


An Introduction to the Digital Analysis 
of Stationary Signals 



Other titles in the series 

An Introduction to Groups 
D Asche 

Introduction to Statistics 
A W Bowman and D R Robinson 

Regression and Analysis of Variance 
A W Bowman and D R Robinson 

Fourier Series and Transforms 
R D Harding 
A Simple Introduction to Numerical Analysis 
R D Harding and D A Quinney 
A Simple Introduction to Numerical Analysis Volume 2: Interpolation 
and Approximation 
R D Harding and D A Quinney 
From Number Theory to Secret Codes 
T Jackson 

Electric Circuit Theory 
B E Riches 

Introduction to Probability 
D R Robinson and A W Bowman 



A Computer Illustrated Text 

An Introduction to the 

Digital Analysis of 
Stationary Signals 

I P Castro 

Department of Mechanical Engineering, 
University of Surrey 



First published 1989 by IOP Publishing Ltd. 

Published 2021 by CRC Press 
Taylor & Francis Group 
6000 Broken Sound Parkway NW, Suite 300 
Boca Raton, FL 33487-2742 

© 1989 by Taylor & Francis Group, LLC 
CRC Press is an imprint of Taylor & Francis Group, an Informa business 

No claim to original U.S. Government works 

ISBN 13: 978-0-85274-254-9 (pbk) 
ISBN 13: 978-0-85274-254-9 (text) 
ISBN 13: 978-0-85274-255-6 (Network pack) 
ISBN 13: 978-0-85274-256-3 (IBM disc) 
ISBN 13: 978-0-85274-257-0 (BBC 40/80 disc) 

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have 
been made to publish reliable data and information, but the author and publisher cannot assume responsibility 
for the validity of all materials or the consequences of their use. The authors and publishers have attempted to 
trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if 

permission to publish in this form has not been obtained. If any copyright material has not been acknowledged 
please write and let us know so we may rectify in any future reprint. 

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, 
or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. 

For permission to photocopy or use material electronically from this work, please access www.copyright.com 
( http://www.copyright.com/ ) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for 
a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system 
of payment has been arranged. 

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only 
for identification and explanation without intent to infringe. 

Visit the Taylor & Francis Web site at 

http://www.taylorandfrancis.com 

and the CRC Press Web site at 

http://www.crcpress.com 

British Library Cataloguing in Publication Data 

Castro, I. P. (Ian P.) 
An introduction to the digital analysis 
of stationary signals. 

1. Telecommunication systems. Digital 
signals. Processing. Applications of 

microprocessor systems 
I. Title 
621.38'043 

Library of Congress Cataloging-in-Publication Data are available 

Series Editor: R D Harding, University of Cambridge 

Published by: IOP Publishing Ltd 
Techno House, Redcliffe Way, Bristol BS1 6NX, 
England 
242 Cherry Street, Philadelphia, PA 19106, USA 
ESM, Duke Street, Wisbech, Cambs PE13 2AE, 
England 

Published under the Adam Hilger/ESM imprint 

Typeset by KEYTEC, Bridport, Dorset 



Contents 

Software Order Form i 

Preface ix 

Acknowledgments xiii 

List of Software Packages xv 

1 Background 1 
1.1 Introduction 1 
1.2 The software package 2 

2 Examples of Stationary Signals 5 
2.1 Introduction 5 
2.2 Simple periodic signals 5 
2.3 Almost periodic signals 6 
2.4 Random noise 8 
2.5 Gaussian random noise 9 
2.6 Noisy periodic signals 10 
2.7 Correlated noise 12 
2.8 Telegraph signal 14 
2.9 Software instructions 15 

3 Quantitative Description of Signal Content 17 
3.1 Amplitude-domain statistics 18 
3.2 Time-domain statistics 33 
3.3 Further statistics 45 
3.4 Software instructions 46 



viii CONTENTS 

4 Digital Sampling Criteria: Amplitude-domain Statistics 48 
4.1 Introduction 48 
4.2 Quantisation and ranging errors 49 
4.3 Finite sample size errors 58 
4.4 The effects of using correlated samples 71 
4.5 Summary and examples 74 
4.6 Computer exercises 76 

5 Digital Sampling Criteria: Time-domain Statistics 84 
5.1 Introduction 84 
5.2 Aliasing 85 
5.3 Autocorrelation estimation 88 
5.4 Estimation of the spectral density function 101 
5.5 Windowing 106 
5.6 Summary and examples 110 
5.7 Computer exercises 115 

6 Sample Laboratory Experiments 124 
6.1 Introduction 124 
6.2 Typical laboratory sheets 124 

Appendix A The Simulation of Random Signals 133 
A.1 Introduction 133 
A.2 Generation of random noise (DAT0N8) 135 
A.3 Generation of Gaussian (white) noise 

(DAT1N8) 136 
A.4 Generation of correlated (pink) noise 

(DAT2N8) 137 
A.5 Generation of a second-order process 

(DAT3N8) 139 

Appendix B Running the Software 141 
B.1 Standard features 141 
B.2 Screen dumps 143 

References 145 

Bibliography 146 

Index 147 



Preface 

There are numerous books, including many now classical texts, on 

digital signal processing. In teaching final-year mechanical engineering students and postgraduate students with various backgrounds, 
however, it has in my experience been very difficult to find the kind 
of book that such students need as an introductory text. I believe that 
the teaching of signal processing should entail discussion of both the 

amplitude-domain statistics (such as signal means and variances) and 
the time-domain statistics (such as autocorrelation and spectra). Very 
few texts cover these two aspects of the subject together. 

On the one hand, there are books on statistical probability theory, 
usually written by statisticians and often not with the needs of the 

engineering community in mind. On the other hand, there are many 
books on correlation and spectral analysis. In both cases, such books 
tend to be mathematically quite daunting and, even if written in the 
context of digital signal processing, the underlying physical principles 
tend to become buried in the analysis. For the mathematician, this 

may not matter very much but for the engineer, who is increasingly 
prone to attempt measurements of signal characteristics using a 

computer rather than buying a specific bench-top instrument, a 

proper understanding of the basic concepts can be vital. 
Furthermore, I have found that concepts such as those embodied in 

the definitions of, for example, the probability density or autocorrelation functions are more easily grasped by students if they are given 
some opportunity to measure such quantities in the laboratory. There 
are no texts which attempt to impart the basic concepts in the context 

of direct experimentation. 
This book, together with its associated software, has grown out of 

signal-processing courses developed over a number of years, in which 
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the author has deliberately set out to back up the lecture content with 

practical experiments. Although the experiments are conducted on 

simulated signals originally generated entirely within the computer 
(with one or two exceptions), students usually have little difficulty in 

relating the different data sets to those which they would obtain by 
digitising real signals. This is almost certainly because the signalprocessing classes have normally been part of much broader instrumentation and microcomputing courses, within which the students do 
obtain practical experience in the use of analogue-to-digital converters and computer interfaces in ‘capturing’ real signals. 

Although in the author's courses at the University of Surrey the 

emphasis has generally been on the overall qualitative concepts rather 
than on the intricate mathematical detail, it is important that the 
student develops an ability to express the concepts symbolically and 
to undertake simple pieces of theoretical analysis. The level of 
mathematics used in this book is neither broader nor deeper than 
what is usually covered in the first two years of undergraduate 
mechanical engineering degree courses. It could not be less than that 
for a proper introduction to the subject and so, to that extent, the 
text is likely to be most appropriate for final-year undergraduate or 

postgraduate students. Furthermore, there is rather more material 
here than could normally be covered in, say, a 15-20 h ‘signalprocessing module’ of a broader instrumentation and microcomputing 
course. The intention, however, has been to give sufficient development of the material within each subject area to provide both useful 
further reading for the student and some element of choice for the 
teacher in expanding his basic course. 

After some introductory remarks, a brief description of the philosophy behind the software design is given in Chapter 1 . Chapter 2 

begins with a qualitative description of typical signals. Attention is 
concentrated, as the book’s title implies, on stationary signals; 
stationarity is therefore defined in Chapter 2 . This limitation might in 
some contexts be viewed as serious, but we believe that, until the 
student appreciates the concepts and problems which arise in analysis 
of stationary signals, he is unlikely to be able to grapple with the 
much more difficult problems arising from non-stationarity. 

Chapter 3 discusses the various ways of characterising stationary 
signals, with the content organised largely in terms of amplitudedomain statistics (§3.1) and time-domain statistics (§3.2). The software accompanying Chapters 2 and 3 should be viewed as a useful 
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visual aid to the text. Consideration of the sampling criteria necessary 
for adequate measurement of the signal characteristics forms the 
content of Chapters 4 and 5 . Here, the software not only provides 
immediate illustrations of the text but also can be used to design a 

wide range of experiments on the simulated signals. An example of 
the latter is provided in Chapter 6 . 

The enterprising reader could go even further and generate quite 
different kinds of signal (either by digitising real signals or by 
concocting further simulated signals) and then use the software 

directly to measure the characteristics of the signals or as a basis for 
further laboratory classes. 

If even a few readers are able to use both the text and the software 
as a basis for their own courses in digital signal processing, or even 

simply as an aid to their own understanding or that of their students, 
the effort involved in producing this further volume in the Computer 
Illustrated Text series will have been amply justified. 

I P Castro 

Spring 1988 
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Chapter 1 

Background 

1.1 Introduction 

The measurement of physical variables such as temperature, fluid 

velocity, strain or vibration amplitudes and accelerations is a daily 
requirement in most fields of technology. Digitising the analogue 
output of a suitable transducer and performing calculations on the 

resulting sample values is commonplace and numerous essentially 
digital bench-top instruments (such as voltmeters and spectrum analysers) have been available for many years. The advantages of 

minimising the analogue content of a measurement system are many 
and obvious but one of the major disadvantages of bench-top 
instruments is their general lack of flexibility—one cannot normally 
measure a mean voltage or a probability distribution with a spectrum 
analyser, for example. They are also usually rather expensive when 

compared with the cost of an equivalent analogue-to-digital converter 

(ADC) interfaced to a small microcomputer. 
With the rapid increase in the ‘power-to-cost’ ratio of microcomputer systems over recent years, it is therefore also becoming commonplace to transfer the digitised sample values directly to a computer, 

which is often used to control the digitising process in addition to 

performing the calculations necessary for particular measurements. 

Sometimes these calculations are done in ‘real time’, with updates of 

signal characteristics being obtained immediately after each digitised 
value is read. In other cases, particularly if rapid sampling rates are 

required, the calculations are done after a suitable block of samples 
has been obtained. In either case the digitised samples can be stored 
for later manipulation but, even if this is not done, it is clear that 
such a system is extremely flexible. Given a suitably rapid ADC and 

1 



2 BACKGROUND 

computer interface, the kind of measurement that can be made is 
limited only by the ‘ingenuity’ of the software and the ability of the 

computer to perform repetitive arithmetic operations very quickly— 
computers are particularly good at the latter! In many ways, the 

computer is therefore the ideal ‘instrument’ to use for signal processing and, as in many quite different areas of technological endeavour, 
a major part of the effort lies in the design of suitable software. 

This book is different from most others on digital signal processing 
in that it attempts not only to outline the fundamental ideas 

concerning the different ways in which a random signal can be usefully 
described but also to demonstrate how these ideas can be powerfully 
illustrated on even quite small computers. Although the text can be 
used as a reference and studied quite independently of the 

accompanying software package, it is likely to be even more useful when 
used in conjunction with this software. Some of the latter was 

originally developed as part of other packages used in a laboratory 
for the measurement of real signals, but the package accompanying 
this text has been designed essentially with the teaching function in 
mind and should be judged in that light. In §1.2 the major features of 
the software are outlined. Specific instructions for loading it and 

getting started (in the BBC context) are given in Appendix B. The 
reader using this book simply as a ‘stand-alone’ reference text could 
omit §1.2 and move straight to Chapter 2 . 

1.2 The software package 

All the software was originally written for the standard BBC B 
microcomputer; the comments in the following paragraphs are therefore specific to the BBC context. For the PC version of the software, 
there were obviously far fewer memory constraints, which led to 
rather greater flexibility in the possible size of the data sets and the 
nature of the graphical displays. 

Many of the calculations necessary for the measurement of signal 
characteristics can be time consuming, particularly when programmed 
in an interpretive language such as basic. Consequently the decision 
was taken prior to any of the software development that all the 
‘number-crunching’ parts of the package should be written at assembler level, in the case of BBC machines, or a high-level compiled 
language in the case of PCs and compatibles. In the former case, to 
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calculate signal variances, higher-order moments or autocorrelations, 
for example, this involved writing various multi-byte multiplication 
routines and embedding them in larger segments of assembler code so 

that all the arithmetic-intensive elements of the calculations are 

performed at machine code level. The outer basic routines simply 
supply the required number of data samples, the sampling rate, etc, 
to these machine code routines and then process the results as 

required. 
It was felt that about 20000 data values would provide a very 

adequate representation of most types of signal; use of memory space 
from &3000 to &7BFF (i.e. up to the screen mode 7 memory area in 
a standard BBC without shadow random-access memory) would allow 
19 456 consecutive integer values of 1 byte and enough memory below 
&3000 for the necessary basic and machine code routines. This 
arrangement meant that all the data analysis has to be done prior to 

any use of modes 1 or 4 for graphical presentation, since these 

normally require considerable screen memory below &7BFF. The 
minimal disc access time, required to load in a complete data set is an 

insignificant price to pay for the availability of such large data sets, 
although this does prevent use of cassette or tape filing systems, since 
these are unacceptably slow. Mode 1 allows colour graphics to be 
used, which considerably enhances the visual impact of the various 
displays. More recent machines of course have significantly greater 
memory capacities and it would be straightforward to modify the 
software to allow higher-quality graphics or larger data sets, or both. 
Note, however, that the software can be run on the MASTER series 
of BBC machines without any modification. 

The data sets themselves were generated quite separately (see 
§4.6.1 and Appendix A for complete details). They are called into 
memory from the system disc by the software package as required. 
The latter is entirely menu driven and is quite large. In total the 
program code is over 200 kbytes long and is therefore divided into 

appropriate segments, largely coinciding with the particular chapters 
or sections of the text of the book, and loaded into core as required. 
Appendix B gives details of the contents of the disc and complete 
running instructions for the BBC version of the software. PC-based 
versions of the software have corresponding sets of instructions on 

files saved on the disc itself. 
It should be emphasised again that integration between text and 

software is a little different in this volume than in some of the other 
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Computer Illustrated Texts. Chapters 2 and 3 contain essentially a 

qualitative discussion, definitions of particular characteristic functions 
and examples of the latter for a range of signals. The software 
associated with these chapters therefore embodies mainly a series of 
set illustrations—some of which are used as figures in the text. In a 

lecture course these displays could be used ‘off line’ (without the 

computer), but other displays are ‘dynamic’, in the sense that the 

computer is used essentially as an oscilloscope to show a continuous 
time display of particular kinds of signals. For the greatest impact, 
therefore, the computer should be used in conjunction with the 
material in the text. Still other options in the software associated with 
these chapters allow the user to generate his or her own signal by 
specifying appropriate parameters, and these also are clearly best 
demonstrated using the computer in the class (or in conjunction with 
reading the text). The final sections in Chapters 2 and 3 describe the 
various software options in detail. 

Chapter 4 and 5 discuss the methods of actually measuring the 
signal characteristics and, again, it has been felt best to relegate the 
detailed description of the software options to final sections of their 
own, within each chapter. This minimises possible fragmentation of 
the earlier sections and allows the book to stand alone as an 

introduction to signal processing without the necessity for using the 
software. However, the routines available to support the text in these 
chapters give the freedom to measure any of the fundamental signal 
statistics using wide ranges of the appropriate parameters (such as the 
sampling rate and the number of samples for a mean value calculation). Consequently, these parts of the software are likely to be the 
most useful. With simple changes to the basic programs, they could 
even be used (and have been by the author and some of his 
postgraduate students) in a much more general context for the 
analysis of real data from the laboratory. 



Chapter 2 <br/> 

Examples of Stationary Signals 

2.1 Introduction 

In Chapter 3 we shall discuss quantitatively the basic descriptive 
properties of a stationary signal. Here our purpose is simply to 

provide illustrations of typical signals that occur in a wide range of 

physical situations and to discuss briefly the qualitative differences 
between them. The reader is encouraged to glance rapidly through 
the following sections, to read the software instructions in §2.9 and 
then to reread the text more thoroughly in conjunction with running 
the Chapter 2 package on the computer. All the illustrations in this 

chapter have been produced as screen dumps of the various displays 
produced by the software (but note that in Chapters 2 and 3 this is 
not possible using the screen dump option described in Appendix B ). 
The appropriate figure number is included in the heading of each 
section. 

2.2 Simple periodic signals ( figure 2.1 ) 

This is one of the simplest kinds of completely deterministic signal. If 
the frequency and peak-to-peak amplitude are known, then the signal 
amplitude at any time t > t0 in the future can be predicted with 

certainty from a known amplitude at t = t0. Very few signals 
obtained from transducers would have this ideal form; there will 

almost always be some superimposed random noise and/or some 

frequency modulation arising either from the nature of the physical 
process being monitored or from the imperfect response of the 

transducer, or from both. 
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6 EXAMPLES OF STATIONARY SIGNALS 

Figure 2.1 . This and subsequent figures in Chapter 2 are all reproductions of screen 

displays corresponding to the highlighted signal. Thus, here, a simple periodic signal is 
shown. 

2.3 Almost periodic signals ( figure 2.2 ) 

We have shown here the ideal form of a signal which arises from a 

process containing two separate periodic components for which the 
ratio of the two frequencies is not a rational number. It can be 
represented by the simple linear sum of its two components. The case 

shown is 

y(t) = A sin(2πft) + A sin( v ). 
Note that, since the two frequencies (f and V ) are not rational 
multiples of one another, the fundamental period of the signal is 
infinite. It therefore never repeats itself but is still completely 
deterministic in the sense that the amplitude at any future time can 

be predicted if A and f are known. 
Many physical cases or course are more complex than that illustrated here in that they contain many more frequency components. 

The usual way of expressing the y(t) relationship is by using the 
Fourier series concept: 
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Figure 2.2 . (a) An almost periodic signal having an infinite period. (b) An almost 

periodic signal having three sinusoidal components with frequencies in the ratio 1:4:16. 
The signal repeats with a period of 4/f. 

In the example above, fn/fn+1 is not rational, but very often there is a 

direct relationship so that 
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where f1 is the ‘fundamental’ frequency, denoting the number of 
times that the signal repeats itself per unit time. Often only a few 

components are present. Almost never do physical phenomena produce simple sinusoidal data with only one component; even the 
output from a sine-wave generator, for example, will contain small 
contributions from higher-harmonic components. The reader can 

obtain some ‘feel’ for the typical waveform that results from the 
addition of a number of sinusoidal components by using the further 
option in the software package (by repeating the RETURN key 
press). This allows the display of signals described by 

y(t) = sin(2πft) + A sin(2πf1t + θ1) + Bsin(2nf2t + d2) 
in which the amplitudes A and B, frequencies f1 and f2 and phase 
angles θ1 and θ2 are arbitrary and must be defined by the user. To 
ensure that the total amplitude does not become too large for 

plotting, A and B should not exceed unity. In the example shown in 
figure 2.2 (b), fl = 4f, f2 = f/4, θl = 180° and θ2 = 30°. 

2.4 Random noise ( figure 2.3 ) 

This is a signal defined simply by 

y{t) = 2A[0.5 - RND(1)t] 
where, at each t, RND(1) is a nine-digit decimal number between 
zero and unity. Every number is entirely uncorrelated with preceding 
values. Computer random-number generators do not produce a truly 
random-number sequence but the subtleties associated with ‘pseudo’random sequences need not concern us here. The point to note about 
the signal (see figure 2.3 ) is that high values occur as frequently as 
low values, because the random-number generator produces every 
possible value with equal probability. 

Assume that an infinite set of such sample sequences were available from the original signal. If the values obtained from each 
sequence at time t yield amplitude-domain statistics (mean, mean 

square, etc) independent of t and if in addition the ‘sequenceaveraged’ correlation between samples at t and t + Δt were also 
independent of t, the signal is said to be ‘stationary’. Further, if the 
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amplitude and correlation statistics obtained using the samples of one 

particular sequence did not depend on the sequence chosen, then the 
signal is also said to be ‘ergodic’. Only stationary signals can be 
ergodic and the importance of an ergodic signal lies in the fact that 
all its properties can be determined from a single (suitably long) 
sample sequence. It is fortunate that, in practice, random data 

representing stationary physical phenomena are usually ergodic. 

Figure 2.3 . A random noise signal having a uniform amplitude probability density 
distribution (see §3.1.1) and the spectral characteristics of white noise (see §3.2.2). 

Whilst these definitions are usually, as here, given in the context of 
random data, they also apply to periodic data. Provided that each 

sample sequence starts at random times (so that the signal phases will 
be random) a periodic signal is necessarily ergodic. 

2.5 Gaussian random noise ( figure 2.4 ) 

Unlike the previous random-noise case, the amplitudes here do not 
occur with equal probabilities. It is obvious simply by inspecting the 
signal that the likelihood of peak values is relatively lower than the 
likelihood of values near zero (compare figures 2.3 and 2.4 ). In fact, 
the amplitude probability function which is the basic measure of the 
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amplitude-domain statistics (see Chapter 3 ) has in this case the well 
known Gaussian (or normal) form, defined by 

where is the mean value (zero in the case shown) and σ is the 
standard deviation—a measure of the variability of y(t) about its 
mean value (see Chapter 3 ). Note that the probability that y(t) has 
values which differ from the mean by more than about ±3σ is only 
about 1% of the probability that it has values around the mean— 

hence the relative infrequency of the peak values seen in the signal. 
In addition, the signal shown here has, for all times t, an amplitude 
at t that is completely uncorrelated with that at t + Δt (unless of 
course Δt is identically zero). This type of signal is commonly termed 
‘white’ noise and will be discussed further in due course. 

Figure 2.4 . A random white noise signal having a Gaussian amplitude probability 
distribution (see §3.1.1) and a uniform spectral density distribution (see §3.2.2). Note 
the relatively rare occurrence of extreme values, compared with the signal in figure 2.3 . 

2.6 Noisy periodic signals ( figure 2.5 ) 

Here ( figure 2.5 (a)) we show a signal defined by 

y(t) = A sin(2πft) + B[0.5 - RND(1)t]. 
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Figure 2.5 . (a) A periodic signal contaminated by random noise whose amplitude is J 
times the sine-wave amplitude. (b) As in (a), but with the noise amplitude three times 
the sine-wave amplitude. Note that the underlying periodicity is now very difficult to 
discern visually. 

There is an underlying periodic component given by the first term, 
but it is ‘hidden’ by the addition of random noise of the sort 
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described in §2.4. The degree to which the basic periodicity is 
submerged in the noise is clearly a function solely of the amplitude 
ratio B/A. In the case shown in figure 2.5 (a), B/A = f and the 
periodicity is still quite evident. Note, however, that whatever the 
value of B/A the signal is not deterministic. (Recall that we use this 
term simply to denote whether or not signal amplitudes at future 
times can be predicted from those in the past.) 

The effect of varying the signal-to-noise ratio can be demonstrated 

by using the additional option in the software package (press the 
RETURN key again). This allows the user to display signals with any 
value for B/A. The example shown in figure 2.5 (b) has B/A = 3; at 
a first glance, the underlying periodicity is not very noticeable. In 
later chapters, it will be demonstrated that even very noisy periodic 
signals can be recovered by special signal analysis techniques. 

2.7 Correlated noise ( figure 2.6 ) 

Visual comparison of this signal with that discussed in §2.5 shows 

immediately that, although peak values are relatively infrequent as 

before, there is a definite ‘time structure’ to the signal. Any instantaneous amplitude is most likely to be close to the immediately 
preceding values. This is a result of the fact that for this signal the 
correlation between two values y(t) and y(t + τ), averaged over all 
values of t, is non-zero. Mathematically the autocorrelation R(τ) is 
defined by (for a signal y(t) having zero mean) 

The signal shown here has R(τ) = exp(-τ). 
For the random signals described in §§2.4 and 2.5, R(τ) = 0 except 

for τ = 0 (when R(τ) becomes simply the mean square). Obviously, 
any signal with one or more periodic components (e.g. those in §§2.2, 
2.3 and 2.6) also has structure in time. Very many signals arising 
from physical phenomena, even if they have no dominant periodicity, 
will have a specific R(τ) function which only tends to zero as τ -> 00. 

This implies, in fact, the presence of a complete spectrum of Fourier 
(sinusoidal) components. The link between R(τ) and the signal 
spectrum—expressing the way in which the energy in the signal is 
spread throughout the frequency range—will be developed later. One 
should note, however, that even the autocorrelation function for 
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random or Gaussian noise (R(τ ≠ 0) = 0) implies a certain spectrum; 
in fact in both these cases the energy is spread equally over all 

frequencies, even though the amplitude statistics are quite different. 

(This can make true comparisons on a visual display unit screen 

rather misleading, since only discrete data points are plotted, with 
lines drawn between them. So, if the random noise signal is ‘stretched’ in the t direction too much when plotted, it will appear to have 
structure in time.) 

Figure 2.6 . Gaussian noise having an exponentially decaying autocorrelation 
function (see §3.2.1). This is known as pink noise. Note that these data and 

those shown in figure 2.4 are segments of signals which have identical probability density functions but, obviously, quite different time-domain statistics. 

It cannot be overemphasised that two signals with identical 

amplitude-domain statistics do not necessarily have the same time 
structure (spectra). This is perhaps most clearly evident by considering the sine wave. If parts of it were chopped out and placed 
somewhere else on the time axis, the amplitude-domain statistics 
(mean, mean square, etc) would not change although the time 
structure clearly would. Equally important is the fact that two signals 
having identical structure in time, denoted by the same autocorrelation (or spectrum) function, may have quite different amplitudedomain statistics. This is demonstrated rather starkly by the next 

sample signal. 
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2.8 Telegraph signal ( figure 2.7 ) 

In this signal, the time intervals between each change in amplitude 
from high to low (or vice versa) are distributed according to a 

Poisson function. It can be shown that in those circumstances the 
autocorrelation is defined by R(τ) = exp(— τ) (Snyder 1975); this is 
an identical time structure to that of the correlated noise described in 
§2.7. Energy is therefore distributed across the frequency range in 

just the same way, although one might not deduce that by visual 

inspection of the signal! 

Figure 2.7 . A telegraph signal, in which the times between the changes of 
state are Poisson distributed (see §3.2.1). Note that these data and those shown 
in figure 2.6 are segments of signals which have identical spectral density 
functions but, obviously, quite different amplitude-domain statistics. 

What is immediately obvious from the display, however, is that the 

amplitude-domain statistics are completely different from those of the 
earlier signal. In the latter case, y(t) was distributed normally (see 
§2.5), whereas for the telegraph signal, y(t) can only be either +A or 

—A with equal probability. Again, a rearrangement of this signal in 
time (to obtain, say, a standard ‘square’ wave) would completely alter 
the spectral content without affecting the amplitude probability distribution in the least. 
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The reader should endeavour to grasp this distinction between 

amplitude- and time-domain statistics as soon as possible, since it lies 
at the heart of the various criteria required for making quantitative 
measurements (whether analogue or digital) of the signal characteristics actually required. 

2.9 Software instructions 

From the basic index the user should run the CHAP2 program. The 

top third of the screen will then contain the material shown at the top 
of figures 2.1 - 2.7 (above the solid line). To display any of the signals, 
simply select the appropriate heading using the cursor keys and then 

press the RETURN key. Subsequent use of the cursor keys removes 

the display and allows choice of an alternative option. Some of the 

options allow further demonstrations, which can be obtained by 
repeated use of the RETURN key after the initial display has been 

produced. They are of two types. 
Firstly, an mhnite variety ot three-component rouner signals can 

be displayed by continuing the ‘almost periodic’ option and entering 
the required amplitudes, frequencies and phases as instructed on the 
screen. Similarly, a noisy sine wave, with any desired signal-to-noise 
ratio, can be displayed by continuing the noisy sine-wave option and 

entering the required value as instructed (see §§2.3 and 2.6, respectively). In both cases, on completion of the display, another screen 

prompt allows further examples to be generated or the user may 
return to the basic CHAP2 menu. 

Secondly, in the case of the Gaussian noise, correlated noise and 
the telegraph signals (see §§2.5, 2.7 and 2.8, respectively), continuous 

oscilloscope-type traces can be obtained by continuing the appropriate option prompt. A 10000-point data sequence is automatically 
loaded into the computer memory and plotted on the screen. The 

signal repeats itself after approximately 45 s, but this is long enough 
to give the appearance of a continuous signal. A fixed display of any 
part of the sequence is obtained by using the SPACE bar as 

instructed, which anyway is required to return the original menu. 

These data sets have all been generated using standard simulation 

techniques which will not be discussed here; the methods used are 

outlined in §4.6.1. These three signals are used for the digital data 

analysis described in Chapters 4 and 5 ; so these display options are 
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useful for reminding oneself what the signal looks like, while 

considering the necessary sampling criteria. The fourth signal used for 
the data analysis is a set of 19456 random numbers (as described in 
§2.4). 

The user may return to the main index by using the ESCAPE key. 



Chapter 3 <br/> 

Quantitative Description of Signal 
Content 

We consider in this chapter the basic descriptive properties of a 

stationary signal. These fall naturally into two distinct classes. Firstly, 
the signal can be described simply in terms of the variation in its 
amplitude. The basic property from which all amplitude-domain 
statistics such as the mean value or the variance derive is the 

probability density function. This is discussed in detail in §3.1, 
together with the relationships between it and the secondary characteristics (such as the mean value). In many textbooks, definitions of 
these secondary characteristics are developed first, often without any 
reference to the probability distribution at all, but we wish here to 

emphasise that all the former are, in fact, just the various moments 
of the latter. They can of course be measured without any reference 
to this fact, but that tends to hide the importance of the amplitude 
bandwidth of the measuring devices. 

It is also important to note that, given a particular amplitude 
probability density function, the signal can be ‘arranged’ in time in an 

infinite variety of ways. In that sense, the amplitude statistics are 

independent of the time structure of the signal, as mentioned in 
Chapter 2 . Comparison of figures 2.4 and 2.6 provides an example. 

Secondly, the signal can be described in terms of its time-domain 
behaviour. The most obvious ways are via the autocorrelation function or the frequency spectrum. These are discussed in detail in §3.2 
but, again, it should be emphasised that signals with identical spectra 
can have entirely different amplitude probability density functions. 
Figures 2.6 and 2.7 provide an example. These remarks do not, of 
course, imply that the probability density function and, say, the 

17 
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spectral density function are entirely unrelated. The links will be 

explored in §3.2. 
It very often happens that, for a particular physical process leading 

to a continuous stationary variation of a measured quantity, descriptions of the signal content are much more appropriate in time-domain 
terms than in terms of amplitude-domain statistics, or vice versa. In 
the context of signal collection and analysis, however, it is usually 
helpful to have some idea of the likely qualitative nature of the signal 
in both frames of reference. 

3.1 Amplitude-domain statistics 

3.1.1 The probability distribution 
Consider a stationary signal x(t). At any particular instant, there 
exists a specific probability that the signal amplitude lies between x 

and x + Δx. If Tx is the amount of time, summed throughout the 
total signal time T, during which x(t) lies in this range, then this 

probability is just Tx/T. As Δx tends to zero, so must Tx/T (there is 
an infinitesimally small likelihood that x(t) has a specific value, 
except in the special case of a constant-amplitude signal) but a 

probability density function p(x) can be defined for small Δx by 

(3.1) 

Unless the signal is band limited (in the amplitude sense), Tx/T 
must exceed zero but be less than unity whatever particular values of 
x and Δx are chosen. However, real signals are almost always limited 
to a certain amplitude range so that, for example, x(t) &#x2A7D; r, say. The 
probability corresponding to x > r must be zero, and the probability 
density function p(x) is then not defined for x > r. It is important to 
note that equation (3.1) contains no specific reference to the timedomain structure of the signal. Given an observational period T, p(x) 
exactly describes the amplitude-domain statistics within that period, 
but it may have little resemblance to the p(x) that would have been 
obtained for a different observational period whether of the same 

duration or not. For example it is straightforward to show that for 
x(t) = a sin(ωt), an observation period T equal to the period 2π/ω) of 
the signal gives a probability density function 
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This is the usual result quoted for the probability density function 
of a sine wave. However, it is obvious that, if T were a non-integral 
multiple of 2π/ω, a very different result would be obtained unless the 

integral value of T/(2π/ω)) were sufficiently large. If x(t) were a truly 
random signal, one would expect p(x) to tend towards some limiting 
value (for each x) as T approached infinity. Then equation (3.1) 
could be written as 

(3.2) 

but it is clear that the appropriateness of such a definition depends 
somewhat on the nature of the signal. We therefore prefer equation 
(3.1) as the basic definition for p(x) and encourage careful thought 
when undertaking experimental determinations of it. 

To help to fix ideas concerning the probability density function, 
which is really the fundamental analytic tool for investigating the 

amplitude statistics of a signal, we now give examples of typical 
(ideal) distributions, including those corresponding to some of the 

signals described in Chapter 2 . These can be displayed on the screen 

using the CHAP2 program, as described in §3.4. 

3.1.1(a) Constant signal A signal consisting simply of a mean (DC) 
component of amplitude a, say, will have a probability density 
function which can be described by a standard delta function 

where δ(s) is defined by 

and δ(s) = ∞ for s = a. 

3.1.1(b) Telegraph signal The telegraph signal discussed in §2.8, 
with x(t) = ±a, has a ‘double-delta-function’ probability density 
distribution which can be written as 

This assumes that the mean value of x(t) is zero. If it is not, then the 
distribution above is simply shifted along the x axis by the mean 

value. 
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3.1.1(c) Periodic signals As stated above, the probability density 
function for a sinusoidal signal observed over a sufficiently large (or 
integral) number of cycles is given by 

where a is the signal amplitude. This is shown in figure 3.1 . If the 

signal contained a mean DC level (x = a0 + a sin t), then the p(x) 
function would again simply be shifted along the x axis by a0, i.e. 

A similar transformation is appropriate in the presence of mean DC 

components irrespective of the nature of the signal; consequently, we 

shall assume that a0 = 0 in all the following. 
Note the importance of recognising that p(x) is not a probability. It 

is clearly not correct to state that the probability that x takes the 
value, say, 0.99a is 1/π(1 - 0.992)1/2 = 2.26! It is actually given by 

What figure 3.1 does indicate is that the probability that the signal 
amplitude lies in a range ε near x = a is much higher that it is near, 

say, x = 0. Inspection of the basic signal makes this obvious, of 
course. 

Note also that, because a sine wave is essentially a deterministic 

signal, a probabilistic description is only really appropriate on the 

assumption that the initial phase (for each sample signal) is a random 
variable. This is perhaps more evident if a signal composed of two or 

more sinusoidal components of different amplitudes and frequencies 
is considered. Unless the different components are uncorrelated (i.e. 
have random phases), the probability distribution of the total signal 
must be strongly dependent on the nature of the phase and frequency 
relationships between the components. In other words, the probability distribution is dependent on the time structure of the signal; in 
these circumstances, it is not generally very helpful to use a probabilistic description at all. However, if the individual components are 

uncorrelated, it is possible to deduce a probability distribution which 
will be quite independent of the phases and frequencies of the 
individual components. 
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Figure 3.1 . The probability density function of a periodic signal of 

amplitude ±a. 

3.1.1(d) Complex periodic signals As an example, consider the case 

of a signal z(t) arising from the uncorrelated superposition of two 

sinusoidal components 

x(t) = a1 sin(ω1 t + θ1) 
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and 

y{t) = sin(ω2t + θ2). 

θ1 and θ2 are independent random variables. For, say, ω2 < ω1 and 

provided that the signal is observed over a sufficiently large number 
of cycles of ω1, then 

(3.3) 

Using, p1(x) = 1/π( a12 - x2)1/2 and p2(y) = 1/π(l — y2)1/2, we obtain 

for |z| < 1 — a1, θ1 = cos-1(z - a1) and θ2 = cos-1(z + a1) or zero 

for l - a1 &#x2A7D; |z| &#x2A7D; + a1. This integral can be obtained numerically, 
and p(z) is shown in figure 3.2 for the cases a1 = 0.25, a1 = 0.5 and 
a1 = 1.0. Note the contrast between the p(z) for a1 = 1.0, and what 
it would have been for two perfectly correlated components of the 
same frequency. In the latter case, z = 2 sin(ωt + θ) so that 

p(z) = 1/π(4 - z2)1/2, which is very similar to the mirror image 
(about z = 0) of the distribution corresponding to the sum of two 

uncorrelated components. It is easy to see, qualitatively, why this 
should be so. For z to have an amplitude near zero, the individual 

components must have similar amplitudes but of opposite sign whereas, for an amplitude near the maximum (2, in this case), both 

components must have near-maximum amplitudes, which is much less 

likely. (With x = 1 — ε say, y contributions of -(1 - ε) are very 
much more likely than 1 + ε, since the probability that y is near the 
latter value is zero!) 

It must be emphasised that the distributions shown in figure 3.2 are 

not typical of those corresponding to the complex periodic signals 
discussed in Chapter 2 . These latter signals arise from the sum of 

strongly correlated components and so have no ‘typical’ probability 
density function; each would be highly individual and dependent on 

the phase and frequency relationships between the separate components. Experimental data are hardly ever of this type; when they are, 
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Figure 3.2 . The probability density function of the sum of two uncorrelated 

periodic signals of amplitudes unity and a1: — - —, a1 = 0.25;-, a1 = 0.5; 
— — —, a1 = 1.0. 

the time-dependent parameters discussed in §3.2 are generally much 
more useful tools than the probabilistic description. 

The addition of a third uncorrelated sine-wave component of unit 

amplitude to the example above with a1 = 1 removes the singularity 
in p(z) at z = 0, and not many further components are required to 

give a p(z) distribution very like the normal distribution (discussed 
below). In fact, as the number of uncorrelated sine-wave components 
in the signal increases, the probability distribution function of the 
signal itself tends towards the normal or Gaussian distribution (see 
below). This is a direct result of the central-limit theorem, which in 
its most general form states that the sum of n independently 
distributed random variables itself tends to a normal distribution as n 

tends to infinity. This is relatively straightforward to prove if each of 
the independent variables is normally distributed, but otherwise is 
true only under certain conditions ( Feller 1970 ). 

3.1.1(e) Random noise The case of band-limited random noise is 
particularly simple. Recall that the signal was defined by 

y(t) = 2a[0.5 - RND(1)t] 
( Chapter 2 .4 and figure 2.3 (b). Since RND(1)t is (in BBC BASIC) a 
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function which produces numbers between 0 and 1 with equal 
probability, the density function is simply 

There are hardly any natural physical processes which give rise to 

signals of this sort, but the distribution function is nevertheless 

important. Perhaps the best-known applications of it, in the present 
context at least, are in the calculation of quantitisation or rounding 
errors arising from digitisation of a continuous analogue signal or the 
inevitable truncation in digital arithmetic computations. Chapter 4 

gives an example of the former. 

3.1.1(f) Gaussian noise Many physical processes lead to amplitude 
statistics of the variable in question which conform closely to that 
described by the normal or Gaussian probability density function: 

where μ and σ are the mean (DC) value and the standard deviation, 
respectively. 

Since, in addition, this is the distribution to which, according to the 
central-limit theorem and under certain conditions, the sum of n 

other distributions of any type will eventually tend as n → ∞, it plays 
a central role in probability analysis. White noise (defined strictly as a 

signal having equal power at all frequencies) is usually taken as 

Gaussian, for that accurately describes the noise occurring in, say, 
electronic components. 

Figure 3.3 shows p(x) for the case of zero mean (μ = 0) and unit 
variance (σ = 1), but distributions with any other value can always be 
made to collapse on this ‘standard’ distribution by plotting σp(x) 
against (x - μ)/σ. This is, in fact, often done after deduction of the 
signal mean and variance in order to determine how far from 
normality the amplitude-domain statistics actually are. 

3.1.1(g) Noisy periodic signals Whilst it is very rare that a natural 
physical process demonstrates purely oscillatory behaviour, it is quite 
common to find processes which are basically oscillatory but are 

‘contaminated’ by random noise. Even if the basic process is purely 
periodic, its measurement will often involve the addition of random 
noise because of the transducer characteristics. Sometimes, the signalto-noise ratio is so low that it is difficult to discern the basic 
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Figure 3.3 . The normal (Gaussian) probability density function. 

periodicity. (Such signals can be produced on the computer screen by 
selecting the appropriate option in CHAP3 program.) There are 

various techniques for recovering the underlying periodicity, all based 
on the time-domain characteristics of such signals. Some of these are 

outlined in Chapter 5 . The probability distributions of these types of 
signal depend on the nature of the noise itself and on the signal-to-noise ratio and can be readily obtained by straightforward application 
of relationships such as equation (3.3) . 
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If the noise is random but with p(y) = l/2r, such as might be 
introduced by digitising a perfect sine wave (see §4.1), then the 

probability distribution of the total signal, consisting of the sum of 
the underlying periodic component x = a sin(ωt) and the random 
noise, is given by 

if r < a, and 

if r > a. Figure 3.4 shows typical probability density distributions for 
cases where r/a equals 0 (a normal sine wave), 0.25, 0.5 and 1.0. The 

singularity in p(z) for r/a = 0 is removed as soon as r ≠ 0, but there 
are always singularities in dp(z)/dz, which makes the probability 
functions quite distinctive. 

Figure 3.4 . Probability distributions of the sum of a period signal of 

amplitude ±a and random noise of range ±r: — - —, r/a = 0.25;—, 
r/a = 0.5;— — —, r/a = 1.0. 



AMPLITUDE-DOMAIN STATISTICS 27 

If, as is more likely, the noise is Gaussian, the probability 
distribution of the total signal is given by 

(provided that the noise has zero mean). This is not readily integrate, but can easily be computed numerically for given signal-tonoise ratios. Figure 3.5 shows distributions for cases with σ equal to 0 

(the basic sine-wave probability function) 0.25, 0.5 and 1.0. Note 

particularly that relatively little noise has to be added to the signal 
before the ‘double-peak’ characteristic of the p(z) disappears entirely. 
In such circumstances, it would clearly be impossible to discern any 
underlying signal periodicity from the shape of the probability distribution, although time-domain signal analysis would clearly reveal it 

(see §3.2). 

3.1.1(h) Intermittent signals When the signal contains two or more 

components which only occur during different time periods, the 

probability distribution must clearly have a different form from that if 
the components occurred simultaneously. Such signals usually occur 

in practice when the physical processes giving rise to the individual 

signals switch intermittently from one to another. As a simple 
example, consider the case of two Gaussian-type processes, with 
means of μ1 and μ2 and standard deviations of σ1 and σ2. Assume 
that the first process occurs during a proportion a of the total 
observational period, with the second process occurring for the 
remainder of the period. The probability density function of the 

signal, measured over the whole period, must then be given by 

Figure 3.6 (a) shows two cases for which μ1 = 0, σ1 = 1, with μ2 = 0, 
σ2 = 0.25 and μ2 — 1, σ2 = 0.5. The corresponding signal for the 
latter case is shown in figure 3.6 (b) (screen version). If the two 

components do not have the same mean values, the resulting distribution is inevitably skewed (asymmetric), whereas greatly unequal 
standard deviations lead to very peaky distributions. However, it 
should be emphasised that quite similar probability distributions can 

be generated by essentially homogeneous (single-component) signals 
so, as should by now be clear from preceding examples, it is not 
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always possible to make unambiguous deductions about the signal 
content on the basis of the shape of probability distributions. 

Figure 3.5 . Probability distributions of the sum of a periodic signal of amplitude ±a and white noise of standard deviation σ:— - —, σ/a = 0.25; -, 
σ/a = 0.5;— — —, σ/a = 1.0. 
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Figure 3.6 . Probability distributions of signals containing two components 
occurring alternately (the proportional time for the second component is α): 
-, α = 0.5, σ2 = 0.25, μ2 = 0;-, α = 0.25, σ2 = 0.5, μ2 = 1.0. a and 

a are the combined standard deviation and mean, given by a 

1 
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3.1.1(i) Final remarks It should be emphasised that, in all the cases 

discussed in this section, the time structure of the signal is quite 
irrelevant as far as the amplitude statistics are concerned. As a 

‘thought exercise’, for example, it is possible to imagine an integral 
number of cycles of a periodic signal and then to interchange 
different parts of it along the time axis in a quite arbitrary fashion, so 

changing its time history catastrophically, but without altering the 

amplitude-domain statistics in the least. Similarly, one could 

rearrange a long section of the telegraph signal so that it consisted 

simply of a constant value a for time T/2 followed by a level a for 
the remaining time T/2. This would modify the spectral content of 
the signal markedly but the probability density function would remain 

just the same. 

In a practical context, very often only the mean value and perhaps 
the standard deviation of a signal are required, rather than the 

complete probability density function. However, these are defined 

analytically as the first and second moments, respectively, of the 

probability density function (see the following sections) and it is often 

quite helpful to have some feel for the kinds of signal that produce 
particular probability distributions. Malfunctions of measuring equipment, for example, can sometimes be detected by inspecting measured probability distributions. Furthermore, the nature of the probability distribution greatly affects some of the sampling criteria that 
must be applied in order to obtain measurements of a given accuracy; 
so it is always wise to have some idea about the overall amplitudedomain statistics of the signal, even if that requires (at least rough) 
measurements of the complete probability density function. As we 

demonstrate in later chapters, such measurements are often very easy 
in the case of digitised signals. 

3.1.2 Mean and mean-square values 
The mean and mean square of a signal are usually the simplest 
quantities to measure and often all that is required. In terms of the 

probability density function, they are defined by 

(3.4) 

and 

(3.5) 
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respectively; here and throughout the remainder of this text overbars 
denote average values. These expressions follow directly from the 
definition of the probability density function (equation (3.1) ) and 

express the fact that the various mean values are just appropriate 
weighted averages of the latter. Since x is the total mean-square 
value, it is often thought of as the true energy in the signal. Quite 
frequently, it is helpful to consider only the energy of the fluctuating 
part of the signal. This is given by 

(3.6) 
and is usually termed the variance of the signal, o is the standard 
deviation (or more loosely the root mean SQUARE (RMS)), which is a 

simple measure of the width of the probability distribution. Note that 

σ often has less physical significance than x or σ2 and in many 
contexts it is more useful to consider the latter rather than the 

‘square root of energy’. 
Whilst it is possible to measure mean and mean-square values via 

the probability density function using equations (3.4) and (3.5) , it is 
of course much more common to obtain them by simple averaging in 

time, using 

(3.7) 

and 

(3.8) 

Note that, as in the case of p(x) (see §3.1.1), the earlier definitions 
of x and x contain no specific reference to the time structure of the 

signal. Given p(x) measured over time T using equation (3.1) the 

resulting x and x will be the values appropriate for a signal sample 
of length T and these may or may not be close to those that would 
have been obtained for a different observational period. The two sets 

of definitions are only identical when p(x) is considered to be defined 

by equation (3.2) . 

Most of the signals described in the previous sections had zero 

mean value for convenience, but their variances were never zero— 

only a signal with constant amplitude for all time can have σ2 = 0. 
The telegraph signal x(t) = ±a has a variance of a2; the band-limited 
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random noise with p(x) = 1/2a for — a < x < a has σ2 = a2/3 and 
the Gaussian noise signal with e 

has x and a variance of o2. It is left as a simple exercise for the 
reader to deduce these results from equations (3.4) and (3.6) . Note 
that in the last case the results indicate why p(x) for Gaussian 
variables is defined as it is; the probability density function of all 
Gaussian variables can be collapsed onto a single normalised curve by 
plotting σp(x) against (x - μ)/σ. Hence we have the common term 

normal distribution for the above p(x) distribution. 

3.1.3 Higher-order moments 
The mean and mean-square values defined by equations (3.4) and 
(3.5) are simply the lowest two integral ‘moments’ of the probability 
density function. In general, the nth moment is defined by 

and higher-order moments (n > 2) are sometimes used to deduce 
certain physical characteristics of the signal. For example, any signal 
in which extreme low values are more likely than extreme high values 
(or vice versa) will have an asymmetric probability distribution 
function and consequently non-zero values of all the odd-order 
moments (n = 3,5, . . .). Such distributions are usually called 
‘skewed’; there is an example in figure 3.6 where the skewness arises 
from the fact that the component ‘intermittent’ signals have different 
mean values. The other example in figure 3.6 is of a ‘peaky’ signal, 
which is symmetric and therefore has zero odd-order moments, but 
the even-order moments are quite different from the Gaussian values 
(see below). 

In comparing higher-order moments of different signals, it is 
common to normalise them by the appropriate power of the standard 
deviation. Thus, for the general case in which x we define 

(3.9) 
For n = 2, γn = 1 but, for all higher-order even moments, γn > 1. It 
is easy to demonstrate the following results, for even-order moments. 

(1) Telegraph signal: p(x) = ½δ(a), x = ±a; γn = 1. 
(2) Random noise: p(x) = l/2a, -a < x < a; γn = 3n/2/(n + l) 
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(3) Gaussian noise: p ; 

Y , 

n = 2k. 

Note how rapidly the γn rises with n for the noise signals. In the case 

of Gaussian noise, γ4 = 3 (where γ4 is normally termed the flatness 

factor) whereas γ8 = 105. The contribution to γn from the ‘tails’ of 
the probability density function becomes increasingly important as n 

rises and this has significant implications for the measurement of such 

quantities (see Chapter 4 .2). 
As in the case of the mean and mean-square values, the most 

straightforward way to obtain the higher-order moments is usually via 

simple time integration, using 

(3.10) 

Unless the amplitude ranges of the measuring devices, whether 

analogue or digital, are sufficiently wide, errors in measurement of 

high-order moments can be significant. It is often possible to calculate 
the errors that would arise in particular cases. This is discussed at 

greater length in Chapter 4 , but it is salutary to recognise that, if the 

integration bandwidth in equation (3.9) is limited to, say, plus and 
minus three standard deviations, the resulting values of γ4, γ6 and γ8 

for a Gaussian signal are about 9%, 16% and 21% too low, 
respectively, though p(x) at x has fallen to 1% of its 
maximum value! 

It is, incidentally, considerations of this sort which emphasise the 

difficulty of making extreme-value predictions on the basis of small 
numbers of samples, a problem that bedevils the statistical aspects of 
the economic, social and medical sciences in particular. 

3.2 Time-domain statistics 

3.2.1 The autocorrelation function 
Most time-dependent signals arising from specific physical processes 
have some structure in time; that is, the signal amplitude at one time 

is not independent of its value at preceding times. This is obviously 
the case for deterministic signals such as a simple sine wave, but it is 
also often true for random data. In Chapter 2 , typical Gaussian 

signals both with and without a time structure were presented (see 
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figures 2.4 and 2.6). A simple measure of the degree of dependence 
of the signal amplitude at one time on amplitudes at other times is 

provided by the autocovariance, defined by 

(3.11) 

where x(t) is the signal amplitude at time t and x(t + τ) is the value 
at a time τ later, r is called the lag time. C(τ) is simply the time 

averaged product of the two values. 
It is clear that C(0) = x2, the mean square of the signal. If x , 

it is more common to use the autocorrelation function 

(3.12) 

so that R(0) = σ2, the signal variance. For random signals, if the time 

lag is long enough, there is no correlation (on average) between the 
two (AC) values of the signal; one could say that the signal has a 

‘finite memory’. In that case it follows from the above definitions that 
C So the mean value is given by 
x This is not true for deterministic signals such as sine 
waves, since these have a ‘perfect memory’; it is always possible to 

predict future values exactly on the basis of current or past values. 
For convenience, in this section, we shall assume that x in all 

examples so that the autocovariance and the autocorrelation functions 
are identical. 

It is also possible to express the autocorrelation function in terms 

of probability functions. The probability that x(t) lies in the range 
x1 < x(t) < x1 + Δx1 while, simultaneously, x(t + τ) lies in the range 
x2 < x(t + τ) < x2 + Δx2 is given by 

where T(x, y) is the total amount of time that x(t) and x(t + τ) lie in 
these ranges simultaneously during the observation time T. Then the 

joint probability density function p(x1, x2) is defined by 

This is an obvious extension of the p(x) definition discussed in §3.1 
Then if we denote x(t) by x1 and x(t + τ) by x2, the autocovarianct 
must be given by 
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(3.13) 

If the average value of the signal is zero, this is also R(τ). It must be 

emphasised that, whilst, for a sufficiently long observation time, 
p(x1) and p(x2) will not depend in any way on the time structure of 
the signal, p(x1,x2) certainly will. (For stationary random signals 
p(x1) will normally be identical with p(x2).) 

In some standard texts the autocorrelation function is defined in 
non-dimensional terms, by dividing the R(τ) above by the signal 
variance. This makes the autocorrelation unity for τ = 0. We shall 
use R(τ) in both ways in the following; it will always be evident from 
the context whether a normalised function or a function which has 
not been normalised is meant. In either case, for stationary signals, 
R(τ) = R(-τ). 

It should be noted that the prefix ‘auto’ is used because these 
functions describe the time structure of a single signal, rather than 

relationships between two or more signals (at the same or different 

times). The latter are described by, for example, cross correlations. 

Multi-signal statistics are not covered in the present text, but the 
essential ideas are quite similar. 

We now give some examples of autocorrelation functions, using 
some of the typical signals previously described. 

3.2.1(a) Periodic signals For a signal x(t) = a sin(ωt + ϕ), it is easy 
to show that the autocorrelation is given by (a2/2)cos(ωτ). This is 
illustrated in figure 3.7 . It is important to note that all phase 
information in the original signal is lost and that the period of the 
autocorrelation function is the same as that of the original signal. 
Note also that R(0) = a2/2, the mean square of the signal, as 

expected. 

3.2.1(b) Uncorrelated noise ‘White’ noise is usually defined as a 

Gaussian process in which the signal amplitude at any particular time 
has, on average, no dependence on amplitudes at other times. The 
autocorrelation function is then simply R(τ) = δ(τ), where δ(τ) is the 
Dirac delta function (defined in §3.1.1(a)—it is infinite for τ = 0 but 
zero otherwise) ( figure 3.8 ). The signal has constant energy at all 

frequencies (see §3.2.2), so perfect white noise can never exist in 

practice since it would have infinite power. White noise is always 
band limited, in the frequency sense, and it will be shown later that, 
if the bandwidth is B (i.e. no energy at frequencies higher than B) 
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Figure 3.7 . Autocorrelation and spectrum of a sine wave. 

Figure 3.8 . Autocorrelation and spectrum of white noise. 

and the variance is σ2, then the autocorrelation function is given by 

R(τ) = σ2 {[sin(2πBτ)]/2πBτ}. 
This is shown in figure 3.9 ; it is clear that, as B → ∞, R(τ) → 0 
except at τ = 0, when R (τ) = σ2 always. 
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Figure 3.9 . Autocorrelation and spectrum of low-pass filtered white noise, 
assuming a sharp cut-off at frequency f0. 

If the signal is band limited at the lower frequencies as well as the 

highest, so that it has constant power in a frequency band of width B 
centred at f0 (<B/2), the autocorrelation function has the form 

R(τ) = σ2{[sin(πBτ)]/πBτ} cos{2πf0τ). 
An example is shown in figure 3.10 . 

Figure 3.10 . Autocorrelation and spectrum of band-pass filtered white noise. 
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Clearly, in both these cases the act of band limiting the white noise 
has led to some degree of correlation between successive amplitude 
values of the signal, for all time values. This is, in fact, always the 
case although in practice electronic white noise generators can 

produce quite adequate ‘quasi’-white noise by having a sufficiently 
high-frequency bandwidth. It is worth noting here that, in any case, a 

discrete series of uncorrelated data values can always be generated by 
sampling the continuous signal at time lags for which the autocorrelation is zero. In the first example above, this would require sampling 
at intervals equal to any integral multiple of 1/2B. 
3.2.1(c) Correlated noise By correlated noise, we mean here a 

random signal which has a specific time structure, arising perhaps 
from the particular nature of the physical phenomenon which gives 
rise to the signal, so that R(τ) is non-zero for all τ. The example 
discussed in §2.7 was that of ‘pink’ noise, defined as a signal having 
an exponentially decaying autocorrelation function: R(τ) = exp(—λτ). 
λ determines the decay rate. Very many natural phenomena lead to 

signals having a behaviour similar to this, which makes pink noise a 

particularly relevant analytic generalisation for studying, for example, 
probable measurement errors in real situations. Figure 3.11 shows 
some typical pink noise with its corresponding autocorrelation function. 

Figure 3.11 . Autocorrelation and spectrum of pink noise. 
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As indicated earlier, signals with identical autocorrelation functions 
can have quite dissimilar probability density functions. The telegraph 
signal discussed in Chapter 2 provided a good example of this. It has 
a probability density function defined by p(x) = 0.5δ(a) for x = ±a 
and p(x) = 0 otherwise, independent of the distribution in time of the 
state changes between ±a. However, if these state changes are 

arranged according to a Poisson distribution, so that the probability 
that n changes occur in a time interval τ is given by 

Pr(n) = (λτ)n exp(-λτ)/n! 
where λ defines the expected number of changes (E(n) = λτ), then it 
is straightforward to show that the autocorrelation function is given 
by R(τ) = exp(—2λτ) (for a simple proof, see Bendatt and Piersol 
(1966)). Consequently, on this basis or on the basis of the signal’s 
energy spectrum (see §3.2.2), the signal is indistinguishable from pink 
noise; however, it is clearly not a ‘noise’ signal at all in the usual 
sense. 

3.2.1(d) Noisy periodic signals Signals which consist essentially of 
an underlying periodic component with the addition of random noise 
are fairly common. If the noise has sufficient amplitude, it can be 

impossible to discern the basic periodicity either by direct inspection 
of the signal or by looking at its probability density funtion (see 
§3.1). By contrast, the signal’s autocorrelation function will clearly 
reveal the periodicity, particularly if the noise is uncorrelated (white). 
The autocorrelation function then consists of the usual cosine function but with a delta function ‘spike’ at zero lag, as shown in figure 
3.12 . Defining the signal by 

x(t) = a sin(ωt) + n(t) 
where n(t) is random noise with a standard deviation of σ, the ratio 
of the standard deviation of the periodic component to that of the 
noise is a/σ 2 In the example shown, this ratio is unity so that 

C(0) = a2/2 + σ2 and C(τ) = (a2/2)cos(ωτ) (τ > 0). Note that we 

have assumed the noise to be band limited so that it has a finite 
variance and have ignored the consequent effects on the combined R(τ). 

Quite frequently, the ‘noise’ arises from a phenomenon having 
some specific time structure (i.e. it is correlated noise). In that case 

the ‘spike’ at zero lag would not exist but the first few cycles in R(τ) 
would decay until a time lag beyond which the noise has no 
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significant autocorrelation of its own. Thereafter R(τ) would be a 

perfect cosine wave. Another common variant is the case of a 

phenomenon in which the basic periodic component is modulated by 
occasional random shifts in phase, in addition to the superimposed 
noise. After a sufficiently long lag time the autocorrelation would 
then be expected to be zero and a typical autocorrelation function 

might have the form R(τ) = cos((ωτ)exp(—aτ). 

Figure 3.12 . Autocorrelation and spectrum of a sinusoidal signal contaminated 
with white noise. 

3.2.1(e) General autoregressive process Some of the signals discussed in the last two sections are, in fact, just fairly common examples 
of general autoregressive processes. These are usually defined as the 
output Y(t) from a linear filter whose input X(t) is white noise and 
for which the input and output are related by 

(3.14) 
For Y(t) to be stationary, it is necessary that the roots of the 
characteristic equation 

ampm + am-1pm-1 + . . . + a0p = 0 

have negative real parts. It is shown in standard texts (see, e.g., 
Priestly 1981) that the autocorrelation of Y(t) must satisfy 
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am(dm R(τ)/dτm) + am-1(dm-1 R(τ)/dτm-1) + . . . + a0R(τ) = 0τ > 0. 

This has the general solution 

R(τ) = A1 exp(—λ1τ) + A2 exp(-λ2τ) + . . . + Am exp(—λm τ) 
where the λi are the roots of the characteristic equation given above. 

Pink noise can therefore by thought of as the output of a first-order 
(m = 1) linear system so that, in this notation, R(τ) - exp(-a0τ/a1). If complex roots occur (for m > 1), then the autocorrelation contains 
terms of the form exp{-k1 τ)cos(k2τ + ϕ); a signal which has a 

decaying autocorrelation function could therefore arise from the 

output of a second-order (m = 2) linear system whose input is white 
noise. Note, however, that, if ϕ = 0 (so that the autocorrelation is 
the same as that used in the examples in §3.1), then the process must 
be a mixed autoregressive and moving average one, for which the 
right-hand side of equation (3.14) is replaced by 

where b(u) is some weighting function which is zero for t > tm. 
Signals produced this way would necessarily have Gaussian 

amplitude-domain statistics (since the linearity of the system precludes any change in the signal’s probability distribution). It must 
therefore be emphasised again that a signal having this particular 
R(τ) could arise from a quite different physical process and have a 

non-Gaussian probability density distribution. 

3.2.2 The power spectral density function 
An alternative but complementary way of describing the time-domain 
nature of a signal is by way of its energy spectrum. Physically, this is 

simply a measure of how much energy is contained within the signal 
in each frequency band. If x(t,f, Δf) is that part of the signal x(t) 
which lies in the frequency band Δf centred at frequency f, then the 

mean-square value within this band is 

(3.15) 

Then the power spectral density can be defined by 

(3.16) 

where, as usual, x is the total mean square (or variance σ2). Note 
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the correspondence between this definition and that of the probability 
density function (equation (3.1) ). In both cases a suitable normalisation is used such that the integral of the distribution over the whole 

parameter range is unity. In this case, 

An alternative definition for a power spectral density which has not 
been normalised is sometimes used. Typically, 

so that J , the total signal energy. Note that the mean 

value x is just the square root of the dc energy E(0). 
It should be clear immediately that there must be at least some 

relationship between the autocorrelation function and the spectral 
density function, since R when τ = 0 (see §3.2.1); so 

R In fact, the two functions form an exact Fourier 
transform pair: 

(3.17a) 

(3.17b) 

The second of each pair of equalities exist because, for real data, 
R(τ) is an even function of r. These relationships hold only provided 
that the original signal is stationary. They are collectively known as 

the Weiner-Khintchine therorem and standard texts discuss their 
proof in detail (see, e.g., Bartlett 1955). Basic definitions and 
discussions of Fourier transform theory are also available in many 
specialist texts (see, e.g., Lighthill 1962, Priestly 1981). It should be 
noted that such texts usually embody many minor differences in 
definition (and therefore in detailed analysis); we have chosen here 
those which seem most appropriate for real data. 

It is also possible to express the spectral energy density function in 
terms of the original signal itself. If it is assumed that the signal x(t) 
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has a convergent Fourier integral C(f) given by 

(3.18) 

which for random signals requires ensuring that x(t) = 0 outside some 

finite time range, then it can be shown that 

(3.19) 

|C(f)|2 is the sum of the squares of the amplitudes of the real and 

imaginary parts of the Fourier integral (i.e. the modulus, in the usual 

sense). Strictly, equation (3.19) is only true for random signals if the 
numerator is avek[|C(f)|2], i.e. an average of |C(f)|2 over k 

independent ensembles, with k → ∞. This restriction is not necessary 
for deterministic (periodic) signals but in the context of much 

experimental signal analysis, in which strong random elements are 

often present, it has serious implications for the determination of the 

energy spectrum. Further discussion is deferred to Chapter 5 and, 
again, standard texts should be consulted for more detailed analysis. 

It should be emphasised that the autocorrelation function R(τ) and 

spectral density function E(f) are entirely equivalent. There is no 

information contained in the one which is not present in the other. 
The difference lies simply in the way in which the information is 

presented; R(τ) gives essentially time-domain data whereas E(f) 
gives the same information but in the frequency domain. In some 

contexts the former is more physically useful than the latter, and vice 
versa. 

The reader will have already noted in figures 3.7-3.12 the energy 
spectrum functions corresponding to the autocorrelation function 

examples discussed in §3.1. We give below the analytic expressions 
for these spectra and leave it as an exercise for the reader to derive 
them by performing the appropriate cosine transforms, given by 
equation (3.17b) . For completeness, we include the autocorrelation 
functions below. 

3.2.2(a) Periodic signal ( figure 3.7 ) 

x(t) = a sin(2πf0t + ϕ) 

E(f) = (a2/2)δ(f - f0) 

R(τ) = (a2/2)cos(2πf0τ). 
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3.2.2(b) Uncorrelated noise ( figure 3.8 ) Gaussian amplitude-domain 
data are used with 

E(f) = a f > 0 

R(τ) = aδ(τ). 
Note here, firstly, that this is not physically very realistic since 
x and, secondly, that random noise with different 

amplitude-domain statistics could have identical E(f) and R(τ). 
3.2.2(c) Constant dc signal It is worth noting that in time and 
frequency domains a constant signal of amplitude a is the exact 
inverse of white noise, i.e. 

x 

E(f) = aδ(f) 

R(τ) = a. 

3.2.2(d) Low-pass white noise ( figure 3.9 ). 

E(f) = a 0 &#x2A7D; f &#x2A7D; B 

R(τ) = aB{[sin(2πBτ)]/2πBτ}. 
3.2.2(e) Band-pass white noise ( figure 3.10 ) 

E(f) = a (f0 - B/2) &#x2A7D; f &#x2A7D; (f0 + B/2) 
R(τ) = aB cos(2πf0τ){[sin(πBτ)]/πBτ}. 

Note that in both cases the signal variance is given by x = σ2 = aB. 

3.2.2(f) Correlated noise ( figure 3.11 ) Gaussian amplitude-domain 
statistics are used with 

E(f) = 4Tσ2/(1 + 4π2f2T2) 
R(τ) = σ2 exp(—τ/T) 

As stated earlier, this defines pink noise. The telegraph signal 
described in §§2.8 and 3.1.1 has the same forms of E(f) and R(τ). 
3.2.2(g) Noisy periodic signal ( figure 3.12 ) Provided that the noise 
is not correlated with the periodic content of the signal, E(f) and 
R(τ) are simple additions of those corresponding to the separate 
components. For a periodic component of a1 sin(2πft) superimposed 
on white noise whose energy density is a2 at all frequencies. 
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E(f) = ( a12 /2)δ(f - f0) + a2 

R(τ) = ( a12 /2) cos(2πfτ) + a2δ(τ). 
Again, this is not physically very realistic; the reader will be able to 
write down other more representative examples. 

3.3 Further statistics 

The quantities discussed in §§3.1 and 3.2 are not, of course, the only 
ones that can be used to describe a signal, although they are certainly 
the most basic. In the natural and engineering sciences there are 

often requirements to analyse particular portions of a signal which 

represent isolated, but perhaps repeated, events. As a simple example, consider the electrical signal produced by cardiographic skin 
sensors. These measure electrical activity at the surface which 

corresponds to events in the cardiac cycle. The signal is characterised by 
repeated sequences of the portion shown in figure 3.13 , which 

represents such a cycle. Each sequence is of course different from 

preceding ones, because of the many and sometimes random physical 
processes which affect the cardiac cycle. Rather than studying a 

complete spectral analysis obtained over many cycles, it is often more 

useful for diagnostic purposes to examine the form of a particular 
part of the cycle. Both the mean ‘shape’ and the nature of the 
variations about this mean may be of interest. Obtaining data of this 

type requires use of the technique generally known as conditional 

sampling. This usually involves obtaining averaged data from one part 
of a signal by using another part as a conditional trigger. Referring to 

figure 3.13 , for example, one might be interested in the shape of the 
QRS part of the signal in cases where the R peak is abnormally low. 

Equally, it may be useful to know how the frequency content of the 
rest of the signal differs from average when the initial R spike is 

abnormally distorted. 
Simple extensions of the definitions of the amplitude- and/or 

time-domain statistics given earlier can easily be written down for 
such cases and suitable algorithms derived for measuring them. 
Obviously these kinds of measurement are very much simpler using 
digital techniques. The basic ideas are in principle no different from 
those outlined already (and in Chapter 4 ). Since this is an introductory text, these other kinds of signal statistics will not be discussed 
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Figure 3.13 . A typical electrocardiogram: AS, atrial contraction; VS, 
ventricular contraction. 

further. Despite a rapid increase in the use of conditional sampling in 

many different fields, it remains true that the more basic statistical 
functions described in the earlier sections are by far the most 

commonly used. 

3.4 Software instructions 

From the basic index the user should run the CHAP3 program. The 

top part of the screen will contain the material shown at the top of 
the screen version of figure 3.1 (above the solid line). Using the 
numeric keys 1 or 2, the amplitude- or time-domain sections, respectively, can be called. To display the required signal, together with the 
corresponding probability density function or autocorrelation and 

spectrum functions, the cursor and RETURN keys should be used as 

before. Some of the amplitude-domain statistics options allow further 
demonstrations; these are described below. 

The noisy sine option shows three probability density functions 

corresponding to the three possible signals on the right-hand side of 
the screen. The signal initially displayed (1) has a noise component 
whose RMS value is one quarter of the amplitude of the periodic 
component. Signals with two or four times this σ/a ratio can be 
displayed by using the numeric keys 2 or 3 respectively. Figure 3.5 
(screen version) includes the latter example. The three corresponding 
p(x) distributions are labelled. 
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Similarly, for the intermittent signal option, two distributions are 

shown and either of the signals can be displayed as above. 
The user can switch between §§3.1 and 3.2 by first clearing the 

display using the down cursor key, and then using the required 
numeric key. Pressing the ESCAPE key returns the system to the 
main index. 



Chapter 4 

Digital Sampling Criteria: 

Amplitude-domain Statistics 

4.1 Introduction 

If a signal is to be analysed using analogue electronics only, a major 
question facing the experimenter—in addition to those concerning 
instrument amplitude and frequency bandwidth—is that of the 

required integration time. In most circumstances, this must be long 
enough to average the lowest frequency content of the signal adequately. In the case of analysis of a digitised signal, the questions 
become as follows. 

(1) How many individual digitised data samples are required? 
(2) How rapidly must the digitising be carried out? 

(3) What digitiser esolution is required? 
The last of these questions is a direct result of replacing an 

analogue signal which has an infinite number of amplitude values by 
a digital signal which can take only a finite number of values (the 
amplitude discretisation). This leads to inevitable inaccuracies, generally known as ‘quantisation’ errors, but these can usually be made 
insignificant. A discussion is given below (see §4.2). The first two 

questions are a result of the time-domain discretisation and effectively 
replace the ‘analogue’ question concerning the integration time. It 
should be obvious immediately that they are not entirely independent. It will still usually be necessary to process a sufficiently long 
period of the signal to allow adequate averaging of any low-frequency 
content, but clearly this can be done in a variety of ways—the 
product of the sampling rate and the number of samples gives the 
sampling period. 

48 
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It should also be obvious that the answers to these two questions 
will depend to a greater or lesser extent on the nature of the signal 
itself and on the particular measurement envisaged. For example, if 
the requirement is to measure the mean square or indeed any 
characteristic of the amplitude statistics of a white noise signal, it 
does not matter how rapidly or how slowly the signal is digitised. The 
measurement accuracy will depend solely on the number of samples 
used (neglecting quantisation errors). In contrast in the case of a 

signal for which the autocorrelation function is non-zero at finite lag 
times, the sampling rate becomes more relevant. If only amplitudedomain statistics were required, it would clearly be foolish to sample 
at 1 MHz a signal containing a strong periodic component at 1 Hz. 

What would normally be required in such a case is a sampling time 
long enough to average this low-frequency content adequately, with a 

sampling rate chosen to give a number of samples large enough to 
minimise statistical errors arising from the finite number of data 
points. Higher sampling rates could lead to lower statistical errors 

(for the same sampling period) but would be unduly wasteful. In the 
context of time-domain measurements (of spectral and autocorrelation functions), sampling rates are much more crucial, since they 
determine the highest frequency that can be resolved. It is clearly 
impossible, for example, to obtain the spectral content of a signal at 

frequencies of 1 MHz if it is sampled at only 1 Hz. 
In this and Chapter 5 , these various matters are discussed in some 

detail. The intention is not to provide a full mathematical treatment 
of the subject but rather to give the reader help in developing a ‘feel’ 
for the problems, whilst providing some basic quantitative guidelines. 
In §4.2, amplitude quantisation errors are discussed and, in the 

remaining sections, we concentrate on the errors which arise in 

amplitude-domain measurements owing to finite numbers of samples. 
Time-domain measurements are discussed in Chapter 5 . 

4.2 Quantisation and ranging errors 

There are in general two ways of representing analogue data digitally. 
These are usually referred to as delta modulation and pulse-code 
modulation. The former uses a one-digit code only and it is effectively the time derivative of the signal amplitude which is transmitted. It 
is most often used for data transmission over long distances or for 
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speech transmission. For general-purpose signal analysis as in the 

present context, pulse-code modulation is invariably used so discussion here is restricted to this case, in which the quantisation errors 

arise from transforming an analogue signal to a digital signal having a 

number of distinct levels. These amplitude levels (or quanta) are 

uniquely specified by the n-digit code; for example, in a binary 
system, 256 amplitude levels implies use of an 8-bit code since 
28 = 256. Obviously, as n increases, the quantisation errors must 

decrease. 
Consider the instantaneous amplitude of the analogue signal to be 

x with the nearest quantising level xi,. Then the error is x — xi with a 

mean square error of (x - x,)2 . If the incremental quantisation 
bandwidth is △xi, then all signal amplitudes within the range 
xi - △xi/2 to xi + △xi/2 will be referred to the ith level in the 

analogue-to-digital conversion. The mean-square error associated with 
this level is therefore 

where p(x) is the probability density function of the analogue signal. 
Higher-order moment errors can be similarly expressed. Now, 

provided that the step size △xi is small compared with the total signal 
amplitude range, the signal can be assumed to be uniformly distributed over △xi regardless of its statistical distribution over the whole 

range. Hence 

so that the total mean-square noise can be written 

For the simple case of a linear quantisation (all △xi, steps are of equal 
size), 

and, since ΣNi=1 p(x) Δx = 1, 

(4.1) 
As an example, consider first a random (Gaussian) signal of zero 

mean and standard deviation a, quantised into n levels covering an 
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amplitude range of ±3σ. The digital step size would then be 
6σ/(n - 1) so that the rms signal to (quantising) noise error would be 

In the case of a simple sine wave of peak-to-peak amplitude 2a just 
filling an n-bit digitiser, the step size would be 2a/(n - 1) so that the 

signal-to-noise ratio would be 

These results are compared in table 4.1 for a range of n. 

Table 4.1 . Quantisation noise for signals with various p(x) and various quantising 
levels. 
Table 4.1. Quantisation noise for signals with various p(x) and various quantising 
levels. 

Quantising 
level 

Number 
of 
bits 

rms signal-to-noise ratio 

Gaussian 
P(x) 

Sine 
wave 

Uniform 

P(x) 

8 
16 
32 
64 

128 
256 

4.04 
8.7 

17.9 
36.4 
73.3 

147 

8.6 
18.4 
38.0 
77.2 

155 
311 

7 
15 
31 
63 

127 
255 

Note first that the digitisation of the periodic signal is inherently 
more accurate than that of the Gaussian signal, for a given number of 
bits. This is a direct result of the very different form of the 

probability distributions of the two signals. Secondly, errors caused 

by restricting the digitised amplitude range of the Gaussian signal to 

±3σ and therefore ‘clipping’ the extreme amplitudes have been 

ignored. They would clearly be reduced by increasing the digitiser 
range, but this would increase the step size △x and hence the 
quantisation noise error unless more levels were used. Similar ranging 
errors occur of course in analogue measurements unless the amplitude bandwidth of the instrument exceeds the input signal’s amplitude 
range. Such errors can be particularly serious in the case of 
measurement of the higher-order moments such as the skewness or kurtosis. 
The amplitude levels which contribute most strongly to the integral 
∫xmp(x)dx rise rapidly as m increases (for Gaussian signals at least) 
and so particular care in appropriate scaling of the input signal is 
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required if higher moments are desired. This is discussed more fully 
later. 

It is worth pointing out that, in many circumstances, quantisation 
errors can be significantly reduced by using non-linear step sizes (i.e. 
by making △xi = f(xi)). The optimum f(xi) variation will clearly 
depend on the particular form of the probability distribution of the 

signal, so that an arrangement which is beneficial in some circumstances will be detrimental in others. Non-linear encoders are usually 
only used in rather specialised applications; by far the most common 

analogue-to-digital systems employ uniform step sizes and the nonuniform case will not be discussed further. It should also be noted 
that the results given above rest on the assumption that the step size 
is small compared with the total amplitude range, for only then can 

p(xi) be considered constant over △xi, (unless of course the signal 
itself has a unform p(x) when no such restriction applies). 

In some ways, this ‘classical’ quantisation error is misleading. The 
result deduced above, that σ2n = △x2/12, does not imply that the 
mean square of the digitised signal exceeds that of the analogue 
signal by the amount σ2n . Consider, for example, the simple case of a 

signal with a uniform p(x) of 1/2a between —a≤x≤a and zero for 

|x| > a and assume that it is digitised into just two levels corresponding to amplitudes ± a/2. The situation is illustrated in figure 4.1 . In 
this case △x = a and it is easy to see that the measured mean square 
is given by 

compared with the true mean square of a2/3. So the value measured 

Figure 4.1 . 1-bit (two-level) quantisation of a signal having a uniform 
p(x) of l/2a up to |x| = a. 
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from the digitised signal is actually lower than the true value. This 

simple case can be easily extended to show that, for quantisation to n 

levels, the measured mean square is given by 

implying that a 4-bit (16-level) ADC would be needed to ensure an 

error in σ2m of less than 1%. 
Similar analysis is possible for signals with different probability 

density functions although the algebra becomes tedious. In the case 

of a Gaussian signal with zero mean and unit variance digitised using 
an n-level quantiser whose dynamic range is 2a, such that the first 

quantiser level corresponds to an amplitude defined by —a + a/n 
( figure 4.2 ), it can be shown that the measured mean square is given 
by 

where 

This result implies an increase in σ2m as the number of quantiser levels 

decreases, in contrast with the previous case of a signal with uniform 

Figure 4.2 . n-level (In n/ln 2-bit) quantisation of a signal having a 

Gaussian p(x). The digitiser bandwidth is 2a. 



54 AMPLITUDE-DOMAIN STATISTICS 

p(x). It should also be noted that the measured variance depends on 

both the digitiser bandwidth 2a and the number of levels. This is true 
for any p(x) but was ignored in the previous example by assuming 
that the digitiser and analogue signal bandwidths were identical. 

Figure 4.3 shows how the measured variance of a digitised Gaussian signal varies with the number of quantising levels and the ratio 

Figure 4.3 . Ratio of measured to true variance of a Gaussian signal of 
standard deviation σ, using a digitiser of bandwidth 2a and up to 1024 
levels (10 bits). Different curves correspond to different ratios of a σ, as 

shown. Note the different behaviour of the errors in the case of a signal 
having a uniform p(x). 
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of the digitiser bandwidth to the standard deviation of the analogue 
signal. The results given above have been used and the figure 
includes the result for a uniform p(x) signal. Note that for large 
enough values of n the results must approach asymptotically those 
obtained by simple ‘analogue’ integrations of ∫x2p(x)dx over the 

specified range. Even if the digitiser bandwidth is six times the 
standard deviation of the analogue signal (so that the extreme values 
are where p(x) has fallen to less than 1% of its peak value), the 
variance is underestimated by about 3%. Even greater errors occur in 
the higher-order moments as indicated in §4.1. This is demonstrated 
in figures 4.4 and 4.5 which show the results of similar calculations 
for the errors in digitised measurements of the fourth and the sixth 
moment, respectively, for various values of n and a. For Gaussian 
signals the results imply that errors of less than 1% in digital 
measurements of the signal variance require at least a 5-bit (32-level) 
digitiser with a bandwidth in excess of seven times the signal 
variance; similar accuracy in measurement of the higher moments 

generally requires more levels. 

Figure 4.4 . As for figure 4.3 , but for the fourth moment of p(x). 

Now these results have all been obtained by assuming that signal 
amplitudes outside the digitiser bandwidth are measured as zeros (i.e. 
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Figure 4.5 . As for figure 4.3 , but for the sixth moment of p(x). 

the measured p(x) for |x| > a is zero). In practice, this will rarely be 
true. Even in the case of analogue measurements, if the instrument’s 

input range is exceeded occasionally, the maximum voltage, say, 
might be held until the signal amplitude falls again—although the 
details of the resulting distortion on p(x) will depend on the 
particular electronic characteristics of the device. In the case of a 

digitised signal, analysis is rather easier since then any signal amplitudes above the top quantisation level will simply contribute to the 
p(x) value corresponding to that particular level. The effect of the 

resulting ‘spike’ in p(x) at x = a, the area under which must equal 
∫∞a p(x) dx, is always to reduce the errors resulting from simply 
ignoring p(x) for x > a. It is straightforward to include this effect in 
analysis of the errors in measurements of the various moments of 
p(x). Figure 4.6 shows results for a Gaussian signal where the 
percentage error is plotted as a function of the moment (i.e. the m in 
xm = ∫xmp(x) dx) for various bandwidths. These are asymptotic results for analogue signals (or digitised signals obtained using a large 
number of levels, n > 256, say, an 8-bit converter). Results from the 
earlier analysis in which p(x) for |x| > a was assumed to be zero are 

included for comparison. As mentioned earlier, errors can become 
very large for the higher moments unless the bandwidth is sufficiently 
wide. In practice, it is only in specialised applications that moments 
above the fourth (kurtosis) are required; so a bandwidth of (7-8)σ 
will usually suffice. 

Similar calculations are possible for other forms of p(x) and the 



QUANTISATION AND RANGING ERRORS 57 

analysis can be generalised to cases in which there are additional 
errors caused by an insufficient number of quantising levels. It should 
also be emphasised that only signals with a symmetric probability 
distribution and whose p(x) sits in the centre of the instrument’s 

amplitude bandwidth have been considered; extensions to the analysis 
are possible to remove these restrictions. However, the calculations 

rapidly become very tedious and the results discussed above should 
be sufficient to enable the reader to grasp the major sources of error 

arising from digitising a signal using a finite number of levels 

spanning a finite amplitude range. Provided that proper care is 
taken—and this usually requires some prior knowledge of the signal 
characteristics—these errors can almost always be made small enough 
to be insignificant. They will be ignored in all the following considerations. 

Figure 4.6 . Error in measured moments of p(x) due to inadequate 
amplitude bandwidth 2a. Quantisation errors are neglected. All results 
were obtained assuming that p(x) = 0 for |x| > a but the broken curves 

are for cases in which the ‘spikes’ of area 

l xp(x) dr, 

located at |x| = a, are included; full curves assume that p(x) = 0 at 

|x|> a. 
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4.3 Finite sample size errors 

In §4.2 the third of the basic questions stated in §4.1—‘What digitiser 
resolution is required?’—was addressed. In this section, we concentrate on the first—‘How many individual digitised data samples are 

required?’ Discussion begins with the simplest case of a digital signal 
containing N statistically independent sample values. This immediately 
implies either that the analogue signal has the spectral characteristics 
of white noise (uniform energy density at all frequencies and hence 
zero autocorrelation function R(τ) for τ > 0) or that it has been 
digitally sampled either at a rate lower than the lowest-frequency 
component present or at just those intervals (of τ) for which 
R(τ) = 0. These are serious restrictions in many cases and discussion 
of the implications arising from their removal is given later (see §4.4). 

Very many textbooks have been written on probability theory and 
its implications for the assessment of statistical errors arising from the 
finite sampling of known or unknown populations. Much of this 
classical literature involves consideration of cases where the number 
of samples is quite limited, in contrast with the present context in 
which it is usually large (greater than 100, say). The more important 
results appropriate to this latter case will be given here without proof 
and the reader is encouraged to study standard texts if more detailed 
information is required. (The book by Miller and Freund (1977) is a 

typical introductory text in probability and statistics for students in 
the engineering and physical sciences; the book by Kendall and Stuart 
(1977) provides a more advanced and comprehensive treatise.) 

4.3.1 Mean values 
An obvious digital equivalent of equation (3.7) for the mean value \l=x_\ 
of N independent samples is 

(4.2) 

Now a second set of N digital samples from the same analogue signal 
(or, in the common probability parlance, ‘population’) would not 

generally yield the same \l=x_\. In that sense the right-hand side of 
equation (4.2) is simply an ‘estimator’ and \l=x_\ is itself a random 
variable. One of the basic sampling theorems states that a random 
sample of size N taken from a (large) population of mean \l=x_\ and 
variance σ2 yields a random variable \l=x_\ whose mean value is \l=x_\ and 
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whose variance is σ2/N. The fact that the variance of the \l=x_\ estimates 
is σ2/N is significant, for it clearly implies that the difference between 

\l=x_\ and the true mean can be made as small as necessary by choosing 
a suitably large number of samples. Note that to reduce the likely 
error by a factor of, say, 2 requires a fourfold increase in N. 

Complete statistical information about \l=x_\ is only possible if the 
distribution of xi itself is known or if, as a limiting case, N—>∞. In 
the present context this is not a problem since, although the distribution of xi is not usually known, it is almost invariably the case that 
N » 1. Then the central-limit theorem can be stated in the form that, 
if \l=x_\ is the mean of a random sample of size N taken from a 

population having mean \l=x_\ and (finite) variance σ2, then 

is a random variable whose distribution function approaches the 
normal distribution as N → ∞. 

It should be emphasised that this is true regardless of the form of 
the distribution of xi, which is what makes this theorem so important 
in statistical theory. In the particular case of a normally distributed 

population (of xi), it can be shown that z is exactly normal for any 
N. It is also worth noting that, even if the xi population distribution 
is far from normal, surprisingly small values of N still yield a z 

population quite closely normal. This is illustrated in figure 4.7 
where, as an example, 40 values of z, each obtained by finding x 

using just 25 samples of a uniformly distributed xi population, are 

plotted cumulatively and compared with the normal cumulative 
distribution ( ∫z-∞ 0exp(—t2/2)dt). Figure 4.8 shows the same data 
plotted in the more usual form of a confidence limit chart (see 
below). Note that these data were obtained using the software 
package, as described in §4.6.2; the details given in that section 
should be sufficient to allow the user to generate similar data of his 
or her own. 

It will be apparent that the results given above can strictly only be 
obtained if the variance of the xi population is known. This does not 

pose any difficulties if N is large, for then it is reasonable to use the 
estimated value of σ denoted \g=s^\ (see below). For small values of N, 
little is known about the statistics of the variable (\l=x_\ - \l=x_\)/(\g=s^\/\m=sqrt\N) 
unless the xi are normally distributed, but, if this is the case, then 
this variable has the ‘Student t’ distribution, as discussed in standard 
texts. It can be shown that this distribution approaches the normal 
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distribution as N→∞. In practice, the differences are insignificant 
for N > 30, so for the present purpose discussion is limited to the 

sampling variable z. 

Figure 4.7 . Cumulative distribution of 40 estimates of the mean value, each 
obtained using 25 samples: x, uniform p(x), 21 estimates inside the 50% 
confidence interval, five estimates outside the 90% confidence interval; \#25CB\, 
Gaussian p(x), 20 estimates inside the 50% confidence interval; five estimates 
outside the 90% confidence interval. ‘True’ values of \l=x_\ and σ are obtained using 
all 1000 samples. 

There are two desirable properties of any estimator of a particular 
statistic such as equation (4.2) for the mean value. Firstly, it is usual 
to require that the mean of its sampling distribution is equal to the 
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Figure 4.8 . Confidence limit chart for random (uniformly distributed) 
data for 40 estimates of the mean, each using 25 samples. 

true value of the original population’s statistic. If this is so, the 
estimates are said to be unbiased. For example, in the context of 
mean value estimation, we want the mean of x to be equal to x. It 
can be shown that this is true if equation (4.2) is used to obtain the x 

estimates, so this obvious estimator is in fact unbiased. However, 
other unbiased estimators are available as an estimate of x. One 

example is the midrange value—the mean of the largest and smallest 
values in the sample. It is therefore clearly necessary to use a further 
criterion for deciding which of the estimators is best in a particular 
case. This is provided by the variance of the sampling distribution. 
The best estimator will usually be the one which leads to the smallest 
variance in the estimates. We have already seen that the variance of 
\l=x_\, if the latter is obtained using equation (4.2), is σ2/N (see, e.g., 
Kendall and Stuart 1977). Now provided that the original population’s distribution is symmetric, it can be shown that the variance of \l=x_\ 

estimates obtained by using the middlemost (median) values of each 

sample set (i.e. the value of the (N/2)th sample when they are 

arranged in numerical order) is about 1.57σ2/N. Equation (4.2) is 
therefore a more efficient estimator of \l=x_\ than the median value, since 
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it is likely to give a result closer to the true mean of the population. 
It is also desirable that the estimator yields the true value as N →∞; 
it is then said to be a consistent estimator. 

For any single estimate the chances are virtually non-existent that 
\l=x_\ will exactly equal \l=x_\. It is therefore helpful to accompany such an 

estimate with some statement concerning how close to the true value 
we might expect the estimate to be. Using the mean-value estimate as 

defined by equation (4.2) and recognising that the resulting z is 
normally distributed (for large N), we can state with a probability of 
1 — α that 

(4.3a) 
where zα/2 is the value of z which gives 

In other words, an estimate of the mean value from a sample of size 
N will have an error εx less than a with a probability of 
1 — α. To put it another way, an error εx with a certainty of 1 - α 
requires a sample size given by 

(4.4a) 
It is sometimes convenient to use a normalised error, defined by 
a , in which case 

(4.4b) 
Obviously this is only useful if \l=x_\\m=ne\ 0. The implications of these 
statements for N should be intuitively obvious. If we wish to increase 
the certainty with which the statement can be made (i.e. to increase 
zα2) or to reduce the likely error in the estimate, then more samples 
are required. Similarly, more samples are required to achieve the 
same likely error for a population with a high variance than for one 

with a low variance. 
It is common to restate equation (4.3a) in terms of a confidence 

interval, writing 

(4.3b) 
This represents the claim that with a probability (or confidence) of 
1 — α the interval from \l=x_\ - zα/2σ/√N a to \l=x_\ + zα/2σ/√N 
contains the true mean value \l=x_\. As an example the 50% and 90% 
confidence intervals, corresponding to z0.25 and z0.05 (0.674 and 
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1.645, respectively) are included in figures 4.7 and 4.8. Note that, 
whilst on average we would expect four out of the 40 estimates to lie 
outside the 90% confidence limit, it happens that five estimates do so 

in both the Gaussian and the uniform p(x) case. In the latter case, 
one might generally anticipate fewer than four estimates, recognising 
that the maximum value of a single sample is only σ√3 (since 
σ2 = a2/3 for uniform p(x) between ±a); this provides a definite 

upper bound on x, unlike the case of a Gaussian p(x) for which xi 
can take any value. 

A common and related way of judging the reliability of an estimate 
of the mean, or any other statistical parameter, is to use the ‘standard 
error’. This is normally defined simply as the square root of the 
variance of the sampling distribution of the estimates. In the case of 
mean-value estimates, since the variance of \l=x_\ is σ2/N the standard 
error is just σ √N or, provided that N is large, \g=s^\ √N 

confidence intervals are then seen as quantitative statements concerning the likelihood that the true mean x lies within a specific number 
of standard errors zα/2σ/√N either side of the estimate \l=x_\. 

In the context of signal analysis, it is usually sufficient to note the 
result expressed by equation (4.4) and to ensure that N is large 
enough to provide a suitably small error with a sufficiently high 
certainty. It should be emphasised that, provided that N > 30, say, 
equation (4.4) does not depend on the fact that the original population is normally distributed. The single and major requirement is that 
the samples used should be statistically independent, as mentioned 
earlier. In §4.4, we discuss what happens if they are not. 

4.3.2 Mean-square values In the case of the signal variance, an 

obvious digital equivalent of equation (3.8) (expressed as the 
variance) is 

(4.5) 

This is not, in fact, an unbiased estimator; one fairly obvious reason 

is that there are only N - 1 independent deviations of xi from the 
mean, since their sum is always zero. N — 1 values of xi — x 

automatically determine the Nth value. In most statistical texts it is 
therefore common to use N — 1 as the divisor instead of N, but this 
is an unnecessary nicety in the present context, where N is invariably 
large. 

Now, since \g=s^\2 is inevitably positive, it is immediately evident that 
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its distribution cannot be normal. The actual distribution is called the 

chi-squared distribution where, specifically 

Like the Student-f distribution, that of x2 depends in general on 

N — 1 (the number of degrees of freedom) but, if N is large enough 
(greater than 30), it is closely normal. It should be emphasised, 
however that the sampling distribution of the variance estimates is 

only x2 if the population is normal. Confidence statements 

regarding the likely error in a estimates can in this case be made in a 

way similar to those for x estimates. Thus the true value of σ2 
obtained will, with a probability of 1 - α, lie in the range 

if equation (4.5) (with N — 1 as the divisor) is used to obtain σ^n. Note 
that the two x2 values differ since the distribution is not symmetric. 
In the case of large N, this can be simplified, for then the series 

expression for x2 (see standard texts) can be reduced to 

Hence the 1 — α confidence interval (now symmetric) is given by 

(4.6) 
The result for the required number of samples corresponding to 

that for the mean-value estimate (equation (4.4)) is then just 

(4-70a) 
where εσ = σ^2 — σ2 or, in terms of a normalised error defined by 
ε'σ = (σ^2 - σ2)/σ2, 

(4.7b) 
Note that, as would be expected, this is generally more restrictive 

for a given accuracy than the corresponding requirement for mean 

value estimates. Figure 4.9 shows the cumulative distribution of 40 
estimates of σ2, each obtained using a different set of 100 samples 
from a uniform and a Gaussian population. (Again, the software can 

be used to generate these or similar results (see §4.6.2).) It should be 
noted in particular that the results for the uniform population are 

clearly quite different from the normal cumulative distribution, emphasising that, unlike the case of mean-value estimation, the distribution 
of σ^2 is not normal for large N (i.e. equation (4.6) is not valid) 
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unless the original population is itself normal. The deviation from 

normality will of course depend on the particular form of the 

probability distribution of the original population. The variance of the 
mean-square estimates is given by 

(4.8) 

The standard error for variance estimates is therefore σ2 2 /N. 

Figure 4.9 . Cumulative distribution of 40 estimates of the variance, each 
obtained using 100 samples: x, uniform p(x), 30 estimates inside the 50% 
confidence interval, no estimates outside the 90% confidence interval; \#25CB\, 
Gaussian p(x), 16 estimates inside the 50% confidence interval, three estimates 
outside the 90% confidence interval, σ was obtained using all 4000 samples. 
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4.3.3 Higher-order moments 
The obvious digital equivalent of equation (3.10) for calculation of 

higher-order mean moments of a digitised signal is 

(4.9) 

It can be shown that the variance of the sampling distribution is given 
by 

(4.10) 
This result is only correct to first order in N, whereas the corresponding expression for the variance of the sampling distribution of the 

higher-order moments themselves, i.e. 

with 

is exact. 

Note that equation (4.10) gives variances of σ2/N and (σ2)22/N for 
the first- and second-moment estimates, respectively, as anticipated 
from §§4.3.1 and 4.3.2. It is important to note also that the sampling 
variance of any moment depends on the population moment of twice 
the order. Even when N is large the standard error therefore 
becomes very large for the high-order moments. Equation (4.10) 
leads to standard errors of σ3 6/N , σ4 96/N , σ5 120/N and 
σ6 10170/N for estimates of the third, fourth, fifth and sixth 
moments, respectively, of a normally distributed population. In terms 

of normalised moments (γ, defined by equation (3.9) ), it follows that, 
whilst 10 000 independent samples would give a standard error of only 
0.014 for γ2, the standard error for γ6 would be just over 1.00. Over 
50 million samples would be required to reduce the latter to the same 

standard error of 0.014! Figure 4.10 shows 20 estimates of the first 
three even-order moments (n = 2, 4 and 6) of a Gaussian population, 
each obtained using 100 samples. The results are normalised by the 
exact values and the rapidly increasing variability of the estimates as 

n increases is evident. In this case the data were sampled from the 
Gaussian (white) noise population available in the computer package. 
Each sample could take values between —127 and 127 (1-byte data) 
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Figure 4.10 . Even-order normalised moments from sets of 100 samples 
of a Gaussian population (8-bit data, with a such that 3σ = ±127): △, 
n = 2; x, n = 4; \#25CB\, n = 6; chain lines show corresponding results for 
19456 samples. Note that for the fourth and the sixth moment the latter 
are not equal to unity because of ranging errors introduced by making 
1193σ = 128. 

and the standard deviation of the whole set (19456 samples) was such 
that the extreme values (±127) corresponded to about ±3σ. As 
would be anticipated from the discussion in §4.2, this leads to 

inevitable ranging errors in the high-order moment calculations, as 

can be seen from the results in figure 4.10 . The fourth and sixth 
moments of the complete data set were only 2.883 and 13.15 instead 
of the exact Gaussian values of 3 and 15, respectively. For the 
normalisation used in the figure the standard errors for these two 

moments are expected to be about (l/3) /96/100 = 0.33 and (1/15) 
V10170/100 = 0.67, respectively; the largest variations in the results 
from the 19456 samples do happen to have roughly these values. 
These results all emphasise the difficulty of obtaining high-order 
moments with good accuracy, even in the absence of the ranging 
errors discussed in §4.2. 

As in the case of mean and variance estimates the standard error 

result expressed by equation (4.10) is quite independent of the 
probability distribution of the original population but obviously, 
whether or not the latter is Gaussian, the sampling distribution of 
xn will only tend to normality for exceedingly large N—increasingly 
large as n increases. This should be obvious intuitively; the major 
contributions to the high-order moments arise from sample values 
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remote from the mean and these occur relatively infrequently. The 

sampling distribution can be expressed as z = ( xn/xn — 1 )(N/F), 
where F is the factor arising from the right-hand side of equation 
(4.10) —10170 for n = 6 and a Gaussian parent distribution. Since 

normality of z implies that z can take, in the limit, any value, it is 
clear that very large N values are needed to ensure that the sample 
values remote from the mean are properly represented. 

This is one of the basic reasons why consideration of higher-order 
moment measurements is often not included in statistical textbooks. 
In most applications of sampling theory the number of samples 
possible to acquire in practice is quite limited; so such measurements 

are impossible to obtain with reasonable accuracy. In the context of 

signal analysis, however, there are occasions when higher-order 
moments are required in order, say, to help in the interpretation of 
the underlying physical phenomena giving rise to the signal. Evidently 
in such cases very large sample sizes must be used—equivalent of 
course to very long analogue integration times. The computer exercises included in §4.6.3 will give the reader further insight into the 
difficulties which arise in making measurements of high-order moments. 

4.3.4 Probability density estimates 
In some applications, it is necessary to measure the complete probability density function of the signal rather than just some of the 
moments. This requires estimation of p(x) across the whole amplitude range of the signal and the obvious digital equivalent of 
equation (3.1) is 

p (x) = Nx/(Δx N) 
where Nx is the number of samples (out of the total number N) 
which have an amplitude in the range x - △x/2 to x + △x/2. 
Estimation of the complete p(x) distribution therefore requires prior 
decisions concerning not only the number of samples to be used but 
also the amplitude range to be covered and the number of p(x) 
estimates, M say, required in that range. If the signal is estimated to 

spread over a range ±R, say, then △x will be 2R/(M — 1), assuming 
that △x (the ‘slot’ width) is constant across the range. 

Theoretical deductions about the sampling distribution of p(x) are 

very difficult to obtain, even if p(x) is normal, but some features of 
the variability of the estimates should be immediately obvious. As 
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usual, one expects the standard error to decrease as N increases. 

Generally, it would also be anticipated that any set of parameters 
that leads to a higher Nx/N ratio in a given slot will lead to smaller 
variability in that p(x) estimate. An obvious way to improve the 
likely accuracy is therefore to increase Δx but this naturally leads to 
less resolution across the amplitude range (less slots). Further, it 
should be clear that, if Δx is kept constant for all x, the variability 
will be higher in regions of x where p(x) is relatively small; in these 
regions, relatively few samples occur (Nx/N is small) and so there is 
greater margin for error. 

These intuitive deductions are embodied in the approximate result 
for the variability of p(x) estimates: 

(4.11) 
As an example of the way in which the above expression can be 

used to obtain an estimate of the number of samples required to 

measure a complete p(x), consider the case of a normally distributed 

population with zero mean and unit variance. Assume that 32 p(x) 
estimates are required across an amplitude range given by ±3σ and 

that the standard error is to be kept below 5% of the peak p(x). 
Using a standard error normalised by the peak p(x), equation (4.11) 
leads to the approximate expression 

So, for a Gaussian distribution with M slots covering an amplitude 
range of 6σ, 

For the example above, M = 32 and ε' = 0.05, giving N = 5350. 

Reducing ε' to 2% or increasing M to 200 will increase the required 
number of samples to about 33 000. Jhis example illustrates the point 
that large sample sizes are required to obtain accurate probability 
density estimates, particularly if fine amplitude resolution is also 

required. 
The computer examples can be used to study the influence of the 

various parameters in more detail and figure 4.11 shows some typical 
results. Probability distribution estimates have been obtained from 
data sets which nominally have either a uniform or a Gaussian 
distribution. In both cases, 16 estimates (slots) were obtained with 
1000 or 10000 samples. The decrease in variability for the latter case 

is clear and the increase in variability arising from increasing the 



70 AMPLITUDE-DOMAIN STATISTICS 

number of slots (to 64) whilst using the same number of samples 
(10000) is also shown in the case of the Gaussian data set. The 
standard error limits corresponding to this latter case (ε'p(0) = 0.021 
at x = 0) are included and it is evident that only a few of the p(x) 
estimates lie outside the nominal error band. 

Figure 4.11 . Probability density estimates for (a) a uniform population 
and (b) a Gaussian population: x, 16 estimates from 1000 samples; \#25CB\, 16 
estimates from 10000 samples; •, 64 estimates from 10000 samples; 
-, p(x) ± standard error calculated for M = 64, N = 10000, with 
△x = 6σ/(M — 1). The full curve is the exact Gaussian distribution. 

It should be emphasised that equation (4.11) provides only a 

qualitative guide and in practice it is quite common, in the context of 
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signal analysis, to work up confidence in the p(x) estimates by the 
rather ad hoc procedure of arbitrarily varying △x and N and simply 
‘seeing what happens’. This process can be illustrated by using the 

computer options described in §4.6.4. 

4.4 The effects of using correlated samples 

Attention has been concentrated thus far on the statistical errors 

which arise when using a finite number of statistically independent 
sample values. However, where the signal being digitised has spectral 
characteristics different from white noise, consecutive digitised samples may be highly correlated. As discussed in Chapter 5 , this is 
usually the inevitable consequence of using a sampling rate high 
enough to enable time-domain statistics (autocorrelation or spectra) 
to be adequately determined. The use of the consecutive samples to 
obtain amplitude-domain statistics will then generally be rather wasteful, since many more would be required to reduce the statistical 
errors to those estimated on the basis of uncorrelated samples. In 
such cases, what is usually required for an efficient estimation of, say, 
the mean or mean-square value is, first, an effective total sample time 
long enough to average the lowest-frequency content of the signal 
adequately and, secondly, a sample set sufficiently large to minimise 
the statistical error arising from a finite sample size. A typical 
example will serve to illustrate this point. 

Consider a sample set generated by digitising a pink noise signal 
with an autocorrelation given by R(τ) = exp(—τ/T). If the sampling 
rate were lower than, say, 1/4T then consecutive samples would on 

average be almost independent (R(4T) < 0.02). The ideas discussed 
in the previous sections would then be appropriate for determining 
the number of samples required for estimation of a particular 
amplitude-domain characteristic. These samples would not allow the 
informative part of the autocorrelation to be recovered (τ< 4T). If 

adequate measurements of the latter were required, it would clearly 
be necessary to choose a much more rapid sampling rate of — 1/0.1T, 
say. (In Chapter 5 , we discuss the limitations on measurement of 

R(τ) and/or E(f) arising from particular sampling rates.) Consecutive samples would then be highly correlated (R(0.1T) = 0.9) and it is 
obvious that the number of samples required to obtain adequate 
amplitude-domain statistics would be much greater than in the case of 
the lower sampling rate. 
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Figure 4.12 shows estimates of the mean value of a pink-noise 
signal having a zero mean and a unit variance. Each estimate was 

calculated using 100 samples and three sets of estimates are included, 
obtained using effective sampling rates of 10/T, 2/T and 1/T. It is 
clear that only for the final set do the estimates roughly conform to 
what would be expected on the basis of the Gaussian statistics of 

independent samples. For the highest sampling rate 10/T, an additional set of mean-value estimates are shown, each obtained using 
1000 samples so that the total sampling time was the same as it was 

for the estimates based on 100 samples and a 1/T sampling rate. The 

Variability is evidently about the same. 

Figure 4.12 . Mean-value estimates from 100 (x, O, △) or 1000 (▲) 

samples of pink noise with R(τ) = exp(—τ/T): x, ▲, △τ=0.1; \#25CB\ 

△τ = 0.5; △, △τ = 1.0. Confidence intervals refer to N = 100. 

Once the sampling rate becomes sufficiently high, the variability of 
the estimates of amplitude-domain statistics is determined essentially 
by the total sampling time and the spectral nature of the signal. 
Standard texts (see, e.g. Bendat and Piersol 1966) derive expressions 
for the variability in these circumstances and the results are equally 
applicable to analogue measurements. In general, it can be shown 
that the variability of mean-value estimates is given by 
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Now, provided that |τ| << T, this becomes 

(4.12) 

and this all assumes that the x values are obtained from 

The equivalent expression for the variability of estimates of the signal 
variance is 

(4.13) 

Consider, for example, the case of bandwidth-limited white noise 

having equal power at all frequencies between 0 and B, say, and a 

variance of σ2. It follows from the above and the result for R(τ) 
given in §3.2.1 that 

(4.14) 

provided that T is sufficiently large. Similarly, the variability of the 
variance estimates is 

(4.15) 

The implication is that, for a given variability, the sampling time must 

increase as the signal (frequency) bandwidth decreases. This is to be 

expected, since a small signal bandwidth means that relatively more 

of the signal energy is at the lower frequencies. Note that, if the 

signal were sampled at intervals of 1/2B, yielding truly uncorrelated 

samples (see §3.2.1), then 2BT = N, the total number of samples, so 

that the variability of the digital estimates of the mean value is just 
σ2/N, as expected. The reader is reminded here that in the case of 
white noise (B = ∞) the variability depends only on N (and not 

on T). 
Evaluating the variability of probability density estimates is much 

more difficult, even in cases of particularly simple signals, because it 

requires a knowledge of the statistical properties of the time intervals 
between each signal element lying within each amplitude band. This 
is generally very difficult to ascertain. However, heuristic arguments 
can be used to deduce that, in the case of bandwidth-limited white 

noise, the expression analogous to equations (4.14) and (4.15) is 
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(4.16) 
where A is a constant of order unity. 

In practical terms, since most signals of any physical interest have 

spectral characteristics quite unlike bandwidth-limited white noise 
and, furthermore, one often does not know these characteristics a 

priori, the results given in this section should be used with caution. 

They will generally represent lower bounds on variability estimates. If 
the autocorrelation funtion is known (even approximately), then 

equations (4.12) and (4.13) may be useful in the case of mean and 

mean-square measurements. A sensible procedure in most cases, 

however, is simply to ensure that the effective averaging time is 

significantly longer than the period of lowest-frequency fluctuations in 
the signal. This will inevitably require some element of trial and error 

in the experimental procedure. 

4.5 Summary and examples 

In this section the more important sampling criteria discussed in 
earlier sections will be summarised and a few examples of their use 

given. It is assumed throughout that quantisation errors are negligible. 
The standard errors in the measurement of the first six moments of 

the probability density function, i.e. the mean, the variance and the 
third to sixth moments, are given by 

(4.17) 

respectively. It should be emphasised that these results are only valid 
when the N samples are statistically independent and, except in the 
case of the mean value, for populations which are normal. Again, 
except in the first case, they also refer to the moments of the 

fluctuating part of the data, i.e. with the mean value removed. 
In the case of the mean and variance estimates, which are by far 

the most common, sampling theory shows further that given the 
above conditions, the mean and variance estimates will lie within an 

amount ε of their true values with 95% probability for sample sizes 
satisfying 

(4.18) 
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and 

(4.19) 
respectively. Note that in these expressions the ε are not standard 
errors, but simply the difference between the true and measured 
values. Note also that zα/2 has been taken as 2 rather than the more 

exact value of 1.96 for 95% confidence. The second of these 
expressions is only valid for large N (>50, say). Corresponding 
expressions for the higher-order moments are not generally available 
because the sampling distributions are very far from normal. However, in practice, a reasonable guide to the required number of samples 
is provided by simply applying the appropriate factor from the 
standard error results in equations (4.17) . 

As an example, suppose that measurements of the first six moments were required with a likely error (normalised by the true 

value) of less than 5%. For the variance measurement, εσ2/σ2 of less 
than 0.05 with 95% probability requires some 3200 statistically 
independent samples (from equation (4.19) . The same level of error 

on the sixth-moment measurement, however, is likely to require 
about 

3200 x 10170/2 x σ6/x6. 
For a Gaussian distribution (x6/σ6 = 15) this is about 1084800 

samples. Taking only 3200 samples for the sixth moment may lead to 

normalised errors as high as 0.05 x 10170/2/15 = 24% with 95% 

probability. The standard error would be about 12%. 
In the case of measurement of the probability density function an 

approximate expression for the standard error, corresponding to 

equation (4.16) but normalised by the peak p(x) (i.e. p(0)), is 

Assuming that M p(x) estimates are required across an amplitude 
range of γσ, where γ may vary for different applications, this 
becomes approximately 

The maximum value of this error occurs at x = 0 and is thus 

leading to a convenient approximate expression for the required 
number of samples: 
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(4.20) 
The example given in §4.3.4 was for the case when γ = 6, M = 32 
and εsmax = 0.05, which leads to a required sample size of about 
5350. 

It must be emphasised again that equations (4.17) - (4.20) can only 
provide rough guidelines; none of these equations is correct for 
non-Gaussian data and only equation (4.17) is exact for Gaussian 
data (apart from the stated rounding up of Zσ/2). Further, if the 

samples are not statistically independent, these results will underestimate the number of samples required for a specified accuracy. They 
should therefore always be used with caution. 

4.6 Computer exercises 

Demonstrations and exercises appropriate to the preceding sections 
can be undertaken by running CHAP4 from the main index. The 
screen first clears and then displays a further index, referred to later 
in the action prompts as the “CHAP4 index”. After selecting any one 

of the first three options in the usual way, the screen clears and then 
an appropriate title appears, together with the two highlighted option 
windows, containing information on the currently selected data set 
and the printer status as described in Appendix B. It is suggested that 
the user selects each of the three program options in turn and studies 
the various facilities available within each routine by using, initially, 
the Gaussian (white) noise data set. Once the latter has been selected 

(by using the SPACE bar) the RETURN key will continue the 

program, as usual. 
The fourth option of ‘display any signal’ allows a dynamic display 

of any of the available data sets. Selecting this option leads first to a 

request for the disc drive number on which the required data set is 
resident (two by default) and then a list of all the available data sets 
on that disc is displayed. Unless the user has created further sets of 
his own (see §4.6.1 and Appendix A), the list will contain simply the 
four supplied files. The user may select any one of these by entering 
the appropriate number. After the data set has been loaded into the 

memory, its individual values are plotted (vertically) against a convenient horizontal scale which can therefore be thought of as equivalent 
to an oscilloscope time base. Note that, in the case of the BBC 
software, mode 4 is used for this graphic display and so only the first 
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10000 or so data values are available (mode 4 memory runs from 

&5800). This option is very useful for reminding the reader of the 
visual appearance of the signal; screen dump files can be obtained by 
the appropriate response to the action prompts. 

In §§4.6.2-4.6.4 the main three options are described, but we start 
with a brief description of the four available simulated signals. 

4.6.1 The simulated signals 
Whilst remarks made in this section are largely in the context of the 
BBC software, a similar approach was taken for the PC version of 
the package. Each of the simulated signals consists of a set of 19456 
1-byte data values, stored on the system disc but loaded into memory 
when required. The random-data set (DAT0N8) was initially produced using the basic random-number generator. Numbers were 

normalised to have values of between -127 and 127 (8 bits) and some 

minor adjustments made to ensure a mean value over all 19456 

samples of near zero. In common with most versions of basic, the 
BBC’s basic random-number generator produces numbers between 

specified limits (zero and unity, typically) with uniform probability of 
occurrence; so this first data set nominally has a uniform p(x) for 
-127 < x < 127. 

The Gaussian data (DAT1N8) were formed by suitable arithmetical 

operations on random data. Standard techniques were used and are 

outlined in Appendix A. It should be noted, however, that the data 
are normalised so that the standard deviation is about 40 (with a 

mean near zero); this means that the ±3σ points lie just inside the 

amplitude bandwidth corresponding to 8-bit data (±127). The extreme ‘tails’ of the probability distribution are therefore not captured 
in the data and, as discussed in earlier sections, this leads to 

inevitable ranging errors, particularly in the calculation of the higherorder moments. The user may wish to provide alternative data sets of 
his or her own; this should be quite straightforward (using the 
information given in the Appendix A) and if such a data set were 

saved on a copy of the system disc using the filename 

“:2.$.DAT0N8”, it would be loaded when the user requests the 
random data, since that has the same filename. 

For the signals simulating phenomena with a genuine structure in 
time, standard first- and second-order filtering techniques were 

applied, using a Gaussian (white) noise data set. Ideally these (linear) 
processes should not alter the probability distribution of the original 
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signal, so that both the pink noise signal and the second-order signal 
should have Gaussian statistics. However, as the user will no doubt 
discover for himself or herself, the probability density distributions of 
these signals are both slightly skewed. This is partly a result of the 
limited number of samples used, but more importantly a result of 
numerical errors in the filtering operations (see Appendix A). For the 

pink-noise data set (DAT2N8) a signal having R(τ) = exp(-τ) with 

sample increments of △τ=0.1 was simulated and for the secondorder signal (DAT3N8) a signal having R(τ) = cos(πτ) exp(—τ) was 

used with a 0.025 sample increment. In both cases the mean values 
and the standard deviations are again nominally zero and 40, respectively. 

In many of the options described in the following sections the user 

is prompted for the number of samples (NS) required for a calculation, the number of blocks (NB) of such samples, the sampling 
increment (INC) and the position of the first sample in the first block 

(D). The sampling increment determines whether or not consecutive 

samples from the original set are to be used; the default value is 

normally one. If higher values are used (n, say) then only every nth 

sample is used. This parameter is therefore equivalent to a sampling 
rate. If more than one estimate of the required parameter (like the 

variance) is required then NB > 1 and the blocks run consecutively. 
Since only 19456 samples are available there are obvious limits on 

these various parameters, determined by D + NS*INC*NB<19456. 

Attempts to insert values which would require more than 19456 
values are trapped. 

4.6.2 Mean and mean-square values 
There are two basic routines in this option, which are selected from 
action prompts after the initial pressing of RETURN. The first 

(‘Confidence limit demonstrations’) allows mean value estimates to be 

displayed graphically in the form of confidence limit charts. If this 

option is selected, an initial demonstration is presented in which a 

contiguous set of 2000 from the available 19456 samples is chosen at 
random and 20 estimates of the mean, using 100 samples for each, 
are calculated and plotted. 50% and 95% confidence intervals, 
obtained by using the mean and standard deviation calculated using 
all 2000 samples, are also shown. The latter values are given, along 
with the actual percentage of the 20 estimates that lie outside the 
confidence limits. In addition the number of the first sample of the 
whole block is shown—this can take any value between 0 and 17456 
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(since there are 19456 samples altogether). The user can repeat this 
demonstration as often as he wishes by selecting the ‘Repeat’ action 

prompt. Alternatively, by selecting ‘User tests’ the user can choose 
his own parameters (confidence interval, number of samples per 
block, number of blocks, sampling increment and position of first 
sample) to obtain further confidence limit displays. In both these 
cases the user can opt to generate a screen dump file of the results, 
by selecting the appropriate action prompt. Figure 4.13 is an example 
of such dumps. 

Figure 4.13 . Screen display examples of confidence limit charts obtained from 
the white noise data set. 
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The second option within this section is entitled ‘Mean and 

mean-square value measurements’, and can be chosen as an alternative to the confidence limit routines. This allows measurements of the 
means and standard deviations of blocks of samples to be obtained. 
The user is initially prompted to enter the various sampling parameters. As usual, default values are available and if these are 

selected the following results will be displayed for the Gaussian 
(white) noise data set: 

Measurements from Gaussian (white) noise signal 
8 blocks of 100 samples, 
at intervals of 1 and starting at sample number 1 
50% confidence limit has z(0.25) = 0.674 

z (mean) 
0.452 
-0.128 
0.849 
0.439 
-0.488 
1.204 
-1.288 
-1.040 

z (var.) 
-1.118 
2.749 
-0.259 
-0.775 
0.146 
0.190 
-0.847 
-0.479 

Mean 

0.310 
-1.980 
1.880 
0.260 
-3.400 
3.280 
-6.560 
-5.580 

Std. Dev. 

36.235 
46.539 
38.761 
37.263 
39.897 
40.018 
37.049 
38.129 

In addition to the mean and standard deviation of each block the 

display includes the calculated values of the sampling parameter z. 

For the mean z = (\l=x_\ - \l=x_\)/(\g=s\/\m=sqrt\N) (see §4.3.1) and for the variance 
z = (σ2/σ2 - 1)/√ 2/Na (see §4.3.2). In both cases the true values \l=x_\ 
and o are calculated using all NB*NS samples—NS is the requested 
number of samples and NB the number of blocks. This option can 

therefore be used to produce cumulative distributions such as those in 
figures 4.7 and 4.9 or the more straightforward confidence limit 
charts such as figure 4.8. 

At the conclusion of the display (and printout, if that was requested) the action prompts allow the user to do further calculations 
on the same data set (using ‘repeat’), to choose an alternative data 
set or to change the printer status (using ‘menu above’), or to return 
to the CHAP4 index. 

4.6.3 Higher-order moments 

Choosing this option from the CHAP4 index allows the user to obtain 
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estimates of higher-order moments, from the third to the sixth. After 
the usual title and window display, an initial prompt for the required 
moment is followed by a prompt asking whether the calculation of its 
value for the complete signal (all 19456 samples) is required. After 
this calculation is completed (if requested), the user is then prompted 
for the usual set of sampling parameters to allow similar calculations 
for smaller blocks. All results are presented in normalised form, 
dividing the calculated xn by the nth power of the standard deviation, 
obtained from the same data. A typical printer output is shown 
below. It should be noted that, if large sample sizes are requested the 

X^4/(sigma^4) = 2.961 for all 19456 samples of the Gaussian (white) 
noise signal 

12 blocks of 100 samples, 
at intervals of 1 and starting at sample number 1 

Values of x^n/sigma^n are: 

3.202 3.445 3.152 2.431 2.721 2.994 2.879 
2.119 3.315 2.725 3.011 

3.007 

calculation time becomes significant. This should not be surprising, 
since, particularly for the highest-order moments, the number of 
required multiplications becomes large (30000 for the sixth-moment 
calculation for 10000 samples). In the case of the BBC software, this 
is, of course, one of the reasons why the calculations are all 
performed in machine code; if this part of the program had been 
written in basic, the calculation time would be unacceptably long. 

4.6.4 Probability density measurements The final measurements option in the CHAP4 index enables probability density functions to be 
obtained. Again, after the initial display the user is prompted for the 

sampling parameters—this time the number of ‘slots’, rather than the 
number of blocks, is required. The output includes the calculated 
mean and standard deviation (from the samples specified) and a 

screen plot of the estimated probability distribution. The data can 

also be printed if required (by initial setting of the printer status as 

usual) and the action prompts include an option to generate a screen 

dump file of the final plot. Note that the data printed out are in 
normalised form, i.e. the two columns given (see below) are for 
σp(x) and (x — \l=x_\/\g=s\: 
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PROBABILITY DENSITY MEASUREMENTS 
****************************** 

Using the Gaussian (white) noise signal 
Number of samples (def. 1000) 19456 

starting at number (def. = l) 
Sampling increment (def. = l) 
Number of slots (def. = 16)32 
Mean = 6.522E—2 Sigma = 39.73 

(X—XB)/Sigma 
-3.223 
-3.022 
-2.821 
-2.619 
-2.418 
-2.217 
-2.015 
-1.814 
-1.612 
-1.411 
-1.21 
-1.008 
-0.8071 
-0.6057 
-0.4044 
-0.203 
— 

1.642E0.1997 
0.4011 
0.6024 
0.8038 
1.005 
1.206 
1.408 
1.609 
1.811 
2.012 
2.213 
2.415 

Sigma. p(x) 
6.637E-3 
5.871E-3 
8.679E-3 
1.302E-2 
2.68E-2 
4.442E—2 
5.616E-2 
8.883E-2 
0.1279 
0.1652 
0.2292 
0.2634 
0.3027 
0.3553 
0.3645 
0.4184 
0.3969 
0.3681 
0.3346 
0.3158 
0.2721 
0.2154 
0.1766 
0.1279 
0.1029 
6.611E-2 
4.237E-2 
2.91E-2 
1.94E-2 



COMPUTER EXERCISES 83 

2.616 
2.817 
3.019 
3.22 

7.658E-3 
5.871E-3 
8.424E-3 
0 

where \l=x_\ and o are the values calculated from the specified samples 
and given in the results. Further p(x) estimates can be obtained and 

displayed by using the ‘repeat’ action prompt. Figure 4.14 shows a 

typical screen dump. 

Figure 4.14 . Screen dump of a typical measured probability distribution 
of the white noise data set. 

4.6.5 Final comments 
All these routines can of course be run using any one of the available 
data sets. The user can therefore easily investigate the effects on 

estimate variabilities that arise from using correlated sample sets by, 
for example, loading the correlated (pink) noise data and using the 
mean value option to generate some confidence limit plots. 

At any stage during the running of the options described above, 
the user can abort and return directly to the main CHAP4 menu by 
using the ESCAPE key. 



Chapter 5 <br/> 

Digital Sampling Criteria: Time-Domain Statistics 

5.1 Introduction 

Chapter 4 was devoted to consideration of the digital sampling 
requirements necessary when measurements of the amplitude probability density function, or any of its moments, are required. This 
chapter discusses similar questions but in the context of time-domain 
measurements—principally autocorrelation and spectral functions. In 
these cases, it should by now be clear that errors can arise not only 
from inadequate amplitude quantisation (see §4.2), from finite sample 
sizes or from sampling times too short to capture the low-frequency 
content of the signal but also from the quantisation in time. If the 
sampled values are separated too far apart in time, they could 
represent either low or high frequencies in the original signal. A 
trivial example is provided by considering the digitisation of a simple 
sinusoidal signal. If sampling occurred exactly once every cycle, a set 
of samples of identical amplitudes would be obtained, representing 
energy at zero frequency rather than the frequency of the original 
signal. This phenomenon is known as aliasing and will be considered 
in detail in §5.2. In later sections, we discuss the various sources of 
statistical error which can occur in measurements of autocorrelations 
(§5.3) and spectra (§5.4). It is assumed throughout this chapter that 
quantisation errors are negligible; this is nearly always the case in 
practice. There are specialised circumstances in which quantisation 
errors are deliberately introduced but these will not be discussed 
here. 

It should also be emphasised at the outset that all the results for 

84 
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measurement variabilities quoted in the following sections assume a 

particular kind of signal—usually bandwidth-limited white noise. As 
in the case of amplitude-domain statistics, it is usually impossible to 
obtain analytic results for the expected errors in other cases. Since 
almost all signals of engineering significance are quite different from 
white noise, the formulae given here should be viewed only as 

estimates. They are, nevertheless, sufficient to provide some physical 
understanding of the nature of the errors and hence to give some 

guidance in the choice of suitable sampling parameters in real cases. 

5.2 Aliasing 

Consider the digitisation of a continuous signal using a sampling rate 

1/△t, so that individual samples are △t apart in time. The maximum 

frequency which can be unambiguously recovered from the sample 
values is 1/(2 △t). Any energy in the original signal at frequencies 
higher than this will be ‘folded back’ and will appear as lowerfrequency components in the energy spectrum. This arises essentially 
because of the circular nature of the Fourier transform process 
(equation (3.18) ); recall that cos(2πf △t) = cos[2π(f ± n/△t) △t], 
where n is an integer. Putting fa = 1/(2△t), all data at frequencies of 
f ± 2nfa have the same cosine function as data at frequency f and 
will therefore be indistinguishable from the latter. (The simple case of 
a sinusoidal signal sampled once every cycle, used in §5.1, is just a 

trivial example of this.) Consequently, measurements of the signal’s 
energy content at frequencies f less than fa will be contaminated by 
all energy at frequencies 2nfa, ± f. fa is termed the aliasing frequency. 

It is important to recognise that aliasing does not affect the 
measurement of the autocorrelation function of a signal if this is 
determined simply by performing the digital analogue of the relation 
R(τ) = ∫∞0 x(t)x(t + τ)dt. Only when spectral data are required (and 
obtained either by cosine transforming R(τ) or Fourier transforming 

x(τ)) does aliasing become relevant. The usual methods of surmounting the aliasing problem are either to low-pass filter the signal prior 
to sampling or to choose a sufficiently high sampling rate to ensure 

that energy levels in the signal above the aliasing frequency are 

negligible. 
As an example of the effects of aliasing, consider pink noise having 

unit variance and an autocorrelation function R(τ) = exp(—ατ). The 
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energy spectral density function for the continuous signal is given by 

E(f) = 4α/(α2 + 4π2f2) 
with E(0) = 4/α. For convenience, we define a normalised spectral 
density by Ê(f) = E(f)/E(0). Assume now that exact values of the 
autocorrelation function are available at intervals of △τ. With the 
usual expression for the digital equivalent of the cosine transform 
relationship, i.e. 

(see §5.4), it can be shown that for the above pink noise signal the 
value of the normalised spectral density at the aliasing frequency 
fa = 1/(2 △τ), is given by 

provided that N is sufficiently large. The suffix d indicates that this is 
the digitally estimated spectral density. With α = 1 for convenience, 
the ratio of the estimated to the exact spectral density is then 
approximately π2/4, for small enough Δτ(~ 0.5, say). Typically, 
therefore, the time-domain quantisation leads to a measured energy 
level (near the aliasing frequency) about 2.5 times as large as the true 

energy in the original continuous signal. 
Figure 5.1 is a plot of the true energy spectrum for this case, 

compared with what would be obtained digitally using an infinite 
number of samples (so that statistical errors are zero). Results for 
various sampling rates (△τ values of 0.05, 0.1, 0.2 and 0.5) are 

shown. Two obvious points regarding figure 5.1 are worth emphasising. Firstly, as expected, the frequencies at which the digitally 
obtained spectra are inadequate rise as the sampling rate 1/△τ rises 
and it is evident that sampling rates corresponding to a △τ of at most 
0.1 are required to obtain adequate spectral data over an energy 
range of two decades. The implication of this for the choice of 
suitable sampling parameters in real cases is discussed in the following sections. 

Secondly, note that spectral data at all frequencies above about 
fa/3 are noticeably distorted by aliasing. The frequency at which such 
distortion becomes significant will depend on the shape of the original 
spectrum, however. If the rate of energy decay is much greater than 
the 1/f2 appropriate to pink noise, aliasing effects will be correspon- 
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Figure 5.1 . Ideal energy spectra obtained from digital transforms of the 
autocorrelation function of pink noise (R(τ) = exp(-τ)), compared with the true 

spectrum:--, △τ = 0.05;-, △τ=0.1;-, △τ =0.2;-, 
△τ= 0.5; -, △τ= 0.0 (analogue). The vertical lines denote the aliasing 
frequency. 

dingly less noticeable, and vice versa. This is illustrated in figure 5.2 , 
which shows true and estimated spectra for a signal having an 

autocorrelation given by R(τ) = 1/(1 + τ2). Such a signal has an 

exponentially decaying energy spectrum so that, as can be seen from 
figure 5.2 , aliasing effects are much less significant than they are for 

pink noise, given an equivalent sampling rate. (Note that this signal is 

effectively the ‘Fourier inverse’ of pink noise—its spectrum is like the 
autocorrelation of pink noise, and vice versa.) 

However, many physical processes yield signals having spectral 
characteristics not too dissimilar from pink noise; so the fa/3 point 
provides a useful general rule. Unless the signal is suitably filtered 
prior to digitisation, one can generally expect distorted spectral data 
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Figure 5.2 . Ideal energy spectra obtained from digital transforms of 

R(τ) = 1/(1 + π2). The curves have the same meanings as in figure 5.1 . 

at frequencies higher than about one sixth of the digital sampling 
frequency. 

The software package provides a few set demonstrations of the 
effects of aliasing on estimation of the spectrum for the case of pink 
noise and the reader can also generate a wide variety of examples of 
his or her own, as described in §5.7. 

5.3 Autocorrelation estimation 

Because of the exact Fourier transform relationship between the 
autocorrelation and the energy spectral density functions, there are 

essentially two ways of obtaining either. In the case of the measurement of R(τ), either one can deduce it directly from the signal by 
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using the defining relationship (equation (3.11) ) or it can be obtained 

by first Fourier transforming the signal to obtain the energy spectrum 
and then cosine transforming the result. It is, in many practical cases, 
more efficient (less computationally intensive) to use this latter route, 
but we begin by considering the conceptually simpler technique based 
on the definition of R(τ): 

5.3.1 Direct estimates 
On the assumption for the moment that N samples of x(t) have been 
obtained at periodic intervals of △τ, an obvious digital version of this 
definition is 

(5.1) 
Note that, although for the mth lag, there are N — m + 1 cross 

products, the divisor is just N — m, this gives an unbiased estimate. 
The more ‘obvious’ divisor, N — m + 1, would yield biased estimates, 
as discussed in the context of mean-square values in §4.3.2. 

There are at most N consecutive estimates of R(τ), from \l=R^\(0) to 

\l=R^\((N - 1) △τ) inclusive. However, the number of cross products 
contributing to each estimate falls as m increases so that unless the 
maximum number M of m were chosen to be much less than the 
number N of samples, the variability of the estimates for long time 

lags would be significantly higher than for short lags. For this reason, 
it is usual to make M « N. This restriction is equivalent, in the 

analogue context, to requiring that the total signal sampling time be 

long enough to ensure adequate averaging of the longest lag components of R(τ). 
In some circumstances, particularly if there is no intention to 

obtain spectral estimates from the autocorrelation values, it may not 

be necessary to calculate all the possible R(τ) values. Restricting the 
values of m to, say, the sequence 0, 2, 4, 6, . . ., M (for integral 
M/2), or an even sparser subset, might be quite adequate. For 

example, the intention may merely be to obtain some overall measure 

of the dominant time scale in the signal. A common measure of the 

long-time-scale processes in x(t) is given by 
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(In the case of pink noise with R(τ) = exp(-τ/T), Tx is precisely the 
time constant T.) It would generally then only be necessary to obtain 
a number of R(τ) estimates sufficient to define the complete curve 

from τ = 0 to the value at which R(τ) has decayed to zero. The 
question then arises, ‘Is it advantageous to sample x(t) more rapidly 
than the minimum rate necessary to obtain R{r) estimates at the 
required intervals?’ Whilst sampling at a faster rate will certainly 
enable more cross products to be used for a particular R(τ) estimate, 
the individual samples—and hence the consecutive cross products— 
may be highly correlated, in which case the effect on the statistical 
accuracy may be minimal. We pursue this by reference to some 

theoretical results. 
It can be shown that the variance of autocorrelation estimates in 

the general case is given approximately by 

(5.2) 

(Bartlett 1946a,b, Kendall 1973). Here, i and m should be understood as meaning i △τ and m △τ, respectively, and \l=R^\n(m) is a 

normalised autocorrelation estimate defined by 

(5.3) 
The result assumes, amongst other things, that x(t) is Gaussian. Now 
consider the typical case of a signal having an exponentially decaying 
autocorrelation (e.g. pink noise) given by R(τ) = exp(— τ/T) and 
assume that a sampling rate of l/△τ is used so that autocorrelation 
estimates are obtainable at lag intervals of △τ; R(i) corresponds to 

exp(— i△τ/T). Substitution into equation (5.2) then yields, after 
some algebra, 

(5.4) 
where λ = △τ/T. Consider first the case of small λ, implying that 
consecutive samples from x(t) are well correlated. In these circum- 
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stances it can readily be shown from equation (5.4) that reducing 
both the sampling rate and the number of samples (but keeping the 
total sampling time N △τ constant) makes virtually no difference to 
the variability of the autocorrelation estimates at equivalent lag times. 
This is illustrated in figure 5.3 , which shows the standard error 

V[var(\l=R^\)] obtained from equation (5.4) for a total sampling time of 
50T. The results obtained using just 100 samples of x(t) with 
λ = △τ/T = 0.5 are very close to those with N = 1000 and λ = 0.05. 
In the former case, consecutive samples have an average correlation 
of about 0.67; increasing the sampling rate by an order of magnitude 
increases this to about 0.95 and it is evident that this order-ofmagnitude increase in the number of available cross products for each 

R(t) estimate is quite unjustified in terms of the resulting increase in 

accuracy. Of course, it would also normally increase the computational time by an order of magnitude. The experimental data also shown 
in the figure are discussed later. 

Figure 5.3 . Standard error of autocorrelation estimates, as a function of 
lag:-, the Bartlett formula, N = 100, △τ = 0.5;-, the Bartlett 
formula, N = 1000, △τ = 0.05; O, real data, N = 500, △τ = 0.1 (200 
blocks). 

It turns out that the theoretical variability results are not too 

dependent on the form of R(τ). For example, if a signal having an 
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autocorrelation of the form 

R(τ) = cos(2πfτ) exp(-τ) 
is sampled in a way similar to the above, equation (5.2) can be used 
to find the variation in standard error shown in figure 5.4 (a). For this 
calculation, N = 100 and the error in the fiftieth R(m) contribution is 
plotted as a function of the period 1/f of the underlying periodicity in 
the signal. The standard errors (for the first 50 lags) are also shown 

Figure 5.4 . (a) Standard error in the fiftieth autocorrelation value 

(m = 50) of a signal having R(τ) = cos(2πfτ) exp(-τ) (see (c)). The 
results were obtained using equation (5.2) with N = 100 and △τ = 0.1 
and are plotted as a function of the period 1/f. (b) Standard errors for 
the first 50 lags, in cases where 1 /f= 1 (-) and l/f=4 (-). 
(c) The autocorrelation curves for 1/f = 1 and 1/f = 4. 
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for the particular cases of 1/f=1 and l/f=4 ( figure 5.4 (h)), 
together with the exact R(τ) variations corresponding to these ( figure 
5.4 (c)). Clearly the dependence on the period is relatively weak, 
suggesting that the results of Bartlett particularised for pink noise can 

be used to give reasonable estimates of the variability errors for a 

wide range of signal types. 
Consider now the case of large λ. This is essentially equivalent to a 

set of samples corresponding to white noise, since consecutive samples have a very low correlation. The variance of the correlation 
estimates then reduces essentially to 2/N, as anticipated on the basis 
of statistical theory for uncorrelated samples (see §4.3.2). In practice, 
this limit is rather less relevant, since one normally only measures 

autocorrelation functions of signals which are known to have some 

definite time structure — R(τ) ≠ 0 for τ ≥ 0. 
In view of the somewhat approximate nature of the arguments 

leading to equation (5.2) , one might question the practical usefulness 
of this result. It is straightforward and instructive to test its accuracy 
by using simulated data sets. This can be done by the reader, by 
making use of the data supplied with the accompanying software. 
However, we first show some results obtained with a substantially 
larger data set. 100000 samples representing pink noise with 
R(m △τ/T) = exp(—m △τ/T) and λ = △τ/T = 0.1 were generated 
and subsequently analysed in 200 blocks of 500 consecutive samples. 
Each block therefore had the same N △τ/T (50) as used for the 
theoretical error curves in figure 5.3 . All the possible autocorrelation 
estimates were obtained for each block and averaged over all NB 
blocks in order to yield the variability, defined by 

Note, incidentally, that the mean value of x(t) for each block was 

removed before forming the R(m) estimates using equation (5.3) . 
Figure 5.3 includes the resulting standard errors and it is clear that 
the Bartlett formula yields a satisfactory estimate of the variability. 
As anticipated, the errors rise rapidly as m approaches M because in 
this case M = N. It was pointed out earlier that it is normal in 

signal-processing applications to make M « N, also ensuring that M 
remains sufficiently large to allow R(M △τ) to be close to zero 

(assuming that there are no strong periodicities in x(t)). 
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Some typical results obtained from the supplied data sets are shown 
in figure 5.5 . Here, the pink noise data set (10000 samples) was 

analysed in 50 blocks of 200 samples and 100 blocks of 100 samples, 
with just the first 50 autocorrelation estimates obtained. The results 
are compared with the Bartlett curves. Again, reasonable agreement 
is obtained, but it is noticeable that in all these cases the calculated 
errors are somewhat lower than the theoretical values. This is almost 

certainly due largely to the negative bias errors which can be shown 

theoretically to accompany R(m) estimates obtained using equation 
(5.3) (see e.g. Kendall 1973). 

Figure 5.5 . Measured standard errors of first 50 autocorrelation values 
estimated from 10000 samples of a pink noise signal (from the simulated 
data available in the software): x, 100 blocks of 100 samples; O, 50 
blocks of 200 samples;-, the Bartlett results. 

It is important to emphasise that the consecutive autocorrelation 
estimates are not independent. In fact, they can be highly correlated 
so that quite smooth, but totally erroneous, autocorrelation curves 

can be obtained if insufficient samples are used. This is illustrated in 
figure 5.6 , where three examples of the first 50 estimates obtained 
from the individual blocks of 200 samples are shown. The data 
represent just three of the 50 blocks used to obtain the variability 
estimates shown in figure 5.5 and it is clear that, although each set 
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might look plausible in the absence of any prior information about 

x(t), they are generally far from accurate representations of the true 
autocorrelation function. 

Figure 5.6 . Three examples of the first 50 calculated autocorrelation 
values, each from a different set of 200 samples of the simulated pink 
noise: -, exact result, which is closely followed if all 19456 samples 
are used. 

It is possible to use the Bartlett result to derive a simple criterion 
for the required number of samples. On the assumption that the 
autocorrelation is similar to that of pink noise and that we require the 
last (Mth) lag to correspond to a time at which R(τ) has largely 
decayed to zero, the variability of this Mth estimate is given (from 
equation (5.4) ) approximately by 

ε2 = 1/(N △τ/T) 
where ε is the standard error and N is the total number of samples, 
assumed to be much greater than M. In fact, it can be shown that for 
signals containing strong periodic components the variability is always 
lower; so this result represents an upper bound. The required number 
of samples is then just 

N = l/(ε2 △τ/T). 
Usually the effective time constant T of the signal is not known a 
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priori , but it can be approximately deduced using the first autocorrelation estimate (R1 = R(△τ/T)) by △τ/T = 1 - R1, so that the 

required number of samples can be written 

(5.5) 
An initial estimate of R1 i can usually be obtained relatively quickly. 
As an example, suppose that pink noise were being sampled using 
some initial sampling rate l/△τ. R1 would then depend on the 
unknown T, but assume that it was estimated (from an initial 
calculation using just a few hundred samples) to be about 0.9. This 

implies △τ/T = 0.1. Then estimation of the complete autocorrelation 
function with a standard error for the largest lag value lower than 
0.05 would require about 4000 samples (from equation (5.5) ). Calculation of the first 50 lags would define the entire function quite well 

(exp(—5) < 0.01). This might be considered an excessive number of 

R(τ) estimates; so the sampling rate could be reduced, with a 

consequent reduction in the required number of samples for the same 

variability. Halving △τ, for example, would make N = 2000 and 25 

R(τ) estimates would then cover the same time range. This would 
also reduce the number of arithmetic multiplication operations by 
about a factor of 4. 

Although only a relatively simple case has been considered it 
should be emphasised that equation (5.5) is an upper bound on the 

likely number of samples required for a given variability. It therefore 

represents a convenient general criterion for determining the required 
sampling parameters when only the general shape of the autocorrelation is required, although it should be recalled that the Bartlett result 
assumed that x(t) has Gaussian amplitude statistics. 

We conclude therefore that, in many practical cases, rapid sampling 
of x(t) is not necessary if only autocorrelation information is 

required. It is sufficient merely to ensure that the sampling rate allows 
autocorrelation estimates to be obtained at, say 20-30 consecutive 
lags with the final lag time long enough to make R(τ) close to zero. 

Of course, if the signal contains any dominant periodicities, so that 
the autocorrelation function would be expected to oscillate about 
zero, rather more lags may be required for an adequate representation of the signal. We emphasise again that, if spectral information is 

required, sampling rates generally need to be considerably higher and 
the autocorrelation estimates are best obtained via the spectra. This is 
discussed in §5.3.2. 
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5.3.2 Autocorrelation estimates via spectra 
As discussed in §3.2.2, the autocorrelation function can be written in 
terms of the spectral density function: 

where, in terms of the original signal x(t), E(f) can be obtained as 

with 

It is worth pointing out that the Fourier integral defining C(f) only 
exists if ∫∞0 dt ≤∞ , which is not true for a stationary random 
record x(t), which theoretically extends over all time. However, one 

can only actually measure x(t) over some finite time T, so that C(f) 
is estimated by computing the finite Fourier transform: 

which always exists. 
In the digital calculation of C(f), f (as well as x(t) is restricted to 

take on discrete values and the usual digital equivalent of the finite 
Fourier transform is 

(5.6) 
where x(0), x(l), . . x(N — 1) are the digitised samples of the 
continuous signal x(t). It is important to note that, unlike the case of 
a Fourier transform of a continuous signal, the transform of the 
discrete-time signal x(n) is necessarily a periodic function of the 

frequency f since, for integral values of m, 

This periodicity is present for exactly the same reason as the aliasing 
phenomena discussed in §5.2. 

Equation (5.6) is usually called the discrete Fourier transform 
(DFT). Sampling x(t) N times at intervals of △t gives a sampling 
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period of T = N △t and imposes a Nyquist (aliasing) frequency at 

1/(2 △t) (see §5.2). Results are normally obtained with △f = l/T, 
which is the fundamental frequency—the lowest for which spectral 
information can be obtained from the finite set of N. Note that, in 
most practical cases, x(n) is a real-valued sequence and values of 
C(k △f) beyond k = N/2 can be obtained from earlier values, since 
the Nyquist frequency is N △f/2. We discuss appropriate implementation of the DFT for spectral measurements in §5.4. 

To obtain autocorrelation estimates, two further steps are necessary. First, the values of k for the spectral density function must be 
obtained via 

E(k △f) = Re2[C(k △f)] + Im2[(C(k △f)] 
where the two terms on the right-hand side are the squares of the 
real and imaginary parts of C(k △f), produced by the earlier DFT. 

Secondly, a further dft must be performed, this time on the values of 
E(k) rather than on the values of x(n), and the real part of the 
results used to obtain R'(m △t): 

(Recall that △f 1/(N △t)).) However, these \l=R^\'(m △t) values will not 
be identical to the \l=R^\(m △t) values that would be obtained using the 
direct autocorrelation function definition (equation (5.1) ). This is 
partly due to the circular effect in the calculation procedure and also 
to the fact that l/N ≠1 /(N — m). The usual procedure to avoid the 
first effect is to perform the dfts on number sets twice as long as the 
original with, for the first dft on the basic data, the elements 
x(N + 1) . . . x(2N) in the second half set equal to zero. The first 
half of the resulting \l=R^\'(m △t) values, when multiplied by N/(N - m) 
to take account of the second effect, then have values identical with 
those that would be obtained from equation (5.1) , using the same 

initial data set. 
There are many computationally efficient algorithms for calculating 

the DFT, most of them based on one kind or another of the fast 
Fourier transform (FFT) technique first introduced in the 1960s. These 
usually accept a sequence of N complex numbers—x(0) . . . 

x(N - 1), where N is an integral power of 2—and yield N complex 
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values of X(n), calculated from 

Abbreviating this expression by Xk = DFT(xn), we can list the steps 
required to obtain the autocorrelation function via the spectral 
density function as follows. 

(1) Sample x(t) N times at intervals of △t and put 

(2) Form Cn = DFT(wn) for n = 0, 1, 2, . . 2N - 1 and obtain 
En = |Cn|2. 

(3) Form \l=R^\(m △t) = [N/(N — m)] Re[DFT(En)], m = 0, 1, 2, . . 

N — 1, with the DFT performed with n = 0, 1, 2, . . 2N — 1. 

This procedure will yield values of \l=R^\(m △t) identical with those 
obtained from equation (5.1) , repeated here for convenience: 

(5.1) 
with M = N here. 

The above process might seem to be somewhat tortuous compared 
with the relatively simple calculation using equation (5.1) . However, 
its usefulness lies in the fact that ffts are computationally very 
efficient; so, even if spectral information is not required, it can 

sometimes be quickest to use the spectral method to obtain autocorrelation estimates. Consideration of equation (5.1) shows that, for a 

calculation of all estimates (M = N), about N2 arithmetic multiplication operations are required. It can be shown that an N-point FFT 

requires about N log2N multiplications, so that steps (l)-(3) above 

require about 4N log2(2N) which, for large N, is smaller than N2. As 
an example of comparative timings, figure 5.7 shows the time 

required to calculate R(τ) using both methods. These were obtained 
from algorithms coded in fortran 77, using a standard FFT and 

implemented on a 32-bit microprocessor (the Acorn Cambridge 
Workstation). Clearly, if N ≥ 128, the spectral route is quicker and 
the difference in time exceeds an order of magnitude once N ≥ 2048 
(recall that ffts generally require N to be an integral power of 2). 
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Figure 5.7 . Timing for autocorrelation calculations via spectra (\#0298\) or directly 
from raw data (X). Calculations were performed in fortran 77 on the 32-bit 
Acorn Workstation. Note that the N-point autocorrelation obtained via spectra 
used two 2N-point FFTS. 

Now, if spectral estimates are not required, the number of autocorrelation estimates needed will generally be low, as pointed out in 
§5.3.1, and probably much less than 128. In practice, therefore, if 
only R(τ) estimates are required, it is often quicker and certainly 
easier to use the more direct route to obtain them. Since the two 

methods, as outlined above, are statistically equivalent, the variabilities of the autocorrelation estimates obtained via spectra are identical 
to those discussed in §5.3.1. It is largely for this reason that, in the 
software package, only the direct method of estimating the autocorrelation function has been implemented. The reader can nonetheless 
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use the available routines to illustrate the major points discussed 
above, as described in §5.7.2. We turn now to a closer consideration 
of the estimation of the spectral density function. 

5.4 Estimation of the spectral density function 

The reader is first reminded of the relationship between the energy 
spectral density function E(f) and the signal x(t) or the autocorrelation function R(t), which were first introduced in §3.2.2 and restated 
in §5.3. Since, in nearly all signal-processing applications the signals 
under scrutiny are not truly determinate, the relationship between the 
spectrum and the Fourier transform of the original signal is now 

reiterated in its general form (see §3.2.2): 

where the averaging process (representing the fundamental expectation operator) is carried out over j independent blocks of data. In 
digital form, this can be written 

(5.7) with 

as usual. There are nd blocks of data, each containing iVb samples at 
intervals of △t, so the sample time for each block is T = Nb △t. The 
alternative method of obtaining E(f) is to use the autocorrelation 
function: 

(5.8) 
In both these cases the DFT is defined as in §5.3.2: 

(5.9) 
and △f= l/(Nb △t). Note that we use Nb here and reserve N for the 
total number of samples used (N = ndNb). 

Now the DFT as defined above really amounts to using discrete 
values of y(n) together with a simple trapezoidal rule to perform the 
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integration. Without corrections, the results will therefore lie on a 

‘pedestal’ of [y(0) + y(Nb - l)]/2 and, in many applications, it is 
best to halve the first and last values of x(n) (or R(n)) to remove this 
effect. Note also that any dc component will theoretically appear as 

an addition to the first spectral estimate E(0), so the mean value of 
the Nb x{n) samples should be removed before performing the dft 

for each block. This should be done prior to halving the first and last 

samples; if it is not done at all, the pedestal correction will lead to 
distortion of the complete spectrum unless the mean value happens to 
be zero. An illustration of the pedestal effects is given in figure 5.8 . 
32 768 samples of pink noise were generated and the first 64 values of 
the autocorrelation function estimated in the direct way. E(f) was 

then deduced using equation (5.8) . In this case the variance of the 

complete set of samples was 0.10, so the spectral values obtained 
without halving R(0) are distorted by the constant addition of 

4R(0)/2 = 0.2, which is increasingly significant as the frequency rises, 
as the figure demonstrates. 

One of the more remarkable features of the spectrum is the fact 
that the (statistical) accuracy of an estimate of E(f) at any particular 
frequency does not decrease as Nb increases, in complete contrast 
with the behaviour of R(t) estimates. Furthermore, provided only 
that the basic Nb spectral estimates are calculated, these are virtually 
independent of each other if x(t) is Gaussian (with the obvious 
proviso that the second Nb/2 estimates are a repeat of the first Nb/2 
if x(t) is real). This again is quite unlike the consecutive R(t) 
estimates which, as discussed in §5.3.1, can be highly correlated. 

In the context of analogue measurements, the variance of spectral 
density function estimates is proportional to 1/BeT, where Be is the 
spectral bandwidth used for the measurements and T is the total 
measurement time. In the present context, Be is equivalent to 

1/(Nb△t) (Nb samples per block) and T = Nbnd (nd blocks), so the 
variance is proportional to l/nd. In fact, it can be shown that the 
variance of the spectral estimates obtained using equation (5.7) is 

given approximately by 

(5.10) 
This should be compared with the variance of E(f) estimates 
obtained using equation (5.8) , which, like that of the R(t) estimates, 
will be proportional to l/Nbnd, provided that the number m of R(t) 
estimates is restricted so that m « N. The difference is illustrated in 



ESTIMATION OF THE SPECTRAL DENSITY FUNCTION 103 

Figure 5.8 . Spectral estimates from 32 768 samples of simulated pink 
noise, obtained via 64 R(t) estimates: △, using the true R(0); ▲, with 
R(0) halved; full curve, exact spectrum. Calculations performed on the 
Acorn Workstation. 

figures 5.9 and 5.10 . 32768 samples of white noise were simulated 
and then analysed to obtain spectral estimates in both ways. Firstly, 
all samples were used to obtain 64 consecutive R(t) estimates via 

equation (5.1) , with subsequent calculation of the spectrum via 

equation (5.8) . Secondly, the sample set was split into nd blocks of 
Nb samples, with nd = 32 and Nb = 1024 (or nd — 512 and Nb = 64) 
and the spectrum calculated via equation (5.7) . The spectral estimates, normalised so that the integral under E(f) (up to the aliasing 
frequency) was unity, are plotted against frequency in figure 5.9 . For 
the second case, only those estimates at frequencies equivalent to 
those of the 32 estimates arising from the first method are shown, for 
clarity. It is immediately apparent that (with nd = 32) the variability 
of the estimates obtained by transforming the original data is 

considerably greater than for those obtained via the autocorrelation. Of 
course, if the spectrum were obtained via equation (5.8) having 



104 TIME-DOMAIN STATISTICS 

Figure 5.9 . Spectral estimates from 32 768 samples of simulated white 
noise obtained via R(t) (O, △) or directly from x(t) (•, ▲) where 32 
blocks of 1024 samples (•) or 512 blocks of 64 samples (▲) were used: 
O, •, E(f) incremented by unity for clarity. 

calculated all the possible R(t) estimates from the complete data set 

(Nbnd of them), then the same variability would be expected from 
both methods. The difference seen in figure 5.9 arises essentially 
because only a relatively small number of R(t) estimates were used, 
minimising the effects of relatively larger variabilities in the R(t) 
estimates at the longest lag times: m = O(N). The resulting set of 
E(f) values is sometimes referred to as the truncated periodogram, 
indicating that it was derived from a truncated set of autocorrelation 
estimates. 

Further data sets of the same size were generated and similar 
calculations performed with nd equal to 16, 64, 128, 256 and 2048 
and corresponding values of Nb (such that ndNb = 32768). The 

average variance of the 32 spectral estimates was computed in each 
case and is shown in figure 5.10 . Agreement with the theoretical 
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Figure 5.10 . Variability of spectral estimates as a function of the 
number of independent blocks used: x, estimates obtained via the 
truncated autocorrelation; O, estimates obtained directly from the raw 

data. In each case, a total of 32768 samples were used. 

variance (ε2 =l/nd) is reasonable, bearing in mind the limited 
number of estimates (32) used to obtain the results. The variability of 
the spectral estimates obtained via the autocorrelation, for the 
identical data sets, is included in figure 5.10 . 

The unsatisfactory nature of spectral estimates obtained from just 
one block of data (nd = 1), however long the block, arises essentially 
because we are trying to estimate a continuous function rather than a 

single parameter (or set of parameters). The property of ‘smoothness’ 
which we would like the set of estimates to possess is a concept not 

normally met in classical estimation theory. Similar difficulties were 

apparent in the estimation of the (ideally) continuous probability 
density function. The power at a particular frequency, like the 
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probability that x(t) takes any particular value, is identically zero; as 

in physical terms we have to measure the power in some small band 
of frequencies, just as we had to construct a histogram for estimating 
p(x). 

As implied above, one way of reducing the variance of the spectral 
estimates is to omit those terms which correspond to the ‘tail’ of the 
autocorrelation. In principle, this will always introduce some bias into 
the spectral estimates but, since for continuous spectra R(t) → 0 as 

t→∞, it should usually be possible to omit R(t) terms at large t 
without this effect becoming too serious. The results in figure 5.9 
constitute an example of this truncated periodogram approach and 
further examples are given later. If only the first M R(t) estimates are 

used to obtain spectral estimates from N samples, it can be shown 
theoretically that both the bias and the variance of the E(f) 
estimates will tend to zero provided that both M →∞ and N →∞ 

but in such a way that M/N → 0. There are many ways to achieve 
this: one of the simplest is to put M = y/~N . 

5.5 Windowing 

Now obtaining the spectrum via a truncated autocorrelation is directly 
equivalent to smoothing (using the appropriate weighting function) 
the ‘raw’ periodogram that would be obtained by transforming all the 

original data (i.e. equation (5.7) with nd = 1). The weighting function 
is normally called the spectral window, whereas the effective weighting function used to truncate the autocorrelation is termed the lag 
window. In the example used above, the lag window was of a simple 
rectangular form, defined by 

The estimated spectral density function (equation (5.8) ) could then be 
written as 

(5.11) 
which is equivalent to 

Ê(k △f) = (2 △t2/T)|DFT[W(k)x(k)]|2 
where W(k), the spectral window, can be shown to be the (discrete) 
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Fourier transform of the lag window λ(k). One of the most 

commonly used lag windows—often known as the Bartlett estimate—is that 
defined by 

which can be shown to correspond to a spectral window having a 

decaying sin2 θ function. The point to note here is that it can be 
demonstrated theoretically that smoothed spectral estimates obtained 

by applying this spectral window to the raw periodogram obtained 
from all the data values (or, equivalently, obtaining the spectrum by 
transforming all the autocorrelation estimates weighted with the 
above lag window) is essentially identical with dividing the original 
record up into a smaller number of blocks and averaging the 

periodogram at fixed frequencies over all blocks. The distinct advantage of the latter technique is that the amount of data storage 
required at each stage in the computation is considerably smaller. In 
the present context of the analysis of continuous signals, this 

approach is generally quite satisfactory, but it should be recognised 
that, in other contexts (usually those in which a more limited number 
of data samples are available), windowing techniques assume increasing importance. There is a considerable literature on the whole 

subject of windowing, as a method of smoothing spectral estimates, 
and the reader should consult the more detailed texts if further 
information is required (the book by Priestly (1981) contains an 

extensive discussion). Before turning to a brief discussion of simple 
criteria for choosing the various parameters for spectral estimates, 
however, there is one further point about simple (rectangular) 
truncation of the autocorrelation that should be emphasised. 

The rectangular lag window defined above is less satisfactory than 
the Bartlett estimate if the estimated autocorrelation function has not 

decayed close to zero for values of k near M. It is easy to see why 
this is so, for the Fourier transform of λ(k) for the rectangular 
window is essentially a (sinθ)/θ function (the Dirichlet kernal) which 
has substantial negative lobes either side of its maximum value at 
θ = 0. The spectral density estimates from equation (5.11) will 
therefore take negative values at certain frequencies and this is 
obviously not physically acceptable. As an example, consider a pink 
noise signal having an autocorrelation function defined as usual by 
R(τ) = exp(—τ/T) and assume that values of R(τ) for τ≤ pT are 
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used to obtain the spectral density function via equation (5.11) 
(λ(τ) = 0 for τ ≥ pT). The ideal spectral density function, i.e. what 
would be obtained if the R(τ) estimates were exact, is then given by 

which, after some algebra, reduces to 

(5.12) 
Here α = 2πfT and Et(f) is the true spectral density function that 
would result if the complete autocorrelation function were available 

(P = ∞), i.e. 

Et(f) = 4T/(1 + 4π2f2T2). 
It is clear that, quite apart from the effects of aliasing (arising from 
finite △t) or variability (arising from imperfect R(τ) estimates), the 
spectral density function will be unphysical, in that it will take 
negative values when [cos(pα) - αsin(pα)]/exp p ≥ 1 and, in any 
case, oscillate about the true values with increasing amplitude as the 

frequency increases. This may not be a serious effect if p is large 
enough to ensure that the negative regions only exist (if at all) at 

frequencies where the true energy is very much less than its maximum value. However, if the higher-frequency part of the spectrum is 
a region of particular interest, truncation effects can be serious and so 

should be avoided. Figure 5.11 is an example of the effect. Ê(f) from 
equation (5.12) is shown for a case in which p = 3.2 (and T = 1, for 

convenience), compared with the true spectrum. Also shown are the 
results of the digital computation of the spectrum (via the autocorrelation) from a simulated data set of 32768 values. In this latter 
case, △t = 0.025 and the first 128 R(τ) estimates were computed, so 

that the last available estimate corresponded to a time lag of 
128 △t = 3.2 = p, as required. Although R(128 △t) is only about 
0.04, the truncation effect is clearly visible at the higher frequencies, 
with the measured spectrum falling well below the true spectrum. 
Note that negative values do not occur in this case and that, because 
of the particular value of △f, only points near the minima of the 
oscillations are picked out by the spectral calculations; a different 
choice of M △t could equally yield spectral estimates near the 
maxima. Similar demonstrations can be obtained using the 
accompanying software, as described in §5.7. 
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Figure 5.11 . Truncation effects on spectral estimates derived from the 
autocorrelation function of pink noise:-, ideal spectrum; -, 
spectrum obtained from truncated autocorrelation (equation 5.12) with 
p = 3.2); \#26AB\, digital estimates from a set of 32768 samples, with 

△t = 0.025 and using the first 128 calculated autocorrelation values only 
(so that M△t = 3.2).n 

The reader should note that windowing techniques which seek to 

minimise or remove entirely these unphysical negative energies—such 
as the Bartlett window mentioned earlier—are in one important 
respect not very sensible. They all nhave the effect of destroying, to 
some degree at least, what starts as perfectly good data, or R(τ) 
estimates. If 0 ≤λ(τ) ≤ 1 for τ ≥ 0, which is generally the case for 
lag windows othe than the simple rectangular one, the ‘good’ 
estimates of R(τ) are changed prior to being used to obtain the 
spectral estimates (via equation (5.11) ). Intuitively, this seems silly. 
Techniques have been developed to avoid this unwanted degradation 
of R(τ) values; most of these are based on principles of ‘maximum 
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entropy’ (Burg 1967, Lacoss 1971). The essential idea is to use the 
information already present in the existing R(τ) estimates to extend 
the autocorrelation function beyond the k = M point. The additional 

R(τ) estimates have a variability somewhat greater than they would 
have if deduced from the original set of x(t) values, but it has been 

conclusively demonstrated that spectral estimates obtained by transforming the extended sequence of autocorrelation values can be much 
more satisfactory than those obtained either by simple truncation 

(using only the original R(τ) values) or by using any of the standard 
forms of lag window (see, e.g., Fagih 1980 ). This is a rather 

specialised topic and, since it is certainly not a standard technique, 
will not be discussed further. 

5.6 Summary and examples 

It should by now be clear that digital estimation of the spectral 
density function, from a continuous stationary signal, requires specific 
decisions concerning, at the very minimum, the following: 

(1) the sampling rate, i.e. the △t increment at which the signal is 
to be digitised: 

(2) the number Nb of samples to be used in each block if spectra 
are to be deduced directly from the data or, equivalently, 

(3) the maximum lag value M if spectra are to be deduced via the 
autocorrelation function; 

(4) the total number N of samples to be used. 

The choice of At is usually fixed by aliasing considerations as 

discussed in §5.2. Since Nb (or M) determines the increments in 

frequency at which the (uncorrelated) spectral estimates will be 
available, its choice is generally governed by the required resolution 
in the complete estimated spectral density function. This is often 
called the ‘resolvability’ requirement. Clearly, if there are likely to be 
one or more narrow peaks in the spectrum, Nb △t must be sufficiently large to ensure that △f = l/(Nb △t) is small enough to resolve the 

peaks satisfactorily. The problem is similar to that discussed in the 
context of the measurement of the probabability density function, 
where the amplitude ‘slot’ width needs to be small enough to resolve 

any humps in p(x). Since the variance of the final spectral estimates 
is O(Nb/N), making Nb large will, for a given required variance in 
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the spectral estimates, inevitably make N large. If there are no 

serious limits on the record length that can be obtained, it is 
therefore usual to choose Nb first, according to the required resolvability, and then to make N sufficiently large to ensure an acceptable 
level of variability in the spectral estimates. 

Now, in order to resolve spectral peaks adequately, one usually 
needs some idea of the bandwidth of the signal. Spectral bandwidth is 
an important physical notion and it is common engineering practice to 
define it as the distance between the ‘half-power’ points—the points 
on either side of the spectral peak at which the energy has dropped 
to one half of its maximum value. Very often, of course, one has only 
a vague idea prior to a particular measurement of the likely bandwidth but it is often helpful to recall that generally the spectral 
bandwidth will be small if the autocorrelation function decays slowly, 
whereas it will be large if R(τ) decays quickly. Examples of the two 
extremes are provided by a constant dc signal (or a pure sine wave) 
and white noise, respectively. 

In practice, one often knows whether the signal contains dominant 
periodicities, which could imply a small bandwidth, or is largely of a 

wide band type whose dominant time scale is typified by the rate of 

decay of the autocorrelation function. Given some estimate of the 
bandwidth, one would then require, typically, four or five spectral 
points within it to resolve the peak adequately. As an illustration, 
consider the case of a signal having an autocorrelation defined by 
R(τ) = cos(2πτ) exp(—τ). This signal has a single dominant frequency 
of 1 Hz (with τ measured in seconds for convenience). It was 

simulated using 131072 samples at time intervals △t of 0.01. Note 
that this implies an aliasing frequency of 50 Hz, so that the example 
assumes that frequencies above this value are of no interest. Three 

representations of the signal are shown in figure 5.12 . Whilst evidently the periodicity is not always very clear, a rough estimate of its 

frequency could be made simply by inspection of the signal. 
On the basis that the periodicity is dominant enough to be visible, 

we start by assuming a spectral bandwidth of, say, 0.5 Hz, which 
means that the required △f = l/(Nb△t) = 0.1. With △t = 0.01, Nb 
must be, say, 1024 and this would give 512 spectral estimates up to 
the aliasing frequency. The normalised mean-square percentage error 

of the spectral estimates is (equation (5.10) ) 
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Figure 5.12 . Screen displays of typical time histories of a second-order signal. 

So about 100 blocks of data would be required to keep the variance 
of the errors below 1%. This then implies a total sample number 
Nbrid of over 100000, corresponding to a signal time of 1000 s. This 

may seem an excessive time, but recall that we are using a convenient 
ideal signal which has a dominant frequency component at 1 Hz. In 

many practical cases the important frequencies will be much higher; 
so shorter sample times would suffice to define the spectrum adequately, although, of course, low-frequency components can only be 
properly averaged with relatively long sampling times. Figure 5.13 
shows the spectrum resulting from a direct calculation (using equation 
(5.7) ) with 128 blocks of 1024 samples in each. Note that the aliasing 
effect can be seen at frequencies beyond about 20 Hz but, for many 
purposes, this spectrum would be more than adequate. The results 
cover an energy range of about four decades and are generally very 
close to the ideal spectrum, which is also shown in the figure. 

It is often helpful to obtain an initial crude set of spectral 
estimates, in order to obtain some ‘feel’ for the general spectral 
shape. In this case, for example, we could have started by using 
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rather fewer samples per block (hence reducing the ‘resolvability’ by 
reducing △f) and, in addition, accepting a greater variability by 
reducing the number of blocks. Figure 5.13 includes results obtained 

by using just the first 64 blocks of 128 samples each; this requires 
only one sixteenth of the earlier sampling time, but it yields results 
which for some purposes would be quite satisfactory. 

Figure 5.13 . Spectra calculated directly from 131072 samples of a 

simulated second-order signal having an ideal R(τ) = cos(2πτ) exp(—τ): 
128 blocks of 1024 samples with △t = 0.01, so that the aliasing frequency 
is 50 (O) or △t = 0.04 (\#0298\', not all shown), x, 64 blocks of 128 samples 
with △t = 0.16. Full curve is exact spectrum. 

A final example is shown in figure 5.14 , obtained from one of the 
data sets available in the accompanying software package. This is a 

simulation of a signal having R(τ) = cos(πτ)exp(-τ); samples every 
△t = 0.025 are available, but the results have been obtained (via a 
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Figure 5.14 . A spectrum calculated using the available software package, for the 
second-order signal having R(τ) = cos(πτ) exp(—τ). The results were obtained via 
the first 128 calculated autocorrelation values, with △t = 0.05, so that the aliasing 
frequency is 10. Full curve is exact spectrum. 

128-point autocorrelation) using only every second sample, i.e. 

△t = 0.05. Again, for many purposes, this spectrum would be adequate. Other examples can be generated by the reader, as explained 
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in the following sections, in order to explore the various effects of 

changing the sampling rate, the number of samples per block and the 
number of blocks. The options also allow spectral estimates to be 
made via autocorrelation estimates, although this can be rather a 

lengthy process. 
We conclude this section by emphasising that, in practice, it is 

often necessary to use considerable trial and error before finding the 
most suitable combination of parameters in a particular case. What 
would be acceptable in one situation may be quite inappropriate in 
another. Different physical phenomena can obviously display a very 
wide range of spectral content and there are really no detailed criteria 
that will enable a user to obtain adequate spectral information if he 
or she has neither any prior notion about the signal content nor any 
feeling about the limitations of digital spectral analysis. 

5.7 Computer exercises 

Demonstrations and exercises appropriate to most of the material in 
the preceding sections can be undertaken by running CHAP5 from 
the main index. The general protocol, screen layouts and action 

prompts are similar to those used in the CHAP4 routines; whilst the 
user could in principle use CHAP5 without prior knowledge of the 
CHAP4 facilities, it is anticipated that most readers would normally 
only progress to CHAP5 after at least some assimilation of the 
CHAP4 material. 

Selection of CHAP5 leads to a display of a further index, referred 
to later and in the action prompts as “CHAP5 index”. It is again 
suggested that the user selects each of the three program options in 
turn and studies the various facilities available by using the simple 
default values for all the parameters, before attempting experiments 
of his or her own. The following sections describe the various 

options, but some initial comments about the structure of this part of 
the software are appropriate here. 

First, as noted in §5.3.2, the algorithm used for autocorrelation 
estimation is that based on the direct method embodied by equation 
(5.1) . Machine code routines perform all the time-consuming parts of 
the calculation (note that for calculation of a 64-point autocorrelation 
from 16000 samples about 1 million multiplications are required). 

Secondly, spectral estimation can be performed either using the 
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previously calculated autocorrelation (using equation (5.8) ) or directly 
via the raw data (using equations (5.7) ). Although block sizes cannot 

exceed 256 in the present software, this will give the user some feel 
for the relative merits of each, in terms of estimate variabilities and 
calculation time, as discussed in §5.4. 

Thirdly, it should be emphasised that, in the context of some 

applications of signal processing, 20000 samples does not represent a 

very large sample size. As indicated in §5.6, accurate measurements 

of spectral quantities would often require a considerably larger set of 
data. However, 20000 is large enough to allow perfectly adequate 
illustrations of the theoretical ideas presented earlier and, in some 

circumstances, would be quite sufficient for real measurements. 

Next, note that quantitative presentation of the calculated autocorrelation and spectral functions of the simulated data requires some 

assumptions about the effective sampling rate of the basic data sets. 

As discussed in Appendix A, the pink noise signal (having 
R(τ) = exp(-τ)) was generated as a set of data samples spaced apart 
in time by 0.1 units whereas the second-order signal (having 
R(τ) = cos(πτ)exp(—τ)) used a 0.025 sample increment. The random 

(uniform p(x)) and Gaussian noise signals did not of course require a 

particular △t for their generation, but the software assumes a 0.1 

sample interval between each of the 19456 data values in all the 

quantitative data presentations in these sections of the software 

package. 
Finally, note also that the spectral calculations all make use of a 

fft routine (implementing equation (5.9) ) written originally in 
assembler and kindly supplied by Structured Software. (The copyright 
for this part of the software is held by them.) It would be exceedingly 
difficult for users to extract this part of the present software for 
insertion into their own without some knowledge of its basic structure, so users who wish to make individual use of this routine should 
contact the suppliers directly. Their address is given in the Acknowledgements. 
5.7.1 Aliasing demonstrations 
This routine does not use any of the supplied data sets. Instead, it 
uses a pre-recorded set of 256 consecutive R(τ) values which were 

calculated using R(τ) = exp( —τ), with τ ranging from 0 to 6.375. 
These values are held in the file named RTAU on the system disc; 
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they represent the exact autocorrelation function that would be 
measured using an infinite number of samples of a perfect pink noise 

signal, obtained at a sampling rate of 40 Hz (with △τ = 0.025, say). 
Spectral estimates obtained by Fourier transforming this set of data 
will therefore be exact and will only differ from the ideal analogue 
spectrum 4/(1 + 4π2f2) by virtue of the aliasing effects generated by a 

finite sampling rate. 
After selecting this option, the autocorrelation values are loaded 

into memory and the user is then prompted to specify how many of 
them are to be used in the spectral estimation. If, say, only 32 are 

specified (the default number) then every eighth R(τ) value, starting 
at R(0), will be used as the data to be transformed, so that the 

aliasing frequency will be 1/(16 △t) = 2.5 Hz. After the subsequent 
calculation of the 32 spectral estimates, these are plotted on the 
screen. Logarithmic scales are used since this highlights the aliasing 
effect. Figure 5.15 is a screen dump of the default results; note that 
the second 16 estimates are simply a repeat of the first 16 in the 
reverse order, as explained in §5.4. The calculation can be repeated 
using a larger (or smaller) number of the available R(τ) values and 
the user will note that this leads to a higher (or lower) aliasing 
frequency with a correspondingly better (or worse) fit to the ideal 

analogue spectrum. 

Figure 5.15 . Typical screen dump of an aliasing demonstration. 



118 TIME-DOMAIN STATISTICS 

No printout is available in this option, but the user can obtain 
screen dumps if required. Return to the Chapter 5 index is effected in 
the usual way. 

5.7.2 Autocorrelation estimation 
This routine allows direct calculation of the autocorrelation function 

using any batch of data from any of the available data sets. The 
software essentially implements equation (5.1) . Selection of the 

option from the Chapter 5 index will lead to the usual screen heading 
and window displays followed, after choice of the required data set 

and printer status, by prompts for the required number of samples, 
sampling increment, position of the first sample, lag increment and 
number of lags. Some explanation of these last two parameters is 

required. Assume that you have chosen 1024 samples (the default) 
with a sampling rate of 2 (the default), starting at the first available 

sample (the default). These are now the only data available with 
which to construct the autocorrelation estimates. If a lag increment of 
1 is chosen (the default) the first available R(τ) estimate (not 
counting R(0)) will correspond to x(t)x(t + 2 △τ), where △τ is the 
effective time delay between each sample of the original set of 19 456 

(recall that this is 0.025 for the second-order signal and 0.1 for the all 
the others). A lag increment of 2 would make the first R(τ) estimate 
that given by x(t)x(t + 4 At ). In general, the first estimate will be 

x(t)x(t + ij At) , where i is the sampling increment (2 in this case) and 

j is the lag increment. The number of lags is then simply the number 

(M, say) of consecutive R(τ) estimates that are required. The final 

R(τ) estimate will therefore be x(t)x(t + (M - l)ij At) . 

Increasing the number of samples while keeping all other 
parameters constant will not alter the number of the R(τ) estimates, or 

their location along the time axis, but it will reduce the theoretical 

variability in the results. Note also that, if spectral estimates are to be 

subsequently obtained (see §5.7.3), the maximum time lag effectively 
fixes the frequency spacing of the spectral estimates △f = 

l/(M — l)ij △τ and the product of the sampling increment and the lag 
increment effectively fixes the aliasing frequency fa= l/(2ij △τ). 

After specification of the various parameters the calculations are 

performed; if a large number of lags (the maximum is 128) and a 

large number of samples are specified, the calculations could take a 

few minutes. For example, a 64-lag autocorrelation from 8192 

samples requires about 120 s of calculation time. Note that, if the user 
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intends to obtain spectral estimates from the autocorrelation estimates, then it is sensible to choose the number of lags to be an 

integral power of 2. Once the calculations are complete, the results 
may be printed out if desired (by pre-setting of the printer status, as 

usual) and the screen plot can also be sent to a disc file for later 
dumping to a printer. Figure 5.16 shows typical screen dumps, 
obtained using the above example in the case of Gaussian white noise 
and pink noise. The usual action prompts after the display is 

complete allow the user to undertake similar calculations on the same 

or different data sets or return to the Chapter 5 index. 
The user clearly has maximum flexibility in his choice of the 

necessary parameters, allowing a very wide range of experiments to 
be devised, as in the CHAP4 program. 

5.7.3 Spectral density estimation 
Selection of this option from the Chapter 5 index leads, after the 
usual choice of a data set and a printer status, to a further action 
prompt which allows the user to choose whether he wishes to obtain 
the spectrum from a previously calculated autocorrelation (via equation (5.8) ) or from the raw signal data (via equation (5.7) ). In the 
former case, it must be emphasised that calculation of the autocorrelation should be undertaken immediately prior to entry—via the 
Chapter 5 index—of the spectral routine. If, after the autocorrelation 
calculation, the user returns to the main index (by using the BREAK 

key, or in any other way) before moving to the spectral routines, 
then it will not be possible to obtain the spectrum from that 
autocorrelation. If this is attempted, a warning is displayed. 

On the assumption that this option has been successfully entered, 
the user is prompted for the required number of autocorrelation lag 
values to be used. The default value is the maximum possible, i.e. the 
total number of lag values that were previously calculated, but the 
user can specify a smaller number if required. If all available R(τ) 
estimates are used, then the aliasing frequency will be determined by 
the original lag increment, as explained in §5.7.2. If, however, a 

smaller number of the R(τ) estimates are used, then the aliasing 
frequency will be correspondingly reduced. Choosing only a quarter 
of the available estimates, for example, will mean that every fourth 
R(τ) value will be used. 

After the spectral estimates have been obtained, the user is 
prompted for the screen plot in the usual way. The display includes 
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Figure 5.16 . Screen dumps of typical autocorrelation calculations of (a) white 
noise and (b) pink noise. 

information on the aliasing frequency, etc, and also gives the value of 
the total power, using the R(0) data. By generating a printout of the 
results (in the usual way), the user can check that this total power is 

equal to the total area under the plot of E(f) against f. Screen 
dumps can also be produced, and figure 5.17 shows typical ones, 

giving, for figure 5.17 (a), results obtained from a 64-lag autocorrela- 
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tion previously calculated using 8192 consecutive values of the Gaussian white noise signal (see figure 5.16 (a) for these latter results). 
Note that in both this and the raw signal option only the first half of 
the spectral estimates are presented (32 values in this case); those 

beyond the aliasing frequency are ignored and the user is reminded 
that they are identical to the first half but in the reverse order. Note 
also that linear scales are used in the screen plots for both this and 
the alternative spectral option. 

By responding in the usual way to the final action prompt the 
calculation can be repeated using the same or a different number of 

lags or the user may return to the menu. 

Choice of the alternative spectral raw signal option allows calculations of spectral estimates from the basic simulated signals. After 

initiating this routine and specifying the required data set and printer 
status, the user is prompted for the sampling increment INC, the 
number NS of samples per block and the number NB of blocks. 

Apart from the necessary restrictions that the number of samples per 
block must be an integral power of 2 with a maximum of 256 and that 
INC*NB*NS must not exceed 16384, any values may be chosen for 
these various parameters. The fft routine is called for each block of 
NS samples in turn, with the spectral density estimates being updated 
after each. During the calculations the display includes a continuous 

update of progress by showing the most recently completed block. As 
an example of the time required for the calculations, spectral estimates from 128 blocks of 64 samples requires about 165 s in the case 

of the BBC version of the software. Note that the FFT calls for all 
these 128 blocks require only about 40 s in total; a large proportion 
of the calculation time is taken up by the recovery of the individual 
estimates after each fft and the updating of the running sums of 
these estimates. This is all programmed in basic; later versions of the 
software may include faster routines for this part of the process. 

As usual, the spectral results can be printed out directly and/or a 

screen dump of the displayed spectrum can be produced. Figure 5.18 
contains typical examples, showing the spectral estimates resulting 
from a calculation using 128 blocks of 64 samples of the Gaussian 
white noise and pink noise signals. These can be compared directly 
with the spectra shown in figure 5.17 . 

The usual responses to the final action prompt allow the user to 

repeat similar calculations on the same or different data or to return 

to the Chapter 5 index. 
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Figure 5.17 . Screen dumps of the spectral data calculated using the autocorrelations shown in figure 5.16 . Note that the axes are linear. 
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Figure 5.18 . Screen dumps of typical spectral calculations from the raw signal 
for (a) white noise and (b) pink noise. 



Chapter 6 </br> 
Sample Laboratory Experiments 

6.1 Introduction 

In this chapter a typical pair of laboratory classes, based on the 
software, is described. These classes have been designed to require 
about one afternoon each and require a ‘blackboard’ introduction 
from the teacher, outlining the essential features of the software, the 

way that the data sets are structured and the major objectives of the 

experiments. They should ideally be undertaken in relatively quick 
succession, since proper understanding of the results of the first 
afternoon will be helpful in considering the results of the second. 

If a laboratory of suitable machines (each with its own disc drive 
and printer facilities) is available, then obviously a large number of 
students can be catered for simultaneously, although it is not generally helpful to allocate more than two students per computer. In the 
author’s classes at the University of Surrey, each pair of students has 
their own copy of the basic system disc so that they can proceed at 
their own pace. The students have generally been through the lecture 
course prior to undertaking the laboratory classes. In fact, the 
experiments described in the following sections would be very taxing 
for the average student if he or she had had no background; so they 
would need to be considerably restructured and simplified if the 

laboratory classes are to take place before the lecture course has been 
completed. Since the author’s lectures usually include demonstrations 
using the software—mainly from CHAP2 and CHAP3 programs—the 
students at least have some visual familiarity with the package. There 
is then no reason why individual students should not undertake the 
experiments on their own and in their own time, particularly if they 
have a copy of this book. For the more interested student, this would 
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probably lead to a better understanding of the material, because it 
would allow more time for simply ‘playing’ with the various signals 
and trying a wider range of measurements. 

The whole of a laboratory sheet which might be handed to each 
student at the start of the first class is given in §6.2. This contains the 
major objectives of the experiments and much of the basic information required by the student in order to proceed. It assumes that the 
student has not read the accompanying textbook but it does not 
contain detailed instructions on how to run the software, because it is 
also assumed that the teacher will cover that verbally and be on hand 
when difficulties arise. It has also been found that the weaker 
students require rather more explanation of the structure of the data 
sets, particularly when faced with decisions concerning sampling rates 
and lag increments in the context of autocorrelation measurements. 

It should be emphasised that many different kinds of experiment, 
with different major objectives, could be designed with this software. 
The following merely represents a relatively brief ‘overview’ type of 

experiment, but for more extensive courses it could readily be 

replaced by a longer sequence of laboratory classes, each concentrating on just one or two aspects of the material. Note that, in most of 
the author’s lecture courses to date, the material covered in the text 
is not included in its entirety. This would require a considerably 
longer course (of 40-50 h plus laboratory time, typically). Note also 
that, since the lecturer can easily generate his or her own data sets 
for use with the software, including those obtained from a real 
transducer, there is considerable flexibility in the range and types of 

experiment that can be devised. 

6.2 Typical Laboratory sheets 

Final-year signal-processing laboratory classes 

INTRODUCTION 
The following two experiments are designed to enable the student to 
obtain a firmer grasp of the underlying principles governing the 
accurate measurement of various properties of fluctuating signals. 
They have been developed using a software package which accompanies the text of a recent book on the digital analysis of stationary 
data. 
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Algorithms to produce sequences of numeric data having the 

properties of various kinds of signal are now commonplace, as are 

microcomputers with substantial amounts of memory. The use of 
simulated signals (rather than real ones obtained from real transducers) to investigate digital sampling and measurement techniques is 
therefore straightforward. It is also an attractive concept since no 

hardware other than the basic computer system is required, and the 
user can make any ‘measurement’ that he or she likes—provided that 
he or she has the software tools available. These tools are provided in 
this software package; they allow measurement of both amplitudeand time-domain statistics of a range of simulated signals, using 
sampling parameters specified by the experimenter. 

In the two experiments you will undertake in these classes, 
attention is concentrated on two of the basic questions affecting 
measurement accuracy: 

(1) How many digital samples are required? 
(2) How rapidly must the sampling be done? 

The experiments are intended to demonstrate that the answers to 
these questions depend essentially on the kind of measurement being 
undertaken and on the nature of the signal itself. 

In both experiments, use is made of the available simulated signals. 
These consist of 19456 consecutive l-byte (8-bit) integers. The data 
sets have been produced using standard algorithms which need not 
concern you now. They represent random noise (with a uniform 
probability density function), Gaussian (white) noise, correlated pink 
noise and a second-order signal having an autocorrelation which 
oscillates as it decays. The latter can be thought of as, for example, a 

noisy periodic signal. In every case the mean value of the entire data 
set is close to zero and the standard deviation is such that the signal 
virtually ‘fills’ the amplitude range (from -127 to 127 for 8-bit 
integers). It is loaded from disc into memory when required and can 

be accessed in various ways by the software to allow rapid calculation 
of means, mean squares, spectral density functions, etc. 

For any measurement, you will be prompted for the required 
sampling parameters, such as the number of samples and the spacing 
between each sample (i.e. whether consecutive samples are required 
or whether only every nth sample is needed). The latter is equivalent 
to a ‘sampling rate’ if the original sequence is thought of as the basic 
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signal. You may also specify the location of the first sample; 
remember that only 19456 samples are available. 

In Experiment 1, measurements of the probability distribution and 
its various moments are made whereas, in Experiment 2, attention is 
concentrated on measurements of the autocorrelation and spectral 
density functions. Different types of signal are used and you are 

asked, generally, to comment on the differences between your 
measurements and the theoretically expected results for a signal of 
the appropriate type. Each experimental programme consists of a set 
of instructions, each item of which has one or more associated 

questions. After completion of the second class, you should prepare a 

formal write-up of the two experiments, presenting the various results 
and answering the associated questions. You will find it helpful to 

begin to prepare the material for this after the first class and before 
the second class. This will help both to identify those measurements 

that you may wish to repeat and also to suggest supplementary tests 

that may be informative. 

EXPERIMENT 1 

The software should be loaded by inserting the disc into drive 0 and 
pressing the SHIFT and BREAK keys simultaneously, releasing the 
latter first. An initial index is displayed which gives the titles of the 
various chapters (which correspond to the chapters in the 

accompanying textbook). Selection of any one of these is achieved by using the 
cursor and RETURN keys, as indicated. 

Begin by entering CHAP2 and trying each of the options in order 
to familiarise yourself with the different kinds of signals that are 

available. In this CHAP2 (and in CHAP3) the cursor keys are used 
for switching between options. This first experiment uses the simulated random noise, Gaussian (white) noise and the correlated (pink) 
noise signals; so move on to CHAP4 and display these signals on the 
screen in turn, using the appropriate option. Note that they are the 
files DAT0N8, DAT1N8 and DAT2N8, respectively, and are resident 
on side two of the disc. 

(1) Using the appropriate CHAP4 options, measure the mean, the 
standard deviation and the next four higher-order moments (i.e. x\l=n_\ 
n = 3-6) of the probability distribution for the random-noise data, 
using all available 19456 samples. 
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Questions 

(a) Given that the simulated signal lies in the amplitude range 
—127 ≤ x 

≤ 127 , discuss the difference between your measured standard deviation and the expected result. 
(b) Show that the nth moment of a uniform probability function 

which is zero outside |x| = a is given by 

provided that n is even. Compare this result with the measured 
values, and discuss how you would expect the measured results to 

vary if you chose much smaller sample sizes. 

(2) Repeat (1) for the Gaussian (white) noise data set. 

Questions 

(a) Compare the higher-order moments with the analytical values 
expected for Gaussian data (x4-/σ4 = 3, x6-/σ6 = 15). Discuss possible 
reasons for any differences and suggest ways in which the data could 
be arranged (i.e. stored, digitised or whatever) so that these differences might be less significant. 

(b) What implications do these results have in the context of 
digitising analogue signals for later analysis on a computer? 

(3) Using the CHAP4 mean-square option, obtain 10 independent 
estimates of the mean value of the Gaussian noise, using 1000 
samples for each. Also obtain 20 independent estimates using only 
100 samples for each. 

Questions 

(a) What is the meaning of a 90% confidence interval? 

(b) Prepare confidence limit charts in which these mean-value 
estimates are plotted against estimate number, i.e. 1-20 for the 
100-sample estimates. (You may use the confidence limit option 
within the mean-value option of CHAP4 to study the appearance of 
such charts—producing a screen dump on your printer if you wish— 
see the note below on screen dumps). Include the 50% and 90% 
confidence intervals on your charts, calculated by using the standard 
deviation measured using all 19456 samples. Recall that the confidence interval is defined by σzα/ a , with zα = 0.674 and 1.645 for 
the 50% and 90% intervals, respectively. 
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(c) Discuss the results in terms of your expectations deduced from 
the confidence intervals. 

(4) Obtain in a similar manner 20 independent estimates of the 
mean value of the correlated (pink) noise signal using 100 samples. 
Use first consecutive samples (i.e. a sampling increment of one) and 
repeat using only every ninth sample. 

Questions 

(a) Prepare a further confidence limit chart for these results and 
explain why the two sets of mean-value estimates, obtained using 
different sampling rates, are so different. What would you expect if 
the same comparison had been made for the white noise signal? 

(5) Obtain probability density estimates of the white noise signal 
using both 32 and 128 amplitude ‘slots’ and 1000 samples and 10000 
samples. Generate screen dump files of the results on 10000 samples 
(see below) and send these to the printer. Obtain also a quantitative 
printout of the 32-slot results. 

Questions 

(a) With reference to these results, discuss the various ways of 

increasing the accuracy of probability density function estimates, 
emphasising any advantages or disadvantages of each. 

(b) Plot the 32-slot results on your own graph ana include the ideal 
Gaussian probability distribution function 

Discuss the comparison between the two. 

SCREEN DUMP FILES 

After graphical presentation of results on the screen, the action 

prompts allow you to generate a disc file containing the screen 

display, for later dumping to a printer. If this option is selected, you 
are prompted for a drive number and a filename. Use the default 
value for the former and choose any appropriate name for the latter 

(it must not exceed seven characters). The file can subsequently be 
sent to the printer by selecting the PRNTDMP option from the main 
index and following the displayed instructions. 
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EXPERIMENT 2 

The intention of this experiment is to give the student a firmer grasp 
of the physical significance of the autocorrelation and the spectral 
density functions, the relationship between them and some of the 

problems which arise in their measurement. As in Experiment 1, just 
three types of signal are considered: the Gaussian white noise, the 
correlated noise and the second-order (noisy periodic) signal. Begin 
by entering CHAP3.2 to remind you of some typical ideal signal 
time-domain characteristics. Recall that signals with identical 

amplitude-domain statistics can have very different spectral contents, 
and vice versa. 

Now move to CHAP4, select the display option and look at these 
three signals in turn. Given a suitable time scale, how well could you 
estimate the dominant frequency in the second-order signal? 

(1) Select CHAP5 and using the default options obtain an estimate 
of the first 16 lag values of the white noise signal from just 1024 

samples. Generate a screen dump file and then (immediately) obtain 
the corresponding spectral density estimates by returning to the 
CHAP5 index and selecting the spectral density (from previous 
autocorrelation) option. Generate a further screen dump file of these 
results. (Do not return to the main index to dump your screen file of 
the autocorrelation results to the printer before making this second 

measurement.) Now send these two files to the printer. 

Questions 

(a) How do these results compare with those anticipated for ideal 
white noise? Discuss the differences and explain how ‘better’ results 
could be obtained. 

(b) Is the level of accuracy in these results similar to that in the 

probability density estimates of white noise obtained from 1000 

samples in Experiment 1, and if not, why not? 

(2) Select the aliasing demonstration option from the CHAP5 
index. Choose to obtain spectral estimates using all 256 autocorrelation values (which are exact here) and also using just 32 of them. 
You do not need to generate screen dump files, but make a note of 
the general form of the results, and how they compare with the ideal 
pink noise spectrum. Note also the value of the aliasing frequency in 
each case. 
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Questions 

(a) Remembering that the ideal autocorrelation values used to 

obtain these two sets of estimates are effectively from data sampled 
at time intervals given by 0.025 and 0.20 s, say, respectively, check 
that the displayed aliasing frequencies are correct. 

(b) Explain what happens to the spectral estimates at frequencies 
above this aliasing frequency and discuss what determines how badly 
the estimates below it compare with the ideal spectrum. 

(c) What is the relationship between the time intervals between the 
autocorrelation estimates and the frequency intervals between the 

spectral estimates deduced from them? 

(3) The simulated pink noise signal has an ideal autocorrelation 
function given by R(τ) = exp(—τ), with consecutive data points 
separated in time by 0.1 s, say, for convenience. The ith autocorrelation value measured from an infinite number of such samples would 
therefore have the value exp(—0.li), assuming every sample were 

used. (In the aliasing demonstration the R(τ) values are actually set 
to be exactly these ideal values.) Obtain estimates of the first 16 R(τ) 
values for the correlated (pink) noise signal, using just 2048 data 

points and printing out the results. Use a sampling interval of 1 (i.e. 
△t = 0.1). 

Question 

(a) Plot these results as R(τ) against τ and compare them with the 
ideal R(τ) function. Why would these values not lead to satisfactory 
spectral estimates, even if they were made much more accurate by 
greatly increasing the number of samples? 

(4) Obtain further autocorrelations from the pink noise signal with, 
first, a lag increment of 4 and 32 lags and, secondly, a lag increment 
of 1 and 128 lags; use a sampling increment of 1 and all available 
19456 samples in both cases. Note that these are relatively lengthy 
calculations (why?)—the second will take about 6 min. After each of 

these, proceed immediately to the spectral option and calculate the 
resulting spectra from the R(τ) values, printing out the results in both 
cases. 
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Question 

(a) Plot the two sets of spectral estimates as E(f) against f on 

log-log paper (preferably 3x3 decades) and include the ideal pink 
noise spectrum function given by 4α2/(l + 47π2f2), where σ2 is the 
signal variance (you can deduce this from data included in the 

printout). Discuss these results with particular reference to the effects 
of the aliasing frequency and the finite number of samples used. 

(b) How would the sampling parameters need to be changed if a 

higher spectral resolution were required (i.e. if △f were to be lower) 
without any reduction in the aliasing frequency? 

(c) Why could the aliasing frequency not be increased beyond 5 Hz 
in spectral estimates from this data set? 

(5) Select the option that calculates spectral estimates directly from 
the original data set (the ‘raw’ signal). Choose the second-order 
signal, which ideally has R(τ) = cos(πτr) exp (-τ), and obtain estimates (without a printout) using a sampling increment of 4, and eight 
blocks of 256 samples each. Generate a screen dump file and send 
this to the printer. 

Questions 

(a) Estimate from this screen dump, in any way that you wish, the 
frequency of the dominant spectral peak. How close is this estimate 
to the ideal value implied by the above autocorrelation function? 

(b) Suppose that the major point of interest was this dominant 
frequency f0. How, in general terms, would you arrange the digital 
sampling from an original analogue signal having similar characteristics to enable a more accurate estimate of f0 to be obtained in an 

efficient way? For an analogue signal having the same dominant 
frequency as in this present case, illustrate your answer by suggesting 
appropriate values for the digital sampling rate and also the number 
of samples per block and the number of blocks that you would use in 
the subsequent spectral analysis. 

(c) In what other ways could you have estimated the dominant 
frequency in this simulated signal without doing a spectral calculation 
at all? 



Appendix A <br/> 

The Simulation of Random Signals 

A.1 Introduction 

This appendix outlines the methods used to generate the four data 

sequences available in the software package. Listings of the short 

algorithms (in basic) are included, so that the reader can easily 
generate his or her own data sequences having similar or different 
characteristics. The essential criterion for all the data, whether 

generated in this way or obtained directly by digitisation of a real 

analogue signal (using the bbc’s on-board adc, for example) is that it 
should be a sequence of signed 8-bit integers, stored continuously in 

memory from the address &3000 upwards. As supplied, all the 
software assumes that a maximum of 19456 values are available; so, 
when loaded into memory, the data normally occupy from &3000 to 
&7BFF. If the user were to generate shorter sequences, it should be 
borne in mind that, unless appropriate changes are made to the basic 

routines in the software package, these will still assume that 19456 
values are available and only trap sampling parameters which imply a 

greater number. The location of these traps can be easily found by 
inspection of the CHAP4 and CHAP5 program listings. 

After generation of a data sequence, it can be saved on disc with 
the usual operating system command 

*SAVE filename 3000 7BFF 

(assuming that there are 19456 values). The reader is reminded that 
the four files supplied are named DATnN8, with n = 0, 1, 2 or 3 (see 
below). A simple approach to using additionally generated data files 
is therefore to save the new file on side 2 of (a copy of!) the system 
disc using one of these names; it will then automatically be loaded by 
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the software whenever the equivalent (original) signal sequence is 

requested. There are two obvious disadvantages with this approach. 
Firstly, the original sequence will be overwritten and therefore 
unavailable on this disc. Secondly, the original data sequence descriptor (random noise, correlated noise, etc) may not be appropriate for 
the new signal. A rather more flexible facility has therefore been 

provided and, before discussion of the techniques used to generate 
the supplied data sequences, this will be described. 

This facility allows the number of accessible data files to be 
increased to a maximum of 10, each having its own appropriate 
descriptor, n may therefore take additional values in the range 4-9 
and, if these are used, the user must also update the DNAME file. 
The format of this file (which is on side 1 of the supplied system disc) 
is straightforward. It contains first a single integer denoting the 
number of available data sequences (N, say) followed by N strings 
each of 23 characters in length, forming suitable descriptors for the 

corresponding data sequences. A listing of the program used to 

generate this file for the supplied software is given below. 

10 REM PROGRAM FOR GENERATING FILE “Dname” 
20 
30 REM containing NF signal data set descriptors 
40 
50 REM *************************************************** 

60 
70 DIM data$(9) 
80 PROCdata 
90 DN$=“:0.$.Dname” 

100 SP$=“ 
110 OUT=OPENOUTDN$:NF=4:PRINT£OUT,NF 
120 
130 REM Note that the maximum possible NF is 10 
140 
150 FOR 1=1 TO NF: 

PRINT£OUT,LEFT$(data$(I—1)+SP$,23):NEXT 
160 CLOSEfOUT 
170 
180 END 
190 
200 DEFPROCdata 
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210 data$(0)=“ Random noise ’ 

220 data$(l)=“Gaussian (white) noise ” 

230 data$(2)=“Correlated (pink) noise ” 

240 data$(3)=“Data with R=Cos(t)e(—t)” 
250 
260 REM Add more file descriptor statements here 
270 REM if required; make sure NF in line 110 
280 REM is updated appropriately 
290 
300 ENDPROC 

With appropriate modification this can be used to update 
DNAME. Note that the values of n must be consecutive; if the user 

wishes to add two extra data files to the system, these must have the 
names DAT4N8 and DAT5N8, the variable NF in the NDATA file 
must have the value 6, and the fifth and sixth 23-character strings 
must contain the appropriate descriptors. 

Once the additionally generated files have been saved on disc and 
the DNAME file has been appropriately updated, all the available 
data sequences can be operated on by all the routines in CHAP4 and 
CHAP5. Additionally, they can be displayed graphically (as x(t) 
against t) using the appropriate option available in CHAP4 (see 
§4.6). Note that 10 files each of 19456 samples virtually fills one side 
of a standard disc, so the user may need a separate disc for any 
screen dump files that he or she wishes to produce (these require disc 

space of at least 19456 bytes since they are mode 1 memory dumps). 
There is room on side 1 of the system disc for one screen dump file. 

A.2 Generation of random noise (DAT0N8) 

Most computer languages include algorithms, usually coded as intrinsic functions, for the generation of random sequences. BBC basic is 
no exception and the function RND(I) can be used for this purpose. 
With 1 = 1, repetitive calls of this function will yield a sequence of 
numbers in the range (0, 1) having (ideally) a uniform probability 
distribution. The only additional statements in the routine given 
below are those required to scale the data so that they take values in 
the range from -127 to 127. This implies a standard deviation of 
about 73 (see A.4). 
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10 REM ROUTINE TO CREATE A RANDOM 
20 REM (Uniform PDF) DATA SET 
30 
40 VDU22,7: HIMEM=&2FFF 
50 
60 INPUT “NUMBER OF SAMPLES”, NS 
70 U1=40*RND(1) 
80 
90 REM Loop for data generation 

100 
110 FOR 1=0 TO NS—1:U=254*(RND(1)—0.5) 
120 ?(&3000+I)=INT(U+0.5) 
130 NEXT 
140 
150 REM Data stored in &3000 upwards (line 120) 

> A.3 Generation of Gaussian (white) noise (DAT1N8) 

To obtain a random sequence having a Gaussian probability density 
function the method of Box and Muller (1958) was used. Let X1 and 
X2 be independent random variables with uniform probability distribution in the interval (0, 1), i.e. as generated, say, in the way 
indicated above. Consider the random variables 

W1 = [-2 ln(X1)]1/2 cos(2πX2) 
W2 = [-2 ln(X1)]1/2sin(2πX2). 

Box and Muller showed that W1 and W2 form a pair of independent 
random variables with a Gaussian probability distribution and with a 

zero mean and unit variance. A sequence of random variables Wi 
may therefore be generated using the equations 

(A.1) 

and the program listed below implements this. Note that again the 
generated values are scaled so that they lie in the range from —127 to 
127 and have a standard deviation of around 40. The implications of 
this latter value (being about one third of the maximum range) for 
calculation of the higher-order moments is discussed in §4.2. 
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10 REM ROUTINE TO CREATE A GAUSSIAN 
20 REM (WHITE) NOISE DATA SET 
30 
40 VDU22,7: HIMEM=&2FFF 
50 
60 INPUT “NUMBER OF SAMPLES”,NS 
70 U1=RND(1):P2=2*PI:E=40*SQR(2) 
80 
90 REM Recursive loop - equation A1 in Appendix 

100 
110 FOR 1=0 TO NS STEP2: U2=RND (1) 
120 F=E*SQR(—LN(U1)):D1=INT(F*COS(P2*U2)+0.5): 

D2=INT(F*SIN(P2*U2)+0.5) 
130 IFABS(D1)> 127THEND1 = 127*SGN(D1) 
140 IFABS(D2)>127THEND2=127*SGN(D2) 
150 ?(&3000+I)=Dl:?(&3001+I)=D2 
160 U1=U2:NEXT 
170 
180 REM Data stored in &3000 upwards (line 150) 

> A .4 Generation of correlated (pink) noise (DAT2N8) 

The requirement here was for a signal having Gaussian amplitudedomain statistics but an autocorrelation function of the form 

R(τ) = exp(— τ). Such a signal may be simulated by passing white 
noise through a first-order linear filter, which is simply the physical 
realisation of a linear differential equation or, in the discrete case (as 
required here), a linear difference equation. Many texts describe 
linear systems and their input-output characteristics; here we state 

only the basic differential equation which embodies the required 
connection between the output x(t) and the input (white noise) W(t) 
together with the recurrence relations required to simulate it. For 

pink noise of the above form, the filter transfer function is 

and the corresponding recurrence equation is 

(A.2) 
where W(i) is the discrete Gaussian (white) noise and an arbitrary 
value can be taken for x(0). DAT2N8 is a sequence produced using 
the program listed below, with a = 1 and δt = 0.1. Consecutive data 
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points are therefore separated in time by 0.1 units. The software 

package uses this value for the basic sample increment, as discussed 
in the previous sections. If an effectively more rapidly sampled 
simulated signal is required, then it is only necessary to change the a 

factor in the above equation. This amounts to a simple scaling of the 
time axis and obviates the need to change the assumed δt = 0.1 in 
the software package. 

For example, putting a = 0.1 and keeping δt 
= 0.1 would effectively increase the sampling rate by a factor of 10, so that the first 

possible autocorrelation value (other than R(0)) would theoretically 
be exp(—0.01). Of course, the effective total sampling time would 
also be reduced by a factor of 10 (assuming that the same total 
number of samples were used) so that spectral estimates of the 

lower-frequency components of the data sequence would inevitably 
be less accurate. If the user does choose to produce a sequence with 
a different δt, it would be necessary to change the appropriate data 
printout statements in the CHAP5 routines to ensure consistency in 
the printout of the results. 

10 REM ROUTINE TO GENERATE FIRST-ORDER DATA 
20 REM SET — with R(t)=exp(—at) 
30 
40 REM DT is the required time increment between samples 
50 REM NS is the required number of samples 
60 
70 VDU22,7:HIMEM=&2FFF 
80 INPUT “a,DT,NS”,A,DT,NS 
90 REM Set-up various parameters 

100 
110 P1I=2*PI:AE=EXP(—A*DT):B=SQR(2/A)*(1—AE) 
120 X0=0:U1=RND(1) 
130 REM Recursive loop — equation A2 in Appendix 
140 
150 FOR 1=0 TO NS —1 STEP2:U2=RND(1) 
160 F=SQR(—2*LN(Ul)):Wl=F*COS(PlI*U2):W2=F*SIN(PlI*U2) 
170 X1=AE*X0+B*W1:X0=AE*X1+B*W2 
180 Y1 = 130*X1:IFABS(Y1)>127THENY1 = 127*SGN(Y1) 
190 Y2=130*X0:IFABS(Y2)>127THENY2=127*SGN(Y2) 
200 ?(&3000+I)=INT(Yl+0.5):?(&3001+I)=INT(Y2-l-0.5) 
210 U1 = U2:NEXT 
220 
230 REM Data stored in &3000 upwards (line 200) 
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Note again the presence of an amplitude scaling factor in the 

program above, chosen to give a standard deviation of about 40 for 
the resulting sequence. Some trial and error may be necessary before 
the required standard deviation can be obtained; this process can be 

considerably helped by using the probability option in CHAP4 to 

check that both the resulting mean and standard deviation and the 
overall probability distribution are satisfactory. 

> A.5 Generation of a second-order process (DAT3N8) 

In this case, the requirement was for a signal having an autocorrelation function of the form R(τ) = exp(-aτ)cos(bτ). As discussed in 

§3.2.1(e), such a signal can be viewed as that obtained at the output 
of a second-order (underdamped) linear system. The transfer function 

equation can be written 

where, again, W(t) is the white noise input. The corresponding 
recurrence relations can be shown to be 

(A.3) 

with the required data in the x1 array. The various parameters are 

given by 

(A.4) 

and 

(A.5) 
To generate the DAT3N8 sequence the program listed below was 

used with δt = 0.025, a = 1 and b = π. Further sequences could be 
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generated with different dominant frequencies (set by the value of b) 
and/or different effective sampling rates (see §A.4). As in the 
previous cases, an additional scale factor is necessary to ensure a 

suitable standard deviation for the final sequence. 

10 REM ROUTINE TO CREATE A SECOND-ORDER DATA 
20 REM SET — with R(t)=Cos(b*PI*t).exp(—at) 
30 
40 REM DT is the required time increment between samples 
50 REM NS is the required number of samples 
60 
70 VDU22,7:HIMEM=&2FFF 
80 INPUT “A,B(*PI)>DT,NS”,A,B>DT,NS 
90 

100 REM Set-up various parameters — equations A4 and A5 
110 
120 B=B*PI:P1I=2*PI 
130 AE=EXP(—A*DT):A1=1—AE*COS(B*DT) 
140 D1=SQR(A*A+B*B):D2=2*A—D1 
150 B1=(A1+(D1 -A)/B*AE*SIN(B*DT))*2*SQR(A)/D1 
160 B2=(D2*A1+(B—A*A/B+A/B*D1)*AE*SIN(B*DT))*2 

*SQR(A)/D1 
170 Pl=AE*(COS(B*DT)—A/B*SIN(B*DT)):P2=-D1*D1/B*AE 

*SIN(B*DT) 
180 Ql=AE/B*SIN(B*DT):Q2=AE*(COS(B*DT)+A/B 

*SIN(B*DT)) 
190 Y1=0:Y2=0:U1=RND(1) 
200 
210 REM Recursive loop — equation A3 in Appendix 
220 
230 FOR 1=0 TO NS-1 STEP2:U2=RND(1) 
240 F=SQR(—2*LN(Ul)):Wl=F*COS(PlI*U2):W2=F*SIN(PlI*U2) 
250 Z1=P1*Y1+Q1*Y2+B1*W1:Y2=P2*Y1+Q2*Y2+B2*W1 
260 Y1=Z1:X1 = 160*Y1:IFABS(X1)>127THENX1 = 127*SGN(X1) 
270 ?(&3000+I)=INT(Xl+0.5) 
280 Z1=P1*Y1+Q1*Y2+B1*W2:Y2=P2*Y1+Q2*Y2+B2*W2 
290 Y1=Z1:X2=160*Y1:IFABS(X2)>127THENX2=127*SGN(X2) 
300 ?(&3001+I)=INT(X2+0.5) 
310 U1=U2:NEXT 
320 
330 REM Data stored in &3000 upwards (lines 270 & 300) 
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> Running the Software 

> 

B.1 Standard features 

In this appendix the standard features of all the programs will be 
introduced, using the CHAP2 and CHAP4 programs as examples. It 
will be assumed that the reader has operating familiarity with the 
BBC computers and it is recommended that before doing anything 
else the user puts a write protect tab on the supplied system disc and 
makes a backup copy (both sides) on a previously formatted new 

disc; the latter should then be used exclusively. Note that other 
versions of the software may become available in future, for use with 
other computers. 

Installing the disc and obtaining a directory will yield the list of 
filenames shown in table B.1 . Files with the .OB extension are 

machine code object files, those beginning with DAT are the main 
data files (each holding a simulated signal of 19456 1-byte values), 
those with the .M extension are small data files and the remainder 
are mainly basic files. Note that the large data files are all on side 2 
of the disc so that a double-sided disc drive is essential. Alternative 
data files containing real (digitised) or simulated signals could be 

supplied by the user as required; §4.6.1 and Appendix A should 

provide sufficient information. 
Loading is most easily done by putting the disc into drive 0, 

holding down the SHIFT key and pressing and then releasing the 
BREAK key (the so-called autoboot facility); this puts up the basic 

index on the screen, from which any required program can be run. 

Now run CHAP2. The screen should clear and then a display giving a 

title, a highlighted window containing instructions and a set of 

options, one of which is highlighted. The convention adopted 
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throughout the programs is that, at any point where the user has the 

opportunity to change any setting, the existing setting can be retained 

simply by pressing the RETURN key. In this case, therefore, 
choosing one of the settings by using the cursor keys and then 

pressing the RETURN key leads to the appropriate display. Further 

displays under the same option (if there are any) can be obtained by 
pressing the RETURN key again and the user is then prompted as 

appropriate. The ESCAPE key can usually be used to return to the 
main index. Similar responses are required in CHAP3. 

Table B.1 Directories of both sides of the BBC disc. Table B.l Directories of both sides of the BBC disc. 

Drive 0 Option 3 (EXEC) Drive 2 Option 0 
Dir. :0.$ Lib. :0.$ Dir. :0.$ Lib. :0.$ 

!BOOT 
ALLDT.M 
CHAP3 
CHAP4 
CHAP4.1 
CHAP4.3 
CHAP5.1 
CHAP5.3 
DATP.OB 
FFT.OB 
INDEX 
PLT.OB 
PSDAT.M 
RTAU.M 

ALL.OB 
CHAP2 
CHAP3.2 
CHAP4.0 
CHAP4.2 
CHAP5 
CHAP5.2 
corrraw 

DNAME.B 
HMOM.OB 
PL16.0B 
PRNTDMP 
RSDAT.M 

DAT0N8 
DAT2N8 

DAT1N8 
DAT3N8 

Now try the CHAP4 routines by returning to the index and running 
CHAP4. Here again (and in CHAP5) displayed sets of options are 

selected using the cursor keys and the RETURN key, but some 

additional protocol is used. To illustrate this, choose the probability 
distribution option from the CHAP4 index. The screen will first clear 
and then a display appears, giving the appropriate title along with 
separately highlighted windows containing the signal type (on the left) 
and the printer status (on the right). The latter can be changed using 
the P key and the former, like all subsequent highlighted action 
prompts, can be selected using the space bar. When the user is ready 
to continue, the RETURN key should be pressed, as usual. 
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If the printer-on option is selected, all subsequent measurement 

parameters and results will be sent in a suitable format to the printer; 
so do not choose this option if there is no printer connected! Many 
experiments that the reader may wish to devise will necessitate 

quantitative knowledge of the results, for which a hard copy is usually 
a great help. 

With just two exceptions, all the options in CHAP4 and CHAP5 

require the input of specified parameters at some point. These all 
have default values which can be selected simply by pressing the 
RETURN key. In this case (the probability distribution option) use 

all default values, stepping through them by using the RETURN key. 
After a brief calculation time, a prompt to present the results as a 

graph will be given and the screen will then clear, prior to a display 
of p(x) against x (suitably normalised) appearing. For this and all 
other measurements which include a graphical presentation of results, 
it is possible to produce a disc file containing the entire screen 

contents, for later hardcopy on a printer using the PRNTDMP 

program available in the main index. Production of the disc file is 
initiated using the dump option—remember that the SPACE bar is 
used for scrolling through the available options. The following section 

gives further information on screen dumps. 
Most of the routines in all the programs allow return to the 

particular chapter index by selecting the appropriate action option or 

using the ESCAPE key, although in some cases the latter will return 

you to the main index. Do not forget that the BREAK key always 
returns you to the main index. 

> B.2 Screen dumps 

Many printers can be used to produce a screen dump, i.e. a 

monochrome ink image of whatever appears on the screen. Unfortunately there is no universal standard for printers or the software to 

drive them; so, instead of providing a direct screen-to-printer facility, 
the present software provides a means of copying the graphics 
memory to a file. The screen image can then be recreated by reading 
this file back into memory independently of the programs, and users 

can then use their own software to make a copy on a printer. 
Although the details of this latter process are dependent on the 

hardware and operating system and will vary according to the 
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computer model being used, many users will have access to Epson 
printers, or one that is software compatible. A program PRNTDMP 
is therefore provided under the main index; this will reload the dump 
file and send it to the printer. PRNTDMP is identical with that used 
in other volumes in this series and it has a self-explanatory dialogue. 
A few examples of the resulting printouts are included within the 

present text, as appropriate. 
To produce the required file, the dump option should be selected 

after an action prompt, and the user is then prompted for a drive 
number (with the default of 2) and a file name. It should be noted 
that, since these files are quite long, not more than six of them can 

be saved on the system disc. The user may prefer to replace the latter 
with his or her own prepared disc, not forgetting that, before 

continuing to run the original program, he or she must return the 

system disc to drive 0. All the screen dumps are from mode 1 and 
BBC users may also like to be reminded that a screen dump can 

easily be recalled to the screen from immediate command mode, as 

well as from a program. For example, if DMPF1 were the name of a 

screen-dump file then 

MODE 1: *LOAD DMPF1 

would reload it. 
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Aliasing, 84-8 , 110 , 112 , 116 , 117 , 

119 , 130
Analogue-to-digital conversion, 1 , 

2 , 50
Autoboot (SHIFT/BREAK), 141
Autocorrelation function

definition, 12 , 34
computer exercises, 116 - 19 , 130 , 

131
estimation, 88- 101
examples, 35-40
standard error, 91 , 92 , 95 , 96
variability, 90-5

Autocovariance, 34 , 35
Autoregressive process, 40 , 41 , 139

Bandwidth
amplitude, 17 , 18 , 48
frequency, 35-8 , 48 , 73 , 111

Bartlett
estimate (spectral window), 107
formula (autocorrelation 

estimation), 90 -3
Bias errors, 61 , 63
BREAK, 141 , 143

Cardiac cycle, 45 , 46
Central-limit theorem, 23 , 24 , 59
CHAP2, 15, 127 , 141-3
CHAP3, 46 , 127 , 141 -3
CHAP4, 76 , 127 -9 , 141 -3
CHAP5, 115 , 130-2 , 141 -3

Chi-squared distribution, 64

Conditional sampling, 45 , 46
Confidence limits, 59 , 62 , 63 , 78

80 , 128 , 129
Cumulative probability distribution, 

59 , 60 , 64 , 65

Delta function, 35
Delta modulation, 49
Deterministic, 5 , 6 , 12 , 20 , 34 , 43

Electrocardiogram, 45 , 46

Entropy, maximum, 109 , 110

Ergodicity, 8 , 9
ESCAPE, 16 , 142 , 143
Extreme values, 33

Fourier
fast transform (FFT), 98 , 99 , 116
integral, 43
series, 6-8 , 12
transform (discrete), 97 , 99 , 101

Gaussian (normal) distribution, 9 , 

10 , 24 , 33

Harmonics, 8
Higher-order moments

computer exercises, 80 , 81 , 

127-9
definitions, 32 , 33
estimation, 66-8
standard error, 67 , 74

variability, 66-8
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Integration time, 48
Intermittent signal, 27-29

Lag time, 34 , 118 , 119
Linear filter, 40 , 137- 140

MASTER (BBC computer), 3
Mean value

computer exercises, 78-80 , 

127-9
definitions, 30 , 31
estimation, 58-63
standard error, 62 , 63 , 74

variability, 61 , 73
Mean-square value

computer exercises, 78 - 80 , 

127-9
definitions, 30 , 31
estimation, 63-5
standard error, 64 , 74

variability, 64 , 65 , 73
Memory, computer, 3 , 133
Moving average, 41

Noise
correlated (pink), 12 , 38 , 39 , 44 , 

137 , 138
Gaussian, 9 , 10 , 24 , 33 , 136 , 137
random, 8 , 23 , 32 , 135 , 136
white, 10 , 24 , 35 , 36 , 44 , 136 , 

137
Nyquist (aliasing) frequency, 98

Oscilloscope, 4 , 15

Pedestal errors, 102 , 103
Periodogram, 104 , 106
PRNTDMP, 129 , 143 , 144
Periodic signals, 5 , 10- 12 , 20-3 , 

25-7 , 35 , 39 , 40 , 44
Poisson function, 14 , 39
Power spectrum, see Spectral 

density function
Probability density function

computer exercises, 81-3 , 129
definitions, 18 , 19
estimation of, 68 -71
examples, 19-30

Probability density function (cont.)
moments of, 17 , 30 , 32
variability, 69 , 74
standard error, 69 , 75

Pulse code modulation, 49

Quantisation error

in amplitude, 24 , 48- 57
in time, 84-8

Ranging errors, 51 , 77
RETURN, 15 , 46 , 142 , 143
Resolvability, 110 , 113
Root-mean-square (rms), 30 , 31

Sampling
time, 49
rate, 49 , 78 , 110

SHIFT/BREAK (autoboot), 141
Simulation, signal, 133 -40
Sinusoidal signals, 5 , 6 , 18, 20 , 21 , 

130
Skewness, 27 , 32
SPACE, 15 , 143
Spectral density function

computer exercises, 119-23 , 131 , 

132
definitions, 41 , 42
estimation of, 101-6 , 110- 15
examples, 43 -5
variability, 102-6 , 111

Standard deviation, 10 , 31 , 80
Standard error, 63 , 65 -7 , 69 , 74 , 

75 , 91 , 92 , 95 , 96
Stationanty, 8 , 9
Student-t distribution, 59 , 60

Telegraph signal, 14 , 15 , 30 , 32 , 39
Time constant, 90 , 95 , 96
Truncation errors

amplitude, 24
autocorrelation, 107-9

Variance, 31 , 63 -5
Variability, 61 , 63-5 , 66 , 69 , 73 , 

74 , 90 -5 , 102-6 , 111
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Weiner-Khintchine theorem, 42

Windowing, 106 - 10
Window

lag, 106 , 107

spectral, 106 , 107
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