

F�LP1. [P → (Q → P), 1]

F�LP2. [(P → Q) → ((Q → R) → (P → R)), 1]

F�LP3. [(¬P → ¬Q) → (Q → P), 1]

F�LP4. [((P → Q) → Q) → ((Q → P) → P), 1]

In addition, there are infinitely many (countably infinitely many) axioms, graded

with 1, relating the truth-values under the conditional and negation operations:

F�LP5.1. Includes every graded formula [(m → n) → p, 1] where m, n, and p are

atomic formulas denoting rational truth-values m, n, and p in the unit interval

such that p = min (1, 1−m + n)

F�LP5.2. Includes every graded formula [p → (m → n), 1] where m, n, and p are

as in F�LP5.1

6 See the Appendix for a definition of uncountability and a proof that there are uncountably many
truth-values in the unit interval.

7 See the Appendix for a proof that the set Rat is countable.
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F�LP6.1. Includes every graded formula [¬m → p, 1] where m and p are atomic

formulas denoting rational truth-values m and p such that p = 1−m

F�LP6.2. Includes every graded formula [p → ¬m, 1] where m and p are as in

F�LP6.1.

Some of these new axioms are

[(1 → 1) → 1, 1]

[1 → (1 → 1), 1]

[(1/2 → 3/4) → 1, 1]

[1 → (1/2 → 3/4), 1]

[(1/2 → 1/3) → 5/6, 1]

[5/6 → (1/2 → 1/3), 1]

[¬1 → 0, 1]

[0 → ¬1, 1]

[¬1/2 → 1/2, 1]

[1/2 → ¬1/2, 1]

[3/5 → ¬2/5, 1]

[¬2/5 → 3/5, 1]

We also add the special axiom schema

F�LP7. Includes [m, m] for any rational value m in the unit interval,

where m is the atomic formula that denotes the value m

and the truth-value constant introduction rule:

TCI. From [P, m] infer [m → P, 1],

where m is the atomic formula that denotes the value m.

The graded Modus Ponens rule for F�LPA is

MP. From [P, m] and [P → Q, n], infer [Q, p]

where p is the result of applying the �Lukasiewicz bold conjunction operation

to m and n, i.e., p = max (0, m + n−1)

To understand the graded value p inferred for Q, recall the Adjointness Condition

from Chapter 11 for a t-norm tn and its corresponding residuation operation ⇒:

m tn n ≤ p if and only if m ≤ n ⇒ p, for all m, n, p ∈ [0. .1]

This condition defines the value produced by the residuation operation. The

inequalities in the Adjointness Condition can be restated thus:

the value p is at least m tn n if and only if the value n ⇒ p is at least m

or:

the value p is at least the value m tn n, where n ⇒ p is at least m
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When the t-norm and residuation operations are �Lukasiewicz’s bold conjunction

and conditional, this condition entails:

the value p of Q is at least the value that results from applying the bold conjunc-

tion operation to the least value m that P → Q might have and the least value n

that P might have

or:

if the value of P is at least n and the value of P → Q is at least m, then the value

p of Q is at least max (0, m + n−1).

And this is the formula used in the graded Modus Ponens rule.

Before proceeding to derivations, we pause to address an important issue raised

by our specification of the axioms F�LP5.1, F�LP5.2, F�LP6.1, and F�LP6.2 relating truth-

values under the operations. We said in F�LP5.1, for example: where m, n, and p

are atomic formulas denoting rational truth-values m, n, and p in the unit interval

such that p = min (1, 1−m + n). The issue is, Given any pair of rational truth-values

m and n from the unit interval, will the value p defined as (1, 1−m + n) also be a

rational value from the unit interval? The answer is yes, and proof is left as exercise.

Similarly, we would like to be certain that if m is a rational value in the unit interval

then so is 1−m. Proof of this latter claim, which is also true, is left as an exercise.

The following derivation produces a graded formula asserting that the Law of

Excluded Middle using bold disjunction has at least the value 1 in RFuzzy�L. We

reexpress A ∇¬A as ¬A → ¬A, since we define P ∇ Q as ¬P → Q.

1 [¬A → ¬A, 1] F�LPD7, with ¬A / P

Note that we have used an axiom shown to be derivable in F�LA and given it the

graded value 1. All axioms derivable in F�LA may be used as derived axioms in F�LPA

with graded value 1, since they are derivable in F�LPA from axioms, all of which have

graded value 1—and the rules of F�LPA always preserve the value 1. For a similar

reason, all rules derivable in F�LA may be used in F�LPA with all of the grades set to 1

(we may want to tune the grades more finely, but in that case we need to produce a

derivation justifying the fine-tuning, as we will do shortly).

Recall from Chapter 6 that a formula of the form n → P, where n is an atomic

formula denoting the truth-value n, means the truth-value of P is at least n, and a

formula of the form P → n means: the truth-value of P is at most n. The following

derivation, with all formulas graded with 1, establishes the theoremhood (in F�LPA)

of a formula claiming that if Q has at least the value 9/10 then P → Q also has at least

the value 9/10:

1 [(9/10 → Q) → (P → (9/10 → Q)), 1] F�LP1, with 9/10 → Q / P, P / Q

2 [(P → (9/10 → Q)) → (9/10 → (P → Q)), 1] F�LPD6, with P / P, 9/10 / Q, Q / R

3 [(9/10 → Q) → (9/10 → (P → Q)), 1] 1,2 HS
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We can sandwich this into a longer derivation that derives [P → Q, .9] from

[Q, .9]:

1 [Q, .9] Assumption

2 [9/10 → Q, 1] 1, TCI

3 [(9/10 → Q) → (P → (9/10 → Q)), 1] F�LP1, with 9/10 → Q / P, P / Q

4 [(P → (9/10 → Q)) → (9/10 → (P → Q)), 1] F�LPD6, with P / P, 9/10 / Q, Q / R

5 [(9/10 → Q) → (9/10 → (P → Q)), 1] 3,4 HS

6 [9/10 → (P → Q), 1] 2,5 MP

7 [9/10, .9] F�LP7

8 [P → Q, .9] 6,7 MP

The following derivation establishes that if P has at most the value 1/3 then P → Q

has at least the value 2/3:

1 [(P → 1/3, 1] Assumption

2 [¬1/3 → ¬P, 1] 1, GCON

3 [2/3 → ¬1/3,1] F�LP6.2

4 [2/3 → ¬P, 1] 2,3 HS

5 [(2/3 → ¬P) → ((¬P → (P → Q)) →
(2/3 → (P → Q)))]

F�LP1, with 2/3 / P, ¬P / Q,

P → Q / R

6 [(¬P → (P → Q)) → (2/3 → (P → Q)), 1] 4,5 MP

7 [¬P → (P → Q), 1] F�LPD1, with P / P, Q / Q

8 [2/3 → (P → Q), 1] 7,8 MP

9 [2/3, 2/3] F�LP7

10 [P → Q, 2/3] 8,9 MP

(When possible, we list the values grading formulas in derivations as decimal reals

to distinguish clearly between the values and their names that occur within the

formulas; when it isn’t possible, as in the case of 2/3 in the preceding derivation, we

use a fraction.)

If we are analyzing arguments with bold conjunctions, as we will be in Chap-

ter 15, a useful derived rule is

BCI (Bold Conjunction Introduction). From [P, m] and [Q, n] infer [P & Q, p]

where p = max (0, m + n−1).

In our justification we’ll use the derived rule

HS. From [P → Q, m] and [Q → R, n] infer [P → R, p]

where p = max (0, m + n−1)
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whose derivation is assigned as an exercise. We’ve rewritten P & Q as ¬(P → ¬Q):

1 [P, m] Assumption

2 [Q, n] Assumption

3 [P → ((P → ¬Q) → ¬Q), 1] F�LPD3, with P / P, ¬Q / Q

4 [(P → ¬Q) → ¬Q, m] 1,3 MP

{note that max (0, m + 1−1) = m}

5 [¬¬(P → ¬Q) → (P → ¬Q), 1] F�LPD8, with P → ¬Q / P

6 [¬¬(P → ¬Q) → ¬Q, m] 4,5 HS

7 [(¬¬(P → ¬Q) → ¬Q) → (Q → ¬(P → ¬Q)), 1] F�LP3, with ¬(P → ¬Q) / P, Q / Q

8 [(Q → ¬(P → ¬Q)), m] 6,7 MP

9 [¬(P → ¬Q), max (0, m + n−1)] 2,8 MP

A related derived rule for weak conjunction is

WCI (Weak Conjunction Introduction). From [P, m] and [Q, n] infer [P ∧ Q, p]

where p = min (m, n)

To justify this, we first derive a helping axiom:

F�LPD18. [(P → Q) → (((P → R) → S) → ((Q → R) → S)), 1]

Justification:

1 [(((Q → R) → (P → R)) → (((P → R) → S) →
((Q → R) → S))) →

((P → Q) → (((P → R) → S) → ((Q → R) → S))), 1]

F�LPD4, with P / P, Q / Q, R / R,

((P → R) → S) → ((Q → R) → S) / S

2 [((Q → R) → (P → R)) →
(((P → R) → S) → ((Q → R) → S)), 1]

F�LP2, with Q → R / P, P → R / Q, S / R

3 [(P → Q) → (((P → R) → S) → ((Q → R) → S)), 1] 1,2 MP

and the rule

DC. From [P → R, 1] and [Q → R, 1] infer [(P ∨ Q) → R, 1]

(This rule, Disjunctive Consequence, was derived in L3A in Chapter 6, but the deriva-

tion there used L3A’s fourth axiom, which is not an axiom of F�LPA. Do note that axiom

schema F�LP4 makes the following derivation of DC simpler here than it was in L3A,
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where we used DC to derive the F�LP4 formula ((P → Q) → Q) → ((Q → P) → P) as a

derived axiom schema.) Recall that P ∨ Q is defined as (P → Q) → Q:

1 [P → R, 1] Assumption

2 [Q → R, 1] Assumption

3 [(P → R) → (((P → Q) → Q) → ((R → Q) → Q)), 1] F�LPD18, with P / P, R / Q, Q / R, Q / S

4 [((R → Q) → Q)) → ((Q → R) → R)), 1] F�LP4, with R / P, Q / Q

5 [(P → R) → (((P → Q) → Q) → ((Q → R) → R)), 1] 3,4 GHS

6 [((P → Q) → Q) → ((Q → R) → R), 1] 1,5 MP

7 [(Q → R) → (((P → Q) → Q) → R), 1] 6, TRAN

8 [((P → Q) → Q) → R, 1] 2,7 MP

To justify WCI, in which we rewrite P ∧ Q as ¬((¬P → ¬Q) → ¬Q), we consider

two cases: either m ≤ n or n < m. In the former case, we begin the derivation

with

1 [P, m] Assumption

2 [Q, n] Assumption

3 [m → P, 1] 1, TCI

4 [n → Q, 1] 2, TCI

5 [1 → (m → n), 1] F�LP5.1

{This is an instance of F�LP5.1 because of the assumption in this

case that m ≤ n}

6 [1, 1] F�LP7

7 [m → n, 1] 5,6 MP

8 [m → Q, 1] 4,7 HS

where m stands for the atomic formula that denotes the value m and n stands for

the atomic formula that denotes the value n. Because m ≤ n in this case, m = min

(m, n) and so we can rewrite the preceding as

1 [P, m] Assumption

2 [Q, n] Assumption

3 [min (m, n) → P, 1] 1, TCI

4 [n → Q, 1] 2, TCI

5 [1 → (min (m, n) → n), 1] F�LP5.1

6 [1, 1] F�LP7

7 [min (m, n) → n, 1] 5,6 MP

8 [min (m, n) → Q, 1] 4,7 HS

(where min (m, n) is standing in for the atomic formula whose value is min (m, n))

In the case where n < m, we begin the derivation with
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1 [P, m] Assumption

2 [Q, n] Assumption

3 [min (m, n) → Q, 1] 2, TCI

4 [m → P, 1] 1, TCI

5 [1 → (min (m, n) → m), 1] F�LP5.1

6 [1, 1] F�LP7

7 [min (m, n) → m, 1] 5,6 MP

8 [min (m, n) → P, 1] 4,7 HS

In either case the derivation continues (with {x, y} meaning line x if we began the

first way, and line y if we began the second way):

9 [¬P → ¬min (m, n), 1] {3, 8} GCON

10 [¬Q → ¬min (m, n), 1] {8, 3} GCON

11 [((¬P → ¬Q) → ¬Q) → ¬min (m, n), 1] 9,10 DC

12 [¬¬((¬P → ¬Q) → ¬Q) → ¬min (m, n), 1] 11, DN

13 [min (m, n) → ¬((¬P → ¬Q) → ¬Q), 1] 12, GCON

14 [min (m, n), min(m, n)] F�LP7

15 [¬((¬P → ¬Q) → ¬Q), min(m, n)] 13,14 MP

In Chapter 11 we noted that the conclusion J of the argument

A

A → B

B → C

C → D

D → E

E → F

F → G

G → H

H → I

I → J

J

has the value 0 when A has the value .9 and each of the conditional premises has the

value .9. We can capture this in F�LPA. First, we’ll establish that when A has at least

the value .9 and each of the conditional premises has at least the value .9, then J has

at least the value 0. We do note that the claim that J has at least the value 0 follows

immediately from the derivable axiom

F�LPD19: [P, 0] for any formula P
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Justification:

1 [1, 1] F�LP7

2 [1 → (¬P → 1), 1] F�LP1, with 1 / P, ¬P / Q

3 [¬P → 1, 1] 1,2 MP

4 [1 → ¬¬1, 1] F�LPD3, with 1 / P

5 [¬P → ¬¬1, 1] 3,4 HS

6 [¬1 → P, 1] 5, GCON

7 [0 → ¬1, 1] F�LP6.1

8 [0 → P, 1] 6,7 HS

9 [0, 0] F�LP7

10 [P, 0] 8,9 MP

but we produce a longer derivation here in order to draw some more general con-

clusions:

1 [A, .9] Assumption

2 [A → B, .9] Assumption

3 [B → C, .9] Assumption

4 [C → D, .9] Assumption

5 [D → E, .9] Assumption

6 [E → F, .9] Assumption

7 [F → G, .9] Assumption

8 [G → H, .9] Assumption

9 [H → I, .9] Assumption

10 [I → J, .9] Assumption

11 [B, .8] 1,2 MP

{max (0, .9 + .9−1) = .8; similar comment for remaining steps}

12 [C, .7] 3,11 MP

13 [D, .6] 4,12 MP

14 [E, .5] 5,13 MP

15 [F, .4] 6,14 MP

16 [G, .3] 7,15 MP

17 [H, .2] 8,16 MP

18 [I, .1] 9,17 MP

19 [J, 0] 10,18 MP

Now, this derivation shows only that J has at least the value 0. The conclusion that J

has at least the value 0 is in fact consistent with a stronger claim: that J has at least

the value .1, and even a much stronger claim: that J has at least the value 1! Now,

because of the soundness of F�LPA (more on this later), we know that there is no

derivation from the graded premises to these stronger conclusions since we know

from Chapter 11 that the argument is .1-degree-valid. But keep in mind the general

point, which we may restate as: the claim that J has at least the value 0 does not
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entail that it has at most the value 0. If we want to support the latter claim in F�LPA,

we will need a derivation with that claim as its conclusion. We will produce such a

derivation in a moment.

But first, note that if we had ended the derivation at line 18 we would have a

nontrivial conclusion about I (in contrast with the trivial conclusion about J on line

19: trivial because every formula has at least the value 0). The derivation ending at

line 18 shows that if each of A, A → B, B → C, . . . , H → I has at least the value .9, then

I must have at least the value .1. So even though our longer derivation establishes

a trivial conclusion, the “subconclusions” reached along the way and used in

subsequent reasoning in the derivation are not themselves trivial. This, by the way,

meshes with what we noted about Modus Ponens in Chapter 11: that longer chains

of Modus Ponens reasoning have lower n-degree-validities than do shorter ones.

We will now produce a derivation that shows that when A and each of the

conditional premises have at most the value .9, the conclusion J has (at most) the

value 0. We introduce two derived rules to capture repeated inference patterns in

our derivation. The first is

CV (Consequent Value). From [P →m, 1], [Q →m, 1] and [(P → Q) → n, 1],

infer [Q → ¬(n → ¬m),1]

The derived rule does not require that m and n be atomic formulas denoting rational

values—in fact we can use any formula in their place—but we shall only be using

this rule when atomic formulas denoting rational values are used in place of m and

n, hence the notation and the name. Given, for example, [A → 9/10, 1], [B → 9/10, 1],

and [(A → B) → 9/10, 1], the rule allows us to derive [B → ¬(9/10→ ¬9/10), 1]. Once we

do this, we shall use a second derived rule to simplify the conditional containing the

names of truth-values to a single truth-value so that from [B → ¬( 9/10→ ¬9/10), 1]

we will be able to derive [B → 9/10, 1]. Here’s the derivation justifying CV:

1 [P →m, 1] Assumption

2 [Q →m, 1] Assumption

3 [(P → Q) →n, 1] Assumption

4 [(P →m) → ((m → Q) → (P → Q)), 1] F�LP2, with P / P, m / Q, Q / R

5 [(m → Q) → (P → Q), 1] 1,4 MP

6 [(m → Q) →n, 1] 3,5 HS

7 [(¬Q → ¬m) →n, 1] 6, GCON

8 [n → ((n → ¬m) → ¬m), 1] F�LPD3, with n / P, ¬m / Q

9 [(¬Q → ¬m) → ((n → ¬m) → ¬m), 1] 7,8 HS

10 [(n → ¬m) → ((¬Q → ¬m) → ¬m), 1] 9, TRAN

11 [((¬Q → ¬m) → ¬m) → ((¬m → ¬Q) → ¬Q), 1] F�LP4, with ¬Q / P, ¬m / Q

12 [(n → ¬m) → ((¬m → ¬Q) → ¬Q), 1] 10,11 HS

13 [¬m → ¬Q, 1] 2, GCON

14 [(n → ¬m) → ¬Q, 1] 12,13 GMP

15 [¬¬(n → ¬m) → ¬Q, 1] 14, DN

16 [Q → ¬(n → ¬m), 1] 15, GCON
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Note that we used several derived rules in this derivation, rules that have been shown

in Section 13.1 and Exercise 1 to be derivable in F�LA. In each case the derived rule

has been applied to formulas with grade 1 and the derived formula also has grade 1,

which we pointed out earlier is always allowed since the axioms used in the rule

derivations in F�LA have grade 1 in F�LPA and the rule MP preserves grade 1 in F�LPA.

The second derived rule, for deriving a simplified value, is

VS (Value Summary). From [m → ¬n, 1], [p → (q →m), 1] and [¬r →p, 1],

infer [¬(q → ¬n) →r, 1]

This will allow, for example, the move from [B → ¬( 9/10 → ¬9/10), 1] to [B → 9/10, 1].

It is left as an exercise to show that that this rule is derivable in F�LPA. As in the

previous case, any atomic formulas can be used in place of m, n, p, q, and r—but

since we’ll be using this rule when these are all formulas denoting rational values,

we choose the name and notation appropriate for this intended use.

Here, then, is the derivation showing that when A and each of the conditional

premises in the earlier argument have at most the value .9, the conclusion J has at

most the value 0.8 The basic strategy is that once we have placed an upper bound n

on the antecedent of one of the conditional premises, then we then derive an upper

bound of n−1/10 on the consequent of that premise, and hence on the antecedent of

the next conditional premise in the chain—we can derive this upper bound because

the greatest value that m can be when the formula (n → m) → 9/10 is true is 1/10 less

than n. (The reader will be asked to explain this in an exercise.) Having an upper

bound of 9/10 for A on line 1, we can then derive an upper bound for B that is 1/10

less by first deriving an upper bound of 9/10 for B (lines 11–12), and then an upper

bound of 8/10 (lines 13–18), and so on. . . .

1 [A → 9/10, 1] Assumption

2 [(A → B) → 9/10, 1] Assumption

3 [(B → C) → 9/10, 1] Assumption

4 [(C → D) → 9/10, 1] Assumption

5 [(D → E) → 9/10, 1] Assumption

6 [(E → F) → 9/10, 1] Assumption

7 [(F → G) → 9/10, 1] Assumption

8 [(G → H) → 9/10, 1] Assumption

9 [(H → I) → 9/10, 1] Assumption

10 [(I → J) → 9/10, 1] Assumption

11 [B → (A → B), 1] F�LP1, with B / P, A / Q

12 [B → 9/10, 1] 2,11 HS

13 [B → ¬(9/10 → ¬9/10), 1] 1,2,12 CV

8 I am grateful to Petr Hájek (personal correspondence dated March 1, 2005) for helping me to
produce this derivation. It was he who suggested the derivation steps involved in the CV rule.
Any inelegance is mine, not his, since he showed me these steps using the bold connectives of
Fuzzy�L rather than just the two connectives—negation and implication—that I have chosen to
include in F�LPA.
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14 [1/10 → ¬9/10, 1] F�LP6.2

15 [2/10 → (9/10 → 1/10), 1] F�LP5.2

16 [¬8/10 → 2/10, 1] F�LP6.1

17 [¬(9/10 → ¬9/10) → 8/10, 1] 14,15,16 VS

18 B → 8/10, 1] 13,17 HS

19 [C → (B → C), 1] F�LP1, with C / P, B / Q

20 [C → 9/10, 1] 3,19 HS

21 [C → ¬(9/10 → ¬9/10), 1] 3,12,20 CV

22 [C → 8/10, 1] 17,21 HS

23 [C → ¬(9/10 → ¬8/10), 1] 3,18,22 CV

24 [2/10 → ¬8/10, 1] F�LP6.2

25 [3/10 → (9/10 → 2/10), 1] F�LP5.2

26 [¬7/10 → 3/10, 1] F�LP6.1

27 [¬(9/10 → ¬8/10) → 7/10, 1] 24,25,26 VS

28 [C → 7/10, 1] 23,27 HS

29 [D → (C → D), 1] F�LP1, with D / P, C / Q

30 [D → 9/10, 1] 4,29 HS

31 [D → ¬(9/10 → ¬9/10), 1] 4,20,30 CV

32 [D → 8/10, 1] 17,31 HS

33 [D → ¬(9/10 → ¬8/10), 1] 4,22,32 CV

34 [D → 7/10, 1] 27,33 HS

35 [D →¬(9/10 → ¬7/10), 1] 4,28,34 CV

36 [3/10 → ¬7/10, 1] F�LP6.2

37 [4/10 → (9/10 → 3/10), 1] F�LP5.2

38 [¬6/10 → 4/10, 1] F�LP6.1

39 [¬(9/10 → ¬7/10) → 6/10, 1] 36,37,38 VS

40 [D → 6/10, 1] 35,39 HS

41 [E → (D → E), 1] F�LP1, with E / P, D / Q

42 [E → 9/10, 1] 5,41 HS

43 [E → ¬(9/10 → ¬9/10), 1] 5,30,42 CV

44 [E → 8/10, 1] 17,43 HS

45 [E → ¬(9/10 → ¬8/10), 1] 5,32,44 CV

46 [E → 7/10, 1] 27,45 HS

47 [E → ¬(9/10 → ¬7/10), 1] 5,34,46 CV

48 [E → 6/10, 1] 39,47 HS

49 [E → ¬(9/10 → ¬6/10), 1] 5,40,48 CV

50 [4/10 → ¬6/10, 1] F�LP6.2

51 [5/10 → (9/10 → 4/10), 1] F�LP5.2

52 [¬5/10 → 5/10, 1] F�LP6.1

53 [¬(9/10 → ¬6/10) → 5/10, 1] 50,51,52 VS

54 [E → 5/10, 1] 49,53 HS

. . . . . .

154 [J → 0, 1] 149,153 HS
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where we have continued after line 54 by deriving, for each of the atomic formulas

F through J, the formulas placing respective upper bounds of 4/10, 3/10, 2/10, 1/10,

and 0 on their values. For each atomic formula, we first derive the upper bound we

did for the previous atomic formula, using the earlier formulas with the obvious

substitutions; then we add instances of F�LP6.2, F�LP5.2, and F�LP6.1 that will give

an upper bound that is 1/10 less than the final upper bound for the previous letter.

Again, it should be obvious which instances of F�LP6.2, F�LP5.2, and F�LP6.1 are used in

each case. This derivation, along with the derivation establishing that J has at least

the value 0 when A and each of the conditional premises all have at least the value
9/10, allows us to conclude that J has exactly the value 0 when A and the conditional

premises all have exactly the value 9/10.

The definitions of theoremhood and derivability in the graded Pavelka system

F�LPA are more complicated than in F�LA, for reasons similar to those for the Pavelka

system for L3 in Chapter 6. We say that a formula P is a theorem to degree n in F�LPA

if n is the least upper bound of the values m for which there is a derivation (without

assumptions) of the graded formula [P, m]. As in the three-valued system, there may

be two different values j and k such that there are derivations of the graded formula

[P, j] and of the same formula graded as [P, k]. In this case we want to say that P is a

theorem to at least the greater of the two values (particularly when we recall that for

any formula P, including Fuzzy�L tautologies, there is always a derivation of [P, 0]!).

But unlike in the three-valued case, in F�LPA we may have a single formula for which

there are derivations with an infinite number of different grades, and there may be

no value m that is the largest. For this reason, we define the degree n to which P is

a theorem as the least upper bound of all of those grades.

In a similar vein, we say that a formula P is derivable to degree n from a set �

of graded formulas if n is the least upper bound of the degrees m such that [P, m]

is derivable from the graded formulas in �. It follows from these definitions that in

general we cannot directly establish the degree of theoremhood or derivability of

a formula with a single derivation, since the single derivation does not imply that

there are no other derivations with higher graded values for that formula. Again,

this is most obvious when we recall that any formula can be derived with the graded

value 0: it doesn’t follow that 0 is the highest graded value derivable for that formula.

All that a single derivation can show is that a formula is a theorem, or derivable from

a graded set of formulas, to at least the degree established by the derivation. There

is one exception: if we can derive a formula with graded value 1, then we may

conclude that it is a theorem, or derivable, to degree 1—since no higher degree is

possible.

Special case aside, the fuzzy soundness of F�LPA may sometimes allow us to reason

more generally about degrees of theoremhood and derivability. F�LPA is fuzzy sound

in the following sense: every formula that is a theorem to degree n in F�LPA is a

tautology to degree n in RFuzzy�L, and if a formula P is derivable to degree n in F�LPA

from a graded set � of formulas then n is the greatest lower bound of the values
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that P can have in RFuzzy�L given the graded values of formulas in �.9 In the latter

case, P is a member to degree n of the fuzzy consequence of the fuzzy set in which

each formula of � is a member to the degree indicated by its graded value and all

other formulas are members to degree 0. (We note that the truth-value assignments

for RFuzzy�L are like those for Fuzzy�L except that, in addition, each of the special

formulas added to denote rational truth-values is always assigned the truth-value

that it denotes. This isn’t a surprise, but we need to state it explicitly!)

So, for example, we have produced a derivation showing that A ∨¬A is derivable

in F�LPA (without assumptions) to at least degree .5. Given fuzzy soundness we can

conclude something stronger: because this formula is a .5-tautology fuzzy sound-

ness tells us that there is no derivation of this formula with a higher graded value;

A ∨ ¬A is a theorem to degree .5 in F�LPA. Similarly, we have produced a derivation

showing that J is derivable to at least the degree 0 from the graded formulas [A, .9],

[A → B, .9], [B → C, .9], [C → D, .9], [D → E, .9], [E → F, .9], [F → G, .9], [G → H, .9],

[H → I, .9], and [I → J, .9]. From the fuzzy soundness of the system we can draw

this stronger conclusion: Because the set {A, A → B, B → C, C → D, D → E, E → F,

F → G, G → H, H → I, I → J} .1-degree-entails J, there is no derivation of J from these

graded formulas in which J has a graded value higher than 0.

The converse of fuzzy soundness holds as well: F�LPA is fuzzy complete for

RFuzzy�L. F�LPA is fuzzy complete in the sense that every formula that is a tautol-

ogy to degree n in RFuzzy�L is a theorem to degree n in F�LPA, and a formula P is

derivable to degree n from a graded set � of formulas if n is the greatest lower bound

of the values that P can have in RFuzzy�L given the graded values of the formulas

in �.

F�LPA is also sound in the traditional sense: if there is a derivation (without

assumptions) of the graded formula [P, 1] then P is a tautology of RFuzzy�L, and if

a formula P is derivable in F�LPA with graded value 1 from a set � of formulas all of

which have the graded value 1, then the (ungraded) set of formulas in � entails the

formula P in RFuzzy�L. And the system is weakly complete in the traditional sense:

for every tautology P of RFuzzy�L there is a derivation of P (without assumptions)

with graded value 1 in F�LPA. Strong completeness fails for the same reason that it

failed for our non-Pavelka axiomatic system F�LA for Fuzzy�L: semantic entailment is

not compact in Fuzzy�L. On the other hand, traditional completeness does hold in

F�LPA for entailments from finite sets: if a finite set of formulas � entails the formula

P in RFuzzy�L, then there is a derivation in F�LPA of [P,1], from the set consisting of

each of the formulas in � with graded value 1.

There is one possibly confusing relationship between fuzzy completeness and

traditional completeness for F�LPA. In the case of fuzzy completeness, we have

strong fuzzy completeness: completeness holds for entailments from infinite sets

as well as entailments from finite sets. Why doesn’t it follow that we have strong

9 See Hájek (1998b, pp. 80–83), for a proof of these claims and of the claims about fuzzy complete-
ness, traditional soundness, and traditional weak completeness later.
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traditional completeness as well? Consider our earlier counterexample to compact-

ness: the set � consisting of the infinite sequence of formulas (¬P → P) → Q,

(¬P → (¬P → P)) → Q, (¬P → (¬P → (¬P → P))) → Q, (¬P → (¬P → (¬P →
(¬P → P)))) → Q, . . . semantically entails the formula Q, but Q is not entailed by any

finite subset of �. Strong fuzzy completeness tells us that the least upper bound of

the graded values with which Q is derivable is 1 when the formulas in the set � are

themselves graded with the value 1. Then how can this semantic entailment be a

counterexample to strong traditional completeness for F�LPA, as we just claimed?

The answer is that there is no derivation of Q in F�LPA with exactly the graded

value 1 from a finite subset of formulas from � with the graded value 1, but there

are derivations with values that approach as close to 1 as you can without actually

getting there, just as there are n-entailments of Q from finite subsets of � in RFuzzy�L

with n as close to 1 as you can be without actually getting there (this will be examined

in the exercises). The least upper bound of a set of values—which is featured in the

definition of fuzzy completeness—need not be a member of that set, and in this

case it is not. So F�LPA can be strongly fuzzy complete but only weakly traditionally

complete, since strong traditional completeness would require a derivation of Q

with exactly the value 1.

As a consequence of the strong fuzzy completeness of F�LPA we have fuzzy com-

pactness. Recall that a fuzzy set of the formulas of a language is a fuzzy set to which

every formula of the language belongs to some degree (including possibly degree

0). We will say that a fuzzy set of formulas � is a finite base of a fuzzy set of formulas

� if a finite subset of the formulas that are members of � to a degree greater than 0 are

members of � to the same degree (as in �), and all other formulas of the language

are members of � to degree 0. Here is the result:

Result 13.4: Fuzzy�L and RFuzzy�L are fuzzy compact: for every formula P and

fuzzy set of formulas �, P is a member to degree n of the fuzzy consequence of

� if and only if P is a member to degree n of the fuzzy consequence of at least

one finite base of �.

Degree-entailment and n-degree-entailment are not standardly studied in con-

nection with fuzzy Pavelka derivation systems, where fuzzy consequence is the pre-

dominant semantic relation. Unlike entailment simpliciter and fuzzy consequence,

these semantic concepts talk about all possible combinations of values that the

members of a set � of formulas might have. In the case of entailment simpliciter, we

are only interested in what happens when all of the members of � have the value 1.

For fuzzy consequence, we are only interested in one combination of values for the

formulas in �. But for degree-validity and n-degree-validity we are interested in the

relationship between the values that the members of � might have, no matter what

those values might be, and the value that the entailed formula has.

However, just as we can define degree-entailment in terms of fuzzy conse-

quence—a set of formulas � degree-entails the formula P if for every n in [0. .1],

P is a member to at least degree n of the fuzzy consequence of each fuzzy set in
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which the greatest lower bound of the values of members of � is n and all other

formulas of Fuzzy�L have the value 0—we can define a syntactic counterpart to

degree-entailment as: P is degree-derivable from a set of formulas � if for every n in

[0. .1], [P, n] is derivable from each set �* in which the formulas of � have all been

graded with values whose greatest lower bound is n. In the context of three-valued

logic, we were able to produce derivations establishing degree-validity because we

only had a finite number of combinations of values to consider. But in general, no

finite number of derivations can establish a claim about all possible combinations

of values for some set of formulas in RFuzzy�L (an exception to this general rule is

the case where we can establish that P is a theorem to degree 1, for here it doesn’t

matter what graded values may be associated with members of �).

Before closing this section we would like to address the question, In RFuzzyL

and the axiomatic system F�LPA we’ve included constants to name only the ratio-

nal truth-values in the unit interval so that our supply of atomic formulas will

be countable, but do we lose anything important by failing to include constants

denoting the nonrational members of [0. .1]? Well, we won’t be able to prove

things like if P has some specific irrational value i and Q has a larger irrational

value j, then P → Q has the value 1. Is this a significant loss? Is it important to

be able to state explicitly relationships between irrational degrees of membership

in fuzzy sets? As a first answer, we note that in our analyses of vagueness all of

our examples have used rational truth-values, and it is not clear that issues of

vagueness require even finer distinctions involving irrational truth-values (in fact,

some have claimed that only finitely many truth-values are required for issues of

vagueness).10

Second, Petr Hájek, Jeff Paris, and John Shepherdson (2000) have proved an

important relevant theorem. Let RealFuzzy�L be the logical system Fuzzy�L with the

addition of atomic formulas naming each value, irrational and rational alike, in

the unit interval [0. .1]. So RealFuzzy�L is an extension of Rfuzzy�L in the sense that

the formulas of the latter are a subset of those of the former. Let RealF�LPA be the

Pavelka-style axiomatic system that is like F�LPA except that it also includes axioms

analogous to F�LP5.1, F�LP5.2, F�LP6.1, F�LP6.2, and F�LP for all of the real values in [0.

.1], not just the rational ones. RealF�LPA is thus an extension of F�LPA in the sense

that every derivation in F�LPA is also a derivation in RealF�LPA. Hájek and colleagues’

theorem states that RealF�LPA is a conservative extension of F�LPA:

Conservative Extension Theorem for F�LPA: If a formula P of Rfuzzy�L is a theorem

to degree n of RealF�LPA then it is also a theorem to degree n of F�LPA, and if a

formula P of Rfuzzy�L is derivable to degree n from a graded set of Rfuzzy�L

formulas in RealF�LPA then P is also derivable to degree n from that graded set

of formulas in F�LPA.

10 E.g., Morgan and Pelletier (1977). They suggest that this is a reason for sticking to finitely many-
valued logics. We won’t go that far, since fuzzy logics are interesting in their own right.
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That is, if we restrict our attention to rational truth-values then everything we can

demonstrate in RealF�LPA can already be demonstrated in F�LPA; we do not need the

additional power of the full real-valued system. So if it is correct that we lose little

of interest on the score of vagueness by restricting our attention to rational truth-

degrees, then it is also correct that we lose little by using the system F�LPA rather

than RealF�LPA.

13.3 An Alternative Axiomatic System for Tautologies and Validity
in Fuzzy�L Based on BL-Algebras

We will briefly present axiomatic systems for product and Gödel fuzzy propositional

logics in Sections 13.4 and 13.5. The systems, developed in Hájek (1998b), are exten-

sions of his “basic” fuzzy logic axiomatic system. In this section we present the basic

system, which we’ll call BLA, and explain how BLA can be expanded to an axiomatic

system for �Lukasiewicz fuzzy logic.

BLA axiomatizes the basic properties of continuous t-norms and their related

residuum operations as captured in BL-algebras. In addition to t-norm and

residuum operators & and → we also introduce a special constant formula 0, which

always has the value 0. The axiom schemata for BLA are:

BL1. (P → Q) → ((Q → R) → (P → R))

BL2. (P & Q) → P

BL3. (P & Q) → (Q & P)

BL4. (P & (P → Q)) → (Q & (Q → P))

BL5. (P → (Q → R)) → ((P & Q) → R)

BL6. ((P & Q) → R) → (P → (Q → R))

BL7. ((P → Q) → R) → (((Q → P) → R) → R)

BL8. 0 → P

and the single inference rule is, once again, Modus Ponens.

BL1 should come as no surprise, since we have repeatedly seen it in our

axiomatic systems. BL2 tells us that we can infer the first conjunct from a t-norm

conjunction, and BL3, which formally captures the commutativity of the t-norm

operation, will also allow us to infer the second conjunct—we’ll see this in the

derivation later. Turning to BL4, we recall that weak conjunction P ∧ Q in a fuzzy

system is standardly defined as P & (P → Q), so BL4 formally captures the commu-

tativity of weak conjunction. BL5 and BL6 capture the equivalence of the formulas

P → (Q → R) and (P & Q) → R. For BL7, note that if the conditional → denotes a

residuum operation then for any pair of formulas P and Q, either P → Q or Q → P

will have the value 1. So if each of these implies some formula R, then we may

conclude that R has the value 1 as well. BL8 says that 0 is the least truth-value.

It may be surprising that BLA has no axioms with a negation operator. But recall

that negation is standardly defined in fuzzy logic as ¬P =def P → 0, so that is the
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definition that we use here. Here is an example of a derivation of the negated for-

mula ¬0, which is defined to be 0 → 0:

1 0 → 0 BL8, with 0 / P

and here is a derivation of the formula P → ¬¬P, which is defined to be P → ((P →
0) → 0):

1 ((0 → P) & (P → 0)) → ((P → 0) & (0 → P)) BL3, with 0 → P / P, P → 0 / Q

2 ((P → 0) & (0 → P)) → (P → 0) BL2, with P → 0 / P, 0 → P / Q

3 ((0 → P) & (P → 0)) → (P → 0) 1,2 HS

4 (((0 → P) & (P → 0)) → (P → 0)) →
((0 → P) → ((P → 0) → (P → 0)))

BL6, with 0 → P / P, P → 0 / Q,

P → 0 / R

5 (0 → P) → ((P → 0) → (P → 0)) 3,4 MP

6 0 → P BL8, with P / P

7 (P → 0) → (P → 0) 5,6 MP

8 ((P → 0) → (P → 0)) → (((P → 0) & P) → 0) BL5, with with P → 0 / P, P / Q, 0 / R

9 ((P → 0) & P) → 0 7,8 MP

10 (P & (P → 0)) → ((P → 0) & P) BL3, with P / P, P → 0 / Q

11 (P & (P → 0)) → 0 9,10 HS

12 ((P & (P → 0)) → 0) → (P → ((P → 0) → 0)) BL6, with P / P, P → 0 / Q, 0 / R

13 P → ((P → 0) → 0) 11,12 MP

We used Hypothetical Syllogism in this proof; it is derived in BLA exactly as it is

derived in F�LA. By virtue of this proof, we have the derived axiom schema

BLD1. P → ¬¬P, or P → ((P → 0) → 0)

The converse formula, ¬¬P → P or ((P → 0) → 0) → 0, is not derivable in BLA.

This is a good thing, since the converse formula is not a tautology in every variety

of fuzzy logic. In particular, it isn’t a tautology in either FuzzyG or FuzzyL.

We said earlier that the system BLA axiomatizes the basic properties of contin-

uous t-norms and their related residuum operations as captured in BL-algebras. We

(and the reader, in some exercises) will show that the algebraic counterparts of the

axioms of BLA all evaluate to unit in every BL-algebra—they are all BL-tautologies—

and that, corresponding to MP, the algebraic rule

If unit ≤ x and unit ≤ x ⇒ y, then unit ≤ y

is true in every BL-algebra, from which it follows that the BL-algebraic expressions

corresponding to theorems of BLA are all BL-tautologies.11

Recall that a BL-algebra is an algebra {L, ∪, ∩, ⊗, ⇒, unit, zero} that meets the

following conditions:

11 The proofs later owe largely to Hájek (1998b). The converse also holds: every expression that
evaluates to unit in every BL-algebra is the algebraic counterpart of a theorem of the axiomatic
system BLA (Hájek 1998b, pp. 49–54).
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i. x ∪ y = y ∪ x, and x ∩ y = y ∩ x (lattice commutation)

ii. x ∪ (y ∪z) = (x ∪ y) ∪ z, and x ∩ (y ∩ z) = (x ∩ y) ∩ z (lattice association)

iii. x ∪ x = x, and x ∩ x = x (lattice idempotence)

iv. x ∪ (x ∩ y) = x, and x ∩ (x ∪ y) = x (lattice distribution)

v. x ∪ zero = x, and x ∩ unit = x (identity for lattice join and meet)

vi. x ⊗ y = y ⊗ x (bold meet commutation)

vii. x ⊗ (y ⊗ z) = (x ⊗ y) ⊗ z (bold meet association)

viii. x ⊗ unit = x (identity for bold meet)

and, defining x ≤ y if and only if x ∩ y = x,

ix. if x ≤ y, then x ⊗ z ≤ y ⊗ z and z ⊗ x ≤ y ⊗ x (bold meet isotonicity)

x. x ⊗ y ≤ z if and only if x ≤ y ⇒ z (adjointness)

xi. x ∩ y = x ⊗ (x ⇒ y)

xii. (x ⇒ y) ∪ (y ⇒ x) = unit

For axiom schema BL1, we will show that for any elements x, y, and z in a BL-

algebra, unit ≤ (x ⇒ y) ⇒ ((y ⇒ z) ⇒ (x ⇒ z)). (BL-i in Section 12.2 of Chapter 12

proved that if unit ≤ x, then unit = x, so it will follow that (x ⇒ y) ⇒ ((y ⇒ z) ⇒
(x ⇒ z)) = unit. We’ll refer to results from Chapter 12 by the numbering used there.)

We’ll help ourselves to the fact that if x = y in a BL-algebra, then x ≤ y, because

lattice orderings are reflexive (x ≤ x).

BL1:

x ⊗ (x ⇒ y) ≤ y (BL-ii: Chapter 12)

(i) (x ⊗ (x ⇒ y)) ⊗ (y ⇒ z) ≤ y ⊗ (y ⇒ z) (bold meet isotonicity)

and

(ii) y ⊗ (y ⇒ z) ≤ z (BL-ii: Chapter 12)

so

(x ⊗ (x ⇒ y)) ⊗ (y ⇒ z) ≤ z (from (i) and (ii) by ≤ transitivity)

((x ⇒ y) ⊗ (y ⇒ z)) ⊗ x ≤ z (bold meet association, commutation)

((unit ⊗ (x ⇒ y)) ⊗ (y ⇒ z)) ⊗ x ≤ z (bold meet identity, association)

(unit ⊗ (x → y)) ⊗ (y ⇒ z) ≤ (x ⇒ z) (adjointness)

unit ⊗ (x ⇒ y) ≤ (y ⇒ z) ⇒ (x ⇒ z) (adjointness)

unit ≤ (x ⇒y) ⇒ ((y ⇒ z) ⇒ (x ⇒ z)) (adjointness)

For axiom schema BL2, we show that unit ≤ (x ⊗ y) ⇒ x:

BL2:

y ∩ unit ≤ y (identity for lattice meet)

y ≤ unit (definition of ≤)

x ⊗ y ≤ x ⊗ unit (bold meet isotonicity)

x ⊗ y ≤ x (bold meet identity)

unit ⊗ (x ⊗ y) ≤ x (bold meet identity, commutation)

unit ≤ (x ⊗ y) ⇒ x (adjointness)
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For BL5, we show that unit ≤ (x ⇒ (y ⇒ z)) ⇒ ((x ⊗ y) ⇒ z):

BL5:

x ⇒ (y ⇒ z) ≤ (x ⊗ y) ⇒ z (BL-iii: Chapter 12)

unit ⊗ (x ⇒ (y ⇒ z)) ≤ (x ⊗ y) ⇒ z (bold meet identity, commutation)

unit ≤ (x ⇒ (y ⇒ z)) ⇒ ((x ⊗ y) ⇒ z) (adjointness)

For axiom schema BL7, we show that unit ≤ ((x ⇒ y) ⇒ z) ⇒ (((y ⇒ x) ⇒ z) ⇒ z):

BL7:

(((x ⇒ y) ⇒ z) ⊗ (x ⇒ y)) ⊗ ((y ⇒ x) ⇒ z) ≤ ((x ⇒ y) ⇒ z) ⊗ (x ⇒ y)

(since x ⊗ y ≤ x; proof is left as an exercise)

so (i) (((x ⇒ y) ⇒ z) ⊗ ((y ⇒ x) ⇒ z)) ⊗ (x ⇒ y) ≤ ((x ⇒ y) ⇒ z) ⊗ (x ⇒ y)

(bold meet commutation, association)

and (ii) (((x ⇒ y) ⇒ z) ⊗ ((y ⇒ x) ⇒ z)) ⊗ (y ⇒ x) ≤ ((y ⇒ x) ⇒ z) ⊗ (y ⇒ x)

(same reason)

thus (iii) ((((x ⇒ y) ⇒ z) ⊗ ((y ⇒ x) ⇒ z)) ⊗ (x ⇒ y)) ∪ ((((x ⇒ y) ⇒ z) ⊗ ((y ⇒ x) ⇒ z)) ⊗ (y ⇒ x)) ≤
(((x ⇒ y) ⇒ z) ⊗ (x ⇒ y)) ∪ (((y ⇒ x) ⇒ z) ⊗ (y ⇒ x))

(by (i) and (ii) since if x ≤ z and y ≤ w, then x ∪ y ≤ z ∪ w—

proof is left as an exercise)

In addition,

((x ⇒ y) ∩ z) ∩ z = (x ⇒ y) ∩ z (lattice meet idempotence, association)

so (x ⇒ y) ∩ z ≤ z (by definition)

and similarly (y ⇒ x) ∩ z ≤ z

thus ((x ⇒ y) ∩ z) ∪ ((y ⇒ x) ∩ z) ≤ z (since x ≤ z and y ≤ z if and only if x ∪ y ≤ z—proof is left

as an exercise)

and (iv) (((x ⇒ y) ⇒ z) ⊗ (x ⇒ y)) ∪ (((y ⇒ x) ⇒ z) ⊗ (y ⇒ x)) ≤ z

(bold meet commutation, BL-algebra condition (xi))

Therefore

((((x ⇒ y) ⇒ z) ⊗ ((y ⇒ x) ⇒ z)) ⊗ (x ⇒ y)) ∪ ((((x ⇒ y) ⇒ z) ⊗ ((y ⇒ x) ⇒ z)) ⊗ (y ⇒ x)) ≤ z

(from (iii) and (iv), by ≤ transitivity)

(((x ⇒ y) ⇒ z) ⊗ ((y ⇒ x) ⇒ z)) ⊗ ((x ⇒ y) ∪ (y ⇒ x)) ≤ z

(since x ⊗ (y ∪ z) = (x ⊗ y) ∪ (x ⊗ z)—proof is left as

an exercise)

(((x ⇒ y) ⇒ z) ⊗ ((y ⇒ x) ⇒ z)) ⊗ unit ≤ z

(BL-algebra condition (xii))

((x ⇒ y) ⇒ z) ⊗ ((y ⇒ x) ⇒ z) ≤ z (bold meet identity)

(x ⇒ y) ⇒ z ≤ ((y ⇒ x) ⇒ z) ⇒ z (adjointness)

unit ⊗ (x ⇒ y) ⇒ z) ≤ ((y ⇒ x) ⇒ z) ⇒ z

(bold meet identity, commutation)

unit ≤ ((x ⇒ y) ⇒ z) ⇒ (((y ⇒ x) ⇒ z) ⇒ z)

(adjointness)
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We leave it as an exercise to show that the algebraic counterparts of axiom schemata

BL3, BL4, BL6, and BL8 are all BL-tautologies, and that the rule MP, interpreted

algebraically as

If unit ≤ x and unit ≤ x ⇒ y, then unit ≤ y,

is true in every BL-algebra.

We can extend the axiomatic system BLA with one axiom schema to obtain a

system BL�LA that is equivalent (in a sense to be explained later) to the axiomatic

system F�LA for Fuzzy�L:

BL�L9. ¬¬P → P

Note that this explicitly parallels a result presented in Chapter 12: that every BL-

algebra with Double Negation is an MV-algebra (recall that the algebraic structures

corresponding to Fuzzy�L are MV-algebras). We have already shown that the converse

formula to BL�L9 is derivable in the basic system BLA; this additional axiom schema

provides full Double Negation.

We can use the definition of bold conjunction:

P & Q =def ¬(P → ¬Q)

to introduce bold conjunction into F�LA. The systems F�LA and BL�LA are then equiva-

lent in the sense that every theorem of F�LA is a theorem of BL�LA, and vice versa (see

Hájek 1998b, pp. 65–70). Rather than produce examples of derivations in BL�LA, we’ll

illustrate the use of BLA in the following axiomatic systems for Gödel and product

logic.

13.4 An Axiomatic System for Tautologies and Validity in FuzzyG

We obtain an axiomatic system BLGA for FuzzyG by adding the following axiom

schema

BLG9. P →G (P &G P)

to BLA (we exclude the �Lukasiewicz axiom BL�L9), with all of the connectives now

subscripted with G to reflect the fact that we are working in FuzzyG. It was left as

an exercise in Chapter 12 to show that this axiom, interpreted algebraically, is true

in every Gödel algebra. (So are the axioms BL1–BL8, since every Gödel algebra is a

BL-algebra.) BLGA is both sound and strongly complete for FuzzyG (Hajek 1998b,

pp. 101–102). The latter means that all entailments in FuzzyG from infinite, as well

as finite, sets have corresponding derivations in BLGA.

The strong completeness owes to the fact that Gödel fuzzy logic, unlike

�Lukasiewicz fuzzy logic, is compact (Baaz and Zach 1998). So, for example, consider
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our earlier example of a set � consisting of the formula ¬P → Q and the infinitely

many formulas in the series

(¬P → P) → Q

(¬P → (¬P → P)) → Q

(¬P → (¬P → (¬P → P))) → Q

(¬P → (¬P → (¬P → (¬P → P)))) → Q
. . .

We noted that in Fuzzy�L this set, but none of its finite subsets, entails the formula

Q. In FuzzyG (using the FuzzyG negation and conditional) � also entails Q, but so

does at least one finite subset. In fact, the subset consisting of just ¬GP →G Q and

(¬GP →G P) →G Q entails Q, as does every subset that contains ¬GP →G Q and at

least one formula from the infinite series (proof is left as an exercise).

We’ll show that Q is derivable in BLGA from the formulas ¬GP →G Q and

(¬GP →G (¬GP →G P)) → QG. (Note that this is a different example from the entail-

ment mentioned in the previous paragraph—a derivation corresponding to that

entailment is assigned as one of the exercises.) First we derive some useful axiom

schemata.

BLGD2. (P →G ¬GP) →G ¬GP

Justification (where the formula is reexpressed as (P→G (P→G 0)) →G (P→G 0)):

1 (P →G (P →G 0)) →G ((P &G P) →G 0) BLG5, with P / P, P / Q, 0 / R

2 P →G (P &G P) BLG9, with P / P

3 (P →G (P &G P)) →G (((P &G P) →G 0) →G (P →G 0)) BLG1, with P / P, P &G P / Q, 0 / R

4 ((P &G P) →G 0) →G (P →G 0) 2,3 MP

5 (P →G (P →G 0)) →G (P →G 0) 1,4 HS

BLGD3. (P →G Q) →G (¬GQ →G ¬GP)

Justification (where the formula is reexpressed as (P →G Q) →G ((Q →G 0)→G

(P →G 0)):

1 (P →G Q) →G ((Q →G 0)→G (P →G 0) BLG1, with P / P, Q / Q, 0 / R

BLGD4. P →G (Q →G P)

Justification:

1 (P &G Q) →G P BLG2, with P / P, Q / Q

2 ((P &G Q) →G P) →G (P →G (Q →G P)) BLG6, with P / P, Q / Q, P / R

3 P →G (Q →G P) 1,2 MP

TRANS: From P →G (Q →G R), infer Q →G (P →G R).
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Justification:

1 P →G (Q →G R) given

2 (P →G (Q →G R)) →G ((P &G Q) →G R) BLG5, with P / P, Q / Q, R / R

3 (P &G Q) →G R 1,2 MP

4 (Q &G P) →G (P &G Q) BLG3, with Q / P, P / Q

5 (Q &G P) →G R 3,4 MP

6 ((Q &G P) →G R) →G (Q →G (P →G R)) BLG6, with Q / P, P / Q, R / R

7 Q →G (P →G R) 5,6 MP

And here’s the derivation—we omit the subscripted G for readability:

1 ¬P → Q Assumption

2 (¬P → (¬P → P)) → Q Assumption

3 ((¬P → P) → ¬(¬P → P)) → ¬(¬P → P) BLGD2, with ¬P → P / P

4 P → (¬P → P) BLGD4, with P / P, ¬P / Q

5 (P → (¬P → P)) → (¬(¬P → P) → ¬P) BLGD3, with P / P, ¬P → P / Q

6 ¬(¬P → P) → ¬P 4,5 MP

7 ((¬P → P) → ¬(¬P → P)) → ¬P 3,6 HS

8 (¬P → P) → ((P → ¬¬P) → (¬P → ¬¬P)) BLG1, with ¬P / P, P / Q, ¬G¬P / R

9 (P → ¬¬P) → ((¬P → P) → (¬P → ¬¬P)) 8, TRANS

10 P → ¬¬P BLGD1, with P / P

11 (¬P → P) → (¬P → ¬¬P) 9,10 MP

12 (¬P → ¬¬P) → ¬¬P BLGD2, with ¬P / P

13 (¬P → P) → ¬¬P 11,12 HS

14 ((¬P → P) → ¬¬P) → (¬¬¬P → ¬(¬P → P)) BLGD3, with ¬P → P / P, ¬¬P / Q

15 ¬¬¬P → ¬(¬P → P) 13,14 MP

16 ¬P → ¬¬¬P BLGD1, with ¬P / P

17 ¬P → ¬(¬P → P) 15,16 HS

18 ((¬P → P) → ¬P) →
((¬P → ¬(¬P → P)) → ((¬P → P) → ¬(¬P → P)))

BLG1, with ¬P → P / P, ¬P / Q,

¬(¬P → P) / R

19 (¬P → ¬(¬P → P)) →
(((¬P → P) → ¬P) → ((¬P → P) → ¬(¬P → P)))

18, TRANS

20 ((¬P → P) → ¬P) → ((¬P → P) → ¬(¬P → P)) 17,19 MP

21 ((¬P → P) → ¬P) → ¬P 7,20 HS

22 ((¬P → P) → ¬P) → Q 1,21 HS

23 ((¬P → (¬P → P)) → Q) →
((((¬P → P) → ¬P) → Q) → Q)

BLG7, with ¬P / P, ¬P → P / Q, Q / R

24 (((¬P → P) → ¬P) → Q) → Q 2,23 MP

25 Q 22,24 MP

In contrast with F�LPA (and BL�LA), we have a full Deduction Theorem for BLGA:

Result 11.4 (Deduction Theorem for BLGA): Q is derivable from P in BLGA if and

only if P → Q is a theorem.

Proof: Left as an exercise.
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Although BLGA is strongly complete, no Pavelka-style axiomatic system can be

strongly fuzzy complete for FuzzyG. This negative result is a consequence of the

fact that Gödel implication is noncontinuous: Pavelka proved that a logical system

whose algebraic structure over the unit interval of real numbers is a residuated

lattice (as are the algebraic structure of FuzzyG and those of Fuzzy�L and FuzzyP)

is Pavelka-axiomatizable only if its operations are continuous.12 The reader will

understand that this is an unfortunate limitation, since Pavelka-style systems help

us to see formally the seductiveness of Modus Ponens chains of reasoning with

vague predicates (not too bad when the chain of reasoning is short) while showing

how they can falter (pretty bad as the chain of reasoning gets much longer).

13.5 An Axiomatic System for Tautologies and Validity in FuzzyP

The system BLA can be extended to a sound and weakly complete system BLPA

for FuzzyP by adding the following two axiom schemata (bold conjunction and

implication operators in the eight BLA axiom schemata will now be the product

operators subscripted with P):

BLP9. ¬P¬PP →P (((Q &P P) →P (R &P P)) →P (Q →P R))

BLP10. (P &P ¬PP) →P 0

It is left as an exercise to prove that the axiom schemata BLP9 and BLP10 of BLPA,

interpreted algebraically, are true in every product algebra. And since every product

algebra is a BL-algebra, the axioms BL1–BL8 are also true in every product algebra

when interpreted algebraically.

As an example of a derivation in BLPA we’ll derive the formula Q from the

formulas P and ¬PP:

1 P

2 ¬PP

3 (P &P ¬PP) →P (¬PP &P P) BLP3, with P / P, ¬PP / Q

4 (¬PP &P P) →P (P &P ¬PP) BLP3, with ¬P / P, P / Q

5 (P &P ¬PP) →P (PP &P ¬PP) 3,4 HS

6 ((P &P ¬PP) →P (P &P ¬PP)) →P

(P →P (¬PP →P (P &P ¬PP)))

BLP6, with P / P, ¬PP / Q,

P &P ¬PP / R

7 P →P (¬PP →P (P &P ¬PP)) 5,6 HS

8 ¬PP →P (P &P ¬PP) 1,7 MP

9 P &P ¬PP 2,8 MP

10 (P &P ¬PP) →P 0 BLP10, with P / P

11 0 9,10 MP

12 0 →P Q BLP8, with Q / P

13 Q 11,12 MP

12 Pavelka (1979, Part III).
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As was the case for F�LA, the standard deduction theorem does not hold for BLPA.

But we do have the same Modified Deduction Theorem:

Result 13.5 (Modified Deduction Theorem for BLPA): Q is derivable from P in

BLPA if and only if P → (P → (P → ( . . . → (P → Q) . . . ) is a theorem for some

finite number of antecedent P’s.

Proof: Left as an exercise.

Also like Fuzzy�L, no axiomatic system can be strongly complete for FuzzyP. An

example establishing this negative fact can be constructed from the example we

used for Fuzzy�L: Let �* consist of the formulas ¬P¬PR, (P ∨P R) →P R) → P (Q ∨P R),

and the infinitely many formulas in the series

(((P ∨P R) →P R) →P (P ∨P R)) →P (Q ∨P R)

(((P ∨P R) →P R) →P (((P ∨P R) →P R) →P (P ∨P R))) →P (Q ∨P R)

(((P ∨P R) →P R) →P (((P ∨P R) →P R) →P (((P ∨P R) →P R) →P (P ∨P R)))) →P

(Q ∨P R)

(((P ∨P R) →P R) →P (((P ∨P R) →P R) →P

(((P ∨P R) →P R) →P (((P ∨P R) →P R) →P (P ∨P R))))) →P (Q ∨P R)

. . .

�* thus consists of ¬¬R and each formula in � modified as follows: first ¬P is

replaced with P →P R, and then P and Q, wherever they occur, are, respectively,

replaced with P ∨P R and Q ∨P R.13 The infinite set �*, but none of its finite subsets,

semantically entails the formula Q ∨P R in FuzzyP, so FuzzyP is not compact (proof

is left as an exercise). It follows, just as it did for Fuzzy�L, that no axiomatic derivation

system can be strongly complete for FuzzyP:

Result 13.6: FuzzyP is not compact

and therefore

Result 13.7: No axiomatic system for FuzzyP can be strongly complete.

Neither is there a fuzzy complete Pavelka-style axiomatic system for FuzzyP.14 The

reason is the same as for FuzzyG, namely, FuzzyP’s conditional is not continuous.

13 The transformation of the formulas in � is from Hájek (1998b, p. 94). Hájek uses the transforma-
tion to show that various semantic results in Fuzzy�L carry over to FuzzyP.

14 However, Pavelka-style systems have been developed for extensions of Gödel and product
fuzzy logics that include an involutive negation operator such as �Lukasiewicz’s; see Esteva,
Godo, Hájek, and Navara (2000). Recall that an involutive negation is one that satisfies Double
Negation.
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13.6 Summary: Comparison of Fuzzy�L, FuzzyG, and FuzzyP

and Their Derivation Systems

In this section we place various results about the three major fuzzy propositional

logics in a table, for overall comparison:

Semantically

compact

Deduction

theorem

Weakly

complete

axiomatization

Tautologies/

theorems

decidable

Strongly

complete

axiomatization

Fuzzily

complete

axiomatization

Fuzzy�L No Modified Yes Yes No Yes

FuzzyG Yes Yes Yes Yes Yes No

FuzzyP No Modified Yes Yes No No

(The set of theorems for each of F�LPA, BL�LA, BLGA, and BLPA is decidable, as a

consequence of the decidability of the tautologies of Fuzzy�L, FuzzyG, and FuzzyP as

noted in Chapter 11).

Recalling that the strong completeness of an axiomatic system is tied to seman-

tic compactness, we can characterize the major differences as follows: FuzzyG is the

only one of the three systems that is semantically compact and in which the stan-

dard Deduction Theorem holds, while Fuzzy�L is the only one of the three for which

an adequate Pavelka-style axiomatization is possible. As a consequence of this latter

fact, and the strong fuzzy completeness of F�LPA, we also have fuzzy compactness

for Fuzzy�L.

13.7 External Assertion Axioms

Because external assertion is not definable in any of our three fuzzy logics, none

of the the axiom systems we’ve examined is sufficient for derivations involving this

operation. Matthias Baaz (1996) formulated the following axioms, which may be

added either to F�LA (and F�LPA)15 or to BLA (and any system on which BLA is based),

for external assertion:

∆1. ∆P ∨ ¬∆P

∆2. ∆(P ∨ Q) → (∆P ∨ ∆Q)

∆3. ∆P → P

∆4. ∆P → ∆∆P

∆5. ∆(P → Q) → (∆P → ∆Q)

15 But with an important caveat in this case: although F�LPA with these axioms and rule will be fuzzy
sound for FuzzyF�L augmented with the external assertion operation, it will no longer be (strongly)
fuzzy complete. Again, the problem is that external assertion is not a continuous operation.

It may strike the reader as unusual that we will actually produce derivations in the incomplete
F�L�PA—knowing that it is not a fully adequate system. We do so not only to illustrate the external
assertion axioms and rules but also to demonstrate the potential usefulness of an axiomatic
system that isn’t complete. The usefulness stems from the fact that there is no decision procedure
for n-tautologousness or n-degree-entailment in Fuzzy�L (the former is proved in Hájek (1995a)
but sometimes a derivation might be quite simple to produce.
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We also add the rule

EA (External Assertion). From P infer ∆P.

We will denote derivation systems augmented with these axiom schemata and the

rule EA by adding the symbol � to the names of those systems, for instance, F�L�A.

In Section 11.9 of Chapter 11 we noted that axiom schema �1 is a tautology in

Fuzzy�L augmented with the external assertion operator. By including axiom schema

�1 it becomes a theorem of F�L�A. The converse of axiom schema �3 is not included

as an axiom because it is not a tautology in any of our fuzzy systems. If P has the

value .5, for example, then P → ∆P has the value .5 in Fuzzy�L (augmented with �)

and the value 0 in FuzzyG and FuzzyP.

We also noted in Section 11.9 that if a formula P has any value other than 1 or 0,

then the formula ¬∆P ∧ ¬∆¬P is true in Fuzzy�L. Here’s a derivation in F�L�PA that

shows that when the formula P has the value .5, ¬�P ∧ ¬�¬P has the value 1:

1 [1/2 → P, 1] Assumption

2 [P → 1/2, 1] Assumption

3 [�P → P, 1] �3, with P / P

4 [�P → 1/2, 1] 2,3 HS

5 [¬1/2 → ¬�P, 1] 4, GCON

6 [1/2 → ¬1/2, 1] F�LP6.2

7 [1/2 → ¬�P, 1] 5,6 HS

8 [�P → ¬�P, 1] 4,7 HS

9 [(�P → ¬�P) → ¬�P, 1] �1, with P / P

10 [¬�P, 1] 8,9 MP

11 [¬P → ¬1/2, 1] 1, GCON

12 [¬1/2 → 1/2, 1] F�LP6.1

13 [¬P → 1/2, 1] 11,12 HS

14 [�¬P → ¬P, 1] �3, with ¬P / P

15 [�¬P → 1/2, 1] 13,14 HS

16 [¬1/2 → ¬�¬P, 1] 15, GCON

17 [1/2 → ¬�¬P, 1] 6,16 HS

18 [�¬P → ¬�¬P, 1] 15,17 HS

19 [(�¬P → ¬�¬P) → ¬�¬P, 1] �1, with ¬P / P

20 [¬�¬P, 1] 18,19 MP

21 [¬�P ∧ ¬�¬P, 1] 10,20 WCI

As one more example in F�L�PA, we’ll show that if the value of P is at most .5, then

¬�P is true. The reasoning is that if P has at most the value .5, then �P has at most

the value .5 (line 3), and it follows from the disjunctive axiom schema �1 that �¬P

must be true. The latter is established by first deriving the formula on line 9, then

showing that it follows from this formula that �¬P holds. In the derivation we switch
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freely between the equivalent forms P ∨ Q and (P → Q) → Q, depending on whether

we are viewing the formula as a disjunction or as a conditional:

1 P → 1/2 Assumption

2 �P → P �3, with P / P

3 �P → 1/2 1,2 HS

4 1/2 → (¬�P ∨ 1/2) F�LP1, with 1/2 / P, ¬�P → 1/2 / Q

{Note: ¬�P ∨1/2 is defined to be (¬�P →1/2) →1/2}

5 �P → (¬�P ∨ 1/2) 3,4 HS

6 ¬�P → (¬�P ∨ 1/2) F�LPD3, with ¬�P / P, 1/2 / Q

7 (�P ∨ ¬�P) → (¬�P ∨ 1/2) 5,6 DC

8 �P ∨ ¬�P �1, with P / P

9 (¬�P → 1/2) → 1/2 7,8 MP

10 ((¬�P → 1/2) → 1/2) → ((1/2 → ¬�P) → ¬�P)) F�LP4, with ¬�P / P, 1/2 / Q

11 ((1/2 → ¬�P) → ¬�P)) 9,10 MP

12 ¬1/2 → ¬�P 3, GCON

13 1/2 → ¬1/2 F�LP6.2

14 1/2 → ¬�P 12,13 HS

15 ¬�P 11,14 MP

13.8 Exercises

SECTION 13.1

1 Show that the following are derivable as rules in the axiomatic system F�LA for

Fuzzy�L (you will probably find it useful to refer to proofs in Chapter 6 as a guide,

but recall that L34 is not an axiom schema in F�LA):

a. CON. From ¬P → ¬Q infer Q → P.

b. MT. From ¬P and Q → P derive ¬Q.

c. LSIMP. From P ∧ Q infer P.

d. RSIMP. From P ∧ Q infer Q.

e. SUB. From P → Q, Q → P and a formula R that contains P as a subformula,

infer any formula R* that is the result of replacing one or more occurrences

of P in R with Q.

f. DN. From any formula R that contains P as a subformula, infer any

formula R* that is the result of replacing one or more occurrences of

P in R with ¬¬P, and vice versa.

g. TRAN. From any formula R that contains P→ (Q→S) as a subformula, infer

any formula R* that is the result of replacing one or more occurrences of

P → (Q → S) in R with Q → (P → S).

h. GCON. From any formula R that contains P → Q as a subformula, infer

any formula R* that is the result of replacing one or more occurrences of

P → Q in R with ¬Q → ¬P, and vice versa.
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i. GHS. From a conditional (P1 → (P2 → (P3 → . . . (Pn−1 → Pn) . . . ) and

Pn → Q, infer (P1 → (P2 → (P3→ . . . (Pn−1→ Q) . . . ).

j. GMP. From a conditional (P1 → (P2 → (P3 → . . . (Pn−1 → Pn) . . . ) and one

of the antecedents Pi, 1 ≤ i ≤ n−1, infer the conditional that results from

deleting Pi, the conditional arrow following Pi, and associated parentheses

k. DS. From P ∨ Q, P → R and Q → R, infer R.

2 Explain why we do not want the following as a derived rule in F�LA (although it

is derivable in �L3A):

From P → Q and (P → ¬P) → Q, infer Q.

3 Show that the following are derivable as axiom schemata in F�LA (similar hint to

that in Exercise 1):

a. F�LD10. ((P → P) → Q) → Q

b. F�LD11. ¬(P → Q) → P

c. F�LD12. ¬(P → Q) → ¬Q

d. F�LD13. (P → Q) ∨ (Q → P)

4 Show that the following are derivable as rules in F�LA:

a. L&SIMP. From P & Q, infer P.

b. R&SIMP. From P & Q, infer Q.

c. BCF (Bold Conjunction Formation). From P and Q, infer P & Q.

5 Show that the following are derivable axiom schemata in F�LA:

a. F�LD14. P → (P ∇ Q)

b. F�LD15. Q → (P ∇ Q)

c. F�LD16. (P ∨ Q) → (P ∇ Q)

d. F�LD17. (P & Q) → (P ∧ Q)

6 Prove that the following claim is true in Fuzzy�L: the value of the antecedent

of the nth member of the infinite series of formulas (¬P → P) → Q,

(¬P → (¬P → P)) → Q, (¬P → (¬P → (¬P → P))) → Q, (¬P → (¬P →
(¬P → (¬P → P)))) → Q, . . . , is the minimum of 1 and (n + 1) times the value

of P. Hint: Show that the value of the antecedent of each formula after the

first one is a particular function of the value of the antecedent of the previous

formula.

7 a. Show that R is semantically entailed by P ∧ ((P → Q) ∧ (P → (Q → R))) in

Fuzzy�L.

b. Show that R is derivable from P ∧ ((P → Q) ∧ (P → (Q → R))) in the axiomatic

system F�LA.

c. Show that (P ∧ ((P → Q) ∧ (P → (Q → R)))) → R is not a tautology of

Fuzzy�L.

SECTION 13.2

8 Prove that

a. if m and n are rational values in the unit interval so is max (1, 1−m + n).

b. if m is a rational value in the unit interval then so is 1−m.
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9 a. Show in F�LPA that the instance [1, 1] of F�LP7 is derivable from the other

axioms.

b. Show that all instances of F�LP7 are derivable from the other axioms in F�LPA.

10 Derive [A ∨ ¬A, 1/2] in F�LPA. (Hint: Use the corresponding derivation in Chapter

6 as a guide. Before using any derived rules or axioms from Chapter 6, be sure

to establish that they are also derivable in F�LPA.)

11 Show that the rule

HS. From [P → Q, m] and [Q → R, n] infer [P → R, p]

where p = max (0, m + n−1)

is derivable in F�LPA.

12 Derive graded versions of the following rules for F�LPA (where the graded value

of the inferred formula should be the least value that it can have given the least

values of the formulas from which it is derived):

a. TRAN

b. GHS

c. CON

d. MT

13 Show that the following are derivable as rules in F�LPA:

a. BDF (Bold Disjunction Formation). From [P, m] and [Q, n] infer [P ∇ Q, p]

where p = min (1, m + n)

b. WCF (Weak Conjunction Formation). From [P, m] and [Q, n] infer

[P ∧ Q, p] where p = min (m, n)

c. WCI (Weak Conjunction Inference). From [P ∧ Q, n] infer either of [P, n]

or [Q, n]

d. DS (Disjunctive Syllogism). From [P ∨ Q, m] and [¬P, n] infer [Q, p] and

from [P ∨ Q, m] and [¬Q, n] infer [P, p]

where p = max (0, m + n−1)

14 Show that the rule

VS (Value Summary). From [m → ¬n, 1], [p → (q →m), 1] and [¬r →p, 1],

infer [¬(q → ¬n) →r, 1]

is derivable in F�LPA.

15 Consider the derived rule

DC. From [P → R, 1] and [Q → R, 1] infer [(P ∨ Q) → R, 1].

a. Modify the derivation of this rule in Section 13.2 so that it begins with graded

formulas [P → R, m] and [Q → R, n], showing the correct graded values for

each subsequent formula in the derivation.

b. The graded value obtained for (P ∨ Q) → R in the derivation in part (a) is too

weak. Prove this by showing (semantically) that the least graded value that

(P ∨ Q) → R can have is min (m, n) and then giving an example of specific

values m and n such that the graded value for (P ∨ Q) → R in your deriva-

tion in part (a) is less than min (m, n).

c. Produce a justification for the fully graded rule

FDC. From [P → R, m] and [Q → R, n] infer [(P ∨ Q) → R, min (m, n)].
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Hint: Look at the derivation of MCD for L3PA in Section 6.2 of Chapter 6 for an

idea about how to modify your derivation in part (a).

16 Produce a derivation of [D, .7] from [A → .5, 1], [B → .5, 1], [(A → B) → .9, 1],

[C → B, 1], [D → .4, 1], and [(C → ¬D) → .9, 1] in F�LPA.

17 Explain why the greatest value that m can be when the formula (n → m) → 9/10

is true is 1/10 less than n (the rational value of the formula n).

18 In Section 13.3 we claimed that corresponding to the entailment in RFuzzy�L of Q

from the set consisting of the formula ¬P → Q and the infinitely many formulas

in the series (¬P→P)→Q, (¬P→ (¬P→P))→Q, (¬P→ (¬P→ (¬P→P)))→Q,

(¬P → (¬P → (¬P → (¬P → P)))) → Q, . . . there are n-entailments of Q from

finite subsets of � in RFuzzy�L with n as close to 1 as you can be without actually

getting there. Produce a series of entailments that support this claim.

SECTION 13.3

19 a. Prove that for any x and y in a BL-algebra, x ⊗ y ≤ x.

b. Prove that for any x, y and z in a BL-algebra, x ≤ z and y ≤ z if and only if

x ∪ y ≤ z.

c. Prove that for any x, y, z, and w in a BL-algebra, if x ≤ z and y ≤ w, then

x ∪ y ≤ z ∪ w.

d. Prove that for any x, y and z in a BL-algebra, x ⊗ (y ∪ z) = (x ⊗ y) ∪ (x ⊗ z).

20 Show that each of the following axioms, when interpreted algebraically, evalu-

ates to unit in every BL-algebra:

a. BL3

b. BL4

c. BL6

d. BL8.

21 Show that the algebraic interpretation of Modus Ponens,

If unit ≤ x and unit ≤ x ⇒ y, then unit ≤ y,

is true in every BL-algebra.

22 Show that the algebraic interpretation of the axiom schema

BL�L9. ¬¬P → P

holds true in every MV-algebra.

SECTION 13.4

23 Show that the algebraic interpretation of the axiom schema

BLG9. P → (P & P)

is true in every Gödel algebra.

24 Prove that every set that contains the formula¬GP→G Q and at least one formula

from the infinite series

(¬GP →G P) →G Q

(¬GP →G (¬GP →G P)) →G Q

(¬GP →G (¬GP →G (¬GP →G P))) →G Q

(¬GP →G (¬GP → (¬GP →G (¬GP →G P)))) →G Q
. . .

entails Q in FuzzyG.
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25 a. Derive Q from ¬GP →G Q and (¬GP →G P) →G Q in BLPA.

b. Derive Q from¬GP →G Q and (¬GP →G (¬GP →G (¬GP →G P))) →G Q in

BLPA.

26 Prove Result 11.4, the Deduction Theorem for BLGA. Hint: Review the proof in

Chapter 2 of the Deduction Theorem for classical propositional logic (Result

2.5, Section 2.4).

27 Produce an example that shows that the FuzzyG conditional is not contin-

uous.

SECTION 13.5

28 Show that the algebraic interpretations of the axiom schemata

BLP9. ¬P¬PP →P (((Q &P P) →P (R &P P)) →P (Q →P R))

and

BLP10. (P &P ¬PP) →P 0

are true in every product algebra.

29 Derive the formula ¬P(P &P ¬PP) (without any assumptions) in BLPA.

30 Show that the set �* consisting of the formulas ¬P¬PR, (P ∨P R) →P R)→P

(Q ∨P R), and the infinitely many formulas in the series

(((P ∨P R) →P R) →P (P ∨P R)) →P (Q ∨P R)

(((P ∨P R) →P R) →P (((P ∨P R) →P R) →P (P ∨P R))) →P (Q ∨P R)

(((P ∨P R) →P R) →P (((P ∨P R) →P R) →P (((P ∨P R) →P R) →P

(P ∨P R)))) →P (Q ∨P R)

(((P ∨P R) →P R) →P (((P ∨P R) →P R) →P

(((P ∨P R) →P R) →P (((P ∨P R) →P R) →P (P ∨P R))))) →P (Q ∨P R)

. . .

semantically entails the formula Q ∨P R in FuzzyP but that none of its finite

subsets does.

To do this:

a. Assume that each of the formulas in �* is true, and for each of the con-

ditionals in the set explain what the value of R must be in order for the

conditional’s antecedent to be true.

b. Noting that the value of R cannot be 0, because of the inclusion of ¬P¬PR in

�*, explain why the antecedents of one of the conditionals in the set must

be true—for it will follow that the consequent of that conditional, Q ∨P R,

will also be true and hence the entailment from the set �* holds.

c. For each formula S in �*, show that if S is excluded from a finite subset ψ

of �* then ψ does not entail Q ∨P R; that is, all of the formulas in ψ can be

true while Q ∨P R is not.

31 Prove Result 13.5, the Modified Deduction Theorem for BLPA. Hint: Review the

proof of Result 13.3 in Section 13.1.

32 Produce an example that shows that the FuzzyP conditional is not contin-

uous.
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SECTION 13.7

33 Produce a derivation in F�L�PA that shows that if the formula P has the value .3

in Fuzzy�L, then ¬�P ∧ ¬�¬P has the value 1.

34 Produce a derivation in F�L�PA that shows that if the formula P has the value .5

in Fuzzy�L, then P → �P also has the value .5.

35 Produce a derivation that shows that the formula �P ∨ �¬¬P is a theorem in

BLG�A.

36 Produce a derivation that shows that the formula (�P &�¬P)→�0 is a theorem

in BLP�A.
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14.1 Fuzzy Interpretations

Interpretations for fuzzy first-order logic use fuzzy sets to represent the meanings

of vague predicates. Recall from Chapter 11 that a fuzzy set is a set to which entities

belong to certain degrees, ranging from 1 (absolutely a member) to 0 (definitely not

a member). An interpretation will represent each fuzzy set as a function mapping

n-tuples of members of the domain to their degrees of membership in the set.

An interpretation I for fuzzy first-order logic consists of

1. A nonempty set D (the domain)

2. An assignment to each predicate Pn (of arity n) of a function mapping each

n-tuple of members of D to a value in [0. .1]:

I(Pn)(<x1, . . . , xn>) ∈ [0. .1]

3. An assignment of a member of D to each individual constant a: I(a) ∈ D.

Here’s an example of a (partial) interpretation (where we use T for tall and E for is

one-eighth inch less than):

D: set of heights between 4′ 7′′ and 6′ 7′′ by 1/8
′′ increments, inclusive

I(T)(<x>) = (x – 4′ 7′′) / 24′′

(i.e., subtract 4′ 7′′ from the height x and divide the result by 24′′)
I(E)(<x1,x2>) = 1 if x1 is 1/8

′′ less than x2

0 otherwise

I(a) = 6′ 7′′

I(b) = 6′ 67/8
′′

I(c) = 5′ 8′′

I(d) = 5′ 7′′

I(e) = 5′ 67/8
′′

I(f) = 5′ 1′′

I(g) = 4′ 7′′

and here are some values that this interpretation produces for the fuzzy set

of heights: I(T)(<6′ 7′′>) = 24/24 (i.e., 1); I(T)(<6′ 67/8
′′>) = 191/192 (approx .995);

262
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I(T )(<5′ 8′′>) = 104/192 (approx. .54); I(T )(<5′ 7′′>) = 12/24 (.5); and I(T )(<4′ 7′′>) =
0/24 (i.e., 0). We’ll refer to this interpretation as SST (for six foot seven is tall).

The specific function assigned to T was chosen to produce a reasonable repre-

sentation of degrees of membership in the fuzzy set of tall heights, but there certainly

are other plausible ways to define this function. However, fuzzy logical systems

are defined independently of specific membership functions, so we’ll wait until

Chapter 17 to discuss other approaches to defining membership functions. The

sample function that we present for SST—which will be sufficient for investigating

how fuzzy first-order logic handles vagueness—is merely meant to illustrate how

we can define membership functions for fuzzy predicates like tall. SST also demon-

strates how to interpret crisp predicates by assigning only 1 and 0 as membership

values.

14.2 �Lukasiewicz Fuzzy First-Order Logic

We begin our study of fuzzy first-order logics with a first order version of Fuzzy�L,

which we’ll call Fuzzy�L∀.

To specify truth-conditions in Fuzzy�L∀ we’ll once again need variable assign-

ments: a variable assignment v assigns a member of the domain to each individual

variable x, and an x-variant of a variable assignment v is an assignment v′

such that v′(y) = v(y) for every variable y other than x (it may or may not assign

the same value to x). As in earlier chapters we use the notation Iv(P) to stand for the

value that a formula P has under a variable assignment v on an interpretation I.

Truth-conditions for atomic formulas are defined in Fuzzy�L∀ as:

1. Iv(Pt1 . . . tn) = I(P)(<I*(t1), . . . , I*(tn)>), where I*(ti) is I(ti) if ti is a constant and

is v(ti) if ti is a variable.

That is, the truth-value of an atomic formula is just the degree to which the n-tuple of

entities denoted by the formula’s terms is a member of the fuzzy set corresponding

to the predicate. So, on interpretation SST (given any variable assignment) we have

the following values (rounded to the nearest thousandth, a practice we’ll adopt in

examples to follow as well):

Iv(Ta) = 1

Iv(Tb) = .995

Iv(Tc) = .542

Iv(Td) = .5

Iv(Te) = .495

Iv(Tf) = .167

Iv(Tg) = 0

Iv(Eaa) = 0

Iv(Eab) = 0

Iv(Eba) = 1

Iv(Ebb) = 0
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The truth-conditions for formulas governed by propositional connectives are

defined as in Fuzzy�L:

2. Iv(¬P) = 1 – Iv(P)

3. Iv(P ∧ Q) = min (Iv(P), Iv(Q))

4. Iv(P ∨ Q) = max (Iv(P), Iv(Q))

5. Iv(P → Q) = min (1, 1 – Iv(P) + Iv(Q))

6. Iv(P ↔ Q) = min (1, 1 – Iv (P) + Iv(Q), 1 – Iv(Q) + Iv(P))

7. Iv(P & Q) = max (0, Iv(P) + Iv(Q) – 1)

8. Iv(P ∇ Q) = min (1, Iv(P) + Iv(Q))

These clauses give the following fuzzy truth-values based on the interpretation SST:

Formula Value

¬Ta 0

¬Tc .458

¬Tg 1

Ta ∧ Tb .995

Ta ∧ Td .5

Ta ∧ Tg 0

Ta ∨ Tb 1

Tb ∨ Tc .995

Tb ∨ Tf .995

Ta → Tb .995

Td → Te .995

Tb → Tg .005

Tc ↔ Tf .625

Ta & Tb .995

Tb & Tc .537

Td & Te 0

Ta ∇ Tb 1

Tb ∇ Tf 1

Te ∇ Tf .662

In Chapter 9 we used the min and max functions to define the numeric truth-

conditions for quantified formulas of �L3, on the basis of the idea that universal

quantification is like conjunction (the min function) and existential quantification

is like disjunction (the max function). However, we can’t use the min and max

functions to interpret the quantifiers in Fuzzy�L∀. Suppose, for example, that we

interpret a fuzzy predicate F over the domain [0. .1] (a legitimate domain; we may

wish to talk about the real numbers in the unit interval) as follows:

I(F)(<x>) = 1 if x = 0
x/2 otherwise
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Now, what is the minimum value that Fx can have? There isn’t one—it gets as close

to 0 as you like, but never quite there. So once again we’ll use the greatest lower

bound (glb) of a set of real numbers from the unit interval; recall that a number n

in [0. .1] is the greatest lower bound of a set R of real numbers in [0. .1] if and only if

n is less than or equal to each member of R, and there is no m in [0. .1] such that m

is also a lower bound of R but m is greater than n. For a similar reason, we’ll use the

dual concept of least upper bound (lub) instead of the maximum function, where

a number n in [0. .1] is the least upper bound of a set R of real numbers in [0. .1] if

and only if n is greater than or equal to each member of R, and there is no m in [0.

.1] such that m is also an upper bound of R but m is less than n.

Here are the truth-conditions for quantified formulas in Fuzzy�L∀:

9. Iv((∀x)P) = glb{Iv′ (P): v′ is an x-variant of v}
10. Iv((∃x)P) = lub{Iv′ (P): v′ is an x-variant of v}

The notation glb {Iv ′ ( P): v′ is an x-variant of v} stands for the greatest lower bound

of the values that the formula P can have for any x-variant of v; similarly for lub

{Iv′ (P): v′ is an x-variant of v}. Given these clauses and the interpretation

I(F)(<x>) = 1 if x = 0
x/2 otherwise

of the predicate F, the formula ( ∀x)Fx has the value 0, since that is the greatest lower

bound of the values that Fx can have, while the formula (∃x)Fx has the value 1.

Finally, the value assigned to a closed formula (a formula with no free variables)

on an interpretation is the value that is assigned to that formula under every variable

assignment on that interpretation. As in classical and three-valued first-order logic,

the value assigned to a closed formula will be the same with respect to every variable

assignment on a given interpretation.

We’ll look at a few quantified formulas using interpretation SST. The formula

( ∀x)Tx has the value 0 on SST. Every variable assignment has an x-variant that

assigns 4′ 7′′ to x, and Tx has the value 0 on such a variant. Thus 0 is the greatest

lower bound of the values that Tx can receive on any assignment’s x-variants, so

every variable assignment v assigns the value 0 to the quantified formula ( ∀x)Tx. On

the other hand, the formula (∃x)Tx has the value 1 on SST. Every variable assignment

has an x-variant that assigns 6′ 7′′ to x, and on this variant the formula Tx has the

value 1. So 1 is the least upper bound of the values that Tx can have on any x-variant,

and this means that (∃x)Tx is assigned the value 1 by every variable assignment.

Now consider the weak disjunction version of the Law of Excluded Middle for-

mula, ( ∀x)(Tx ∨¬Tx). The value of ( ∀x)(Tx ∨¬Tx) on SST is the greatest lower bound

of the values that Tx ∨ ¬Tx can receive on any variable assignment, which is .5. If

a variable assignment v assigns 5′ 7′′ to x then max(Iv(Tx), 1 – Iv(Tx)) = max(.5, .5) =

.5, and this is the smallest value we can get for the disjunction—when we assign

a taller height to x the value of the first disjunct increases, and when we assign a
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shorter height to x the value of the second disjunct increases. Thus the formula

( ∀x)(Tx ∨ ¬Tx) has the value .5 on interpretation SST.

On the other hand, the version of the Law of Excluded Middle using bold

disjunction—( ∀x)(Tx ∇¬Tx)—is a tautology in Fuzzy�L∀; it has the value 1 on inter-

pretation SST as well as on every other interpretation. Again, we need to ask (since

the formula is universally quantified) how small the value of Tx ∇ ¬Tx can get for any

variable assignment. The value Iv(Tx ∇ ¬Tx) is min (1, Iv(Tx) + (1 – Iv(Tx))), which is

min (1, 1), or 1, in every case. The universal generalization of the formula must

therefore always have the value 1 as well.

The quantifiers are interdefinable in Fuzzy�L∀ exactly as they are in the classical

and three-valued first-order systems: ( ∀x)P is equivalent to ¬(∃x)¬P for any for-

mula P, and (∃x)P is equivalent to ¬( ∀x)¬P. We can show the former by verifying

that the two formulas will have the same value for any variable assignment and

interpretation: Iv(¬(∃x)¬P) = 1 – Iv((∃x)¬P) = 1 – lub{Iv′ (¬P): v′ is an x-variant of

v} = 1 – lub{1 – Iv′ (P): v′ is an x-variant of v}. Now, the least upper bound of the

values you get by subtracting a value of P from 1 is 1 minus the greatest lower bound

of the values that P can have, so 1 – lub{1 – Iv′ (P): v′ is an x-variant of v}= 1 – (1 –

glb{Iv′ (P): v′ is an x-variant of v}) = glb{Iv′ (P): v′ is an x-variant of v}= Iv(( ∀x)P). The

equivalence of (∃x)P and ¬( ∀x)¬P is established similarly.

The fuzzy versions of the KS
3 conditional and biconditional are definable in

Fuzzy�L∀ in the now familiar way:

Iv(P →K Q) = max (1 – Iv(P), Iv(Q))

Iv(P ↔K Q) = min (max (1 – Iv(P), Iv(Q)), max (1 – Iv(Q), Iv(P)))

Not surprisingly, the universally quantified formula ( ∀x)(Tx →K Tx) fails to be a

tautology in Fuzzy�L∀. In particular, it fails to be true on interpretation SST because

the formula Tx →K Tx will have the value .5 on any variable assignment that assigns

5′ 7′′ to x. Indeed, because Tx →K Tx is equivalent to Tx ∨ ¬Tx we know that .5

is the lowest value that any variable assignment will give to Tx →K Tx on SST. So

the formula ( ∀x)(Tx →K Tx) has the value .5 on this interpretation. On the other

hand, the existentially quantified (∃x)(Tx →K Tx) has the value 1 on SST, since

the existential quantifier looks at the least upper bound of values that the formula

following the quantifier can have. That value, which occurs when either 4′ 7′′ or 6′ 7′′

is assigned to x, is 1.

14.3 Tautologies and Other Semantic Concepts

The semantic concepts from Chapter 11 are defined for first-order fuzzy logic on

the basis of interpretations rather than truth-value assignments. A closed formula

of Fuzzy�L∀ is a tautology if it has the value 1 on every interpretation, and a closed

formula is a contradiction if it has the value 0 on every interpretation. A set � of

closed formulas entails a closed formula P in Fuzzy�L∀ if P has the value 1 on every
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interpretation on which all of the members of � have the value 1, and an argument

in Fuzzy�L∀ is valid if its conclusion is entailed by the set of its premises.

The major results from Chapter 11 concerning tautologies, contradictions, and

entailment in Fuzzy�L carry over, mutatis mutandis,1 to Fuzzy�L∀:

Result 14.1: Every tautology of Fuzzy�L∀ is a tautology in classical first-order

logic, and every contradiction of Fuzzy�L∀ is a contradiction in classical first-

order logic, but the converses do not hold.

The propositional connectives of Fuzzy�L∀ are normal, as are its quantifiers, and

completely “crisp” fuzzy interpretations (where all predicates have crisp member-

ship functions) are classical interpretations, so Fuzzy�L∀ tautologies must be classical

tautologies, and similarly for contradictions. The counterexamples for the negative

results in Fuzzy�L work here as well (using formulas of first-order rather than propo-

sitional logic). Additionally, Result 14.1 (along with14.2 and 14.3) holds if we use the

bold versions of conjunction and negation in place of the weak.

Result 14.2: Every Fuzzy�L∀ entailment is a classical entailment, but the converse

does not hold.

Result 14.3: Every tautology of Fuzzy�L∀ is also a tautology in �L3A, and every

contradiction of Fuzzy�L∀ is also a contradiction in �L3, but the converses do not

hold.

We’ll put these semantic concepts to work in the next section when we evaluate

Fuzzy�L∀’s ability to handle the problems arising from vagueness. Moving on, we

define the “fuzzy” semantic concepts for Fuzzy�L∀ as follows: A closed formula of

Fuzzy�L∀ is an n-tautology if n is the greatest lower bound of the set of truth-values

that the formula can have on any interpretation. A set of closed formulas � degree-

entails a closed formula P in Fuzzy�L∀ if on every fuzzy interpretation the value of P

is greater than or equal to the greatest lower bound of the values of members of �

on that interpretation, and an argument is degree-valid in Fuzzy�L∀ if the set of its

premises degree-entail its conclusion. A closed set of formulas � n-degree-entails

a closed formula P if 1 – n is the maximum downward distance between � and P

on any interpretation, and an argument is n-degree-valid if the set of its premises

n-degree-entails its conclusion. The relevant results carrying over from Chapter 11

are:

Result 14.4: Every degree-entailment in Fuzzy�L∀ is a classical entailment, but

the converse does not hold.

Result 14.5: Every n-degree-entailment in Fuzzy�L∀ with n > 0 is also a clas-

sical entailment (whether we use the weak or the bold connectives as the

1 That is, with the necessary changes made. The necessary changes involve replacing talk of truth-
value assignments with talk of interpretations, replacing talk of maxima and minima with talk of
least upper and greatest lower bounds, and so on.
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counterparts to the classical ones), but some classical entailments are only

n-degree-entailments for very small values of n, including 0.

We’ll put these concepts to work in the next section as well.2

14.4 �Lukasiewicz Fuzzy Logic and the Problems of Vagueness

We introduced fuzzy sets as an answer to the New Problem of the Fringe. Rather

than hypothesize three sets corresponding to each vague predicate, we now talk of

an infinite number of degrees of membership in one set, without any need for sharp

cutoff points to distinguish (or to separate) the extension, fringe, and counterex-

tension. Let us pause to consider a doubt that might linger. We have said that the

degree of set membership 1 represents something like clearly in the set, 0 represents

clearly not in the set, and the other values represent somewhere between these two

extremes. Doesn’t this just reintroduce the extension, counterextension, and fringe

with clear cutoff points, where the extension of a predicate includes all those entities

that are members of the corresponding fuzzy set to degree 1, the counterextension

includes all those entities that are members of the fuzzy set to degree 0, and all the

rest constitute the fringe?

Perhaps, the way we have talked so far. So let us consider what else the mem-

bership degrees might mean. A degree of membership 1 indicates that a predicate

clearly applies, but we can allow that degrees close to 1 might also count as clear

application. We’re not forced to say where clear application begins or ends, although

we have spoken as if this were clear-cut—so that we’re not forced to recognize a pre-

cise extension for a fuzzy predicate interpreted as a fuzzy set. Similar comments hold

for 0 and degrees of membership close to 0—the latter as well as the former might

indicate the clear inapplicability of a predicate. We have a continuum of values here,

and we are not forced to interpret them in any particular way, other than saying that

1 (and maybe other values) represents clear applicability and that 0 (and maybe

other values) represents clear inapplicability.3 In fact, in Chapter 16 we will explore

the notion of a fuzzy truth-value, which formalizes the idea that degrees of truth

less than 0 may still count as true.

So let’s see how Fuzzy�L∀ deals with vagueness. The Law of Excluded Middle

using �Lukasiewicz weak disjunction fails to be a tautology in Fuzzy�L∀, as we saw

in Section 14.2, although it cannot be false: it is a .5-tautology. On the other hand,

2 We can also define fuzzy consequence for Fuzzy�L∀, analogous to fuzzy consequence for Fuzzy�L.
But we don’t need the concept in this chapter, so we skip the definition.

3 Dorothy Edgington (1999) has made similar suggestions: “Even fixing the context, it is unclear
where clear truth leaves off and something very close to it begins: whether 1 or 1 – ε should be
assigned” (p. 298); “There are no exactly correct numbers to assign. . . . The demand for an exact
account of a vague phenomenon is unrealistic. The demand for an account which is precise
enough to exhibit its important and puzzling features is not” (pp. 308–309). We note that Edg-
ington espouses a “degree of truth” logic that differs from fuzzy logics insofar as her connectives
are not generally degree-functional (for example, the value of a conjunction is not defined to be
a function of the values of its conjuncts).
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if we really wish to assert that, well, any person is either tall or not, we can use

the bold disjunction version of the Law of Excluded Middle, since that is indeed a

tautology in Fuzzy�L∀.

Max Black’s formula (∃x) (¬Tx ∧ ¬¬Tx), asserting the existence of a fringe (and

thus the vagueness of a predicate), has the value .5 on interpretation SST—and this

is the maximum value that this formula can have on any interpretation in Fuzzy�L∀.

The value of the formula under any variable assignment on any interpretation is

min (Iv(¬Tx), Iv(¬¬Tx)), which is min (1 – Iv(Tx), 1 – (1 – Iv(Tx))) = min (1 – Iv(Tx),

Iv(Tx)). The least upper bound of the value of the possible values here is .5, as will

be the case when I(T)(<Iv(x)>) = .5. Because the formula has the maximum value .5,

we cannot use it to assert truly that there are objects in the fringe of the vague

predicate T.

Recall that in Chapter 7 we used Bochvar’s external negation, which is defin-

able in L3∀, to express the existence of borderline cases for the predicate T as

(∃x)(¬BETx ∧ ¬BE¬Tx)—this formula is true (and its negation is false) in L3∀ on

any interpretation in which T has a nonempty fringe. But as we noted in Chapter 11

the fuzzy versions of Bochvar’s external connectives are noncontinuous and there-

fore not definable in Fuzzy�L, and the indefinability carries over to Fuzzy�L∀. So we

must add the fuzzy external assertion operator � to Fuzzy�L∀ in order to express the

existence of borderline cases with the formula (∃x)(¬�Tx ∧ ¬�¬Tx). This formula

will be true if there is at least one member of the domain whose degree of member-

ship in the fuzzy set T is neither 1 nor 0. (Moreover, because the external assertion

operator falls between the two negations in the right conjunct, this formula is not

equivalent to a formula violating the Law of Noncontradiction and thus does not

reintroduce the problem that Black wanted to avoid.)

But even without the external assertion operator there is another way to assert

the existence of vague predicates in Fuzzy�L∀. To show this, we anticipate the exten-

sion of Fuzzy�L∀ with constant formulas denoting truth-values that will be used to

develop a Pavelka-style axiomatic system in Chapter 15. Let us introduce the con-

stant 1/2, denoting .5, for our present purposes. We can then say that a formula P is

true to degree .5 with the formula P ↔ 1/2. This formula has the value 1 when, and

only when, P has the value .5. The following may then be a reasonable way to state

that the predicate T is vague: (∃x) (Tx ↔1/2). This formula asserts that something is

T to degree .5. Or we can introduce the constants 1/4 and 3/4 and assert that at least

one thing is T to a degree that falls in the interval between .25 and .75 inclusive thus:

(∃x)((1/4 → Tx) ∧ (Tx →3/4)). The formula 1/4 → Tx has the value 1 only when the

value of Tx is at least .25, and the formula Tx →3/4 has the value 1 only when the

value of Tx is at most .75.

This leaves the Sorites paradox. Again, here’s our formulation of the argument

with all premises made explicit:

Ts1

Es2s1

Es3s2
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Es4s3

. . .

Es193s192

( ∀x) ( ∀y) ((Tx ∧ Eyx) → Ty)

Ts193

The argument is valid in Fuzzy�L∀: Assume that all of the premises have the value

1 on an interpretation I. From the truth of the first two premises, we know that

I(T)(<I(s1)>)=1 and I(E)(<I(s2), I(s1)>)=1. Given the truth of the Principle of Charity

premise, the conditional formula (Tx ∧ Eyx) → Ty must have the value 1 on every

variable assignment, and in particular on every assignment v such that v(x) =I(s1)

and v(y)=I(s2). Since the antecedent of the conditional has the value 1 on this

assignment the consequent must have the value 1 as well, and this means that

I(T)(<I(s2)>)=1. Repeating this reasoning we eventually arrive at the conclusion

that I(T)(<I(s193)>)=1 and so the formula Ts193 has the value 1 on any interpretation

on which all of the premises have the value 1.

Although the argument is valid, we can give a reasonable interpretation on

which the premises are not all true and therefore on which the conclusion need not

be true either. We’ll add interpretations of the constants in the Sorites argument to

the interpretation SST in Section 14.1, giving us the following relevant assignments:

D: set of heights between 4′ 7′′ and 6′ 7′′ by 1/8
′′ increments, inclusive

I(T)(<x>) = (x – 4′ 7′′) / 24′′

I(E)(<x1,x2>) = 1 if x1 is 1/8
′′ less than x2

0 otherwise

I(s1) = 6′ 7′′

I(s2) = 6′ 67/8
′′

. . .

I(s 193) = 4′ 7′′

The first premise Ts1 has the value 1 on this interpretation, since 6′ 7′′ is a member

to degree 1 of the fuzzy set corresponding to T. All premises Esisj have the value

1, because in each case the first specified height is 1/8
′′ less than the second. The

conclusion has the value 0 because 4′ 7′′ has degree of membership 0 in the fuzzy

set corresponding to T.

This leaves the second premise, ( ∀x)( ∀y)((Tx ∧ Eyx) → Ty). The value of this

premise is the minimum value that (Tx ∧ Eyx) → Ty can have for some variable

assignment v. (We can speak of the minimum value rather than the greatest lower

bound because the domain D is finite and so the set of different values that the

formula can have—determined by the various combinations of heights that can be

assigned to x and y—is also finite.) What is this minimum value? We first note that

the formula will have the value 1 on any variable assignment v such that v(y) fails to

be 1/8
′′ less than v(x), because in this case Eyx will have the value 0 and so will Tx ∧

Eyx—giving the conditional the value 1. Consequently the minimum value that the
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formula (Tx ∧ Eyx) → Ty can have for some variable assignment v must be the

minimum value that this formula can have on a variable assignment where v(y) is
1/8

′′ less than v(x). Now, because Eyx has the value 1 on such assignments, the value

of (Tx ∧ Eyx) → Ty on these assignments is therefore identical to the value of Tx → Ty

because Iv(Tx ∧ Eyx) = Iv(Tx) when Iv(Eyx) = 1.

So we need to find the smallest value that Tx → Ty can have on any variable

assignment v such that v(y) is 1/8
′′ less than v(x), or, looking at the satisfaction clause

for conditionals, the smallest value that min (1, 1 – Iv(Tx) + Iv(Ty)) can be on such

assignments. Well, when two heights differ by 1/8
′′ their degree of membership in

the fuzzy set T differs by 1/192, that is, Iv(Ty) = Iv(Tx) – 1/192, and so 1 – Iv(Tx) +
Iv(Ty) = 191/192, or approximately .995. Thus .995 is the smallest value that Tx → Ty,

and therefore (Tx ∧ Eyx) → Ty, can have on a variable assignment, and it follows

that the quantified formula ( ∀x)( ∀y)((Tx ∧ Eyx) → Ty) has the value .995 on the

augmented interpretation SST.

This dissolves the Sorites paradox: although the argument is valid, any interpre-

tation that captures the vagueness of the concept tall will assign a noncrisp inter-

pretation to the predicate T in which at least two heights have different degrees of

tallness and tallness never increases as height decreases; and every such interpre-

tation of the predicate T (keeping the rest of SST the same) will give the Principle

of Charity premise a value less than 1 (this will be established in an exercise). Thus

the validity of the argument does not force us to accept its conclusion because on

any reasonable interpretation the premises won’t all have the value 1.

Moreover, we’ve addressed the first issue raised in Chapter 10: although we

claim that the Principle of Charity premise is not true, we can interpret it as being

very close to true—as we have just done—and so we can capture that intuition about

the Principle of Charity premise. But now a new worry arises: if one premise is very

close to true, and the rest of the premises are all true, shouldn’t the conclusion

be very close to true? Let us note that the Sorites argument is not degree-valid;

the interpretation SST shows this (since the conclusion is not as true as the least

true premise). Nor is it, say, .9-degree-valid, since the downward distance between

the degree of truth of the least true premise—.995—and the degree of truth of the

conclusion—0—is much greater than .1. But wouldn’t we expect it to be n-degree-

valid for some high value of n, given that it sure looks as if the conclusion follows

from the premises?

The answer is no, and for the reason we refer to Section 11.4 of Chapter 11.

There we considered an argument with one simple premise A and then a chain

of additional premises A → B, B → C, C → D, and so on, with the conclusion

identical to the consequent of the last premise in the chain, and we explained

that by increasing the number of premises in the chain we decrease the n-degree-

validity of the argument. We call this decaying validity. Decaying validity is exactly

the phenomenon that we encounter with the Sorites argument, since the universally

quantified conditional premise encapsulates a chain of conditional premises that

lead to the conclusion. If the argument were to the effect that given the tallness of 6′ 7′′
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the tallness of 6′ 6′′ follows, it would be plausible. If we changed the conclusion to

be the claim that 6′ 5′′ is tall, it would still be fairly plausible. But as we decrease the

height mentioned in the conclusion the argument becomes less plausible, and it

does so precisely because we have a longer chain of heights decreasing by 1/8
′′ each.

We will see this chain “in action” in Chapter 15, in the Pavelka axiomatic system for

Fuzzy�L∀.

Interpretation SST shows that the Sorites argument as we have symbolized it is

at most 1/192 (or approximately .005)-degree-valid in Fuzzy�L∀, since the downward

distance between the truth-value of the least true premise and that of the conclusion

is approximately .995. This is close to the actual n-degree-validity of the argument,

which is 1/193. To establish this claim we’ll first describe an interpretation SST* on

which the downward distance between the truth-value of the least true premise and

that of the conclusion in Fuzzy�L∀ is 192/193, showing that the argument is at most
1/193-degree-valid. SST* is like SST, except that

I (T)(<x>) = (x – 4′ 7′′) / 241/8
′′

On this modified interpretation, both Ts1 and the Principle of Charity premise have

truth-value 192/193, all the other premises have the truth-value 1, and the conclusion

has the truth-value 0. Thus, this interpretation shows that the argument is at most
1/193-degree-valid.

Second, we’ll show that 1/193 is exactly the degree-validity of the argument as we

have symbolized it in Fuzzy�L∀. Consider: In order for the argument to be less than
1/193-degree-valid, the downward distance between the truth-value of the least true

premise and that of the conclusion would have to be greater than 192/193, and we

can show that this is impossible. Let’s assume that we can increase the downward

distance so that it is greater than 192/193 on some interpretation I. Then each of the

premises must have a truth-value that is greater than 192/193, since the least value

that the conclusion can have is 0. That being the case, let b1 . . . b192 be the values

such that

a. I(Esi+1si) = 192/193 + bi, 1/193 ≥ bi > 0.

Turning to the Principle of Charity premise, if its value is to be greater than
192/193, then the unquantified conditional formula (Tx ∧ Eyx) → Ty must also have

a value greater than 192/193 on every variable assignment. Now, for any variable

assignment v such that v(x) = I(si) and v(y) = I(si+1) for some i, 1 ≤ i ≤ 192, the

value of the formula (Tx ∧ Eyx) → Ty will be the same as the value of the formula

(Tsi ∧ Esi+1si) → Tsi+1. So for each i, 1 ≤ i ≤ 192, the value of the conditional

Iv((Tsi ∧ Esi+1si) → Tsi+1) must be greater than 192/193. For each i let ci be the value

such that Iv((Tsi ∧ Esi+1si) → Tsi+1) = 192/193 + ci. It follows from the truth-conditions

for complex formulas that

b. min (1, 1 − min (Iv(Tsi), Iv(Esi+1si)) + Iv(Tsi+1)) = 192/193 + ci, 1/193 ≥ ci > 0.

In addition, for the Sorites argument to be less than 1/193-degree-valid we must have
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c. Iv(Ts193) < bi and Iv(Ts193) < ci, for 1 ≤ i ≤ 192

—for otherwise the downward distance between the truth-value of one of the

premises and that of the conclusion would fail to be greater than 192/193. We will

show that it follows from these inequalities that Iv(Ts1) <192/193 and so the downward

distance from the premises to the conclusion cannot be greater than 192/193.

Plugging (a) into (b), we get

b′. min (1, 1 − min (Iv(Tsi), 192/193 + bi) + Iv(Tsi+1)) = 192/193 + ci,

where 1/193 ≥ bi > 0 and 1/193 ≥ ci > 0.

Depending on which of the two values on the left-hand side of (b′) is the minimum,

we thus have for any i either

d. min (1, 1 − min (Iv(Tsi), 192/193 + bi) + Iv(Tsi+1)) = 1, so

1 – min (Iv(Tsi), 192/193 + bi) + Iv(Tsi+1) ≥ 1, in which case

Iv(Tsi+1) ≥ min (Iv(Tsi), 192/193 + bi),

or

e. min (1, 1 − min (Iv(Tsi), 192/193 + bi) + Iv(Tsi+1)) =

1 − min (Iv(Tsi), 192/193 + bi) + Iv(Tsi+1) = 192/193 + ci and so

Iv(Tsi+1) = ci − 1/193 + min (Iv(Tsi), 192/193 + bi) and

Iv(Tsi+1) = ci + 191/193 + min (Iv(Tsi) − 192/193, bi).

Now we’ll look at specific cases, beginning with the case where i =192. We have

either

d. Iv(Ts193) ≥ min (Iv(Ts192), 192/193 + b192), or

e. Iv(Ts193) = c192 + 191/193 + min (Iv(Ts192) − 192/193, b192).

Now, because c192 ≤ 1/193, Iv(Ts193) < 1/193 by (c). Since b192 > 0, it follows that

Iv(Ts193) < 192/193 + b192. Thus, in case (d) we must have Iv(Ts193) ≥ Iv(Ts192) and

consequently Iv(Ts192) < 1/193. In case (e), because Iv(Ts193) < c192 we must have
191/193 + min (Iv(Ts192) − 192/193, b192) < 0. Thus min (Iv(Ts192) − 192/193, b192)

< −191/193 and so, because b192 > 0, Iv(Ts192) − 192/193 must be less than −191/193,

giving us Iv(Ts192) < 1/193. Because one of the two cases (d) and (e) must hold, we

may conclude that Iv(Ts192) < 1/193.

Next, when i = 191, we have either

d. I(Ts192) ≥ min (I(Ts191), 192/193 + b191), or

e. I(Ts192) = c191+ 191/193 + min (I(Ts191) − 192/193, b191).

In case (d) we once again conclude that Iv(Ts191) < 1/193, because Iv(Ts192) < 1/193. In

case (e) we have c191+ 191/193 + min (Iv(Ts191) – 192/193, b191) < 1/193 because Iv(Ts192)

< 1/193, so c191+ min (Iv(Ts191) − 192/193, b191) < −190/193; and because c191 and b191

are both positive, Iv(Ts191) – 192/193 < –190/193, and so Iv(Ts191) < 2/193. Because either

(d) or (e) holds, it follows that Iv(Ts191) < 2/193.
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This reasoning can, with appropriate substitutions, be repeated to yield the

conclusion that Iv(Tsi) < (193−i)/193 for 191 ≥ i ≥ 1. It follows that Iv(Ts1) < 192/193. But

this contradicts the assumption that all of the premises have a value greater than
192/193. We conclude that the Sorites argument as we have symbolized it is exactly
1/193-degree-valid in Fuzzy�L∀.

We’ll now look at how the Sorites argument fares in Fuzzy�L∀ when the Prin-

ciple of Charity premise is symbolized using �Lukasiewicz bold, rather than weak,

conjunction:

( ∀x)( ∀y)((Tx & Eyx) → Ty))

First, we point out that on interpretation SST, the bold conjunction version of the

Principle of Charity has the same truth-value as the weak conjunction version. This

is because on that interpretation, Eyx has the value 1 for all of the cases that mat-

ter in determining whether the value of the Principle of Charity premise is less

than 1, and as we noted in Chapter 11, all t-norms agree on the value produced

when one of their arguments has the value 1. In particular, whenever Eyx has the

value 1 on a variable assignment, the truth-value of both Tx & Eyx and Tx ∧ Eyx

will be the value of Tx on that assignment. Since the other premises and the con-

clusions are the same for both the bold and weak conjunction versions of the

Sorites argument, it follows that the truth-values of the premises and the conclu-

sion for the bold version are identical to those for the weak version on SST. They

remain identical under interpretation SST*, for the same reason, so we may con-

clude that the bold conjunction version of the argument is at most 1/193-degree-

valid.

In fact, unlike the weak conjunction version, the bold conjunction version is

strictly less than 1/193-degree-valid; it is 1/385-degree-valid. We show this in two steps.

As the first step, the following interpretation provides a downward distance of 384/385

between the truth-value of the least true premise and that of the conclusion in the

bold version of the argument:

D: set of heights between 4′ 7′′ and 6′ 7′′ by 1/8
′′ increments, inclusive

I(T)(<x>) = (2 · (x – 4′ 7′′)) / 481/8
′′

I(E)(<x1, x2>) = 384/385 for all x1, x2

I(s1) = 6′ 7′′

I(s2) = 6′ 67/8
′′

. . .

I(s 193) = 4′ 7′′

On this interpretation all of the premises have the value 384/385, while the conclusion

has the value 0 (proof is left as an exercise). Thus the argument is at most 1/385-

degree-valid.

As the second step we will argue that 1/385 is exactly the degree-validity of the

�Lukasiewicz bold version of the argument. Assume, contrary to what we want to

prove, that we can increase the downward distance between the truth-value of
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the least true premise and that of the conclusion to more than 384/385 on some

interpretation I. Then each of the premises must have a truth-value that is greater

than 384/385. Let b1, . . . , b192 be the values such that

a. Iv(Esi+1si) = 384/385 + bi, 1/384 ≥ bi > 0

In the case of the Principle of Charity premise, any variable assignment such that

v(x) = I(si) and v(y) = I(si+1), for some i, will give the unquantified conditional for-

mula (Tx & Eyx) → Ty a value greater than 384/385, and (Tsi ∧ Esi+1si) → Tsi+1 will have

this same value. For each i, let ci be the value such that Iv((Tsi ∧ Esi+1si) → Tsi+1) =
384/385 + ci, ci > 0; it follows from the truth-conditions for complex formulas that

min (1, 1 − max(0, Iv(Tsi) + Iv(Esi+1si) − 1) + Iv(Tsi+1)) = 384/385 + ci. Moreover, min

(1, 1 − max(0, Iv(Tsi) + Iv(Esi+1si) – 1) + Iv(Tsi+1)) = min (1, min (1 – 0 + Iv(Tsi+1), 1 –

(Iv(Tsi) + Iv(Esi+1si) – 1) + Iv(Tsi+1))) = min (1, 1 + Iv(Tsi+1), 2 – Iv(Tsi) – Iv(Esi+1si) +
Iv(Tsi+1)) = min (1, 2 – Iv(Tsi) – Iv(Esi+1si) + Iv(Tsi+1)) since 1 + Iv(Tsi+1) ≥ 0. Thus

b. min (1, 2 – Iv(Tsi) – Iv(Esi+1si) + Iv(Tsi+1)) = 384/385 + ci, 1/385 ≥ ci > 0

for 1 ≤ i ≤ 192. Finally, for the bold conjunction version of the Sorites argument to

be less than 1/385-degree-valid in Fuzzy�L∀ we must have

c. Iv(Ts193) < bi and Iv(Ts193) < ci, for 1 ≤ i ≤ 192.

We can show that if all of these inequalities hold then Iv(Ts1) < 384/385 and so the

argument cannot be less than 1/385-degree-valid.

Again plugging (a) into (b), we get min (1, 2 – Iv(Tsi) – (384/385 + bi) + Iv(Tsi+1)) =
384/385 + ci, or

b′. min (1, 386/385 – Iv(Tsi) – bi + Iv(Tsi+1)) = 384/385 + ci, with 1/385 ≥ bi > 0 and 1/385 ≥
ci > 0.

We thus have for any i either

d. min (1, 386/385 – Iv(Tsi) – bi + Iv(Tsi+1)) = 1 so
386/385 – Iv(Tsi) – bi + Iv(Tsi+1)) ≥ 1 so

Iv(Tsi+1) ≥ Iv(Tsi) + bi – 1/385, or

e. min (1, 386/385 – Iv(Tsi) – bi + Iv(Tsi+1)) = 386/385 – Iv(Tsi) – bi + Iv(Tsi+1) = 384/385 +
ci and so

Iv(Tsi+1) = ci + bi + Iv(Tsi) – 2/385.

Turning to cases, when i = 192 we have either

d. Iv(Ts193) ≥ Iv(Ts192) + b192 – 1/385, or

e. Iv(Ts193) = c192 + b192 + Iv(Ts192) – 2/385.

Iv(Ts193) < 1/385 because Iv(Ts193) < c192 and c192 ≤ 1/385. In case (d) it therefore

follows that Iv(Ts192) + b192 – 1/385 < 1/385 and so Iv(Ts192) + b192 < 2/385 and, because

b192 > 0, Iv(Ts192) < 2/385. In case (e), from Iv(Ts193) < c192 it follows that b192 +
Iv(Ts192) – 2/385 < 0. But b192 > 0, so Iv(Ts192) – 2/385 < 0 and Iv(Ts192) < 2/385. Either

(d) or (e) holds, so we conclude that Iv(Ts192) < 2/385.
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When i = 191, either

d. Iv(Ts192) ≥ Iv(Ts191) + b191 – 1/385, or

e. Iv(Ts192) = c191 + b191 + Iv(Ts191) – 2/385.

In case (d), since Iv(Ts192) < 2/385 and b191 > 0 we have Iv(Ts191) < 3/385. In case (e) we

have c191 + b191 + Iv(Ts191) – 2/385 < 2/385 and since c191 > 0 and b191 > 0, it follows

in this case that Iv(Ts191) < 4/385. Either way, then, Iv(Ts191) < 4/385. By repeating this

reasoning, we arrive at the general conclusion that Iv(Tsi) < (2(193 –i))/385 for 191 ≥
i ≥ 1 and, in particular, that Iv(Ts1) < 384/385. But this contradicts our assumption

that all of the premises have a value greater than 384/385. We conclude that the

�Lukasiewicz bold version of the Sorites argument is exactly 1/385-degree-valid.

Generally, then, both �Lukasiewicz fuzzy versions of the Sorites argument agree

on their analyses of the Sorites argument: the Principle of Charity premise is close

to true but the argument, although valid, has a very low n-degree-validity and that

is why we can go from premises that are very close to all being true to a conclusion

that is false.

If we use a fuzzy Kleene conditional in the Principle of Charity premise, the

Sorites argument remains valid in Fuzzy�L∀. However, the truth-value of the new

premise ( ∀x)( ∀y)((Tx ∧ Eyx) →K Ty) on SST is different from the version with the

�Lukasiewicz conditional. The value of the new premise will be the minimum value

that (Tx ∧ Eyx) →K Ty can have for different variable assignments v. What is this

value? As in the case of the �Lukasiewicz conditional, and for the same reasons, the

minimum value that (Tx ∧ Eyx) →K Ty can have will be the minimum value it can

have on those variable assignments where v(y) is 1/8
′′ less than v(x), and on such

assignments Iv((Tx ∧ Eyx) →K Ty) = Iv(Tx →K Ty), which is max (1 – Iv(Tx), Iv(Ty)).

Recall that when two heights differ by 1/8
′′, their membership degrees in the fuzzy

set for T as defined by SST differ by 1/192, so max (1 – Iv(Tx), Iv(Ty)) in this case is max

(1 – (Iv(Ty) + 1/192), Iv(Ty)), or max (191/192 – Iv(Ty), Iv(Ty)). The minimum value that

(Tx ∧ Eyx) →K Ty can have is therefore the minimum value of max (191/192 – Iv(Ty),

Iv(Ty)), which is .5 (you will be asked to verify this in an exercise). It follows that the

Kleenean Principle of Charity premise ( ∀x)( ∀y)((Tx ∧ Eyx) →K Ty) has the value .5

on SST. To the extent that we would like to capture the intuition that the Principle

of Charity premise is close to true, the Kleenean conditional therefore does not

compare well with the �Lukasiewicz conditional (and replacing weak conjunction

with bold conjunction in the premise will not change our conclusion).

With the comparison between the �Lukasiewicz and Kleene conditionals at hand,

we pause to address an issue that has been raised in the literature concerning an

alternative formulation of Sorites paradoxes. It’s been claimed (for example, by

Crispin Wright [1987]) that although a fuzzy analysis of Sorites arguments can dis-

solve the paradoxicality by claiming that the Principle of Charity premise is close to

true, as the �Lukasiewicz analysis does, fuzzy analyses fail when the Principle of Char-

ity is restated using conjunction and negation. Saying that every height that’s 1/8
′′ less
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than a tall height is itself tall is equivalent to saying that there’s no height that is tall

while the height that is 1/8
′′ less isn’t. Now if we use weak conjunction to symbolize the

Principle of Charity in Fuzzy�L∀ as ( ∀x)( ∀y)¬((Tx∧Eyx)∧¬Ty), it won’t be close to true

on a reasonable interpretation—because this formula is equivalent to the Kleene

conditional version of the Principle of Charity premise! (The Kleene conditional

formula P →K Q is equivalent to ¬(P ∧ ¬Q)). If we are satisfied with the �Lukasiewicz

conditional version of the Principle of Charity premise, and we are, the conjunc-

tive version should use bold rather than weak conjunction when the conditional

is eliminated, since P → Q is equivalent to ¬(P & ¬Q) in Fuzzy�L∀. This gives us the

formula ( ∀x)( ∀y)¬((Tx ∧ Eyx) & ¬Ty), which will also be close to true on SST. So the

claim that a �Lukasiewiczian fuzzy analysis is inadequate for Sorites paradoxes that

have a conjunctive version of the Principle of Charity premise is just plain wrong.

Returning to the Kleene conditional version of the Sorites argument, though,

we should also consider the question, For what value n is this version of the Sorites

argument n-degree-valid? Interpretation SST shows that it is at most .5-degree-valid,

since the downward distance from the value of the Principle of Charity premise to

the conclusion is .5. In fact, the Kleene conditional version of the Sorites paradox

is exactly .5-degree-valid; that is, the maximum downward distance between the

premises and the conclusion on any interpretation is .5.

Why? Well, assume that there’s an interpretation on which this downward dis-

tance is greater than .5. Then the value of each premise must be more than .5 greater

than the value of the conclusion, Ts193. In particular, the value of the Principle of

Charity premise must exceed the conclusion’s value by more than .5. Now, the value

of ( ∀x)( ∀y)((Tx ∧ Eyx) →K Ty) is the greatest lower bound of max (1 – min (Iv(Tx),

Iv(Eyx)), Iv(Ty)), or max (1 – Iv(Tx), 1 – Iv(Eyx), Iv(Ty)), for any assignment v, and so

this greatest lower bound must exceed .5. Let’s first consider a variable assignment

v1 such that v1(x) = I(s1) and v1(y) = I(s2). Because we’re assuming that Ts1 and Es2s1

have values greater than Iv(Ts193) + .5, it follows that 1 – Iv1(Tx) < .5 and 1 − Iv1(Eyx)

< .5. So if max (1 – Iv1(Tx), 1 – Iv1(Eyx), Iv1(Ty)) > Iv1(Ts193) + .5, it must be because

Iv1(Ty) > Iv1(Ts193) + .5. Now consider a variable assignment v2 such that v2(x) =

I(s2) and v2(y) = I(s3). By our previous reasoning, Iv2(Tx) > Iv2(Ts193) + .5 (because

v2(x) = v1(y)), and by our assumption Iv2(Es2s1) must be greater than Iv2(Ts193) + .5,

so for this assignment v2 we also have both 1 – Iv2(Tx) and 1 – Iv2(Eyx) less than .5. If

the value of (Tx ∧ Eyx) →K Ty is greater than Iv2(Ts193) + .5, then, it must be because

Iv2(Ty) > Iv2(Ts193) + .5.

By repeating this reasoning, we will eventually get to a variable assignment

v192 such that v192(x) = I(s192) and v192(y) = I(s193), where Iv192(Ty) > Iv192(Ts193) + .5.

But that’s impossible if v192(y) = I(s193)! Thus, contrary to our assumption, the max-

imum downward distance from the premises to the conclusion is .5 and so the

Kleenean version of the Sorites argument is exactly .5-degree-valid. Surveying this

reasoning, we can also see an additional point: When we use the Kleene conditional

in the Sorites argument we don’t get decaying validity as we do with the �Lukasiewicz
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conditional; in fact, the Kleenean argument remains .5-degree-valid no matter how

much we increase the subscript in the conclusion.

14.5 Gödel Fuzzy First-Order Logic

Adding the same quantifier clauses as in �Lukasiewicz fuzzy first-order logic, we arrive

at the following truth-conditions for formulas in FuzzyG∀, Gödel fuzzy first-order

logic:

1. Iv(Pt1 . . . tn) = I (P)(<I*(t1), . . . , I*(tn)>), where I*(ti) is I(ti) if ti is a constant and

is v(ti) if ti is a variable.

2. Iv(¬GP) = 1 if Iv(P) = 0

0 otherwise

3. Iv(P &G Q) = min (Iv(P), Iv(Q))

4. Iv(P ∇G Q) = max (Iv(P), Iv(Q))

5. Iv(P →G Q) = 1 if Iv(P) ≤ Iv(Q)

Iv(Q) otherwise

6. Iv(P ↔G Q) = 1 if Iv(P) = Iv(Q)

min (Iv(P), Iv(Q)) otherwise

7. Iv(( ∀x)P) = glb{Iv ′ (P): v′ is an x-variant of v}
8. Iv((∃x)P) = lub{Iv ′ (P): v′ is an x-variant of v}

(Because the quantifiers are defined identically for our three fuzzy first-order sys-

tems we omit subscripts.) Recall that Gödel fuzzy logic defines its conditional as

the adjunct residuum for �Lukasiewicz weak conjunction, and that the negation of a

formula is defined as ¬P =def P → 0. The general results that we examined for Gödel

fuzzy propositional logic carry over to the first-order system: every formula that is a

tautology in FuzzyG∀ is a tautology in classical logic and every entailment in FuzzyG∀
is a classical entailment, but the converses do not hold.

Black’s problem—how to express the existence of borderline cases for vague

predicates—can be addressed in FuzzyG∀ (and in FuzzyP∀, to be introduced in Sec-

tion 14.6) just as it is in Fuzzy�L∀ if we augment the language with the fuzzy external

assertion operator. So let us move right along and examine the Sorites paradox with

Gödel implication (which we here subscript with a G) and Gödel bold conjunction—

recall that Gödel weak conjunction is identical to Gödel bold conjunction:

Ts1

Es2s1

Es3s2

Es4s3

. . .

Es193s192

(∀x)(∀y)((Tx &G Eyx) →G Ty)

Ts193
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The argument is valid in FuzzyG∀. But consider again interpretation SST:

D: set of heights between 4′ 7′′ and 6′ 7′′ by 1/8
′′ increments, inclusive

I(T)(<x>) = (x – 4′ 7′′) / 24′′

I(E)(<x1,x2>) = 1 if x1 is 1/8
′′ less than x2

0 otherwise

I(s1) = 6′ 7′′

I(s2) = 6′ 67/8
′′

. . .

I(s 193) = 4′ 7′′

All of the premises except the last have the value 1 on this interpretation. For the Prin-

ciple of Charity premise we must determine the least value that (Tx &G Eyx) →G Ty

can have for any variable assignment. The formula has the value 1 whenever Eyx

has the value 0, so to find the formula’s minimum value we must consider variable

assignments that assign the value 1 to Eyx—assignments such that v(y) is 1/8
′′ less

than v(x). The formula (Tx &G Eyx) →G Ty has the same value as Tx →G Ty on these

variable assignments, and because Iv(Tx) > Iv(Ty), Iv(Tx →G Ty) = Iv(Ty) on these

assignments. When v(y) = 4′ 7′′, the value of Iv(Ty) is 0, so that is the least value

that Tx →G Ty can have. Thus the Gödel Principle of Charity premise is false on

interpretation SST; but that doesn’t jibe with the intuition that the premise is close

to true. In fact, the only way the principle can be close to true is to have a membership

function for tall that assigns a high degree of membership to every height—or to

have a membership function that assigns nondecreasing membership values for

decreasing heights—in either case that won’t be true to the facts.

It is interesting to note that the Sorites argument is also 1-degree-valid in

FuzzyG∀! Let’s assume that it isn’t; that is, we’ll assume that there is at least one inter-

pretation on which every premise has a value greater than the conclusion. Now, for

the Principle of Charity premise to have a greater value than the argument’s conclu-

sion, we must have Iv((Tx &G Eyx) →G Ty) > Iv(Ts193) for every variable assignment

v. Consider first an assignment v1 such that v1(x) = I(s192) and v1(y) = I(s193), so that

Iv1((Tx &G Eyx) →G Ty) = Iv1((Ts192 &G Es193s192) →G Ts193). By the way that Gödel

implication is defined, Iv1((Ts192 &G Es193s192) →G Ts193) > Iv1(Ts193) only if Iv1(Ts192

&G Es193s192) ≤ Iv1(Ts193) (otherwise the value of the conditional would be Iv1(Ts193)).

Thus either Iv1(Ts192) ≤ Iv1(Ts193) or Iv1(Es193s192) ≤ Iv1(Ts193).) But Iv1(Es193s192) >

Iv1(Ts193) by our assumption, so we conclude that Iv1(Ts192) ≤ Iv1(Ts193).

Next consider an assignment v2 such that v2(x) = I(s191) and v2(y) = I(s192).

In this case Iv2((Tx &G Eyx) →G Ty) = Iv2((Ts191 &G Es192s191) →G Ts192). From the

assumption that Iv2((Tx ∧G Eyx) →G Ty) > Iv2(Ts193), then, it follows that Iv2((Ts191

&G Es192s191) →G Ts192) > Iv2(Ts193) and consequently that Iv2((Ts191 &G Es192s191)) ≤
Iv2(Ts192) (otherwise the value of the conditional would be Iv2(Ts192), which is, by

the previous paragraph, less than or equal to Iv1(Ts193)). But again, we’ve assumed

Iv2(Es192s191) > Iv2(Ts193). So it must be that Iv2(Ts191) ≤ Iv2(Ts193).
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Repeating this reasoning we eventually end up concluding that even on an as-

signment v192 such that v192(x) = I(s1) and v192(y) = I(s2), Iv192(Tx), which is Iv192(Ts1),

is less than or equal to Iv192(Ts193). But this contradicts the assumption that all of the

premises are truer than Ts193. We conclude that the Sorites argument as symbolized

in FuzzyG∀ is 1-degree-valid. This reasoning generalizes for longer Sorites chains as

well, so the Sorites argument also fails to display decaying validity in FuzzyG∀.

14.6 Product Fuzzy First-Order Logic

Again, we use the same truth-condition clauses for the quantifiers to define the

system FuzzyP∀:

1. Iv(Pt1 . . . tn) = I (P)(<I*(t1), . . . , I*(tn)>), where I*(ti) is I(ti) if ti is a constant and

is v(ti) if ti is a variable

2. Iv(¬PP) = 1 if Iv(P) = 0

0 otherwise

3. Iv(P &P Q) = Iv(P) · Iv(Q)

4. Iv(P ∇P Q) = Iv(P) + Iv(Q) – (Iv(P) · Iv(Q))

5. Iv(P →P Q) = 1 if Iv(P) ≤ Iv(Q)

Iv(Q) / Iv(P) otherwise

6. Iv(P ↔P Q): left as an exercise in Chapter 11

7. Iv(( ∀x)P) = glb{Iv′ (P): v′ is an x-variant of v}
8. Iv((∃x)P) = lub{Iv′ (P): v′ is an x-variant of v}

Here bold conjunction is defined to be the algebraic product operation, bold dis-

junction is defined to be the algebraic sum operation, and negation turns out to

be identical to Gödel negation. The main semantic results for FuzzyP carry over to

FuzzyP∀. Every formula that is a tautology in FuzzyP∀ is a tautology in classical logic,

but not conversely; and every entailment in FuzzyP∀ is a classical entailment, but

not conversely. The Sorites argument

Ts1

Es2s1

Es3s2

Es4s3

. . .

Es193s192

( ∀x)( ∀y)((Tx ∧P Eyx) →P Ty)

Ts193

is valid in FuzzyP∀, as is the version using product bold conjunction in the Principle

of Charity premise: ( ∀x)( ∀y)((Tx &P Eyx) →P Ty). But not all of the premises have

the value 1 on interpretation SST: in fact, both versions of the Principle of Charity

premise have the value 0. When v(x) = 4′ 71/8
′′ and v(y) = 4′ 7′′, Iv((Tx ∧P Eyx) →P

Ty) = 0 because the consequent has the value 0 and the antecedent has the greater
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value 1/192, from which it follows that the value of the conditional is the value of the

consequent divided by that of the antecedent. Similarly, Iv((Tx &P Eyx) →P Ty) = 0

because the value of the antecedent is also 1/192 in this case. Like the Gödel version,

the product versions of the Principle of Charity compare poorly with the �Lukasiewicz

version on interpretation SST given the intuition that the Principle of Charity is close

to true. In this connection we note that if we choose a membership function for tall

that doesn’t assign 0 as the degree of membership for any height, then the Sorites

argument in product fuzzy logic can still have a conclusion whose value is very close

to 0 while the Principle of Charity premise has a much higher value.4

We can approximate the n-degree-validity of the bold product conjunction

version of the Sorites argument as follows (we approximate in this case because

the analysis is considerably more complicated than in the other systems).5 Let m1,

m2, . . . , m193 be the values assigned to Ts1, Ts2, . . . , Ts193 on an interpretation I, and

let n1, n2, . . . n192 be the values assigned to Es2s1, Es3s2, . . . , Es193s192. We note that

when v(x) = I(si) and v(y) = I(si+1) for some i, 1 ≤ i ≤ 192, the value pi of (Tx &P Eyx) →P

Ty is 1 if mi · ni ≤ mi+1 and it is mi+1 / (mi · ni) otherwise. In all other cases (i.e.,

all assignments v that don’t assign such values x and y) we’ll assume that Iv((Tx &P

Eyx) →P Ty) = 1 – it can because Iv(Eyx) can be 0 in these cases. (This assumption is

insignificant given that we’re trying to find a maximum downward distance.) Thus

the value of the Principle of Charity premise is min (p1, . . . , p192). So the maximum

possible downward distance between the value of the least true premise and that of

the conclusion is then the maximum value that min (m1, n1, . . . , n192, p1, . . . , p192) –

m192 can be for some interpretation.

If we restrict our attention to interpretations on which each n1 = n2 = · · · = n192 =

m1, then min (m1, n1, . . . , n192, p1, . . . , p192) – m192 reduces to min (m1, p1, . . . ,

p192) – m192. (Letting the ni values be lower than m1 would decrease the maximum

downward distance, so this restriction is also insignificant for our purposes.) If we

further restrict our attention to interpretations on which m1 < 1 and mi = m1
i for

each i > 1, then as i gets larger the values m1
i are getting smaller and smaller—

and we are trying to make the value assigned to the conclusion as small as we can.

Moreover, if mi = m1
i for each i > 1 then every pi is 1 because mi · ni = mi · m1 =

m1
i+1 ≤ m1

i+1, and so min (m1, p1, . . . , p192) – m192 now reduces to m1 – m192 or

m1 – m1
193! (This is why we didn’t want the ni values to be greater than m1.) So we

can ask, What is the maximum value that m1 – m1
193 can be when m1 is a value in

the unit interval [0. .1]? This value is around .97, meaning the argument is at most

.03-degree-valid, clearly a desirable result. The reader will be asked to do a similar

4 In fact, the examples in Goguen (1968–1969) use such a membership function—degrees of mem-
bership can get close to, but never reach 0. We’ll look at this function in Chapter 17. (Goguen’s
membership function does not, however, increase the value of the Gödel version of the Principle
of Charity.)

We hasten to make one technical point: although the choice of membership function can
make a clear difference here, the logical results like validity and n-degree validity do not depend
on any particular membership function.

5 I am grateful to my colleague Michael Albertson for pointing out that the restrictions used in this
analysis yield a simple but good approximation to the n-degree-validity of the Sorites argument.
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approximate analysis of the n-degree-validity of the Sorites argument when weak

product conjunction is used in place of bold product conjunction, and to discuss

whether either product version of the Sorites argument displays decaying validity.

14.7 The Sorites Paradox: Comparison of Fuzzy�L∀, FuzzyG∀, and FuzzyP∀

Here is a table summarizing the different behavior of the three versions of fuzzy

logic with respect to the Sorites argument as we’ve symbolized it:

Principle of Charity on

Interpretation SST

Sorites

argument

valid?

N-degree-

validity of Sorites

argument

Decaying

validity for

Sorites

argument?

Fuzzy�L∀ Close to true Yes Low n-degree-validity Yes

FuzzyG∀ False, and the only way

the principle can be close

to true is to have a

membership function for

tall that assigns a high

degree of membership to

every height or that

assigns nondecreasing

membership values for

decreasing heights

Yes 1-degree-valid No

FuzzyP∀ False, but can be made

close to true if every

height has a degree of

membership greater than

0 in the fuzzy set of tall

heights

Yes Low n-degree-validity Assigned

as exercise

Since Chapter 11 we’ve indicated our preference for �Lukasewicz fuzzy logic to handle

issues arising from vagueness, and these results show a good reason for this prefer-

ence. But there is one more important comparison we’ll need to make in Chapter 15:

the extent to which the three varieties of fuzzy first-order logic are axiomatizable.

14.8 Exercises

SECTION 14.1

1 Consider the “wealth” version of the Sorites paradox:

Anyone who has a million dollars is wealthy.

Anyone who has only one dollar less than a wealthy person is also wealthy.

Anyone who has ten dollars is wealthy.
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a. Symbolize this argument using Wx to mean: x dollars is wealth, and letting

the domain consist of the set of integers from 10 to 1,000,000.

b. Using the example for the predicate tall in this chapter as a model, find a

formula for assigning a fuzzy value in the range [0. .1] to each member of

the domain for the predicate W, such that

I(W)(<10>) = 0,

I (W)(<1,000,000>) = 1,

and all other members of the domain are assigned values between 0 and 1 as

seems appropriate but subject to the stipulation that I(W)(<x>) ≤ I(W)(<y>)

when x < y.

SECTION 14.2

2 Consider an interpretation I whose domain D consists of the positive integers

{1, 2, 3, . . . } and that makes the following assignments:

I(M)(<x>) = 1/x

I(N)(<x1,x2>) = 1/(x1 + x2)

I(a) = 1

I(b) = 5

I(c) = 20

Using the semantic clauses for Fuzzy�L∀, what is the (fuzzy) value assigned to

each of the following formulas?

a. Ma ∧ Mc

b. Mb & Mc

c. (∃x)Mx

d. (∃x)¬Mx

e. (∃x)(Mx & Nxx)

f. (∃x)(Mx ∨ Nxx)

g. (∃x)(Mx ∇ Nxx)

h. ( ∀x)(Mx ∨ ¬Mx)

i. ( ∀x)(Nxx ↔ ¬Nxx)

j. ( ∀x)(Nxx → Mx)

k. ( ∀x)( ∀y)(Nxy → Mx)

l. ( ∀x)( ∀y)(Nxy → (Mx ∧ My))

m. ( ∀x)( ∀y)(Nxy → (Mx & My))

3 What are the values of the formulas i–m in Exercise 2 when the Kleene condi-

tional and biconditional are used in place of the �Lukasiewicz connectives?

SECTION 14.3

4 For each of the following formulas, state the degree n to which it is an n-tautology

in Fuzzy�L∀, and explain your answer:

a. ( ∀x)Px → (∃x)Px

b. ( ∀x)(Px → (∃x)Px)

c. (∃x)( ∀y)Lxy →( ∀y)(∃x)Lxy
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d. ( ∀x)(∃y)Lxy → (∃y)( ∀x)Lxy

e. ( ∀x)Px ∨ ( ∀x)¬Px

f. ( ∀x)Px ∇ ( ∀x)¬Px

g. ( ∀x)Px ∨ (∃x)¬Px

h. ( ∀x)Px ∇ (∃x)¬Px

5 For each of the following arguments, state the degree n to which it is n-degree-

valid in Fuzzy�L∀, and explain your answer:

a. ( ∀x)Px

(∃x)Px

b. (∃x)Px

( ∀x)Px

c. ( ∀x)Px

( ∀x)Rx

(∃x)(Px ∧ Rx)

d. ( ∀x)Px

( ∀x)Rx

(∃x)(Px & Rx)

e. ( ∀x)Px

Qa → Pa

SECTION 14.4

6 Show that the formulas (∃x)(¬�Tx ∧ ¬�¬Tx) and (∃x)(¬�Tx ∧ �Tx) are not

equivalent in Fuzzy�L∀ by producing an interpretation on which the formulas

have different values.

7 We claimed that any variation of SST that assigns to the predicate T in our Sorites

argument a noncrisp interpretation in which at least two heights have different

degrees of tallness and tallness never increases as height decreases (but that

keeps the rest of SST the same) will give the Principle of Charity premise a value

less than 1 in Fuzzy�L∀. Prove this claim.

8 Explain why both Ts1 and the weak conjunction version of the Principle of

Charity premise, ( ∀x)( ∀y)((Tx ∧ Eyx) → Ty), have the truth-value 192/193 on

interpretation SST*.

9 Prove that on the interpretation

D: set of heights between 4′ 7′′ and 6′ 7′′ by 1/8
′′ increments, inclusive

I(T)(<x>) = (2 · (x – 4′ 7′′)) / 481/8
′′

I(E)(<x1,x2>) = 384/385 for all x1, x2

I(s1) = 6′ 7′′

I(s2) = 6′ 67/8
′′

. . .

I(s 193) = 4′ 7′′

I(Ts1) = I(Es2s1) = I(Es3s2) = · · · = I(Es193s192) = I(( ∀x) ( ∀y) ((Tx & Eyx) → Ty)) =
384/385 in Fuzzy�L∀, while I(Ts193) = 0.



P1: RTJ
9780521881289c14 CUNY1027/Bergmann 978-0 521 88128 9 November 23, 2007 18:11

14.8 Exercises 285

10 Assume that v is a variable assignment (for an interpretation) such that the

values of Tx and Eyx are identical. What is the relation between the values of

(Tx ∧ Eyx) → Ty and (Tx & Eyx) → Ty on v? Be as specific as you can.

11 Prove that .5 is the minimum value that max (191/192 – Iv(Ty), Iv(Ty)) can have

for any variable assignment v on interpretation SST.

12 a. We claimed that when we use the Kleene conditional in a Sorites argument

we don’t get decaying validity as we increase the subscript in the conclusion,

but that rather the argument remains .5-degree-valid. Prove this claim.

(When we increase the subscript we will automatically add the necessary

additional Esi+1Esi premises.)

b. A Kleenean Sorites argument is also .5-degree valid if we decrease the sub-

script in the conclusion—to a point. What is the smallest subscript for which

the Kleenean argument is .5-degree-valid? Prove that you are right.

SECTION 14.5

13 What are the values of the formulas in Exercise 2 when the �Lukasiewicz con-

nectives are replaced with Gödel connectives?

14 What is the value of the Gödel conjunctive version of the Principle of Charity,

( ∀x)( ∀y)¬G((Tx &G Eyx) &G ¬GTy), on interpretation SST?

15 Show that the Gödel conjunctive version of the Sorites argument (using the

Principle of Charity ( ∀x)( ∀y)¬G((Tx &G Eyx) &G ¬GTy)) is not valid in FuzzyG∀.

16 Show that if we modify the conclusion of the Gödel conjunctive version of the

Sorites argument to be ¬G¬GTs193, the resulting argument is valid in FuzzyG∀.

17 Analyze Max Black’s fringe formula (∃x)(¬GTx ∧G ¬G¬GTx) in FuzzyG∀: what is

the least value that this formula can have? What is the greatest value?

SECTION 14.6

18 What are the values of the formulas in Exercise 2 when the �Lukasiewicz con-

nectives are replaced with product connectives?

19 We claimed that if we choose a membership function for tall that doesn’t assign

0 as the degree of membership for any height, then a Sorites argument in FuzzyP∀
can still have a conclusion whose value is very close to 0 while the Principle of

Charity premise has a much higher value. Show that this is so by modifying

SST’s definition for the fuzzy set denoted for T to be:

I(T)(<x>) = (x – 4′ 7′′) / 24′′ if x > 4′ 7′′
1/192 if x = 4′ 7′′

and then determining the value of the Principle of Charity premise (with either

bold or weak conjunction in the antecedent).

20 What is the value of the bold product conjunctive version of the Principle of

Charity, ( ∀x)( ∀y)¬P((Tx &P Eyx) &P ¬PTy), on interpretation SST?

21 Show that the bold product conjunctive version of the Sorites argument (using

the Principle of Charity ( ∀x)( ∀y)¬P((Tx &P Eyx) &P ¬PTy)) is not valid in FuzzyP∀.
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22 Show that if we modify the conclusion of the bold product conjunctive version of

the Sorites argument to be ¬P¬PTs193, the resulting argument is valid in FuzzyP∀.

23 Analyze the n-degree-validity of the (conditional version of the) Sorites argu-

ment in FuzzyP∀ when weak product conjunction is used instead of bold product

conjunction in the Principle of Charity premise. To simplify, you may restrict

your attention to interpretations on which the Esi+1si premises all have the value

1—but be sure to explain why this restriction won’t produce a wildly inaccurate

anaysis. Try to think of other simplifications that may help in the analysis.

24 Does either product version of the Sorites argument display decaying validity?

25 Analyze Max Black’s fringe formula (∃x) (¬PTx ∧P ¬P¬PTx) in FuzzyP∀: what is

the least value that this formula can have? What is the greatest value?
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15 Derivation Systems for Fuzzy First-Order Logic

15.1 Axiomatic Systems for Fuzzy First-Order Logic: Overview

Of the three varieties of fuzzy first-order logic that we presented in Chapter 14, only

FuzzyG∀ can be adequately axiomatized for tautologies and entailment simpliciter—

specifically, only Fuzzy∀G is recursively axiomatizable for tautologies and entail-

ment. A system is recursively axiomatizable if we can produce a sound and com-

plete set of axioms such that it can be mechanically determined whether a formula

of the language is (or is not) an axiom. All of our axiomatizations thus far have been

recursive axiomatizations. In all of the systems other than F�LPA we’ve listed all of

the axiom schemata and so checking whether a formula is an axiom amounts to

checking whether its form instantiates one of the finitely many axiom schemata, a

mechanical procedure for sure. And in the Pavelka-style system F�LPA for Fuzzy�L∀,

it can in addition be mechanically determined whether or not formulas meet the

specifications of axioms F�LP5.1–F�LP6.2 involving truth-value constants and their

values, specifications like:

p = min (1, 1 – m + n).

Fuzzy�L∀ and Fuzzy∀P are not recursively axiomatizable for tautologies and entail-

ment. This is a significant limitation, one that for example negatively affects our

ability to define tautology and entailment conditions computationally for these

systems.1 On the other hand, Fuzzy�L∀ (but not the other two systems) can be axiom-

atized in a Pavelka-style system that captures fuzzy consequence.2 FuzzyG∀ and

FuzzyP∀ are not axiomatizable in Pavelka-style systems for the same reason that the

1 The negative result for Fuzzy�L∀ was established in Scarpellini (1962). Gottwald (2001) has an
excellent discussion of this negative result and presents weaker positive results; for example, if
one allows for inference rules that work on infinite numbers of formulas, one can get a weakly
complete and sound system for Fuzzy�L∀. We’ll see another weaker positive result in Section 15.2.

2 Fuzzy consequence is now defined in terms of interpretations rather than truth-values: each
fuzzy interpretation that makes every formula in a fuzzy set � of closed formulas of Fuzzy�L∀ at
least as true as its degree of membership in � is a consonant interpretation for the set �, and
the fuzzy consequence of a fuzzy set of formulas � is defined to be another fuzzy set, the fuzzy
set in which the degree of membership for any closed formula P is the greatest lower bound of
the truth-values that P can have on any consonant interpretation for �.

287
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propositional Gödel and product logics aren’t: they have noncontinuous proposi-

tional operations. Here is a table summarizing the situation:

Weakly

complete

axiomatization

Strongly

complete

axiomatization

Fuzzily

complete

axiomatization

Fuzzy�L∀ No No Yes

FuzzyG∀ Yes Yes No

FuzzyP∀ No No No

15.2 A Pavelka-Style Derivation System for Fuzzy�L∀

In this section we present a Pavelka-style system for Fuzzy�L∀, which we call F�L∀PA3.

We must add atomic formulas denoting the rational values in the unit interval to

the language Fuzzy�L∀—we call the expanded system RFuzzy�L∀. The axioms of F�L∀PA

include the axiom schemata for the propositional system F�LPA:

F�L∀P1. [P → (Q → P), 1]

F�L∀P2. [(P → Q) → ((Q → R) → (P → R)), 1]

F�L∀P3. [(¬P → ¬Q) → (Q → P), 1]

F�L∀P4. [((P → Q) → Q) → ((Q → P) → P), 1]

F�L∀P5.1. Includes every graded formula [(m → n) → p, 1] where m, n, and p

are atomic formulas denoting rational truth-values m, n, and p in the unit

interval such that p = min (1, 1 – m + n)

F�L∀P5.2. Includes every graded formula [p → (m → n), 1] where m, n, and p are

as in F�L∀P5.1

F�L∀P6.1. Includes every graded formula [¬m → p, 1] where m and p are atomic

formulas denoting rational truth-values m and p such that p = 1 – m

F�L∀P6.2. Includes every graded formula [p → ¬m, 1] where m and p are as in

F�L∀P6.1

F�L∀P7. Includes [m, m] for any rational value m in the unit interval,

where m is the atomic formula that denotes the value m

F�L∀PA also has two axiom schemata for quantifiers:

F�L∀P8. [(∀x)(P → Q) → (P → (∀x)Q), 1]

where P is a formula in which x does not occur free

F�L∀P9. [(∀x)P → P(a/x), 1]

where a is any individual constant and the expression P(a/x) means: the

result of substituting the constant a for the variable x wherever x occurs free

in P.

3 Vilém Novák (1990) generalized Pavelka-syle systems for �Lukasiewicz fuzzy propositional logic
to first-order systems. F�L∀PA is from Novák, Perfilieva, and Močkoř (1999), which owes partly to
Hájek (1997).
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The rules of F�L∀PA are

MP. From [P, m] and [P → Q, n], infer [Q, p], where p = max (0, m + n – 1)

TCI. From [P, m] infer [m → P, 1],

where m is the atomic formula that denotes the value m

UG. From [P(a/x), m] infer [(∀x)P, m]

where x is any individual variable, provided that no assumption contains

the constant a and that P does not contain the constant a

The rule UG tells us that if an arbitrary instance of a universal quantification has

at least the value m, we may infer that the quantified formula also has at least the

value m. This is acceptable because what is true of an arbitrary instance must be

true of all instances, so every instance of the quantified formula must have at least

the value that an arbitrary instance has.

Using the definition of existential quantification in Fuzzy�L∀:

(∃x)P =def ¬(∀x)¬P

we have the following derived axiom schemata (we start numbering at 20 because

we have all of the derived axioms—as well as the derived rules—from the axiomatic

system F�LPA):

F�L∀PD20. [(∀x)(P → Q) → ((∃x)P → Q), 1]

where Q is a formula in which x does not occur free

Justification. We derive the formula [(∀x)(P → Q) → (¬(∀x)¬P → Q), 1], where

x does not occur free in Q and a is a constant that does not occur in P or Q:

1 [(∀x)(P → Q) → (P(a/x) → Q), 1] F�L∀P9, with (∀x)(P → Q) / (∀x)P, a/a

Note that (P → Q)(a/x) is just P(a/x) → Q, because x does not occur free in Q

2 [(∀x)(P → Q) → (¬Q → ¬P(a/x)), 1] 1, GCON

3 [(∀x)((∀x)(P → Q) → (¬Q → ¬P)), 1] 2, UG

4 [(∀x)((∀x)(P → Q) → (¬Q → ¬P)) →
((∀x)(P → Q) → (∀x)(¬Q → ¬P)), 1]

F�L∀P8, with (∀x)((∀x)(P → Q) →
(¬Q → ¬P)) / (∀x)(P → Q)

5 [(∀x)(P → Q) → (∀x)(¬Q → ¬P), 1] 3,4 MP

6 [(∀x)(¬Q → ¬P) → (¬Q → (∀x)¬P), 1] F�L∀P8, with (∀x)(¬Q → ¬P) / (∀x)(P → Q)

7 [(∀x)(P → Q) → (¬Q → (∀x)¬P), 1] 5,6 HS

8 [(∀x)(P → Q) → (¬(∀x)¬P → ¬¬Q), 1] 7, GCON

9 [¬¬Q → Q, 1] F�L∀PD8, with Q / P

10 [(∀x)(P → Q) → (¬(∀x)¬P → Q), 1] 8,9 GHS

F�L∀PD21. [P(a/x) → (∃x)P, 1]

Justification: Justification is left as an exercise.

We mention these derived axioms because they will appear as explicit axioms in the

system for FuzzyG∀ in the next section.
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The following derivation produces a graded formula asserting that the univer-

sally quantified Law of Excluded Middle using bold disjunction has at least the

value 1 in Fuzzy�L∀. Again we express Ta ∇ ¬Ta as ¬Ta → ¬Ta:

1 [¬Ta → ¬Ta, 1] F�L∀PD7, with ¬Ta / P

2 [(∀x)(¬Tx → ¬Tx), 1] 1, UG

On the other hand, the Law of Excluded Middle using weak disjunction can only be

proved to have at least the value .5. Here is a derivation analogous to that in Chap-

ter 8, where we rewrite disjunction in terms of negation and the conditional so that

(∀x)(Tx ∨ ¬Tx) becomes (∀x)((Tx → ¬Tx) → ¬Tx):

1 [¬Ta → ((Ta → ¬Ta) → ¬Ta), 1] F�L∀P1, with ¬Ta / P, Ta → ¬Ta / Q

2 [(1/2 → ¬Ta) → ((¬Ta → ((Ta → ¬Ta) → ¬Ta)) →
(1/2 → ((Ta → ¬Ta) → ¬Ta))), 1]

F�L∀P2, with 1/2 / P, ¬Ta / Q,

(Ta → ¬Ta) → ¬Ta / R

3 [(1/2 → ¬Ta) → (1/2 → ((Ta → ¬Ta) → ¬Ta))), 1] 1,2 GMP

4 [Ta → ((Ta → ¬Ta) → ¬Ta), 1] F�L∀PD3, with Ta / P, ¬Ta / Q

5 [(1/2 → Ta) → ((Ta → ((Ta → ¬Ta) → ¬Ta)) →
(1/2 → ((Ta → ¬Ta) → ¬Ta))), 1]

F�L∀P2, with 1/2 / P, Ta / Q,

(Ta → ¬Ta) → ¬Ta / R

6 [(1/2 → Ta) → (1/2 → ((Ta → ¬Ta) → ¬Ta)),] 4,5 GMP

7 [(1/2 → Ta) ∨ (Ta → 1/2), 1] F�L∀PD13, with 1/2 / P, Ta / Q

8 [(1/2 → Ta) ∨ (¬1/2 → ¬Ta), 1] 7, GCON

9 [¬1/2 → 1/2, 1] F�L∀P6.1

10 [1/2 → ¬1/2, 1] F�L∀P6.2

11 [(1/2 → Ta) ∨ (1/2 → ¬Ta), 1] 8,9,10 SUB

12 [1/2 → ((Ta → ¬Ta) → ¬Ta), 1] 3,6,11 DS

13 [1/2, .5] F�L∀P7

14 [(Ta → ¬Ta) → ¬Ta, .5] 12,13 MP

15 [(∀x)((Tx → ¬Tx) → ¬Tx), .5] 14, UG

Next we’ll construct a derivation for the weak conjunction version of the Sorites

argument that concludes that if the Principle of Charity premise has at least the value
191/192 and the other premises have the value 1, then the conclusion has at least the

value 0. The derivation here generalizes a derivation from Section 13.3 of Chap-

ter 13. (As with that derivation, this derivation is longer than it need be; we can

derive [Ts193, 0] as a theorem using F�L∀PD19, without any of the Sorites premises.

But we include the longer derivation because it illustrates decaying validity.) For the

derivation we’ll use the rule

WCI (Weak Conjunction Introduction). From [P, m] and [Q, n] infer [P ∧ Q, p]

where p = min (m, n)

which is derivable in F�LPA and therefore also in F�L∀PA.
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1 [Ts1, 1] Assumption

2 [Es2s1, 1] Assumption

3 [Es3s2, 1] Assumption

. . . . . .

193 [Es193s192, 1] Assumption

194 [(∀x)(∀y)((Tx ∧ Eyx) → Ty), 191/192] Assumption

195 [(∀x)(∀y)((Tx ∧ Eyx) → Ty) →
(∀y)((Ts1 ∧ Eys1) → Ty), 1]

F�L∀P9, with (∀x)(∀y)((Tx ∧ Eyx) → Ty) / (∀x)P,

s1 / a

196 [(∀y)((Ts1 ∧ Eys1) → Ty), 191/192] 194,195 MP

197 [(∀y)((Ts1 ∧ Eys1) → Ty) →
((Ts1 ∧ Es2s1) → Ts2), 1]

F�L∀P9, with (∀y)((Ts1 ∧ Eys1) → Ty) / (∀x)P,

s2 / a

198 [(Ts1 ∧ Es2s1) → Ts2, 191/192] 196,197 MP

199 [Ts1 ∧ Es2s1, 1] 1,2 WCI

200 [Ts2, 191/192] 198,199 MP

201 [(∀x)(∀y)((Tx ∧ Eyx) → Ty) →
(∀y)((Ts2 ∧ Eys2) → Ty), 1]

F�L∀P9, with (∀x)(∀y)((Tx ∧ Eyx) → Ty) / (∀x)P,

s2 / a

202 [(∀y)((Ts2 ∧ Eys2) → Ty), 191/192] 194,201 MP

203 [(∀y)((Ts2 ∧ Eys2) → Ty) →
((Ts2 ∧ Es3s2) → Ts3), 1]

F�L∀P9, with (∀y)((Ts2 ∧ Eys2) → Ty) / (∀x)P,

s3 / a

204 [(Ts2 ∧ Es3s2) → Ts3, 191/192] 202,203 MP

205 [Ts2 ∧ Es3s2, 191/192] 3,200 WCI

206 [Ts3, 190/192] 204,205 MP

. . . . . . {repeating 201–206 with appropriate substitutions we arrive at}

1346 [Ts193, 0] 1344,1345 MP

With obvious substitutions we can also produce a derivation for the bold conjunc-

tion version of the Sorites argument, using the rule

BCI (Bold Conjunction Introduction). From [P, m] and [Q, n] infer [P & Q, k]

where k = max (0, m + n – 1)

which was also derived in F�LPA.

It is left as an exercise to produce derivations that show that if the Principle

of Charity premise in either version of the Sorites argument has at most the value
191/192 and the other premises have at most the value 1, then the conclusion has at

most the value 0. Together these derivations show that if the Principle of Charity

premise in the Sorites argument (either version) has exactly the value 191/192 and all

of the other premises are true, the conclusion is false.

Recall that our Kleenean version of the Sorites argument is .5-valid. It should

therefore be possible to produce derivations in which the premises are all graded

with values greater than .5 and the grade of the conclusion is .5 less than the least

of these. In fact, in some cases we can infer a higher grade for the conclusion (this

doesn’t contradict .5-validity, which gives an upper bound of .5 on the distance
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between the values of the premises and that of the conclusion). For example, if the

premises Ts1, Es2s1, Es3s2, . . . , Es193s192, and (∀x)(∀y)((Tx ∧K Eyx) →K Ty) all have

the value .6, then so must the conclusion. The Kleenean Principle of Charity is

equivalent to (∀x)(∀y)(¬(Tx ∧ Eyx) ∨ Ty) using only �Lukasiewicz’s connectives, and

if both Ts1 and Es2s1 have the value .6 then ¬(Tx ∧ Eyx) has the value .4 and so Ts2

must have the value .6 to give the disjunction the value .6. This reasoning may be

repeated over and over again, finally showing that Ts193 must also have the value .6

as well. Here is a derivation showing that if all the premises have at least the value

.6, so must the conclusion (we switch freely between the equivalent forms P ∨ Q

and (P → Q) → Q, depending on whether we are using the formula as a disjunction

or as a conditional). We begin by deriving the formula (Ts2 → 4/10) → 8/10, which

contains only Ts2 and truth-value constants:

1 [Ts1, .6] Assumption

2 [Es2s1, .6] Assumption

3 [Es3s2, .6] Assumption

. . . . . .

193 [Es193s192, .6] Assumption

194 [(∀x)(∀y)(¬(Tx ∧ Eyx) ∨ Ty), .6] Assumption

195 [(∀x)(∀y)(¬(Tx ∧ Eyx) ∨ Ty) →
(∀y)(¬(Ts1 ∧ Eys1) ∨ Ty), 1]

F�L∀P9, with (∀x)(∀y)(¬(Tx ∧ Eyx) ∨ Ty) / (∀x)P,

s1 / a

196 [(∀y)(¬(Ts1 ∧ Eys1) ∨ Ty), .6] 194,195 MP

197 [(∀y)(¬(Ts1 ∧ Eys1) ∨ Ty) →
(¬(Ts1 ∧ Es2s1) ∨ Ts2), 1]

F�L∀P9, with (∀y)(¬(Ts1 ∧ Eys1) ∨ Ty) / (∀x)P,

s2 / a

198 [¬(Ts1 ∧ Es2s1) ∨ Ts2, .6] 196,197 MP

199 [6/10 → (¬(Ts1 ∧ Es2s1) ∨ Ts2), 1] 198, TCI

200 [Ts1 ∧ Es2s1, .6] 1,2 WCI

201 [6/10 → (Ts1 ∧ Es2s1), 1] 200, TCI

202 [¬(Ts1 ∧ Es2s1) → ¬6/10, 1] 201, GCON

203 [¬6/10 → 4/10, 1] F�L∀P6.1

204 [¬(Ts1 ∧ Es2s1) → 4/10, 1] 202,203 HS

205 [4/10 → (Ts2 ∨ 4/10), 1] F�L∀P1, with 4/10 / P, Ts2 → 4/10 / Q

{Note: Ts2 ∨4/10 is defined to be (Ts2 →4/10) → 4/10}

206 [¬(Ts1 ∧ Es2s1) → (Ts2 ∨ 4/10), 1] 204,205 HS

207 [Ts2 → (Ts2 ∨ 4/10), 1] F�L∀PD3, with Ts2 / P, 4/10 / Q

208 [(¬(Ts1 ∧ Es2s1) ∨ Ts2) → (Ts2 ∨ 4/10), 1] 206,207 DC

209 [6/10 → ((Ts2 → 4/10) → 4/10), 1] 199,208 HS

210 [(Ts2 → 4/10) → (6/10 → 4/10), 1] 209, TRANS

211 [(6/10 → 4/10) → 8/10, 1] F�L∀P5.1

212 [(Ts2 → 4/10) → 8/10, 1] 210,211 HS

At this point we know that Ts2 must have at least the value .6, for if it didn’t, the

antecedent Ts2 → 4/10 of the formula on line 212 would have a value greater than .8

and the conditional’s value would be less than 1, not 1 as it is graded. Our task now

is to derive the formula 6/10 → Ts2 that says that Ts2 has at least the value .6. We will
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do this using a strategy that we saw in the derivation of rule CV in Chapter 13, first

showing that Ts2 has at least the value .2, then at least .4, then at least .6:

213 [1, 1] F�L∀P7

214 [1 → (0 → 4/10), 1] F�L∀P5.2

215 [0 → 4/10, 1] 213,214 MP

216 [(Ts2 → 0) → ((0 → 4/10) → (Ts2 → 4/10)), 1] F�L∀P2, with Ts2 / P, 0 / Q, 4/10 / R

217 [(Ts2 → 0) → (Ts2 → 4/10), 1] 215,216 GMP

218 [(Ts2 → 0) → 8/10, 1] 212,217 HS

219 [8/10 → ((8/10 → 0) → 0), 1] F�L∀PD3, with 8/10 / P, 0 / Q

220 [(Ts2 → 0) → ((8/10 → 0) → 0), 1] 218,219 HS

221 [(8/10 → 0) → ((Ts2 → 0) → 0), 1] 220, TRANS

222 [((Ts2 → 0) → 0) → ((0 → Ts2) → Ts2), 1] F�L∀P4, with Ts2 / P, 0 / Q

223 [(8/10 → 0) → ((0 → Ts2) → Ts2), 1] 221,222 HS

224 [Ts2, 0] F�L∀PD19, with Ts2 / P

225 [0 → Ts2, 1] 224, TCI

226 [(8/10 → 0) → Ts2, 1] 223,225 GMP

227 [2/10 → (8/10 → 0), 1] F�L∀P5.2

228 [2/10 → Ts2, 1] 226,227 HS

229 [1 → (2/10 → 4/10), 1] F�L∀P5.2

230 [2/10 → 4/10, 1] 213, 229 MP

231 [(Ts2 → 2/10) → ((2/10 → 4/10) → (Ts2 → 4/10)), 1] F�L∀P2, with Ts2 / P, 2/10 / Q, 4/10 / R

232 [(Ts2 → 2/10) → (Ts2 → 4/10), 1] 230,231 GMP

233 [(Ts2 → 2/10) → 8/10, 1] 212,232 HS

234 [8/10 → ((8/10 → 2/10) → 2/10), 1] F�L∀PD3, with 8/10 / P, 2/10 / Q

235 [(Ts2 → 2/10) → ((8/10 → 2/10) → 2/10), 1] 233,234 HS

236 [(8/10 → 2/10) → ((Ts2 → 2/10) → 2/10), 1] 235, TRANS

237 [((Ts2 → 2/10) → 2/10) → ((2/10 → Ts2) → Ts2), 1] F�L∀P4, with Ts2 / P, 2/10 / Q

238 [(8/10 → 2/10) → ((2/10 → Ts2) → Ts2), 1] 236,237 HS

239 [(8/10 → 2/10) → Ts2, 1] 228,238 GMP

240 [4/10 → (8/10 → 2/10), 1] F�L∀P5.2

241 [4/10 → Ts2, 1] 239,240 HS

242 [8/10 → ((8/10 → 4/10) → 4/10), 1] F�L∀PD3, with 8/10 / P, 4/10 / Q

243 [(Ts2 → 4/10) → ((8/10 → 4/10) → 4/10), 1] 212,242 HS

244 [(8/10 → 4/10) → ((Ts2 → 4/10) → 4/10), 1] 243, TRANS

245 [((Ts2 → 4/10) → 4/10) → ((4/10 → Ts2) → Ts2), 1] F�L∀P4, with Ts2 / P, 4/10 / Q

246 [(8/10 → 4/10) → ((4/10 → Ts2) → Ts2), 1] 244,245 HS

247 [(8/10 → 4/10) → Ts2, 1] 241,246 GMP

248 [6/10 → (8/10 → 4/10), 1] F�L∀P5.2

249 [6/10 → Ts2, 1] 247,248 HS

. . . . . . {lines 195–202, 204–210, 212, 216–218, 220–226, 228, 231–233, 235–239, 241, 243–247,

and 249 repeat 191 times (we don’t need to repeat the formulas that contain only truth-

value constants), with 1 added to the subscripts each time, ending with}

8271 [6/10 → Ts193, 1] 8269,8270 HS

8272 [6/10, .6] F�L∀P7

8273 [Ts193, .6] 8271,8272 MP
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As we did for F�LPA, we will say that a formula P is a theorem to degree n in F�L∀PA

if n is the least upper bound of the values m such that there is a derivation of the

graded formula [P, m], and that a formula P is derivable to degree n from a set � of

graded formulas if n is the least upper bound of the degrees m such that [P, m] is

derivable from the graded formulas in �.

The system F�L∀PA is fuzzy sound: every formula that is a theorem to degree n in

F�L∀PA is an n-tautology of RFuzzy�L∀, and if a formula P is derivable to degree n from a

graded set of formulas then n is the greatest lower bound of the values that P can have

in RFuzzy�L∀ given the graded values of the set of formulas. (As earlier, interpretations

for RFuzzy�L∀ are like those for Fuzzy�L∀ except that, in addition, each of the special

formulas added to denote rational truth-values is assigned the truth-value that it

denotes.) F�L∀PA is also fuzzy complete: every formula that is an n-tautology in

RFuzzy�L∀ is a theorem to degree n in F�L∀PA, and a formula P is derivable to degree n

from a graded set of formulas if n is the least upper bound of the values that P can

have in RFuzzy�L∀ given the graded values of the set of formulas (see Novák et al. 1999,

pp. 147–150).

As a consequence of the non-recursive axiomatizability of Fuzzy�L∀ (and

RFuzzy�L∀), soundness and (weak) completeness in the traditional sense must fail for

F�L∀PA (and for any other axiomatic system for Fuzzy�L∀). Specifically, it is traditional

completeness, not soundness, that is problematic: not every formula of RFuzzy�L∀
that has the value 1 on every interpretation has a derivation with graded value 1. But

Hájek (1998b) has proved that a weaker result does hold: that a formula of RFuzzy�L∀
will have a derivation with graded value 1 in F�L∀PA if that formula has the value

unit on every linear MV-algebraic interpretation in which the algebra includes the

rationals in the unit interval along with every glb and lub that is required by the

truth-conditions for quantified formulas. (An algebra is linearly ordered if for any

two elements x and y in its domain either x ≤ y or y ≤ x.) Hájek also proved that a

related weaker result holds for a non-Pavelka axiomatization of Fuzzy�L∀ based on

F�LA with additional axioms and rules for the quantifiers. The reason that these are

weaker results is that there are tautologies over interpretations based on the unit

interval [0. .1] that do not evaluate to unit on every algebraic interpretation in the

broader classes, and so these formulas are not guaranteed by the weaker results to

have derivations with graded value 1.

15.3 An Axiomatic Derivation System for FuzzyG∀

Here is an axiomatic system BLG∀A from Hájek (1997) that is both sound and com-

plete (in the traditional sense) for FuzzyG∀, the only one of our three fuzzy first-order

systems for which this is possible. BLG∀A includes the axiom schemata for BLGA from

Chapter 13, which we here list with the additional prefix ∀ since we are now working

with a first-order system:

BLG∀1. (P →G Q) →G ((Q →G R) →G (P →G R))

BLG∀2. (P &G Q) →G P
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BLG∀3. (P &G Q) →G (Q &G P)

BLG∀4. (P &G (P → G Q)) →G (Q &G (Q →G P))

BLG∀5. (P →G (Q →G R)) →G ((P &G Q) →G R)

BLG∀6. ((P &G Q) →G R) →G (P →G (Q →G R))

BLG∀7. ((P→G Q) →G R) →G (((Q →G P) →G R) →G R)

BLG∀8. 0 →G P

BLG∀9. P →G (P &G P)

along with the following axiom schemata for quantifiers:

BLG∀9. (∀x)(P →G Q) →G (P →G (∀x)Q)

where P is a formula in which x does not occur free

BLG∀10. (∀x)P →G P(a/x)

where a is any individual constant

BLG∀11. (∀x)(P →G Q) → ((∃x)P →G Q)

where Q is a formula in which x does not occur free

BLG∀12. P(a/x) →G (∃x)P

where a is any individual constant

BLG∀13. (∀x)(P ∨G Q) →G ((∀x)P ∨G Q)

where Q is a formula in which x does not occur free

(For the last axiom, recall that weak disjunction is identical to strong disjunction in

FuzzyG and hence in FuzzyG∀.) The rules are

MP. From P and P →G Q, infer Q

and

UG. From P(a/x), infer (∀x)P

where x is any individual variable, provided no assumption contains the

constant a and that P does not contain the constant a.

Note that BLG∀9 and BLG∀10 are (ungraded versions of) F�L∀PA’s axiom schemata

F�L∀G8 and F�L∀G9 in Section 15.2. We showed there that the next two axioms, BLG∀11

and BLG∀12, are derivable in F�L∀GA. But here we need explicitly to include the

remaining axioms to capture quantified claims because the operations are Gödel

operations. In �Lukasiewicz fuzzy logic we can define the existential quantifier in

terms of the universal quantifier and negation—that means we don’t need special

axioms for the existential quantifier in addition to those for the universal quantifier.

But we cannot similarly define the existential quantifier in Gödel fuzzy logic because

Gödel negation behaves differently from �Lukasiewicz negation (this will be further

explored in an exercise).

We shall show that the conclusion of the Sorites argument using Gödel bold

conjunction and the Gödel conditional:
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Ts1

Es2s1

Es3s2

Es4s3

. . .

Es193s192

(∀x)(∀y)((Tx &GEyx) →GTy)

Ts193

is derivable from the premises in B�LG∀A. (Recall that weak and bold conjunction

are identical in FuzzyG∀, so the derivation also establishes derivability when the

Principle of Charity uses weak rather than bold conjunction.) First, we’ll derive the

rule:

BCI (Bold Conjunction Introduction). From P and Q infer P &G Q

The rule is derived as follows (recall that HS is derivable rule in all of the BL-axiomatic

systems):

1 P Assumption

2 Q Assumption

3 (P &G Q) → ((P &G Q) &G (P &G Q)) BLG∀9, with P &G Q / P

4 ((P &G Q) &G (P &G Q)) → (P &G Q) BLG∀2, with (P &G Q) / P, (P &G Q) / Q

5 (P &G Q) →G (P &G Q) 3,4 HS

6 ((P &G Q) →G (P &G Q)) →G (P →G (Q →G (P &G Q))) BLG∀6, with P / P, Q / Q, P &G Q / R

7 P →G (Q →G (P &G Q)) 5,6 MP

8 Q →G (P &G Q) 1,7 MP

9 P &G Q 2,8 MP

And here’s the Sorites derivation:

1 Ts1 Assumption

2 Es2s1 Assumption

. . . . . .

193 Es193s192 Assumption

194 (∀x)(∀y)((Tx &GEyx) →GTy) Assumption

195 (∀x)(∀y)((Tx &G Eyx) →G Ty) →G

(∀y) ((Ts1 &G Eys1) →G Ty)

BLG∀10, with (∀x)(∀y)((Tx &G Eyx) →G Ty) /

(∀x)P, s1 / a

196 (∀y)((Ts1 &G Eys1) →G Ty) 194,195 MP

197 (∀y)((Ts1 &G Eys1) →G Ty) →G

((Ts1 &G Es2s1) →G Ts2)

BLG∀10, with (∀y)((Ts1 &G Eys1) →G Ty) /

(∀x)P, s2 / a

198 (Ts1 &G Es2s1) →G Ts2 196,197 MP

199 Ts1 &G Es2s1 1,2 BCI

200 Ts2 198,199 MP

. . . . . . {repeating 195–200 with appropriate substitutions we arrive at}

1346 Ts193 1344,1345 MP
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which should look familiar—the reasoning is exactly the same as the reasoning

displayed in the Sorites derivations in Section 15.2!

Finally, we note that the set of theorems of B�LG∀A is not decidable, not surprising

given the undecidability of classical and three-valued first-order systems.

15.4 Combining Fuzzy First-Order Logical Systems; External Assertion

Our bias in favor of �Lukasiewicz fuzzy logic has been clear: it (augmented with

an external assertion operation) deals quite well with the issues of vagueness that

have concerned us, and we also have a Pavelka-style axiomatic system to examine

n-degree-validity, decaying validity, and so forth syntactically. On the other hand,

Gödel negation, which is not definable in Fuzzy�L∀, has some interest, and so do the

t-norm of product logic and its residuum. We may decide, in the end, that we would

also like to have these additional operations available—just as we decided that exter-

nal assertion was an important operator to have. Mindful of this, and particularly

keeping in mind that Fuzzy�L∀ isn’t recursively axiomatizable, researchers have pro-

duced axiomatic systems that combine these three basic fuzzy systems. For exam-

ple, Esteva, Godo, and Montagna (2001) present complete axiomatizations for a

fuzzy propositional system that includes both �Lukasiewicz and product connectives

(recall here that external assertion is definable as long as we have �Lukasiewicz nega-

tion and product/Gödel negation), and Hájek (1998b) has developed an axiomatic

system for fuzzy first-order logic that includes all of the �Lukasiewicz, Gödel, and

product connectives, based on work in Takeuti and Titani (1984).

We can also augment either of the axiomatic systems in this chapter with

Matthias Baaz’s external assertion axiom schemata, which we repeat here:

∆1. ∆P ∨ ¬∆P

∆2. ∆(P ∨ Q) → (∆P ∨ ∆Q)

∆3. ∆P → P

∆4. ∆P → ∆∆P

∆5. ∆(P → Q)→ (∆P → ∆Q)

and the rule

EA (External Assertion). From P infer ∆P.

In Chapter 13 we illustrated using these axioms in the Pavelka system F�L�PA. We

did note that the resulting system was not fuzzy complete for Fuzzy�L augmented

with external assertion, and similarly here. However, the system is fuzzy sound, so

derivations that we can produce will not lead us astray. Here we will give an example

using the graded system F�L∀�PA. The � axiom schemata will all be graded with the

value 1, of course. And here is a graded version of EA:

EA (External Assertion). From [P, 1] infer [∆P, 1].
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Note that if a formula P has any value less than 1, ∆P will have the value 0. But we

don’t bother to include this as part of the rule EA because we can derive any formula

with graded value 0.

We’ll show that if Ta has at least the value .5, in Fuzzy�L augmented with the

external assertion operator then (∀x)¬Tx is clearly not clearly true (recall the reading

of the external assertion operator as clearly):

1 [Ta, .5] Assumption

2 [1/2 → Ta, 1] 1, TCI

3 [¬Ta → ¬1/2, 1] 2, GCON

4 [¬1/2 → 1/2, 1] F�L∀�P6.1

5 [¬Ta → 1/2, 1] 3,4 HS

6 [(∀x)¬Tx → ¬Ta, 1] F�L∀�P9, with (∀x)¬Tx / (∀x)Px, a / a

7 [(∀x)¬Tx → 1/2, 1] 5,6 HS

8 [�(∀x)¬Tx → (∀x)¬Tx, 1] �3, with �(∀x)¬Tx / P

9 [�(∀x)¬Tx → 1/2, 1] 7,8 HS

10 [¬1/2 → ¬�(∀x)¬Tx, 1] 9, GCON

11 [1/2 → ¬1/2, 1] F�L∀�P6.2

12 [1/2 → ¬�(∀x)¬Tx, 1] 10,11 HS

13 [�(∀x)¬Tx → ¬�(∀x)¬Tx, 1] 9,12 HS

14 [(�(∀x)¬Tx → ¬�(∀x)¬Tx) → ¬�(∀x)¬Tx, 1] �1, with (∀x)¬Tx / P

15 [¬�(∀x)¬Tx, 1] 13,14 MP

16 [�¬�(∀x)¬Tx, 1] 15, EA

15.5 Exercises

SECTION 15.2

1 Construct a derivation that justifies the derived axiom schema

F�L∀PD21. [P(a/x) → (∃x)P, 1]

in F�L∀PA.

2 Present a derivation in F�L∀PA based on the method of reasoning in the corre-

sponding “chain” derivation in Section 13.3 of Chapter 13, that shows that if

the Principle of Charity premise in the weak conjunction version of the Sorites

argument has at most the value 191/192 and the other premises have at most the

value 1, then the conclusion has at most the value 0.

3 Present a derivation in F�L∀PA that shows that if the Principle of Charity premise

in the bold conjunction version of the Sorites argument has at most the value
191/192 and the other premises have at most the value 1, then the conclusion has

at most the value 0.

4 Present a derivation that shows that if the premises of the Kleenean version of

the Sorites argument all have at most the value .6, then so does the conclu-

sion.
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5 Consider the non-Pavelka axiomatic system F�L∀A that consists of axiom

schemata F�L∀P1–F�L∀P4, F�L∀P8 and F�L∀P9, and the rules MP and UG, all with

grades removed from the formulas. We know that this system must be incom-

plete, as explained in Section 15.1. Nevertheless, the �Lukasiewicz weak conjunc-

tion Sorites argument, the �Lukasiewicz strong conjunction Sorites argument,

and the Kleene conditional Sorites arguments are all valid in this system. Show

this.

SECTION 15.3

6 Explain why we cannot define the existential quantifier in Gödel fuzzy first-

order logic as we did in classical logic; that is, explain why (∃x)P and ¬ (∀x)¬GP

are not in general equivalent in FuzzyG∀. You may do this by giving an instance

of these formulas and an interpretation on which these instances have different

truth-values.

7 Construct a derivation of the modified conclusion of the Gödel conjunctive

version of the Sorites paradox from its premises in BLG∀A (remember that ¬P

is defined as (P → 0) → 0):

Ts1

Es2s1

Es3s2

. . .

Es193s192

(∀x)(∀y)¬G((Tx &G Eyx) &G ¬GTy)

¬G¬GTs193

SECTION 15.4

8 Construct a derivation of the graded formula [�(∀x)Tx →�(∃x)Tx, 1] in F�L∀�PA.

9 Construct a derivation of the graded formula [�(∀x)Tx → (∃x)�Tx, 1] in F�L∀�PA.

10 Construct a derivation that shows that [¬��(∀x)Tx, 1] follows from [�¬�(∃x)Tx,

1] in F�L∀�PA.

11 Construct a derivation that shows that [�Ra, 1] follows from [¬Pa, .5] and

[(∀x)�(Px ∨ Rx), .5] in F�L∀�PA.
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16.1 Fuzzy Qualifiers: Hedges

So far we have studied fuzziness in connection with vague predicates, with our main

concern the Sorites paradoxes and other logical puzzles. In this chapter we present

two extensions of fuzziness. The formula apparatus that we present can be used to

augment any of the fuzzy systems we’ve studied: �Lukasiewicz, Gödel, or product.

We’ll begin with fuzzy qualifiers, known as hedges.1 Consider the adverb very.

This adverb combines with vague predicates to form new vague predicates. So, for

example, very tall is a vague predicate, as are very bald and very big. The fact that

very combines with a given predicate implies that there are degrees of membership

in the predicate’s extension: we do not, for example, talk of natural numbers that

are very prime; a number either is prime or is not.

Not only does very require that the predicates it qualifies be vague—it system-

atically produces new vague concepts by raising the threshold for membership in

fuzzy sets. Recall the fuzzy membership function for tall in interpretation SST in

Chapter 15, where the domain consists of heights between 4′ 7′′ and 6′ 7′′:

I (T)(<x>) = (x – 4′ 7′′) / 24′′

So I(T)(<6′ 7′′>) = 1; I(T)(<6′ 5′′>) = (roughly) .92; and I(T)(<5′ 8′′>) = .54. When

we say that very raises the threshold for membership in this fuzzy set we mean that

in general the degree of membership of a height in the fuzzy set very tall will be less

than that height’s degree of membership in the fuzzy set tall; that is, it’s harder to

have a high degree of membership in the fuzzy set very tall. So, for example, if 5′ 8′′

is tall to degree .54, then it is very tall to a lesser degree, perhaps to degree .25. Now,

the threshold need not be lowered in every case. For example, 6′ 7′′ may be not only

tall to degree 1 but also very tall to degree 1. Moreover, the lowering need not be a

linear function in those cases where it does occur. In our example, 5′ 8′′ is a member

of the fuzzy set very tall to a degree that is .29 less than its degree of membership

in tall, but the degrees to which 6′ 5′′ is a member of the fuzzy sets tall and very tall

need not differ by the same amount – 6′ 5′′ may be very tall to a higher degree than

.63 (= .92 − .29), perhaps to degree .8 or .9.

1 The term was coined by the linguist George Lakoff (1973).

300
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To capture this, we’ll interpret very (along with other hedges) as a function

mapping membership degrees (values in the unit interval [0. .1]) to membership

degrees (in [0. .1]), because when very attaches to a predicate it takes an objects’s

degree of membership in the predicate’s fuzzy set and produces a new degree. Put

differently, the function maps one fuzzy set into another—it maps the fuzzy set tall

into the fuzzy set very tall by showing how the membership degrees change.

The particular function that’s usually used for very is the square function.2 It

preserves 1 as the degree to which 6′ 7′′ is very tall, and it produces .85 and .29 as the

respective degrees to which 6′ 5′′ and 5′ 8′′ are very tall. Note that interpreting very

as a function from membership degrees to membership degrees supports iterated

application of the function. Very can intensify very tall, so that a height’s degree of

membership in the fuzzy set very very tall is its degree of membership in tall raised to

the fourth power—a much higher threshold. Building on our preceding examples,

6′ 7′′ is very very tall to degree 1; 6′ 5′′ is very very tall to degree .72; and 5′ 8′′ is very

very tall to degree .08.

Unlike very, the qualifier close to generally serves to lower membership thresh-

olds. While 5′ 8′′ may only be tall to degree .54, it is close to tall to a higher degree,

say, .75. (One exception is that we might not want to say that a height that is tall to

degree 1 is close to tall because the latter carries the suggestion that the height is not

exactly tall; the reader will be asked to explore this possibility in the exercises.) Close

to also seems more like a linear qualifier. So perhaps the corresponding function

maps a degree of membership to a degree that is .1 higher—with the obvious special

case that we can’t map to a degree higher than 1, so every degree of membership

between .9 and 1 inclusive is mapped to 1.

We need to add a supply of qualifiers to the language of first-order logic to sym-

bolize hedges—we’ll use lowercase Greek letters (to which we may add subscripts

to guarantee an infinite supply of qualifiers). We now define predicates to include

single uppercase roman letters and all expressions formed by placing one or more

occurrences of qualifiers in front of a predicate, for example, αT, ααT, βαδT. (In

English we are not allowed to mix qualifiers quite so freely; for example, while a

height may be very tall, very very tall, very very very tall, close to tall, close to close

to tall, very close to tall, close to very tall, or somewhat tall, it may not be somewhat

somewhat tall (well, maybe not?), very somewhat tall, or somewhat very tall.)

Interpretations must now assign functions as the values of qualifiers, so the

definition of interpretations is modified to include

An assignment of a function I(α) to each qualifier α mapping [0. .1] to [0. .1]:

I(α) ∈ [0. .1][0. .1]3

Given the preceding analysis, I(very) is the function that maps each member n of

[0. .1] to n2, that is, I(very)(n) = n2; and I(close-to)(n) = min (1, n + .1). (Here we

2 This was first suggested by L. A. Zadeh. See, for example, Zadeh (1975).
3 This is standard notation for the set of functions mapping the unit interval to the unit interval.
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have taken the obvious liberty of using the English expressions rather than Greek

letters.)

We must also add a semantic basis clause defining the fuzzy sets corresponding

to predicates formed with qualifiers:

I(αPn)(<x1, . . . , xn>) = I(α)(I(Pn)(<x1, . . . , xn>)).

That is, the degree to which <x1, . . . , xn> is αPn is the result of applying the function

α to <x1, . . . , xn>’s degree of membership in the fuzzy set Pn. Thus, where T is

interpreted as in SST, we have

I(very T)(<x>) = I(very)(I(T)(<x>)) = I(very)((x – 4′ 7′′) / 24′′) = ((x – 4′ 7′′)/24′)2

I(very very T)(<x>) = I(very)(I (very T)(<x>)) = I(very)(((x – 4′ 7′′) / 24′′)2) =
(((x – 4′ 7′′) / 24′′)2)2, or ((x – 4′ 7′′)/24′′)4

I(close-to T)(<x>) = I(close-to)(I(T)(<x>)) = I(close-to)((x – 4′ 7′′)/24′′) = min

(1, ((x – 4′ 7′′)/24′′) + .1)

I(close-to close-to T)(<x>) = I(close-to)(I(close-to T)(<x>)) = I(close-to)(min (1,

((x – 4′ 7′′)/24′′) +.1)) = min (1, min (1, (x – 4′ 7′′)/24′′ + .1) + .1), which is min

(1, (x – 4′ 7′′)/24′′ + .2)

I(close-to very T)(<x>) = I(close-to)(I(very T)(<x>)) = I(close-to)(((x – 4′ 7′′) /

24′′)2) = min (1, ((x – 4′ 7′′) / 24′′)2 + .1)

I(very close-to T)(<x> = I(very)(I(close-to T)(<x>)) = I(very)(min (1, (x – 4′ 7′′) /

24′′ + .1)) = (min (1, (x – 4′ 7′′)/24′′) + .1)2

(For perspicuity in our illustration we’ve used English in place of the Greek letters.)

The rest of the semantic clauses remain the same, since qualified predicates work

the same way as simple predicates when embedded in formulas.

Note that we can also treat not as a predicate qualifier to form expressions like

not tall and not very tall. A reasonable interpretation for not in this context is

I(not)(n) = 1 – n

which produces

I(not T)(<x>) = I(not)(I(T)(<x>)) = I(not)((x – 4′ 7′′)/24′′) = 1 – ((x – 4′ 7′′)/24′′)

and

I(not very T)(<x>) = I(not)(I(very T)(<x>)) = I(not)((x – 4′ 7′′)/24′′)2 = (1 –

((x – 4′ 7′′)/24′′).2

Note that not is modifying very T rather than very; that is, not very T is not (very T),

not (not very) T—the latter would require hedges that modify hedges. Obviously,

with this interpretation of not, not Tx will be equivalent to ¬Tx in Fuzzy�L∀, but not

in FuzzyG∀ or FuzzyP∀.4

4 For further reading on hedges in fuzzy logic see Lakoff (1973), Zádeh (1975), and Novák (2001).
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16.2 Fuzzy “Linguistic” Truth-Values

In addition to combining with ordinary predicates in English, hedges can modify

truth-value attributions. For example, we’ve said often that the Principle of Charity

premise in the Sorites paradox is close to true, and we may also say that a particular

statement is very true, very close to true, not very true, somewhat true, and so on,

or that it is very false, close to false, and so forth. In this book we have also talked

about statements that are clearly true, clearly not true, and clearly false rather than

just true or false. Lotfi Zadeh (1975) first explored these “linguistic truth-values”

(natural language truth-value attributions) in 1975,5 somewhat informally; more

recently theoreticians have begun to incorporate linguistic truth-values into formal

axiomatic systems (e.g., Hájek [2001].

Following Zadeh, we will interpret linguistic truth-values as fuzzy sets of truth-

values. For example, the interpretation of true might be the fuzzy set (over the unit

interval [0. .1]) defined by the function

I(true)(n) = 0 if n ≤ .8

2((n − .8)(.2)2 if .8 <n ≤ .9

1 − 2((n − 1)/.2)2 if n > .9

(this example is Zadeh’s). Note that this function makes 1 true to degree 1 and 0 true

to degree 0, a minimal requirement we might impose on such a function. The value

.81 is true to degree .05, .9 is true to degree .5, .91 is true to degree .595, and .99 is

true to degree .995. The linguistic truth-value true is a propositional operator that

combines with formulas just as negation does:

If Q is a formula, so is true Q

and the semantic clause

I(true Q) = I(true)(I(Q))

gives the truth-conditions for formulas formed with the operator true. If Tj symbol-

izes John is tall, then true Tj symbolizes It is true that John is tall. If Tj has the value

.91, then by the function we have assigned to true, true Tj has the value .595. More

generally, interpretations will now include

An assignment to each primitive truth-value t of a function I(t) mapping [0. .1]

to [0. .1]:

I(t) ∈ [0. .1][0. .1]

to assign fuzzy sets to all primitive truth-values, and the semantic truth-condition

clauses will include

I(tQ) = I(t)(I(Q))

to determine the values of formulas formed with linguistic truth-values.

5 Zadeh (1975).
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Because true is interpreted as a fuzzy set we can combine hedges with true

(or other linguistic truth-values) to form further, complex linguistic truth-values.

Formally we need to specify that

If α is a qualifier and t is a linguistic truth-value, then αt is a linguistic truth-

value,

and a semantic clause to assign functions to complex linguistic truth values:

I(αt)(n) = I(α)(I(t)(n))

For example, the value of very true for any truth-value is the square of the true

function applied to that degree. In particular, given our sample interpretations, we

have

I(very true)(n) = I(very)(I(true)(n))

= 0 if n ≤ .8

4((n − .8)/.2)4 if .8 < n ≤ .9

1 – 4((n – 1) / .2)2 + 4((n – 1) / .2)4 if n > .9

I(not very true)(n) = I(not)(I(very true)(n))

= 1 if n ≤ .8

1 – 4((n − .8)/.2)4 if .8 < n ≤ .9

4((n – 1)/.2)2 – 4((n – 1)/.2)4 if n > .9

I(close-to true)(n) = I(close-to)(I(true)(n))

= .1 if n ≤ .8

2((n − .8)/.2)2 + .1 if .8 < n ≤ .9

min (1, 1.1 – 2((n – 1)/.2)2) if n > .9

So if I(Tj) = .91, then

I(very true Tj) = I(very true)(I(Tj)) = (approximately) .354

I(not very true Tj) = I(not very true)(I(Tj)) = .646

I(close-to true Tj) = I(close-to true)(I(Tj)) = .695.

Zadeh proposed defining false as

I(false)(n) = I(true)(1 – n)

rather than as not true. This allows us to say, for example, not false and not true

without danger that the expression will reduce to not not true and not true, which

is equivalent to true and not true. Note that the expression not false and not true

treats and like our other qualifiers. For this we might define

I(and)(m, n) = min(m, n).

Thus, not false and not true Tk will have the value 1 when Tk has the value .5—just

as we would hope.

As we suggested in Section 14.4 of Chapter 14, we might use linguistic truth-

values to address a concern that’s been raised about fuzzy logic: that fuzzy solutions

to the Sorites paradox, whatever their detail, seem to assume that there is a clear
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cutoff for true insofar as the value 1 counts as true and all values less than 1 do

not count as true, and similarly for false. The introduction of fuzzy linguistic truth-

values allows that truth may be a matter of degree rather than black and white. The

value 1 may be the only one that counts as true to degree 1, but other values can

count as true to high degrees as well. Or perhaps values less than, but close to, 1

may even count as true to degree 1. There’s a lot of flexibility here.

16.3 Other Fuzzy Extensions of Fuzzy Logic

There are other fuzzy ways that fuzzy logic has been extended. Although they are

beyond the scope of this text, we’ll mention three examples as further avenues of

study for the interested reader.

Quantifiers can be fuzzy as well as crisp. The universal and existential quan-

tifiers are paradigmatic crisp quantifiers, as are quantifiers representing specific

cardinalities: two people, fifty-eight heartbeats, . . . They are crisp in the sense that

they tell us exactly how many things we are talking about. (This may seem coun-

terintuitive in the case of the existential quantifier, which we read as: at least one.

But at least one requires exactly a positive integer.) By contrast, few and many are

fuzzy quantifiers: How many people, for example, are many people? In a group of

100 people there are surely many people, but are there many people in a group of

20? Of 10? There’s no specific cutoff point between many and not many, just as there

is no specific cutoff point between tall and not tall.

Modalities, studied in modal logic, can also be fuzzy. The standard crisp modal-

ities are necessary and possible (although it can certainly be argued that there are

degrees of necessity and possibility). Probable is a fuzzy modality. To be sure, we

can give specific probabilities for many things, and there are very precise logics of

probability. But probable is a fuzzy modality because there is no specific probability

or range of probabilities that counts as being probable.6

Finally, there is yet another issue of vagueness that we haven’t explored in this

text, which we’ll now describe. We’ve noted that if we add the fuzzy external assertion

operator ∆ to �Lukasiewicz, Gödel, or product fuzzy logic, we can use the formula

(∃x)(¬�Tx ∧ ¬�¬Tx) to express the existence of borderline cases for the predicate

tall. But now recall that Bertrand Russell posited “higher-order” fringes so that

we are not forced to recognize a precise cutoff point between a vague predicate’s

extension and its fringe. Objects in the first higher-order fringes for a predicate, for

example, are not in the predicate’s extension (or counterextension), nor are they in

the fringe. The issue, first raised by Crispin Wright (1987), is finding a way to express

the existence of higher-order fringes.

Wright proposed expressing the existence of first-order fringes thus: there is

no pair of heights that differ by 1/8
′′ such that one is definitely tall and the other is

6 The reader interested in exploring these two extensions—fuzzy quantifiers and fuzzy
modalities—would do well to start with Hájek (1998b).
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definitely not tall. Using D for Wright’s definitely operator, we can symbolize this

as ¬(∃x)(∃y)((DTx ∧ Eyx) ∧ D¬Ty). The existence of a second-order fringe between

the predicate’s extension and first-order fringe would be expressed as ¬(∃x)(∃y)

((DDTx ∧ Eyx) ∧ D¬DTy): there is no pair of heights that differ by 1/8
′′ such that one is

definitely definitely tall and the other is definitely not definitely tall, and the existence

of a third-order fringe between the predicate’s extension and second-order fringe

would be expressed as ¬(∃x)(∃y)((DDDTx ∧ Eyx) ∧ D¬DDTy). . . . 7 Because these

formulas are supposed to express the existence of distinct fringes, the formulas

T, DT, DDT, DDDT, DDDDT, . . . , must all be nonequivalent to one another. And

this means that the external assertion operator cannot do the work of the definitely

operator, because any formula that prefixes one or more external assertion operators

to the formula ∆P is equivalent to ∆P.

Wright didn’t propose a semantics for the definitely operator, but Richard Heck

(1993) satisfactorily analyzed it outside fuzzy logic as a modal operator. In response

to a concern that fuzzy logic cannot adequately represent higher-order vague-

ness, Libor Behounek (“A Model of Higher-Order Vagueness”) has begun formally

to explore higher-order vagueness in fuzzy logic using such a definitely operator.

Behounek doesn’t analyze the operator as a modality but rather uses fuzzy higher-

order (higher than first-order) logic in which we can quantify over, and say things

about, fuzzy sets.

16.4 Exercises

SECTION 16.1

1 We noted one possible exception to our function for the hedge close to: we may

want to say that a height that is tall to degree 1 is not close to tall at all. Do you

agree with this intuition? If so, define a function for close to that captures the

intuition. If not, explain why you believe the intuition is incorrect.

2 We claimed that a height may be very tall, very very tall, very very very tall, close

to tall, close to close to tall, very close to tall, close to very tall, or somewhat tall, but

that it may not be somewhat somewhat tall, very somewhat tall, or somewhat very

tall. Can you provide rules governing which combinations of the three hedges

very, close to, and somewhat are permissible in English?

3 Given the following interpretation:

D: set of heights between 5′ and 6′ 2′′ by 1/8
′′ increments, inclusive

I(T)(<x>) = (x – 5′)/14′′

I(very)(n) = n2

I(close-to)(n) = min (1, n + .1)

I(not)(n) = 1 – n

7 Wright and subsequent analysts have had a lot more to say about this operator than this brief
exposition suggests, but that literature would take us too far afield. For an overview see Keefe
and Smith (1997).
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I(a) = 6′ 7′′

I(b) = 6′ 1′′

I(c) = 5′ 5′′

I(d) = 5′′

I(e) = 4′ 7′′

determine the truth-value of each of the following formulas:

a. very Ta

b. very Tb

c. very Te

d. close-to Ta

e. close-to Tb

f. close-to Tc

g. close-to Td

h. very very Ta

i. close-to very Ta

j. very very Td

k. very close-to Tb

l. very close-to Tc

m. very very close-to Tb

n. very very close-to Tc

o. close-to very very Tb

p. close-to very very Tc

q. not close-to Te

r. not close-to very Td

4 Provide reasonable interpretations for the following hedges:

a. somewhat

b. extremely

c. slightly

d. infinitesimally

e. hardly

f. clearly

SECTION 16.2

5 Assuming that Tj has the value .9 and Tk has the value .2, and given the sample

definitions in this chapter, determine the truth-value of each of the following

formulas:

a. true Tj

b. not true Tj

c. false Tj

d. not false Tj

e. true Tk

f. not true Tk

g. false Tk
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h. not false Tk

i. very true Tj

j. very false Tk

k. not very very false Tk

l. not very true and not very false Tk

m. close-to true Tj

n. close-to false Tk

o. not very close-to true Tj

6 Using your definition of clearly in Exercise 4, what degrees of truth will be clearly

true ? Does this seem correct?
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17 Fuzzy Membership Functions

17.1 Defining Membership Functions

There are various shapes that membership functions for vague predicates might

have. The definitions of the fuzzy set tall in our sample interpretations—SST and

the like—have assumed that the membership function is linear; that is, it defines a

straight line:

Degree of
Tallness

0

0.2

0.4

0.6

0.8

1

4'7" 5'7" 6'7"

Indeed, Max Black (1937) conjectured that very vague concepts would exhibit such

curves, in contrast to nearly crisp, or precise, concepts, which would have long flat

portions representing degrees of membership 1 and 0, with a nearly vertical rise (or

drop) connecting the two:

0

0.2

0.4

0.6

0.8

1

A B C D E F G H

In contrast, Joseph Goguen (1968–1969) suggested that the membership curve

for short—and by implication, the membership curve for tall—would be continuous

(no big jumps), decreasing (the degree of shortness lessens as heights increase), and

309
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asymptotic to 0, but not necessarily linear. As an example he offered the function

I(short)(<x>) = 1/(1 +x) where x is some quantitative measurement of height:

0

0.2

0.4

0.6

0.8

1

Degree of
Shortness

In Section 14.6 of Chapter 14 we noted that the product Principle of Charity premise

for tall heights is false on interpretation SST, and the reason that it is false is

that one height in the domain (but not all) is a member of the fuzzy set tall to

degree 0. Goguen’s sample function for short does not have a similar problem

because 1/(1+x) never reaches 0. So the product Principle of Charity for short

heights—(∀x)(∀y)((Sx &P Gyx) →P Sy), symbolizing A height that is 1/8
′′ greater than

a short height is also short—would have a value strictly greater than 0.

But we have to work to find a specific measure x of heights that gives plausible

degrees of membership in short. If we set x to be a height’s excess over 4′ 7′′ in 1′′

units, we have x = 0 for 4′ 7′′, so that 4′ 7′′ is short to degree 1 by Goguen’s function—

which looks good. But the measure x = 1 for 4′ 8′′, which makes 4′ 8′′ short to degree

.5, doesn’t look so good. And if we measure a height’s excess over 4′ 7′′ in 1/8
′′ units, the

situation gets even worse: x = 8 for 4′ 8′′, which makes that height short to degree 1/9.

Moreover, the product Principle of Charity (∀x)(∀y)((Sx &P Gyx) →P Sy) has the value
1/2 here (letting Gyx have the value 1 when y is 1/8

′′ greater than x and the value 0

otherwise)—when v(x) = 4′ 7′′ and v(y) = 4′ 71/8
′′, the value of (Sx &P Gyx) →P Sy is

the ratio
1/2 /1 (and that’s as small as it can get). But 1/2 isn’t “close to true.”

To see that Goguen’s function isn’t that bad, here’s an example of a better way

to flesh out the numbers for the short Sorites (and others are certainly possible).

Assuming a range of heights from 3′ 4′′ to 8′ 4′′, using 1/8
′′ increments, define x for

any height h to be h – 3′, expressed as half-foot units. Using Goguen’s function, then,

3′ 4′′ is short to degree 1; 3′ 41/8
′′ is short to degree 48/49; 3′ 42/8

′′ is short to degree
24/25; 4′ 4′′ is short to degree 1/3; 5′ 4′′ is short to degree 1/5; 6′ 4′′ is short to degree 1/7;

7′ 4′′ is short to degree 1/9; and 8′ 4′′ is short to degree 1/11. Moreover, the smallest

value of the ratio between two successive heights is the ratio between the shortness

of 3′ 41/8
′′ and the shortness of 3′ 4′′, which is 48/49, so that is the smallest value that

the conditional can have and is therefore the value that this membership function

gives the product Principle of Charity for the predicate short.

Not all vague predicates are best represented with membership functions that

are strictly increasing or strictly decreasing. For example, some vague predicates,

such as the predicate medium heat as used in the context of cooking (e.g., cook over

medium heat for two minutes, stirring constantly), suggest trapezoidal functions
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(having trapezoidal shapes when charted). A membership function for medium

heat, where the temperature x is measured in degrees Fahrenheit, might be defined

as

I(medium heat)(<x>) = 0 if x < 200,
(x–200)/125 if 200 ≤ x ≤ 325,

1 if 325 < x < 375,
(500–x)/125 if 375 ≤ x ≤ 500,

0 if x > 500

0

0.2

0.4

0.6

0.8

1

0

27
5

42
5

52
5

35
0

Degree of
"medium"-
ness

And there are more possibilities. See Pedrycz and Gomide (1998) for a good discus-

sion of the variety of shapes that membership functions can take.

There is another important issue to be addressed in designing membership

functions: sometimes degrees of membership are a function of several measure-

ments rather than just one. We’ve considered tallness and shortness to be functions

of height and medium-heatedness to be a function of temperature. But consider,

for example, the claim that the air on a midsummer day is comfortable. Comfort

here is (minimally) a function of temperature and humidity, so in this case fuzzy set

membership should be defined as a function of pairs of values consisting of a tem-

perature and a measure of humidity. Another more complicated example requiring

several measurements is from Goguen (1998–1999): “A ‘good’ computer should be

(at least): cheap; small; fast; reliable; easy to repair; of large storage capacity; inex-

pensive to run; equipped with good input and output; and very flexible” (p. 352). It

is interesting that in this case each of the criteria is itself vague—for instance, what

is cheap for a computer? Goguen suggests that we can define a fuzzy membership

function over this collection of vague criteria by assigning a weight to each criterion

(reflecting that criterion’s relative importance in the concept of a good computer),

such that the weights add up to 1, and then adding the weighted membership values

under each of the criteria. As an example, given the fuzzy degrees of membership

and weights in the chart

Cheap Small Fast Easy Large Inexpensive Equipped Flexible

Degree .8 .9 .5 .3 .8 1 1 .9

Weight .05 .1 .2 .05 .15 .1 .15 .2
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the final weighted value for this computer would be (.05 · .8) + (.1 · .9) + (.2 · .5) +

(.05 · .3) + (.15 · .8) + (.1 · 1) + (.15 · 1) + (.2 · .9), which is .795—a fairly good computer

according to this example.

17.2 Empirical Construction of Membership Functions

Our examples of membership functions characterize 6′ 7′′ as a definitely tall height,

310 degrees as close to medium heat, and so on. Where does this information come

from? In this text I’ve used my own intuitions to construct examples. But there are

more objective ways to construct membership functions. In each case empirical

data are collected and then translated into a membership function, perhaps coerc-

ing the data to get some specific type of membership curve.

As an example, Max Black proposed a method of establishing what he called

a consistency profile for a vague predicate “based on the assumptions that while

the vagueness of a word involves variations in its application by the users of the

language in which it occurs, such variations must themselves be systematic and

obey statistical laws if one symbol is to be distinguished from another” (1937, p. 442).

We’ll use the example concept of tallness to explain what a consistency profile is.

For each height in our study, we ask each member of some group G of users of the

language whether the height should be classified as tall or as not tall (they don’t get

a third choice). For each height h, let m(h) be the number of people in G who say

that h should be classified as tall and n(h) the number of people in G who say that h

should be classified as not tall. Then the consistency profile is the function C(tall)

defined as C(tall)(<h>) = m(h) / n(h).1 Now, this profile will give values outside

the range [0. .1] and it can also have undefined values (when n(h) = 0), so we need

to adjust the profile to produce defined values within the unit interval. Here is one

way:

I(tall)(<h>) = m(h) / (m(h) + n(h)),

That is, the percentage of people in G who say that h should be classified as tall.

This use of consistency profiles to define fuzzy membership is an example of the

horizontal or polling method of determining membership functions. Alternatively,

membership values can be determined by direct rating: rather than ask members of

G whether a given height h should be classified as tall or as not tall, we ask members

of G to tell us the degree to which h is tall. We would then construct a membership

function based on the direct ratings by averaging the degrees that members of G

gave for each height or by some other method of combining the rankings for each

height into a single membership degree.

1 Actually, Black went a step further than we have and suggested using the limit that the ratio
m(h)/n(h) approaches as the number of heights and the number of members of the ranking
group G increases.
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Yet another method for determining a membership function, the vertical or

reverse rating method, asks users of the language to identify, for some selected

values vi in [0. .1], the range of heights that are tall to degree vi. The membership

function is then constructed from these responses. Pedrycz and Gomide (1998)

and Turksen (1991) contain excellent discussions of these and other methods of

gathering data from which membership functions can be constructed.

17.3 Logical Relevance?

Does it matter, logically speaking, what shape our membership functions have, or

what data we use to construct them? Not really. Logic is concerned with concepts

like tautology and entailment, and fuzzy logic is additionally concerned with con-

cepts like n-tautology and n-degree entailment. These logical concepts, fuzzy or not,

are defined with respect to all possible interpretations, not just the specific ones we

have chosen. From a logical point of view it doesn’t matter whether a specific mem-

bership function arbitrarily assigns degrees of membership, just as in classical logic

it doesn’t matter how a specific interpretation distributes truth-values. This is our

final response to the concern that fuzzy logic relies on assuming that, for any vague

predicate, there is a clear cutoff point between cases to which the predicate clearly

applies (to degree 1) and the borderline cases (degrees strictly between 1 and 0).

N-tautology and n-degree entailment give us measures of tautologousness and

entailment that don’t require setting any particular clear cutoff point. So, for exam-

ple, the results in the table in Section 14.7 of Chapter 14 characterizing the validity,

n-degree-validity, and decaying validity of our Sorites argument in the three fuzzy

systems are independent of the way the membership function for tall is defined.

And that’s the way it should be in logic.

17.4 Exercises

SECTION 17.1

1 Using Goguen’s membership function for short, a domain consisting of heights

between 3′ 4′′ and 8′ 4′′ inclusive, by increments of 1/8
′′, x recording a height in

half-foot units, and the obvious interpretation of the predicate G,

a. what is the value of the Principle of Charity for shortness when the Fuzzy�L∀
conditional and bold conjunction are substituted for the product condi-

tional and bold conjunction?

b. what is the value of the Principle of Charity for shortness when the FuzzyG∀
conditional and bold conjunction are substituted for the product condi-

tional and bold conjunction?

2 Can you find a plausible nonlinear membership function for short that will give

the Principle of Charity for shortness a high degree of truth in FuzzyG∀?
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3 Suggest other plausible membership functions for short.

4 Find a vague noun whose applicability depends on several criteria. What are

these criteria, and how would you weight each criterion when defining a mem-

bership function for the fuzzy set corresponding to the noun? Defend your

answer.

SECTION 17.2

5 Of the methods for empirical construction of membership functions presented

in Section 17.2, which do you prefer and why?

6 Propose another plausible method for empirical consruction of membership

functions, and explain why it is plausible.
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APPENDIX

Basics of Countability and Uncountability

How many natural numbers (0, 1, 2, 3, 4, . . . ) are there? Infinitely many, of course.

There are also infinitely many real numbers. But there is an important difference

between these infinite sizes, which we will now describe.

There are countably many natural numbers. We say that a set, or collection, has

countably many members (is countable) either if it has finitely many members, or

there is a 1-1 correspondence between that set and the set of the positive integers.

(An infinite countable set is also set to be denumerable.) A 1-1 correspondence

between two sets is a pairing of the members of the two sets such that each member

of one of the sets is paired off with exactly one of the members of the other set,

and vice versa. By definition, then, there are countably many positive integers—

because the identity pairing is a 1-1 correspondence between any set and itself.

Here is a 1-1 correspondence that pairs each positive integer with the natural num-

ber that is 1 less (and hence each natural number with the positive integer that is

greater by 1):

1 0

2 1

3 2

4 3

5 4

. .

. .

. .

Note that there may be other 1-1 correspondences between two sets—the

important point in establishing countability is to show that there is at least one

such pairing. There are countably many even positive integers: we can correlate

each positive integer n with the even positive integer 2n (conversely, each even

positive integer 2n is paired with the positive integer n):

1 2

2 4

3 6

4 8

315
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5 10

6 12

. .

. .

. .

The totality of integers, positive, negative, and 0, is also countable. We will list

the integers “emanating” from 0, alternating the positive ones with the negative

ones:

1 0

2 1

3 −1

4 2

5 −2

6 3

7 −3

. .

. .

. .

Here each positive integer n is paired with n/2 if it is even, (1 − n)/2 if it is odd.

Conversely, each integer m gets paired with 2m if m is positive, and 2(1 − m) − 1 if

m is 0 or negative.

Although we have produced formulas showing how the numbers are paired in

each of our examples, it’s sufficient in establishing countability to describe how

to generate a sequence of the members of the set (our right-hand columns) such

that each member of the set must occur exactly once in the sequence. The position

of a member in the sequence then gives us the positive integer with which it is

paired.

A set is uncountable (has uncountably many members) if it is not countable.

Because all finite sets are countable, an uncountable set must at a minimum be

infinite. The set of real numbers, as well as the subset of real numbers in the unit

interval, are both uncountable. We will prove the latter using an ingenious type

of argument developed by the German mathematician Georg Cantor and known

as Cantor’s diagonal argument. More specifically, we’ll focus on the real numbers

that lie strictly between 0 and 1 (we call this set the open unit interval), and at the

end will introduce 0 and 1 into the picture. Every real number in the open unit

interval can be written as an infinitely long decimal expression 0.d1d2d3d4d5 . . . ,

where each di is a single decimal digit. (Note that at some point the trailing digits

may all be 0, as in .23000000 . . . – the 0’s allow an elegant presentation of the proof.)

Now assume, contrary to what we want to show, that there is a 1-1 correspondence
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between the positive integers and the open unit interval, and that a sequence of

decimal expressions displaying the correspondence begins as follows:

0.d1,1d1,2d1,3d1,4d1,5d1,6d1,7d1,8d1,9 . . .

0.d2,1d2,2d2,3d2,4d2,5d2,6d2,7d2,8d2,9 . . .

0.d3,1d3,2d3,3d3,4d3,5d3,6d3,7d3,8d3,9 . . .

0.d4,1d4,2d4,3d4,4d4,5d4,6d4,7d4,8d4,9 . . .

0.d5,1d5,2d5,3d5,4d5,5d5,6d5,7d5,8d5,9 . . .

0.d6,1d6,2d6,3d6,4d6,5d6,6d6,7d6,8d6,9 . . .

0.d7,1d7,2d7,3d7,4d7,5d7,6d7,7d7,8d7,9 . . .

0.d8,1d8,2d8,3d8,4d8,5d8,6d8,7d8,8d8,9 . . .

0.d9,1d9,2d9,3d9,4d9,5d9,6d9,7d9,8d9,9 . . .

We will now show how to find a number 0.e1e2e3e4e5 . . . in the open unit interval

that appears nowhere in this sequence. We are going to do this by looking at the

digits on the diagonal

0.d1,1d1,2d1,3d1,4d1,5d1,6d1,7d1,8d1,9 . . .

0.d2,1d2,2d2,3d2,4d2,5d2,6d2,7d2,8d2,9 . . .

0.d3,1d3,2d3,3d3,4d3,5d3,6d3,7d3,8d3,9 . . .

0.d4,1d4,2d4,3d4,4d4,5d4,6d4,7d4,8d4,9 . . .

0.d5,1d5,2d5,3d5,4d5,5d5,6d5,7d5,8d5,9 . . .

0.d6,1d6,2d6,3d6,4d6,5d6,6d6,7d6,8d6,9 . . .

0.d7,1d7,2d7,3d7,4d7,5d7,6d7,7d7,8d7,9 . . .

0.d8,1d8,2d8,3d8,4d8,5d8,6d8,7d8,8d8,9 . . .

0.d9,1d9,2d9,3d9,4d9,5d9,6d9,7d9,8d9,9 . . .

If di,i is 0 we define ei to be 1; otherwise we define ei to be 0. The number

0.e1e2e3e4e5 . . . so defined is different from the first number 0.d1,1d1,2d1,3d1,4d1,5d1,6

d1,7d1,8d1,9 . . . in the list, because we have defined the first decimal digit e1 to be

different from d1,1. Similar reasoning shows that 0.e1e2e3e4e5 . . . must be different

from every other number in the sequence. So on the basis of the assumption that

there is a way to sequence members of the open unit interval we can define a

member of the open unit interval that doesn’t appear in the sequence. This is suf-

ficient to show that there is no way to construct a sequence that includes every

real number in the open unit interval. No matter how we try to order them in a

sequence, we can always define a real number that’s different from every number

in the sequence. We conclude that there are uncountably many members of the

open unit interval.

It is a simple matter to show that the closed unit interval including 0 and 1 is

also uncountable. If there were a 1-1 correspondence between the positive integers

and the members of the closed unit interval, then there would be a way to sequence

members of the closed interval such that every member occurs exactly once, and

removing 0 and 1 from this sequence would leave a sequence of the members of
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the open unit interval. But we have just shown that there is no such sequence, so

we conclude that the closed unit interval is also uncountable. Generalizing this

argument, we may conclude that any set that includes the open (or closed) unit

interval must be uncountable—so the set of all real numbers is also uncountable.

The set of rational real numbers in the unit interval is, however, countable.

Here’s the beginning of a 1-1 correspondence (that we will describe later) between

the positive integers and those rational numbers, expressed as fractions:

1 0/1

2 1/1

3 1/2

4 1/3

5 2/3

6 2/4

7 3/4

8 3/5

9 2/5

10 3/5

11 4/5

12 1/6

13 5/6

14 1/7

. .

. .

. .

In the right-hand column we list the beginning of a sequence of the rational numbers

in the unit interval, generated as follows: We begin with the denominator 1 and list

all fractions representing values in the unit interval that have this denominator—

said fractions being ordered by increasing value of the numerator: 0/1, 1/1. Then

we do the same for the numerator 2, except that we skip those fractions that equal

values already listed—so we skip 0/2 and 2/2. Then we do the same for the numerator

3, and so on. Clearly every rational number in the unit interval will be represented

by some fraction in this sequence, and skipping the indicated fraction ensures that

no rational number is represented more than once in the sequence.

Finally, we can show that a language contains a countable number of formulas

by explaining how to generate a sequence in which each of the formulas of the

language occurs exactly once. We’ll first do this for the language FuzzyL, which is

defined as:

1. Every uppercase roman letter, with or without an integer subscript, is a formula.

2. If P is a formula, so is ¬P.

3. If P and Q are formulas, so are (P ∧ Q), (P ∨ Q), (P → Q), (P ↔ Q), (P & Q), and

(P ∇ Q).
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We (arbitrarily) impose the following alphabetical order on all of the symbols used

in formulas of FuzzyL:

A

B

C

.

.

.

Z

0

1

2

.

.

.

9

(

)

¬
∧
∨
→
↔
&

∇

The formulas may now be ordered in a sequence that is ordered overall by their

length, the shortest formulas first, and within a single length by their alphabetical

ordering. Thus the sequence begins with the twenty-six (nonsubscripted) uppercase

roman letters in alphabetical order, these being the shortest formulas, followed by

the following sequence:

A1

A2

. . .

A9

B1

B2

. . .

B9

C1

. . .

. . .
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Z9

¬A

¬B

. . .

¬Z

—these being all of the formulas that contain exactly two symbols, and so on. Clearly

each formula of FuzzyL will appear in this sequence, so the language contains a

countable number of formulas.1

The language RFuzzyL is also countable—this can be shown quite simply by

adding the symbol / to our alphabetical list of symbols, then defining the sequence

as we did in the case of FuzzyL. However, we cannot do the same for RealFuzzyL—

precisely because the totality of real numbers in the unit interval is uncountable.

If we could produce such a sequence for RealFuzzyL, containing the names of all

values in the unit interval, then we could also produce such a sequence consisting

of just those real values, by removing all the formulas except the constant atomic

formulas that denote real values.

1 We need to note an important point here. We have to be careful about how we specify the
sequence. We know that every formula will occur in the sequence we’ve described because every
formula has a finite length, and we have a finite alphabet, so only finitely many formulas can
occur before a given formula P. If we had instead tried to generate a sequence that begins with
all formulas—of any length—that begin with the letter A; then all formulas that begin with the
letter B, . . . ; then all formulas that begin with the negation operator; then all formulas that begin
with a left parenthesis; . . . ; we’d be in trouble. There are infinitely many formulas that begin with
the negation operator, and so the sequence would go on forever with these formulas and would
never get to the formulas that begin with a left parenthesis!
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Baaz, Matthias. 1996. “Infinite-Valued Gödel Logics with 0–1-Projections and Relativiza-
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Esteva, Francesc, Lluis Godo, Petr Hájek, and Mirko Navara. 2000. “Residuated Fuzzy

Logics with an Involutive Negation.” Archive for Mathematical Logic 39, pp. 103–124.
Esteva, Francesc, Lluis Godo, and Franco Montagna. 2001. “The �L� and �L�1/2 Logics: Two

Complete Fuzzy Systems Joining Lukasiewicz and Product Logics.” Archive for Mathe-
matical Logic 40, pp. 39–67.

Fine, Kit. 1975. “Vagueness, Truth and Logic.” Synthese 30, pp. 265–300.
Frege, Gottlob. 1879. Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache

des reinen Denkens. Halle: Verlag von Louis Nebert.
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Hájek, Petr. 2001. “On Very True.” Fuzzy Sets and Systems 124, pp. 329–333.
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(English translation by Storrs McCall, “On the History of the Logic of Propositions.”
In ed. Storrs McCall, Polish Logic 1920–1939, New York: Oxford University Press, 1967,
pp. 66–87.)

�Lukasiewicz, J., and A. Tarski. 1930. “Untersuchungen über den Aussagenkalkül.”Comptes
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